

PREVIEW EDITION
This excerpt provides early content from a book currently in development
and is still in draft format. See additional notice below.

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2014 Xamarin, Inc.

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

ISBN: 978-0-7356-9725-6

Microsoft Press books are available through booksellers and distributors worldwide. Please tell us what you think of this
book at http://aka.ms/tellpress.

This document is provided for informational purposes only and Microsoft makes no warranties, either express or implied,
in this document. Information in this document, including URL and other Internet website references, is subject to change
without notice. The entire risk of the use or the results from the use of this document remains with the user.

This s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will be
held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under
copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted
in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose,
without the express written permission of Microsoft Corporation.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/ Trademarks/EN-
US.aspx are trademarks of the Microsoft group of companies. All other marks are property of their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, email address,
logo, person, place, or event is intended or should be inferred.

This s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will be
held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions and Project Editor: Devon Musgrave
Cover illustration: Serena Zhang

2

Table of contents
Introduction .. 7

Who should read this book .. 7

Assumptions ... 7

Organization of this book ... 7

Conventions and features in this book... 8

System requirements .. 8

Downloads: Code samples .. 9

Updating the code samples ... 9

Acknowledgments ..10

Free ebooks from Microsoft Press ..10

We want to hear from you ...10

Chapter 1 How does Xamarin.Forms fit in?... 11
Cross-platform mobile development ..12

The mobile landscape ..12

Problem 1: Different user-interface paradigms ...12

Problem 2: Different development environments ..13

Problem 3: Different programming interfaces ...13

Problem 4: Different programming languages ..13

The C# and .NET solution ...14

A single language for all platforms ...15

Sharing code ..16

Introducing Xamarin.Forms ...18

The Xamarin.Forms option ...18

XAML support ..20

Platform specificity ..22

3

A cross-platform panacea? ..23

Your development environment ...23

Machines and IDEs ..24

Devices and emulators...24

Installation ..25

Creating an iOS app..25

Creating an Android app ..26

Creating a Windows Phone app ..26

All ready? ...26

Chapter 2 Pages, layouts, and views .. 27
Say hello ..28

Anatomy of a Xamarin.Forms solution ... 30

The iOS project ...32

The Android project ..33

The Windows Phone project ...34

Nothing special! ...34

PCL or SAP? ..35

Labels for text ..37

1. Include padding on the page ..40

2. Include padding just for iOS ...41

3. Center the label within the page ..42

4. Center the text within the label ..44

Wrapping paragraphs ..45

Text and background colors ..47

The Color structure ...49

Standard fonts and sizes ...52

Formatted text ..54

4

Stacks of views ..57

Scrolling content ...60

The layout expand option ...65

Frame and BoxView ..69

A ScrollView in a StackLayout? ...74

The button for commands ..78

Sharing button clicks ..81

Anonymous event handlers ...83

Distinguishing views with IDs ..85

Chapter 3 Building an app: Infrastructure ... 89
Version 1. The Entry and Editor views ..91

Version 2. File input/output..95

Skip past the scary stuff? ...97

Preprocessing in the SAP ..97

Dependency service in the PCL ... 102

Version 3. Going async .. 106

Asynchronous lambdas in the SAP ... 109

Method callbacks in the PCL .. 114

Version 4. I will notify you when the property changes .. 119

Version 5. Data binding .. 126

Streamlining INotifyPropertyChanged classes .. 127

A peek into BindableObject and bindable properties ... 130

Automated data bindings .. 133

Version 6. Awaiting results .. 137

.. 150

Chapter 4 Building an app: Architecture ..151
Version 7. Page navigation.. 151

Version 8. Notes in the ListView .. 157

5

Enumerating files ...159

The ListView ...162

Version 9. Editing and deleting ...169

Version 10. Adding a template cell ...175

Version 11. Constructing a toolbar ...178

Icons for Android ...179

Icons for Windows Phone ...180

Icons for iOS devices...180

ToolbarItem code ..181

Version 12. Application lifecycle events ...185

The iOS implementation ...188

The Android implementation ...188

The Windows Phone implementation ...190

Saving and restoring ...191

Making it pretty ..195

Chapter 5 Principles of presentation ...197
The Xamarin.Forms class hierarchy ..197

Pixels, points, dps, DIPs, and DIUs ...203

Estimated font sizes ..208

 clock app ..213

Image and bitmaps ...215

Absolute layout and attached bindable properties ...221

AbsoluteLayout proportionally ...229

Chapter 6 The interactive interface ..233
View overview ...233

Slider, Stepper, and Switch ...234

Data binding ..238

Date and time selection ..245

6

Custom views: A radio button .. 248

Mastering the Grid ... 257

The Grid and attached bindable properties .. 262

7

Introduction
This is a Preview Edition of a book about writing applications for Xamarin.Forms, the exciting new
mobile development platform for iOS, Android, and Windows Phone unveiled by Xamarin in May 2014.
Xamarin.Forms lets you write shared user-interface code in C# and XAML (the eXtensible Application
Markup Language) that maps to native controls on these three platforms.

This book is a Preview Edition because it's not complete. It has only six chapters. We anticipate that
the final version of the book will have at least half a dozen additional chapters and that the chapters in
this Preview Edition might be fleshed out, enhanced, or completely reconceived. The final edition of
the book will probably be published in the spring of 2015.

Who should read this book

This book is for C# programmers who want to write applications for the three most popular mobile
platforms: iOS, Android, and Windows Phone with a single code base. Xamarin.Forms also has
applicability for those programmers who want eventually to use C# and the Xamarin.iOS and
Xamarin.Android libraries to target the native application programming interfaces (APIs) of these
platforms. Xamarin.Forms can be a big help in getting started with these platforms or in constructing a
prototype or proof-of-concept application.

Assumptions
This book assumes that you know C# and have some familiarity with the use of the .NET Framework.
However, when I discuss some C# and .NET features that might be somewhat new to recent C#
programmers, I adopt a somewhat slower pace. In particular, the introduction of the async keyword
and await operator in Chapter 3 follows a discussion that shows how to do asynchronous
programming using traditional callback methods.

Organization of this book

This book is intended as a tutorial to learn Xamarin.Forms programming. It is not a replacement for the
online API documentation, which can be found here under the heading Xamarin.Forms Framework on
this page: http://api.xamarin.com/.

This Preview Edition's Chapter 1 discusses Xamarin.Forms in the larger context of mobile development
and the Xamarin platform and also covers the hardware and software configurations you'll need.
Chapter 2 explores some of the basics of Xamarin.Forms programming, including the use of Label,
Button, and StackLayout.

8

In Chapters 3 and 4, however, I tried to do something a little different: These chapters show the
progressive step-by-step development of a small Xamarin.Forms application. Despite the simplicity of
this program, it is in many ways a "real" application, and requires essential real-app facilities such as file
I/O and application lifecycle handling, both of which turned out to be somewhat more challenging
than I originally anticipated. I'm curious to hear whether these two chapters "work" or not. See the
section below on submitting feedback to us.

Chapters 5 and 6 return to more conventional API tutorials. My biggest regret is that I wasn't able to
get some coverage of XAML into this Preview Edition. However, the Xamarin website has some
additional resources for learning Xamarin.Forms including a six-part "XAML for Xamarin.Forms"
document: http://developer.xamarin.com/guides/cross-platform/xamarin-forms/.

Conventions and features in this book

This book has just a few typographical conventions:

All programming elements referenced in the text including classes, methods, properties,
variable names, etc. are shown in a monospaced font, such as the StackLayout class.

Items that appear in the user interface of Visual Studio or Xamarin Studio, or the applications
discussed in these chapters, appear in boldface, such as the Add New Project dialog.

Application solutions and projects also appear in boldface, such as ColorScroll.

System requirements

This book assumes that you'll be using Xamarin.Forms to write applications that simultaneously target
all three supported mobile platforms iOS, Android, and Windows Phone. However, it's very likely that
many readers will be targeting only one or two platforms in their Xamarin.Forms solutions. The
platforms you target and the Xamarin Platform package you purchase govern your hardware and
software requirements. For targeting iOS devices, you'll need a Mac installed with Apple XCode as well
as the Xamarin Platform, which includes Xamarin Studio. For targeting Windows Phone, you'll need
Visual Studio 2012 or 2013 (not an Express Edition) on a PC, and you'll need to have installed the
Xamarin Platform.

However, you can also use Visual Studio on the PC to target iOS devices if the Mac with XCode and
the Xamarin Platform is accessible via WiFi. You can target Android devices from Visual Studio on the
PC or from Xamarin Studio on either the PC or Mac.

Chapter 1 has more details on the various configurations you can use, and resources for additional
information and support. My setup for creating this book consisted of a Microsoft Surface Pro 2 (with
external monitor, keyboard and mouse) installed with Visual Studio 2013 and the Xamarin Platform,

9

connected by WiFi with a MacBook Pro installed with XCode and the Xamarin Platform.

Downloads: Code samples

The sample programs shown in the pages of this book were compiled in early September with version
1.2.2.6243 of Xamarin.Forms. The source code of these samples is hosted on a repository on GitHub:
https://github.com/xamarin/xamarin-forms-book-preview/.

You can clone the directory structure to a local drive on your machine, or download a big ZIP file. I'll
try to keep the code updated with the latest release of Xamarin.Forms and to fix (and comment) any
errors that might have sneaked through.

You can report problems, bugs, or other kinds of feedback about the book or source code by
clicking the Issues button on this GitHub page. You can search through existing issues or file a new
one. To file a new issue, you'll need to join GitHub (if you haven't already).

Use this GibHub page only for issues involving the book. For questions or discussions about
Xamarin.Forms itself, use the Xamarin.Forms forum: http://forums.xamarin.com/categories/xamarin-
forms.

Updating the code samples
The libraries that comprise Xamarin.Forms are distributed via the NuGet package manager. The
Xamarin.Forms package consists of five dynamic-link libraries: Xamarin.Forms.Core.dll,
Xamarin.Forms.Xaml.dll, Xamarin.Forms.Platform.iOS.dll, Xamarin.Forms.Platform.Android.dll, and
Xamarin.Forms.Platform.WP8.dll. The Xamarin.Forms package also requires Xamarin Support Library v4
(Xamarin.Android.Support.v4.dll) and the Windows Phone Toolkit (Microsoft.Phone.Controls.-
Toolkit.dll), which should be automatically included.

When you create a new Xamarin.Forms solution using Visual Studio or Xamarin Studio, a version of
the Xamarin.Forms package becomes part of that solution. However, that might not be the latest
Xamarin.Forms package available from NuGet. Here's how to update that package:

In Visual Studio, right-click the solution name in the Solution Explorer and select Manage NuGet
Packages for Solution. Select Installed packages at the left of the dialog to see what's currently
installed, and Updates and nuget.org at the left to choose to update the package. If an update is
available, clicking the Update All button is easiest to get it into the solution.

In Xamarin Studio, in the individual projects in the Solution list, under Packages, select the
Xamarin.Forms package and select Update from the tool dropdown.

The source code for this book that is stored on GitHub does not include the actual NuGet packages.
Xamarin Studio will automatically download them when you load the solution, but Visual Studio will
not. After you first load the solution into Visual Studio, right-click the solution name in the Solution

10

Explorer and select Manage NuGet Packages for Solution. You should be given the option to
restore the packages with a Restore button at the top of the dialog. You can then update the package
by selecting Updates and nuget.org at the left and (if an update exists) pressing the Update All
button.

Acknowledgments

It's always seemed peculiar to me that authors of programming books (such as this one) are sometimes
better known to programmers than the people who actually created the product that is the subject of
the book! The real brains behind Xamarin.Forms are Jason Smith, Eric Maupin, Stephane Delcroix, and
Seth Rosetter. Congratulations, guys! We've been enjoying the fruits of your labor!

Over the months that this Preview Edition was in progress, I have benefited from valuable feedback,
corrections, and edits from several people. This book wouldn't exist without the collaboration of Bryan
Costanich at Xamarin and Devon Musgrave at Microsoft Press. Both Bryan and Craig Dunn at Xamarin
read some of my drafts of early chapters and easily persuaded me to take a somewhat different
approach to the material. Later on, Craig kept me on track. During the final days before my deadline
for this Preview Edition, Stephane Delcroix offered essential technical reads and John Meade per-
formed copyediting under extreme crunch conditions. Microsoft Press supplemented that with another
very helpful technical read by Andy Wigley, who persistently prodded me to make the book better.

Almost nothing I do these days would be possible with the daily companionship and support of my
wife, Deirdre Sinnott.

Free ebooks from Microsoft Press

From technical overviews to in-depth information on special topics, the free ebooks from Microsoft
Press cover a wide range of topics. These ebooks are available in PDF, EPUB, and Mobi for Kindle
formats, ready for you to download at http://aka.ms/mspressfree.

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable asset.
Please tell us what you think of this book at http://aka.ms/tellpress. Your feedback goes directly to the
editors at Microsoft Press. (No personal information will be requested.) Thanks in advance for your
input!

89

CHAPTER 3

Building an app: Infrastructure
Sometimes programming tutorials such as this one can cover a lot of ground before directly addressing
the needs of real-world applications. This chapter and the next are an attempt to avoid that common
problem.

NoteTaker, and it
lets you take notes and save them.

Each note is some text as much text as you want
one will be generated for you from the first few words of the note.

When the program is finally finished at the end of the next chapter, it will have the following home
screen:

New button symbolized by a
plus sign appears as a toolbar item either at the top or bottom of the screen. Tap that button and the
program navigates to a page for entering a new note:

90

You can also edit an existing note by tapping that note on the home screen:

Toolbar items allow you to cancel the editing or delete the note. The New Note and Edit Note screens

Engineering in general is a problem-solving activity, and programming is no different. We begin
with a vision and then plan a strategy and set some goals to begin realizing that vision in code. But in
attempting to build the program, problems and obstacles are often encountered. It is in solving these

91

problems that we battle through our ignorance to acquire knowledge and skills.

In this chapter the NoteTaker program goes through six different versions. They are numbered 1
through 6, but the version numbers should probably be more like 0.1 through 0.6. In the course of
enhancing this program through these six versions, the following topics are encountered:

The Entry and Editor views for editing text

File input/output (I/O) in the mobile environment

Asynchronous operations

Property change notifications

Data binding

The next chapter gets into multi-page architectures, page navigation, the powerful ListView for
displaying collections of items, and dealing with application lifecycle issues.

Version 1. The Entry and Editor views

The NoteTaker app definitely requires some text input. Some phones have physical keyboards, but the
vast majority are limited to virtual onscreen keyboards. Of course, these are somewhat different for
each platform and often also vary by the type of text input.

Xamarin.Forms defines two views for obtaining text input:

Entry for a single line of text

Editor for multiple lines of text

Both Entry and Editor derive from InputView, which derives from View.

All three platforms have various styles of virtual keyboard appropriate for different types of text
input. For example, a keyboard for typing a URL should be different from a keyboard for entering a
phone number. For this reason, InputView defines a property named Keyboard of type Keyboard,
a class that defines seven static read-only properties of type Keyboard appropriate for different
keyboard uses:

Default

Text

Chat

Url

Email

92

Numeric

Telephone

For example, if you have an Entry view intended for entering a URL, specify:

entry.Keyboard = Keyboard.Url;

Of course, the actual keyboards are platform-specific, and not all three platforms have distinct
keyboards for all seven static properties.

The Keyboard class an alternative way to specify a keyboard using a KeyboardFlags
enumeration, which has the following flag members:

CapitalizeSentence (equal to 1)

Spellcheck (2)

Suggestions (4)

All (\xFFFFFFFF)

These flags make more sense with an Editor rather than an Entry because the user is likely to be
typing real text consisting of actual words organized into sentences. Set the keyboard like this:

editor.Keyboard = Keyboard.Create(KeyboardFlags.All);

al keyboard when the Entry or Editor acquires
keyboard input focus. Input focus means that keyboard input is directed towards that particular view.
Only one view can have input focus at any time. Although any Xamarin.Forms view can get input focus,
only Entry and Editor are equipped to process that input.

A view must have its IsEnabled property set to true (the default state) to acquire input focus. A
user can give an enabled view input focus by tapping it. When the Entry or Editor acquires input
focus, the operating system pops up the keyboard.

A user can remove keyboard focus from an Entry or Editor by tapping somewhere else on the
screen. The keyboard is automatically dismissed. But this is not the only way to dismiss the keyboard.
Often a specific keyboard key or button associated with the keyboard lets the user signal that text
input is complete. The concept of signaling that text is complete is complicated somewhat by the
different nature of the Entry and Editor views: An Enter or Return key often removes input focus
from an Entry view, but in an Editor that same key instead simply marks the end of one paragraph
and the beginning of another.

On the iPhone, a Return button dismisses the keyboard from an Entry and a special Done button
dismisses the keyboard from an Editor. On the Android, a Done key dismisses the keyboard from the
Entry but a button on the bottom of the screen is required to dismiss the keyboard from the Editor.
On the Windows Phone, the Enter key dismisses the keyboard from the Entry but the hardware Back
button dismisses the keyboard from the Editor.

93

The Entry and Editor define Focused and Unfocused events that signal gaining and losing
input focus. The IsFocused property indicates if a particular view currently has input focus. A
program can attempt to set focus to a particular view in code by calling the Focus method on the
view. The method returns true if the focus change was successful. These focus-related members are
defined by Visual-Element, the base class for all UI elements, but they are really only relevant for
the Entry and Editor.

Both Entry and Editor define Text properties that expose the current text displayed by the
view. A program can initialize this Text property and then allow the user to edit that text.

Both Entry and Editor define a Completed event that is fired when the user has signaled that
editing is completed. This is an excellent opportunity for programs to access the Text property and
save the results.

Both Entry and Editor also define a TextChanged event that is fired when the Text property
changes. (Keep in mind that .NET string objects are immutable. A string

Entry or Editor
string object rather than a modified string object.) The TextChanged event can be a valuable
means for the application to monitor the text input on a character-by-character basis and respond to
changes before the user signals that the typing is complete.

You might assume that Entry is somewhat simpler than Editor because it handles only a single
line of text. However, Entry has three additional properties that Editor

TextColor a Color value

IsPassword a Boolean that causes characters to be masked

Placeholder light colored text that appears in the Entry but disappears as soon as the
user begins typing.

The NoteTaker program requires a page that contains an Entry for the user to type a title for the
note, and an Editor for typing the note itself. For the first version of this program called
NoteTaker1
Label views for identification.

The Editor allows an indefinite amount of text to be entered and internally implements scrolling.
As you discovered with the ScrollView in the previous chapter, sharing a scrollable view with other
views on the page requires that the VerticalOptions property be set to LayoutOptions.-
FillAndExpand.

NoteTaker1Page class:

class NoteTaker1Page : ContentPage

{

public NoteTaker1Page()

{

this.Padding = new Thickness(10, Device.OnPlatform(20, 0, 0), 10, 0);

94

this.Content = new StackLayout

{

 Children =

 {

 new Label

 {

 Text = "Title:"

 },

 new Entry

 {

 Placeholder = "Title (optional)"

 },

 new Label

 {

 Text = "Note:"

 },

 new Editor

 {

 Keyboard = Keyboard.Create(KeyboardFlags.All),

 BackgroundColor = Device.OnPlatform(Color.Default,

 Color.Default,

 Color.White),

 VerticalOptions = LayoutOptions.FillAndExpand

 },

 new Button

 {

 Text = "Save",

 HorizontalOptions = LayoutOptions.Center

 }

 }

};

}

}

The program explicitly sets the BackgroundColor property on the Editor to correct a little flaw
in the Windows Phone implementation: Without this setting, the Editor background goes black when
it loses input focus, and that causes the black text to be invisible.

95

The Button at the bottom labeled Save currently does nothing. Such a button is undoubtedly
intended to save the note to a file. To do that, however, we need to know how to save files, and later
load them back in.

File input/output is not something included in the Xamarin.Forms API. Yet, some file I/O is required
by many mobile apps, if only to save settings and interim data. For this reason, file I/O is probably the
most compelling reason to skirt around the Xamarin.Forms API and implement some vital features of
your app by using the programming interfaces of the individual platforms.

Version 2. File input/output

Traditionally, file input/output is one of the most basic programming tasks, but file I/O on mobile
devices is a little different than on the desktop. On the desktop, users and applications generally have a
whole disk available organized in a directory structure. On mobile devices, several standard folders
exist for pictures or music, for example but application-specific data is generally restricted to private
storage areas.

Programmers familiar with .NET know that the System.IO namespace contains the bulk of
standard file I/O support. Perhaps the most important class in this namespace is the static File class,
which not only provides a bunch of methods to create new files and open existing files but also
includes several methods capable of performing an entire file read or write operation in a single
method call.

For example, the File.WriteAllText method has two arguments of type string a filename
and the file contents. The method creates the file (replacing an existing file with the same name if

96

necessary), writes the contents to the file, and closes it. The File.ReadAllText method is similar but
returns the contents of the file in one big string object. These methods seem ideal for the job of
saving and retrieving notes.

The Xamarin.iOS and Xamarin.Android libraries include a version of .NET that has been expressly
tailored by Xamarin for these two mobile platforms. The methods in the File class in the System.IO
namespace map to appropriate file I/O functions in the iOS and Android platforms. This means that
you can use methods in the File class including File.WriteAllText and File.ReadAll-
Text in your iPhone and Android applications.

Go into Visual Studio or Xamarin Studio, and load any Xamarin.Forms solution created so far, such
as NoteTaker1. Bring up one of the code files in the iOS or Android project. In a constructor or
method, type the System.IO available
types in the namespace. If you then type File
File class, including WriteAllText and ReadAllText.

ft
and stripped down somewhat for the Windows Phone platform. If you type System.IO.File and a

File class that does not include WriteAllText and ReadAll-
Text, although it does include methods to create and open text files.

Now go into any code file in a Xamarin.Forms Portable Class Library project, and type System.IO
File class! It does not exist in the PCL. Why is that? PCLs

are configured to support multiple target platforms. The APIs implemented within the PCL are
necessarily an intersection of the APIs in these target platforms.

A PCL appropriate for Xamarin.Forms includes the following platforms:

.NET Framework 4.5

Windows 8

Windows Phone Silverlight 8

Xamarin.Android

Xamarin.iOS

Notice the inclusion of Windows 8, which incorporates an API called the Windows Runtime (or WinRT).
Microsoft completely revamped file I/O for WinRT and created a whole new file I/O API. The
System.IO.File class does not exist in the PCL because it is not part of WinRT.

Although the File class does not exist in a Portable Class Library project, you might wonder what
kind of File class you can use in a Shared Asset Project. Well, it varies by what platform is being
compiled. You can use File.WriteAllText and File.ReadAllText in your iOS and Android
projects but not in your Windows Phone projects. Your Windows Phone projects need something else.

97

Skip past the scary stuff?
Already you might suspect that this subject of file I/O is going to get hairy, and you are correct. But

g the way.

So the question has to be: Metaphorically speaking, do you enjoy hiking through treacherous
terrain to climb to the top of a mountain and get a gorgeous view? Or would you prefer that
somebody else takes a photo from the top of the mountain and sends it to you in an email?

to the comparatively simple and elegant solution to the problem of Xamarin.Forms file I/O presented
 continuing into the next chapter. Until that point, some of the transitional

ationale behind the platform differences even in seemingly routine jobs
like file I/O.

In the previous chapter you saw how the Xamarin.Forms Device class can be a valuable tool for
Device class must be

compilable in all three platforms. This is not the case for file I/O because the different platforms have
Device

class and must be handled in other ways. Moreover, the solutions are different for Shared Asset
Projects and Portable Class Libraries projects.

For this reason, for the next two versions of NoteTaker, there will be separate solutions for SAP and
PCL. The two different solutions for version 2 are named NoteTaker2Sap and NoteTaker2Pcl.

Preprocessing in the SAP
Dealing with platform differences is a Shared Asset Project is a little more straightforward than a PCL

In code files in a Shared Asset Project, you can use the C# preprocessor directives #if, #elif,
#else, and #endif with conditional compilation symbols defined for the three platforms. These
symbols are __IOS__ for iOS and WINDOWS_PHONE for Windows Phone; there are no conditional
compilation symbols for Android, but Android can be identified as not being iOS or Windows Phone.

The NoteTaker2Sap project includes a class named FileHelper in a file named FileHelper.cs. You
can add such a file to the project the same way you add a new file for the class that derives from
ContentPage.

The FileHelper.cs file uses C# preprocessor directives to divide the code into two sections. The first
section is for iOS and Android and is compiled if the WINDOWS_PHONE identifier is not defined. The
second section is for Windows Phone.

98

Both sections contain three public static methods named Exists, WriteAllText, and
ReadAllText. In the first section, the iOS and Android versions of these functions use standard static
File methods but with a folder name obtained from the Environment.GetFolderPath method
with an argument of Environment.SpecialFolder.MyDocuments:

namespace NoteTaker2Sap

{

static class FileHelper

{

#if !WINDOWS_PHONE // iOS and Android

public static bool Exists(string filename)

{

 string filepath = GetFilePath(filename);

 return File.Exists(filepath);

}

public static void WriteAllText(string filename, string text)

{

 string filepath = GetFilePath(filename);

 File.WriteAllText(filepath, text);

}

public static string ReadAllText(string filename)

{

 string filepath = GetFilePath(filename);

 return File.ReadAllText(filepath);

}

static string GetFilePath(string filename)

{

 string docsPath = Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments);

 return Path.Combine(docsPath, filename);

}

#else // Windows Phone

public static bool Exists(string filename)

{

 return File.Exists(filename);

}

public static void WriteAllText(string filename, string text)

{

 StreamWriter writer = File.CreateText(filename);

 writer.Write(text);

 writer.Close();

}

public static string ReadAllText (string filename)

{

 StreamReader reader = File.OpenText(filename);

 string text = reader.ReadToEnd();

99

 reader.Close();

 return text;

}

#endif

}

}

When the Shared Asset Project is compiled for Windows Phone, the File.WriteAllText and
File.ReadAllText

However, static CreateText and OpenText methods are available, and these are used to obtain
StreamWriter and StreamReader objects. This Windows Phone code works in the sense that it

else is required.

Besides the FileHelper class to handle low-level file I/O, the NoteTaker2Sap project includes
another new class named Note. This class encapsulates the two string objects associated with a note
in simple read/write properties named Title and Text. This class also includes methods named Save
and Load that call the appropriate methods in FileHelper:

namespace NoteTaker2Sap

{

class Note

{

public string Title { set; get; }

public string Text { set; get; }

public void Save(string filename)

{

 string text = this.Title + "\n" + this.Text;

 FileHelper.WriteAllText(filename, text);

}

public void Load(string filename)

{

 string text = FileHelper.ReadAllText(filename);

 // Break string into Title and Text.

 int index = text.IndexOf('\n');

 this.Title = text.Substring(0, index);

 this.Text = text.Substring(index + 1);

}

}

}

Notice that the Save method simply joins the two string objects into one with a line feed character,
and the Load method takes them apart.

Finally, the NoteTaker2SapPage class has a very similar page layout as the first program but
contains two buttons labeled Save and Load that use the Note class for these operations. A filename

100

ut:

class NoteTaker2SapPage : ContentPage

{

static readonly string FILENAME = "test.note";

Entry entry;

Editor editor;

Button loadButton;

public NoteTaker2SapPage()

{

// Create Entry and Editor views.

entry = new Entry

{

 Placeholder = "Title (optional)"

};

editor = new Editor

{

 Keyboard = Keyboard.Create(KeyboardFlags.All),

 BackgroundColor = Device.OnPlatform(Color.Default,

 Color.Default,

 Color.White),

 VerticalOptions = LayoutOptions.FillAndExpand

};

// Create Save and Load buttons.

Button saveButton = new Button

{

 Text = "Save",

 HorizontalOptions = LayoutOptions.CenterAndExpand

};

saveButton.Clicked += OnSaveButtonClicked;

loadButton = new Button

{

 Text = "Load",

 IsEnabled = FileHelper.Exists(FILENAME),

 HorizontalOptions = LayoutOptions.CenterAndExpand

};

loadButton.Clicked += OnLoadButtonClicked;

// Assemble page.

this.Padding = new Thickness(10, Device.OnPlatform(20, 0, 0), 10, 0);

this.Content = new StackLayout

{

 Children =

 {

 new Label

 {

 Text = "Title:"

 },

101

 entry,

 new Label

 {

 Text = "Note:"

 },

 editor,

 new StackLayout

 {

 Orientation = StackOrientation.Horizontal,

 Children =

 {

 saveButton,

 loadButton

 }

 }

 }

};

}

void OnSaveButtonClicked(object sender, EventArgs args)

{

Note note = new Note

{

 Title = entry.Text,

 Text = editor.Text

};

note.Save(FILENAME);

loadButton.IsEnabled = true;

}

void OnLoadButtonClicked(object sender, EventArgs args)

{

Note note = new Note();

note.Load(FILENAME);

entry.Text = note.Title;

editor.Text = note.Text;

}

}

Notice that the Load button initialization calls FileHelper.Exists to determine if the file exists
and disables the button if it does not. The button is then enabled the first time the file is saved.

that the information is saved to the device (or
phone simulator). Type something into the Entry and Editor, and then press Save to save that
information. Clear out the Entry and Editor (or type in new text), and press Load to restore the
information that was saved.

 shut down the phone and then
rerun the program, the saved file still exists.

Well, in two out of three cases, the saved file still exists. It works with iOS and Android, but not
Windows Phone. Although the Windows Phone Save and Load buttons seem to work while the

102

program is running, the file is not persisted when the application is exited. Getting Windows Phone to
work right will require a different set of file I/O classes.

-thirds functional) version to work with a Portable Class
Library solution.

Dependency service in the PCL
System.IO.File class does not exist in the version of .NET available to a

-based Xamarin.Forms
solution, the file I/O code cannot be in the PCL. The file I/O code must be implemented in the
individual platform projects where it can use the version of .NET specifically for that platform.

Application projects make calls to libraries all the time, but lib
applications except with events or callback functions.

It is the main purpose of the Xamarin.Forms DependencyService class to get around this
restriction. Although this class is implemented in the Xamarin.Forms.Core library assembly and used in
a PCL, it uses .NET reflection to search through all the other assemblies available in the application,
including the particular platform-specific application assembly itself. (It is also possible for the platform
projects to use dependency injection techniques to configure the PCL to make calls into the platform
projects.)

To use DependencyService, the first requirement is that the PCL must contain an interface
definition that includes the names and signatures of the platform-specific methods you need. Here is
that file in the NoteTaker2Pcl project:

namespace NoteTaker2Pcl

{

public interface IFileHelper

{

bool Exists(string filename);

void WriteAllText(string filename, string text);

string ReadAllText(string filename);

}

}

This interface must be public to the PCL because it must be visible to the individual platform projects.

Next, in all three application projects, you create code files with classes that implement this
 in the iOS project. (You can tell that this file is in the iOS project by the

namespace):

using System;

using System.IO;

using Xamarin.Forms;

103

[assembly: Dependency(typeof(NoteTaker2Pcl.iOS.FileHelper))]

namespace NoteTaker2Pcl.iOS

{

class FileHelper : IFileHelper

{

public bool Exists(string filename)

{

 string filepath = GetFilePath(filename);

 return File.Exists(filepath);

}

public void WriteAllText(string filename, string text)

{

 string filepath = GetFilePath(filename);

 File.WriteAllText(filepath, text);

}

public string ReadAllText(string filename)

{

 string filepath = GetFilePath(filename);

 return File.ReadAllText(filepath);

}

string GetFilePath(string filename)

{

 string docsPath = Environment.GetFolderPath(

 Environment.SpecialFolder.MyDocuments);

 return Path.Combine(docsPath, filename);

}

}

}

except with instance methods rather than static methods. But take note of two necessary characteristics
of this file:

The class implements the IFileHelper interface defined in the PCL. Because it implements
that interface, the three methods defined in the interface must be defined as public in this class.

A special assembly-level attribute named Dependency is defined prior to the namespace
definition.

Dependency is a special Xamarin.Forms attribute defined by the DependencyAttribute class
specifically for use with the DependencyService class. The Dependency attribute simply specifies
the type of the class but it assists the DependencyService class in locating the implementation of
the interface in the application projects.

A similar file is in the Android project:

using System;

using System.IO;

104

using Xamarin.Forms;

[assembly: Dependency(typeof(NoteTaker2Pcl.Droid.FileHelper))]

namespace NoteTaker2Pcl.Droid

{

class FileHelper : IFileHelper

{

public bool Exists(string filename)

{

 string filepath = GetFilePath(filename);

 return File.Exists(filepath);

}

public void WriteAllText(string filename, string text)

{

 string filepath = GetFilePath(filename);

 File.WriteAllText(filepath, text);

}

public string ReadAllText(string filename)

{

 string filepath = GetFilePath(filename);

 return File.ReadAllText(filepath);

}

string GetFilePath(string filename)

{

 string docsPath = Environment.GetFolderPath(

 Environment.SpecialFolder.MyDocuments);

 return Path.Combine(docsPath, filename);

}

}

}

And in the Windows Phone project:

using System;

using System.IO;

using Xamarin.Forms;

[assembly: Dependency(typeof(NoteTaker2Pcl.WinPhone.FileHelper))]

namespace NoteTaker2Pcl.WinPhone

{

class FileHelper : IFileHelper

{

public bool Exists(string filename)

{

 return File.Exists(filename);

}

public void WriteAllText(string filename, string text)

{

 StreamWriter writer = File.CreateText(filename);

105

 writer.Write(text);

 writer.Close();

}

public string ReadAllText(string filename)

{

 StreamReader reader = File.OpenText(filename);

 string text = reader.ReadToEnd();

 reader.Close();

 return text;

}

}

}

Note class in NoteTaker2Sap made calls to
FileHelper.WriteAllText and FileHelper.ReadAllText. The Note class in NoteTaker2Pcl
is very similar but instead references the two methods through the static DependencyService.Get
method. This is a generic method that requires the interface as a generic argument but then is capable
of calling any method in that interface:

namespace NoteTaker2Pcl

{

class Note

{

public string Title { set; get; }

public string Text { set; get; }

public void Save(string filename)

{

 string text = this.Title + "\n" + this.Text;

 DependencyService.Get<IFileHelper>().WriteAllText(filename, text);

}

public void Load(string filename)

{

 string text = DependencyService.Get<IFileHelper>().ReadAllText(filename);

 // Break string into Title and Text.

 int index = text.IndexOf('\n');

 this.Title = text.Substring(0, index);

 this.Text = text.Substring(index + 1);

}

}

}

Internally, the DependencyService class searches for the interface implementation in the
particular platform project and makes a call to the specified method.

The NoteTaker2PclPage class is nearly the same as NoteTaker2SapPage except it also uses
DependencyService.Get to call the Exists method during the initialization of the Load button.

loadButton = new Button

106

{

Text = "Load",

IsEnabled = DependencyService.Get<IFileHelper>().Exists(FILENAME),

HorizontalOptions = LayoutOptions.CenterAndExpand

};

Of course, the NoteTaker2Pcl version has the same deficiency as NoteTaker2Sap
persist the data for Windows Phone.

Version 3. Going async

application targets Windows Phone 8, which implements a subset of the same WinRT file I/O available
to Windows 8 applications, largely found in the new Windows.Storage and Windows.Storage.-
Streams namespaces.

Windows Phone 8 continues to support some older file I/O functions that Windows Phone 7
inherited from Silverlight, but these are not recommended for new Windows Phone 8 applications.
Windows Phone 8 applications should instead use the WinRT file I/O API, and the programs in this
book follow that recommendation.

Part of the impetus behind this new array of file I/O classes in Windows 8 and Windows Phone 8 is a
recognition of a transition away from the relatively unconstrained file access of desktop applications
towards a more sandboxed environment. To store data that is private to an application, a Windows
Phone program first gets a special StorageFolder object:

StorageFolder localFolder = ApplicationData.Current.LocalFolder;

ApplicationData has a static property named Current that returns the ApplicationData
object for the application. LocalFolder is an instance property of ApplicationData.

StorageFolder defines methods named CreateFileAsync to create a new file and
GetFileAsync to open an existing file. These two methods return objects of type StorageFile. At
this point, a program can open the file for writing or reading with OpenAsync or OpenReadAsync.
These methods return an IRandomAccessStream object. From this, DataWriter or DataReader
objects are created to perform write or read operations.

This sounds a bit lengthy, and it is. A rather simpler approach for text files involves the static
methods FileIO.ReadTextAsync and FileIO.WriteTextAsync. The first argument to these
methods is a StorageFile object, and the methods incorporate all the operations to open the file,
write to it or read from it, and close the file. Although these methods are available in Windows Phone
8.1, they are not in Windows Phone 8, the version of Windows Phone supported by Xamarin.Forms.

Async suffix on these method
names. These are asynchronous methods. Internally, these methods spin off secondary threads of
execution for doing the actual work and return quickly to the caller. The work takes place in the

107

background, and when that work is finished when the file has been created or opened, or written to
or read from the caller is notified through a call-
result.

Which might raise the question: Why are these methods asynchronous? Why are they more
complex than the old .NET file I/O functions?

Graphical user interfaces have an intrinsic problem. Although an application can consist of multiple
threads of execution, access to the user interface must usually be restricted to a single thread. The
problem is not so much the graphical output, but the user input, which in various environments might

should be routed until all previous user input events have been processed. This means that user input
events must be processed sequentially in a single thread of execution.

The impact of this restriction is profound: In the general case, all
processing must be handled in a single thread, often called the UI thread. Even the seemingly innocent
act of using a secondary thread of execution to set a property of a user-interface object such as Entry
or Editor is forbidden.

At the same time, programmers are cautioned against doing any lengthy processing in this UI
thread. If the UI thre
and the entire user interface can seem to freeze up.

become increasingly intolerant of even the slightest lapse in responsiveness. Consequently, as
application programmers, we are increasingly encouraged to avoid lengthy processing in the UI thread
and to keep the application as responsive as possible.

This implies that lengthy processing jobs should be relegated to secondary threads of execution.

The future of computing will undoubtedly involve a lot more asynchronous computing and parallel
processing, particularly with the increasing use of multicore processor chips. Developers will need good
language tools to work with asynchronous operations, and fortunately C# has been in the forefront in
this regard.

When the WinRT APIs used for Windows 8 Store apps were being developed, the Microsoft
developers took a good hard look at timing and decided that any function call that could require more
than 50 milliseconds to execute should be made asynchronous so that it would not interfere with the
responsiveness of the user interface.

APIs that require more than 50 milliseconds obviously include file I/O functions, which often need to
access potentially slow pieces of hardware, like disk drives or a network. Any WinRT file I/O function
that could possibly hit a physical storage device was made asynchronous and given an Async method
suffix.

108

The CreateFileAsync method defined by the StorageFolder class does not directly return a
StorageFile object. Instead, it returns an IAsyncOperation<StorageFile> object:

IAsyncOperation<StorageFile> createOp = storageFolder.CreateFileAsync("filename");

The IAsyncOperation interface, its base interface IAsyncInfo, and related interfaces such as
IAsyncAction, are all defined in the Windows.Foundation namespace, indicating how
fundamental they are to the entire operating system. A return value such as IAsyncOperation is

StorageFile object is not available just yet, but it will be
in the future if nothing goes awry.

To begin the actual asynchronous operation, you must assign a handler to the Completed property
of the IAsyncOperation object:

createOp.Completed = OnCreateFileCompleted;

Completed is a property rather than an event but it functions much like an event. The big difference
is that Completed
OnCreateFile-Completed in this example) actually initiates the background process.

The code that sets the Completed property to a handler executes very quickly, and the program
can then continue normally. Simultaneously, the file is being created in a secondary thread. When the
file is created, that background code calls the callback method assigned to the Completed handler in
your code. That callback method might look like this:

void OnCreateFileCompleted(IAsyncOperation<StorageFile> createOp, AsyncStatus asyncStatus)

{

if (asyncStatus == AsyncStatus.Completed)

{

StorageFile storageFile = createOp.GetResults();

// continue with next step ...

}

else

{

// deal with cancellation or error

}

}

Completed, Canceled, or
Error. Members of the first argument can provide more detail about any error that might have
occurred. If all is well, calling GetResults on the first argument obtains the StorageFile object.

At this point, the next step would be to open that file for writing. A call to OpenAsync returns an
object of type IAsyncOperation<IRandomAccessStream>, and that involves another callback
method:

void OnCreateFileCompleted(IAsyncOperation<StorageFile> createOp, AsyncStatus asyncStatus)

{

if (asyncStatus == AsyncStatus.Completed)

{

StorageFile storageFile = createOp.GetResults();

109

IAsyncOperation<IRandomAccessStream> openOp =

 storageFile.OpenAsync(FileAccessMode.ReadWrite);

openOp.Completed = OnOpenFileCompleted;

}

else

{

// deal with cancellation or error

}

}

void OnOpenFileCompleted(IAsyncOperation<IRandomAccessStream> openOp, AsyncStatus asyncStatus)

{

// ...

}

One way to simplify this code is to use anonymous lambda functions for the callbacks. This avoids a
proliferation of individual methods and allows more free-form access to local variables. But for a
sequence of asynchronous method calls, it tends to produce a nested structure of asynchronous

Asynchronous lambdas in the SAP
In the NoteTaker3Sap project, the file I/O code has been moved to the Note class and performed
separately for Windows Phone using lambda functions for callbacks. To keep the code simple (at least
comparatively so), there is no error handling:

using System;

#if !WINDOWS_PHONE

using System.IO;

#else

using Windows.Foundation;

using Windows.Storage;

using Windows.Storage.Streams;

#endif

namespace NoteTaker3Sap

{

class Note

{

public string Title { set; get; }

public string Text { set; get; }

public void Save(string filename)

{

 string text = this.Title + "\n" + this.Text;

#if !WINDOWS_PHONE // iOS and Android

 string docsPath = Environment.GetFolderPath(Environment.SpecialFolder.Personal);

110

 string filepath = Path.Combine(docsPath, filename);

 File.WriteAllText(filepath, text);

#else // Windows Phone

 StorageFolder localFolder = ApplicationData.Current.LocalFolder;

 IAsyncOperation<StorageFile> createOp =

 localFolder.CreateFileAsync(filename,

 CreationCollisionOption.ReplaceExisting);

 createOp.Completed = (asyncInfo1, asyncStatus1) =>

 {

 IStorageFile storageFile = asyncInfo1.GetResults();

 IAsyncOperation<IRandomAccessStream> openOp =

 storageFile.OpenAsync(FileAccessMode.ReadWrite);

 openOp.Completed = (asyncInfo2, asyncStatus2) =>

 {

 IRandomAccessStream stream = asyncInfo2.GetResults();

 DataWriter dataWriter = new DataWriter(stream);

 dataWriter.WriteString(text);

 DataWriterStoreOperation storeOp = dataWriter.StoreAsync();

 storeOp.Completed = (asyncInfo3, asyncStatus3) =>

 {

 dataWriter.Dispose();

 };

 };

 };

#endif

}

public void Load(string filename)

{

#if !WINDOWS_PHONE // iOS and Android

 string docsPath = Environment.GetFolderPath(Environment.SpecialFolder.Personal);

 string filepath = Path.Combine(docsPath, filename);

 string text = File.ReadAllText(filepath);

 // Break string into Title and Text.

 int index = text.IndexOf('\n');

 this.Title = text.Substring(0, index);

 this.Text = text.Substring(index + 1);

#else // Windows Phone

 StorageFolder localFolder = ApplicationData.Current.LocalFolder;

 IAsyncOperation<StorageFile> createOp = localFolder.GetFileAsync(filename);

 createOp.Completed = (asyncInfo1, asyncStatus1) =>

 {

 IStorageFile storageFile = asyncInfo1.GetResults();

 IAsyncOperation<IRandomAccessStreamWithContentType> openOp =

 storageFile.OpenReadAsync();

111

 openOp.Completed = (asyncInfo2, asyncStatus2) =>

 {

 IRandomAccessStream stream = asyncInfo2.GetResults();

 DataReader dataReader = new DataReader(stream);

 uint length = (uint)stream.Size;

 DataReaderLoadOperation loadOp = dataReader.LoadAsync(length);

 loadOp.Completed = (asyncInfo3, asyncStatus3) =>

 {

 string text = dataReader.ReadString(length);

 dataReader.Dispose();

 // Break string into Title and Text.

 int index = text.IndexOf('\n');

 this.Title = text.Substring(0, index);

 this.Text = text.Substring(index + 1);

 };

 };

 };

#endif

}

}

}

Notice the Dispose calls on the DataWriter and DataReader methods. It might be tempting to
remove these calls under the assumption that the objects are disposed automatically when the objects
go out of scope, but this is not the case. If Dispose is not called, the files remain open,

But the big question is: Why has all this code been moved to the Note
a separate FileHelper class as in the previous version of the program?

return that object to the caller. Look at the Load method here. When that Load method is called in a
Windows Phone program, the localFolder variable is set, and the createOp object is set, but as
soon as the Completed property is set to the asynchronous callback method, the Load method

GetFileAsync

operation is proceeding in the background in a secondary thread. Only later does the Completed
callback method execute for the next step of the job. When the contents of the file are finally read
within these nested callbacks, the contents must be stored somewhere. Fortunately, the code is in the
Note class, so the results can be stored in the Title and Text properties.

In the previous version of this program, the Exists method returned a Boolean to indicate the
existence of a file. That code needs to be moved to the NoteTaker3SapPage class where it has
access to the Button whose IsEnabled property must be set:

using System;

#if !WINDOWS_PHONE

using System.IO;

#else

112

using Windows.Foundation;

using Windows.Storage;

using Windows.Storage.Streams;

#endif

using Xamarin.Forms;

namespace NoteTaker3Sap

{

class NoteTaker3SapPage : ContentPage

{

static readonly string FILENAME = "test.note";

Note note = new Note();

Entry entry;

Editor editor;

Button loadButton;

public NoteTaker3SapPage()

{

 // Create Entry and Editor views.

 entry = new Entry

 {

 Placeholder = "Title (optional)"

 };

 editor = new Editor

 {

 Keyboard = Keyboard.Create(KeyboardFlags.All),

 BackgroundColor = Device.OnPlatform(Color.Default,

 Color.Default,

 Color.White),

 VerticalOptions = LayoutOptions.FillAndExpand

 };

 // Create Save and Load buttons.

 Button saveButton = new Button

 {

 Text = "Save",

 HorizontalOptions = LayoutOptions.CenterAndExpand

 };

 saveButton.Clicked += OnSaveButtonClicked;

 loadButton = new Button

 {

 Text = "Load",

 IsEnabled = false,

 HorizontalOptions = LayoutOptions.CenterAndExpand

 };

 loadButton.Clicked += OnLoadButtonClicked;

 // Check if the file is available.

#if !WINDOWS_PHONE // iOS and Android

113

 string docsPath = Environment.GetFolderPath(Environment.SpecialFolder.Personal);

 string filepath = Path.Combine(docsPath, FILENAME);

 loadButton.IsEnabled = File.Exists(filepath);

#else // Windows Phone

 StorageFolder localFolder = ApplicationData.Current.LocalFolder;

 IAsyncOperation<StorageFile> createOp = localFolder.GetFileAsync(FILENAME);

 createOp.Completed = (asyncInfo, asyncStatus) =>

 {

 loadButton.IsEnabled = asyncStatus != AsyncStatus.Error;

 };

#endif

 // Assemble page.

 this.Padding = new Thickness(10, Device.OnPlatform(20, 0, 0), 10, 0);

 this.Content = new StackLayout

 {

 Children =

 {

 new Label

 {

 Text = "Title:"

 },

 entry,

 new Label

 {

 Text = "Note:"

 },

 editor,

 new StackLayout

 {

 Orientation = StackOrientation.Horizontal,

 Children =

 {

 saveButton,

 loadButton

 }

 }

 }

 };

}

void OnSaveButtonClicked(object sender, EventArgs args)

{

 note.Title = entry.Text;

 note.Text = editor.Text;

 note.Save(FILENAME);

 this.loadButton.IsEnabled = true;

}

114

void OnLoadButtonClicked(object sender, EventArgs args)

{

 note.Load(FILENAME);

 entry.Text = note.Title;

 editor.Text = note.Text;

}

}

}

To set that IsEnabled property of the Load button in the Windows Phone version, the strategy is
to attempt to call GetFileAsync. If that call reports an error in the asynchronous callback, the file
does not exist. (The StorageFile class defines an IsAvailable
Windows Phone.)

Notice that this version of the page class contains a single Note object instantiated as a field and
accessed by both Button event handlers. This makes more sense than creating a new Note object in
each call to the Clicked handlers. In the final version of the program, when a page like this is used for
creating a new note or editing an existing note, the page and the Note object will exist as a tightly-
linked pair one class for the user interface, and another class for the underlying data exposed by the
user interface.

Type some text in the Entry and Editor. Press the Save button. Now erase that text or change it.
Press the Load button. The saved text returns. Great!

Now end the program and start it up again. The Entry and Editor fields are blank but the Load
button is enabled. Excellent! The file still exists. Press the Load
Button is enabled, the file should exist, so where is it? Now press the Load button a second time. Ahh,
there it is!

When you run the program and press the Load button to load a previously created file, the Load
method in Note is called. But that method returns after calling GetFileAsync
read yet, the Title and Text properties of Note OnLoadButton-

Clicked method blithely sets the contents of those Title and Text properties to the Entry and
Editor. The callbacks in the Load method in Note continue to execute until the file is read and the
Title and Text properties are eventually set, so pressing the Load button a second retrieves them.

This problem shows up only when the program starts up, because thereafter the values in the Note
object are always the last values saved to the file.

Method callbacks in the PCL
Can these asynchronous method calls be incorporated in a PCL project that uses the Dependency-
Service to access platform-specific versions of the file I/O logic? Certainly not in the same form as in
the SAP version. The Exists and ReadAllText methods must return values a bool and a string,

115

respectively
values.

But these methods can return values if they return those values in their own callback functions!

IFileHelper interface in the NoteTaker3Pcl project:

using System;

namespace NoteTaker3Pcl

{

public interface IFileHelper

{

void Exists(string filename, Action<bool> completed);

void WriteAllText(string filename, string text, Action completed);

void ReadAllText(string filename, Action<string> completed);

}

}

All three methods now have a return type of void, but they all have a last argument that is a delegate
for a method with (respectively) one Boolean argument, no arguments, and one string argument.

The iOS implementation of this interface is very similar to the previous version except that the
completed method is called to indicate completion and to return any value:

using System;

using System.IO;

using Xamarin.Forms;

[assembly: Dependency(typeof(NoteTaker3Pcl.iOS.FileHelper))]

namespace NoteTaker3Pcl.iOS

{

class FileHelper : IFileHelper

{

public void Exists(string filename, Action<bool> completed)

{

 bool exists = File.Exists(GetFilePath(filename));

 completed(exists);

}

public void WriteAllText(string filename, string text,

 Action completed)

{

 File.WriteAllText(GetFilePath(filename), text);

 completed();

}

public void ReadAllText(string filename, Action<string> completed)

{

 string text = File.ReadAllText(GetFilePath(filename));

 completed(text);

116

}

string GetFilePath(string filename)

{

 string docsPath = Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments);

 return Path.Combine(docsPath, filename);

}

}

}

The Android version is very similar. The Windows Phone version has methods that call the
completed function in the innermost nested asynchronous callback:

using System;

using Windows.Foundation;

using Windows.Storage;

using Windows.Storage.Streams;

using Xamarin.Forms;

[assembly: Dependency(typeof(NoteTaker3Pcl.WinPhone.FileHelper))]

namespace NoteTaker3Pcl.WinPhone

{

class FileHelper : IFileHelper

{

public void Exists(string filename, Action<bool> completed)

{

 StorageFolder localFolder = ApplicationData.Current.LocalFolder;

 IAsyncOperation<StorageFile> createOp = localFolder.GetFileAsync(filename);

 createOp.Completed = (asyncInfo, asyncStatus) =>

 {

 completed(asyncStatus != AsyncStatus.Error);

 };

}

public void WriteAllText(string filename, string text, Action completed)

{

 StorageFolder localFolder = ApplicationData.Current.LocalFolder;

 IAsyncOperation<StorageFile> createOp =

 localFolder.CreateFileAsync(filename,

 CreationCollisionOption.ReplaceExisting);

 createOp.Completed = (asyncInfo1, asyncStatus1) =>

 {

 IStorageFile storageFile = asyncInfo1.GetResults();

 IAsyncOperation<IRandomAccessStream> openOp =

 storageFile.OpenAsync(FileAccessMode.ReadWrite);

 openOp.Completed = (asyncInfo2, asyncStatus2) =>

 {

 IRandomAccessStream stream = asyncInfo2.GetResults();

 DataWriter dataWriter = new DataWriter(stream);

 dataWriter.WriteString(text);

 DataWriterStoreOperation storeOp = dataWriter.StoreAsync();

 storeOp.Completed = (asyncInfo3, asyncStatus3) =>

 {

117

 dataWriter.Dispose();

 completed();

 };

 };

 };

}

public void ReadAllText(string filename, Action<string> completed)

{

 StorageFolder localFolder = ApplicationData.Current.LocalFolder;

 IAsyncOperation<StorageFile> createOp = localFolder.GetFileAsync(filename);

 createOp.Completed = (asyncInfo1, asyncStatus1) =>

 {

 IStorageFile storageFile = asyncInfo1.GetResults();

 IAsyncOperation<IRandomAccessStreamWithContentType> openOp =

 storageFile.OpenReadAsync();

 openOp.Completed = (asyncInfo2, asyncStatus2) =>

 {

 IRandomAccessStream stream = asyncInfo2.GetResults();

 DataReader dataReader = new DataReader(stream);

 uint length = (uint)stream.Size;

 DataReaderLoadOperation loadOp = dataReader.LoadAsync(length);

 loadOp.Completed = (asyncInfo3, asyncStatus3) =>

 {

 string text = dataReader.ReadString(length);

 dataReader.Dispose();

 completed(text);

 };

 };

 };

}

}

}

To hide away the calls to the DependencyService.Get method, another file has been added to
the NoteTaker3Pcl project. This class lets other code in the program use normal-looking static
FileHelper methods:

namespace NoteTaker3Pcl

{

static class FileHelper

{

static IFileHelper fileHelper = DependencyService.Get<IFileHelper>();

public static void Exists(string filename, Action<bool> completed)

{

 fileHelper.Exists(filename, completed);

}

public static void WriteAllText(string filename, string text, Action completed)

{

 fileHelper.WriteAllText(filename, text, completed);

}

118

public static void ReadAllText(string filename, Action<string> completed)

{

 fileHelper.ReadAllText(filename, completed);

}

}

}

Notice that the class also saves the DependencyService object associated with the IFile-
Helper interface in a static field to make the actual calls more efficient. Although this class seems to
implement the IFileHelper interface, it actually does not implement that interface because the class
and methods are all static.

The Note class is now almost as simple as the original version. The only real difference is a Load
method that sets the Title and Text fields in a lambda function passed to the FileHelper.Read-
AllText method:

namespace NoteTaker3Pcl

{

class Note

{

public string Title { set; get; }

public string Text { set; get; }

public void Save(string filename)

{

 string text = this.Title + "\n" + this.Text;

 FileHelper.WriteAllText(filename, text, () => { });

}

public void Load(string filename)

{

 FileHelper.ReadAllText(filename, (string text) =>

 {

 // Break string into Title and Text.

 int index = text.IndexOf('\n');

 this.Title = text.Substring(0, index);

 this.Text = text.Substring(index + 1);

 });

}

}

}

The only difference in the page file is the code to determine if the Load button should be disabled.
The IsEnabled setting occurs in a lambda function passed to the FileHelper.Exists method:

loadButton = new Button

{

Text = "Load",

IsEnabled = false,

HorizontalOptions = LayoutOptions.CenterAndExpand

};

loadButton.Clicked += OnLoadButtonClicked;

119

// Check if the file is available.

FileHelper.Exists(FILENAME, (exists) =>

{

loadButton.IsEnabled = exists;

 });

Does this fix the problem with the first press of the Load button on the Windows Phone? No, it
does not. The OnLoadButtonClicked method is still setting the Entry and Editor to text from
Note class properties before that text has been loaded from the file. To work properly, that code
would need to know when the Note properties were set before transferring them to the Editor and
Entry. Or the page class would need to know when the Title and Text properties of the Note
object changed values.

The basic problem involves the existence of properties that change value without notifying anybody
of the change. Can we do something about this?

Version 4. I will notify you when the property changes

So far, all the versions of the program have contained a class deriving from ContentPage that
displays a user interface allowing a user to enter and edit two pieces of text. These two pieces of text
are also stored in a class named Note. This Note class stores data that underlies the user interface of
the page class.

These two classes are really two sides of the same data one class presents the data for editing by
the user, and the other class handles the more low-level chores, including loading and saving the data
in the file system.

Optimally, at any time, both classes should be dealing with the same data. But this is not the case.
Note class has changed, and the Note

know when the text in the Entry and Editor views has changed.

Keeping user interfaces in synchronization with underlying data is a common problem, and
standard solutions are available to fix that problem. One of the most important is an interface named
INotifyPropertyChanged System.ComponentModel namespace like so:

interface INotifyPropertyChanged

{

event PropertyChangedEventHandler PropertyChanged;

}

The entire interface consists of just one event named PropertyChanged, but this event provides a
simple universal way for a class to notify any other class that might be interested when one of its
properties has changed values.

120

The PropertyChangedEventHandler delegate associated with the PropertyChanged event
incorporates an event argument of PropertyChangedEventArgs. This class defines a public
property of type string named PropertyName that identifies the property being changed.

PropertyName that identifies the property being changed? Yes, it

The following NoteTaker4 program was created with the PCL template, but a Shared Asset Project
could implement these changes as well.

A class such as Note can implement the INotifyPropertyChanged interface by simply
indicating that the class derives from that interface and including a public event of the correct type
and name:

class Note : INotifyPropertyChanged

{

public event PropertyChangedEventHandler PropertyChanged;

}

actually fire the event whenever one of its public properties changes value. The PropertyChanged-
EventArgs object a
property should have been assigned its new value by the time it fires the event.

In the previous versions of the Note class, the properties were defined with implicit backing fields:

public string Title { set; get; }

public string Text { set; get; }

string title, text;

Title property. The Text property is similar:

public string Title

{

set

{

if (title != value)

{

 title = value;

 if (PropertyChanged != null)

 {

 PropertyChanged(this, new PropertyChangedEventArgs("Title"));

 }

}

121

}

get

{

return title;

}

}

This is very standard INotifyPropertyChanged code. The set accessor begins by checking if

new to INotifyPropertyChanged
INotifyPropertyChanged and not INotifyMaybePropertyChangedMaybeNot. In some cases,
failing to check if the property is actually changing can cause infinite recursion.

The set accessor continues by saving the new value in the backing field and only then firing the
event.

Note class:

using System.ComponentModel;

namespace NoteTaker4

{

class Note : INotifyPropertyChanged

{

string title, text;

public event PropertyChangedEventHandler PropertyChanged;

public string Title

{

 set

 {

 if (title != value)

 {

 title = value;

 if (PropertyChanged != null)

 {

 PropertyChanged(this, new PropertyChangedEventArgs("Title"));

 }

 }

 }

 get

 {

 return title;

 }

}

public string Text

{

 set

 {

 if (text != value)

122

 {

 text = value;

 if (PropertyChanged != null)

 {

 PropertyChanged(this, new PropertyChangedEventArgs("Text"));

 }

 }

 }

 get

 {

 return text;

 }

}

public void Save(string filename)

{

 string text = this.Title + "\n" + this.Text;

 FileHelper.WriteAllText(filename, text, () => { });

}

public void Load(string filename)

{

 FileHelper.ReadAllText(filename, (string text) =>

 {

 // Break string into Title and Text.

 int index = text.IndexOf('\n');

 this.Title = text.Substring(0, index);

 this.Text = text.Substring(index + 1);

 });

}

}

}

The various FileHelper classes are the same as those in NoteTaker3Pcl.

The NoteTaker4Page class defines an instance of Note as a field (as in the previous version of the
program), but now the constructor also attaches a handler for the PropertyChanged event now
defined by Note:

note.PropertyChanged += (sender, args) =>

{

switch (args.PropertyName)

{

 case "Title":

 entry.Text = note.Title;

 break;

 case "Text":

 entry.Text = note.Text;

 break;

}

};

123

This could be a named event handler of course, and it could use an if and else rather that a
switch and case to identify the property being changed. It then sets the new value of the property
to the Text property of either the Entry or Editor.

It looks fine, but it still Load
an Unauthorized Acc

not execute in
the same thread as the code that the initiated the operation. Instead, the callback executes in the
background thread that carried out the asynchronous operation.

Load button, the Windows Phone ReadAllText
method executes. When the text is obtained, it calls the completed method but in a secondary thread
of execution. In the Load method in Note, that completed method sets the Title and Text
properties. The new Title property causes a PropertyChanged event to fire, and in that handler
the new Title property is set to the Text property of the Entry view.

Therefore, the Entry view is being accessed from a thread other than the user-interface thread,

Fortunately, the fix for this problem is fairly easy. The Device class has a BeginInvokeOn-
MainThread method with an argument of type Action. Simply enclose the code you want to
execute in the UI thread in the body of that Action switch

and case in that callback:

note.PropertyChanged += (sender, args) =>

{

Device.BeginInvokeOnMainThread(() =>

 {

 switch (args.PropertyName)

 {

 case "Title":

 entry.Text = note.Title;

 break;

 case "Text":

 editor.Text = note.Text;

 break;

 }

 });

};

The Device.BeginInvokeOnMainThread effectively waits until the UI thread gets a time slice from
and then it runs the specified code.

Load just
once and the Entry and Editor
for the Load button but in the PropertyChanged handler when the properties are actually updated
with the values loaded from the file.

124

You can also go the other way and keep the Note class updated with the current values of the
Entry and Editor views. Simply install TextChanged handlers:

entry.TextChanged += (sender, args) =>

{

note.Title = args.NewTextValue;

};

editor.TextChanged += (sender, args) =>

{

note.Text = args.NewTextValue;

};

Wait a minute. Have we messed this up? The PropertyChanged handler is setting the Entry and
Editor text from the Note properties, and now these two TextChanged handlers are setting the
Note properties from the Entry and Editor

No, because Entry, Editor, and Note fire Changed events only when the property is actually
changing. The potentially infinite loop is truncated when the corresponding properties are the same.

Now that the Entry and Editor views are kept consistent with the Note
to set the Note object from the Entry and Editor in the Save handler. Nor do we need to set the
Entry and Editor from the Note object in the Load NoteTaker4-

Page class. Notice that the Entry and Editor instances no longer need to be saved as fields because
Clicked handlers:

class NoteTaker4Page : ContentPage

{

static readonly string FILENAME = "test.note";

Note note = new Note();

Button loadButton;

public NoteTaker4Page()

{

// Create Entry and Editor views.

Entry entry = new Entry

{

 Placeholder = "Title (optional)"

};

Editor editor = new Editor

{

 Keyboard = Keyboard.Create(KeyboardFlags.All),

 BackgroundColor = Device.OnPlatform(Color.Default,

 Color.Default,

 Color.White),

 VerticalOptions = LayoutOptions.FillAndExpand

};

// Create Save and Load buttons.

Button saveButton = new Button

125

{

 Text = "Save",

 HorizontalOptions = LayoutOptions.CenterAndExpand

};

saveButton.Clicked += OnSaveButtonClicked;

loadButton = new Button

{

 Text = "Load",

 IsEnabled = false,

 HorizontalOptions = LayoutOptions.CenterAndExpand

};

loadButton.Clicked += OnLoadButtonClicked;

// Check if the file is available.

FileHelper.Exists(FILENAME, (exists) =>

 {

 loadButton.IsEnabled = exists;

 });

// Handle the Note's PropertyChanged event.

note.PropertyChanged += (sender, args) =>

{

 Device.BeginInvokeOnMainThread(() =>

 {

 switch (args.PropertyName)

 {

 case "Title":

 entry.Text = note.Title;

 break;

 case "Text":

 editor.Text = note.Text;

 break;

 }

 });

};

// Handle the Entry and Editor TextChanged events.

entry.TextChanged += (sender, args) =>

 {

 note.Title = args.NewTextValue;

 };

editor.TextChanged += (sender, args) =>

 {

 note.Text = args.NewTextValue;

 };

// Assemble page.

this.Padding = new Thickness(10, Device.OnPlatform(20, 0, 0), 10, 0);

this.Content = new StackLayout

{

126

 Children =

 {

 new Label

 {

 Text = "Title:"

 },

 entry,

 new Label

 {

 Text = "Note:"

 },

 editor,

 new StackLayout

{

 Orientation = StackOrientation.Horizontal,

 Children =

 {

 saveButton,

 loadButton

 }

 }

 }

};

}

void OnSaveButtonClicked(object sender, EventArgs args)

{

note.Save(FILENAME);

loadButton.IsEnabled = true;

}

void OnLoadButtonClicked(object sender, EventArgs args)

{

note.Load(FILENAME);

}

}

As you test this new version, you might want to restore the phone or simulator to a state where no
file has yet been saved. You can do that simply by uninstalling the application from the phone or
simulator. That uninstall removes all the data stored along with the application as well.

Version 5. Data binding

Xamarin.Forms is mostly about user interfaces, but user interfaces rarely exist in isolation. A case in
point is the application being built in this chapter. This user interface is really a visual representation of
data and the means through which that data is manipulated.

To accommodate such scenarios, .NET and Xamarin.Forms provide some built-in facilities for
smoothing the links between data and user interfaces. The NoteTaker5 program incorporates some of

127

properties of two objects so that changes to one property automatically trigger a change to the other.

Streamlining INotifyPropertyChanged classes
Classes that implement INotifyPropertyChanged usually have rather more changeable properties
than the Note set accessors, if only to avoid
mixing up property and field names, or misspelling the text property name.

One simplification is to encapsulate the actual firing of the event in a protected virtual method:

protected virtual void OnPropertyChanged(string propertyName)

{

if (PropertyChanged != null)

{

PropertyChanged(this, new PropertyChangedEventArgs(propertyName));

}

}

Now the Title property looks like this:

public string Title

{

set

{

if (title != value)

{

 title = value;

 OnPropertyChanged("Title");

}

}

get

{

return title;

}

}

The OnPropertyChanged method is made protected and virtual because you might write an
enhanced Note class that derives from this Note class but includes more properties. The derived class
needs access to this method.

But INotifyPropertyChanged -
mended to obtain the handler first, and then perform the check for null on and the event call on that
same object:

protected virtual void OnPropertyChanged(string propertyName)

{

PropertyChangedEventHandler handler = PropertyChanged;

if (handler != null)

handler(this, new PropertyChangedEventArgs(propertyName));

}

In a multithreaded environment, a PropertyChanged handler might be detached between the null

128

check and the call, and this code prevents a null-reference exception from occurring.

You can go further in streamlining the OnPropertyChanged method. C# 5.0 introduced support
for CallerMemberNameAttribute and some related attributes. This attribute allows you to replace
an optional method argument with the name of the calling method or property.

In the OnPropertyChanged method, make the argument optional by assigning null to it and
precede it with CallerMemberName in square brackets:

protected virtual void OnPropertyChanged([CallerMemberName] string propertyName = null)

{

PropertyChangedEventHandler handler = PropertyChanged;

if (handler != null)

handler(this, new PropertyChangedEventArgs(propertyName));

}

using directive for System.Runtime.CompilerServices for that attribute. Now
the Title property can call OnPropertyChanged with no arguments, and the propertyName

OnPropertyChanged is originating:

public string Title

{

set

{

if (title != value)

{

 title = value;

 OnPropertyChanged();

}

}

get

{

return title;

}

}

This avoids a potentially misspelled text property name, and allows property names to be changed
during program development without worrying about also changing text strings. One of the primary
reasons the CallerMemberName was invented was to simplify classes that implement INotify-
PropertyChanged.

SetProperty (for
example) with the CallerMemberName OnProperty-

Changed:

bool SetProperty<T>(ref T storage, T value, [CallerMemberName] string propertyName = null)

{

if (Object.Equals(storage, value))

return false;

storage = value;

129

OnPropertyChanged(propertyName);

return true;

}

protected virtual void OnPropertyChanged(string propertyName)

{

PropertyChangedEventHandler handler = PropertyChanged;

if (handler != null)

handler(this, new PropertyChangedEventArgs(propertyName));

}

The SetProperty method requires access to the backing field and the new value, but automates
the rest of the process and returns true if the property was changed. (You might need to use this

set accessor.) Now the Title property
looks like this:

public string Title

{

set

{

SetProperty(ref title, value);

}

get

{

return title;

}

}

Although SetProperty is a generic method, the C# compiler can deduce the type from the
arguments. The whole property definition has become so short, you can write the accessors concisely
on single lines without obscuring the operations:

public string Title

{

set { SetProperty(ref title, value); }

get { return title; }

}

Here is the new Note class in the PCL project NoteTaker5:

class Note : INotifyPropertyChanged

{

string title, text;

public event PropertyChangedEventHandler PropertyChanged;

public string Title

{

set { SetProperty(ref title, value); }

get { return title; }

}

public string Text

{

130

set { SetProperty(ref text, value); }

get { return text; }

}

public void Save(string filename)

{

string text = this.Title + "\n" + this.Text;

FileHelper.WriteAllText(filename, text, () => { });

}

public void Load(string filename)

{

FileHelper.ReadAllText(filename, (string text) =>

 {

 // Break string into Title and Text.

 int index = text.IndexOf('\n');

 this.Title = text.Substring(0, index);

 this.Text = text.Substring(index + 1);

 });

}

bool SetProperty<T>(ref T storage, T value, [CallerMemberName] string propertyName = null)

{

if (Object.Equals(storage, value))

 return false;

storage = value;

OnPropertyChanged(propertyName);

return true;

}

protected virtual void OnPropertyChanged(string propertyName)

{

PropertyChangedEventHandler handler = PropertyChanged;

if (handler != null)

 handler(this, new PropertyChangedEventArgs(propertyName));

}

}

This type of streamlining obviously makes much more sense for classes with more than just two
properties, but then it begins making lots of sense.

A peek into BindableObject and bindable properties
INotifyPropertyChanged interface.

asses in Xamarin.Forms including all the
view, layout, and page classes also implement INotifyPropertyChanged. All these classes have a
PropertyChanged event that your applications can use to be notified when properties of these
classes change.

For example, the NoteTaker4 program keeps the Title property of the Note class updated from
the Text property of the Entry view like so:

131

entry.TextChanged += (sender, args) =>

{

note.Title = args.NewTextValue;

};

You can do pretty much the same thing by installing a handler for the PropertyChanged event of
the Entry view and checking for the Text property:

entry.PropertyChanged += (sender, args) =>

{

if (args.PropertyName == "Text")

 note.Title = entry.Text;

};

In a sense, the TextChanged event defined by Entry and Editor is redundant and unnecessary.
It is provided solely for purposes of programmer convenience.

Many of the classes in Xamarin.Forms implement INotifyPropertyChanged automatically
because they derive from a class named BindableObject that implements this interface.
BindableObject also defines a protected virtual method named OnPropertyChanged.

As its name implies, BindableObject is important to the support of data binding in Xamarin.-
Forms, yet the implementation of INotifyPropertyChanged by this class is only part of the story
and, to be honest, the easier part.

BindableObject with some experimentation. In
one of the previous versions of the NoteTaker program, try initializing the Entry view with some text:

entry.Text = "This is some text";

Now when you run the program the Entry is initialized with this text. But now try replacing that
property setting with this method call:

entry.SetValue(Entry.TextProperty, "This is some text");

This works as well. These two statements are functionally identical.

Look at that weird first argument to SetValue Entry.TextProperty,
field of the Entry

read- Entry class something like this:

public static readonly BindableProperty TextProperty;

or a field of a class to be named TextProperty
however, it exists independently of any Entry objects that might or might not exist.

If you look in the documentation of the Entry properties
Text, TextColor, IsPassword, and Placeholder
static read-only fields of type BindableProperty with the names TextProperty, TextColor-
Property, IsPasswordProperty, and PlaceholderProperty.

132

These properties and fields are closely related. Indeed, internal to the Entry class, the Text
property is defined like this:

public string Text

{

set { SetValue(Entry.TextProperty, value); }

get { return (string)GetValue(Entry.TextProperty); }

}

So you see why it is that your application calling SetValue on Entry.TextProperty is exactly
equivalent to setting the Text property and perhaps just a tinier bit faster!

The internal definition of the Text property in Entry is standard code.
The SetValue and GetValue methods are defined by BindableObject, the same class that
implements INotifyPropertyChanged for many Xamarin.Forms classes. All the real work involved
with maintaining the Text property is going on in these SetValue and GetValue calls. Casting is
required for the GetValue object.

The static Entry.TextProperty object is of type BindableProperty, which you might
correctly surmise is a class related to BindableObject s important to keep them distinct in
your mind: BindableObject is the class from which many Xamarin.Forms classes derive and that
provides support for objects of type BindableProperty.

The BindableProperty objects effectively extend the functionality of standard C# properties.
Bindable properties provide systematic ways to:

Define properties

Give properties default values

Store their current values

Provide mechanisms for validating property values

Maintain consistency among related properties in a single class

Respond to property changes

Trigger notifications when a property is about to change and has changed

In addition, BindableObject and BindableProperty provide mechanisms for animation and
data binding. They are a vital part of the infrastructure of Xamarin.Florms.

The close relationship of a property named Text with a BindableProperty named Text-
Property is reflected in the way that programmers speak about these properties: Sometimes a
programmer says that the Text BindableProperty named TextProp-
erty because TextProperty provides infrastructure support for the Text property. But a common
shortcut is to say that Text

Not every Xamarin.Forms property is a bindable property. Neither the Content property of

133

ContentPage nor the Children property of Layout<T> (from which StackLayout derives) is a
bindable property. Sometimes changes to nonbindable properties result in the PropertyChanged

PropertyChanged event is only guaranteed for
bindable properties.

Automated data bindings
le to install event handlers on the Entry and Editor to determine when the

Text property changes, and to use that occasion to set the Title and Text properties of the Note
class. Similarly, you can use the PropertyChanged event of the Note class to keep the Entry and
Editor updated.

In other words, the NoteTaker4 program has paired up objects and properties so that they track

It turns out that tasks like this are very common, and this is why Xamarin.Forms allows such tasks to
be automated with a technique called data binding.

Data bindings involve a source and a target. The source is the object and property that changes,
and the target is the object and property that is changed as a result.
Although the distinction between target and source is clearly defined in any particular data binding,
sometimes the properties affect each other in different ways: Sometimes the target causes the source
to be updated, and sometimes the source and target update each other.

The data binding mechanism in Xamarin.Forms uses the PropertyChanged event to determine
when a source property has changed. Therefore, a source property used in a data binding must be part
of a class that implements INotifyPropertyChanged (either directly or through inheritance), and
the class must fire a PropertyChanged event when that property changes. (Actually this is not
entirely true: If the source property never changes, a PropertyChanged event is not required for the

The target property of a data binding must be backed by a BindableProperty
requirement is imposed by the programming interface for data bindings. You cannot set a data
binding without referencing a BindableProperty object!

In the NoteTaker5 program, the Text properties of Entry and Editor are the binding targets
because they are backed by bindable properties named TextProperty. The Title and Text
properties of the Note class are the binding sources. The Note class implements INotifyProperty-
0Changed so PropertyChanged events are fired when these source properties changes.

You can define a data binding to keep a target property updated with the value of a source
property with two statements: The first statement associates the two objects by setting the
BindingContext property of the target object to the source object. In thi
the Note class:

134

entry.BindingContext = note;

The second statement makes use of a SetBinding method on the target. These SetBinding calls
come in several different forms. BindableObject itself defines one SetBinding method, and the
BindableObjectExtensions class defines two SetBinding
simplest:

entry.SetBinding(Entry.TextProperty, "Title");

Text

property of Entry Title property specified here as a text
string is assumed to be a property of whichever object has been defined as the BindingContext of the
Entry object, which in this case is a Note object.

Similarly, you can set a data binding for the Editor:

editor.BindingContext = note;

editor.SetBinding(Editor.TextProperty, "Text");

The first argument of SetBinding must be a BindableProperty object defined by the target
class (Editor in this case) or inherited by the target class.

Part of the infrastructure that BindableProperty provides is a default binding mode that defines
the relationship between the source and the target. The BindingMode enumeration has four
members:

Default

OneWay source updates target, the normal case

OneWayToSource source updates target

TwoWay source and target update each other

 For the TextProperty objects defined by Entry and Editor, the default binding mode is
BindingMode.TwoWay. This means that these four statements actually define a two-way data
binding: Any change to the Title property of the Note object is reflected in the Text property of
the Entry, and vice versa, and the same goes for the Editor.

The NoteTaker4 program included three event handlers the PropertyChanged handler for the
Note class and the TextChanged handlers for the Entry and Editor to keep these pairs of
properties in synchronization. Those three event handlers are no longer required if they are replaced

entry.BindingContext = note;

entry.SetBinding(Entry.TextProperty, "Title");

editor.BindingContext = note;

editor.SetBinding(Editor.TextProperty, "Text");

135

Internally, these four statements result in similar -binding
mechanism works.

The BindingContext property has a very special characteristic. It is very likely that more than one
data binding on a page has the same BindingContext. That is true for this little example. For this
reason, the BindingContext property is propagated through the visual tree of a page. In other
words, if you set the BindingContext on a page, it will propagate to all the views on that page
except for those views that have their own BindingContext properties set to something else. You
can set BindingContext on a StackLayout and it will propagate to all the children (and other
descendants) of that StackLayout. The two BindingContext settings shown above can be
replaced with one set on the page itself:

this.BindingContext = note;

These automated data bindings are part of the NoteTaker5Page class. Also, the handlers for the
Load and Save buttons have become lambda functions, all the variables have been moved to the
constructor, and the code is looking quite sleek at this point:

class NoteTaker5Page : ContentPage

{

static readonly string FILENAME = "test.note";

public NoteTaker5Page()

{

// Create Entry and Editor views.

Entry entry = new Entry

{

 Placeholder = "Title (optional)"

};

Editor editor = new Editor

{

 Keyboard = Keyboard.Create(KeyboardFlags.All),

 BackgroundColor = Device.OnPlatform(Color.Default,

 Color.Default,

 Color.White),

 VerticalOptions = LayoutOptions.FillAndExpand

};

// Set data bindings.

Note note = new Note();

this.BindingContext = note;

entry.SetBinding(Entry.TextProperty, "Title");

editor.SetBinding(Editor.TextProperty, "Text");

// Create Save and Load buttons.

Button saveButton = new Button

{

 Text = "Save",

 HorizontalOptions = LayoutOptions.CenterAndExpand

136

};

Button loadButton = new Button

{

 Text = "Load",

 IsEnabled = false,

 HorizontalOptions = LayoutOptions.CenterAndExpand

};

// Set Clicked handlers.

saveButton.Clicked += (sender, args) =>

 {

 note.Save(FILENAME);

 loadButton.IsEnabled = true;

 };

loadButton.Clicked += (sender, args) => note.Load(FILENAME);

// Check if the file is available.

FileHelper.Exists(FILENAME, (exists) =>

 {

 loadButton.IsEnabled = exists;

 });

// Assemble page.

this.Padding = new Thickness(10, Device.OnPlatform(20, 0, 0), 10, 0);

this.Content = new StackLayout

{

 Children =

 {

 new Label

 {

 Text = "Title:"

 },

 entry,

 new Label

 {

 Text = "Note:"

 },

 editor,

 new StackLayout

 {

 Orientation = StackOrientation.Horizontal,

 Children =

 {

 saveButton,

 loadButton

 }

 }

 }

};

}

}

137

the problem of the PropertyChanged event in the Note class being fired from a secondary thread.
t that.

Eventually, the final NoteTaker Note object. It will have
a whole collection of Note objects. With these data bindings in place, you can view and edit any one
of these Note objects by setting it to the BindingContext
chapter.

that enables the Load button based on the FileHelper.Exists call. Perhaps solving that problem
will simplify some other parts of the program as well.

Version 6. Awaiting results

different order than you anticipated and some thought is required to figure out w
Asynchronous programming will likely never be quite as simple as single-threaded coding, but some of
the difficulty in working with asynchronous operations has been alleviated with C# 5.0, released in
2012. C# 5.0 introduced a revolutionary change in the way that programmers deal with asynchronous
operations. This change consists of a keyword named async and an operator named await.

The async keyword is mostly for purposes of backward compatibility. The await operator is the
big one. It allows programmers to work with asynchronous functions almost as if they were relatively
normal imperative programming statements without callback methods.

8 program. You have a method in your program that calls an asynchronous method in the operating
system and sets a Completed handler implemented as a separate method. The comments indicate
some other code that might appear in the method:

void SomeMethod()

{

 // Often some initialization code

// Some additional code

asyncOp.Completed = MyCompletedHandler;

// And perhaps still more code

}

The statement that sets the Completed property returns quickly while the actual asynchronous
operation goes on in the background. All the code in SomeMethod will execute before the callback

Completed handler might look like if you chose to ignore
cancellations or errors encountered in the background process:

void MyCompletedHandler(IAsyncOperation<SomeType> op, AsyncStatus status)

138

{

SomeType myResult = op.GetResults();

// Code using the result of the asynchronous operation

}

The handler can also be written as a lambda function.

void SomeMethod()

{

// Often some initialization code

// Some additional code

asyncOp.Completed = (op, status) =>

{

SomeType myResult = op.GetResults();

// Code using the result of the asynchronous operation

 };

// And perhaps still more code

}

SomeMethod will return before the code in the Completed handler executes. The order that the code
appears in the method is not the same order that the code executes, and this is one reason why using
lambda functions for asynchronous operations can sometimes be a bit confusing.

SomeMethod can be rewritten using the await operator:

async void SomeMethod()

{

// Often some initialization code

// Some additional code

// And perhaps still more code

SomeType myResult = await asyncOp;

// Code using the result of the asynchronous operation

}

Notice that SomeMethod now includes the async modifier. This is required for backward
compatibility. In versions of C# prior to 5.0, await was not a keyword so it could be used as a variable
name. To prevent C# 5.0 from breaking that code, the async modifier is required to indicate a method
that includes await.

The Completed
everything to the left of the await operator, and everything below the statement containing the
await operator.

The C# compiler performs the magic. The compiler recognizes IAsyncOperation as encapsula-
ting an asynchronous method call and basically turns SomeMethod into a state machine. The method
executes normally up until the await operator, and then the method returns. At this point, the
background process is running and other code in the program can run as well. When the background
process is completed, execution of the method resumes with the assignment to the myResult

139

variable.

ent to the IAsyncOperation object and
just get the result:

async void SomeMethod()

{

// Often some initialization code

// Code using the result of the asynchronous operation

}

This is how await is customarily used as an operator between a method that runs asynchronously
and the assignment statement to save the result.

await

SomeMethod method returns and the processor is free to run other code. Only when the asynchro-
nous operation has completed does the code in SomeMethod resume execution where it left off.

results are normal: The Windows Phone version of the Exists method uses an error reported in the
Completed handler to determine if the file exists or not. So how are errors handled with await?

If you use await with an asynchronous operation that encounters an error or is cancelled, await
throws an exception. If you need to handle errors or cancellations, you can put the await operator in
a try and catch block, looking something like this:

SomeType myresult = null;

try

{

}

catch (OperationCanceledException)

{

// handle a cancellation

}

catch (Exception exc)

{

// handle an error

}

await in ReadAll-

Text method in NoteTaker5:

public void ReadAllText(string filename, Action<string> completed)

{

StorageFolder localFolder = ApplicationData.Current.LocalFolder;

IAsyncOperation<StorageFile> createOp = localFolder.GetFileAsync(filename);

createOp.Completed = (asyncInfo1, asyncStatus1) =>

{

140

IStorageFile storageFile = asyncInfo1.GetResults();

IAsyncOperation<IRandomAccessStreamWithContentType> openOp =

 storageFile.OpenReadAsync();

openOp.Completed = (asyncInfo2, asyncStatus2) =>

{

 IRandomAccessStream stream = asyncInfo2.GetResults();

 DataReader dataReader = new DataReader(stream);

 uint length = (uint)stream.Size;

 DataReaderLoadOperation loadOp = dataReader.LoadAsync(length);

 loadOp.Completed = (asyncInfo3, asyncStatus3) =>

 {

 string text = dataReader.ReadString(length);

 dataReader.Dispose();

 completed(text);

 };

};

};

}

This has three nested Completed handlers. Because the method returns before even the first
Completed handler executes, it is not possible to return the contents of the file from the method. The
file contents must instead be returned through a function passed to the method.

await:

public async void ReadAllText(string filename, Action<string> completed)

{

StorageFolder localFolder = ApplicationData.Current.LocalFolder;

IStorageFile storageFile = await localFolder.GetFileAsync(filename);

IRandomAccessStream stream = await storageFile.OpenReadAsync();

DataReader dataReader = new DataReader(stream);

uint length = (uint)stream.Size;

await dataReader.LoadAsync(length);

string text = dataReader.ReadString(length);

dataReader.Dispose();

completed(text);

}

Notice the async modifier on the method. The async modifier does not change the signature of
the method, so this method is still considered a proper implementation of the ReadAllText method
in the IFileHelper interface.

The await operator appears three times; the first two times on methods that return an object and
the third time on the LoadAsync method that just performs an operation without returning anything.

Behind the scenes, the C# compiler divides this method into four chunks of execution. The method
returns to the caller (the Note class) at the first await operator and then resumes when the
GetFileAsync method has completed, leaving again at the next await, and so on.

ReadAllText method to execute sequentially from start to finish. If
the asynchronous methods complete their operations before the await operator is evaluated,
execution just continues as if it were a normal function call. This is a performance optimization that

141

often plays a role in the relatively fast solid state file I/O on mobile devices.

 this ReadAllText method a bit. The DataReader class implements the
IDisposable interface and includes a Dispose method. Failing to call Dispose can leave the file
open. Calling Dispose also closes the IRandomAccessStream on which the DataReader is based.
IRandomAccessStream also implements IDisposable.

IDisposable objects in using blocks. This ensures that the Dispose
method is automatically called even if an exception is thrown inside the block. A better
implementation of ReadAllText is this:

public async void ReadAllText(string filename, Action<string> completed)

{

StorageFolder localFolder = ApplicationData.Current.LocalFolder;

IStorageFile storageFile = await localFolder.GetFileAsync(filename);

using (IRandomAccessStream stream = await storageFile.OpenReadAsync())

{

using (DataReader dataReader = new DataReader(stream))

{

 uint length = (uint)stream.Size;

 await dataReader.LoadAsync(length);

 string text = dataReader.ReadString(length);

 completed(text);

}

}

}

Now the explicit call to Dispose is not required.

Of course, we still have the annoyance of passing a callback function to the ReadAllText method.
ive? If the method actually returns to the caller at the first await operator, how

can the method return the text contents of the file? Trust the C# compiler. If it can implement await,
surely it can also allow you to create your own asynchronous methods.

ReadAllText with a method named ReadTextAsync. The new name reflects the
fact that this method is itself asynchronous and can be called with the await operator to return a
string with the contents of the file.

To do this, the ReadTextAsync method needs to return a Task object. The Task class is defined
in System.Threading.Tasks and is the standard .NET representation of an asynchronous
operation. The Task class is quite extensive, but only a little bit of it is necessary in this context. The
System.Threading.Tasks namespace actually defines two Task classes:

Task for asynchronous methods that return nothing

Task<TResult> for asynchronous methods that return an object of type TResult.

These are the .NET equivalences of the Windows 8 IAsyncAction and IAsyncOperation-
<TResult> interfaces, and there are extension methods that convert the Task objects to
IAsyncAction and IAsyncOperation<TResult> objects.

142

Instead of returning void, this new method can return Task<string>. The callback argument

public async Task<string> ReadTextAsync(string filename)

{

StorageFolder localFolder = ApplicationData.Current.LocalFolder;

IStorageFile storageFile = await localFolder.GetFileAsync(filename);

using (IRandomAccessStream stream = await storageFile.OpenReadAsync())

{

using (DataReader dataReader = new DataReader(stream))

{

 uint length = (uint)stream.Size;

 await dataReader.LoadAsync(length);

 return dataReader.ReadString(length);

}

}

}

The compiler handles the rest. The return statement seems to return a string object, which is the
return value of the ReadString method, but the C# compiler automatically wraps that value in a
Task<string> object actually returned from the method at the execution of the first await
operator.

This ReadTextAsync method can now be called using an await operator.

Of course, redefining the method signature of these file I/O functions has an impact throughout the
program. If we want to continue to use DependencyService to call platform-independent
methods and that is highly desirable the iOS and Android methods should have the same signature.
This means that the NoteTaker6 version of IFileHelper consists of these three asynchronous
methods:

using System.Threading.Tasks;

namespace NoteTaker6

{

public interface IFileHelper

{

Task<bool> ExistsAsync(string filename);

Task WriteTextAsync(string filename, string text);

Task<string> ReadTextAsync(string filename);

}

}

There are no longer any callback functions in the methods. The Task object has its own callback
mechanism.

FileHelper implementation of
IFileHelper:

using System;

143

using System.Threading.Tasks;

using Windows.Storage;

using Windows.Storage.Streams;

using Xamarin.Forms;

[assembly: Dependency(typeof(NoteTaker6.WinPhone.FileHelper))]

namespace NoteTaker6.WinPhone

{

class FileHelper : IFileHelper

{

public async Task<bool> ExistsAsync(string filename)

{

 StorageFolder localFolder = ApplicationData.Current.LocalFolder;

 try

 {

 await localFolder.GetFileAsync(filename);

 }

 catch

 {

 return false;

 }

 return true;

}

public async Task WriteTextAsync(string filename, string text)

{

 StorageFolder localFolder = ApplicationData.Current.LocalFolder;

 IStorageFile storageFile =

 await localFolder.CreateFileAsync(filename,

 CreationCollisionOption.ReplaceExisting);

 using (IRandomAccessStream stream =

 await storageFile.OpenAsync(FileAccessMode.ReadWrite))

 {

 using (DataWriter dataWriter = new DataWriter(stream))

 {

 dataWriter.WriteString(text);

 await dataWriter.StoreAsync();

 }

 }

}

public async Task<string> ReadTextAsync(string filename)

{

 StorageFolder localFolder = ApplicationData.Current.LocalFolder;

 IStorageFile storageFile = await localFolder.GetFileAsync(filename);

 using (IRandomAccessStream stream = await storageFile.OpenReadAsync())

 {

 using (DataReader dataReader = new DataReader(stream))

 {

 uint length = (uint)stream.Size;

 await dataReader.LoadAsync(length);

144

 return dataReader.ReadString(length);

 }

 }

}

}

}

Notice the use of the try and catch block on the await operation in the ExistsAsync method.

The WriteTextAsync
Task return statement. A method that returns
Task<TResult> needs a return statement with a TResult object. In either case, all the
asynchronous calls in the method should be preceded with await. (There are alternatives but they are
somewhat more complicated. Asynchronous methods without any await operators can also be
ha

For the iOS and Android versions, the methods now need to return Task and Task<TResult>

switch to using asynchronous file I/O, at least in part. Many of the I/O methods in System.IO have
WriteTextAsync and ReadText-

Async methods:

using System;

using System.IO;

using System.Threading.Tasks;

using Xamarin.Forms;

[assembly: Dependency(typeof(NoteTaker6.iOS.FileHelper))]

namespace NoteTaker6.iOS

{

class FileHelper : IFileHelper

{

public Task<bool> ExistsAsync(string filename)

{

 string filepath = GetFilePath(filename);

 bool exists = File.Exists(filepath);

 return Task<bool>.FromResult(exists);

}

public async Task WriteTextAsync(string filename, string text)

{

 string filepath = GetFilePath(filename);

 using (StreamWriter writer = File.CreateText(filepath))

 {

 await writer.WriteAsync(text);

 }

}

public async Task<string> ReadTextAsync(string filename)

{

 string filepath = GetFilePath(filename);

145

 using (StreamReader reader = File.OpenText(filepath))

 {

 return await reader.ReadToEndAsync();

 }

}

string GetFilePath(string filename)

{

 string docsPath = Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments);

 return Path.Combine(docsPath, filename);

}

}

}

However, there is no asynchronous version of the File.Exists method, so a Task<bool> is simply
constructed from the result using the static FromResult method.

The Android implementation of FileHelper is the same as the iOS version. The PCL project in
NoteTaker6 has a new static FileHelper method that caches the IFileHelper object and hides
all the DependencyService calls:

using System.Threading.Tasks;

using Xamarin.Forms;

namespace NoteTaker6

{

static class FileHelper

{

static IFileHelper fileHelper = DependencyService.Get<IFileHelper>();

public static Task<bool> ExistsAsync(string filename)

{

 return fileHelper.ExistsAsync(filename);

}

public static Task WriteTextAsync(string filename, string text)

{

 return fileHelper.WriteTextAsync(filename, text);

}

public static Task<string> ReadTextAsync(string filename)

{

 return fileHelper.ReadTextAsync(filename);

}

}

}

 These methods simply return the same return values as the underlying asynchronous methods.

The Note class is mostly the same as before, but the Save and Load methods are now SaveAsync
and LoadAsync:

using System;

using System.ComponentModel;

146

using System.Runtime.CompilerServices;

using System.Threading.Tasks;

namespace NoteTaker6

{

class Note : INotifyPropertyChanged

{

public Task SaveAsync(string filename)

{

 string text = this.Title + "\n" + this.Text;

 return FileHelper.WriteTextAsync(filename, text);

}

public async Task LoadAsync(string filename)

{

 string text = await FileHelper.ReadTextAsync(filename);

 // Break string into Title and Text.

 int index = text.IndexOf('\n');

 this.Title = text.Substring(0, index);

 this.Text = text.Substring(index + 1);

}

}

}

Neither of these methods returns a value, but because they are asynchronous, the methods return a
Task object that can be awaited. There are a couple ways to deal with such methods. The SaveAsync
method simply returns the return value from FileHelper.WriteTextAsync, which is also a Task
object. The LoadAsync method has no return statement, although it could surely end with an
empty return statement. The SaveAsync method could have an implicit empty return statement
but the WriteTextAsync call would have to be preceded with await, and because of the existence
of that await operator, the method would need an async modifier:

public async Task SaveAsync(string filename)

{

string text = this.Title + "\n" + this.Text;

await FileHelper.WriteTextAsync(filename, text);

}

These new function definitions require changes to the code in the NoteTaker6Page constructor
as well, and you have a couple choices. You can define the Clicked handler for the Load button like
so:

loadButton.Clicked += (sender, args) =>

{

note.LoadAsync(FILENAME);

};

147

await operator. But
Clicked handler calls LoadAsync but

Clicked handler returns back to the button that fired the event
before the file has been loaded.

You can use await in a lambda function but you must precede the argument list with the async
modifier:

loadButton.Clicked += async (sender, args) =>

{

await note.LoadAsync(FILENAME);

};

For the Save Load button until the save operation
await in there:

saveButton.Clicked += async (sender, args) =>

{

await note.SaveAsync(FILENAME);

loadButton.IsEnabled = true;

};

Actually, if you start thinking about asynchronous file I/O, you might start getting nervous and
justifiably so. For example, what if you press the Save button and, while the file is still in the process of
being saved, you press the Load button? Will an exception result? Will you only load half the file

-interface level. If you want to prohibit a button
ttons

from interfering with each other or with themselves:

saveButton.Clicked += async (sender, args) =>

{

saveButton.IsEnabled = false;

loadButton.IsEnabled = false;

await note.SaveAsync(FILENAME);

saveButton.IsEnabled = true;

loadButton.IsEnabled = true;

};

loadButton.Clicked += async (sender, args) =>

{

saveButton.IsEnabled = false;

loadButton.IsEnabled = false;

await note.LoadAsync(FILENAME);

saveButton.IsEnabled = true;

loadButton.IsEnabled = true;

};

-state memory, but it
never hurts to be too careful.

148

Load button must be initially disabled if the file doe await

operator is a full-fledged C# operator, so you should be able to do something like this:

Button loadButton = new Button

{

Text = "Load",

IsEnabled = await FileHelper.ExistsAsync(FILENAME),

HorizontalOptions = LayoutOptions.CenterAndExpand

};

Yes, this works!

async

modifier and the async
restriction. You can put all the initialization code in a method named Initialize with the async
modifier and then call it from the constructor:

public NoteTaker6Page()

{

Initialize();

}

async void Initialize()

{

}

The Initialize method will execute up to the point of the await operator and then return back
to the constructor, which will then return back to the code that instantiated the class. The remainder of
the Initialize method continues after the ExistsAsync method returns a value and the
IsEnabled property is set.

But in the general case, do you want a good chunk of your page initialization to be delayed until a
single property is set that has no other effect on the page? Probably not.

Even with the availability of await, there are times when it makes sense to devote a completed
handler to a chore. When an asynchronous method returns a Task object, the syntax is a little different
for specifying a completed handler, but here it is:

FileHelper.ExistsAsync(FILENAME).ContinueWith((task) =>

{

loadButton.IsEnabled = task.Result;

});

NoteTaker6Page class:

class NoteTaker6Page : ContentPage

{

static readonly string FILENAME = "test.note";

public NoteTaker6Page()

{

149

// Create Entry and Editor views.

Entry entry = new Entry

{

 Placeholder = "Title (optional)"

};

Editor editor = new Editor

{

 Keyboard = Keyboard.Create(KeyboardFlags.All),

 BackgroundColor = Device.OnPlatform(Color.Default,

 Color.Default,

 Color.White),

 VerticalOptions = LayoutOptions.FillAndExpand

};

// Set data bindings.

Note note = new Note();

this.BindingContext = note;

entry.SetBinding(Entry.TextProperty, "Title");

editor.SetBinding(Editor.TextProperty, "Text");

// Create Save and Load buttons.

Button saveButton = new Button

{

 Text = "Save",

 HorizontalOptions = LayoutOptions.CenterAndExpand

};

Button loadButton = new Button

{

 Text = "Load",

 IsEnabled = false,

 HorizontalOptions = LayoutOptions.CenterAndExpand

};

// Set Clicked handlers.

saveButton.Clicked += async (sender, args) =>

 {

 saveButton.IsEnabled = false;

 loadButton.IsEnabled = false;

 await note.SaveAsync(FILENAME);

 saveButton.IsEnabled = true;

 loadButton.IsEnabled = true;

 };

loadButton.Clicked += async (sender, args) =>

 {

 saveButton.IsEnabled = false;

 loadButton.IsEnabled = false;

 await note.LoadAsync(FILENAME);

 saveButton.IsEnabled = true;

 loadButton.IsEnabled = true;

 };

150

// Check if the file is available.

FileHelper.ExistsAsync(FILENAME).ContinueWith((task) =>

 {

 loadButton.IsEnabled = task.Result;

 });

// Assemble page.

this.Padding = new Thickness(10, Device.OnPlatform(20, 0, 0), 10, 0);

this.Content = new StackLayout

{

 Children =

 {

 new Label

 {

 Text = "Title:"

 },

 entry,

 new Label

 {

 Text = "Note:"

 },

 editor,

 new StackLayout

 {

 Orientation = StackOrientation.Horizontal,

 Children =

 {

 saveButton,

 loadButton

 }

 }

 }

};

}

}

With no error handling, the program is implicitly assuming that there will be no problems
encountered when loading and saving files. Error handling can be implemented by enclosing any
asynchronous method call with await in a try and catch block. If you want to deal with errors

Note class. If you need to
display an alert to the user, it makes more sense to perform the check in the ContentPage derivative.

Much of the infrastructure is in place for storing and retrieving a single note. We are now ready to save
and retrieve multiple notes and display them in a scrollable list for reference or editing.

	Table of contents
	Introduction
	Chapter 3: Building an app: Infrastructure

