
Pr
of

es
sio

na
l

Celebrating over 30 years!

spine .6388”

M
odern Authentication w

ith Azure 
Active D

irectory for W
eb Applications

Build advanced authentication solutions for any 
cloud or web environment
Active Directory has been transformed to reflect the cloud revolu-
tion, modern protocols, and today’s newest SaaS paradigms. This 
is an authoritative, deep-dive guide to building Active Directory 
authentication solutions for these new environments. Author Vittorio 
Bertocci drove these technologies from initial concept to general 
availability, playing key roles in everything from technical design to 
documentation. In this book, he delivers comprehensive guidance 
for building complete solutions. For each app type, Bertocci presents 
high-level scenarios and quick implementation steps, illuminates 
key concepts in greater depth, and helps you refine your solution 
to improve performance and reliability. He helps you make sense of 
highly abstract architectural diagrams and nitty-gritty protocol and 
implementation details. This is the book for people motivated to 
become experts.  

Active Directory Program Manager Vittorio Bertocci 
shows you how to:
•	� Address authentication challenges in the cloud or on-premises
•	� Systematically protect apps with Azure AD and AD Federation Services
•	� Power sign-in flows with OpenID Connect, Azure AD, and AD libraries
•	� Make the most of OpenID Connect’s middleware and supporting 

classes
•	� Work with the Azure AD representation of apps and their 

relationships
•	� Provide fine-grained app access control via roles, groups, and 

permissions
•	 Consume and expose Web APIs protected by Azure AD
•	� Understand new authentication protocols without reading complex 

spec documents

About This Book
• �For architects, application designers, 

developer leads, and security consul-
tants involved in authentication, access 
control, or personalization

• �For security and protocol experts who 
want to understand how Azure AD uses 
open protocols to perform its functions

• �For web developers and users of ASP.NET 
OWIN and the Active Directory Authen-
tication Library (ADAL)

About the Author
Vittorio Bertocci is a Microsoft Principal 
Program Manager responsible for de-
veloper experience related to identity ser-
vices, both on premises and in the cloud. 
As Architect Evangelist at Microsoft, he 
spent several years helping major enter-
prises build advanced identity solutions 
based on new Microsoft technologies. 
He frequently speaks at international 
events such as TechEd, PDC, Build, and 
Ignite, and he blogs on identity top-
ics at www.cloudidentity.com. His books 
include Programming Windows Identity 
Foundation. 

Get code samples, including 
complete apps, at:
http://aka.ms/modauth/files

Modern Authentication with Azure 
Active Directory for Web Applications

MicrosoftPressStore.com

Web development

ISBN 978-0-7356-9694-5

9 7 8 0 7 3 5 6 9 6 9 4 5

5 3 9 9 9
U.S.A.	 $39.99
Canada 	$49.99

[Recommended ]

Bertocci

Vittorio Bertocci

Modern  
Authentication with 
Azure Active Directory 
for Web Applications 
Foreword by Mark E. Russinovich
Chief Technology Officer, Microsoft Azure

9780735696945_ModernAuth_cover.indd   1 11/30/2015   8:44:34 AM



Modern Authentication 
with Azure Active 
Directory for Web 
Applications

Vittorio Bertocci

ModernAuth_PrintBook_Final.indb   iModernAuth_PrintBook_Final.indb   i 11/28/2015   11:39:41 AM11/28/2015   11:39:41 AM



PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2016 by Vittorio Bertocci. All rights reserved.

No part of the contents of this book may be reproduced or transmitted in any form or by any means without 
the written permission of the publisher.

Library of Congress Control Number: 2014954517
ISBN: 978-0-7356-9694-5

Printed and bound in the United States of America.

First Printing

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related 
to this book, email Microsoft Press Support at mspinput@microsoft.com. Please tell us what you think of this 
book at http://aka.ms/tellpress.

This book is provided “as-is” and expresses the author’s views and opinions. The views, opinions and information 
expressed in this book, including URL and other Internet website references, may change without notice. 

Some examples depicted herein are provided for illustration only and are fctitious.  No real association or 
connection is intended or should be inferred.

Microsoft and the trademarks listed at www.microsoft.com on the “Trademarks” webpage are trademarks of the 
Microsoft group of companies. All other marks are property of their respective owners.

Acquisitions and Developmental Editor: Devon Musgrave
Project Editor: John Pierce
Editorial Production: Rob Nance, John Pierce, and Carrie Wicks
Copyeditor: John Pierce
Indexer: Christina Yeager, Emerald Editorial Services
Cover: Twist Creative • Seattle and Joel Panchot

ModernAuth_PrintBook_Final.indb   iiModernAuth_PrintBook_Final.indb   ii 11/28/2015   11:40:18 AM11/28/2015   11:40:18 AM



Ai miei carissimi fratelli e sorelle: Mauro, Franco, Marino, 
Cristina, Ulderico, Maria, Laura, Guido e Mira—per avermi 
fatto vedere il mondo attraverso altre nove paia d’occhi.

ModernAuth_PrintBook_Final.indb   iiiModernAuth_PrintBook_Final.indb   iii 11/28/2015   11:40:18 AM11/28/2015   11:40:18 AM



ModernAuth_PrintBook_Final.indb   ivModernAuth_PrintBook_Final.indb   iv 11/28/2015   11:40:18 AM11/28/2015   11:40:18 AM



  v

Contents

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Chapter 1 Your fi rst Active Directory app 1
The sample application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Microsoft Azure subscription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Visual Studio 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Creating the application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Running the application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

ClaimsPrincipal: How .NET represents the caller . . . . . . . . . . . . . . . . . . . . . . . 7

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

Chapter 2 Identity protocols and application types 11
Pre-claims authentication techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

Passwords, profi le stores, and individual applications. . . . . . . . . . . .12

Domains, integrated authentication, and applications on an 
intranet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Claims-based identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Identity providers: DCs for the Internet . . . . . . . . . . . . . . . . . . . . . . . . 17

Tokens  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

Trust and claims  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

Claims-oriented protocols  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

Round-trip web apps, fi rst-generation protocols . . . . . . . . . . . . . . . . . . . . .23

The problem of cross-domain single sign-on . . . . . . . . . . . . . . . . . . .23

SAML  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

WS-Federation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

Modern apps, modern protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

The rise of the programmable web and the problem of access 
 delegation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32

ModernAuth_PrintBook_Final.indb   vModernAuth_PrintBook_Final.indb   v 11/28/2015   11:40:18 AM11/28/2015   11:40:18 AM



vi Contents

OAuth2 and web applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

Layering web sign-in on OAuth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37

OpenID Connect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

More API consumption scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

Single-page applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45

Leveraging web investments in native clients . . . . . . . . . . . . . . . . . . . 47

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49

Chapter 3 Introducing Azure Active Directory and Active 
Directory Federation Services 51

Active Directory Federation Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

ADFS and development  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53

Getting ADFS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54

Protocols support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Azure Active Directory: Identity as a service . . . . . . . . . . . . . . . . . . . . . . . . .56

Azure AD and development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

Getting Azure Active Directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Azure AD for developers: Components . . . . . . . . . . . . . . . . . . . . . . . .63

Notable nondeveloper features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67

Chapter 4 Introducing the identity developer libraries 69
Token requestors and resource protectors  . . . . . . . . . . . . . . . . . . . . . . . . . .69

Token requestors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70

Resource protectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73

Hybrids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

The Azure AD libraries landscape  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75

Token requestors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Resource protectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81

Hybrids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85

Visual Studio integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85

AD integration features in Visual Studio 2013 . . . . . . . . . . . . . . . . . .86

AD integration features in Visual Studio 2015 . . . . . . . . . . . . . . . . . .86

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87

ModernAuth_PrintBook_Final.indb   viModernAuth_PrintBook_Final.indb   vi 11/28/2015   11:40:18 AM11/28/2015   11:40:18 AM



 Contents vii

Chapter 5 Getting started with web sign-on and 
Active Directory 89

The web app you build in this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89

Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90

Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90

The starting project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90

NuGet packages references  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92

Registering the app in Azure AD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93

OpenID Connect initialization code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95

Host the OWIN pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95

Initialize the cookie and OpenID Connect middlewares . . . . . . . . . .96

 [Authorize], claims, and fi rst run  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97

Adding a trigger for authentication . . . . . . . . . . . . . . . . . . . . . . . . . . .97

Showing some claims  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98

Running the app . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99

Quick recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99

Sign-in and sign-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99

Sign-in logic  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100

Sign-out logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101

The sign-in and sign-out UI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102

Running the app . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

Using ADFS as an identity provider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105

Chapter 6 OpenID Connect and Azure AD web sign-on 107
The protocol and its specifi cations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107

OpenID Connect Core 1.0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108

OpenID Connect Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108

OAuth 2.0 Multiple Response Type, OAuth2 Form Post 
Response Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109

OpenID Connection Session Management . . . . . . . . . . . . . . . . . . . .109

Other OpenID Connect specifi cations . . . . . . . . . . . . . . . . . . . . . . . .109

Supporting specifi cations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109

ModernAuth_PrintBook_Final.indb   viiModernAuth_PrintBook_Final.indb   vii 11/28/2015   11:40:18 AM11/28/2015   11:40:18 AM



viii Contents

OpenID Connect exchanges signing in with Azure AD . . . . . . . . . . . . . . .110

Capturing a trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110

Authentication request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113

Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119

Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122

Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123

Sign-in sequence diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126

The ID token and the JWT format . . . . . . . . . . . . . . . . . . . . . . . . . . . .127

OpenID Connect exchanges for signing out from the app 
and Azure AD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136

Chapter 7 The OWIN OpenID Connect middleware 137
OWIN and Katana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137

What is OWIN? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137

Katana  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139

OpenID Connect middleware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155

OpenIdConnectAuthenticationOptions . . . . . . . . . . . . . . . . . . . . . . . .155

Notifi cations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159

TokenValidationParameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167

Valid values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168

Validation fl ags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169

Validators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169

Miscellany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170

More on sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172

Chapter 8 Azure Active Directory application model 173
The building blocks: Application and ServicePrincipal . . . . . . . . . . . . . . . . 174

The Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177

The ServicePrincipal object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187

Consent and delegated permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189

Application created by a nonadmin user . . . . . . . . . . . . . . . . . . . . . .189

Interlude: Delegated permissions to access the directory . . . . . . .192

ModernAuth_PrintBook_Final.indb   viiiModernAuth_PrintBook_Final.indb   viii 11/28/2015   11:40:18 AM11/28/2015   11:40:18 AM



 Contents ix

Application requesting admin-level permissions . . . . . . . . . . . . . . .197

Admin consent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200

Application created by an admin user . . . . . . . . . . . . . . . . . . . . . . . .204

Multitenancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205

App user assignment, app permissions, and app roles  . . . . . . . . . . . . . . .211

App user assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211

App roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213

Application permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216

Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221

Chapter 9 Consuming and exposing a web API protected by 
Azure Active Directory 223

Consuming a web API from a web application . . . . . . . . . . . . . . . . . . . . . .223

Redeeming an authorization code in the OpenID Connect 
hybrid fl ow  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224

Using the access token for invoking a web API  . . . . . . . . . . . . . . . .232

Other ways of getting access tokens  . . . . . . . . . . . . . . . . . . . . . . . . .251

Exposing a protected web API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253

Setting up a web API project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253

Handling web API calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258

Exposing both a web UX and a web API from the same 
Visual Studio project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .265

A web API calling another API: Flowing the identity of the 
caller and using “on behalf of”  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266

Protecting a web API with ADFS “3” . . . . . . . . . . . . . . . . . . . . . . . . . .271

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272

Chapter 10 Active Directory Federation Services in Windows 
Server 2016 Technical Preview 3 273

Setup (for developers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273

The new management UX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .274

Web sign-on with OpenID Connect and ADFS . . . . . . . . . . . . . . . . . . . . . .276

OpenID Connect middleware and ADFS . . . . . . . . . . . . . . . . . . . . . .276

ModernAuth_PrintBook_Final.indb   ixModernAuth_PrintBook_Final.indb   ix 11/28/2015   11:40:18 AM11/28/2015   11:40:18 AM



x Contents

Setting up a web app in ADFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .277

Testing the web sign-on feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . .280

Protecting a web API with ADFS and invoking it from 
a web app . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281

Setting up a web API in ADFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281

Code for obtaining an access token from ADFS and invoking 
a web API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .285

Testing the web API invocation feature . . . . . . . . . . . . . . . . . . . . . . .288

Additional settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292

Appendix: Further reading 293

Index  295

ModernAuth_PrintBook_Final.indb   xModernAuth_PrintBook_Final.indb   x 11/28/2015   11:40:18 AM11/28/2015   11:40:18 AM



  xi

Foreword

The purpose of an application is to take input from users or other applications and 
produce output that will be consumed by those same users or applications or by other 
ones. That’s true of a website that gains input from a click on a link and sends back 
the content of the requested page as output; a middle tier that processes database 
requests queued from a front end, executing them by sending input to a database; or a 
cloud service that gets input from a mobile application to look up nearby friends. Given 
this, a fundamental question faced in the design of every application is, Who is sending 
the input and should the application process it to produce the resulting output? Put 
another way: every application must decide on an identity system that represents users 
and other applications, a means by which to validate an application’s or user’s claimed 
identity, and a way to determine what outputs the user or application is allowed to 
produce. 

These decisions will determine how easily users and applications can interact with 
an application, what functionality they can take advantage of to secure and manage 
their identities and credentials, and how much work the application developer must 
do to enable these capabilities, which are known as authentication and authorization. 
The ideal answers make it possible for users and applications to use their preferred 
 identities, whether from Facebook, Gmail, or their enterprise; for the application to 
easily confi gure the access rights for authorized users; and for the application to rely on 
other services as much as possible to do the heavy lifting. Identity and access control, 
while key to an application’s utility, are not the core value an application delivers, so 
developers shouldn’t spend any more time on this area than they have to. Why  create 
a database of users and worry about which algorithm to use to encrypt the users’ 
passwords if you can take advantage of a service that’s built for doing just that, with 
industry-leading security and management? 

Microsoft Azure Active Directory (Azure AD) is arguably the heart of Microsoft’s 
cloud platform. All Microsoft cloud services, including Microsoft Azure, Microsoft Xbox 
Live, and Microsoft Offi ce 365, use Azure AD as their identity provider. And because 
Azure AD is a public cloud service, application developers can also take advantage of 
its capabilities. If an application relies on Azure AD as its identity provider, it can rely 
on Azure AD APIs to provision users, rely on Azure AD to manage their passwords, 
and even give users the ability to use multifactor authentication (MFA) to securely 
 authenticate to the application. For application developers wanting to integrate with 
businesses, including the many that are already using Azure AD, Azure AD has the most 
fl exible and comprehensive support of any service for integrating Active Directory and 
LDAP identities. Fueled by enterprise adoption of Offi ce 365, Azure AD is already a 

ModernAuth_PrintBook_Final.indb   xiModernAuth_PrintBook_Final.indb   xi 11/28/2015   11:40:18 AM11/28/2015   11:40:18 AM



xii Foreword

 connection point for hundreds of millions of business and organizational identities, and 
it’s growing fast. 

Using Azure AD for the most common scenarios is easy, thanks to the open source 
developer libraries, tooling, and guidance available on Microsoft Azure’s GitHub orga-
nization. Going beyond the basics, however, requires a good understanding of modern 
authentication fl ows—specifi cally OAuth2 and OpenID Connect—and concepts such 
as a relying party and tokens, federation, role-based access control, a provisioned ap-
plication, and service principles. If you’re new to these protocols and terms, the learning 
curve can seem daunting. Even if you’re not, knowing the most effi cient way to use 
Azure AD and its unique capabilities is important, and it’s worthwhile understanding 
what’s available to you.

There’s no better book than Modern Authentication with Azure Active Directory for 
Web Applications to help you make your application take full advantage of Azure AD. 
I’ve known Vittorio Bertocci since I started in Azure fi ve years ago, and I’ve watched his 
always popular and highly rated Microsoft TechEd, Build, and Microsoft Ignite confer-
ence presentations to catch up with the latest developments in Azure AD. He’s a master 
educator and one of Microsoft’s foremost experts on identity and access control. 

This book will guide you through the essentials of authentication protocols, decipher 
the disparate terminology applied to the subject, tell you how to get started with Azure 
AD, and then present concrete examples of applications that use Azure AD for their 
authentication and authorization, including how they work in hybrid scenarios with 
Active Directory Federation Services (ADFS). With the information and insights Vittorio 
shares, you’ll be able to effi ciently create modern cloud applications that give users and 
administrators the fl exibility and security of Microsoft’s cloud and the convenience of 
using their preferred identities. 

Mark Russinovich
Chief Technology Offi cer, Microsoft Azure

ModernAuth_PrintBook_Final.indb   xiiModernAuth_PrintBook_Final.indb   xii 11/28/2015   11:40:18 AM11/28/2015   11:40:18 AM



  xiii

Introduction

It’s never a good idea to use the word “modern” in the title of a book. 

Growing up, one of the centerpieces of my family’s bookshelf was a 15-tomes-strong 
encyclopedia titled Nuovissima Enciclopedia (Very new encyclopedia), and I always had 
a hard time reconciling the title with the fact that it was 10 years older than me.

I guarantee that the content in this book will get old faster than those old volumes—
cloud and development technologies evolve at a crazy pace—and yet I could not resist 
referring to the main subject of the book as “modern authentication.”

The practices and technologies used to take care of authentication in business 
 solutions have changed radically nearly overnight, by a perfect storm of companies 
moving their assets to the cloud, software vendors starting to sell their products via 
subscriptions, the explosive growth of social networks with the nascent awareness of 
consumers of their own digital identity, ubiquitous APIs offering programmatic access 
to everything, and the astonishing adoption rate of Internet-connected smartphones.

“Modern authentication” is a catch-all term meant to capture how today’s practices 
address challenges differently from their recent ancestors: JSON instead of XML, REST 
instead of SOAP, user consent and individual freedom alongside traditional admin-only 
processes, an emphasis on APIs and delegated access, explicit representation of clients, 
and so on. And if it is true that those practices will eventually stop appearing to be 
new—they are already mainstream at this point—the break with traditional approaches 
is so signifi cant that I feel it’s important to signal it with a strong title, even if your kids 
make fun of it a few years from now.

As the landscape evolves, Active Directory evolves with it. When Microsoft itself 
introduced one of the most important SaaS products on the planet, Offi ce 365, it felt 
fi rsthand how cloud-based workloads call for new ways of managing user access and 
application portfolios. To confront that challenge Microsoft developed Azure Active 
Directory (Azure AD), a reimagined Active Directory that takes advantage of all the new 
protocols, artifacts, and practices that I’ve grouped under the modern authentication 
umbrella. Once it was clear that Azure AD was a Good Thing, it went on to become the 
main authentication service for all of Microsoft’s cloud services, including Intune, Power 
BI, and Azure itself. But the real raison d’etre of this book is that Microsoft opened 
Azure AD to every developer and organization so that it could be used for obtain-
ing tokens to invoke Microsoft APIs and to handle authentication for your own web 
 applications and web APIs.

ModernAuth_PrintBook_Final.indb   xiiiModernAuth_PrintBook_Final.indb   xiii 11/28/2015   11:40:18 AM11/28/2015   11:40:18 AM



xiv Introduction

Modern Authentication with Azure Active Directory for Web Applications is an 
 in-depth exploration of modern authentication protocols and techniques used to 
implement sign-on for web applications and to protect web API calls. Although the 
protocols and pattern descriptions are applicable to any platform, my focus is on how 
Azure AD, the latest version of Active Directory Federation Services (ADFS), and the 
OpenID Connect and OAuth2 components in ASP.NET implement those approaches to 
handle authentication in real applications. 

The text is meant to help you achieve expert-level understanding of the protocols 
and technologies involved in implementing modern authentication for a web app. 
 Substantial space is reserved for architectural pattern descriptions, protocol consider-
ations, and other abstract concerns that are necessary for correctly contextualizing the 
more hands-on advice that follows. 

Most of the practical content in this book is about cloud and hybrid scenarios 
 addressed via Azure AD. At the time of writing, the version of ADFS supporting  modern 
authentication for web apps is still in technical preview; however, on-premises-only 
 scenarios are covered whenever the relevant features are already available in the 
 preview.

Who should read this book

I wrote this book to fi ll a void of expert-level content for modern authentication, 
Azure AD, and ADFS. Microsoft offers great online quick starts, samples, and reference 
 documentation—check out http://aka.ms/aaddev—that are perfect for helping you 
fulfi l the most common tasks as easily as possible. That content covers many scenarios 
and addresses the needs of the vast majority of developers, who can be extremely 
 successful with their apps without ever knowing what actually goes on the wire, or why. 
I like to think of that level of operation as the automatic mode for handheld and smart-
phone cameras—their defaults work great for nearly everybody, nearly all the time. But 
what happens if you want to take a picture of a lunar eclipse or any other challenging 
subject? That’s when the point-and-click facade is no longer suffi cient and knowing 
about aperture and exposure times becomes important. You can think of this book as 
a handbook for when you want to switch from automatic to manual settings. Doing so 
is useful for developers who work on solutions for which authentication requirements 
depart from the norm and for the devops who run such solutions.

Developers who worked with Windows Identity Foundation will fi nd the text useful 
for transferring their skills to the new platform, and they’ll pick up some new tricks 
along the way. The coverage of how the OWIN middleware works is deeper than 

ModernAuth_PrintBook_Final.indb   xivModernAuth_PrintBook_Final.indb   xiv 11/28/2015   11:40:18 AM11/28/2015   11:40:18 AM



 Introduction xv

 anything I’ve found on the Internet at this time: if you are interested in an in-depth 
case study of ASP.NET’s Katana libraries, you’ll fi nd one here.

This book also comes in handy for security experts coming from a classic back-
ground and looking to understand modern protocols and approaches to authenti-
cation—the principles and protocols I describe can be applied well beyond Active 
Directory and ASP.NET. Security architects considering Azure AD for their solutions can 
use this book to understand how Azure AD operates. Protocol experts who want to 
understand how Azure AD and ADFS use OpenID Connect and OAuth2 will fi nd plenty 
to mull over as well.

Assumptions
This book is for senior professionals well versed in development, distributed architec-
tures, and web-based solutions. You need to be familiar with HTTP trappings and have 
at least a basic understanding of networking concepts. All sample code is presented 
in C#, and all walk-throughs are based on Visual Studio. Azure AD and ADFS can be 
made use of from any programming stack and operating system; however, if you don’t 
understand C# syntax and basic constructs (LINQ, etc.), it will be diffi cult for you to 
apply the coding advice in this book to your platform of choice. For good background, 
I’d recommend John Sharp’s Microsoft Visual C# Step by Step, Eighth Edition (Microsoft 
Press, 2015).

Above all, this book assumes that you are strongly motivated to become an expert 
in modern authentication techniques and Azure AD development. The text does not 
take any shortcuts: you should not expect a light read; most chapters require signifi cant 
focus and time investment.

This book might not be for you if…

This book might not be for you if you just want to learn how to use Azure AD or 
ADFS for common development tasks. You don’t have to buy a book for that: the 
 documentation and the samples available at http://aka.ms/aaddev will get you up and 
running in no time, thanks to crisp step-by-step instructions. If there are tasks you’d 
like to see covered by the Azure AD docs, please use the feedback tools provided 
at that address: the Azure AD team is always looking for feedback for improving its 
 documentation.

This book is also not especially good as a lookup reference. The text covers a lot 
of ground, including information that isn’t included in the documentation at this 

ModernAuth_PrintBook_Final.indb   xvModernAuth_PrintBook_Final.indb   xv 11/28/2015   11:40:18 AM11/28/2015   11:40:18 AM



xvi Introduction

time, but the information is unveiled progressively, building on the reader’s growing 
 understanding of the topic. The book is optimized as a long lesson, not for looking 
things up.

Finally, this book won’t be of much help if you are developing mobile, native, and 
rich-client applications. I originally intended to cover those types of applications, too, 
but the size of the book would have nearly doubled, so I had to cut them from this 
 edition. 

Organization of this book

This book is meant to be read cover to cover. That’s not what most people like to 
do, I know: bite-size and independent modules is the way to go today. I believe 
there are media more conducive to that approach, like video courses or the online 
 documentation at http://aka.ms/aaddev. I chose to write a book because to achieve 
my goal—helping you understand modern authentication principles and how to take 
advantage of them with Azure AD—I cannot feed you only factlets and recipes. I have 
to present you with a signifi cant amount of information, highlight relationships and 
implications for you, and then often ask you to tuck that knowledge away for a chapter 
or two before you actually end up using it. That’s where I believe a book can still deliver 
value: by giving me the chance to hold your attention for a signifi cant amount of time, 
I can afford a depth and breadth that I cannot achieve in a blog post. (By the way, did I 
mention that I do blog a lot as well? See www.cloudidentity.com and www.twitter.com/
vibronet.) 

If this book has a natural fault line in its organization, it lies between the fi rst four 
chapters and the last six. The fi rst group provides context, and the later chapters dive 
deeply into the protocols, code, libraries, and features of Active Directory. Here’s a 
quick description of each chapter’s focus:

 ■ Chapter 1, “Your fi rst Active Directory app,” is a soft introduction to the topic, 
giving you a brief glimpse of what you can achieve with Azure AD. It mostly 
 provides instructions on how to use Visual Studio tools to create a web app 
that’s integrated with Azure AD. Instant gratifi cation.

 ■ Chapter 2, “Identity protocols and application types,” is a detailed history of 
identity protocols. It introduces terminology, topologies, and relationships 
 between standards and helps you understand how modern authentication 
came to be and why identity is managed the way it is today.

ModernAuth_PrintBook_Final.indb   xviModernAuth_PrintBook_Final.indb   xvi 11/28/2015   11:40:18 AM11/28/2015   11:40:18 AM



 Introduction xvii

 ■ Chapter 3, “Introducing Azure Active Directory and Active Directory Federation 
Services,” presents basic concepts, terminology, and a list of developer-relevant 
features for Azure AD and ADFS. The hands-on chapters (Chapters 6-10) provide 
detailed descriptions of the features of both services that come into play in the 
scenarios of interest for the book.

 ■ Chapter 4, “Introducing the identity developer libraries,” covers basic concepts, 
terminology, and the features of the Active Directory Authentication Library 
(ADAL) and ASP.NET OWIN middleware. 

 ■ Chapter 5, “Getting started with web sign-on and Active Directory,” provides 
a walk-through of how to create from scratch a web app that can sign in with 
Azure AD. Starting with the vanilla MVC templates, you learn about the NuGets 
packages you need to add, what app provisioning steps you need to follow in 
the Azure portal, and what code you need to write to perform key authentica-
tion tasks.

 ■ Chapter 6, “OpenID Connect and Azure AD web sign-on,” provides a very 
detailed description of OpenID Connect and related standards, grounded on 
network traces of the actual traffi c generated by the sample app. This is a very 
practical way of understanding the underlying protocol and why it operates 
the way it does. The descriptions of the constellation of ancillary specifi cations 
for OpenID Connect and OAuth2 will help you to navigate this rather crowded 
space, even if you are not planning to use Azure AD at the moment.

 ■ Chapter 7, “The OWIN OpenID Connect middleware,” is a detailed analysis of 
how the authentication pipeline in ASP.NET works—with an emphasis on the 
OpenID Connect middleware, its extensibility points, and what scenarios these 
are meant to address.

 ■ Chapter 8, “Azure Active Directory application model,” is a deep dive into 
the Azure AD application model: how Azure AD represents apps and handles 
 consent, and how it deals with app provisioning, multitenancy, app roles, 
groups, app permissions, and the like.

 ■ Chapter 9, “Consuming and exposing a web API protected by Azure Active 
 Directory,” does for web APIs what Chapters 6 and 7 do for web apps—it 
 explains the protocol fl ows used by web apps for gaining access to a protected 
API and describes how to use ADAL and the OAuth2 middleware for securely 
 invoking and protecting a web API. This chapter also briefl y introduces the 
Directory Graph API and discusses advanced scenarios such as exposing and 
securing both the user experience and an API from the same web project.

ModernAuth_PrintBook_Final.indb   xviiModernAuth_PrintBook_Final.indb   xvii 11/28/2015   11:40:18 AM11/28/2015   11:40:18 AM



xviii Introduction

 ■ Chapter 10, “Active Directory Federation Services in Windows Server 2016 
Technical Preview 3,” discusses the new modern authentication features in ADFS, 
showing how to adapt web sign-on, web API invocation, and code protection 
covered in the earlier chapters to on-premises-only scenarios.

 ■ The appendix, “Further reading,” provides you with pointers to online content 
describing ancillary topics and offerings that are still too new to be fully fl eshed 
out in the book but are interesting and relevant to the subject of modern 
 authentication. 

Finding your best starting point in this book
As I mentioned, every chapter in this book builds on the knowledge you acquire in 
the preceding ones. That makes choosing an arbitrary starting point a tricky exercise. I 
recommend that you look over the description of the book’s chapters in the previous 
section and decide whether you feel comfortable enough on the matter to choose a 
specifi c starting point.  

System requirements

You will need the following software if you want to follow the code walk-throughs in 
this book:

 ■ Any Windows version that can run Visual Studio 2015 or later.

 ■ Visual Studio 2015, any edition (technically, apart from Chapter 1, Visual  
Studio 2015 isn’t a hard requirement; Visual Studio 2013 will work with just 
a few  adjustments).

 ■ A Microsoft Azure subscription and access to the Azure portal.

 ■ Telerik Fiddler v4 (http://www.telerik.com/fi ddler).

 ■ Internet connection to reach Azure AD during authentication operations and 
provisioning tasks.

In addition, Chapter 10 requires you to have access to an ADFS instance using 
 Windows Server 2016 Technical Preview 3. Its system requirements can be found at 
https://technet.microsoft.com/en-us/library/mt126134.aspx. For the book, I hosted my 
own instance in a Hyper-V virtual machine, running on a laptop with Windows 10.

ModernAuth_PrintBook_Final.indb   xviiiModernAuth_PrintBook_Final.indb   xviii 11/28/2015   11:40:18 AM11/28/2015   11:40:18 AM



 Introduction xix

Downloads: Code samples

This book contains a lot of code, and I present some of it in the form of guided 
 walk-throughs. The goal is always to unveil the concepts you need to understand in 
manageable chunks, as opposed to the classic recipes you get in traditional labs or 
exercises. Also, I often discuss alternatives in the text, but the code can’t always refl ect 
all possible options. Expect the code to demonstrate the mainline approach; where 
 possible and appropriate, alternatives are provided in code comments.  

You can fi nd the code I use in the book on my GitHub, at the following address:

http://aka.ms/modauth/fi les

You will notice a number of repositories with the form <ModAuthBook_ChapterN>, 
where N represents the chapter number in which the repository code is described and 
demonstrated. (Not every book chapter contains code; only the chapters that do have 
a corresponding repository on GitHub.) If you are not familiar with GitHub, just click the 
repository name for the chapter you are interested in; somewhere on the page (at this 
time, at the bottom-right corner of the layout), you’ll fi nd the Download ZIP button, 
which you can use to save a local copy of the code.

Using the code samples
Every repository contains a Visual Studio solution and a readme fi le. The readme 
 provides a quick indication about the topic covered by the corresponding chapter, 
 prerequisites, and basic instructions on how to provision the sample in your own 
Azure AD tenant. I’ll do my best to keep the setup instructions up to date.

Once again, don’t expect too much handholding: the code is provided mostly for 
reference. (Microsoft’s  ffi cial step-by-step samples and quick starts are provided at 
http://aka.ms/aaddev.) If a sample requires extra steps to fully demonstrate a scenario 
(for example, the presence in your tenant of an admin and at least a nonadmin user), 
I’ve assumed that you’ll get that information by reading the book and don’t repeat it 
in the sample’s readme. The code provided at http://aka.ms/modauth/fi les is meant to 
support and complement the reading of the book rather than as a standalone asset.

ModernAuth_PrintBook_Final.indb   xixModernAuth_PrintBook_Final.indb   xix 11/28/2015   11:40:19 AM11/28/2015   11:40:19 AM

http://aka.ms/modauth/files
http://aka.ms/modauth/files


xx Introduction

 Acknowledgments

We have to go deeper. 
—Cobb in Inception, a fi lm by Christopher Nolan, 2010

This book has been a labor of love, written during nights, weekends, and occasional 
time off. I have willingly put that yolk on myself, but my wife, Iwona Bialynicka-Birula, 
did not . . . she endured nearly one year of missed hikes, social jet lag, and a silence 
curfew “because I have to write.” Thank you for your patience, darling—as I promised in 
the acknowledgments for Programming Windows Identity Foundation back in 2011: No 
more books for a few years!

This book would not have happened at all if Devon Musgrave, my acquisitions 
 editor, would not have relentlessly pursued it, granting me a level of trust and freedom 
I am not sure I fully deserve. Thank you, Devon! 

John Pierce has been an absolutely incredible project editor, driving everything 
from editing to project management to illustrations. He has this magic ability of  turning 
my broken English into correct sentences while preserving my original intent. I wish 
 every technical writer would have the good fortune of working with somebody as 
gifted as John. Rob Nance and Carrie Wicks also made signifi cant contributions to 
producing this book.   

I will be forever grateful to Mark Russinovich for the fantastic foreword he wrote 
for the book and for the kind words he offered about me. I am truly humbled to have 
my book begin with the words of a legend in software engineering.

Big thanks to my management chain for supporting this side project. Alex Simons, 
Eric Doerr, Stuart Kwan—thank you! I never quite managed to write on Fridays, but it 
was a great attempt.

I need to call out Stuart for a special thanks—from welcoming me to the product 
team to mentoring me through the transition from evangelism to product manage-
ment. A large part of whatever success I have achieved is thanks to our work together. 
Thank you!

Rich Randall, the development lead on the Azure AD developer experience team, 
is my partner in crime and recipient of my utmost respect and admiration. Without 
his amazing work, none of the libraries described in this book would be around. And 
 without the contribution of Afshin Sephetri, Kanishk Panwar, Brent Schmaltz, 
Tushar Gupta, Wei Jia, Sasha Tokarev, Ryan Pangrle, Chris Chartier, and 

ModernAuth_PrintBook_Final.indb   xxModernAuth_PrintBook_Final.indb   xx 11/28/2015   11:40:19 AM11/28/2015   11:40:19 AM



 Introduction xxi

Omer Cansizoglu—developers on Rich’s team—those libraries would not be nearly as 
usable and powerful as they are.

Danny Strockis has been on the PM team for a relatively short time, but his contri-
butions are already monumental. Ariel Gordon, responsible for designing many of the 
experiences that the Azure AD users go through every day, is a source of never-ending 
insights. Dushyant Gill drove the authorization features in Azure AD, and he patiently 
explained those to me every single time I barged into his offi ce.

Igor Sakhnov, developer manager for Azure AD authentication, and his then-PM 
counterpart David Howell have my gratitude for trusting us on the decision to move 
the web authentication stack to OWIN. It worked out pretty well!

Speaking of OWIN. Chris Ross, Tushar Gupta, Brent Schmaltz, Daniel Roth, 
Louis Dejardin, Eilon Lipton, and Barry Dorrans all did a fantastic job, both in 
 developing and driving the libraries and in handling my mercurial outbursts. Dan, I told 
you we’d get there! Special thanks to Chris Ross and Tushar Gupta for reviewing 
Chapter 7 in record time.

I started working with Scott Hunter on ASP.NET tooling and templates back in 
2012 and loved every second. The man cares deeply about customers, understands the 
importance of identity, and is a force to reckon with. It is thanks to him and to my good 
friends Pranav Rastogi, Brady Gaster, and Dan Roth that web apps in Visual Studio 
can be enabled for Azure AD in just a few clicks. 

In my opinion, Visual Studio 2015 has the most sophisticated identity management 
features in all of Microsoft’s rich clients, and that’s largely thanks to the relentless work 
that Anthony Cangialosi, Ji Eun Kwon, and all the Visual Studio and Visual Studio 
Online gang poured into it. That made it possible for many other teams to build on 
that core and deliver fi rst-class identity support in Visual Studio for Azure, Offi ce 365, 
and more. Among others, we have Chakkaradeep (Chaks) Chinnakonda Chandran, 
Dan Seefeldt, Steve Harter, Xiaoying Guo, Yuval Mazor, Sean Laberee, and Paul 
Yuknewicz to thank for that. 

The Azure AD authentication service is for developers and maintained by some of 
the fi nest developers I know—Shiung Yong, Ravi Sharma, Matt Rimer, and Maxim 
Yaryn are the ones patiently fi elding my questions and listening to my crazy scenarios. 
The architects behind the service, Yordan Rouskov and Murli Satagopan, are an 
 inexhaustible source of insight.

The guys working on the directory data model, portal, and Graph API are also 
 amazing in all sorts of ways: Dan Kershaw, Edward Wu, Yi Li, Dmitry Pugachev, 

ModernAuth_PrintBook_Final.indb   xxiModernAuth_PrintBook_Final.indb   xxi 11/28/2015   11:40:19 AM11/28/2015   11:40:19 AM



xxii Introduction

Vijay Srirangam, Jeff Staiman, and Shane Oatman are always there to help. Special 
mention to Yi Li who reviewed Chapter 8 and deals with my questions nearly every day.

Besides doing a fantastic job with ADFS in Windows Server 2016, Samuel Devasa-
hayam, Mahesh Unnikrishnan, Jen Field, Jim Uphaus, and Saket Kataruka from the 
ADFS team were of great help for Chapter 10.

The people on the partner teams are the ones who keep things real: they won’t be 
satisfi ed until the services and libraries address their scenarios, and in so doing they 
push the services to excellence. Mat Velloso from Evangelism; Rob Howard, Matthias 
Leibmann, Yina Arenas, and Tim McConnell from Offi ce 365; Shriram Natarajan 
(Shri) and Pavel Tsurbeleu from Azure Stack; Dave Brankin, David Messner, Yugang 
Wang, and George Moore from Azure; and Hadeel Elbitar from Power BI are all 
people who keep asking the right questions and offer priceless insights. Thank you 
guys!

The contribution from people in the development community is of paramount 
 importance, especially now that our libraries are open source. Dominick Baier and 
Brock Allen are the most prominent sources of insight I can think of and are a beacon 
in the world of claims-based identity and modern authentication.

The identirati community plays a key role in moving modern authentication forward, 
divining what the industry wants and translating it into the form of RFC stone tablets. 
I am super grateful to John Bradley for our beer-fueled chats every time we meet at 
the Cloud Identity Summit and to the excellent Brian Campbell and, well, Canadian 
Paul Madsen for the friendly banter; to Bob Blakley and Ian Glazer for never failing 
to inspire; and to our own Mike Jones and Anthony Nadalin for being dependable, 
in-house protocol oracles. Although I cannot stop myself from reminding Tony that it is 
imperative that he work on his focus—he’ll know what that means.

Last but not least, I want to thank the readers of my blog, my Twitter followers, the 
people I engage with on StackOverfl ow, and the people I meet at conferences during 
my sessions and afterward. It is your passion, your desire to know more and be more 
effective, and, yes, your affection,that made me decide to invest time in writing this 
book. Thank you for your incredible energy. This book is for you. 

Errata, updates, & book support

We’ve made every effort to ensure the accuracy of this book and its companion 
 content. You can access updates to this book—in the form of a list of submitted errata 
and their related corrections—at: 

ModernAuth_PrintBook_Final.indb   xxiiModernAuth_PrintBook_Final.indb   xxii 11/28/2015   11:40:19 AM11/28/2015   11:40:19 AM



 Introduction xxiii

http://aka.ms/modauth 

If you discover an error that is not already listed, please submit it to us at the same 
page.

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com.

Please note that product support for Microsoft software and hardware is not offered 
through the previous addresses. For help with Microsoft software or hardware, go to 
http://support.microsoft.com.

Free ebooks from Microsoft Press

From technical overviews to in-depth information on special topics, the free ebooks 
from Microsoft Press cover a wide range of topics. These ebooks are available in PDF, 
EPUB, and Mobi for Kindle formats, ready for you to download at:

http://aka.ms/mspressfree 

Check back often to see what is new!

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most 
valuable asset. Please tell us what you think of this book at: 

http://aka.ms/tellpress

We know you’re busy, so we’ve kept it short with just a few questions. Your 
 answers go directly to the editors at Microsoft Press. (No personal information will 
be  requested.) Thanks in advance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: 

http://twitter.com/MicrosoftPress 

ModernAuth_PrintBook_Final.indb   xxiiiModernAuth_PrintBook_Final.indb   xxiii 11/28/2015   11:40:19 AM11/28/2015   11:40:19 AM



ModernAuth_PrintBook_Final.indb   xxivModernAuth_PrintBook_Final.indb   xxiv 11/28/2015   11:40:19 AM11/28/2015   11:40:19 AM



  137

 C H A P T E R  7

The OWIN OpenID Connect 
middleware

In this chapter I focus on the OpenID Connect middleware and supporting classes. These are the 
 cornerstones of ASP.NET’s support for web sign-on.

As you saw in Chapter 5, “Getting started with web sign-on and Active Directory,” in the most 
common case, the OpenID Connect middleware requires very few parameters to enable web sign-on. 
Beneath that simple surface, however, are knobs for practically anything you want to control: protocol 
parameters, initialization strategies, token validation, message processing, and so on. This chapter will 
reveal the various layers of the object model for you, showing how you can fi ne-tune the authentica-
tion process to meet your needs.

OWIN and Katana

When I wrote Programming Windows Identity Foundation (Microsoft Press) in 2009, I didn’t have to 
spend much time explaining HttpModule, the well-established ASP.NET extensibility technology on 
which WIF was built. This time around, however, I cannot afford the luxury of assuming that you are 
already familiar with OWIN and its implementation in ASP.NET—this is the foundational technology 
of the new generation of authentication libraries.

OWIN is a stable standard at this point, but its implementations are still relatively new 
 technologies. You can fi nd plenty of information online, but the details are rapidly changing (as I 
write, ASP.NET vNext is in the process of renaming lots of classes and properties), and you need to 
have a solid understanding of the pipeline and model underlying the identity functionality.

In this section I provide a quick tour of OWIN (as implemented in Katana 3.0.1) and the features 
that are especially relevant for the scenarios I’ve described throughout the book. For more details, 
you can refer to the online documentation from the ASP.NET team.

What is OWIN?
OWIN stands for Open Web Interface for .NET. It is a community-driven specifi cation: Microsoft 
is just a contributor, albeit a very important one. Here’s the offi cial defi nition, straight from the 
 specifi cations’ home page at http://owin.org/.

ModernAuth_PrintBook_Final.indb   137ModernAuth_PrintBook_Final.indb   137 11/28/2015   11:40:30 AM11/28/2015   11:40:30 AM



138 CHAPTER 7

OWIN defi nes a standard interface between .NET web servers and web applications. 
The goal of the OWIN interface is to decouple server and application, encourage the 
development of simple modules for .NET web development, and, by being an open 
standard, stimulate the open source ecosystem of .NET web development tools.

In essence, OWIN suggests a way of building software modules (called middlewares) that can 
process HTTP requests and responses. It also describes a way in which those modules can be 
 concatenated in a processing pipeline and defi nes how that pipeline can be hosted without relying 
on any specifi c web server or host or the features of a particular development stack. 

The core idea is that, at every instant, the state of an HTTP transaction and the server-side 
 processing of it is represented by a dictionary of the following form:

IDictionary<string, object>

This is commonly known as the environment dictionary. You can expect to fi nd in it the usual 
request and response data (host, headers, query string, URI scheme, and so on) alongside any data 
that might be required for whatever processing an app needs to perform. Where does the data come 
from? Some of it, like the request details, must eventually come from the web server. The rest is the 
result of the work of the middleware in the pipeline.

Oversimplifying, a middleware is a module that implements the following interface:

Func<IDictionary<string, object>, Task>;

I am sure you have already guessed how things might work. The middleware receives the 
 environment dictionary as input, acts on it to perform the middleware’s function, and then hands 
it over to the next middleware in the pipeline. For example, logging middleware might read the 
 dictionary and pass it along unmodifi ed, but an authentication middleware might fi nd a 401 code in 
the dictionary and decide to transform it into a 302, modifying the response to include an authentica-
tion request. By using the dictionary as the way of communicating and sharing context, as opposed 
to calling each other directly, middlewares achieve a level of decoupling that was not possible in older 
approaches.

How do you bootstrap all this? At startup, the middleware pipeline needs to be constructed and 
initialized: you need to decide what middlewares should be included and in which order and ensure 
that requests and responses will be routed through the pipeline accordingly. The OWIN specifi cation 
has a section that defi nes a generic mechanism for this, but given that you will be working mostly 
with the ASP.NET-specifi c implementation, I won’t go into much detail on that.      

I skipped an awful lot of what the formulaic descriptions of OWIN normally include (like the formal 
defi nitions of application, middleware, server, and host), but I believe that this brief description should 
provide you enough scaffolding for understanding Katana, ASP.NET’s implementation of OWIN.

ModernAuth_PrintBook_Final.indb   138ModernAuth_PrintBook_Final.indb   138 11/28/2015   11:40:30 AM11/28/2015   11:40:30 AM



 The OWIN OpenID Connect middleware 139

Katana
Katana is the code name for a set of Microsoft’s .NET 4.5–based components that utilize the OWIN 
specifi cation to implement various functionalities in ASP.NET 4.6. It’s what you used in Chapter 1 and 
Chapter 5 and includes base middleware classes, a framework for initializing the pipeline, pipeline 
hosts for ASP.NET, and a large collection of middlewares for all sorts of tasks.

Katana != OWIN
OWIN is an abstract specifi cation. Katana is a set of concrete classes that implement that spec, 
but it also introduces its own implementation choices for tasks that aren’t fully specifi ed or in 
scope for the OWIN spec. In giving technical guidance, it’s easy to say something to the effect 
“in OWIN, you do X,” but it is often more proper to say “in Katana, you do X.” I am sure I will be 
guilty of this multiple times: please accept my blanket apologies in advance.

In Chapter 5 you encountered most of the Katana NuGet packages and assemblies that appear 
in common scenarios. You also successfully used them by entering the code I suggested. Here I’ll 
reexamine all that, explaining what really happens.

Startup and IAppBuilder 
In Chapter 5, in the section “Host the OWIN pipeline,” you created a Startup class and decorated 
its source fi le with the assembly:OwinStartup attribute. The function of Startup is to initialize 
the OWIN pipeline by having its Configure method automatically invoked at initialization. To follow 
 current practices, I instructed you to make Startup partial and to put the actual pipeline-building 
code in another fi le—but you could have just as well added the code in line in Startup.

Using the attribute is only one of several ways of telling Katana which class should act as Startup. 
You can also do the following:

 ■ Have one class named Startup in the assembly or the global namespace.

 ■ Use the OwinStartup attribute. The attribute wins against the naming convention (using 
Startup): if both techniques are used, the attribute will be the one driving the behavior.

 ■ Add an entry under <appSettings> in the app confi g fi le, of the form 

<add key="owin:appStartup" value=" WebAppChapter5.Startup" />. 

This entry wins over both the naming convention and the attribute.

ModernAuth_PrintBook_Final.indb   139ModernAuth_PrintBook_Final.indb   139 11/28/2015   11:40:30 AM11/28/2015   11:40:30 AM



140 CHAPTER 7

Fun times! I’ve listed these alternatives so that you know where to look if your app appears to 
magically pick up code without an obvious reason. I used to feel like that all the time when I fi rst 
started with Katana.

Let’s now turn our attention to Startup.Configure. Observe the method’s signature:

public void Configure(IAppBuilder app)

IAppBuilder is an interface designed to support the initialization of the application. It looks like 
this:

public interface IAppBuilder
{
    IDictionary<string, object> Properties { get; }

    object Build(Type returnType);
    IAppBuilder New();
    IAppBuilder Use(object middleware, params object[] args);
}

The Properties dictionary is used in turn by the server and host to record their capabilities and 
initialize data, making it available to the application’s initialization code—that is to say, whatever 
you put in Configure. In the case of our sample app, the server is IIS Express and the host is the 
 SystemWeb host we referenced when adding the NuGet package with the same name.

Note That host is actually an HttpModule designed to host the OWIN pipeline. That’s the 
trick Katana uses to integrate with the traditional System.Web pipeline.

The Build method is rarely called in your own code, so I’ll ignore it here. The Use method enables 
you to add middleware to the pipeline, and I’ll get to that in a moment.

To prove to you that the host does indeed populate app at startup, let’s take a peek at the app 
parameter when Configure is fi rst invoked. Open Visual Studio, open the solution from Chapter 5, 
place a breakpoint on the fi rst line of Configure, and hit F5. Once the breakpoint is reached, navi-
gate to the Locals tab and look at the content of app. You should see something similar to Figure 7-1.

ModernAuth_PrintBook_Final.indb   140ModernAuth_PrintBook_Final.indb   140 11/28/2015   11:40:30 AM11/28/2015   11:40:30 AM



 The OWIN OpenID Connect middleware 141

FIGURE 7-1 The content of the app parameter at Configure time.

Wow, we didn’t even start, and look at how much stuff is there already!

Katana provides a concrete type for IAppBuilder, named AppBuilder. As expected, the 
 Properties dictionary arrives already populated with server, host, and environment properties. 
Feel free to ignore the actual values at this point. Just as an example, in Figure 7-1 I highlighted the 
host.AppName property holding the IIS metabase path for the app.

The nonpublic members hold a very interesting entry: _middleware. If you keep an eye on that 
entry as you go through the pipeline-initialization code in the next section, you will see the value of 
Count grow at every invocation of Use*.

Middlewares, pipeline, and context
Stop the debugger and head to Startup.Auth.cs, where you will fi nd the implementation of 
ConfigureAuth. This is where you actually add middleware to the pipeline, through the calls to 
UseCookieAuthentication and UseOpenIdConnectAuthentication. Those are convenience 
extension methods. UseCookieAuthentication is equivalent to this:

app.Use(typeof(CookieAuthenticationMiddleware), app, options);

ModernAuth_PrintBook_Final.indb   141ModernAuth_PrintBook_Final.indb   141 11/28/2015   11:40:30 AM11/28/2015   11:40:30 AM



142 CHAPTER 7

The effect of Use is to add the corresponding middleware to the pipeline in AppBuilder—as 
you can observe by watching the aforementioned _middleware. Although technically a middleware 
might simply satisfy the Func interface mentioned at the beginning, Katana offers patterns that are a 
bit more structured. One easy example can be found by examining OwinMiddleware, a base class for 
middlewares. It’s super simple:

public abstract class OwinMiddleware
{
    protected OwinMiddleware(OwinMiddleware next)
    {
        Next = next;
    }
    protected OwinMiddleware Next { get; set; } 
    public abstract Task Invoke(IOwinContext context);
}

Every middleware provides an Invoke method, accepting an IOwinContext, which is a 
 convenience wrapper of the environment dictionary from the OWIN specs. In addition, every middle-
ware can hold a pointer to the next entry in the pipeline. The idea is that when you call a middle-
ware’s  Invoke method, the middleware can do its work on the context (typically, the request part of 
it), await the Invoke call of the next middleware in the pipeline, and do more work (this time on the 
 response) once the Invoke method of the next middleware returns. As mentioned earlier, middle-
wares communicate via shared context: each middleware can examine the IOwinContext instance 
to fi nd out what the preceding middleware did. You can see a diagram of this fl ow in Figure 7-2. The 
 diagram is specifi c to the sample application scenario—hence IIS and the System.Web model—
to make things as concrete as possible. However, I want to stress that the middleware activation 
 sequence would remain the same even if it were hosted elsewhere.

FIGURE 7-2 The OWIN pipeline as implemented by Katana in the sample application scenario: an HttpModule, 
hosting a cascade of middlewares.

Note that one middleware can always decide that no further processing should happen. In that 
case the middleware will not call the Invoke method of the next middleware in the sequence, 
 effectively short-circuiting the pipeline.

ModernAuth_PrintBook_Final.indb   142ModernAuth_PrintBook_Final.indb   142 11/28/2015   11:40:30 AM11/28/2015   11:40:30 AM



 The OWIN OpenID Connect middleware 143

Note OwinMiddleware is great for explaining the base functionality of the middleware, 
but in practice it raises interop issues. If you plan to build your own middleware (which 
is far outside the scope of this book), you should consider achieving the same behaviors 
without using it.

There’s a neat trick you can use for observing fi rsthand how the middleware pipeline unfolds. You 
can interleave the Use* sequence with your own debug middlewares, and then place strategic break-
points or debug messages. Here’s the pattern for a minimal middleware-like debug implementation:

app.Use(async (Context, next) =>
{
    // request processing - do something here                
    await next.Invoke();
    // response processing - do something here
});

That’s pretty easy. Here’s the sequence from the sample app, modifi ed accordingly:

app.SetDefaultSignInAsAuthenticationType(CookieAuthenticationDefaults.AuthenticationType);
app.Use(async (Context, next) =>
{
    Debug.WriteLine("1 ==>request, before cookie auth");                
    await next.Invoke();
    Debug.WriteLine("6 <==response, after cookie auth");
});

app.UseCookieAuthentication(new CookieAuthenticationOptions());

app.Use(async (Context, next) =>
{
    Debug.WriteLine("2 ==>after cookie, before OIDC");
    await next.Invoke();
    Debug.WriteLine("5 <==after OIDC");
});

app.UseOpenIdConnectAuthentication(
    new OpenIdConnectAuthenticationOptions
    {
        ClientId = "c3d5b1ad-ae77-49ac-8a86-dd39a2f91081",
        Authority = "https://login.microsoftonline.com/DeveloperTenant.onmicrosoft.com",
        PostLogoutRedirectUri = https://localhost:44300/
    }
);

app.Use(async (Context, next) =>
{
    Debug.WriteLine("3 ==>after OIDC, before leaving the pipeline");
    await next.Invoke();
    Debug.WriteLine("4 <==after entering the pipeline, before OIDC");
});

ModernAuth_PrintBook_Final.indb   143ModernAuth_PrintBook_Final.indb   143 11/28/2015   11:40:31 AM11/28/2015   11:40:31 AM



144 CHAPTER 7

The numbers in front of every debug message express the sequence you should see when all the 
middlewares have a chance to fi re. Any discontinuity in the sequence will tell you that some middle-
ware decided to short-circuit the pipeline by not invoking its next middleware buddy.

Run the sample app and see whether everything works as expected. But before you do, you 
need to disable one Visual Studio feature that interferes with our experiment: it’s the Browser Link. 
The Browser Link helps Visual Studio communicate with the browser running the app that’s being 
debugged and allows it to respond to events. The unfortunate side effect for our scenario is that 
Browser Link produces extra traffi c. In Chapter 6, “OpenID Connect and Azure AD web sign-on,” we 
solved the issue by hiding the extra requests via Fiddler fi lters, but that’s not an option here. Luckily, 
it’s easy to opt out of the feature. Just add the following line to the <appSettings> section in the 
web.confi g fi le for the app:

<add key="vs:EnableBrowserLink" value="false"></add>

That done, hit F5. As the home page loads, the output window will show something like the 
following:

1 ==>request, before cookie auth
2 ==>after cookie, before OIDC
3 ==>after OIDC, before leaving the pipeline
'iisexpress.exe' (CLR v4.0.30319: /LM/W3SVC/2/ROOT-1-130799278910142565): Loaded 'C:\windows\
assembly\GAC_MSIL\Microsoft.VisualStudio.Debugger.Runtime\14.0.0.0__b03f5f7f11d50a3a\Microsoft.
VisualStudio.Debugger.Runtime.dll'. Skipped loading symbols. Module is optimized and the 
debugger option 'Just My Code' is enabled.
4 <==after entering the pipeline, before OIDC
5 <==after OIDC
6 <==response, after cookie auth

You can see that all the middlewares executed, and all in the order that was predicted when you 
assigned sequence numbers. Never mind that this doesn’t appear to do anything! You’ll fi nd out more 
about that in the next section.

Click Contact or Sign In on the home page. Assuming that you are not already signed in, you 
should see pretty much the same sequence you’ve seen earlier (so I won’t repeat the output window 
content here), but at the end of it your browser will redirect to Azure AD for authentication. Authen-
ticate, and then take a look at the output window to see what happens as the browser returns to the 
app. You should see something like this:

1 ==>request, before cookie auth
2 ==>after cookie, before OIDC
5 <==after OIDC
6 <==response, after cookie auth
1 ==>request, before cookie auth
2 ==>after cookie, before OIDC
3 ==>after OIDC, before leaving the pipeline
4 <==after entering the pipeline, before OIDC
5 <==after OIDC
6 <==response, after cookie auth

ModernAuth_PrintBook_Final.indb   144ModernAuth_PrintBook_Final.indb   144 11/28/2015   11:40:31 AM11/28/2015   11:40:31 AM



 The OWIN OpenID Connect middleware 145

This time you see a gap. As the request comes back with the token, notice that the fi rst part of 
the sequence stops at the OpenID Connect middleware—the jump from 2 to 5 indicates that the 
last debug middleware was not executed, and presumably the same can be said for the rest of the 
 following stages. 

What happened? Recall what you studied in the section “Response” in Chapter 6: when the OpenID 
Connect middleware fi rst receives the token, it does not grant access to the app right away. Rather, it 
sends back a 302 for honoring any internal redirect and performs a set-cookie operation for placing 
the session cookie in the browser. That’s exactly what happens in the steps 1, 2, 5, and 6: the OpenID 
Connect middleware decides that no further processing should take place and initiates the response 
sequence. The full 1–6 sequence that follows is what happens when the browser executes the 302 and 
comes back with a session cookie.

That’s it. At this point, you should have a good sense of how middlewares come together to form 
a single, coherent pipeline. The last generic building block you need to examine is the context that all 
middlewares use to communicate.

Sign out of the app and stop the debugger so that the next exploration will start from a clean 
slate.

IIS integrated pipeline events and middleware execution
By now you know that Katana runs its middleware pipeline in an HttpModule, which par-
ticipates in the usual IIS integrated pipeline. If you are familiar with that, you also know that 
HttpModules can subscribe to multiple predefi ned events, such as AuthenticateRequest, 
AuthorizeRequest, and PreExecuteRequestHandler.

By default, Katana middleware executes during PreExecuteRequestHandler, although 
there are exceptions. There is a mechanism you can use for requesting execution of given 
 segments of the middleware pipeline at a specifi c event in the IIS integrated pipeline, and that’s 
by using the extension method UseStageMarker. 

Adding app.UseStageMarker(PipelineStage.Authenticate) tells Katana to execute in 
the AuthenticateRequest IIS event all the middlewares registered so far, or as far as the fi rst 
preceding UseStageMarker directive. 

This is not the whole story: for example, it’s possible to use stage markers for requesting 
sequences that are incompatible with the natural sequencing of events in the IIS pipeline. There 
are a number of rules that determine Katana’s behavior in those cases. Please refer to the 
ASP.NET documentation for details.

Context Before getting to the specifi cs of authentication, let’s invest a few moments to get to know 
the OWIN context better. 

ModernAuth_PrintBook_Final.indb   145ModernAuth_PrintBook_Final.indb   145 11/28/2015   11:40:31 AM11/28/2015   11:40:31 AM



146 CHAPTER 7

Place a breakpoint in the fi rst diagnostic middleware, on the line that writes the message marked 
with 1. Hit F5, and once the execution reaches your breakpoint, head to the Locals tab and take a look 
at the content of the Context parameter. You should see what’s depicted in Figure 7-3.

FIGURE 7-3 The structure of the Katana context.

Let’s cover each of the entries here.

 ■ Authentication The Authentication property is used for exposing authentication capabili-
ties of the current pipeline. You saw this in action when you implemented the sign-in and sign-
out features in Chapter 5, via the Challenge and SignOut methods, respectively.

Authentication is also used by authentication middlewares for communicating with one 
another, as you will see in the next section. As Figure 7-4 shows, when the request fi rst enters 
the pipeline, Authentication is empty. You will learn about this property in detail when we 
focus on the authentication middleware.

FIGURE 7-4 The Context.Authentication property content upon receiving the fi rst unauthenticated 
request.

ModernAuth_PrintBook_Final.indb   146ModernAuth_PrintBook_Final.indb   146 11/28/2015   11:40:31 AM11/28/2015   11:40:31 AM



 The OWIN OpenID Connect middleware 147

 ■ Environment As the OWIN specifi cation states, the core status of an OWIN pipeline is 
captured by the environment dictionary. Figure 7-5 shows how the Katana implementation 
features all the values prescribed by the OWIN specifi cation, plus a few more.

FIGURE 7-5 The content of the OWIN environment dictionary on fi rst request.

 ■ Request and Response If you are familiar with HTTP request and response manipulation in 
traditional ASP.NET, you should be quite comfortable with their similarly named Context 
properties in Katana. Figure 7-6 shows an example.

ModernAuth_PrintBook_Final.indb   147ModernAuth_PrintBook_Final.indb   147 11/28/2015   11:40:31 AM11/28/2015   11:40:31 AM



148 CHAPTER 7

FIGURE 7-6 The fi rst request, represented by the Context.Request property.

 ■ TraceOutput This property is mainly a clever way of exposing a standard trace at the OWIN 
level, regardless of the specifi c host used to run the pipeline.

Add more breakpoints for the other debug middlewares and see how Context changes as the 
 execution sweeps through the pipeline. After you have experimented with this, head to the next 
 section, where I review the authentication fl ow through the OWIN pipeline in detail.

Authentication middleware
The authentication functionality emerges from the collaboration of a protocol middleware (like those 
for OpenID Connect or WS-Federation) and the cookie middleware. The protocol middleware reacts 
to requests and responses by generating and processing protocol messages, with all that entails 
(token validation and so on). The cookie middleware persists sessions in the form of cookies at sign-in 
and enforces the presence and validity of such cookies from the instant of authentication onward. All 
communication between the two middlewares takes place via the AuthenticationManager instance 
in the Context. Let’s break down the sign-in fl ow we captured earlier into three phases: generation 
of the sign-in challenge, response processing and session generation, and access in the context of a 
session.

Sign-in redirect message Assume that you triggered the sign-in fl ow by clicking Contact. As you 
observed, this action results in all the middlewares fi ring in the expected order, and it concludes with 
the redirection of the browser toward Azure AD with an authorization request message.

If you go through the fl ow while keeping an eye on Context.Response, you will notice that after 
the request leaves the OWIN pipeline (after the debug message marked 3), something changes the 
Response’s StatusCode to 401. In this case, that was the good old [Authorize], which does its job 
to enforce authenticated access regardless of the presence of the OWIN pipeline.

ModernAuth_PrintBook_Final.indb   148ModernAuth_PrintBook_Final.indb   148 11/28/2015   11:40:31 AM11/28/2015   11:40:31 AM



 The OWIN OpenID Connect middleware 149

If you go beyond the breakpoint on debug message 4 and let the OpenID Connect middleware 
execute, you will observe that Response.StatusCode changes again, this time to 302. If you dig 
into the Response.Headers collection, you will notice a new entry, Location, containing the OpenID 
Connect authorization request. Moreover, you will fi nd a new Set-Cookie entry for saving the OpenID 
Connect nonce. 

Walking through the rest of the breakpoint, you will see the response message go unmodifi ed 
through the remainder of the pipeline and back to the browser.

In Katana parlance, the OpenID Connect middleware is Active by default. That means that 
its  options class’s AuthenticationMode property is set to Active, which makes it react to 401 
 responses by generating its sign-in challenge message. That is not always what you want: for example, 
if you have multiple protocol middlewares confi gured to talk to different IdPs, you will want explicit 
control (via calls to Authentication.Challenge) over what middleware should be in charge to 
generate the sign-in message at a given moment.

Figure 7-7 displays the steps in the sequence of the sign-in message generation phase.

FIGURE 7-7 The sequence through which an unauthenticated request elicits the generation of a sign-in message.

Token validation and establishment of a session The sequence that processes the Azure AD 
 response carrying the token (characterized by the debug sequence 1, 2, 5, 6 earlier) is the one 
 requiring the most sophisticated logic.

The request goes through the cookie middleware (breakpoints on messages 1 and 2) unmodifi ed. 
However, as soon as you step over the Invoke call in the diagnostic middleware that calls the OpenID 
Connect middleware, you’ll observe that the execution goes straight to the breakpoint on debug 
message 5, skipping the rest of the pipeline and the app itself and initiating the response.

ModernAuth_PrintBook_Final.indb   149ModernAuth_PrintBook_Final.indb   149 11/28/2015   11:40:31 AM11/28/2015   11:40:31 AM



150 CHAPTER 7

Once again, the Response object carries a 302. If you recall the explanations in the earlier  section, 
you know that this 302 means that the middleware successfully validated the token received and is 
now using a redirect operation to perform any local redirect and persist the session cookie in the 
client browser. If you take a look at the Response.Header collection, you will fi nd a Location entry 
redirecting to “https://localhost:44300/Home/Contact”, which is the route originally requested. You 
will also fi nd a Set-Cookie entry meant to delete the nonce, which is no longer necessary at this point. 
However, you will not fi nd any Set-Cookie for the session cookie. Where is it?

Saving the session is the job of the cookie middleware, which at this point has not yet had a chance 
to process the response. In fact, saving a session might be a far more complicated matter than simply 
sending back a Set-Cookie header. For example, you might want to save the bulk of the session on 
a server-side store: the cookie middleware provides that ability as a service so that any protocol 
middleware can leverage it without having to reinvent the process every time.

The OpenID Connect middleware uses Context.Authentication to communicate to the cookie 
middleware the content of the validated token to be persisted as well as other session-related details, 
such as duration. Right after the OpenID Connect middleware processes the request, you’ll see the 
Authentication properties AuthenticationResponseGrant, SignInEntry, and User popu-
lated.

The cookie middleware is mostly interested in AuthenticationReponseGrant. When its turn 
comes to process the response, the cookie middleware will fi nd the AuthenticationReponseGrant 
and use its content to generate a session. In Figure 7-8 you can see an example of Authentication-
ResponseGrant content.

FIGURE 7-8 The AuthenticationResponseGrant content right after the OpenID Connect middleware 
successfully validates a sign-in response from Azure AD. 

Properties refers to generic session properties, such as the validity window (derived from the 
 validity window of the token itself, as declared by Azure AD). Identity, as you guessed, is the 

ModernAuth_PrintBook_Final.indb   150ModernAuth_PrintBook_Final.indb   150 11/28/2015   11:40:31 AM11/28/2015   11:40:31 AM



 The OWIN OpenID Connect middleware 151

ClaimsIdentity representing the authenticated user. The most important thing to notice at this 
point is the AuthenticationType value that’s shown: that’s a hint left by the OpenID Connect 
middleware for the cookie middleware, indicating that the ClaimsIdentity instance should be 
persisted in the session. Recall that when the pipeline is initialized in Startup.Auth.cs, you started the 
method with the following line: 

app.SetDefaultSignInAsAuthenticationType(CookieAuthenticationDefaults.AuthenticationType);

That told the protocol middlewares in the pipeline that in the absence of local overrides, the 
identifi er to use for electing an identity to be persisted in a session is CookieAuthentication-
Defaults.AuthenticationType, which happens to be the string “Cookies”. When the OpenID 
Connect middleware validates the incoming token and generates the corresponding ClaimsPrinci-
pal and nested ClaimsIdentity, it uses that value for the AuthenticationType property. When 
the cookie middleware starts processing the response and fi nds that ClaimsIdentity, it verifi es that 
the AuthenticationType it fi nds there corresponds to the AuthenticationType value it has in its 
options. Given that here we used the defaults everywhere, it’s a match; hence, the cookie middleware 
proceeds to save the corresponding ClaimsPrincipal in the session.

If you examine the Response.Headers collection after the cookie middleware has a chance to 
 execute, you will see that the Set-Cookie value now includes a new entry for an .Asp.Net.Cookies, 
which contains the ClaimsPrincipal information. Figure 7-9 summarizes the sequence.

FIGURE 7-9 The token-validation and session-creation sequence. The OpenID Connect middleware processes 
the incoming token, passing the user identity information it carries to the cookie middleware. In turn, the cookie 
middleware saves the user identity information in a session cookie. 

ModernAuth_PrintBook_Final.indb   151ModernAuth_PrintBook_Final.indb   151 11/28/2015   11:40:31 AM11/28/2015   11:40:31 AM



152 CHAPTER 7

Authenticated access as part of a session Once the session has been established, all requests 
within its validity window are handled in the same way: as soon as the request is processed by the 
cookie middleware (between debug messages marked with 1 and 2), the incoming cookie is retrieved, 
validated, and parsed. The ClaimsPrincipal it carries is rehydrated, as shown by the value of 
 Authentication.User being populated with a ClaimsPrincipal; the rest of the pipeline just lets 
the message through without further processing. 

Figure 7-10 shows how this all plays out through the middleware pipeline.

FIGURE 7-10 During a session, every request carries the session token, which is validated, decrypted, and parsed 
by the cookie middleware. The user claims are made available to the application.

Explicit use of Challenge and SignOut The explicit sign-in and sign-out operations you imple-
mented in the AccountController of the sample app also use the Authentication property of 
Context to communicate with the middleware in the pipeline. 

If you want to see how Challenge works, repeat the sign-in fl ow as described earlier, but this 
time trigger it by clicking Sign In. Stop at the breakpoint on debug message 4. You will see that the 
response code is a 401, just like the case we examined earlier. However, here you will also see popu-
lated entries in Authentication, in particular AuthenticationResponseChallenge. If you peek 
into it, you’ll see that AuthenticationResponseChallenge holds the AuthenticationType of 
the middleware you want to use for signing in (“OpenIdConnect”) and the local redirect you want to 
perform after sign-in (in this case, the root of the app). If the OpenID Connect middleware is set to 
Passive for AuthenticationMode, the presence of the 401 response code alone is not enough to 
provoke the sign-in message generation, but the presence of AuthenticationResponseChallenge 
guarantees that it will kick in. Other than that, the rest of the fl ow goes precisely as described.

The sign-out fl ow is very similar. Hit the Sign Out link. Stopping at the usual breakpoint 4, 
you’ll observe that Authentication now holds a populated AuthenticationResponseRevoke 

ModernAuth_PrintBook_Final.indb   152ModernAuth_PrintBook_Final.indb   152 11/28/2015   11:40:31 AM11/28/2015   11:40:31 AM



 The OWIN OpenID Connect middleware 153

 property, which in turn contains a collection of AuthenticationTypes, including “OpenIdConnect” 
and “Cookies”. When it’s their turn to process the response, the middlewares in the pipeline check 
whether there is a nonnull AuthenticationResponseRevoke entry containing their Authenti-
cationTypes. If they fi nd one, they have to execute their sign-out logic. As you advance through 
the  breakpoints in the response fl ow, you can see that behavior unfolding. The OpenID Connect 
 middleware reacts by changing the return code to 302 and placing the sign-out message for Azure 
AD in the Location header. The cookie middleware simply adds a Set-Cookie entry that sets the 
 session cookie expiration date to January 1, 1970, invalidating the session. Figure 7-11 provides a 
visual summary of the operation.

FIGURE 7-11 The contributions to the sign-out sequence from each middleware in the pipeline. 

Diagnostic middleware
When something goes wrong in the OWIN pipeline, fi nding the culprit is often tricky. Adding 
 breakpoints to an “in line” middleware, as I have done in this chapter to highlight how the pipeline 
works, is defi nitely an option. Alternatively, Katana offers a specialized diagnostic middleware that 
can render useful debugging information directly in the browser when an unhandled exception 
occurs in the pipeline. Setting it up is super easy. 

ModernAuth_PrintBook_Final.indb   153ModernAuth_PrintBook_Final.indb   153 11/28/2015   11:40:32 AM11/28/2015   11:40:32 AM



154 CHAPTER 7

Add a reference to the NuGet package Microsoft.Owin.Diagnostics. In your Startup.Auth.cs, add 
the associated using directive. Right on top of your main confi guration routine (in our sample, 
 ConfigureAuth), add something along the lines of the following:

app.UseErrorPage(new ErrorPageOptions()
{
    ShowCookies = true,
    ShowEnvironment = true,
    ShowQuery = true,
    ShowExceptionDetails = true,
    ShowHeaders = true,
    ShowSourceCode = true,
    SourceCodeLineCount = 10
});

The extension method UseErrorPage injects into the pipeline some logic for dumping  diagnostic 
information on the current page in case an exception is raised in the pipeline. For that reason, it’s 
important to place this method at the beginning of the pipeline (otherwise, any exceptions occurring 
before it has a chance to fi re would not be captured). All the options you see in the call control what 
diagnostic information you want to display; the property names are self-explanatory. 

If you want to test the contraption, you can artifi cially raise an exception in any of our debugging 
middlewares, and then hit F5 to see what happens. Figure 7-12 shows a typical diagnostic page.

FIGURE 7-12 The page displayed by the diagnostic middleware from Microsoft.Owin.Diagnostics.

ModernAuth_PrintBook_Final.indb   154ModernAuth_PrintBook_Final.indb   154 11/28/2015   11:40:32 AM11/28/2015   11:40:32 AM



 The OWIN OpenID Connect middleware 155

Important You should never use this middleware in production applications, as it 
might reveal information you don’t want an attacker to obtain. Please use this only for 
 debugging. Moreover, this middleware will not help in the case of exceptions raised in the 
application itself. It is really specialized for handling issues occurring in the OWIN pipeline.

OpenID Connect middleware

With the exception of the cookie tracking the nonce, all the considerations so far apply to the OpenID 
Connect middleware as well as the WS-Federation middleware. In this section I dive deeper into the 
features and options of the OpenID Connect middleware.

OpenIdConnectAuthenticationOptions
The options you pass in at initialization are the main way that you control the OpenID Connect 
 middleware. The Azure AD and ASP.NET teams have taken a lot of care to ensure that only the 
 absolute minimum amount of information is required for the scenario you want to support. The 
sample app you have studied so far shows the essential set of options: the ClientId (which identifi es 
your app in your requests to the authority) and the Authority (which identifi es the trusted source of 
identities and, indirectly, all the information necessary to validate the tokens it issues). If you want to 
exercise more fi ne-grained control, you can use the middleware initialization options class to provide 
the  following:

 ■ More protocol parameters that defi ne your app and the provider you want to trust.

 ■ What kind of token requests you want the app to put forth.

 ■ What logic you want to execute during authentication, choosing from settings offered out of 
the box and from custom logic you want to inject.

 ■ The usual array of choices controlling all Katana middleware mechanics. 

In this section I describe the most notable categories. Two special properties, Notifications and 
TokenValidationParameters, are so important that I’ve dedicated sections to them. 

For your reference, Figure 7-13 shows the default values in OpenIdConnectAuthentication-
Options for our app, right after initialization.

ModernAuth_PrintBook_Final.indb   155ModernAuth_PrintBook_Final.indb   155 11/28/2015   11:40:32 AM11/28/2015   11:40:32 AM



156 CHAPTER 7

FIGURE 7-13 The values in OpenIdConnectAuthenticationOptions after a typical initialization sequence.

Application coordinates and request options
Besides the already-mentioned ClientId, you can supply the following application details.

Note Parameters in the options class corresponding to OpenID Connect protocol param-
eters have the same name, with the notation adjusted to match .NET naming conventions. 
In early iterations, the Active Directory team tried to use the protocol names verbatim— 
lowercase, underscore, and all—but the community staged an uprising, and the team 
quickly settled on the format you see today.

 ■ RedirectUri This controls the value of redirect_uri included in the request, correspond-
ing to the route in your app through which you want Azure AD to return the requested token. 
As I noted in Chapter 6, if you don’t specify any value, the parameter will be omitted and 
Azure AD will pick the one registered at registration time. That’s handy, but you should watch 
out for two possible issues. First, you might register multiple redirect_uri values for your 
app, in which case Azure AD will choose which one to use in a semirandom fashion (it always 
looks like it chooses the fi rst one you registered, but you cannot count on that). Second, if you 
are connecting to providers other than Azure AD, they might require the request to comply 
with their spec and include a redirect_uri.

This setting is ingested at the time the app is initialized and won’t change later on. In the 
 section about notifi cations, you will learn ways of overriding this and other parameters on 
the fl y in the context of specifi c requests and responses.

ModernAuth_PrintBook_Final.indb   156ModernAuth_PrintBook_Final.indb   156 11/28/2015   11:40:32 AM11/28/2015   11:40:32 AM



 The OWIN OpenID Connect middleware 157

 ■ PostLogoutRedirectUri You have seen this in use in Chapter 5. It determines where to 
redirect the browser in your app once the authority concludes its sign-out operations.

 ■ ClientSecret This represents the client_secret, which is required when redeeming an 
authorization code. I covered this at a high level in Chapter 2, in the context of OAuth2, but 
did not look at it at the trace and code level. I’ll do so later in the book.

Here are a few other parameters that control what’s going to be sent in the request.

 ■ ResponseType Maps to the OpenID Connect parameter of the same name. Although you 
can assign to it any of the values discussed in Chapter 6, only “id_token” and “code id_token” 
(the default) lead to the automatic handling of user sign-in. If you want to support other 
response types, such as “code”, you need to inject custom code in the notifi cations described 
later in this chapter.

 ■ Resource In case you are using “code id_token”, you can use this parameter to specify what 
resource you want an authorization code for. If you don’t specify anything, the code you get 
back from Azure AD will be redeemable for an access token for the Graph API. As mentioned 
in Chapter 6, resource is a parameter specifi c to Azure AD.

 ■ Scope Maps to the OAuth2/OpenID Connect scope parameter.

Barring any custom code that modifi es outgoing messages on the fl y, the settings described here 
are the ones used in every request and response.

Authority coordinates and validation
The functional area of validation is one of the toughest to explain. It was one of the main pain points 
of working with WIF, where the object model expected all validation coordinates to be passed by 
value. Although Microsoft provided tools that generated those settings automatically from metadata, 
the obscurity and sheer sprawl of the resulting confi guration settings came across as a bogeyman that 
kept the noninitiated at bay.

In the new middlewares, the default behavior is to obtain (most of) the validation coordinates by 
reference. You provide the authority from which you want to receive tokens, and the middleware 
takes care of retrieving the token validation coordinates it needs from the authority’s metadata.

In Chapter 6 you saw how that retrieval operation takes place when you pass an Azure AD 
 authority. If you want to customize that behavior, there is a hierarchy of options you can use. From 
accommodating providers that expose metadata differently from how Azure AD does, to supplying 
each and every setting for providers that don’t expose metadata at all, these options cover the full 
spectrum.

Here’s how it works.

The ConfigurationManager class is tasked to retrieve, cache, and refresh the validation settings 
published by the discovery documents. That class is fed whatever options you provide at initialization. 
There is a cascade of options it looks for: 

ModernAuth_PrintBook_Final.indb   157ModernAuth_PrintBook_Final.indb   157 11/28/2015   11:40:32 AM11/28/2015   11:40:32 AM



158 CHAPTER 7

 ■ If the options include an Authority value, it will be used as you saw in Chapter 6.

 ■ If you are working with a provider other than Azure AD, with a different URL structure, or if 
you prefer to specify a reference to the actual discovery document endpoint, you can do so by 
using the Metadata property.

 ■ If your provider requires special handling of the channel validation, like picking a well-known 
certifi cate instead of the usual certifi cation authority and subject matching checks, you 
can override the default logic via the properties BackchannelCertificateValidator, 
 BackchannelHttpHandler, and BackchannelTimeout. 

 ■ If you acquire the token-issuance information—such as the authorization endpoint, the issuer 
value, the signing keys, and the like—out of band, you can use it to populate a new instance 
of OpenIdConfiguration and assign it to the Configuration property.

 ■ Finally, if you need to run dynamic logic for populating the Configuration values, you can 
completely take over by implementing your own IConfigurationManager and assigning it 
to the ConfigurationManager property in the options.

The issuer coordinates are only part of the validation story. Following is a miscellany of options 
that affect the validation behavior, and there will be more to say about validation in the section about 
TokenValidationParameters.

 ■ SecurityTokenHandlers This property holds a collection of TokenHandlers, classes that 
are capable of handling token formats. By default, the collection includes a handler capable of 
dealing with the JSON Web Token (JWT). You can take control of the collection and substitute 
your own implementation if you so choose.

 ■ RefreshOnIssuerKeyNotFound The practice of publishing in metadata documents both 
the currently valid and next signing key should guarantee business continuity in normal times. 
In case of emergency key rolls, however, the keys you have acquired in your Configuration 
and the ones used by the provider might end up out of sync. This fl ag tells the middleware 
to react to a token signed with an unknown key by triggering a new metadata acquisition 
 operation so that if the mismatch is the result of stale keys, it is fi xed automatically.

 ■ CallbackPath If for some reason (typically performance) you decide that you want to 
receive tokens only at one specifi c application URL, you can assign that URL to this property. 
That will cause the middleware to expect tokens only in requests to that specifi c URL and 
ignore all others. Use this with care because embedding paths in your code often results in 
surprise 401s when you forget about them and deploy to the cloud without changing the 
value accordingly.

 ■ ProtocolValidator By default, this property contains an instance of OpenIdConnect-
ProtocolValidator, a class that performs various static verifi cations on the incoming 
 message to ensure that it complies with the current OpenID Connect specifi cation. Besides 
those validations, the class gives you the option of adding extra constraints, like mandating 
the presence of certain claim types.

ModernAuth_PrintBook_Final.indb   158ModernAuth_PrintBook_Final.indb   158 11/28/2015   11:40:32 AM11/28/2015   11:40:32 AM



 The OWIN OpenID Connect middleware 159

Middleware mechanics
Finally, here’s a list of options that are used for driving the general behavior of the middleware in the 
context of the Katana pipeline:

 ■ SignInAsAuthenticationType This value determines the value of the Authentication-
Type property of the ClaimsPrincipal/ClaimsIdentity generated from the incoming 
token. If left unspecifi ed, it defaults to the value passed to SetDefaultSignInAsAuthenti-
cationType. As you have seen earlier in the section about authentication middleware, if the 
cookie middleware fi nds this in an AuthenticationResponseGrant, that’s what the cookie 
middleware uses to determine whether such ClaimsPrincipal/ ClaimsIdentity should be 
used for creating a session.

 ■ AuthenticationType This property identifi es this middleware in the pipeline and is used to 
refer to it for authentication operations—think of the Challenge and SignOut calls you have 
seen in action earlier in this chapter.

 ■ AuthenticationMode As discussed earlier, when this parameter is set to Active, it tells the 
middleware to listen to outgoing 401s and transform them into sign-in requests. That’s the 
default behavior: if you want to change it, you can turn it off by setting Authentication-
Mode to Passive.

 ■ UseTokenLifetime This property is often overlooked, but it’s tremendously  important. 
Defaulting to true, UseTokenLifetime tells the cookie middleware that the session it  creates 
should have the same duration and validity window as the id_token received from the 
 authority. If you want to decouple the session validity window from the token (which, by 
the way, Azure AD sets to one hour), you must set this property to false. Failing that, all the 
session-duration settings on the CookieMiddleware will be ignored.

 ■ Caption This property has purely cosmetic value. Say that your app generates sign-in 
 buttons for all your authentication middlewares. This property provides the label you can use 
to identify for the user the button triggering the sign-in implemented by this middleware. 

Notifi cations
Just like WIF before them, the Katana middlewares implementing claims protocols offer you hooks 
designed for injecting your own custom code to be executed during key phases of the authentica-
tion pipeline. Through the years, I have seen this extensibility point used for achieving all sorts of 
 customizations, from optimized sign-in fl ows, where extra information in the request is used to save 
the end user a few clicks, to full-blown extensions that support entirely new protocol fl avors.

Whereas in old-school WIF those hooks were offered in the form of events, in Katana they are 
implemented as a collection of delegates gathered in the class OpenIdConnectNotifications. The 
OpenIdConnectAuthenticationOptions class includes a property of that type, Notifications.

OpenIdConnectNotifications can be split into two main categories: notifi cations fi ring at sign-
in/sign-out message generation, and notifi cations fi ring at token/sign-in message validation. The for-

ModernAuth_PrintBook_Final.indb   159ModernAuth_PrintBook_Final.indb   159 11/28/2015   11:40:32 AM11/28/2015   11:40:32 AM



160 CHAPTER 7

mer category counts only one member, RedirectToIdentityProvider; all the other  notifi cations 
are included in the latter.

Here is some code that lists all the notifi cations. You can add it to the initialization of the OpenID 
Connect middleware in the sample application.

app.UseOpenIdConnectAuthentication(
    new OpenIdConnectAuthenticationOptions
    {
        ClientId = "c3d5b1ad-ae77-49ac-8a86-dd39a2f91081",
        Authority = "https://login.microsoftonline.com/DeveloperTenant.onmicrosoft.com"
        PostLogoutRedirectUri = "https://localhost:44300/",
        Notifications = new OpenIdConnectAuthenticationNotifications()
        {
            RedirectToIdentityProvider = (context) =>
            {                            
                Debug.WriteLine("*** RedirectToIdentityProvider");
                return Task.FromResult(0);
            },
            MessageReceived = (context) =>
            {
                Debug.WriteLine("*** MessageReceived");
                return Task.FromResult(0);
            },
            SecurityTokenReceived = (context) =>
            {
                Debug.WriteLine("*** SecurityTokenReceived");
                return Task.FromResult(0);
            },
            SecurityTokenValidated = (context) =>
            {
                Debug.WriteLine("*** SecurityTokenValidated");
                return Task.FromResult(0);
            },
            AuthorizationCodeReceived = (context) =>
            {                            
                Debug.WriteLine("*** AuthorizationCodeReceived");
                return Task.FromResult(0);
            },
            AuthenticationFailed = (context) =>
            {
                Debug.WriteLine("*** AuthenticationFailed");
                return Task.FromResult(0);
            },
        },
    }
);

ModernAuth_PrintBook_Final.indb   160ModernAuth_PrintBook_Final.indb   160 11/28/2015   11:40:32 AM11/28/2015   11:40:32 AM



 The OWIN OpenID Connect middleware 161

I’ll discuss each notifi cation individually in a moment, but before I do, give the app a spin so that 
you can see in which order the notifi cations fi re. When you click the Sign In link, you can expect to see 
something like this in the output window:

1 ==>request, before cookie auth
2 ==>after cookie, before OIDC
3 ==>after OIDC, before leaving the pipeline
4 <==after entering the pipeline, before OIDC
*** RedirectToIdentityProvider

5 <==after OIDC
6 <==response, after cookie auth

This shows that RedirectToIdentityProvider runs in the context of the OpenID Connect 
middleware, as expected.

Once you sign in with Azure AD and are redirected to the app, you can expect to see the following 
sequence:

1 ==>request, before cookie auth
2 ==>after cookie, before OIDC
*** MessageReceived

*** SecurityTokenReceived

*** SecurityTokenValidated

*** AuthorizationCodeReceived

5 <==after OIDC
6 <==response, after cookie auth
1 ==>request, before cookie auth
2 ==>after cookie, before OIDC
3 ==>after OIDC, before leaving the pipeline
4 <==after entering the pipeline, before OIDC
5 <==after OIDC
6 <==response, after cookie auth

This is the same token-processing and cookie-setting sequence you encountered earlier in this 
chapter. This time, you can see the other notifi cations fi re and the order in which they execute. Figure 
7-14 summarizes the sequence in which the notifi cations fi re.

ModernAuth_PrintBook_Final.indb   161ModernAuth_PrintBook_Final.indb   161 11/28/2015   11:40:32 AM11/28/2015   11:40:32 AM



162 CHAPTER 7

FIGURE 7-14 The notifi cations sequence.

If you trigger a sign-out, you will see the usual sequence, but look between messages 4 and 5, and 
you will fi nd that RedirectToIdentityProvider fi res on sign-out as well.

Keep in mind also that notifi cations derive from a BaseNotification class from which they 
 inherit a couple of methods exposing two fundamental capabilities. The fi rst, HandleResponse, 
 signals to the middleware pipeline that whatever logic has been executed in the notifi cation con-
cludes the processing of the current request, hence no other middleware should be executed. A 
notifi cation calling this method has the responsibility of having everything in the context tidied up, 
including writing the full response. The second, SkipToNextMiddleware, signals to the middleware 
pipeline that whatever logic has been executed in the notifi cation concludes the work that the  current 
middleware should do on the request. Hence, any other request-processing code in the current 
middleware should not be executed, and the baton should be passed to the next middleware in the 
pipeline as soon as the notifi cation concludes its work.

Now let’s look at each notifi cation in more detail.

RedirectToIdentityProvider
This is likely the notifi cation you’ll work with most often. It is executed right after the OpenID  Connect 
middleware creates a protocol message, and it gives you the opportunity to override the option 
values the middleware uses to build the message, augment them with extra parameters, and so on. If 
you place a breakpoint in the notifi cation and take a look at the context parameter, you’ll see some-
thing like what’s shown in Figure 7-15.

ModernAuth_PrintBook_Final.indb   162ModernAuth_PrintBook_Final.indb   162 11/28/2015   11:40:32 AM11/28/2015   11:40:32 AM



 The OWIN OpenID Connect middleware 163

FIGURE 7-15 The content of the context parameter on a typical RedirectToIdentityProvider notifi cation 
execution. 

I expanded the ProtocolMessage in Figure 7-15 so that you can see that it already contains all 
the default parameters you have seen in the request on the traces in Chapter 6. There are a number 
of fun and useful things you can do here, so let’s examine a couple of examples.

Say that my app is registered to run both on my local dev box (hence, on a localhost address) and 
on an Azure website (hence, on something like myapp.azurewebsites.net). That means that depending 
on where my app is running at the moment, I have to remember to set the correct RedirectUri and 
PostLogoutRedirectUri properties in the options right before deploying. Or do I? Consider the 
following code:

RedirectToIdentityProvider = (context) => 
{ 

ModernAuth_PrintBook_Final.indb   163ModernAuth_PrintBook_Final.indb   163 11/28/2015   11:40:32 AM11/28/2015   11:40:32 AM



164 CHAPTER 7

   string appBaseUrl = context.Request.Scheme + "://" 
       + context.Request.Host + context.Request.PathBase; 
    context.ProtocolMessage.RedirectUri = appBaseUrl + "/"; 
    context.ProtocolMessage.PostLogoutRedirectUri = appBaseUrl; 
    return Task.FromResult(0); 
},

Here I simply read from the Request the URL being requested, indicating at which address 
my app is running at the moment and using it to inject the correct values of RedirectUri and 
 PostLogoutRedirectUri in the message. Neat!

Or consider a case in which I want to guarantee that when an authentication request is sent, the 
user is always forced to enter credentials no matter what session cookies might already be in place. 
In Chapter 6 you learned that OpenID Connect will behave that way upon receiving a prompt=login 
parameter in the request, but how do you do it? Check out this code:

RedirectToIdentityProvider = (context) =>
{
    context.ProtocolMessage.Prompt = "login";         
    return Task.FromResult(0);
},

That’s it. From this moment on, every sign-in request will prompt the user for credentials. Easy. 
Now is the time to reap the benefi ts of having gone through all those nitty-gritty protocol details 
in Chapter 6; you can use this notifi cation to control every aspect of the message to your heart’s 
 content. Of course, this applies to sign-out fl ows, too.

But before moving on to the next notifi cation, I want to highlight that you don’t have to put the 
code for your notifi cations in line. If you have notifi cation-handling logic you want to reuse across 
multiple applications, you can put it in a function, package it in a class, and reuse it as you see fi t. 
 Explicitly creating a function is also indicated when the amount of code is substantial, or when you 
want to enhance readability. As a quick demonstration of this approach, let’s rewrite the latest sample 
in an explicit function at the level of the Startup class:     

public static Task RedirectToIdentityProvider(RedirectToIdentityProviderNotification<OpenIdConne
ctMessage, OpenIdConnectAuthenticationOptions> notification)
{
    notification.ProtocolMessage.Prompt = "login";
    return Task.FromResult(0);
}

Assigning it back in the Notifications is straightforward:

//...
Notifications = new OpenIdConnectAuthenticationNotifications()
{
    RedirectToIdentityProvider = Startup.RedirectToIdentityProvider,
// ...

I also like the aspect of this approach that makes more visible which parameters are being passed 
to the notifi cation, which in turns makes it easier to understand what the notifi cation is suitable for. 

ModernAuth_PrintBook_Final.indb   164ModernAuth_PrintBook_Final.indb   164 11/28/2015   11:40:33 AM11/28/2015   11:40:33 AM



 The OWIN OpenID Connect middleware 165

The OpenIdConnectMessage passed to RedirectToIdentityProvider is an excellent example 
of that.

MessageReceived
This notifi cation is triggered when the middleware detects that the incoming message happens to 
be a known OpenID Connect message. You can use it for a variety of purposes; for example, for 
resources you want to allocate just in time (such as database connections), stuff you want to cache in 
memory before the message is processed further, and so on. Alternatively, you might use this notifi -
cation for logging purposes. However, the main use I have seen for MessageReceived occurs when 
you want to completely take over the handling of the entire request (that’s where HandleResponse 
comes into play, by the way). For example, you might use MessageReceived for handling response_
types that the middleware currently does not automatically process, like a sign-in fl ow based on 
authorization code. That’s not an easy endeavor, and as such not very common, but some advanced 
scenarios will sometimes require it, and this extensibility model makes doing so possible.

SecurityTokenReceived
SecurityTokenReceived triggers when the middleware fi nds an id_token in the request. Simi-
lar considerations as for MessageReceived apply, with fi ner granularity. Here, the entity being 
 processed is the token, as opposed to the entire message. 

SecurityTokenValidated
At the stage in which SecurityTokenValidated fi res, the incoming id_token has been parsed, 
validated, and used to populate context.AuthenticationTicket with a ClaimsIdentity whose 
claims come from the incoming token.

This is the right place for adding any user-driven logic you want to execute before reaching the 
application itself. Common scenarios include user-driven access control and claims augmentation. 
Here are examples for each case.

Say that I run a courseware website where users can buy individual subscriptions for gaining access 
to training videos. I integrate with Azure AD, given that business users are very important to me, but 
my business model imposes on me the need to verify access at the user level. That means that the 
token validations you have studied so far aren’t in themselves suffi cient to decide whether a caller can 
gain access. Consider the following implementation of SecurityTokenValidated:

SecurityTokenValidated = (context) =>
{
    string userID = context.AuthenticationTicket.Identity.FindFirst(ClaimTypes.NameIdentifier).
Value;
    if (db.Users.FirstOrDefault(b => (b.UserID == userID)) == null)
        throw new System.IdentityModel.Tokens.SecurityTokenValidationException();
    return Task.FromResult(0);
},

ModernAuth_PrintBook_Final.indb   165ModernAuth_PrintBook_Final.indb   165 11/28/2015   11:40:33 AM11/28/2015   11:40:33 AM



166 CHAPTER 7

The notifi cation body retrieves a user identifi er from the claims of the freshly created 
AuthenticationTicket. That done, it verifi es whether that identifi er is listed in a database of 
 subscribers (whose existence I am postulating for the sake of the scenario). If the user does have 
an entry,  everything goes on as business as usual. But if the user is not listed, the app throws an 
 exception that  creates conditions equivalent to the ones you would experience on receiving an 
invalid token. Simple!

Consider this other scenario. Say that your application maintains a database of attributes for its 
users—attributes that are not supplied in the incoming token by the identity provider. You can use 
SecurityTokenValidated to augment the set of incoming user claims with any arbitrary value you 
keep in your local database. The application code will be able to access those values just like any other 
IdP-issued claims, the only difference being the issuer value. Here’s an example.

SecurityTokenValidated = (context) =>
{
    string userID = context.AuthenticationTicket.Identity.FindFirst(ClaimTypes.NameIdentifier).
Value;
    Claim userHair = new Claim("http://mycustomclaims/hairlength", RetrieveHairLength(userID), 
ClaimValueTypes.Double, "LocalAuthority");
    context.AuthenticationTicket.Identity.AddClaim(userHair);
    return Task.FromResult(0);
},

Here I assume that you have a method that, given the identifi er of the current user, queries your 
database to retrieve an attribute (in this case, hair length). Once you get the value back, you can use 
it to create a new claim (I invented a new claim type on the spot to show you that you can choose 
pretty much anything that works for you) and add that claim to the AuthenticationTicket’s 
ClaimsIdentity. I passed “’LocalAuthority” as the issuer identifi er to ensure that the locally gener-
ated claims are distinguishable from the ones received from the IdP: the two usually carry a different 
trust level.

Now that the new claim is part of the ticket, it’s going to follow the same journey we have studied 
so far for normal, nonaugmented identity information. Making use of it from the app requires the 
same code you already saw in action for out-of-the-box claim types.

public ActionResult Index()
{
    var userHair = ClaimsPrincipal.Current.FindFirst("http://mycustomclaims/hairlength");
    return View();
}

This is a very powerful mechanism, but it does have its costs. Besides the performance hit of 
doing I/O while processing a request, you have to keep in mind that whatever you add to the 
 AuthenticationTicket will end up in the session cookie. In turn, that will add a tax for every 
 subsequent request, and at times it might even blow past browser limits. For example, Safari is 
 famous for allowing only 4 KB of cookies/headers in requests for a given domain. Exceed that limit 
and  cookies will be clipped, signature checks will fail, nonces will be dropped, and all sorts of other 
hard-to-diagnose issues will arise.

ModernAuth_PrintBook_Final.indb   166ModernAuth_PrintBook_Final.indb   166 11/28/2015   11:40:33 AM11/28/2015   11:40:33 AM



 The OWIN OpenID Connect middleware 167

AuthorizationCodeReceived
This notifi cation fi res only in the case in which the middleware emits a request for a hybrid fl ow, 
where the id_token is accompanied by an authorization code. I’ll go into more details in a later 
chapter, after fl eshing out the scenario and introducing other artifacts that come in handy for dealing 
with that case.

AuthenticationFailed
This notifi cation gives you a way to catch issues occurring in the notifi cations pipeline and react to 
them with your own logic. Here’s a simple example:

AuthenticationFailed = (context) =>
{
    context.OwinContext.Response.Redirect("/Home/Error");
    context.HandleResponse(); 
    return Task.FromResult(0);
},

In this code I simply redirect the fl ow to an error route. Chances are you will want to do some-
thing more sophisticated, like retrieving the culprit exception (available in the context) and then log 
it or pass it to the page. The interesting thing to notice here is the use of HandleResponse. There’s 
 nothing else that can make meaningful work in the pipeline after this, hence we short-circuit the 
request processing and send the response back right away. 

TokenValidationParameters

You think we’ve gone deep enough to this point? Not quite, my dear reader. The rabbit hole has one 
extra level, which grants you even more control over your token-validation strategy.

OpenIdConnectAuthenticationOptions has a property named TokenValidationParam-
eters, of type TokenValidationParameters. 

The TokenValidationParameters type predates the RTM of Katana. It was introduced when 
the Azure AD team released the very fi rst version of the JWT handler (a .NET class for processing the 
JWT format) as a general-purpose mechanism for storing information required for validating a token, 
regardless of the protocol used for requesting and delivering it and the development stack used for 
supporting such protocol. That was a clean break with the past: up to that moment, the same function 
was performed by special XML elements in the web.confi g fi le, which assumed the use of WIF and IIS. 
It was soon generalized to support the SAML token format, too.

The OpenID Connect middleware itself still uses the JWT handler when it comes to validating 
incoming tokens, and to do so it has to feed it a TokenValidationParameters instance with the 
desired validation settings. All the metadata inspection mechanisms you have been studying so far 
ultimately feed specifi c values—the issuer values to accept and the signing keys to use for validating 
incoming tokens’ signatures—in a TokenValidationParameters instance. If you did not provide 
any values in the TokenValidationParameters property (I know, it’s confusing) in the options, the 

ModernAuth_PrintBook_Final.indb   167ModernAuth_PrintBook_Final.indb   167 11/28/2015   11:40:33 AM11/28/2015   11:40:33 AM



168 CHAPTER 7

values from the metadata will be the only ones used. However, if you do provide values directly in 
TokenValidationParameters, the actual values used will be a merger of the TokenValidation-
Parameters and what is retrieved from the metadata (using all the options you learned about in the 
“Authority coordinates and validation” section).

The preceding mechanisms hold for the validation of the parameters defi ning the token issuer, but 
as you know by now, there are lots of other things to validate in a token, and even more things that 
are best performed during validation. If you don’t specify anything, as is the case the vast majority 
of the time, the middleware fi lls in the blanks with reasonable defaults. But if you choose to, you can 
control an insane number of details. Figure 7-16 shows the content of TokenValidationParameters 
in OpenID Connect middleware at the initialization time for our sample application. I am not going to 
unearth all the things that TokenValidationParameters allows you to control (that would take far 
too long), but I do want to make sure you are aware of the most commonly used knobs you can turn.

FIGURE 7-16 The TokenValidationParameters instance in OpenIdConnectAuthentication Options, as 
initialized by the sample application.

Valid values
As you’ve learned, the main values used to validate incoming tokens are the issuer, the audience, 
the key used for signing, and the validity interval. With the exception of the last of these (which 
does not require reference values because it is compared against the current clock values), Token-
ValidationParameters exposes a property for holding the corresponding value: ValidIssuer, 
 ValidAudience, and IssuerSigningKey.   

ModernAuth_PrintBook_Final.indb   168ModernAuth_PrintBook_Final.indb   168 11/28/2015   11:40:33 AM11/28/2015   11:40:33 AM



 The OWIN OpenID Connect middleware 169

What is less known is that TokenValidationParameters also has an IEnumerable for each of 
these—ValidIssuers, ValidAudiences, and IssuerSigningKeys—which are meant to make it 
easy for you to manage scenarios in which you need to handle a small number of alternative values. 
For example, your app might accept tokens from two different issuers simultaneously. Or you might 
use a different audience for your development and staging deployments but have a single codebase 
that automatically works in both.

Validation fl ags
One large category of TokenValidationParameters properties allows you to turn on and off 
specifi c validation checks. These Boolean fl ags are self-explanatory: ValidateAudience turns on and 
off the comparison of the audience in the incoming claim with the declared audience (in the OpenID 
Connect case, the clientId value); ValidateIssuer controls whether your app cares about the 
identity of the issuer; ValidateIssuerSigningKey determines whether you need the key used to 
sign the incoming token to be part of a list of trusted keys; ValidateLifetime determines whether 
you will enforce the validity interval declared in the token or ignore it.

At fi rst glance, each of these checks sounds like something you’d never want to turn off, but 
there are various occasions in which you’d want to. Think of the subscription sample I described 
for SecurityTokenValidated: in that case, the actual check is the one against the user and the 
 subscription database, so the issuer check does not matter and can be turned off. There are more 
exotic cases: in the Netherlands last year, a gentleman asked me how his intranet app could accept 
expired tokens in case his client briefl y lost connectivity with the Internet and was temporarily unable 
to  contact Azure AD for getting new tokens.

There is another category of fl ags controlling constraints rather than validation fl ags. The fi rst 
is RequireExpirationTime, which determines whether your app will accept tokens that do not 
 declare an expiration time (the specifi cation allows for this). The other, RequireSignedTokens, 
 specifi es whether your app will accept tokens without a signature. To me, a token without a signature 
is an oxymoron, but I did encounter situations (especially during development) where this fl ag came 
in handy for running some tests.

Validators
Validation fl ags allow you to turn on and off validation checks. Validator delegates allow you to 
 substitute the default validation logic with your own custom code.

Say that you wrote a SaaS application that you plan to sell to organizations instead of to individu-
als. As opposed to the user-based validation you studied earlier, now you want to allow access to any 
user who comes from one of the organizations (one of the issuers) who bought a subscription to your 
app. You could use the ValidIssuers property to hold that list, but if you plan to have a substantial 
number of customers, doing that would be inconvenient for various reasons: a fl at lookup on a list 
might not work too well if you are handling millions of entries, dynamically extending that list with-
out recycling the app would be diffi cult, and so on. The solution is to take full control of the issuer 
 validation operation. For example, consider the following code:

ModernAuth_PrintBook_Final.indb   169ModernAuth_PrintBook_Final.indb   169 11/28/2015   11:40:33 AM11/28/2015   11:40:33 AM



170 CHAPTER 7

TokenValidationParameters = new TokenValidationParameters
{
    IssuerValidator = (issuer,token,tvp) =>
    {
        if(db.Issuers.FirstOrDefault(b => (b.Issuer == issuer)) == null)
            return issuer;
        else

            throw new SecurityTokenInvalidIssuerException("Invalid issuer");
    }
}

The delegate accepts as input the issuer value as extracted from the token, the token itself, and the 
validation parameters. In this case I do a fl at lookup on a database to see whether the incoming issuer 
is valid, but of course you can imagine many other clever validation schemes. The validator returns 
the issuer value for a less-than-intuitive reason: that string will be used for populating the Issuer 
value of the claims that will ultimately end up in the user’s ClaimsPrincipal.

All the other main validators (AudienceValidator, LifetimeValidator) return Booleans, with 
the exception of IssuerSigningKeyValidator and CertificateValidator.

Miscellany
Of the plethora of remaining properties, I want to point your attention to two common ones.

SaveSignInToken is used to indicate whether you want to save in the ClaimsPrincipal (hence, 
the session cookie) the actual bits of the original token. There are topologies in which the actual  token 
bits are required, signature and everything else intact: typically, the app trades that token (along with 
its credentials) for a new token, meant to allow the app to gain access to a web API acting on behalf 
of the user. This property defaults to false, as this is a sizable tax.

The TokenReplayCache property allows you to defi ne a token replay cache, a store that can be 
used for saving tokens for the purpose of verifying that no token can be used more than once. This is 
a measure against a common attack, the aptly called token replay attack: an attacker intercepting the 
token sent at sign-in might try to send it to the app again (“replay” it) for establishing a new session. 
The presence of the nonce in OpenID Connect can limit but not fully eliminate the circumstances in 
which the attack can be successfully enacted. To protect your app, you can provide an implemen-
tation of ITokenReplayCache and assign an instance to TokenReplayCache. It’s a very simple 
interface:

public interface ITokenReplayCache
{
    bool TryAdd(string securityToken, DateTime expiresOn);
    bool TryFind(string securityToken);
}

ModernAuth_PrintBook_Final.indb   170ModernAuth_PrintBook_Final.indb   170 11/28/2015   11:40:33 AM11/28/2015   11:40:33 AM



 The OWIN OpenID Connect middleware 171

In a nutshell, you provide the methods for saving new tokens (determining for how long they need 
to be kept around) and bringing a token up from whatever storage technology you decide to use. The 
cache will be automatically used at every validation—take that into account when you pit latency and 
storage requirements against the likelihood of your app being targeted by replay attacks.

More on sessions

Before I close this long chapter, I need to spend a minute on session management. You already 
know that by default, session validity will be tied to the validity specifi ed by the token itself, unless 
you  decouple it by setting the option UseTokenLifetime to false. When you do so, the Cookie-
AuthenticationOptions are now in charge of session duration: ExpireTimeSpan and Sliding-
Expiration are the properties you want to keep an eye on.

You also know that the cookie middleware will craft sessions that contain the full 
 ClaimsPrincipal produced from the incoming token, but as mentioned in discussing the use of 
SaveSignIn Token, the resulting cookie size can become a problem. This issue can be addressed 
by saving the bulk of the session server-side and using the cookie just to keep track of a reference 
to the session data on the server. The cookie middleware allows you to plug in an implementa-
tion of the IAuthenticationSessionStore interface, which can be used for customizing how an 
 AuthenticationTicket is preserved across calls. If you want to provide an alternative store for 
your authentication tickets, all you need to do is implement that interface and pass an instance to 
the cookie middleware at initialization. Here’s the interface:

public interface IAuthenticationSessionStore
{
    Task<string> StoreAsync(AuthenticationTicket ticket);
    Task RenewAsync(string key, AuthenticationTicket ticket);
    Task<AuthenticationTicket> RetrieveAsync(string key);
    Task RemoveAsync(string key);
}

That’s pretty much a CRUD interface for an AuthenticationTicket store, which you can use for 
any persistence technology you like. Add some logic for cleaning up old entries and keeping the store 
size under control, and you have your custom session store. 

Considerations about I/O and latency are critical here, given that this guy will trigger every single 
time you receive an authenticated request. A two-level cache, where most accesses are in-memory 
and the persistence layer is looked up only when necessary, is one of the solutions you might want to 
consider.

ModernAuth_PrintBook_Final.indb   171ModernAuth_PrintBook_Final.indb   171 11/28/2015   11:40:33 AM11/28/2015   11:40:33 AM



172 CHAPTER 7

Summary

This chapter explored in depth what happens when the OpenID Connect middleware and its un-
derlying technologies process requests and emit responses. You learned about the main functional 
components of the request-processing pipeline, how they communicate with one another, and what 
options you have to change their behavior.

The complexity you have confronted here is something that the vast majority of web developers 
will never have to face—or even be aware of. Even in advanced cases, chances are that you will always 
use a subset of what you have read here. Don’t worry if you don’t remember everything; you don’t 
have to. After the fi rst read, this chapter is meant to be a reference you can return to whenever you 
are trying to achieve a specifi c customization or are troubleshooting a specifi c issue. Now that you’ve 
had an opportunity to deconstruct the pipeline, you’ll know where to look. 

The next chapter will be signifi cantly lighter. You’ll learn more about how Azure AD represents 
 applications.

ModernAuth_PrintBook_Final.indb   172ModernAuth_PrintBook_Final.indb   172 11/28/2015   11:40:33 AM11/28/2015   11:40:33 AM



  173

C H A P T E R  8

Azure Active Directory application 
model 

It’s time to take a closer look at how Azure AD represents applications and their relationships to other 
apps, users, and organizations.

You got a brief taste of the Azure AD application model in Chapter 3, “Introducing Azure Active 
Directory and Active Directory Federation Services.” Later on you experienced fi rsthand a couple of 
ways to provision apps and use their protocol coordinates in authentication fl ows. Here I will go much 
deeper into the constructs used by Azure AD to represent apps, the mechanisms used to provision 
apps beyond one’s own organization, and the consent framework, which is the backbone of pretty 
much all of this. I’ll also touch on roles, groups, and other features that Azure AD offers to grant 
 fi ne-grained access control to your application.

The application model in Azure AD is designed to sustain many different functions:

 ■ It holds all the data required to support authentication at run time.

 ■ It holds all the data for deciding what other resources an application might need to access and 
whether a given request should be fulfi lled and under what circumstances.

 ■ It provides the infrastructure for implementing application provisioning, both within the app 
developer’s tenant and to any other Azure AD tenant.

 ■ It enables end users and administrators to dynamically grant or deny consent for the app to 
access resources on their behalf.

 ■ It enables administrators to be the ultimate arbiters of what apps are allowed to do and which 
users can use specifi c apps, and in general to be stewards of how the directory resources are 
accessed.

That is A LOT more than setting up a trust relationship, the basic provisioning step you perform 
with traditional on-premises authorities like ADFS. Remember how I often bragged about how much 
easier it is to provision apps in Azure AD? What makes that feat possible is the highly sophisticated 
application model in Azure AD, which goes to great lengths to make life easy for administrators and 
end users. Unfortunately, the total complexity of the system remains roughly constant, so somebody 
must work harder to compensate for that simplifi cation, and this time that somebody is the devel-
oper. I could work around that complexity and simply give you a list of recipes to follow to the letter 
for the most common tasks, but by now you know that this book doesn’t work that way. Instead, we’ll 

ModernAuth_PrintBook_Final.indb   173ModernAuth_PrintBook_Final.indb   173 11/28/2015   11:40:33 AM11/28/2015   11:40:33 AM



174 CHAPTER 8

dig deep to understand the building blocks and true motivation of each moving part—and once we 
emerge, everything will make sense. Don’t worry, the model is very manageable and, once you get 
the hang of it, even easy, but some investment is required to understand it. This chapter is here to 
help you do just that.

The building blocks: Application and ServicePrincipal

Since Azure AD fi rst appeared on the market, a lot of content has been published about its appli-
cation model. A large part of that content was produced while the application model had not yet 
 solidifi ed in its current form. To avoid any confusion, I am going to open this section with a bit of 
history: by understanding how we got to where we are today, you won’t risk getting confused if 
you happen to stumble on documentation and samples from another epoch.

In traditional Active Directory, every entity that can be authenticated is represented by a principal. 
That’s true for users, and that’s true for applications—in the latter case, we speak of service principals. 
In traditional Kerberos, service principals are used to ensure that a client is speaking to the intended 
service and that a ticket is actually intended for a given service. In other words, they are used for any 
activity that requires establishing the identity of the service application itself.

Although Azure AD has been designed from the ground up to address modern workloads, it re-
mains a directory. As such, it retains many of the concepts and constructs that power its on-premises 
ancestor, and service principals are among those. If you use the Internet time machine and fi sh out 
content from summer 2012, describing the very fi rst preview of Azure AD development features, 
you’ll see that at that time, provisioning an application in Azure AD was done by using  special 
Windows PowerShell cmdlets, which created a new service principal for the app in the directory. 
Even the format of the service principal name was a reminder of its Kerberos legacy, following a fi xed 
schema based on the app’s execution environment. Disregarding the protocols it enabled, that service 
principal already had all the things we know are needed for supporting authentication  transactions: 
application identifi ers, a redirect URI, and so on.

Service principals are a great way of representing an application’s instance, but they aren’t very 
good at supporting the development of the application itself. Their limitations stem from two key 
 considerations:

 ■ Applications are usually an abstract entity, made of code and resources: the service principal 
represents a concrete instance of that abstract entity in a specifi c directory. You will want 
that abstract entity to have many concrete instances, especially if you build and sell software 
for a living: one or more instances for each of your customers’ organizations. Even if you are 
building applications for your own organization, to be used by your colleagues, chances are 
that you’ll want to work with multiple instances—for example, development, staging, and 
production. If the only building block at your disposal were app instances, development and 
deployments would be unnatural, denormalized, and repetitive. For one thing, every time you 
changed something, you’d have to go chase all your app instances and make the same change 
everywhere.  

ModernAuth_PrintBook_Final.indb   174ModernAuth_PrintBook_Final.indb   174 11/28/2015   11:40:33 AM11/28/2015   11:40:33 AM



 Azure Active Directory application model 175

 ■ Although so far we have seen applications mostly as resources one user gains access to, a 
directory sees applications as clients, which need to access resources under the control of the  
directory. Even the act of a user requesting a token for accessing an application is seen by the 
directory as the application itself gaining access to the user’s identity information. Through 
this optic, you can see how some applications can be pretty powerful clients, performing 
 functions that range from reading users' personally identifi able information (PII) to modify-
ing the directory itself: deleting users, creating groups, changing passwords—the works. 
 Application instances are normally put in operation by administrators, who enjoy those powers 
themselves. Hence, they have the faculty to imbue applications with such capabilities. If your 
company is big enough for employees not to have to juggle multiple hats, however, develop-
ers are traditionally not administrators. If service principals were the only way to create an 
application, very few employees in a company would have the power to develop apps. It gets 
worse: in today’s software as a service (SaaS) push, it is in the developer’s best interest that end 
users be empowered to elect to start using applications, but most users aren’t administrators 
either. Even more than in the development case, this exposes the limits of perpetrating the 
service principal model “as is” in the cloud.

Given this, and for various other reasons, Azure AD defi nes a new entity, the Application, 
which is meant to describe an application as an abstract entity: a template, if you will. As a devel-
oper, you work with Applications. At deployment time a given Application object can be used 
as a  blueprint to create a ServicePrincipal representing a concrete instance of an application in 
a directory. It’s that ServicePrincipal that is used to defi ne what the app can actually do in that 
specifi c target directory, who can use it, what resources it has access to, and so on.

Bear with me just a little longer, the abstract part is almost over. The main way through which 
Azure AD creates a ServicePrincipal from an Application is consent. Here’s a simplifi ed 
 description of the fl ow: Say that you create an Application object in directory A, supplying all 
the protocol coordinates we’ve discussed so far in earlier chapters. Say that a user from tenant B 
 navigates to the app’s pages and triggers an authentication fl ow. Azure AD authenticates the user 
from B against its home directory, B. In so doing, it sees that there is no ServicePrincipal for 
the app in B; hence, it prompts the user about whether he or she wants to consent for that app to 
have access to the directory B (you’ll see later in what capacity). If the user grants consent, Azure AD 
uses the  Application object in A as a blueprint for creating a ServicePrincipal in B. Along with 
that, B  records that the current user consented to the use of this application (expect lots of details 
on this later on). Once that’s done, the user receives a token for accessing the app . . . and provision-
ing  magically  happens. No lengthy negotiations between administrators required. Isn’t Azure AD 
 awesome? Figure 8-1  summarizes the process.

ModernAuth_PrintBook_Final.indb   175ModernAuth_PrintBook_Final.indb   175 11/28/2015   11:40:33 AM11/28/2015   11:40:33 AM



176 CHAPTER 8

FIGURE 8-1 Simplifi ed provisioning fl ow driven by consent: 1) a user from B attempts to sign in with the app; 
2) the user credentials are acquired and verifi ed; 3) the user is prompted to consent for the app to gain access 
to tenant B; the user consents; 4) Azure AD uses the Application object in A as a blueprint for creating a 
Service Principal in B; 5) the user receives the requested token.

You can iterate the process shown in Figure 8-1 as many times as you want, for directory C, D, E, 
and so on. Directory A retains the blueprint of the app, in the form of its Application object. The 
users and admins of all the directories where the app is given consent retain control over what the 
application is allowed to do (and a lot more) through the corresponding ServicePrincipal object 
in each tenant.

A special case: App creation via the Azure portal and Visual Studio
As I write, both of the application provisioning techniques you’ve experienced so far (using the 
Azure portal and using Visual Studio) assume that you want to run your application in the same 
tenant in which you are creating it. Hence, these techniques create both the Application and 
the ServicePrincipal objects. The presence of a ServicePrincipal right after creation 
time in the home tenant will cause differences in behavior in respect to what happens when the 
application is consumed through different tenants. That is especially true for native applications, 
which are out of scope for this book, but in general this is something you need to be aware of. 
Note that the current behavior is not set in stone and not part of any explicit contract. I cannot 
guarantee that it will not change after this book goes to the printer.

In the next two subsections, you’ll take a look at the content of the Application and 
 ServicePrincipal objects. This will give me an opportunity to introduce lots of new directory 
artifacts, which in turn will refi ne your understanding of what an application is for Azure AD and what 
it can do for you.

ModernAuth_PrintBook_Final.indb   176ModernAuth_PrintBook_Final.indb   176 11/28/2015   11:40:33 AM11/28/2015   11:40:33 AM



 Azure Active Directory application model 177

Note Your hands-on experience so far has been limited to implementing web sign-on to 
applications with a web interface, rendering their own user experience (UX) in a browser. 
The Application and ServicePrincipal objects are also used to model web APIs, which 
follow a different set of protocols. I am going to show you how to write web API projects 
in the next chapter, but I cannot wait until then to describe those concepts—they play 
such a central role in the Azure AD application model, in consent, and in provisioning that 
 everything would sound weird without them. This is just to ensure that you know what’s 
coming and don’t get confused when I suddenly start to talk about OAuth and exposing 
scopes.

The Application
The Application object in Azure AD is meant to describe three distinct aspects of an application:

 ■ The identifi ers, protocol coordinates, and authentication options that come into play when a 
token is requested for accessing the application.

 ■ The resources that the application itself might need to access, and the actions it might need to 
take, in order to perform its functions. For example, an application might need to write back 
to the directory, or it might need to send email via Exchange as the authenticated user. You’ll 
have to wait until the next chapter to learn how to actually perform these actions in code, 
but it’s important to understand in this context the provisioning and consent mechanisms 
 underpinning this aspect.

 ■ The actions that the application itself offers. For example, an application representing a 
facade for a data store might allow for read and write operations—and make it possible for 
the  directory to decide whether to grant a client permission to do only read operations, or 
both read and write, depending on the identity of the client. This feature is used when the 
 application is a web API, but it rarely comes into play when doing web sign-on, so I won’t 
spend much time on it in this chapter.

So far you’ve acted directly only on the fi rst aspect. You indirectly took advantage of the defaults 
in the second point—every web app is confi gured to ask for permissions to sign in and access the 
user’s profi le. You have not interacted with the third aspect yet, but you will in Chapter 9, “Consuming 
and exposing a web API protected by Azure Active Directory.”

Mercifully, neither the Azure portal or the Visual Studio ASP.NET project templates wizards ask you 
to provide values for all the properties that constitute an Application object. The vast majority of 
those properties are assigned default values that work great for most of the populace, who can get 
their web sign-on functionality by providing just a handful of strings (as you have seen, mainly name 
and redirect_uri) without ever being aware that there are customizations available.

That said, if you do want to know what’s available in the Application object, how would you go 
about it? You have three strategies to choose from:

ModernAuth_PrintBook_Final.indb   177ModernAuth_PrintBook_Final.indb   177 11/28/2015   11:40:33 AM11/28/2015   11:40:33 AM



178 CHAPTER 8

 ■ Head to the Azure portal (https://manage.windowsazure.com), go to the Azure AD section, 
select the Applications tab, search for your app, select it, then click Confi guration. You’ll see far 
more info there than you provided at creation time. One example you are already familiar with 
is the client_id, which is assigned by Azure AD to your app when it’s created.

The information shown there is what you would probably customize to meet the requirements 
of the most common scenarios. However, not all the application features are exposed there.

 ■ Still in the Azure portal, with your app selected, you can use a link at the bottom of the page, 
Manage Manifest, to download a JSON fi le that contains the verbatim dump of the corre-
sponding Application entity in the directory. You can edit this fi le to change whatever you 
want to control, then upload it again (through the same portal commands) to refl ect your new 
options in the directory.

 ■ Finally, you can use the Directory Graph API (mentioned in Chapter 3) to query the directory 
and GET the Application object, once again in JSON format.

The fi rst method goes against the policy I am adopting in the book—the portal UX can change far 
too easily after the book is in print, so including screenshots of it would be a bad idea. Also, it does 
not go nearly deep enough for my purposes here.

The second method, the manifest, would work out well—and is the method I advise you to use 
when you work with your applications. However, there is something that makes it less suitable for 
 explaining the anatomy of the Application object for the fi rst time: the manifest is a true object 
dump from the directory, and for pure inheritance reasons it includes lots of properties that aren’t 
useful or relevant for the Application itself.

To keep the signal-to-noise ratio as crisp as possible, the JSON snippets I’ll show you here will all 
be obtained through the third method, direct queries through the Graph. I am using a very handy 
sample web app (which you can fi nd at https://graphexplorer.cloudapp.net), which provides an easy 
UI for querying the graph. I cannot guarantee that the app will still be available when you read this 
book, but performing those queries through code, or with curl or via Fiddler, is extremely easy. In the 
next chapter you’ll learn how.

Following is a dump of the Application object that corresponds to the sample app we’ve been 
working with so far. The query I used for obtaining it is as follows:

https://graph.windows.net/developertenant.onmicrosoft.com/
applications?$filter=appId+eq+'e8040965-f52a-4494-96ab-0ef07b591e3f'&api-version=1.5

You’ll likely recognize the typical OData ‘$’ syntax. The GUID you see there is the client_id of the 
application. Here’s the complete JSON from the result:

{
  "odata.metadata": "https://graph.windows.net/developertenant.onmicrosoft.
com/$metadata#directoryObjects/Microsoft.DirectoryServices.Application",
  "value": [
    {
      "odata.type": "Microsoft.DirectoryServices.Application",
      "objectType": "Application",

ModernAuth_PrintBook_Final.indb   178ModernAuth_PrintBook_Final.indb   178 11/28/2015   11:40:34 AM11/28/2015   11:40:34 AM



 Azure Active Directory application model 179

      "objectId": "c806648a-f27d-43fd-9f18-999f7708fcfc",
      "deletionTimestamp": null,
      "appId": "e8040965-f52a-4494-96ab-0ef07b591e3f",
      "appRoles": [],
      "availableToOtherTenants": false,
      "displayName": "WebAppChapter5",
      "errorUrl": null,
      "groupMembershipClaims": null,
      "homepage": "https://localhost:44300/",
      "identifierUris": [
        "https://localhost:44300/WebProjectChapter5"
      ],
      "keyCredentials": [],
      "knownClientApplications": [],
      "logoutUrl": null,
      "oauth2AllowImplicitFlow": false,
      "oauth2AllowUrlPathMatching": false,
      "oauth2Permissions": [
        {
          "adminConsentDescription": "Allow the application to access WebAppChapter5 on behalf 
of the signed-in user.",
          "adminConsentDisplayName": "Access WebAppChapter5",
          "id": "00431d04-5334-4da6-8396-0e6f54631f10",
          "isEnabled": true,
          "type": "User",
          "userConsentDescription": "Allow the application to access WebAppChapter5 on your 
behalf.",
          "userConsentDisplayName": "Access WebAppChapter5",
          "value": "user_impersonation"
        }
      ],
      "oauth2RequirePostResponse": false,
      "passwordCredentials": [],
      "publicClient": null,
      "replyUrls": [
        "https://localhost:44300/"
      ],
      "requiredResourceAccess": [
        {
          "resourceAppId": "00000002-0000-0000-c000-000000000000",
          "resourceAccess": [
            {
              "id": "311a71cc-e848-46a1-bdf8-97ff7156d8e6",
              "type": "Scope"
            }
          ]
        }
      ],
      "samlMetadataUrl": null
    }
  ]
}

Feel free to ignore anything that starts with “odata” here. Also, some properties listed are for 
 internal use only or are about to be deprecated, so I won’t talk about those.

ModernAuth_PrintBook_Final.indb   179ModernAuth_PrintBook_Final.indb   179 11/28/2015   11:40:34 AM11/28/2015   11:40:34 AM



180 CHAPTER 8

The most “meta” properties here are objectId and deletionTimestamp.

 ■ objectId is the unique identifi er for this Application entry in the directory. Note, this is 
not the identifi er used to identify the app in any protocol transaction—you can think of it as 
the ID of the row where the Application object is saved in the directory store. It is used for 
referencing the object in most directory queries and in cross-entity references.

 ■ deletionTimestamp is always null, unless you delete the Application, which in that case it 
records the instant in which you do so. Azure AD implements most eliminations as soft deletes 
so that you can repent and restore the object without too much pain should you realize the 
deletion was a mistake.

Properties used for authentication
The bulk of the properties of the Application object control aspects of the authentication, specify-
ing parameters that defi ne the app from the protocol’s perspective, turning options on and off, and 
providing experience customizations.

Property naming galore
One important thing to keep in mind: Although in this book I am focusing on OAuth2 and 
OpenID Connect, the Application object must support all the protocols that Azure AD 
implements. As you have seen in previous chapters, all claims-oriented protocols share some 
common concepts—issuer, audience, URLs to receive returned tokens, and so on. That helps to 
keep the list of properties short, given that you need to specify the URL where you want to get 
the tokens back only once and use it with all protocols. However, it also creates a problem: If 
WS-Federation calls that URL wsreply, and OAuth2 calls it redirect_uri, what should the corre-
sponding property in the Application object be called? You’ll see that the question has been 
answered in many different ways through the object model, largely driven by historical circum-
stances (for example, which protocols were implemented fi rst). That has led to some confusion, 
which prompted remediation attempts by surfacing those properties in the Azure portal UX 
under different labels . . . which led to further confusion. This is just a heads-up to highlight the 
importance of being very precise when you reason about Applications and protocol literature.

 Here’s the complete list:

 ■ appId This corresponds to the client_id of the application.

 ■ replyUrls This multivalue property holds the list of registered redirect_uri values that 
Azure AD will accept as destinations when returning tokens. No other URI will be accepted. 
This property is the source of some of the most common errors: even the smallest mismatch 
(trailing slash missing, different casing) will cause the token-issuance operation to fail.

Although at creation time the only URL in the collection is the one you specifi ed, as is the case 
with the localhost-based URL in the sample here, you’ll often fi nd yourself adding more URLs 

ModernAuth_PrintBook_Final.indb   180ModernAuth_PrintBook_Final.indb   180 11/28/2015   11:40:34 AM11/28/2015   11:40:34 AM



 Azure Active Directory application model 181

as your app moves past the development stage and gets deployed to staging and production. 
If you want to achieve complete isolation between application deployments, you can always 
create an entirely new Application for every environment, each with its own client_id.

 ■ identifierUris This multivalue property holds a collection of developer-assigned 
 application identifi ers, as opposed to the directory-assigned client_id. 

These values are used to represent the application as a resource in protocols such as SAML 
and WS-Federation, where they map to the concept of realm. The URIs are also used as 
 audience in access tokens issued for the app via OAuth2, when the app is consumed as a 
web API (as opposed to a web app with an HTML UX). This often generates confusion, 
given that this scenario can also be implemented by using the app’s client_id instead of 
one  identifi er URI. More about this in Chapter 9.

 ■ publicClient In the current Azure AD model, applications can be either confi dential clients 
(apps that can have their own credentials, usually run on servers, etc.) or public clients (mobile 
and native apps running on devices, with no credentials, hence no strong identity of their 
own). The security characteristics of the two app types are very different, and so is the set of 
protocols that the two types support. For example, a native client cannot obtain a token purely 
with its app identity because it has no identity of its own; and a confi dential client cannot 
request tokens with user-only fl ows, where the identity of the app would not play a role.

This book focuses on web apps; hence, confi dential clients. That means that the apps dis-
cussed here will always have the publicClient property set to null.

 ■ passwordCredentials, keyCredentials These properties hold references to 
 application-assigned credentials, string-based shared secrets and X.509 certifi cates, respec-
tively. Only confi dential clients can have nonempty values here. Those credentials come into 
play when requesting access tokens—in other words, when the app is acting as a client rather 
than as a resource itself. You’ll see more of that in the next chapter.

 ■ displayName This property determines how the application is called in interactions with 
end users, such as consent prompts. It’s also the mnemonic moniker used to indicate the 
 application for the developer in the Azure management portal. Given that the display name 
has no uniqueness requirements, it’s not always a way to conclusively identify one app in a 
long list.

 ■ Homepage The URL saved here is used to point to the application from its entry in applica-
tion portals such as the Offi ce 365 application store. It does not play any role in the protocol 
behavior of the app; it’s just whatever landing page you want visitors, prospective buyers, and 
corporate users (who might get there through the list of applications their company uses) to 
use as an entry point. At creation time, the Homepage value is copied from the replyUrls 
property. A common bit of advice to software developers from Offi ce is to ensure that the URL 
in Homepage corresponds to a protected page/route in your application so that if visitors are 
already authenticated when they click the link, they’ll fi nd themselves authenticated with the 
same identity in your app as well.

ModernAuth_PrintBook_Final.indb   181ModernAuth_PrintBook_Final.indb   181 11/28/2015   11:40:34 AM11/28/2015   11:40:34 AM



182 CHAPTER 8

 ■ samlMetadataUrl In case you are implementing SAML in your app, this property allows you 
to specify where your app publishes its own SAML metadata document.

 ■ oauth2AllowImplicitFlow This fl ag, defaulting to false, determines whether your app 
 allows requests for tokens for the app via implicit fl ow.

 ■ oauth2AllowUrlPathMatching By default, Azure AD requires all redirect_uris in a request 
to be a perfect match of any of the entries in replyURLs. This is a very good policy, designed 
to mitigate the open redirector attack—an attack in which appending extra parameters to one 
redirect_uri might lead to the resulting token being forwarded to a malicious party. However, 
there are situations in which your app might need to have more fl exibility and use return_uris 
that do have a tail of extra characters that aren’t part of the registered values. Setting this 
property to true tells Azure AD that you want to relax the perfect match constraint, and allows 
you to use URLs that are a superset of the ones you registered. Before changing this value, 
make sure you truly need it and that you have mitigations in place.

 ■ oauth2RequirePostResponse Azure AD expects all requests to be carried through a GET 
operation. Setting this property to true relaxes that constraint. 

 ■ groupMembershipClaims If you want to receive group membership information as claims 
in the tokens issued for your user, you can use this property to express that requirement. 
 Setting groupMembershipClaims to SecurityGroup results in a token containing all the 
security group memberships of the user. Setting it to All results in a token containing both 
 security group and distribution list memberships. The default, null, results in no group infor-
mation in the token. Note that the group claims do not include the group name; rather, they 
carry a GUID that uniquely identifi es the group within the tenant. I’ll spend more time on this 
topic later in the chapter.

 ■ appRoles This property is used for declaring roles associated with the application. I provide 
a complete explanation of this property in later sections of this chapter.

 ■ availableToOtherTenants This property deviates from the strictly protocol-related 
functionalities: it’s more about controlling the provisioning aspect. Every confi dential  client 
application starts its existence as an app that can be accessed only by accounts from the 
same directory tenant in which the application was created. That’s the typical line-of-business 
 application scenario, where the IT department of one company develops an app to be used by 
their fellow employees. Any attempt to get tokens for the app from a different tenant will not 
work (excluding guest scenarios, which will be mentioned later).

However, that clearly does not work if your intent is to make the application available across 
organizations: that is the case for SaaS scenarios, naturally. If you are in that situation, you 
can fl ip availableToOtherTenants to true. That will make Azure AD allow requests from 
other tenants to trigger the consent fl ow I described briefl y earlier instead of carrying out the 
default behavior, in which the request would be rejected right away.

Applications available across tenants (what we commonly call “multitenant apps”) have 
extra constraints. For example, whereas identifierURIs can normally be any URI with 

ModernAuth_PrintBook_Final.indb   182ModernAuth_PrintBook_Final.indb   182 11/28/2015   11:40:34 AM11/28/2015   11:40:34 AM



 Azure Active Directory application model 183

no  restrictions, for multitenant apps those URIs must be proper URLs and their hostname 
must match a domain that is registered with the tenant. Also, only tenant administrators can 
 promote an app to be multitenant. The consent for a multitenant app clearly identifi es the 
tenant as the publisher of the app to potentially every other organization using Azure AD—
with important repercussions on reputation should something go south. 

Note Flipping this switch only tells Azure AD that you want your app to behave 
as a multitenant app. Actually promoting one application from line of business to 
multitenant requires some coding changes, which I’ll discuss later on.

 ■ knownClientApplications The last property listed here is also about provisioning. You 
have seen how consenting for one application to have access to your own directory results 
in the creation of a ServicePrincipal for the app in the target directory. To anticipate 
a bit the upcoming discussion on permissions, the idea is that the ServicePrincipal 
will also need to record the list of resources and actions on those resources that the user 
 consented to. This is possible only if the requested resources are already present with their 
own  ServicePrincipal entries in the target directory. That is usually the case for fi rst-party 
resources: if your app needs access to the Directory Graph or Exchange online, you can expect 
those to already have an entry in the directory. It will occasionally happen that your  solution 
includes both a client application and one custom web API application. You’ll want your 
prospective customers to have to consent only once, when they fi rst try to get a token for the 
client application. If consent can happen only when all the requested resources are present as 
a ServicePrincipal in the target directory, and one of the resources you need is your own 
API, you have a problem. It looks like you have to ask your user to fi rst consent to the web API 
so that it can create its ServicePrincipal in the target directory, and only after that ask the 
user to go back and consent to the client application. 

Well, this property exists to save you from having to do all that work. Say that the application 
you are working on is the web API project. If you save in knownClientApplications the 
client_id (the appId, that is) of the client application you want to use for accessing your API, 
Azure AD will know that consenting to the client means implicitly consenting to the web API, 
too, and will automatically provision ServicePrincipals for both the client and web API at 
the same time, with a single consent. Handy!

The main catch in all this is that both the client and the web API application must be defi ned 
within the same tenant. You cannot list in knownClientApplications the client_id of a 
 client defi ned in a different tenant.

oauth2Permissions: What actions does the app expose?
The oauth2Permissions collection publishes the list of things that client applications can do with 
your app—the scopes the app admits, mostly, but that comes into play only in case your app is a web 
API. If your app is a web application with a UX, the expectation is that browsers will request tokens 
for your app with the goal of signing in. That does not require any entry for web sign-on, the scenario 

ModernAuth_PrintBook_Final.indb   183ModernAuth_PrintBook_Final.indb   183 11/28/2015   11:40:34 AM11/28/2015   11:40:34 AM



184 CHAPTER 8

considered in this chapter, so I thought of deferring coverage of this property until I get to  exposing 
your own web API, but some of the concepts will come in handy sooner than that, so I’ll give you a bit 
of background now. Let’s take a closer look at the only entry in the oauth2Permissions collection 
for the sample application:

{
    "adminConsentDescription": "Allow the application to access WebAppChapter5 on behalf of the 
signed-in user.",
    "adminConsentDisplayName": "Access WebAppChapter5",
    "id": "00431d04-5334-4da6-8396-0e6f54631f10",
    "isEnabled": true,
    "type": "User",
    "userConsentDescription": "Allow the application to access WebAppChapter5 on your behalf.",
    "userConsentDisplayName": "Access WebAppChapter5",
    "value": "user_impersonation"
 }

Where does the default oauth2Permissions entry come from? 
Answering this question requires a bit of history. For the way in which Azure AD is organized, a 
token obtained by a client for accessing a web API must contain at least a scope—which is, as 
you have seen, an action that the client obtains permissions to perform. An application rep-
resenting a web API but not defi ning any scopes would be impossible to access because any 
token request would not have any scope to prompt consent for. That wasn’t always the case! 
This constraint was added a few months after Azure AD was released, creating a lot of confu-
sion for developers who were now expected to manually add at least one oauth2Permission 
entry before being able to use their API. This also infl uenced all the walk-through and sample 
readme fi les at the time, making it necessary to add instructions on how to add that entry. I am 
happy to report that such manual steps are no longer necessary. Every Application is created 
with one default permission, user_impersonation, so that if you want to implement your app 
as a web API you don’t need any extra confi guration step, and you can begin development 
right away. I am telling you all this because some of the walk-throughs from that phase are still 
around. Now you know that you don’t need to follow them to the letter on this.

The schema is pretty straightforward:

The ID uniquely identifi es the permission within this resource.

Each property ending in “description” or “name” indicates how to identify and describe this 
 permission in the context of interactive operations, such as consent prompts or Application 
 confi guration at development time.

The type property indicates whether this permission can be granted by any user in the directory 
(in which case it is populated with the value User) or is a high-value capability that can be granted 
only by an administrator (in which case, the value is Admin).

ModernAuth_PrintBook_Final.indb   184ModernAuth_PrintBook_Final.indb   184 11/28/2015   11:40:34 AM11/28/2015   11:40:34 AM



 Azure Active Directory application model 185

The value property represents the value in the scope claim that a token will carry to signal the 
fact that the caller was granted this permission by the directory. That is what the app should look for 
in the incoming token to decide whether the caller should be allowed to exercise the function gated 
by this permission.

I’ll come back to this collection in Chapter 9.

requiredResourceAccess: What resources the app needs
This is one of the most powerful entries in the Application object, which can lead to utter despair 
when things go wrong:

      "requiredResourceAccess": [
        {
          "resourceAppId": "00000002-0000-0000-c000-000000000000",
          "resourceAccess": [
            {
              "id": "311a71cc-e848-46a1-bdf8-97ff7156d8e6",
              "type": "Scope"
            }
          ]
        }

You can think of requiredResourceAccess as the client-side partner of oauth2Permissions. 
The requiredResourceAccess entry lists all the resources and permissions the application needs 
access to, referring to the entries each of those resources expose through their own oauth2Permis-
sions entries. For each resource, requiredResourceAccess specifi es:

 ■ The appId of the requested resource, via the resourceAppId property

 ■ Which specifi c permissions it is after, via the resourceAccess collection, which contains

• The permission ID—the same ID the resource declared (in its own Application object) for 
the permission in its own corresponding oauth2Permission entry

• The type of access it intends to perform: possible values are Scope and Role.

In our sample, the resource we need access to is the directory itself, in the form of the Graph API— 
the identifi er 00000002-0000-0000-c000-000000000000 is reserved for the Graph in all tenants. The 
permission we are requesting, of ID 311a71cc-e848-46a1-bdf8-97ff7156d8e6, corresponds to “sign 
in and access the user’s profi le.” I know it doesn’t sound that easy to remember . . . but it is not sup-
posed to be. The Azure portal or the Visual Studio project wizards normally take care of putting those 
values there for you when you select the human-readable counterparts in their UIs.

The type of access Scope determines that the app request the permission in delegated fashion; 
that is to say, as the identity of the user who’s doing the request. Whether an admin user is required 
for successfully obtaining this permission at run time, or a normal user can suffi ce, is determined by 
the Type declared in the corresponding oauth2Permission entry—found in the Application 
object of the resource exposing the permission. As you have seen in the preceding section, the 

ModernAuth_PrintBook_Final.indb   185ModernAuth_PrintBook_Final.indb   185 11/28/2015   11:40:34 AM11/28/2015   11:40:34 AM



186 CHAPTER 8

possible values are User and Admin. If the permission declares the latter, only an administrator can 
consent to it. 

A requiredResourceAccess entry with a Type of value Role indicates that the application 
requires that permission with its own application identity, regardless of which user identity is used to 
obtain the token (if any—there are ways for an app to get tokens with no users involved, and I’ll talk 
about that in the “Application permissions” section toward the end of this chapter). This option does 
require consent from an administrator.

Now here is a super important concept; put everything else down and read very carefully. In the 
current Azure AD model, one application must declare in advance all resources it needs access to, and 
all the associated permissions it requires. At the fi rst request for a token for that app, that list will be 
presented to the user in its entirety, regardless of what resources are actually needed for that specifi c 
request. Once the user successfully grants consent, a ServicePrincipal will be provisioned, and 
that consent will be recorded in the target directory (you’ll see later how that happens in practice) for 
all the requested resources. This makes it possible to prompt the user for consent only once.

The side effect of this approach is that the list of consented permissions is static. If you decide to 
add a new permission request to your application after a customer of yours already consented to it 
in its own directory, your customer will not be able to obtain the new permission for your app in the 
customer’s own tenant until he or she revokes consent in its entirety and then grants it again. This can 
sometimes be painful. In version 2 of Azure AD, we are working hard to eliminate this constraint, but 
in version 1, that is the way it is today.

Figure 8-2 summarizes the main functional groups the Application object’s properties fall into. 
Sure, there are a lot of details to keep in mind, but at the end of the day, more often than not, this 
simple subdivision will help you to ignore the noise and zero in on the properties you need for your 
scenario.

FIGURE 8-2 A functional grouping of the properties of the Application object in Azure AD.

ModernAuth_PrintBook_Final.indb   186ModernAuth_PrintBook_Final.indb   186 11/28/2015   11:40:34 AM11/28/2015   11:40:34 AM



 Azure Active Directory application model 187

The ServicePrincipal object
In later sections you will study in detail how an app goes from one Application object in one 
 tenant to one or more ServicePrincipals in one or more tenants. In this section, I’ve assumed that 
such provisioning has already happened and will focus on the properties of the resulting Service-
Principal: what properties are copied as is from the Application, what doesn’t make it through, 
and what’s added that is unique.

Following is the ServicePrincipal for our sample app. It is deployed on the same tenant as the 
Application, but for our analysis that doesn’t matter. At fi rst glance, it does look a lot like the 
 Application itself, but it is in fact quite different.

{
      "odata.type": "Microsoft.DirectoryServices.ServicePrincipal",
      "objectType": "ServicePrincipal",
      "objectId": "29f565fd-0889-43ff-aa7f-3e7c37fd95b4",
      "deletionTimestamp": null,
      "accountEnabled": true,
      "appDisplayName": "WebAppChapter5",
      "appId": "e8040965-f52a-4494-96ab-0ef07b591e3f",
      "appOwnerTenantId": "6c3d51dd-f0e5-4959-b4ea-a80c4e36fe5e",
      "appRoleAssignmentRequired": false,
      "appRoles": [],
      "displayName": "WebAppChapter5",
      "errorUrl": null,
      "homepage": "https://localhost:44300/",
      "keyCredentials": [],
      "logoutUrl": null,
      "oauth2Permissions": [
        {
          "adminConsentDescription": "Allow the application to access WebAppChapter5 on behalf 
of the signed-in user.",
          "adminConsentDisplayName": "Access WebAppChapter5",
          "id": "00431d04-5334-4da6-8396-0e6f54631f10",
          "isEnabled": true,
          "type": "User",
          "userConsentDescription": "Allow the application to access WebAppChapter5 on your 
behalf.",
          "userConsentDisplayName": "Access WebAppChapter5",
          "value": "user_impersonation"
        }
      ],
      "passwordCredentials": [],
      "preferredTokenSigningKeyThumbprint": null,
      "publisherName": "Developer Tenant",
      "replyUrls": [],
      "samlMetadataUrl": null,
      "servicePrincipalNames": [
        "https://localhost:44300/WebProjectChapter5",
        "e8040965-f52a-4494-96ab-0ef07b591e3f"
      ],
      "tags": [
        "WindowsAzureActiveDirectoryIntegratedApp"
      ]
    }

ModernAuth_PrintBook_Final.indb   187ModernAuth_PrintBook_Final.indb   187 11/28/2015   11:40:34 AM11/28/2015   11:40:34 AM



188 CHAPTER 8

I am sure you are not surprised to fi nd objectId and deletionTimestamp here, too.

Notably missing are all the fl ags determining protocol behaviors at run time: availableTo-
OtherTenants, groupMembershipClaims, oauth2AllowImplicitFlow, oauth2AllowUrlPath-
Matching, oauth2-RequirePostResponse, and publicClient. Other properties that don’t di-
rectly make it in the form of properties in ServicePrincipal are knownClientApplications and 
requiredResourceAccess, both of which are properties that infl uence the consent process and the 
very creation of this ServicePrincipal. As you will see later on, requiredResource Access gets 
recorded in a different form—one that makes it easier for the directory to track down who in the ten-
ant has actually been granted the necessary permissions to use the app.

Properties that do transfer as is from the Application to its corresponding ServicePrincipal 
are the appId (containing the all-important client_id), various optional URLs (errorUrl, logoutUrl, 
samlMetadata-Url), the settings used when listing the app in some UX (displayName, homepage), 
the exposed appRoles and oauth2Permissions, and fi nally the credentials keyCredentials and 
passwordCredentials. The presence of the credentials in the ServicePrincipal has important 
implications: it means that your code can use the same credentials defi ned in the Application and 
those will work on every ServicePrincipal in every tenant.

Here’s a list of the brand-new properties:

 ■ appOwnerTenantId This property carries the tenantId of the tenant where you’ll fi nd the 
Application object that was used as a blueprint for creating this ServicePrincipal—in 
this case, developertenant.onmicrosoft.com. If you search Chapter 6 for the GUID value shown 
in our example’s ServicePrincipal, you’ll fi nd it everywhere.

 ■ publisherName Another property meant to be used for describing the app in user 
 interactions, publisherName stores the display name of the tenant where the original 
 Application was defi ned. This represents the organization that published the app.

 ■ servicePrincipalNames This property holds all the identifi ers that can be used for 
 referring to this application in protocol fl ows: as you might have noticed in the sample, it 
 contains the union of the values in the identifierUris collection and the appId value from 
the Application object. The former is used for OAuth2 and OpenID Connect fl ows, the latter 
for WS-Federation, SAML, or OAuth2 bearer token resource access requests.

 ■ appRoleAssignmentRequired Administrators can decide to explicitly name the user 
 accounts that they want to enable for the user of the app and gate the token issuance on this 
condition. If appRoleAssignmentRequired is set to true, only the token requests coming 
from explicitly assigned users will be fulfi lled. I’ll talk more about this later in the chapter.

 ■ tags This property is used mostly by the Azure portal to determine the type of application 
and how to present it in the administrative interface. Without going into fi ne detail, an empty 
tag collection results in the corresponding ServicePrincipal not being shown as one of the 
resources that can be requested by other applications.

ModernAuth_PrintBook_Final.indb   188ModernAuth_PrintBook_Final.indb   188 11/28/2015   11:40:34 AM11/28/2015   11:40:34 AM



 Azure Active Directory application model 189

Consent and delegated permissions

Now that you know what application aspects are defi ned in the Application and Service-
Principal objects, it’s time to understand how these two entities are used in the application 
 provisioning and consent fl ows.

You have learned that all it takes for provisioning an app in a tenant (creating a Service Principal 
for that app in the tenant) is one user requesting a token by using the app coordinates defi ned in the 
Application object, successfully authenticating, and granting to the app consent to the permissions 
it requires. To get to the next level of detail, you must take into account what kind of user created 
the application in the fi rst place, what permissions the applications requires, and what kind of user 
actually grants consent to the app and in what terms. There is an underlying rule  governing the entire 
process, but that’s pretty complicated. Instead of enunciating it here and letting you wrestle with it, 
I am going to walk you through various common scenarios and explain what  happens. Little by little, 
we’ll fi gure out how things work.

Initially, I’ll scope things down to the case in which you are creating line-of-business apps— 
applications meant to be consumed by users from the same directory in which they were created. If 
your company has an IT department that creates apps for your company’s employees, you know what 
kind of apps I am referring to. Once you have a solid understanding of how consent works within a 
single directory, I’ll venture to the multitenant case, where you’ll see more of the provisioning aspect. 
I’ll stick to delegated permissions, but there are other kinds of permissions, like the things that an app 
can do independently of which user is signed in at the moment, but I’ll defer coverage of those and 
describe the basics here.

Application created by a nonadmin user
In Chapter 5 you followed instructions to create an application in Azure AD via the Azure portal. Did 
you create it while being signed in with a user who is a global administrator in your tenant? If not, 
that’s perfect—the app you have is already in the state I’ll describe in this section. If you did, you can 
choose to believe that my description is accurate—or you can create a new app, following the same 
instructions (very important!) but using a nonadmin user. Note: to be able to sign in with that account 
in the Azure portal, you might need to promote that user to coadmin of your Azure subscription.

As you have seen in the preceding section, creating one app via the Azure portal has the  effect 
of creating both the Application object and the corresponding ServicePrincipal. What 
you haven’t seen yet is how the directory remembers what permissions have been granted to the 
 ServicePrincipal and to which user. The Application object enumerates the permissions 
it needs in the requiredResourceAccess collection, but those aren’t present in the Service-
Principal. Where are they?

Azure AD maintains another collection of entities, named oauth2PermissionGrants, 
which  records which clients have access to which resources and with what permissions. Critically, 
 oauth2PermissionGrants also records which users that consent is valid for. 

ModernAuth_PrintBook_Final.indb   189ModernAuth_PrintBook_Final.indb   189 11/28/2015   11:40:34 AM11/28/2015   11:40:34 AM



190 CHAPTER 8

For example, when you created the sample app in the Azure portal, Azure AD automatically grant-
ed consent for that app on behalf of your user. Alongside the Application and Service Principal, 
the process also created the following oauth2PermissionGrants entry:

{
  "odata.metadata": "https://graph.windows.net/developertenant.onmicrosoft.com/$metadata#oauth2
PermissionGrants",
  "value": [
    {
      "clientId": "29f565fd-0889-43ff-aa7f-3e7c37fd95b4",
      "consentType": "Principal",
      "expiryTime": "2015-11-21T23:31:32.6645924",
      "objectId": "_WX1KYkI_0Oqfz58N_2VtEnIMYJNhOpOkFrsIuF86Y8",
      "principalId": "13d3104a-6891-45d2-a4be-82581a8e465b",
      "resourceId": "8231c849-844d-4eea-905a-ec22e17ce98f",
      "scope": "UserProfile.Read",
      "startTime": "0001-01-01T00:00:00"
    }
  ]
}

Note The query I used for retrieving this result was https://graph.windows.net/ 
developertenant.onmicrosoft.com/oauth2PermissionGrants?$filter=clientId+eq

+'29f565fd-0889-43ff-aa7f-3e7c37fd95b4'.

Let’s translate that snippet into English. It says that the User with identifi er 13d3104a-6891-
45d2-a4be-82581a8e465b (the PrincipalId) consented for the client 29f565fd-0889-43ff-aa7f-
3e7c37fd95b4 (the clientId) to access the resource 8231c849-844d-4eea-905a-ec22e17ce98f (the 
resourceId) with permission UserProfile.Read (the scope). Resolving references further, the 
client is our sample app, and the resource is the directory itself—more precisely, the Directory Graph 
API. Figure 8-3 shows how the consent for the fi rst application user is recorded in the directory; 
 Figure 8-4 shows how the oauth2PermissionGrants table grows as more users give their consent.

Important All the identifi ers here refer to the objectId property of the  respective 
entity they refer to. Given that clientId and resourceId ultimately refer to 
ServicePrincipals, it’s easy to get confused and expect those values to represent the 
appId. But nope, it’s the objectId. The principalId is the objectId property of the 
User object representing the user account used for consenting.

ModernAuth_PrintBook_Final.indb   190ModernAuth_PrintBook_Final.indb   190 11/28/2015   11:40:34 AM11/28/2015   11:40:34 AM



 Azure Active Directory application model 191

FIGURE 8-3 The oauth2PermissionGrant recording in the directory that user 1 consented for the app 
represented by ServicePrincipal 1 to access ServicePrincipal N with the permission stored in the 
property scope, in itself picked from one of the permissions exposed by the original Application N 
oauth2Permissions section.

When Azure AD receives a request for a token to be issued to the application defi ned here, it looks 
in the oauth2PermissionGrants collection for entries whose clientId matches the app. If the 
authenticated user has a corresponding entry, she or he will get back a token right away. If there’s 
no entry, the user will see the consent prompt listing all the requiredResourceAccess permissions 
from the Application object. Upon successful consent, a new oauth2PermissionGrant entry for 
the current user will be created to record the consent. And so on and so forth.

ModernAuth_PrintBook_Final.indb   191ModernAuth_PrintBook_Final.indb   191 11/28/2015   11:40:34 AM11/28/2015   11:40:34 AM



192 CHAPTER 8

 
FIGURE 8-4 Subsequent consent operations create more oauth2PermissionGrant entries in the directory, one 
for each new user consenting for the application.

If you want to try, go ahead and launch the sample app again, but sign in as another user. This 
time, you will be presented with the consent page. Consent and then sign out. Sign in again with 
the new user: you will not be prompted for consent again. If you queried the directory (in the next 
 chapter you’ll learn how) to fi nd all the oauth2PermissionGrants whose clientId matches 
the sample app, you’d see that there are now two entries, looking very much alike apart from the 
 principalId, which would point to different users. Note that it doesn’t matter whether your second 
user is an administrator or a low-privilege user; the resulting oauth2PermissionGrant will look just 
like the one described earlier when following this fl ow. 

Interlude: Delegated permissions to access the directory
One of the things you have learned in this chapter is that applications can declare the permissions 
that a client can request of them, via oauth2Permissions, as a way of partitioning the possible 
 actions a user can perform over the resource represented by the app and to provide fi ne-grained 
access control over who can do what. As I’ve mentioned, in the next chapter you will learn how clients 
can actually take advantage of gaining such permissions; here, you’re just studying how requesting 
and granting such permissions takes place.

ModernAuth_PrintBook_Final.indb   192ModernAuth_PrintBook_Final.indb   192 11/28/2015   11:40:34 AM11/28/2015   11:40:34 AM



 Azure Active Directory application model 193

Each and every resource protected by Azure AD works by exposing permissions—the Offi ce 365 
API, Azure management API, and any custom API all work that way. Covering all those would be a 
pretty hard task. Even ignoring the enormous surface I’d have to cover, chances are that the details 
would change multiple times from the time I’m writing and when you have this book in your hands. 
That said, I am going to describe in detail at least one resource: the directory itself. Like any other 
resource, Azure AD exposes a number of delegated permissions, which determine what actions your 
application is allowed to perform against the data stored in the directory. Such actions take the form 
of requests to embed information in issued tokens (what we have been working with until now) 
and reading or modifying directory data via API calls to the Graph API (what you’ll see in the next 
 chapter). You will likely have to deal with directory permissions in practically every app you write; 
hence, they’re a great candidate for showing you how to deal with permissions in depth—well, except 
for the fact that they feature lots of exceptions, but you need to be aware of these anyway.

As of today, the directory itself is represented by a ServicePrincipal in your tenant. You already 
know both the AppId and the ObjectId of that principal, given that our sample app had to request 
at least the permission UserProfile.Read in order to sign users in. The AppId, 00000002-0000-
0000-c000-000000000000, comes from the requiredResourceAccess in the Application object 
representing our sample. The ObjectID of the ServicePrincipal, 8231c849-844d-4eea-905a-
ec22e17ce98f, comes from the oauth2PermissionGrant tracking the consent to our sample. The 
objectId is enough for crafting the resource URL referring to the Graph API ServicePrincipal: it’s 
https://graph.windows.net/developertenant.onmicrosoft.com/servicePrincipals/8231c849-844d-4eea-
905a-ec22e17ce98f.

I won’t show the entire JSON for the ServicePrincipal here, as it contains a lot of stuff I want to 
cover later. But take a look at the oauth2Permissions, the collection of delegated permissions one 
client can request for interacting with the directory:

"oauth2Permissions": [
    {
      "adminConsentDescription": "Allows the app to create groups on behalf of the signed-in 
user and read all group properties and memberships. Additionally, this allows the app to update 
group properties and memberships for the groups the signed-in user owns.",
      "adminConsentDisplayName": "Read and write all groups",

      "id": "970d6fa6-214a-4a9b-8513-08fad511e2fd",
      "isEnabled": true,
      "type": "User",

      "userConsentDescription": "Allows the app to create groups on your behalf and read all 
group properties and memberships. Additionally, this allows the app to update group properties 
and memberships for groups you own.",
      "userConsentDisplayName": "Read and write all groups",
      "value": "Group.ReadWrite.All"    },
    {
      "adminConsentDescription": "Allows the app to read basic group properties and memberships 
on behalf of the signed-in user.",
      "adminConsentDisplayName": "Read all groups",

      "id": "6234d376-f627-4f0f-90e0-dff25c5211a3"
      "isEnabled": true,
      "type": "User",

      "userConsentDescription": "Allows the app to read all group properties and memberships on 
your behalf.",

ModernAuth_PrintBook_Final.indb   193ModernAuth_PrintBook_Final.indb   193 11/28/2015   11:40:35 AM11/28/2015   11:40:35 AM



194 CHAPTER 8

      "userConsentDisplayName": "Read all groups",
      "value": "Group.Read.All"

    },
    {
      "adminConsentDescription": "Allows the app to read and write data in your company or 
school directory, such as users and groups. Does not allow user or group deletion.",
      "adminConsentDisplayName": "Read and write directory data",

      "id": "78c8a3c8-a07e-4b9e-af1b-b5ccab50a175",
      "isEnabled": true,
      "type": "Admin",

      "userConsentDescription": "Allows the app to read and write data in your company or school 
directory, such as other users, groups. Does not allow user or group deletion on your behalf.",
      "userConsentDisplayName": "Read and write directory data",
      "value": "Directory.Write"

    },
    {
      "adminConsentDescription": "Allows the app to have the same access to information in the 
directory as the signed-in user.",
      "adminConsentDisplayName": "Access the directory as the signed-in user",

      "id": "a42657d6-7f20-40e3-b6f0-cee03008a62a",
      "isEnabled": true,
      "type": "User",

      "userConsentDescription": "Allows the app to have the same access to information in your 
work or school directory as you do.",
      "userConsentDisplayName": "Access the directory as you",
      "value": "user_impersonation"

    },
    {
      "adminConsentDescription": "Allows the app to read data in your company or school 
directory, such as users, groups, and apps.",
      "adminConsentDisplayName": "Read directory data",

      "id": "5778995a-e1bf-45b8-affa-663a9f3f4d04",
      "isEnabled": true,
      "type": "Admin",

      "userConsentDescription": "Allows the app to read data in your company or school 
directory, such as other users, groups, and apps.",
      "userConsentDisplayName": "Read directory data",
      "value": "Directory.Read"

    },
    {
      "adminConsentDescription": "Allows the app to read the full set of profile properties of 
all users in your company or school, on behalf of the signed-in user. Additionally, this allows 
the app to read the profiles of the signed-in user's reports and manager.",
      "adminConsentDisplayName": "Read all users' full profiles",

      "id": "c582532d-9d9e-43bd-a97c-2667a28ce295",
      "isEnabled": true,
      "type": "Admin",

      "userConsentDescription": "Allows the app to read the full set of profile properties of 
all users in your company or school on your behalf.  Additionally, this allows the app to read 
the profiles of your reports and manager.",
      "userConsentDisplayName": "Read all users' full profiles",
      "value": "User.Read.All"

    },
    {
      "adminConsentDescription": "Allows the app to read a basic set of profile properties of 
all users in your company or school on behalf of the signed-in user. Includes display name, 
first and last name, photo, and email address. Additionally, this allows the app to read basic 

ModernAuth_PrintBook_Final.indb   194ModernAuth_PrintBook_Final.indb   194 11/28/2015   11:40:35 AM11/28/2015   11:40:35 AM



 Azure Active Directory application model 195

info about the signed-in user's reports and manager.",
      "adminConsentDisplayName": "Read all users' basic profiles",

      "id": "cba73afc-7f69-4d86-8450-4978e04ecd1a",
      "isEnabled": true,
      "type": "User",

      "userConsentDescription": "Allows the app to read a basic set of profile properties of 
other users in your company or school on your behalf. Includes display name, first and last 
name, photo, and email address. Additionally, this allows the app to read basic info about your 
reports and manager.",
      "userConsentDisplayName": "Read all user's basic profiles",
      "value": "User.ReadBasic.All"

    },
    {
      "adminConsentDescription": "Allows users to sign in to the app, and allows the app to read 
the profile of signed-in users. It also allows the app to read basic company information of 
signed-in users.",
      "adminConsentDisplayName": "Sign in and read user profile",

      "id": "311a71cc-e848-46a1-bdf8-97ff7156d8e6",
      "isEnabled": true,
      "type": "User",

      "userConsentDescription": "Allows you to sign in to the app with your work account and let 
the app read your profile. It also allows the app to read basic company information.", 
      "userConsentDisplayName": "Sign you in and read your profile",
      "value": "User.Read"

    }
  ],

Here’s a quick description of each delegated permission listed, per their Value property. Please 
note that this list does change over time. Funny story: it changed a couple of weeks after I fi nished 
writing this chapter—I had to come back and revise much of what follows. In fact, the change is not 
fully complete, as the ServicePrincipal object shown above still shows some old values. The fi rst 
four permissions described in what follows are the ones that Azure AD has offered since it started 
supporting consent as described in this book; the last four are brand-new and likely to be less stable. 
Wherever appropriate, I will hint at the old values so that if you encounter code based on older 
strings, you can map it back to the new permissions. Chances are the list will change again: please 
keep an eye on the permissions documentation, currently available at https://msdn.microsoft.com/
Library/Azure/Ad/Graph/howto/azure-ad-graph-api-permission-scopes. 

User.Read (was UserProfi le.Read)
This is the permission that each app needs to authenticate users. Applications created in the Azure 
portal and Visual Studio are confi gured to automatically request this permission, which is why you 
don’t see it mentioned in the UI you use for creating apps in either tool.

Besides the ability to request a token containing claims about the incoming user, this permission 
grants to the app the ability to query the Graph API for information about the currently signed-in 
user.

As you’ve experienced, this permission can be granted by nonadmin users. That is confi rmed by 
the type property of value User in the permissions declaration.

ModernAuth_PrintBook_Final.indb   195ModernAuth_PrintBook_Final.indb   195 11/28/2015   11:40:35 AM11/28/2015   11:40:35 AM



196 CHAPTER 8

Directory.Read.All (was Directory.Read)
As the name implies, obtaining this permission allows one application to read via the Graph API (I’ll 
stop saying that; just assume that’s what you use to interact with the directory) the content of the 
directory tenant of the user that is currently signed in. 

Here’s the fi rst exception. In the general case, Directory.Read is an admin-only permission: 
only an admin user can consent to it. However, if the application is a web app (as opposed to a native 
 client) defi ned in tenant A, and the user being prompted for consent is also from A, Directory.
Read behaves like a User-type permission, which is to say that even a nonadmin user can consent 
to it. For the scenario we have been considering until now—app developer and app users are from 
the same tenant—this is effectively a User-type permission. When we consider the case in which the 
app is available to other tenants, you’ll see that an app created in A that is requesting Directory.
Read and being accessed by a user from B will be provisioned in B only if that user happens to be an 
 administrator.

Directory.ReadWrite.All (was Directory.Write)
Once again, the name is self-explanatory: this permission grants to the app the ability to read, modify, 
and create directory data. No exceptions this time; only administrator users can consent to Direc-
tory.Write.  

Directory.AccessAsUser.All (was user_impersonation)
This permission, which today is surfaced in the Azure portal under the label “Access the directory 
as the signed-in user,” allows the application to impersonate the caller when accessing the direc-
tory, inheriting his or her permissions. That is a pretty powerful thing to do, which is why for web 
 applications this permission can be granted only by an admin user. 

As a side note, for native applications, this permission behaves like a User permission instead. A 
native app does not have an identity per se, and it is already doing the direct user’s bidding anyway. 
It stands to reason that the app should be able to do what the user is able to do, just as happens 
on-premises when a classic native client (say Word or Excel) can or cannot open a document from a 
network share depending on whether the user has the correct permissions on that folder. 

User.ReadBasic.All
You can think of this permission as the minimum requirement allowing an app to enumerate all users 
from a tenant. Namely, User.ReadBasic.All will give access to the user attributes displayName, 
givenName, surname, mail and thumbnailPhoto. Anything beyond that requires higher permissions.

User.Read.All
This is an extension of User.ReadBasic.All. This permission allows an app to access all the 
 attributes of User, the navigation properties manager, and directReports. User.Read.All can be 
exercised only by admin users.

ModernAuth_PrintBook_Final.indb   196ModernAuth_PrintBook_Final.indb   196 11/28/2015   11:40:35 AM11/28/2015   11:40:35 AM



 Azure Active Directory application model 197

Group.Read.All, Group.ReadWrite.All
These new permissions are still in preview at this point, so I hesitate to give too detailed a  description 
here. The idea is that groups and group membership are important information and deserve their 
own permissions so that access can be requested and granted explicitly. Group.Read.All allows an 
app to read the basic profi le attributes of groups and the groups they are a member of. Group.Read-
Write.All allows an app to access the full profi le of groups and to change the hierarchy by creating 
new groups and updating existing ones. Both permissions alone won’t grant access to the users in the 
groups—to obtain that, the app also needs to request some User.Read* permission.

As usual, it’s important to remember that scopes don’t really add to what a user can do: an 
 application obtaining Group.ReadWrite.All will only be able to manipulate the groups owned by 
the user granting the delegation to the app.

Table 8-1 summarizes how the out-of-the-box Azure AD permissions work. I’ve added a column for 
the permission identifi er, which I fi nd handy so that when I look at the Application object, which 
uses only opaque IDs, I know what permission the app is actually requesting. Let me stress that there’s 
no guarantee these won’t change in the future, so please use them advisedly.

TABLE 8-1 A summary of the Azure AD permissions for accessing the directory.

Permission description in 
the Azure portal

Identifi er Scope value Type

Sign in and read user profi le 311a71cc-e848-46a1-bdf8-
97ff7156d8e6

User.Read User

Read directory data 5778995a-e1bf-45b8-affa-
663a9f3f4d04

Directory.Read.All Admin (except for users 
from the tenant where the 
Application is defi ned)

Read and write directory data 78c8a3c8-a07e-4b9e-af1b-
b5ccab50a175

Directory.
ReadWrite.All

Admin

Access the directory as the 
signed-in user

a42657d6-7f20-40e3-b6f0-
cee03008a62a

Directory.
AccessAsUser.All

Admin (except native clients)

Read all users’ basic profi les cba73afc-7f69-4d86-8450-
4978e04ecd1a

User.ReadBasic.All User

Read all users’ full profi les c582532d-9d9e-43bd-a97c-
2667a28ce295

User.Read.All Admin

Read all groups 6234d376-f627-4f0f-90e0-
dff25c5211a3

Group.Read.All Admin

Read and write all groups 970d6fa6-214a-4a9b-8513-
08fad511e2fd

Group.ReadWrite.All Admin

Now that you have some permissions to play with, let’s get back to the exploration of how consent 
operates.

Application requesting admin-level permissions
Let’s say that your application needs the ability to modify data in the directory. You might be sur-
prised to learn that you can create such an application even with a nonadmin user: you’ll simply not 
be able to use it at run time.

ModernAuth_PrintBook_Final.indb   197ModernAuth_PrintBook_Final.indb   197 11/28/2015   11:40:35 AM11/28/2015   11:40:35 AM



198 CHAPTER 8

Note If you are keeping track of the identifi ers in the JSON, technically I could modify the 
app we’ve been working on so far, but for the sake of clarity I’ll create a new one.

Go back to the Azure portal, sign in as a nonadmin user, and go through the usual application 
creation fl ow. Once the app is created, head to the Confi gure tab and scroll all the way to the  bottom 
of the page. As of today, you’ll fi nd a section labeled Permissions To Other Applications, already 
 containing one entry for Azure Active Directory—specifi cally, the default delegated permission Sign 
In And Read User Profi le. Figure 8-5 shows you the UI at the time of writing, but as usual you can be 
sure there will be something different (but I hope functionally equivalent) by the time you pick up 
the book.

FIGURE 8-5 The application permission selection UI in the Azure portal (fall 2015).

You’ll also see an ominous warning: “You are authorized to select only delegated permissions 
which have personal scope.” Today that isn’t actually the case. Select Read And Write Directory Data, 
and then click Save.

You’ll receive a warning that the portal was unable to update the confi guration for the app, but 
that’s only partially true. If you go take a look at the Application, you’ll see that it was correctly 
updated. Here is its requiredResourceAccess section:

"requiredResourceAccess": [
{
  "resourceAppId": "00000002-0000-0000-c000-000000000000",
  "resourceAccess": [
    {
      "id": "78c8a3c8-a07e-4b9e-af1b-b5ccab50a175",
      "type": "Scope"
    },
    {
      "id": "311a71cc-e848-46a1-bdf8-97ff7156d8e6",
      "type": "Scope"
    }
  ]
}

ModernAuth_PrintBook_Final.indb   198ModernAuth_PrintBook_Final.indb   198 11/28/2015   11:40:35 AM11/28/2015   11:40:35 AM



 Azure Active Directory application model 199

Thanks to our magical Table 8-1, we know those to be the correct permissions.

The part that the portal was not able to add was the oauth2PermissionGrant that would allow 
the current (nonadmin) user to have write access to the directory. If you list the oauth2Permission-
Grants of the ServicePrincipal, you’ll fi nd only the original entry for User.Read.

That entry is the reason why, if you try to sign in to the app as the user who created it, you will suc-
ceed: the directory sees that entry, and that’s enough to not show the consent prompt and issue the 
requested token. However, if after you sign in, your app attempts to get a token for calling the Graph, 
the operation would fail. 

If you launch the application again and try to sign in as any other nonadmin user, instead of the 
consent prompt you’ll receive an error along the lines of “AADSTS90093: Calling principal cannot 
consent due to lack of permissions,” which is exactly what you should expect.

Finally, launch the app again and try to sign in as an administrator. You will be presented with the 
consent page as in Figure 8-6, just as expected.

FIGURE 8-6 The consent prompt presented to an admin user.

Grant the consent—you’ll fi nd yourself signed in to the application. That done, take a look at what 
changed in oauth2PermissionGrants:

ModernAuth_PrintBook_Final.indb   199ModernAuth_PrintBook_Final.indb   199 11/28/2015   11:40:35 AM11/28/2015   11:40:35 AM



200 CHAPTER 8

{
  "odata.metadata": "https://graph.windows.net/developertenant.onmicrosoft.com/$metadata#oauth2
PermissionGrants",
  "value": [
    {
      "clientId": "725a2d9a-6707-4127-8131-4f9106d771de",
      "consentType": "Principal",
      "expiryTime": "2016-02-26T18:17:06.8442687",
      "objectId": "mi1acgdnJ0GBMU-RBtdx3knIMYJNhOpOkFrsIuF86Y_VUmVPfKg_R6aK4EVKgQSW",
      "principalId": "4f6552d5-a87c-473f-a68a-e0454a810496",
      "resourceId": "8231c849-844d-4eea-905a-ec22e17ce98f",
      "scope": "Directory.Write UserProfile.Read",
      "startTime": "0001-01-01T00:00:00"
    },
    {
      "clientId": "725a2d9a-6707-4127-8131-4f9106d771de",
      "consentType": "Principal",
      "expiryTime": "2016-02-26T00:50:43.3860871",
      "objectId": "mi1acgdnJ0GBMU-RBtdx3knIMYJNhOpOkFrsIuF86Y9KENMTkWjSRaS-glgajkZb",
      "principalId": "13d3104a-6891-45d2-a4be-82581a8e465b",
      "resourceId": "8231c849-844d-4eea-905a-ec22e17ce98f",
      "scope": "UserProfile.Read",
      "startTime": "0001-01-01T00:00:00"
    }
  ]
}

There’s a new entry now, representing the fact that the admin user consented for the app to have 
UserProfile.Read and Directory.Write permissions. As discussed earlier, by the time you read 
this, those scopes will likely have their new values—User.Read and Directory.ReadWrite.All—
but it is really exactly the same semantic.

Note that this did not change the access level for anybody but this particular admin user. If you try 
to sign in as a nonadmin user (other than the app's creator), you’ll still get error AADSTS90093. 

Admin consent
If the consent styles you’ve encountered so far were the only ones available, you’d have a couple of 
serious issues:

 ■ Each and every user, apart from the application developer, would need to consent upon their 
fi rst use of the app.

 ■ Only admin-level users would be able to consent for applications requiring more advanced 
access to the directory, even when a user did not plan to exercise those higher privileged 
capabilities. 

Both issues would limit the usefulness of Azure AD. Luckily, there’s a way of consenting to applica-
tions that results in a blanket grant to all users of a tenant, all at once, and regardless of the access 
level requested. That mechanism is known as admin consent, as opposed to user consent, which 
you’ve been studying so far. Achieving admin consent is just a matter of appending to the request to 
the authorization endpoint the parameter prompt=admin_consent.

ModernAuth_PrintBook_Final.indb   200ModernAuth_PrintBook_Final.indb   200 11/28/2015   11:40:35 AM11/28/2015   11:40:35 AM



 Azure Active Directory application model 201

Scopes can’t grant to the app more power than their user has!
I want to make sure you don’t fall for a common misconception here. Scopes are a way of del-
egating to the app some of the capabilities of their current user. In the most extreme case, this 
means that an app can be as powerful as its current user (full user impersonation). What can 
never happen via delegated permissions is that an app can do more than what its user can. If a 
user cannot write to the directory, the fact that the app obtains Directory.ReadWrite.All 
does not mean that such user can now use the app for writing to the directory! What that scope 
really means is that if the current user of the app has that capability, the app has that capability, 
too. If the user does not have that capability, he or she cannot delegate it to the application. As 
you will see later, applications can have their own permissions (as opposed to delegated permis-
sions) that are independent from their current user and that can be used when the app needs to 
perform things that would not normally be within the possibilities of its users.

Let’s give it a try and see what happens. From Chapter 7, you now know how to modify authentica-
tion requests by adding the change you want to the RedirectToIdentityProvider notifi cation. In 
a real app, you would add some conditional logic to weave this parameter in only at the time of fi rst 
access, but for this test you can go with the brute-force solution in which you add it every time.

Important Here I am adding Prompt=admin_consent in the sign-in request for the sake 
of simplicity, but you would never do that in a production application without at least 
some conditional logic. In fact, more often than not, you would not include it in the sign-in 
action but wire it up to a dedicated sign-up action instead. Including Prompt=admin_con-
sent in a request will result in the consent being shown to the user, regardless of the past 
consent history. You want to show this only when needed, and that’s only the fi rst time. 
Wire it up to some specifi c action in your app, like sign-up, onboarding, or any other label 
that makes sense for your application.

Here’s the code:

public static Task RedirectToIdentityProvider(RedirectToIdentityProviderNotification<OpenIdConn
ectMessage,
    OpenIdConnectAuthenticationOptions> notification)
{
    notification.ProtocolMessage.Prompt = "admin_consent";
    return Task.FromResult(0);
}

After you’ve added that code, hit F5 and try signing in. You will be prompted by a dialog similar to 
the one shown in Figure 8-7.

ModernAuth_PrintBook_Final.indb   201ModernAuth_PrintBook_Final.indb   201 11/28/2015   11:40:35 AM11/28/2015   11:40:35 AM



202 CHAPTER 8

FIGURE 8-7 The admin consent dialog.

Superfi cially, the dialog in Figure 8-7 looks a lot like the one shown in Figure 8-6, but there is a 
very important difference! The dialog shown when admin consent is triggered has new text, which 
articulates the implications of granting consent in the admin consent case: “If you agree, this app 
will have access to the specifi ed resources for all users in your organization. No one else will be 
 prompted.”

Click OK—you’ll end up signing in as usual. The app will look the same, but its entries in the 
 directory underwent a signifi cant change. Once again, take a look at the ServicePrincipal’s 
 oauth2PermissionGrants:

{
  "odata.metadata": "https://graph.windows.net/developertenant.onmicrosoft.com/$metadata#oauth2
PermissionGrants",
  "value": [
    {

      "clientId": "725a2d9a-6707-4127-8131-4f9106d771de",

      "consentType": "AllPrincipals",

      "expiryTime": "2016-02-27T00:38:03.4045842",

      "objectId": "mi1acgdnJ0GBMU-RBtdx3knIMYJNhOpOkFrsIuF86Y8",

      "principalId": null,

      "resourceId": "8231c849-844d-4eea-905a-ec22e17ce98f",

      "scope": "Directory.Write UserProfile.Read",

      "startTime": "0001-01-01T00:00:00"

    },

ModernAuth_PrintBook_Final.indb   202ModernAuth_PrintBook_Final.indb   202 11/28/2015   11:40:35 AM11/28/2015   11:40:35 AM



 Azure Active Directory application model 203

    {
      "clientId": "725a2d9a-6707-4127-8131-4f9106d771de",
      "consentType": "Principal",
      "expiryTime": "2016-02-26T18:17:06.8442687",
      "objectId": "mi1acgdnJ0GBMU-RBtdx3knIMYJNhOpOkFrsIuF86Y_VUmVPfKg_R6aK4EVKgQSW",
      "principalId": "4f6552d5-a87c-473f-a68a-e0454a810496",
      "resourceId": "8231c849-844d-4eea-905a-ec22e17ce98f",
      "scope": "Directory.Write UserProfile.Read",
      "startTime": "0001-01-01T00:00:00"
    },
    {
      "clientId": "725a2d9a-6707-4127-8131-4f9106d771de",
      "consentType": "Principal",
      "expiryTime": "2016-02-26T00:50:43.3860871",
      "objectId": "mi1acgdnJ0GBMU-RBtdx3knIMYJNhOpOkFrsIuF86Y9KENMTkWjSRaS-glgajkZb",
      "principalId": "13d3104a-6891-45d2-a4be-82581a8e465b",
      "resourceId": "8231c849-844d-4eea-905a-ec22e17ce98f",
      "scope": "UserProfile.Read",
      "startTime": "0001-01-01T00:00:00"
    }
  ]
}

Note As I mentioned earlier in this chapter, Directory.Write and UserProfile.Read will 
change to Directory.ReadWrite.All and User.Read.

I highlighted the new entry for you: it has a consentType of AllPrincipals, as opposed to the 
usual Principal. Furthermore, its principalId property does not point to any user in particular; 
it just says null. This tells Azure AD that the application has been granted a blanket consent for any 
user coming from the current tenant. To prove that this is really the case, sign out from the app, stop 
it in Visual Studio, comment out the code you added for triggering admin consent, and start the app 
again. Sign in as a third user from the same tenant, one that you have never used before with this 
app. Figure 8-8 shows a visual summary of this oauth2PermissionGrant confi guration.

ModernAuth_PrintBook_Final.indb   203ModernAuth_PrintBook_Final.indb   203 11/28/2015   11:40:36 AM11/28/2015   11:40:36 AM



204 CHAPTER 8

FIGURE 8-8 An oauth2PermissionGrant recording admin consent enables the app to operate with the 
 requested scope with all users of a tenant at once.

After the credential gathering, you’ll fi nd yourself signed in right away, with no consent prompt of 
any form.

Application created by an admin user
What happens when you sign in to the Azure portal as an admin user and you create an app in Azure 
AD? The portal creates the same list of entities: an Application, its ServicePrincipal, and an 
oauth2PermissionGrant. The difference from the nonadmin case is that the oauth2Permission-
Grant for an app created by an admin looks exactly like the one you observed as an outcome of the 
admin consent fl ow: it includes consentType allPrincipals, which means that every user in the 
tenant can instantly get access to the application.

Note The creation of the ServicePrincipal and the associated grant is at the origin 
of the peculiar behavior of native apps created via the Azure portal by an admin. That is 
the only case in which a native app does not trigger consent for all users in a tenant. In 
all  other cases, Azure AD today does not record consent for native apps in the directory, 
storing it in the refresh token instead—which means that each new native app instance 
running on a different device will prompt its user for consent regardless of its past consent 
history. This is really out of scope for this book, but given that you have the concept fresh 
in your mind, I thought I’d share this tidbit.

ModernAuth_PrintBook_Final.indb   204ModernAuth_PrintBook_Final.indb   204 11/28/2015   11:40:36 AM11/28/2015   11:40:36 AM



 Azure Active Directory application model 205

Multitenancy
How to develop apps that can be consumed by multiple organizations is such a large topic that for 
some time I wondered whether I should devote an entire chapter to it. I ultimately decided against 
that. Even if this is going to be a very large section, it still is a logical extension of what you have been 
studying so far in this chapter.

The fi rst part of this section will discuss how Azure AD enables authentication fl ows across multiple 
tenants, and how you can generalize what you have learned about confi guring the Katana middle-
ware to the case in which users are sourced from multiple organizations.

The second part will go back to the application model proper, showing you what happens to the 
directory data model when your app triggers consent fl ows across tenants.

Azure AD as a parametric STS: The common endpoint
Ironically, if you are a veteran of federation protocols, you are at the highest risk of misunderstand-
ing how Azure AD handles multitenancy. The approach taken here is very different from the classic 
 solutions that preceded it, and I have to admit that I myself needed some time to fully grok it.  

In traditional claims-based protocols such as SAML and WS-Federation, the problem of  enabling 
access to one application from multiple IdPs has a canonical solution. It entails introducing one 
 intermediary STS (often referred to as resource STS, R-STS or RP-STS) as the authority that the 
 application trusts. In turn, the intermediate STS trusts all the IdPs that the application needs to 
work with—assuming the full burden of establishing and maintaining trust, implementing whatever 
protocol quirks each IdP demands. This is a very sensible approach, which isolates the application 
itself from the complexities of maintaining relationships with multiple authorities. It is also likely the 
best approach when you don’t know anything about the IdPs you want to connect to, apart from the 
 protocol they implement and the STS metadata they publish. ADFS, Azure Access Control Services 
(ACS), and pretty much any STS implementation supports this approach.

If you restrict the pool of possible IdPs to only the ones represented by a tenant in Azure AD, 
however, you have far more information than that, and as you’ll see in the following, this removes the 
need to have an intermediary in the picture. Although each administrator retains full control over her 
or his own tenant, all tenants share the same infrastructure—same protocols, same data model, same 
provisioning pipes. Focusing on endpoints in particular (recall their description from Chapter 3), rather 
than a collection of STSs for each of its tenants, Azure AD can be thought of like a giant  parametric 
STS, where each tenant is expressed by instantiating its ID in the right segment of the issuance 
 endpoint. Figure 8-9 compares the R-STS approach with the multitenant pattern used by Azure AD.

ModernAuth_PrintBook_Final.indb   205ModernAuth_PrintBook_Final.indb   205 11/28/2015   11:40:36 AM11/28/2015   11:40:36 AM



206 CHAPTER 8

FIGURE 8-9 The R-STS brokered trust pattern and the parametric STS pattern. Besides allowing for directory 
 queries that would be impossible via federation alone, the latter makes it possible to automate application 
 provisioning and trust establishment.

In the hands-on chapters, you've experienced directly how the endpoint pattern https://<instance>
/<tenant>/<protocol-specifi c-path> can be modulated to indicate tenant-specifi c token-issuance 
 endpoints, sign-out endpoints, metadata document endpoints, and so on. You have also seen how 
the Katana middleware leverages those endpoints for tying one application to one specifi c  tenant. 
For example, in Chapter 6 you saw how the metadata document published at https://login
. microsoftonline.com/DeveloperTenant.onmicrosoft.com/.well-known/openid-confi guration (which, 

ModernAuth_PrintBook_Final.indb   206ModernAuth_PrintBook_Final.indb   206 11/28/2015   11:40:36 AM11/28/2015   11:40:36 AM



 Azure Active Directory application model 207

by the way, is equivalent to https://login.microsoftonline.com/6c3d51dd-f0e5-4959-b4ea-a80c4e-
36fe5e/.well-known/openid-confi guration, where the GUID is the corresponding tenantID)  asserts that 
tokens issued by that tenant will carry an iss(uer) claim value of https://sts.windows.net/6c3d51dd-
f0e5-4959-b4ea-a80c4e36fe5e/. In Chapter 7, you saw how that information is used by the Katana 
middleware to ensure that only tokens coming from that tenant (that is, carrying that iss value) will 
be accepted. That’s all well and good, and exactly what you want for line-of-business applications and 
single-tenant apps in general.

You can repeat the same reasoning for all tenants: all you need to do is instantiate the right 
 domain (or tenantID) in the endpoints paths.

Azure AD makes it possible to deal with multitenant scenarios by exposing a particular endpoint, 
where the tenant parameter is not instantiated up front. There is a particular value, common, that can 
be instantiated in endpoints in lieu of a domain or tenantID. By convention, that value tells Azure AD 
that the requestor is not mandating any particular tenant—any Azure AD tenant will do. 

Very important: Common is not a tenant. It is just an artifact used for constructing Azure 
AD endpoints when the tenant to be used is not known yet. This is a crucial point to keep 
in mind at all times when working with multitenant solutions, or you’ll end up baking as-
sumptions into your app that will inevitably turn out to be false and create all sorts of is-
sues that are hard to debug.

When the endpoint being constructed is one that would serve authentication UI, as is the case 
for the OAuth2 authorization endpoints, the user is presented with a generic Azure AD credentials- 
gathering experience. As the user enters his or her credentials, the account he or she chooses 
will  indirectly determine a specifi c tenant—the one the account belongs to. That will resolve the 
 ambiguity about which tenant should be used for the present transaction, concluding the role 
of common in the fl ow. The resulting code or token will look exactly as it would have had it been 
 obtained by specifying the actual tenant instead of common to begin with. In other words, whether 
you start the authentication fl ow using https://login.microsoftonline.com/common/oauth2/authorize 
or https://login.microsoftonline.com/6c3d51dd-f0e5-4959-b4ea-a80c4e36fe5e/oauth2/authorize 
for an OpenID Connect sign-in fl ow, if at run time you sign in with a user from the tenant with ID 
6c3d51dd-f0e5-4959-b4ea-a80c4e36fe5e, the resulting token will look the same, with no memory 
of what endpoint path led to its issuance. That should make it even clearer that common is not a real 
 tenant: it’s just an endpoint sleight of hand for late binding a tenant, if you will.

Now comes the fun part. Upon learning about the common endpoint, the typical (and healthy) 
 developer reaction is “Awesome! Let me just change the OpenID Connect middleware options as 
shown here, and I’ll be all set!”

app.UseOpenIdConnectAuthentication(
    new OpenIdConnectAuthenticationOptions
    {
        ClientId = "c3d5b1ad-ae77-49ac-8a86-dd39a2f91081",
        Authority = "https://login.microsoftonline.com/common",

ModernAuth_PrintBook_Final.indb   207ModernAuth_PrintBook_Final.indb   207 11/28/2015   11:40:36 AM11/28/2015   11:40:36 AM



208 CHAPTER 8

Let’s say that you do just that, and then you hit F5 and, just for testing purposes, use the same 
account you used successfully earlier—the one from the same tenant where the app was defi ned 
in the fi rst place. Well, if you do that—surprise! The app won’t work. Sure, upon sign-in you will be 
 presented with your credential-gathering and consent experience, but the app won’t accept the 
 issued token. If you dig in a bit, as you learned in Chapter 7, you’ll discover that the token failed the 
issuer validation test.

Recall the id_token validation logic from Chapter 7, and the comment about how the discovery 
document of each tenant establishes what iss value an app should expect. If your app is initialized 
with a tenant-specifi c endpoint, it will read from the metadata the tenant-specifi c issuer value to 
expect; but if it is initialized with common, what issuer value is it going to get? I’ll save you the hassle 
of visiting https://login.microsoftonline.com/common/.well-known/openid-confi guration yourself: 
the discovery doc says “issuer”: “https://sts.windows.net/{tenantid}/”. No real tenant will ever issue a 
token with that value, given that it’s just a placeholder, but the middleware does not know that. That’s 
the value that the metadata asserts is going to be in the iss claim, and the default logic will refuse 
anything carrying a different value.

Note What about all the other values in the discovery doc? Issuer is the only problematic 
one, everything else (including keys, as you have seen in Chapter 6) is shared by all tenants.

This simply means that the default validation logic cannot work in case of multitenancy. What 
should you do instead? You already saw the main strategies for dealing with this in Chapter 7, 
 although at the time I could not fully discuss the multitenant case. I recommend that you leaf back 
a few pages to get all the details, but just to summarize the key points here:

 ■ If you have your own list of tenants that your application should accept, you have two main 
approaches. If the list is short and fairly static, you can pass it in at initialization time via 
TokenValidationParameters.ValidIssuers. If the list is long and dynamic, you can 
 provide an implementation for TokenValidationParameters.IssuerValidator where 
you accommodate for whatever logic is appropriate for your case.

 ■ If the decision about whether the caller should be allowed to get through is not strictly tied 
to the tenant the caller comes from, you can turn off issuer validation altogether by setting 
TokenValidationParameters.ValidateIssuer to false. You should be sure that you do 
add your own validation logic; for example, in the SecurityTokenValidated notifi cations 
or even in the app (custom authorization fi lters, etc.). Otherwise, your app will be completely 
open to access by anybody with a user in Azure AD. There are scenarios where this might be 
what you want, but in general, if you are protecting your app with authentication, that means 
that you have something valuable to gate access to. In turn, that might call for you to verify 
whether the requestor did pay his monthly subscription or whatever other monetization 
 strategy you are using—and usually that verifi cation boils down to checking the issuer or the 
user against your own subscription list.

Now that you know how Azure AD multitenancy affects the application’s code, I’ll go back to how 
consent, provisioning, and the data model are infl uenced.

ModernAuth_PrintBook_Final.indb   208ModernAuth_PrintBook_Final.indb   208 11/28/2015   11:40:36 AM11/28/2015   11:40:36 AM



 Azure Active Directory application model 209

Consenting to an app across tenants
The section about the Application object earlier in this chapter, and specifi cally the explanation 
of the availableToOtherTenants property, already anticipated most of what you need to know 
about creating multitenant applications. All apps are created for being used exclusively within their 
own tenant, and only a tenant admin can promote an app to be available across organizations. Today, 
this is done by fl ipping a switch labeled “Application is multi-tenant” on the Confi guration page of the 
application on the Azure portal, and this has the effect of setting the availableToOtherTenants 
app property to true. Also, an app is required to have an App ID Uri (one of the elements in the 
 identifierUris collection in the Application object) whose host portion corresponds to 
a  domain registered for the tenant. In the sample I have been using through the last couple of 
 chapters, that means that you’d need to set the App ID Uri to something like https://developertenant
. onmicrosoft.com/MarioApp1. 

Let’s say that you signed in to the Azure portal and modifi ed your app entry to be multitenant. 
Let’s also say that you modifi ed your app code to correctly handle the validation for tokens coming 
from multiple organizations. Let’s give the app a spin by hitting F5.

Note If you promote the app you have been using in this chapter until now, be sure to 
comment out the logic that triggers the admin consent (for now). Consequently, make sure 
also that the app does not request any admin-only permissions.

In case you did not code your validation logic yet
If you are just experimenting and didn’t set up your multitenant validation code yet, here’s the 
code you can use for turning off issuer validation while you play with the walk-through in this 
chapter: 

   app.UseOpenIdConnectAuthentication(
    new OpenIdConnectAuthenticationOptions
    {
     ClientId = "c3d5b1ad-ae77-49ac-8a86-dd39a2f91081",
     Authority = "https://login.microsoftonline.com/common",
     TokenValidationParameters = new System.IdentityModel.Tokens.TokenValidationParameters
     {

       ValidateIssuer = false,

      },

I cannot stress this enough: you should not go into production with the issuer validation 
logic disabled unless you have also added your own validation.

Once the app is running, click the Sign In link, but this time sign in with a user from a different 
Azure AD tenant. As explained in Chapter 3, in the section “Getting Azure Active Directory,” any 
Azure subscriber can create a number of Azure AD tenants, create users and apps in them, and so 
on. If you belong to a big-ish organization, you likely already did this in creating your development 

ModernAuth_PrintBook_Final.indb   209ModernAuth_PrintBook_Final.indb   209 11/28/2015   11:40:36 AM11/28/2015   11:40:36 AM



210 CHAPTER 8

tenant, as that’s the best way of experimenting with admin-only features. If you already have a second 
tenant and an account in it, great! If you don’t, create one tenant, create a user in it, then come back 
and pick up the fl ow from here.

Upon successful sign-in, you’ll be presented with the consent page. As you can see in Figure 8-10, 
the consent page presents some important differences from the single-tenant case. For one, the ten-
ant where the Application object was originally created is prominently displayed as the publisher. 
Moreover, there’s now text telling you to consider whether you trust the publisher of the applica-
tion. This is serious stuff—if you give consent to the wrong application for the wrong permissions, 
the damage to your own organization could be severe. That’s why only admins can publish apps for 
multiple organizations, and that’s why even the simple Directory.Read permission requires admin 
consent when it’s requested by a multitenant app.

FIGURE 8-10 The consent prompt for a multitenant page.

At the beginning of this chapter, you encountered a description of what happens in the  tenants 
for this exact consent scenario: the Application object in the original development tenant is 
used as a blueprint for creating a ServicePrincipal in the target tenant. In fact, if you query 
the  Applications collection in the target tenant (you’ll learn how to do this in the next chapter), 
you’ll fi nd no entries with the ClientId of your application—but you will fi nd a ServicePrincipal 
with that ClientId. From what you have learned a few pages ago, you know that if you look into the 
 collection of oauth2PermissionGrants for that ServicePrincipal, you will fi nd an entry record-
ing the consent of that particular user for this app and the permissions it requires. The principles of 
admin consent apply here as well: if you want the admin of your prospective customer tenants to be 
able to grant a blanket consent for all of his or her users, provide a way for your app to trigger an 
admin consent request.

ModernAuth_PrintBook_Final.indb   210ModernAuth_PrintBook_Final.indb   210 11/28/2015   11:40:36 AM11/28/2015   11:40:36 AM



 Azure Active Directory application model 211

Changing consent settings
I touched on this earlier, but it’s worth stressing that the list of permissions an app requires isn’t very 
dynamic. More concretely, say that your application initially declares a certain list of permissions in its 
requiredResourceAccess, and some users in a few tenants consent to it. Say that after some time 
you decide to add a new permission. That change in the Application object in your development 
tenant will not affect the existing oauth2PermissionGrants attached to the ServicePrincipals 
that have been created at consent time. With this version of Azure AD, the only way of refl ecting the 
new permission set for a given app in a tenant is to revoke the existing consent (typically done by the 
user visiting myapps.microsoft.com, the Offi ce 365 portal, or any other means that might be available 
when you read this book) and ask for consent again.

This is less than ideal, especially if you consider that Azure AD offers you no way of warning your 
users that something changed—you have to handle that in your own app or subscription logic. The 
good news is that the next version of the Azure AD application model will allow for dynamic consent, 
solving this issue once and for all.

The last section discussed at length the consent framework used for driving delegated permissions 
assignment to applications. That is a super important aspect of managing application capabilities, 
but it is far from the only one. The next section will continue to explore how Azure AD helps you to 
control how users and applications have access to the directory itself, and to each other.

App user assignment, app permissions, and app roles

This section describes a set of Azure AD features that seem unrelated but are in fact all implemented 
through the same primitive: the role. Here’s the list of features I’ll cover.

 ■ App user assignment The ability to explicitly defi ne which users should be allowed to get a 
token for a certain application, at the exclusion of everybody else.

 ■ App-level permissions The ability to expose (and request) permissions that can be assigned 
to applications themselves, as opposed to the users of the apps.

 ■ App roles The ability for developers to defi ne application-specifi c roles, which can be used 
by administrators to establish in which capacity users can access an application.

All these features give you even more control over who can access your application and how. 

App user assignment
By default, every user in a tenant can request a token from any app. Whether the requested token 
will actually be issued depends on the outcome of user authentication, consent, and considerations of 
user versus admin permissions, as I’ve discussed in the preceding sections.

ModernAuth_PrintBook_Final.indb   211ModernAuth_PrintBook_Final.indb   211 11/28/2015   11:40:36 AM11/28/2015   11:40:36 AM



212 CHAPTER 8

Azure AD offers the possibility for an administrator to restrict access to one application to a spe-
cifi c set of handpicked accounts. In terms of today’s experience, an administrator can navigate to the 
Azure management portal at https://manage.windowsazure.com, select the target tenant, navigate to 
the appropriate app entry, select the Confi gure tab, and fl ip the setting for “User assignment required 
to access app” to On.

Given that this feature is related to specifi c instances of the app in specifi c tenants, the knobs 
used to control it are not in the Application object but in the ServicePrincipal and associated 
entities in the target tenant. You already encountered the ServicePrincipal property appRole-
AssignmentRequired: fl ipping the switch in the portal has the effect of setting this property to true.

The Users tab in the application entry in the Azure portal lists all the users that are assigned to the 
application. From now on, no user not on that list can successfully request a token for the application. 
If you fl ip the switch for one of the apps you’ve been playing with in the preceding section, you’ll see 
that all the users that already gave consent for the app are present in the list. Every time a user gives 
consent to the app, Azure AD adds an entry to a list of AppRoleAssignment, an entity I haven’t yet 
discussed. Here’s how one typical entry looks:

{
      "odata.type": "Microsoft.DirectoryServices.AppRoleAssignment",
      "objectType": "AppRoleAssignment",
      "objectId": "Bkp-sDgT4kq5a-YB4HMf2q2NyOTf4hpKhVKXXQHxMhA",
      "deletionTimestamp": null,
      "creationTimestamp": "2015-09-06T08:53:30.1974755Z",
      "id": "00000000-0000-0000-0000-000000000000",
      "principalDisplayName": "Vittorio Bertocci",
      "principalId": "b07e4a06-1338-4ae2-b96b-e601e0731fda",
      "principalType": "User",
      "resourceDisplayName": "MarioApp1",
      "resourceId": "725a2d9a-6707-4127-8131-4f9106d771de"
    }

That entry declares that the user Vittorio Bertocci (identifi ed by its objectId b07e4a06-
1338-4ae2-b96b-e601e0731fda) can have access to the app MarioApp1 (object ID of the app’s 
 ServicePrincipal being 725a2d9a-6707-4127-8131-4f9106d771de) in the capacity of role 
00000000-0000-0000-0000-000000000000.

This is where the role of Role (pun intended) comes into play. As you will see later, Azure AD allows 
developers to defi ne application-specifi c roles. The AppRoleAssignment entity is meant to track that 
a certain app role has been assigned to one user for a certain app. What you are discovering here is 
that Azure AD uses AppRoleAssignment also for tracking app user assignments—but in this case, 
Azure AD automatically sets in the AppRoleAssignment a default role, 00000000-0000-0000-0000-
000000000000. It’s as simple as that.

One notable property of AppRoleAssignment is principalType. The sample entry here has the 
value User, indicating that the entity being assigned the role is a user account. Other possible values 
are Group (in which case, all the members of the group are assigned the role) or ServicePrincipal 
(in which case, the role is being assigned to another client application).

ModernAuth_PrintBook_Final.indb   212ModernAuth_PrintBook_Final.indb   212 11/28/2015   11:40:37 AM11/28/2015   11:40:37 AM



 Azure Active Directory application model 213

If you use the Azure portal to assign more users to the app, you’ll see corresponding new 
 AppRoleAssignment entries appearing in the application. By the way, the query I used for 
getting the list of AppRoleAssignments for my app is:

https://graph.windows.net/developertenant.onmicrosoft.com/servicePrincipals/725a2d9a-6707-4127-
8131-4f9106d771de/appRoleAssignedTo.

Just for kicks, try to access your application with a user that has not been assigned. Instead of the 
usual consent dialog, you’ll get back a lovely error along the lines of:

“error=access_denied&error_description=AADSTS50105: The signed in user ‘fabio@
developertenant.onmicrosoft.com’ is not assigned to a role for the application ‘developertenant.
onmicrosoft.com’.”

The behavior described in this section is what you would observe if your application didn’t defi ne 
any app roles. In the next section, I’ll explore app roles in more depth.

App roles
Azure AD allows developers to defi ne roles associated with an application. Traditionally, roles are 
handy ways of assigning collections of permissions to a bunch of users all at once: for example, 
people in a hypothetical Approver role might have read/write access to a certain set of resources, 
while people in the Reviewer role might have only read access to the same resources. Roles are handy 
because assigning a user to a role saves you the hassle of adding all the permissions a role entails 
one by one. Moreover, when a new resource is added to the milieu, access to that resource can be 
added to the role to enable access to it for all the users already assigned to the role, replacing the 
need to assign access individually, account by account. That said, roles in Azure AD do not necessar-
ily need to represent permissions grouping: Azure AD does not offer you anything for representing 
such  permissions anyway; it is your app’s job to interpret each role. You can use application roles to 
represent any user category that makes sense for your application, like what is the primary spoken 
language of a user. True, there are many other ways of tracking the same info, but one big advantage 
of app roles over any other method is that Azure AD will send them in the form of claims in the token, 
making it extra easy for the app to consume the info they carry.

After you declare application roles, such roles are available to be assigned to users by the 
 administrators of the tenants using your app. Let’s take a look at how that cycle plays out.

The Application entity has one collection, appRoles, which is used for declaring the roles you 
want to associate with your application. As of today, the way in which you populate that property is 
by downloading the app manifest as described in “The Application” section at the beginning of this 
chapter, adding the appropriate entries in appRoles, and uploading it back via the portal. Here is 
what one appRoles collection looks like:

    "appRoles": [
        {
            "allowedMemberTypes": [
                "User"
            ],

ModernAuth_PrintBook_Final.indb   213ModernAuth_PrintBook_Final.indb   213 11/28/2015   11:40:37 AM11/28/2015   11:40:37 AM



214 CHAPTER 8

            "description": "Approvers can mark documents as approved",
            "displayName": "Approver",
            "id": "8F29F99B-5C77-4FBA-A310-4A5C0574E8FF",
            "isEnabled": "true",
            "value": "approver"
        },
        {
            "allowedMemberTypes": [
                "User"
            ],
            "description": "Reviewers can read documents",
            "displayName": "Reviewer",
            "id": "0866623F-2159-4F90-A575-2D1D4D3F7391",
            "isEnabled": "true",
            "value": "reviewer"
        }
    ],

The properties of each entry are mostly self-explanatory, but there are a couple of nontrivial 
points.

The displayName and description strings are used in any experience in which the role is 
 presented, such as the one in which an administrator can assign roles to users.

The value property represents the value that the role claim will carry in tokens issued for  users 
belonging to this role. This is the value that your application should be prepared to receive and 
 interpret at access time.

The id is the actual identifi er of the role entry. It must be unique within the context of this 
 Application.

The allowedMemberTypes property is the interesting one. Roles can be assigned to users, groups, 
and applications. An allowedMemberTypes collection including the entry “User” indicates a role 
that can be assigned to both users and groups. (In the next section, I’ll cover roles assignable to 
 applications.)

Once you have added the roles in the manifest fi le, don’t forget to upload it back via the portal. 

Note Sometimes the upload will fail, unfortunately without a lot of information to help 
you troubleshoot: watch out for silly errors—for example, nonmatching parentheses. I 
 recommend using a syntax-aware JSON editor, which should take care of most issues up 
front.  

If you head back to the Users tab and try to assign a new user to the app like you did in the 
preceding section, you’ll see that you are no longer able to simply declare that you want to assign a 
user to the app: now you are presented with a choice between the various roles you declared in the 
manifest. Assign one of the roles to a random user, and then launch the app and try to sign in with 
that user. 

ModernAuth_PrintBook_Final.indb   214ModernAuth_PrintBook_Final.indb   214 11/28/2015   11:40:37 AM11/28/2015   11:40:37 AM



 Azure Active Directory application model 215

Note Subscribers to Azure AD Premium will also see an experience allowing the 
 assignment of groups. 

If you go back to the appRoleAssignedTo property of the ServicePrincipal and inspect the 
role assignments there, you’ll fi nd the same user assignments from the preceding section, plus a new 
entry for the user you just assigned to a role. It should look something like this:

    {
      "odata.type": "Microsoft.DirectoryServices.AppRoleAssignment",
      "objectType": "AppRoleAssignment",
      "objectId": "9pcRosZaC0a10yoa5r0IwZrIr_JYzUxFtCmlWBYn6w0",
      "deletionTimestamp": null,
      "creationTimestamp": null,
      "id": "8f29f99b-5c77-4fba-a310-4a5c0574e8ff",
      "principalDisplayName": "Fabio Bianchi",
      "principalId": "a21197f6-5ac6-460b-b5d3-2a1ae6bd08c1",
      "principalType": "User",
      "resourceDisplayName": "MarioApp1",
      "resourceId": "725a2d9a-6707-4127-8131-4f9106d771de"
    },

As expected, the id property points to one of the roles just defi ned, as opposed to the default 
00000000-0000-0000-0000-000000000000 used during user assignment.

Launch the app and sign in as the user you just assigned to the role. If you capture the traffi c via 
Fiddler (as you learned about in Chapter 6) and peek at the JWT token sent in the id_token, you’ll 
notice a new roles claim:

{
   "amr" : [ "pwd" ],
   "aud" : "1538b378-5829-46de-9294-6cfb4ad4bbaa",
   "c_hash" : "EOuY-5M5XFxRyNCvRHe8Kg",
   "exp" : 1442740348,
   "family_name" : "Bianchi",
   "given_name" : "Fabio",
   "iat" : 1442736448,
   "iss" : "https://sts.windows.net/6c3d51dd-f0e5-4959-b4ea-a80c4e36fe5e/",
   "name" : "Fabio Bianchi",
   "nbf" : 1442736448,
   "nonce" : "635783335451569467.YzJiYmZjMGUtOWFkMS00NzI3LWJkYjMtMzhiMjE0YjVmNWE0ZDcwZTk3YmY
tNzQ4NC00YjkyLWFiY2YtYWViOWFhNjE0YjFj",
   "oid" : "a21197f6-5ac6-460b-b5d3-2a1ae6bd08c1",
   "roles" : [ "approver" ],
   "sub" : "OpcgG-Rxo_DSCJnuAf_7tdfXp7XaOzpW6pF3x7Ga8Y0",
   "tid" : "6c3d51dd-f0e5-4959-b4ea-a80c4e36fe5e",
   "unique_name" : "fabio@developertenant.onmicrosoft.com",
   "upn" : "fabio@developertenant.onmicrosoft.com",
   "ver" : "1.0"
}

ModernAuth_PrintBook_Final.indb   215ModernAuth_PrintBook_Final.indb   215 11/28/2015   11:40:37 AM11/28/2015   11:40:37 AM



216 CHAPTER 8

From your own application’s code, you can fi nd out the same information through the usual 
ClaimsPrincipal.Current.FindFirst("roles") or, given that this is a multivalue claim, 
FindAll. Once you have the value, you can do whatever the semantic you assigned to the role 
 suggests that your code should do: allow or deny access to the method being called, change 
 environment settings to match the preferences of the caller, and so on. 

If you are using roles for authorization, classic ASP.NET development practices would suggest 
 using [Authorize], <Authorization>, or the evergreen IsInRole(). The good news is that 
they are all an option. The only thing you need to do is tell the identity pipeline that you want to use 
the claim type roles as the source for the role information used by those artifacts. That’s done via 
one  property of TokenValidationParameters, RoleClaimType. For example, you can add the 
 following to your OpenID Connect middleware initialization options:

TokenValidationParameters = new TokenValidationParameters
{
    RoleClaimType = "roles",
}

Azure AD roles are a very powerful tool, which is great for modeling relationships between users 
and the functionality that the app provides. Although the concept is not new, Azure AD roles  operate 
in novel ways. For example, developers are fully responsible for their creation and maintenance, 
while the administrators of the various tenants where the app is provisioned are responsible for 
actually assigning people to them. Also, Azure AD roles are always declared as part of one app—it 
is not possible to create a role and reuse it across multiple applications. There is no counterpart for 
this  on-premises. The closest match is groups, but those have global scope, and a developer has no 
 control over them. Before the end of the chapter, I will also touch on groups in Azure AD.

Application permissions
All the features you encountered in this chapter are meant to give you control over how users have 
access to your app and how users can delegate your app to access other resources for them. 

In some situations you want to be able to confer access rights to the application itself, regardless 
of what user account is using the app, or even when the app is running without any currently signed-
in user. For example, imagine a long-running process that performs continuous integration—an app 
updating a dashboard with the health status of running tests against a solution and so on. Or more 
simply, think about all the situations in which an app must be able to perform operations that a 
low-privilege user would not normally be entitled to do—like provisioning users, assigning users to 
groups, reading full user profi les, and so on. Note that, once again, those kinds of permissions come 
into play when accessing the resource as a web API, so you won’t see this feature really play out until 
the next chapter. Here I’ll just discuss provisioning.

While delegated permissions are represented in Azure AD via oauth2Permission in the 
 Application object and the oauth2PermissionsGrants collection in the ServicePrincipal 
table, Azure AD represents application permissions via Application.appRoles and Service-
Principal.appRoleAssignedTo. 

ModernAuth_PrintBook_Final.indb   216ModernAuth_PrintBook_Final.indb   216 11/28/2015   11:40:37 AM11/28/2015   11:40:37 AM



 Azure Active Directory application model 217

The AppRole entity is used to declare application permissions just as you have seen for the 
 application roles case, with the difference that allowedMemberTypes must include an entry of value 
“Application”. To clarify that point, let’s once again turn to the Directory Graph API Service-
Principal and examine its appRoles collection:

"appRoles": [
        {
          "allowedMemberTypes": [
            "Application"
          ],
          "description": "Allows the app to read and write all device properties without 
a signed-in user.  Does not allow device creation, device deletion, or update of device 
alternative security identifiers.",
          "displayName": "Read and write devices",
          "id": "1138cb37-bd11-4084-a2b7-9f71582aeddb",
          "isEnabled": true,
          "value": "Device.ReadWrite.All"
        },
        {
          "allowedMemberTypes": [
            "Application"
          ],
          "description": "Allows the app to read and write data in your organization's 
directory, such as users and groups.  Does not allow create, update, or delete of applications, 
service principals, or devices. Does not allow user or group deletion.",
          "displayName": "Read and write directory data",
          "id": "78c8a3c8-a07e-4b9e-af1b-b5ccab50a175",
          "isEnabled": true,
          "value": "Directory.Write"
        },
        {
          "allowedMemberTypes": [
            "Application"
          ],
          "description": "Allows the app to read data in your organization's directory, such as 
users, groups, and apps.",
          "displayName": "Read directory data",
          "id": "5778995a-e1bf-45b8-affa-663a9f3f4d04",
          "isEnabled": true,
          "value": "Directory.Read"
        }
      ],

Note Directory.Write and Directory.Read will follow the same update path as their 
delegated homonyms and become Directory.ReadWrite.All and Directory.Read.All, 
respectively.

You can think of each of those roles as permissions that can be requested by applications invok-
ing the Graph API. Although in the case of user and group roles, administrators can perform role 
 assignments directly in the Azure management portal, granting application roles works very much 
like delegated permissions—via consent at the fi rst token request.

ModernAuth_PrintBook_Final.indb   217ModernAuth_PrintBook_Final.indb   217 11/28/2015   11:40:37 AM11/28/2015   11:40:37 AM



218 CHAPTER 8

A client application needs to declare in advance what application permissions (that is, application 
roles) it requires. That is currently done via the Azure portal, in the Permission To Other Application 
section of the Confi gure tab. In Figure 8-5 earlier, you can see that the middle column of the screen 
contains a drop-down labeled Application Permissions, in that case specifying the options available 
for the Directory Graph API. It is operated much as you learned about for the Delegated Permissions 
list, but the entries exposed in Application Permissions are the ones in the target resource from its 
appRoles collection, and specifi cally the ones marked as Application in allowedMemberTypes.

What happens when you select an application permission, say Read Directory Data, for the 
 Directory Graph API? Something pretty similar to what you have seen in the case of delegated 
 permissions. Take a look at what changes in the Application’s requiredResourceAccess 
 collection:

"requiredResourceAccess": [
{
  "resourceAppId": "00000002-0000-0000-c000-000000000000",
  "resourceAccess": [
    {

      "id": "5778995a-e1bf-45b8-affa-663a9f3f4d04",

      "type": "Role"

    },

    {
      "id": "78c8a3c8-a07e-4b9e-af1b-b5ccab50a175",
      "type": "Scope"
    },
    {
      "id": "311a71cc-e848-46a1-bdf8-97ff7156d8e6",
      "type": "Scope"
    }
  ]
}

The resource you want to access remains the same, the Directory Graph API—represented by the 
ID 00000002-0000-0000-c000-000000000000. In addition to the old delegated permissions, of 
type Scope, you’ll notice a new one, of type Role. The ID of this one corresponds exactly to the ID 
declared in the Directory Graph API’s ServicePrincipal appRoles for the Read Directory Data 
permission.

As I mentioned, granting application permissions takes place upon successful request of a  token 
from the app and positive consent granted by the user at authentication time. The presence of 
an  entry of type Role in a RequiredResourceAccessCollection introduces a key constraint, 
 however: only admin consent requests will be considered. This means that every time you develop an 
app requesting application permissions, you have to be sure that the fi rst time you request a token 
from it, you append the prompt=admin_consent fl ag to your request.

If you actually launch the app and go through the consent dance, you’ll fi nd that after provision-
ing, the directory has added one new AppRoleAssignment entry to the appRoleAssignedTo 
 property of the app’s ServicePrincipal entry in the target tenant. Or better, you would fi nd it if 
your app had requested permissions for any resource other than the Directory Graph API. As I am 
writing this chapter, the Directory Graph API is the only resource that received special treatment from 

ModernAuth_PrintBook_Final.indb   218ModernAuth_PrintBook_Final.indb   218 11/28/2015   11:40:37 AM11/28/2015   11:40:37 AM



 Azure Active Directory application model 219

Azure AD: whereas every other resource has its consent settings recorded in the entities described in 
this chapter, as of today clients accessing the Graph API record the application permissions consent 
for it elsewhere. I won’t go into further details for two reasons. One, it would not help you understand 
how application permissions work in general, given that each and every other resource does use 
 appRoleAssignedTo. Two, there is talk of changing the Directory Graph API behavior so that it will 
start acting like any other resource—it’s entirely possible that this will already be the case once the 
book is in your hands, but given that it’s not for sure, I am not taking any chances.

With their permission/role dual nature, application permissions can be confusing. However, they 
are an extremely powerful construct, and the possibilities their use opens up are well worth the effort 
of mastering them.

Groups

In closing this chapter about how Azure AD models applications, I am going to show you how to 
work with groups. Groups in Azure AD can be cloud-only sets of users, created and populated via the 
Azure portal or the Offi ce 365 portal, or they can be synched from on-premises distribution lists and 
security groups. Groups have been a staple of access control for the last few decades. As a developer, 
you can count on groups to work across applications and to be assigned and managed by administra-
tors: all you need to know is that a group exists and what its semantic is and then use that information 
to drive your app’s decisions regarding the current user (access control, UI customization, and so on).

By default, tokens issued by Azure AD do not carry any group information: if your app is  interested 
in which groups the current user belongs to, it has to use the Directory Graph API (cue the next 
 chapter).

Just as with application roles, you can ask Azure AD to start sending group information in issued 
tokens in the form of claims—simply by fl ipping a switch property in the Application object. If you 
download your app manifest, modify the groupMembershipClaims property as follows, and then 
upload the manifest again, you will get group information in the incoming tokens:

"groupMembershipClaims": "All",

If you are interested in receiving just the security groups, enter “SecurityGroup” instead of “All”. 

After changing the manifest as described, I used the portal to create in my test tenant a new group 
called “Hippies,” and assigned to it the test user Fabio. That done, I launched the app and signed in as 
Fabio. Here’s the token I got:

{
   "amr" : [ "pwd" ],
   "aud" : "c3d5b1ad-ae77-49ac-8a86-dd39a2f91081",
   "c_hash" : "zit-F66pwRsDeJPtjpuzgA",
   "exp" : 1442822854,
   "family_name" : "Bianchi",
   "given_name" : "Fabio",
   "groups" : [ "d6f48969-725d-4869-a7a0-97956001d24e" ],

ModernAuth_PrintBook_Final.indb   219ModernAuth_PrintBook_Final.indb   219 11/28/2015   11:40:37 AM11/28/2015   11:40:37 AM



220 CHAPTER 8

   "iat" : 1442818954,
   "iss" : "https://sts.windows.net/6c3d51dd-f0e5-4959-b4ea-a80c4e36fe5e/",
   "name" : "Fabio Bianchi",
   "nbf" : 1442818954,
   "nonce" : "635784160492173285.ZmIyMTM5NGYtZDEyNC00MThmLTgyN2YtNTZkNzViZjA1MDgxMzljZDA1OWMtNjV
hOC00ZWI1LThkNmQtZDE4NGJlOTU2ZGZj",
   "oid" : "a21197f6-5ac6-460b-b5d3-2a1ae6bd08c1",
   "sub" : "0vmQvSCoJqTYby1EE0XR94PgRuveuOWUbAHNkmf0xTk",
   "tid" : "6c3d51dd-f0e5-4959-b4ea-a80c4e36fe5e",
   "unique_name" : "fabio@developertenant.onmicrosoft.com",
   "upn" : "fabio@developertenant.onmicrosoft.com",
   "ver" : "1.0"
}

You can see that there is indeed a groups claim, but what happened to the group name? Well, the 
short version of the story is that because Azure AD is a multitenant system, arbitrary group names 
like “People in building 44” or “Hippies” have no guarantee of being unique. Hence, if you wrote code 
relying on only a group name, your code would often be broken and subject to misuse (a malicious 
admin might create a group matching the name you expect in a fraudulent tenant and abuse your 
access control logic). As a result, today Azure AD sends only the objectId of the group. You can use 
that ID for constructing the URI of the group itself in the directory, in this case that’s:

https://graph.windows.net/developertenant.onmicrosoft.com/groups/d6f48969-725d-4869-a7a0-
97956001d24e.

In the next chapter, you’ll learn how to use the Graph API to use that URI to retrieve the actual 
group description, which in my case looks like the following:

{
  "odata.metadata": "https://graph.windows.net/developertenant.onmicrosoft.
com/$metadata#directoryObjects/Microsoft.DirectoryServices.Group/@Element",
  "odata.type": "Microsoft.DirectoryServices.Group",
  "objectType": "Group",
  "objectId": "d6f48969-725d-4869-a7a0-97956001d24e",
  "deletionTimestamp": null,
  "description": "Long haired employees",
  "dirSyncEnabled": null,
  "displayName": "Hippies",
  "lastDirSyncTime": null,
  "mail": null,
  "mailNickname": "363bdd6b-f73c-43a4-a3b4-a0bf8b528ee1",
  "mailEnabled": false,
  "onPremisesSecurityIdentifier": null,
  "provisioningErrors": [],
  "proxyAddresses": [],
  "securityEnabled": true
}

Your app could query the Graph periodically to fi nd out what group identifi ers to expect, or you 
could perform queries on the fl y as you receive the group information, though that would somewhat 
defeat the purpose of getting groups in the form of claims.

ModernAuth_PrintBook_Final.indb   220ModernAuth_PrintBook_Final.indb   220 11/28/2015   11:40:37 AM11/28/2015   11:40:37 AM



 Azure Active Directory application model 221

Consuming groups entails more or less the same operations described for roles and Claims-
Principal. You can even assign groups as the RoleClaimType if that’s the strategy you usually 
enact for groups (traditional IsInRole actually works against Windows groups on-premises, often 
creating a lot of confusion).

One last thing about groups. There are tenants in which administrators choose to use groups 
very heavily, resulting in each user belonging to very large numbers of groups. Adding many groups 
in a token would make the token itself too large to fulfi l its usual functions (such as authentication 
and so on), so Azure AD caps at 200 the number of groups that can be sent via JWT format. If the 
user  belongs to more than 200 groups, Azure AD does not pass any group claims; rather, it sends an 
 overage claim that provides the app with the URI to use for retrieving the user’s groups information 
via the Graph API. Azure AD does so by following the OpenID Connect core specifi cation for aggre-
gated and distributed claims: in a nutshell, a mechanism for providing claims by reference instead of 
passing the values. Say that Fabio belonged to 201 groups in our sample above. Instead of the groups 
claims, the incoming JWT would have contained the following claims:

"_claim_names": {
     "groups": "src1",     
   },
   "_claim_sources": {
     "src1": {"endpoint": "https://graph.windows.net/developertenant.onmicrosoft.com/users/
a21197f6-5ac6-460b-b5d3-2a1ae6bd08c1/getMemberObjects"}
   }

In the next chapter, you’ll learn how to use that endpoint for extracting group information for the 
incoming user.

Summary

The Azure AD application model is designed to support a large number of important functions: to 
hold protocol information used at authentication time, provide a mechanism for provisioning applica-
tions within one tenant and across multiple tenants, allow end users and administrators to grant or 
deny consent for apps to access resources on their behalf, and supply access control knobs to admin-
istrators and developers to fi ne-tune user and application access control. 

That’s a tall order, but as you have seen throughout this chapter, the Azure AD application model 
supports all of those functions—though in so doing, it often needs to create complex castles of inter-
locking entities. Note that little of that complexity ever emerges all the way to the end user, and even 
for most development tasks, you don’t need to dive as deep as we did in this chapter. However, as a 
reward for the extra effort, you now have a holistic understanding of how applications in Azure AD 
are represented, provisioned, and granted or denied access to resources. You will fi nd that this skill 
will bring your profi ciency with Azure AD to a new level.

ModernAuth_PrintBook_Final.indb   221ModernAuth_PrintBook_Final.indb   221 11/28/2015   11:40:37 AM11/28/2015   11:40:37 AM



ModernAuth_PrintBook_Final.indb   222ModernAuth_PrintBook_Final.indb   222 11/28/2015   11:40:37 AM11/28/2015   11:40:37 AM



Index

 295

 A
About() action, 238–239, 241, 249–250
access control

for applications, 216–219
enforcing, 82
groups, 219–221
risk levels, 59
for web APIs, 283

Access Control Service (ACS), 78–79
access delegation, 31–33
AccessToken property, 229
access tokens, 35, 256. See also tokens

claims, 263, 289–290, 292
invoking web API with, 232–251
JWT format, 271
life span, 238–239
opacity to token requestors, 72, 233
refresh tokens, 238–251. See also refresh tokens
renewing, 70–71
requests, 268–269
responses, 269–270
scope, 116. See also scopes

AccountController sign-in and sign-out logic, 104
AcquireTokenByAuthorizationCode method, 229,   
 244–245, 287–288
AcquireToken method, 228, 269
AcquireToken* methods, 238–239, 241, 247
AcquireTokenSilent method, 239, 241, 243–244

failed calls, 246
acr claims, 133
Active Directory (AD)

access token representation, 255
introduction, 15
as new directory in the cloud, 58
on-premises, 15–16
on-premises vs. cloud approach, 58–59
projection in the cloud, 58
setup in Windows Server 2016, 273–274
token requests, 70
Visual Studio integration, 85–87

Active Directory Authentication Library (ADAL), 76–78
accessing APIs as application, 251–252
accessing APIs as arbitrary user, 252
cache, 243–247
handling AuthorizationCodeReceived notifi cation,   
  227–230
JavaScript versions, 80
midtier client libraries, 81
native apps libraries, 48, 80–81
.NET NuGet package, referencing, 227–228
refresh tokens, 238–251
session management, 238–251
token-acquisition pattern, 77
token caches, 238–239

Active Directory Federation Services (ADFS), 9, 25, 52–56
access control policies for web APIs, 283
access token representation, 255
access tokens for web APIs, 285–288
API and UX entries, 282
application groups, 274–275
application permissions for web APIs, 284
app provisioning, 287
Client-Server Applications section of management   
 UX, 275
credentials gathering, 280–281
endpoints, 276–277
federated tenants, 65–66
JWT format for access tokens, 271
management UX, 274–276
multiresource refresh tokens, 286
Native Application and Web API template, 275
OAuth2 authorization code grants, 55
OpenID Connect support, 103
protocol support, 55–56
Server Application and Web API template, 275
setting up, 54, 273–274
signing keys, 280
tokens issued by, 289
web API identifi ers, 282
web API invocation, 288–289
web API setup, 281–285

ModernAuth_PrintBook_Final.indb   295ModernAuth_PrintBook_Final.indb   295 11/28/2015   11:40:42 AM11/28/2015   11:40:42 AM



296

Active Directory Federation Services (ADFS), continued
web app setup, 277–280
web sign-on with OpenID Connect, 276–281
Windows Integrated Authentication credential, 279
in Windows Server 2016, 56, 103, 273–292
workplace-joined device detection, 56

Active Directory Federation Services (ADFS) “3”
application provisioning, 271
client entity, 274
OAuth2 support, 272
web APIs, protecting, 271–272

ActiveDirectoryFederationServicesBearerAuthentication  
 method, 271
ADAL4J, 81
ADAL Android, 81
ADAL Cordova, 81
ADAL iOS, 80
ADAL JS, 72, 85, 294
ADAL .NET, 78–80
Add Transform Claim Rule Wizard, 290
admin consent, 173, 200–204. See also consent

dialog box for, 202
requests, 210

administrators
ADFS management, 53–54, 57
application creation, 204
Azure portal, 64, 66
claims issued, managing, 9, 57
consent prompts, 199
control over trust establishment, 57
directory resource access, 173
directory sync, 65
global, 93
guest, 93
permissions, 59, 198–200

AJAX calls, 235
allowedMemberTypes collection, 214, 216–217
amr claims, 133
AngularJS, 47
anonymous access, 97
APIs. See web APIs
<api version> component in URL template, 237
AppBuilder type, 141–142
appId property, 180, 188
App ID Uri, 209, 256
Application.appRoles object, 216–219
application groups, 274–275, 281–282
application identifi ers, 181
application-level authentication messages, 25
application model, Azure AD. See Azure Active Directory  
 application model
Application object, 175, 177–186

authentication properties, 180–183
deletion timestamp, 180
JSON fi le, 178–180

object ID, 180
properties by functional group, 186
for web APIs, 257–258

Application Proxy, 67
applications

access directory as user permission, 196
accessing resources as, 45
accessing web APIs, 252
access through Azure Active Directory, 66
actions, 177
adding to application groups, 281–282
ADFS code, libraries, protocol support, 53, 55
admin consent, 173, 200–204, 210
admin creation, 204
admin-level permissions, 198–200
app-level permissions, 216–219
assigned users, 188
authenticate users permission, 195–196
authentication options, 177
availability to other tenants, 182–183
client role, 70–72. See also clients
credentials, 226–227, 279
decoupling from web servers, 138
delegated permissions, 192–197
directory read and write permissions, 196
display name, 181
enumerate users permissions, 196–197
group read and write permissions, 197
homepage, 181
identifi ers, 177, 188
identifying authentication protocols of, 64
IdP metadata, reading, 21
IdP trust, 18
initialization, 140–141
isolated and independent, 14
iss (issuer) value, 120–121, 208
key string assignments, 226–227
multitenancy, 205–211
nonadmin user creation, 189–192
OAuth2 permissions, 183–185
partitioning for consumption routes, 265–266
protecting with Azure AD, 60–61
protocol coordinates, 61, 177, 276, 278
provisioning, 53–54, 57, 189
public vs. confi dential clients, 181
relying parties, 18. See also relying parties (RPs)
resource protectors, 69, 73–74
resources, 177, 185–187
roles, 182, 213–216
scopes, 201. See also scopes
single-page, 45–47
as token requestors, 69–72, 74
token validation, 22. See also token validation
user assignment, 211–213

app manifest fi les, 214, 219

Active Directory Federation Services (ADFS) “3”

ModernAuth_PrintBook_Final.indb   296ModernAuth_PrintBook_Final.indb   296 11/28/2015   11:40:42 AM11/28/2015   11:40:42 AM



 297

appOwnerTenantId property, 188
app parameter, 140–141
app permissions, 216–219
AppRoleAssigment entity, 212
appRoleAssignedTo property, 215
appRoleAssignmentRequired property, 188, 212
AppRole entity, 216–217
appRoles property, 182, 188
ASP.NET

Katana. See Katana
membership providers, 14
project templates for web APIs, 287
support for web sign-on, 137. See also Open Web   
 Interface for .NET (OWIN) middlewares
templates in Visual Studio 2015, 87

ASP.NET 4.6
vs. ASP.NET 5, 90
initialization code, 95
web API projects, 254. See also web APIs

ASP.NET 5, 85, 90
ASP.NET applications, 3–7. See also web applications

building, 89
claims-based identity support, 82
MVC project type, 90–91
OWIN components, 83–84

assembly:OwinStartup attribute, 139
assertions, 26
attributes, 20, 59, 290
audience claims, 132, 282
authentication

Application object properties, 180–183
Azure AD for, 1
claims-based identity, 17–23
default process, 4–7
defi ned, 12
failure notifi cation, 166
indicating success, 98
mechanisms for, 7
mode, 152, 158–159
modern, 31–48
multitenant systems, 58
native apps vs. web apps, 94
pre-claims techniques, 12–16
round-trip web apps, 23–31
steps of, 73
triggering, 97–98, 100
type setting, 158

AuthenticationContext class, 228
initialization, 287

AuthenticationFailed notifi cation, 167
authentication fl ows

across multiple tenants, 205–208
authorization-code, 42–43
hybrid, 40–42, 108
OWIN middlewares pipeline, 148–153

state, preserving, 116–117
AuthenticationManager instance, 148
authentication middlewares, 148–153

Authentication property, 146
AuthenticationMode property, 159

Active option, 149
AuthenticationProperties settings, 100
Authentication property, 146, 150, 152–153
AuthenticationReponseGrant, 150
authentication-request message type, 39
authentication requests, 98, 113–119

authorization endpoints, 114
clientID, 114
nonce, 117
omitted parameters, 117–119
response mode and response type, 114–116
scope, 116
state, 116–117

AuthenticationResult instance, 229
AuthenticationTicket store, 171
AuthenticationType property, 159
authorities, 18

/adfs/, 287
control over user authentication experience, 122
validation in ADFS, 287

authority coordinates, validation and, 157–158
Authority property, 155
authority types. See Active Directory Federation Services  
 (ADFS); Azure Active Directory
authorization, 33–39, 116

OAuth2 grants, 55, 252
<Authorization>, 216
AuthorizationCodeReceived notifi cation, 167, 227–230,   
 286
authorization codes

acquiring, 225
client secrets, 156
code-redemption logic, 227–230
OpenID Connect fl ow, 42–43
redeeming, 224–232, 286

authorization endpoint, 35, 63, 114, 207, 285
Authorization HTTP headers, tokens embedded in,   
 232–234
authorization requests, 149
authorization server (AS), 34–35
[Authorize] attribute, 97–98, 148–149

on entire class, 257
role information, 216
scope-verifi cation logic, 264

auth_time claims, 133
availableToOtherTenants property, 182–183, 209
Azure Access Control Service (ACS), 41, 78–79
Azure Active Directory, 1, 56–67

access token representation, 255
application access, 66

Azure Active Directory

ModernAuth_PrintBook_Final.indb   297ModernAuth_PrintBook_Final.indb   297 11/28/2015   11:40:42 AM11/28/2015   11:40:42 AM



298

application entry permissions, 224–225
application model. See Azure Active Directory  
 application model
Application Proxy, 67
apps, adding entry for, 60
authorization endpoints, 114
B2C (business to consumer), 294–295
client-credentials grants, 251
client IDs, 94, 97
cloud workload functionality, 59
consent prompt, 5–6
cookies on user browser, 124
credential gathering, 122–123
credentials prompt, 5
default domain, 62–63
development and, 2, 60–61
Directory Graph API, 10, 59. See also Directory Graph  
 API
directory sync, 65–66
discovery, 119–120
functional components, 59–60, 63–65
group information in tokens, 219–220
libraries, 75–86
multitenancy, 58, 205–208
oauth2PermissionGrants collection, 189–192
obtaining tenant, 61–62
online developer guide, 293
OpenID Connect endpoints, 109
permissions for directory access, 193–197
private/public key pair information, 227
programmatic access to entities, 236–237
programmatic interface, 64–65. See also Directory   
 Graph API
projection of on-premises, 65
protocol endpoints, 63–64
protocols supported, 58
redirect URIs, 100
refresh tokens, 240–243
registering apps, 93–94
resource identifi ers in token requests, 256
resource-protector library references, 92
response to POST, 123–125
response types, 124
service deployments, 63
sessions, cleaning, 135
synchronizing users and groups to, 65–66
tenantID, 63
tenants, 62, 93
tokens, 61. See also tokens
token-signing keys, 120–122
token validation, 149–151
trial, 2
tying to Visual Studio, 2–3
user information, accessing, 7–10
Visual Studio 2015 connected services, 87

web API provisioning, 253
Azure Active Directory application model, 64, 173–221

admin consent, 200–204
admin-level permissions, 198–200
admin user application creation, 204
app-level permissions, 216–219
Application object, 175, 177–186
app roles, 213–216
app user assignments, 211–213
consent, 175, 189–192
delegated permissions, 192–197
functions, 173
groups, 219–221
multitenancy, 205–211
provisioning fl ow, 175–176
ServicePrincipal object, 187–188
service principals, 174–177

Azure Active Directory Basic, 62, 66–67
Azure Active Directory Connect, 65
Azure Active Directory Free tier, 61–62
Azure Active Directory Premium, 62, 66–67, 215
Azure Active Directory vNext, 295
Azure management portal, 60–61, 64

application confi guration section, 178
application credentials, assigning, 226
Application entity JSON fi le, 178
application permission selection UI, 198
application permissions screen, 217–218
application tags, 188
manifest management section, 178
multitenancy setting, 209
provisioning apps in Azure AD, 93–94
Users tab, 212

Azure subscription, 2, 93

B
back ends, HTTP requests to, 46
Balfanz, Dirk, 41
BaseNotifi cation class, 161
bearer token middleware

diagnosing issues, 261
notifi cations, 264
Provider, specifying, 265
tokens from ADFS, validation, 271

bearer tokens, 232–237, 262
extraction and validation, 255

BootstrapContext property, 268
broker apps, 48
browsers

hosting prompting logic in, 48
network tracing features, 110
presentation layer, 45–46

business to consumer (B2C) Azure AD, 294–295

Azure Active Directory application model

ModernAuth_PrintBook_Final.indb   298ModernAuth_PrintBook_Final.indb   298 11/28/2015   11:40:42 AM11/28/2015   11:40:42 AM



 299

C
CallbackPath property, 158
caller identity class, 7–10
callers

attributes, 7
identifying, 23–24
retrieving names of, 7–8

Caption property, 159
Challenge method, 99–100
Challenge sequence in OpenID Connect middleware, 152
claims, 7, 20

from access tokens, 263
adding to access tokens, 289–290, 292
vs. attributes, 290
group information, 182, 219–220
in ID tokens, 132–134
information in, 57
JWT types, 131–132
OAuth2 and, 36–37
sourcing values, 52
type identifi ers, 8–9

claims-based identity, 17–23
authentication process, 21–22
identity providers, 17–18
just-in-time identity information, 57
protocols, 20–23
tokens, 18–20
trust and claims, 20

claims-oriented protocols, communication across   
 boundaries, 36–37
ClaimsPrincipal class, 7–10, 82

Claims list, 263
Current.FindFirst(“roles”), 215–216
Current property, 8
in OWIN, 83
saving, 151
source location, 8

ClaimsPrincipalSelector delegate, 8
claims rules engine, 52
claims transformation engine, 60
ClaimTypes enumeration, 8–9
ClientAssertionCertifi cate, 231
ClientCredential class, 229, 251, 287
client credentials grants, 44–45, 251, 266
client IDs, 94, 97, 114, 155, 190

of application, 256
overriding at registration, 276
refresh tokens and, 243

client-resource interactions, tokens for, 70–71
clients, 70. See also token requestors

access control policies for web APIs, 283
in ADFS “3,” 274
ADFS support, 55
application permissions for web APIs, 284

confi dential, 181, 275
defi nitions of term, 72
entries in target directories, 183
granted permissions, 189–192
identity and resource consumption, 265–266
public, 181, 275
scopes, 284–285
as token requestors, 72
of web APIs, 291

client secrets, 156, 227
cloud applications, 57–58
cloud-based Active Directory, 58–59. See also Azure   
 Active Directory 
cloud-based authentication, 56. See also Azure Active   
 Directory
cloud-based directories, 60
cloudidentity.com blog, 80
cloud services, 58. See also Azure Active Directory
cloud stores, 59
code reuse, 71
common endpoint, 121, 207
confi dential clients, 181, 275
Confi gurationManager class, 157–158
Confi gureAuth, 141
consent, 189–192

across tenants, 209–211
admin, 173, 200–204, 210
AppRoleAssigment entries, 212
provisioning fl ow, 175–176
for resource access, 186
revoking, 259
settings, 211
for web APIs, 258

consent prompts, 44, 191
for admin users, 199
for multitenant pages, 210

constrained delegation, 43
context

AuthenticationManager instance, 148
Authentication property, 146, 150, 152–153
environment dictionary, 147
middlewares, 142, 145–148
Request and Response properties, 147–149
TraceOutput property, 148

contracts, 23
controllers, MVC 5 Controller, 100
cookie-based sessions, 92
cookie middleware

adding to pipeline, 96
adding to web apps, 92
ClaimsPrincipal, saving, 151
collaboration with protocol middleware, 148
response processing, 150
sessions, managing, 171
sessions, saving, 150

cookie middleware

ModernAuth_PrintBook_Final.indb   299ModernAuth_PrintBook_Final.indb   299 11/28/2015   11:40:42 AM11/28/2015   11:40:42 AM



300

cookie middleware, continued
sign-out, 100–101

cookies
domain-bound, 24–25
life cycles, 24, 46
limitations, 46
nonce value, tracking, 124–125
session. See session cookies
on user browser, 124
for web API protection, 235–236

Cordova ADAL library, 81
credentials

application, 226–227
assigning, 226
gathering, 122–123
grants, 44–45, 251, 266
keys, 181. See also keys
passwords, 181
in ServicePrincipal, 188
sharing among apps, 32–33
storage, 226
types, 13

credentials validation and session cookie authentication  
 pattern, 23–24
cross-collaboration scenarios, 17
cross-domain single sign-on, problems, 23–25
Current property, 8

D
decoupling web servers from apps, 138. See also   
 middlewares; Open Web Interface for .NET   
 (OWIN)
default authentication process, 4–7
delegated access, 34–36
delegated permissions, 185, 192–197

scopes, 201
deletionTimestamp property, 180, 188
Devasahayam, Samuel, 15
developer-assigned application identifi ers, 181
development certifi cates, 91
development libraries

in Active Directory, 75. See also libraries
for native clients, 294
for other platforms, 293

development on dedicated machines, 91
diagnostic middleware, 153–154
digital signatures, 19
directories, defi ned, 62
Directory.AccessAsUser.All permission, 196
directory access permissions, 193–196
directory entities, programmatic access to, 236–237
directory entries for web APIs, 257–258
Directory Graph API, 10, 59–60, 64–65, 236–237

Application object JSON fi le, 178–180

application permissions, 217–218
calling, 233–234
group information, 219

directory permissions, 193–197
directory queries in cloud applications, 57–58
Directory.Read.All permission, 196
Directory.Read permission, 196
Directory.ReadWrite.All permission, 196
directory services for multitenant systems, 58
directory sync, 65–66
directory tenants, 58
Directory.Write permission, 196
discovery document, 119, 208

keys document, 120–121
location, 277

displayName property, 181, 188
distributed sign-out, 27, 29, 101, 109
domain-based identifi ers, 63
domain controllers (DCs), 15, 20, 23
domain_hint parameter, 118
domain-joined servers, ADFS on, 54
domain-joined workstations, 14–16
domains, 14–16, 62

E
email claims, 133
endpoints, 18

ADFS, 276–277
common, 207
multitenancy and, 206–207
network, 52
OAuth2, 64
protocol, 60, 63–64
protocol/credential type, 60
turning on and off, 52

entities, 22–23, 70
environment dictionary, 138, 147
errorUrl property, 188
exp claims, 132
ExpiresOn property, 230

F
family_name claims, 133
federated tenants, 65–66, 122
federation. See also Active Directory Federation Services  
 (ADFS)

for integrating with Azure AD, 66
for synchronized deployments of Azure AD, 65

Fiddler, 110
capturing trace, 112
HttpClient traffi c tracing, 261
setup, 111

cookies

ModernAuth_PrintBook_Final.indb   300ModernAuth_PrintBook_Final.indb   300 11/28/2015   11:40:42 AM11/28/2015   11:40:42 AM



 301

Fiddler inspector, 127
fi rst-name claim type, 8
form post response mode, 115
fragment response mode, 115
functions, creating, 163–164

G
GET operations

of Account/SignOut, 134
for authenticated resource requests, 125
requests through, 182

given_name claims, 133
Goland, Yaron, 41
grants

admin consent, 203–204
AuthenticationReponseGrant, 150
client credentials, 44–45, 251, 266
implicit, 46–47
OAuth2 grants, 252
oauth2PermissionGrants collection, 189–192
refresh token, 239–240, 242

Graph API. See Directory Graph API
groupMembershipClaims property, 182, 219
Group.Read.All permission, 197
Group.ReadWrite.All permission, 197
groups, 219–221

assigning, 215
consuming, 220–221
names, 220
number of, 221

guest Microsoft account users, 122

H
HandleResponse method, 162
hero apps, 48
homepage property, 181, 188
HostAuthenticationFilter attribute, 266
hosts in OWIN pipeline, 140
HTTP 302s, 98

redirects, 113–119, 145, 149–150
requests, 29–30, 44, 46
responses, 125

HTTP 401 responses, 149, 235, 261–262
HTTP claims-based identity, 22
HttpClient traffi c tracing, 261
HttpContext.Current.User, 8
HttpContext.GetOwinContext().Authentication method,  
 100
HttpContext.GetOwinContext().Authentication.SignOut  
 method, 134
HttpModules, 83, 137

as host for OWIN pipeline, 140

predefi ned events, 145
HTTP requests to back end, 46
HTTPS URL for projects, 91, 94
HttpWatch, 110
hybrid authentication fl ow

APIs, obtaining tokens, 224–232
authorization code redemption, 227–232
authorization codes, 166
initialization, 113
OpenID Connect, 40–42, 108
token validation requirements, 133

hybrid token-requestor and resource-protector role   
 development libraries, 85–86

I
IAppBuilder interface, 140
iat claims, 132
IAuthenticationSessionStore interface, 171
identifi erUris property, 181
identity libraries. See libraries
identity party trusts in ADFS, 274
identity providers (IdPs), 17–18, 20

endpoints, 18
metadata, 18, 21, 108
public-private key pairs, 18–19
redirecting to, 160
SAML, 25–26
string identifi ers, 18
WS-Federation, 28–29

identity transactions, 17–23
ID tokens, 39–40, 116, 127–134, 230, 280–281, 286

claims in, 133–134
decoding, 127–129
from server-to-server calls, 42
user information in, 269
validating, 42, 133

IIS Express, 91
IIS integrated pipeline, 145
impersonation, 44
implicit fl ow, 182
implicit grants, 46–47
integrated authentication, 14–16
interceptors, 74
intranets, authentication on, 14–16
Intune API, 61
Invoke method, 142
IOwinContext wrapper, 142
IsInRole() role information, 216
IsMultipleRefreshToken property, 230
iss claims, 132
IssuerSigningKey property, 167
issuer validation, 208–209
iss (issuer) value, 120–121, 208

iss (issuer) value

ModernAuth_PrintBook_Final.indb   301ModernAuth_PrintBook_Final.indb   301 11/28/2015   11:40:42 AM11/28/2015   11:40:42 AM



302

J
JavaScript

HTTP requests to back end, 46
logic-layout management, 45–46
native apps, 81
token bits, retrieving, 46–47

Jones, Mike, 41
JSON Tokens, 41
JSON Web Algorithms (JWA), 110, 131
JSON Web encryption (JWE), 129
JSON Web Keys set (JWKS), 280
JSON Web Signature (JWS), 129–131
JSON Web Token (JWT), 19, 40

access token representation as, 255
for access tokens, 271
ADFS support, 55
claim set, 131–132
components, 129–130
handlers, 84, 92
header types, 131
specifi cation, 110, 129
tokens, 84

just-in-time provisioning, 58

K
Katana, 139–154. See also Open Web Interface for .NET  
 (OWIN)

assembly:OwinStartup attribute, 139
context, 145–148
diagnostic middleware, 153–154
appSettings entry, 139
middleware behavior settings, 158–159
middleware execution, 145
notifi cations, 159–166
OwinStartup attribute, 139
Startup class, 139–141
UseStageMarker method, 145

“Katana” 3.x, 83–84
“Katana” vNext, 84
Kerberos

native applications and, 47
service principals, 174

Kerberos federation, 17
keyCredentials property, 181, 188, 226–227
keys

assigning to applications, 226–227
credentials, 181
IssuerSigningKey property, 167
JSON Web Keys set, 280
keyCredentials property, 181, 188, 226–227
public-private, 18–19, 227
RefreshOnIssuerKeyNotFound property, 158

signing, 280
symmetric, 19
token-signing, 120–122, 158
token-validation, 167
ValidateIssuerSigningKey property, 168

keys document, 120–121
Klout web application, 248–249
knownClientApplications property, 183, 258

L
libraries

in Active Directory, 75
authentication tasks, 73–74
for hybrid token-requestor and resource-protector   
 role, 74–75, 85–86
for native clients, 294
open source, 76
for other platforms, 293
reasons for using, 71
for resource-protector role, 73–74, 82–85
for token-requestor role, 70–71, 76–81

line-of-business (LOB) applications, 4–5
local networks, authentication on, 14–15
localStorage, 47
login_hint parameter, 117
logoutUrl property, 188

M
managed tenants, 65–66, 122
manifest fi les, 214, 219
/me alias, 237
MessageReceived notifi cation, 165
messages

SAML, 26–27
signed, 26
WS-Federation, 28–31

metadata, 18, 21
MetadataAddress, 104, 277
metadata documents, 158

discovery document, 119
OpenID Connect format, 39
SAML format, 26
WS-Federation format, 29

MetadataEndpoint, 287
Microsoft.AspNet.WebApi.Owin NuGet package, 266
Microsoft Azure. See Azure Active Directory
Microsoft cloud service, 61
Microsoft Enterprise Agreement, 62
Microsoft.IdentityModel.Protocol.Extensions NuGet  
  package, 84, 92
Microsoft Offi ce 365. See Offi ce 365

JavaScript

ModernAuth_PrintBook_Final.indb   302ModernAuth_PrintBook_Final.indb   302 11/28/2015   11:40:42 AM11/28/2015   11:40:42 AM



 303

Microsoft Online Directory Service (MSODS), 60
Microsoft.Owin.Diagnostics NuGet package, 154
Microsoft.Owin NuGet package, 92
Microsoft.Owin.Security.ActiveDirectory NuGet package,  
 83, 254
Microsoft.Owin.Security.Jwt NuGet package, 254
Microsoft.Owin.Security.OAuth NuGet package, 254
Microsoft.Owin.Security.OpenIdConnect NuGet package,  
 84
Microsoft.Owin.Security NuGet package, 92
Microsoft.Owin.Security.WsFederation NuGet package, 83
Microsoft Visual Studio. See Visual Studio
_middleware entry, 141
middleware initialization options class, 155–159
middlewares

activation sequence, 142–145
behavior settings, 158–159
building, 138. See also Open Web Interface for .NET  
 (OWIN)
caption setting, 159
context, 142, 145–148
environment dictionary, 138
initialization pipeline, 265–266
Invoke method, 142
message received notifi cation, 164
observing pipeline, 143–145
pipeline of web APIs, 254–255
pointers to next entries, 142
requesting execution, 145
resource protectors, 74, 81
response handling, 161
security token received notifi cation, 164
security token validated notifi cation, 164–165
sign-in and sign-out fl ow, 99–103
skipping to next, 161
stopping processing, 142, 145
UseStageMarker method, 145

midtier clients ADAL libraries, 81
MMC (Microsoft Management Console), 60
mobile operating systems, native apps on, 80
modern authentication techniques, 31–48
multiple authentication factors (MFA), 122
Multiple Response Type specifi cations, 109
multiresource refresh tokens (MRRT), 242–243, 260
multitenancy, 205–211
MVC 5 Controller, 100
/myorganization alias, 237

N
native applications, 47–48

ADAL libraries, 48, 80–81
ADFS support, 55
ADFS template, 275

admin creation in Azure portal, 204
authentication fl ows, 94
broker apps and, 48
development libraries, 75–76
Kerberos and, 47
modern authentication for, 294
popularity, 47–48
tokens, obtaining, 21–22

nbf claims, 132
.NET-based applications, 78
.NET core, OWIN middleware for, 84
.NET Framework

caller identity class, 7–10
SAML and, 25
version 4.5, 82
Windows Identity Foundation classes, 82–83

.NET JWT handler, 84

.NET web development, 138
network endpoints, 52
network tracing features, 110
nickname claims, 133
Node.JS, 81
nonadmin users, application creation, 189–192. See also  
 users
nonce value

of authentication requests, 117
cookie tracking, 124–125
OpenID Connect, 149

notifi cations, 159–166
AuthenticationFailed, 166
AuthorizationCodeReceived, 166
in bearer token middleware, 264
MessageReceived, 164
RedirectToIdentityProvider, 162–164
SecurityTokenReceived, 164
SecurityTokenValidated, 164–165
sequence, 159–161
of TokenCache class, 244–245

Notifi cations property, 155
NuGet packages

adding references, 92
Microsoft.AspNet.WebApi.Owin, 266
Microsoft.IdentityModel.Protocol.Extensions, 84, 92
Microsoft.Owin, 92
Microsoft.Owin.Diagnostics, 154
Microsoft.Owin.Security, 92
Microsoft.Owin.Security.ActiveDirectory, 254
Microsoft.Owin.Security.Jwt, 254
Microsoft.Owin.Security.OAuth, 254
Microsoft.Owin.Security.OpenIdConnect, 83
.NET, 227–228
System.IdentityModel.Tokens.Jwt, 84, 92
SystemWeb, 92
for web APIs, 254
web apps referencing, 92

NuGet packages

ModernAuth_PrintBook_Final.indb   303ModernAuth_PrintBook_Final.indb   303 11/28/2015   11:40:42 AM11/28/2015   11:40:42 AM



304

O
OAuth, 33–37
OAuth2, 33–37

ADAL and, 76–77
ADFS “3” support, 272
authorization grants, 55, 252
bearer token usage, 232–237, 262
claims and, 36–37
client credentials grants, 44–45
endpoints, 64
ID token, 39
interoperability, 37
limitations, 118
Multiple Response Type, 109
“on-behalf-of” security token requests, 44
OpenID Connect extensions, 39, 110
permissions in applications, 183–185
Post Response Mode, 109
refresh token grants, 239–240
refresh tokens, 238–251
scope, 116
support for, 37
Token Exchange extensions on-behalf-of fl ow,   
 267–270
web sign-in, 37–39

oauth2AllowImplicitFlow property, 182
oauth2AllowUrlPathMatching property, 182
OAuth2 Authorization Framework specifi cation, 110
OAuth2 bearer token middleware, 287
OAuth2 Bearer Token Usage specifi cation, 110
oauth2PermissionGrants collection, 189–192

admin consent, 203–204
consent entries, 210

oauth2Permissions collection, 183–185, 188, 192–195
default entry for web APIs, 257
value property, 257–258

oauth2RequirePostResponse property, 182
OAuth WRAP (Web Resource Authorization Profi le), 33,  
 40–41
objectId property, 180, 188, 190
odata parameters in URL template, 237
Offi ce 365, 61

cloud-based issues, 58
Visual Studio 2015 tools, 87

oid claims, 133
on-behalf-of fl ow, 267–270

security token requests, 44
on-premises Active Directory, 15–16, 58–59
on-premises directories

functional components, 60
querying protocols, 59

OnValidateIdentity, 265
opaque channels, 72, 91
OpenID, 37–38

OpenID Connect, 9, 38–43, 108–109
authentication, 122–123
authentication-request message type, 39
authentication requests, 113–119
authorization-code fl ow, 42–43
authorization requests, 98, 149
discovery, 119–122
document format, 39
endpoints, advertising by Azure AD, 109
ID token, 127–134
initialization code, 95–97
JWT format, 129–132
nonce, 149
opaque channels, 91
response, 123–125
session management, 109
sign-in sequence, 110–112, 126–127
sign-out, 134–136
support for, 43
supporting specifi cations, 110
web sign-on with ADFS, 276–281

OpenIdConnectAuthenticationOptions class, 159
OpenIdConnectAuthenticationOptions parameter, 96,   
 155–159, 276

TokenValidationParameters property, 166–169
OpenID Connect Core 1.0, 108
OpenID Connect Discovery 1.0, 109
OpenID Connect hybrid fl ow, 40–42, 224–232
OpenID Connection Session Management specifi cation,  
 109
OpenID Connect middleware, 92, 155–166

ADFS and, 276–277
authentication fl ow control, 96
authority value, 97
Challenge sequence, 152
client ID, 94, 97, 256
distributed sign-out, 101
initializing, 95–97, 277
notifi cations, 159–166
OpenIdConnectAuthenticationOptions, 155–159
outgoing 401s, 98
Passive authentication mode, 152, 159
postlogout redirects, 102
session management, 149–151, 171
sign-out, 100–101, 152–153
token validation, 149–151
TokenValidationParameters property, 166–169

OpenIdConnectNotifi cations class, 159–166
OpenIdConnectProtocolValidator class, 158
OpenID Connect Session Management specifi cation, 135
openid scope, 116, 286
open redirector attacks, 182
open source libraries, 76
Open Web Interface for .NET (OWIN), 83–84, 137–138.   
 See also middlewares

OAuth

ModernAuth_PrintBook_Final.indb   304ModernAuth_PrintBook_Final.indb   304 11/28/2015   11:40:42 AM11/28/2015   11:40:42 AM



 305

ASP.NET-specifi c implementation, 138
context, 145–148
defi ned, 138
environment dictionary, 138
Katana and, 139–154. See also Katana

Open Web Interface for .NET (OWIN) middlewares
adding to web apps confi guration, 92
authentication capabilities, 146
authentication fl ow, 148–153
for claims-based identity, 83
core status, 147
diagnostic middleware, 153–154
environment dictionary, 147
hosting, 92, 95–96
for .NET core, 85
OpenID Connect, 137–170
sign-in fl ow, 148–152
sign-out fl ow, 152–153
WS-Federation support, 103

Open Web Interface for .NET (OWIN) pipeline
adding middleware, 141–142
hosts, 140
initializing, 139–141
_middleware entry, 141
servers, 140

OS X apps, ADAL libraries, 81
OwinMiddleware class, 142–143
OwinStartup attribute, 139

P
parametric STS, 205–208
password-based authentication, 12–14
passwordCredentials property, 181, 188, 226
passwords, 13–14
password sharing antipattern, 32–33
path matching, 182
permissions

admin-level, 198–200
app-level, 216–219
on application entry in Azure AD, 224–225
consented, 186
delegated, 192–197
directory, 193–197
for directory access, 193–196
fi ne-grained, 59
granted, storage of, 189–192
roles and, 213

Permissions To Other Applications, 259
platform as a service (PaaS), 57
postlogout redirects, 102, 156
PostLogoutRedirectUri property, 102, 156, 276
Post Response Mode specifi cations, 109
pre-claims authentication techniques, 12–16

principalType property, 212
private/public key pairs, 227
profi le scope value, 116
profi le stores, 12–14, 20
programmable web, 31–33
Programming Windows Identity Foundation, 82, 137
prompt=admin_consent fl ag, 200–201, 218
prompt parameter, 117–118
Properties dictionary, 140–141
protected APIs. See also web APIs

accessing, 232–251
exposing, 253–272
refresh tokens, 238

protected clients, 78
protocol coordinates, 73–74
protocol/credential type endpoints, 60
protocol endpoints, 60, 63–64
protocol enforcement, 73
protocol libraries, 77
protocol middleware. See also OpenID Connect   
 middleware

collaboration with cookie middleware, 148
protocols, application identifi ers, 181
protocol URLs, 63, 94
protocol validation, 158
ProtocolValidator property, 158
providers

claims issued, 9
specifying, 265

provisioning
in ADFS, 271, 287
applications, 53–54, 57, 189
in Azure management portal, 93–94
just-in-time, 58
relying parties, 52
ServicePrincipal, 186
web APIs, 253

provisioning fl ow, 175–176
provisioning resources, 183
proxy role, 52
proxy utilities, 110
publicClient property, 181
public clients, 78, 275
public key cryptography, 19
public-private key pairs, 18
publisherName property, 188
pwd_exp claims, 133
pwd_url claims, 133

Q
querying protocols, 59
query response mode, 115

query response mode

ModernAuth_PrintBook_Final.indb   305ModernAuth_PrintBook_Final.indb   305 11/28/2015   11:40:43 AM11/28/2015   11:40:43 AM



306

R
reauthorization, 248–249
redirects, 35
RedirectToIdentityProvider notifi cation, 160–164

modifying authentication requests, 201
redirect URIs, 100, 115, 117, 135, 156, 180–181, 276

for web apps, 278
RefreshOnIssuerKeyNotFound property, 158
refresh token grants, 239–240, 242
RefreshToken property, 230
refresh tokens, 35, 238–251

in Azure AD, 240–242
expiration, 246–251
invalidating, 240
multiresource, 286
opacity to client, 242
validity times, 240

relying parties (RPs), 18
distributed sign-out, 109
IdP metadata, 108
provisioning, 52
user sign-in status inquiries, 109
WS-Federation, 29

relying party trusts, 274–276
renewal operations, 71
replyUrls property, 180–181
Request and Response methods, 148–149
Request and Response properties, 147–148
requests

ClientAssertionCertifi cate, 231
client_secret property, 227
interception, 73
redirect URI, 156
resource for authorization code, 156
response type, 156
scope parameter, 156
through GET operations, 182
through middleware pipeline, 138
token inclusion, 70

requiredResourceAccess, 198–199
RequiredResourceAccessCollection, 185–187

Role type entries, 218
resource apps

confi guring by IdP’s metadata, 73
token acquisition, 73
token validation, 73

resource consumption
identity of clients, 265–266
patterns, 43–45

resource identifi ers in token requests, 256
resourceId property, 190
Resource parameter, 118, 156, 231
<resource path> component in URL template, 236–237
resource protectors, 69, 73–74

development libraries, 81–85
interceptors, 74

resources
accessing, 185–187
accessing as application, 44–45
access requests, 70–71. See also requests
authorizing access, 97–98
client libraries, 71–72
multiple, refresh tokens for, 242–243
third-party access, 34
type of access scope, 185–186

resource STS, 205–206
response mode and response type parameters of   
 authentication requests, 114–116
Response object, 149–150
responses

handling, 161
ID token, 127–134
OpenID Connect message, 123–125
through middleware pipeline, 138

ResponseType parameter, 156
response types, 124
REST API calls, 233–235
REST-based protocols, 28
REST operations for directory queries, 59
RoleClaimType property, 216

groups as, 220
roles

allowedMemberTypes property, 214
application, 212–219
assigning, 213–214
claims, 133, 215
displayName and description strings, 214
id property, 214
value property, 214
WS-Federation, 28–29

round trips
performance and, 45
request-response pattern, 22–23, 45
web apps, 23–31

RS256 signatures, 131

S
samlMetadataUrl property, 182, 188
SaveSignInToken property, 171, 268
scope-driven authorization, 262–265
scopes, 116, 118, 156, 201

openid, 286
of web APIs, 284–285

security
HTTPS, 91
nonce values, 117
for web API calls, 46–47

reauthorization

ModernAuth_PrintBook_Final.indb   306ModernAuth_PrintBook_Final.indb   306 11/28/2015   11:40:43 AM11/28/2015   11:40:43 AM



 307

Security Assertion Markup Language (SAML), 8,   
 25–27, 55, 182
security code, custom, 71
security groups, 219
SecurityTokenHandlers property, 158
SecurityTokenReceived notifi cation, 165
Security Token Service (STS), 29

Access Control Service, 78–79
resource, 205–206

SecurityTokenValidated notifi cation, 165–166
server applications, ADFS template, 275
servers

in OWIN pipeline, 140
server-to-server calls, 42

ServicePrincipal, 174–177, 187–188
AppId, 193
oauth2Permissions, 193–196
ObjectId, 193
properties, 187–188
provisioning, 186
for web APIs, 257

ServicePrincipal.appRoleAssignedTo object, 216–219
servicePrincipalNames property, 188
service providers (SPs), 26
session artifacts, 73
session cookies, 24–25, 45, 92, 122

discarding, 135
in OpenID Connect hybrid fl ow, 42
persisting, 150
validation, 73, 125

session data, 24
session management, 70–71

by ADAL, 238–251
in OpenID Connect middleware, 109, 171

sessions
ClaimsPrincipal, saving, 151
cleaning, 135
ending, 134–136
establishing, 22, 73, 149–151
properties, 151
request token validation, 152
saving, 150
validation, 73

sessionStorage, 47
Set-Cookie value, 135, 149–151
shared secrets, 279–280, 287
signatures, 19
signature verifi cation, SAML and, 26
signed tokens, 20
sign-in, 37–39, 99–103, 126. See also web sign-on

notifi cations, 159–160
response phase, 224–225
sequence, 126–127, 224
UI elements, 102–103
user credentials prompts, 163

sign-in and sign-out fl ow, 110–112
SignInAsAuthenticationType property, 159
sign-in fl ow

access in context of session, 148, 152
challenge generation, 148–149, 152–153
OpenID Connect for, 107–134
response processing, 149–151
session generation, 149–151
specifi cations and dependencies, 107–108
WS-Federation, 29–31

signing keys for web apps, 280
sign-in messages

generation of, 149
redirects, 148–149
request generation, 73–74

sign-out, 99–103
distributed, 101, 109
fl ow sequence, 136
ID hint, 135
notifi cations, 161
OpenID Connect, 134–136
postlogout redirects, 156
PostLogoutRedirectUri property, 102
redirect URI, 135
request syntax, 135
state preservation, 135
target endpoint, 135
UI elements, 102–103
user credentials prompts, 163

sign-out fl ow, 152–153
SignOut method, 99
Simple Web Token (SWT), 40–41
Single Logout messages, 27
single-page applications (SPAs), 45–47, 294

ADAL JS library for, 85
single sign-on, hack for, 38
single sign-out, 27
SkipToNextMiddleware method, 161
software as a service (SaaS) apps, 17
_sso_data claim, 289
SSO sessions, 27
stage markers, 145
Startup.Auth.cs fi le

ADFS identity provider code, 103–104
identity pipeline initialization code, 96–97

Startup class, 139–141
Startup.Confi gure, 140
Startup.cs fi le, 95

call to activate authentication, 97
state, preserving at sign-out, 135
state parameter

of authentication requests, 116–117
local URL of resource, 125

storing tokens, 70–71
string identifi ers, 18

string identifi ers

ModernAuth_PrintBook_Final.indb   307ModernAuth_PrintBook_Final.indb   307 11/28/2015   11:40:43 AM11/28/2015   11:40:43 AM



308

string identifi ers, continued
verifi cation, 19

sub claims, 132
subjects, 25
symmetric keys, 19
synchronized deployments of Azure AD, 65
synchronizing users and groups to Azure AD tenants,   
 65–66
System.IdentityModel.Tokens.Jwt NuGet package, 84, 92
System.Security.Claims namespace, 7
SystemWeb NuGet package, 92
System.Web pipeline, 140

T
tags property, 188
target directories

consent, recording, 186
resource entries in, 183

target platforms, native libraries for, 81
<tenant> component in URL template, 236
tenant IDs, 63, 188, 230
Tenant parameter, 255
tenants

application availability, 182–183
defi ned, 62
display name, 188
federated and managed, 65–66
ServicePrincipal and, 176, 193
tenant IDs, 63, 188, 230

third-party access to resources, 34
Thread.CurrentPrincipal, 8
tid claims, 133
token acquisition, 70

ADAL pattern, 77
TokenCache class, 244–245
token endpoint, 35

authenticated requests against, 226
response to token request, 231–232

token handlers, 158
token replay attacks, 117
TokenReplayCache property, 170
token requestors, 69–72, 74

access token format and, 72
client applications as, 72
development libraries, 76–81

token requests, 70
on-behalf-of, 44
resource identifi ers in, 256
user consent, 64

tokens, 18–20. See also access tokens
accessing independent of protocol, 268
acquiring by authorization code, 227–229
assertions, 26

audience claims, 282
in Authorization HTTP headers, 232–234
Azure AD, 61
bearer, 232–237, 262
broker apps, 48
caching, 70–71, 238
callback path, 158
for client-resource interactions, 70
cross-domain, 25
group information, 219–220
group membership claims, 182
HTTP carrier mechanisms, 109
ID. See ID tokens
issuance of, 21–22
issuers, 120
JWT format, 40, 129–132
life-cycle management, 159, 238
refresh, 35, 238–251, 286
replaying, 169
in requests, 70–71
response mode, 114
response type, 109
SAML structure, 26
saving, 169
scope, 257–258
security of, 42–43
signed, 20, 120–122
Simple Web Token, 40–41
with user attributes from cloud store, 59
user information, 42, 268
validation. See token validation
for web API calls, 46–47

token validation, 22, 73, 119, 149–151
audience, 167
discovery of criteria, 119–120
issuer, 167
key for signing, 167
notifi cation of, 164–165
parameters, 166–169
signature check, 129–130
validation fl ags, 168
validator delegates, 168–169
validity interval, 167

TokenValidationParameters class, 155, 157, 167–170,   
 256–257, 261, 264

IssuerValidator property, 208
ValidIssuers property, 208

TraceOutput property, 148
traces

capturing, 110–112
exposing, 148

traffi c, capturing in trace, 110–112
trusts, 18

between app and IdP, 20–21
establishment, 57

sub claims

ModernAuth_PrintBook_Final.indb   308ModernAuth_PrintBook_Final.indb   308 11/28/2015   11:40:43 AM11/28/2015   11:40:43 AM



 309

type identifi ers, claim, 8–9

U
UI, sign-in and sign-out, 102–103
unique identifi ers, 18
unique_name claims, 133
upn claims, 133
URI fragments, 46–47
UseCookieAuthentication method, 96, 141
UseErrorPage method, 154
Use method, 140, 142
UseOpenIdConnectAuthentication method, 96, 141
UserAssertion class, 268–269
user assignment, 211–213
user attributes, 7, 12
user consent for token requests, 64
user credentials. See also credentials

for synchronized deployments of Azure AD, 65
synching to cloud, 65–66

user_impersonation permission, 196
UserInfo property, 42, 230
username-password-profi les authentication, 13–14
UserProfi le.Read permission, 195–196
User.Read.All permission, 197
User.ReadBasic.All permission, 196
User.Read permission, 195–196
users

accessing web APIs, 252
application creation, 189–192
assignment, 211–213
authentication experience, 122–123
Azure AD landing page, 66
consent prompts, 191
identity, 12–13
life cycles, 14
roles and, 213

Use* sequence, 143
UseStageMarker method, 145
UseTokenLifetime property, 159
UseWindowsAzureActiveDirectoryBearerAuthentication  
 method, 255, 271
UseXXX extension methods, 96

V
validate-and-drop-a-cookie approach, 23–24
ValidateAudience property, 168
ValidateIssuer property, 168
ValidateIssuerSigningKey property, 168
validation

authority coordinates and, 157–158
components, 9
fl ags, 169

of ID tokens, 133
issuer, 208–209
session, 73
of session cookies, 73
token, 73
validator delegates, 169–170

ValidAudience property, 167, 256
ValidIssuer property, 167
verifi cation, 19, 24
Visual Studio

application credentials, assigning, 226
ASP.NET 4.6 Web API projects, 254, 287
authentication preferences settings, 288
Browser Link, 144
creating new web app, 90–91
F5 verifi cation procedure, 91
identity-integration features, 86–87
Immediate window, 247
Multiple Startup Projects option, 288
MVC 5 Controller, 100
Package Manager Console, 92
Startup.cs fi le, 95
using directives, 98
web API project setup, 253–258
web API project template on-premises option, 271
Windows Identity Foundation tools, 82

Visual Studio 2013, 86
Visual Studio 2015, 2–3

accounts, associating with, 3
AD integration features, 86
keychain, 87
tying to Azure user account, 2–3

W
web API calls

handling, 258–265
securing, 46–47

web APIs
access control policies, 283
accessing as an application, 251–252
accessing as arbitrary user, 252
application permissions for, 284
calling, 260
calling another API, 266–270
claims in token, 289–290
client access, 291
clients, adding, 291
client setup, 258–262
consent for, 258
directory entries, 257–258
exposing, 253–272
failed token requests, 261–262
identifi ers, 282

web APIs

ModernAuth_PrintBook_Final.indb   309ModernAuth_PrintBook_Final.indb   309 11/28/2015   11:40:43 AM11/28/2015   11:40:43 AM



310

web APIs, continued
invoking from web app, 223–252, 285–289
invoking with access tokens, 232–251
invoking with bearer tokens, 232–237
middleware pipeline, 254–255
modeling, 177
NuGet packages for, 254
project setup, 253–258
protecting with ADFS, 271–272, 281–292
request processing, 262–265
scope-driven authorization, 262–265
scopes of, 284–285
ServicePrincipal, 257
tokens, obtaining, 21–22
troubleshooting, 261
unauthorized caller errors, 261

web applications
ADAL cache considerations, 243–246
ADFS as identity provider, 103–104
ADFS support, 55
application credentials, 279
authentication fl ows, 94
claims, 98
client ID, 94, 278
creating, 90–91
delegated access, 34–36
HTTPS, 91
hybrid role of token requestor and resource protector,  
 74–75
interaction pattern, 22–23
invoking web API from, 285–289
middlewares, adding and initializing, 95
OpenID Connect initialization code, 95–97
OWIN pipeline, adding, 95
Permissions To Other Applications, 259
protocol coordinates, 276, 278
redirect URIs, 278
referencing NuGet packages, 92
registering in Azure AD, 93–94
roundtrip-based request-response pattern, 22–23, 45
running, 98–99, 103
setup in ADFS, 277–280
shared secrets, 279–280
sign-in and sign-out, 99–103
signing keys, 280
sign-in message generation, 73
single-page applications, 46
single sign-on, 38
SSL Enabled, 91
third-party access to resources, 34
triggering authentication, 97–98
unique resource identifi er, 94
user authentication, 21
web API, consuming, 223–252
Windows Integrated Authentication credential, 279

web browser–based SSO, 25–27
web.confi g fi les, 83
web servers, decoupling from apps, 138
web sign-on, 29–31. See also sign-in

ASP.NET support for, 137. See also Open Web Interface  
 for .NET (OWIN) middlewares
hybrid authentication fl ow, 108
OpenID Connect Core 1.0, 108
with OpenID Connect in ADFS, 276–281
testing, 280–281
URLs, 94

web UX, exposing, 265–266
Wells, Dean, 15
WindowsAzureActiveDirectoryBearerAuthenticationOptions  
 initialization, 255
Windows Identity Foundation (WIF), 82–83
Windows Internal Database (WID), 52
Windows Server. See also Active Directory Federation   
 Services (ADFS)

ADFS server role, 54
Windows Server 2016, ADFS in, 56, 103, 273–292
workplace-joined device detection, 56
WS-Federation, 8, 27–31

ADFS support, 55
messages, 29–31
metadata document format, 29
OWIN middlewares support, 103
relying parties, 29
roles, 28–29
Security Token Service, 29
sign-in fl ow, 29–31
support, 31
support in .NET core, 85
tokens, 29

WS-Federation middleware. See OpenID Connect   
 middleware
WS-* specifi cations, 27–28

native apps and, 47
WS-Trust, ADFS support, 55
Wtrealm, 104
WWW-Authenticate header, 262

X
X.509 certifi cates, 18–19
Xamarin, 80

web applications

ModernAuth_PrintBook_Final.indb   310ModernAuth_PrintBook_Final.indb   310 11/28/2015   11:40:43 AM11/28/2015   11:40:43 AM



  311

About the author

VITTORIO BERTOCCI is principal program manager on the Azure  Active Directory 
team, where he works on the developer experience: Active  Directory Authentication 
 Library (ADAL), OpenID Connect and OAuth2 OWIN components in ASP.NET, Azure 
AD  integration in various Visual Studio  workstreams, and other things he can’t tell 
you about (yet). 

Vittorio joined the product team after years as a virtual member in his role as  principal architect 
evangelist, during which time he contributed to the inception and launch of Microsoft’s claims-
based platform components (Windows Identity  Foundation, ADFS 2.0) and owned SaaS and 
identity evangelism for the .NET developers community.

Vittorio holds a masters degree in computer science and began his career doing r esearch on 
computational geometry and scientifi c visualization. In 2001 he joined Microsoft Italy, where 
he focused on the .NET platform and the nascent fi eld of web services security, becoming a 
 recognized expert at the national and European level.

In 2005 Vittorio moved to Redmond, where he helped launch the .NET Framework 3.5 by working 
with Fortune 100 and Global 100 companies on cutting-edge distributed systems. He increasingly 
focused on identity themes until he took on the mission of evangelizing claims-based identity for 
mainstream use. After years of working with  customers, partners, and the community, he decided 
to contribute the experience he had accumulated back to the product and joined the identity 
product team.

Vittorio is easy to spot at conferences. He has spoken about identity in 23 countries on four 
continents, from keynote addresses to one-on-one meetings with  customers. Vittorio is a regular 
speaker at Ignite, Build, Microsoft PDC, TechEd (US, Europe, Australia, New Zealand, Japan), 
TechDays, Gartner Summit, European Identity Conference, IDWorld, OreDev, NDC, IASA, Basta, 
and many others. At the moment his Channel 9 speaker page at https://channel9.msdn.com/
events/speakers/vittorio-bertocci lists 44 recordings.

Vittorio is a published author, both in the academic and industry worlds, and has written many 
 articles and papers. He is the author of Programming Windows Identity Foundation (Microsoft 
Press, 2010) and coauthor of A Guide to Claims-Based Identity and Access Control (Microsoft 
 patterns & practices, 2010) and Understanding Windows Cardspace (Addison-Wesley, 2008). He 
is a prominent authority and blogger on identity, Azure, .NET development, and related topics: 
he shares his thoughts at  www.cloudidentity.com and via his twitter feed, http://www.twitter.com/
vibronet.

 Vittorio lives in the lush green of Redmond with his wife, Iwona. He doesn’t mind the gray skies 
too much, but every time he has half a chance, he fl ies to some place on the beach, be it the 
South Pacifi c or Camogli, his home town in Italy.

ModernAuth_PrintBook_Final.indb   311ModernAuth_PrintBook_Final.indb   311 11/28/2015   11:40:43 AM11/28/2015   11:40:43 AM



 Now that 
you’ve  
read the  
book...

Was it useful?
Did it teach you what you wanted to learn?
Was there room for improvement?

Let us know at http://aka.ms/tellpress

Your feedback goes directly to the staff at Microsoft Press,  
and we read every one of your responses. Thanks in advance!

Tell us what you think!

SurvPage_Corp_b&w.indd   1 4/24/13   12:45 PM


	Contents
	Foreword
	Introduction
	CHAPTER 7: The OWIN OpenID Connect middleware
	CHAPTER 8: Azure Active Directory application model 
	Index
	About the author


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 244
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 244
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck true
  /PDFX3Check false
  /PDFXCompliantPDFOnly true
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks true
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions false
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 2400
        /PresetName (Print Quality - QW)
        /PresetSelector /UseName
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 12.240000
      /MarksWeight 0.125000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed true
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




