Contents at a glance

Introduction

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Implement an operating system deployment infrastructure</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Implement a Lite-Touch deployment</td>
<td>65</td>
</tr>
<tr>
<td>3</td>
<td>Implement a Zero-Touch deployment</td>
<td>121</td>
</tr>
<tr>
<td>4</td>
<td>Create and maintain desktop images</td>
<td>203</td>
</tr>
<tr>
<td>5</td>
<td>Prepare and deploy the VDI application environment</td>
<td>267</td>
</tr>
</tbody>
</table>

Index

339
This page intentionally left blank
Chapter 1 Implement an operating system deployment infrastructure 1

Objective 1.1: Assess the computing environment. 1
 Using the Microsoft Assessment and Planning Toolkit 2
 Assessing Configuration Manager reports 14
 Integrating MAP with Configuration Manager 15
 Determining network load capacity 16
 Objective summary 19
 Objective review 19

Objective 1.2: Plan and implement user state migration. 20
 Designing a user migration strategy 21
 Estimating migration store size 29
 Securing migrated data 31
 Creating a USMT package 31
 Objective summary 32
 Objective review 33

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/
Objective 1.3: Configure the deployment infrastructure 34
 Configuring Windows Deployment Services 35
 Installing and configuring MDT 41
 Identifying network services that support deployments 43
 Selecting Configuration Manager distribution points 44
 Supporting BitLocker 47
 Objective summary 49
 Objective review 49

Objective 1.4: Configure and manage activation 51
 Identifying the appropriate activation tool 51
 Configuring KMS 52
 Configuring Active Directory–based activation 53
 Configuring MAK 54
 Objective summary 55
 Objective review 55

Answers 57
 Objective 1.1 57
 Objective 1.2 58
 Objective 1.3 60
 Objective 1.4 61

Chapter 2 Implement a Lite-Touch deployment 65
Objective 2.1: Install and configure WDS 65
 Configuring unicast and multicast deployment methods 66
 Adding images to WDS 71
 Configuring scheduling 79
 Restricting who can receive images 80
 Objective summary 83
 Objective review 84

Objective 2.2: Configure MDT 85
 Configuring deployment shares 85
 Managing the driver pool 92
 Configuring task sequences 94
 Configuring customsettings.ini 97
Chapter 3 Implement a Zero-Touch deployment 121

Objective 3.1: Configure Configuration Manager for OSD 121
 Configuring deployment packages and applications 122
 Configuring task sequences 140
 Managing the driver pool 148
 Managing boot and deployment images 156
 Objective summary 161
 Objective review 162

Objective 3.2: Configure distribution points 162
 Configuring unicast and multicast 163
 Configuring PXE 166
 Configuring deployments to distribution points and distribution point groups 168
 Objective summary 180
 Objective review 181

Objective 3.3: Configure MDT and Configuration Manager integration 182
 Using MDT-specific task sequences 183
 Creating MDT boot images 184
Chapter 4 Create and maintain desktop images

Objective 4.1: Plan images 203
 Considering design implications of thin, thick, and hybrid images 204
 Considering design implications of WDS image types 207
 Considering design implications of image format (VHD or WIM) 210
 Considering design implications of creating and maintaining multiple images based on operating system or hardware platform, drivers, and operating features 211
 Objective summary 213
 Objective review 214

Objective 4.2: Create images 215
 Preparing the operating system for capture 215
 Creating capture images by using WDS 217
 Capturing an image to an existing or new WIM file 218
 Capturing an operating system image by using Configuration Manager 224
 Objective summary 237
 Objective review 237

Objective 4.3: Maintain images 238
 Updating images by using DISM 239
 Applying updates, drivers, settings, and files to online and offline images 241
 Applying service packs to images 254
 Managing embedded applications 256
 Objective summary 260
 Objective review 261
<table>
<thead>
<tr>
<th>Answers</th>
<th>262</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective 4.1</td>
<td>262</td>
</tr>
<tr>
<td>Objective 4.2</td>
<td>264</td>
</tr>
<tr>
<td>Objective 4.3</td>
<td>265</td>
</tr>
</tbody>
</table>

Chapter 5 Prepare and deploy the VDI application environment 267

Objective 5.1: Plan for and implement application compatibility and remediation .. 267

- Planning for Remote Desktop Services (RDS) 268
- Planning for Client Hyper-V 278
- Planning for 32-bit versus 64-bit 280
- Planning for application version coexistence 280
- Using the Application Compatibility Toolkit 281
- Deploying compatibility fixes 286

Objective summary 287
Objective review 288

Objective 5.2: Deploy Office 2013 by using MSI 289

- Capabilities of MSI deployments 289
- Supported deployment methods 289
- Customizing deployments 291
- Managing Office 2013 activation 300
- Integrating Lite-Touch deployment 309
- Re-arming Office 2013 319
- Providing slipstream updates 320

Objective summary 322
Objective review 323

Objective 5.3: Deploy Office 2013 by using Click-to-Run 323

- Configuring licensing 324
- Customizing deployment 325
- Configuring updates 326
- Monitoring usage by using Office Telemetry Dashboard 328

Objective summary 332
Objective review 333
What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/
Introduction

This book helps prepare you for the Microsoft 70-695 exam titled *Deploying Windows Devices and Enterprise Apps*. The exam covers a wide range of technologies, and many readers might not have hands-on experience with all of them. The book uses a combination of fact-based content, step-by-step procedures for key exam topics, real-world experiences, and comprehensive review scenarios and questions to help you prepare for the exam. It’s recommended that you use a lab environment to walk through the procedures covered in the book until you have hands-on experience with all the technologies covered on the exam.

The audience for this book includes IT pros with relevant job experience who are interested in passing Exam 70-695 or expanding their knowledge and skills related to deploying Windows and applications.

To maximize your chances of success in learning the material in this book and passing the 70-695 exam, you should have the following prerequisite knowledge:

- Basic working knowledge of Windows Server, especially related to adding and removing roles and features, basic system management, and core networking concepts.
- Windows client operating system management and support, including installation and troubleshooting.
- Operating system deployment knowledge, including automated system deployment concepts. Even if you don’t have experience with WDS, MDT, or Configuration Manager, some background in operating system deployments will go a long way when you are preparing for the exam.
- Configuration Manager. Some exposure to Configuration Manager is helpful, even if it is not related to operating system deployment.
- Windows PowerShell. Many Microsoft exams are including more questions and answers with Windows PowerShell commands. Knowing the basic noun–verb pairing and how to construct Windows PowerShell commands in a pipeline will go a long way for the exam.

This book covers every exam objective, but it does not cover every exam question. Only the Microsoft exam team has access to the exam questions themselves, and Microsoft regularly adds new questions to the exam, making it impossible to cover specific questions. You should consider this book a supplement to your relevant real-world experience and other study materials. If you encounter a topic in this book that you do not feel completely comfortable with, use the links you’ll see in the text to find more information and take the time to research and study the topic. Great information is available on MSDN and TechNet and in blogs and forums.
Microsoft certifications

Microsoft certifications distinguish you by proving your command of a broad set of skills and experience with current Microsoft products and technologies. The exams and corresponding certifications are developed to validate your mastery of critical competencies as you design and develop, or implement and support, solutions with Microsoft products and technologies both on-premises and in the cloud. Certification brings a variety of benefits to the individual and to employers and organizations.

MORE INFO ALL MICROSOFT CERTIFICATIONS

Acknowledgments

I would like to thank Alison Hirsch for her overall guidance on this project as well as her attention to detail. Working with her on the team made things much easier for me. I’d also like to thank Stan Reimer who has put his trust in me on several projects. I always appreciate the opportunities and have enjoyed working with him and his team. Thanks also goes out to Charles Pluta, a friend of mine with extensive technical depth that always makes time to help out. I can count on him at all hours of the night and that goes a long way! Bob Clements, my go-to guy on many deployment projects, came through with an excellent real-world perspective that helped me bring clarity to many topics. Elias Mereb, I’ve really enjoyed hanging out with you over the past several years. Your love for life and technology is contagious. I appreciate your willingness to take my calls, offer up your words of wisdom, and engage with me on projects.

Finally, I’d like to thank my beautiful wife Lindsay, my son Jack, and my daughter Leah. Although I try never to take away family time for work, I might have rushed around a bit more when we put the kids to bed, knowing that I had a boatload of work ahead of me every night. Lindsay might have gotten less sleep than me on this project, dealing with baby Leah, Jack, and all of the household stuff. I couldn’t do these projects without her support, and I am grateful for that.
Free ebooks from Microsoft Press

From technical overviews to in-depth information on special topics, the free ebooks from Microsoft Press cover a wide range of topics. These ebooks are available in PDF, EPUB, and Mobi for Kindle formats, ready for you to download at:

http://aka.ms/mspressfree

Check back often to see what is new!

Microsoft Virtual Academy

Build your knowledge of Microsoft technologies with free expert-led online training from Microsoft Virtual Academy (MVA). MVA offers a comprehensive library of videos, live events, and more to help you learn the latest technologies and prepare for certification exams. You’ll find what you need here:

http://www.microsoftvirtualacademy.com

Errata, updates, & book support

We’ve made every effort to ensure the accuracy of this book. If you discover an error, please submit it to us at:

http://aka.ms/er695/errata

If you need additional support, email Microsoft Press Book Support at:

msinput@microsoft.com.

Please note that product support for Microsoft software and hardware is not offered through the previous addresses. For help with Microsoft software or hardware, go to http://support.microsoft.com.
We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable asset. Please tell us what you think of this book at:

http://aka.ms/tellpress

The survey is short, and we read every one of your comments and ideas. Thanks in advance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.
Preparing for the exam

Microsoft certification exams are a great way to build your resume and let the world know about your level of expertise. Certification exams validate your on-the-job experience and product knowledge. While there is no substitution for on-the-job experience, preparation through study and hands-on practice can help you prepare for the exam. We recommend that you round out your exam preparation plan by using a combination of available study materials and courses. For example, you might use this Exam Ref and another study guide for your "at home" preparation and take a Microsoft Official Curriculum course for the classroom experience. Choose the combination that you think works best for you.

Note that this Exam Ref is based on publicly available information about the exam and the author’s experience. To safeguard the integrity of the exam, authors do not have access to the live exam.
This page intentionally left blank
This page intentionally left blank
When you automate your first operating system deployment, it can be rather exciting. Often, your first automated deployment is nothing more than an answer file. Soon, administrators realize that additional areas of automation are possible. Many administrators begin testing additional automation tools such as Windows Deployment Services (WDS) and Microsoft Deployment Toolkit (MDT) and exploring automation options to reduce the administrative overhead of deploying operating systems. The keys to implementing a Lite-Touch deployment infrastructure successfully are knowing the available tools and capabilities, understanding the pros and cons of the configuration settings, and being able to implement the tools to meet your requirements.

Objectives in this chapter:
- Objective 2.1: Install and configure WDS
- Objective 2.2: Configure MDT
- Objective 2.3: Create and manage answer files

Objective 2.1: Install and configure WDS

WDS is a foundation for many automated deployment infrastructures, especially as an infrastructure for Lite-Touch installation (LTI) deployments. WDS is often one of the first technologies you deploy when you build out your deployment infrastructure. You need to understand how to install it and configure it for an LTI deployment so that you can ensure a high-performing and trouble-free deployment infrastructure.

This objective covers how to:
- Configure unicast and multicast deployment methods
- Add images to WDS
- Configure scheduling
- Restrict who can receive images
Configuring unicast and multicast deployment methods

WDS has two methods to deploy images to computers—unicast and multicast. You must become intimately familiar with both of these methods and understand environments and situations in which one would be superior to the other.

With unicast, the WDS server sends one network transmission to one computer. Thus, if you are deploying an operating system image to five computers, the WDS server sends five network transmissions, as shown in Figure 2-1.

Familiarize yourself with the following characteristics of unicast:

- Unicast is the easiest method to use for deploying computers because it doesn’t require additional network setup as multicast does. Unicast works right out of the box.
- Unicast uses more network bandwidth than multicast when deploying operating system images to several computers or more.
- Although unicast uses more network bandwidth, it isn’t necessarily slower when deploying to several computers at one time than the same deployment by using multicast. It just means that it takes up more network bandwidth. The performance differences often aren’t visible until you try to image many computers at a time with unicast.
With multicast, the WDS server sends one network transmission to multiple computers, as shown in Figure 2-2.

You should be familiar with the following characteristics of multicast:

- Your network team must enable Internet Group Management Protocol (IGMP) snooping on your network devices. This ensures that multicast transmissions are not broadcast to every computer on the subnet, which can cause network flooding.

- You must create a multicast transmission before you can deploy images by using multicast. The process to create a multicast transmission is shown later in this chapter.

- Multicast is best suited for environments where you will deploy images to several or more computers simultaneously. If you are only deploying images to one or two computers at a time, opt for unicast instead.

Before you deploy images by using multicast, look at the default multicast configuration to ensure that it meets your needs. The following settings represent the default multicast settings in WDS:

- Multicast IP addresses are allocated from a static pool. For IPv4, the range is from 239.192.0.2 to 239.192.0.254. For IPv6, the range is from FF15::1:1 to FF15::1:FF. Talk to your network team to ensure that this range won’t conflict with any existing multicasting on your network.

- The multicast transfer settings ensure that all multicast clients operate at the same speed during the multicast transmission. In such a situation, if you have an older computer with a slow network interface card (NIC) and a new computer with a fast NIC, the multicast transmission will operate at the speed of the slow NIC, which degrades
REAL WORLD WDS VS. MULTICAST

I worked on a project to reimage client computers for a school district. As part of the project, I implemented WDS. The plan was to image a classroom of 20 or 30 computers at a time. There were a lot of computers to reimage, so I decided to test unicast and multicast deployments to see whether one would prove better for the situation. One big factor was that school was out for the summer, so there weren’t any concerns about bandwidth—nobody was working or using the network. In this case, testing indicated that unicast performed faster for imaging classrooms. This might have been due to a faulty router or switch or other factors. Because it takes time to prepare an environment for multicast, it might not always make sense for a project, especially if you have to involve additional teams for network configuration and troubleshooting. In this situation, unicast was the appropriate choice and enabled us to begin imaging immediately.

When you are ready to proceed with your first multicast-based deployment, make sure you have an existing image group and an installation image. Image groups and installation images are discussed in detail in Chapter 4, “Create and maintain desktop images.” Perform the following steps to proceed with your deployment:

1. In the Windows Deployment Services console, right-click Multicast Transmissions and then click Create Multicast Transmission.
2. On the Transmission Name page, as shown in Figure 2-3, enter a descriptive name for the transmission and then click Next.

![Create Multicast Transmission Wizard](image)

FIGURE 2-3 Multicast transmission creation process, Transmission Name page
3. On the Image Selection page, as shown in Figure 2-4, ensure that the image group that contains your installation image is selected, click the image you want to transmit, and then click Next.

![Image Selection page](image)

FIGURE 2-4 Multicast transmission creation process, Image Selection page

4. On the Multicast Type page, as shown in Figure 2-5, select when the transmission will start.

You can use the default setting, which starts the transmission when the first multicast client makes a request, or you can opt to start the transmission on a schedule. An Auto-Cast transmission starts when the first client requests the image while subsequent clients join the existing transmission. Clients that join a transmission after it has started will download the missed parts of the transmission after the initial transmission completes. Scheduled-Cast transmission is one that starts after a specified number of clients have requested the image or at a specified date and time. If you are imaging a classroom full of computers and plan to walk around and manually power them up, you should opt for a scheduled cast and start it 15 minutes out or after a specific number of computers have joined the transmission. This enables all the computers to start and finish at the same time.
Implement a Lite-Touch deployment

5. On the Operation Complete page, as shown in Figure 2-6, review the multicast transmission settings that you selected and then click Finish.

6. After you create the multicast transmission, view the status of the transmission in the WDS console, as shown in Figure 2-7. You can view the transmission speed for active clients by looking at the Transfer Rate column. You can disconnect a client by right-
clicking a client and then clicking Disconnect. Alternatively, you can also force a specific client to use unicast by right-clicking the client and then clicking Bypass Multicast.

EXAM TIP

This exam objective specifically calls out installing and configuring WDS. Although the typical methods of configuring WDS are covered here, familiarize yourself also with WDSutil, which is a command-line utility that can handle most aspects of WDS management. Prior to Windows PowerShell functionality for WDS, WDSutil was the primary command-line tool for administration. See http://technet.microsoft.com/en-us/library/cc771206.aspx for a breakdown of the command-line options for WDSutil.

Adding images to WDS

One of the primary operational tasks you will perform in WDS is adding images. Before you learn about the planning and operational tasks of adding images to WDS, review the four images that you will work with in WDS:

- **Boot images** You use a boot image to boot a WDS client computer before selecting an install image to deploy to it. A boot image contains Windows PE, which is used to boot a WDS client computer, and the WDS client, which is used to select the install image to deploy. For the vast majority of deployments, you will use the boot.wim file
available as part of the Windows installation media. You can find boot.wim in the \Sources\ folder in the root of the Windows installation media.

- **Install images** You use an install image to deploy an operating system to WDS client computers. Usually, the install image is created from a reference computer that is configured to meet your company requirements. However, it can also be the install.wim file that is part of the Windows installation media. The install.wim file is located in the \Sources\ folder in the root of the Windows installation media.

- **Capture images** You use a capture image to create an install image from a reference computer. A capture image is a customized boot image. After you configure a reference computer to use for your install image, you should restart the reference computer and boot to a capture image. A capture image is made up of Windows PE and a WDS image capture wizard. After the reference computer is captured, a .wim file is created. As part of the capture, you have the option to upload the image automatically to WDS. Don’t forget, before capturing a computer with a capture image, you must run Sysprep and generalize the computer.

- **Discover images** A discover image is a customized boot image that you use for computers that don’t support Preboot Execution Environment (PXE). A discover image facilitates such computers in booting up, finding a WDS server, and having an install image deployed.

Add boot images to WDS

There isn’t much planning to do for boot images in WDS. Often, you just need to add boot images for the operating systems, such as Windows, that you are planning to deploy with WDS. On the operational side, adding boot images from the WDS console is straightforward. You just right-click Boot Images in the left pane of the WDS console, click Add Boot Image, browse to the location of boot.wim (located in the \Sources\ folder in the root of the Windows installation media), and enter a name and description (or use the default name and description). From an exam perspective, there really isn’t much to test. One exception is adding boot images by using Windows PowerShell. New for Windows Server 2012 R2 is a WDS module that includes 33 functions. To use Windows PowerShell to add a boot image from the Windows 8.1 installation media mounted on the D:\ drive, run the following Windows PowerShell command.

```powershell
Import-WdsBootImage -Path D:\sources\boot.wim -NewImageName "Windows 8.1" -NewFileName "Win8.1.wim"
```

After running the command, you should see output similar to running a Get-WdsBootImage command, as shown in Figure 2-8.
Add install images to WDS

Of all the images that you’ll work with in WDS, the install image is the most important one. It is the image that your computers will run, so a mistake in your reference computer, and thus your install image, could be spread across all your computers. You should be familiar with two types of install images for the exam:

- **Default Windows install images** A default Windows install image is just an image of the Windows installation media. If you deploy a default Windows install image to a computer, the result would be the same as if you had inserted the Windows installation DVD in the computer and performed a manual installation of Windows. Each Windows installation medium has an install.wim file that you can use as an install image. It is located in the \Sources\ directory at the root of the installation media. Often, a default Windows install image is used to perform initial testing of a new WDS deployment. Thereafter, most organizations choose to create a customized install image by capturing a reference computer.

- **Custom install image** A custom install image is one that is built to meet company requirements. It often contains a core set of applications such as Microsoft Office and antivirus software. It is typically customized to adhere to company standards. Many companies customize the theme, background, and support information to help standardize the look of their computers. Custom install images require a capture image to be created first. Without the capture image, you would have no way to capture the reference computer to an install image.

In Chapter 4, in the "Capture an image to an existing or new WIM file" section, you walk through the process of capturing an image for use as an install image.
Add capture images to WDS

Before you can create a custom install image, you must have a capture image, and before you can create a capture image, you must have a boot image. This information is important for the exam. You must understand how all the images work together, which images require which other images, and the order in which to perform core WDS tasks. In this section, you create a capture image.

Before beginning, ensure that you have a boot image; those steps were covered earlier in this chapter. To create a capture image, perform the following steps.

1. In the WDS console, click Boot Images in the left pane.
2. In the right pane, right-click your boot image and then click Create Capture Image.
 The Create Capture Image Wizard window appears.
3. On the Metadata And Location page, enter an image name, image description, and location of the .wim file, as shown in Figure 2-9. It is recommended to use a descriptive word such as capture in the name so that administrators can differentiate capture images from install images when booting to PXE. Click Next to continue.

 ![FIGURE 2-9 WDS Create Capture Image Wizard, Metadata And Location page](image)

4. On the Task Progress page, as shown in Figure 2-10, wait until the capture image creation completes, click Add Image To The Windows Deployment Server Now, and then click Finish.
5. The Add Image Wizard starts automatically. On the Image File page, as shown in Figure 2-11, verify the location that you saved the capture image to and then click Next.

FIGURE 2-11 WDS Add Image Wizard, Image File page
6. On the Image Metadata page, as shown in Figure 2-12, click Next to accept the name and description entered previously.

![FIGURE 2-12 WDS Add Image Wizard, Image Metadata page](image)

7. On the Summary page, shown in Figure 2-13, click Next.

![FIGURE 2-13 WDS Add Image Wizard, Summary page](image)

On the Task Progress page, the creation progress appears.

8. When the image is successfully added to the server, as shown in Figure 2-14, click Finish.
Add discover images to WDS

Of all the images you’ll work with in WDS, the discover image is probably the least used. However, it is still important to know how to create a discover image in WDS. To do so, you need an existing boot image. To create a discover image in WDS, perform the following steps.

1. In the WDS console, in the left pane, click Boot Images.
2. In the right pane, right-click a boot image and then click Create Discover Image.
 The Create Discover Image Wizard window appears.
3. On the Metadata And Location page, as shown in Figure 2-15, type an image name, an image description, a location and file name, and the name of the WDS server that the discover image will use.
CHAPTER 2 Implement a Lite-Touch deployment

FIGURE 2-15 WDS Create Discover Image Wizard, Metadata And Location page

On the Task Progress page, the progress appears. When it’s finished, a message appears indicating that the image was successfully created, as shown in Figure 2-16.

4. Click Finish to complete the process.
Configuring scheduling

WDS offers limited scheduling capabilities. All the available scheduling capabilities are available for multicast deployments only. Although scheduling was touched on briefly earlier when discussing multicast deployment, the scheduling options are examined in greater detail here. The skills measured on the exam specifically call out the configuration of scheduling.

In WDS, when scheduling a multicast deployment, you are creating a Scheduled-Cast transmission. When configuring a Scheduled-Cast transmission, two options are available:

- Start when the number of clients that have requested the image meets a specified threshold. For this option, you specify a threshold, and when that threshold is met, the multicast transmission begins. Often, this option is useful when you image a group of computers and you want the imaging process to complete at the same time for all of them. If you don’t schedule the transmission, multicast clients can join the transmission at any time. For clients that join late, the beginning part of the transmission will have to be re-sent after the initial transmission completes.
■ Start at a later time. Instead of waiting for a specific number of multicast clients to join a transmission, you can choose a date and time to start the transmission. This option is often used when an organization doesn’t want to saturate a network link during business hours. In such cases, you would select a time after business hours. The benefit of this approach is that the prep work can be performed during business hours, and the deployment can take place later.

MICROSOFT VIRTUAL ACADEMY WINDOWS 8.1 DEPLOYMENT JUMP START

The Microsoft Virtual Academy offers free online courses delivered by industry experts, including a course relevant to this exam. Look at the available MVA training that is relevant to areas you don’t have a lot of experience in, starting with the Windows 8.1 Deployment Jump Start. You can access the course at http://www.microsoftvirtualacademy.com/training-courses/windows-8-1-deployment-jump-start.

Restricting who can receive images

An important but often overlooked aspect of automated operating system deployments is security. Consider some security considerations to take into account during your deployment planning.

■ Licensed software Some of your images will contain licensed software. Often, the license keys are stored on the computer that makes them available to users. For images that contain licensed software, you should plan to prevent standard users from deploying your image with licensed software to their computer.

■ Minimizing accidents or mistakes With a fully automated operating system deployment infrastructure, you run a risk of someone accidentally booting a computer to the network and the computer being reimaged. For a client computer, this might be a minor inconvenience for an employee. However, for a critical server, this could result in a major outage for the entire organization.

■ Network Deploying images over the network takes a lot of bandwidth. If you have a WDS server in Los Angeles, you do not want an administrator in Shanghai to reimagine a computer by using the WDS server in Los Angeles.

Fortunately, WDS offers multiple ways to restrict who can access WDS images. You should use one or more of the following methods to enhance the security of your company images:

■ Authentication You must be able to authenticate to the domain to which the WDS server is joined to use WDS images. Although this opens up WDS images to all authenticated users by default, it also prevents anonymous users from using WDS images.

■ Filters You can use filters to narrow down the computers that can use an install image. By default, not many filters are applied, and any computer can use any image as long as the appropriate permissions are in place. Filters can be inclusive so that only the computers that match a filter can use an install image. In addition, filters can
exclude computers that match a filter so that only computers that do not match the filter can use an install image. You can add filters based on the following computer characteristics:

- Manufacturer
- Model
- BIOS vendor
- BIOS version
- Chassis type
- UUID
- Device group

Permissions There are two places to configure permissions. You can configure permissions on the User Permissions tab of an image’s properties, as shown in Figure 2-17, or you can configure permissions in an image group’s security settings. By default, authenticated users have Read and Read & Execute permissions, which allow them to access WDS images. The advanced permissions, which show more granular permission entries, show that authenticated users have the following permissions:

- Traverse Folder/Execute File
- List Folder/Read Data
- Read Attributes
- Read Extended Attributes
- Read Permissions

Multiple WDS servers For environments in which you need to restrict WDS imaging to local IT administrators, you can create geographically based security groups and configure the WDS images so that only the local group can deploy images. In such cases, you should deploy a WDS server in each geographic location that plans to use automated operating system deployments. Although not related to restricting who can receive images, it is important to know that WDS servers do not communicate with each other or share a common configuration. Thus, setting up and maintaining an infrastructure with multiple WDS servers requires extra administrative effort when compared to solutions such as MDT with linked deployment shares.
Finally, don’t forget about enhancing security indirectly. For example, as discussed earlier in this chapter, you can configure the PXE response so that WDS responds only to prestaged computers, or you can configure WDS to respond to all computers but then require an administrator to approve unknown computers manually. If you configure the PXE response so that an administrator must approve unknown computers, the administrator will have three options in the WDS console for the unknown devices:

- **Approve** By approving a pending device, the administrator enables the deployment process to continue.
- **Name And Approve** An administrator can specify a host name for the computer and approve it so that the deployment process continues.
- **Reject** By rejecting a pending device, an administrator cancels the deployment.

Often, in high-security environments, you should take advantage of most or all of the WDS security options. Combining multiple security methods in your solution is known as a layered security approach.
Thought experiment

Windows 8.1 deployment at Tailspin Toys

Tailspin Toys has two offices. One office is in San Francisco and the other office is in New York. The offices are connected by a 10-megabit (Mb) network. Each office has about 300 client computers, half of which are portable computers. All client computers run Windows 7 Enterprise.

The company plans to upgrade all portable computers to Windows 8.1. The management team wants to automate the installation process. To minimize disruption, users will be reimaged independently, a couple of computers at a time. You decide to use WDS to automate the deployments. To help you assess your knowledge, answer the following questions:

1. To which office should you deploy WDS?
2. Should you use a unicast or multicast method for the deployments?
3. What should you do to ensure that WDS can image only portable computers?

Objective summary

- A unicast deployment sends one network transmission to each WDS client.
- A multicast deployment sends one network transmission to multiple WDS clients, which reduces network bandwidth.
- A boot image is used to boot a WDS client computer to Windows PE and a WDS client prior to beginning the imaging process.
- You use an install image to deploy a customized version of Windows or a default installation of Windows. A customized install image is captured from a reference computer.
- A capture image is used to create an install image from a reference computer. You should capture the reference computer after it is configured and after you run Sysprep /Generalize /OOBE.
- A discover image is used to boot a computer that cannot boot to PXE so that you can deploy a WDS install image.
- You can configure scheduling of multicast deployments by choosing a date and time or setting a threshold for the number of computers that have to join a transmission before it starts.
- You can restrict access to WDS images by using filters and permissions. Permissions can be set on an individual image or on an image group.
Objective review

Answer the following questions to test your knowledge of the information in this objective. You can find the answers to these questions and explanations of why each answer choice is correct or incorrect in the "Answers" section at the end of this chapter.

1. You have a WDS server running on Windows Server 2012 R2. You need to automate some WDS configuration tasks. Which solution should you use? (Choose all that apply.)
 - A. Windows PowerShell WDS module
 - B. WDSutil.exe
 - C. WDSdiag.exe
 - D. WDSmgmt.msc

2. You are attempting to capture an image of a reference computer. When you boot to the capture image, the WDS Image Capture Wizard does not see the system volume. What should you do?
 - A. Reboot to Windows and then run the Sysprep /Generalize /OOBE /Shutdown command.
 - B. Press Shift+F10 to open a Windows PE command prompt and then run the Sysprep /Generalize /OOBE /Reboot command.
 - C. Reboot to Windows and then grant the SYSTEM account Full Control on the system drive.
 - D. Press Shift+F10 to open a Windows PE command prompt and then use XCALCS to grant the SYSTEM account Full Control on the system drive.

3. You are running a default installation of WDS on Windows Server 2012 R2. Your immediate need is to create a discover image. What should you do first?
 - A. Create a capture image.
 - B. Create an install image.
 - C. Add a boot image.
 - D. Import the Windows PowerShell WDS module.

4. You are planning to image 100 client computers by using WDS. The network team has asked that the imaging take place after business hours, so you need to set up the imaging to take place at a future time. What should you do?
 - A. Use unicast and schedule a transmission for a future time.
 - B. Use multicast and schedule a transmission for a future time.
 - C. Use unicast and a WDS filter.
 - D. Use multicast and a WDS filter.

5. Your company has recently switched from Dell to HP for its laptop computers. A new batch of HP EliteBook 840 G1 laptops has arrived for imaging, but an advisory was sent out that recommends that all laptops of this model running a BIOS prior to F03 be
Objective 2.2: Configure MDT

The Microsoft Deployment Toolkit (MDT) provides you with the ability to prepare and customize various aspects of the deployment process. MDT enables administrators to automate deployments and minimize the time that is required to complete a deployment.

This objective covers how to:

- Configure deployment shares
- Manage the driver pool
- Configure task sequences
- Configure customsettings.ini

Configuring deployment shares

Deployment shares are folders that contain images and files such as drivers, applications, and scripts for use in an LTI deployment. Deployment shares can be located in a variety of locations, including:

- Local drives
- Network shared folders
- Standalone Distributed File System (DFS) folder

Deployment shares hold data that is needed for part of the deployment process, including:

- Operating systems
- Packages
- Applications
- Device drivers
- Task sequences

There are two methods of creating a deployment share. First, after MDT has been installed, you can use the Deployment Workbench, which has a built-in wizard that creates a shared folder as a deployment share. By default, the share will be hidden and thus end with a dollar sign. The wizard will ask for the path that the folder should reside in and accepts local and

updated before using. You need to ensure that your image is only installed on the HP laptops running the F03 bios. Which WDS filters should you apply?

A. UUID and BIOS Version
B. BIOS Vendor and BIOS Version
C. Model and BIOS Version
D. Model and BIOS Vendor
network paths, as shown in Figure 2-18. If a local path is specified, the share name can also be customized. If a network path is specified, a UNC path must be used.

When you create deployment shares, you have a number of configuration options, which include:

- Ask If A Computer Backup Should Be Performed
- Ask For A Product Key
- Ask To Set The Local Administrator Password
- Ask If An Image Should Be Captured
- Ask If Bitlocker Should Be Enabled

The computer backup, image capture, and BitLocker options are enabled by default when using the wizard. All, none, or any combination of options can be configured when completing the wizard, which is shown in Figure 2-19. The options can be changed later. See the "Configuring customsettings.ini" section later in this chapter for additional detail.
Alternatively, if a shared folder already exists, you can use Windows PowerShell to create a deployment share. However, before using Windows PowerShell, add the BDD snapin manually by running the `Add-PSSnapIn Microsoft.BDD.PSSnapIn` command. Business Desktop Deployment (BDD) is the original name for early versions of MDT, and its name is still displayed in a few places in the MDT product. The cmdlet to use to create a deployment share manually, `Add-MDTPersistentDrive`, requires a Windows PowerShell drive to exist, which can then be used from the Deployment Workbench. Deployment shares that are configured through Windows PowerShell are stored in a user’s profile and will automatically be opened by the Deployment Workbench. The following command is an example of a Windows PowerShell method to configure both a drive and a deployment share:

```powershell
New-PSDrive -Name "DS001" -PSProvider "MDTProvider" -Root "C:\DeploymentShare" -Description "MDT Deployment Share" -Force -Verbose | Add-MDTPersistentDrive -Verbose
```

EXAM TIP

When using Windows PowerShell to add a deployment share, you do not specifically create or share a directory. You only configure the Deployment Workbench to use an existing share.
After a deployment share has been created, it can be used from within the Deployment Workbench, as shown in the Open Deployment Share Wizard in Figure 2-20. If the deployment share was created with the previous version of MDT, the contents of the share can be upgraded when opened for the first time by using MDT 2013.

FIGURE 2-20 Open Deployment Share Wizard, Path page

After a deployment share has been created or opened within the Deployment Workbench, your next steps include copying data to the share, such as:

- Operating systems
- Applications
- Packages
- Drivers

If you plan to perform multicast deployments by using MDT and WDS, enable multicast for the deployment share. To do so, perform the following steps:

1. Open the MDT Deployment Workbench.
2. Right-click the MDT Deployment Share in the left pane and then click Properties.
3. In the MDT Deployment Share Properties window, on the General tab, click Enable Multicast For This Deployment Share (requires Windows Server 2008 R2 Windows Deployment Services).

4. Click OK.

When adding an operating system in MDT, as shown in Figure 2-21, you have a few choices for the type of operating system that you are adding:

- A full set of source files such as those found on the installation media
- A custom image file that has been deployed and captured
- All existing images available on the WDS server

![Import Operating System Wizard](image)

FIGURE 2-21 Import Operating System Wizard, OS Type page

Operating systems can also be imported by using Windows PowerShell. To import the operating system named Windows 8 Enterprise x86 with source files that are located on the E:\ drive, run the following command:

```
Import-MDTOperatingSystem -Path "DS001:\Operating Systems" -SourcePath "E:\" -DestinationFolder "Windows 8 Enterprise x86"
```
You can also add applications and configure the type of application to add, as shown in Figure 2-22. The options include:

- Application with source files, as typically used with a local installation.
- Application without source files, or elsewhere on the network, as typically used with network installations.
- Application bundle, which installs the application and the dependencies of the application.

![New Application Wizard, Application Type page](image)

FIGURE 2-22 New Application Wizard, Application Type page

You can also deploy applications by using Windows PowerShell. To import a package named App1 that is located on the E:\ drive and requires the command-line switch "-q", run the following command:

```
Import-MDTApplication -Path "DS001:\Applications" -enable "True" -Name "App1" -ShortName "App1" -CommandLine "-q" -WorkingDirectory ".\Applications\App1" -ApplicationSourcePath "E:\" -DestinationFolder "App1"
```

Packages are defined as Windows packages that contain software features, updates, or hotfixes. Packages will have either a .cab or .msu file extension. You can add packages to the Deployment Workbench, as shown in Figure 2-23, for use with images and task sequences to enhance and customize a deployment further.
You can also import packages by using Windows PowerShell. You can run the following command to import packages that are located in the E:\Data folder and all folders under the Data folder:

```
Import-MDTPackage -Path "DS001:\Packages" -SourcePath "E:\Data"
```

Deployment shares can also be configured to support specific platforms, or reconfigured for a different local or network path, as shown in Figure 2-24.
Managing the driver pool

MDT includes a systematic approach for managing and deploying device drivers. In large environments that support multiple platforms, driver management can be a big challenge. With MDT, drivers can now be imported into the driver pool for easy sorting, versioning, and injection, ensuring that the target hardware is fully functional after the image has been deployed. Device drivers could be required to use specific hardware on a computer to which an image is being deployed or, optionally, for printers and peripherals that might be installed in the future. The Import Driver Wizard loads the drivers as specified in the associated .inf file types.
MDT will scan a specified directory for drivers, as shown in Figure 2-25.

You can also import device drivers by using Windows PowerShell. You can run the following command to import a driver that is located on the E:\Data drive:

```
Import-MDTDriver -Path "DS001:\Out-of-Box Drivers" -SourcePath "E:\Data" -ImportDuplicates
```

You can customize the Windows PE boot images for x86 and x64 platforms with drivers that have been loaded into the Deployment Workbench, as shown in Figure 2-26. You can configure the Windows PE image to include all drivers from the configured selection profile or any combination of the following settings:

- Include All Network Drivers In The Selection Profile
- Include All Mass Storage Drivers In The Selection Profile
- Include All Video Drivers In The Selection Profile
- Include All System-Class Drivers In The Selection Profile
Configuring task sequences

Task sequences are the steps that will be taken in order as part of an LTI deployment. An MDT task sequence uses the same task sequence engine as System Center Configuration Manager, although Configuration Manager is not required to run MDT task sequences. MDT includes a New Task Sequence Wizard, as shown in Figure 2-27, which walks you through creating a new task sequence.
MDT 2013 has the following nine default task sequence templates:

- **Sysprep and Capture** Runs Sysprep on a reference computer and then captures the image of that computer.

- **Standard Client Task Sequence** Creates and deploys reference images for computers.

- **Standard Client Replace Task Sequence** Runs the User State Migration Tool (USMT) backup and the optional full Windows Images backup actions. This sequence can also be used to perform a secure wipe of a computer that will be removed from the network.

- **Custom Task Sequence** Can be customized to meet your requirements. It has one default task, which is for an application installation.

- **Standard Server Task Sequence** Has default sequence for deploying server operating systems. The difference between this template and the client template is that the server template does not use USMT.
■ **LiteTouch OEM Task Sequence** Preloads operating system images onto the computer. This is normally used for factory installations but can also be used in an enterprise environment.

■ **Post OS Installation Task Sequence** Contains tasks that should be run after the operating system installation has completed.

■ **Deploy to VHD Client Task Sequence** Creates a virtual hard disk (VHD) on the destination computer and deploys the image to the VHD, similar to the standard client task sequence template.

■ **Deploy to VHD Server Task Sequence** Provides the same template as the VHD client template but is used for servers.

The default task sequences are shown in Figure 2-28.

![Figure 2-28](image)

The template that you choose determines which pages of the wizard are shown to you. For example, if you select the Custom Task Sequence template, it will take you directly to the summary screen to create the task. However, if you select the Standard Client Task Sequence template, it prompts you to select the operating system, product key, operating system settings, and password. Figure 2-29 shows the Specify Product Key page of the wizard.
Configuring customsettings.ini

MDT 2013 is highly customizable by using a settings configuration file. The configuration file, named customsettings.ini, contains information that will be used during an LTI deployment. To automate deployments as much as possible, you must work with the customsettings.ini file. Otherwise, you must answer several installation questions manually during deployments. A customsettings.ini file contains

- Sections
- Properties
- Settings
The following is a sample customsettings.ini file:

```
[Settings]
Priority=Default, MACAddress
Properties=CustomProperty

[Default]
OSInstall=Y
ScanStateArgs=/v:5 /o /c
LoadStateArgs=/v:5 /c /lac
UserDataLocation=NONE

[00:0F:20:35:DE:AC]
CustomProperty=TRUE
```

When customizing a customsettings.ini file, the only section that is required is Settings. All the other sections in the file are optional. The optional settings can set the configuration for either an individual computer, as identified by the MAC address, or a group of computers, as identified by a specified characteristic such as the make, model, or geographic location.

The properties that can be defined in the customsettings.ini file are predefined in the ZTIGather.wsf file, which is used for both Zero Touch Installation (ZTI) and LTI deployments, and automatically sets the values for properties that can be defined. You can run the ZTIGather.wsf script on computers, which then outputs a very large amount of data about the computers, to ensure that you use the right values for properties in the customsettings.ini file. When customizing a customsettings.ini file, ensure that all the properties you use are considered customizable.

Although the way properties are used for both ZTI and LTI deployments are similar, some properties are unique for each deployment scenario. In an LTI deployment, most of the properties relate to the deployment wizard, such as

- SkipAdministratorPassword
- SkipCapture
- SkipUserData
EXAM TIP
There are more than 300 customizable properties that you can use in customsettings.ini. Although you don’t need to be familiar with all of them for the exam, you should look at the complete list and familiarize yourself with some of them. On a computer on which MDT is installed, you’ll find the Microsoft Deployment Toolkit Documentation Library. In the documentation library, expand Toolkit Reference and then look at Properties.

Thought experiment

Going to LDI deployments at Fabrikam

You are the system administrator for Fabrikam. You, along with three other IT administrators, handle all aspects of the computing environment. Fabrikam is a small organization with one main office and 350 client computers. You are preparing to deploy WDS and MDT as part of a project to bring LTI operating system deployments to your organization.

You need to prepare the infrastructure for LTI deployments. To help you plan better for the project, answer the following questions:

1. MDT is deployed, but WDS isn’t yet. Where should you put the operating system images that you want to deploy?

2. You just finished configuring a computer to use as a reference computer. Now, you want to use the computer to create the installation image. Which MDT task sequence should you use?

3. You are preparing to add some packages to your deployment share. Which file extensions are valid for packages?

Objective summary

- Deployment shares store information used during a deployment.
- Deployment shares can have operating systems, packages, applications, and device drivers.
- Windows PowerShell can be used to configure components of a deployment share.
- You can use packages, applications, and device drivers to streamline the update process of an operating system deployment.
- Device drivers can be used with specific Windows PE selection profiles.
- Task sequences can be used to customize a deployment.
- Nine task sequence templates are available to customize a deployment.
- The customsettings.ini file provides additional customization capabilities, which can help automate more of the deployment process.
CHAPTER 2 Implement a Lite-Touch deployment

Objective review
Answer the following questions to test your knowledge of the information in this objective. You can find the answers to these questions and explanations of why each answer choice is correct or incorrect in the "Answers" section at the end of this chapter.

1. MDT task sequences use the same engine as which other product?
 A. Windows Server 2012
 B. System Center 2012 R2 Configuration Manager
 C. Exchange Server 2013
 D. SharePoint Server 2013

2. You need to automate several aspects of a deployment to minimize the number of manual deployment steps required. Which file should you use?
 A. Bootstrap.ini
 B. Customsettings.ini
 C. Deploy.xml
 D. Settings.xml

3. You have an existing MDT deployment share. You deploy a new MDT server. You need to add the existing share to the new MDT server. What should you do?
 A. In the MDT console, create a new deployment share and specify the path to the existing deployment share.
 B. In the MDT console, open the existing deployment share.
 C. Run the Add-MDTPersistentDrive Windows PowerShell command.
 D. Run the Get-MDTPersistentDrive Windows PowerShell command.

4. Which storage locations can a deployment share be located on? (Choose all that apply.)
 A. Network share
 B. Local storage
 C. Microsoft Access database
 D. SQL Server database

5. You are attempting to run the Get-MDTPDeploymentShareStatistics command on your MDT server, but an error message appears. The error is “Get-MDTPDeploymentShareStatistics : The term ‘Get-MDTPDeploymentShareStatistics’ is not recognized as the name of a cmdlet, function, script file, or operable program.” You need to be able to run MDT Windows PowerShell commands. What should you do?
 A. Run the Import-Module Microsoft.BDD.PSSnapIn command.
 B. Run the Add-PSSnapIn Microsoft.BDD.PSSnapIn command.
Objective 2.3: Create and manage answer files

Answer files are a crucial part of implementing an LTI deployment method with the MDT. Answer files are XML files that contain settings and responses to virtually all aspects of the Windows setup process. Answer files can be used with any type of deployment image and can include settings about items such as:

- User accounts
- Display settings
- Product key
- Time zone

Many other settings can also be configured with an answer file.

This objective covers how to:

- Identify the appropriate location for answer files
- Identify the required number of answer files
- Identify the appropriate setup phase for answer files
- Configure answer file settings
- Create Autounattended.xml answer files

Identifying the appropriate location for answer files

Before implementing an unattended installation using answer files, you should be familiar with how Windows Setup interprets the files. First, to ensure that an answer file is read and interpreted during the Windows Setup process, it must be stored in the appropriate working directory. In some cases, answer files must also have specific names. The files can be located in a number of locations, and each location has a different precedence. The answer file that has the highest precedence is used for the customization of that installation. Second, the Windows Setup process starts by taking an inventory of all valid answer files based on the order of precedence. The files are validated and cached to the local computer. During the WindowsPE and offlineServicing passes, valid answer files are cached to $Windows.~BT\Sources\Panther. After the image has been extracted to the local disk, answer files are cached to %WINDIR%\panther. The following table lists the valid locations for an answer file.
Implement a Lite-Touch deployment

Table 2-1: Answer file precedence table

<table>
<thead>
<tr>
<th>Precedence</th>
<th>Location</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Registry: HKLM\System\Setup\UnattendFile This entry is created inside the registry of the image that you are deploying.</td>
<td>This registry entry specifies the location of your answer file. Using this option gives you the flexibility to use a preferred path as opposed to the pre-defined locations that Windows Setup references.</td>
</tr>
<tr>
<td>2</td>
<td>%WINDIR%\Panther\Unattend This directory is located in the image that you are deploying.</td>
<td>This location is used for custom installations only and is not searched for installations that start with Windows PE. The file name of the answer file must be Unattend.xml or Autounattend.xml.</td>
</tr>
<tr>
<td>3</td>
<td>%WINDIR%\Panther This directory is located in the image that you are deploying. Answer files within this directory should not be overwritten.</td>
<td>This location is used by Windows Setup to cache valid answer files.</td>
</tr>
<tr>
<td>4/5</td>
<td>Removable media This refers to the Windows Setup DVD in conjunction with an answer file stored on one of the various types of removable media.</td>
<td>Answer files for removable media must be stored at the root of the media drive. The filename of the answer file must be Unattend.xml or Autounattend.xml.</td>
</tr>
<tr>
<td>6</td>
<td>For windowsPE and offlineServicing passes: \Sources of the installation media All other passes: %WINDIR%\System32\Sysprep within the image you are deploying.</td>
<td>For the windowsPE and offlineServicing passes, discussed in detail in the upcoming "Identifying the appropriate setup phase for answer files" section, the answer file must be named Autounattend.xml. For all other passes, the file name must be Unattend.xml.</td>
</tr>
<tr>
<td>7</td>
<td>%SYSTEMDRIVE% This directory path is located within the image you are deploying.</td>
<td>The file name of the answer file must be Unattend.xml or Autounattend.xml.</td>
</tr>
</tbody>
</table>

Exams Tip

Be expected to know the difference between Unattend.xml and Autounattend.xml, including the locations that specifically require one file name or the other.

Identifying the required number of answer files

Theoretically, you could place an answer file in all seven of the locations specified in Table 2-1. However, the installation process will only use answer files that have valid configuration data for the configuration pass it is currently working in. As a good practice, you should use the minimum number of answer files that are needed for your deployment. From an exam perspective, the best way to identify the required number of answer files is to understand the
answer files and what they do, where they are stored, and how they are processed. You might be presented with an exam scenario to meet a specified set of deployment requirements and then be asked to figure out which answer file(s) are required. The following sections in this chapter discuss the details of answer files and their role in automated deployments.

Identifying the appropriate setup phase for answer files

An answer file is composed of seven configuration passes, each representing a different phase within the Windows Setup procedure. Within each configuration pass, you are given a series of components that can be added to your answer file and manipulated to meet the needs of your image deployment. It is important to note that these components are not always unique to a specific configuration pass. In some cases, the same component can be referenced across multiple passes.

You should be familiar with the Windows Setup procedure and how each configuration pass is used. The following are the seven configuration passes:

- windowsPE
- offlineServicing
- generalize
- specialize
- auditSystem
- auditUser
- oobeSystem

Although there are seven configuration passes, only the windowsPE, specialize, and oobeSystem passes are used for every deployment. The other configuration passes are used only as needed. The windowsPE configuration pass, as shown in Figure 2-30, configures settings that are specific to the preinstallation environment as well as to installation settings. The Windows Setup settings that can be configured include:

- Disk drive partitions and formatting
- Windows image location and credentials
- Destination partition
- Windows product key
- Local Administrator account password
- Specific commands that must run during setup
You can use the offlineServicing pass of the configuration to apply Windows Setup settings to an offline Windows image. During this pass, packages can be added to the offline Windows image. The offlineServicing pass uses Package Manager (Pkgmgr.exe) to apply packages.

The generalize pass of the configuration, shown in Figure 2-31, is used to create a custom image of a Windows installation that can then be deployed to multiple computers. Settings defined in the generalize pass can be used to automate aspects of a deployment of the image. During the generalize pass, specific details of the Windows installation are removed from the image, such as the security identifier (SID) and other hardware-specific settings. The generalize pass is only used when the /generalize switch is provided with the Sysprep command. Other answer file settings are applied to the Windows image before the Sysprep generalization occurs.

MORE INFO WHAT IS SYSPREP?

The specialize pass of the installation, shown in Figure 2-32, allows settings to be configured for an individual machine. These settings can include:

- Network settings
- International and language settings
- Domain information

The specialize pass can be used to enhance or customize settings further that were made in the generalize pass.
The auditSystem pass of the installation is only used if the system has been booted into audit mode. When a computer has been started by using the audit mode, the auditSystem and auditUser passes are processed. The auditSystem pass can be used to add additional drivers to a Windows image.

The auditUser pass of the installation is typically used for RunSynchronous and RunAsynchronous commands that might include scripts, applications, or other executables.

MORE INFO THE AUDITSYSTEM PASS

The oobeSystem pass of the installation, as shown in Figure 2-33, configures the settings that are typically used during the first power on for end users, known as Windows Welcome. The oobeSystem settings are applied before the first user logs on to Windows. The out-of-box experience (OOBE) runs the first time an end user powers on a new computer. OOBE runs before the user logs on or runs additional software, and it performs the tasks that are necessary to configure Windows for first use.

![Figure 2-33: The oobeSystem pass high-level order](image-url)
Configuring answer file settings

Each of the components you add to your answer file will include a series of settings that can be adjusted. Changing the value of these settings is straightforward. You can edit an answer file by using a text editor or by using Windows System Image Manager (SIM).

One example of a quick edit using a text editor is to include changing the input language from en-US to fr-FR. To do so, open the existing answer file, search for the <InputLocale> tag, and replace en-US with fr-FR. You should also confirm that the <settings pass=""/> tag is set to the appropriate pass because <InputLocale> can be modified during pass 4: specialize and pass 7: oobeSystem.

Settings can also be edited in Windows SIM. SIM includes a detailed description of each setting and several examples to work from. The following example demonstrates how to use Windows SIM to make setting changes to your answer file. Refer to Figure 2-34.

1. Add the desired component to your answer file. In this example, you work with Microsoft-Windows-International-Core.
2. Select the component within your answer file. The available settings appear in the right pane.
3. Click in the field to the right of the setting label and enter your desired value. For a better understanding of the setting, right-click the setting label and select Help.
Creating Autounattend.xml answer files
You can create answer files manually or by using the Windows SIM, as shown in Figure 2-35.
As part of creating an answer file in Windows SIM, you must specify the Windows image file and a catalog file. A catalog file is a binary file that is associated to a specific Windows image file and contains the packages and settings in that WIM file. Often, the WIM file and the catalog file (.clg) are stored in the same folder. Windows SIM prompts you if it cannot locate a catalog file for a specified WIM file. In such a scenario, Windows SIM can create a catalog file. Alternatively, you can create an answer file in advance in Windows SIM. By using Windows SIM, you can verify that the configuration settings within an answer file are valid for the installation. Figure 2-36 shows an answer file that has a validation error.
FIGURE 2-36 Windows System Image Manager with a validation error

Answer files can also be created or modified manually. As mentioned earlier, the answer file is an XML file that can be edited by using a text editor. Here is a sample answer file:

```xml
<?xml version="1.0" encoding="utf-8"?>

<unattend xmlns="urn:schemas-microsoft-com:unattend">

<settings pass="oobeSystem">


<OOBE>

<HideEULAPage>true</HideEULAPage>

</OOBE>

</component>

</settings>

</unattend>
```
When you create answer files, avoid adding settings that you don’t need. Windows SIM will not create empty settings in an answer file, but you can manually introduce empty strings in an answer file. Your goal should be to reduce answer file bloat such as empty strings, which can increase deployment times.

Answer files often contain sensitive data such as the password of the local Administrator account. Windows SIM enables you to obfuscate local computer passwords in answer files. To obfuscate a password in an answer file with Windows SIM, perform the following steps:

1. In Windows SIM, open an answer file that contains a password you want to obfuscate.
2. Click the Tools menu and then click Hide Sensitive Data.
3. Save the answer file and then validate that the password is obfuscated.

Note that you cannot obfuscate domain-based passwords or other sensitive data such as product keys. By default in Windows SIM 6.3, Hide Sensitive Data is enabled by default when you create new answer files.

When you are finished creating an answer file, use Windows SIM to validate the answer file. Validating an answer file is an important step to ensure that everything is in order. If you have a validation error, such as the one displayed in Figure 2-36, you can double-click the validation error to find the exact setting causing the validation error.
Thought experiment

Windows 8.1 deployment at Alpine Ski House

Alpine Ski House is a premier winter sports destination with locations in Jackson, Wyoming, and Whistler, BC, Canada. The company has 1,000 client computers running Windows 7 and 100 servers running Windows Server 2008 R2. An existing Active Directory Domain Services domain named alpineskihouse.com exists, and all computers are joined to the domain. The company is investing in a technology upgrade. As part of the upgrade, Windows 8.1 will be deployed to all client computers. The company plans to automate many of the deployment tasks, but the project budget won’t allow for a fully automated deployment. To provide the company with an appropriate deployment solution, answer the following questions:

1. Which two deployment technologies can you combine to automate most of the deployment tasks while minimizing licensing costs?

2. How can you prevent users from booting to the network and reimaging their computers to Windows 8.1?

3. Which tools should you introduce to the IT administrators so that they are prepared to support the deployment infrastructure?

Objective summary

- An answer file may be stored in one of several locations. Each answer file location has a precedence value, which determines the answer file that is used.

- An installation might go through seven customization passes when using an answer file:
 - windowsPE
 - offlineServicing
 - generalize
 - specialize
 - auditSystem
 - auditUser
 - oobeSystem

- Windows SIM can be used to create and validate answer files.
Objective review

Answer the following questions to test your knowledge of the information in this objective. You can find the answers to these questions and explanations of why each answer choice is correct or incorrect in the "Answers" section at the end of this chapter.

1. Which tool can you use to create an answer file?
 - A. DISM
 - B. Windows SIM
 - C. Sysprep
 - D. Setup.exe

2. Which pass of the Windows Setup process removes the security identifier from a reference computer?
 - A. generalize
 - B. oobeSystem
 - C. specialize
 - D. offlineServicing

3. Which pass of the Windows Setup process configures unique settings for different departments?
 - A. generalize
 - B. oobeSystem
 - C. specialize
 - D. offlineServicing

4. You are planning to use removable media to store answer files for automating Windows 8.1 deployments. You need to store an answer file to a removable media drive with a drive letter of F:\. What should you name the file and where you should save it?
 - A. Name the file Unattend.xml and save it in the F:\Sysprep folder.
 - B. Name the file Unattend.xml and save it in the root of the F:\ drive.
 - C. Name the file Autounattend.xml and save it in the F:\Panther folder.
 - D. Name the file Unattended.xml and save it in the root of the F:\ drive.

5. You are planning to add packages to an offline Windows 8.1 image. Which tool should you use?
 - A. Setup.exe
 - B. LoadState
 - C. Windows SIM
 - D. DISM
Answers

This section contains the solutions to the thought experiments and answers to the lesson review questions in this chapter.

Objective 2.1

Thought experiment

1. You should deploy WDS to both offices. It is a good practice to avoid imaging computers over a wide area network (WAN) link because images are often very large and will saturate a WAN link, which will degrade the network. By deploying WDS to both offices, imaging will take place on the local area network (LAN).

2. You should use unicast for the deployments. Because you will image only one or two computers at a time, unicast makes sense because it doesn’t require any changes to your existing network.

3. You should use filters in WDS to ensure that WDS can image only portable computers. You can use a Chassis Type filter, Manufacturer filter, or Model filter to target only portable computers.

Objective review

1. Correct answers: A and B

 A. Correct: The Windows PowerShell WDS module is new for Windows Server 2012 R2, and it can automate configuration tasks.

 B. Correct: Prior to the Windows PowerShell WDS module, WDSutil was the only command-line tool for WDS. It can automate configuration tasks for WDS.

 C. Incorrect: WDSdiag exists as a .dll, not as a .exe. It cannot automate WDS configuration tasks.

 D. Incorrect: WDSmgmt.msc is the WDS graphic user interface console. It is used to perform one-time configuration tasks but isn’t used to automate tasks like a script can do.

2. Correct answer: A

 A. Correct: To ensure that the WDS Image Capture Wizard sees the system volume, generalize the image by using Sysprep.

 B. Incorrect: Although Shift+F10 opens a Windows PE command prompt, you can’t generalize the existing Windows installation from Windows PE.

 C. Incorrect: The permissions on the system volume do not need to be modified from default settings to be seen by the WDS Image Capture Wizard.

 D. Incorrect: The permissions on the system volume do not need to be modified from default settings to be seen by the WDS Image Capture Wizard.
3. **Correct answer:** C
 A. **Incorrect:** A capture image is built from a boot image. Thus, a boot image must be created first.
 B. **Incorrect:** An install image can be a default Windows installation or a customized Windows installation. However, an install image is not related to creating a discover image.
 C. **Correct:** A capture image is built from a boot image. Thus, you must first add a boot image before you can create a discover image.
 D. **Incorrect:** You can create images with the WDS console. The Windows PowerShell WDS module is automatically imported when you use cmdlets from the module, so you do not need to import the module manually.

4. **Correct answer:** B
 A. **Incorrect:** Unicast cannot be scheduled at a future time.
 B. **Correct:** Multicast transmissions can be scheduled at a future time by using a Scheduled-Cast transmission.
 C. **Incorrect:** You can use a WDS filter to filter images based on specified computer attributes such as the manufacturer and chassis type. However, you cannot use a filter to schedule future deployments.
 D. **Incorrect:** You can use a WDS filter to filter images based on specified computer attributes such as the manufacturer and chassis type. However, you cannot use a filter to schedule future deployments.

5. **Correct answer:** C
 A. **Incorrect:** Although the BIOS Version is helpful, the UUID will be unique to each computer.
 B. **Incorrect:** Although the BIOS Version is helpful, the BIOS Vendor does not identify the hardware model number.
 C. **Correct:** The BIOS Version and Model will help identify all HP Elitebook laptops running the F03 version of the BIOS.
 D. **Incorrect:** Although the Model information is useful, the BIOS Vendor does not identify the current BIOS version.

Objective 2.2

Thought experiment

1. You should put your operating system images in the deployment share. The deployment share is where your images should be placed when using MDT.

2. You should use the Sysprep and Capture task sequence template. It prepares the reference computer with Sysprep and then captures the image.
3. The valid file extensions for packages are .cab and .msu.

Objective review

1. Correct answer: B
 A. Incorrect: The MDT task sequences use the same engine as Configuration Manager but not the same as Windows Server 2012.
 B. Correct: MDT and Configuration Manager use the same task sequence engine.
 C. Incorrect: The MDT task sequences use the same engine as Configuration Manager but not the same as Exchange Server 2013.
 D. Incorrect: The MDT task sequences use the same engine as Configuration Manager but not the same as SharePoint Server 2013.

2. Correct answer: B
 A. Incorrect: Bootstrap.ini is a file that you can customize to point the deployment wizard to different locations on the network. It is not relevant to the question, which focuses on reducing the manual deployment steps in a deployment.
 B. Correct: The customsettings.ini file controls a wide range of deployment settings that enable you to cut down drastically on manual steps in a deployment.
 C. Incorrect: Deploy.xml is a file that should not be modified because MDT manages it.
 D. Incorrect: Settings.xml is a file that MDT manages and should not be modified.

3. Correct answer: B
 A. Incorrect: When you create a new deployment share, you can’t point it to the path of an existing share because the wizard will not allow you to continue.
 B. Correct: By opening the existing deployment share, you add it to MDT.
 C. Incorrect: The Add-MDTPersistentDrive cmdlet is valid only if you have an existing Windows PowerShell drive.
 D. Incorrect: The Get-MDTPersistentDrive cmdlet retrieves information but does not perform any modifications.

4. Correct answers: A and B
 A. Correct: A deployment share can be located on a network share. It can also be located on local storage.
 B. Correct: A deployment share can be located on local storage. It can also be located on a network share.
 C. Incorrect: A deployment share cannot be located in a Microsoft Access database.
 D. Incorrect: A deployment share cannot be located in a SQL Server database.
5. **Correct answer:** B

 A. Incorrect: The MDT cmdlets are part of a snap-in, not a module, so you must add a snap-in.

 B. Correct: Because the MDT cmdlets are part of a snap-in, adding the snap-in is the correct answer.

 C. Incorrect: The path from which you run the command is not relevant.

 D. Incorrect: The error message is indicative of a snap-in or module not loaded. Running Windows PowerShell as Administrator will not fix this issue.

Objective 2.3

Thought experiment

1. To automate most operating system deployment tasks while minimizing costs, deploy WDS and MDT. WDS is built into Windows Server as a role, and MDT is a free download. Each tool can stand alone to automate some deployment tasks. However, combining them brings the best results because you can use WDS for PXE to eliminate the need for media.

2. To prevent users from reimaging their own computers, you can set restrictive permissions on each image. Create a security group in Active Directory. Add the IT administrators to the group and then add the group to the image permissions and assign Read and Read & Execute permissions to the group. Finally, remove the Authenticated Users group from the permissions. Do not use deny permissions for Authenticated Users because that will override the allow permissions for IT administrators, which will prevent them from using the image too.

3. To prepare IT administrators to support and maintain the deployment infrastructure, introduce the Deployment Workbench, the WDS console, WDSutil, Windows SIM, Windows ADK, and the WDS commands in Windows PowerShell. In addition, it is a good idea to show the IT administrators the answer files and customization files that are being used.

Objective review

1. **Correct answer:** B

 A. Incorrect: DISM is used for other tasks such as adding packages to offline Windows images.

 B. Correct: Windows SIM is used to create answer files.

 C. Incorrect: Sysprep prepares a reference computer for capturing.

 D. Incorrect: Setup.exe is often used for installing applications or a manual installation of a Windows operating system.
2. Correct answer: A

 A. Correct: The generalize pass is when the security identifier is removed from a reference computer.

 B. Incorrect: The oobeSystem pass configures settings that are part of the initial boot of a computer and is not related to removing the security identifier from a reference computer.

 C. Incorrect: The specialize pass is used to configure some settings such as language and time zone, but it is not related to removing the security identifier from a reference computer.

 D. Incorrect: The offlineServicing pass is used to add packages or updates to an offline image but can’t be used to remove the security identifier from a reference computer.

3. Correct answer: C

 A. Incorrect: The generalize pass is used to configure all computers equally and can’t be used to configure different department computers with different settings.

 B. Incorrect: The oobeSystem pass is used to configure the initial boot of a computer and is not related to configuring different department computers with different settings.

 C. Correct: The specialize pass is often used in addition to the generalize pass to configure unique settings for different department computers.

 D. Incorrect: The offlineServicing pass is used to add packages or updates to an offline image but can’t be used to configure different department computers with different settings.

4. Correct answer: B

 A. Incorrect: Although the Unattend.xml file name is valid, the location must be in the root of the removable media drive.

 B. Correct: The file must be named Unattend.xml or Autounattend.xml, and the location must be in the root of the removable media drive.

 C. Incorrect: Although the Autounattend.xml file name is valid, the location must be in the root of the removable media drive.

 D. Incorrect: The file must be named Unattend.xml or Autounattend.xml.
5. **Correct answer**: D

A. **Incorrect**: Setup.exe is a generic name for an installation file and is not used to add packages to an offline image.

B. **Incorrect**: LoadState transfers user state data from a migration store to a destination computer but does not add packages to an offline image.

C. **Incorrect**: Windows SIM creates answer files but does not add packages to an offline image.

D. **Correct**: DISM adds packages to an offline image.
This page intentionally left blank
Index

Numbers and Symbols

$ (dollar sign), 85
32-bit operating systems, 280–281
64-bit operating systems, 280–281

A

access control lists (ACLs), 26
ACLs (access control lists), 26
ACT (Application Compatibility Toolkit), 281–286
Activate Server Wizard
accessing, 269
Company Information page, 270–272
Completing The Activate Server Wizard page, 272–273
Connection Method page, 269–270
activation configuration and management
configuring Active Directory-based activation, 53–54
configuring KMS, 52–53
configuring MAK, 54–55
identifying appropriate activation tool, 51–52
objective summary and review, 55–56, 61–63
Office 2013, 300–309
Active Directory
activation support, 51–54, 308
prestaged computer accounts, 36–37
supplying credentials for discovery, 3, 5–6
Active Directory Domain Services (AD DS)
data collection and, 5
deployment support, 43
RD Gateway role, 276
Active Directory Users and Computers, 37
AD DS (Active Directory Domain Services)
data collection and, 5
deployment support, 43
RD Gateway role, 276
Add Boot Image Wizard, 156
Add-CMDeploymentType cmdlet, 140
Add Distribution Points dialog box, 170–171, 179
Add-Driver command (DISM), 247, 249
Add Image Wizard
Image File page, 75
Image Metadata page, 76
Summary page, 76
Task Progress page, 76–77
Add-MDTPersistentDrive cmdlet, 87
Add Operating System Wizard, 159
Add Or Remove Drivers To Packages dialog box, 153–154
Add-Package command (DISM), 243–244, 254, 256
Add Product Keys dialog box, 303
Add-PSSnapIn cmdlet, 87
Add-WindowsDriver cmdlet, 247
Add-WindowsPackage cmdlet, 244
All Users profile, 26
answer files
about, 101
configuring settings, 107–108
creating Autounattend.xml files, 108–111
embedding, 252
identifying appropriate location, 101–102
identifying appropriate setup phase, 103–107
identifying required number, 102–103
managing device drivers, 249
objective summary and review, 112–113, 117–119
unattended installation options, 248
App-V (Microsoft Application Virtualization), 280–281, 289–290
Application Catalog, 135, 140
application compatibility fixes (shims), 286
Application Compatibility Toolkit (ACT), 281–286
Application Compatibility Toolkit (ACT) Configuration Wizard

accessing, 282
ACT Log Processing Service page, 282–283
Configure Your ACT Database Settings page, 283–284
Configure Your ACT Log Processing Service Account page, 284–285
Configure Your Log File Location page, 284
Congratulations page, 285

applications
adding to deployment shares, 90
benefits of, 134–135
configuring for deployment, 134–140
creating, 135–137
deploying, 138–140
deploying Office 2013 using Click-to-Run, 323–333
deploying Office 2013 using MSI, 289–323
distributing content, 138
life cycle overview, 135
managing embedded, 256–259
objective summary and review, 333–338
planning for and implementing compatibility and remediation, 267–288
setting options, 137–138
version coexistence, 280–281

Apply-Unattend command (DISM), 251
assessing computing environment
assessing Configuration Manager reports, 14–15
determining network load capacity, 16–18
integrating MAP with Configuration Manager, 15–16
Microsoft Assessment and Planning Toolkit, 2–14
objective summary and review, 19–20, 57–58

auditing, logging for, 3
auditSystem configuration pass, 103, 106, 216
auditUser configuration pass, 103, 106, 216
authentication, image security and, 80
Autounattend.xml answer file, 102, 108–111

B

BDD (Business Desktop Deployment), 87
BitLocker encryption, 47–49, 211
boot images
about, 71–72, 156
adding in Configuration Manager, 156–157
adding to WDS, 72–73
design implications, 207–208
distributing, 157
MDT, 184–190
modifying, 157–159
updating drivers, 151–152
boundaries and boundary groups, 175–176
BranchCache feature, 173–174
bring-your-own-device (BYOD), 277
broadcast traffic, 163
build and capture task sequences
creating, 142–145, 224
deploying, 145–147
running, 147–148
Business Desktop Deployment (BDD), 87
BYOD (bring-your-own-device), 277
.Cab file extension, 90, 256
CAL (Client Access License), 268, 273
capacity planning, RDS, 275–276, 278
Capture-Image command (DISM), 256
capture images
about, 72, 218
adding to WDS, 74–77
creating using WDS, 217–218
design implications, 209–210
objective summary and review, 237–238, 264–265
using Configuration Manager, 224–236
to WIM format, 218–224
Cleanup-Images command (DISM), 255
Click-to-Run technology
about, 323–324
configuring licensing, 324
configuring updates, 326–327
customizing deployment, 325–326
monitoring usage using Office Telemetry Dashboard, 328–332
Client Access License (CAL), 268, 273
Client Hyper-V, 278–280
client naming policy, 38
cmdlets (PowerShell). See specific cmdlets
Commit-Image command (DISM)
applying drivers to images, 247
applying files to images, 254
applying service packs to images, 255
applying settings to images, 252
Create Package and Program Wizard

applying updates to images, 244
compatibility, application
 Application Compatibility Toolkit, 281–285
deploying fixes, 286
planning for version coexistence, 280–281
Compatibility Administrator tool, 286
compatibility fixes, 286
computing environment assessment
 assessing Configuration Manager reports, 14–15
determining network load capacity, 16–18
 integrating MAP with Configuration Manager, 15–16
Microsoft Assessment and Planning Toolkit, 2–14
objective summary and review, 19–20, 57–58
ConfigMgr Client package, 184
Configuration Manager
 assessing reports, 14–15
automated configuration, 215–216
capturing images using, 224–236
configuring deployment packages and applications, 122–140
configuring task sequences, 140–148
data collection and, 5
deployment support, 43
distribution points, 43–47
 integrating MAP with, 15–16
managing boot and deployment images, 156–160
managing driver pool, 148–155
manual configuration, 216
and MDT integration, 182–196
objective summary and review, 161–162, 197–198
Office deployment, 289–290
preparing operating system for capture, 215–217
prerequisites, 123, 142
software distribution, 309
Configure ConfigMgr Integration Wizard, 182–183
configuring deployment infrastructure. See deployment infrastructure configuration
Config.xml file
 about, 300
customizing Office 2013 settings, 289, 299–300
editing, 300
 excluding data from migration, 22
 SUptateLocation parameter, 321
Create Application Wizard
 Completion page, 137
 General Information page, 137
 General page, 136
 Important Information page, 136
 Summary page, 137
Create Boot Image Using MDT Wizard
 Components page, 187–188
 Customization page, 188–189
 General Settings page, 185–186
 Options page, 186–187
 Package Source page, 185
 Summary page, 189–190
Create Capture Image Wizard, 74–75
Create Discover Image Wizard, 77–79
Create Driver Package dialog box, 151
Create MDT Task Sequence Wizard
 Boot Image page, 191
 Capture Settings page, 191
 Choose Template page, 191, 194
 Client Package page, 193
 Completion page, 193
 Components page, 192
 Customization page, 192
 Deployment Method page, 193
 Details page, 191
 General page, 191
 General Settings page, 191
 MDT Details page, 192
 MDT Package page, 192
 Options page, 191
 OS Image Index page, 193
 OS Image page, 192
 Settings Details page, 193
 Settings Package page, 193
 Summary page, 193
 Sysprep Package page, 193
 USMT Details page, 193
 USMT Package page, 193
Create Multicast Transmission Wizard
 Image Selection page, 69
 Multicast Type page, 69–70
 Operation Complete page, 70–71
 Transmission Name page, 68
Create New Distribution Point Group dialog box, 177–179
Create Package and Program Wizard
 accessing, 123
 Package page, 123–124
 Program Type page, 125–126
 Requirements page, 127–128
 Set Source Folder page, 124

341
Create Requirement dialog box, 138

Standard Program page, 126–127
Summary page, 128
Create Requirement dialog box, 138
Create Site System Server Wizard, 45
Create Task Sequence Wizard
Capture Image page, 144–145, 233–234
Completion page, 145, 236
Configure Network page, 144, 228
Create New Task Sequence page, 141–142, 225
Image Properties page, 144, 232–233
Include Updates page, 144, 229–230
Install Applications page, 144, 230–231
Install Configuration Manager page, 144, 228–229
Install Windows page, 143–144, 226–227
Summary page, 145, 234–235
System Preparation page, 144, 231–232
Task Sequence Information page, 142–143, 225–226
credentials
for Active Directory discovery, 3, 5–6
for target computers, 2–3, 5–6
custom install images, 73
Custom Task Sequence template, 95
CustomSettings.ini file, 97–99, 183–184

D

data collection
gathering requirements, 2–3
Inventory and Assessment Wizard, 4–13
Performance Metrics Wizard, 6
Database Connection Settings dialog box, 301
default Windows install images, 73
Deploy Software Wizard
Alerts page, 139, 147
Completion page, 133, 140, 147
Content page, 132
Deployment Settings page, 132–133, 146–147
Distribution Points page, 133, 147
General page, 132, 139, 145–146
Scheduling page, 133, 139, 147
Summary page, 133, 140, 147
User Experience page, 133, 139, 147
Deploy to VHD Client Task Sequence template, 96
Deploy to VHD Server Task Sequence template, 96
Deployment Image Servicing and Management (DISM) tool
about, 241
applying drivers to images, 246–248
applying files to images, 252–254
applying service packs, 254–256
applying settings to images, 248–252
applying updates to images, 242–246
elevated privileges, 240
file extensions, 241
prerequisites, 240
updating images, 239–241
deployment images
about, 156
adding, 159
distributing, 159
modifying, 160
deployment infrastructure configuration
configuring Windows Deployment Services, 35–40
identifying network services supporting deployments, 43–44
installing and configuring MDT, 41–43
objective summary and review, 49–50, 60–61
selecting Configuration Manager distribution points, 44–47
supporting BitLocker, 47–49
deployment packages. See packages
deployment shares
about, 85
adding applications, 90
adding packages, 90
copying data to, 88–89
creating, 85–88
deploying applications, 90
importing operating systems, 89
importing packages, 91
supporting specific platforms, 91–92
Deployment Workbench
accessing, 41–42
accessing deployment shares, 87–88
copying data to deployment shares, 88–91
creating deployment shares, 85
managing driver pool, 93
task sequences, 316
desktop images
applying drivers, 246–248
applying files, 252–254
applying service packs, 254–256
applying settings, 248–252
applying updates, 242–246
capturing images to WIM files, 218–224
capturing operating system images using Configuration Manager, 224–236
considering design implications, 204–212
creating capture images using WDS, 217–218
managing capture images, 256–259
objective summary and review, 213–215, 237–238, 259–266
preparing operating system for capture, 215–238
servicing using DISM, 239–254
device drivers
 applying to images, 246–248
 image design implications based on, 211–212
 managing in LTI deployments, 92–94
 managing in ZTI deployments, 148–155
 managing with answer files, 249
 planning strategies, 151
DHCP (Dynamic Host Configuration Protocol), 43, 218
Disable-CMDriver cmdlet, 155
discover images
 about, 72, 218
 adding to WDS, 77–79
 design implications, 210
Discover Products dialog box, 302
discovery credentials, 5
DISM (Deployment Image Servicing and Management) tool
 about, 241
 applying drivers to images, 246–248
 applying files to images, 252–254
 applying settings to images, 248–252
 applying updates to images, 242–246
 elevated privileges, 240
 file extensions, 241
 managing images, 239–241
 prerequisites, 240
Dismount-WindowsImage cmdlet, 245
Distribute Content Wizard
 applications, 138
 boot images, 157
 deployment images, 159
 deployment packages, 130–131
 distribution points, 168–173
 driver packages, 152
distribution point(s)
 about, 43, 162, 168
 configuring deployments, 168–176
 configuring multicast, 163–166
 configuring PXE, 166–168
configuring unicast, 163
objective summary and review, 180–181, 198–199
selecting, 44–47
distribution point groups, 176–179
DNS
 deployment support, 43
 KMS and, 53
dollar sign ($), 85
Dynamic Host Configuration Protocol (DHCP), 43, 218
e-mail
disk space considerations, 30
OCT settings, 294–295
embedded applications, managing, 256–259
Enable-CMDriver cmdlet, 155
Enable-Feature command (DISM), 258
Enable-WindowsOptionalFeature cmdlet, 258
encryption
 BitLocker, 47–49, 211
 migration store, 31
Execute File permission, 81
file extensions
 Configuration Manager supported, 136
 DISM supported, 241
 ScanState tool supported, 26
 filters, image security and, 80–81
 firewalls, 3, 276
generalize configuration pass, 103–105, 216, 218
Get-ADComputer cmdlet, 36
Get-CMAplication cmdlet, 140
Get-CMBootImage cmdlet, 157
Get-CMDeploymentType cmdlet, 140
Get-CMPackage cmdlet, 130
Get-CMProgram cmdlet, 130
Get-Drivers command (DISM), 246–247
Get-FeatureInfo command (DISM), 257–258
Get-Features command (DISM), 257
Get-Features command (DISM), 257
Get-ImageInfo command (DISM), 240
Get-Packages command (DISM), 243–244, 254–255
Get-WdsBootImage cmdlet, 72
Get-WindowsDriver cmdlet, 246–247
Get-WindowsImage cmdlet, 241
Get-WindowsOptionalFeature cmdlet, 257–258
Get-WindowsPackage cmdlet, 243
Getting Started dialog box, 329
globally unique identifier (GUID), 36
GPOs (Group Policy Objects)
 configuring Windows firewall and, 3
 joining domains and, 144
 Office deployment, 290
grace period, freezing, 319–320
Group Policy Objects (GPOs)
 configuring Windows firewall and, 3
 joining domains and, 144
 Office deployment, 290
GUID (globally unique identifier), 36

H
HP Hotkey software, 123, 128–129
hybrid images, 205–207, 212
Hyper-V
 client version, 278–280
 MAP reports, 14
 WDS deploying images to, 36

I
IGMP (Internet Group Management Protocol), 67
image groups, multicast deployments and, 68
images. See also specific image types
 applying drivers, 246–248
 applying files, 252–254
 applying service packs, 254–256
 applying settings, 248–252
 applying updates, 242–246
capturing to WIM files, 218–224
capturing using Configuration Manager, 224–236
creating using WDS, 217–218
design implications, 204–212
managing embedded applications, 256–259
objective summary and review, 213–215, 237–238, 259–266
preparing operating system for capture, 215–238
updating images using DISM, 239–241
ImageX tool, 239
Import-CMDriver cmdlet, 151
Import Driver Wizard, 93, 151
Import-MDTApplication cmdlet, 90
Import-MDTDriver cmdlet, 93
Import-MDTOperatingSystem cmdlet, 89
Import-MDTPackage cmdlet, 91
Import New Driver Wizard
 Add Driver To Packages page, 150
 Driver Details page, 149–150
 Locate Driver page, 149
Import Operating System Wizard, 89
Import-WdsBootImage cmdlet, 72
importing
 device drivers, 149–150
 operating systems, 89
 packages, 91
.inf file extension, 92
install images
 about, 72, 218
 adding to WDS, 73
design implications, 208–209
multicast deployments and, 68
organizing, 208–209
securing, 209
Install Product Key dialog box, 304–305
Internet Group Management Protocol (IGMP), 67
Inventory And Assessment Wizard
 accessing, 7
 Active Directory Credentials page, 9–10
 Active Directory Options page, 10
 All Computers Credentials page, 10–11, 18
 Credentials Order page, 11–12, 16
 Discovery Methods page, 8–9, 15, 17
 Inventory Scenarios page, 7–8, 15, 17
 providing credentials for target computers, 5–6
 Scan An IP Address Range page, 17–18
 SCCM Server And Credentials page, 16
 selecting discovery method, 5
 selecting inventory scenario, 4–5
 Summary page, 16, 18
inventory credentials, 5–6
IP addresses, multicast, 67
K

Key Management Service (KMS)
about, 51–52, 307
configuring, 52–53
MSI deployments, 289

KMS (Key Management Service)
about, 51–52
configuring, 52–53
MSI deployments, 289
Office 2013 activation, 307

L

licensing
activation and, 51–54
Click-to-Run, 324
freezing grace period, 319–320
OCT customizing, 291, 294
Office 2013, 320–321
reducing costs, 15
Remote Desktop Services, 268–273
thick images and, 205
List Folder permission, 81

Lite Touch Installation (LTI)
configuring MDT, 41, 85–101
creating and managing answer files, 101–113
installing and configuring WDS, 65–85
integrating deployment, 309–319
objective summary and review, 114–119

Litetouch OEM Task Sequence template, 96

LoadState tool
about, 21–22
side-by-side migration, 25–26
wipe-and-load migration, 23–24

local user accounts, password considerations, 28

logging
for auditing purposes, 3
for troubleshooting purposes, 3

LTI (Lite Touch Installation)
configuring MDT, 41, 85–101
creating and managing answer files, 101–113
installing and configuring WDS, 65–85
integrating deployment, 309–319
objective summary and review, 114–119

M

MAC (media access control) addresses, 35–36

MAK (multiple activation key)
activation support, 52, 307–308
configuring, 54
MSI deployments, 289
VAMT and, 301, 307–308

Manage Administrative Categories dialog box, 154–155

MAP (Microsoft Assessment and Planning) Toolkit
about, 2–3
integrating Configuration Manager with, 15–16
phase 1: choosing goals, 2
phase 2: gathering data collection requirements, 2–3
phase 3: preparing environment, 3
phase 4: installing MAP Toolkit, 3–4
phase 5: collecting data, 4–13
phase 6: reviewing reports, 13–14

MBAM (Microsoft BitLocker Administration And Monitoring), 48–49

MDOP (Microsoft Desktop Optimization Pack), 48, 280

MDT (Microsoft Deployment Toolkit)
about, 41, 85, 182–183
configuring, 41–43
configuring CustomSettings.ini, 97–99
configuring deployment shares, 85–92
configuring task sequences, 94–97
creating boot images, 184–190
creating customized task sequences, 190–194
installing, 41
managing driver pool, 92–94
MDT-specific task sequences, 183–184
objective summary and review, 99–101, 115–117
Office deployment, 289, 309

MDT boot image, 184–190

MDT toolkit package, 184

media access control (MAC) addresses, 35–36

Microsoft Application Virtualization (App-V), 280–281, 289–290

Microsoft Assessment and Planning (MAP) Toolkit
about, 2–3
integrating Configuration Manager with, 15–16
phase 1: choosing goals, 2
phase 2: gathering data collection requirements, 2–3
phase 3: preparing environment, 3
phase 4: installing MAP Toolkit, 3–4
phase 5: collecting data, 4–13
phase 6: reviewing reports, 13–14
Microsoft Assessment and Planning Toolkit dialog box

accessing Inventory And Assessment Wizard, 7
Begin The Installation page, 4
Customer Experience Improvement Program page, 4
Installation Folder page, 4
License Agreement page, 4
Microsoft BitLocker Administration And Monitoring (MBAM), 48–49
Microsoft Deployment Toolkit (MDT)
about, 41, 85, 182–183
configuring, 41–43
configuring CustomSettings.ini, 97–99
configuring deployment shares, 85–92
configuring task sequences, 94–97
creating boot images, 184–190
creating customized task sequences, 190–194
installing, 41
managing driver pool, 92–94
MDT-specific task sequences, 183–184
Office deployment, 289, 309
Microsoft Desktop Optimization Pack (MDOP), 48, 280
Microsoft Intune, 289–290
Microsoft Self-Extractor files, 309
Microsoft Virtual Academy (MVA)
Configuration Manager, 236
Windows 8.1 Deployment Jump Start, 80
MigApp.xml file, 22, 26
MigDocs.xml file, 22, 26
migration store, 29–31
MigUser.xml file, 22, 26
Mount-image command (DISM)
applying drivers to images, 246
applying files to images, 253
applying service packs to images, 254
applying settings to images, 251
applying updates to images, 242
Mount-WindowsImage cmdlet, 242
MSI (Windows Installer)
customizing deployments, 291–300
deployment capabilities, 289
integrating LTI deployment, 309–319
managing Office 2013 activation, 300–309
objective summary and review, 322–323, 335–336
providing slipstream updates, 320–322
re-arming Office 2013, 319–320
supported deployment methods, 289–290
.msp file extension, 320–321
.msu file extension, 90, 256

multicast transmission
broadcast traffic versus, 163
configuring LTI deployments, 67–71
configuring ZTI deployments, 163–166
scheduling LTI deployments, 79–80
WDS server options, 39–40
multiple activation key (MAK)
activation support, 52, 307–308
configuring, 54
MSI deployments, 289
VAMT and, 301, 307–308
MVA (Microsoft Virtual Academy)
Configuration Manager, 236
Windows 8.1 Deployment Jump Start, 80

network interface card (NIC)
MAC address, 36
multicast transmission and, 67
networks
determining load capacity, 16–18
infrastructure and capacity planning, 275
monitoring tools, 17
New Application Wizard
Application Type page, 90, 309–310
Command Details page, 313–314
Confirmation page, 314–315
Destination page, 312–313
details page, 310–311
Source page, 311–312
New-CMApiApplication cmdlet, 140
New-CMBootImage cmdlet, 157
New-CMDistributionPointGroup cmdlet, 177
New-CMPackage cmdlet, 129–130
New-CMProgram cmdlet, 129–130
New Deployment Share Wizard, 86–87
New-PSDrive cmdlet, 87
New Task Sequence Wizard
about, 94
Confirmation page, 317–318
General Settings page, 95, 316
Select Template page, 96, 317
Specify Product Key page, 96–97
New-WindowsImage cmdlet, 256
NIC (network interface card)
MAC address, 36
multicast transmission and, 67
OCT (Office Customization Tool)
about, 289, 299
adjusting email settings, 294–295
customizing deployments, 292–293
customizing installed applications and features, 295
customizing licensing, 294
deployment tasks supported, 291
security settings, 299
starting, 291
table of additional customization settings, 296–299

ODT (Office Deployment Tool), 325

Office 2013
deploying using Click-to-Run, 323–332
deploying using MSI, 289–322
managing activation, 300–309
objective summary and review, 322–323, 332–333, 335–338
prerequisites, 290
re-arming, 319–320
supported deployment methods, 291

Office Customization Tool (OCT)
about, 289, 299
adjusting email settings, 294–295
customizing deployments, 292–293
customizing installed applications and features, 295
customizing licensing, 294
deployment tasks supported, 291
security settings, 299
starting, 291
table of additional customization settings, 296–299

Office Deployment Tool (ODT), 325
Office Telemetry Agent, 331
Office Telemetry Dashboard, 328–332
Office Telemetry Processor, 329–330
Office Telemetry Processor Settings Wizard, 330
offline images, 239, 248, 258
offlineServicing configuration pass
about, 103–104, 216
applying settings to images, 248, 251
online images, 239, 243, 247
OOBE (out-of-box experience), 106, 217
oobeSystem configuration pass, 103, 106, 216–217
Open Deployment Share Wizard, 88
operating system deployment (OSD)
assessing computing environment, 1–20
configuring and managing activation, 51–55
configuring deployment infrastructure, 34–50
configuring deployment packages and applications, 122–140
configuring deployments to distribution points, 168–176
configuring task sequences, 140–148
image design implications based on, 211–212
managing boot and deployment images, 156–160
managing driver pool, 148–155
objective summary and review, 55–63, 161–162, 197–198
planning and implementing user state migration, 20–34
prerequisites, 142
operating system images
capturing using Configuration Manager, 224–236
distributing to distribution points, 168–176
OSD (operating system deployment)
assessing computing environment, 1–20
configuring and managing activation, 51–55
configuring deployment infrastructure, 34–50
configuring deployment packages and applications, 122–140
configuring deployments to distribution points, 168–176
configuring task sequences, 140–148
image design implications based on, 211–212
managing boot and deployment images, 156–160
managing driver pool, 148–155
objective summary and review, 55–63, 161–162, 197–198
planning and implementing user state migration, 20–34
prerequisites, 142
out-of-box experience (OOBE), 106, 217

P

Package Manager (Pkgmgr.exe), 104
packages
about, 90, 134, 168
adding to deployment shares, 90
configuring for deployment, 122–134
distributing device driver, 152
importing, 91
MDT toolkit, 184
redistributing content, 175
rd removing content, 175
updater drivers, 152
validating, 174
Performance Metrics Wizard, 6
Performance Monitor, 18
permissions and privileges
DISM tool, 240
image security and, 81
personal virtual machines, 278
Pkgmgr.exe (Package Manager), 104
PKI (public key infrastructure), 274–275
pooled virtual machines, 278
Post OS Installation Task Sequence template, 96
PowerShell (Windows). See specific cmdlets
Preboot Execution Environment (PXE)
capturing images and, 218–219
discover images and, 72
MAC addresses, 35
OSD deployment support, 43
WDS server settings, 36–37
ZTI deployment support, 166–168
prestaged computer accounts, 36–37
Properties dialog box
boot images, 157–159
deployment images, 160
deployment shares, 92
distribution points, 45–47, 163–167
HP Hotkey Support program, 128–129
images, 81–82
task sequences, 318–319
WDS server, 36–40
proxy activation, 308
public key infrastructure (PKI), 274–275
Public profile, 26
published applications (RemoteApp programs), 276–277
PXE (Preboot Execution Environment)
capturing images and, 218–219
discover images and, 72
MAC addresses, 35
OSD deployment support, 43
WDS server settings, 36–37
ZTI deployment support, 166–168
R
RD Connection Broker, 274
RD Gateway, 274
RD Licensing, 274
RD Licensing Manager, 269
RD Session Host, 274, 276–277, 290
RD Virtualization Host, 274
RD Web Access, 274
RDS (Remote Desktop Services)
about, 268
infrastructure and capacity planning, 275–276
licensing, 268–273
Office deployment, 289–290
published applications, 276–277
roles, 274–275
session-based desktops, 277
virtual desktops, 277
RDS Device CAL, 268
RDS External Connector, 268
RDS User CAL, 268
re-arming Office 2013, 319–320
Read Attributes permission, 81
Read Data permission, 81
Read & Execute permission, 81
Read Extended Attributes permission, 81
Read permission, 81, 290
Read Permissions permission, 81
readiness reports (Windows 8.1)
 AfterUpgrades worksheet, 14
 Assessment Values worksheet, 14
 ClientAssessment worksheet, 14
 DeviceDetails worksheet, 14
 DeviceSummary worksheet, 14
 Summary worksheet, 13
reference images
 build and capture task sequence, 142–144, 148, 191
deployment images and, 156
generalize pass, 216
task sequence templates, 95, 142
registry settings, disk space considerations, 30
Remote Desktop Connection Broker, 274
Remote Desktop Gateway, 274
Remote Desktop Licensing, 268, 274
Remote Desktop Licensing Manager, 269
Remote Desktop Services (RDS)
about, 268
infrastructure and capacity planning, 275–276
licensing, 268–273
Office deployment, 289–290
published applications, 276–277
roles, 274–275
session-based desktops, 277
 virtual desktops, 277
Remote Desktop Session Host, 274, 276–277, 290
Remote Desktop Virtualization Host, 274
Remote Desktop Web Access, 274
Remote Server Administration Tools feature, 36–37
RemoteApp, 276–277, 281
Remove-CMBootImage cmdlet, 157
Remove-Driver command (DISM), 247–248
Remove-Package command (DISM), 245
Remove-WindowsDriver cmdlet, 247
Remove-WindowsPackage cmdlet, 245
Report Generation Status dialog box, 13
roles, Remote Desktop Services, 274–275
Run Command action, 134

S
Save-WindowsImage cmdlet, 244
ScanState tool
 about, 21
 migration store space estimate, 30–31
 side-by-side migration, 25
 user data settings, 26
 wipe-and-load migration, 22–24
Scheduled-Cast transmission, 79
scheduling
 LTI deployments, 79–80
 ZTI deployments, 165
scratch space (Windows PE), 158
Sdbinst.exe command, 286
second level address translation (SLAT), 279
Secure Socket Shell (SSH)
 credentials for target computers, 3
 retrieving hardware inventory, 6
Secure Sockets Layer (SSL), 274–275
security considerations
 infrastructure and capacity planning, 275
 install images, 209
 migrated data and, 31
 Office Customization Tool, 299
 restricting who can receive images, 80–82
security identifier (SID), 104
Select Product dialog box, 292–293
service packs, applying to images, 254–256
service (SRV) records, 53
session-based desktops, 277
Set-CMBootImage cmdlet, 157
Set-CMPackage cmdlet, 130
Set-CMProgram cmdlet, 130
Set Source Folder dialog box, 125
settings package, 184
Setupact.log file, 253
SetupComplete.cmd file, 253–254, 256
SGSServer.exe tool, 276
shims (application compatibility fixes), 286
SID (security identifier), 104
side-by-side migration, 22, 25–26
SIM (System Image Manager)
 about, 252
 LTI deployments, 107–111
 maintaining images, 248–251, 259
64-bit operating systems, 280–281
SLAT (second level address translation), 279
slipstream updates, 320–322
Software Protection Platform service (SPPSvc), 308
specialize configuration pass, 103, 105, 216
SPPSvc (Software Protection Platform service), 308
SRV (service) records, 53
SSH (Secure Socket Shell)
 credentials for target computers, 3
 retrieving hardware inventory, 6
SSL (Secure Sockets Layer), 274–275
Standard Client Replace Task Sequence template, 95
Standard Client Task Sequence template, 95
Standard Server Task Sequence template, 95
state migration points, 44
Sysprep and Capture template, 95
Sysprep (System Preparation) Tool, 104, 216–219, 255
System Center Configuration Manager. See Configuration Manager
System Image Manager (SIM)
 about, 252
 LTI deployments, 107–111
 maintaining images, 248–251, 259
System Preparation (Sysprep) Tool, 104, 216–219, 255

T
task sequence templates, 95–96, 141–142
task sequences
 about, 141
 configuring for LTI deployment, 94–97
 configuring for ZTI deployment, 140–148
TCP (Transmission Control Protocol), 275

customized using MDT components, 190–194
MDT-specific, 183–184
Run Command action, 134
TCP (Transmission Control Protocol), 275
thick images, 205, 212
thin images, 204–205, 212
32-bit operating systems, 280–281
TPM (Trusted Platform Module), 211
Transmission Control Protocol (TCP), 275
Traverse Folder permission, 81
troubleshooting, logging for, 3
Trusted Platform Module (TPM), 211
TSGSClient.exe tool, 276

creating deployment package, 31–32
determining settings to migrate, 28–29
determining settings to preserve, 26–27
migration scenarios, 22–26
settings not migrated, 27–28

USMT (User State Migration Tool)
components supported, 21–22
creating deployment package, 31–32
determining settings to migrate, 28–29
determining settings to preserve, 26–27
migration scenarios, 22–26
settings not migrated, 27–28
USMT package, 184
Usmtutils tool, 22

V

VAMT (Volume Activation Management Tool)
about, 54, 301
activating product, 306
adding product keys, 303
database connection, 301
installing product keys, 304–305
management console, 302
populating with computers, 302
proxy activation, 308
VDI (virtual desktop infrastructure)
about, 278
application compatibility and remediation, 267–288
deploying Office 2013 using Click-to-Run, 323–333
deploying Office 2013 using MSI, 289–323
objective summary and review, 333–338
version coexistence, applications, 280–281
VHD image characteristics, 210
virtual desktop infrastructure (VDI)
about, 278
application compatibility and remediation, 267–288
deploying Office 2013 using Click-to-Run, 323–333
deploying Office 2013 using MSI, 289–323
objective summary and review, 333–338
virtual desktops, 277
virtual machines (VMs)
MAP reports, 14
personal, 278
pooled, 278
WDS and, 36
VLK (Volume License Key), 52, 54

UDI (User-Driven Installation), 183
Unattend.xml answer file
applying files to images, 253
applying settings to images, 249, 251
preference table, 102
UNC (Uniform Naming Convention), 124
unicast transmission
configuring LTI deployments, 66
classifying ZTS deployments, 163
Uniform Naming Convention (UNC), 124
Unmount-Image command (DISM)
applying drivers to images, 247
applying files to images, 254
applying service packs to images, 255
applying settings to images, 252
applying updates to images, 244–245
Updates folder, 309, 321
Use-WindowsUnattend cmdlet, 252
user data, migrating, 26–27
User Device Affinity feature, 135
user documents, disk space considerations, 30
User-Driven Installation (UDI), 183
user profiles, migrating data, 26
user state migration
creating USMT package, 31–32
designing migration strategy, 21–29
estimating migration store size, 29–31
objective summary and review, 32–34, 58–60
securing migrated data, 31
User State Migration Tool (USMT)
components supported, 21–22

V
Windows updates

VMs (virtual machines)
 MAP reports, 14
 personal, 278
 pooled, 278
 WDS and, 36
VMWare, data collection and, 6
Volume Activation Management Tool (VAMT)
 about, 54, 301
 activating product, 306
 adding product keys, 303
 database connection, 301
 installing product keys, 304–305
 management console, 302
 populating with computers, 302
Volume License Key (VLK), 52, 54

W

WDS (Windows Deployment Services)
 about, 35–36, 65, 209
 adding images to, 71–79
 configuring deployment methods, 66–71
 configuring scheduling, 79–80
 creating capture images, 217–218
 deployment support, 43
 design implications of image types, 207–210
 editing WDS server properties, 36–40
 objective summary and review, 83–85, 114–115
 restricting who can receive images, 80–82
 viewing multicast transmission status, 70–71
WDS Image Capture Wizard
 accessing, 220–221
 Directory To Capture page, 221–222
 New Image Location page, 222
 Task Progress page, 223
WDS servers
 additional options, 40
 boot options, 39
 client naming policy, 38
 image security and, 81
 multicast options, 39–40
 multiple, 35
 PXE response settings, 36–37
WDSutil utility, 71, 218
WIM format
 applying to images, 252–254
 capturing images to, 218–224
 image characteristics, 211
Windows Assessment and Deployment Toolkit (ADK), 32, 41, 301
Windows Boot Manager, 220
Windows Deployment Services (WDS)
 about, 35–36, 65, 209
 adding images to, 71–79
 configuring deployment methods, 66–71
 configuring scheduling, 79–80
 creating capture images, 217–218
 deployment support, 43
 design implications of image types, 207–210
 editing WDS server properties, 36–40
 objective summary and review, 83–85, 114–115
 restricting who can receive images, 80–82
 viewing multicast transmission status, 70–71
Windows Installer (MSI)
 customizing deployments, 291–300
 deployment capabilities, 289
 integrating LTI deployment, 309–319
 managing Office 2013 activation, 300–309
 objective summary and review, 322–323, 335–336
 providing slipstream updates, 320–322
 re-arming Office 2013, 319–320
 supported deployment methods, 289–290
Windows Management Instrumentation (WMI)
 credentials for target computers, 2–3
 retrieving hardware inventory, 6
Windows PE scratch space, 158
Windows PowerShell. See specific cmdlets
Windows Server Update Services (WSUS), 308
Windows Setup process
 about, 101
 accessing OCT, 291
 identifying answer file location, 101–102
 identifying appropriate setup phase for answer files, 103–107
 identifying required number of answer files, 102–103
 specifying customization file, 296
 unattended installation and, 248
Windows System Image Manager (SIM)
 about, 252
 LTI deployments, 107–111
 maintaining images, 248–251, 259
Windows updates
 applying to images, 242–245
 applying with PowerShell scripts, 245
 DISM support, 239
Z

zero-touch installation (ZTI)
 configuring Configuration Manager for OSD, 121–162
 configuring distribution points, 162–181
 configuring MDT and Configuration Manager integration, 182–196
 MDT and, 41
 objective summary and review, 197–201
 ZTIGather.wsf file, 98

X

.xml migration files, 22, 26–27