Contents at a glance

Introduction
Preparing for the exam

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 1</td>
<td>Install Windows Servers in host and compute environments</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td>Implement storage solutions</td>
<td>29</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td>Implement Hyper-V</td>
<td>51</td>
</tr>
<tr>
<td>CHAPTER 4</td>
<td>Implement Windows Containers</td>
<td>93</td>
</tr>
<tr>
<td>CHAPTER 5</td>
<td>Implement high availability</td>
<td>113</td>
</tr>
<tr>
<td>CHAPTER 6</td>
<td>Implement DNS</td>
<td>163</td>
</tr>
<tr>
<td>CHAPTER 7</td>
<td>Implement IP Address Management</td>
<td>183</td>
</tr>
<tr>
<td>CHAPTER 8</td>
<td>Implement network connectivity and remote access solutions</td>
<td>209</td>
</tr>
<tr>
<td>CHAPTER 9</td>
<td>Implement an advanced network infrastructure</td>
<td>227</td>
</tr>
<tr>
<td>CHAPTER 10</td>
<td>Install and configure Active Directory Domain Services</td>
<td>243</td>
</tr>
<tr>
<td>CHAPTER 11</td>
<td>Implement identity federation and access solutions</td>
<td>273</td>
</tr>
</tbody>
</table>

Index

293
This page intentionally left blank
Contents

Introduction xix

Organization of this book xx
Microsoft certifications xx
Acknowledgments xx
Free ebooks from Microsoft Press xxi
Microsoft Virtual Academy xxi
Quick access to online references xxi
Errata, updates, & book support xxii
We want to hear from you xxii
Stay in touch xxii
Preparing for the exam xxiii

Chapter 1 Install Windows Servers in host and compute environments 1

Skill 1.1: Install, upgrade, and migrate servers and workloads 2
 Determine Windows Server 2016 installation requirements 3
 Determine appropriate Windows Server 2016 editions per workload 4
 Install Windows Server 2016 4
 Install Windows Server 2016 features and roles 5
 Install and configure Windows Server Core 7
Manage Windows Server Core installations using Windows PowerShell, command line, and remote management capabilities 8
Implement Windows PowerShell Desired State Configuration to install and maintain integrity of installed environments 9
Perform upgrades and migrations of servers and core workloads from Windows Server 2008 and Windows Server 2012 to Windows Server 2016 10
Determine the appropriate activation model for server installation, such as Automatic Virtual Machine Activation, Key Management Service, and Active Directory-based Activation 11

Skill 1.2: Install and configure Nano Server 14
Determine appropriate usage scenarios and requirements for Nano Server 15
Install Nano Server 15
Implement roles and features on Nano Server 17
Manage and configure Nano Server 19

Skill 1.3: Create, manage, and maintain images for deployment 20
Plan for Windows Server virtualization 21
Plan for Linux and FreeBSD deployments 22
Assess virtualization workloads using the Microsoft Assessment and Planning Toolkit, determine considerations for deploying workloads into virtualized environments 24
Manage and maintain Windows Server Core, Nano Server images, and VHDs using Windows PowerShell, update images with patches, hotfixes, and drivers and install roles and features in offline images 25

Chapter summary .. 26
Thought Experiment .. 26
Thought Experiment Answer 27
Chapter 2 Implement storage solutions 29

Skill 2.1: Implement server storage ... 29
- Configure storage pools ... 30
- Implement simple, mirror, and parity storage layout
 options for disks or enclosures 32
- Expand storage pools ... 35
- Configure tiered storage .. 35
- Configure iSCSI target and initiator 36
 New-IscsiVirtualDisk –Path “C:\temp\test.vhdx” -Size 10GB
- Configure iSNS ... 39
- Configure Datacenter Bridging 40
- Configure Multi-Path IO (MPIO) 41
- Determine usage scenarios for Storage Replica 42
- Implement Storage Replica for server-to-server, cluster-to-cluster, and stretch cluster scenarios 44

Skill 2.2: Implement data deduplication .. 44
- Implement and configure deduplication 45
- Determine appropriate usage scenarios for deduplication 45
- Monitor deduplication ... 47
 Implement a backup and restore solution with deduplication 48

Chapter summary ... 48

Thought Experiment ... 49

Thought Experiment Answers ... 49
Chapter 3 Implement Hyper-V
Skill 3.1: Install and configure Hyper-V .. 51
 Determine hardware and compatibility requirements
 for installing Hyper-V .. 52
 Install Hyper-V .. 52
 Install management tools ... 52
 Upgrade from existing versions of Hyper-V 54
 Delegate virtual machine management 55
 Perform remote management of Hyper-V hosts 58
 Configure virtual machines using Windows PowerShell Direct 59
 Implement nested virtualization 60

Skill 3.2: Configure virtual machine settings 62
 Add or remove memory in running a VM 62
 Configure dynamic memory .. 63
 Configure Non-Uniform Memory Access support 63
 Configure smart paging ... 64
 Configure Resource Metering ... 65
 Manage Integration Services 67
 Create and configure Generation 1 and 2 VMs and
 determine appropriate usage scenarios 68
 Implement enhanced session mode 68
 Create Linux and FreeBSD VMs, install and configure
 Linux Integration Services, and install and configure
 FreeBSD Integration Services .. 69
 Implement Secure Boot for Windows and Linux environments 70
 Move and convert VMs from previous versions of
 Hyper-V to Windows Server 2016 Hyper-V 70
 Export and import VMs ... 71
 Implement Discrete Device Assignment (DDA) 72
Skill 3.3: Configure Hyper-V storage ... 73
 Create VHDs and VHDX files using Hyper-V Manager 73
 Create shared VHDX files 75
 Configure differencing disks 76
 Configure pass-through disks 77
 Resize a virtual hard disk 77
 Manage checkpoints 79
 Implement production checkpoints 79
 Implement a virtual Fibre Channel adapter 80
 Configure storage Quality of Service (QoS) 82

Skill 3.4: Configure Hyper-V networking .. 82
 Add and remove virtual network interface cards, configuring network adapters, configuring virtual machine queue, and configuring bandwidth management 83
 Configure Hyper-V virtual switches and configure network isolation 84
 Optimize network performance 85
 Configure MAC addresses 86
 Configure NIC teaming in VMs 88
 Enable Remote Direct Memory Access on network adapters bound to a Hyper-V virtual switch using Switch Embedded Teaming 89

Chapter summary ... 90

Thought Experiment .. 91

Thought Experiment Answers ... 91
Chapter 4 Implement Windows Containers

Skill 4.1: Deploy Windows Containers

- Determine installation requirements and appropriate scenarios for Windows Containers
- Install and configure containers
- Install Docker on Windows Server and Nano Server
- Configure Docker daemon start-up options
- Install a base operating system
- Tag an image
- Uninstall an operating system image
- Create Windows Server containers
- Create Hyper-V containers

Skill 4.2: Manage Windows Containers

- Manage Windows or Linux containers using the Docker daemon
- Manage Windows or Linux containers using Windows PowerShell
- Manage container networking
- Manage container data volumes
- Manage resource control
- Create new container images using Dockerfile
- Manage container images using Docker Hub repository for public and private scenarios
- Manage container images using Microsoft Azure

Chapter summary

Thought Experiment

Thought Experiment Answers
Chapter 5 Implement high availability 113

Skill 5.1: Implement high availability and disaster recovery options in Hyper-V 114
 Implement Hyper-V replica 114
 Implement Live Migration 115
 Implement shared nothing Live Migration 120
 Configure CredSSP or Kerberos authentication protocol for Live Migration 121
 Implement storage migration 123

Skill 5.2: Implement failover clustering 126
 Implement workgroup, single, and multi-domain clusters 127
 Configure quorum and configure cloud witness 130
 Configure cluster networking 134
 Restore single node or cluster configuration 136
 Configure cluster storage and implement a Clustered Storage Spaces solution using Shared SAS storage enclosures 136
 Implement Cluster-Aware Updating 138
 Implement Cluster Operating System Rolling Upgrade 140
 Configure and optimize clustered shared volumes (CSVs) 141
 Configure clusters without network names 142
 Implement Scale-Out File Server (SoFS) 142
 Determine different scenarios for the use of SoFS vs. clustered File Server 143
 Determine usage scenarios for implementing guest clustering 143
 Implement Storage Replica 143
 Implement VM resiliency 145
 Implement shared VHDX as a storage solution for guest clusters 146
Skill 5.3: Implement Storage Spaces Direct 148
 Determine scenario requirements for implementing Storage Spaces Direct 148
 Enable Storage Spaces Direct using Windows PowerShell 148
 Implement a disaggregated Storage Spaces Direct scenario in a cluster 149
 Implement a hyper-converged Storage Spaces Direct scenario in a cluster 150

Skill 5.4: Manage failover clustering 152
 Configure role-specific settings, including continuously available shares 152
 Configure VM monitoring 153
 Configure failover and preference settings 154
 Implement stretch and site-aware failover clusters 157
 Enable and configure node fairness 157

Skill 5.5: Manage VM movement in clustered nodes 158
 Perform live migration 158
 Perform quick migration 158
 Perform storage migration 158
 Import, export, and copy VMs 159
 Configure VM network health protection 159
 Configure drain on shutdown 160

Chapter summary ... 160
Thought Experiment. .. 161
Thought Experiment Answers. 161
Chapter 6 Implement DNS

Implement and configure DNS servers ... 163
 Determine DNS installation requirements 164
 Determine supported DNS deployment scenarios on Nano Server 165
 Install DNS ... 165
 Configure forwarders ... 165
 Configure root hints ... 168
 Configure delegation ... 169
 Implement DNS policies .. 171
 Configure Domain Name System Security Extensions 172
 Configure DNS socket pool .. 173
 Configure cache locking ... 173
 Enable Response Rate Limiting (RRL) 173
 Configure DNS-based Authentication of Named Entities 174
 Configure DNS logging ... 175
 Configure delegated administration ... 175
 Configure recursion settings .. 177
 Implement DNS performance tuning .. 179
 Configure global settings using Windows PowerShell 179

Chapter summary .. 180

Thought Experiment ... 180

Thought Experiment Answers .. 181
Chapter 7 Implement IP Address Management 183

Skill 7.1: Install and configure IPAM 183
 Provision IPAM manually or by using Group Policy 184
 Configure server discovery 191
 Create and manage IP blocks and ranges 193
 Monitor utilization of IP address space 195
 Migrate existing workloads to IPAM 198
 Configure IPAM database storage using SQL Server 198
 Determine scenarios for using IPAM with System Center Virtual Machine Manager for physical and virtual IP address space management 199
 Manage DHCP server properties using IPAM 200
 Configure DHCP scopes and options 201
 Configure DHCP policies and failover 202
 Manage DNS server properties using IPAM 202
 Manage DNS zones and records 203
 Manage DNS and DHCP servers in multiple Active Directory forests 204
 Delegate administration for DNS and DHCP using Role-Based Access Control (RBAC) 204

Chapter summary .. 206

Thought Experiment .. 206

Thought Experiment Answers ... 207

Chapter 8 Implement network connectivity and remote access solutions 209

Implement Virtual Private Network and DirectAccess solutions 209
 Implement remote access and site-to-site VPN solutions using Remote Access Gateway 210
 Configure different VPN protocol options 215
 Configure authentication options 216
 Configure VPN reconnect 217
Chapter 9 Implement an advanced network infrastructure 227

Skill 9.1: Implement high performance network solutions 228
 Implement NIC Teaming or the Switch Embedded Teaming solution and identify when to use each 228
 Enable and configure Receive Side Scaling and enable and configure virtual Receive Side Scaling on a Virtual Machine Queue capable network adapter 229
 Enable and configure network Quality of Service with Data Center Bridging 231
 Enable and configure SMB Direct on Remote Direct Memory Access enabled network adapters 231
 Enable and configure SMB Multichannel 232
 Enable and configure Virtual Machine Multi-Queue 233
 Enable and configure Single-Root I/O Virtualization on a supported network adapter 233

Skill 9.2: Determine scenarios and requirements for implementing Software Defined Networking 234
 Determine deployment scenarios and network requirements for deploying SDN 235
 Determine requirements and scenarios for implementing Hyper-V Network Virtualization using Network Virtualization Generic Route Encapsulation encapsulation or Virtual Extensible LAN encapsulation 236
Determine scenarios for implementation of Software Load Balancer for North-South and East-West load balancing 237
Determine implementation scenarios for various types of Windows Server Gateways, including L3, GRE, and S2S, and their uses 239
Determine requirements and scenarios for distributed firewall policies and network security groups 239

Chapter summary .. 241
Thought Experiment. .. 241
Thought Experiment Answers. ... 242

Chapter 10 Install and configure Active Directory Domain Services 243
Skill 10.1: Install and configure domain controllers 243
 Install a new forest .. 244
 Add or remove a domain controller from a domain 248
 Upgrade a domain controller .. 250
 Install AD DS on a Server Core installation 251
 Install a domain controller from Install from Media 253
 Resolve DNS SRV record registration issues 257
 Configure a global catalog server 258
 Transfer and seize operations master roles 260
 Install and configure a read-only domain controller 263
 Configure domain controller cloning 267

Chapter summary .. 270
Thought experiment: Upgrading the forest 270
Thought experiment answers .. 271
Chapter 11 Implement identity federation and access solutions 273

Skill 11.1: Install and configure Active Directory Federation Services . . . 274
 Upgrade and migrate previous AD FS workloads to Windows Server 2016 275
 Implement claims-based authentication, including Relying Party Trusts 275
 Configure authentication policies 278
 Configure multi-factor authentication 280
 Implement and configure device registration 282
 Integrate AD FS with Windows Hello for Business 283
 Configure for use with Microsoft Azure and Office 365 283
 Configure AD FS to enable authentication of users stored in LDAP directories 284

Skill 11.2: Implement Web Application Proxy 284
 Install and configure WAP 285
 Implement WAP in pass-through mode 286
 Implement and integrate WAP as AD FS proxy 287
 Configure AD FS requirements 288
 Publish web apps via WAP 289
 Publish Remote Desktop Gateway applications 290
 Configure HTTP to HTTPS redirects 290
 Configure internal and external Fully Qualified Domain Names (FQDNs) 290

Chapter summary ..291

Thought Experiment ..291

Thought Experiment Answers ..292

Index ..293
This page intentionally left blank
Introduction

With each release of Windows Server, more and more features are added or modified that makes knowing the product inside and out more and more difficult. The 70-743 exam “Upgrading your skills to Windows Server 2016” is for administrators that have previously achieved the MCSA certification for Windows Server 2008, or Windows Server 2012, and plan to achieve the latest certification offering.

Understanding that the exam is geared specifically towards administrators with existing knowledge, this Exam Ref book assumes you remember and know the knowledge that is necessary to pass the previous versions of the exam. Therefore, we focus solely on the skills that are measured in the 70-743 exam, sometimes skipping the basics of the skill. A lot of these skills build on the knowledge you’ve retained from Windows Server 2008 or Windows Server 2012. However, some of the skills are brand new to Windows Server 2016, and are expected to be highlighted on the exam.

The goal of this book is to act as a reference to give you the tools and knowledge that you need to succeed in passing the exam. While we cover every skill that the exam measures and focus on real-world examples of how to use the technologies that are listed, there is no way of guaranteeing that you will pass the exam simply by using this book. As you are well aware as an existing MCSA credential holder, nothing is better than getting hands-on experience with each of the roles and features in Windows Server 2016 before taking the exam. It is recommended that you use the information in this book, combined with a hands-on approach of trying each role or feature discussed by using both graphical and Windows PowerShell (or command-line) tools. This will ensure that you have the best opportunity to succeed when taking the exam.

This book covers every major topic area found on the exam, but it does not cover every exam question. Only the Microsoft exam team has access to the exam questions, and Microsoft regularly adds new questions to the exam, making it impossible to cover specific questions. You should consider this book a supplement to your relevant real-world experience and other study materials. If you encounter a topic in this book that you do not feel completely comfortable with, use the “Need more review?” links you’ll find in the text to find more information and take the time to research and study the topic. Great information is available on MSDN, TechNet, MVA, and in blogs and forums.
Organization of this book

This book is organized by the “Skills measured” list published for the exam. The “Skills measured” list is available for each exam on the Microsoft Learning website: https://aka.ms/examlist. Each chapter in this book corresponds to a major topic area in the list, and the technical tasks in each topic area determine a chapter’s organization. If an exam covers six major topic areas, for example, the book will contain six chapters.

Microsoft certifications

Microsoft certifications distinguish you by proving your command of a broad set of skills and experience with current Microsoft products and technologies. The exams and corresponding certifications are developed to validate your mastery of critical competencies as you design and develop, or implement and support, solutions with Microsoft products and technologies both on-premises and in the cloud. Certification brings a variety of benefits to the individual and to employers and organizations.

Acknowledgments

Charles Pluta I would like to thank my wife Jen for her love and support throughout all of my projects. I would also like to thank Greg Baker for giving me the opportunity to succeed from the beginning of my career. I would also like to thank Brian Svidergol, Elias Mereb, and Mike Corkery, who have provided their continued friendship and technical expertise throughout the years. Finally, I would like to thank Trina, Troy, and all of the editors and reviewers behind the scenes that dedicated their time to making this book happen.
Free ebooks from Microsoft Press

From technical overviews to in-depth information on special topics, the free ebooks from Microsoft Press cover a wide range of topics. These ebooks are available in PDF, EPUB, and Mobi for Kindle formats, ready for you to download at:

https://aka.ms/mspressfree

Check back often to see what is new!

Microsoft Virtual Academy

Build your knowledge of Microsoft technologies with free expert-led online training from Microsoft Virtual Academy (MVA). MVA offers a comprehensive library of videos, live events, and more to help you learn the latest technologies and prepare for certification exams. You’ll find what you need here:

https://www.microsoftvirtualacademy.com

Quick access to online references

Throughout this book are addresses to webpages that the author has recommended you visit for more information. Some of these addresses (also known as URLs) can be painstaking to type into a web browser, so we’ve compiled all of them into a single list that readers of the print edition can refer to while they read.

Download the list at https://aka.ms/examref743/downloads.

The URLs are organized by chapter and heading. Every time you come across a URL in the book, find the hyperlink in the list to go directly to the webpage.
Errata, updates, & book support

We’ve made every effort to ensure the accuracy of this book and its companion content. You can access updates to this book—in the form of a list of submitted errata and their related corrections—at:

https://aka.ms/examref743/errata

If you discover an error that is not already listed, please submit it to us at the same page.

If you need additional support, email Microsoft Press Book Support at mspinput@microsoft.com.

Please note that product support for Microsoft software and hardware is not offered through the previous addresses. For help with Microsoft software or hardware, go to https://support.microsoft.com.

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable asset. Please tell us what you think of this book at:

https://aka.ms/tellpress

We know you’re busy, so we’ve kept it short with just a few questions. Your answers go directly to the editors at Microsoft Press. (No personal information will be requested.) Thanks in advance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.
Important: How to use this book to study for the exam

Certification exams validate your on-the-job experience and product knowledge. To gauge your readiness to take an exam, use this Exam Ref to help you check your understanding of the skills tested by the exam. Determine the topics you know well and the areas in which you need more experience. To help you refresh your skills in specific areas, we have also provided “Need more review?” pointers, which direct you to more in-depth information outside the book.

The Exam Ref is not a substitute for hands-on experience. This book is not designed to teach you new skills.

We recommend that you round out your exam preparation by using a combination of available study materials and courses. Learn more about available classroom training at https://www.microsoft.com/learning. Microsoft Official Practice Tests are available for many exams at https://aka.ms/practicetests. You can also find free online courses and live events from Microsoft Virtual Academy at https://www.microsoftvirtualacademy.com.

This book is organized by the “Skills measured” list published for the exam. The “Skills measured” list for each exam is available on the Microsoft Learning website: https://aka.ms/examlist.

Note that this Exam Ref is based on this publicly available information and the author’s experience. To safeguard the integrity of the exam, authors do not have access to the exam questions.
CHAPTER 4

Implement Windows Containers

In this chapter we cover how to use containers to host virtualized images on a server. Containers are supported on both Windows Server and Hyper-V, however, the way they act and respond are slightly different. Containers can be isolated to ensure they operate independently of any other container or host that they are running on. In the first section of this chapter, we cover the basic process to deploy containers and go through the basic management aspects for containers.

Skills in this chapter:
- Deploy Windows Containers
- Manage Windows Containers

Skill 4.1: Deploy Windows Containers

In this section we outline the basics for deploying containers on either Windows Server, Nano Server, or Hyper-V. We also detail how to change the Docker daemon configuration for startup, and detail specifics for images, such as tagging.

This section covers how to:
- Determine installation requirements and appropriate scenarios for Windows Containers
- Install and configure Windows Server container host in physical or virtualized environments
- Install and configure Windows Server container host to Windows Server Core or Nano Server in a physical or virtualized environment
- Install Docker on Windows Server and Nano Server
- Configure Docker daemon start-up options
- Install a base operating system
- Tag an image
- Uninstall an operating system image
- Create Windows Server containers
- Create Hyper-V containers
Determine installation requirements and appropriate scenarios for Windows Containers

Windows Containers is a new feature that is only available on Windows Server 2016, Nano Server, and Windows 10 Professional and Enterprise Anniversary Update editions. If you plan on using Hyper-V containers, then the Hyper-V role must also be installed on the computer or server. To use Windows Containers, the operating system must be installed as the C drive. If you plan to only use Hyper-V containers, then the operating system can be installed on any drive.

From a physical aspect, Windows Containers with Hyper-V requires nested virtualization. Nested virtualization has the following requirements:

- At least 4 GB of RAM for the Hyper-V host
- A processes that uses Intel VT-x

Also, the container host VM must have at least two virtual processors and dynamic memory must be disabled. As of this writing, Windows Server 2016 offers two container images: Server Core and Nano Server. If the host operating system is a Nano Server, then only the Nano Server image is available.

Install and configure containers

For the purpose of preparing for the exam, we’ve combined two of the listed skills:

- Install and configure Windows Server container host in physical or virtualized environments
- Install and configure Windows Server container host to Windows Server Core or Nano Server in a physical or virtualized environment

For either host’s operating system, whether it is physical or virtual, containers is listed as a Windows Feature. For servers with a GUI, it can be installed from the Add Roles and Features wizard. Containers can also be installed by using Windows PowerShell by using the Install-WindowsFeature cmdlet. For example:

Figure 4-1 shows installing the Containers feature by using the Install-WindowsFeature cmdlet.

![Figure 4-1 Install-WindowsFeature](image)
Install-WindowsFeature Containers

If you’re using Nano Server, you must first install the Nano Server Package, and then install the Container Feature. For example:

Install-PackageProvider NanoServerPackage
Install-NanoServerPackage -Name Microsoft-NanoServer-Containers-Package

Install Docker on Windows Server and Nano Server

To manage containers on either Windows Server 2016 or Nano Server, you must also install the Docker service. Most all Docker installation and configuration options have both a PowerShell cmdlet or a Docker command line option. To install Docker on Windows Server 2016, it must be downloaded from the Docker website. You can do this manually, or by using PowerShell. For example:

Figure 4-2 shows downloading and configuring the environment for the docker service to run.

![Figure 4-2 Obtaining docker](image)

Invoke-WebRequest "https://aka.ms/tp5/b/dockerd" -OutFile "$env:TEMP\docker-1.12.0.zip" -UseBasicParsing
Expand-Archive -Path "$env:TEMP\docker-1.12.0.zip" -DestinationPath $env:ProgramFiles

[Environment]::SetEnvironmentVariable("Path", $env:Path + ";C:\Program Files\Docker", [EnvironmentVariableTarget]::Machine)

& $env:ProgramFiles\docker\dockerd.exe --register-service
Start-Service Docker

docker tag windowsservercore:10.0.14300.1000 windowsservercore:latest

NOTE

The Invoke-WebRequest command in this example specifically uses Technical Preview 5, which was available at the time of writing. Locate the latest version that is available by using the Docker website before using this command in a lab environment.
After the installation is complete, run the `docker info` command. A portion of the output is shown in Figure 4-3.

![FIGURE 4-3 Docker info](image)

The above example is broken down like this:

1. First, the Docker engine and client is downloaded from the Docker website.
2. Then, the code extracts the compressed folder into the Program Files directory.
3. The path is set as a system variable, and the service is created and started.
4. Finally, the Docker image must be tagged with the version “latest.”

For installing Docker on Nano Server, the same overall process must be followed. However, Nano Server does not currently support the Invoke-WebRequest cmdlet. Therefore, you must manually download the Docker files and copy them to the Nano Server operating system. From there you can set the environment variable, create the service, and then start the service. For Nano Server, you must also enable the FPS-SMB-In-TCP firewall rule. For example:

```powershell
Set-NetFirewallRule -Name FPS-SMB-In-TCP -Enabled True
```

Configure Docker daemon start-up options

Docker is configured by using a daemon.json file, which is located in the installation path of the directory. When using Docker on Windows Server 2016, only a subset of the configuration options is available. When creating the JSON file, only the necessary configuration changes need to be included in the file. For example, to configure the Docker Engine to accept connections on port 2375, add the following to the daemon.json file:

```json
{
    "hosts": ["tcp://0.0.0.0:2375"]
}
```

You can also configure Docker by using the `sc config` command. When using `sc config`, you are modifying the Docker Engine configuration flags directly on the Docker service. For example:
Figure 4-4 shows running the `sc` command to modify the docker service.

```
sc config docker binpath= "\C:\Program Files\docker\dockerd.exe" --run-service -H tcp://0.0.0.0:2375"
```

FIGURE 4-4 Service configuration

Install a base operating system

Before you can deploy a container, you must download a base operating system image. The procedure is the same whether you plan to manage Server Core or Nano Server base images. Obtaining the image is accomplished by running two PowerShell cmdlets: `Install-PackageProvider`, and `Install-ContainerImage`. For example:

```
Install-PackageProvider ContainerImage -Force
Install ContainerImage -Name WindowsServerCore
```

This process might take a few minutes because it downloads the Server Core container image. After installing the image, you need to restart the Docker service. For example:

```
Restart-Service Docker
```

You can also use the `docker` command to download the base image. For example:

```
docker pull microsoft/windowsservercore
```

After downloading the images, you can also view the downloaded images with the `docker` command. For example:

```
docker images
```
Figure 4-5 shows the results of downloading the images and how they are displayed after being downloaded.

![Command Prompt image](image)

FIGURE 4-5 Obtaining images

Tag an image

When you download an image into the repository, you must also assign a tag to the image. Tagging an image enables you to set a version on the image, which is useful if you plan to have multiple versions. Microsoft suggests after downloading an image, to tag it at the “latest.” For example:

```bash
docker tag windowsservercore:10.0.14300.1000 windowsservercore:latest
```

The Docker tag can contain upper and lowercase characters, digits, underscores, periods, and dashes. However, the tag cannot start with a period or dash, and can be up to 128 characters.

NEED MORE REVIEW? DOCKER TAG

For more information on using the Docker tag, visit https://docs.docker.com/engine/reference/commandline/tag/.

Uninstall an operating system image

As we have mentioned, most actions when using Docker can be completed by using PowerShell or the Docker daemon. To uninstall a container image from the repository, use the Uninstall-ContainerOSImage cmdlet. For example:

```powershell
Uninstall-ContainerOSImage - FullName CN=Microsoft_NanoServer_10.0.14304.1003
```
Create Windows Server containers

You can deploy a container by using the Docker daemon. One of the first tasks you might need to do is view a list of the available container images. For example, the following command returns a list of available Microsoft images:

```bash
docker search Microsoft
```

A portion of the output is included for reference:

<table>
<thead>
<tr>
<th>NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>microsoft/aspnet</td>
<td>ASP.NET is an open source server-side Web ...</td>
</tr>
<tr>
<td>microsoft/dotnet</td>
<td>Official images for working with .NET Core...</td>
</tr>
<tr>
<td>mono</td>
<td>Mono is an open source implementation of M...</td>
</tr>
<tr>
<td>microsoft/azure-cli</td>
<td>Docker image for Microsoft Azure Command L...</td>
</tr>
<tr>
<td>microsoft/iis</td>
<td>Internet Information Services (IIS) instal...</td>
</tr>
</tbody>
</table>

Therefore, if you want to use the ASP.NET image, use the Docker daemon to pull the image:

```bash
docker pull microsoft/aspnet
```

Create Hyper-V containers

Windows Server containers and Hyper-V containers are created and managed, and are functionally identical. Both types of containers also use the same container images. The difference between a Windows Server container and a Hyper-V container is the level of isolation that is present to the host, or other containers on that host. The first difference is that when creating the container, specify the `--isolation=hyperv` parameter.

```bash
docker run -it --isolation=hyperv nanoserver cmd
```

To demonstrate the isolation of a Hyper-V container, assume that a Windows Server container has been deployed. You start a running ping on the container.

```bash
docker run -d windowsservercore ping localhost -t
```

If you use the docker daemon, you can view the task thread that is running the ping.

```bash
docker top windowsservercore
```

```
4369 ping
```

In this example, the process ID within the container is 4369. Within the container, you can also view the thread.

```bash
get-process -Name ping
```
The following output is returned:

<table>
<thead>
<tr>
<th>Handles</th>
<th>NPM(K)</th>
<th>PM(K)</th>
<th>WS(K)</th>
<th>VM(M)</th>
<th>CPU(s)</th>
<th>Id</th>
<th>SI</th>
<th>ProcessName</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>5</td>
<td>820</td>
<td>3836</td>
<td>...71</td>
<td>0.03</td>
<td>4369</td>
<td>3</td>
<td>PING</td>
</tr>
</tbody>
</table>

If you follow the same process when using a Hyper-V container, you receive a different end result. You can create and view the process from the host, using the Docker daemon.

docker run -d --isolation=hyperv nanoserver ping -t localhost

docker top nanoserver

2371 ping

However, the difference is when trying to view the process on the container host.

Get-process -Name ping

Get-Process : Cannot find a process with the name "ping". Verify the process name and call the cmdlet again.

At line:1 char:1

+ Get-Process -Name ping

+ ~~~~~~~~~~~~~~~~~~~~~~~

 + CategoryInfo : ObjectNotFound: (ping:String) [Get-Process], ProcessCommandException

The difference is in the process name. By using a Hyper-V container, the process is run by the vmwp process. The vmwp process is the virtual machine process on the host, and is protecting the process from the host operating system.

Get-Process -Name vmwp

<table>
<thead>
<tr>
<th>Handles</th>
<th>NPM(K)</th>
<th>PM(K)</th>
<th>WS(K)</th>
<th>VM(M)</th>
<th>CPU(s)</th>
<th>Id</th>
<th>SI</th>
<th>ProcessName</th>
</tr>
</thead>
<tbody>
<tr>
<td>1737</td>
<td>15</td>
<td>39452</td>
<td>19620</td>
<td>...61</td>
<td>5.55</td>
<td>2376</td>
<td>0</td>
<td>vmwp</td>
</tr>
</tbody>
</table>
Skill 4.2: Manage Windows Containers

In this section, we outline how to manage containers after they have been deployed. This includes using the Docker daemon to manage images, as well as using Windows PowerShell. We also cover configuring port mapping and networking options for use with Windows Containers.

This section covers how to:
- Manage Windows or Linux containers using the Docker daemon
- Manage Windows or Linux containers using Windows PowerShell
- Manage container networking
- Manage container data volumes
- Manage Resource Control
- Create new container images using Dockerfile
- Manage container images using DockerHub repository for public and private scenarios
- Manage container images using Microsoft Azure

Manage Windows or Linux containers using the Docker daemon

After you have downloaded the image type that you plan to use, you can use the daemon to identify the images that have been downloaded.

docker images

The following output is returned:

<table>
<thead>
<tr>
<th>REPOSITORY</th>
<th>TAG</th>
<th>IMAGE ID</th>
<th>CREATED</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>microsoft/aspnet</td>
<td>latest</td>
<td>accd044753c1</td>
<td>11 days ago</td>
<td>7.907 GB</td>
</tr>
</tbody>
</table>

You can also deploy a container by using the Docker daemon.

docker run -d -p 80:80 microsoft/iis ping -t localhost

Creating a new image can be performed by using the Docker daemon with the commit parameter.

docker commit 475059caef8f windowsservercoreiis
Removing an image is performed by using the Docker daemon with the `rmi` parameter. However, if any other container depends on the image that you are trying to remove, the command fails. The `rmi` parameter accepts either the image name or the ID of the image.

```bash
docker rmi windowsservercoreiis
```

To view the list of dependencies with Docker, use the `history` parameter.

```bash
docker history windowsservercoreiis
```

The following output is returned:

```
<table>
<thead>
<tr>
<th>IMAGE</th>
<th>CREATED</th>
<th>CREATED BY</th>
<th>SIZE</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2236b49aaaef</td>
<td>3 minutes ago</td>
<td>cmd</td>
<td>171.2 MB</td>
<td></td>
</tr>
<tr>
<td>6801d964fda5</td>
<td>2 weeks ago</td>
<td></td>
<td>0 B</td>
<td></td>
</tr>
</tbody>
</table>
```

Manage Windows or Linux containers using Windows PowerShell

As of this writing, the PowerShell for Docker module is in development. The team writing the module has adopted the Microsoft Open Source Code of Conduct, and welcomes contributions to the project in the form of bugs, suggestions, proposals, and pull requests through the Github repository. The project is available on Github here: https://github.com/Microsoft/Docker-PowerShell/.

The PowerShell module for Docker is simply an alternative to the Docker daemon. You can use the module as a replacement for, or in conjunction with, the Docker daemon. The PowerShell module can target any operating system that is running the Docker engine on both Windows and Linux.

To compile the project, you need to obtain the .NET Core SDK, and the .NET SDKs for versions 4.5 and 4.6. The Docker endpoint that you are planning to connect to must support the API version 1.24.

The latest release version of Docker can also be downloaded from GitHub here: https://github.com/Microsoft/Docker-PowerShell/releases. Download and extract the compressed folder, and then use the `Import-Module` cmdlet, pointing to the extracted folder. This makes the Docker cmdlets available on the computer.
Manage container networking

Container networks are similar to virtual networks through Hyper-V. Each container has a virtual network adapter that is connected to a virtual switch. To force isolation between containers that are running on the same host, compartments are created for each container. A Windows Server host uses Host vNICs to attach to the virtual, while Hyper-V containers use a synthetic VM NIC to attach to the virtual switch.

Containers support four different networking modes:

- **Network Address Translation (NAT)** Each container receives an IP address from a private address pool. Port forwarding or mapping can be configured to transmit data from the host to the container.

- **Transparent** Each container endpoint has a direct connection to the physical network that the host is using. The IP address range that is being used on the physical network can be used on the container either as a static address or dynamically assigned.

- **L2 Bridge** Each container endpoint is in the same subnet as the host that is running it. The container IP address is assigned statically from the same prefix as the host. All container endpoints on the host use the same MAC address.

- **L2 Tunnel** This mode should only be used in a Microsoft Cloud Stack.

By default, the Docker engine creates an NAT network when the Docker service runs for the first time. The default network that is used is 172.16.0.0/12. You can customize the network prefix used by modifying the daemon.json configuration file. The endpoints in the container are attached to this network and assigned an IP address from the private network. Table 4-1 outlines connections for a single-host environment.

Table 4-1 Single host connection types

<table>
<thead>
<tr>
<th>Single host</th>
<th>Container to container</th>
<th>Container to external</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAT</td>
<td>Connects using Hyper-V Virtual Switch</td>
<td>Routed through WinNAT with address translation</td>
</tr>
<tr>
<td>Transparent</td>
<td>Connects using Hyper-V Virtual Switch</td>
<td>Direct access to physical network</td>
</tr>
<tr>
<td>L2 Bridge</td>
<td>Connects through Hyper-V Virtual Switch</td>
<td>Access to physical network by using MAC address translation</td>
</tr>
</tbody>
</table>

Additionally, Table 4-2 outlines the connections for a multi-host environment.
TABLE 4-2 Multi-host connection types

<table>
<thead>
<tr>
<th>Multi-host</th>
<th>container to Container</th>
<th>Container to external</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAT</td>
<td>References external container host IP and port, routed through WinNAT with translations</td>
<td>References external container host IP and port, routed through WinNAT with translations</td>
</tr>
<tr>
<td>Transparent</td>
<td>Directly references container IP endpoint</td>
<td>Direct access to physical network</td>
</tr>
<tr>
<td>L2 Bridge</td>
<td>Directly references container IP endpoint</td>
<td>Access to physical network by using MAC address translation</td>
</tr>
</tbody>
</table>

NAT networks

By default, when an endpoint is created, it connects to the NAT network. To specify the network that a container should attach to, use the --network parameter.

```
docker run -it --network=NatNetwork <image>
```

To access any applications that run within a container, you need to map the ports from the host to the endpoint.

```
docker run -it -p 80:80 <image>
docker run -it -p 8082:80 windowsservercore cmd
```

The first command creates a port map between TCP port 80 on the host to TCP port 80 of the container endpoint. The second command uses port 8082 on the host, and forwards it to port 80 of the endpoint.

EXAM TIP

Port mapping must either be configured when the endpoint is created, or when the endpoint is in a STOPPED state. You cannot modify container port mapping while the endpoint is running.

Transparent networks

To use a transparent network, you must first create the network.

```
docker network create -d transparent TransparentNetwork
```

If the container host is virtualized, and you need to use DHCP for the IP address assignment, then you must also use MAC address spoofing on the VM network adapter. Without MAC address spoofing, the Hyper-V host blocks the network traffic from the containers in the VM with identical MAC addresses.

```
Get-VMNetworkAdapter -VMName ContainerHost | Set-VMNetworkAdapter -MacAddressSpoofing On
```
L2 Bridge networks

To use a L2 Bridge network, you must create a container network that uses the driver named l2bridge. The subnet and gateway for the network must also be specified when creating the object.

docker network create -d l2bridge --subnet=10.10.0.0/16 --gateway=10.10.0.1

EXAM TIP
When using an L2 Bridge network type, only static IP addresses are supported.

Options for all network types

You can use the Docker daemon to list the available networks.

docker network ls

The following output is returned:

<table>
<thead>
<tr>
<th>NETWORK ID</th>
<th>NAME</th>
<th>DRIVER</th>
<th>SCOPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0a297065f06a</td>
<td>nat</td>
<td>nat</td>
<td>local</td>
</tr>
<tr>
<td>d42516aa0250</td>
<td>none</td>
<td>null</td>
<td>local</td>
</tr>
</tbody>
</table>

To remove a network, use the network rm parameter.

docker network rm "nat"

Figure 4-6 displays the networks on a docker host.

![Listing networks](image)

FIGURE 4-6 Listing networks
Manage container data volumes

Data volumes are storage locations that are visible to both the container host and the container endpoint. The data that is in the volume can be shared between the two systems, as well as with other containers on the same host. Creating a new volume is part of the run parameter with the Docker daemon.

```
docker run -it -v C:\volume1 windowsservercore cmd
```

By default, new data volumes are created in C:\ProgramData\Docker\Volumes on the container host. In the command, the C:\Volume1 indicates that the volume is be accessible within the container endpoint at that path.

After you have created a volume, to mount it to a different container, specify the source and destination paths using the same parameters:

```
docker run -it -v C:\source:C:\destination windowsservercore cmd
```

You can also pass-through a single file from the container host to the endpoint. The syntax is basically the same as specifying an existing volume.

```
docker run -it -v C:\container-share\config.ini windowsservercore cmd
```

Similarly, you can also mount a full drive from the container host to the endpoint. Note that when mounting a full drive, a backslash is not included with the drive letter.

```
docker run -it -v D: windowsservercore cmd
```

Finally, data volumes can be inherited from other endpoints using the `--volumes-from` switch in the run parameter. This is useful if the applications in multiple containers are sharing the same data.

```
docker run -it --volumes-from Volume1 windowsservercore cmd
```

Manage resource control

Docker includes the ability to manage the CPU, disk IO, network, and memory consumption that an endpoint consumes. This ensures that you are able to manage the container host resources efficiently, as well as ensuring that you maximize the performance of all services running on a host.

By default, the CPU is divided equally among all endpoints running on a container host. To change the share that an endpoint has, use the `--cpu-shares` switch with the run parameter. The `--cpushares` parameter accepts a value between 1 and 10000. The default weight of all endpoints is 5,000.

```
docker run -it --cpu-shares 2 --name dockerdemo windowsservercore cmd
```
Create new container images using Dockerfile

You can use Docker to automatically build images by reading the instructions that are placed in a Dockerfile. A Dockerfile is a text document that lists the commands that you would use in the CLI to create an image manually. After creating the Dockerfile, use the `build` parameter with the Docker daemon to automatically create the image.

```
docker build -f C:\Dockerfile .
```

The Docker daemon commits each line of the file one by one before outputting the image ID of for the endpoint that you have created.

Manage container images using Docker Hub repository for public and private scenarios

The Docker Hub is a repository that contains pre-built images. These images can be downloaded onto a host and used in a development or production environment. These images can also be used as a base for Windows container applications. To retrieve a list of the available images in the Docker Hub, use the search parameter with the Docker daemon:

```
docker search *
```

The following output is returned:

<table>
<thead>
<tr>
<th>NAME</th>
<th>DESCRIPTION</th>
<th>STARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFFICIAL AUTOMATED</td>
<td>NAME</td>
<td></td>
</tr>
<tr>
<td>microsoft/sample-django</td>
<td>Django installed in a Windows Server Core ...</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>[OK]</td>
<td></td>
</tr>
<tr>
<td>microsoft/dotnet35</td>
<td>.NET 3.5 Runtime installed in a Windows Server ...</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>[OK]</td>
<td></td>
</tr>
<tr>
<td>microsoft/sample-golang</td>
<td>Go Programming</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Downloading an image from the Docker Hub is the same as retrieving a base image. Use the `pull` parameter with the Docker daemon:

docker pull microsoft/aspnet

The following output is returned:

Using default tag: latest

latest: Pulling from microsoft/aspnet

f9e8a4cc8f6c: Pull complete

b71a5b8be5a2: Download complete

After downloading the image, it is available when viewing the images through the Docker daemon.

docker images

The following output is returned:

<table>
<thead>
<tr>
<th>REPOSITORY</th>
<th>TAG</th>
<th>IMAGE ID</th>
<th>CREATED</th>
<th>VIRTUAL SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>microsoft/aspnet</td>
<td>latest</td>
<td>b3842ee505e5</td>
<td>5 hours ago</td>
<td>101.7 MB</td>
</tr>
</tbody>
</table>

To upload an image to the Docker Hub, use the `push` parameter with the Docker daemon. First, you must login with your Docker ID to access the Hub.

docker login

The following output is returned:

Login with your Docker ID to push and pull images from Docker Hub. If you don't have a Docker ID, head over to https://hub.docker.com to create one.

Username: username

Password:
Login Succeeded

docker push username/containername

The push refers to a repository [docker.io/username/containername]

4341be770beb: Pushed
fed398573696: Pushed
latest: digest: sha256:ae3a2971628c04d5df32c3bbbfc87c477bb814d5e73e2787900da13228676c4f
size: 2410

Manage container images using Microsoft Azure

You can use Docker on Microsoft Azure a few different ways:

- Deploy container hosts using the Docker Machine Azure driver
- Use the Docker VM Extension on Azure VMs
- Use the Docker VM Extension with Docker Compose
- Deploy a Docker Swarm cluster on Azure Container Services

The Azure Docker VM Extension installs and configures the Docker daemon, client, and Docker Compose on a Linux VM in Azure. This enables you to define and deploy container applications using Docker Compose and Docker Machine.

Combine the extension with the Azure Resource Manager, and you can create and deploy templates for almost all aspects of your Azure environment.

NEED MORE REVIEW? DOCKER VM EXTENSION

Chapter summary

- The basics of using containers to run virtualized images.
- How to install Docker on Windows Server and Nano Server
- How to configure the start-up options for the Docker daemon
- Performing a base operating system install
- Tagging an image for use with containers
- Creating containers for both Windows Server and Hyper-V
- Managing containers using the Docker daemon and Windows PowerShell
- Creating NAT, Transparent, and L2 Bridge networks for containers
- Creating and managing data volumes for use by multiple container endpoints
- Managing container host resources using Resource Control
- Automating the build process for an image using Dockerfile
- Using the Azure VM Extension with Docker

Thought Experiment

A company is testing containers and images in their development environment. They have installed the Docker engine on a Windows Server host, and deployed a base image connected to the default network. The company would like the images to connect directly to the physical network. They also plan to automate the creation of future images and store them in the Docker Hub.

Using this information, answer the following questions:

1. What should be modified to configure the Docker daemon startup options?
2. Which network is the image that has been deployed connected to?
3. What type of network must the company create to achieve the goal?
4. What type of file does the Dockerfile need to be?
5. Which Docker daemon command is used to store images in the Docker Hub repository?
Thought Experiment Answers

1. The JSON configuration file should be created or modified to change the startup options of the Docker daemon.
2. By default, images connect to a default NAT network.
3. A transparent network must be created to enable the images to connect directly to the physical network.
4. The Dockerfile script is a plain-text file that contains the actions to create an image.
5. The `docker push` command uploads the specified image to the Docker Hub after logging into the service.
This page intentionally left blank
A

access. See data access
access control
role-based 204–205
access control policies 278–280
ACES. See Access Control Entries (ACEs)
ACM. See Application Compatibility Manager
ACT. See Application Compatibility Toolkit
activation models 11–14
Active Directory-based activation 13–14
Automatic Virtual Machine Activation (AVMA) 11–12
Key Management Service (KMS) 13
Active Directory (AD) forests 204
Active Directory-based activation 13–14
Active Directory Domain Services (AD DS) 2, 243–272
DNS and 257–258
DNS server and 164
domain controllers 243–272
cloning 267–269
demoting existing 249–250
installation 243–248
installing from Install from Media 253–256
installing new 248–249
read-only 243, 263–267
upgrading 250–251
Flexible Single Master Operation (FSMO) roles 260
forests
installation 244–248
global catalog servers 258–260
installing on Server Core 251–253
logical structure 244–245
Active Directory Domain Services Configuration Wizard 246, 249, 266
Active Directory Federation Services (AD FS) 210, 273–292
authentication
claims-based 275–278
multi-factor 280–281
of users stored in LDAP directories 284
policies 278–280
device registration 282
features of 273
installation 274–275
Microsoft Azure and 283
migration of 275
Office 365 and 283
upgrades 274, 275
WAP and 287–288
Windows Hello for Business and 283
Active Directory Federation Services (AD FS) Proxy role service. See Web Application Proxy
Active Directory Sites And Services Management console 259
Add-AdfsLocalClaimProviderTrust cmdlet 284
Add-ClusterDisk cmdlet 141
Add-ClusterSharedVolume cmdlet 141
Add DNS Resource Record option 203
Add-DnsServerConditionalForwarderZone cmdlet 167
Add-DnsServerForwarder cmdlet 166
Add-DnsServerResourceRecord cmdlet 179
Add-DnsServerRootHint cmdlet 169
Add-DnsServerZoneDelegation cmdlet 170
Add-DnsServerZoneTransferPolicy cmdlet 179
Add-IpamBlock cmdlet 194
Add-IpamDiscoveryDomain cmdlet 192
Add-IpamRange cmdlet 195
Add Role or Feature Wizard 285
Add Roles and Features wizard 211
Add Roles and Features Wizard 52–53, 246
Add Roles And Features wizard 184
ADDSsetup.ps1 script 247
Add-WebApplicationProxyApplication cmdlet

Add-WebApplicationProxyApplication cmdlet 287, 289, 290
AD FS. See Active Directory Federation Services; See Active Directory Federation Services
AdministratorPassword parameter 16
Allow machine certificate authentication for IKEv2 216
applications
Remote Desktop Gateway 290
web-based 210
web, publishing 289
apps. See also application management
App-V. See Microsoft Application Virtualization
ASN. See Autonomous System Numbers
Asynchronous Transfer Mode (ATM) 215
ATM. See Asynchronous Transfer Mode
auditing
AD FS 273
audit logging 175
authentication
Allow machine certificate authentication for IKEv2 216
CHAP 38
claims-based 275–278
DNS-based 163
Encrypted 216
Extensible Authentication Protocol 216
HTML 121
Kerberos 121–123
KerbProxy 222
Microsoft Encrypted Authentication version 2 216
multi-factor 273, 280–281
OAuth2 288
options 216
policy configuration 278–280
RADIUS 216
remote clients 214–215
Reverse CHAP 38
Windows 216
Windows Integrated Authentication 275
Authorization Manager role 55–57
Automatic Virtual Machine Activation (AVMA) 11–12
Autonomous System Numbers (ASN) 239
Azure
AD FS and 283
multi-factor authentication 273, 280–281
Azure portal
storage account in 133–134
Azure Structured Query Language (SQL) 2

B
back end server URLs 290
backup options 136
backup solutions
deduplication and 48
bandwidth management 84
base operating system
installation 97
BGP. See Border Gateway Protocol
BGP-enabled router 238
BGP routing 239
BitLocker Drive Encryption 3
blob files 130
Border Gateway Protocol (BGP) 211

C
CA. See Customer Address
cache locking 173
certificates. See digital certificates;
See user certificates
Certification Authority (CA) 114
CHAP protocol 38
checkpoints
management of 79
child domains 244
claims-based authentication 275–278
client configuration
for DirectAccess 223
client subnets 171
cloning
domain controllers 267–269
cloud witnesses
configuration of 130–134
Cluster-Aware Updating (CAU) 138–140
clustered shared volumes (CSVs) 141
cluster networking 134–135
Cluster Operating System Rolling Upgrade 140–141
Cluster OS Rolling Upgrade 10
clusters
guest 146–147
multi-domain 127–130
naming 129
single 127
site-aware 157–158
storage configuration 136–137
Storage Spaces Direct in 149–150
stretch 42, 157–158
without network names 142
workgroup 127–130
Cluster Shared Volumes (CSV) 232
cluster-to-cluster replication 42–43
collaboration. See also sharing
commit parameter 101
Common Address Redundancy Protocol (CARP) 22
collaboration. See also sharing
compute resiliency 145
conditional forwarders 167
csv
configuration
Datacenter Bridging (DCB) 40
data deduplication 45–46
Desired State Configuration (DSC) 9–10
differencing disks 76
Docker 96–97
dynamic memory 63
FreeBSD Integration Services 69
Hyper-V networking 82–90
Hyper-V storage 73–82
Internet Storage Name Service (iSNS) 39–40
iSCSI target and initiator 35–40
Linux Integration Services 69
MAC addresses 86–88
Microsoft UEFI Certificate Authority 70
Multi-Path IO (MPIO) 41–42
Nano Server 19–20
Non-Uniform Memory Access 63–64
pass-through disks 77
Resource Metering 65–66
Smart Paging 64–65
storage pools 30–32
storage Quality of Service 82
tiered storage 35
virtual machines 62–72
using Windows PowerShell Direct 59
Windows Containers 94–96
Configure Cluster Quorum Wizard 131–132
Configure DHCP Policy 202
Configure DHCP User Class 202
Configure DHCP Vendor class 202
Configure Predefined DHCP Options 202
Configure Preferred DNS Server option 203
connection profiles 217
collaboration. See also sharing
data deduplication 44–47
backup and restore solution with 48
configuration 45–46
implementation 45–46
monitoring 47–48
usage scenarios for 45–46
data volumes
container 106–107
db_datareader 198
db_datawriter 198
db_ddladmin 198
db_ddladmin
See also send connectors
constrained delegation 123
containers 1
Converged RMDA 231
ConvertVHD cmdlet 78
Create DHCP Scope 201
Create DNS Conditional Forwarder 203
Create DNS zone 203
Create Full installation media 253
Create RODC installation media 253
Create Sysvol Full installation media 253
Create Sysvol RODC installation media 253
credentials
script 9
Credential Security Support Provider (CredSSP) 121–123
CrossSiteDelay property 157
CrossSiteThreshold property 157
CSV. See Cluster Shared Volumes
CustomDCCCloneAllowList.xml 268
Customer Address (CA) 237

D

damson.json file 96–97
DANE. See DNS-based Authentication of Names Entities
data
shared. See shared resources
DataAccess parameter 45
database storage
configuration of IPAM, using SQL Server 198
Data Center Bridging 90
Datacenter Bridging (DCB) 40
configuration 40
Data Center Bridging (DCB) 231
Datacenter Firewall 239–240
data deduplication 44–47
backup and restore solution with 48
configuration 45–46
implementation 45–46
monitoring 47–48
usage scenarios for 45–46
data volumes
container 106–107
db_datareader 198
db_datawriter 198
db_ddladmin 198
DCB. See Data Center Bridging
dcutil 257
DCP. See Data Collection Package
DDA. See Discrete Device Assignment
Deactivate DHCP Policies 202
Debug-StorageSubsystem cmdlet 149
default gateways 236
delegated administration
of DNS server 175–177
Delete DNS Zone option 203
Denial of Service (DoS) attacks 173
DependsOn 9
deployment 20–25
FreeBSD 22–23
Linux 22–23
Windows Containers 93–99
Deployment Image Services and Management (DISM) 25
Desired State Configuration (DSC) 9–10
components of 9
scripts 9
Desktop Experience 7
Device Health Attestation 5
device registration 282
DFS. See Distributed File System
DHCP. See Dynamic Host Configuration Protocol
DHCP directory properties 188
diagnostic logging 175
differencing disks 74
configuration of 76
DirectAccess 209
client configuration 223
configuration 218–222
DNS Suffix list 220
Group Policy Objects 221–222
installation 218–222
network topology 220–221
server requirements 222
troubleshooting 223
DirectAccess and VPN (RAS) role service 210
DirectAccess client GPO 221
DirectAccess server 211
DirectAccess server GPO 221
Directory Services Restore Mode (DSRM) password 249, 265
disaggregated Storage Spaces Direct 149
disaster recovery
 Storage Replica for 42–44
Discrete Device Assignment (DDA) 72
disks 136
disk witness 130
distributed firewall policies 239–240
DLP. See Data Loss Prevention; See Data Loss Prevention
DNS. See Domain Name System
DnsAdmins Active Directory security group 175
DnsAdmins security group 191–192
DNS-based Authentication of Named Entities (DANE) 174
DNS Manager 257
DNS Record Administrator Role 205
DNSSEC. See Domain Name System Security Extension
DNS servers 163–182
 cache locking 173
 configuration, for IPAM deployment 189–191
 delegated administration 175–177
 delegation configuration 169–170
 dynamic updates 201
 forwarders configuration 165–168
 installation 164–165
 managing, in multiple AD forests 204
 modifying global settings using PowerShell 179
 performance tuning 179
 properties 175
 managing, using IPAM 202–203
 recursion settings 177–178
 Response Rate Limiting 173–174
 root hints 168–169
 usage scenarios 164
DNS Suffix list 220
docker 1
docker command 97
Docker daemon
 Docker Hub and 107
 installation 95–96
 listing available networks using 105
 Microsoft Azure and 109
 resource control using 106
 start-up options 96–97
 Windows Container management using 101–102
Dockerfile 107
server properties
 managing, using IPAM 199–202
servers
 configuration 186–189
 in multiple AD forests 204
 IP addresses 213
 using RBAC for administration of 204–205
dynamic memory
 configuration 63
Dynamic Quorum 130
dynamic routing 211
dynamic virtual machine queue (VMQ) 86

E

EAP. See Extensible Authentication Protocol
Edit DHCP Server Options 201
Edit DNS Zone option 203
Edit Virtual Hard Disk Wizard 77
emulated devices 69
Enable-ClusterS2D cmdlet 149
Enable DirectAccess Wizard 219
Enable-NetAdapterRdma cmdlet 232
Enable-NetAdapterVmq cmdlet 233
Enable-NetQoSFlowControl cmdlet 231
Enable-PSRemoting cmdlet 58
EnableVMResourceMetering cmdlet 66
encapsulation
 Network Virtualization Generic Route Encapsulation 237
enclosure awareness resiliency 34–35
closures 136
Encrypted authentication (CHAP) 216
encryption
 Microsoft Point-to-Point Encryption 215
enhanced session mode 68–69
EnterPSSession 60
Enter-PSSession cmdlet 165
ESRA. See EdgeSync replication account (ESRA)
event Log Readers group 187
Event Viewer 175
exporting
 virtual machines 71–72
Extensible Authentication Protocol (EAP) 214, 216
External URLs 290

Docker Hub 107–108
Docker tag 98–99
Docker VM Extension 109
domains. See also files
domain controllers 191, 243–272
 cloning 267–269
 demoting existing 249–250
 DNS and 257–258
Flexible Single Master Operation (FSMO)
 roles 260
forests
 installation 244–248
global catalog servers 258–260
installations 243–248
 from Install from Media 253–256
 new 248–249
 read-only 243, 260, 263–267
 upgrading 250–251
Domain Name System (DNS)
 deployment on Nano Server 165
 DHCP integration 164
 logging 175
 policies 163, 171–172
 records 203
 socket pool 173
 split-brain 171
 using RBAC for administration of 204–205
 zones 203
Domain Name System Security Extensions
 (DNSSEC) 172–173
domain naming master role 260
domains 244
 adding domain controller 248–249
 demoting existing domain controllers 249–250
domain trees 244
Domain Name System (DNS)
 SRV record registration issues 257–258
DRA. See Data Recovery Agent
dynamically expanding disks 73
Dynamic Host Configuration Protocol (DHCP) 164
configuration
 failover 202
 options 201–202
 policies 202
 scopes 201–202
 managing, using IPAM 199–202

297
Fabric Management

Fabric Management

shielding tools for 6
failover
DHCP 202
Failover Cluster feature 128
failover clustering 126–146
Cluster-Aware Updating 138–140
clustered shared volumes 141
cluster networking 134–135
Cluster Operating System Rolling Upgrade 140–141
clusters without network names 142
configure drain on shutdown 160–161
guest clusters 143, 146–147
live migration 158
management of 152–157
managing VMs in clustered nodes 158–161
multi-domain clusters 127–130
node fairness 157
preference settings 154–155
Quorum and Cloud witnesses 130–134
restore single node or cluster configuration 136
role-specific settings 152
Scale-Out File Server 142
single clusters 127–130
site-aware clusters 157–158
storage configuration 136–137
Storage Replica 143–144
stretch clusters 157–158
VHDX sharing 146–147
VM monitoring 153
VM resiliency 145
workgroup clusters 127–130
Failover Cluster Manager 128, 141
failover clusters
upgrading 10
failovers
planned 114
test 114
unplanned 115
with Hyper-V replica 114–115
farm behavior level (FBL) 275
farms
upgrading 275
Fast IDE drivers 23
FBL. See farm behavior level
federated environments 273
Fibre Channel (FC) adapters
virtual 80–81
files
shared. See shared resources
file share witness 130
file sizes
deduplication and 47
file system
settings 34–35
filtered attribute set (FAS) 264
FindIpamFreeAddress cmdlet 197
FindIpamFreeRange cmdlet 197
FindIpamFreeSubnet cmdlet 197
firewall policies
distributed 239–240
firewall port 443 215
firewall properties 179, 186, 189, 213
firewall settings
Nano Server 20
fixed size disks 73
Flexible Single Master Operation (FSMO) roles 260–263
functions of 260
installation 261
seizing 261, 262–263
transferring 261, 262
forests
about 245
DHCP servers in multiple 204
DNS servers in multiple 204
installation 244–249
using PowerShell 247–248
using Server Manager 245–247
forwarders 177
conditional 167
configuration of 165–168
forwarding gateways 239
FPS-SMB-In-TCP firewall rule 96
FreeBSD
deployment 22–23
virtual machines 69
FreeBSD Integration Services (BIS) 69
FSMO. See Flexible Single Master Operation
fully qualified domain name (FQDN) 169–170, 220
collection 290
G

garbage collection 45, 47
Generation 1 VMs 68
Generation 2 VMs 68
Generic Route Encapsulation 234
GEOM labels 23
Get-ADComputer cmdlet 190
Get-ClusterAvailableDisk cmdlet 141
Get-Command cmdlet 171
Get-DnsServerRootHint cmdlet 169
Get-NetAdapter cmdlet 252
Get-NetAdapterRdma cmdlet 232
GetScript 9
GetVMIntegrationService cmdlet 67
GetWindowsFeature cmdlet 6
Github repository 102
global catalog servers 258–260
Graphic User Interface (GUI) installation 3
GRE tunneling 239
Group Policy
 IPAM provisioning with 185
Group Policy Objects (GPOs) 185
 DirectAccess policies 221–222
Grub boot menu 23
guest clusters 143, 146–147
GUID Partition Tables (GPT) 68

H

hard-drive disks (HDD) 35
hardware requirements 3, 15
for Hyper-V 52
 nested virtualization 94
high availability 113–162, 171
 failover clustering 126–146, 152–157
 in Hyper-V 114–126
 Live Migration and 115–124
 managing VMs in clustered nodes 158–161
 Storage Spaces Direct 147–150
high performance network solutions 228–234
 Data Center Bridging 231
 NIC Teaming 228–229
 Receive Side Scaling 229–230
 Remote Direct Memory Access 231–232
 Single-Root IO Virtualization 233–234
 SMB Multichannel 232
 Switch Embedded Teaming 228–229
 Virtual Machine Multi-Queue 233
history parameter 102
HTML authentication 121
HTTP Basic 288
HTTP to HTTPS redirects 290
hygiene. See message hygiene
hyper-converged Storage Spaces Direct 150–151
Hyper-V
 containers 99–101
 delegation of virtual machine management 55–58
 Discrete Device Assignment 72
 enhanced session mode 68–69
 FreeBSD and 69
guest clustering in 143
 hardware and compatibility requirements for 52
 high availability in 114–126
 implementation 51–92
 installation 51–58
integration services 67
Linux and 69
Live Migration in 115–120
management tools 52–53
memory enhancements 1
Move Wizard 123–126
moving and converting VMs 70–71
nested virtualization 60
network configuration 82–90
 MAC addresses 86–88
 network adapters 83–85
 network isolation 84–85
 network performance optimization 85–86
 NIC teaming 88–89
 virtual switches 84–85
 vNICs 83–85
remote management of hosts 58–59
replica 114–115
resiliency 145
Smart Paging 64–65
storage configuration 73–82
storage migration 123–126
supported operating systems 22
upgrading from existing versions 54
virtual machine configuration 62–72
VM monitoring 153
Windows Containers and 94
Hyper-V Administrators group 55
Hyper-V Authorization Manager store 55
Hyper-V Manager
 adding virtual network adapters 83–85
 checkpoint configuration 79
 creating VHD and VHDX files with 73–74
Hyper-V network virtualization 234, 235, 236–237, 239
Hyper-V Network Virtualization 218
Hyper-V Virtual Switch 235

Identity management 273–292
 Web Application Proxy 284–290
 IFM. See Install from Media
 IKEv2 tunneling protocol 217
Images
 base operating system 97
 creating new container 107
 for deployment 20–25
 management of
 using Docker Hub 107–108
 using Microsoft Azure 109
 managing 25
 tagging 98–99
 uninstalling operating system 98
 viewing list of available container 99
Image templates. See template images
Import DHCP Policy 202
Importing
 virtual machines 71–72
Import-Module cmdlet 165
Import-PackageProvider NanoServerPackage command 17
Import Virtual Machine wizard 72
Infiniband 231
Infrastructure master role 260
Initial Congestion Window 227
In-place upgrades 251
Installation
 base operating system 97
 Docker 95–96
 FreeBSD Integration Services 69
 GUI 3
 Hyper-V 51–58
 iSCSI Target Server server role 36
Linux Integration Services (LIS) 69
Nano Server 14–18
Server Core 7–8
server roles 6
Windows Containers 94–95
Windows Server 2016 2–14
 activation models 11–14
 features and roles 5–6
 requirements 3
Installation media
 Install from Media feature 253–256
 types of 253
 Install from Media (IFM) 253–256
 InstallNanoServerPackage cmdlet 18
 Install-PackageProvider NanoServerPackage command 17
 Install-RemoteAccess cmdlet 215
 Install-WebApplicationProxy cmdlet 286
 InstallWindowsFeature cmdlet 94
 Install-WindowsFeature cmdlet 184, 211
 InstallWindowsFeature cmdlet 6, 40
Institute of Electrical and Electronics Engineers (IEEE) 231
Integration services
 management of 67
 Internet Assigned Numbers Authority (IANA) 168, 193
 Internet Storage Name Service (iSNS)
 configuration 39–40
 Internet Wide Area RDMA Protocol (iWARP) 231
 Intune 217. See Microsoft Intune
 InvokeCommand 60
 Invoke-IpamGpoProvisioning cmdlet 186
 Invoke-IpamServerProvisioning cmdlet 186
 I/O scheduler 23
IP Address Blocks page 196
IP addresses 103
 filtering 171
 for virtual machines 236
 RAS server 213–214
 space utilization 195–197, 199
 virtual 238
 with network virtualization 237
IP address management (IPAM) 183–208
 configuration of database storage using SQL Server 198
 DHCP management using 199–202, 204–205
DNS management using 202–205
DNS server properties management using 202–203
DNZ records management using 203
DNZ zone management using 203
install and configure 183–199
IP address space utilization monitoring 195–197
IP blocks and ranges 193–195
migrating existing workloads to 198
object names 199
provisioning 184–191
RBAC and 204–205
server discovery 191–193
updating schema 198
virtual machines 237
with System Center Virtual Machine Manager 199
IP Address Range Groups page 196
IP address ranges 193–195, 196–197
IP Address Record Administrator Role 205
IPAM address blocks 193–195
IPAM Administrator Role 205
IPAM ASM Administrator Role 205
IPAM DHCP Administrator Role 205
IPAM DHCP Reservations Administrator Role 205
IPAM DHCP Scope Administrator Role 205
IPAM DNS Administrator Role 205
ipam_log.ldf file 198
ipam.mdf file 198
IPAM MSM Administrator Role 205
IPAMUG universal security group 186–187, 188, 190, 191
ipconfig utility 258
IPsec task offloading 84
IPv4 address blocks 193–195
IPv4 address ranges 194–195
IPv6 root hints 163, 168–169
iSCSI initiator
configuration of 35–40
iSCSI target
configuration of 35–40
iSCSI Target Server server role
installation 36
isolation
of Hyper-V containers 99–101
iterative queries 168

J
JSON file 96–97

K
Kerberos authentication 121–123
KerbProxy authentication 222
Key Management Service (KMS) 13
krbtgt account 264

L
L2 Bridge networks 105
L2 bridges 103
L2TP. See Layer Two Tunneling Protocol
LargeSend Offload 86
Launch MMC 202
Layer Two Tunneling Protocol (L2TP) 215
LDAP directories 284
legal hold. See litigation hold
Linux
deployment 22–23
Secure Boot 70
virtual machines 69
Linux containers
management of 102
Linux Integration Services (LIS) 69
LIS. See Linux Integration Services
Live Migration 158
advanced settings 122
CredSSP and 121–123
implementation of 115–120
Kerberos authentication protocol for 121–123
shared nothing 120–121
load balancing networks 236
Local BGP IP Address 239
Local Configuration Manager (LCM) 9
logging
audit and analytic event 175
diagnostic 175
logical cores 179
Logical Unit Number (LUN) 41
LT tunnels 103
MAC addresses

MAC addresses
- configuration 86–88
- spoofing 61, 104
- static 23
MAC address filters 201
MAC spoofing 86
mail flow. See also email delivery; See also message delivery
management tools
 Hyper-V
 installation 52–53
Master Boot Record (MBR) 68
master roles 260–263
MBR. See Master Boot Record
MeasureVM cmdlet 66
memory
 adding or removing, in VM 62
 dynamic 63
 Non-Uniform Memory Access 63–64
message delivery. See also email delivery
message transport. See transport
MFA. See multi-factor authentication
Microsoft Assessment and Planning (MAP) Toolkit
 assessing virtualization workloads using 24–25
Microsoft Azure
 managing container images using 109
Microsoft Encrypted Authentication version 2 (MS-CHAP v2) 216
Microsoft Hyper-V Server 2016 4. See also Hyper-V
Microsoft Intune 217
Microsoft Management Console (MMC) 55
Microsoft-NanoServer-DCB-Package option 231
Microsoft Open Source Code of Conduct 102
Microsoft Passport 2
Microsoft Passport for Work 273
Microsoft Point-to-Point Encryption (MPPE) 215
Microsoft UEFI Certificate Authority 70
migration
 of existing workloads to IPAM 198
online 70
to Windows Server 2016 10–11
mirror storage layout 32–34
Mobile Device Management (MDM) 5
Move-IpamDatabase cmdlet 198
Move-IpamDatabase cmdlet 198
mpclaim 41
MPIO devices 41
MPPE. See Microsoft Point-to-Point Encryption
MRM. See Messaging Records Management
multi-domain clusters 127–130
multi-factor authentication (MFA) 273, 280–281
multi-host environment
 connection types 103–104
Multi-Path IO (MPIO)
 configuration 41–42
MultiPoint Services 5
multi-site failover clusters 131
multitenant edge 218
multitenant gateways 239
multitenant NAT 239
multitenant network isolation 236–237

N

Name Resolution Policy Table (NRPT) 223
Nano Server 1, 4
 configuration and management 19–20
deduplication and 47
DNS deployment scenarios on 165
Docker installation 95–96
firewall settings 20
installation 14–18
MPIO on 41–42
requirements for 15
roles and features implementation 17–18
usage scenarios for 15
virtual machines and 68
Windows Container installation 95
Nano Server Image Generator 15–16
Nano Server Package 95
Nano Server Recovery Console 19
NAT. See network address translation
NAT networks 104
nested virtualization 1
 implementation of 60
 requirements for 94
netdom utility 261, 263
netlogon.dns file 258
netsh command 230
network adapter buffers 179
network adapters 23, 213, 217
configuring multiple 88–89
Remote Direct Memory Access (RDMA) 89–90
RMDA support 231–232
RSS on 229–230
synthetic 86
virtual 88, 89
Network Address Translation (NAT) 61, 103, 211
network configuration
Hyper-V 82–90
MAC addresses 86–88
network adapters 83–85
network isolation 84–85
network performance optimization 85–86
NIC teaming 88–89
virtual switches 84–85
vNICs 83–85
network connectivity 209–226
Virtual Private Network 209–218
Network Controller 235, 237–238, 239
network hardware 236
network infrastructure 227–242
high performance network solutions 228–234
Data Center Bridging 231
NIC teaming 228–229
Receive Side Scaling 229–230
Remote Direct Memory Access 231–232
Single-Root IO Virtualization 233–234
SMB Multichannel 232
Switch Embedded Teaming 228–229
Virtual Machine Multi-Queue 233
Software-Defined Networking 234–240
networking
cluster 134–135
container 103–105
L2 Bridge networks 105
NAT networks 104
Software-Defined Networking 234–240
standards 231
transparent networks 104
network interface cards (NICs)
virtual 83–85
Network Policy Servers (NPS) 191
networks
load balancing 236
Quality of Service (QoS) 231
RDMA-based storage 236
virtual 218
network security groups 239–240
network switch topology 86
network virtualization 236–237
Network Virtualization Generic Route Encapsulation (NVGRE) 237
New-AdfsAzureMfaTenantCertificate cmdlet 281
New-AdfsLdapAttributeToClaimMapping cmdlet 284
New-AdfsLdapServerConnection cmdlet 284
New-Cluster cmdlet 142
New-MsolServicePrincipalCredential cmdlet 281
NewNanoServerImage cmdlet 16–17
New-NetQoSClass cmdlet 231
NewSRGroup 44
NewSRPartnership 44
New Storage Pool Wizard 136–137
New Virtual Disk Wizard 33–34
New Virtual Hard Disk Wizard 73–74
NewVMSwitch cmdlet 85
New Volume Wizard 33–34
NICs. See network interface cards (NICs); See network interface cards
NIC teaming 88–89
NIC Teaming 228–229, 235
node fairness 157
Non-Uniform Memory Access (NUMA) 63–64
Northbound API 237–238
NRPT. See Name Resolution Policy Table
NT AUTHORITY\Network Service 198
ntdsutil command line tool 254
ntdsutil utility 262
OAuth2 authentication 288
Office 365
AD FS and 283
offline migration 70
offloading 86
online migration 70
operating system images
uninstalling 98
Optimize-StoragePool cmdlet 149
OptimizeVHD cmdlet 78
Organizational Units (OUs) 244
OWA. See Outlook Web App (OWA);
See Outlook Web App
PackageManagement provider

P

PackageManagement provider 17
parent-child disks 76
parent domains 244
parity storage layout 32–34
pass-through disks
 configuration 77
pass-through mode
 WAP 286–287
Password Replication Policy (PRP) 264
passwords
 Directory Services Restore Mode (DSRM) 249, 265
 management, in AD FS 273
 Safe Mode Administrator Password 247
 unencrypted 216
PDC emulator role 260
performance tuning 179
PFS. See Perfect Forward Secrecy
Physical Functions 233
planned failovers 114
platform-as-a-service. See PaaS
Point-to-Point Tunneling Protocol (PPTP) 215
point-to-site VPNs 211, 239
port 443 215
port mapping 104
PowerShell
 adding disks using 35
 adding FC adapter using 81
 adding network adapters using 84
 container management using 102
 direct running of 1
 DISM in 25
 Docker installation 95
 enabling remoting in 58
 exporting and importing VMs using 72–73
 Hyper-V installation using 52
 importing 15
 MAC address configuration from 87
 management tools installation using 53
 managing virtual hard disks using 78
 NIC teaming in 89
 storage pool creation using 32–33
 Storage Replica module 44
 virtual disk creation using 33–34, 39
 virtual switches from 85
 Windows Container installation using 94

PowerShell Direct
 configuring virtual machines using 59
PPTP. See Point-to-Point Tunneling Protocol
 preference settings
 for failover clustering 154–155
PreferredSite property 157
processor compatibility
 VMs and 120–121
production checkpoints 79–80
Protected Network 159
Provider Address (PA) 237
provisioning types 33–35
proxies
 web application 210
Publish New Application Wizard 289
PXE boot 83
PXE TFTP server 23

Q

Quality of Service (QoS) 231
storage 82
query resolution policy 171
quick migration
 of VMs 158
quorum witnesses
 configuration of 130–134

R

RADIUS authentication 216
RADIUS server 214
RAS Gateway 210–215
 deployment scenarios 217–218
 multitenant edge 218
 single tenant edge 217, 218
 VPN options 211
 with Hyper-V Network Virtualization 239
RDG. See Remote Desktop Gateway
RDMA. See Remote Direct Memory Access
RDMA-based storage networks 236
RDMA over Converged Ethernet (RoCE) 231
RDS. See Remote Desktop Services
read-only domain controllers (RODCs) 243, 260,
 263–267
 security features 264
Receive Side Scaling (RSS) 229–230
Recent Acknowledgement (RACK) 227
 records
 support for unknown 163
 recursion policies 171
 recursion scope 171
 recursion settings 177–178
 recursive queries 168
Relying Party Trusts 275–278
Remote Access Best Practices Analyzer 223
remote access gateway (RAS Gateway) 210–215
 deployment scenarios 217–218
 multitenant edge 218
 single tenant edge 217, 218
 VPN options 211
 with Hyper-V Network Virtualization 239
Remote Access Management Console 218, 223
Remote Access server 210, 211
 authentication methods 214–215
 authentication options 216
 configuration 211–215, 219–220
 connection profiles 217
 DirectAccess and 218–223
 installation 211
 IP addresses 213–214
 network adapters 213
 VPN protocol options 215
RemoteApp
 Azure. See Azure RemoteApp
remote clients
 authentication method for 214–215
Remote Desktop Connection settings 217
Remote Desktop Gateway (RDG) 290
Remote Desktop Services 2
Remote Desktop Services (RDS) 217
Remote Direct Memory Access (RDMA) 89–90, 231–232
Remote Event Log Management 191
remote management
 of Hyper-V hosts 58–59
 of Server Core 8
Remote Management Firewall Settings 20
Remote Server Administration Tools (RSAT) 8, 52–53, 253
Remove Roles And Features Wizard 249
replication
 Storage Replica 143–144
Reset Zone Status option 203
resiliency layouts 32–34
resilient filesystem (ReFS) 34–35
Resilient File System (ReFS) 141
resilient storage 32–34
ResizeVHD cmdlet 77, 78
resource control
 management of 106
Resource Metering
 configuration 65–66
Response Rate Limiting (RRL) 163, 173–174
restores
 on single node or cluster configuration 136
restore solutions
 deduplication and 48
Retrieve Server Data 203
Reverse CHAP protocol 38
RID master role 260
rmi parameter 102
rm parameter 105
RoCE. See RDNA over Converged Ethernet
role assignment
 creation 58
role-based access control (RBAC)
 delegate administration of DNS and DHCP using 204–205
rolling upgrades 1
root hints 168–169
routing 236
 dynamic 211
Routing and Remote Access MMC snap-in 211, 218
Routing and Remote Access Server Setup Wizard 211
Routing role service 210
RRAS Multitenant Gateway 235
RRL. See Response Rate Limiting
RSAT. See Remote Server Administration Tools
S
Safe Mode Administrator Password 247
SAML 2.0 273
Scale-Out File Server (SoFS) 141, 150
 implementation 142
 usage scenarios 142
sc config command 96–97
schema master role 260
sconfig.cmd command 7–8
SCP. See Service Connection Point
ScriptBlock parameter 60
second-level address translation (SLAT) 52
Secure Boot 70
Secure Socket Tunneling Protocol (SSTP) 215
security. See also passwords
security groups 186–187, 190–192
Self-Updating Options cluster role 139
Server Core
AD DS installation on 251–253
installation 7–8
remote management 8
server discovery 191–193, 204
Server Manager 8
forest installation using 245–247
storage pool creation in 30–31
Server Message Block version 3 (SMB 3) 1
Server Migration Tools 11
server roles
installing 6
list of 6
Nano Server 17, 18
server storage
Datacenter Bridging configuration 40
implementation of 29–44
iSCSI target and initiator 35–40
Multi-Path IO configuration 41–42
server pools 34–35
storage pools 30–32
Storage Replica 42–44
tiered storage 35
virtual disks 32–34
server-to-server replication 43
service records 257–258
SET. See Switch Embedded Teaming (SET); See Switch Embedded Teaming
Set Access Scope option 203
Set-AdfsAzureMfaTenant cmdlet 281
Set-DnsServerForwarer cmdlet 166
Set-DnsServerRecursion cmdlet 177
Set-DnsServerRecursionScope cmdlet 178
Set-IpamConfiguration cmdlet 185
Set-NetAdapterVmq cmdlet 233
Set-NetOffloadGlobalSetting cmdlet 232
SetScript 9
Set-SmbClientConfiguration cmdlet 232
Set-SmbServerConfiguration cmdlet 232
Setup and Boot Event Collection 6
SetVM cmdlet 79
Set-VMHost cmdlet 122
SetVMHost cmdlet 87
Set-VMMemory cmdlet 63
SetVMNetworkAdapter cmdlet 88, 89
Set-WebApplicationProxyApplication cmdlet 290
shared nothing migration 120–121
share permissions 189
Sharepoint. See Microsoft Sharepoint
ShareVirtualDisk parameter 75
sharing. See also collaboration
external. See external users
shielded virtual machines 52
side-by-side upgrades 251
sign-ins
customizable 273
using third-party LDAP 273
simple storage layout 32–34
single-domain clusters 127
double-host environment
connection types 103
Single-Root IO Virtualization (SR-IOV) 233–234
SIP addresses. See Session Initiation Protocol (SIP) addresses
site-aware clusters 157–158
site-to-site (S2S) VPNs 210–215, 217–218, 239
SLAT. See second-level address translation
SLB. See Software Load Balancing
SLB Host Agent 238
SLB Multiplexer 238
slmgr tool 12
slmgr.vbs script 13
Smart Paging
configuration 64–65
SMB Direct 231–232
SMB Multichannel 232
SMTP. See Simple Mail Transfer Protocol
socket pools 173
Software Defined Networking (SDN)
deployment scenarios 235–236
firewall policies 239–240
Hyper-V network virtualization and 236–237
network controller 237–238
network requirements 235–236
network security groups 239–240
Windows Server Gateway 239–240
Software-Defined Networking (SDN) 234–240
Software Load Balancing (SLB) 234, 238
solid-state disks (SSD) 35
Southbound API 237–238
SPF. See send policy framework (SPF) records
split-brain DNS 171
SQL database 198
SQL Server 198
 configuration of IPAM database storage using 198
SR-IOV 72. See Single-Root IO Virtualization
SRV records 257–258
SSTP. See Secure Socket Tunneling Protocol
static MAC addresses 23
storage
 Hyper-V
 configuration 73–82
 Quality of Service (QoS) 82
 VHDx shared 146–147
 with failover clustering 136–137
storage account 133–134
storage layouts 32–34
storage migration 123–126, 158
storage migration and import 70
storage pools 136
 configuration of 30–32
 expanding 34–35
Storage Replica 2
 implementation 143–144
 implementation of 44–45
 usage scenarios for 42–43
storage resiliency 145
storage sets 1
storage solutions 29–50
 data duplication 44–47
 server storage 29–44
Storage Spaces Direct 147–150
 disaggregated, in a cluster 149
 enabling, using Windows PowerShell 148
 hyper-converged, in cluster 150–151
 usage scenarios 148
stretch clusters 42, 144–145, 157–158
Switch Embedded Teaming (SET) 90, 228–229, 231
Switch-NetQoSdcbxSetting cmdlet 231
synthetic network adapters 86
System Center 235, 239
System Center Configuration Manager 217
System Center Operations Manager 235
System Center Virtual Machine Manager 235
System Center Virtual Machine Manager (VMM) 199

T
TCP checksum offload 86
TCP Fast Open (TFO) 227
TCP Tail Loss Probe (TLP) 227
Test-Cluster cmdlet 149
test failovers 114
TestScript 9
TestSRTopology 44
threshold settings
 for IP address utilization 197
tiered storage
 configuration of 35
time-based redirects 171
Time To Live (TTL) value 173
TPM. See Trusted Platform Module
traffic management 171
transparent networks 104
troubleshooting
 DirectAccess 223
trust claims 275–278
Trusted Platform Module (TPM) chips 3

U
UCE. See Update Compatibility Evaluator (UCE); See Update Compatibility Evaluator
UdpRecvThreadCount DWORD parameter 179
UE-V. See User Experience Virtualization
Unattended Setup file 12
unauthenticated access 216
Unencrypted password (PAP) 216
unidirectional replication 264
Uninstall-ADDSDomainController cmdlet 250
universal security groups 186–187, 190, 191
unplanned failovers 115
Update-ClusterFunctionalLevel cmdlet 141
Update-IpamServer cmdlet 198
Upgrade Configuration Version option 71–72
upgrades
 Hyper-V 54
 paths 10–11
 rolling 1
 VMs 70–71
UsageType parameter 45
validation

V

validation
failover clusters 128–129
VHD file extension 68
VHD files
creating 73–74
shared 75
VHDX file extension 68
VHDX files
creating 73–74
shared 75
VHDX sharing 146–147
virtual disks
creating 32–34
iSCSI 36–40
provisioning types 33–35
Virtual Extensible LAN encapsulation 234
virtual Fibre Channel (FC) adapters 80–81
Virtual Functions 233
virtual hard disks
resizing 77–78
virtualization
hosts 11
Hyper-V network 236–237
nested 1
Single-Root IO Virtualization 233–234
Windows Server
planning for 21–22
workload assessment 24–25
VIRTUAL_MACHINE_ACTIVATION string 12
Virtual Machine Manager (VMM)
object names 199
using IPAM with 199
Virtual Machine Multi-Queue (VMMQ) 233
virtual machine queue (VMQ) 84
dynamic 86
virtual machines
adding or removing memory 62
adding physical hard disk to 77
Automatic Virtual Machine Activation (AVMA) 11–12
checkpoints 79
configuration 62–72
using Windows PowerShell Direct 59
delegation of management 55–58
Discrete Device Assignment (DDA) 72
dynamic memory configuration 63
enhanced session mode 68–69
export and import 71–72
FreeBSD 69
Generation 1 or Generation 2 68
integration services 67
Linux 69
moving and converting 70–71
nested virtualization 60
networking configuration 83–91
NIC teaming 88–89
Non-Uniform Memory Access (NUMA) 63–64
production checkpoints 79–80
QoS policies 82
Resource Metering 65–66
SCSI Controller settings for 75
shielded 1, 52
Smart Paging 64–65
supported 54
virtual Fibre Channel (FC) adapters 80–81
virtual machines (VMs)
configure drain on shutdown 160–161
copying 159
exporting 159
importing 159
IP addresses for 236
Live Migration of 115–120, 158
managing, in clustered nodes 158–161
monitoring 153
network health protection 159
node fairness 157
processor compatibility 120–121
quick migration of 158
Receive Side Scaling on 229–230
replication of 114–115
resiliency 145
shared nothing migration of 120–121
storage migration of 123–126, 158
System Center Virtual Machine Manager 199
VHDX sharing 146–147
virtual network adapters 88, 89
virtual network interface cards (vNICs) 83–85
virtual networks
creation of 218
Virtual Private Network (VPN) 209–218
collection profiles 217
dynamic routing 211
point-to-site 211, 239
protocol options 215
site-to-site 210, 217–218, 239
VPN Reconnect 217
Virtual Receive Side Scaling (vRSS) 86
virtual switches 84–85
Virtual Switch Manager 84–85, 86–87, 88
VLAN performance 86
VM-Generation ID 268
VMM. See Virtual Machine Manager
VMs. See virtual machines
vmwp process 100
Volume Activation Services server role 13
volumes
creating 33–34
Volume Shadow Copy Service 79
volume sizes 34–35
deduplication and 46
VPN. See Virtual Private Network
VPN Reconnect 217

W

WAP. See Web Application Proxy
WCE. See Windows Compatibility Evaluator
WDS. See Windows Deployment Services
Web Application Proxy Configuration Wizard 285
Web Application Proxy role service 210
Web Application Proxy (WAP) 273, 275, 284–290
 as AD FS proxy 287–288
 configuration 285–286
 configure AD FS requirements 288
 FQDN configuration 290
 HTTP to HTTPS redirects 290
 installation 285–286
 pass-through mode 286–287
 publish RDG applications via 290
 publish web apps via 289
 uses of 284
web-based applications 210
Windows Assessment and Deployment Kit (Windows ADK) 25
Windows authentication 216
Windows Containers
 base operating system 97
 configuration 94–96
 creating new images using Dockerfile 107
deployment 93–99
Hyper-V 94, 99–101
image tagging 98–99
implementation 93–112
installation 94–95
requirements 94
management of 101–108
data volumes 106–107
images 107–108
networking 103–105
resource control 106
using Docker daemon 101–102
using Microsoft Azure 109
using PowerShell 102
scenarios for 94
Windows Server 99
Windows Defender 1, 6
Windows Hello for Business 273, 274, 283
Windows Integrated Authentication 275
Windows Internal Database 185
Windows Internal Database (WID) files 198
Windows Powershell
 modifying DNS global settings using 179
Windows PowerShell
 adding IP address blocks with 194
 DCB configuration using 231
 Desired State Configuration (DSC) 9–10
 enabling DirectAccess using 218
 enabling Storage Spaces Direct with 148
 forest installation using 247–248
 identifying available IP addresses with 197
 Server Core installation using 8
Windows Server 2008
 upgrading and migrating from 10–11
Windows Server 2012
 upgrading and migrating from 10–11
Windows Server 2016
 AD FS workloads in 275
 configuration
 Desired State Configuration (DSC) 9–10
 Docker installation 95–96
 editions 4
 features 1–2, 6
 installation 2–14
 activation models 11–14
 features and roles 5
 requirements 3
 network infrastructure 227–242
Secure Boot 70
server storage 29–44
upgrades and migrations to 10–11
virtualization
 planning for 21–22
Windows Server 2016 Datacenter 4
Windows Server 2016 Essentials 4
Windows Server 2016 MultiPoint Premium Server 4
Windows Server 2016 Standard 4
Windows Server Backup 48
Windows Server Core. See Server Core
Windows Server Gateway 235
 implementation scenarios 239–240
Windows Storage Server 2016 4
Windows Update 67
Windows Updates 138
workgroup clusters 127–130
World Wide Name (WWN) 80
WS-MAN protocol 121