
Exam Ref
Tejada

Bustamante
Ellis

Zoiner Tejada
Michele Leroux Bustamante

Ike Ellis

About the Exam
Exam 70-532 focuses on the skills and
knowledge needed to develop Microsoft
Azure solutions that include websites,
virtual machines, cloud services, stor-
age, application services, and network
services.

About Microsoft
Certification
Passing this exam earns you a Microsoft
Specialist certification in Microsoft Azure,
demonstrating your expertise with the
Microsoft Azure enterprise-grade cloud
platform.

You can earn this certification by pass-
ing Exam 70-532, Developing Microsoft
Azure Solutions; or Exam 70-533, Imple-
menting Microsoft Azure Infrastructure
Solutions; or Exam 70-534, Architecting
Microsoft Azure Solutions.

See full details at:
microsoft.com/learning

About the Authors
Zoiner Tejada, cofounder and CEO of
Solliance, is a Microsoft Azure MVP who
has been awarded Microsoft Azure Elite
and Microsoft Azure Insider status.

Michele Leroux Bustamante, cofounder
and CIO of Solliance, is a Microsoft
Azure MVP and Microsoft Regional
Director with Microsoft Azure Elite and
Microsoft Azure Insider status.

Ike Ellis, Solliance data and cloud
architect, is a Microsoft Azure Insider
and Microsoft SQL Server MVP.

Prepare for Microsoft Exam 70-532—and help demonstrate your
real-world mastery of Microsoft Azure solution development.
Designed for experienced developers ready to advance their status,
Exam Ref focuses on the critical-thinking and decision-making
acumen needed for success at the Microsoft Specialist level.

Focus on the expertise measured by these
objectives:
•	 Design and implement Websites
•	 Create and manage Virtual Machines
•	 Design and implement Cloud Services
•	 Design and implement a storage strategy
•	 Manage application and network services

This Microsoft Exam Ref:
•	 Organizes its coverage by exam objectives
•	 Features strategic, what-if scenarios to challenge you
•	� Will be valuable for Microsoft Azure developers, solution

architects, DevOps engineers, and QA engineers
•	� Assumes you have experience designing, programming, imple-

menting, automating, and monitoring Microsoft Azure solutions
and that you are proficient with tools, techniques, and approaches
for building scalable, resilient solutions

Developing Microsoft
Azure Solutions

D
eveloping M

icrosoft
Azure Solutions

Exam
 Ref

70-532

Exam Ref 70-532

70 532
microsoft.com/mspress

Certification/Microsoft Azure/Visual Studio

ISBN 978-0-7356-9704-1

9 7 8 0 7 3 5 6 9 7 0 4 1

5 3 9 9 9

U.S.A.	 $39.99
Canada 	$45.99

[Recommended]

Developing
Microsoft Azure
Solutions

Exam Ref 70-532
Developing Microsoft
Azure Solutions

Zoiner Tejada
Michele Leroux Bustamante
Ike Ellis

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2015 by Zoiner Tejada and Michele Leroux Bustamante

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2014951860
ISBN: 978-0-7356-9704-1

Printed and bound in the United States of America.

First Printing

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/en-us/legal/intellectualproperty/Trademarks/
EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of their respective
owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions Editor: Karen Szall
Developmental Editor: Karen Szall
Editorial Production: Box Twelve Communications
Technical Reviewer: Magnus Märtensson; Technical Review services provided by Content Master, a member
of CM Group, Ltd.
Cover: Twist Creative • Seattle

http://www.microsoft.com/learning/booksurvey
http://www.microsoft.com/en-us/legal/intellectualproperty/Trademarks/EN-US.aspx
http://www.microsoft.com/en-us/legal/intellectualproperty/Trademarks/EN-US.aspx

iii

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Contents

Introduction	 xi
Microsoft certifications	 xi

Acknowledgments	 xii

Free ebooks from Microsoft Press	 xiii

Errata, updates, & book support	 xiii

We want to hear from you	 xiii

Stay in touch	 xiii

Preparing for the exam	 xiv

Chapter 1	 Design and implement websites	 1
Objective 1.1: Deploy websites. 2

Defining deployment slots	 2

Rolling back deployments	 7

Creating hosting plans	 7

Migrating websites between hosting plans	 10

Creating a website within a hosting plan	 12

Objective summary	 13

Objective review	 13

Objective 1.2: Configure websites. 13

Defining and using app settings	 14

Defining and using connection strings	 16

Defining and using request handler mappings	 18

Defining and using virtual directories and virtual applications	 20

Configure custom domains	 22

Configuring certificates	 26

Configuring SSL bindings 	 32

http://www.microsoft.com/learning/booksurvey/

iv Contents

Managing websites by using the API, Windows PowerShell,
and the Cross-Platform Command Line Interface (xplat-cli)	 33

Objective summary	 34

Objective review	 35

Objective 1.3: Configure diagnostics, monitoring, and analytics. 35

Retrieving diagnostics data and viewing streaming logs	 36

Configuring diagnostics	 43

Using remote debugging	 45

Configuring endpoint monitoring	 46

Configuring alerts	 48

Monitoring website resources	 51

Objective summary	 54

Objective review	 54

Objective 1.4: Implement WebJobs. 55

Writing WebJobs using the SDK	 55

Packaging and deploying WebJobs	 58

Scheduling WebJobs	 60

Objective summary	 61

Objective review	 61

Objective 1.5: Configure websites for scale and resilience 62

Configuring auto-scale using built-in and custom schedules	 63

Configuring auto-scale by metric	 64

Changing the size of an instance	 68

Configuring Traffic Manager	 69

Objective summary	 73

Objective review	 73

Objective 1.6: Design and implement applications for scale
and resilience. 74

Selecting a pattern	 75

Implementing transient fault handling for services and
responding to throttling	 79

Disabling Application Request Routing (ARR) affinity	 82

Objective summary	 83

Objective review	 83

Answers. 84

vContents

Chapter 2	 Create and manage virtual machines	 91
Objective 2.1: Deploy workloads on Azure virtual machines. 91

Identifying supported workloads	 92

Creating a VM	 93

Objective summary	 96

Objective review	 96

Objective 2.2: Create and manage a VM image or virtual hard disk. 97

Creating specialized and generalized VM images	 97

Uploading VHDs to Azure	 99

Creating disks	 100

Creating a VM using existing disks	 101

Generalizing a VM	 103

Creating or capturing a VM image	 103

Instantiating a VM instance from a VM image	 105

Copying images between storage accounts	 106

Objective summary	 107

Objective review	 107

Objective 2.3: Perform configuration management. 108

VM Agent and VM extensions	 108

Configuring VMs with Custom Script Extension	 109

Using PowerShell DSC 	 110

Configuring VMs with DSC	 112

Using the Puppet and Chef configuration management tools	 114

Enabling Puppet extensions	 114

Enabling Chef extensions	 119

Enabling remote debugging	 122

Objective summary	 122

Objective review	 123

Objective 2.4: Configure VM networking. 124

Configuring DNS at the cloud service level	 124

Configuring endpoints with instance-level public IP addresses	 124

Configuring endpoints with reserved IP addresses	 126

Configuring access control lists	 127

Load balancing endpoints and configuring health probes	 128

Configuring Direct Server Return and keep-alive	 132

vi Contents

Leveraging name resolution within a cloud service	 133

Configuring firewall rules	 133

Objective summary	 135

Objective review	 136

Objective 2.5: Scale VMs. 136

Scaling up and scaling down VM sizes	 137

Configuring availability sets	 138

Configuring auto-scale	 141

Objective summary	 144

Objective review	 144

Objective 2.6: Design and implement VM storage. 145

Planning for storage capacity	 145

Configuring storage pools 	 146

Configuring disk caching	 148

Configuring geo-replication	 150

Configuring shared storage using Azure File storage	 150

Objective summary	 154

Objective review	 155

Objective 2.7: Monitor VMs. 155

Configuring monitoring and diagnostics	 156

Configuring endpoint monitoring	 158

Configuring alerts	 158

Monitoring metrics	 160

Objective summary	 162

Objective review	 163

Answers. 164

Chapter 3	 Design and implement cloud services	 171
Objective 3.1: Design and develop a cloud service 171

Installing SDKs and emulators	 172

Developing a web or worker role	 173

Design and implement resiliency	 180

Developing startup tasks	 181

Objective summary	 184

Objective review	 184

viiContents

Objective 3.2: Configure cloud services and roles 185

Configuring instance size and count	 185

Configuring auto-scale	 187

Configuring cloud service networking	 190

Configuring local storage	 200

Configuring multiple websites in a web role	 201

Configuring custom domains	 204

Configuring caching	 205

Objective summary	 212

Objective review	 212

Objective 3.3: Deploy a cloud service. 213

Packaging a deployment	 214

Upgrading a deployment	 214

VIP swapping a deployment	 218

Implementing continuous delivery from Visual Studio Online	 219

Implementing runtime configuration changes using the
management portal	 222

Configuring regions and affinity groups	 225

Objective summary	 228

Objective review	 228

Objective 3.4: Monitor and debug a cloud service. 229

Configuring diagnostics	 229

Profiling resource consumption	 231

Enabling remote debugging	 233

Enabling and using Remote Desktop Protocol	 234

Debugging using IntelliTrace 	 236

Debugging using the emulator 	 237

Objective summary	 239

Objective review	 240

Answers. 241

Chapter 4	 Design and implement a storage strategy	 245
Objective 4.1: Implement Azure Storage blobs and Azure files. 246

Creating a container	 246

Finding your account access key	 249

viii Contents

Uploading a blob	 250

Reading data	 251

Changing data	 251

Setting metadata on a container	 253

Storing data using block and page blobs	 255

Streaming data using blobs	 255

Accessing blobs securely	 255

Implementing an async blob copy	 256

Configuring the Content Delivery Network	 257

Designing blob hierarchies	 258

Configuring custom domains	 258

Scaling Blob storage	 259

Working with Azure File storage	 259

Objective summary	 260

Objective review	 260

Objective 4.2: Implement Azure Storage tables. 261

Using basic CRUD operations	 261

Querying using ODATA	 265

Designing, managing, and scaling table partitions	 266

Objective summary	 267

Objective review	 267

Objective 4.3: Implement Azure storage queues . 268

Adding messages to a queue	 268

Processing messages	 269

Retrieving a batch of messages	 270

Scaling queues	 270

Objective summary	 271

Objective review	 272

Objective 4.4: Manage access. 272

Generating shared access signatures	 273

Creating stored access policies	 276

Regenerating storage account keys	 276

Configuring and using Cross-Origin Resource Sharing	 278

Objective summary	 279

Objective review	 279

ixContents

Objective 4.5: Monitor storage. 280

Configuring storage metrics	 280

Analyzing storage metrics 	 283

Configuring Storage Analytics Logging	 285

Analyzing storage logs	 287

Objective summary	 291

Objective review	 291

Objective 4.6: Implement SQL databases. 292

Choosing the appropriate database tier and performance level	 292

Configuring and performing point in time recovery	 295

Enabling geo-replication	 297

Importing and exporting data and schema (existing portal)	 301

Importing and exporting data and schema (Preview portal)	 302

Objective summary	 303

Objective review	 303

Answers. 304

Chapter 5	 Manage application and network services	 313
Objective 5.1: Integrate an app with Azure Active Directory. 313

Creating a directory	 314

Managing users	 315

Integrating applications	 317

Querying directories with the Graph API	 324

Objective summary	 328

Objective review	 329

Objective 5.2: Configure a virtual network. 329

Creating a virtual network	 330

Adding a VM to a virtual network 	 332

Deploying a cloud service to a virtual network	 334

Objective summary	 335

Objective review	 335

Objective 5.3: Modify network configuration. 336

Modifying a subnet (existing portal)	 336

Modifying a subnet (Preview portal)	 337

Moving a VM or cloud service to a new subnet	 338

x Contents

Exporting network configuration 	 339

Importing network configuration	 339

Objective summary	 340

Objective review	 340

Objective 5.4: Design and implement a communication strategy. 341

Creating a Service Bus namespace	 342

Selecting a protocol for messaging	 343

Using Service Bus relays	 344

Using Service Bus queues	 349

Using Service Bus topics and subscriptions	 356

Using event hubs	 361

Using notification hubs	 366

Objective summary	 368

Objective review	 369

Objective 5.5: Scale and monitor communication 369

Choosing a pricing tier	 370

Scaling Service Bus features	 371

Monitoring Service Bus features	 373

Objective summary	 377

Objective review	 377

Objective 5.6: Implement caching. 378

Implementing Redis Cache	 379

Implementing Azure Managed Cache Service	 383

Objective summary	 384

Objective review	 385

Answers. 386

Index	 395

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

http://www.microsoft.com/learning/booksurvey/

xi

Introduction

This book covers Microsoft Azure from a high-level perspective, consistent with the Microsoft
Certification Exam 70-532: Developing Microsoft Azure Solutions. The target audience for
this book includes solution architects, DevOps engineers, and QA engineers already famil-
iar with building, deploying, and monitoring scalable solutions with existing development
tools, to some extent including Microsoft Azure. The material covered in this book builds on
your existing knowledge and experience designing, developing, implementing, automating,
and monitoring Microsoft Azure, extending that knowledge to the current state of platform
features, development techniques, and management tools. In this book, you’ll find coverage
of design and implementation concepts, guidance on applying features, step-by-step instruc-
tions, and references to appropriate code listings for specific examples.

The 70-532 and 70-533 exams collectively validate that you have the skills and knowledge
necessary to design, deploy, and manage Microsoft Azure solutions. This book focuses on
exam 70-532 and prepares you from a development and DevOps perspective. Beyond sup-
porting your exam preparation, where possible, we endeavored to include insights from our
own experiences helping customers migrate and manage their solutions on the Microsoft
Azure platform.

This book covers every exam objective, but it does not cover every exam question. Only
the Microsoft exam team has access to the exam questions themselves and Microsoft regu-
larly adds new questions to the exam, making it impossible to cover specific questions. You
should consider this book a supplement to your relevant real-world experience and other
study materials. If you encounter a topic in this book that you do not feel completely com-
fortable with, use the links you’ll find in text to find more information and take the time to
research and study the topic. Great information is available on MSDN, TechNet, and in blogs
and forums.

Microsoft certifications

Microsoft certifications distinguish you by proving your command of a broad set of skills and
experience with current Microsoft products and technologies. The exams and corresponding
certifications are developed to validate your mastery of critical competencies as you design
and develop, or implement and support, solutions with Microsoft products and technologies
both on-premises and in the cloud. Certification brings a variety of benefits to the individual
and to employers and organizations.

xii Introduction

MORE INFO  ALL MICROSOFT CERTIFICATIONS

For information about Microsoft certifications, including a full list of available certifica-
tions, go to http://www.microsoft.com/learning/en/us/certification/cert-default.aspx.

Acknowledgments

We’d like to thank the following people:

■■ To Colin Lyth at Microsoft, thank you for recommending us to author this book; we
appreciate the opportunity.

■■ A well-deserved cheers to Devon Musgrave at Microsoft for helping us kick-start the
editorial process, and a big thank you to our editor, Karen Szall at Microsoft, for seeing
the whole editing process through and dealing with the insanity of an ever-changing
platform under tight deadlines. Thank you also to the entire Microsoft Press team
working on this book. It’s incredible to see all of the effort you put in and how fast you
move things forward!

■■ To the amazing people behind the features of Microsoft Azure: Many of you have
provided first class support and guidance by our side to several of our marquee
customers whom we have migrated to Azure. To name a few, we thank you Yochay
Kieriati, Brady Gaster, Charles Sterling, Anna Timasheva, Suren Machiraju, and others
who have enhanced our understanding of the underlying Microsoft Azure platform
through our experiences together. Where appropriate, we share these insights with
you, dear reader.

■■ To Brian Noyes, a founding member of Solliance, and several members of our Solliance
Partner Network whom we work with regularly to implement Azure solutions: Our
collective knowledge base is continually enhanced working together, and certainly that
influences the quality of this book.

■■ To our technical reviewer, Magnus Martensson, thank you for your very thoughtful and
detailed review of each chapter and for helping us by turning those reviews around
quickly!

■■ To our families, thank you for your support and patience through the inevitable
pressure that comes with publishing. We love you!

http://www.microsoft.com/learning/en/us/certification/cert-default.aspx

xiiiIntroduction

Free ebooks from Microsoft Press

From technical overviews to in-depth information on special topics, the free ebooks from
Microsoft Press cover a wide range of topics. These ebooks are available in PDF, EPUB, and
Mobi for Kindle formats, ready for you to download at:

http://aka.ms/mspressfree

Check back often to see what is new!

Errata, updates, & book support

We’ve made every effort to ensure the accuracy of this book and its companion content. You
can access updates to this book—in the form of a list of submitted errata and their related
corrections—at:

http://aka.ms/ER532/errata

If you discover an error that is not already listed, please submit it to us at the same page.

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software and hardware is not offered
through the previous addresses. For help with Microsoft software or hardware, go to
http://support.microsoft.com.

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset. Please tell us what you think of this book at:

http://aka.ms/tellpress

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

http://aka.ms/mspressfree
http://support.microsoft.com
http://aka.ms/ER532/errata
http://aka.ms/tellpress
http://twitter.com/MicrosoftPress

xiv Preparing for the exam

Preparing for the exam

Microsoft certification exams are a great way to build your resume and let the world know
about your level of expertise. Certification exams validate your on-the-job experience and
product knowledge. While there is no substitution for on-the-job experience, preparation
through study and hands-on practice can help you prepare for the exam. We recommend
that you round out your exam preparation plan by using a combination of available study
materials and courses. For example, you might use this Exam Ref and another study guide for
your “at home” preparation and take a Microsoft Official Curriculum course for the classroom
experience. Choose the combination that you think works best for you.

Note that this Exam Ref is based on publicly available information about the exam and the
author’s experience. To safeguard the integrity of the exam, authors do not have access to the
live exam.

		 	 245

C H A P T E R 4

Design and implement a
storage strategy
Azure Storage and Azure SQL Database both play an important role in the Microsoft Azure
Platform-as-a-Service (PaaS) strategy for storage. Azure Storage enables storage and re-
trieval of large amounts of unstructured data. You can store content files such as documents
and media in the Blob service, use the Table service for NoSQL data, use the Queue service
for reliable messages, and use the File service for Server Message Block (SMB) file share
scenarios. Azure SQL Database provides classic relational database features as part of an
elastic scale service.

In this chapter, you will learn how to implement each of the Azure Storage services, how
to monitor them, and how to manage access. You’ll also learn how to work with Azure SQL
Database.

MORE INFO  INTRODUCTION TO STORAGE

This chapter assumes you have a basic understanding of Azure Storage features. For an
introduction to the topic, see http://azure.microsoft.com/en-us/documentation/articles/
storage-introduction/.

EXAM TIP

There are many ways to interact with and develop against Azure Storage including the
management portal, using Windows PowerShell, using client libraries such as those for
the .NET Framework, and using the Storage Services REST API. In fact, the REST API is
what supports all other options.

Objectives in this chapter:
■■ Objective 4.1: Implement Azure Storage blobs and Azure files

■■ Objective 4.2: Implement Azure Storage tables

■■ Objective 4.3: Implement Azure Storage queues

■■ Objective 4.4: Manage access

■■ Objective 4.5: Monitor storage

■■ Objective 4.6: Implement SQL databases

http://azure.microsoft.com/en-us/documentation/articles/storage-introduction/
http://azure.microsoft.com/en-us/documentation/articles/storage-introduction/

	246	 CHAPTER 4	 Design and implement a storage strategy

Objective 4.1: Implement Azure Storage blobs and
Azure files

Azure blob storage is the place to store unstructured data of many varieties. You can store
images, video files, word documents, lab results, and any other binary file you can think of.
In addition, Azure uses blob storage extensively. For instance, when you mount extra logical
drives in an Azure virtual machine (VM), the drive image is actually stored in by the Blob ser-
vice associated with an Azure blob storage account. In a blob storage account, you can have
many containers. Containers are similar to folders in that you can use them to logically group
your files. You can also set security on the entire container. Each blob storage account can
store up to 500 terabytes of data.

All blobs can be accessed through a URL format. It looks like this:

http://<storage account name>.blob.core.windows.net/<container name>/<blob name>

The Azure File service provides an alternative to blob storage for shared storage, accessible
via SMB 2.1 protocol.

This objective covers how to:
■■ Read data

■■ Change data

■■ Set metadata on a container

■■ Store data using block and page blobs

■■ Stream data using blobs

■■ Access blobs securely

■■ Implement async blob copy

■■ Configure Content Delivery Network (CDN)

■■ Design blob hierarchies

■■ Configure custom domains

■■ Scale blob storage

■■ Work with file storage

Creating a container
This section explains how to create a container and upload a file to blob storage for later
reading.

http://<storage account name>.blob.core.windows.net/<container name>/<blob name>

	 Objective 4.1: Implement Azure Storage blobs and Azure files	 CHAPTER 4	 247

Creating a container (existing portal)
To create a container in the management portal, complete the following steps:

1.	 Navigate to the Containers tab for your storage account in the management portal
accessed via https://manage.windowsazure.com.

2.	 Click Add on the command bar. If you do not yet have a container, you can click Create
A Container, as shown in Figure 4-1.

FIGURE 4-1  The option to create a container for a storage account that has no containers

3.	 Give the container a name, and select Public Blob for the access rule, as shown in
Figure 4-2.

FIGURE 4-2  New container dialog box

4.	 The URL for the container can be found in the container list, shown in Figure 4-3.
You can add additional containers by clicking Add at the bottom of the page on the
Containers tab.

FIGURE 4-3  Containers tab with a list of containers and their URLs

https://manage.windowsazure.com

	248	 CHAPTER 4	 Design and implement a storage strategy

NOTE  CONTAINER ACCESS PERMISSIONS

You can choose between the following access permissions on the container:

■■ Private  All access to the container and its blobs require authentication.

■■ Public Container  All access to the container and its blobs are anonymous.

■■ Public Blob  You cannot list blobs in the container without authentication, but
you can navigate to the blob URL, if you have it, and read it anonymously.

This setting can be changed at any time through the management portal, by using
Windows PowerShell, or by configuring it programmatically.

Creating a container (Preview portal)
To create a container in the Preview portal, complete the following steps:

1.	 Navigate to the management portal accessed via https://portal.azure.com.

2.	 Click Browse on the command bar.

3.	 Select Storage from the Filter By drop-down list.

4.	 Select your storage account from the list on the Storage blade.

5.	 Click the Containers box.

6.	 On the Containers blade, click Add on the command bar.

7.	 Enter a name for the container, and select Blob for the access type, as shown in Figure
4-4.

FIGURE 4-4  The Add A Container blade

https://portal.azure.com

	 Objective 4.1: Implement Azure Storage blobs and Azure files	 CHAPTER 4	 249

8.	 The URL for the container can be found in the container list, as shown in Figure 4-5.

FIGURE 4-5  Containers blade with a list of containers and URLs

Finding your account access key
To access your storage account, you need the account name that was used to build the URL
to the account and the primary access key. This section covers how to find the access keys for
storage accounts.

Finding your account access key (existing portal)
To find your account access key using the management portal, complete the following steps:

1.	 Click the Dashboard tab for your storage account.

2.	 Click Manage Keys to find the primary and secondary key for managing your account,
as shown in Figure 4-6. Always use the primary key for management activities (to be
discussed later in this chapter).

FIGURE 4-6  Manage Access Keys dialog box for a storage account

	250	 CHAPTER 4	 Design and implement a storage strategy

Finding your account access key (Preview portal)
To find your account access key using the Preview portal, complete the following steps:

1.	 Navigate to your storage account blade.

2.	 Click the Keys box on the storage account blade (see Figure 4-7).

FIGURE 4-7  Manage Keys blade

Uploading a blob
You can upload files to blob storage using many approaches, including the following:

■■ Using the AzCopy tool provided by Microsoft (http://aka.ms/downloadazcopy)

■■ Directly using the Storage API and writing HTTP requests

■■ Using the Storage Client Library, which wraps the Storage API into a language and
platform-specific library (http://msdn.microsoft.com/en-us/library/azure/dn806401.
aspx)

■■ Using Windows PowerShell cmdlets (http://msdn.microsoft.com/en-us/library/azure/
dn806401.aspx)

To upload a blob using AzCopy, complete the following steps:

1.	 Download AZCopy from http://aka.ms/downloadazcopy. Run the .msi file downloaded
from this link.

2.	 Open a command prompt and navigate to C:\Program Files (x86)\Microsoft SDKs\
Azure\AzCopy.

3.	 Create a text file in a folder that is easy to get to. Insert some random text in it.

http://aka.ms/downloadazcopy
http://msdn.microsoft.com/en-us/library/azure/dn806401.aspx
http://msdn.microsoft.com/en-us/library/azure/dn806401.aspx
http://msdn.microsoft.com/en-us/library/azure/dn806401.aspx
http://msdn.microsoft.com/en-us/library/azure/dn806401.aspx
http://aka.ms/downloadazcopy

	 Objective 4.1: Implement Azure Storage blobs and Azure files	 CHAPTER 4	 251

4.	 In the command window, type a command that looks like this: AzCopy /Source:c:\test /
Dest:https://myaccount.blob.core.windows.net/mycontainer2 /DestKey:key /Pattern:*.txt.

5.	 Press Enter to issue the command to transfer the file.

Reading data
You can anonymously read blob storage content directly using a browser if public access to
blobs is enabled. The URL to your blob content takes this format:

https://<your account name>.blob.core.windows.net/<your container name>/<your path
and filename>

Reading blobs via a browser
Many storage browsing tools provide a way to view the contents of your blob containers.
You can also navigate to the container using the existing management portal or the Preview
portal to view the list of blobs. When you browse to the blob URL, the file is downloaded and
displayed in the browser according to its content type.

Reading blobs using Visual Studio
You can also use Server Manager in Visual Studio 2013 to view the contents of your blob
containers and upload or download files.

1.	 Navigate to the blob storage account that you want to use.

2.	 Double-click the blob storage account to open a window showing a list of blobs and
providing functionality to upload or download blobs.

Changing data
You can modify the contents of a blob or delete a blob using the Storage API directly, but it
is more common to do this programmatically as part of an application, for example using the
Storage Client Library.

EXAM TIP

Any updates made to a blob are atomic. While an update is in progress, requests to the
blob URL will always return the previously committed version of the blob until the update
is complete.

The following steps illustrate how to update a blob programmatically. Note that this
example uses a block blob. The distinction between block and page blobs is discussed in
“Storing data using block and page blobs” later in this chapter.

1.	 Create a C# console application.

https://myaccount.blob.core.windows.net/mycontainer2 /DestKey:key /Pattern:*.txt
https://<your account name>.blob.core.windows.net/<your container name>/<your path and filename>
https://<your account name>.blob.core.windows.net/<your container name>/<your path and filename>

	252	 CHAPTER 4	 Design and implement a storage strategy

2.	 In your app.config file, create a storage configuration string and entry, replacing
AccountName and AccountKey with your storage account values:

<configuration>
 <appSettings>
 <add key=”StorageConnectionString” value=”DefaultEndpointsProtocol=https;Accou
ntName=<your account name>;AccountKey=<your account key>” />
 </appSettings>
</configuration>

3.	 Use NuGet to obtain the Microsoft.WindowsAzure.Storage.dll. An easy way to do this is
by using this command in the NuGet console:

Install-package windowsazure.storage –version 3.0.3

4.	 Create a new console application, and add the following using statements to the top of
your Program.cs file:

using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure.Storage.Auth;
using Microsoft.WindowsAzure;
using Microsoft.WindowsAzure.Storage.Blob;
using System.Configuration

5.	 Add a reference to System.Configuration. Add the following code in the main entry
point:

var storageAccount = CloudStorageAccount.Parse(ConfigurationManager.AppSettings[“
StorageConnectionString”]);

6.	 Use CloudBlobClient to gain access to the containers and blobs in your Azure storage
account. After it is created, you can set permissions to make it publicly available:

CloudBlobClient blobClient = storageAccount.CreateCloudBlobClient();

7.	 Use a CreateIfNotExists method to ensure a container is there before you interact with
it:

CloudBlobContainer container = blobClient.GetContainerReference(“files”);
container.CreateIfNotExists();

container.SetPermissions(new BlobContainerPermissions {PublicAccess =
BlobContainerPublicAccessType.Blob });

8.	 To upload a file, use the FileStream object to access the stream, and then use the
UploadFromFileStream method on the CloudBlockBlob class to upload the file to Azure
blob storage:

CloudBlockBlob blockBlob = container.GetBlockBlobReference(“myblob”);
using (var fileStream = System.IO.File.OpenRead(@”path\myfile”))
{
 blockBlob.UploadFromStream(fileStream);
}

	 Objective 4.1: Implement Azure Storage blobs and Azure files	 CHAPTER 4	 253

9.	 To list all of the blobs, use the following code:

foreach (IListBlobItem item in container.ListBlobs(null, false))
{
 if (item.GetType() == typeof(CloudBlockBlob))
 {
 CloudBlockBlob blob = (CloudBlockBlob)item;
 Console.WriteLine(“Block blob of length {0}: {1}”, blob.Properties.Length,
blob.Uri);

 }
 else if (item.GetType() == typeof(CloudPageBlob))
 {
 CloudPageBlob pageBlob = (CloudPageBlob)item;
 Console.WriteLine(“Page blob of length {0}: {1}”, pageBlob.Properties.Length,
pageBlob.Uri);
 }
 else if (item.GetType() == typeof(CloudBlobDirectory))
 {
 CloudBlobDirectory directory = (CloudBlobDirectory)item;
 Console.WriteLine(“Directory: {0}”, directory.Uri);
 }
}

10.	 To download blobs, use the CloudBlobContainer class:

CloudBlockBlob blockBlob = container.GetBlockBlobReference(“photo1.jpg”);
using (var fileStream = System.IO.File.OpenWrite(@”path\myfile”))
{
 blockBlob.DownloadToStream(fileStream);
}

11.	 To delete a blob, get a reference to the blob and call Delete():

CloudBlockBlob blockBlob = container.GetBlockBlobReference(“myblob.txt”);
blockBlob.Delete();

Setting metadata on a container
Blobs and containers have metadata attached to them. There are two forms of metadata:

■■ System properties metadata

■■ User-defined metadata

System properties can influence how the blob behaves, while user-defined metadata is
your own set of name/value pairs that your applications can use. A container has only read-
only system properties, while blobs have both read-only and read-write properties.

	254	 CHAPTER 4	 Design and implement a storage strategy

Setting user-defined metadata
To set user-defined metadata for a container, get the container reference using
GetContainerReference(), and then use the Metadata member to set values. After setting
all the desired values, call SetMetadata() to persist the values, as in the following example:

CloudBlobContainer container = blobClient.GetContainerReference("files");
files.Metadata["counter"] = "100";
files.SetMetadata();

MORE INFO  BLOB METADATA

Blob metadata includes both read-only and read-write properties that are valid HTTP
headers and follow restrictions governing HTTP headers. The total size of the metadata
is limited to 8 KB for the combination of name and value pairs. For more information on
interacting with individual blob metadata, see http://msdn.microsoft.com/en-us/library/
azure/hh225342.aspx.

Reading user-defined metadata
To read user-defined metadata for a container, get the container reference using
GetContainerReference(), and then use the Metadata member to retrieve a dictionary
of values and access them by key, as in the following example:

CloudBlobContainer container = blobClient.GetContainerReference("files");
Console.WriteLine("counter value: " + files.Metadata["counter"];

EXAM TIP

If the metadata key doesn’t exist, an exception is thrown.

Reading system properties
To read a container’s system properties, first get a reference to the container using
GetContainerReference(), and then use the Properties member to retrieve values. The
following code illustrates accessing container system properties:

CloudBlobContainer container = blobClient.GetContainerReference("files");
Console.WriteLine("LastModifiedUTC: " + container.Properties.LastModified);
Console.WriteLine("ETag: " + container.Properties.ETag);

MORE INFO  CONTAINER METADATA AND THE STORAGE API

You can request container metadata using the Storage API. For more information on this
and the list of system properties returned, see http://msdn.microsoft.com/en-us/library/
azure/dd179370.aspx.

http://msdn.microsoft.com/en-us/library/azure/hh225342.aspx
http://msdn.microsoft.com/en-us/library/azure/hh225342.aspx
http://msdn.microsoft.com/en-us/library/azure/dd179370.aspx
http://msdn.microsoft.com/en-us/library/azure/dd179370.aspx

	 Objective 4.1: Implement Azure Storage blobs and Azure files	 CHAPTER 4	 255

Storing data using block and page blobs
The Azure Blob service has two different ways of storing your data: block blobs and page
blobs. Block blobs are great for streaming data sequentially, like video and other files. Page
blobs are great for non-sequential reads and writes, like the VHD on a hard disk mentioned in
earlier chapters.

Block blobs are blobs that are divided into blocks. Each block can be up to 4 MB. When
uploading large files into a block blob, you can upload one block at a time in any order you
want. You can set the final order of the block blob at the end of the upload process. For large
files, you can also upload blocks in parallel. Each block will have an MD5 hash used to verify
transfer. You can retransmit a particular block if there’s an issue. You can also associate blocks
with a blob after upload, meaning that you can upload blocks and then assemble the block
blob after the fact. Any blocks you upload that aren’t committed to a blob will be deleted
after a week. Block blobs can be up to 200 GB.

Page bobs are blobs comprised of 512-byte pages. Unlike block blobs, page blob writes
are done in place and are immediately committed to the file. The maximum size of a page
blob is 1 terabyte. Page blobs closely mimic how hard drives behave, and in fact, Azure VMs
use them for that purpose. Most of the time, you will use block blobs.

Streaming data using blobs
You can stream blobs by downloading to a stream using the DownloadToStream() API method.
The advantage of this is that it avoids loading the entire blob into memory, for example be-
fore saving it to a file or returning it to a web request.

Accessing blobs securely
Secure access to blob storage implies a secure connection for data transfer and controlled
access through authentication and authorization.

Azure Storage supports both HTTP and secure HTTPS requests. For data transfer security,
you should always use HTTPS connections. To authorize access to content, you can authenti-
cate in three different ways to your storage account and content:

■■ Shared Key  Constructed from a set of fields related to the request. Computed with a
SHA-256 algorithm and encoded in Base64.

■■ Shared Key Lite  Similar to Shared Key, but compatible with previous versions
of Azure Storage. This provides backwards compatibility with code that was writ-
ten against versions prior to 19 September 2009. This allows for migration to newer
versions with minimal changes.

■■ Shared Access Signature  Grants restricted access rights to containers and blobs.
You can provide a shared access signature to users you don’t trust with your storage
account key. You can give them a shared access signature that will grant them specific
permissions to the resource for a specified amount of time. This is discussed in a later
section.

	256	 CHAPTER 4	 Design and implement a storage strategy

To interact with blob storage content authenticated with the account key, you can use the
Storage Client Library as illustrated in earlier sections. When you create an instance of the
CloudStorageAccount using the account name and key, each call to interact with blob storage
will be secured, as shown in the following code:

string accountName = "ACCOUNTNAME";
string accountKey = "ACCOUNTKEY";
CloudStorageAccount storageAccount = new CloudStorageAccount(new
StorageCredentials(accountName, accountKey), true);

Implementing an async blob copy
The Blob service provides a feature for asynchronously copying blobs from a source blob
to a destination blob. You can run many of these requests in parallel since the operation is
asynchronous. The following scenarios are supported:

■■ Copying a source blob to a destination with a different name or URI

■■ Overwriting a blob with the same blob, which means copying from the same source
URI and writing to the same destination URI (this overwrites the blob, replaces meta-
data, and removes uncommitted blocks)

■■ Copy a snapshot to a base blob, for example to promote the snapshot to restore an
earlier version

■■ Copy a snapshot to a new location creating a new, writable blob (not a snapshot)

The copy operation is always the entire length of the blob; you can’t copy a range.

MORE INFO  COPY BLOB

For additional details on the underlying process for copying blobs, see http://msdn.
microsoft.com/en-us/library/azure/dd894037.aspx.

The following code illustrates a simple example for creating a blob and then copying it
asynchronously to another destination blob:

CloudBlobContainer files = blobClient.GetContainerReference("files");
files.CreateIfNotExists(BlobContainerPublicAccessType.Off);
ICloudBlob sourceBlob = files.GetBlockBlobReference("filetocopy.txt");
sourceBlob.Properties.ContentType = "text/plain";
string sourceFileContents = "my text blob to copy";
byte[] sourceBytes = new byte[sourceFileContents.Length * sizeof(char)];
System.Buffer.BlockCopy(sourceFileContents.ToCharArray(), 0, sourceBytes, 0,
sourceBytes.Length);
sourceBlob.UploadFromByteArray(sourceBytes, 0, sourceBytes.Length);

ICloudBlob blobCopy = files.GetBlockBlobReference("destinationcopy.txt");
AsyncCallback cb = new AsyncCallback(x => Console.WriteLine("copy completed with {0}",
x.IsCompleted));
blobCopy.BeginStartCopyFromBlob(sourceBlob.Uri, cb, null);

Ideally, you pass state to the BeginStartCopyFromBlob() method so that you can track
multiple parallel operations.

http://msdn.microsoft.com/en-us/library/azure/dd894037.aspx
http://msdn.microsoft.com/en-us/library/azure/dd894037.aspx

	 Objective 4.1: Implement Azure Storage blobs and Azure files	 CHAPTER 4	 257

EXAM TIP

A storage account can have multiple Copy Blob operations processing in parallel; however,
an individual blob can have only one pending copy operation.

Configuring the Content Delivery Network
The Azure Content Delivery Network (CDN) distributes content across geographic regions to
edge nodes across the globe. The CDN caches publicly available objects so they are available
over high-bandwidth connections, close to the users, thus allowing the users to download
them at much lower latency. You may be familiar with using CDNs to download popular
Javascript frameworks like JQuery, Angular, and others.

By default, blobs have a seven-day time-to-live (TTL) at the CDN edge node. After that
time elapses, the blob is refreshed from the storage account to the edge node. Blobs that are
shared via CDN must support anonymous access.

Configuring the CDN (existing portal)
To enable the CDN for a storage account in the management portal, complete the following
steps:

1.	 In the management portal, click New on the navigation bar.

2.	 Select App Services, CDN, Quick Create.

3.	 Select the storage account that you want to add CDN support for, and click Create.

4.	 Navigate to the CDN properties by selecting it from your list of CDN endpoints.

5.	 To enable HTTPS support, click Enable HTTPS at the bottom of the page.

6.	 To enable query string support, click Enable Query String Support at the bottom of the
page.

7.	 To map a custom domain to the CDN endpoint, click Manage Domains at the bottom
of the page, and follow the instructions.

EXAM TIP

It can take 60 minutes before the CDN is ready for use on the storage account.

To access blobs via CDN, use the CDN address as follows:

http://<your CDN subdomain>.vo.msecnd.net/<your container name>/<your blob path>

If you are using HTTPS and a custom domain, address your blobs as follows:

https://<your domain>/<your container name>/<your blob path>

	258	 CHAPTER 4	 Design and implement a storage strategy

Configuring the CDN (Preview portal)
You currently cannot configure the CDN using the Preview portal.

Designing blob hierarchies
Blob storage has a hierarchy that involves the following aspects:

■■ The storage account name, which is part of the base URI

■■ The container within which you store blobs, which is also used for partitioning

■■ The blob name, which can include path elements separated by a backslash (/) to create
a sense of folder structure

Using a blob naming convention that resembles a directory structure provides you with
additional ways to filter your blob data directly from the name. For example, to group images
by their locale to support a localization effort, complete the following steps:

1.	 Create a container called images.

2.	 Add English bitmaps using the convention en/bmp/*, where * is the file name.

3.	 Add English JPEG files using the convention en/jpg/*, where * is the file name.

4.	 Add Spanish bitmaps using the convention sp/bmp/*, where * is the file name.

5.	 Add Spanish JPEG files using the convention sp/jpg/*, where * is the file name.

To retrieve all images in the container, use ListBlob() in this way:

var list = images.ListBlobs(null, true, BlobListingDetails.All);

The output is the entire list of uploaded images in the container:

https://solexpstorage.blob.core.windows.net/images/en/bmp/logo.bmp
https://solexpstorage.blob.core.windows.net/images/en/jpg/logo.jpg
https://solexpstorage.blob.core.windows.net/images/sp/bmp/logo.bmp
https://solexpstorage.blob.core.windows.net/images/sp/jpg/logo.jpg

To filter only those with the prefix en, use this:

var list = images.ListBlobs("en", true, BlobListingDetails.All);

The output will be this:

https://solexpstorage.blob.core.windows.net/images/en/bmp/logo.bmp
https://solexpstorage.blob.core.windows.net/images/en/jpg/logo.jpg

Configuring custom domains
By default, the URL for accessing the Blob service in a storage account is https://<your
account name>.blob.core.windows.net. You can map your own domain or subdomain to the
Blob service for your storage account so that users can reach it using the custom domain or
subdomain.

https://<your account name>.blob.core.windows.net
https://<your account name>.blob.core.windows.net

	 Objective 4.1: Implement Azure Storage blobs and Azure files	 CHAPTER 4	 259

MORE INFO  STORAGE AND CUSTOM DOMAINS

For details related to mapping custom domains to your storage accounts, see http://azure.
microsoft.com/en-us/documentation/articles/storage-custom-domain-name/.

Scaling Blob storage
Blobs are partitioned by container name and blob name, which means each blob can have its
own partition. Blobs, therefore, can be distributed across many servers to scale access even
though they are logically grouped within a container.

MORE INFO  STORAGE SCALABILITY TARGETS

For additional information on storage scalability, see http://msdn.microsoft.com/en-us/
library/dn249410.aspx.

Working with Azure File storage
Azure File storage provides a way for applications to share storage accessible via SMB 2.1
protocol. It is particularly useful for VMs and cloud services as a mounted share, and applica-
tions can use the File Storage API to access File storage.

MORE INFO  FILE STORAGE DOCUMENTATION

For additional information on File storage, see the guide at http://azure.microsoft.com/
en-us/documentation/articles/storage-dotnet-how-to-use-files/.

Thought experiment
Partitioning strategy for localization

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You are localizing a mobile application for multiple languages. Some of your efforts
revolve around having separate images for the regions you are targeting.

1.	 How will you structure the files in Blob storage so that you can retrieve them
easily?

2.	 What can you do to make access to these images quick for users around the
world?

http://azure.microsoft.com/en-us/documentation/articles/storage-custom-domain-name/
http://azure.microsoft.com/en-us/documentation/articles/storage-custom-domain-name/
http://msdn.microsoft.com/en-us/library/dn249410.aspx
http://msdn.microsoft.com/en-us/library/dn249410.aspx
http://azure.microsoft.com/en-us/documentation/articles/storage-dotnet-how-to-use-files/
http://azure.microsoft.com/en-us/documentation/articles/storage-dotnet-how-to-use-files/

	260	 CHAPTER 4	 Design and implement a storage strategy

Objective summary
■■ A blob container has several options for access permissions. When set to Private, all

access requires credentials. When set to Public Container, no credentials are required
to access the container and its blobs. When set to Public Blob, only blobs can be ac-
cessed without credentials if the full URL is known.

■■ To access secure containers and blobs, you can use the storage account key or a shared
access signatures.

■■ AzCopy is a useful utility for activities such as uploading blobs, transferring blobs from
one container or storage account to another, and performing these and other activities
related to blob management in scripted batch operations.

■■ Block blobs allow you to upload, store, and download large blobs in blocks up to 4 MB
each. The size of the blob can be up to 200 GB.

■■ You can use a blob naming convention akin to folder paths to create a logical hierarchy
for blobs, which is useful for query operations.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 Which of the following is not true about metadata? (Choose all that apply.)

A.	 Both containers and blobs have writable system properties.

B.	 Blob user-defined metadata is accessed as a key value pair.

C.	 System metadata can influence how the blog is stored and accessed in Azure Storage.

D.	 Only blobs have metadata; containers do not.

2.	 Which of the following are valid differences between page blobs and block blobs?
(Choose all that apply.)

A.	 Page blobs are much faster for all operations.

B.	 Block blobs allow files to be uploaded and assembled later. Blocks can be resub-
mitted individually.

C.	 Page blobs are good for all sorts of files, like video and images.

D.	 Block blobs have a max size of 200 GB. Page blobs can be 1 terabyte.

3.	 What are good recommendations for securing files in Blob storage? (Choose all that
apply.)

A.	 Always use SSL.

B.	 Keep your primary and secondary keys hidden and don’t give them out.

	 Objective 4.2: Implement Azure Storage tables	 CHAPTER 4	 261

C.	 In your application, store them someplace that isn’t embedded in client-side code
that users can see.

D.	 Make the container publicly available.

Objective 4.2: Implement Azure Storage tables

Azure Storage is a non-relational (NoSQL) entity storage service on Microsoft Azure. When
you create a storage account, it includes the Table service alongside the Blob and Queue
services. Table services can be accessed through a URL format. It looks like this:

http://<storage account name>.table.core.windows.net/<table name>.

There are many forms of NoSQL databases:

■■ Key-value stores that organize data with a unique key per record and often allow for
jagged entries where each row might not have a complete set of values.

■■ Document databases that are similar to key-value stores with semi-structured, easy-to-
query documents. Usually, information is stored in JavaScript Object Notation (JSON)
format.

■■ Columnar stores that are used to organize large amounts of distributed information.

■■ Graph databases that do not use columns and rows; instead, they use a graph model
for storage and query, usually for large amounts of highly distributed data.

Table storage is a key-value store that uses a partition key to help with scale out distribu-
tion of data and a row key for unique access to a particular entry. Together, these keys are
used to uniquely identify a record in the account.

This objective covers how to:
■■ Implement CRUD with and without transactions

■■ Query using OData

■■ Design, manage, and scale table partitions

Using basic CRUD operations
In this section, you learn how to access table storage programmatically.

Creating a table

1.	 Create a C# console application.

http://<storage account name>.table.core.windows.net/<table name>

	262	 CHAPTER 4	 Design and implement a storage strategy

2.	 In your app.config file, add an entry under the Configuration element, replacing the
account name and key with your own storage account details:

<configuration>
 <appSettings>
 <add key=”StorageConnectionString” value=”DefaultEndpointsProtocol=https;Accou
ntName=<your account name>;AccountKey=<your account key>” />
 </appSettings>
</configuration>

3.	 Use NuGet to obtain the Microsoft.WindowsAzure.Storage.dll. An easy way to do this is
by using the following command in the NuGet console:

Install-package windowsazure.storage –version 3.0.3

4.	 Add the following using statements to the top of your Program.cs file:

using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure.Storage.Auth;
using Microsoft.WindowsAzure.Storage.Table;
using Microsoft.WindowsAzure;
using System.Configuration

5.	 Add a reference to System.Configuration.

6.	 Type the following command to retrieve your connection string in the Main function of
Program.cs:

var storageAccount = CloudStorageAccount.Parse(
var storageAccount =CloudStorageAccount.Parse(ConfigurationManager.AppSettings[“S
torageConnectionString”]);

7.	 Use the following command to create a table if one doesn’t already exist:

CloudTableClient tableClient = storageAccount.CreateCloudTableClient();
CloudTable table = tableClient.GetTableReference(“customers”);
table.CreateIfNotExists();

Inserting records
To add entries to a table, you create objects based on the TableEntity base class and serialize
them into the table using the Storage Client Library. The following properties are provided for
you in this base class:

■■ Partition Key  Used to partition data across storage infrastructure

■■ Row Key  Unique identifier in a partition

■■ Timestamp  Time of last update maintained by Azure Storage

■■ ETag  Used internally to provide optimistic concurrency

The combination of partition key and row key must be unique within the table. This combi-
nation is used for load balancing and scaling, as well as for querying and sorting entities.

	 Objective 4.2: Implement Azure Storage tables	 CHAPTER 4	 263

Follow these steps to add code that inserts records:

1.	 Add a class to your project, and then add the following code to it:

using Microsoft.WindowsAzure.Storage.Table;
public class OrderEntity : TableEntity
{
 public OrderEntity(string customerName, String orderDate)
 {
 this.PartitionKey = customerName;
 this.RowKey = orderDate;
 }
 public OrderEntity() { }
 public string OrderNumber { get; set; }
 public DateTime RequiredDate { get; set; }
 public DateTime ShippedDate { get; set; }
 public string Status { get; set; }
}

2.	 Add the following code to the console program to insert a record:

CloudStorageAccount storageAccount = CloudStorageAccount.Parse(
CloudConfigurationManager.GetSetting(“StorageConnectionString”));
CloudTableClient tableClient = storageAccount.CreateCloudTableClient();
CloudTable table = tableClient.GetTableReference(“orders”);
OrderEntity newOrder = new OrderEntity(“Archer”, “20141216”);
newOrder.OrderNumber = “101”;
newOrder.ShippedDate = Convert.ToDateTime(“20141218”);
newOrder.RequiredDate = Convert.ToDateTime(“20141222”);
newOrder.Status = “shipped”;
TableOperation insertOperation = TableOperation.Insert(newOrder);
table.Execute(insertOperation);

Inserting multiple records in a transaction
You can group inserts and other operations into a single batch transaction. All operations in
the batch must take place on the same partition. You can have up to 100 entities in a batch.
The total batch payload size cannot be greater than 4 MB.

The following code illustrates how to insert several records as part of a single transaction:

CloudStorageAccount storageAccount = CloudStorageAccount.Parse(
CloudConfigurationManager.GetSetting("StorageConnectionString"));
CloudTableClient tableClient = storageAccount.CreateCloudTableClient();
CloudTable table = tableClient.GetTableReference("orders");
TableBatchOperation batchOperation = new TableBatchOperation();

OrderEntity newOrder1 = new OrderEntity("Lana", "20141217");
newOrder1.OrderNumber = "102";
newOrder1.ShippedDate = Convert.ToDateTime("1/1/1900");
newOrder1.RequiredDate = Convert.ToDateTime("1/1/1900");
newOrder1.Status = "pending";
OrderEntity newOrder2 = new OrderEntity("Lana", "20141218");
newOrder2.OrderNumber = "103";
newOrder2.ShippedDate = Convert.ToDateTime("1/1/1900");

	264	 CHAPTER 4	 Design and implement a storage strategy

newOrder2.RequiredDate = Convert.ToDateTime("12/25/2014");
newOrder2.Status = "open";
OrderEntity newOrder3 = new OrderEntity("Lana", "20141219");
newOrder3.OrderNumber = "103";
newOrder3.ShippedDate = Convert.ToDateTime("12/17/2014");
newOrder3.RequiredDate = Convert.ToDateTime("12/17/2014");
newOrder3.Status = "shipped";

batchOperation.Insert(newOrder1);
batchOperation.Insert(newOrder2);
batchOperation.Insert(newOrder3);
table.ExecuteBatch(batchOperation);

MORE INFO  ENTITY GROUP TRANSACTIONS

You can batch transactions that belong to the same table and partition group for insert,
update, merge, delete, and related actions programmatically or by using the Storage
API. For more information, see the reference at http://msdn.microsoft.com/en-us/library/
dd894038.aspx.

Getting records in a partition
You can select all of the entities in a partition or a range of entities by partition and row key.
Wherever possible, you should try to query with the partition key and row key. Querying
entities by other properties does not work well because it launches a scan of the entire table.

Within a table, entities are ordered within the partition key. Within a partition, entities are
ordered by the row key. RowKey is a string property, so sorting is handled as a string sort. If
you are using a date value for your RowKey property use the following order: year, month,
day. For instance, use 20140108 for January 8, 2014.

The following code requests all records within a partition using the PartitionKey property
to query:

CloudStorageAccount storageAccount = CloudStorageAccount.Parse(
CloudConfigurationManager.GetSetting("StorageConnectionString"));
CloudTableClient tableClient = storageAccount.CreateCloudTableClient();
CloudTable table = tableClient.GetTableReference("orders");
TableQuery<OrderEntity> query = new TableQuery<OrderEntity>().Where(
TableQuery.GenerateFilterCondition("PartitionKey", QueryComparisons.Equal, "Lana"));

foreach (OrderEntity entity in table.ExecuteQuery(query))
{
 Console.WriteLine("{0}, {1}\t{2}\t{3}", entity.PartitionKey, entity.RowKey,
 entity.Status, entity.RequiredDate);
}

http://msdn.microsoft.com/en-us/library/dd894038.aspx
http://msdn.microsoft.com/en-us/library/dd894038.aspx

	 Objective 4.2: Implement Azure Storage tables	 CHAPTER 4	 265

Updating records
One technique you can use to update a record is to use InsertOrReplace(). This creates the
record if one does not already exist or updates an existing record. Here’s an example:

CloudStorageAccount storageAccount = CloudStorageAccount.
Parse(CloudConfigurationManager.GetSetting("StorageConnectionString"));
CloudTableClient tableClient = storageAccount.CreateCloudTableClient();
CloudTable table = tableClient.GetTableReference("orders1");
TableOperation retrieveOperation = TableOperation.Retrieve<OrderEntity>("Lana",
"20141217");
TableResult retrievedResult = table.Execute(retrieveOperation);
OrderEntity updateEntity = (OrderEntity)retrievedResult.Result;
if (updateEntity != null)
{
 updateEntity.Status = "shipped";
 updateEntity.ShippedDate = Convert.ToDateTime("12/20/2014");
 TableOperation insertOrReplaceOperation = TableOperation.
InsertOrReplace(updateEntity);
 table.Execute(insertOrReplaceOperation);
}

Deleting a record
To delete a record, first retrieve the record as shown in earlier examples, and then delete it
with code, such as this:

TableOperation deleteOperation = TableOperation.Delete(deleteEntity);
table.Execute(deleteOperation);
Console.WriteLine("Entity deleted.");

Querying using ODATA
The Storage API for tables supports OData, which exposes a simple query interface for inter-
acting with table data. Table storage does not support anonymous access, so you must supply
credentials using the account key or a Shared Access Signature (SAS) (discussed in “Manage
Access”) before you can perform requests using OData.

To query what tables you have created, provide credentials, and issue a GET request as
follows:

https://myaccount.table.core.windows.net/Tables

	266	 CHAPTER 4	 Design and implement a storage strategy

To query the entities in a specific table, provide credentials, and issue a GET request
formatted as follows:

https://<your account name>.table.core.windows.net/<your table
name>(PartitionKey='<partition-key>',RowKey='<row-key>')?$select=<comma separated
property names>

NOTE  QUERY LIMITATIONS

The result is limited to 1,000 entities per request, and the query will run for a maximum of
five seconds.

MORE INFO  ODATA

For more information on OData, see the reference at http://msdn.microsoft.com/en-us/
library/azure/dn535600.aspx.

Designing, managing, and scaling table partitions
The Azure Table service can scale to handle massive amounts of structured data and billions
of records. To handle that amount, tables are partitioned. The partition key is the unit of scale
for storage tables. The table service will spread your table to multiple servers and key all rows
with the same partition key co-located. Thus, the partition key is an important grouping, not
only for querying but also for scalability.

There are three types of partition keys to choose from:

■■ Single value  There is one partition key for the entire table. This favors a small num-
ber of entities. It also makes batch transactions easier since batch transactions need to
share a partition key to run without error. It does not scale well for large tables since all
rows will be on the same partition server.

■■ Multiple values  This might place each partition on its own partition server. If the
partition size is smaller, it’s easier for Azure to load balance the partitions. Partitions
might get slower as the number of entities increases. This might make further parti-
tioning necessary at some point.

■■ Unique values  This is many small partitions. This is highly scalable, but batch
transactions are not possible.

For query performance, you should use the partition key and row key together when
possible. This leads to an exact row match. The next best thing is to have an exact partition
match with a row range. It is best to avoid scanning the entire table.

http://msdn.microsoft.com/en-us/library/azure/dn535600.aspx
http://msdn.microsoft.com/en-us/library/azure/dn535600.aspx

	 Objective 4.2: Implement Azure Storage tables	 CHAPTER 4	 267

Thought experiment
Partitioning data

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

Your organization produces lasers that etch patterns for processors and memory.
On a regular interval, the laser sends the shot count of how many times the laser
fired to your application. The shot count is cumulative by day. Your company built
more than 500 of these lasers and distributed them around the world. Each laser has
its own machine identifier. Each time the shot count is sent, it includes a time stamp.
The analysts are mostly concerned with the most recent shot count sent.

1.	 What should you use for the partition key? How many partitions should you create?

2.	 How should you create the row key?

3.	 How many tables should you build? What’s in each table?

Objective summary
■■ Table storage is a non-relational database implementation (NoSQL) following the

key-value database pattern.

■■ Table entries each have a partition key and row key. The partition key is used to
logically group rows that are related; the row key is a unique entry for the row.

■■ The Table service uses the partition key for distributing collections of rows across
physical partitions in Azure to automatically scale out the database as needed.

■■ A Table storage query returns up to 1,000 records per request, and will time out after
five seconds.

■■ Querying Table storage with both the partition and row key results in fast queries. A
table scan is required for queries that do not use these keys.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 Which of the following is not a method for replicating a Table storage account?

A.	 Transactional replication

B.	 Zone redundant storage

C.	 Read access geo-redundant storage

D.	 Geo-redundant storage

	268	 CHAPTER 4	 Design and implement a storage strategy

2.	 How should you choose a good partition key for a Table storage implementation?
(Choose all that apply.)

A.	 They should always be unique, like a primary key in a SQL table.

B.	 You should always use the same partition key for all records.

C.	 Think about how you’re likely to update the data using batch transactions.

D.	 Find an even way to split them so that you have relatively even partition sizes.

3.	 Which of the following statements are correct for submitting operations in a batch?
(Choose all that apply.)

A.	 All operations have to be in the same partition.

B.	 Total batch size can’t be greater than 4 MB.

C.	 Max operation count is 100.

D.	 Minimum operation count is three.

Objective 4.3: Implement Azure storage queues

The Azure Storage Queue service provides a mechanism for reliable inter-application mes-
saging to support asynchronous distributed application workflows. This section covers a few
fundamental features of the Queue service for adding messages to a queue, processing those
messages individually or in a batch, and scaling the service.

MORE INFO  QUEUE SERVICE

For a general overview of working with the Queue service, see the reference at http://
azure.microsoft.com/en-us/documentation/articles/storage-dotnet-how-to-use-queues/.

This objective covers how to:
■■ Add and process messages

■■ Retrieve a batch of messages

■■ Scale queues

Adding messages to a queue
You can access your storage queues and add messages to a queue using many storage
browsing tools; however, it is more likely you will add messages programmatically as part of
your application workflow.

http://azure.microsoft.com/en-us/documentation/articles/storage-dotnet-how-to-use-queues/
http://azure.microsoft.com/en-us/documentation/articles/storage-dotnet-how-to-use-queues/

	 Objective 4.3: Implement Azure storage queues	 CHAPTER 4	 269

The following code demonstrates how to add messages to a queue:

string connection = "DefaultEndpointsProtocol=https;AccountName=<ACCOUNTNAME>;AccountKey
=<ACCOUNTKEY>";
CloudStorageAccount account;
if (!CloudStorageAccount.TryParse(connection, out account))
{
 throw new Exception("Unable to parse storage account connection string.");
}
CloudQueueClient queueClient = account.CreateCloudQueueClient();
CloudQueue queue = queueClient.GetQueueReference("workerqueue");
queue.AddMessage(new CloudQueueMessage("Queued message 1"));
queue.AddMessage(new CloudQueueMessage("Queued message 2"));
queue.AddMessage(new CloudQueueMessage("Queued message 3"));

NOTE  MESSAGE IDENTIFIERS

The Queue service assigns a message identifier to each message when it is added to the
queue. This is opaque to the client, but it is used by the Storage Client Library to identify a
message uniquely when retrieving, processing, and deleting messages.

MORE INFO  LARGE MESSAGES

There is a limit of 64 KB per message stored in a queue. It is considered best practice to
keep the message small and to store any required data for processing in a durable store,
such as SQL Azure, storage tables, or storage blobs. This also increases system reliability
since each queued message can expire after seven days if not processed. For more informa-
tion, see the reference at http://msdn.microsoft.com/en-us/library/azure/hh690942.aspx.

Processing messages
Messages are typically published by a separate application in the system from the application
that listens to the queue and processes messages. As shown in the previous section, you can
create a CloudQueue reference and then proceed to call GetMessage() to de-queue the next
available message from the queue as follows:

CloudQueueMessage message = queue.GetMessage(new TimeSpan(0, 5, 0));
if (message != null)
{
 string theMessage = message.AsString;
 // your processing code goes here
}

NOTE  INVISIBILITY SETTING

By default, when you de-queue a message, it is invisible to the queue for 30 seconds. In the
event message processing exceeds this timeframe, supply an alternate setting for this value
when creating or updating the message. You can set the timeout to a value between one
second and seven days. Visibility can also exceed the message expiry time.

http://msdn.microsoft.com/en-us/library/azure/hh690942.aspx

	270	 CHAPTER 4	 Design and implement a storage strategy

Retrieving a batch of messages
A queue listener can be implemented as single-threaded (processing one message at a time)
or multi-threaded (processing messages in a batch on separate threads). You can retrieve up
to 32 messages from a queue using the GetMessages() method to process multiple messages
in parallel. As discussed in the previous sections, create a CloudQueue reference, and then
proceed to call GetMessages(). Specify the number of items to de-queue up to 32 (this number
can exceed the number of items in the queue) as follows:

IEnumerable<CloudQueueMessage> batch = queue.GetMessages(10, new TimeSpan(0, 5, 0));
foreach (CloudQueueMessage batchMessage in batch)
{
 Console.WriteLine(batchMessage.AsString);
}

NOTE  PARALLEL PROCESSING OVERHEAD

Consider the overhead of message processing before deciding the appropriate number
of messages to process in parallel. If significant memory, disk space, or other network
resources are used during processing, throttling parallel processing to an acceptable
number will be necessary to avoid performance degradation on the compute instance.

Scaling queues
When working with Azure Storage queues, you need to consider a few scalability issues, in-
cluding the messaging throughput of the queue itself and the design topology for processing
messages and scaling out as needed.

Each individual queue has a target of approximately 2,000 messages per second (assuming a
message is within 1 KB). You can partition your application to use multiple queues to increase
this throughput value.

As for processing messages, it is more cost effective and efficient to pull multiple messages
from the queue for processing in parallel on a single compute node; however, this depends
on the type of processing and resources required. Scaling out compute nodes to increase
processing throughput is usually also required.

As discussed in Chapter 2, “Create and manage virtual machines,” and Chapter 3, “Design
and implement cloud services,” you can configure VMs or cloud services to auto-scale by
queue. You can specify the average number of messages to be processed per instance, and
the auto-scale algorithm will queue to run scale actions to increase or decrease available
instances accordingly.

	 Objective 4.3: Implement Azure storage queues	 CHAPTER 4	 271

MORE INFO  BACK OFF POLLING

To control storage costs, you should implement a back off polling algorithm for queue
message processing. This and other scale considerations are discussed in the reference at
http://msdn.microsoft.com/en-us/library/azure/hh697709.aspx.

Thought experiment
Asynchronous design patterns

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

Your application must, on user request, generate PDF reports that include both
data stored in SQL Azure and images stored in storage blobs. Producing these re-
ports requires significant memory per report and local disk storage prior to saving
reports in Blob storage. There are 50,000 users that could potentially request these
reports daily; however, the number of requests per day varies widely.

1.	 How would you design the system to handle asynchronous processing of these
PDF reports?

2.	 Which type of compute instance would you choose?

3.	 How many reports would you process on a single compute instance?

4.	 How would you approach scaling the number of compute instances according to
the number of requests?

Objective summary
■■ Applications can add messages to a queue programmatically using the .NET Storage

Client Library or equivalent for other languages, or you can directly call the Storage
API.

■■ Messages are stored in a storage queue for up to seven days based on the expiry
setting for the message. Message expiry can be modified while the message is in the
queue.

■■ An application can retrieve messages from a queue in batch to increase throughput
and process messages in parallel.

■■ Each queue has a target of approximately 2,000 messages per second. You can
increase this throughput by partitioning messages across multiple queues.

http://msdn.microsoft.com/en-us/library/azure/hh697709.aspx

	272	 CHAPTER 4	 Design and implement a storage strategy

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 Which of the following statements are true about queuing messages? (Choose all that
apply.)

A.	 Storage queue messages have no size restrictions. The reason for using smaller
messages sizes is to increase throughput to the queue.

B.	 Storage queue messages are limited to 64 KB.

C.	 Storage queue messages are durable.

D.	 The client application should save the message identifier returned after adding a
message to a queue for later use.

2.	 Which of the following are valid options for processing queue messages? (Choose all
that apply.)

A.	 A single compute instance can process only one message at a time.

B.	 A single compute instance can process up to 32 messages at a time.

C.	 A single compute instance can retrieve up to 32 messages at a time.

D.	 Messages can be read one at a time or in batches of up to 32 messages at a time.

E.	 Messages are deleted as soon as they are read.

3.	 Which of the following are valid options for scaling queues? (Choose all that apply.)

A.	 Distributing messages across multiple queues

B.	 Automatically scaling websites based on queue metrics

C.	 Automatically scaling VMs based on queue metrics

D.	 Automatically scaling cloud services based on queue metrics

Objective 4.4: Manage access

All storage accounts can be protected by a secure HTTPS connection and by using storage ac-
count keys to access all resources. In this section, you’ll learn how to manage storage account
keys, how to generate shared access keys with more granular control over which resources
are accessible and for how long, how to manage policies for issued keys, and how to allow
browser access to storage resources.

MORE INFO  MANAGING ACCESS TO STORAGE SERVICES

For an overview of some of the topics discussed in this section, see http://msdn.microsoft.
com/en-us/library/azure/ee393343.aspx.

http://msdn.microsoft.com/en-us/library/azure/ee393343.aspx
http://msdn.microsoft.com/en-us/library/azure/ee393343.aspx

	 Objective 4.4: Manage access	 CHAPTER 4	 273

This objective covers how to:
■■ Generate shared access signatures

■■ Create stored access policies

■■ Regenerate storage account keys

■■ Configure and use Cross-Origin Resource Sharing (CORS)

Generating shared access signatures
By default, storage resources are protected at the service level. Only authenticated callers can
access tables and queues. Blob containers and blobs can optionally be exposed for anony-
mous access, but you would typically allow anonymous access only to individual blobs. To
authenticate to any storage service, a primary or secondary key is used, but this grants the
caller access to all actions on the storage account.

An SAS is used to delegate access to specific storage account resources without enabling
access to the entire account. An SAS token lets you control the lifetime by setting the start
and expiration time of the signature, the resources you are granting access to, and the per-
missions being granted.

The following is a list of operations supported by SAS:

■■ Reading or writing blobs, blob properties, and blob metadata

■■ Leasing or creating a snapshot of a blob

■■ Listing blobs in a container

■■ Deleting a blob

■■ Adding, updating, or deleting table entities

■■ Querying tables

■■ Processing queue messages (read and delete)

■■ Adding and updating queue messages

■■ Retrieving queue metadata

This section covers creating an SAS token to access storage services using the Storage
Client Library.

MORE INFO  CONTROLLING ANONYMOUS ACCESS

To control anonymous access to containers and blobs, follow the instructions provided at
http://msdn.microsoft.com/en-us/library/azure/dd179354.aspx.

http://msdn.microsoft.com/en-us/library/azure/dd179354.aspx

	274	 CHAPTER 4	 Design and implement a storage strategy

MORE INFO  CONSTRUCTING AN SAS URI

SAS tokens are typically used to authorize access to the Storage Client Library when inter-
acting with storage resources, but you can also use it directly with the storage resource
URI and use HTTP requests directly. For details regarding the format of an SAS URI, see
http://msdn.microsoft.com/en-us/library/azure/dn140255.aspx.

Creating an SAS token (Blobs)
The following code shows how to create an SAS token for a blob container:

string connection = "DefaultEndpointsProtocol=https;AccountName=<ACCOUNTNAME>;AccountKey
=<ACCOUNTKEY>";
CloudStorageAccount account;
if (!CloudStorageAccount.TryParse(connection, out account))
{
 throw new Exception("Unable to parse storage account connection string.");
}
CloudBlobClient blobClient = account.CreateCloudBlobClient();
SharedAccessBlobPolicy sasPolicy = new SharedAccessBlobPolicy();
sasPolicy.SharedAccessExpiryTime = DateTime.UtcNow.AddHours(1);
sasPolicy.SharedAccessStartTime = DateTime.UtcNow.Subtract(new TimeSpan(0, 5, 0));
sasPolicy.Permissions = SharedAccessBlobPermissions.Read | SharedAccessBlobPermissions.
Write | SharedAccessBlobPermissions.Delete | SharedAccessBlobPermissions.List;
CloudBlobContainer files = blobClient.GetContainerReference("files");
string sasContainerToken = files.GetSharedAccessSignature(sasPolicy);

The SAS token grants read, write, delete, and list permissions to the container (rwdl). It
looks like this:

?sv=2014-02-14&sr=c&sig=B6bi4xKkdgOXhWg3RWIDO5peekq%2FRjvnuo5o41hj1pA%3D&st=2014
-12-24T14%3A16%3A07Z&se=2014-12-24T15%3A21%3A07Z&sp=rwdl

You can use this token as follows to gain access to the blob container without a storage
account key:

StorageCredentials creds = new StorageCredentials(sasContainerToken);
CloudBlobClient sasClient = new CloudBlobClient("https://<ACCOUNTNAME>.blob.core.
windows.net/", creds);
CloudBlobContainer sasFiles = sasClient.GetContainerReference("files");

With this container reference, if you have write permissions, you can create a blob, for
example as follows:

ICloudBlob blob = sasFiles.GetBlockBlobReference("note.txt");
blob.Properties.ContentType = "text/plain";
string fileContents = "my text blob contents";
byte[] bytes = new byte[fileContents.Length * sizeof(char)];
System.Buffer.BlockCopy(fileContents.ToCharArray(), 0, bytes, 0, bytes.Length);
blob.UploadFromByteArray(bytes,0, bytes.Length);

http://msdn.microsoft.com/en-us/library/azure/dn140255.aspx

	 Objective 4.4: Manage access	 CHAPTER 4	 275

Creating an SAS token (Queues)
Assuming the same account reference as created in the previous section, the following code
shows how to create an SAS token for a queue:

CloudQueueClient queueClient = account.CreateCloudQueueClient();
CloudQueue queue = queueClient.GetQueueReference("workerqueue");
SharedAccessQueuePolicy sasPolicy = new SharedAccessQueuePolicy();
sasPolicy.SharedAccessExpiryTime = DateTime.UtcNow.AddHours(1);
sasPolicy.Permissions = SharedAccessQueuePermissions.Read |
SharedAccessQueuePermissions.Add | SharedAccessQueuePermissions.Update |
SharedAccessQueuePermissions.ProcessMessages;
sasPolicy.SharedAccessStartTime = DateTime.UtcNow.Subtract(new TimeSpan(0, 5, 0));
string sasToken = queue.GetSharedAccessSignature(sasPolicy);

The SAS token grants read, add, update, and process messages permissions to the
container (raup). It looks like this:

?sv=2014-02-14&sig=wE5oAUYHcGJ8chwyZZd3Byp5jK1Po8uKu2t%2FYzQsIhY%3D&st=2014-12-2
4T14%3A23%3A22Z&se=2014-12-24T15%3A28%3A22Z&sp=raup

You can use this token as follows to gain access to the queue and add messages:

StorageCredentials creds = new StorageCredentials(sasToken);
CloudQueueClient sasClient = new CloudQueueClient("https://<ACCOUNTNAME>.queue.core.
windows.net/", creds);
CloudQueue sasQueue = sasClient.GetQueueReference("workerqueue");
sasQueue.AddMessage(new CloudQueueMessage("new message"));

IMPORTANT  SECURE USE OF SAS

Always use a secure HTTPS connection to generate an SAS token to protect the exchange
of the URI, which grants access to protected storage resources.

Creating an SAS token (Tables)
The following code shows how to create an SAS token for a table:

CloudTableClient tableClient = account.CreateCloudTableClient();
CloudTable table = tableClient.GetTableReference("$logs");
SharedAccessTablePolicy sasPolicy = new SharedAccessTablePolicy();
sasPolicy.SharedAccessExpiryTime = DateTime.UtcNow.AddHours(1);
sasPolicy.Permissions = SharedAccessTablePermissions.Query |
SharedAccessTablePermissions.Add | SharedAccessTablePermissions.Update |
SharedAccessTablePermissions.Delete;
sasPolicy.SharedAccessStartTime = DateTime.UtcNow.Subtract(new TimeSpan(0, 5, 0));
string sasToken = table.GetSharedAccessSignature(sasPolicy);

The SAS token grants query, add, update, and delete permissions to the container (raud). It
looks like this:

?sv=2014-02-14&tn=%24logs&sig=dsnI7RBA1xYQVr%2FTlpDEZMO2H8YtSGwtyUUntVmxstA%3D&s
t=2014-12-24T14%3A48%3A09Z&se=2014-12-24T15%3A53%3A09Z&sp=raud

	276	 CHAPTER 4	 Design and implement a storage strategy

Renewing an SAS token
SAS tokens have a limited period of validity based on the start and expiration times requested.
You should limit the duration of an SAS token to limit access to controlled periods of time.
You can extend access to the same application or user by issuing new SAS tokens on request.
This should be done with appropriate authentication and authorization in place.

Validating data
When you extend write access to storage resources with SAS, the contents of those resources
can potentially be made corrupt or even be tampered with by a malicious party, particularly if
the SAS was leaked. Be sure to validate system use of all resources exposed with SAS keys.

Creating stored access policies
Stored access policies provide greater control over how you grant access to storage resources
using SAS tokens. With a stored access policy, you can do the following after releasing an SAS
token for resource access:

■■ Change the start and end time for a signature’s validity

■■ Control permissions for the signature

■■ Revoke access

The stored access policy can be used to control all issued SAS tokens that are based on
the policy. For a step-by-step tutorial for creating and testing stored access policies for blobs,
queues, and tables, see http://azure.microsoft.com/en-us/documentation/articles/storage-
dotnet-shared-access-signature-part-2.

IMPORTANT  RECOMMENDATION FOR SAS TOKENS

Use stored access policies wherever possible, or limit the lifetime of SAS tokens to avoid
malicious use.

MORE INFO  STORED ACCESS POLICY FORMAT

For more information on the HTTP request format for creating stored access policies, see
http://msdn.microsoft.com/en-us/library/azure/ee393341.aspx.

Regenerating storage account keys
When you create a storage account, two 512-bit storage access keys are generated for
authentication to the storage account. This makes it possible to regenerate keys without
impacting application access to storage.

http://azure.microsoft.com/en-us/documentation/articles/storage-dotnet-shared-access-signature-part-2
http://azure.microsoft.com/en-us/documentation/articles/storage-dotnet-shared-access-signature-part-2
http://msdn.microsoft.com/en-us/library/azure/ee393341.aspx

	 Objective 4.4: Manage access	 CHAPTER 4	 277

The process for managing keys typically follows this pattern:

1.	 When you create your storage account, the primary and secondary keys are generated
for you. You typically use the primary key when you first deploy applications that access
the storage account.

2.	 When it is time to regenerate keys, you first switch all application configurations to use
the secondary key.

3.	 Next, you regenerate the primary key, and switch all application configurations to use
this primary key.

4.	 Next, you regenerate the secondary key.

Regenerating storage account keys (existing portal)
To regenerate storage account keys using the management portal, complete the following
steps:

1.	 Navigate to the Dashboard tab for your storage account in the management portal
accessed via https://manage.windowsazure.com.

2.	 Select Manage Access Keys from the bottom of the page.

3.	 Click the regenerate button for the primary access key or for the secondary access key,
depending on which key you intend to regenerate, according to the workflow above.

4.	 Click the check mark on the confirmation dialog box to complete the regeneration
task.

IMPORTANT  MANAGING KEY REGENERATION

It is imperative that you have a sound key management strategy. In particular, you must be
certain that all applications are using the primary key at a given point in time to facilitate
the regeneration process.

Regenerating storage account keys (Preview portal)
To regenerate storage account keys using the Preview portal, complete the following steps:

1.	 Navigate to the management portal accessed via https://portal.azure.com.

2.	 Click Browse on the command bar.

3.	 Select Storage from the Filter By list.

4.	 Select your storage account from the list on the Storage blade.

5.	 Click the Keys box.

https://manage.windowsazure.com
https://portal.azure.com

	278	 CHAPTER 4	 Design and implement a storage strategy

6.	 On the Manage Keys blade, click Regenerate Primary or Regenerate Secondary on the
command bar, depending on which key you want to regenerate.

7.	 In the confirmation dialog box, click Yes to confirm the key regeneration.

Configuring and using Cross-Origin Resource Sharing
Cross-Origin Resource Sharing (CORS) enables web applications running in the browser to
call web APIs that are hosted by a different domain. Azure Storage blobs, tables, and queues
all support CORS to allow for access to the Storage API from the browser. By default, CORS
is disabled, but you can explicitly enable it for a specific storage service within your storage
account.

MORE INFO  ENABLING CORS

For additional information about enabling CORS for your storage accounts, see
http://msdn.microsoft.com/en-us/library/azure/dn535601.aspx.

Thought experiment
Access control strategy

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

Your web application generates large reports for your customers, and you are
designing a strategy for granting access to those reports, which are stored in blobs.
You want users to authenticate to download reports, but you want them to be
able to share a link to the report with others in the company in a secure way that
prevents unauthorized users from accessing content.

1.	 How would you approach granting access to these reports within the web
application and sharing that with authenticated users?

2.	 How would you ensure that if the report is shared with others via link, the
reports are not available long term without authentication?

http://msdn.microsoft.com/en-us/library/azure/dn535601.aspx

	 Objective 4.4: Manage access	 CHAPTER 4	 279

Objective summary
■■ You can use SAS tokens to delegate access to storage account resources without

sharing the account key.

■■ With SAS tokens, you can generate a link to a container, blob, table, table entity, or
queue. You can control the permissions granted to the resource.

■■ Using Shared Access Policies, you can remotely control the lifetime of a SAS token
grant to one or more resources. You can extend the lifetime of the policy or cause it to
expire.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 Which of the following are true regarding supported operations granted with an SAS
token? (Choose all that apply.)

A.	 You can grant read access to existing blobs.

B.	 You can create new blob containers.

C.	 You can add, update, and delete queue messages.

D.	 You can add, update, and delete table entities.

E.	 You can query table entities.

2.	 Which of the following statements are true of stored access policies? (Choose all that
apply.)

A.	 You can modify the start or expiration date for access.

B.	 You can revoke access at any point in time.

C.	 You can modify permissions to remove or add supported operations.

D.	 You can add to the list of resources accessible by an SAS token.

3.	 Which of the following statements are true of CORS support for storage? (Choose all
that apply.)

A.	 It is recommended you enable CORS so that browsers can access blobs.

B.	 To protect CORS access to blobs from the browser, you should generate SAS
tokens to secure blob requests.

C.	 CORS is supported only for Blob storage.

D.	 CORS is disabled by default.

	280	 CHAPTER 4	 Design and implement a storage strategy

Objective 4.5: Monitor storage

Azure Storage has a built-in analytics feature called Azure Storage Analytics used for collecting
metrics and logging storage request activity. You enable Storage Analytics Metrics to collect
aggregate transaction and capacity data, and you enable Storage Analytics Logging to cap-
ture successful and failed request attempts to your storage account. This section covers how
to enable monitoring and logging, control logging levels, set retention policies, and analyze
the logs.

NOTE  STORAGE ANALYTICS AVAILABILITY

At the time of this writing, Storage Analytics is not available for Azure Files.

This objective covers how to:
■■ Enable monitoring and logging

■■ Set retention policies and logging levels

■■ Analyze logs

Configuring storage metrics
Storage Analytics metrics provide insight into transactions and capacity for your storage ac-
counts. You can think of them as the equivalent of Windows Performance Monitor counters.
By default, storage metrics are not enabled, but you can enable them through the manage-
ment portal, using Windows PowerShell, or by calling the management API directly.

When you configure storage metrics for a storage account, tables are generated to store
the output of metrics collection. You determine the level of metrics collection for transactions
and the retention level for each service—Blob, Table, and Queue.

Transaction metrics record request access to each service for the storage account. You
specify the interval for metric collection (hourly or by minute). In addition, there are two
levels of metrics collection:

■■ Service level  These metrics include aggregate statistics for all requests, aggregated
at the specified interval. Even if no requests are made to the service, an aggregate
entry is created for the interval, indicating no requests for that period.

■■ API level  These metrics record every request to each service only if a request is
made within the hour interval.

NOTE  METRICS COLLECTED

All requests are included in the metrics collected, including any requests made by Storage
Analytics.

	 Objective 4.5: Monitor storage	 CHAPTER 4	 281

Capacity metrics are only recorded for the Blob service for the account. Metrics include total
storage in bytes, the container count, and the object count (committed and uncommitted).

Table 4-1 summarizes the tables automatically created for the storage account when
Storage Analytics metrics are enabled.

TABLE 4-1  Storage metrics tables

METRICS TABLE NAMES

Hourly metrics $MetricsHourPrimaryTransactionsBlob
$MetricsHourPrimaryTransactionsTable
$MetricsHourPrimaryTransactionsQueue

Minute metrics (cannot set
through the management portal)

$MetricsMinutePrimaryTransactionsBlob
$MetricsMinutePrimaryTransactionsTable
$MetricsMinutePrimaryTransactionsQueue

Capacity (only for the Blob ser-
vice)

$MetricsCapacityBlob

MORE INFO  STORAGE ANALYTICS METRICS TABLE SCHEMA

For additional details on the transaction and capacity metrics collected, see
http://msdn.microsoft.com/en-us/library/azure/hh343264.aspx.

Retention can be configured for each service in the storage account. By default, Storage
Analytics will not delete any metrics data. When the shared 20-terabyte limit is reached, new
data cannot be written until space is freed. This limit is independent of the storage limit of the
account. You can specify a retention period from 0 to 365 days. Metrics data is automatically
deleted when the retention period is reached for the entry.

When metrics are disabled, existing metrics that have been collected are persisted up to
their retention policy.

MORE INFO  STORAGE METRICS

For more information about enabling and working with storage metrics, see
http://msdn.microsoft.com/en-us/library/azure/dn782843.aspx.

Configuring storage metrics and retention (existing portal)
To enable storage metrics and associated retention levels for Blob, Table, and Queue services
in the existing management portal, follow these steps:

1.	 Navigate to the Configure tab for your storage account in the management portal
accessed via https://manage.windowsazure.com.

2.	 If this storage account uses blobs, set the metrics level for blobs to Minimal. Set retention
according to your retention policy.

http://msdn.microsoft.com/en-us/library/azure/hh343264.aspx
http://msdn.microsoft.com/en-us/library/azure/dn782843.aspx
https://manage.windowsazure.com

	282	 CHAPTER 4	 Design and implement a storage strategy

3.	 If this storage account uses tables, set the metrics level for tables to Minimal. Set retention
according to your retention policy.

4.	 If this storage account uses queues, set the metrics level for queues to Minimal. Set
retention according to your retention policy.

5.	 Click Save to commit the settings.

NOTE  CHOOSING A METRICS LEVEL

Minimal metrics yield enough information to provide a picture of the overall usage and
health of the storage account services. Verbose metrics provide more insight at the API lev-
el, allowing for deeper analysis of activities and issues, which is helpful for troubleshooting.

Configuring storage metrics and retention (Preview portal)
To enable storage metrics and associated retention levels for Blob, Table, and Queue services
in the Preview portal, follow these steps:

1.	 Navigate to the management portal accessed via https://portal.azure.com.

2.	 Click Browse on the command bar.

3.	 Select Storage from the Filter By drop-down list.

4.	 Select your storage account from the list on the Storage blade.

5.	 Scroll down to the Usage section, and click the Capacity Past Week check box.

6.	 On the Metric blade, click Diagnostics on the command bar.

7.	 Click the On button under Status. This shows the options for metrics and logging.

8.	 If this storage account uses blobs, select Blob Aggregate Metrics to enable service level
metrics. Select Blob Per API Metrics for API level metrics.

9.	 If this storage account uses tables, select Table Aggregate Metrics to enable service
level metrics. Select Table Per API Metrics for API level metrics.

10.	 If this storage account uses queues, select Queue Aggregate Metrics to enable service
level metrics. Select Queue Per API Metrics for API level metrics.

11.	 Provide a value for retention according to your retention policy. Through the Preview
portal, this will apply to all services. It will also apply to Storage Analytics Logging if
that is enabled. Select one of the available retention settings from the drop-down list,
or enter a number from 0 to 365.

Configuring storage metrics and retention using Windows PowerShell
To enable storage metrics and associated retention levels using Windows PowerShell, use the
Set-AzureStorageMetricsProperty cmdlet.

https://portal.azure.com

	 Objective 4.5: Monitor storage	 CHAPTER 4	 283

To enable service level metrics collected by minute for blobs, tables, and queues with
unlimited retention, run the following:

Set-AzureStorageServiceMetricsProperty –MetricsType Minute –ServiceType Blob –
MetricsLevel Service –RetentionDays 0
Set-AzureStorageServiceMetricsProperty –MetricsType Minute –ServiceType Table –
MetricsLevel Service –RetentionDays 0
Set-AzureStorageServiceMetricsProperty –MetricsType Minute –ServiceType Queue –
MetricsLevel Service –RetentionDays 0

To enable service and API level metrics collected hourly for blobs, tables, and queues with
90 days of retention, run the following:

Set-AzureStorageServiceMetricsProperty –MetricsType Hour –ServiceType Blob –MetricsLevel
ServiceAndApi –RetentionDays 90
Set-AzureStorageServiceMetricsProperty –MetricsType Hour –ServiceType Table –
MetricsLevel ServiceAndApi –RetentionDays 90
Set-AzureStorageServiceMetricsProperty –MetricsType Hour –ServiceType Queue –
MetricsLevel ServiceAndApi –RetentionDays 90

To disable the collection of metrics, run the following:

Set-AzureStorageServiceMetricsProperty–ServiceType Blob –MetricsLevel None
Set-AzureStorageServiceMetricsProperty–ServiceType Table –MetricsLevel None
Set-AzureStorageServiceMetricsProperty–ServiceType Queue –MetricsLevel None

Analyzing storage metrics
Storage Analytics metrics are collected in tables as discussed in the previous section. You can
access the tables directly to analyze metrics, but you can also review metrics in both Azure
management portals. This section discusses various ways to access metrics and review or
analyze them.

MORE INFO  STORAGE MONITORING, DIAGNOSING, AND TROUBLESHOOTING

For more details on how to work with storage metrics and logs, see http://azure.microsoft.
com/en-us/documentation/articles/storage-monitoring-diagnosing-troubleshooting.

Monitoring metrics (existing portal)
To monitor metrics in the existing portal, complete the following steps:

1.	 Navigate to the Monitor tab for your storage account in the management portal
accessed via https://manage.windowsazure.com.

2.	 Click Add Metric to choose metrics to monitor in the management portal.

3.	 In the Choose Metrics dialog box, select from the list of metrics for blobs, tables, or
queues.

4.	 Click the check mark to commit the settings.

http://azure.microsoft.com/en-us/documentation/articles/storage-monitoring-diagnosing-troubleshooting
http://azure.microsoft.com/en-us/documentation/articles/storage-monitoring-diagnosing-troubleshooting
https://manage.windowsazure.com

	284	 CHAPTER 4	 Design and implement a storage strategy

5.	 You may choose up to six metrics to show in the monitoring graph, as shown in Figure 4-8.

FIGURE 4-8  Monitoring metrics from the existing management portal

6.	 Select absolute or relative display of metrics from the appropriate drop-down list
(RELATIVE is indicated in Figure 4-8).

7.	 Select the time range to display from the appropriate drop-down list (6 HOURS is
indicated in Figure 4-8). Select 6 hours, 24 hours, or 7 days.

Monitoring metrics (Preview portal)
At the time of this writing, the Preview portal features for monitoring metrics is limited to some
predefined metrics, including total requests, total egress, average latency, and availability (see
Figure 4-9). Click each box to see a Metric blade that provides additional detail.

FIGURE 4-9  Monitoring overview from the Preview portal

	 Objective 4.5: Monitor storage	 CHAPTER 4	 285

To monitor the metrics available in the Preview portal, complete the following steps:

1.	 Navigate to the management portal accessed via https://portal.azure.com.

2.	 Click Browse on the command bar.

3.	 Select Storage from the Filter By drop-down list.

4.	 Select your storage account from the list on the Storage blade.

5.	 Scroll down to the Monitor section, and view the monitoring boxes summarizing
statistics. You’ll see TotalRequests, TotalEgress, AverageE2ELatency, and AvailabilityToday
by default.

6.	 Click each metric box to view additional details for each metric. You’ll see metrics for
blobs, tables, and queues if all three metrics are being collected.

NOTE  CUSTOMIZING THE MONITORING BLADE

You can customize which boxes appear in the Monitoring area of the Preview portal, and
you can adjust the size of each box to control how much detail is shown at a glance with-
out drilling into the metrics blade.

Configuring Storage Analytics Logging
Storage Analytics Logging provides details about successful and failed requests to each
storage service that has activity across the account’s blobs, tables, and queues. By default,
storage logging is not enabled, but you can enable it through the management portal, by
using Windows PowerShell, or by calling the management API directly.

When you configure Storage Analytics Logging for a storage account, a blob container
named $logs is automatically created to store the output of the logs. You choose which
services you want to log for the storage account. You can log any or all of the Blob, Table, or
Queue services. You can also choose which type of requests to log: read, write, or delete. Logs
are created only for those services that have activity, so you will not be charged if you enable
logging for a service that has no requests. The logs are stored as block blobs as requests are
logged and are periodically committed so that they are available as blobs.

NOTE  DELETING THE LOG CONTAINER

After Storage Analytics has been enabled, the log container cannot be deleted; however,
the contents of the log container can be deleted.

Retention can be configured for each service in the storage account. By default, Storage
Analytics will not delete any logging data. When the shared 20-terabyte limit is reached, new
data cannot be written until space is freed. This limit is independent of the storage limit of the
account. You can specify a retention period from 0 to 365 days. Logging data is automatically
deleted when the retention period is reached for the entry.

https://portal.azure.com

	286	 CHAPTER 4	 Design and implement a storage strategy

NOTE  DUPLICATE LOGS

Duplicate log entries may be present within the same hour. You can use the RequestId and
operation number to uniquely identify an entry to filter duplicates.

MORE INFO  STORAGE LOGGING

For more information about enabling and working with Azure storage logging, see
http://msdn.microsoft.com/en-us/library/azure/dn782843.aspx and http://msdn.microsoft.
com/en-us/library/azure/hh343262.aspx.

Configuring storage logging and retention (existing portal)
To enable storage logging and associated retention levels for Blob, Table, and Queue services
in the existing portal, follow these steps:

1.	 Navigate to the Configure tab for your storage account in the management portal
accessed via https://manage.windowsazure.com. Scroll to the logging section.

2.	 If this storage account uses blobs, select Read, Write, and Delete requests to log all
activity. Set retention according to your retention policy.

3.	 If this storage account uses tables, select Read, Write, and Delete requests to log all
activity. Set retention according to your retention policy.

4.	 If this storage account uses queues, check Read, Write, and Delete requests to log all
activity. Set retention according to your retention policy.

5.	 Click Save to commit the settings.

Configuring storage logging and retention (Preview portal)
To enable storage logging and associated retention levels for Blob, Table, and Queue services
in the Preview portal, follow these steps:

1.	 Navigate to the management portal accessed via https://portal.azure.com.

2.	 Click Browse on the command bar.

3.	 Select Storage from the Filter By drop-down list.

4.	 Select your storage account from the list on the Storage blade.

5.	 Scroll down to the Usage section, and select the Capacity Past Week check box.

6.	 On the Metric blade, click Diagnostics on the command bar.

7.	 Click the On button under Status. This shows the options for enabling monitoring
features.

http://msdn.microsoft.com/en-us/library/azure/dn782843.aspx
http://msdn.microsoft.com/en-us/library/azure/hh343262.aspx
http://msdn.microsoft.com/en-us/library/azure/hh343262.aspx
https://manage.windowsazure.com
https://portal.azure.com

	 Objective 4.5: Monitor storage	 CHAPTER 4	 287

8.	 If this storage account uses blobs, select Blob Logs to log all activity.

9.	 If this storage account uses tables, select Table Logs to log all activity.

10.	 If this storage account uses queues, select Queue Logs to log all activity.

11.	 Provide a value for retention according to your retention policy. Through the Preview
portal, this will apply to all services. It will also apply to Storage Analytics Metrics if that
is enabled. Select one of the available retention settings from the drop-down list, or
enter a number from 0 to 365.

NOTE  CONTROLLING LOGGED ACTIVITIES

From the Preview portal, when you enable or disable logging for each service, you enable
read, write, and delete logging. To log only specific activities, use Windows PowerShell
cmdlets.

Configuring storage logging and retention using Windows PowerShell
To enable storage metrics and associated retention levels using Windows PowerShell, use the
Set-AzureStorageServiceLoggingProperty cmdlet.

To enable logging for read, write, and delete actions with retention of 30 days, run the
following:

Set-AzureStorageServiceLoggingProperty –ServiceType Blob –LoggingOperations
read,write,delete –RetentionDays 30
Set-AzureStorageServiceLoggingProperty –ServiceType Table –LoggingOperations
read,write,delete –RetentionDays 30
Set-AzureStorageServiceLoggingProperty –ServiceType Queue –LoggingOperations
read,write,delete –RetentionDays 30

To disable the collection of metrics, run the following:

Set-AzureStorageServiceLoggingProperty –ServiceType Blob –LoggingOperations none
Set-AzureStorageServiceLoggingProperty –ServiceType Table –LoggingOperations none
Set-AzureStorageServiceLoggingProperty –ServiceType Queue –LoggingOperations none

Enabling client-side logging
You can enable client-side logging using Microsoft Azure storage libraries to log activity
from client applications to your storage accounts. For information on the .NET Storage Client
Library, see http://msdn.microsoft.com/en-us/library/azure/dn782839.aspx. For information on
the Storage SDK for Java, see http://msdn.microsoft.com/en-us/library/azure/dn782844.aspx.

Analyzing storage logs
Logs are stored as block blobs in delimited text format. When you access the container, you
can download logs for review and analysis using any tool compatible with that format. Within
the logs, you’ll find entries for authenticated and anonymous requests, as listed in Table 4-3.

http://msdn.microsoft.com/en-us/library/azure/dn782839.aspx
http://msdn.microsoft.com/en-us/library/azure/dn782844.aspx

	288	 CHAPTER 4	 Design and implement a storage strategy

TABLE 4-3  Authenticated and anonymous logs

Request Type Logged Requests

Authenticated requests ■■ Successful requests

■■ Failed requests such as timeouts, authorization, throttling
issues, and other errors

■■ Requests that use an SAS

■■ Requests for analytics data

Anonymous requests ■■ Successful requests

■■ Server errors

■■ Timeouts for client or server

■■ Failed GET requests with error code 304 (Not Modified)

Logs include status messages and operation logs. Status message columns include those
shown in Table 4-4. Some status messages are also reported with storage metrics data. There
are many operation logs for the Blob, Table, and Queue services.

MORE INFO  STATUS MESSAGES AND OPERATION LOGS

For a detailed list of specific logs and log format specifics, see http://msdn.microsoft.
com/en-us/library/azure/hh343260.aspx and http://msdn.microsoft.com/en-us/library/
hh343259.aspx.

TABLE 4-4  Information included in logged status messages

Column Description

Status Message Indicates a value for the type of status message, indicating type of success
or failure

Description Describes the status, including any HTTP verbs or status codes

Billable Indicates whether the request was billable

Availability Indicates whether the request is included in the availability calculation for
storage metrics

Finding your logs
When storage logging is configured, log data is saved to blobs in the $logs container created
for your storage account. You can’t see this container by listing containers, but you can navi-
gate directly to the container to access, view, or download the logs.

http://msdn.microsoft.com/en-us/library/azure/hh343260.aspx
http://msdn.microsoft.com/en-us/library/azure/hh343260.aspx
http://msdn.microsoft.com/en-us/library/hh343259.aspx
http://msdn.microsoft.com/en-us/library/hh343259.aspx

	 Objective 4.5: Monitor storage	 CHAPTER 4	 289

To view analytics logs produced for a storage account, do the following:

1.	 Using a storage browsing tool, navigate to the $logs container within the storage
account you have enabled Storage Analytics Logging for using this convention:
https://<accountname>.blob.core.windows.net/$logs.

2.	 View the list of log files with the convention <servicetype>/YYYY/MM/DD/
HHMM/<counter>.log.

3.	 Select the log file you want to review, and download it using the storage browsing
tool.

MORE INFO  LOG METADATA

The blob name for each log file does not provide an indication of the time range for the
logs. You can search this information in the blob metadata using storage browsing tools or
Windows PowerShell.

Accessing logs with Windows PowerShell
Using Windows PowerShell, you can access logs with the Get-AzureStorageBlob cmdlet and
then filter logs by filename and metadata. The following example illustrates how to filter a list
of write logs for Blob storage entries on a particular date during the ninth hour:

Get-AzureStorageBlob -Container '$logs' |
where {
 $_.Name -match 'blob/2014/12/01/09' -and
 $_.ICloudBlob.Metadata.LogType -match 'write'
} |
foreach {
 "{0} {1} {2} {3}" –f $_.Name,
 $_.ICloudBlob.Metadata.StartTime,
 $_.ICloudBlob.Metadata.EndTime,
 $_.ICloudBlob.Metadata.LogType
}

Downloading logs
To review and analyze your logs, first download them to your local machine. You can do this
with storage browsing tools, programmatically, or with AzCopy.

MORE INFO  AZCOPY

AzCopy is part of the Azure SDK. You can download the latest version directly from
http://aka.ms/AzCopy.

http://aka.ms/AzCopy
https://<accountname>.blob.core.windows.net/$logs

	290	 CHAPTER 4	 Design and implement a storage strategy

Viewing logs with Microsoft Excel
Storage logs are recorded in a delimited format so that you can use any compatible tool to
view logs. To view logs data in Excel, follow these steps:

1.	 Open Excel, and on the Data menu, click From Text.

2.	 Find the log file and click Import.

3.	 During import, select Delimited format. Select Semicolon as the only delimiter, and
Double-Quote (“) as the text qualifier.

Analyzing logs
After you load your logs into a viewer like Excel, you can analyze and gather information such
as the following:

■■ Number of requests from a specific IP range

■■ Which tables or containers are being accessed and the frequency of those requests

■■ Which user issued a request, in particular, any requests of concern

■■ Slow requests

■■ How many times a particular blob is being accessed with an SAS URL

■■ Details to assist in investigating network errors

MORE INFO  LOG ANALYSIS

You can run the Azure HDInsight Log Analysis Toolkit (LAT) for a deeper analysis of
your storage logs. For more information, see https://hadoopsdk.codeplex.com/releases/
view/117906.

Thought experiment
Proactive and reactive diagnostics

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

Your application is now live, and you are planning how you will monitor the overall
health of your storage account resources.

1.	 What features would you use to give you a proactive, early warning of problems
with storage services?

2.	 What features could you use to diagnose an issue retroactively so that you can
perform root cause analysis and fix the problem?

https://hadoopsdk.codeplex.com/releases/view/117906
https://hadoopsdk.codeplex.com/releases/view/117906

	 Objective 4.5: Monitor storage	 CHAPTER 4	 291

Objective summary
■■ Storage Analytics metrics provide the equivalent of Windows Performance Monitor

counters for storage services.

■■ You can determine which services to collect metrics for (Blob, Table, or Queue),
whether to collect metrics for the service or API level, and whether to collect metrics
by the minute or hour.

■■ Capacity metrics are only applicable to the Blob service.

■■ Storage Analytics Logging provides details about the success or failure of requests to
storage services.

■■ Storage logs are stored in blob services for the account, in the $logs container for the
service.

■■ You can specify up to 365 days for retention of storage metrics or logs, or you can set
retention to 0 to retain metrics indefinitely. Metrics and logs are removed automatically
from storage when the retention period expires.

■■ Storage metrics can be viewed in the management portal. Storage logs can be down-
loaded and viewed in a reporting tool such as Excel.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 Which statements are true of Storage Analytics Metrics? (Choose all that apply.)

A.	 Capacity metrics are recorded only for blobs.

B.	 You can set hourly or by minute metrics through the management portal.

C.	 By default, metrics are retained for one year.

D.	 If you disable metrics, existing metrics are deleted from storage.

2.	 Which statements are true of Storage Analytics Logging? (Choose all that apply.)

A.	 Logs are stored in the same storage account where they are enabled and are
measured as part of your storage quota.

B.	 Logs can have duplicate entries.

C.	 Logs cannot be deleted.

D.	 You can log all read, write, and delete requests to blobs, queues, and tables in a
storage account.

	292	 CHAPTER 4	 Design and implement a storage strategy

3.	 Which of the following are captured by Storage Analytics Logging? (Choose all that apply.)

A.	 Successful requests for authenticated calls only

B.	 Failed requests for authenticated calls only

C.	 Server errors

D.	 Requests using SAS URIs

Objective 4.6: Implement SQL databases

In this section, you learn about Microsoft Azure SQL Database, a PaaS offering for relational data.

This objective covers how to:
■■ Choose the appropriate database tier and performance level

■■ Configure and perform point in time recovery

■■ Enable geo-replication

■■ Import and export data and schema

■■ Scale SQL databases

Choosing the appropriate database tier and
performance level
Choosing a SQL Database tier used to be simply a matter of storage space. Recently, Microsoft
added new tiers that also affect the performance of SQL Database. This tiered pricing is called
Service Tiers. There are three service tiers to choose from, and while they still each have
restrictions on storage space, they also have some differences that might affect your choice.
The major difference is in a measurement called database throughput units (DTUs). A DTU is
a blended measure of CPU, memory, disk reads, and disk writes. Because SQL Database is a
shared resource with other Azure customers, sometimes performance is not stable or predict-
able. As you go up in performance tiers, you also get better predictability in performance.

■■ Basic  Basic tier is meant for light workloads. There is only one performance level of
the basic service tier. This level is good for small use, new projects, testing, develop-
ment, or learning.

■■ Standard  Standard tier is used for most production online transaction processing
(OLTP) databases. The performance is more predictable than the basic tier. In addition,
there are four performance levels under this tier, levels S0 to S3.

■■ Premium  Premium tier continues to scale at the same level as the standard tier. In
addition, performance is typically measured in seconds. For instance, the basic tier
can handle 16,600 transactions per hour. The standard/S2 level can handle 2,570

	 Objective 4.6: Implement SQL databases	 CHAPTER 4	 293

transactions per minute. The top tier of premium can handle 735 transactions per
second. That translates to 2,645,000 per hour in basic tier terminology.

MORE INFO  SQL DATABASE TIERS AND THROUGHPUT

For more information on SQL Database tiers, see http://msdn.microsoft.com/en-us/library/
azure/dn741336.aspx.

There are many similarities between the various tiers. Each tier has a 99.9 percent uptime
SLA, backup and restore capabilities, access to the same tooling, and the same database
engine features. Fortunately, the levels are adjustable, and you can change your tier as your
scaling requirements change.

The management portal can help you select the appropriate level. You can review the
metrics on the Monitor tab to see the current load of your database and decide whether to
scale up or down.

1.	 Click the SQL database you want to monitor.

2.	 Click the Monitor tab, as shown in Figure 4-10.

3.	 Add the following metrics:

■■ CPU Percentage

■■ Physical Data Reads Percentage

■■ Log Writes Percentage

FIGURE 4-10  The Monitor tab

http://msdn.microsoft.com/en-us/library/azure/dn741336.aspx
http://msdn.microsoft.com/en-us/library/azure/dn741336.aspx

	294	 CHAPTER 4	 Design and implement a storage strategy

All three of these metrics are shown relative to the DTU of your database. If you reach
80 percent of your performance metrics, it’s time to consider increasing your service tier or
performance level. If you’re consistently below 10 percent of the DTU, you might consider
decreasing your service tier or performance level. Be aware of momentary spikes in usage
when making your choice.

In addition, you can configure an email alert for when your metrics are 80 percent of your
selected DTU by completing the following steps:

1.	 Click the metric.

2.	 Click Add Rule.

3.	 The first page of the Create Alert Rule dialog box is shown in Figure 4-11. Add a name
and description, and then click the right arrow.

FIGURE 4-11  The first page of the Create Alert Rule dialog box

4.	 On the next page of the Create Alert Rule dialog box, shown in Figure 4-12, select the
condition and the threshold value.

	 Objective 4.6: Implement SQL databases	 CHAPTER 4	 295

FIGURE 4-12  The second page of the Create Alert Rule dialog box

5.	 Select your alert evaluation window. An email will be generated if the event happens
over a specific duration. You should indicate at least 10 minutes.

6.	 Select the action. You can choose to send an email either to the service administrator(s)
or to a specific email address.

Configuring and performing point in time recovery
Azure SQL Database does a full backup every week, a differential backup each day, and an
incremental log backup every five minutes. The incremental log backup allows for a point
in time restore, which means the database can be restored to any specific time of day. This
means that if you accidentally delete a customer’s table from your database, you will be able
to recover it with minimal data loss if you know the timeframe to restore from that has the
most recent copy.

The length of time it takes to do a restore varies. The further away you get from the last
differential backup determines the longer the restore operation takes because there are more
log backups to restore. When you restore a new database, the service tier stays the same, but
the performance level changes to the minimum level of that tier.

	296	 CHAPTER 4	 Design and implement a storage strategy

Depending on your service tier, you will have different backup retention periods. Basic
retains backups for 7 days, standard for 14 days, and premium for 35 days. In most cases, 14
days is enough time to determine that you have a problem and how to correct it.

You can restore a database that was deleted as long as you are within the retention period.
Follow these steps to restore a database:

1.	 Select the database you want to restore, and then click Restore, as shown in Figure 4-13.

FIGURE 4-13  The Restore button

2.	 The Restore dialog box opens, as shown in Figure 4-14.

FIGURE 4-14  The Restore dialog box

	 Objective 4.6: Implement SQL databases	 CHAPTER 4	 297

3.	 Select a database name.

4.	 Select a restore point. You can use the slider bar or manually enter a date and time.

5.	 You can also restore a deleted database. Select the Deleted Databases tab, as shown in
Figure 4-15.

FIGURE 4-15  The Deleted Databases tab for SQL databases in the management portal

6.	 Select the database you want to restore.

7.	 Click Restore as you did in step 1.

8.	 Specify a database name for the new database.

9.	 Click Submit.

Enabling geo-replication
Every Azure SQL Database subscription has built-in redundancy. Three copies of your data are
stored across fault domains in the datacenter to protect against server and hardware failure.
This is built in to the subscription price and is not configurable. You can configure two more
fault-tolerant options: standard geo-replication and active geo-replication.

Standard geo-replication allows the user to fail over the database to a different region
when a database is not available. It is available on the standard and premium service tiers. The
main difference between active and standard geo-replication is that standard geo-replication
does not allow clients to connect to the secondary server. It is offline until it’s needed to take
over for the primary. The target region for the offline secondary server is pre-determined. For
instance, if your primary server is in North Central US, then your secondary server will be in
South Central US. The source and target servers must belong to the same subscription.

Creating an offline secondary database (existing portal)
Follow these steps to configure an offline secondary database:

1.	 Click the Geo-Replication tab for the database, as shown in Figure 4-16, and click Add
Secondary.

	298	 CHAPTER 4	 Design and implement a storage strategy

FIGURE 4-16  Replication properties

2.	 On the Specify Secondary Settings page, shown in Figure 4-17, select a server from the
server list or click New SQL Database Server, and then click the right arrow.

FIGURE 4-17  Creating a new secondary for geo replication

	 Objective 4.6: Implement SQL databases	 CHAPTER 4	 299

3.	 If you select a new server, the SQL Database Server Settings page opens (see Figure
4-18). Enter a login name and password, and select the Allow Windows Azure Services
To Access The Server check box.

FIGURE 4-18  The SQL Database Server Settings page

4.	 Monitor the Geo-Replication page for the progress of building the new secondary. You
can watch the Replication Status of the database switch from Pending to Active.

If there is a datacenter failure, the same page shows the Replication Status of your
database as Unavailable. You will also see the Failover Enabled property set to true for
the database and be able to initiate a failover by clicking Failover on the command bar.

OTE  USES FOR CREATING AN OFFLINE SECONDARY

Another use for this feature has to do with the ability to terminate the continuous copy
relationship between a primary and secondary database. You can terminate the relation-
ship and then upgrade the primary database to a different schema to support a software
upgrade. The secondary database gives you a rollback option.

Creating an offline secondary database (Preview portal)
To create an offline secondary database in the Preview portal, follow these steps:

1.	 Navigate to your SQL database in the management portal accessed via https://portal.
azure.com.

2.	 Scroll to the Geo Replication section, and click the Configure Geo Replication box.

3.	 On the Geo Replication blade, select your target region.

https://portal.azure.com
https://portal.azure.com

	300	 CHAPTER 4	 Design and implement a storage strategy

4.	 On the Create Secondary blade, click Create.

Creating an online secondary database (existing portal)
There are some differences between standard geo-replication and active geo-replication.
Active geo-replication is different in these ways:

■■ You can have four secondary copies of your database.

■■ It is available only at the premium service tier.

■■ The online secondary will be consistent with the primary eventually.

■■ Of the four secondary copies of the database, four can be active, or three can be active
and one can be an offline secondary.

■■ The online secondary server is readable. This allows you to put reports or ETL pro-
cesses on the secondary, freeing up the locking overhead on the primary. Since the
secondary copies are located in different regions, you can put readable databases
close to remote users.

Before you create an online secondary, the following requirements must be met:

■■ The secondary database must have the same name as the primary.

■■ They must be on separate servers.

■■ They both must be on the same subscription.

■■ The secondary server cannot be a lower performance tier than the primary.

The steps for configuring an active secondary is the same as creating an offline secondary,
except you can select the target region, as shown in Figure 4-19.

FIGURE 4-19  The New Secondary For Geo Replication dialog box for creating an active secondary

	 Objective 4.6: Implement SQL databases	 CHAPTER 4	 301

Creating an online secondary database (Preview portal)
If your SQL database is a Premium database, you will be able to create an online secondary.
To create an online secondary in the Preview portal, follow these steps:

1.	 Navigate to your SQL database in the management portal accessed via
https://portal.azure.com.

2.	 On the Create Secondary blade, change the Secondary Type to Readable.

3.	 Click Create to create the secondary.

Creating an online or offline secondary with Windows PowerShell
Creating an online or offline secondary can be done with Windows PowerShell using the
Start-AzureSqlDatabaseCopy cmdlet.

To create an online secondary, use the following command:

Start-AzureSqlDatabaseCopy -ServerName "SecondarySrv" -DatabaseName "Flashcards"
-PartnerServer "NewServer" –ContinuousCopy

To create an offline secondary, use the following command:

Start-AzureSqlDatabaseCopy -ServerName "SecondarySrv" -DatabaseName "Flashcards"
-PartnerServer "NewServer" –ContinuousCopy -OfflineSecondary

Importing and exporting data and schema (existing portal)
Importing and exporting data and schema from a SQL database is essential for a number of
situations, including creating a local development or test copy, moving a database to a local
instance of SQL Server, or archiving data before you clean up a production database.

To export a database, follow these steps:

1.	 In the management portal, click the database you want to export.

2.	 On the task bar, click Export.

3.	 Enter values for the following:

■■ FileName

■■ Subscription

■■ Blob Storage Account

■■ Container

■■ Login Name

■■ Password

This will create a BACPAC file that can be used to create a database with either an
on-premises SQL server, a SQL server in an Azure VM or in Azure SQL Database.

https://portal.azure.com

	302	 CHAPTER 4	 Design and implement a storage strategy

To import the BACPAC into Azure SQL Database, perform the following steps:

4.	 Click New, Data Services, SQL Database, Import.

5.	 Click the folder under the BACPAC URL to navigate to the BACPAC file stored in the
storage account.

6.	 Click Open.

7.	 Enter the following information:

■■ Subscription

■■ Service Tier

■■ Performance Level

■■ Server

8.	 Click the Next arrow.

9.	 Enter the login details for the new server.

10.	 Click the check mark. Your new database appears online shortly.

The import process is faster if you use the standard service tier and at least the
S2 performance level.

Importing and exporting data and schema (Preview portal)
The Preview portal does not currently support importing and exporting data and schema.

Thought experiment
Managing schema changes

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

Your have 20 developers. They work on a central development copy of SQL
Database hosted on Azure. They are constantly changing schema. Sometimes they
overwrite each other’s changes, which leads to frustration. These developers are not
in the same city. Some are in Europe and some are in the United States.

1.	 What are some things you should consider to make schema changes easier for
the developers?

2.	 What should you consider when creating a backup and restore strategy for this
database?

3.	 What level of SQL Database is probably adequate for the developers? How would
you determine that?

	 Objective 4.6: Implement SQL databases	 CHAPTER 4	 303

Objective summary
■■ The different editions of Azure SQL Database affect performance, SLAs, backup/restore

policies, pricing, geo-replication options, and database size.

■■ The edition of Azure SQL Database determines the retention period for point in time
restores. This should factor into your backup and restore policies.

■■ It is possible to create an online secondary when you configure Azure SQL Database
geo-replication. It requires the Premium Edition.

■■ If you are migrating an existing database to the cloud, you can use the Azure manage-
ment portal to move schema and data into your Azure SQL database.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 Which of the following is not a requirement for creating an online secondary for SQL
Database? (Choose all that apply.)

A.	 The secondary database must have the same name as the primary.

B.	 They must be on separate servers.

C.	 They both must be on the different subscription.

D.	 The secondary server cannot be a lower performance tier than the primary.

2.	 Which metrics should you add to monitoring that will help you select the appropriate
level of SQL Database?

A.	 CPU Processor Count

B.	 CPU Percentage

C.	 Physical Data Reads Percentage

D.	 Log Writes Percentage

3.	 From what you know about SQL Database architecture, what should you include in
your client application code?

A.	 Connection resiliency, because you could failover to a replica.

B.	 Transaction resiliency so you can resubmit a transaction in the event of a failover.

C.	 Query auditing so you can baseline your current query times and know when to
scale up the instance.

D.	 A backup and restore operation for the database.

	304	 CHAPTER 4	 Design and implement a storage strategy

Answers

This section contains the solutions to the thought experiments and answers to the objective
review questions in this chapter.

Objective 4.1: Thought experiment
1.	 You would consider structuring the blob hierarchy so that one of the portions of the

path represented the language or region.

2.	 You would consider creating a CDN on a publicly available container to cache those
files locally around the world.

Objective 4.1: Objective review
1.	 Correct answers: A and D

A.	 Correct: Only blobs have writable system properties.

B.	 Incorrect: Blob user-defined metadata is accessed as a key value pair.

C.	 Incorrect: System metadata can influence how the blob is stored and accessed in
Azure Storage.

D.	 Correct: Containers also have system properties and user-defined metadata.

2.	 Correct answers: B and D

A.	 Incorrect: Page files are not faster for streaming files, but are very good for
random I/O files like VHDs.

B.	 Correct: Block blobs allow files to be uploaded and assembled later. Blocks can be
resubmitted individually.

C.	 Incorrect: Page blobs are for hard disks, not files for streaming.

D.	 Correct: Block blobs have a maximum size of 200 GB. Page blobs can be 1 terabyte.

3.	 Correct answers: A, B, and C

A.	 Correct: SSL encrypts all data between client and server and prevents network
sniffing.

B.	 Correct: If the keys are hidden, they can’t be compromised and used to gain
access to Table storage.

C.	 Correct: Client-side code can easily be seen in the browser. Keep sensitive
information stored where few people can access it.

D.	 Incorrect: Public containers are not secured.

	 Answers	 CHAPTER 4	 305

Objective 4.2: Thought experiment
1.	 Machine ID seems like a logical candidate for PartitionKey.

2.	 Shot count time stamp, ordered descending.

3.	 There might be two tables, one for the machine metadata and one for the shots. You
could also make an argument for consolidating both pieces of data into one table for
speed in querying.

Objective 4.2: Objective review
1.	 Correct answer: A

A.	 Correct: Transactional replication is used in Microsoft SQL Server. Table storage
doesn’t have anything like that.

B.	 Incorrect: Zone redundant storage is valid.

C.	 Incorrect: Read access geo-redundant storage is valid.

D.	 Incorrect: Geo-redundant storage is valid.

2.	 Correct answers: C and D

A.	 Incorrect: They should not necessarily be unique, although they can be for
rare-use cases.

B.	 Incorrect: You should only use the same partition key if you have a very small
entity set.

C.	 Correct: Batches can only have operations that exist in the same partition, with the
same partition key.

D.	 Correct: Even partition sizes will give your application predictable performance
because one partition server won’t be unevenly loaded with more entities than the
others.

3.	 Correct answers: A, B, and C

A.	 Correct: All operations have to be in the same partition.

B.	 Correct: Total batch size can’t be greater than 4 MB.

C.	 Correct: Maximum operation count is 100.

D.	 Incorrect: There is no minimum operation count for a batch.

	306	 CHAPTER 4	 Design and implement a storage strategy

Objective 4.3: Thought experiment
1.	 Typically, the application will store any relevant data and content to be used to pro-

duce reports in durable storage. When a report is requested, the request is written to a
queue to trigger processing. The queue message must include enough information so
that the compute instance listening to the queue can gather the information required
for the specific user’s report. In some cases, the message may point to a report request
stored in a database record. In other cases, the queue message holds enough data to
look up all the information required for the report. The work to generate a PDF should
be performed on a compute instance that does not compete with mainline application
resources, such as the core application web applications and services. This will allow
the system to scale PDF generation separately from the main application as needed.

2.	 The most likely candidate for the compute instance for PDF generation is a cloud ser-
vice worker role because it provides a built-in mechanism to deploy a Windows Service
equivalent in a PaaS environment, but also provides some level of VM customization
with startup tasks—possibly necessary for whatever PDF generation tool you may
select. If no special software requirements are necessary for producing PDFs, you could
also use a WebJob trigger to process queued messages. A VM can also be used, likely
with a Windows Service deployed that processes the queue.

3.	 It will be important to take note of the average memory and disk space used while
processing a single message to generate the PDF report. If you monitor the com-
pute instance statistics and slowly begin to scale the number of concurrent messages
processed on a single instance, you’ll be able to see how much a single instance can
handle for configuring auto-scale properties.

4.	 When you have an idea of the number of concurrent messages that can be pro-
cessed on a single compute instance, you can identify the number of queued items
that should trigger scaling the number of instances. For VMs and cloud services, you
can automate this with auto-scale by metrics. For websites and WebJobs, you do not
have the option to auto-scale by metric.

	 Answers	 CHAPTER 4	 307

Objective 4.3: Objective review
1.	 Correct answer: B

A.	 Incorrect: Storage queue messages have a size limit of 64 KB. It is true, however, that
a smaller message size can increase throughput since the storage service can support
more requests per second when those requests hold a smaller amount of data.

B.	 Correct: Storage queues can only store up to 64 KB per message.

C.	 Incorrect: Storage queue messages expire after seven days, unlike Service Bus
Queue messages, which are persisted until explicitly read and removed.

D.	 Incorrect: The message identifier should be considered opaque to the client,
although it is returned from the AddMessage() method. When retrieving messages
from the queue for processing, the message identifier is provided so that you can
use it to subsequently delete the message.

2.	 Correct answers: C and D

A.	 Incorrect: A single compute instance can process as many messages as its resources
allow for. For example, if processing a message is memory intensive, the number of
parallel messages that can be processed will depend on the amount of memory to
be consumed for each message that is processed.

B.	 Incorrect: A single compute instance can process as many messages as its resources
allow for. For example, if processing a message is memory intensive, the number of
parallel messages that can be processed will depend on the amount of memory to
be consumed for each message that is processed.

C.	 Correct: The queue client can request up to 32 messages in a single batch and
then process them sequentially or in parallel. Each request from the queue client
can request another 32 messages.

D.	 Correct: The queue client can request a single message or request up to 32
messages in a batch for processing.

E.	 Incorrect: Messages are not deleted when the message is read. Messages must be
explicitly deleted.

3.	 Correct answers: A, C, and D

A.	 Correct: By creating multiple queues for the application, broken down by logi-
cal heuristics that make sense to the application for distributing messages, you
can increase scalability by reducing the pressure on a single queue for message
processing and throughput.

B.	 Incorrect: Websites do not support auto-scale by metric at this time.

C.	 Correct: VMs can be scaled based on the number of items in a specified queue.

D.	 Correct: Cloud services can be scaled based on the number of items in a specified
queue.

	308	 CHAPTER 4	 Design and implement a storage strategy

Objective 4.4: Thought experiment
1.	 Users who authenticate to the application should be able to request the report, but

since the reports are stored in blobs, it is convenient to be able to share the link directly
to the blob. You could have the web application present a page that generates an SAS
URI for a report on demand. The user could then copy that link and share in email with
others even if they don’t have access to the web application.

2.	 The duration that the link should be valid depends on the typical workflow for your
customers who access these reports. For example, if it is acceptable to expect the user
who authenticated to download the report right away, or to send the link to someone
who will do so right away, limit the SAS token to 30 minutes so that if the email with
the link is found at a later time by an unauthorized user, it will be expired. If the link
should be shared with someone who may need more time to access the report, but
you want to enforce that links can be revoked when some other action has taken place
in the application, use a stored access policy with an initial duration that will be accept-
able for this workflow. You can then allow users to extend the validity of the SAS token
through the web application, or you can programmatically revoke access if you note
suspicious activity on the report links through storage logs.

Objective 4.4: Objective review
1.	 Correct answers: A, C, D, and E

A.	 Correct: You can generate an SAS token that grants read access to blobs. You can
also grant access to modify a blob’s contents.

B.	 Incorrect: You cannot grant access to create new containers using SAS. This
operation requires the storage access key.

C.	 Correct: You can grant access to an existing queue and allow add, update, and
delete operations using SAS tokens.

D.	 Correct: You can grant access to an existing table and allow add, update, and
delete operations on entities within that table.

E.	 Correct: You can grant access to query the entities of an existing table using SAS
tokens.

2.	 Correct answers: A, B, and C

A.	 Correct: You can change both the start and expiration dates of an SAS token that
is attached to a stored access policy.

B.	 Correct: You can revoke all access by an SAS token that is attached to a stored
access policy.

C.	 Correct: You can revoke specific operations by an SAS token that is attached to a
stored access policy. For example, you can remove support for delete operations
that were originally granted.

	 Answers	 CHAPTER 4	 309

D.	 Incorrect: You can use the same stored access policy for multiple resources (such
as multiple blobs, for example) but this is done at the time of producing the SAS
token and associating the stored access policy to the token. You cannot add
resources at the policy level.

3.	 Correct answers: B and D

A.	 Incorrect: CORS is not generally recommended but is a necessary evil for certain
types of browser applications to allow for efficient access to storage resources. Try
to avoid the use of CORS by using an alternate design if possible.

B.	 Correct: If blobs are protected resources that require authentication, you should
avoid using the storage account key to access them, in particular if this means
sharing it with a browser. Instead, generate an SAS token that will be included
in any links for requesting the resource and limit the duration the token is valid
either with a short duration or a stored access policy you can revoke when the user
session ends.

C.	 Incorrect: CORS is now supported for all storage services, including blobs, queues,
and tables.

D.	 Correct: CORS is not enabled for a new storage account. You have to explicitly
enable this feature.

Objective 4.5: Thought experiment
1.	 You should be looking at using monitoring (through the management portal) and

configuring alerts based on latency and availability.

2.	 You should enable and review the Storage Analytics logs. You can look for usage
patterns based on the type of activity seen or errors logged. You can also look for
specific types of logs related to a specific event that occurred.

Objective 4.5: Objective review
1.	 Correct answer: A

A.	 Correct: Capacity metrics include total storage in bytes, the container count, and
the object count for blob storage only.

B.	 Incorrect: You can only set minute metrics programmatically or by using Windows
PowerShell cmdlets.

C.	 Incorrect: By default, retention is not specified, therefore metrics are retained
indefinitely. You should set the retention policy to match your compliance require-
ments and seek to archive if beyond one year.

D.	 Incorrect: If you disable metrics, all metrics previously collected will be retained
until the retention period expires.

	310	 CHAPTER 4	 Design and implement a storage strategy

2.	 Correct answers: B and D

A.	 Incorrect: Logs are stored in a $logs container in Blob storage for your storage
account, but the log capacity is not included in your storage account quota. A
separate 20-terabyte allocation is made for storage logs.

B.	 Correct: Logs can have duplicate entries within a one-hour period; however, you
can identify a log entry uniquely with a RequestId and operation number.

C.	 Incorrect: The log container cannot be deleted once in use, but the logs within
that container can be deleted by authorized callers.

D.	 Correct: You can log all or individual operations to all storage services.

3.	 Correct answers: C and D

A.	 Incorrect: A log entry is created for all successful authenticated and anonymous
requests.

B.	 Incorrect: For authenticated calls, all known failed requests are logged, and for
anonymous calls, only failed Get requests for error code 304 are logged.

C.	 Correct: Server errors generate a log entry.

D.	 Correct: All requests to storage resources using SAS tokens are logged.

Objective 4.6: Thought experiment
1.	 You might consider giving each developer his or her own copy of the database with

SQL Database. Then create a central one for merging changes.

2.	 If developers write database objects and then don’t access them again, you might
need more than a 14-day backup retention policy. This might lead to a higher edition
of SQL Database being used for reasons different than raw performance. You might
also consider manually exporting the database if a developer says he or she will be
doing something particularly risky.

3.	 If the developers don’t need access to a database the same size as production, they
might get away with the basic level of SQL Database. If they do need development
databases that are just like production, then choose the level of SQL Database that
corresponds with the right size. Developers don’t usually put a high load on their
servers, so you can ignore the hardware metrics when selecting the appropriate level.

	 Answers	 CHAPTER 4	 311

Objective 4.6: Objective review
1.	 Correct answer: D

A.	 Incorrect: The secondary database must have the same name as the primary.

B.	 Incorrect: They must be on separate servers.

C.	 Incorrect: They need to be on the same subscription

D.	 Correct: The secondary server cannot be a lower performance tier than the primary.

2.	 Correct answers: B, C, and D

A.	 Incorrect: CPU Processor Count is not a valid metric

B.	 Correct: CPU Percentage is a valid metric.

C.	 Correct: Physical Data Reads Percentage is a valid metric

D.	 Correct: Log Writes Percentage is a valid metric.

3.	 Correct answers: A, B, and C

A.	 Correct: Connection resiliency, because you could failover to a replica.

B.	 Correct: Transaction resiliency so you can resubmit a transaction in the event of a
failover.

C.	 Correct: Query auditing so you can baseline your current query times and know
when to scale up the instance.

D.	 Incorrect: You can handle backup and restore operations from the Azure manage-
ment portal. There’s no reason to write custom code for this.

This page intentionally left blank

This page intentionally left blank

395

SAML-P,  322–323
viewing endpoints,  319–320
WS-Federation,  320–322

creating directories,  314–315
querying directories with Graph API,  324–327
user management,  315–317

Add Application dialog box,  318
Add-AzureAccount cmdlet,  100
Add-AzureDataDisk cmdlet,  102
Add-AzureDisk cmdlet,  101
Add-AzureVhd -Destination cmdlet,  100
Add Group dialog box,  316
Add Members dialog box,  317
Add Or Remove Snap-ins dialog box,  191–192
Add Solution <Name> To Source Control dialog

box,  219
Add User dialog box,  315
Add WebJob dialog box,  60
administrative roles, Active Directory,  316–317
ADO.NET, enabling transient fault handling,  80
Advanced Message Queuing Protocol (AMQP),  344
affinity groups, configuring,  225–227
alerts, configuring,  48–50,  158–160
AMQP (Advanced Message Queuing Protocol),  344
analysis

storage logs,  287–290
storage metrics,  283–285

anonymous requests (storage logs),  287–288
API level metrics collection,  280
application diagnostic logs,  36
application logs, viewing,  161
Application Request Routing (ARR) affinity,

disabling,  82
applications
application services

Active Directory,  313–329
app integration,  317–325

Index

A
access

Graph API,  325–326
Graph API tenant,  326–327
Puppet Enterprise console,  116–117
security, Azure storage blobs,  255–256
storage accounts,  272–278

CORS (Cross-Origin Resource Sharing),  278
shared access signatures,  273–276
storage account keys,  276–278
stored access policies,  276

access control lists (ACLs)
configuring,  196–197
VM networks,  127–128

access permissions, containers,  248
account access keys,  249–250
ACLs (access control lists)

configuring,  196–197
VM networks,  127–128

Active Directory (AD),  313–329
app integration,  317–325

OAuth,  324–325
OpenID Connect,  323–324
registering applications,  318
SAML-P,  322–323
viewing endpoints,  319–320
WS-Federation,  320–322

creating directories,  314–315
querying directories with Graph API,  324–327
user management,  315–317

active geo-replication,  297
AD (Active Directory),  313–329

app integration,  317–325
OAuth,  324–325
OpenID Connect,  323–324
registering applications,  318

396

application tiers, availability sets and

Azure Compute Emulator,  173, 177,  237–239
Azure Cross Platform Command Line Interface (Azure

CLI),  108
Azure Diagnostics monitor,  229
Azure File storage,  150-154, 259
Azure SDK installation,  172–173
Azure Storage Emulator,  173, 238
AzureStorageMetricsProperty cmdlet,  282
Azure Storage services,  245

access management,  272–278
CORS (Cross-Origin Resource Sharing),  278
shared access signatures,  273–276
storage account keys,  276–278
stored access policies,  276

Blob service,  246–259
account access keys,  249–250
async blob copies,  256–257
Azure File storage,  259
block and page blobs,  255
CDN configuration,  257–258
changing data,  251–253
containers,  246–248
custom domains,  258
designing hierarchies,  258
reading data,  251
scaling,  259
secure access,  255–256
setting metadata on containers,  253–254
streaming data,  255
uploading blobs,  250–251

monitoring,  280–290
analyzing storage logs,  287–290
analyzing storage metrics,  283–285
configuring metrics,  280–283
Storage Analytics Logging,  285–287

Queue service,  268–271
adding messages to a queue,  268–269
processing messages,  269
retrieving a batch of messages,  270
scaling,  270

SQL databases,  292–302
choosing tier/performance level,  292–295
geo-replication,  297–301
importing/exporting data and schema,  301–302
point in time recovery,  295–297

Table service,  261–266
CRUD operations,  261–265
partitions,  266

creating directories,  314–315
querying directories with Graph API,  324–327
user management,  315–317

caching solutions,  378–384
Managed Cache Service,  383–384
Redis Cache,  379–383

communication strategy,  341–368
event hubs,  361–366
messaging protocols,  343–344
notification hubs,  366–367
Service Bus namespace,  342–344
Service Bus queues,  349–355
Service Bus relays,  344–349
Service Bus topics and subscriptions,  356–362

configuring app settings,  14–16
designing apps for scale and resilience,  74–86

disabling ARR affinity,  82
pattern selection,  75–79
transient fault handling,  79–81

scaling and monitoring communication,  369–377
choosing pricing tier,  370
Service Bus features,  371–373
Service Bus namespace,  373–377

application tiers, availability sets and,  139
AppSettings property (ConfigurationManager class),  15
A records, configuring custom domains,  204–205
ARR (Application Request Routing) affinity,

disabling,  82
Arr-Disable-Session-Affinity custom header,  82
ASP.NET Web Role template,  175
assigning groups, Active Directory,  316
Associate With Role Project dialog box,  179
async blob copies,  256–257
Attach An Empty Disk To The Virtual Machine dialog

box,  149
Attach To Process dialog box,  122, 233
authenticated requests (storage logs),  287–288
auto-scale,  187–190

configuring by metric,  64–68
configuring using built-in and custom

schedules,  63–64
configuring VM scale,  141–143

availability sets, configuring VM scale,  138–141
AZCopy utility, 250

accessing file shares,  153
copying images between storage accounts,  106

Azure CLI (Azure Cross Platform Command Line
Interface),  108

397

cloud services

configuring cloud services,  205–211
caching on a role,  206–208
implementation of a cache client,  208–211

Managed Cache Service,  383–384
Redis Cache,  379–383

Caching tab (Visual Studio),  207
capacity metrics,  281
Capture The Virtual Machine dialog box,  104
capturing VM images,  103–105
CDN (Content Delivery Network), configuring,  257–258
certificate authorities,  191
certificates

configuring,  26–32
HTTPS endpoints and,  190

acquiring certificates,  191
configuring roles,  193–195
converting certificates to PFX,  191–193
uploading certificates,  193

changing blob data,  251–253
Chef,  114, 119–121
Circuit Breaker pattern, designing applications for scale

and resilience,  77–79
classes

CloudBlockBlob,  252
ConfigurationManager,  15
RoleEntryPoint,  175
TableEntity,  262
WebRole,  176

client-side logging,  287
CloudBlockBlob class,  252
cloud patterns,  75
cloud services

configuring,  185–213
auto-scale,  187–190
caching,  205–211
custom domains,  204–205
instance size and count,  185–187
local storage,  200–201
multiple websites in a role,  201–203
networking,  190–200

deployment,  213–228
configuring regions and affinity groups,  225–227
packaging a deployment,  214
runtime configuration changes,  222–225
upgrading a deployment,  214–218
VIP swapping,  218–219
virtual networks,  334
Visual Studio Online,  219–222

querying using ODATA,  265–266
transient fault handling,  81

Azure WebJob dialog box,  58
AzureWebJobsDashboard connection string,  57
AzureWebJobsStorage connection string,  57

B
back-end applications, solutions with notification

hubs,  367
background startup tasks,  181
back off polling,  271
bare bones VM workloads,  92
BasicHttpRelayBinding,  345
Basic tier (SQL Databases),  292
Basic tiers (Service Bus),  370
batch files, startup tasks,  182
BeginStartCopyFromBlob() method,  256
Billing administrator role (AD),  316
binding attributes, WebJobs SDK,  56
blobs,  246–259

account access keys,  249–250
async blob copies,  256–257
Azure File storage,  259
block and page blobs,  255
CDN configuration,  257–258
changing data,  251–253
containers,  246–248
creating SAS tokens,  274
custom domains,  258
designing hierarchies,  258
reading data,  251
scaling,  259
secure access,  255–256
setting metadata on containers,  253–254
streaming data,  255
uploading blobs,  250–251

block blobs,  255
BrokeredMessage type,  354
browsers (storage), reading blobs,  251
built-in schedules, configuring auto-scale,  63–64

C
Cache-Aside pattern,  75, 180
caching solutions,  378–384

398

cmdlets

scaling and monitoring,  369–377
choosing pricing tier,  370
Service Bus features,  371–373
Service Bus namespace,  373–377

Compensating Transaction pattern,  75, 181
Competing Consumers pattern,  75, 181
Concurrency, profiling cloud services,  232
configuration drift,  110
Configuration keyword,  111
ConfigurationManager class, AppSettings property,  15
configuration script, creating,  113–114
configuring

alerts,  48–50
cache,  380–382
CDN (Content Delivery Network),  257–258
cloud services,  185–213

auto-scale,  187–190
caching,  205–211
custom domains,  204–205
instance size and count,  185–187
local storage,  200–201
multiple websites in a role,  201–203
networking,  190–200

custom domains for blob storage,  258
diagnostics,  43–45
DNS,  204
monitoring,  46–48
regions and affinity groups,  225–227
Storage Analytics Logging,  285–287
storage metrics,  280–283
virtual machines,  108–122

alerts,  158–160
auto-scale,  141–143
availability sets,  138–141
Chef,  119–121
Custom Script Extension,  109–110
disk caching,  148–150
endpoint monitoring,  158
geo-replication,  150
monitoring and diagnostics,  156–158
networking,  124–135
PowerShell DSC,  110–114
Puppet,  114–119
shared storage,  150–154
storage pools,  146–148
VM Agent and VM extensions,  108–109

virtual networks,  329–334
adding VMs to virtual networks,  332–333

development,  171–185
installation of SDKs and emulators,  172–173
resiliency,  180–181
startup tasks,  181–183
web roles and worker roles,  173–180

monitoring and debugging,  229–240
Azure Compute Emulator,  237–239
diagnostic configuration,  229–231
IntelliTrace,  236–237
profiling resource consumption,  231–232
remote debugging,  233
Remote Desktop Protocol,  234–236

moving role to a new subnet,  338
cmdlets

Add-AzureAccount,  100
Add-AzureDataDisk,  102
Add-AzureDisk,  101
Add-AzureVhd -Destination,  100
AzureStorageMetricsProperty,  282
Get-AzurePublishSettingsFile,  100
Get-AzureStorageBlob,  289
Get-AzureWebsiteLog,  40
Get-Credential,  234
Import-AzurePublishSettingsFile,  100
New-AzureAffinityGroup,  225
New-AzureQuickVM,  105
New-AzureSBNamespace,  343
Publish-AzureVMDSCConfiguration,  113
retrieving diagnostic data and streaming logs,  40–

41
Save-AzureImage,  104
Set-AzureVMSize,  137–138
Start-AzureSqlDatabaseCopy,  301

CNAME records, configuring custom domains,  204–205
code samples, Azure AD,  318
Co-located cache,  206
columnar stores,  261
Command and Query Responsibility Segregation

pattern,  75, 181
communication

design strategy,  341–368
creating Service Bus namespace,  342–344
event hubs,  361–366
messaging protocols,  343–344
notification hubs,  366–367
Service Bus queues,  349–355
Service Bus relays,  344–349
Service Bus topics and subscriptions,  356–362

399

debugging

Service Bus namespace,  342–344
Service Bus queues,  351–353
Service Bus topics and subscriptions,  357–358
stored access policies,  276
virtual machines

configuration management tools,  108–122
deployment of workloads,  91–96
monitoring,  155–163
networking,  124–135
scale,  136–144
VM images and hard disks,  97–106
VM storage,  145–155

virtual networks,  330–332
credentials

Service Bus event hubs,  363–364
Service Bus queues,  352
Service Bus relays,  345–346
Service Bus topics,  358

Cross-Origin Resource Sharing (CORS),  278
CRUD operations,  261–265
CSPack command-line tool,  214
custom domains

blobs,  258
configuring,  22–26, 204-205

custom schedules, configuring auto-scale,  63–64
Custom Script Extension,  109–110

D
data, retrieving diagnostic data,  36–43
database throughput units (DTUs),  292
database workloads,  92
DataCacheFactory,  211
data disks, creating,  100
Data In metric, configuring auto-scale,  64
Data Out metric, configuring auto-scale,  64
data sources, cloud service diagnostics,  229
data streaming, blobs,  255
dead letter queues,  356
debugging

cloud services,  229–240
Azure Compute Emulator,  237–239
diagnostic configuration,  229–231
IntelliTrace,  236–237
profiling resource consumption,  231–232
remote debugging,  233
Remote Desktop Protocol,  234–236

creating virtual networks,  330–332
deploying cloud service to virtual network,  334

websites,  13–35
API, Windows PowerShell, and xplat-di,  33–34
app settings,  14–16
certificates,  26–32
connection strings,  16–18
custom domains,  22–26
request handler mappings,  18–20
scale and resilience,  62–74
SSL bindings,  32–33
virtual directories and virtual applications,  20–21

connection strings
configuring,  16–18
Service Bus event hubs,  364
Service Bus queues,  353–354
Service Bus topics,  359–360

Connect To Team Foundation Server dialog box,  219
consumption of resources, monitoring and debugging

cloud services,  231–232
containers

creating,  246–248
setting metadata,  253–254

Content Delivery Network (CDN), configuring,  257–258
controlling expiration, cache storage,  383
copying virtual images between storage accounts,  106
CORS (Cross-Origin Resource Sharing),  278
CPU, configuring auto-scale,  189
CPU Percentage, configuring auto-scale by metric,  64
CPU sampling, profiling cloud services,  231
Create A Disk From A VHD dialog box,  100
Create Alert Rule dialog box,  294–295
Create A Namespace dialog box,  342
Create An Image From A VHD dialog box,  104
Create A Site On Microsoft Azure dialog box,  59
Create A Subscription dialog box,  358
Create A Topic dialog box,  357
Create a Virtual Machine dialog box,  134
CreateIfNotExists method,  252
creating

Active Directory users,  315
containers,  246–248
directories, Active Directory,  314–315
hosting plans for deployment of websites,  7–10
new web roles,  175–176
notification hubs,  366–367
relay and listener endpoints,  347–348
Service Bus event hubs,  362–363

400

Dedicated cache

blobs and files,  246–259
monitoring storage,  280–290
Queue service,  268–271
SQL databases,  292–302
tables,  261–266

websites
applications for scale and resilience,  74–86
configuring scale and resilience,  62–74
configuring websites,  13–35
deployment slots,  2–13
diagnostics, monitoring, and analytics,  35–56
WebJobs,  55–62

Desired State Configuration (DSC),  110–114
detailed error message logs,  36
development, cloud services,  171–185

installation of SDKs and emulators,  172–173
resiliency,  180–181
startup tasks,  181–183
web roles and worker roles,  173–180

diagnostic logs,  36
diagnostics,  43–45

configuring VM monitoring,  156–158
monitoring and debugging cloud services,  229–231
retrieving data and viewing streaming logs,  36–43

Diagnostics Configuration dialog box,  231
dialog boxes

Add Application,  318
Add Group,  316
Add Members,  317
Add Or Remove Snap-ins,  191–192
Add Solution <Name> To Source Control,  219
Add User,  315
Add WebJob,  60
Associate With Role Project,  179
Attach An Empty Disk To The Virtual Machine,  149
Attach To Process,  122-233
Azure WebJob,  58
Capture The Virtual Machine,  104
Connect To Team Foundation Server,  219
Create A Disk From A VHD,  100
Create Alert Rule,  294–295
Create A Namespace,  342
Create An Image From A VHD,  104
Create A Site On Microsoft Azure,  59
Create A Subscription,  358
Create A Topic,  357
Create a Virtual Machine,  134
Define A Condition For Notifications,  49

remote debugging,  45–46, 122
Dedicated cache,  206
Define A Condition For Notifications dialog box,  49
Define Alert dialog box,  159
defining

appsettings,  14–16
connection strings,  16–18
request handler mappings,  18–20
virtual applications,  20–21
virtual directories,  20–21

deployment
cloud services,  213–228

configuring regions and affinity groups,  225–227
packaging a deployment,  214
runtime configuration changes,  222–225
upgrading a deployment,  214–218
VIP swapping,  218–219
virtual networks,  334
Visual Studio Online,  219–222

upgrades, Visual Studio,  215
WebJobs,  58–60
websites,  2–13

creating a website within a hosting plan,  12
defining deployment slots,  2–7
hosting plans,  7–10
migrating websites between hosting plans,  10–

11
rolling back deployments,  7

workloads on virtual machines,  91–96
creating VMs,  93–95
identification of supported workloads,  92–93

deployment slots (websites),  2–7
design

blob hierarchies,  258
cloud services,  171

configuring services and roles,  185–213
deployment,  213–228
monitoring and debugging,  229–240

communication strategy,  341–368
creating Service Bus namespace,  342–344
event hubs,  361–366
messaging protocols,  343–344
notification hubs,  366–367
Service Bus queues,  349–355
Service Bus relays,  344–349
Service Bus topics and subscriptions,  356–362

storage strategy,  245
access management,  272–278

401

extensions (VM)

E
Edit Host Cache Preference dialog box,  149
Emulator Express, debugging cloud services,  237–239
Emulator Express dialog box,  238
emulators

Azure Compute Emulator,  173,  237–239
Azure Storage Emulator,  173
installation,  172–173

enabling
geo-replication,  297–301
RDP (Remote Desktop Protocol),  234–236
remote debugging,  122-233

endpoint monitoring, configuring,  46–48
endpoints

cloud service networking,  190–194
configuring

public IP addresses,  124–125
reserved IP addresses,  126–127
VM networks,  128–131

integrating applications, Active Directory,  319–320
OAuth,  323
SAML-P,  322
VM monitoring,  158
WS-Federation,  321

Entity Framework 6, transient fault handling,  80
error message logs,  36
ETag property (TableEntity class),  262
event hubs, Service Bus,  361–366

connection strings,  364
creating,  362–363
credentials,  363–364
receiving messages from consumer

groups,  365–366
sending messages to,  364–365

Event logs,  36, 161
EventProcessorHost NuGet package,  366
eviction policies,  208
existing portal.  See management portal
expiration type, cache data,  208
exporting

data, SQL databases,  301–302
network configuration,  339

extensions (VM),  108–109,  134

Define Alert,  159
Diagnostics Configuration,  231
Edit Host Cache Preference,  149
Emulator Express,  238
IntelliTrace Settings,  236
Manage Access Keys,  249
Manage NuGet Packages,  79
New ASP.NET Project,  202
New Container,  247
New Microsoft Azure Cloud Service,  174
New Project,  56, 176
New Secondary For Geo Replication,  300
OAuth Connection Request,  220
Package Azure Application,  214
Profile Settings,  232
Publish,  58
Remote Desktop Connection,  235
Remote Desktop Connection Security,  236
Restore,  296
role settings,  180
Select A Certificate,  194
Specify Secondary Settings,  298
SQL Database Server Settings,  299
Storage Pools,  147
Swap Deployments,  6
Update Your Deployment,  216
Virtual Machine Configuration,  109
Visual Studio New Project,  172

directories (AD), creating,  314–315
Direct Server Return (DSR), configuring VM

networks,  132–133
disabling ARR affinity,  82
disk caching (VMs), configuring,  148–150
Disk Queue Length metric, configuring auto-scale,  64
disks, creating from VHDs,  100–101
Distributed Management Task Force (DTMF),  111
DNS, configuring,  204
Docker extension,  109
document databases,  261
downloading storage logs,  289
DownloadToStream() API method,  255
DSC (Desired State Configuration),  110–114
D-series (VMs),  148
DSR (Direct Server Return), configuring VMs,  132–133
DTMF (Distributed Management Task Force),  111
DTUs (database throughput units),  292
duplicate log entries,  286

402

failed request tracing logs

Get-AzureWebsiteLog cmdlet,  40
GetContainerReference() method,  254
Get-Credential cmdlet,  234
GetMessages() method,  270
GET requests, querying tables with ODATA,  265–266
Global administrator role (AD),  316
Graph API, querying directories,  324–327
graph databases,  261
groups (AD),  316

H
Health Endpoint Monitoring pattern,  75, 180
hierarchies, storage blobs,  258
High Availability check box, default cache,  207
hosting plans, creating,  7–10
Http Queue Length metric, configuring auto-scale,  64
HTTPS endpoints, configuring,  190–194

I
IaaSDiagnostics extension,  156
IaaS (infrastructure-as-a-Service) offerings,  91
idle-timeout, configuring for endpoints,  133
IIS logs, viewing,  161–162
ILB (Internal Load Balancing) service,  128
implementation

caching solutions,  378–384
Managed Cache Service,  383–384
Redis Cache,  379–383

cloud services,  171
configuring services and roles,  185–213
deployment,  213–228
design and development,  171–185
monitoring and debugging,  229–240

communication strategy,  341–368
creating Service Bus namespace,  342–344
event hubs,  361–366
messaging protocols,  343–344
notification hubs,  366–367
Service Bus queues,  349–355
Service Bus Relay feature,  344–349
Service Bus topics and subscriptions,  356–362

storage strategy,  245
access management,  272–278
blobs and files,  246–259

F
failed request tracing logs,  36
Failover load balancing, Traffic Manager,  70
fault domains,  139
files

Azure Storage,  246–259
account access keys,  249–250
async blob copies,  256–257
Azure File storage,  259
block and page blobs,  255
CDN configuration,  257–258
changing data,  251–253
containers,  246–248
custom domains,  258
designing hierarchies,  258
reading data,  251
scaling,  259
secure access,  255–256
setting metadata on containers,  253–254
streaming data,  255
uploading blobs,  250–251

MOF (Managed Object Format),  111
package,  214
service configuration,  180, 214
service definition,  180
XML configuration,  230

file shares
accessing files,  153–154
creating,  152
mounting,  152–153

filtering messages, Service Bus topics,  361–362
firewall rules, configuring VM networks,  133–134
foreground startup tasks,  181
FTP clients, retrieving diagnostic data,  41–43
Full Compute Emulator,  238
Full Deployment scenario, upgrading a

deployment,  215

G
generalized VM images, creating,  97–99, 103
geo-replication

configuring,  150
SQL databases,  297–301

Get-AzurePublishSettingsFile cmdlet,  100
Get-AzureStorageBlob cmdlet,  289

403

Log Files folder

deploying cloud service to virtual network,  334
in-memory cache,  205
Input endpoints, defined,  190
In-Role Cache,  205–206, 211
InsertOrReplace() method,  265
instance count, configuring,  185–187
InstanceInput endpoints, defined,  190
instance size,  68, 185-187
instantiating VM instances,  105–106
Instrumentation, profiling cloud services,  232
integrating applications, Active Directory,  313–329

creating directories,  314–315
OAuth,  324–325
OpenID Connect,  323–324
registering applications,  318
SAML-P,  322–323
user management,  315–317
viewing endpoints,  319–320
WS-Federation,  320–322

IntelliTrace, debugging cloud services,  236–237
IntelliTrace Settings dialog box,  236
Internal endpoints, defined,  190
Internal Load Balancing (ILB) service,  128
IOPS capacity,  146

K
keep-alives, configuring VM networks,  132–133
key-value stores,  261
Kudu, retrieving diagnostic data and log

streaming,  39–40

L
Leader Election pattern,  75, 181
Linux VMs, creating,  94–95
listener endpoints, creating,  347–348
Listen permissions,  353
load balancing endpoints, configuring VM

networks,  128–131
load balancing methods, Traffic Manager,  70
Local Configuration Manager,  112
local storage, configuring cloud services,  200–201
Local Storage tab (Visual Studio),  200
Log Files folder,  37

monitoring storage,  280–290
Queue service,  268–271
SQL databases,  292–302
tables,  261–266

websites
applications for scale and resilience,  74–86
configuring scale and resilience,  62–74
configuring websites,  13–35
deployment slots,  2–13
diagnostics, monitoring, and analytics,  35–56
WebJobs,  55–62

Import-AzurePublishSettingsFile cmdlet,  100
importing

data, SQL databases,  301–302
network configuration,  339

incremental deployments,  3
Incremental scenario, upgrading a deployment,  214
infrastructure-as-a-Service (IaaS) offerings,  91
infrastructure logs, viewing,  161
infrastructure services

Active Directory,  313–329
app integration,  317–325
creating directories,  314–315
querying directories with Graph API,  324–327
user management,  315–317

caching solutions,  378–384
Managed Cache Service,  383–384
Redis Cache,  379–383

communication strategy,  341–368
creating Service Bus namespace,  342–344
event hubs,  361–366
messaging protocols,  343–344
notification hubs,  366–367
Service Bus queues,  349–355
Service Bus Relay feature,  344–349
Service Bus topics and subscriptions,  356–362

modifying network configuration,  336–340
exporting network configuration,  339
importing network configuration,  339
moving VM to new subnet,  338–339
subnets,  336–337

scaling and monitoring communication,  369–377
choosing pricing tier,  370
Service Bus features,  371–373
Service Bus namespace,  373–377

virtual network configuration,  329–334
adding VMs to virtual networks,  332–333
creating virtual networks,  330–332

404

logs

disk caching,  149
endpoint monitoring,  47, 158
load balancing,  130
metrics,  160
role auto-scale,  187
storage logging,  286
storage metrics and retention,  281–282
Traffic Manager,  70–72
VM auto-scale,  141–143
VM with Custom Script Extension,  109

creating
containers,  247–248
directories, Active Directory,  314–315
disks,  100
groups, Active Directory,  316
Linux VMs,  94
Linux VM with puppet master,  115
new deployment slot,  3–4
new VM from operating system disks,  101
new web hosting plan,  8–9
offline secondary database,  297–299
online secondary database,  300
queues,  351–352
regional VNET,  125
Service Bus event hubs,  362–363
Service Bus namespace,  342–343
Service Bus topics and subscriptions,  357–358
SQL Server VMs,  95
topics and subscriptions,  357–358
users, Active Directory,  315
virtual networks,  330
VM instance from a VM image,  105
website within a hosting plan,  12
Windows Server VMs,  93
Windows Server VM with Chef client,  120
Windows Server VM with Puppet agent,  117

defining
connection string,  16–17
app settings,  14–15
virtual directory,  20–21
handler mapping,  18–19

deploying an upgrade,  216–217
enabling RDP,  234
finding account access key,  249
importing/exporting data and schema,  301–302
importing network configuration,  339
modifying subnets,  336
monitoring

logs
analyzing storage logs,  287–290
viewing streaming logs,  36–43

M
Manage Access Keys dialog box,  249
Managed Cache Service,  383–384
Managed Object Format (MOF) files,  111
management

access to storage accounts,  272–278
CORS (Cross-Origin Resource Sharing),  278
shared access signatures,  273–276
storage account keys,  276–278
stored access policies,  276

application and network services
Azure Active Directory (AD),  313–329
caching solutions,  378–384
communication strategy,  341–368
modifying network configuration,  336–340
scaling and monitoring communication,  369–377
virtual network configuration,  329–334

table partitions,  266
virtual machines

configuration management tools,  108–122
deployment of workloads,  91–96
monitoring,  155–163
networking,  124–135
scale,  136–144
VM images and hard disks,  97–106
VM storage,  145–155

management portal
adding VMs to virtual networks,  332
adjusting role instance count,  186
attaching data disks to a VM,  102
capturing a VM as a VM image,  104
changing size of an instance,  68
choosing SQL database tier,  293
configuring

ACLs (access control lists),  127
alerts,  48-49, 159–160
auto-scale by metric,  66
auto-scale by schedule,  63–64
availability sets,  139–140
CDN,  257
diagnostic data,  43–45
Direct Server Return,  132–133

405

network services

moving VM to new subnet,  338–339
subnets,  336–337

MOF (Managed Object Format) files,  111
monitoring,  369–377

cloud services,  229–240
diagnostic configuration,  229–231
profiling resource consumption,  231–232
remote debugging,  233
Remote Desktop Protocol,  234–236

configuring,  46–48
Service Bus features,  373–377

choosing pricing tier,  370
event hubs,  375–377
queues,  374–375

storage,  280–290
analyzing storage logs,  287–290
analyzing storage metrics,  283–285
configuring metrics,  280–283
Storage Analytics Logging,  285–287

virtual machines,  155–163
configuring alerts,  158–160
configuring endpoint monitoring,  158
configuring monitoring and

diagnostics,  156–158
metrics,  160–162

website resources,  51–53
mounting file shares,  152–153
moving VMs to new subnets,  338–339
multi-factor authentication (AD),  316
multiple value partition keys,  266
multi-threaded queue listener,  270

N
namespace, Service Bus,  342–344
.NET

app settings,  15
connection strings,  17
memory allocation, profiling cloud services,  232

NetEventRelayBinding,  345
NetOneWayRelayBinding,  345
NetTcpRelayBinding,  345, 347
network services

caching solutions,  378–384
Managed Cache Service,  383–384
Redis Cache,  379–383

metrics,  283–284
website resources,  51–52

regenerating storage account keys,  277
registering applications,  318
scaling up/down VM size,  137
swapping website slots,  6

Manage NuGet Packages dialog box,  79
Memory Percentage metric, configuring auto-scale,  64
message identifiers,  269
messages

Service Bus
receiving messages from consumer

groups,  365–366
selecting messaging protocol,  343–344
sending messages, 348-349, 353-354, 359,

364-365
topics and subscriptions, 354-355, 359-362

storage queues
adding to queues,  268–269
processing,  269
retrieving a batch of messages,  270

metadata
containers,  253–254
WS-Federation,  321

methods
BeginStartCopyFromBlob(),  256
CreateIfNotExists,  252
DownloadToStream() API,  255
GetContainerReference(),  254
GetMessages(),  270
InsertOrReplace(),  265
ReceiveBatch(),  360
ReceiveBatchAsync(),  360
RoleEntryPoint class,  175
SetMetadata(),  254
UploadFromFileStream,  252

metrics
analyzing storage metrics,  283–285
configuring auto-scale,  64–68
configuring storage metrics,  280–283
monitoring VM metrics,  160–162

Microsoft Virtual Academy,  1
migrating websites between hosting plans,  10–11
mobile applications, solutions with notification

hubs,  367
modifying network configuration,  336–340

exporting network configuration,  339
importing network configuration,  339

406

network traffic rules, configuring

notification hubs,  366–367
notifications, default cache,  208
NuGet package, caching,  209

O
OAuth Connection Request dialog box,  220
OAuth, integrating applications,  324–325
Octopus Deploy,  109
ODATA, querying tables,  265–266
OnStart() event,  179
OnStop() event,  179
OpenID Connect, integrating applications,  323–324
operating system disks, creating,  100–101
operations logs (storage),  288

P
PaaS (platform-as-a-Service) cloud services,  174
Package Azure Application dialog box,  214
package files,  214
packaging

cloud service deployment,  214
WebJobs,  58–60

page blobs,  255
Partition Key property (TableEntity class),  262
partitions (storage tables),  266
Password administrator (AD),  316
patterns

cloud service resiliency,  180–181
designing applications for scale and

resilience,  75–79
PeekLock mode, receiving messages from a queue,  354
Performance load balancing, Traffic Manager,  70
PHP handler mapping,  18
PIP (public IP addresses), configuring

endpoints,  124–125
platform-as-a-Service (PaaS) cloud services,  174
platform notifications, solutions with notification

hubs,  367
point in time recovery, SQL databases,  295–297
PowerShell DSC, configuring VMs,  112–116
PowerShell (Windows)

capturing a VM as VM image,  104–105
configuring availability sets,  141

configuring cloud services,  190–200
access control lists,  196–197
HTTPS endpoints,  190–194
network traffic rules,  195–196
reserved IPs/public IPs,  198–200
understanding endpoints,  190
virtual networks,  197–198

modifying network configuration,  336–340
exporting network configuration,  339
importing network configuration,  339
moving VM to new subnet,  338–339
subnets,  336–337

scaling and monitoring communication,  369–377
choosing pricing tier,  370
Service Bus features,  371–373
Service Bus namespace,  373–377

virtual network configuration,  329–334
adding VMs to virtual networks,  332–333
creating virtual networks,  330–332
deploying cloud service to virtual network,  334

VM configuration,  124–135
access control lists,  127–128
Direct Server Return and keep-alives,  132–133
DNS cloud service level,  124
endpoints, public IP addresses,  124–125
endpoints, reserved IP addresses,  126–127
firewall rules,  133–134
leveraging name resolution with cloud

service,  133
load balancing endpoints,  128–131

network traffic rules, configuring,  195–196
New ASP.NET Project dialog box,  202
New-AzureAffinityGroup cmdlets,  225
New-AzureQuickVM cmdlet,  105
New-AzureSBNamespace cmdlet,  343
New container dialog box,  247
New Microsoft Azure Cloud Service dialog box,  174
New Project dialog box,  56, 176
New Secondary For Geo Replication dialog box,  300
New Volume Wizard,  147
Node.js

app settings,  16
connection strings,  18

non-contiguous scaling thresholds,  65
None (cache option),  148
NoSQL databases,  261

407

Queue-Based Load Leveling pattern

virtual directories,  21
finding account access key,  250
migrating a website between hosting plans,  11
modifying subnets,  337–338
monitoring

metrics,  160–161, 284–285
website resources,  53–54

regenerating storage account keys,  277–278
retrieving diagnostic data,  42–43
scaling up/down VM size,  137
swapping website slots,  7

Priority Queue pattern,  75, 181
Private access permission (containers),  248
processing messages (storage queues),  269
Profile Settings dialog box,  232
profiling resource consumption, cloud services,  231–

232
properties

event hubs,  362
queues,  350
subscriptions,  357
TableEntity class,  262
topics,  356

Public Blob Private access permission (containers),  248
Public Container Private access permission

(containers),  248
public IP addresses (PIP), configuring

endpoints,  124–125, 198-200
Publish Azure Application wizard,  215
Publish-AzureVMDSCConfiguration cmdlet,  113
Publish dialog box,  58
publishing cloud services,  213–228

configuring regions and affinity groups,  225–227
packaging a deployment,  214
runtime configuration changes,  222–225
upgrading a deployment,  214–218
VIP swapping a deployment,  218–219
Visual Studio Online,  219–222

Puppet,  114–119
Puppet Enterprise console, accessing,  116–117
Puppet Forge,  119

Q
querying directories, Graph API,  324–327
query tables, ODATA,  265–266
Queue-Based Load Leveling pattern,  75, 181

creating
queues,  352
Service Bus event hubs,  363
Service Bus namespace,  343
Service Bus topics and subscriptions,  358
topics and subscriptions,  358
VM instance from a VM image,  105–106

moving a VM to a new subnet,  338
scaling up/down VM size,  137–138

Premium tier (SQL Databases),  292
Preview portal

adding VMs to virtual networks,  333–334
attaching data disks to a VM,  102
changing size of an instance,  68
configuring

ACLs (access control lists),  128–129
alerts,  159
auto-scale by metric,  67–68
availability sets,  140
diagnostic data,  45
disk caching,  149–150
endpoint monitoring,  47
existing VMs,  114–115
load balancing,  130–131
monitoring and diagnostics,  157–158
storage logging,  286–287
storage metrics and retention,  282
VM with Custom Script Extension,  110

creating
cache,  379–380
containers,  248–249
Linux VMs,  94–95
Linux VM with puppet master,  115–116
new deployment slot,  4
new web hosting plan,  9–10
offline secondary database,  299
online secondary database,  301
SQL Server VMs,  95
virtual networks,  331–332
VM with a reserved IP address,  126–127
website within a hosting plan,  12
Windows Server VMs,  93–94
Windows Server VM with Chef client,  121–122
Windows Server VM with Puppet agent,  118–119

defining
app settings,  15
connection string,  17
handler mapping,  19–20

408

queue depth, configuring auto-scale

enabling,  234–236
renewing SAS tokens,  276
request handler mappings, configuring,  18–20
request tracing logs,  36
reserved IP addresses, configuring,  126–127, 198-200
resilience

configuring websites,  62–74
auto-scale, built-in and custom schedules,  63–64
auto-scale, by metric,  64–68
changing instance size,  68
Traffic Manager,  69–72

designing applications for,  74–86
disabling ARR affinity,  82
pattern selection,  75–79
transient fault handling,  79–81

web roles/worker roles,  180–181
resource consumption, monitoring,  51–53, 231-232
REST APIs,  151–153
Restore dialog box,  296
retrieving

diagnostic data,  36–43
messages

Service Bus,  354–355
storage queue,  270

Retry pattern, designing applications for scale and
resilience,  77

RoleEntryPoint class,  175
RoleEnvironment events,  178–179
roles (cloud services).  See web roles, worker roles
Roles node,  180
rolling back deployments (websites),  3, 7
Round robin load balancing, Traffic Manager,  70
Row Key property (TableEntity class),  262
RunAsync() event,  179
runtime configuration changes, cloud service

deployment,  222–225

S
Saml 2.0 Protocol (SAML-P), integrating

applications,  322–323
SAML-P (Saml 2.0 Protocol), integrating

applications,  322–323
SAS (shared access signatures),  273–276
Save-AzureImage cmdlet,  104
scale

blobs,  259

queue depth, configuring auto-scale,  189
QueueListener,  354
queues

Azure Storage,  268–271
adding messages to a queue,  268–269
creating SAS tokens,  275
processing messages,  269
retrieving a batch of messages,  270
scaling,  270

Service Bus,  349–355
connection strings,  353–354
creating,  351–353
credentials,  352
retrieving messages,  354–355
sending messages,  353–354

QueueSender,  353

R
RDP (Remote Desktop Protocol)

accessing file shares,  153
enabling,  234–236

reading
blob storage,  251
user-defined metadata,  254

Read Only (cache option),  148
Read/Write (cache option),  148
ReceiveAndDelete mode, receiving messages from a

queue,  354
ReceiveBatchAsync() method,  360
ReceiveBatch() method,  360
receiving messages, Service Bus event hubs,  365–366
Redis Cache,  379–383
RedisCacheClient,  382
regional virtual network (VNET), creating,  125
regions, configuring,  225–227
registering applications,  318
RelayClient,  348
relays, Service Bus,  344–349

creating listener endpoints,  347–348
credentials,  345–346
sending messages,  348–349

remote debugging,  45–46, 122, 233
Remote Desktop Connection dialog box,  235
Remote Desktop Connection Security dialog box,  236
Remote Desktop Protocol (RDP)

accessing file shares,  153

409

SQL Server AlwaysOn Availability Groups

sending messages to,  364–365
messaging protocols,  343–344
monitoring,  373–377
queues,  349–355

connection strings,  353–354
creating,  351–353
credentials,  352
retrieving messages,  354–355
sending messages,  353–354

relays,  344–349
creating listener endpoints,  347–348
credentials,  345–346
sending messages,  348–349

scaling,  371–373
tiers,  370
topics and subscriptions,  356–362

creating,  357–358
filtering messages,  361–362
properties,  356
receiving messages,  359–360
sending messages,  359
topic connection strings,  359–360
topic credentials,  358

service configuration files,  180, 214
service definition files,  180
service level metrics collection,  280
Service Tiers,  292
Set-AzureVMSize cmdlet,  137–138
SetMetadata() method,  254
shared access signatures (SAS),  273–276
Shared Key, accessing blobs securely,  255
Shared Key Lite, accessing blobs securely,  255
shared storage (VMs), configuring,  150–154
simple startup tasks,  181
Simultaneous scenario, upgrading a deployment,  215
single-threaded queue listener,  270
single value partition keys,  266
Site Control Manager (SCM),  39–40
specialized VM images, creating,  97–99
Specify Secondary Settings page,  298
SQL databases,  292–302

choosing tier/performance level,  292–295
geo-replication,  297–301
importing/exporting data and schema,  301–302
point in time recovery,  295–297
transient fault handling,  79–81

SQL Database Server Settings page,  299
SQL Server AlwaysOn Availability Groups,  132

communication,  369–377
choosing pricing tier,  370
Service Bus features,  371–373

configuring websites,  62–74
auto-scale, built-in and custom schedules,  63–64
auto-scale, by metric,  64–68
changing instance size,  68
Traffic Manager,  69–72

designing applications for,  74–86
disabling ARR affinity,  82
pattern selection,  75–79
transient fault handling,  79–81

role instant count,  186–187
role instant sizes,  186
storage queues,  270
table partitions,  266
virtual machines,  136–144

configuring auto-scale,  141–143
configuring availability sets,  138–141
scalingup/down VM sizes,  137–138

Scheduler Agent Supervisor pattern,  75, 181
scheduling

Auto-Scale feature,  63–64
WebJobs,  60

SCM (Site Control Manager),  39–40
scripts, configuring puppet scripts,  119–120
SDKs

installation,  172–173
WebJobs,  55–58

secure access, Azure storage blobs,  255–256
security extensions,  134
Select A Certificate dialog box,  194
self-signed certificates,  195
sending messages, Service Bus

event hubs,  364–365
queues,  353–354
relays,  348–349
topics,  359

Send permissions,  353
Service administrator role (AD),  316
Service Bus

creating namespace,  342–344
event hubs,  361–366

connection strings,  364
creating,  362–363
credentials,  363–364
receiving messages from consumer

groups,  365–366

410

SQL Server VMs, creating

choosing tier/performance level,  292–295
geo-replication,  297–301
importing/exporting data and schema,  301–302
point in time recovery,  295–297

tables,  261–266
CRUD operations,  261–265
partitions,  266
querying using ODATA,  265–266

VM storage configuration,  145–155
disk caching,  148–150
geo-replication,  150
shared storage,  150–154
storage pools,  146–148
planning for storage capacity,  145–146

storage capacity, VMs,  145–146
Storage Client Library, accessing file shares,  153
Storage Emulator,  238
Storage Pools dialog box,  147
storage pools (VMs), configuring,  146–148
Storage Spaces,  146–148
stored access policies,  276
streaming

data,  255
logs,  36–43

subnets, modifying network configuration,  336–337
subscriptions (Service Bus),  356–362

creating,  357–358
properties,  356
receiving messages,  359–360

Swap Deployments dialog box,  6
swapping website slots,  6–7
system properties metadata,  253

T
TableEntity class,  262
tables (storage),  261–266

creating SAS tokens,  275–276
CRUD operations,  261–265
partitions,  266
querying using ODATA,  265–266
storage metrics,  281

TCP relay,  345
templates, cloud services,  174–175
thresholds, scaling up/down,  65
Throttling pattern, designing applications for scale and

resilience,  75–77

SQL Server VMs, creating,  95
SSH public key,  95
SSL bindings,  32–33
staged deployments,  3
standard geo-replication,  297
Standard tier

Service Bus,  370
SQL Databases,  292

Start-AzureSqlDatabaseCopy cmdlet,  301
startup tasks, web roles/worker roles,  181–183
Static Content Hosting pattern,  75, 180
status messages (storage logs),  288
storage account keys,  276–278
Storage Analytics Logging,  285–287
storage

access management,  272–278
CORS (Cross-Origin Resource Sharing),  278
shared access signatures,  273–276
storage account keys,  276–278
stored access policies,  276

blobs and files,  246–259
account access keys,  249–250
async blob copies,  256–257
Azure File storage,  259
block and page blobs,  255
CDN configuration,  257–258
changing data,  251–253
containers,  246–248
custom domains,  258
designing hierarchies,  258
reading data,  251
scaling,  259
secure access,  255–256
setting metadata on containers,  253–254
streaming data,  255
uploading blobs,  250–251

configuring cloud services,  200–201
monitoring,  280–290

analyzing storage logs,  287–290
analyzing storage metrics,  283–285
configuring metrics,  280–283
Storage Analytics Logging,  285–287

Queue service,  268–271
adding messages to a queue,  268–269
processing messages,  269
retrieving a batch of messages,  270
scaling,  270

SQL databases,  292–302

411

VMs (virtual machines)

streaming logs,  36–43
VIP swapping, cloud service deployment,  218–219
virtual applications, configuring,  20–21
virtual directories, configuring,  20–21
virtual hard disks (VHDs), creating,  97–106

specialized and generalized WM images,  97–99
uploading VHDs to Azure,  99–100
using existing disks,  101–103

virtual images, creating,  97–106
capture,  103–105
copying images between storage accounts,  106
generalizing a VM,  103
instantiating a VM instance,  105–106
specialized and generalized WM images,  97–99

Virtual Machine Configuration dialog box,  109
virtual machines. See VMs
virtual network configuration,  197-198, 329–334

adding VMs to virtual networks,  332–333
creating virtual networks,  330–332
deploying cloud service to virtual network,  334

Visual Studio
adding Transient Fault Handling Application

Block,  79
adjusting role instance count,  187
Caching tab,  207
deploying an upgrade,  215
enabling RDP,  235
Local Storage tab,  200
reading blobs,  251
retrieving diagnostic data and log streaming,  37–39
viewing IntelliTrace logs for a role,  237

Visual Studio New Project dialog box,  172
Visual Studio Online, deploying cloud services,  219–222
Visual Studio Release Manager,  109
VM Agent,  103, 108–109
VM extensions,  108–109
VMs (virtual machines)

adding to virtual networks,  332–333
configuration management tools,  108–122

Chef,  119–121
Custom Script Extension,  109–110
PowerShell DSC,  110–112
Puppet,  114–119
VM Agent and VM extensions,  108–109

creating VM images and hard disks,  97–106
capture,  103–105
copying images between storage accounts,  106
creating hard disks,  100–101

tiers (Service Bus),  370
Timestamp property (TableEntity class),  262
time-to-live (TTL) value,  69
TLS (transport layer security),  190
token requests, OAuth,  324
TopicSender,  359
topics (Service Bus),  356–362

connection strings,  359–360
creating,  357–358
credentials,  358
filtering messages,  361–362
properties,  356
sending messages to,  359

Traffic Manager, configuring,  69–72
traffic rules (networks), configuring,  195–196
transient fault handling,  79–81, 181
Transient Fault Handling Application Block,  79
transport layer security (TLS),  190
TTL (time-to-live) value,  69

U
unique value partition keys,  266
update domains,  138
Update Your Deployment dialog box,  216–217
upgradeDomainCount setting,  215
upgrading cloud service deployment,  214–218
UploadFromFileStream method,  252
uploading

blobs,  250–251
virtual hard disks to Azure,  99–100

User administrator role (AD),  316
user-defined metadata,  254
user management (AD),  315–317

V
VHDs (virtual hard disks), creating,  97–106

specialized and generalized WM images,  97–99
uploading VHDs to Azure,  99–100
using existing disks,  101–103

viewing
application logs,  161
event logs,  161
IIS logs,  161–162
infrastructure logs,  161

412

WCF Service Web Role template

configuring,  185–213
auto-scale,  187–190
caching,  205–211
custom domains,  204–205
instance size and count,  185–187
local storage,  200–201
multiple websites in a role,  201–203
networking,  190–200

defined,  173
design and development,  171–185

adding existing project as a web role,  179
choosing cloud service template,  174–175
creation of new web roles,  175–176
resiliency,  180–181
reviewing cloud service project elements,  179–

180
startup tasks,  181–183

Web server logs,  36
websites

design and implementation
applications for scale and resilience,  74–86
configuring websites,  13–35
deployment slots,  2–13
diagnostics, monitoring, and analytics,  35–56
scale and resilience,  62–74
WebJobs,  55–62

monitoring resources,  51–53
Windows PowerShell

accessing logs,  289
attaching data disks to a VM,  102–103
capturing a VM as a VM image,  104–105
configuring

availability sets,  141
storage logging,  287
storage metrics and retention,  282

creating
queues,  352
Service Bus event hubs,  363
Service Bus namespace,  343
Service Bus topics and subscriptions,  358
VM instance from a VM image,  105–106

creating an online or offline secondary
database,  301

moving a VM to a new subnet,  338
retrieving diagnostic data and streaming logs,  40–

41
scaling up/down VM size,  137–138

Windows Server VMs, creating,  93

generalizing a VM,  103
instantiating A VM instance,  105–106
specialized and generalized WM images,  97–99
uploading VHDs to Azure,  99–100
using existing disks,  101–103

deployment of workloads,  91–96
creating VMs,  93–95
identification of supported workloads,  92–93

monitoring,  155–163
alerts,  158–160
endpoint monitoring,  158
metrics,  160–162
monitoring and diagnostics,  156–158

moving to new subnets,  338–339
network configuration,  124–135

access control lists,  127–128
Direct Server Run and keep-alives,  132–133
DNS cloud service level,  124
endpoints, public IP addresses,  124–125
endpoints, reserved IP addresses,  126–127
firewall rules,  133–134
leveraging name resolution with cloud

service,  133
load balancing endpoints,  128–131

scale,  136–144
configuring auto-scale,  141–143
configuring availability sets,  138–141
scaling up/down VM sizes,  137–138

storage configuration,  145–155
disk caching,  148–150
geo-replication,  150
planning for storage capacity,  145–146
shared storage,  150–154
storage pools,  146–148

W
WCF Service Web Role template,  175
web hosting plans.  See hosting plans
WebHttpRelayBinding,  345
WebJobs,  55–62

packaging and deployment,  58–60
scheduling,  60
writing using the SDK,  55–58

Web Platform Installer 5.0 welcome screen,  173
WebRole class,  176
web roles

413

xplat-cli, retrieving diagnostic data and streaming logs

wizards
New Volume Wizard,  147
Publish Azure Application,  215

worker roles
configuring,  185–213

auto-scale,  187–190
caching,  205–211
custom domains,  204–205
instance size and count,  185–187
local storage,  200–201
networking,  190–200

defined,  174
design and development,  171–185

choosing cloud service template,  174–175
creating new worker roles,  176–179
resiliency,  180–181
reviewing cloud service project elements,  179–

180
startup tasks,  181–183

Worker Role template,  175
Worker Role with Service Bus Queue template,  175
workloads, deployment on virtual machines,  91–96

creating VMs,  93–95
identification of supported workloads,  92–93

WS2007HttpRelayBinding,  345
WS-Federation, integrating applications,  320–322

X
XML configuration file, configuring diagnostics,  230
xplat-cli, retrieving diagnostic data and streaming

logs,  41

This page intentionally left blank

About the authors
ZOINER TEJADA is a founder and CEO of Solliance, a Microsoft Azure MVP, and a Google
Developer Expert (GDE) for Analytics. Additionally, he has been awarded the Azure Elite and
Azure Insider status by Microsoft. Zoiner is passionate about the business of software and
tackling innovative areas in software development that range from cloud computing, modern
websites, graphics programming, networking, NoSQL/NewSQL distributed databases, scien-
tific computing, digital privacy, and that side of security that involves thinking like hacker.

Zoiner has over 15 years of consulting experience, providing strategic, architectural, and
implementation guidance to an array of enterprises and start-ups, all leveraging cutting-edge
technologies. He enjoys engaging the greater community by speaking at conferences and
user group meetings and by extending his reach through his online courses and published
books. Zoiner has earned MCSD certification and has a degree in computer science from
Stanford University. You can reach Zoiner at zoinertejada@solialiance.net.

MICHELE LEROUX BUSTAMANTE is a founder and CIO of Solliance (solliance.net), the
founder of Snapboard.com, a Microsoft Regional Director, and a Microsoft Azure MVP. Ad-
ditionally, she has been awarded Azure Elite and Azure Insider status and the ASP.NET Insider
designation. Michele is a thought leader recognized in many fields, including software archi-
tecture and design, identity and access management, cloud computing technologies, security
and compliance, and DevOps. During the past 20 years, Michele has held senior executive po-
sitions at several corporations, has assembled software development teams and implemented
processes for all aspects of the software development lifecycle, and has facilitated numerous
successful large-scale enterprise application deployments.

Michele has also been active in the start-up community, bringing a keen understanding of
the technical and business needs of a startup. At Solliance, she provides “Start-up Architect”
services for activities such as guiding Minimum Viable Product design and delivery, providing
necessary preparations to secure funding events, and offering overall advice and guidance to
select start-ups.

Michele shares her experiences through presentations and keynote addresses all over
the world and has been publishing regularly in technology journals over her entire career.
Michele has written several books, including the best-selling book Learning WCF (O’Reilly
Media, 2007). Find out more about Michele at linkedin.com/in/michelebusta.

IKE ELLIS is a data and cloud architect for Solliance. He loves data in all its forms and shapes,
whether relational, NoSQL, MPP, JSON, or just sitting in a CSV. Ike consults on SQL Server per-
formance tuning, SQL Server architecture, data warehouse design, and business intelligence
projects. Ike is well-known in the industry and speaks at SQL PASS, TechEd, SQL in the City,
and other conferences around the world. Ike has been a Microsoft SQL Server MVP for four
consecutive years and is a member of Microsoft Azure Insiders. He has MCDBA, MCSE, MCSD,
and MCT certifications. Find out more about Ike at linkedin.com/in/ikeellis and at ikeellis.com.

	Contents
	Introduction
	Microsoft certifications
	Acknowledgments
	Free ebooks from Microsoft Press
	Errata, updates, & book support
	We want to hear from you
	Stay in touch

	Preparing for the exam
	Chapter 4: Design and implement a storage strategy
	Objective 4.1: Implement Azure Storage blobs and Azure files
	Creating a container
	Finding your account access key
	Uploading a blob
	Reading data
	Changing data
	Setting metadata on a container
	Storing data using block and page blobs
	Streaming data using blobs
	Accessing blobs securely
	Implementing an async blob copy
	Configuring the Content Delivery Network
	Designing blob hierarchies
	Configuring custom domains
	Scaling Blob storage
	Working with Azure File storage
	Objective summary
	Objective review

	Objective 4.2: Implement Azure Storage tables
	Using basic CRUD operations
	Querying using ODATA
	Designing, managing, and scaling table partitions
	Objective summary
	Objective review

	Objective 4.3: Implement Azure storage queues
	Adding messages to a queue
	Processing messages
	Retrieving a batch of messages
	Scaling queues
	Objective summary
	Objective review

	Objective 4.4: Manage access
	Generating shared access signatures
	Creating stored access policies
	Regenerating storage account keys
	Configuring and using Cross-Origin Resource Sharing
	Objective summary
	Objective review

	Objective 4.5: Monitor storage
	Configuring storage metrics
	Analyzing storage metrics
	Configuring Storage Analytics Logging
	Analyzing storage logs
	Objective summary
	Objective review

	Objective 4.6: Implement SQL databases
	Choosing the appropriate database tier and performance level
	Configuring and performing point in time recovery
	Enabling geo-replication
	Importing and exporting data and schema (existing portal)
	Importing and exporting data and schema (Preview portal)
	Objective summary
	Objective review

	Answers

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

