

190 CHAPTER 8

For example, when you created the sample app in the Azure portal, Azure AD automatically grant-
ed consent for that app on behalf of your user. Alongside the Application and Service Principal,
the process also created the following oauth2PermissionGrants entry:

{
 "odata.metadata": "https://graph.windows.net/developertenant.onmicrosoft.com/$metadata#oauth2
PermissionGrants",
 "value": [
 {
 "clientId": "29f565fd-0889-43ff-aa7f-3e7c37fd95b4",
 "consentType": "Principal",
 "expiryTime": "2015-11-21T23:31:32.6645924",
 "objectId": "_WX1KYkI_0Oqfz58N_2VtEnIMYJNhOpOkFrsIuF86Y8",
 "principalId": "13d3104a-6891-45d2-a4be-82581a8e465b",
 "resourceId": "8231c849-844d-4eea-905a-ec22e17ce98f",
 "scope": "UserProfile.Read",
 "startTime": "0001-01-01T00:00:00"
 }
]
}

Note The query I used for retrieving this result was https://graph.windows.net/
developertenant.onmicrosoft.com/oauth2PermissionGrants?$filter=clientId+eq

+'29f565fd-0889-43ff-aa7f-3e7c37fd95b4'.

Let’s translate that snippet into English. It says that the User with identifi er 13d3104a-6891-
45d2-a4be-82581a8e465b (the PrincipalId) consented for the client 29f565fd-0889-43ff-aa7f-
3e7c37fd95b4 (the clientId) to access the resource 8231c849-844d-4eea-905a-ec22e17ce98f (the
resourceId) with permission UserProfile.Read (the scope). Resolving references further, the
client is our sample app, and the resource is the directory itself—more precisely, the Directory Graph
API. Figure 8-3 shows how the consent for the fi rst application user is recorded in the directory;
 Figure 8-4 shows how the oauth2PermissionGrants table grows as more users give their consent.

Important All the identifi ers here refer to the objectId property of the respective
entity they refer to. Given that clientId and resourceId ultimately refer to
ServicePrincipals, it’s easy to get confused and expect those values to represent the
appId. But nope, it’s the objectId. The principalId is the objectId property of the
User object representing the user account used for consenting.

ModernAuth_PrintBook_Final.indb 190ModernAuth_PrintBook_Final.indb 190 11/28/2015 11:40:34 AM11/28/2015 11:40:34 AM

 Azure Active Directory application model 191

FIGURE 8-3 The oauth2PermissionGrant recording in the directory that user 1 consented for the app
represented by ServicePrincipal 1 to access ServicePrincipal N with the permission stored in the
property scope, in itself picked from one of the permissions exposed by the original Application N
oauth2Permissions section.

When Azure AD receives a request for a token to be issued to the application defi ned here, it looks
in the oauth2PermissionGrants collection for entries whose clientId matches the app. If the
authenticated user has a corresponding entry, she or he will get back a token right away. If there’s
no entry, the user will see the consent prompt listing all the requiredResourceAccess permissions
from the Application object. Upon successful consent, a new oauth2PermissionGrant entry for
the current user will be created to record the consent. And so on and so forth.

ModernAuth_PrintBook_Final.indb 191ModernAuth_PrintBook_Final.indb 191 11/28/2015 11:40:34 AM11/28/2015 11:40:34 AM

192 CHAPTER 8

FIGURE 8-4 Subsequent consent operations create more oauth2PermissionGrant entries in the directory, one
for each new user consenting for the application.

If you want to try, go ahead and launch the sample app again, but sign in as another user. This
time, you will be presented with the consent page. Consent and then sign out. Sign in again with
the new user: you will not be prompted for consent again. If you queried the directory (in the next
 chapter you’ll learn how) to fi nd all the oauth2PermissionGrants whose clientId matches
the sample app, you’d see that there are now two entries, looking very much alike apart from the
 principalId, which would point to different users. Note that it doesn’t matter whether your second
user is an administrator or a low-privilege user; the resulting oauth2PermissionGrant will look just
like the one described earlier when following this fl ow.

Interlude: Delegated permissions to access the directory
One of the things you have learned in this chapter is that applications can declare the permissions
that a client can request of them, via oauth2Permissions, as a way of partitioning the possible
 actions a user can perform over the resource represented by the app and to provide fi ne-grained
access control over who can do what. As I’ve mentioned, in the next chapter you will learn how clients
can actually take advantage of gaining such permissions; here, you’re just studying how requesting
and granting such permissions takes place.

ModernAuth_PrintBook_Final.indb 192ModernAuth_PrintBook_Final.indb 192 11/28/2015 11:40:34 AM11/28/2015 11:40:34 AM

 Azure Active Directory application model 193

Each and every resource protected by Azure AD works by exposing permissions—the Offi ce 365
API, Azure management API, and any custom API all work that way. Covering all those would be a
pretty hard task. Even ignoring the enormous surface I’d have to cover, chances are that the details
would change multiple times from the time I’m writing and when you have this book in your hands.
That said, I am going to describe in detail at least one resource: the directory itself. Like any other
resource, Azure AD exposes a number of delegated permissions, which determine what actions your
application is allowed to perform against the data stored in the directory. Such actions take the form
of requests to embed information in issued tokens (what we have been working with until now)
and reading or modifying directory data via API calls to the Graph API (what you’ll see in the next
 chapter). You will likely have to deal with directory permissions in practically every app you write;
hence, they’re a great candidate for showing you how to deal with permissions in depth—well, except
for the fact that they feature lots of exceptions, but you need to be aware of these anyway.

As of today, the directory itself is represented by a ServicePrincipal in your tenant. You already
know both the AppId and the ObjectId of that principal, given that our sample app had to request
at least the permission UserProfile.Read in order to sign users in. The AppId, 00000002-0000-
0000-c000-000000000000, comes from the requiredResourceAccess in the Application object
representing our sample. The ObjectID of the ServicePrincipal, 8231c849-844d-4eea-905a-
ec22e17ce98f, comes from the oauth2PermissionGrant tracking the consent to our sample. The
objectId is enough for crafting the resource URL referring to the Graph API ServicePrincipal: it’s
https://graph.windows.net/developertenant.onmicrosoft.com/servicePrincipals/8231c849-844d-4eea-
905a-ec22e17ce98f.

I won’t show the entire JSON for the ServicePrincipal here, as it contains a lot of stuff I want to
cover later. But take a look at the oauth2Permissions, the collection of delegated permissions one
client can request for interacting with the directory:

"oauth2Permissions": [
 {
 "adminConsentDescription": "Allows the app to create groups on behalf of the signed-in
user and read all group properties and memberships. Additionally, this allows the app to update
group properties and memberships for the groups the signed-in user owns.",
 "adminConsentDisplayName": "Read and write all groups",

 "id": "970d6fa6-214a-4a9b-8513-08fad511e2fd",
 "isEnabled": true,
 "type": "User",

 "userConsentDescription": "Allows the app to create groups on your behalf and read all
group properties and memberships. Additionally, this allows the app to update group properties
and memberships for groups you own.",
 "userConsentDisplayName": "Read and write all groups",
 "value": "Group.ReadWrite.All" },
 {
 "adminConsentDescription": "Allows the app to read basic group properties and memberships
on behalf of the signed-in user.",
 "adminConsentDisplayName": "Read all groups",

 "id": "6234d376-f627-4f0f-90e0-dff25c5211a3"
 "isEnabled": true,
 "type": "User",

 "userConsentDescription": "Allows the app to read all group properties and memberships on
your behalf.",

ModernAuth_PrintBook_Final.indb 193ModernAuth_PrintBook_Final.indb 193 11/28/2015 11:40:35 AM11/28/2015 11:40:35 AM

194 CHAPTER 8

 "userConsentDisplayName": "Read all groups",
 "value": "Group.Read.All"

 },
 {
 "adminConsentDescription": "Allows the app to read and write data in your company or
school directory, such as users and groups. Does not allow user or group deletion.",
 "adminConsentDisplayName": "Read and write directory data",

 "id": "78c8a3c8-a07e-4b9e-af1b-b5ccab50a175",
 "isEnabled": true,
 "type": "Admin",

 "userConsentDescription": "Allows the app to read and write data in your company or school
directory, such as other users, groups. Does not allow user or group deletion on your behalf.",
 "userConsentDisplayName": "Read and write directory data",
 "value": "Directory.Write"

 },
 {
 "adminConsentDescription": "Allows the app to have the same access to information in the
directory as the signed-in user.",
 "adminConsentDisplayName": "Access the directory as the signed-in user",

 "id": "a42657d6-7f20-40e3-b6f0-cee03008a62a",
 "isEnabled": true,
 "type": "User",

 "userConsentDescription": "Allows the app to have the same access to information in your
work or school directory as you do.",
 "userConsentDisplayName": "Access the directory as you",
 "value": "user_impersonation"

 },
 {
 "adminConsentDescription": "Allows the app to read data in your company or school
directory, such as users, groups, and apps.",
 "adminConsentDisplayName": "Read directory data",

 "id": "5778995a-e1bf-45b8-affa-663a9f3f4d04",
 "isEnabled": true,
 "type": "Admin",

 "userConsentDescription": "Allows the app to read data in your company or school
directory, such as other users, groups, and apps.",
 "userConsentDisplayName": "Read directory data",
 "value": "Directory.Read"

 },
 {
 "adminConsentDescription": "Allows the app to read the full set of profile properties of
all users in your company or school, on behalf of the signed-in user. Additionally, this allows
the app to read the profiles of the signed-in user's reports and manager.",
 "adminConsentDisplayName": "Read all users' full profiles",

 "id": "c582532d-9d9e-43bd-a97c-2667a28ce295",
 "isEnabled": true,
 "type": "Admin",

 "userConsentDescription": "Allows the app to read the full set of profile properties of
all users in your company or school on your behalf. Additionally, this allows the app to read
the profiles of your reports and manager.",
 "userConsentDisplayName": "Read all users' full profiles",
 "value": "User.Read.All"

 },
 {
 "adminConsentDescription": "Allows the app to read a basic set of profile properties of
all users in your company or school on behalf of the signed-in user. Includes display name,
first and last name, photo, and email address. Additionally, this allows the app to read basic

ModernAuth_PrintBook_Final.indb 194ModernAuth_PrintBook_Final.indb 194 11/28/2015 11:40:35 AM11/28/2015 11:40:35 AM

 Azure Active Directory application model 195

info about the signed-in user's reports and manager.",
 "adminConsentDisplayName": "Read all users' basic profiles",

 "id": "cba73afc-7f69-4d86-8450-4978e04ecd1a",
 "isEnabled": true,
 "type": "User",

 "userConsentDescription": "Allows the app to read a basic set of profile properties of
other users in your company or school on your behalf. Includes display name, first and last
name, photo, and email address. Additionally, this allows the app to read basic info about your
reports and manager.",
 "userConsentDisplayName": "Read all user's basic profiles",
 "value": "User.ReadBasic.All"

 },
 {
 "adminConsentDescription": "Allows users to sign in to the app, and allows the app to read
the profile of signed-in users. It also allows the app to read basic company information of
signed-in users.",
 "adminConsentDisplayName": "Sign in and read user profile",

 "id": "311a71cc-e848-46a1-bdf8-97ff7156d8e6",
 "isEnabled": true,
 "type": "User",

 "userConsentDescription": "Allows you to sign in to the app with your work account and let
the app read your profile. It also allows the app to read basic company information.",
 "userConsentDisplayName": "Sign you in and read your profile",
 "value": "User.Read"

 }
],

Here’s a quick description of each delegated permission listed, per their Value property. Please
note that this list does change over time. Funny story: it changed a couple of weeks after I fi nished
writing this chapter—I had to come back and revise much of what follows. In fact, the change is not
fully complete, as the ServicePrincipal object shown above still shows some old values. The fi rst
four permissions described in what follows are the ones that Azure AD has offered since it started
supporting consent as described in this book; the last four are brand-new and likely to be less stable.
Wherever appropriate, I will hint at the old values so that if you encounter code based on older
strings, you can map it back to the new permissions. Chances are the list will change again: please
keep an eye on the permissions documentation, currently available at https://msdn.microsoft.com/
Library/Azure/Ad/Graph/howto/azure-ad-graph-api-permission-scopes.

User.Read (was UserProfi le.Read)
This is the permission that each app needs to authenticate users. Applications created in the Azure
portal and Visual Studio are confi gured to automatically request this permission, which is why you
don’t see it mentioned in the UI you use for creating apps in either tool.

Besides the ability to request a token containing claims about the incoming user, this permission
grants to the app the ability to query the Graph API for information about the currently signed-in
user.

As you’ve experienced, this permission can be granted by nonadmin users. That is confi rmed by
the type property of value User in the permissions declaration.

ModernAuth_PrintBook_Final.indb 195ModernAuth_PrintBook_Final.indb 195 11/28/2015 11:40:35 AM11/28/2015 11:40:35 AM

196 CHAPTER 8

Directory.Read.All (was Directory.Read)
As the name implies, obtaining this permission allows one application to read via the Graph API (I’ll
stop saying that; just assume that’s what you use to interact with the directory) the content of the
directory tenant of the user that is currently signed in.

Here’s the fi rst exception. In the general case, Directory.Read is an admin-only permission:
only an admin user can consent to it. However, if the application is a web app (as opposed to a native
 client) defi ned in tenant A, and the user being prompted for consent is also from A, Directory.
Read behaves like a User-type permission, which is to say that even a nonadmin user can consent
to it. For the scenario we have been considering until now—app developer and app users are from
the same tenant—this is effectively a User-type permission. When we consider the case in which the
app is available to other tenants, you’ll see that an app created in A that is requesting Directory.
Read and being accessed by a user from B will be provisioned in B only if that user happens to be an
 administrator.

Directory.ReadWrite.All (was Directory.Write)
Once again, the name is self-explanatory: this permission grants to the app the ability to read, modify,
and create directory data. No exceptions this time; only administrator users can consent to Direc-
tory.Write.

Directory.AccessAsUser.All (was user_impersonation)
This permission, which today is surfaced in the Azure portal under the label “Access the directory
as the signed-in user,” allows the application to impersonate the caller when accessing the direc-
tory, inheriting his or her permissions. That is a pretty powerful thing to do, which is why for web
 applications this permission can be granted only by an admin user.

As a side note, for native applications, this permission behaves like a User permission instead. A
native app does not have an identity per se, and it is already doing the direct user’s bidding anyway.
It stands to reason that the app should be able to do what the user is able to do, just as happens
on-premises when a classic native client (say Word or Excel) can or cannot open a document from a
network share depending on whether the user has the correct permissions on that folder.

User.ReadBasic.All
You can think of this permission as the minimum requirement allowing an app to enumerate all users
from a tenant. Namely, User.ReadBasic.All will give access to the user attributes displayName,
givenName, surname, mail and thumbnailPhoto. Anything beyond that requires higher permissions.

User.Read.All
This is an extension of User.ReadBasic.All. This permission allows an app to access all the
 attributes of User, the navigation properties manager, and directReports. User.Read.All can be
exercised only by admin users.

ModernAuth_PrintBook_Final.indb 196ModernAuth_PrintBook_Final.indb 196 11/28/2015 11:40:35 AM11/28/2015 11:40:35 AM

 Azure Active Directory application model 197

Group.Read.All, Group.ReadWrite.All
These new permissions are still in preview at this point, so I hesitate to give too detailed a description
here. The idea is that groups and group membership are important information and deserve their
own permissions so that access can be requested and granted explicitly. Group.Read.All allows an
app to read the basic profi le attributes of groups and the groups they are a member of. Group.Read-
Write.All allows an app to access the full profi le of groups and to change the hierarchy by creating
new groups and updating existing ones. Both permissions alone won’t grant access to the users in the
groups—to obtain that, the app also needs to request some User.Read* permission.

As usual, it’s important to remember that scopes don’t really add to what a user can do: an
 application obtaining Group.ReadWrite.All will only be able to manipulate the groups owned by
the user granting the delegation to the app.

Table 8-1 summarizes how the out-of-the-box Azure AD permissions work. I’ve added a column for
the permission identifi er, which I fi nd handy so that when I look at the Application object, which
uses only opaque IDs, I know what permission the app is actually requesting. Let me stress that there’s
no guarantee these won’t change in the future, so please use them advisedly.

TABLE 8-1 A summary of the Azure AD permissions for accessing the directory.

Permission description in
the Azure portal

Identifi er Scope value Type

Sign in and read user profi le 311a71cc-e848-46a1-bdf8-
97ff7156d8e6

User.Read User

Read directory data 5778995a-e1bf-45b8-affa-
663a9f3f4d04

Directory.Read.All Admin (except for users
from the tenant where the
Application is defi ned)

Read and write directory data 78c8a3c8-a07e-4b9e-af1b-
b5ccab50a175

Directory.
ReadWrite.All

Admin

Access the directory as the
signed-in user

a42657d6-7f20-40e3-b6f0-
cee03008a62a

Directory.
AccessAsUser.All

Admin (except native clients)

Read all users’ basic profi les cba73afc-7f69-4d86-8450-
4978e04ecd1a

User.ReadBasic.All User

Read all users’ full profi les c582532d-9d9e-43bd-a97c-
2667a28ce295

User.Read.All Admin

Read all groups 6234d376-f627-4f0f-90e0-
dff25c5211a3

Group.Read.All Admin

Read and write all groups 970d6fa6-214a-4a9b-8513-
08fad511e2fd

Group.ReadWrite.All Admin

Now that you have some permissions to play with, let’s get back to the exploration of how consent
operates.

Application requesting admin-level permissions
Let’s say that your application needs the ability to modify data in the directory. You might be sur-
prised to learn that you can create such an application even with a nonadmin user: you’ll simply not
be able to use it at run time.

ModernAuth_PrintBook_Final.indb 197ModernAuth_PrintBook_Final.indb 197 11/28/2015 11:40:35 AM11/28/2015 11:40:35 AM

198 CHAPTER 8

Note If you are keeping track of the identifi ers in the JSON, technically I could modify the
app we’ve been working on so far, but for the sake of clarity I’ll create a new one.

Go back to the Azure portal, sign in as a nonadmin user, and go through the usual application
creation fl ow. Once the app is created, head to the Confi gure tab and scroll all the way to the bottom
of the page. As of today, you’ll fi nd a section labeled Permissions To Other Applications, already
 containing one entry for Azure Active Directory—specifi cally, the default delegated permission Sign
In And Read User Profi le. Figure 8-5 shows you the UI at the time of writing, but as usual you can be
sure there will be something different (but I hope functionally equivalent) by the time you pick up
the book.

FIGURE 8-5 The application permission selection UI in the Azure portal (fall 2015).

You’ll also see an ominous warning: “You are authorized to select only delegated permissions
which have personal scope.” Today that isn’t actually the case. Select Read And Write Directory Data,
and then click Save.

You’ll receive a warning that the portal was unable to update the confi guration for the app, but
that’s only partially true. If you go take a look at the Application, you’ll see that it was correctly
updated. Here is its requiredResourceAccess section:

"requiredResourceAccess": [
{
 "resourceAppId": "00000002-0000-0000-c000-000000000000",
 "resourceAccess": [
 {
 "id": "78c8a3c8-a07e-4b9e-af1b-b5ccab50a175",
 "type": "Scope"
 },
 {
 "id": "311a71cc-e848-46a1-bdf8-97ff7156d8e6",
 "type": "Scope"
 }
]
}

ModernAuth_PrintBook_Final.indb 198ModernAuth_PrintBook_Final.indb 198 11/28/2015 11:40:35 AM11/28/2015 11:40:35 AM

 Azure Active Directory application model 199

Thanks to our magical Table 8-1, we know those to be the correct permissions.

The part that the portal was not able to add was the oauth2PermissionGrant that would allow
the current (nonadmin) user to have write access to the directory. If you list the oauth2Permission-
Grants of the ServicePrincipal, you’ll fi nd only the original entry for User.Read.

That entry is the reason why, if you try to sign in to the app as the user who created it, you will suc-
ceed: the directory sees that entry, and that’s enough to not show the consent prompt and issue the
requested token. However, if after you sign in, your app attempts to get a token for calling the Graph,
the operation would fail.

If you launch the application again and try to sign in as any other nonadmin user, instead of the
consent prompt you’ll receive an error along the lines of “AADSTS90093: Calling principal cannot
consent due to lack of permissions,” which is exactly what you should expect.

Finally, launch the app again and try to sign in as an administrator. You will be presented with the
consent page as in Figure 8-6, just as expected.

FIGURE 8-6 The consent prompt presented to an admin user.

Grant the consent—you’ll fi nd yourself signed in to the application. That done, take a look at what
changed in oauth2PermissionGrants:

ModernAuth_PrintBook_Final.indb 199ModernAuth_PrintBook_Final.indb 199 11/28/2015 11:40:35 AM11/28/2015 11:40:35 AM

200 CHAPTER 8

{
 "odata.metadata": "https://graph.windows.net/developertenant.onmicrosoft.com/$metadata#oauth2
PermissionGrants",
 "value": [
 {
 "clientId": "725a2d9a-6707-4127-8131-4f9106d771de",
 "consentType": "Principal",
 "expiryTime": "2016-02-26T18:17:06.8442687",
 "objectId": "mi1acgdnJ0GBMU-RBtdx3knIMYJNhOpOkFrsIuF86Y_VUmVPfKg_R6aK4EVKgQSW",
 "principalId": "4f6552d5-a87c-473f-a68a-e0454a810496",
 "resourceId": "8231c849-844d-4eea-905a-ec22e17ce98f",
 "scope": "Directory.Write UserProfile.Read",
 "startTime": "0001-01-01T00:00:00"
 },
 {
 "clientId": "725a2d9a-6707-4127-8131-4f9106d771de",
 "consentType": "Principal",
 "expiryTime": "2016-02-26T00:50:43.3860871",
 "objectId": "mi1acgdnJ0GBMU-RBtdx3knIMYJNhOpOkFrsIuF86Y9KENMTkWjSRaS-glgajkZb",
 "principalId": "13d3104a-6891-45d2-a4be-82581a8e465b",
 "resourceId": "8231c849-844d-4eea-905a-ec22e17ce98f",
 "scope": "UserProfile.Read",
 "startTime": "0001-01-01T00:00:00"
 }
]
}

There’s a new entry now, representing the fact that the admin user consented for the app to have
UserProfile.Read and Directory.Write permissions. As discussed earlier, by the time you read
this, those scopes will likely have their new values—User.Read and Directory.ReadWrite.All—
but it is really exactly the same semantic.

Note that this did not change the access level for anybody but this particular admin user. If you try
to sign in as a nonadmin user (other than the app's creator), you’ll still get error AADSTS90093.

Admin consent
If the consent styles you’ve encountered so far were the only ones available, you’d have a couple of
serious issues:

 ■ Each and every user, apart from the application developer, would need to consent upon their
fi rst use of the app.

 ■ Only admin-level users would be able to consent for applications requiring more advanced
access to the directory, even when a user did not plan to exercise those higher privileged
capabilities.

Both issues would limit the usefulness of Azure AD. Luckily, there’s a way of consenting to applica-
tions that results in a blanket grant to all users of a tenant, all at once, and regardless of the access
level requested. That mechanism is known as admin consent, as opposed to user consent, which
you’ve been studying so far. Achieving admin consent is just a matter of appending to the request to
the authorization endpoint the parameter prompt=admin_consent.

ModernAuth_PrintBook_Final.indb 200ModernAuth_PrintBook_Final.indb 200 11/28/2015 11:40:35 AM11/28/2015 11:40:35 AM

 Azure Active Directory application model 201

Scopes can’t grant to the app more power than their user has!
I want to make sure you don’t fall for a common misconception here. Scopes are a way of del-
egating to the app some of the capabilities of their current user. In the most extreme case, this
means that an app can be as powerful as its current user (full user impersonation). What can
never happen via delegated permissions is that an app can do more than what its user can. If a
user cannot write to the directory, the fact that the app obtains Directory.ReadWrite.All
does not mean that such user can now use the app for writing to the directory! What that scope
really means is that if the current user of the app has that capability, the app has that capability,
too. If the user does not have that capability, he or she cannot delegate it to the application. As
you will see later, applications can have their own permissions (as opposed to delegated permis-
sions) that are independent from their current user and that can be used when the app needs to
perform things that would not normally be within the possibilities of its users.

Let’s give it a try and see what happens. From Chapter 7, you now know how to modify authentica-
tion requests by adding the change you want to the RedirectToIdentityProvider notifi cation. In
a real app, you would add some conditional logic to weave this parameter in only at the time of fi rst
access, but for this test you can go with the brute-force solution in which you add it every time.

Important Here I am adding Prompt=admin_consent in the sign-in request for the sake
of simplicity, but you would never do that in a production application without at least
some conditional logic. In fact, more often than not, you would not include it in the sign-in
action but wire it up to a dedicated sign-up action instead. Including Prompt=admin_con-
sent in a request will result in the consent being shown to the user, regardless of the past
consent history. You want to show this only when needed, and that’s only the fi rst time.
Wire it up to some specifi c action in your app, like sign-up, onboarding, or any other label
that makes sense for your application.

Here’s the code:

public static Task RedirectToIdentityProvider(RedirectToIdentityProviderNotification<OpenIdConn
ectMessage,
 OpenIdConnectAuthenticationOptions> notification)
{
 notification.ProtocolMessage.Prompt = "admin_consent";
 return Task.FromResult(0);
}

After you’ve added that code, hit F5 and try signing in. You will be prompted by a dialog similar to
the one shown in Figure 8-7.

ModernAuth_PrintBook_Final.indb 201ModernAuth_PrintBook_Final.indb 201 11/28/2015 11:40:35 AM11/28/2015 11:40:35 AM

202 CHAPTER 8

FIGURE 8-7 The admin consent dialog.

Superfi cially, the dialog in Figure 8-7 looks a lot like the one shown in Figure 8-6, but there is a
very important difference! The dialog shown when admin consent is triggered has new text, which
articulates the implications of granting consent in the admin consent case: “If you agree, this app
will have access to the specifi ed resources for all users in your organization. No one else will be
 prompted.”

Click OK—you’ll end up signing in as usual. The app will look the same, but its entries in the
 directory underwent a signifi cant change. Once again, take a look at the ServicePrincipal’s
 oauth2PermissionGrants:

{
 "odata.metadata": "https://graph.windows.net/developertenant.onmicrosoft.com/$metadata#oauth2
PermissionGrants",
 "value": [
 {

 "clientId": "725a2d9a-6707-4127-8131-4f9106d771de",

 "consentType": "AllPrincipals",

 "expiryTime": "2016-02-27T00:38:03.4045842",

 "objectId": "mi1acgdnJ0GBMU-RBtdx3knIMYJNhOpOkFrsIuF86Y8",

 "principalId": null,

 "resourceId": "8231c849-844d-4eea-905a-ec22e17ce98f",

 "scope": "Directory.Write UserProfile.Read",

 "startTime": "0001-01-01T00:00:00"

 },

ModernAuth_PrintBook_Final.indb 202ModernAuth_PrintBook_Final.indb 202 11/28/2015 11:40:35 AM11/28/2015 11:40:35 AM

 Azure Active Directory application model 203

 {
 "clientId": "725a2d9a-6707-4127-8131-4f9106d771de",
 "consentType": "Principal",
 "expiryTime": "2016-02-26T18:17:06.8442687",
 "objectId": "mi1acgdnJ0GBMU-RBtdx3knIMYJNhOpOkFrsIuF86Y_VUmVPfKg_R6aK4EVKgQSW",
 "principalId": "4f6552d5-a87c-473f-a68a-e0454a810496",
 "resourceId": "8231c849-844d-4eea-905a-ec22e17ce98f",
 "scope": "Directory.Write UserProfile.Read",
 "startTime": "0001-01-01T00:00:00"
 },
 {
 "clientId": "725a2d9a-6707-4127-8131-4f9106d771de",
 "consentType": "Principal",
 "expiryTime": "2016-02-26T00:50:43.3860871",
 "objectId": "mi1acgdnJ0GBMU-RBtdx3knIMYJNhOpOkFrsIuF86Y9KENMTkWjSRaS-glgajkZb",
 "principalId": "13d3104a-6891-45d2-a4be-82581a8e465b",
 "resourceId": "8231c849-844d-4eea-905a-ec22e17ce98f",
 "scope": "UserProfile.Read",
 "startTime": "0001-01-01T00:00:00"
 }
]
}

Note As I mentioned earlier in this chapter, Directory.Write and UserProfile.Read will
change to Directory.ReadWrite.All and User.Read.

I highlighted the new entry for you: it has a consentType of AllPrincipals, as opposed to the
usual Principal. Furthermore, its principalId property does not point to any user in particular;
it just says null. This tells Azure AD that the application has been granted a blanket consent for any
user coming from the current tenant. To prove that this is really the case, sign out from the app, stop
it in Visual Studio, comment out the code you added for triggering admin consent, and start the app
again. Sign in as a third user from the same tenant, one that you have never used before with this
app. Figure 8-8 shows a visual summary of this oauth2PermissionGrant confi guration.

ModernAuth_PrintBook_Final.indb 203ModernAuth_PrintBook_Final.indb 203 11/28/2015 11:40:36 AM11/28/2015 11:40:36 AM

204 CHAPTER 8

FIGURE 8-8 An oauth2PermissionGrant recording admin consent enables the app to operate with the
 requested scope with all users of a tenant at once.

After the credential gathering, you’ll fi nd yourself signed in right away, with no consent prompt of
any form.

Application created by an admin user
What happens when you sign in to the Azure portal as an admin user and you create an app in Azure
AD? The portal creates the same list of entities: an Application, its ServicePrincipal, and an
oauth2PermissionGrant. The difference from the nonadmin case is that the oauth2Permission-
Grant for an app created by an admin looks exactly like the one you observed as an outcome of the
admin consent fl ow: it includes consentType allPrincipals, which means that every user in the
tenant can instantly get access to the application.

Note The creation of the ServicePrincipal and the associated grant is at the origin
of the peculiar behavior of native apps created via the Azure portal by an admin. That is
the only case in which a native app does not trigger consent for all users in a tenant. In
all other cases, Azure AD today does not record consent for native apps in the directory,
storing it in the refresh token instead—which means that each new native app instance
running on a different device will prompt its user for consent regardless of its past consent
history. This is really out of scope for this book, but given that you have the concept fresh
in your mind, I thought I’d share this tidbit.

ModernAuth_PrintBook_Final.indb 204ModernAuth_PrintBook_Final.indb 204 11/28/2015 11:40:36 AM11/28/2015 11:40:36 AM

 Azure Active Directory application model 205

Multitenancy
How to develop apps that can be consumed by multiple organizations is such a large topic that for
some time I wondered whether I should devote an entire chapter to it. I ultimately decided against
that. Even if this is going to be a very large section, it still is a logical extension of what you have been
studying so far in this chapter.

The fi rst part of this section will discuss how Azure AD enables authentication fl ows across multiple
tenants, and how you can generalize what you have learned about confi guring the Katana middle-
ware to the case in which users are sourced from multiple organizations.

The second part will go back to the application model proper, showing you what happens to the
directory data model when your app triggers consent fl ows across tenants.

Azure AD as a parametric STS: The common endpoint
Ironically, if you are a veteran of federation protocols, you are at the highest risk of misunderstand-
ing how Azure AD handles multitenancy. The approach taken here is very different from the classic
 solutions that preceded it, and I have to admit that I myself needed some time to fully grok it.

In traditional claims-based protocols such as SAML and WS-Federation, the problem of enabling
access to one application from multiple IdPs has a canonical solution. It entails introducing one
 intermediary STS (often referred to as resource STS, R-STS or RP-STS) as the authority that the
 application trusts. In turn, the intermediate STS trusts all the IdPs that the application needs to
work with—assuming the full burden of establishing and maintaining trust, implementing whatever
protocol quirks each IdP demands. This is a very sensible approach, which isolates the application
itself from the complexities of maintaining relationships with multiple authorities. It is also likely the
best approach when you don’t know anything about the IdPs you want to connect to, apart from the
 protocol they implement and the STS metadata they publish. ADFS, Azure Access Control Services
(ACS), and pretty much any STS implementation supports this approach.

If you restrict the pool of possible IdPs to only the ones represented by a tenant in Azure AD,
however, you have far more information than that, and as you’ll see in the following, this removes the
need to have an intermediary in the picture. Although each administrator retains full control over her
or his own tenant, all tenants share the same infrastructure—same protocols, same data model, same
provisioning pipes. Focusing on endpoints in particular (recall their description from Chapter 3), rather
than a collection of STSs for each of its tenants, Azure AD can be thought of like a giant parametric
STS, where each tenant is expressed by instantiating its ID in the right segment of the issuance
 endpoint. Figure 8-9 compares the R-STS approach with the multitenant pattern used by Azure AD.

ModernAuth_PrintBook_Final.indb 205ModernAuth_PrintBook_Final.indb 205 11/28/2015 11:40:36 AM11/28/2015 11:40:36 AM

206 CHAPTER 8

FIGURE 8-9 The R-STS brokered trust pattern and the parametric STS pattern. Besides allowing for directory
 queries that would be impossible via federation alone, the latter makes it possible to automate application
 provisioning and trust establishment.

In the hands-on chapters, you've experienced directly how the endpoint pattern https://<instance>
/<tenant>/<protocol-specifi c-path> can be modulated to indicate tenant-specifi c token-issuance
 endpoints, sign-out endpoints, metadata document endpoints, and so on. You have also seen how
the Katana middleware leverages those endpoints for tying one application to one specifi c tenant.
For example, in Chapter 6 you saw how the metadata document published at https://login
. microsoftonline.com/DeveloperTenant.onmicrosoft.com/.well-known/openid-confi guration (which,

ModernAuth_PrintBook_Final.indb 206ModernAuth_PrintBook_Final.indb 206 11/28/2015 11:40:36 AM11/28/2015 11:40:36 AM

 Azure Active Directory application model 207

by the way, is equivalent to https://login.microsoftonline.com/6c3d51dd-f0e5-4959-b4ea-a80c4e-
36fe5e/.well-known/openid-confi guration, where the GUID is the corresponding tenantID) asserts that
tokens issued by that tenant will carry an iss(uer) claim value of https://sts.windows.net/6c3d51dd-
f0e5-4959-b4ea-a80c4e36fe5e/. In Chapter 7, you saw how that information is used by the Katana
middleware to ensure that only tokens coming from that tenant (that is, carrying that iss value) will
be accepted. That’s all well and good, and exactly what you want for line-of-business applications and
single-tenant apps in general.

You can repeat the same reasoning for all tenants: all you need to do is instantiate the right
 domain (or tenantID) in the endpoints paths.

Azure AD makes it possible to deal with multitenant scenarios by exposing a particular endpoint,
where the tenant parameter is not instantiated up front. There is a particular value, common, that can
be instantiated in endpoints in lieu of a domain or tenantID. By convention, that value tells Azure AD
that the requestor is not mandating any particular tenant—any Azure AD tenant will do.

Very important: Common is not a tenant. It is just an artifact used for constructing Azure
AD endpoints when the tenant to be used is not known yet. This is a crucial point to keep
in mind at all times when working with multitenant solutions, or you’ll end up baking as-
sumptions into your app that will inevitably turn out to be false and create all sorts of is-
sues that are hard to debug.

When the endpoint being constructed is one that would serve authentication UI, as is the case
for the OAuth2 authorization endpoints, the user is presented with a generic Azure AD credentials-
gathering experience. As the user enters his or her credentials, the account he or she chooses
will indirectly determine a specifi c tenant—the one the account belongs to. That will resolve the
 ambiguity about which tenant should be used for the present transaction, concluding the role
of common in the fl ow. The resulting code or token will look exactly as it would have had it been
 obtained by specifying the actual tenant instead of common to begin with. In other words, whether
you start the authentication fl ow using https://login.microsoftonline.com/common/oauth2/authorize
or https://login.microsoftonline.com/6c3d51dd-f0e5-4959-b4ea-a80c4e36fe5e/oauth2/authorize
for an OpenID Connect sign-in fl ow, if at run time you sign in with a user from the tenant with ID
6c3d51dd-f0e5-4959-b4ea-a80c4e36fe5e, the resulting token will look the same, with no memory
of what endpoint path led to its issuance. That should make it even clearer that common is not a real
 tenant: it’s just an endpoint sleight of hand for late binding a tenant, if you will.

Now comes the fun part. Upon learning about the common endpoint, the typical (and healthy)
 developer reaction is “Awesome! Let me just change the OpenID Connect middleware options as
shown here, and I’ll be all set!”

app.UseOpenIdConnectAuthentication(
 new OpenIdConnectAuthenticationOptions
 {
 ClientId = "c3d5b1ad-ae77-49ac-8a86-dd39a2f91081",
 Authority = "https://login.microsoftonline.com/common",

ModernAuth_PrintBook_Final.indb 207ModernAuth_PrintBook_Final.indb 207 11/28/2015 11:40:36 AM11/28/2015 11:40:36 AM

208 CHAPTER 8

Let’s say that you do just that, and then you hit F5 and, just for testing purposes, use the same
account you used successfully earlier—the one from the same tenant where the app was defi ned
in the fi rst place. Well, if you do that—surprise! The app won’t work. Sure, upon sign-in you will be
 presented with your credential-gathering and consent experience, but the app won’t accept the
 issued token. If you dig in a bit, as you learned in Chapter 7, you’ll discover that the token failed the
issuer validation test.

Recall the id_token validation logic from Chapter 7, and the comment about how the discovery
document of each tenant establishes what iss value an app should expect. If your app is initialized
with a tenant-specifi c endpoint, it will read from the metadata the tenant-specifi c issuer value to
expect; but if it is initialized with common, what issuer value is it going to get? I’ll save you the hassle
of visiting https://login.microsoftonline.com/common/.well-known/openid-confi guration yourself:
the discovery doc says “issuer”: “https://sts.windows.net/{tenantid}/”. No real tenant will ever issue a
token with that value, given that it’s just a placeholder, but the middleware does not know that. That’s
the value that the metadata asserts is going to be in the iss claim, and the default logic will refuse
anything carrying a different value.

Note What about all the other values in the discovery doc? Issuer is the only problematic
one, everything else (including keys, as you have seen in Chapter 6) is shared by all tenants.

This simply means that the default validation logic cannot work in case of multitenancy. What
should you do instead? You already saw the main strategies for dealing with this in Chapter 7,
 although at the time I could not fully discuss the multitenant case. I recommend that you leaf back
a few pages to get all the details, but just to summarize the key points here:

 ■ If you have your own list of tenants that your application should accept, you have two main
approaches. If the list is short and fairly static, you can pass it in at initialization time via
TokenValidationParameters.ValidIssuers. If the list is long and dynamic, you can
 provide an implementation for TokenValidationParameters.IssuerValidator where
you accommodate for whatever logic is appropriate for your case.

 ■ If the decision about whether the caller should be allowed to get through is not strictly tied
to the tenant the caller comes from, you can turn off issuer validation altogether by setting
TokenValidationParameters.ValidateIssuer to false. You should be sure that you do
add your own validation logic; for example, in the SecurityTokenValidated notifi cations
or even in the app (custom authorization fi lters, etc.). Otherwise, your app will be completely
open to access by anybody with a user in Azure AD. There are scenarios where this might be
what you want, but in general, if you are protecting your app with authentication, that means
that you have something valuable to gate access to. In turn, that might call for you to verify
whether the requestor did pay his monthly subscription or whatever other monetization
 strategy you are using—and usually that verifi cation boils down to checking the issuer or the
user against your own subscription list.

Now that you know how Azure AD multitenancy affects the application’s code, I’ll go back to how
consent, provisioning, and the data model are infl uenced.

ModernAuth_PrintBook_Final.indb 208ModernAuth_PrintBook_Final.indb 208 11/28/2015 11:40:36 AM11/28/2015 11:40:36 AM

 Azure Active Directory application model 209

Consenting to an app across tenants
The section about the Application object earlier in this chapter, and specifi cally the explanation
of the availableToOtherTenants property, already anticipated most of what you need to know
about creating multitenant applications. All apps are created for being used exclusively within their
own tenant, and only a tenant admin can promote an app to be available across organizations. Today,
this is done by fl ipping a switch labeled “Application is multi-tenant” on the Confi guration page of the
application on the Azure portal, and this has the effect of setting the availableToOtherTenants
app property to true. Also, an app is required to have an App ID Uri (one of the elements in the
 identifierUris collection in the Application object) whose host portion corresponds to
a domain registered for the tenant. In the sample I have been using through the last couple of
 chapters, that means that you’d need to set the App ID Uri to something like https://developertenant
. onmicrosoft.com/MarioApp1.

Let’s say that you signed in to the Azure portal and modifi ed your app entry to be multitenant.
Let’s also say that you modifi ed your app code to correctly handle the validation for tokens coming
from multiple organizations. Let’s give the app a spin by hitting F5.

Note If you promote the app you have been using in this chapter until now, be sure to
comment out the logic that triggers the admin consent (for now). Consequently, make sure
also that the app does not request any admin-only permissions.

In case you did not code your validation logic yet
If you are just experimenting and didn’t set up your multitenant validation code yet, here’s the
code you can use for turning off issuer validation while you play with the walk-through in this
chapter:

 app.UseOpenIdConnectAuthentication(
 new OpenIdConnectAuthenticationOptions
 {
 ClientId = "c3d5b1ad-ae77-49ac-8a86-dd39a2f91081",
 Authority = "https://login.microsoftonline.com/common",
 TokenValidationParameters = new System.IdentityModel.Tokens.TokenValidationParameters
 {

 ValidateIssuer = false,

 },

I cannot stress this enough: you should not go into production with the issuer validation
logic disabled unless you have also added your own validation.

Once the app is running, click the Sign In link, but this time sign in with a user from a different
Azure AD tenant. As explained in Chapter 3, in the section “Getting Azure Active Directory,” any
Azure subscriber can create a number of Azure AD tenants, create users and apps in them, and so
on. If you belong to a big-ish organization, you likely already did this in creating your development

ModernAuth_PrintBook_Final.indb 209ModernAuth_PrintBook_Final.indb 209 11/28/2015 11:40:36 AM11/28/2015 11:40:36 AM

210 CHAPTER 8

tenant, as that’s the best way of experimenting with admin-only features. If you already have a second
tenant and an account in it, great! If you don’t, create one tenant, create a user in it, then come back
and pick up the fl ow from here.

Upon successful sign-in, you’ll be presented with the consent page. As you can see in Figure 8-10,
the consent page presents some important differences from the single-tenant case. For one, the ten-
ant where the Application object was originally created is prominently displayed as the publisher.
Moreover, there’s now text telling you to consider whether you trust the publisher of the applica-
tion. This is serious stuff—if you give consent to the wrong application for the wrong permissions,
the damage to your own organization could be severe. That’s why only admins can publish apps for
multiple organizations, and that’s why even the simple Directory.Read permission requires admin
consent when it’s requested by a multitenant app.

FIGURE 8-10 The consent prompt for a multitenant page.

At the beginning of this chapter, you encountered a description of what happens in the tenants
for this exact consent scenario: the Application object in the original development tenant is
used as a blueprint for creating a ServicePrincipal in the target tenant. In fact, if you query
the Applications collection in the target tenant (you’ll learn how to do this in the next chapter),
you’ll fi nd no entries with the ClientId of your application—but you will fi nd a ServicePrincipal
with that ClientId. From what you have learned a few pages ago, you know that if you look into the
 collection of oauth2PermissionGrants for that ServicePrincipal, you will fi nd an entry record-
ing the consent of that particular user for this app and the permissions it requires. The principles of
admin consent apply here as well: if you want the admin of your prospective customer tenants to be
able to grant a blanket consent for all of his or her users, provide a way for your app to trigger an
admin consent request.

ModernAuth_PrintBook_Final.indb 210ModernAuth_PrintBook_Final.indb 210 11/28/2015 11:40:36 AM11/28/2015 11:40:36 AM

 Azure Active Directory application model 211

Changing consent settings
I touched on this earlier, but it’s worth stressing that the list of permissions an app requires isn’t very
dynamic. More concretely, say that your application initially declares a certain list of permissions in its
requiredResourceAccess, and some users in a few tenants consent to it. Say that after some time
you decide to add a new permission. That change in the Application object in your development
tenant will not affect the existing oauth2PermissionGrants attached to the ServicePrincipals
that have been created at consent time. With this version of Azure AD, the only way of refl ecting the
new permission set for a given app in a tenant is to revoke the existing consent (typically done by the
user visiting myapps.microsoft.com, the Offi ce 365 portal, or any other means that might be available
when you read this book) and ask for consent again.

This is less than ideal, especially if you consider that Azure AD offers you no way of warning your
users that something changed—you have to handle that in your own app or subscription logic. The
good news is that the next version of the Azure AD application model will allow for dynamic consent,
solving this issue once and for all.

The last section discussed at length the consent framework used for driving delegated permissions
assignment to applications. That is a super important aspect of managing application capabilities,
but it is far from the only one. The next section will continue to explore how Azure AD helps you to
control how users and applications have access to the directory itself, and to each other.

App user assignment, app permissions, and app roles

This section describes a set of Azure AD features that seem unrelated but are in fact all implemented
through the same primitive: the role. Here’s the list of features I’ll cover.

 ■ App user assignment The ability to explicitly defi ne which users should be allowed to get a
token for a certain application, at the exclusion of everybody else.

 ■ App-level permissions The ability to expose (and request) permissions that can be assigned
to applications themselves, as opposed to the users of the apps.

 ■ App roles The ability for developers to defi ne application-specifi c roles, which can be used
by administrators to establish in which capacity users can access an application.

All these features give you even more control over who can access your application and how.

App user assignment
By default, every user in a tenant can request a token from any app. Whether the requested token
will actually be issued depends on the outcome of user authentication, consent, and considerations of
user versus admin permissions, as I’ve discussed in the preceding sections.

ModernAuth_PrintBook_Final.indb 211ModernAuth_PrintBook_Final.indb 211 11/28/2015 11:40:36 AM11/28/2015 11:40:36 AM

212 CHAPTER 8

Azure AD offers the possibility for an administrator to restrict access to one application to a spe-
cifi c set of handpicked accounts. In terms of today’s experience, an administrator can navigate to the
Azure management portal at https://manage.windowsazure.com, select the target tenant, navigate to
the appropriate app entry, select the Confi gure tab, and fl ip the setting for “User assignment required
to access app” to On.

Given that this feature is related to specifi c instances of the app in specifi c tenants, the knobs
used to control it are not in the Application object but in the ServicePrincipal and associated
entities in the target tenant. You already encountered the ServicePrincipal property appRole-
AssignmentRequired: fl ipping the switch in the portal has the effect of setting this property to true.

The Users tab in the application entry in the Azure portal lists all the users that are assigned to the
application. From now on, no user not on that list can successfully request a token for the application.
If you fl ip the switch for one of the apps you’ve been playing with in the preceding section, you’ll see
that all the users that already gave consent for the app are present in the list. Every time a user gives
consent to the app, Azure AD adds an entry to a list of AppRoleAssignment, an entity I haven’t yet
discussed. Here’s how one typical entry looks:

{
 "odata.type": "Microsoft.DirectoryServices.AppRoleAssignment",
 "objectType": "AppRoleAssignment",
 "objectId": "Bkp-sDgT4kq5a-YB4HMf2q2NyOTf4hpKhVKXXQHxMhA",
 "deletionTimestamp": null,
 "creationTimestamp": "2015-09-06T08:53:30.1974755Z",
 "id": "00000000-0000-0000-0000-000000000000",
 "principalDisplayName": "Vittorio Bertocci",
 "principalId": "b07e4a06-1338-4ae2-b96b-e601e0731fda",
 "principalType": "User",
 "resourceDisplayName": "MarioApp1",
 "resourceId": "725a2d9a-6707-4127-8131-4f9106d771de"
 }

That entry declares that the user Vittorio Bertocci (identifi ed by its objectId b07e4a06-
1338-4ae2-b96b-e601e0731fda) can have access to the app MarioApp1 (object ID of the app’s
 ServicePrincipal being 725a2d9a-6707-4127-8131-4f9106d771de) in the capacity of role
00000000-0000-0000-0000-000000000000.

This is where the role of Role (pun intended) comes into play. As you will see later, Azure AD allows
developers to defi ne application-specifi c roles. The AppRoleAssignment entity is meant to track that
a certain app role has been assigned to one user for a certain app. What you are discovering here is
that Azure AD uses AppRoleAssignment also for tracking app user assignments—but in this case,
Azure AD automatically sets in the AppRoleAssignment a default role, 00000000-0000-0000-0000-
000000000000. It’s as simple as that.

One notable property of AppRoleAssignment is principalType. The sample entry here has the
value User, indicating that the entity being assigned the role is a user account. Other possible values
are Group (in which case, all the members of the group are assigned the role) or ServicePrincipal
(in which case, the role is being assigned to another client application).

ModernAuth_PrintBook_Final.indb 212ModernAuth_PrintBook_Final.indb 212 11/28/2015 11:40:37 AM11/28/2015 11:40:37 AM

 Azure Active Directory application model 213

If you use the Azure portal to assign more users to the app, you’ll see corresponding new
 AppRoleAssignment entries appearing in the application. By the way, the query I used for
getting the list of AppRoleAssignments for my app is:

https://graph.windows.net/developertenant.onmicrosoft.com/servicePrincipals/725a2d9a-6707-4127-
8131-4f9106d771de/appRoleAssignedTo.

Just for kicks, try to access your application with a user that has not been assigned. Instead of the
usual consent dialog, you’ll get back a lovely error along the lines of:

“error=access_denied&error_description=AADSTS50105: The signed in user ‘fabio@
developertenant.onmicrosoft.com’ is not assigned to a role for the application ‘developertenant.
onmicrosoft.com’.”

The behavior described in this section is what you would observe if your application didn’t defi ne
any app roles. In the next section, I’ll explore app roles in more depth.

App roles
Azure AD allows developers to defi ne roles associated with an application. Traditionally, roles are
handy ways of assigning collections of permissions to a bunch of users all at once: for example,
people in a hypothetical Approver role might have read/write access to a certain set of resources,
while people in the Reviewer role might have only read access to the same resources. Roles are handy
because assigning a user to a role saves you the hassle of adding all the permissions a role entails
one by one. Moreover, when a new resource is added to the milieu, access to that resource can be
added to the role to enable access to it for all the users already assigned to the role, replacing the
need to assign access individually, account by account. That said, roles in Azure AD do not necessar-
ily need to represent permissions grouping: Azure AD does not offer you anything for representing
such permissions anyway; it is your app’s job to interpret each role. You can use application roles to
represent any user category that makes sense for your application, like what is the primary spoken
language of a user. True, there are many other ways of tracking the same info, but one big advantage
of app roles over any other method is that Azure AD will send them in the form of claims in the token,
making it extra easy for the app to consume the info they carry.

After you declare application roles, such roles are available to be assigned to users by the
 administrators of the tenants using your app. Let’s take a look at how that cycle plays out.

The Application entity has one collection, appRoles, which is used for declaring the roles you
want to associate with your application. As of today, the way in which you populate that property is
by downloading the app manifest as described in “The Application” section at the beginning of this
chapter, adding the appropriate entries in appRoles, and uploading it back via the portal. Here is
what one appRoles collection looks like:

 "appRoles": [
 {
 "allowedMemberTypes": [
 "User"
],

ModernAuth_PrintBook_Final.indb 213ModernAuth_PrintBook_Final.indb 213 11/28/2015 11:40:37 AM11/28/2015 11:40:37 AM

214 CHAPTER 8

 "description": "Approvers can mark documents as approved",
 "displayName": "Approver",
 "id": "8F29F99B-5C77-4FBA-A310-4A5C0574E8FF",
 "isEnabled": "true",
 "value": "approver"
 },
 {
 "allowedMemberTypes": [
 "User"
],
 "description": "Reviewers can read documents",
 "displayName": "Reviewer",
 "id": "0866623F-2159-4F90-A575-2D1D4D3F7391",
 "isEnabled": "true",
 "value": "reviewer"
 }
],

The properties of each entry are mostly self-explanatory, but there are a couple of nontrivial
points.

The displayName and description strings are used in any experience in which the role is
 presented, such as the one in which an administrator can assign roles to users.

The value property represents the value that the role claim will carry in tokens issued for users
belonging to this role. This is the value that your application should be prepared to receive and
 interpret at access time.

The id is the actual identifi er of the role entry. It must be unique within the context of this
 Application.

The allowedMemberTypes property is the interesting one. Roles can be assigned to users, groups,
and applications. An allowedMemberTypes collection including the entry “User” indicates a role
that can be assigned to both users and groups. (In the next section, I’ll cover roles assignable to
 applications.)

Once you have added the roles in the manifest fi le, don’t forget to upload it back via the portal.

Note Sometimes the upload will fail, unfortunately without a lot of information to help
you troubleshoot: watch out for silly errors—for example, nonmatching parentheses. I
 recommend using a syntax-aware JSON editor, which should take care of most issues up
front.

If you head back to the Users tab and try to assign a new user to the app like you did in the
preceding section, you’ll see that you are no longer able to simply declare that you want to assign a
user to the app: now you are presented with a choice between the various roles you declared in the
manifest. Assign one of the roles to a random user, and then launch the app and try to sign in with
that user.

ModernAuth_PrintBook_Final.indb 214ModernAuth_PrintBook_Final.indb 214 11/28/2015 11:40:37 AM11/28/2015 11:40:37 AM

 Azure Active Directory application model 215

Note Subscribers to Azure AD Premium will also see an experience allowing the
 assignment of groups.

If you go back to the appRoleAssignedTo property of the ServicePrincipal and inspect the
role assignments there, you’ll fi nd the same user assignments from the preceding section, plus a new
entry for the user you just assigned to a role. It should look something like this:

 {
 "odata.type": "Microsoft.DirectoryServices.AppRoleAssignment",
 "objectType": "AppRoleAssignment",
 "objectId": "9pcRosZaC0a10yoa5r0IwZrIr_JYzUxFtCmlWBYn6w0",
 "deletionTimestamp": null,
 "creationTimestamp": null,
 "id": "8f29f99b-5c77-4fba-a310-4a5c0574e8ff",
 "principalDisplayName": "Fabio Bianchi",
 "principalId": "a21197f6-5ac6-460b-b5d3-2a1ae6bd08c1",
 "principalType": "User",
 "resourceDisplayName": "MarioApp1",
 "resourceId": "725a2d9a-6707-4127-8131-4f9106d771de"
 },

As expected, the id property points to one of the roles just defi ned, as opposed to the default
00000000-0000-0000-0000-000000000000 used during user assignment.

Launch the app and sign in as the user you just assigned to the role. If you capture the traffi c via
Fiddler (as you learned about in Chapter 6) and peek at the JWT token sent in the id_token, you’ll
notice a new roles claim:

{
 "amr" : ["pwd"],
 "aud" : "1538b378-5829-46de-9294-6cfb4ad4bbaa",
 "c_hash" : "EOuY-5M5XFxRyNCvRHe8Kg",
 "exp" : 1442740348,
 "family_name" : "Bianchi",
 "given_name" : "Fabio",
 "iat" : 1442736448,
 "iss" : "https://sts.windows.net/6c3d51dd-f0e5-4959-b4ea-a80c4e36fe5e/",
 "name" : "Fabio Bianchi",
 "nbf" : 1442736448,
 "nonce" : "635783335451569467.YzJiYmZjMGUtOWFkMS00NzI3LWJkYjMtMzhiMjE0YjVmNWE0ZDcwZTk3YmY
tNzQ4NC00YjkyLWFiY2YtYWViOWFhNjE0YjFj",
 "oid" : "a21197f6-5ac6-460b-b5d3-2a1ae6bd08c1",
 "roles" : ["approver"],
 "sub" : "OpcgG-Rxo_DSCJnuAf_7tdfXp7XaOzpW6pF3x7Ga8Y0",
 "tid" : "6c3d51dd-f0e5-4959-b4ea-a80c4e36fe5e",
 "unique_name" : "fabio@developertenant.onmicrosoft.com",
 "upn" : "fabio@developertenant.onmicrosoft.com",
 "ver" : "1.0"
}

ModernAuth_PrintBook_Final.indb 215ModernAuth_PrintBook_Final.indb 215 11/28/2015 11:40:37 AM11/28/2015 11:40:37 AM

216 CHAPTER 8

From your own application’s code, you can fi nd out the same information through the usual
ClaimsPrincipal.Current.FindFirst("roles") or, given that this is a multivalue claim,
FindAll. Once you have the value, you can do whatever the semantic you assigned to the role
 suggests that your code should do: allow or deny access to the method being called, change
 environment settings to match the preferences of the caller, and so on.

If you are using roles for authorization, classic ASP.NET development practices would suggest
 using [Authorize], <Authorization>, or the evergreen IsInRole(). The good news is that
they are all an option. The only thing you need to do is tell the identity pipeline that you want to use
the claim type roles as the source for the role information used by those artifacts. That’s done via
one property of TokenValidationParameters, RoleClaimType. For example, you can add the
 following to your OpenID Connect middleware initialization options:

TokenValidationParameters = new TokenValidationParameters
{
 RoleClaimType = "roles",
}

Azure AD roles are a very powerful tool, which is great for modeling relationships between users
and the functionality that the app provides. Although the concept is not new, Azure AD roles operate
in novel ways. For example, developers are fully responsible for their creation and maintenance,
while the administrators of the various tenants where the app is provisioned are responsible for
actually assigning people to them. Also, Azure AD roles are always declared as part of one app—it
is not possible to create a role and reuse it across multiple applications. There is no counterpart for
this on-premises. The closest match is groups, but those have global scope, and a developer has no
 control over them. Before the end of the chapter, I will also touch on groups in Azure AD.

Application permissions
All the features you encountered in this chapter are meant to give you control over how users have
access to your app and how users can delegate your app to access other resources for them.

In some situations you want to be able to confer access rights to the application itself, regardless
of what user account is using the app, or even when the app is running without any currently signed-
in user. For example, imagine a long-running process that performs continuous integration—an app
updating a dashboard with the health status of running tests against a solution and so on. Or more
simply, think about all the situations in which an app must be able to perform operations that a
low-privilege user would not normally be entitled to do—like provisioning users, assigning users to
groups, reading full user profi les, and so on. Note that, once again, those kinds of permissions come
into play when accessing the resource as a web API, so you won’t see this feature really play out until
the next chapter. Here I’ll just discuss provisioning.

While delegated permissions are represented in Azure AD via oauth2Permission in the
 Application object and the oauth2PermissionsGrants collection in the ServicePrincipal
table, Azure AD represents application permissions via Application.appRoles and Service-
Principal.appRoleAssignedTo.

ModernAuth_PrintBook_Final.indb 216ModernAuth_PrintBook_Final.indb 216 11/28/2015 11:40:37 AM11/28/2015 11:40:37 AM

 Azure Active Directory application model 217

The AppRole entity is used to declare application permissions just as you have seen for the
 application roles case, with the difference that allowedMemberTypes must include an entry of value
“Application”. To clarify that point, let’s once again turn to the Directory Graph API Service-
Principal and examine its appRoles collection:

"appRoles": [
 {
 "allowedMemberTypes": [
 "Application"
],
 "description": "Allows the app to read and write all device properties without
a signed-in user. Does not allow device creation, device deletion, or update of device
alternative security identifiers.",
 "displayName": "Read and write devices",
 "id": "1138cb37-bd11-4084-a2b7-9f71582aeddb",
 "isEnabled": true,
 "value": "Device.ReadWrite.All"
 },
 {
 "allowedMemberTypes": [
 "Application"
],
 "description": "Allows the app to read and write data in your organization's
directory, such as users and groups. Does not allow create, update, or delete of applications,
service principals, or devices. Does not allow user or group deletion.",
 "displayName": "Read and write directory data",
 "id": "78c8a3c8-a07e-4b9e-af1b-b5ccab50a175",
 "isEnabled": true,
 "value": "Directory.Write"
 },
 {
 "allowedMemberTypes": [
 "Application"
],
 "description": "Allows the app to read data in your organization's directory, such as
users, groups, and apps.",
 "displayName": "Read directory data",
 "id": "5778995a-e1bf-45b8-affa-663a9f3f4d04",
 "isEnabled": true,
 "value": "Directory.Read"
 }
],

Note Directory.Write and Directory.Read will follow the same update path as their
delegated homonyms and become Directory.ReadWrite.All and Directory.Read.All,
respectively.

You can think of each of those roles as permissions that can be requested by applications invok-
ing the Graph API. Although in the case of user and group roles, administrators can perform role
 assignments directly in the Azure management portal, granting application roles works very much
like delegated permissions—via consent at the fi rst token request.

ModernAuth_PrintBook_Final.indb 217ModernAuth_PrintBook_Final.indb 217 11/28/2015 11:40:37 AM11/28/2015 11:40:37 AM

218 CHAPTER 8

A client application needs to declare in advance what application permissions (that is, application
roles) it requires. That is currently done via the Azure portal, in the Permission To Other Application
section of the Confi gure tab. In Figure 8-5 earlier, you can see that the middle column of the screen
contains a drop-down labeled Application Permissions, in that case specifying the options available
for the Directory Graph API. It is operated much as you learned about for the Delegated Permissions
list, but the entries exposed in Application Permissions are the ones in the target resource from its
appRoles collection, and specifi cally the ones marked as Application in allowedMemberTypes.

What happens when you select an application permission, say Read Directory Data, for the
 Directory Graph API? Something pretty similar to what you have seen in the case of delegated
 permissions. Take a look at what changes in the Application’s requiredResourceAccess
 collection:

"requiredResourceAccess": [
{
 "resourceAppId": "00000002-0000-0000-c000-000000000000",
 "resourceAccess": [
 {

 "id": "5778995a-e1bf-45b8-affa-663a9f3f4d04",

 "type": "Role"

 },

 {
 "id": "78c8a3c8-a07e-4b9e-af1b-b5ccab50a175",
 "type": "Scope"
 },
 {
 "id": "311a71cc-e848-46a1-bdf8-97ff7156d8e6",
 "type": "Scope"
 }
]
}

The resource you want to access remains the same, the Directory Graph API—represented by the
ID 00000002-0000-0000-c000-000000000000. In addition to the old delegated permissions, of
type Scope, you’ll notice a new one, of type Role. The ID of this one corresponds exactly to the ID
declared in the Directory Graph API’s ServicePrincipal appRoles for the Read Directory Data
permission.

As I mentioned, granting application permissions takes place upon successful request of a token
from the app and positive consent granted by the user at authentication time. The presence of
an entry of type Role in a RequiredResourceAccessCollection introduces a key constraint,
 however: only admin consent requests will be considered. This means that every time you develop an
app requesting application permissions, you have to be sure that the fi rst time you request a token
from it, you append the prompt=admin_consent fl ag to your request.

If you actually launch the app and go through the consent dance, you’ll fi nd that after provision-
ing, the directory has added one new AppRoleAssignment entry to the appRoleAssignedTo
 property of the app’s ServicePrincipal entry in the target tenant. Or better, you would fi nd it if
your app had requested permissions for any resource other than the Directory Graph API. As I am
writing this chapter, the Directory Graph API is the only resource that received special treatment from

ModernAuth_PrintBook_Final.indb 218ModernAuth_PrintBook_Final.indb 218 11/28/2015 11:40:37 AM11/28/2015 11:40:37 AM

 Azure Active Directory application model 219

Azure AD: whereas every other resource has its consent settings recorded in the entities described in
this chapter, as of today clients accessing the Graph API record the application permissions consent
for it elsewhere. I won’t go into further details for two reasons. One, it would not help you understand
how application permissions work in general, given that each and every other resource does use
 appRoleAssignedTo. Two, there is talk of changing the Directory Graph API behavior so that it will
start acting like any other resource—it’s entirely possible that this will already be the case once the
book is in your hands, but given that it’s not for sure, I am not taking any chances.

With their permission/role dual nature, application permissions can be confusing. However, they
are an extremely powerful construct, and the possibilities their use opens up are well worth the effort
of mastering them.

Groups

In closing this chapter about how Azure AD models applications, I am going to show you how to
work with groups. Groups in Azure AD can be cloud-only sets of users, created and populated via the
Azure portal or the Offi ce 365 portal, or they can be synched from on-premises distribution lists and
security groups. Groups have been a staple of access control for the last few decades. As a developer,
you can count on groups to work across applications and to be assigned and managed by administra-
tors: all you need to know is that a group exists and what its semantic is and then use that information
to drive your app’s decisions regarding the current user (access control, UI customization, and so on).

By default, tokens issued by Azure AD do not carry any group information: if your app is interested
in which groups the current user belongs to, it has to use the Directory Graph API (cue the next
 chapter).

Just as with application roles, you can ask Azure AD to start sending group information in issued
tokens in the form of claims—simply by fl ipping a switch property in the Application object. If you
download your app manifest, modify the groupMembershipClaims property as follows, and then
upload the manifest again, you will get group information in the incoming tokens:

"groupMembershipClaims": "All",

If you are interested in receiving just the security groups, enter “SecurityGroup” instead of “All”.

After changing the manifest as described, I used the portal to create in my test tenant a new group
called “Hippies,” and assigned to it the test user Fabio. That done, I launched the app and signed in as
Fabio. Here’s the token I got:

{
 "amr" : ["pwd"],
 "aud" : "c3d5b1ad-ae77-49ac-8a86-dd39a2f91081",
 "c_hash" : "zit-F66pwRsDeJPtjpuzgA",
 "exp" : 1442822854,
 "family_name" : "Bianchi",
 "given_name" : "Fabio",
 "groups" : ["d6f48969-725d-4869-a7a0-97956001d24e"],

ModernAuth_PrintBook_Final.indb 219ModernAuth_PrintBook_Final.indb 219 11/28/2015 11:40:37 AM11/28/2015 11:40:37 AM

220 CHAPTER 8

 "iat" : 1442818954,
 "iss" : "https://sts.windows.net/6c3d51dd-f0e5-4959-b4ea-a80c4e36fe5e/",
 "name" : "Fabio Bianchi",
 "nbf" : 1442818954,
 "nonce" : "635784160492173285.ZmIyMTM5NGYtZDEyNC00MThmLTgyN2YtNTZkNzViZjA1MDgxMzljZDA1OWMtNjV
hOC00ZWI1LThkNmQtZDE4NGJlOTU2ZGZj",
 "oid" : "a21197f6-5ac6-460b-b5d3-2a1ae6bd08c1",
 "sub" : "0vmQvSCoJqTYby1EE0XR94PgRuveuOWUbAHNkmf0xTk",
 "tid" : "6c3d51dd-f0e5-4959-b4ea-a80c4e36fe5e",
 "unique_name" : "fabio@developertenant.onmicrosoft.com",
 "upn" : "fabio@developertenant.onmicrosoft.com",
 "ver" : "1.0"
}

You can see that there is indeed a groups claim, but what happened to the group name? Well, the
short version of the story is that because Azure AD is a multitenant system, arbitrary group names
like “People in building 44” or “Hippies” have no guarantee of being unique. Hence, if you wrote code
relying on only a group name, your code would often be broken and subject to misuse (a malicious
admin might create a group matching the name you expect in a fraudulent tenant and abuse your
access control logic). As a result, today Azure AD sends only the objectId of the group. You can use
that ID for constructing the URI of the group itself in the directory, in this case that’s:

https://graph.windows.net/developertenant.onmicrosoft.com/groups/d6f48969-725d-4869-a7a0-
97956001d24e.

In the next chapter, you’ll learn how to use the Graph API to use that URI to retrieve the actual
group description, which in my case looks like the following:

{
 "odata.metadata": "https://graph.windows.net/developertenant.onmicrosoft.
com/$metadata#directoryObjects/Microsoft.DirectoryServices.Group/@Element",
 "odata.type": "Microsoft.DirectoryServices.Group",
 "objectType": "Group",
 "objectId": "d6f48969-725d-4869-a7a0-97956001d24e",
 "deletionTimestamp": null,
 "description": "Long haired employees",
 "dirSyncEnabled": null,
 "displayName": "Hippies",
 "lastDirSyncTime": null,
 "mail": null,
 "mailNickname": "363bdd6b-f73c-43a4-a3b4-a0bf8b528ee1",
 "mailEnabled": false,
 "onPremisesSecurityIdentifier": null,
 "provisioningErrors": [],
 "proxyAddresses": [],
 "securityEnabled": true
}

Your app could query the Graph periodically to fi nd out what group identifi ers to expect, or you
could perform queries on the fl y as you receive the group information, though that would somewhat
defeat the purpose of getting groups in the form of claims.

ModernAuth_PrintBook_Final.indb 220ModernAuth_PrintBook_Final.indb 220 11/28/2015 11:40:37 AM11/28/2015 11:40:37 AM

 Azure Active Directory application model 221

Consuming groups entails more or less the same operations described for roles and Claims-
Principal. You can even assign groups as the RoleClaimType if that’s the strategy you usually
enact for groups (traditional IsInRole actually works against Windows groups on-premises, often
creating a lot of confusion).

One last thing about groups. There are tenants in which administrators choose to use groups
very heavily, resulting in each user belonging to very large numbers of groups. Adding many groups
in a token would make the token itself too large to fulfi l its usual functions (such as authentication
and so on), so Azure AD caps at 200 the number of groups that can be sent via JWT format. If the
user belongs to more than 200 groups, Azure AD does not pass any group claims; rather, it sends an
 overage claim that provides the app with the URI to use for retrieving the user’s groups information
via the Graph API. Azure AD does so by following the OpenID Connect core specifi cation for aggre-
gated and distributed claims: in a nutshell, a mechanism for providing claims by reference instead of
passing the values. Say that Fabio belonged to 201 groups in our sample above. Instead of the groups
claims, the incoming JWT would have contained the following claims:

"_claim_names": {
 "groups": "src1",
 },
 "_claim_sources": {
 "src1": {"endpoint": "https://graph.windows.net/developertenant.onmicrosoft.com/users/
a21197f6-5ac6-460b-b5d3-2a1ae6bd08c1/getMemberObjects"}
 }

In the next chapter, you’ll learn how to use that endpoint for extracting group information for the
incoming user.

Summary

The Azure AD application model is designed to support a large number of important functions: to
hold protocol information used at authentication time, provide a mechanism for provisioning applica-
tions within one tenant and across multiple tenants, allow end users and administrators to grant or
deny consent for apps to access resources on their behalf, and supply access control knobs to admin-
istrators and developers to fi ne-tune user and application access control.

That’s a tall order, but as you have seen throughout this chapter, the Azure AD application model
supports all of those functions—though in so doing, it often needs to create complex castles of inter-
locking entities. Note that little of that complexity ever emerges all the way to the end user, and even
for most development tasks, you don’t need to dive as deep as we did in this chapter. However, as a
reward for the extra effort, you now have a holistic understanding of how applications in Azure AD
are represented, provisioned, and granted or denied access to resources. You will fi nd that this skill
will bring your profi ciency with Azure AD to a new level.

ModernAuth_PrintBook_Final.indb 221ModernAuth_PrintBook_Final.indb 221 11/28/2015 11:40:37 AM11/28/2015 11:40:37 AM

ModernAuth_PrintBook_Final.indb 222ModernAuth_PrintBook_Final.indb 222 11/28/2015 11:40:37 AM11/28/2015 11:40:37 AM

Index

 295

 A
About() action, 238–239, 241, 249–250
access control

for applications, 216–219
enforcing, 82
groups, 219–221
risk levels, 59
for web APIs, 283

Access Control Service (ACS), 78–79
access delegation, 31–33
AccessToken property, 229
access tokens, 35, 256. See also tokens

claims, 263, 289–290, 292
invoking web API with, 232–251
JWT format, 271
life span, 238–239
opacity to token requestors, 72, 233
refresh tokens, 238–251. See also refresh tokens
renewing, 70–71
requests, 268–269
responses, 269–270
scope, 116. See also scopes

AccountController sign-in and sign-out logic, 104
AcquireTokenByAuthorizationCode method, 229,
 244–245, 287–288
AcquireToken method, 228, 269
AcquireToken* methods, 238–239, 241, 247
AcquireTokenSilent method, 239, 241, 243–244

failed calls, 246
acr claims, 133
Active Directory (AD)

access token representation, 255
introduction, 15
as new directory in the cloud, 58
on-premises, 15–16
on-premises vs. cloud approach, 58–59
projection in the cloud, 58
setup in Windows Server 2016, 273–274
token requests, 70
Visual Studio integration, 85–87

Active Directory Authentication Library (ADAL), 76–78
accessing APIs as application, 251–252
accessing APIs as arbitrary user, 252
cache, 243–247
handling AuthorizationCodeReceived notifi cation,
 227–230
JavaScript versions, 80
midtier client libraries, 81
native apps libraries, 48, 80–81
.NET NuGet package, referencing, 227–228
refresh tokens, 238–251
session management, 238–251
token-acquisition pattern, 77
token caches, 238–239

Active Directory Federation Services (ADFS), 9, 25, 52–56
access control policies for web APIs, 283
access token representation, 255
access tokens for web APIs, 285–288
API and UX entries, 282
application groups, 274–275
application permissions for web APIs, 284
app provisioning, 287
Client-Server Applications section of management
 UX, 275
credentials gathering, 280–281
endpoints, 276–277
federated tenants, 65–66
JWT format for access tokens, 271
management UX, 274–276
multiresource refresh tokens, 286
Native Application and Web API template, 275
OAuth2 authorization code grants, 55
OpenID Connect support, 103
protocol support, 55–56
Server Application and Web API template, 275
setting up, 54, 273–274
signing keys, 280
tokens issued by, 289
web API identifi ers, 282
web API invocation, 288–289
web API setup, 281–285

ModernAuth_PrintBook_Final.indb 295ModernAuth_PrintBook_Final.indb 295 11/28/2015 11:40:42 AM11/28/2015 11:40:42 AM

296

Active Directory Federation Services (ADFS), continued
web app setup, 277–280
web sign-on with OpenID Connect, 276–281
Windows Integrated Authentication credential, 279
in Windows Server 2016, 56, 103, 273–292
workplace-joined device detection, 56

Active Directory Federation Services (ADFS) “3”
application provisioning, 271
client entity, 274
OAuth2 support, 272
web APIs, protecting, 271–272

ActiveDirectoryFederationServicesBearerAuthentication
 method, 271
ADAL4J, 81
ADAL Android, 81
ADAL Cordova, 81
ADAL iOS, 80
ADAL JS, 72, 85, 294
ADAL .NET, 78–80
Add Transform Claim Rule Wizard, 290
admin consent, 173, 200–204. See also consent

dialog box for, 202
requests, 210

administrators
ADFS management, 53–54, 57
application creation, 204
Azure portal, 64, 66
claims issued, managing, 9, 57
consent prompts, 199
control over trust establishment, 57
directory resource access, 173
directory sync, 65
global, 93
guest, 93
permissions, 59, 198–200

AJAX calls, 235
allowedMemberTypes collection, 214, 216–217
amr claims, 133
AngularJS, 47
anonymous access, 97
APIs. See web APIs
<api version> component in URL template, 237
AppBuilder type, 141–142
appId property, 180, 188
App ID Uri, 209, 256
Application.appRoles object, 216–219
application groups, 274–275, 281–282
application identifi ers, 181
application-level authentication messages, 25
application model, Azure AD. See Azure Active Directory
 application model
Application object, 175, 177–186

authentication properties, 180–183
deletion timestamp, 180
JSON fi le, 178–180

object ID, 180
properties by functional group, 186
for web APIs, 257–258

Application Proxy, 67
applications

access directory as user permission, 196
accessing resources as, 45
accessing web APIs, 252
access through Azure Active Directory, 66
actions, 177
adding to application groups, 281–282
ADFS code, libraries, protocol support, 53, 55
admin consent, 173, 200–204, 210
admin creation, 204
admin-level permissions, 198–200
app-level permissions, 216–219
assigned users, 188
authenticate users permission, 195–196
authentication options, 177
availability to other tenants, 182–183
client role, 70–72. See also clients
credentials, 226–227, 279
decoupling from web servers, 138
delegated permissions, 192–197
directory read and write permissions, 196
display name, 181
enumerate users permissions, 196–197
group read and write permissions, 197
homepage, 181
identifi ers, 177, 188
identifying authentication protocols of, 64
IdP metadata, reading, 21
IdP trust, 18
initialization, 140–141
isolated and independent, 14
iss (issuer) value, 120–121, 208
key string assignments, 226–227
multitenancy, 205–211
nonadmin user creation, 189–192
OAuth2 permissions, 183–185
partitioning for consumption routes, 265–266
protecting with Azure AD, 60–61
protocol coordinates, 61, 177, 276, 278
provisioning, 53–54, 57, 189
public vs. confi dential clients, 181
relying parties, 18. See also relying parties (RPs)
resource protectors, 69, 73–74
resources, 177, 185–187
roles, 182, 213–216
scopes, 201. See also scopes
single-page, 45–47
as token requestors, 69–72, 74
token validation, 22. See also token validation
user assignment, 211–213

app manifest fi les, 214, 219

Active Directory Federation Services (ADFS) “3”

ModernAuth_PrintBook_Final.indb 296ModernAuth_PrintBook_Final.indb 296 11/28/2015 11:40:42 AM11/28/2015 11:40:42 AM

 297

appOwnerTenantId property, 188
app parameter, 140–141
app permissions, 216–219
AppRoleAssigment entity, 212
appRoleAssignedTo property, 215
appRoleAssignmentRequired property, 188, 212
AppRole entity, 216–217
appRoles property, 182, 188
ASP.NET

Katana. See Katana
membership providers, 14
project templates for web APIs, 287
support for web sign-on, 137. See also Open Web
 Interface for .NET (OWIN) middlewares
templates in Visual Studio 2015, 87

ASP.NET 4.6
vs. ASP.NET 5, 90
initialization code, 95
web API projects, 254. See also web APIs

ASP.NET 5, 85, 90
ASP.NET applications, 3–7. See also web applications

building, 89
claims-based identity support, 82
MVC project type, 90–91
OWIN components, 83–84

assembly:OwinStartup attribute, 139
assertions, 26
attributes, 20, 59, 290
audience claims, 132, 282
authentication

Application object properties, 180–183
Azure AD for, 1
claims-based identity, 17–23
default process, 4–7
defi ned, 12
failure notifi cation, 166
indicating success, 98
mechanisms for, 7
mode, 152, 158–159
modern, 31–48
multitenant systems, 58
native apps vs. web apps, 94
pre-claims techniques, 12–16
round-trip web apps, 23–31
steps of, 73
triggering, 97–98, 100
type setting, 158

AuthenticationContext class, 228
initialization, 287

AuthenticationFailed notifi cation, 167
authentication fl ows

across multiple tenants, 205–208
authorization-code, 42–43
hybrid, 40–42, 108
OWIN middlewares pipeline, 148–153

state, preserving, 116–117
AuthenticationManager instance, 148
authentication middlewares, 148–153

Authentication property, 146
AuthenticationMode property, 159

Active option, 149
AuthenticationProperties settings, 100
Authentication property, 146, 150, 152–153
AuthenticationReponseGrant, 150
authentication-request message type, 39
authentication requests, 98, 113–119

authorization endpoints, 114
clientID, 114
nonce, 117
omitted parameters, 117–119
response mode and response type, 114–116
scope, 116
state, 116–117

AuthenticationResult instance, 229
AuthenticationTicket store, 171
AuthenticationType property, 159
authorities, 18

/adfs/, 287
control over user authentication experience, 122
validation in ADFS, 287

authority coordinates, validation and, 157–158
Authority property, 155
authority types. See Active Directory Federation Services
 (ADFS); Azure Active Directory
authorization, 33–39, 116

OAuth2 grants, 55, 252
<Authorization>, 216
AuthorizationCodeReceived notifi cation, 167, 227–230,
 286
authorization codes

acquiring, 225
client secrets, 156
code-redemption logic, 227–230
OpenID Connect fl ow, 42–43
redeeming, 224–232, 286

authorization endpoint, 35, 63, 114, 207, 285
Authorization HTTP headers, tokens embedded in,
 232–234
authorization requests, 149
authorization server (AS), 34–35
[Authorize] attribute, 97–98, 148–149

on entire class, 257
role information, 216
scope-verifi cation logic, 264

auth_time claims, 133
availableToOtherTenants property, 182–183, 209
Azure Access Control Service (ACS), 41, 78–79
Azure Active Directory, 1, 56–67

access token representation, 255
application access, 66

Azure Active Directory

ModernAuth_PrintBook_Final.indb 297ModernAuth_PrintBook_Final.indb 297 11/28/2015 11:40:42 AM11/28/2015 11:40:42 AM

298

application entry permissions, 224–225
application model. See Azure Active Directory
 application model
Application Proxy, 67
apps, adding entry for, 60
authorization endpoints, 114
B2C (business to consumer), 294–295
client-credentials grants, 251
client IDs, 94, 97
cloud workload functionality, 59
consent prompt, 5–6
cookies on user browser, 124
credential gathering, 122–123
credentials prompt, 5
default domain, 62–63
development and, 2, 60–61
Directory Graph API, 10, 59. See also Directory Graph
 API
directory sync, 65–66
discovery, 119–120
functional components, 59–60, 63–65
group information in tokens, 219–220
libraries, 75–86
multitenancy, 58, 205–208
oauth2PermissionGrants collection, 189–192
obtaining tenant, 61–62
online developer guide, 293
OpenID Connect endpoints, 109
permissions for directory access, 193–197
private/public key pair information, 227
programmatic access to entities, 236–237
programmatic interface, 64–65. See also Directory
 Graph API
projection of on-premises, 65
protocol endpoints, 63–64
protocols supported, 58
redirect URIs, 100
refresh tokens, 240–243
registering apps, 93–94
resource identifi ers in token requests, 256
resource-protector library references, 92
response to POST, 123–125
response types, 124
service deployments, 63
sessions, cleaning, 135
synchronizing users and groups to, 65–66
tenantID, 63
tenants, 62, 93
tokens, 61. See also tokens
token-signing keys, 120–122
token validation, 149–151
trial, 2
tying to Visual Studio, 2–3
user information, accessing, 7–10
Visual Studio 2015 connected services, 87

web API provisioning, 253
Azure Active Directory application model, 64, 173–221

admin consent, 200–204
admin-level permissions, 198–200
admin user application creation, 204
app-level permissions, 216–219
Application object, 175, 177–186
app roles, 213–216
app user assignments, 211–213
consent, 175, 189–192
delegated permissions, 192–197
functions, 173
groups, 219–221
multitenancy, 205–211
provisioning fl ow, 175–176
ServicePrincipal object, 187–188
service principals, 174–177

Azure Active Directory Basic, 62, 66–67
Azure Active Directory Connect, 65
Azure Active Directory Free tier, 61–62
Azure Active Directory Premium, 62, 66–67, 215
Azure Active Directory vNext, 295
Azure management portal, 60–61, 64

application confi guration section, 178
application credentials, assigning, 226
Application entity JSON fi le, 178
application permission selection UI, 198
application permissions screen, 217–218
application tags, 188
manifest management section, 178
multitenancy setting, 209
provisioning apps in Azure AD, 93–94
Users tab, 212

Azure subscription, 2, 93

B
back ends, HTTP requests to, 46
Balfanz, Dirk, 41
BaseNotifi cation class, 161
bearer token middleware

diagnosing issues, 261
notifi cations, 264
Provider, specifying, 265
tokens from ADFS, validation, 271

bearer tokens, 232–237, 262
extraction and validation, 255

BootstrapContext property, 268
broker apps, 48
browsers

hosting prompting logic in, 48
network tracing features, 110
presentation layer, 45–46

business to consumer (B2C) Azure AD, 294–295

Azure Active Directory application model

ModernAuth_PrintBook_Final.indb 298ModernAuth_PrintBook_Final.indb 298 11/28/2015 11:40:42 AM11/28/2015 11:40:42 AM

 299

C
CallbackPath property, 158
caller identity class, 7–10
callers

attributes, 7
identifying, 23–24
retrieving names of, 7–8

Caption property, 159
Challenge method, 99–100
Challenge sequence in OpenID Connect middleware, 152
claims, 7, 20

from access tokens, 263
adding to access tokens, 289–290, 292
vs. attributes, 290
group information, 182, 219–220
in ID tokens, 132–134
information in, 57
JWT types, 131–132
OAuth2 and, 36–37
sourcing values, 52
type identifi ers, 8–9

claims-based identity, 17–23
authentication process, 21–22
identity providers, 17–18
just-in-time identity information, 57
protocols, 20–23
tokens, 18–20
trust and claims, 20

claims-oriented protocols, communication across
 boundaries, 36–37
ClaimsPrincipal class, 7–10, 82

Claims list, 263
Current.FindFirst(“roles”), 215–216
Current property, 8
in OWIN, 83
saving, 151
source location, 8

ClaimsPrincipalSelector delegate, 8
claims rules engine, 52
claims transformation engine, 60
ClaimTypes enumeration, 8–9
ClientAssertionCertifi cate, 231
ClientCredential class, 229, 251, 287
client credentials grants, 44–45, 251, 266
client IDs, 94, 97, 114, 155, 190

of application, 256
overriding at registration, 276
refresh tokens and, 243

client-resource interactions, tokens for, 70–71
clients, 70. See also token requestors

access control policies for web APIs, 283
in ADFS “3,” 274
ADFS support, 55
application permissions for web APIs, 284

confi dential, 181, 275
defi nitions of term, 72
entries in target directories, 183
granted permissions, 189–192
identity and resource consumption, 265–266
public, 181, 275
scopes, 284–285
as token requestors, 72
of web APIs, 291

client secrets, 156, 227
cloud applications, 57–58
cloud-based Active Directory, 58–59. See also Azure
 Active Directory
cloud-based authentication, 56. See also Azure Active
 Directory
cloud-based directories, 60
cloudidentity.com blog, 80
cloud services, 58. See also Azure Active Directory
cloud stores, 59
code reuse, 71
common endpoint, 121, 207
confi dential clients, 181, 275
Confi gurationManager class, 157–158
Confi gureAuth, 141
consent, 189–192

across tenants, 209–211
admin, 173, 200–204, 210
AppRoleAssigment entries, 212
provisioning fl ow, 175–176
for resource access, 186
revoking, 259
settings, 211
for web APIs, 258

consent prompts, 44, 191
for admin users, 199
for multitenant pages, 210

constrained delegation, 43
context

AuthenticationManager instance, 148
Authentication property, 146, 150, 152–153
environment dictionary, 147
middlewares, 142, 145–148
Request and Response properties, 147–149
TraceOutput property, 148

contracts, 23
controllers, MVC 5 Controller, 100
cookie-based sessions, 92
cookie middleware

adding to pipeline, 96
adding to web apps, 92
ClaimsPrincipal, saving, 151
collaboration with protocol middleware, 148
response processing, 150
sessions, managing, 171
sessions, saving, 150

cookie middleware

ModernAuth_PrintBook_Final.indb 299ModernAuth_PrintBook_Final.indb 299 11/28/2015 11:40:42 AM11/28/2015 11:40:42 AM

300

cookie middleware, continued
sign-out, 100–101

cookies
domain-bound, 24–25
life cycles, 24, 46
limitations, 46
nonce value, tracking, 124–125
session. See session cookies
on user browser, 124
for web API protection, 235–236

Cordova ADAL library, 81
credentials

application, 226–227
assigning, 226
gathering, 122–123
grants, 44–45, 251, 266
keys, 181. See also keys
passwords, 181
in ServicePrincipal, 188
sharing among apps, 32–33
storage, 226
types, 13

credentials validation and session cookie authentication
 pattern, 23–24
cross-collaboration scenarios, 17
cross-domain single sign-on, problems, 23–25
Current property, 8

D
decoupling web servers from apps, 138. See also
 middlewares; Open Web Interface for .NET
 (OWIN)
default authentication process, 4–7
delegated access, 34–36
delegated permissions, 185, 192–197

scopes, 201
deletionTimestamp property, 180, 188
Devasahayam, Samuel, 15
developer-assigned application identifi ers, 181
development certifi cates, 91
development libraries

in Active Directory, 75. See also libraries
for native clients, 294
for other platforms, 293

development on dedicated machines, 91
diagnostic middleware, 153–154
digital signatures, 19
directories, defi ned, 62
Directory.AccessAsUser.All permission, 196
directory access permissions, 193–196
directory entities, programmatic access to, 236–237
directory entries for web APIs, 257–258
Directory Graph API, 10, 59–60, 64–65, 236–237

Application object JSON fi le, 178–180

application permissions, 217–218
calling, 233–234
group information, 219

directory permissions, 193–197
directory queries in cloud applications, 57–58
Directory.Read.All permission, 196
Directory.Read permission, 196
Directory.ReadWrite.All permission, 196
directory services for multitenant systems, 58
directory sync, 65–66
directory tenants, 58
Directory.Write permission, 196
discovery document, 119, 208

keys document, 120–121
location, 277

displayName property, 181, 188
distributed sign-out, 27, 29, 101, 109
domain-based identifi ers, 63
domain controllers (DCs), 15, 20, 23
domain_hint parameter, 118
domain-joined servers, ADFS on, 54
domain-joined workstations, 14–16
domains, 14–16, 62

E
email claims, 133
endpoints, 18

ADFS, 276–277
common, 207
multitenancy and, 206–207
network, 52
OAuth2, 64
protocol, 60, 63–64
protocol/credential type, 60
turning on and off, 52

entities, 22–23, 70
environment dictionary, 138, 147
errorUrl property, 188
exp claims, 132
ExpiresOn property, 230

F
family_name claims, 133
federated tenants, 65–66, 122
federation. See also Active Directory Federation Services
 (ADFS)

for integrating with Azure AD, 66
for synchronized deployments of Azure AD, 65

Fiddler, 110
capturing trace, 112
HttpClient traffi c tracing, 261
setup, 111

cookies

ModernAuth_PrintBook_Final.indb 300ModernAuth_PrintBook_Final.indb 300 11/28/2015 11:40:42 AM11/28/2015 11:40:42 AM

 301

Fiddler inspector, 127
fi rst-name claim type, 8
form post response mode, 115
fragment response mode, 115
functions, creating, 163–164

G
GET operations

of Account/SignOut, 134
for authenticated resource requests, 125
requests through, 182

given_name claims, 133
Goland, Yaron, 41
grants

admin consent, 203–204
AuthenticationReponseGrant, 150
client credentials, 44–45, 251, 266
implicit, 46–47
OAuth2 grants, 252
oauth2PermissionGrants collection, 189–192
refresh token, 239–240, 242

Graph API. See Directory Graph API
groupMembershipClaims property, 182, 219
Group.Read.All permission, 197
Group.ReadWrite.All permission, 197
groups, 219–221

assigning, 215
consuming, 220–221
names, 220
number of, 221

guest Microsoft account users, 122

H
HandleResponse method, 162
hero apps, 48
homepage property, 181, 188
HostAuthenticationFilter attribute, 266
hosts in OWIN pipeline, 140
HTTP 302s, 98

redirects, 113–119, 145, 149–150
requests, 29–30, 44, 46
responses, 125

HTTP 401 responses, 149, 235, 261–262
HTTP claims-based identity, 22
HttpClient traffi c tracing, 261
HttpContext.Current.User, 8
HttpContext.GetOwinContext().Authentication method,
 100
HttpContext.GetOwinContext().Authentication.SignOut
 method, 134
HttpModules, 83, 137

as host for OWIN pipeline, 140

predefi ned events, 145
HTTP requests to back end, 46
HTTPS URL for projects, 91, 94
HttpWatch, 110
hybrid authentication fl ow

APIs, obtaining tokens, 224–232
authorization code redemption, 227–232
authorization codes, 166
initialization, 113
OpenID Connect, 40–42, 108
token validation requirements, 133

hybrid token-requestor and resource-protector role
 development libraries, 85–86

I
IAppBuilder interface, 140
iat claims, 132
IAuthenticationSessionStore interface, 171
identifi erUris property, 181
identity libraries. See libraries
identity party trusts in ADFS, 274
identity providers (IdPs), 17–18, 20

endpoints, 18
metadata, 18, 21, 108
public-private key pairs, 18–19
redirecting to, 160
SAML, 25–26
string identifi ers, 18
WS-Federation, 28–29

identity transactions, 17–23
ID tokens, 39–40, 116, 127–134, 230, 280–281, 286

claims in, 133–134
decoding, 127–129
from server-to-server calls, 42
user information in, 269
validating, 42, 133

IIS Express, 91
IIS integrated pipeline, 145
impersonation, 44
implicit fl ow, 182
implicit grants, 46–47
integrated authentication, 14–16
interceptors, 74
intranets, authentication on, 14–16
Intune API, 61
Invoke method, 142
IOwinContext wrapper, 142
IsInRole() role information, 216
IsMultipleRefreshToken property, 230
iss claims, 132
IssuerSigningKey property, 167
issuer validation, 208–209
iss (issuer) value, 120–121, 208

iss (issuer) value

ModernAuth_PrintBook_Final.indb 301ModernAuth_PrintBook_Final.indb 301 11/28/2015 11:40:42 AM11/28/2015 11:40:42 AM

302

J
JavaScript

HTTP requests to back end, 46
logic-layout management, 45–46
native apps, 81
token bits, retrieving, 46–47

Jones, Mike, 41
JSON Tokens, 41
JSON Web Algorithms (JWA), 110, 131
JSON Web encryption (JWE), 129
JSON Web Keys set (JWKS), 280
JSON Web Signature (JWS), 129–131
JSON Web Token (JWT), 19, 40

access token representation as, 255
for access tokens, 271
ADFS support, 55
claim set, 131–132
components, 129–130
handlers, 84, 92
header types, 131
specifi cation, 110, 129
tokens, 84

just-in-time provisioning, 58

K
Katana, 139–154. See also Open Web Interface for .NET
 (OWIN)

assembly:OwinStartup attribute, 139
context, 145–148
diagnostic middleware, 153–154
appSettings entry, 139
middleware behavior settings, 158–159
middleware execution, 145
notifi cations, 159–166
OwinStartup attribute, 139
Startup class, 139–141
UseStageMarker method, 145

“Katana” 3.x, 83–84
“Katana” vNext, 84
Kerberos

native applications and, 47
service principals, 174

Kerberos federation, 17
keyCredentials property, 181, 188, 226–227
keys

assigning to applications, 226–227
credentials, 181
IssuerSigningKey property, 167
JSON Web Keys set, 280
keyCredentials property, 181, 188, 226–227
public-private, 18–19, 227
RefreshOnIssuerKeyNotFound property, 158

signing, 280
symmetric, 19
token-signing, 120–122, 158
token-validation, 167
ValidateIssuerSigningKey property, 168

keys document, 120–121
Klout web application, 248–249
knownClientApplications property, 183, 258

L
libraries

in Active Directory, 75
authentication tasks, 73–74
for hybrid token-requestor and resource-protector
 role, 74–75, 85–86
for native clients, 294
open source, 76
for other platforms, 293
reasons for using, 71
for resource-protector role, 73–74, 82–85
for token-requestor role, 70–71, 76–81

line-of-business (LOB) applications, 4–5
local networks, authentication on, 14–15
localStorage, 47
login_hint parameter, 117
logoutUrl property, 188

M
managed tenants, 65–66, 122
manifest fi les, 214, 219
/me alias, 237
MessageReceived notifi cation, 165
messages

SAML, 26–27
signed, 26
WS-Federation, 28–31

metadata, 18, 21
MetadataAddress, 104, 277
metadata documents, 158

discovery document, 119
OpenID Connect format, 39
SAML format, 26
WS-Federation format, 29

MetadataEndpoint, 287
Microsoft.AspNet.WebApi.Owin NuGet package, 266
Microsoft Azure. See Azure Active Directory
Microsoft cloud service, 61
Microsoft Enterprise Agreement, 62
Microsoft.IdentityModel.Protocol.Extensions NuGet
 package, 84, 92
Microsoft Offi ce 365. See Offi ce 365

JavaScript

ModernAuth_PrintBook_Final.indb 302ModernAuth_PrintBook_Final.indb 302 11/28/2015 11:40:42 AM11/28/2015 11:40:42 AM

 303

Microsoft Online Directory Service (MSODS), 60
Microsoft.Owin.Diagnostics NuGet package, 154
Microsoft.Owin NuGet package, 92
Microsoft.Owin.Security.ActiveDirectory NuGet package,
 83, 254
Microsoft.Owin.Security.Jwt NuGet package, 254
Microsoft.Owin.Security.OAuth NuGet package, 254
Microsoft.Owin.Security.OpenIdConnect NuGet package,
 84
Microsoft.Owin.Security NuGet package, 92
Microsoft.Owin.Security.WsFederation NuGet package, 83
Microsoft Visual Studio. See Visual Studio
_middleware entry, 141
middleware initialization options class, 155–159
middlewares

activation sequence, 142–145
behavior settings, 158–159
building, 138. See also Open Web Interface for .NET
 (OWIN)
caption setting, 159
context, 142, 145–148
environment dictionary, 138
initialization pipeline, 265–266
Invoke method, 142
message received notifi cation, 164
observing pipeline, 143–145
pipeline of web APIs, 254–255
pointers to next entries, 142
requesting execution, 145
resource protectors, 74, 81
response handling, 161
security token received notifi cation, 164
security token validated notifi cation, 164–165
sign-in and sign-out fl ow, 99–103
skipping to next, 161
stopping processing, 142, 145
UseStageMarker method, 145

midtier clients ADAL libraries, 81
MMC (Microsoft Management Console), 60
mobile operating systems, native apps on, 80
modern authentication techniques, 31–48
multiple authentication factors (MFA), 122
Multiple Response Type specifi cations, 109
multiresource refresh tokens (MRRT), 242–243, 260
multitenancy, 205–211
MVC 5 Controller, 100
/myorganization alias, 237

N
native applications, 47–48

ADAL libraries, 48, 80–81
ADFS support, 55
ADFS template, 275

admin creation in Azure portal, 204
authentication fl ows, 94
broker apps and, 48
development libraries, 75–76
Kerberos and, 47
modern authentication for, 294
popularity, 47–48
tokens, obtaining, 21–22

nbf claims, 132
.NET-based applications, 78
.NET core, OWIN middleware for, 84
.NET Framework

caller identity class, 7–10
SAML and, 25
version 4.5, 82
Windows Identity Foundation classes, 82–83

.NET JWT handler, 84

.NET web development, 138
network endpoints, 52
network tracing features, 110
nickname claims, 133
Node.JS, 81
nonadmin users, application creation, 189–192. See also
 users
nonce value

of authentication requests, 117
cookie tracking, 124–125
OpenID Connect, 149

notifi cations, 159–166
AuthenticationFailed, 166
AuthorizationCodeReceived, 166
in bearer token middleware, 264
MessageReceived, 164
RedirectToIdentityProvider, 162–164
SecurityTokenReceived, 164
SecurityTokenValidated, 164–165
sequence, 159–161
of TokenCache class, 244–245

Notifi cations property, 155
NuGet packages

adding references, 92
Microsoft.AspNet.WebApi.Owin, 266
Microsoft.IdentityModel.Protocol.Extensions, 84, 92
Microsoft.Owin, 92
Microsoft.Owin.Diagnostics, 154
Microsoft.Owin.Security, 92
Microsoft.Owin.Security.ActiveDirectory, 254
Microsoft.Owin.Security.Jwt, 254
Microsoft.Owin.Security.OAuth, 254
Microsoft.Owin.Security.OpenIdConnect, 83
.NET, 227–228
System.IdentityModel.Tokens.Jwt, 84, 92
SystemWeb, 92
for web APIs, 254
web apps referencing, 92

NuGet packages

ModernAuth_PrintBook_Final.indb 303ModernAuth_PrintBook_Final.indb 303 11/28/2015 11:40:42 AM11/28/2015 11:40:42 AM

304

O
OAuth, 33–37
OAuth2, 33–37

ADAL and, 76–77
ADFS “3” support, 272
authorization grants, 55, 252
bearer token usage, 232–237, 262
claims and, 36–37
client credentials grants, 44–45
endpoints, 64
ID token, 39
interoperability, 37
limitations, 118
Multiple Response Type, 109
“on-behalf-of” security token requests, 44
OpenID Connect extensions, 39, 110
permissions in applications, 183–185
Post Response Mode, 109
refresh token grants, 239–240
refresh tokens, 238–251
scope, 116
support for, 37
Token Exchange extensions on-behalf-of fl ow,
 267–270
web sign-in, 37–39

oauth2AllowImplicitFlow property, 182
oauth2AllowUrlPathMatching property, 182
OAuth2 Authorization Framework specifi cation, 110
OAuth2 bearer token middleware, 287
OAuth2 Bearer Token Usage specifi cation, 110
oauth2PermissionGrants collection, 189–192

admin consent, 203–204
consent entries, 210

oauth2Permissions collection, 183–185, 188, 192–195
default entry for web APIs, 257
value property, 257–258

oauth2RequirePostResponse property, 182
OAuth WRAP (Web Resource Authorization Profi le), 33,
 40–41
objectId property, 180, 188, 190
odata parameters in URL template, 237
Offi ce 365, 61

cloud-based issues, 58
Visual Studio 2015 tools, 87

oid claims, 133
on-behalf-of fl ow, 267–270

security token requests, 44
on-premises Active Directory, 15–16, 58–59
on-premises directories

functional components, 60
querying protocols, 59

OnValidateIdentity, 265
opaque channels, 72, 91
OpenID, 37–38

OpenID Connect, 9, 38–43, 108–109
authentication, 122–123
authentication-request message type, 39
authentication requests, 113–119
authorization-code fl ow, 42–43
authorization requests, 98, 149
discovery, 119–122
document format, 39
endpoints, advertising by Azure AD, 109
ID token, 127–134
initialization code, 95–97
JWT format, 129–132
nonce, 149
opaque channels, 91
response, 123–125
session management, 109
sign-in sequence, 110–112, 126–127
sign-out, 134–136
support for, 43
supporting specifi cations, 110
web sign-on with ADFS, 276–281

OpenIdConnectAuthenticationOptions class, 159
OpenIdConnectAuthenticationOptions parameter, 96,
 155–159, 276

TokenValidationParameters property, 166–169
OpenID Connect Core 1.0, 108
OpenID Connect Discovery 1.0, 109
OpenID Connect hybrid fl ow, 40–42, 224–232
OpenID Connection Session Management specifi cation,
 109
OpenID Connect middleware, 92, 155–166

ADFS and, 276–277
authentication fl ow control, 96
authority value, 97
Challenge sequence, 152
client ID, 94, 97, 256
distributed sign-out, 101
initializing, 95–97, 277
notifi cations, 159–166
OpenIdConnectAuthenticationOptions, 155–159
outgoing 401s, 98
Passive authentication mode, 152, 159
postlogout redirects, 102
session management, 149–151, 171
sign-out, 100–101, 152–153
token validation, 149–151
TokenValidationParameters property, 166–169

OpenIdConnectNotifi cations class, 159–166
OpenIdConnectProtocolValidator class, 158
OpenID Connect Session Management specifi cation, 135
openid scope, 116, 286
open redirector attacks, 182
open source libraries, 76
Open Web Interface for .NET (OWIN), 83–84, 137–138.
 See also middlewares

OAuth

ModernAuth_PrintBook_Final.indb 304ModernAuth_PrintBook_Final.indb 304 11/28/2015 11:40:42 AM11/28/2015 11:40:42 AM

 305

ASP.NET-specifi c implementation, 138
context, 145–148
defi ned, 138
environment dictionary, 138
Katana and, 139–154. See also Katana

Open Web Interface for .NET (OWIN) middlewares
adding to web apps confi guration, 92
authentication capabilities, 146
authentication fl ow, 148–153
for claims-based identity, 83
core status, 147
diagnostic middleware, 153–154
environment dictionary, 147
hosting, 92, 95–96
for .NET core, 85
OpenID Connect, 137–170
sign-in fl ow, 148–152
sign-out fl ow, 152–153
WS-Federation support, 103

Open Web Interface for .NET (OWIN) pipeline
adding middleware, 141–142
hosts, 140
initializing, 139–141
_middleware entry, 141
servers, 140

OS X apps, ADAL libraries, 81
OwinMiddleware class, 142–143
OwinStartup attribute, 139

P
parametric STS, 205–208
password-based authentication, 12–14
passwordCredentials property, 181, 188, 226
passwords, 13–14
password sharing antipattern, 32–33
path matching, 182
permissions

admin-level, 198–200
app-level, 216–219
on application entry in Azure AD, 224–225
consented, 186
delegated, 192–197
directory, 193–197
for directory access, 193–196
fi ne-grained, 59
granted, storage of, 189–192
roles and, 213

Permissions To Other Applications, 259
platform as a service (PaaS), 57
postlogout redirects, 102, 156
PostLogoutRedirectUri property, 102, 156, 276
Post Response Mode specifi cations, 109
pre-claims authentication techniques, 12–16

principalType property, 212
private/public key pairs, 227
profi le scope value, 116
profi le stores, 12–14, 20
programmable web, 31–33
Programming Windows Identity Foundation, 82, 137
prompt=admin_consent fl ag, 200–201, 218
prompt parameter, 117–118
Properties dictionary, 140–141
protected APIs. See also web APIs

accessing, 232–251
exposing, 253–272
refresh tokens, 238

protected clients, 78
protocol coordinates, 73–74
protocol/credential type endpoints, 60
protocol endpoints, 60, 63–64
protocol enforcement, 73
protocol libraries, 77
protocol middleware. See also OpenID Connect
 middleware

collaboration with cookie middleware, 148
protocols, application identifi ers, 181
protocol URLs, 63, 94
protocol validation, 158
ProtocolValidator property, 158
providers

claims issued, 9
specifying, 265

provisioning
in ADFS, 271, 287
applications, 53–54, 57, 189
in Azure management portal, 93–94
just-in-time, 58
relying parties, 52
ServicePrincipal, 186
web APIs, 253

provisioning fl ow, 175–176
provisioning resources, 183
proxy role, 52
proxy utilities, 110
publicClient property, 181
public clients, 78, 275
public key cryptography, 19
public-private key pairs, 18
publisherName property, 188
pwd_exp claims, 133
pwd_url claims, 133

Q
querying protocols, 59
query response mode, 115

query response mode

ModernAuth_PrintBook_Final.indb 305ModernAuth_PrintBook_Final.indb 305 11/28/2015 11:40:43 AM11/28/2015 11:40:43 AM

306

R
reauthorization, 248–249
redirects, 35
RedirectToIdentityProvider notifi cation, 160–164

modifying authentication requests, 201
redirect URIs, 100, 115, 117, 135, 156, 180–181, 276

for web apps, 278
RefreshOnIssuerKeyNotFound property, 158
refresh token grants, 239–240, 242
RefreshToken property, 230
refresh tokens, 35, 238–251

in Azure AD, 240–242
expiration, 246–251
invalidating, 240
multiresource, 286
opacity to client, 242
validity times, 240

relying parties (RPs), 18
distributed sign-out, 109
IdP metadata, 108
provisioning, 52
user sign-in status inquiries, 109
WS-Federation, 29

relying party trusts, 274–276
renewal operations, 71
replyUrls property, 180–181
Request and Response methods, 148–149
Request and Response properties, 147–148
requests

ClientAssertionCertifi cate, 231
client_secret property, 227
interception, 73
redirect URI, 156
resource for authorization code, 156
response type, 156
scope parameter, 156
through GET operations, 182
through middleware pipeline, 138
token inclusion, 70

requiredResourceAccess, 198–199
RequiredResourceAccessCollection, 185–187

Role type entries, 218
resource apps

confi guring by IdP’s metadata, 73
token acquisition, 73
token validation, 73

resource consumption
identity of clients, 265–266
patterns, 43–45

resource identifi ers in token requests, 256
resourceId property, 190
Resource parameter, 118, 156, 231
<resource path> component in URL template, 236–237
resource protectors, 69, 73–74

development libraries, 81–85
interceptors, 74

resources
accessing, 185–187
accessing as application, 44–45
access requests, 70–71. See also requests
authorizing access, 97–98
client libraries, 71–72
multiple, refresh tokens for, 242–243
third-party access, 34
type of access scope, 185–186

resource STS, 205–206
response mode and response type parameters of
 authentication requests, 114–116
Response object, 149–150
responses

handling, 161
ID token, 127–134
OpenID Connect message, 123–125
through middleware pipeline, 138

ResponseType parameter, 156
response types, 124
REST API calls, 233–235
REST-based protocols, 28
REST operations for directory queries, 59
RoleClaimType property, 216

groups as, 220
roles

allowedMemberTypes property, 214
application, 212–219
assigning, 213–214
claims, 133, 215
displayName and description strings, 214
id property, 214
value property, 214
WS-Federation, 28–29

round trips
performance and, 45
request-response pattern, 22–23, 45
web apps, 23–31

RS256 signatures, 131

S
samlMetadataUrl property, 182, 188
SaveSignInToken property, 171, 268
scope-driven authorization, 262–265
scopes, 116, 118, 156, 201

openid, 286
of web APIs, 284–285

security
HTTPS, 91
nonce values, 117
for web API calls, 46–47

reauthorization

ModernAuth_PrintBook_Final.indb 306ModernAuth_PrintBook_Final.indb 306 11/28/2015 11:40:43 AM11/28/2015 11:40:43 AM

 307

Security Assertion Markup Language (SAML), 8,
 25–27, 55, 182
security code, custom, 71
security groups, 219
SecurityTokenHandlers property, 158
SecurityTokenReceived notifi cation, 165
Security Token Service (STS), 29

Access Control Service, 78–79
resource, 205–206

SecurityTokenValidated notifi cation, 165–166
server applications, ADFS template, 275
servers

in OWIN pipeline, 140
server-to-server calls, 42

ServicePrincipal, 174–177, 187–188
AppId, 193
oauth2Permissions, 193–196
ObjectId, 193
properties, 187–188
provisioning, 186
for web APIs, 257

ServicePrincipal.appRoleAssignedTo object, 216–219
servicePrincipalNames property, 188
service providers (SPs), 26
session artifacts, 73
session cookies, 24–25, 45, 92, 122

discarding, 135
in OpenID Connect hybrid fl ow, 42
persisting, 150
validation, 73, 125

session data, 24
session management, 70–71

by ADAL, 238–251
in OpenID Connect middleware, 109, 171

sessions
ClaimsPrincipal, saving, 151
cleaning, 135
ending, 134–136
establishing, 22, 73, 149–151
properties, 151
request token validation, 152
saving, 150
validation, 73

sessionStorage, 47
Set-Cookie value, 135, 149–151
shared secrets, 279–280, 287
signatures, 19
signature verifi cation, SAML and, 26
signed tokens, 20
sign-in, 37–39, 99–103, 126. See also web sign-on

notifi cations, 159–160
response phase, 224–225
sequence, 126–127, 224
UI elements, 102–103
user credentials prompts, 163

sign-in and sign-out fl ow, 110–112
SignInAsAuthenticationType property, 159
sign-in fl ow

access in context of session, 148, 152
challenge generation, 148–149, 152–153
OpenID Connect for, 107–134
response processing, 149–151
session generation, 149–151
specifi cations and dependencies, 107–108
WS-Federation, 29–31

signing keys for web apps, 280
sign-in messages

generation of, 149
redirects, 148–149
request generation, 73–74

sign-out, 99–103
distributed, 101, 109
fl ow sequence, 136
ID hint, 135
notifi cations, 161
OpenID Connect, 134–136
postlogout redirects, 156
PostLogoutRedirectUri property, 102
redirect URI, 135
request syntax, 135
state preservation, 135
target endpoint, 135
UI elements, 102–103
user credentials prompts, 163

sign-out fl ow, 152–153
SignOut method, 99
Simple Web Token (SWT), 40–41
Single Logout messages, 27
single-page applications (SPAs), 45–47, 294

ADAL JS library for, 85
single sign-on, hack for, 38
single sign-out, 27
SkipToNextMiddleware method, 161
software as a service (SaaS) apps, 17
_sso_data claim, 289
SSO sessions, 27
stage markers, 145
Startup.Auth.cs fi le

ADFS identity provider code, 103–104
identity pipeline initialization code, 96–97

Startup class, 139–141
Startup.Confi gure, 140
Startup.cs fi le, 95

call to activate authentication, 97
state, preserving at sign-out, 135
state parameter

of authentication requests, 116–117
local URL of resource, 125

storing tokens, 70–71
string identifi ers, 18

string identifi ers

ModernAuth_PrintBook_Final.indb 307ModernAuth_PrintBook_Final.indb 307 11/28/2015 11:40:43 AM11/28/2015 11:40:43 AM

308

string identifi ers, continued
verifi cation, 19

sub claims, 132
subjects, 25
symmetric keys, 19
synchronized deployments of Azure AD, 65
synchronizing users and groups to Azure AD tenants,
 65–66
System.IdentityModel.Tokens.Jwt NuGet package, 84, 92
System.Security.Claims namespace, 7
SystemWeb NuGet package, 92
System.Web pipeline, 140

T
tags property, 188
target directories

consent, recording, 186
resource entries in, 183

target platforms, native libraries for, 81
<tenant> component in URL template, 236
tenant IDs, 63, 188, 230
Tenant parameter, 255
tenants

application availability, 182–183
defi ned, 62
display name, 188
federated and managed, 65–66
ServicePrincipal and, 176, 193
tenant IDs, 63, 188, 230

third-party access to resources, 34
Thread.CurrentPrincipal, 8
tid claims, 133
token acquisition, 70

ADAL pattern, 77
TokenCache class, 244–245
token endpoint, 35

authenticated requests against, 226
response to token request, 231–232

token handlers, 158
token replay attacks, 117
TokenReplayCache property, 170
token requestors, 69–72, 74

access token format and, 72
client applications as, 72
development libraries, 76–81

token requests, 70
on-behalf-of, 44
resource identifi ers in, 256
user consent, 64

tokens, 18–20. See also access tokens
accessing independent of protocol, 268
acquiring by authorization code, 227–229
assertions, 26

audience claims, 282
in Authorization HTTP headers, 232–234
Azure AD, 61
bearer, 232–237, 262
broker apps, 48
caching, 70–71, 238
callback path, 158
for client-resource interactions, 70
cross-domain, 25
group information, 219–220
group membership claims, 182
HTTP carrier mechanisms, 109
ID. See ID tokens
issuance of, 21–22
issuers, 120
JWT format, 40, 129–132
life-cycle management, 159, 238
refresh, 35, 238–251, 286
replaying, 169
in requests, 70–71
response mode, 114
response type, 109
SAML structure, 26
saving, 169
scope, 257–258
security of, 42–43
signed, 20, 120–122
Simple Web Token, 40–41
with user attributes from cloud store, 59
user information, 42, 268
validation. See token validation
for web API calls, 46–47

token validation, 22, 73, 119, 149–151
audience, 167
discovery of criteria, 119–120
issuer, 167
key for signing, 167
notifi cation of, 164–165
parameters, 166–169
signature check, 129–130
validation fl ags, 168
validator delegates, 168–169
validity interval, 167

TokenValidationParameters class, 155, 157, 167–170,
 256–257, 261, 264

IssuerValidator property, 208
ValidIssuers property, 208

TraceOutput property, 148
traces

capturing, 110–112
exposing, 148

traffi c, capturing in trace, 110–112
trusts, 18

between app and IdP, 20–21
establishment, 57

sub claims

ModernAuth_PrintBook_Final.indb 308ModernAuth_PrintBook_Final.indb 308 11/28/2015 11:40:43 AM11/28/2015 11:40:43 AM

 309

type identifi ers, claim, 8–9

U
UI, sign-in and sign-out, 102–103
unique identifi ers, 18
unique_name claims, 133
upn claims, 133
URI fragments, 46–47
UseCookieAuthentication method, 96, 141
UseErrorPage method, 154
Use method, 140, 142
UseOpenIdConnectAuthentication method, 96, 141
UserAssertion class, 268–269
user assignment, 211–213
user attributes, 7, 12
user consent for token requests, 64
user credentials. See also credentials

for synchronized deployments of Azure AD, 65
synching to cloud, 65–66

user_impersonation permission, 196
UserInfo property, 42, 230
username-password-profi les authentication, 13–14
UserProfi le.Read permission, 195–196
User.Read.All permission, 197
User.ReadBasic.All permission, 196
User.Read permission, 195–196
users

accessing web APIs, 252
application creation, 189–192
assignment, 211–213
authentication experience, 122–123
Azure AD landing page, 66
consent prompts, 191
identity, 12–13
life cycles, 14
roles and, 213

Use* sequence, 143
UseStageMarker method, 145
UseTokenLifetime property, 159
UseWindowsAzureActiveDirectoryBearerAuthentication
 method, 255, 271
UseXXX extension methods, 96

V
validate-and-drop-a-cookie approach, 23–24
ValidateAudience property, 168
ValidateIssuer property, 168
ValidateIssuerSigningKey property, 168
validation

authority coordinates and, 157–158
components, 9
fl ags, 169

of ID tokens, 133
issuer, 208–209
session, 73
of session cookies, 73
token, 73
validator delegates, 169–170

ValidAudience property, 167, 256
ValidIssuer property, 167
verifi cation, 19, 24
Visual Studio

application credentials, assigning, 226
ASP.NET 4.6 Web API projects, 254, 287
authentication preferences settings, 288
Browser Link, 144
creating new web app, 90–91
F5 verifi cation procedure, 91
identity-integration features, 86–87
Immediate window, 247
Multiple Startup Projects option, 288
MVC 5 Controller, 100
Package Manager Console, 92
Startup.cs fi le, 95
using directives, 98
web API project setup, 253–258
web API project template on-premises option, 271
Windows Identity Foundation tools, 82

Visual Studio 2013, 86
Visual Studio 2015, 2–3

accounts, associating with, 3
AD integration features, 86
keychain, 87
tying to Azure user account, 2–3

W
web API calls

handling, 258–265
securing, 46–47

web APIs
access control policies, 283
accessing as an application, 251–252
accessing as arbitrary user, 252
application permissions for, 284
calling, 260
calling another API, 266–270
claims in token, 289–290
client access, 291
clients, adding, 291
client setup, 258–262
consent for, 258
directory entries, 257–258
exposing, 253–272
failed token requests, 261–262
identifi ers, 282

web APIs

ModernAuth_PrintBook_Final.indb 309ModernAuth_PrintBook_Final.indb 309 11/28/2015 11:40:43 AM11/28/2015 11:40:43 AM

310

web APIs, continued
invoking from web app, 223–252, 285–289
invoking with access tokens, 232–251
invoking with bearer tokens, 232–237
middleware pipeline, 254–255
modeling, 177
NuGet packages for, 254
project setup, 253–258
protecting with ADFS, 271–272, 281–292
request processing, 262–265
scope-driven authorization, 262–265
scopes of, 284–285
ServicePrincipal, 257
tokens, obtaining, 21–22
troubleshooting, 261
unauthorized caller errors, 261

web applications
ADAL cache considerations, 243–246
ADFS as identity provider, 103–104
ADFS support, 55
application credentials, 279
authentication fl ows, 94
claims, 98
client ID, 94, 278
creating, 90–91
delegated access, 34–36
HTTPS, 91
hybrid role of token requestor and resource protector,
 74–75
interaction pattern, 22–23
invoking web API from, 285–289
middlewares, adding and initializing, 95
OpenID Connect initialization code, 95–97
OWIN pipeline, adding, 95
Permissions To Other Applications, 259
protocol coordinates, 276, 278
redirect URIs, 278
referencing NuGet packages, 92
registering in Azure AD, 93–94
roundtrip-based request-response pattern, 22–23, 45
running, 98–99, 103
setup in ADFS, 277–280
shared secrets, 279–280
sign-in and sign-out, 99–103
signing keys, 280
sign-in message generation, 73
single-page applications, 46
single sign-on, 38
SSL Enabled, 91
third-party access to resources, 34
triggering authentication, 97–98
unique resource identifi er, 94
user authentication, 21
web API, consuming, 223–252
Windows Integrated Authentication credential, 279

web browser–based SSO, 25–27
web.confi g fi les, 83
web servers, decoupling from apps, 138
web sign-on, 29–31. See also sign-in

ASP.NET support for, 137. See also Open Web Interface
 for .NET (OWIN) middlewares
hybrid authentication fl ow, 108
OpenID Connect Core 1.0, 108
with OpenID Connect in ADFS, 276–281
testing, 280–281
URLs, 94

web UX, exposing, 265–266
Wells, Dean, 15
WindowsAzureActiveDirectoryBearerAuthenticationOptions
 initialization, 255
Windows Identity Foundation (WIF), 82–83
Windows Internal Database (WID), 52
Windows Server. See also Active Directory Federation
 Services (ADFS)

ADFS server role, 54
Windows Server 2016, ADFS in, 56, 103, 273–292
workplace-joined device detection, 56
WS-Federation, 8, 27–31

ADFS support, 55
messages, 29–31
metadata document format, 29
OWIN middlewares support, 103
relying parties, 29
roles, 28–29
Security Token Service, 29
sign-in fl ow, 29–31
support, 31
support in .NET core, 85
tokens, 29

WS-Federation middleware. See OpenID Connect
 middleware
WS-* specifi cations, 27–28

native apps and, 47
WS-Trust, ADFS support, 55
Wtrealm, 104
WWW-Authenticate header, 262

X
X.509 certifi cates, 18–19
Xamarin, 80

web applications

ModernAuth_PrintBook_Final.indb 310ModernAuth_PrintBook_Final.indb 310 11/28/2015 11:40:43 AM11/28/2015 11:40:43 AM

 311

About the author

VITTORIO BERTOCCI is principal program manager on the Azure Active Directory
team, where he works on the developer experience: Active Directory Authentication
 Library (ADAL), OpenID Connect and OAuth2 OWIN components in ASP.NET, Azure
AD integration in various Visual Studio workstreams, and other things he can’t tell
you about (yet).

Vittorio joined the product team after years as a virtual member in his role as principal architect
evangelist, during which time he contributed to the inception and launch of Microsoft’s claims-
based platform components (Windows Identity Foundation, ADFS 2.0) and owned SaaS and
identity evangelism for the .NET developers community.

Vittorio holds a masters degree in computer science and began his career doing r esearch on
computational geometry and scientifi c visualization. In 2001 he joined Microsoft Italy, where
he focused on the .NET platform and the nascent fi eld of web services security, becoming a
 recognized expert at the national and European level.

In 2005 Vittorio moved to Redmond, where he helped launch the .NET Framework 3.5 by working
with Fortune 100 and Global 100 companies on cutting-edge distributed systems. He increasingly
focused on identity themes until he took on the mission of evangelizing claims-based identity for
mainstream use. After years of working with customers, partners, and the community, he decided
to contribute the experience he had accumulated back to the product and joined the identity
product team.

Vittorio is easy to spot at conferences. He has spoken about identity in 23 countries on four
continents, from keynote addresses to one-on-one meetings with customers. Vittorio is a regular
speaker at Ignite, Build, Microsoft PDC, TechEd (US, Europe, Australia, New Zealand, Japan),
TechDays, Gartner Summit, European Identity Conference, IDWorld, OreDev, NDC, IASA, Basta,
and many others. At the moment his Channel 9 speaker page at https://channel9.msdn.com/
events/speakers/vittorio-bertocci lists 44 recordings.

Vittorio is a published author, both in the academic and industry worlds, and has written many
 articles and papers. He is the author of Programming Windows Identity Foundation (Microsoft
Press, 2010) and coauthor of A Guide to Claims-Based Identity and Access Control (Microsoft
 patterns & practices, 2010) and Understanding Windows Cardspace (Addison-Wesley, 2008). He
is a prominent authority and blogger on identity, Azure, .NET development, and related topics:
he shares his thoughts at www.cloudidentity.com and via his twitter feed, http://www.twitter.com/
vibronet.

 Vittorio lives in the lush green of Redmond with his wife, Iwona. He doesn’t mind the gray skies
too much, but every time he has half a chance, he fl ies to some place on the beach, be it the
South Pacifi c or Camogli, his home town in Italy.

ModernAuth_PrintBook_Final.indb 311ModernAuth_PrintBook_Final.indb 311 11/28/2015 11:40:43 AM11/28/2015 11:40:43 AM

 Now that
you’ve
read the
book...

Was it useful?
Did it teach you what you wanted to learn?
Was there room for improvement?

Let us know at http://aka.ms/tellpress

Your feedback goes directly to the staff at Microsoft Press,
and we read every one of your responses. Thanks in advance!

Tell us what you think!

SurvPage_Corp_b&w.indd 1 4/24/13 12:45 PM

