
Azure
Automation
Microsoft Azure Essentials

Michael McKeown

 1

PUBLISHED BY

Microsoft Press

A division of Microsoft Corporation

One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2015 Microsoft Corporation. All rights reserved.

No part of the contents of this book may be reproduced or transmitted in any form or by any means without

the written permission of the publisher.

ISBN: 978-0-7356-9815-4

Microsoft Press books are available through booksellers and distributors worldwide. If you need support

related to this book, email Microsoft Press Support at mspinput@microsoft.com. Please tell us what you

think of this book at http://aka.ms/tellpress.

This book is provided “as-is” and expresses the authors’ views and opinions. The views, opinions, and

information expressed in this book, including URL and other Internet website references, may change

without notice.

Unless otherwise noted, the companies, organizations, products, domain names, e-mail addresses, logos,

people, places, and events depicted in examples herein are fictitious. No association with any real company,

organization, product, domain name, e-mail address, logo, person, place, or event is intended or should be

inferred.

Microsoft and the trademarks listed at http://www.microsoft.com on the “Trademarks” webpage are

trademarks of the Microsoft group of companies. All other marks are property of their respective owners.

Acquisitions, Developmental, and Project Editors: Alison Hirsch and Devon Musgrave

Editorial Production: nSight, Inc.

Copyeditor: Teresa Horton

Cover: Twist Creative

mailto:mspinput@microsoft.com
http://aka.ms/tellpress
http://www.microsoft.com

2

Table of Contents
Introduction .. 7

Who should read this ebook .. 7

Assumptions ... 7

Organization of this ebook ... 7

Conventions and features in this ebook .. 8

Acknowledgments .. 9

Errata, updates, & support .. 9

Free ebooks from Microsoft Press ... 9

Free training from Microsoft Virtual Academy ... 9

We want to hear from you .. 10

Stay in touch ... 10

Chapter 1 Introduction to Azure Automation ... 11

Why automation? ... 11

Repeatable deployment... 12

Consistent testing configurations .. 12

Why Azure Automation? ... 12

Windows PowerShell workflow ... 13

End-to-end automation service .. 13

Off-premises redundancy backed storage ... 14

Runbook authoring and importing ... 14

Scenarios .. 14

Azure Automation pricing ... 15

Enabling Azure Automation ... 15

Creating an Azure Automation account.. 16

Chapter 2 Runbook management ...19

3

What is a runbook? .. 19

Runbooks support in the Azure Management Portal .. 19

Import a runbook ... 20

Import a runbook from the Script Center .. 20

Import or export a runbook via the Azure Management Portal ... 21

Create a runbook .. 22

Create a runbook using Quick Create .. 22

Create a runbook from the Gallery ... 23

Author a runbook ... 26

Runbook parameters ... 29

Runbook checkpoints ... 29

Resume or suspend a runbook ... 32

Chapter 3 Assets ... 33

Management certificates ... 33

Azure Active Directory and automation .. 35

Azure Automation assets ... 36

Asset scope .. 37

Variable assets .. 38

Using a variable asset.. 40

Integration module assets... 43

Importing an integration module asset .. 43

Integration modules versus runbooks ... 43

Credential assets ... 45

Creating a credential asset ... 46

Connection assets ... 48

Creating a connection asset ... 48

4

Using the Connect-Azure runbook ... 50

Calling the Connect-Azure runbook using certificates ... 51

Using Azure Active Directory without the Connect-Azure runbook ... 53

Schedule assets .. 54

Creating a schedule asset ... 54

Using the schedule .. 55

Chapter 4 Runbook deployment ..57

Publishing a runbook .. 57

Invoking a runbook .. 58

Invoke from code within another runbook.. 58

Invoke a child runbook using inline scripts ... 62

Invoke a child runbook using Start-AzureAutomationRunbook .. 63

Use Start-ChildRunbook to start an Azure Automation job ... 64

Invoke a runbook manually from the Azure Management Portal ... 67

Invoke a runbook using a schedule asset ... 70

Troubleshooting a runbook.. 73

Use the Dashboard .. 73

Enable logging ... 74

Backing up a runbook... 76

Chapter 5 Azure Script Center, library, and community ...78

Windows PowerShell workflows and runbooks ... 78

Azure workflow execution ... 79

Resources ... 81

Chapter 6 Best practices in using Azure Automation ...83

Runbooks ... 83

Concurrent editing of runbooks ... 85

Azure Automation accounts .. 85

5

Checkpoints... 86

Assets ... 87

Importing integration modules .. 88

Credentials and connections .. 88

Schedules ... 88

Authoring runbooks .. 89

Chapter 7 Scenarios ...91

Scenario: Provisioning of IaaS resources ... 92

Provisioning resources .. 92

Authentication processing .. 93

Using the New-AzureEnvironmentResourcesFromGallery runbook .. 94

Creating assets for the runbook ... 94

Defining parameters and variables ... 95

Configuring authentication .. 96

Processing details ... 97

Scenario: Maintaining and updating Azure IaaS resources .. 101

Summary of upgrade process .. 101

Using the Update-AzureVM runbook ... 102

Supporting runbooks ... 105

Install-ModuleOnAzureVM runbook ... 106

Copy-FileFromAzureStorageToAzureVM runbook.. 107

Copy-ItemToAzureVM runbook.. 108

Some final thoughts ... 109

About the Author .. 110

 6

Foreword

I’m thrilled to be able to share these Microsoft Azure Essentials ebooks with you. The power that

Microsoft Azure gives you is thrilling but not unheard of from Microsoft. Many don’t realize that

Microsoft has been building and managing datacenters for over 25 years. Today, the company’s cloud

datacenters provide the core infrastructure and foundational technologies for its 200-plus online

services, including Bing, MSN, Office 365, Xbox Live, Skype, OneDrive, and, of course, Microsoft Azure.

The infrastructure is comprised of many hundreds of thousands of servers, content distribution

networks, edge computing nodes, and fiber optic networks. Azure is built and managed by a team of

experts working 24x7x365 to support services for millions of customers’ businesses and living and

working all over the globe.

Today, Azure is available in 141 countries, including China, and supports 10 languages and 19

currencies, all backed by Microsoft's $15 billion investment in global datacenter infrastructure. Azure is

continuously investing in the latest infrastructure technologies, with a focus on high reliability,

operational excellence, cost-effectiveness, environmental sustainability, and a trustworthy online

experience for customers and partners worldwide.

Microsoft Azure brings so many services to your fingertips in a reliable, secure, and environmentally

sustainable way. You can do immense things with Azure, such as create a single VM with 32TB of

storage driving more than 50,000 IOPS or utilize hundreds of thousands of CPU cores to solve your

most difficult computational problems.

Perhaps you need to turn workloads on and off, or perhaps your company is growing fast! Some

companies have workloads with unpredictable bursting, while others know when they are about to

receive an influx of traffic. You pay only for what you use, and Azure is designed to work with common

cloud computing patterns.

From Windows to Linux, SQL to NoSQL, Traffic Management to Virtual Networks, Cloud Services to

Web Sites and beyond, we have so much to share with you in the coming months and years.

I hope you enjoy this Microsoft Azure Essentials series from Microsoft Press. The first three ebooks

cover fundamentals of Azure, Azure Automation, and Azure Machine Learning. And I hope you enjoy

living and working with Microsoft Azure as much as we do.

Scott Guthrie

Executive Vice President

Cloud and Enterprise group, Microsoft Corporation

 7

Introduction

This ebook introduces a fairly new feature of Microsoft Azure called Azure Automation. Using a highly

scalable workflow execution environment, Azure Automation allows you to orchestrate frequent

deployment and life cycle management tasks using runbooks based on Windows PowerShell Workflow

functionality. These runbooks are stored in and backed up by Azure. By automating runbooks, you can

greatly minimize the occurrence of errors when carrying out repeated tasks and process automation.

This ebook discusses the creation and authoring of the runbooks along with their deployment and

troubleshooting. Microsoft has provided some sample runbooks after which you can pattern your

runbooks, copy and modify, or use as-is to help your scripts be more effective and concise. This ebook

explores uses of some of those sample runbooks.

Who should read this ebook

This ebook exists to help IT pros and Windows PowerShell developers understand the core concepts

around Azure Automation. It’s especially useful for IT pros looking for ways to automate their common

Azure PaaS and IaaS application duties such as provisioning, deployment, lifecycle management,

patching and updating, de-provisioning, maintenance, and monitoring.

Assumptions
You should be somewhat familiar with concepts behind Windows PowerShell programming as well as

understand fundamental Azure provisioning and deployment. It helps if you have written and run

some Windows PowerShell code, especially as it relates to the Azure PowerShell Management API. This

ebook looks at some Azure Automation Windows PowerShell workflow scripts and breaks down what

they are doing. If this is your first time with Windows PowerShell, it might be a real challenge for you.

This ebook assumes you have worked in some context with Azure in either the PaaS or IaaS spaces.

Items such as Azure assets in the form of connections, credentials, variables, and schedules all will help

you manage your Azure applications and deployments. For instance, you should know what is an Azure

Virtual Machine (VM) or an Azure Cloud Service.

Organization of this ebook

This ebook includes seven chapters, each of which focuses on an aspect of Azure Automation, as

follows:

Introduction to Azure Automation: Provides an overview of Azure Automation, looking at what it

 8

involves, and the situations for which it is best suited. Shows how to enable Azure Automation and how

to create an Azure Automation account, which is the highest-level root entity for all your automation

objects under that account.

Runbook management: Covers how to manage runbooks, which are logical containers that

organize and contain Windows PowerShell workflows. Also, learn about the concept of authentication

and the role of management certificates or Azure Active Directory.

Assets: Describes the entities that runbooks can globally leverage across all runbooks in an Azure

Automation account. Learn about variable, credential, connection, and schedule assets.

Runbook deployment: Discusses publishing a runbook after it has been authored and tested. Also

provides some troubleshooting ideas.

Azure Script Center, library, and community: Learn more about Windows PowerShell Workflow

functionality, the execution process, and how it relates to Azure Automation runbooks. Provides an

overview of resources for reusable scripts that you can import into your runbooks and use wholly or in

part.

Best practices: Looks at some key recommendations to optimize and maximize your use of Azure

Automation.

Scenarios: Explores in-depth a few common Azure Automation scenarios that you can hopefully

relate to your everyday work.

Conventions and features in this ebook

This ebook presents information using conventions designed to make the information readable and

easy to follow:

 To create specific Azure resources, follow the numbered steps listing each action you must take

to complete the exercise.

 There are currently two management portals for Azure: the Azure Management Portal at

http://manage.windowsazure.com and the Azure Preview Portal at http://portal.azure.com. As

of this writing, features related to Azure Automation are available only in the Azure

Management Portal.

 Boxed elements with labels such as “Note” or "See Also" provide additional information.

 A plus sign (+) between two key names means that you must press those keys at the same time.

For example, “Press Alt+Tab” means that you hold down the Alt key while you press Tab.

 A right angle bracket between two or more menu items (e.g., File Browse > Virtual Machines)

means that you should select the first menu or menu item, then the next, and so on.

http://manage.windowsazure.com/
http://portal.azure.com/

 9

Acknowledgments

I’d like to thank the following people. Jeff Nuckolls, my manager at Aditi, who encouraged me to do

this for personal growth. Charles Joy of Microsoft, who helped me get started with Azure Automation

and took time to help me work through some tough issues. Joe Levy, who gave me some technical

guidance to ensure I was both correct and current. And, my wife and faithful support, Tami, and my

kids, Kyle, Brittany, Hap, Mikey, and Wiggy, who put up with me working all the time to get this done.

Oh yeah, and so as not to offend any other family support, I might as well thank my Husky, SFD, and

my two rabbits, Ting and Chesta.

Errata, updates, & support

We’ve made every effort to ensure the accuracy of this ebook. You can access updates to this

ebook—in the form of a list of submitted errata and their related corrections—at:

http://aka.ms/AzureAuto/errata

If you discover an error that is not already listed, please submit it to us at the same page.

If you need additional support for this ebook, email Microsoft Press Support at

mspinput@microsoft.com.

Please note that product support for Microsoft software and hardware is not offered through the

previous addresses. For help with Microsoft software or hardware, go to http://support.microsoft.com.

Free ebooks from Microsoft Press

From technical overviews to in-depth information on special topics, the free ebooks from Microsoft

Press cover a wide range of topics. These ebooks are available in PDF, EPUB, and Mobi for Kindle

formats, ready for you to download at:

http://aka.ms/mspressfree

Check back often to see what is new!

Free training from Microsoft Virtual Academy

The Microsoft Azure training courses from Microsoft Virtual Academy cover key technical topics to help

developers gain the knowledge they need to be a success. Learn Microsoft Azure from the true experts.

Microsoft Azure training includes courses focused on learning Azure Virtual Machines and virtual

http://aka.ms/AzureAuto/errata
http://aka.ms/AzureAuto/errata
mailto:mspinput@microsoft.com
http://support.microsoft.com/
http://aka.ms/mspressfree

 10

networks. In addition, gain insight into platform as a service (PaaS) implementation for IT Pros,

including using PowerShell for automation and management, using Active Directory, migrating from

on-premises to cloud infrastructure, and important licensing information.

http://www.microsoftvirtualacademy.com/product-training/microsoft-azure

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable asset.

Please tell us what you think of this ebook at:

http://aka.ms/tellpress

We know you’re busy, so we’ve kept it short with just a few questions. Your answers go directly to

the editors at Microsoft Press. (No personal information will be requested.) Thanks in advance for your

input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

http://www.microsoftvirtualacademy.com/product-training/microsoft-azure
http://aka.ms/tellpress
http://twitter.com/MicrosoftPress

 33

Chapter 3

Assets

Microsoft Azure Automation assets are global resources used by runbooks to assist in common tasks

and value-specific operations. Assets can be imported into modules. Types of assets include

connections, credentials, schedules, variables, and integration modules. Global connections and

credentials help authenticate between the Windows PowerShell workflows and Azure when the Azure

Automation scripts are run against a specific Azure subscription. For instance, Microsoft published the

Connect-Azure runbook, which can be used globally within an Azure Automation account to

encapsulate the connection and login functionality needed to connect to Azure. Schedule assets can be

linked to runbooks, allowing them to run at a specific date and time. Variable assets are used to

provide runtime values for runbooks to work on specific subscriptions, as well as to control the logic

within the Windows PowerShell code.

Azure Automation is incorporated into Azure Active Directory (Azure AD), which allows simpler

management of identity and access for users and groups to the Azure Automation accounts and

runbooks. Authentication can now be done with an account within Azure AD instead of having to

manage and use management certificates. Using Azure AD greatly simplifies the process of

authentication over using management certificates. The account in Azure AD can also be reused and

leveraged in other Azure services that support the use of Azure AD.

Management certificates

To run Windows PowerShell Workflow scripts from Azure Automation, you first have to authenticate

during the connection using Windows PowerShell credentials or a certificate. You must connect in an

authenticated manner to Azure to be able to run any commands against resources within a

subscription. Authentication must be set up between Azure Automation and the Azure resources in an

Azure subscription that you intend to manipulate via script. You can upload a management certificate

to handle this authentication within an Azure subscription.

Azure uses X.509 v3 certificates for authentication in many places. These certificates can be

self-signed (usually done for development or testing) or signed by a trusted signature authority

(usually done for production). Typically, you upload a .cer file as a management certificate. Certificates

used by Azure can contain a private or a public key. A .cer management certificate file does not contain

the private key embedded within it, as does a .pfx service certificate (a .pfx file is used to secure client

calls to cloud services). Certificates have a thumbprint that provides a means to identify them in an

unambiguous way to Azure. For a .cer file, the client connecting the service needs to be trusted and

have the private key.

 34

You can share certificates across Azure subscriptions with different subscription owners. This helps

you to limit the actual number of certificates you have to create in an enterprise subscription. The limit

is 100 certificates per subscription.

A management certificate is not an automation asset per se, although it is global to the subscription

in its scope. You upload the management certificate just like any other management certificate in

Azure, such as certificates used for Azure Recovery Services, via the Management Certificates tab under

Settings.

However, for Azure Automation, the management certificate is also uploaded as an Azure

Automation Credential asset if you choose to authenticate using the Certificate Credential asset. This is

a key point: To work correctly for Azure Automation, a management certificate has to exist both in the

Settings for the subscription and be created as a Certificate automation asset. Why the certificate needs

to exist concurrently in two different forms at once at first might seem very confusing.

The Certificate Creation Tool (Makecert.exe) that ships with the Windows SDK provides information

about how to create a self-signed management certificate. You can also create one using Internet

Information Services (IIS). Alternatively, you can obtain a signed certificate from a verified certificate

authority. However, authenticating with a certificate is no longer recommended for Azure Automation.

See Also For more information about Makecert.exe, see Makecert.exe (Certificate Creation Tool). For more

information about using IIS to create a self-signed management certificate, see Create a Self-Signed Server

Certificate in IIS 7.

After you have the management certificate file (.cer) that contains the public key, you must upload

it to Azure. Sign into the Azure Management Portal, click Settings, and then click Management

Certificates. Click Upload, and then in the Upload A Management Certificate dialog box, browse to the

location of your .cer file and select it. As shown in Figure 3-1, select the subscription to which you want

to apply the certificate file, and then click the check mark to upload it to the Azure Management

Portal.

FIGURE 3-1 Dialog box to upload a management certificate to the Azure Management Portal.

http://msdn.microsoft.com/en-us/library/bfsktky3(v=vs.110).aspx
http://technet.microsoft.com/en-us/library/cc753127(v=WS.10).aspx
http://technet.microsoft.com/en-us/library/cc753127(v=WS.10).aspx

 35

After the upload completes, the certificate is displayed in the list of management certificates, as

shown in Figure 3-2. The thumbprint is the public key component of the certificate. It’s used with the

private key component and verified against any of the loaded certificates for the subscription when

Azure Automation is making requests to Azure.

FIGURE 3-2 Settings section of the Azure Management Portal showing uploaded management certificates.

After you have loaded a management certificate into Azure, you’re ready to create a certificate.

Azure Active Directory and automation

Authenticating using management certificates is the original and primary way to secure your calls from

your Azure Automation scripts into the Azure environment, but there are a lot of steps to create and

upload the certificates to Azure. Managing them can also require a lot of organizational effort.

There is now a new and recommended option that provides a more integrated and simpler

authentication mechanism for Azure Automation runbooks. Using Azure AD, you can use

credential-based authentication for your Azure Automation runbooks. Azure Automation allows a

robust and rich, integrated, identity-based authentication mechanism, supporting key industry-wide

identity access mechanisms such as single sign-on (SSO) and Multifactor Authentication (MFA). Azure

Automation easily integrates and synchronizes with your on-premises enterprise Active Directory

installation. Azure Automation also uses role-based access control (RBAC) mechanisms available in the

Azure Preview Portal. Additionally, you can leverage RBAC in your Azure Automation runbook

authentication strategy. This permits you to simplify and improve control regarding who in your

organization is allowed to perform specific operations or access specific resources.

Azure Automation is becoming increasingly integrated into the various Azure services as an

all-inclusive identity solution. With Azure Automation, your organizational groups and user accounts

are used to simplify secure access to different parts of Azure. When you log into your Azure

subscription or use the Azure REST Management application programming interface (API), you

authenticate using Azure Automation. Azure Automation, along with services such as Microsoft Office

365, Microsoft Azure SQL Database, Microsoft Azure Mobile Services, and Microsoft Azure Cloud

Services, trust Azure Automation with identity access management.

To enable Azure Automation for a new user, do the following:

1. Create the user in Azure AD. For more information about creating a user in Azure AD, see

Create or edit users.

http://msdn.microsoft.com/en-us/library/azure/hh967632.aspx

 36

2. Add the user as co-administrator to your Azure subscription. Log in to the Azure Management

Portal at manage.windowsazure.com, click Settings, click Administrators, and then click Add.

3. Log in to the Azure Management Portal as the Azure Automation user you created in step 1

and change the password when prompted.

(This procedure isn’t necessary if you want to use an existing Azure user account.) After the user is

created, you will want to create an Azure Automation credential asset with the login credentials of that

user. As a best practice, it often makes sense to create a user account just to use for running your Azure

Automation scripts.

You can access the Azure Automation credential asset from within your Azure Automation runbook.

The runbook code gets the credentials from Azure Automation, using the Azure Automation credential

asset, and then uses the credentials to authenticate when it connects to Azure.

In the following example, Kim Akers is the credential asset used to authenticate with Azure AD. The

Windows PowerShell workflow code makes a call to the Get-AutomationPSCredential cmdlet to

authenticate the script:

Workflow Get-AzureVMNamesSample

{

 # Grab the credential to use to authenticate to Azure.

 # TODO: Fill in the –Name parameter with the name of the Automation PSCredential asset

 # that has access to your Azure subscription

 $Cred – Get-AutomationPSCredential –Name “KimAkers.onmicrosoft.com”

 # Connect to Azure

 Add-AzureAccount –Credential $Cred

 InlineScript {

 # Select the Azure subscription you want to work against

 # TODO: Fill in the –SubscriptionName parameter with the name of your Azure subscription

Select-AzureSubscription –SubscriptionName “Windows Azure MSDN – Visual Studio Ultimate”

 # Get all Azure VMs in the subscription, and output each VM’s name

Get AzureVM | select InstanceName

 }

}

Although using management certificates to authenticate Azure Automation runbooks is still

supported, as a best practice, use Azure AD for all your Azure Automation authentication mechanisms

whenever possible.

Azure Automation assets

Assets are to Azure Automation as running water is to a modern home. Sure, you can exist without

 37

piped running water by going to the stream or lake near your home (if you have one), manually filling

buckets of water, and lugging them home over and over again. But the spillage and time lost in this

process makes it not nearly as effective as turning on the faucet to access clear and safe water out of

the tap. After you have water, you use it for household tasks such as washing dishes after dinner,

running the clothes washer after football practice, bathing the children in the tub, and making

lemonade drink mix for snack time.

Assets serve a very similar purpose in Azure Automation as the modern day public water system.

Assets are reusable shared global resources that support global and common connections, credentials,

variables, and schedules. These can be shared across runbooks in the same Azure Automation account,

or between multiple jobs from the same runbook. They can also manage a value from the Azure

Management Portal or the Windows PowerShell command line that can be shared across runbooks.

Assets promote centralized management of constant values. In the Automation area of the Azure

Management Portal, assets are also referred to as settings. You can create variables that can be input

by the administrator of the scripts at runtime or set via code. Assets allow a simple standard

mechanism for sharing of global entities between jobs, such as variables, schedules, credentials, and

connections. By using assets to encapsulate connections and credentials, the login security information

is much safer than being hard-coded in workflow code. Schedule assets provide a global scheduling

capability.

A good example of using assets is the Connection asset. It allows you to group the connection data

necessary to connect an external system into a single object so that it can be easily accessed by

runbooks. It provides a template describing how a connection for a certain system should look. This

allows users to use this template when defining the connection to this system. Any changes to the

connection data can be made in a single place without having to replicate the change in multiple

locations (variable assets, runbooks, and so on).

Assets are useful for keeping your configuration values consistent across all runbooks. Using assets

simplifies runbook maintenance by storing and maintaining configuration values in a central location.

You will most likely want to use assets across multiple runbooks, so allowing updates in one place

ensures the changes are reflected everywhere they are used.

Asset scope
The scope of assets is global within an Azure Automation account and shared across all runbooks in

that account. For an example, see Figure 3-3. If we have a variable in Asset 1, a credential in Asset 2,

and a schedule in Asset 3, with runbooks A and B in the same Azure Automation account AA, either

runbook can use Assets 1, 2, and 3. When accessed in code, both runbooks get the same value for all

the assets in their respective scripts. If the value is changed in runbook A, the change will be reflected

in runbook B the next time it is accessed. However, runbooks in another Automation account (say BB)

but in the same subscription will not have scope for any of the assets in Automation account AA.

 38

FIGURE 3-3 Runbook scope of assets within an Azure Automation account.

You can view all the assets you have for a particular Azure Automation account. Log in to the Azure

Management Portal, click Automation, select the Azure Automation account, and then click Assets.

Figure 3-4 shows each of the different types of assets: certificate, connection, credential, module,

schedule, and variable.

FIGURE 3-4 Automation assets for a specific Azure Automation account.

Variable assets
Within Azure Automation, variable assets play an important part in the Windows PowerShell Workflow

scripts in the runbooks. A variable is nothing more than a name that represents a value. We can use

 39

variables to reflect changing or current values rather than entering hard-coded data directly into the

script code. When the script is run, the variables are replaced with real values. This makes variables

quite flexible in that they can hold and reflect data that could be different each time the runbook is

run.

A variable is an asset you define that has global scope (as do all types of assets) across all runbooks

in that Azure Automation account. There are four types of variables—string, integer, Boolean,

datetime—and a special class named Not Defined that is basically a null value. For all types but Not

Defined, you can define an initial value.

To create a variable asset, do the following:

1. Log in to the Azure Management Portal, click Automation, select the Azure Automation

account, click Assets, and then click Add Settings.

2. In the Add Settings dialog box, options are available to add a connection, credential, variable,

or schedule. Click Add Variable to open the Define Variable dialog box.

3. Click Variable Type and, then select String. In the Name text box, enter a name for the variable.

Enter a description (this is optional). Click the right arrow to go to the Define Variable Value

dialog box.

 40

4. In the Value text box, enter the initial value for the string. This is optional, as you can leave the

variable uninitialized at the start if you choose and later assign it a value at runtime or through

script code. After you enter the value, you can choose to encrypt the variable. Select No if you

want to see the value of the variable in the Azure Management Portal. Select Yes if you do not

want to see the value of the variable in the portal. When a value is encrypted, it’s displayed with

circle symbols in the portal instead of its actual characters. However, it does not encrypt the

data in storage. Only the appearance in the UI is encrypted. Click the check mark to create the

variable.

Using a variable asset

To use variable assets in a runbook, you must assign (Set) them a value in code or access (Get) their

current value to do something with that value. For example, use the Set-AutomationVariable activity to

set the value of a variable asset. Correspondingly use the Get-AutomationVariable activity to get the

value of a variable asset. Both of these activities are part of the core Azure module, as are most of the

Azure PowerShell activities used in this book.

Note For example purposes, this book uses a runbook named Demobook.

1. To set a variable value, log in to the Azure Management Portal, click Automation, click the

Automation Account, click Runbooks, and then click the runbook of interest. Click the Author

tab to edit that runbook.

2. Move the cursor to the location where you want to make the insertion in the Demobook

runbook, and then click Insert > Setting.

3. In the Insert Setting dialog box, select a setting action (Get or Set), and then select a setting

 41

name. This example is about setting a variable value, so select Get Variable. You can use an

existing variable and set a value for it, or if the variable does not exist, create one. Choose a

setting name for an existing variable. Setting Details shows the current value for that variable.

4. Click the check mark to insert the Get-AutomationVariable activity into the runbook code at the

location of the cursor. By default, if you don’t move the cursor, the activity is inserted in the first

column in the first row. If you insert a setting at that location, it will remove the name of your

runbook.

To insert the Set-AutomationVariable activity, use the same process except choose that activity from

the Setting Action column in the Insert Setting dialog box.

You can use the Get-AutomationVariable and Set-AutomationVariable activities together to

understand the concept of global scope for assets. The following process uses the mysamplestring

variable asset and the Demobook runbook shown previously. In addition, a second runbook example

named Demobook2 shows the global scope across runbooks of a variable asset.

1. Create a temporary variable $testValue, and then assign it the value of mysamplestring. Make a

call to write-output to display the original value of $testvalue. Click Test to run and show this

output.

 42

2. Create a new runbook called Demobook2.

3. Assign a new value to mysamplestring of ―new value for mysamplestring‖. Click Insert >Setting.

In the Insert Setting dialog box, under Setting Action, select Set Variable. In Setting Name select

the setting name, and then click the check mark. This action results in the following being

written to the Demobook runbook at the current cursor location:

Set-AutomationVariable -Name 'mysamplestring' -Value <System.Object>

4. Replace the <System.Object> with $newmysamplestring. This sets the value of mysamplestring to

the value contained in $newmysamplestring. Call Get-AutomationVariable to obtain the value of

mysamplestring into the $testvalue variable, which has just changed. Call write-output to

display the value of $testvalue. Click Test to run the code and see the output of both the

original global value of mysamplestring of ―mysamplestring‖ and the updated global value of

―new value for mysamplestring‖.

This example demonstrates that all runbooks in an Azure Automation account share the same

global value for mysamplestring. If one runbook changes its value, the change is reflected across all

runbooks in that automation account. Also note that if you have a variable asset in another of your

automation accounts by the same name—mysamplestring, in this case—it will be a completely

 43

different value and in a totally different storage location than the mysamplestring variable in your

other runbook.

This principle applies not just to variable assets, but to other assets you can insert into code,

including connections, certificates, and Windows PowerShell credentials. Schedule assets are a bit

different from the other types of assets in that you don’t call them in scripts. However, their capability

is still global to all runbooks in an Azure Automation account.

Integration module assets
Integration modules are published Windows PowerShell libraries that can be imported into Azure

Automation as a module asset and used when authoring runbooks. They can be up to 30 MB in size

and must be in zipped format. By default, when you create an Automation Account, the Azure

PowerShell module is imported. This module asset supplies all the Azure PowerShell cmdlets (also

referred to as activities) that you can use in your runbooks. You can see the Azure module by itself

initially when an Azure Automation account is created. Additionally, you can import additional

Windows PowerShell Workflow modules as assets.

Importing an integration module asset

To import a module asset, do the following:

1. Download the module asset as a .zip file and then save it locally.

2. In the Azure Management Portal, click Automation, select the Azure Automation account, and

then click Assets.

3. Click Import Module to browse and select the module to be imported, and then click the check

mark to begin the import process. The display shows it is unzipping the activities in that

module. After the module has completed the import process, it is displayed at the Azure

Automation Account level under Assets as a Module asset type.

The most common issue encountered during importing a module is that the zipped module

package must contain a single folder within the .zip file that has the same name as the .zip file. Within

this folder, there needs to be at least one file with the same name as the folder, and using the

extension .psd1, .psm1, or .dll. Also, the Integration Module package is a compressed file with the same

name as the module and a .zip extension. It contains a single folder also with the name of the module.

The Windows PowerShell module and any supporting files, including a manifest file (.psd1) if the

module has one, must be contained in this folder.

Integration modules versus runbooks

A common misunderstanding in Azure Automation is the concept of a module versus a runbook, as

well as the terms import and insert.

An Azure Automation runbook is an execution unit that contains Windows PowerShell Workflow

 44

scripts. Scripts are a program, a group, or many Windows PowerShell commands in one file. Runbooks

contain scripts. A runbook that is less than 1 MB in size and not currently part of an Azure Automation

account can be imported in PS1 format into that Azure Automation account. When a runbook is

invoked, it is sent to a virtual runtime environment to run, which occurs transparently behind the

scenes. Runbooks are invoked by a schedule, called by other runbooks (when the runbook has been

published) when they are inserted during authoring, or run manually by themselves.

A module is a group of activities (cmdlets) that you can insert into a runbook after the module has

been imported. You can import a module into an Azure Automation account via controls in the Assets

area of the Azure Management Portal runbook UI. All runbooks in an account can then call any

activities of that runbook. (Remember, an activity is a cmdlet.) The module must be in zipped format,

up to a 30 MB limit. By default, Azure activities are imported as assets for use in all your runbooks. In

the Azure Management Portal, when you look at Assets under any new Azure Automation account, the

runbook that contains the Azure activities is named Azure.

When in Author mode for a runbook, you can choose Insert and then select Activity to display the

dialog box shown in Figure 3-5. In the Insert Activity dialog box, you can choose the integration

module and then select an activity to see its description.

FIGURE 3-5 Adding the AddAzure-Disk activity to the code in the current runbook.

Figure 3-6 shows the list of parameters for the Add-AzureDisk activity. The DiskName and

MediaLocation parameters are required when you make the call to Add-AzureDisk. The Label and OS

parameters are not required.

 45

FIGURE 3-6 The parameters for the Add-AzureDisk activity.

When you click the check mark to close this dialog box, a template for Add-AzureDisk is added to

the cursor location for the runbook. In the following code example, note the line continuation

character ` at the end of each line as it is inserted. Azure uses this method to insert each activity into a

script. If you prefer, you can remove these characters and put the command all on one line.

Add-AzureDisk `

-DiskName <System.String> `

 -MediaLocation <System.String> `

 [-Label <System.String>] `

 [-OS <System.String>]

Due to the lack of brackets [] around them, the first two parameters, DiskName and MediaLocation,

are required when using this activity. The other two parameters in [] square brackets, Label and OS,

are optional. You would replace the <System.String> entities with actual string values or temporary

variables. For instance, the call within your runbook at runtime might look something like the following

example:

Add-AzureDisk -DiskName "MyDiskName" -MediaLocation

"http://mystorageaccount.blob.core.azure.com/vhds/winserver-system.vhd" -Label "BootDisk" -OS

"Windows"

Credential assets
The credential asset is used to gain secure access to external systems, networks, databases, services, and

so on. You can view it as a ―Run As‖ security principal that gives an identity to the call into that external

system. This asset is used most commonly in IaaS deployment situations such as authenticating when

accessing a SharePoint or a SQL Server IaaS VM. Credential properties are stored in Azure Automation

assets and are referenced inside of script workflows using either the Get-AutomationCertificate or the

Get-AutomationPSCredential activity.

When using credential assets, you can authenticate using either a certificate credential or a

 46

Windows PowerShell credential. Certificate credentials are based on a management certificate. It’s a

best practice to use Azure AD for the certificate. The connection asset uses the management certificate

to authenticate to that subscription. A Windows PowerShell credential uses the script when it connects

to the VM and needs to provide a username and a password. Typically this identity is used to log into

an Azure VM.

Creating a credential asset

To create a credential asset, do the following:

1. In the Azure Management Portal, click Automation, select the Azure Automation account, and

then click Assets. Click Add Setting.

2. In the Add Setting dialog box, click Add Credential.

3. In the Add Credential dialog box, select the Credential Type of the setting you want to add. In

the following screenshot, the Certificate credential type is selected. The other credential type

option is Windows PowerShell Credential, where the user will need to provide the userid and

password credentials. In addition, provide a name and brief description in the Name and

Description text boxes. After you have provided the information, click the right arrow.

4. On the Upload A Certificate File page, browse for a certificate file, which can be a .cer or .pfx

file.

 47

After you load the certificate and create the credential, you can go to the Assets tab, find your new

credential, open it, and see the certificate details, as shown in Figure 3-7. Note the value of the

thumbprint.

FIGURE 3-7 Details of a certificate that has been installed in Azure to support the credential asset.

If you go into the management certificate section of the Azure Management Portal and find the

certificate you just loaded up for this credential, you will see that same thumbprint value. When Azure

Automation tries to authenticate, it will use this credential to access the thumbprint and pass it to

Azure. Azure will attempt to match the thumbprint of the credential to that of the corresponding

certificate to authenticate the call.

 48

Connection assets
Connections are assets that contain information to connect to external networks or systems. For these

external connections, a method must present all the data necessary for connecting to external systems.

This could mean ports, protocols, usernames, and passwords. Potential complications are that different

systems require different types of data to be passed from the runbooks. Assets allow a runbook to

connect in a consistent manner using a subscription ID and certificates that are already in that account.

To connect to Azure, connection assets use credential assets as the part of the connection that contains

authentication information, along with the subscription ID.

Creating a connection asset

To create a connection asset, do the following:

1. Open Notepad so that it’s available to store some temporary data used to create the

connection asset.

2. In the Azure Management Portal, click Automation, select the Azure Automation account, and

then click Dashboard. In the Quick Glance section, scroll to find the subscription ID. Copy its

value to Notepad.

3. In the Azure Management Portal, click Settings, click Management Certificates, and find the

name of the automation certificate in the Name column. Copy the name to Notepad.

4. Click Automation, click the Azure Automation account, click Assets, and then click Add Setting.

Select Add Connection and then in the Configure Connection dialog box, select the type of

connection you want to add. The only connection type that is available at this time is Azure.

 49

5. Click the right arrow to configure the connection properties. Here you need to add the name of

the Azure Automation certificate and the subscription ID that you previously copied into

Notepad. Click the check mark to complete the creation.

When you’re done with this process, open the connection you just created to view the connection

details. On the Connection Details page (see Figure 3-8), you find the name of the connection, the day

and time it was last updated, its type, a description, the subscription ID, and the Automation certificate

name.

 50

FIGURE 3-8 Properties of an established connection.

Using the Connect-Azure runbook
Microsoft has created a collection of sample runbooks and published them for free public download

and use in the MSDN Library at Sample runbooks for Azure Automation. The Connect-Azure runbook

is one of the most commonly used runbooks. This runbook is used to connect to an Azure subscription.

You will probably want to import it into most of your runbooks that connect to Azure to do operations.

A script that is running while hosted in an Azure-managed VM process must connect to your Azure

subscription to access the resources you are trying to manipulate with the script.

You can import the Connect-Azure runbook into your Azure Automation account, and then publish

it so other runbooks can call it. After it’s imported, the Connect-Azure runbook can be a key part of

your connectivity, leveraging assets for Azure Automation. This is because it uses the Azure connection

and credential assets, which you need for any Azure Automation connection. It inserts the Azure

Management certificate from the local machine store to set up a connection to the Azure subscription.

Before you use this runbook, you must make sure that you have an Automation certificate asset in

Azure that holds the management certificate. You must also have a connection asset containing the

name of the certificate and the subscription ID.

Before we talk in more detail about this runbook, recall that we mentioned earlier the ability to

authenticate now with Azure AD and not have to use management certificates. At the end of this

section I discuss a bit about how to do that. However, the concepts shown in the Connect-Azure

runbook are still applicable and are great examples of how to use the credential and connection assets

http://msdn.microsoft.com/en-us/library/azure/dn643630.aspx

 51

together to authenticate the runbook to Azure. It also is a very good example of how to call an

imported runbook from another runbook.

Calling the Connect-Azure runbook using certificates

The Connect-Azure runbook takes a connection name as a parameter. This parameter can be passed

on the command line if you were invoking the connect-azure script from the command line. However,

as it is an imported module, you will most likely call it from another runbook, passing in the

AzureConnectionName parameter, which is an Azure Automation connection asset. The connection

asset is a common connection object that you can define as an Automation asset in the Azure

Management Portal to be used globally by many runbooks. When you create a connection asset, you

specify the subscription ID. In addition, a certificate asset contains the management certificate that is

correlated to that connection asset.

In the following code example, the Param block shows the mandatory (since =$true) string

parameter that accepts the name of the connection. Several Get PowerShell commands take strings

and output automation objects. In this case, the Connect-Azure runbook gets back an Automation

connection object. The call to Get-AutomationConnection is wrapped in an exception block that will

throw an exception and end the processing of the script if it can’t find the named connection. After it

gets the connection object, the script accesses the AutomationCertificateName property, again throwing

an exception if it is unable to access that value. If the script can access the property, an

AutomationCertificate object is returned. After the script has both the Automation connection object

and the certificate object, the script then calls the Set-AzureSubscription cmdlet, passing in the

connection name, the subscription ID (acquired from the connection object), and the certificate object.

workflow Connect-Azure

{

 Param

 (

 [Parameter(Mandatory=$true)]

 [String]

 $AzureConnectionName

)

 # Get the Azure connection asset that is stored in the Automation service based on the name that

was passed into the runbook

 $AzureConn = Get-AutomationConnection -Name $AzureConnectionName

 if ($AzureConn -eq $null)

 {

 throw "Could not retrieve '$AzureConnectionName' connection asset. Check that you created

this first in the Automation service."

 }

 # Get the Azure management certificate that is used to connect to this subscription

 $Certificate = Get-AutomationCertificate -Name $AzureConn.AutomationCertificateName

 if ($Certificate -eq $null)

 {

 throw "Could not retrieve '$AzureConn.AutomationCertificateName' certificate asset. Check

that you created this first in the Automation service."

 52

 }

 # Set the Azure subscription configuration

 Set-AzureSubscription -SubscriptionName $AzureConnectionName -SubscriptionId

$AzureConn.SubscriptionID -Certificate $Certificate

}

You would call this runbook at the start of almost any Windows PowerShell Workflow script that is

connecting to Azure to be able to work on those resources. By importing it, publishing it, creating

global asset objects, and then calling it from another runbook using those assets, you can leverage

common code over multiple runbooks and make it much easier to perform common tasks. Following is

the code to call the Connect-Azure runbook from another runbook called Connect-AzureVM. Call

Connect-AzureVM to set up a connection to an Azure VM. To do this, you first have to import and

publish the Connect-Azure runbook.

workflow Connect-AzureVM

{

[OutputType([System.Uri])]

 Param

 (

 [parameter(Mandatory=$true)]

 [String]

 $AzureConnectionName,

 [parameter(Mandatory=$true)]

 [String]

 $ServiceName,

 [parameter(Mandatory=$true)]

 [String]

 $VMName

)

 # Call the Connect-Azure runbook to set up the connection to Azure using the Automation connection

asset

 Connect-Azure -AzureConnectionName $AzureConnectionName

 InlineScript {

 # Select the Azure subscription we will be working against

 Select-AzureSubscription -SubscriptionName $Using:AzureConnectionName

 # Get the Azure certificate for remoting into this VM

 $winRMCert = (Get-AzureVM -ServiceName $Using:ServiceName -Name $Using:VMName | select

-ExpandProperty vm).DefaultWinRMCertificateThumbprint

 $AzureX509cert = Get-AzureCertificate -ServiceName $Using:ServiceName -Thumbprint

$winRMCert -ThumbprintAlgorithm sha1

 # Add the VM certificate into the LocalMachine

 if ((Test-Path Cert:\LocalMachine\Root\$winRMCert) -eq $false)

 {

 Write-Progress "VM certificate is not in local machine certificate store - adding it"

 $certByteArray = [System.Convert]::fromBase64String($AzureX509cert.Data)

 $CertToImport = New-Object

System.Security.Cryptography.X509Certificates.X509Certificate2 -ArgumentList (,$certByteArray)

 $store = New-Object System.Security.Cryptography.X509Certificates.X509Store "Root",

"LocalMachine"

 $store.Open([System.Security.Cryptography.X509Certificates.OpenFlags]::ReadWrite)

 $store.Add($CertToImport)

 $store.Close()

 53

 }

 # Return the WinRM Uri so that it can be used to connect to this VM

 Get-AzureWinRMUri -ServiceName $Using:ServiceName -Name $Using:VMName

 }

}

The runbook calling order here is the Connect-AzureVM runbook calling the Connect-Azure

runbook. If using inline script, the Connect-Azure runbook must be published first, and then the

Connect-AzureVM runbook published after. The reason order matters is due to a feature in Azure

Automation when using inline script, which is what both of these runbooks do. Any runbook called

inside inline script must be published before its parent, the calling runbook. Inline Windows PowerShell

script is used to run commands or expressions in a workflow that are valid in Windows PowerShell, but

not valid in workflows.

To manage this feature, run the commands in an inlineScript activity. You also can use an

inlineScript activity to run Windows PowerShell scripts (.ps1 files) in a workflow. The inlineScript activity

runs commands in a standard, nonworkflow Windows PowerShell session and then returns the output

to the workflow. It is valid only in workflows. The commands in an inlineScript script block run in a

single session and can share data, such as the values of variables. By default, the InlineScript session

runs out-of-process; that is, it runs in its own process, not in the workflow process, but you can change

this default by changing the value of the OutOfProcessActivity property of the session configuration.

If the publishing doesn’t occur in this order, an error message states that it can’t find the called

runbook. Even though the runbook exists and is published, if it’s not published before its parent

runbook, it will not be called. This problem can be hard to find.

Using Azure Active Directory without the Connect-Azure

runbook
As mentioned in the ―Azure Active Directory and automation‖ section at the start of this chapter, recent

updates to Azure Active Directory, Windows PowerShell, and Azure Automation have given the option

to authenticate without using certificates in favor of authenticating using Azure AD. Using Azure AD

for authentication is the more strategic method than using certificates and is the clear future direction

with respect to authentication, not just in Azure Automation, but in almost all Azure services that

require that service.

In this case, the calling module (such as Connect-AzureVM) no longer needs to call the

Connect-Azure runbook to authenticate. Instead, make calls to Get-AutomationPSCredential and pass

in the name of the Azure AD Automation account that the script is running under and that needs to

authenticate. This action returns a credential object that is immediately passed in the call to

Add-AzureAccount. Here is another code sample of this authentication process to show you how it is

done as a recommended best practice.

workflow MySampleWorkflow

{

 54

 param

 (

 #include your list of parameters

)

 # Get the credential to use for Authentication to Azure.

 $Cred = Get-AutomationPSCredential -Name 'Azure AD Automation Account'

 # Connect to Azure

 $AzureAccount = Add-AzureAccount -Credential $Cred

 # Begin processing of workflow

}

Schedule assets
When you want to execute your runbooks automatically at either a specific date and time or on a

recurring basis, you can use a schedule asset. No manual intervention is necessary to start schedule

assets. Azure will allocate resources, load, and then execute the runbook when the schedule triggers.

When the script completes, Azure will manage the release of execution resources.

Although schedules are assets, they differ slightly from assets such as connections, certificates, and

variable assets. The difference is that you never insert or call a schedule from script code. Rather, you

will link a runbook to a schedule. A schedule asset determines when runbooks that are linked to it can

run. A schedule asset triggers runbook execution when the schedule is activated. You select a

published runbook, and on its Schedule tab, you can choose to link to a new schedule. Draft runbooks

cannot be linked to a schedule.

Schedule assets are the alternative for manual invocation of runbooks or being called by code from

another runbook. Scheduling is just a deeper level of automation beyond just having a script: It’s like

automating the automation!

Creating a schedule asset

To create a schedule asset, do the following:

1. In the Azure Management Portal, click Automation, select the Azure Automation account, and

then click Assets. Click Add Setting.

2. In the Add Setting dialog box, click Add Schedule. On the Configure Schedule page, enter a

name that is unique to that Azure Automation account, enter an optional description, and then

click the right arrow.

3. In the Configure Schedule dialog box, you can choose to run the schedule one time, hourly, or

daily. Depending on the option you select, the remainder of the dialog box entry fields will

change slightly. The options are as follows:

 55

 One Time Choose a start date and time.

 Hourly Choose a start date and time. As an option, you can select the Set Schedule

Expiration Time check box and then enter a date and time to ensure the schedule expires

at that date and time. Enter a value in the Recur Every (Number Of Hours) field.

 Daily The same settings are available here as in Hourly, but you choose the number of

days to recur instead of number of hours.

Configuring the granularity of scheduling options here is not like setting up a meeting in Outlook.

You can only run a schedule at a maximum once per hour and you set an expiration time for it to end.

For example, if you set the schedule Start Time as 8 pm on September 1 for a recurrence of every two

days, and you set the Schedule Expires On date to September 10, the schedule would run on

September 1, 3, 5, 7, and 9, but it will not run on September 11 because the expiration date is

September 10.

Using the schedule

After you create the schedule, you can link it to a runbook. In the Azure Management Portal, display

the list of runbooks for the Azure Automation account, and verify that the runbook that you want to

link to a schedule is published. If the runbook isn’t published, publish it before you try to link a

schedule to it.

In the Azure Management Portal, select the runbook, click Schedule, and then choose to either link

to a new schedule or an existing schedule. If you select a new schedule, you can use the Configure

Schedule dialog box to create a new schedule. If you select an existing schedule, use the Link To An

Existing Schedule dialog box to choose a schedule and display its details.

 56

If the runbook you are linking to the schedule has no parameters that it needs specified, click the

check mark to complete the link process. If the runbook does require parameters, however, you will

have to specify the runbook parameter values. As shown in Figure 3-9, in the Specify The Runbook

Parameter Values dialog box, enter values to pass to the runbook automatically when the schedule

invokes. If you manually invoke a runbook that has parameters, you enter the values when the runbook

is run. However, the Connect-AzureVM runbook requires you to enter values for all three fields when

linking it to a schedule instance.

FIGURE 3-9 Enter values for parameters when specifying the runbook parameter values.

 110

About the author

Mike McKeown is a Microsoft Azure MVP who is employed as a

Principal Cloud Architect with Aditi Technologies. He spent almost two

decades with Microsoft in various roles and has spent over 25 years

working within various IT roles. This has given Mike a very unique

breadth, as well as depth, of the IT environment from the view of

development, management, infrastructure, sales, and the customer. He

has experience in the cloud around both the Infrastructure and Platform

as a Service solution models. His passion is to help stakeholders or

customers define their business/system requirements, and then apply

cloud architecture patterns and best practices to meet those goals.

Mike writes white papers for MSDN, blogs about Azure on his blog

at www.michaelmckeown.com, develops Azure video training content for Pluralsight, and is a speaker

at both regional and national conferences. You can follow his experiences with Azure on Twitter at

@nwoekcm.

Mike lives in Charlotte, NC with his wife Tami and five kids Kyle, Brittany, Adrianna, Michael Jr, and

Sean. He plays the drums, is active in his church, and loves to work out regularly.

http://www.michaelmckeown.com/

Microsoft Press

Free ebooks

From technical overviews to drilldowns on special topics, get

free ebooks from Microsoft Press at:

www.microsoftvirtualacademy.com/ebooks

Download your free ebooks in PDF, EPUB, and/or Mobi for

Kindle formats.

Look for other great resources at Microsoft Virtual Academy,

where you can learn new skills and help advance your career

with free Microsoft training delivered by experts.

http://www.microsoftvirtualacademy.com/ebooks

 Now that
you’ve
read the
book...

Was it useful?
Did it teach you what you wanted to learn?
Was there room for improvement?

Let us know at http://aka.ms/tellpress

Your feedback goes directly to the staff at Microsoft Press,
and we read every one of your responses. Thanks in advance!

Tell us what you think!

http://aka.ms/tellpress

	Table of Contents
	Introduction
	Who should read this ebook
	Assumptions

	Organization of this ebook
	Conventions and features in this ebook
	Acknowledgments
	Errata, updates, & support
	Free ebooks from Microsoft Press
	Free training from Microsoft Virtual Academy
	We want to hear from you
	Stay in touch

	Chapter 3 Assets
	Management certificates
	Azure Active Directory and automation
	Azure Automation assets
	Asset scope
	Variable assets
	Using a variable asset
	Integration module assets
	Connection assets

	Using the Connect-Azure runbook
	Using Azure Active Directory without the Connect-Azure runbook
	Schedule assets

