

1

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation

One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2014 Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means

without the written permission of the publisher.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related to

this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of this

book at http://aka.ms/tellpress.

Unless otherwise noted, the companies, organizations, products, domain names, e-mail addresses, logos, people,

places, and events depicted in examples herein are fictitious. No association with any real company, organization,

product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under

copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or

transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any

purpose, without the express written permission of Microsoft Corporation.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/

Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of their

respective owners.

This book expresses the author’s views and opinions. The information contained in this book is provided without any

express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will

be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions, Developmental, and Project Editor: Devon Musgrave

Cover: Twist Creative • Seattle and Joel Panchot

mailto:mspinput@microsoft.com
http://aka.ms/tellpress
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/%20Trademarks/EN-US.aspx
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/%20Trademarks/EN-US.aspx

2

Table of Contents

Introduction .. 21

Who This Book Is For .. 23

What You'll Need (Can You Say “Samples”?) .. 24

A Formatting Note.. 25

Acknowledgements .. 26

Free Ebooks from Microsoft Press ... 28

The “Microsoft Press Guided Tours” App ... 28

Errata & Book Support .. 28

We Want to Hear from You... 29

Stay in Touch ... 29

Chapter 1 The Life Story of a Windows Store App: Characteristics of the

Windows Platform .. 30

Leaving Home: Onboarding to the Windows Store ... 32

Discovery, Acquisition, and Installation.. 35

Playing in Your Own Room: The App Container .. 39

Different Views of Life: Views and Resolution Scaling ... 42

Those Capabilities Again: Getting to Data and Devices .. 46

Taking a Break, Getting Some Rest: Process Lifecycle Management 49

Remembering Yourself: App State and Roaming... 51

Coming Back Home: Updates and New Opportunities .. 56

And, Oh Yes, Then There’s Design ... 58

Feature Roadmap and Cross-Reference ... 59

Chapter 2 Quickstart .. 65

A Really Quick Quickstart: The Blank App Template .. 65

Blank App Project Structure .. 68

3

QuickStart #1: Here My Am! and an Introduction to Blend for Visual Studio 72

Design Wireframes ... 73

Create the Markup ... 76

Styling in Blend... 78

Adding the Code... 83

Extra Credit: Improving the App .. 97

Receiving Messages from the iframe ... 98

Improving the Placeholder Image with a Canvas Element .. 99

Handling Variable Image Sizes ... 100

Moving the Captured Image to AppData (or the Pictures Library) 103

Using a Thumbnail Instead of the Full Image .. 105

The Other Templates: Projects and Items .. 107

Navigation App Template.. 107

Grid App Template ... 107

Hub App Template.. 108

Split Template .. 108

Item Templates .. 108

What We’ve Just Learned ... 109

Chapter 3 App Anatomy and Performance Fundamentals .. 111

App Activation ... 112

Branding Your App 101: The Splash Screen and Other Visuals 113

Activation Event Sequence .. 117

Activation Code Paths ... 119

WinJS.Application Events .. 121

Optimizing Startup Time ... 124

WinRT Events and removeEventListener.. 126

App Lifecycle Transition Events and Session State .. 128

Suspend, Resume, and Terminate.. 129

4

Basic Session State in Here My Am! ... 133

Page Controls and Navigation ... 136

WinJS Tools for Pages and Page Navigation .. 136

The Navigation App Template, PageControl Structure, and PageControlNavigator 139

The Navigation Process and Navigation Styles .. 146

Optimizing Page Switching: Show-and-Hide ... 148

Page-Specific Styling ... 149

Async Operations: Be True to Your Promises .. 151

Using Promises ... 151

Joining Parallel Promises ... 153

Sequential Promises: Nesting and Chaining .. 153

Managing the UI Thread with the WinJS Scheduler... 156

Scheduler Priorities .. 157

Scheduling and Managing Tasks .. 158

Setting Priority in Promise Chains .. 160

Long-Running Tasks .. 162

Debugging and Profiling.. 165

Debug Output and Logging.. 165

Error Reports and the Event Viewer... 166

Async Debugging .. 169

Performance and Memory Analysis ... 170

The Windows App Certification Toolkit .. 175

What We’ve Just Learned ... 176

Chapter 4 Web Content and Services .. 177

Network Information and Connectivity .. 179

Network Types in the Manifest.. 180

Network Information (the Network Object Roster) ... 181

The ConnectionProfile Object.. 183

5

Connectivity Events .. 184

Cost Awareness .. 185

Running Offline .. 189

Hosting Content: the WebView and iframe Elements ... 191

Local and Web Contexts (and iframe Elements) .. 192

Dynamic Content.. 195

App Content URIs ... 197

The <x-ms-webview> Element... 198

HTTP Requests ... 209

Using WinJS.xhr.. 210

Using Windows.Web.Http.HttpClient... 211

Suspend and Resume with Online Content... 216

Prefetching Content ... 218

Background Transfer .. 219

Basic Downloads .. 221

Basic Uploads ... 225

Completion and Error Notifications ... 226

Providing Headers and Credentials .. 227

Setting Cost Policy .. 227

Grouping Transfers ... 228

Suspend, Resume, and Restart with Background Transfers .. 228

Authentication, the Microsoft Account, and the User Profile .. 230

The Credential Locker ... 231

The Web Authentication Broker .. 233

Single Sign-On .. 237

Using the Microsoft Account ... 238

The User Profile (and the Lock Screen Image) ... 244

What We’ve Just Learned ... 246

6

Chapter 5 Controls and Control Styling .. 248

The Control Model for HTML, CSS, and JavaScript .. 249

HTML Controls ... 251

Extensions to HTML Elements ... 254

WinJS Controls ... 255

Syntax for data-win-options .. 259

WinJS Control Instantiation ... 261

Strict Processing and processAll Functions ... 262

Example: WinJS.UI.HtmlControl... 263

Example: WinJS.UI.Rating (and Other Simple Controls) ... 264

Example: WinJS.UI.Tooltip .. 265

Example: WinJS.UI.ItemContainer ... 266

Working with Controls in Blend ... 269

Control Styling ... 272

Styling Gallery: HTML Controls .. 274

Styling Gallery: WinJS Controls .. 276

Some Tips and Tricks .. 284

Custom Controls .. 285

Implementing the Dispose Pattern .. 288

Custom Control Examples ... 289

Custom Controls in Blend .. 293

What We’ve Just Learned ... 297

Chapter 6 Data Binding, Templates, and Collections .. 298

Data Binding .. 299

Data Binding Basics... 299

Data Binding in WinJS ... 301

Under the Covers: Binding mixins .. 311

Programmatic Binding and WinJS.Binding.bind... 313

7

Binding Initializers .. 315

Binding Templates.. 319

Template Options, Properties, and Compilation ... 322

Collection Data Types ... 324

Windows.Foundation.Collection Types .. 325

WinJS Binding Lists ... 331

What We’ve Just Learned ... 342

Chapter 7 Collection Controls ... 344

Collection Control Basics... 345

Quickstart #1: The WinJS Repeater Control with HTML controls 345

Quickstart #2: The FlipView Control Sample ... 349

Quickstart #3: The ListView Essentials Sample .. 351

Quickstart #4: The ListView Grouping Sample .. 353

ListView in the Grid App Project Template ... 357

The Semantic Zoom Control .. 361

How Templates Work with Collection Controls... 364

Referring to Templates ... 364

Template Functions (Part 1): The Basics ... 365

Creating Templates from Data Sources in Blend ... 368

Repeater Features and Styling... 372

FlipView Features and Styling.. 377

Collection Control Data Sources .. 380

The Structure of Data Sources (Interfaces Aplenty!).. 381

A FlipView Using the Pictures Library ... 384

Custom Data Sources and WinJS.UI.VirtualizedDataSource ... 386

ListView Features and Styling .. 393

When Is ListView the Right Choice? ... 393

Options, Selections, and Item Methods.. 395

8

Styling ... 399

Loading State Transitions .. 401

Drag and Drop .. 402

Layouts .. 405

Template Functions (Part 2): Optimizing Item Rendering .. 414

What We’ve Just Learned ... 419

Chapter 8 Layout and Views ... 421

Principles of Page Layout .. 423

Sizing, Scaling, and Views: The Many Faces of Your App.. 426

Variable View Sizing and Orientations .. 426

Screen Resolution, Pixel Density, and Scaling ... 437

Multiple Views ... 442

Pannable Sections and Styles .. 446

Laying Out the Hub ... 447

Laying Out the Sections .. 448

Panning Styles and Railing ... 449

Panning Snap Points and Limits ... 451

Zooming Snap Points and Limits .. 452

The Hub Control and Hub App Template.. 453

Hub Control Styling... 460

Using the CSS Grid .. 461

Overflowing a Grid Cell ... 463

Centering Content Vertically ... 463

Scaling Font Size ... 464

Item Layout ... 465

CSS 2D and 3D Transforms .. 466

Flexbox .. 466

Nested and Inline Grids... 467

9

Fonts and Text Overflow ... 468

Multicolumn Elements and Regions ... 470

What We’ve Just Learned ... 472

Chapter 9 Commanding UI .. 474

Where to Place Commands ... 475

The App Bar and Nav Bar .. 480

App Bar Basics and Standard Commands ... 481

App Bar Styling ... 490

Command Menus ... 494

Custom App Bars .. 495

Nav Bar Features .. 497

Nav Bar Styling ... 505

Flyouts and Menus ... 507

WinJS.UI.Flyout Properties, Methods, and Events... 509

Flyout Examples ... 510

Menus and Menu Commands ... 513

Message Dialogs .. 518

Improving Error Handling in Here My Am! ... 519

What We’ve Just Learned ... 525

Chapter 10 The Story of State, Part 1: App Data and Settings ... 527

The Story of State... 529

App Data Locations... 532

App Data APIs (WinRT and WinJS) ... 533

Settings Containers... 534

State Versioning ... 536

Folders, Files, and Streams.. 537

FileIO, PathIO, and WinJS Helpers (plus FileReader) .. 543

Encryption and Compression... 544

10

Q&A on Files, Streams, Buffers, and Blobs.. 544

Using App Data APIs for State Management... 552

Transient Session State ... 552

Local and Temporary State.. 553

IndexedDB, SQLite, and Other Database Options .. 555

Roaming State .. 556

Settings Pane and UI... 559

Design Guidelines for Settings ... 561

Populating Commands .. 563

Implementing Commands: Links and Settings Flyouts ... 566

Programmatically Invoking Settings Flyouts.. 568

Here My Am! Update ... 570

What We’ve Just Learned ... 571

Chapter 11 The Story of State, Part 2: User Data, Files, and OneDrive 573

The Big Picture of User Data ... 574

Using the File Picker and Access Cache .. 579

The File Picker UI .. 580

The File Picker API .. 585

Access Cache.. 589

StorageFile Properties and Metadata .. 592

Availability ... 593

Thumbnails .. 594

File Properties .. 598

Media-Specific Properties ... 601

Folders and Folder Queries ... 607

KnownFolders and the StorageLibrary Object ... 609

Removable Storage .. 612

Simple Enumeration and Common Queries .. 613

11

Custom Queries.. 618

Metadata Prefetching with Queries ... 623

Creating Gallery Experiences... 625

File Activation and Association .. 627

What We’ve Just Learned ... 632

Chapter 12 Input and Sensors ... 634

Touch, Mouse, and Stylus Input .. 635

The Touch Language and Mouse/Keyboard Equivalents .. 636

What Input Capabilities Are Present? .. 643

Unified Pointer Events .. 645

Gesture Events ... 649

The Gesture Recognizer .. 658

Keyboard Input and the Soft Keyboard .. 659

Soft Keyboard Appearance and Configuration .. 660

Adjusting Layout for the Soft Keyboard .. 663

Standard Keystrokes ... 666

Inking .. 667

Geolocation ... 669

Geofencing .. 673

Sensors.. 676

What We’ve Just Learned ... 680

Chapter 13 Media... 681

Creating Media Elements .. 682

Graphics Elements: Img, Svg, and Canvas (and a Little CSS) ... 684

Additional Characteristics of Graphics Elements ... 688

Some Tips and Tricks .. 689

Rendering PDFs .. 694

Video Playback and Deferred Loading.. 699

12

Disabling Screen Savers and the Lock Screen During Playback 703

Video Element Extension APIs ... 703

Applying a Video Effect ... 705

Browsing Media Servers.. 706

Audio Playback and Mixing ... 706

Audio Element Extension APIs ... 708

Playback Manager and Background Audio .. 708

The Media Transport Control UI .. 714

Playing Sequential Audio... 717

Playlists ... 719

Text to Speech ... 723

Loading and Manipulating Media .. 725

Image Manipulation and Encoding... 726

Manipulating Audio and Video .. 732

Handling Custom Audio and Video Formats ... 735

Media Capture ... 742

Flexible Capture with the MediaCapture Object ... 744

Selecting a Media Capture Device.. 748

Streaming Media and Play To .. 751

Streaming from a Server and Digital Rights Management.. 751

Streaming from App to Network.. 753

Play To ... 754

What We Have Learned .. 757

Chapter 14 Purposeful Animations.. 759

Systemwide Enabling and Disabling of Animatio ns ... 761

The WinJS Animations Library ... 762

Animations in Action .. 765

CSS Animations and Transitions .. 769

13

Designing Animations in Blend for Visual Studio ... 775

The HTML Independent Animations Sample ... 777

Rolling Your Own: Tips and Tricks .. 779

What We’ve Just Learned ... 785

Chapter 15 Contracts .. 786

Share ... 788

Share Source Apps.. 793

Share Target Apps .. 805

The Clipboard... 816

Launching Apps with URI Scheme Associations .. 818

Search ... 823

The Search Charm UI .. 825

The WinJS.UI.SearchBox Control.. 829

Providing Query Suggestions ... 831

Providing Result Suggestions ... 835

SearchBox Styling ... 837

Indexing and Searching Content .. 840

The Search Contract ... 849

Contacts .. 850

Contact Cards... 850

Using the Contact Picker ... 856

Appointments .. 860

What We’ve Just Learned ... 864

Chapter 16 Alive with Activity: Tiles, Notifications, the Lock Screen, and

Background Tasks.. 865

Alive with Activity: A Visual Tour ... 866

The Four Sources of Updates and Notifications .. 875

Tiles, Secondary Tiles, and Badges ... 878

14

Secondary Tiles .. 880

Basic Tile Updates .. 887

Cycling, Scheduled, and Expiring Updates .. 900

Badge Updates ... 902

Periodic Updates .. 904

Creating an Update Service ... 907

Debugging a Service Using the Localhost.. 911

Windows Azure and Azure Mobile Services .. 912

Toast Notifications ... 917

Creating Basic Toasts .. 919

Butter and Jam: Options for Your Toast ... 921

Tea Time: Scheduled Toasts and Alarms... 923

Toast Events and Activation .. 926

Push Notifications and the Windows Push Notification Service ... 927

Requesting and Caching a Channel URI (App) ... 929

Managing Channel URIs (Service) .. 931

Sending Updates and Notifications (Service) .. 932

Raw Notifications (Service).. 933

Receiving Notifications (App) .. 934

Debugging Tips ... 935

Tools and Providers for Push Notifications ... 935

Background Tasks and Lock Screen Apps.. 937

Background Tasks in the Manifest ... 938

Building and Registering Background Tasks .. 939

Conditions ... 941

Tasks for Maintenance Triggers ... 942

Tasks for System Triggers (Non-Lock Screen) .. 944

Lock Screen–Dependent Tasks and Triggers ... 945

15

Debugging Background Tasks .. 949

What We’ve Just Learned (Whew!) ... 950

Chapter 17 Devices and Printing ... 952

Declaring Device Access.. 956

Enumerating and Watching Devices .. 957

Scenario API Devices .. 962

Image Scanners .. 962

Barcode and Magnetic Stripe Readers (Point-of-Service Devices) 967

Smartcards... 970

Fingerprint (Biometric) Readers... 971

Bluetooth Call Control .. 972

Printing Made Easy... 973

The Printing User Experience .. 974

Print Document Sources ... 977

Providing Print Content and Configuring Options.. 979

Protocol APIs: HID, USB, Bluetooth, and Wi-Fi Direct .. 981

Human Interface Devices (HID).. 983

Custom USB Devices ... 990

Bluetooth (RFCOMM) ... 992

Bluetooth Smart (LE/GATT) ... 996

Wi-Fi Direct .. 999

Near Field Communication and the Proximity API..1000

Finding Your Peers (No Pressure!) ..1002

Sending One-Shot Payloads: Tap to Share ...1007

What We’ve Just Learned ..1009

Chapter 18 WinRT Components: An Introduction ...1010

Choosing a Mixed Language Approach (and Web Workers)..1012

Quickstarts: Creating and Debugging Components ..1014

16

Quickstart #1: Creating a Component in C# ...1015

Simultaneously Debugging Script and Managed/Native Code1020

Quickstart #2: Creating a Component in C++ ...1021

Comparing the Results ...1023

Key Concepts for WinRT Components...1026

Implementing Asynchronous Methods ...1028

Projections into JavaScript ...1042

Scenarios for WinRT Components ..1044

Higher Performance (Perhaps) ...1044

Access to Additional APIs ...1047

Obfuscating Code and Protecting Intellectual Property ..1051

Concurrency..1052

Library Components ..1053

What We’ve Just Learned ..1056

Chapter 19 Apps for Everyone, Part 1: Accessibility and World-Readiness1058

Accessibility ..1059

Screen Readers and Aria Attributes ..1063

Handling Contrast Variations ..1068

World Readiness and Localization ..1075

Globalization ...1077

Preparing for Localization ..1087

Creating Localized Resources: The Multilingual App Toolkit ..1101

Localization Wrap-Up ..1108

What We’ve Just Learned ..1109

 Chapter 20 Apps for Everyone, Part 2: The Windows Store ...1110

Your App, Your Business ..1111

Planning: Can the App Be a Windows Store App? ..1113

Planning for Monetization (or Not) ...1114

17

Growing Your Customer Base and Other Value Exchanges ...1125

Measuring and Experimenting with Revenue Performance ..1126

The Windows Store APIs ..1127

The CurrentAppSimulator Object..1130

Trial Versions and App Purchase...1133

Listing and Purchasing In-App Products...1137

Handling Large Catalogs ...1145

Receipts ..1146

Instrumenting Your App for Telemetry and Analytics ...1148

Releasing Your App to the World..1155

Promotional Screenshots, Store Graphics, and Text Copy...1156

Testing and Pre-Certification Tools ...1158

Creating the App Package ..1159

Onboarding and Working through Rejection ...1163

App Updates ...1166

Getting Known: Marketing, Discoverability, and the Web ..1168

Connecting Your Website and Web-Mapped Search Results ..1170

Face It: You’re Running a Business! ..1171

Look for Opportunities...1172

Invest in Your Business ..1172

Fear Not the Marketing ...1172

Support Your Customers ..1173

Plan for the Future ..1173

Selling Your App When It’s Not Running..1174

You’re Not Alone ...1175

Final Thoughts: Qualities of a Rock Star App ...1175

What We’ve Just Learned ..1176

Appendix A Demystifying Promises..1178

18

What Is a Promise, Exactly? The Promise Relationships ...1178

The Promise Construct (Core Relationship) ...1181

Example #1: An Empty Promise! ...1183

Example #2: An Empty Async Promise...1185

Example #3: Retrieving Data from a URI ..1186

Benefits of Promises ..1187

The Full Promise Construct ..1188

Nesting Promises...1192

Chaining Promises ...1195

Promises in WinJS (Thank You, Microsoft!) ...1200

The WinJS.Promise Class ..1201

Originating Errors with WinJS.Promise.WrapError ...1203

Some Interesting Promise Code ...1204

Delivering a Value in the Future: WinJS.Promise.timeout ...1204

Internals of WinJS.Promise.timeout ..1205

Parallel Requests to a List of URIs ...1205

Parallel Promises with Sequential Results ...1206

Constructing a Sequential Promise Chain from an Array...1208

PageControlNavigator._navigating (Page Control Rendering)1208

Bonus: Deconstructing the ListView Batching Renderer ...1210

Appendix B WinJS Extras ...1214

Exploring WinJS.Class Patterns ...1214

WinJS.Class.define ...1214

WinJS.Class.derive ...1217

Mixins...1218

Obscure WinJS Features ..1219

Wrappers for Common DOM Operations ..1219

WinJS.Utilities.data, convertToPixels, and Other Positional Methods 1221

19

WinJS.Utilities.empty, eventWithinElement, and getMember1222

WinJS.UI.scopedSelect and getItemsFromRanges ..1222

Extended Splash Screens ...1223

Adjustments for View Sizes ..1229

Custom Layouts for the ListView Control ..1231

Minimal Vertical Layout ...1233

Minimal Horizontal Layout ...1235

Two-Dimensional and Nonlinear Layouts ..1239

Virtualization ..1241

Grouping...1243

The Other Stuff ...1244

Appendix C Additional Networking Topics..1249

XMLHttpRequest and WinJS.xhr ...1249

Tips and Tricks for WinJS.xhr ..1250

Breaking Up Large Files (Background Transfer API) ..1251

Multipart Uploads (Background Transfer API) ...1252

Notes on Encryption, Decryption, Data Protection, and Certificates 1255

Syndication: RSS, AtomPub, and XML APIs in WinRT ..1255

Reading RSS Feeds ...1256

Using AtomPub ...1259

Sockets ...1260

Datagram Sockets..1261

Stream Sockets..1265

Web Sockets: MessageWebSocket and StreamWebSocket...1268

The ControlChannelTrigger Background Task ..1273

The Credential Picker UI ..1273

Other Networking SDK Samples ...1277

Appendix D Provider-Side Contracts ..1279

20

File Picker Providers ..1279

Manifest Declarations..1280

Activation of a File Picker Provider..1281

Cached File Updater ..1288

Updating a Local File: UI...1291

Updating a Remote File: UI ..1292

Update Events ...1294

Contact Cards Action Providers ..1297

Contact Picker Providers ..1300

Appointment Providers..1303

About the Author ...1309

21

Introduction

Welcome, my friends, to Windows 8.1! On behalf of the thousands of designers, program managers,

developers, test engineers, and writers who have brought the product to life, I'm del ighted to welcome

you into a world of Windows Reimagined.

This theme is no mere sentimental marketing ploy, intended to bestow an aura of newness to

something that is essentially unchanged, like those household products that make a big splash on the

idea of "New and Improved Packaging!" No, starting with version 8, Microsoft Windows truly has been

reborn—after more than a quarter-century, something genuinely new has emerged.

I suspect—indeed expect—that you're already somewhat familiar with the reimagined user

experience of Windows 8 and Windows 8.1. You're probably reading this book, in fact, because you

know that the ability of Windows to reach across desktop, laptop, and tablet devices, along with the

global reach of the Windows Store, will provide you with many business opportunities, whether you're

in business, as I like to say, for fame, fortune, fun, or philanthropy.

We'll certainly see many facets of this new user experience throughout the course of this book. Our

primary focus, however, will be on the reimagined developer experience.

I don't say this lightly. When I first began giving presentations within Microsoft about building

Windows Store apps, I liked to show a slide of what the world was like in the year 1985. It was the time

of Ronald Reagan, Margaret Thatcher, and Cold War tensions. It was the time of VCRs and the

discovery of AIDS. It was when Back to the Future was first released, Michael Jackson topped the charts

with Thriller, and Steve Jobs was kicked out of Apple. And it was when software developers got their

first taste of the original Windows API and the programming model for desktop applications.

The longevity of that programming model has been impressive. It's been in place for nearly three

decades now and has grown to become the heart of the largest business ecosystem on the planet. The

API itself, known today as Win32, has also grown to become the largest on the planet! What started

out on the order of about 300 callable methods has expanded three orders of magnitude, well beyond

the point that any one individual could even hope to understand a fraction of it. I'd certainly given up

such futile efforts myself.

So when I bumped into my old friend Kyle Marsh in the fall of 2009, just after Windows 7 had been

released, and heard from him that Microsoft was planning to reinvigorate native app development for

Windows 8, my ears were keen to listen. In the months that followed I learned that Microsoft was

introducing a completely new API called the Windows Runtime (or WinRT). This wasn't meant to

replace Win32, mind you; desktop applications would still be supported. No, this was a programming

model built from the ground up for a new breed of touch-centric, immersive apps that could compete

with those emerging on various mobile platforms. It would be designed from the app developer's point

of view, rather than the system's, so that key features would take only a few lines of code to implement

22

rather than hundreds or thousands. It would also enable direct native app development in multiple

programming languages. This meant that new operating system capabilities would surface to those

developers without having to wait for an update to some intermediate framework. It also meant that

developers who had experience in any one of those language choices would find a natural home when

writing apps for Windows 8 and Windows 8.1.

This was very exciting news to me because the last time that Microsoft did anything significant to

the Windows programming model was in the early 1990s with a technology called the Component

Object Model (COM), which is exactly what allowed the Win32 API to explode as it did. Ironically, it was

my role at that time to introduce COM to the developer community, which I did through two editions

of Inside OLE (Microsoft Press, 1993 and 1995) and seemingly endless travel to speak at conferences

and visit partner companies. History, indeed, does tend to repeat itself, for here I am again, with

another second edition!

In December 2010, I was part of the small team who set out to write the very first Windows Store

apps using what parts of the new WinRT API had become available. Notepad was the text editor of

choice, we built and ran apps on the command line by using abstruse Powershell scripts that required

us to manually type out ungodly hash strings, we had no documentation other than oft-incomplete

functional specifications, and we basically had no debugger to speak of other than the tried and true

window.alert and document.writeln. Indeed, we generally worked out as much HTML, CSS, and

JavaScript as we could inside a browser with F12 debugging tools, adding WinRT-specific code only at

the end because browsers couldn't resolve those APIs. You can imagine how we celebrated when we

got anything to work at all!

Fortunately, it wasn't long before tools like Visual Studio Express and Blend for Visual Studio became

available. By the spring of 2011, when I was giving many training sessions to people inside Microsoft on

building apps for Windows 8, the process was becoming far more enjoyable and exceedingly more

productive. Indeed, while it took us four to six weeks in late 2010 to get even Hello World to show up

on the screen, by the fall of 2011 we were working with partner companies who pulled together

complete Store-ready apps in roughly the same amount of time.

As we've seen—thankfully fulfilling our expectations—it's possible to build a great app in a matter

of weeks. I'm hoping that this ebook, along with the extensive resources on http://dev.windows.com,

will help you to accomplish exactly that and to reimagine your own designs.

Work on this second edition began almost as soon as the first edition was released. (I’d make a quip

about the ink not being dry, but that analogy doesn’t work for an ebook!) When Windows 8 became

generally available in the fall of 2012, work on Windows 8.1 was already well underway: the

engineering team had a long list of improvements they wanted to make along with features that they

weren’t able to complete for Windows 8. And in the very short span of one year, Windows 8.1 was itself

ready to ship.

At first I thought writing this second edition would be primarily a matter of making small updates to

each chapter and perhaps adding some pages here and there on a handful of new features. But as I got

deeper into the updated platform, I was amazed at just how much the API surface area had expanded!

http://dev.windows.com/

23

Windows 8.1 introduces a number of additional controls, an HTML webview element, a stronger HTTP

API, content indexing, deeper OneDrive support, better media capabilities, more tiles sizes (small and

large), more flexible secondary tile, access to many kinds of peripheral devices, and more options for

working with the Windows Store, like consumable in-app purchases. And clearly, this is a very short list

of distinct Windows 8.1 features that doesn’t include the many smaller changes to the API. (A fuller list

can be found on Windows 8.1: New APIs and features for developers).

Furthermore, even as I was wrapping up the first edition of this book, I already had a long list of

topics I wanted to explore in more depth. I wrote a number of those pieces for my blog, with the

intention of including them in this second edition. A prime example is Appendix A, “Demystifying

Promises.”

All in all, then, what was already a very comprehensive book in the first edition has become even

more so in the second! Fortunately, with this being an ebook, neither you nor I need feel guilty about

matters of deforestation. We can simply enjoy the process of learning about and writing Windows

Store Apps with HTML, CSS, and JavaScript.

And what about Windows Phone 8.1? I’m glad you asked, because much of this book is completely

applicable to that platform. Yes, that’s right: Windows Phone 8.1 supports writing apps in HTML, CSS,

and JavaScript, just like Windows 8.1, meaning that you have the same flexibility of implementation

languages on both. However, the decision to support JavaScript apps on Windows Phone 8.1 came very

late in the production of this book, so I’m only able to make a few notes here and there for Phone-

specific concerns. I encourage you to follow the Building Apps for Windows blog, where we’ll be

posting more about the increasingly unified experience of Windows and Windows Phone.

Who This Book Is For

This book is about writing Windows Store apps using HTML, CSS, and JavaScript. Our primary focus will

be on applying these web technologies within the Windows platform, where there are unique

considerations, and not on exploring the details of those web technologies themselves. For the most

part, I'm assuming that you're already at least somewhat conversant with these standards. We will cover

some of the more salient areas like the CSS grid, which is central to app layout, but otherwise I trust

that you're capable of finding appropriate references for most everything else. For JavaScript

specifically, I can recommend Rey Bango’s Required JavaScript Reading list, though I hope you’ll spend

more time reading this book than others!

I'm also assuming that your interest in Windows has at least two basic motivations. One, you

probably want to come up to speed as quickly as you can, perhaps to carve out a foothold in the

Windows Store sooner rather than later. Toward that end, Chapter 2, “Quickstart,” gives you an

immediate experience with the tools, APIs, and some core aspects of app development and the

platform. On the other hand, you probably also want to make the best app you can, one that performs

really well and that takes advantage of the full extent of the platform. Toward this end, I've also

http://msdn.microsoft.com/library/windows/apps/bg182410
http://www.kraigbrockschmidt.com/blog
http://go.microsoft.com/fwlink/?LinkID=392425
http://code.tutsplus.com/tutorials/required-javascript-reading--net-33131

24

endeavored to make this book comprehensive, helping you at least be aware of what's possible and

where optimizations can be made.

Let me make it clear, though, that my focus in this book is the Windows platform. I won’t talk much

about third-party libraries, architectural considerations for app design, and development strategies and

best practices. Some of these will come up from time to time, but mostly in passing.

Nevertheless, many insights have come from working directly with real-world developers on their

real-world apps. As part of the Windows Ecosystem team, myself and my teammates have been on the

front lines bringing those first apps to the Windows Store. This has involved writing bits of code for

those apps and investigating bugs, along with conducting design, code, and performance reviews with

members of the Windows engineering team. As such, one of my goals with this book is to make that

deep understanding available to many more developers, including you!

What You'll Need (Can You Say “Samples”?)

To work through this book, you should have Windows 8.1 (or a later update) installed on your

development machine, along with the Windows SDK and tools. All the tools, along with a number of

other resources, are listed on Developer Downloads for Windows Store Apps. You’ll specifically need

Microsoft Visual Studio Express 2013 for Windows. (Note that for all the screenshots in this book, I

switched Visual Studio from its default “dark” color theme to the “light” theme, as the latter works

better against a white page.)

We’ll also acquire other tools along the way as we need them in this ebook, specifically to run some

of the examples in the companion content. Here’s the short list:

 Live SDK (for Chapter 4)

 Bing Maps SDK for Windows Store Apps (for Chapters 10 and beyond)

 Visual Studio Express 2013 for Web (for Chapter 16)

 Multilingual App Toolkit (for Chapter 19)

Also be sure to visit the Windows 8.1 Samples Pack page and download at least the JavaScript

samples. We'll be drawing from many—if not most—of these samples in the chapters ahead, pulling in

bits of their source code to illustrate how many different tasks are accomplished.

One of my secondary goals in this book, in fact, is to help you understand where and when to use

the tremendous resources in what is clearly the best set of samples I’ve ever seen for any release of

Windows. You’ll often be able to find a piece of code in one of the samples that does exactly what you

need in your app or that is easily modified to suit your purpose. For this reason I’ve made it a point to

personally look through every one of the JavaScript samples, understand what they demonstrate, and

then refer to them in their proper context. This, I hope, will save you the trouble of having to do that

level of research yourself and thus make you more productive in your development efforts.

http://msdn.microsoft.com/windows/apps/br229516
http://www.microsoft.com/en-us/download/details.aspx?id=40739
http://visualstudiogallery.msdn.microsoft.com/224eb93a-ebc4-46ba-9be7-90ee777ad9e1
http://www.microsoft.com/en-us/download/details.aspx?id=40747
http://msdn.microsoft.com/en-us/windows/apps/bg127574
http://go.microsoft.com/fwlink/p/?LinkID=302156

25

In some cases I’ve taken one of the SDK samples and made certain modifications, typically to

demonstrate an additional feature but sometimes to fix certain bugs or demonstrate a better

understanding that came about after the sample had to be finalized. I’ve included these modifications

in the companion content for this book, which you can download at

http://aka.ms/BrockschmidtBook2/CompContent

The companion content also contains a few additional examples of my own, which I always refer to

as “examples” to make it clear that they aren’t official SDK content. (I’ve also rebranded the modified

samples to make it clear that they’re part of this book.) I’ve written these examples to fill gaps that the

SDK samples don’t address or to provide a simpler demonstration of a feature that a related sample

shows in a more complex manner. You’ll also find many revisions of an app called “Here My Am!” that

we’ll start building in Chapter 2 and we’ll refine throughout the course of this book. This includes

localizing it into a number of different languages by the time we reach the end.

There are also a number of videos that I’ve made for this book, which more readily show dynamic

effects like animations and user interaction. You can find all of them at

http://aka.ms/BrockschmidtBook2/Videos

Beyond all this, you’ll find that the Windows Store app samples gallery as well as the Visual Studio

sample gallery let you search and browse projects that have been contributed by other developers—

perhaps also you! (On the Visual Studio site, by the way, be sure to filter on Windows Store apps

because the gallery covers all Microsoft platforms.) And of course, there will be many more developers

who share projects on their own.

In this book I occasionally refer to posts on a number of blogs. First are a few older blogs, namely

the Windows 8 App Developer blog, the Windows Store for Developers blog, and—for the Windows 8

backstory of how Microsoft approached this whole process of reimagining the operating system—the

Building Windows 8 blog. As of the release of this book, the two developer blogs have merged into the

Building Apps for Windows blog that I mentioned earlier.

A Formatting Note

Throughout this book, identifiers that appear in code, such as variable names, property names, and API

functions and namespaces, are formatted with a color and a fixed-point font. Here’s an example:

Windows.Storage.ApplicationData.current. At times, certain fully qualified names—those that that

include the entire namespace—can become quite long, so it’s necessary to occasionally hyphenate

them across line breaks, as in Windows.Security.Cryptography.CryptographicBuffer.-

convertStringToBinary. Generally speaking, I’ve tried to hyphenate after a dot or between whole

words but not within a word. In any case, these hyphens are never part of the identifier except in CSS

where hyphens are allowed (as in -ms-high-contrast-adjust) and with HTML attributes like aria-

label or data-win-options.

http://aka.ms/BrockschmidtBook2/CompContent
http://aka.ms/BrockschmidtBook2/Videos
http://code.msdn.microsoft.com/windowsapps/
http://code.msdn.microsoft.com/vstudio
http://code.msdn.microsoft.com/vstudio
http://blogs.msdn.com/b/windowsappdev/
http://blogs.msdn.com/b/windowsstore/
http://blogs.msdn.com/b/b8/
http://go.microsoft.com/fwlink/?LinkID=392425

26

Occasionally, you’ll also see identifiers that have a different color, as in datarequested. These

specifically point out events that originate from Windows Runtime objects, for which there are a few

special considerations for adding and removing event listeners in JavaScript, as discussed toward the

end of Chapter 3. I make a few reminders about this point throughout the chapters, but the purpose of

this special color is to give you a quick reminder that doesn’t break the flow of the discussion

otherwise.

Acknowledgements

In many ways, this isn't my book—that is, it's not an account of my own experiences and opinions

about writing apps for Windows. I'm serving more as a storyteller, where the story itself has been

written by the thousands of people in the Windows team whose passion and dedication have been a

constant source of inspiration. Writing a book like this wouldn't be possible without all the work that's

gone into customer research; writing specs; implementing, testing, and documenting all the details;

managing daily builds and public releases; and writing again the best set of samples I've ever seen for a

platform. Indeed, the words in some sections come directly from conversations I've had with the people

who designed and developed a particular feature. I'm grateful for their time, and I’m delighted to give

them a voice through which they can share their passion for excellence with you.

A number of individuals deserve special mention for their long-standing support of this project. To

Mahesh Prakriya, Ian LeGrow, Anantha Kancherla, Keith Boyd and their respective teams, with whom

I've worked closely, and to Kathy Carper, Roger Gulrajani, Keith Rowe, Dennis Flanagan, and Adam

Denning, under whom I've had the pleasure of serving.

Thanks also to Devon Musgrave at Microsoft Press, who put in many long hours editing my many

long chapters, many times over. My teammates, Kyle Marsh, Todd Landstad, Shai Hinitz, Patrick

Dengler, Lora Heiny, Leon Braginski, and Joseph Ngari have also been invaluable in sharing what

they've learned in working with real-world partners. A special thanks goes to Kenichiro Tanaka of

Microsoft Japan, for always being the first one to return a reviewed chapter to me and for joyfully

researching different areas of the platform whenever I asked. Many bows to you, my friend! Nods also

to others in our international Windows Ecosystem teams who helped with localizing the Here My Am!

app for Chapter 19: Gilles Peingné, Sam Chang, Celia Pipó Garcia, Juergen Schwertl, Maarten van de

Bospoort, Li-Qun Jia, and Shai Hinitz.

The following individuals all contributed to this book as well, with chapter reviews, answers to my

questions, deep discussions of the details, and much more. I’m grateful to all of you for your time and

support:

Shakil Ahmed Ryan Demopoulos Jakub Kotynia Jason Olson Adam Stritzel

Arvind Aiyar Scott Dickens Jared Krinke Elliot H Omiya Shijun Sun

Jessica Alspaugh Tyler Donahue Victoria Kruse Lisa Ong Ellick Sung

Gaurav Anand Brendan Elliott Nathan Kuchta Larry Osterman Sou Suzuki

27

Chris Anderson Matt Esquivel Elmar Langholz Rohit Pagariya Simon Tao

Erik Anderson David Fields Bonny Lau Ankur Patel Henry Tappen

Axel Andrejs Sean Flynn Wonhee Lee Harry Pierson Chris Tavares

Tarek Ayna Erik Fortune Travis Leithead Steve Proteau David Tepper

Art Baker Jim Galasyn Dale Lemieux Hari Pulapaka Lillian Tseng

Adam Barrus Gavin Gear Chantal Leonard Arun Rabinar Sara Thomas

Megan Bates Derek Gephard Cameron Lerum* Matt Rakow Ryan Thompson

Tyler Beam Marcelo Garcia Gonzalez Brian LeVee Ramu Ramanathan Bill Ticehurst

Matthew Beaver Sean Gilmour Jianfeng Lin Sangeeta Ranjit Peter Torr

Kyle Beck Sunil Gottumukkala Tian Luo Ravi Rao Stephen Toub

Ben Betz Scott Graham Sean Lyndersay Brent Rector Tonu Vanatalu

Johnny Bregar Ben Grover David Machaj Ruben Rios Jeremy Viegas

John Brezak Paul Gusmorino Mike Mastrangelo Dale Rogerson Alwin Vyhmeister

John Bronskill Chris Guzak Jordan Matthiesen Nick Rotondo Nick Waggoner

Jed Brown Zainab Hakim Ian McBurnie David Rousset David Washington

Kathy Carper Rylan Hawkins Sarah McDevitt George Roussos Sarah Waskom

Vincent Celie John Hazen Isaac McGarvey Jake Sabulsky Marc Wautier

Raymond Chen Jerome Holman Jesse McGatha Gus Salloum Josh Williams

Rian Chung Scott Hoogerwerf Matt Merry Michael Sciacqua Lucian Wischik

Arik Cohen Stephen Hufnagel Markus Mielke Perumaal Shanmugam Dave Wood

Justin Cooperman Sean Hume Pavel Minaev Edgar Ruiz Silva Kevin Michael Woley

Michael Crider Mathias Jourdain John Morrow Poorva Singal Charing Wong

Monica Czarny Damian Kedzierski Feras Moussa Karanbir Singh Bernardo Zamora

Nigel D’Souza Suhail Khalid John Mullaly Peter Smith Michael Ziller

Priya Dandawate Deen King-Smith Jan Nelson* Sam Spencer

Darren Davis Daniel Kitchener Marius Niculescu Edward Sproull

Jack Davis Kishore Kotteri Daniel Oliver Ben Srour

* For Jan and Cameron, a special acknowledgement for riding down from Redmond, Washington, to visit me in

Portland, Oregon (where I was living at the time), and sharing an appropriately international Thai lunch while we

discussed localization and multilingual apps.

Let me add that during the production of this second edition, I did manage to lose the extra weight

that I’d gained during the first edition. All things must balance out, I suppose!

Finally, special hugs to my wife Kristi and our son Liam (now seven and a half), who have lovingly

28

been there the whole time and who don't mind my traipsing through the house to my office either late

at night or early in the morning.

Free Ebooks from Microsoft Press

From technical overviews to drilldowns on special topics, these free ebooks are available in PDF, EPUB,

and/or Mobi for Kindle formats, ready for you to download:

http://aka.ms/mspressfree

The “Microsoft Press Guided Tours” App

Check the Windows Store soon for the Microsoft Press Guided Tours app, which provides insightful

tours of new and evolving technologies created by Microsoft. While you’re exploring each tour’s

original content, the app lets you manipulate and mark that content in ways to make it more useful to

you. You can, of course, do the usual things—such as highlight, add notes, mark as favorite, and mark

to read later—but you can also

 view all links to external documentation and samples in one place via a Resources view;

 sort the Resources view by Favorites, Read Later, and Noted;

 view a list of all your notes and highlights via the app bar;

 share text, code, or links to resources with friends via email; and

 create your own list of resources, as you navigate online resources, beyond those pointed to in the

Guided Tour.

Our first Guided Tour is based on this ebook. Kraig acts as a guide in two senses: he leads

experienced web developers through the processes and best practices for building Windows Store

apps, and he guides you through Microsoft’s extensive developer documentation, pointing you to the

appropriate resources at each step in your app development process so that you can build your apps as

effectively as possible.

Enjoy the app, and we look forward to providing more Guided Tours soon!

Errata & Book Support

We’ve made every effort to ensure the accuracy of this ebook and its companion content. Any errors

that are reported after the book’s publication will be listed on http://aka.ms/BrockschmidtBook2/Errata.

If you find an error that is not already listed, you can report it to us through the comments area of the

same page.

http://aka.ms/mspressfree
http://aka.ms/BrockschmidtBook2/Errata

29

If you need additional support, email Microsoft Press Book Support at mspinput@microsoft.com.

Please note that product support for Microsoft software and hardware is not offered through the

previous addresses. For help with Microsoft software or hardware, go to http://support.microsoft.com.

Support for developers can be found on the Windows Developer Center’s support section, especially in

the Building Windows Store apps with HTML5/JavaScript forum. There is also an active community on

Stack Overflow for the winjs, windows-8 , windows-8.1, windows-store-apps, and winrt tags.

We Want to Hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable asset.

Please tell us what you think of this book at

http://aka.ms/tellpress

We know you’re busy, so we’ve kept it short with just a few questions. Your answers go directly to

the editors at Microsoft Press. (No personal information will be requested.) Thanks for your input!

Stay in Touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress. And you can

keep up with Kraig here: http://www.kraigbrockschmidt.com/blog.

mailto:mspinput@microsoft.com
http://support.microsoft.com/
http://msdn.microsoft.com/en-US/windows/apps/hh690938
http://social.msdn.microsoft.com/Forums/en-US/winappswithhtml5/threads
http://stackoverflow.com/questions/tagged/winjs
http://stackoverflow.com/questions/tagged/windows-8
http://stackoverflow.com/questions/tagged/windows-8.1
http://stackoverflow.com/questions/tagged/windows-store-apps
http://stackoverflow.com/questions/tagged/winrt
http://aka.ms/tellpress
http://twitter.com/MicrosoftPress
http://www.kraigbrockschmidt.com/blog

111

Chapter 3

App Anatomy and Performance

Fundamentals

During the early stages of writing this book (the first edition, at least), I was working closely with a

contractor to build a house for my family. Although I wasn’t on site every day managing the effort, I

was certainly involved in nearly all decision-making throughout the home’s many phases, and I

occasionally participated in the construction itself.

In the Sierra Nevada foothills of California, where I live, the frame of a house is built with the

plentiful local wood, and all the plumbing and wiring has to be in the walls before installing insulation

and wallboard (aka sheetrock). It amazed me how long it took to complete that infrastructure. The

builders spent a lot of time adding little blocks of wood here and there to make it much easier for them

to do the finish work later on (like hanging cabinets), and lots of time getting the wiring and plumbing

put together properly. All of this disappeared from sight once the wallboard went up and the finish

work was in place.

But then, imagine what a house would be like without such careful attention to structural details.

Imagine having some light switches that just don’t work or control the wrong fixtures. Imagine if the

plumbing leaks inside the walls. Imagine if cabinets and trim start falling off the walls a week or two

after moving into the house. Even if the house manages to pass final inspection, such flaws would make

it almost unlivable, no matter how beautiful it might appear at first sight. It would be like a few of the

designs of the famous architect Frank Lloyd Wright: very interesting architecturally and aesthetically

pleasing, yet thoroughly uncomfortable to actually live in.

Apps are very much the same story—I’ve marveled, in fact, just how many similarities exist between

the two endeavors! An app might be visually beautiful, even stunning, but once you start using it day

to day (or even minute to minute), a lack of attention to the fundamentals will become painfully

apparent. As a result, your customers will probably start looking for somewhere else to live, meaning

someone else’s app! Another similarity is that taking care of core problems early on is always less

expensive and time-consuming than addressing them after the fact, as anyone who has remodeled a

house will know! This is especially true of performance issues in apps—trying to refactor an app at the

end of a project to improve the user experience is like adding plumbing and wiring to a house after all

the interior surfaces (walls, floors, windows, and ceilings) walls have been covered and painted.

This chapter, then, is about those fundamentals: the core foundational structure of an app upon

which you can build something that looks beautiful and really works well. This takes us first into the

subject of app activation (how apps get running and get running quickly) and then app lifecycle

transitions (how they are suspended, resumed, and terminated). We’ll then look at page navigation

112

within an app, working with promises, async debugging, and making use of various profiling tools. One

subject that we won’t talk about here are background tasks; we’ll see those in Chapter 16, “Alive with

Activity,” because there are limits to their use and they are best discussed in the context of the lock

screen.

Generally speaking, these anatomical concerns apply strictly to the app itself and its existence on a

client device. Chapter 4, “Web Content and Services,” expands this story to include how apps reach out

beyond the device to consume web-based content and employ web APIs and other services. In that

context we’ll look at additional characteristics of the hosted environment that we first encountered in

Chapter 2, “Quickstart,” such as the local and web contexts, basic network connectivity, and

authentication. We’ll pick up a few other platform fundamentals, like input, in later chapters.

Let me offer you advance warning that this chapter and the next are more intricate than most others

because they specifically deal with the software equivalents of framing, plumbing, and wiring. With my

family’s house, I can completely attest that installing the lovely light fixtures my wife picked out

seemed, in those moments, much more satisfying than the framing work I’d done months earlier. But

now, actually living in the house, I have a deep appreciation for all the nonglamorous work that went

into it. It’s a place I want to be, a place in which my family and I are delighted, in fact, to spend the

majority of our lives. And is that not how you want your customers to feel about your apps? Absolutely!

Knowing the delight that a well-architected app can bring to your customers, let’s dive in and find our

own delight in exploring the intricacies!

App Activation

One of the most important things to understand about any app is how it goes from being a package

on disk to something that’s up and running and interacting with users. Such activation can happen a

variety of ways: through tiles on the Start screen or the desktop task bar, toast notifications, and various

contracts, including Search, Share, and file type and URI scheme associations. Windows might also pre-

launch the user’s most frequently used apps (not visibly, of course), after updates and system restarts. In

all these activation cases, you’ll be writing plenty of code to initialize your data structures, acquire

content, reload previously saved state, and do whatever else is necessary to establish a great experience

for the human beings on the other side of the screen.

Tip Pay special attention to what I call the first experience of your app, which starts with your app’s

page in the Store, continues through download and installation (meaning: pay attention to the size of

your package), and finished up through first launch and initialization that brings the user to your app’s

home page. When a user taps an Install button in the Store, he or she clearly wants to try your app, so

streamlining the path to interactivity is well worth the effort.

113

Branding Your App 101: The Splash Screen and Other Visuals
With activation, we first need to take a step back even before the app host gets loaded, to the very

moment a user taps your tile on the Start screen or when your app is launched some other way (except

for pre-launching). At that moment, before any app-specific code is loaded or run, Windows displays

your app’s splash screen image against your chosen background color, both of which you specify in

your manifest.

The splash screen shows for at least 0.75 seconds (so that it’s never just a flash even if the app loads

quickly) and accomplishes two things. First, it guarantees that something shows up when an app is

activated, even if no app code loads successfully. Second, it gives users an interesting branded

experience for the app—that is, your image—which is better than a generic hourglass. (So don’t, as one

popular app I know does, put a generic hour class in your splash screen image!) Indeed, your splash

screen and your app tile are the two most important ways to uniquely brand your app. Make sure you

and your graphic artist(s) give full attention to these. (For further guidance, see Guidelines and checklist

for splash screens.)

The default splash screen occupies the whole view where the app is being launched (in whatever

view state), so it’s a much more directly engaging experience for your users. During this time, an

instance of the app host gets launched to load, parse, and render your HTML/CSS, and load, parse, and

execute your JavaScript, firing events along the way, as we’ll see in the next section. When the app’s

first page is ready, the system removes the splash screen.16

Additional settings and graphics in the manifest also affect your branding and overall presence in

the system, as shown in the tables on the next page. Be especially aware that the Visual Studio and

Blend templates provide some default and thoroughly unattractive placeholder graphics. Take a

solemn vow right now that you truly, truly, cross-your-heart will not upload an app to the Windows

Store with these defaults graphics still in place! (The Windows Store will reject your app if you forget,

delaying certification.)

In the second table, you can see that it lists multiple sizes for various images specified in the

manifest to accommodate varying pixel densities: 100%, 140%, and 180% scale factors, and even a few

at 80% (don’t neglect the latter: they are typically used for most desktop monitors and can be used

when you turn on Show More Tiles on the Start screen’s settings pane). Although you can just provide a

single 100% scale image for each of these, it’s almost guaranteed that stretching that graphics for

higher pixel densities will look bad. Why not make your app look its best? Take the time to create each

individual graphic consciously.

Manifest Editor Tab Text Item or Setting Use

16 This system-provided splash screen is composed of only your splash screen image and your background color and does

not allow any customization. Through an extended splash screen (see Appendix B) you can control the entire display.

http://msdn.microsoft.com/library/windows/apps/hh465338.aspx
http://msdn.microsoft.com/library/windows/apps/hh465338.aspx

114

Application Display Name Appears in the “all apps” view on the Start screen, search results, the

Settings charm, and in the Store.

Visual Assets Tile > Short name Optional: if provided, is used for the name on the tile in place of the

Display Name, as Display Name may be too long for a square tile.

 Tile > Show name Specifies which tiles should show the app name (the small 70x70 tile

will never show the name). If none of the items are checked, the name

never appears.

 Tile > Default size Indicates whether to show the square or wide tile on the Start screen

after installation.

 Tile > Foreground text Color of name text shown on the tile if applicable (see Show name).

Options are Light and Dark. There must be a 1.5 contrast ratio

between this and the background color. Refer to The Paciello Group’s

Contrast Analyzer for more.

 Tile > Background color Color used for transparent areas of any tile images, the default

background for secondary tiles, notification backgrounds, buttons in

app dialogs, borders when the app is a provider for file picker and

contact picker contracts, headers in settings panes, and the app’s

page in the Store. Also provides the splash screen background color

unless that is set separately.

 Splash Screen >

Background color

Color that will fill the majority of the splash screen; if not set, the App

UI Background color is used.

Visual Assets Tab

Image

Use

Image Sizes

80% 100% 140% 180%

Square 70x70 logo A small square tile image for the Start screen. If

provided, the user has the option to display this

after installation; it cannot be specified as the

default. (Note also that live tiles are not supported

on this size.)

56x56 70x70 98x98 126x126

Square 150x150 logo Square tile image for the Start screen. 120z120 150x150 210x210 270x270

Wide 310x150 logo Optional wide tile image. If provided, this is shown

as the default unless overridden by the Default

option below. The user can use the square tile if

desired.

248x120 310x150 434x210 558x270

Square 310x310 logo Optional double-size/large square tile image. If

provided, the user has the option to display this

after installation; it cannot be specified as the

default.

248x248 310x310 434x434 558x558

Square 30x30 logo Tile used in zoomed-out and “all apps” views of

the Start screen, and in the Search and Share

panes if the app supports those contracts as

targets. Also used on the app tile if you elect to

show a logo instead of the app name in the lower

left corner of the tile. Note that there are also four

“Target size” icons that are specifically used in the

desktop file explorer when file type associations

exist for the app. We’ll cover this in Chapter 15,

“Contracts.”

24x24 30x30 42x42 54x54

http://www.paciellogroup.com/resources/contrastAnalyser
http://www.paciellogroup.com/resources/contrastAnalyser

115

Store logo Tile/logo image used for the app on its product

description page in the Windows Store. This image

appears only in the Windows Store and is not used

by the app or system at run time.

n/a 50x50 70x70 90x90

Badge logo Shown next to a badge notification to identify the

app on the lock screen (uncommon, as this

requires additional capabilities to be declared; see

Chapter 16).

n/a 24x24 33x33 43x43

Splash screen When the app is launched, this image is shown in

the center of the screen against the Splash Screen

> Background color (or Tile > Background color if

the other isn’t specified). The image can utilize

transparency if desired.

n/a 620x300 868x420 1116x540

The Visual Assets tab in the editor shows you which scale images you have in your package, as

shown in Figure 3-1. To see all visual elements at once, select All Image Assets in the left-hand list.

FIGURE 3-1 Visual Studio’s Visual Assets tab of the manifest editor. It automatically detects whether a scaled asset

exists for the base filename (such as images\tile.png).

In the table, note that 80% scale tile graphics are used in specific cases like low DPI modes (generally

when the DPI is less than 130 and the resolution is less than 2560 x 1440) and should be provided with

other scaled images. When you upload your app to the Windows Store, you’ll also need to provide

some additional graphics. See the App images topic in the docs under “Promotional images” for full

http://msdn.microsoft.com/library/windows/apps/hh846296.aspx

116

details.

The combination of small, square, wide, and large square tiles allows the user to arrange the start

screen however they like. For example:

Of course, it’s not required that your app supports anything other than the 150x150 square tile; all

others are optional. In that case Windows will scale your 150x150 tile down to the 70x70 small size to

give users at least that option.

When saving scaled image files, append .scale-80, .scale-100, .scale-140, and .scale-180 to the

filenames, before the file extension, as in splashscreen.scale-140.png (and be sure to remove any file

that doesn’t have a suffix). This allows you, both in the manifest and elsewhere in the app, to refer to an

image with just the base name, such as splashscreen.png, and Windows will automatically load the

appropriate variant for the current scale. Otherwise it looks for one without the suffix. No code needed!

This is demonstrated in the HereMyAm3a example, where I’ve added all the various branded graphics

(with some additional text in each graphic to show the scale). With all of these graphics, you’ll see the

different scales show up in the manifest editor, as shown in Figure 3-1 above.

To test these different graphics, use the set resolution/scaling button in the Visual Studio

simulator—refer to Figure 2-5 in Chapter 2—or the Device tab in Blend, to choose different pixel

densities on a 10.6” screen (1366 x 768 =100%, 1920 x 1080 = 140%, and 2560 x 1440 = 180%), or the

7” or 7.5” screens (both use 140%). You’ll also see the 80% scale used on the other display choices,

including the 23” and 27” settings. In all cases, the setting affects which images are used on the Start

screen and the splash screen, but note that you might need to exit and restart the simulator to see the

new scaling take effect.

One thing you might notice is that full-color photographic images don’t scale down very well to the

smallest sizes (store logo and small logo). This is one reason why Windows Store apps often use simple

logos, which also keeps them smaller when compressed. This is an excellent consideration to keep your

package size smaller when you make more versions for different contrasts and languages. We’ll see

more on this in Chapter 19, “Apps for Everyone, Part 1” and Chapter 20, “Apps for Everyone, Part 2.”

117

Package bloat? As mentioned already in Chapters 1 and 2, the multiplicity of raster images that you

need to create to accommodate scales, contrasts, and languages will certainly increase the size of the

package you upload to the Store. (There are 104 possible variants per language of the manifest image

assets alone!) Fortunately, the default packaging model for Windows 8.1 structures your resources into

separate packs that are downloaded only as a user needs them, as we’ll discuss in Chapters 19 and 20.

In short, although the package you upload will contain all possible resources for all markets where

your app will be available, most if not all users will be downloading a much smaller subset. That said,

it’s also good to consider the differences between file formats like JPEG, GIF, and PNG to get the most

out of your pixels. For a good discussion, see PNG vs. GIF vs. JPEG on StackOverflow.

Tip Three other branding-related resources you might be interested in are the Branding your

Windows Store app topic in the documentation (covering design aspects) the CSS styling and branding

your app sample (covering CSS variations and dynamically changing the active stylesheet), and the

very useful Applying app theme color (theme roller) sample (which lets you configure a color theme,

showing its effect on controls, and which generates the necessary CSS).

Activation Event Sequence
As the app host is built on the same parsing and rendering engines as Internet Explorer, the general

sequence of activation events is more or less what a web application sees in a browser. Actually, it’s

more rather than less! Here’s what happens so far as Windows is concerned when an app is launched

(refer to the ActivationEvents example in the companion code to see this event sequence as well as the

related WinJS events that we’ll discuss a little later):

1. Windows displays the default splash screen using information from the app manifest

(except for pre-launching).

2. Windows launches the app host, identifying the app’s installation folder and the name of

the app’s Start Page (an HTML file) as indicated in the Application tab of the manifest

editor.17

3. The app host loads that page’s HTML, which in turn loads referenced stylesheets and script

(deferring script loading if indicated in the markup with the defer attribute). Here it’s

important that all files are properly encoded for best startup performance. (See the sidebar

on the next page.)

4. document.DOMContentLoaded fires. You can use this to do early initialization specifically

related to the DOM, if desired. This is also the place to perform one-time initialization work

that should not be done if the app is activated on multiple occasions during its lifetime.

5. window.onload fires. This generally means that document layout is complete and elements

will reflect their actual dimensions. (Note: In Windows 8 this event occurs at the end of this

17 To avoid confusion with the Windows Start screen, I’ll often refer to this as the app’s home page unless I’m specifically

referring to the entry in the manifest.

http://stackoverflow.com/questions/2336522/png-vs-gif-vs-jpeg-when-best-to-use/7752936#7752936
http://msdn.microsoft.com/library/windows/apps/hh465418.aspx
http://msdn.microsoft.com/library/windows/apps/hh465418.aspx
http://code.msdn.microsoft.com/windowsapps/App-Branding-sample-9f87b7a2
http://code.msdn.microsoft.com/windowsapps/App-Branding-sample-9f87b7a2
http://code.msdn.microsoft.com/windowsapps/Theme-roller-sample-64b679f2
http://msdn.microsoft.com/library/windows/apps/hh849088.aspx#load_only_what_you_need

118

list instead.)

6. Windows.UI.WebUI.WebUIApplication.onactivated fires. This is typically where you’ll

do all your startup work, instantiate WinJS and custom controls, initialize state, and so on.

Once the activated event handler returns, the default splash screen is dismissed unless the app has

requested a deferral, as discussed later in the “Activation Deferrals and setPromise” section.With the

latter four events, your app’s handling of these very much determines how quickly it comes up and

becomes interactive. It almost goes without saying that you should strive to optimize that process, a

subject we’ll return to a little later in “Optimizing Startup Time.”

What’s also different between an app and a website is that an app can again be activated for many

different purposes, such as contracts and associations, even while it’s already running. As we’ll see in

later chapters, the specific page that gets loaded (step 3) can vary by contract, and if a particular pa ge

is already running it will receive only the Windows.UI.WebUI.WebUIApplication.onactivated event

and not the others.

For the time being, though, let’s concentrate on how we work with this core launch process, and

because you’ll generally do your initialization work within the activated event, let’s examine that

structure more closely.

Sidebar: File Encoding for Best Startup Performance

To optimize bytecode generation when parsing HTML, CSS, and JavaScript, which speeds app

launch time, the Windows Store requires that all .html, .css, and .js files are saved with Unicode

UTF-8 encoding. This is the default for all files created in Visual Studio or Blend. If you’re

importing assets from other sources including third-party libraries, check this encoding: in Visual

Studio’s File Save As dialog (Blend doesn’t have a Save As feature), select Save with Encoding and

set that to Unicode (UTF-8 with signature) – Codepage 65001. The Windows App Certification Kit

will issue warnings if it encounters files without this encoding.

Along these same lines, minification of JavaScript isn’t particularly important for Windows

Store apps. Because an app package is downloaded from the Windows Store as a unit and often

contains other assets that are much larger than your code files, minification won’t make much

difference there. Once the package is installed, bytecode generation means that the package’s

JavaScript has already been processed and optimized, so minification won’t have any additional

performance impact. If your intent is to obfuscate your code (because it is just there in source

form in the installation folder), see “Protecting Your Code” in Chapter 18, “WinRT Components.”

119

Activation Code Paths
As we saw in Chapter 2, new projects created in Visual Studio or Blend give you the following code in

js/default.js (a few comments have been removed):

(function () {

 "use strict";

 var app = WinJS.Application;

 var activation = Windows.ApplicationModel.Activation;

 app.onactivated = function (args) {

 if (args.detail.kind === activation.ActivationKind.launch) {

 if (args.detail.previousExecutionState !==

 activation.ApplicationExecutionState.terminated) {

 // TODO: This application has been newly launched. Initialize

 // your application here.

 } else {

 // TODO: This application has been reactivated from suspension.

 // Restore application state here.

 }

 args.setPromise(WinJS.UI.processAll());

 }

 };

 app.oncheckpoint = function (args) {

 };

 app.start();

})();

Let’s go through this piece by piece to review what we already learned and complete our

understanding of this core code structure:

 (function () { … })(); surrounding everything is again the JavaScript module pattern.

 "use strict" instructs the JavaScript interpreter to apply Strict Mode, a feature of ECMAScript

5. This checks for sloppy programming practices like using implicitly declared variables, so it’s a

good idea to leave it in place.

 var app = WinJS.Application; and var activation =

Windows.ApplicationModel.Activation; both create substantially shortened aliases for

commonly used namespaces. This is a common practice to simplify multiple references to the

same part of WinJS or WinRT, and it also provides a small performance gain.

 app.onactivated = function (args) {…} assigns a handler for the WinJS.UI.onactivated

event, which is a wrapper for Windows.UI.WebUI.WebUIApplication.onactivated (but will

be fired after window.onload). In this handler:

 args.detail.kind identifies the type of activation.

http://msdn.microsoft.com/library/br230269.aspx

120

 args.detail.previousExecutionState identifies the state of the app prior to this

activation, which determines whether to reload session state.

 WinJS.UI.processAll instantiates WinJS controls—that is, elements that contain a data-

win-control attribute, as we’ll cover in Chapter 5, “Controls and Control Styling.”

 args.setPromise instructs Windows to wait until WinJS.UI.processAll is complete

before removing the splash screen. (See “Activation Deferrals and setPromise” later in this

chapter.)

 app.oncheckpoint, which is assigned an empty function, is something we’ll cover in the “App

Lifecycle Transition Events” section later in this chapter.

 app.start() (WinJS.Application.start()) initiates processing of events that WinJS queues

during startup.

Notice how we’re not directly handling any of the events that Windows or the app host is firing, like

DOMContentLoaded or Windows.UI.WebUI.WebUIApplication.onactivated. Are we just ignoring

those events? Not at all: one of the convenient services that WinJS offers through

WinJS.UI.Application is a simplified structure for activation and other app lifetime events. Its use is

entirely optional but very helpful.

With its start method, for example, a couple of things are happening. First, the WinJS.-

Application object listens for a variety of events that come from different sources (the DOM, WinRT,

etc.) and coalesces them into a single object with which you register your handlers. Second, when

WinJS.Application receives activation events, it doesn’t just pass them on to the app’s handlers

immediately, because your handlers might not, in fact, have been set up yet. So it queues those events

until the app says it’s really ready by calling start. At that point WinJS goes through the queue and

fires those events. That’s all there is to it.

As the template code shows, apps typically do most of their initialization work within the WinJS

activated event, where there are a number of potential code paths depending on the values in

args.details (an IActivatedEventArgs object). If you look at the documentation for activated,

you’ll see that the exact contents of args.details depends on specific activation kind. All activations,

however, share some common properties:

args.details

Property

Type (in Windows.Application-

Model.Activation)

Description

kind ActivationKind The reason for the activation. The possibilities are

launch (most common); restrictedLaunch

(specifically for app to app launching); search,

shareTarget, file, protocol, fileOpenPicker,

fileSavePicker, contactPicker, and

cachedFileUpdater (for servicing contracts); and

device, printTask, settings, and cameraSettings

(generally used with device apps). For each supported

activation kind, the app will have an appropriate

initialization path.

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.activation.iactivatedeventargs.aspx
http://msdn.microsoft.com/library/windows/apps/br212679.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.activation.activationkind.aspx

121

previousExecutionState ApplicationExecutionState The state of the app prior to this activation. Values are

notRunning, running, suspended, terminated, and

closedByUser. Handling the terminated case is most

common because that’s the one where you want to

restore previously saved session state (see “App

Lifecycle Transition Events”).

splashScreen SplashScreen Contains an ondismissed event for when the system

splash screen is dismissed along with an

imageLocation property (Windows.Foundation.-

Rect) with coordinates where the splash screen image

was displayed. For use of this, see “Extended Splash

Screens” in Appendix B, “WinJS Extras.”

Additional properties provide relevant data for the activation. For example, launch provides the

tileId and arguments from secondary tiles (see Chapter 16). The search kind (the next most

commonly used) provides queryText and language, the protocol kind provides a uri, and so on.

We’ll see how to use many of these in their proper contexts, and sometimes they apply to altogether

different pages than default.html. What’s contained in the templates (and what we’ve already used for

an app like Here My Am!) is primarily to handle normal startup from the app tile or when launched

within Visual Studio’s debugger.

WinJS.Application Events
WinJS.Application isn’t concerned only with activation—its purpose is to centralize events from

several different sources and turn them into events of its own. Again, this enables the app to listen to

events from a single source (either assigning handlers via addEventListener(<event>) or on<event>

properties; both are supported). Here’s the full rundown on those events and when they’re fired (if

queued, the event is fired within your call to WinJS.Application.start):

 loaded Queued for DOMContentLoaded in both local and web contexts.18 This is fired before

activated.

 activated Queued in the local context for Windows.UI.WebUI.WebUIApplication.-

onactivated (which fires after window.onload). In the web context, where WinRT is not

applicable, this is instead queued for DOMContentLoaded (where the launch kind will be launch

and previousExecutionState is set to notRunning).

 ready Queued after loaded and activated. This is the last one in the activation sequence.

 error Fired if there’s an exception in dispatching another event. (If the error is not handled

here, it’s passed onto window.onerror.)

 checkpoint Fired when the app should save the session state it needs to restart from a

previous state of terminated. It’s fired in response to both the document’s beforeunload

18 There is also WinJS.Utilities.ready through which you can specifically set a callback for DOMContentLoaded. This is

used within WinJS, in fact, to guarantee that any call to WinJS.UI.processAll is processed after DOMContentLoaded.

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.activation.applicationexecutionstate.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.activation.splashscreen.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br211903.aspx

122

event as well as Windows.UI.WebUI.WebUIApplication.onsuspending.

 unload Also fired for beforeunload after the checkpoint event is fired.

 settings Fired in response to Windows.UI.ApplicationSettings.SettingsPane.-

oncommandsrequested. (See Chapter 10, “The Story of State, Part 1.”)

I think you’ll generally find WinJS.Application to be a useful tool in your apps, and it also

provides a few more features as documented on the WinJS.Application page. For example, it

provides local, temp, roaming, and sessionState properties, which are helpful for managing state.

We saw a little of local already in Chapter 2; we’ll see more later on in Chapter 10.

The other bits are the queueEvent and stop methods. The queueEvent method drops an event into

the queue that will get dispatched, after any existing queue is clear, to whatever listeners you’ve set up

on the WinJS.Application object. Events are simply identified with a string, so you can queue an

event with any name you like, and call WinJS.Application.addEventListener with that same name

anywhere else in the app. This makes it easy to centralize custom events that you might invoke both

during startup and at other points during execution without creating a separate global function for

that purpose. It’s also a powerful means through which separately defined, independent components

can raise events that get aggregated into a single handler. (For an example of using queueEvent, see

scenario 2 of the App model sample.)

As for stop, this is provided to help with unit testing so that you can simulate different activation

sequences without having to relaunch the app and somehow recreate a set of specific conditions when

it restarts. When you call stop, WinJS removes its listeners, clears any existing event queue, and clears

the sessionState object, but the app continues to run. You can then call queueEvent to populate the

queue with whatever events you like and then call start again to process that queue. This process can

be repeated as many times as needed.

Activation Deferrals and setPromise

As noted earlier under “Activation Event Sequence,” once you return from your handler for

WebUIApplication.onactivated (or WinJS.Application.onactivated), Windows assumes that

your home page is ready and that it can dismiss the default splash screen. The same is true for

WebUIApplication.onsuspending (and by extension, WinJS.Application.oncheckpoint): Windows

assumes that it can suspend the app once the handler returns. More generally, WinJS.Application

assumes that it can process the next event in the queue once you return from the current event.

This gets tricky if your handler needs to perform one or more async operations, like an HTTP

request, whose responses are essential for your home page. Because those operations are running on

other threads, you’ll end up returning from your handler while the operations are still pending, which

could cause your home page to show before its ready or the app to be suspended before it’s finished

saving state. Not quite what you want to have happen! (You can, of course, make other secondary

requests, in which case it’s fine for them to complete after the home page is up—always avoid blocking

the home page for nonessentials.)

http://msdn.microsoft.com/library/windows/apps/br229774.aspx
http://code.msdn.microsoft.com/windowsapps/ApplicationModel-Sample-4be6575d

123

For this reason, you need a way to tell Windows and WinJS to defer their default behaviors until

your most critical async work is complete. The mechanism that provides for this is in WinRT called a

deferral, and the setPromise method that we’ve seen in WinJS ties into this.

On the WinRT level, the args given to WebUIApplication.onactivated contains a little method

called getDeferral (technically Windows.UI.WebUI.ActivatedOperation.getDeferral). This

function returns a deferral object that contains a complete method. By calling getDeferral, you tell

Windows to leave the system splash screen up until you call complete (subject to a 15-second timeout

as described in “Optimizing Startup Time” below). The code looks like this:

//In the activated handler

var activatedDeferral = Windows.UI.WebUI.ActivatedOperation.getDeferral();

someOperationAsync().done(function () {

 //After initialization is complete

 activatedDeferral.complete();

}

This same mechanism is employed elsewhere in WinRT. You’ll find that the args for

WebUIApplication.onsuspending also has a getDeferral method, so you can defer suspension until

an async operation completed. So does the DataTransferManager.ondatarequested event that we

saw in Chapter 2 for working with the Share charm. You’ll also encounter deferrals when working with

the Search charm, printing, background tasks, Play To, and state management, as we’ll see in later

chapters. In short, wherever there’s a potential need to do async work within an event handler, you’ll

find getDeferral.

Within WinJS now, whenever WinJS provides a wrapper for a WinRT event, as with WinJS.-

Application.onactivated, it also wraps the deferral mechanism into a single setPromise method

that you’ll find on the args object passed to the relevant event handler. Because you need deferrals

when performing async operations in these event handlers, and because async operations in JavaScript

are always represented with promises, it makes sense for WinJS to provide a generic means to link the

deferral to the fulfillment of a promise. That’s exactly what setPromise does.

WinJS, in fact, automatically requests a deferral whether you need it or not. If you provide a promise

to setPromise, WinJS will attach a completed handler to it and call the deferral’s complete at the

appropriate time. Otherwise WinJS will call complete when your event handler returns.

You’ll find setPromise on the args passed to the WinJS.Application loaded, activated, ready,

checkpoint, and unload events. Again, setPromise both defers Windows’ default behaviors for WinRT

events and tells WinJS.Application to defer processing the next event in its queue. This allows you,

for example, to delay the activated event until an async operation within loaded is complete.

Now we can see the purpose of setPromise within the activation code we saw earlier:

var app = WinJS.Application;

app.onactivated = function (args) {

 if (args.detail.kind === activation.ActivationKind.launch) {

http://msdn.microsoft.com/library/windows/apps/windows.ui.webui.activateddeferral.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.datatransfermanager.datarequested.aspx

124

 //...

 args.setPromise(WinJS.UI.processAll());

 }

};

WinJS.UI.processAll starts an async operation to instantiate WinJS controls. It returns a promise

that is fulfilled when all those controls are ready. Clearly, if we have WinJS controls on our home page,

we don’t want to dismiss the default splash screen until processAll is done. So we defer that dismissal

by passing that promise to setPromise.

Oftentimes you’ll want to do more initialization work of your own when processAll is complete. In

this case, simply call then with your own completed handler, like so:

args.setPromise(WinJS.UI.processAll().then(function () {

 //Do more initialization work

}));

Here, be sure to use then and not done because the latter returns undefined rather than a promise,

which means that no deferral will happen. See “Error Handling Within Promises: then vs. done” later on.

Because setPromise just waits for a single promise to complete, how do you handle multiple async

operations? Just pick the one you think will take the longest? No—there are a couple of ways to do

this. First, if you need to control the sequencing of those operations, you can chain them together as

we already saw in Chapter 2 and as we’ll discuss further in this chapter under “Async Operations: Be

True to Your Promises.” Just be sure that the end result of the chain is a promise that becomes the

argument to setPromise—again, use then and not done!

Second, if the sequence isn’t important but you need all of them to complete, you can combine

those promises by using WinJS.Promise.join, passing the result to setPromise. If you need only one

of the operations to complete, you can use WinJS.Promise.any instead. Again, see “Be True to Your

Promises” later on.

The other means is to register more than one handler with WinJS.Application.onactivated; each

handler will get its own event args and its own setPromise function, and WinJS will combine those

returned promises together with WinJS.Promise.join.

Optimizing Startup Time

Ideally, an app launches and its home page comes up within one second of activation, with an

acceptable upper bound being three seconds. Anything longer begins to challenge most user’s

patience threshold, especially if they’re already pressed for time and swilling caffeine-laden beverages!

In fact, the Windows App Certification Toolkit, which we’ll meet at the end of this chapter, will give you

a warning if your app takes more than a few seconds to get going.

Windows is much more generous here, however. It allows an app to hang out on the default start

screen for as long as the user is willing to stare at it. Apparently that willingness peaks out at about 15

seconds, at which point most users will pretty much assume that the app has hung and return to the

125

Start screen to launch some other app that won’t waste the afternoon. For this reason, if an app doesn’t

get its home page up in that time—that is, return from the activated event and complete any

deferral—and the user switches away, then boom!: Windows will terminate the app. (This saves the user

from having to do the sordid deed in Task Manager.)

Of course, some apps, especially on first run after acquisition, might really need more time to get

started. To accommodate this, there is an implementation strategy called an extended splash screen

wherein you make you home page look just like the default start screen and then place additional

controls on it to keep the user informed of progress so that she knows the app isn’t hung. Once you’re

on the extended splash screen, the 15-second limit no longer applies. For more info, see Appendix B.

For most startup scenarios, though, it’s best to focus your efforts on minimizing time to interactivity.

This means prioritizing work that’s necessary for the primary workflows of the home page and

deferring everything else until the home page it up. This includes deferring configuration of app bars,

nav bars, settings panels, and secondary app pages, as well as acquiring and processing content for

those secondary pages. But even before that, let’s take a step back to understand what’s going on

behind the default splash screen to begin with, because there are things you can do to help that

process along as well.

When the user taps your tile, Windows first creates a new app host process and points it to the start

page specified in your manifest. The app host then loads and parses that file. In doing so, it must also

load and parse the CSS and JavaScript files it refers to. This process will fire various events, as we’ve

seen, at which point it enters your activation code.

Up to that point, one thing that really matters is the structure of your HTML markup. As much as

possible, avoid inline styles and scripts because these cause the HTML parser to switch from an HTML

parsing context into a CSS or JavaScript parsing context, which is relatively expensive. In other words,

the separation of concerns between markup, styling, and script is both a good development practice

and a good performance practice! Also make sure to place any static markup in the HTML file rather

than creating it from JavaScript: it’s faster to have the app host’s inner engine parse HTML than to

make DOM API calls from code for the same purpose. And even if you must create elements

dynamically, once you use more than four DOM API calls it’s faster to build an HTML string and assign

it to an innerHTML or similar property (so that the inner engine does the work).

Similarly, minimize the amount of CSS that has to be loaded for your start page to appear; CSS that’s

needed for secondary pages can be loaded with those pages (see “Page Controls and Navigation” later

in this chapter).

Loading JavaScript files can also be deferred, both for secondary pages but also on the start page.

That is, you can use the defer="defer" attribute on <script> tags to delay loading specific .js files

until after the first parsing pass, or you can dynamically inject <script> tags or call eval at a later time

in your activation path or after your initial activation is complete.

Review all the resources that your markup references as well, and place any critical ones directly into

the app package where you can reference them with ms-appx:/// URIs. Any remote resources will, of

126

course, require a round trip to the network with possible connectivity failures. Where making HTTP

requests is unavoidable, suggest your most critical URIs to the Windows.Networking.-

BackgroundTransfer.ContentPrefetcher object (see “Prefetching Content” in Chapter 4). If the

prefetcher determines that those URIs are among the top requests, it will actively cache requests to

those URIs such that requests from your code will draw directly from that cache. This won’t help the

app the first time it’s run, but it can help with subsequent activations.

Consider whether you can also cache such content directly in your app package. That way you have

something to work with immediately, even if there’s no connectivity when the app is fi rst run. This

would mean building a refresh/sync strategy into your data model, but it’s certainly doable.

Once you hit your activation code, a new set of considerations come into play. The key thing to

consider here is this: so long as you’re on the default or an extended splash screen, go ahead and block

the UI thread for high-priority work. A splash screen, by definition, is noninteractive, so any UI thread

work that deals with interactivity is a much lower priority than work that’s necessary to initiali ze

controls, retrieve and process data, and otherwise get ready for interactivity. (Page content animations,

similarly, should be disabled while the splash screen is up.)

Most important, though, is making sure that your critical non-UI work runs at a higher priority than

UI rendering processes, especially while the splash screen is still active. For this you use the WinJS

scheduler API, which we’ll return to later in “Managing the UI Thread with the WinJS Scheduler.” For

now, know that you can schedule work to happen at a higher priority than layout and rendering and

also at other lower priorities. This way you can kick off a number of HTTP requests, for example, but

give your most important ones a high priority while giving your secondary ones a much lower priority

so that they happen after layout and rendering. With this API you can also reprioritize work at any time:

for example, if the user immediately navigates to a secondary page as soon as the app comes up, you

can set that request (or more specifically, the function that processes its results) to high priority.

For a deeper dive on these matters of startup performance, I recommend two talks from //build

2013: Create Fast and Fluid Interfaces with HTML and JavaScript (Paul Gildea) and Web Runtime

Performance (Tobin Titus). Also refer to Reducing your app’s loading time in the documentation.

WinRT Events and removeEventListener

Before going further, we need to take a slight detour into a special consideration for events that

originate from WinRT, such as dismissed. You may have noticed that I’m highlighting these with a

different text color than other events.

As we’ve already been doing in this book, typical practice within JavaScript, especially for websites, is

to call addEventListener to specify event handlers or to simply assign an event handler to an

on<event> property of some object. Oftentimes these handlers are just declared as inline anonymous

functions:

var myNumber = 1;

http://channel9.msdn.com/Events/Build/2013/3-156
http://channel9.msdn.com/Events/Build/2013/3-068
http://channel9.msdn.com/Events/Build/2013/3-068
http://msdn.microsoft.com/library/windows/apps/hh849088.aspx

127

element.addEventListener(<event>, function (e) { myNumber++; });

Because of JavaScript’s particular scoping rules, the scope of that anonymous function ends up

being the same as its surrounding code, which allows the code within that function to refer to local

variables like myNumber as used here.

To ensure that such variables are available to that anonymous function when it’s later invoked as an

event handler, the JavaScript engine creates a closure: a data structure that describes the local variables

available to that function. Usually the closure requires only a small bit of memory, but depending on

the code inside that event handler, the closure could encompass the entire global namespace—a rather

large allocation! Every such active closure increases the memory footprint or working set of the app, so

it’s a good practice to keep closures at a minimum. For example, declaring a separate named

function—which has its own scope—rather than using an anonymous function, will reduce the size of

any necessary closure.

More important than minimizing closures is making sure that the event listeners themselves—and

their associated closures—are properly cleaned up and their memory allocations released. Typically, this

is not even something you need to think about. When objects such as HTML elements are destroyed or

removed from the DOM, their associated listeners are automatically removed and closures are released.

However, in a Windows Store app written in HTML and JavaScript, events can also come from WinRT

objects. Because of the nature of the projection layer that makes WinRT available in JavaScript, WinRT

ends up holding references to JavaScript event handlers (known also as delegates) and the JavaScript

closures hold references to those WinRT objects. As a result of these cross-references, the associated

closures aren’t released unless you do so explicitly with removeEventListener (or assignment of null

to an on<event> property).

This is not a problem, mind you, if the app is always listening to a particular event. For example, the

suspending and resuming events are two that an app typically listens to for its entire lifetime, so any

related allocations will be cleaned up when the app is terminated. It’s also not much of a concern if you

add a listener only once, as with the splash screen dismissed event. (In that case, however, it’s good to

remove the listener explicitly, because there’s no reason to keep any closures in memory once the

splash screen is gone.)

Do pay attention, however, when an app listens to a WinRT object event only temporarily and

neglects to explicitly call removeEventListener, and when the app might call addEventListener for

the same event multiple times (in which case you can end up duplicating closures). With page controls,

which are used to load HTML fragments into a page (as discussed later in this chapter under “Page

Controls and Navigation”), it’s common to call addEventListener or assign a handler to an on<event>

property on some WinRT object within the page’s ready method. When you do this, be sure to match

that call with removeEventListener (or assign null to on<event>) in the page’s unload method to

release the closures.

Note Events from WinJS objects don’t need this attention because the library already handles removal

of event listeners. The same is true for listeners you might add for window and document events that

persist for the lifetime of the app.

128

Throughout this book, the WinRT events with which you need to be concerned are highlighted with

a special color, as in datarequested (except where the text is also a hyperlink). This is your cue to

check whether an explicit call to removeEventListener or on<event>=null is necessary. Again, if

you’ll always be listening to the event, removing the listener isn’t needed, but if you add a listener

when loading a page control, or anywhere else where you might add that listener again, be sure to

make that extra call. Be especially aware that the samples in the Windows SDK don’t necessary pay

attention to this detail, so don’t duplicate the oversight.

In the chapters that follow, I will remind you of what we’ve just discussed on our first meaningful

encounter with a WinRT event. Keep your eyes open for the WinRT color coding in any case. We’ll also

come back to the subject of debugging and profiling toward the end of this chapter, where we’ll learn

about tools that can help uncover memory leaks.

App Lifecycle Transition Events and Session State

Now that we’ve seen how an app gets activated into a running state, our next concern is with what can

happen to it while it’s running. To an app—and the app’s publisher—a perfect world might be one in

which consumers ran that app and stayed in that app forever (making many in-app purchases, no

doubt!). Well, the hard reality is that this just isn’t reality. No matter how much you’d love it to be

otherwise, yours is not the only app that the user will ever run. After all, what would be the point of

features like sharing or split-screen views if you couldn’t have multiple apps running together? For

better or for worse, users will be switching between apps, changing view states, and possibly closing

your app, none of which the app can control. But what you can do is give energy to the “better” side of

the equation by making sure your app behaves well under all these circumstances.

The first consideration is focus, which applies to controls in your app as well as to the app itself (the

window object). Here you can simply use the standard HTML blur and focus events. For example, an

action game or one with a timer would typically pause itself on window.onblur and perhaps restart

again on window.onfocus.

A similar but different condition is visibility. An app can be visible but not have the focus, as when

it’s sharing the screen with others. In such cases an app would continue things like animations or

updating a feed, which it would stop when visibility is lost (that is, when the app is actually in the

background). For this, use the visibilitychange event in the DOM API, and then examine the

visibilityState property of the window or document object, as well as the document.hidden

property. (The event works for visibility of individual elements as well.) A change in visibility is also a

good time to save user data like documents or game progress.

For view state changes, an app can detect these in several ways. As shown in the Here My Am!

example, an app typically uses media queries (in declarative CSS or in code through media query

listeners) to reconfigure layout and visibility of elements, which is really all that view states should

affect. (Again, view state changes never change the mode of the app.) At any time, an app can also

retrieve its view state through Windows.UI.ViewManagement.ApplicationView.orientation

http://msdn.microsoft.com/library/windows/apps/hh441213.aspx
http://msdn.microsoft.com/library/windows/apps/hh453385.aspx

129

(returning an ApplicationViewOrientation value of either portrait or landscape), the size of the

app window, and other details from ApplicationView like isFullScreen; details in Chapter 8, “Layout

and Views.”19

When your app is closed (the user swipes top to bottom and holds, or just presses Alt+F4), i t’s

important to note that the app is first moved off-screen (hidden), then suspended, and then closed, so

the typical DOM events like body.unload aren’t much use. A user might also kill your app in Task

Manager, but this won’t generate any events in your code either. Remember also that apps should not

close themselves nor offer a means for the user to do so (this violates Store certification requirements),

but they can use MSApp.terminateApp to close due to unrecoverable conditions like corrupted state.

Suspend, Resume, and Terminate

Beyond focus, visibility, and view states, there are three other critical moments in an app’s lifetime:

 Suspending When an app is not visible in any view state, it will be suspended after five

seconds (according to the wall clock) to conserve battery power. This means it remains wholly in

memory but won’t be scheduled for CPU time and thus won’t have network or disk activity

(except when using specifically allowed background tasks, discussed in Chapter 16). When this

happens, the app receives the Windows.UI.WebUI.WebUIApplication.onsuspending event,

which is also exposed through WinJS.Application.oncheckpoint. Apps must return from this

event within the five-second period, or Windows will assume the app is hung and terminate it

(period!). During this time, apps save transient session state and should also release any

exclusive resources acquired as well, like file streams or device access. (See How to suspend an

app.) If you need to do async work in the suspending handler, WinRT provides a deferral object

as with activation and WinJS provides the setPromise equivalent. Using the deferral will not,

however, extend the suspension deadline.

 Resuming If the user switches back to a suspended app, it receives the

Windows.UI.WebUI.WebUIApplication.onresuming event. This is not surfaced through

WinJS.Application, mind you, because WinJS has no value to add, but it’s easy enough to use

WinJS.Application.queueEvent for this purpose. We’ll talk more about this event in coming

chapters, as it’s used to refresh any data that might have changed while the app was suspended.

For example, if the app is connected to an online service, it would refresh that content i f

enough time has passed while the app was suspended, as well as check connectivity status

(Chapter 4). In addition, if you’re tracking sensor input of any kind (like compass, geolocation, or

orientation, see Chapter 12, “Input and Sensors”), resuming is a good time to get a fresh

reading. You’ll also want to check license status for your app and in-app purchases if you’re

using trials and/or expirations (see Chapter 20). There are also times when you might want to

refresh your layout (as we’ll see in Chapter 8), because it’s possible for your app to resume

19 The Windows 8 view states from ApplicationView.value—namely fullscreen-landscape, fullscreen-portrait,

filled, and snapped—are deprecated in Windows 8.1 in favor of just checking orientation and window size.

http://msdn.microsoft.com/library/windows/apps/hh465138.aspx
http://msdn.microsoft.com/library/windows/apps/hh465138.aspx

130

directly into a different view state than when it was suspended, or resume to a different screen

resolution as when the device has been connected to an external monitor. The same goes for

enabling/disabling clipboard-related commands (Chapter 9, “Commanding UI”), refreshing any

tile updates and push notification channels (see Chapter 16), and checking any saved state that

might have been modified by background tasks or roaming (Chapter 10).

 Terminating When suspended, an app might be terminated if there’s a need for more

memory. There is no event for this, because by definition the app is already suspended and no

code can run. Nevertheless, this is important for the app lifecycle because it affects

previousExecutionState when the app restarts.

Before we go further, it’s essential to know that you can simulate these conditions in the Visual

Studio debugger by using the toolbar drop-down shown in Figure 3-2. These commands will trigger

the necessary events as well as set up the previousExecutionState value for the next launch of the

app. (Be very grateful for these controls—there was a time when we didn’t have them, and it was

painful to debug these conditions!)

FIGURE 3-2 The Visual Studio toolbar drop-down to simulate suspend, resume, and terminate.

We’ve briefly listed those previous states before, but let’s see how they relate to the events that get

fired and the previousExecutionState value that shows up when the app is next launched. This can

get a little tricky, so the transitions are illustrated in Figure 3-3 and the table below describes how the

previousExecutionState values are determined.

Value of previousExecutionState Scenarios

notrunning First run after install from Store.

First run after reboot or log off.

App is launched within 10 seconds of being closed by user (about the time it

takes to hide, suspend, and cleanly terminate the app; if the user relaunches

quickly, Windows has to immediately terminate it without finishing the suspend

operation).

App was terminated in Task Manager while running or closed itself with

MSApp.terminateApp.

running App is currently running and then invoked in a way other than its app tile, such

as Search, Share, secondary tiles, toast notifications, and all other contracts.

When an app is running and the user taps the app tile, Windows just switches to

the already-running app and without triggering activation events (though focus

and visibilitychange will both be raised).

suspended App is suspended and then invoked in a way other than the app tile (as above

for running). In addition to focus/visibility events, the app will also receive the

resuming event.

terminated App was previously suspended and then terminated by Windows due to

131

resource pressure. Note that this does not apply to MSApp.terminateApp

because an app would have to be running to call that function.

closedByUser App was closed by an uninterrupted close gesture (swipe down+hold or Alt+F4).

An “interrupted” close is when the user switches back to the app within 10

seconds, in which case the previous state will be notrunning instead.

FIGURE 3-3 Process lifecycle events and previousExecutionState values.

The big question for the app, of course, is not so much what determines the value of

previousExecutionState as what it should actually do with this value during activation. Fortunately,

that story is a bit simpler and one that we’ve already seen in the template code:

 If the activation kind is launch and the previous state is notrunning or closedByUser, the app

should start up with its default UI and apply any persistent state or settings. With

closedByUser, there might be scenarios where the app should perform additional actions (such

as updating cached data) after the user explicitly closed the app and left it closed for a while.

 If the activation kind is launch and the previous state is terminated, the app should start up in

the same session state as when it was last suspended.

 For launch and other activation kinds that include additional arguments or parameters (as with

secondary tiles, toast notifications, and contracts), it should initialize itself to serve that purpose

by using the additional parameters. The app might already be running, so it won’t necessarily

initialize its default state again.

In the first two requirements above, persistent state refers to state that always applies to an instance

of the app, such as user accounts, UI configurations, and similar settings. Session state, on the other

hand, is the transient state of a particular instance and includes things like unsubmitted form data,

page navigation history, scroll position, and so forth.

132

We’ll see the full details of managing state in Chapter 10. What’s important to understand at present

is the relationship between the lifecycle events and session state, in particular. When Windows

terminates a suspended app, the app is still running in the user’s mind. Thus, when the user activates the

app again for normal use (activation kind is launch, rather than through a contract), he or she expects

that app to be right where it was before. This means that by the time an app gets suspended , it needs

to have saved whatever state is necessary to make this possible. It then rehydrates the app from that

state when previousExecutionState is terminated. This creates continuity across the suspend-

terminate-restart boundary.

For more on app design where this is concerned, see Guidelines for app suspend and resume. Be

clear that if the user directly closes the app with Alt+F4 or the swipe-down+hold gesture, the

suspending and checkpoint events will also be raised, so the app still saves session state. However,

the app won’t be asked to reload session state when it’s restarted because previousExecutionState

will be notRunning or closedByUser.

It works out best, actually, to save session state as it changes during the app’s lifetime, thereby

minimizing the work needed within the suspending event (where you have only five seconds). Mind

you, this session state does not include persistent state that an app would always reload or reapply in

its activation path. The only concern here is maintaining the illusion that the app was always running.

You always save session state to your appdata folders or settings containers, which are provided by

the Windows.Storage.ApplicationData API. Again, we’ll see all the details in Chapter 10. What I

want to point out here are a few helpers that WinJS provides for all this.

First is the WinJS.Application.checkpoint event, which is raised when suspending fires.

checkpoint provides a single convenient place to save both session state and any other persistent data

you might have, if you haven’t already done so. If you need to do any async work in this handler, be

sure to pass the promise for that operation to eventArgs.setPromise. This ties into the WinRT

deferral mechanism as with activation (and see “Suspending Deferrals” below).

Second is the WinJS.Application.sessionState object. On normal startup, this is just an empty

object to which you can add whatever properties you like, including other objects. A typical strategy is

to just use sessionState directly as a container for session variables. Within the checkpoint event,

WinJS automatically serializes the contents of this object (using JSON.stringify) into a file within your

local appdata folder (meaning that all variables in sessionState must have a string representation).

Note that because WinJS ensures that its own handler for checkpoint is always called after your app

gets the event, you can be assured that WinJS will save whatever you write into sessionState at any

time before your checkpoint handler returns.

Then, when the app is activated with the previous state of terminated, WinJS automatically

rehydrates the sessionState object so that everything you put there is once again available. If you use

this object for storing variables, you need only to avoid setting those values back to their defaults when

reloading your state.

Finally, if you don’t want to use the sessionState object or you have state that won’t work with it,

http://msdn.microsoft.com/library/windows/apps/hh465088.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.applicationdata.aspx

133

the WinJS.Application object makes it easy to write your own files without having to use async

WinRT APIs. Specifically, it provides (as shown in the documentation) local, temp, and roaming objects

that each have methods called readText, writeText, exists, and remove. These objects each work

within their respective appdata folders and provide a simplified API for file I/O, as shown in scenario 1

of the App model sample.

Suspending Deferrals and Deadlines

As noted earlier, the suspending event has a deferral mechanism, like activation, to accommodate

async operations in your handler. That is, Windows will normally suspend your app as soon as you

return from the suspending event (regardless of whether five seconds have elapsed), unless you

request a deferral.

The event args for suspending contains an instance of Windows.UI.WebUI.WebUIApplication.-

SuspendingOperation. Its getDeferral method returns a deferral object with a complete method,

which you call when your async operations are finished. WinJS wraps this with the setPromise method

on the event args object passed to a checkpoint handler. To this you pass whatever promise you have

for your async work and WinJS automatically adds a completed handler that calls the deferral’s

complete method.

Well, hey! All this sounds pretty good—is this perhaps a sneaky way to circumvent the restriction on

running Windows Store apps in the background? Will my app keep running indefinitely if I request a

deferral by never calling complete?

No such luck, amigo. Accept my apologies for giving you a fleeting moment of exhilaration! Deferral

or not, five seconds is the most you’ll ever get. Still, you might want to take full advantage of that time,

perhaps to first perform critical async operations (like flushing a cache) and then to attempt other

noncritical operations (like a sync to a server) that might greatly improve the user experience. For such

purposes, the suspendingOperation object also contains a deadline property, a Date value

indicating the time in the future when Windows will forcibly suspend you regardless of any deferral.

Once the first operation is complete, you can check if you have time to start another, and so on.

Note The suspendingOperation object is not surfaced through the WinJS checkpoint event; if you

want to work with the deadline property, you must use a handler for the WinRT suspending event.

A basic demonstration of using the suspending deferral can be found in the App activated, resume,

and suspend sample. This also shows activation through a custom URI scheme, a subject that we’ll be

covering later in Chapter 15. An example of handling state, in addition to the updates we’ll make to

Here My Am! in the next section, can be found in scenario 3 of the App model sample.

Basic Session State in Here My Am!
To demonstrate some basic handling of session state, I’ve made a few changes to Here My Am! as

given in the HereMyAm3b example in the companion content. Here we have two pieces of information

http://msdn.microsoft.com/library/windows/apps/br229774.aspx
http://code.msdn.microsoft.com/windowsapps/ApplicationModel-Sample-4be6575d
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.suspendingoperation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.suspendingoperation.aspx
http://code.msdn.microsoft.com/windowsapps/App-activating-and-ec15b168
http://code.msdn.microsoft.com/windowsapps/App-activating-and-ec15b168
http://code.msdn.microsoft.com/windowsapps/ApplicationModel-Sample-4be6575d

134

we care about: the variables lastCapture (a StorageFile with the image) and lastPosition (a set of

coordinates). We want to make sure we save these when we get suspended so that we can properly

apply those values when the app gets launched with the previous state of terminated.

With lastPosition, we can just move this into the sessionState object (prepending

app.sessionState.). If this value exists on startup, we can skip making the call to

getGeopositionAsync because we already have a location:

//If we don't have a position in sessionState, try to initialize

if (!app.sessionState.lastPosition) {

 locator.getGeopositionAsync().done(function (geocoord) {

 var position = geocoord.coordinate.point.position;

 //Save for share

 app.sessionState.lastPosition = {

 latitude: position.latitude, longitude: position..longitude };

 updatePosition();

 }, function (error) {

 console.log("Unable to get location.");

 });

}

With this change I’ve also moved the bit of code to update the map location into a separate

function that ensures a location exists in sessionState:

function updatePosition() {

 if (!app.sessionState.lastPosition) {

 return;

 }

 callFrameScript(document.frames["map"], "pinLocation",

 [app.sessionState.lastPosition.latitude, app.sessionState.lastPosition.longitude]);

}

Note also that because app.sessionState is initialized to an empty object by default, { },

lastPosition will be undefined until the geolocation call succeeds. This also works to our advantage

when rehydrating the app. Here’s what the previousExecutionState conditions look like for this:

if (args.detail.previousExecutionState !==

 activation.ApplicationExecutionState.terminated) {

 //Normal startup: initialize lastPosition through geolocation API

} else {

 //WinJS reloads the sessionState object here. So try to pin the map with the saved location

 updatePosition();

}

Because the contents of sessionState are automatically saved in WinJS.Application.-

oncheckpoint and automatically reloaded when the app is restarted with the previous state of

terminated, our previous location will exist in sessionState and updatePosition just works.

135

You can test all this by running the HereMyAm3b app, taking a suitable picture and making sure

you have a location. Then use the Suspend and Shutdown option on the Visual Studio toolbar to

terminate the app. Set a breakpoint on the updatePosition call above, and then restart the app in the

debugger. You’ll see that sessionState.lastPosition is initialized at that point.

With the last captured picture, we don’t need to save the StorageFile, just the URI: we copied the

file into our local appdata (so it persists across sessions already) and can just use the ms-appdata://

URI scheme to refer to it. When we capture an image, we just save that URI into

sessionState.imageURI (the property name is arbitrary) at the end of the promise chain inside

capturePhoto:

app.sessionState.imageURI = "ms-appdata:///local/HereMyAm/" + newFile.name;

Again, because imageURI is saved within sessionState, this value will be available when the app is

restarted after being terminated. We also need to re-initialize lastCapture with a StorageFile so

that the image is available through the Share contract. For this we can use Windows.Storage.-

StorageFile.getFileFromApplicationUriAsync. Here, then, is the code within the

previousExecutionState == terminated case during activation:

//WinJS reloads the sessionState object here: initialize from the saved image URI and location.

if (app.sessionState.imageURI) {

 var uri = new Windows.Foundation.Uri(app.sessionState.imageURI);

 Windows.Storage.StorageFile.getFileFromApplicationUriAsync(uri).done(function (file) {

 lastCapture = file;

 var img = document.getElementById("photoImg");

 scaleImageToFit(img, document.getElementById("photo"), file);

 });

}

updatePosition();

As always, the code to set img.src with a thumbnail happens inside scaleImageToFit. This call is

also inside the completed handler here because we want the image to appear only if we can also access

its StorageFile again for sharing. Otherwise the two features of the app would be out of sync.

In all of this, note again that we don’t need to explicitly reload these variables within the

terminated case because WinJS reloads sessionState automatically. If we managed our state more

directly, such as storing some variables in roaming settings within the checkpoint event, we would

reload and apply those values at this time.

Note Using ms-appdata:/// and getFileFromApplicationUriAsync (or its sibling

getFileFromPathAsync) works because the file exists in a location that we can access

programmatically by default. It also works for libraries for which we declare a capability in the manifest.

If, however, we obtain a StorageFile from the file picker, we need to save that in the

Windows.Storage.AccessCache to preserve access permissions across sessions. We’ll revisit the access

cache in Chapter 11, “The Story of State, Part 2.”

136

Page Controls and Navigation

Now we come to an aspect of Windows Store apps that very much separates them from typical web

applications but makes them very similar to AJAX-based sites.

To compare, many web applications do page-to-page navigation with <a href> hyperlinks or by

setting document.location from JavaScript. This is all well and good: oftentimes there’s little or no

state to pass between pages, and even then there are well-established mechanisms for doing so, such

as HTML5 sessionStorage and localStorage (which work just fine in Store apps, by the way).

This type of navigation presents a few problems for Store apps, however. For one, navigating to a

new page means a wholly new script context—all the JavaScript variables from your previous page will

be lost. Sure, you can pass state between those pages, but managing this across an entire app likely

hurts performance and can quickly become your least favorite programming activity. It’s better and

easier, in other words, for client apps to maintain a consistent in-memory state across pages and also

have each individual page be able to load what script it uniquely needs, as needed.

Also, the nature of the HTML/CSS rendering engine is such that a blank screen appears when

navigating a hyperlink. Users of web applications are accustomed to waiting a bit for a browser to

acquire a new page (I’ve found many things to do with an extra 15 seconds!), but this isn’t an

appropriate user experience for a fast and fluid Windows Store app. Furthermore, such a transition

doesn’t allow animation of various elements on and off the screen, which can help provide a sense of

continuity between pages if that fits with your design.

So, although you can use direct links, Store apps typically implement “pages” by dynamically

replacing sections of the DOM within the context of a single page like default.html, akin to how

“single-page” web applications work. By doing so, the script context is always preserved and individual

elements or groups of elements can be transitioned however you like. In some cases, it even makes

sense to simply show and hide pages so that you can switch back and forth quickly. Let’s look at the

strategies and tools for accomplishing these goals.

WinJS Tools for Pages and Page Navigation
Windows itself, and the app host, provides no mechanism for dealing with pages—from the system’s

perspective, this is merely an implementation detail for apps to worry about. Fortunately, the engineers

who created WinJS and the templates in Visual Studio and Blend worried about this a lot! As a result,

they’ve provided some marvelous tools for managing bits and pieces of HTML+CSS+JS in the context

of a single container page:

 WinJS.UI.Fragments contains a low-level “fragment-loading” API, the use of which is

necessary only when you want close control over the process (such as which parts of the HTML

fragment get which parent). We won’t cover it in this book; see the documentation and the

Loading HTML fragments sample.

http://msdn.microsoft.com/library/windows/apps/br229781.aspx
http://code.msdn.microsoft.com/windowsapps/Fragments-91f66b07

137

 WinJS.UI.Pages is a higher-level API intended for general use and is employed by the

templates. Think of this as a generic wrapper around the fragment loader that lets you easily

define a “page control”—simply an arbitrary unit of HTML, CSS, and JS—that you can easily pull

into the context of another page as you do other controls.20 They are, in fact, implemented like

other controls in WinJS (as we’ll see in Chapter 5), so you can declare them in markup,

instantiate them with WinJS.UI.process[All], use as many of them within a single host page

as you like, and even nest them.

These APIs provide only the means to load and unload individual “pages”—they pull HTML in from

other files (along with referenced CSS and JS) and attach the contents to an element in the DOM. That’s

it. As such they can be used for any number of purposes, such as a custom control model, depending

on how you like to structure your code. See scenario 1 of the HTML Page controls sample.

Page controls and fragments are not gospel To be clear, there’s absolutely no requirement that you

use the WinJS mechanisms described here in a Windows Store app. These are simply convenient tools

for common coding patterns. In the end, it’s just about making the right elements and content appear

in the DOM for your user experience, and you can implement that however you like.

Assuming that you’ll want to save yourself loads of trouble and use WinJS for page-to-page

navigation, you’ll need two other pieces. The first is something to manage a navigation stack, and the

second is something to hook navigation events to the loading mechanism of WinJS.UI.Pages.

For the first piece, you can turn to WinJS.Navigation, which supplies, through about 150 lines of

CS101-level code, a basic navigation stack. This is all it does. The stack itself is just a list of URIs on top

of which WinJS.Navigation exposes location, history, canGoBack, and canGoForward properties,

along with one called state in which you can store any app-defined object you need. The stack

(maintained in history) is manipulated through the forward, back, and navigate methods, and the

WinJS.Navigation object raises a few events—beforenavigate, navigating, and navigated—to

anyone who wants to listen (through addEventListener).21

Tip In the WinJS.Navigation.history.current object there’s an initialPlaceholder flag that

answers the question, "Can WinJS.Navigation.navigate go to a new page without adding an entry

in the history?" If you set this flag to true, subsequent navigations won’t be stored in the nav stack. Be

sure to set it back to false to reenable the stack.

What this means is that WinJS.Navigation by itself doesn’t really do anything unless some other

piece of code is listening to those events. That is, for the second piece of the naviga tion puzzle we need

a linkage between WinJS.Navigation and WinJS.UI.Pages, such that a navigation event causes the

20 If you are at all familiar with user controls in XAML, this is the same idea.
21 The beforenavigate event can be used to cancel the navigation, if necessary. Either call args.preventDefault (args

being the event object), return true, or call args.setPromise where the promise is fulfilled with true.

http://msdn.microsoft.com/library/windows/apps/hh770584.aspx
http://code.msdn.microsoft.com/windowsapps/Page-Controls-sample-568b10b4
http://msdn.microsoft.com/library/windows/apps/br229778.aspx

138

target page contents to be added to the DOM and the current page contents to be removed.

The basic process is as follows, and it’s also shown in Figure 3-4:

1. Create a new div with the appropriate size (typically the whole app window).

2. Call WinJS.UI.Pages.render to load the target HTML into that element (along with any

script that the page uniquely references). This is an async function that returns a promise.

We’ll take a look at what render does later on.

3. When that loading (that is, rendering) is complete, attach the new element from step 1 to

the DOM.

4. Remove the previous page’s root element from the DOM. If you do this before yielding the

UI thread, you won’t ever see both pages on-screen together.

FIGURE 3-4 Performing page navigation in the context of a single host (typically default.html) by replacing

appending the content from page2.html and removing that from page1.html. Typically, each page occupies the

whole display area, but page controls can just as easily be used for smaller areas.

As with page navigation in general, you’re again free to do whatever you want here, and in the early

developer previews of Windows 8 that’s all that you could do! But as developers built the first apps for

the Windows Store, we discovered that most people ended up writing just about the same boilerplate

code over and over. Seeing this pattern, two standard pieces of code have emerged. One is the WinJS

back button control, WinJS.UI.BackButton, which listens for navigation events to enable itself when

appropriate. The other is a piece is called the PageControlNavigator and is magnanimously supplied

by the Visual Studio templates. Hooray!

139

Because the PageControlNavigator is just a piece of template-supplied code and not part of

WinJS, it’s entirely under your control: you can tweak, hack, or lobotomize it however you want.22 In

any case, because it’s likely that you’ll often use the PageControlNavigator (and the back button) in

your own apps, let’s look at how it all works in the context of the Navigation App template.

Note Additional samples that demonstrate basic page controls and navigation, along with handling

session state, can be found in the following SDK samples: App activate and suspend using WinJS (using

the session state object in a page control), App activated, resume and suspend (described earlier;

shows using the suspending deferral and restarting after termination), and Navigation and navigation

history (showing page navigation along with tracking and manipulating the navigation history). In fact,

just about every sample uses page controls to switch between different scenarios, so you have no

shortage of examples to draw from!

The Navigation App Template, PageControl Structure, and

PageControlNavigator
Taking one step beyond the Blank App template, the Navigation App template demonstrates the basic

use of page controls. (The more complex templates build navigation out further.) If you crea te a new

project with this template in Visual Studio or Blend, here’s what you’ll get:

 default.html Contains a single container div with a PageControlNavigator control pointing

to pages/home/home.html as the app’s home page.

 js/default.js Contains basic activation and state checkpoint code for the app.

 css/default.css Contains global styles.

 pages/home Contains a page control for the “home page” contents, composed of

home.html, home.js, and home.css. Every page control typically has its own markup, script,

and style files. Note that CSS styles for page controls are cumulative as you navigate from page

to page. See “Page-Specific Styling” later in this chapter.

 js/navigator.js Contains the implementation of the PageControlNavigator class.

To build upon this structure, you can add additional pages to the app with the page control item

template in Visual Studio. For each page I recommend first creating a specific folder under pages,

similar to home in the default project structure. Then right-click that folder, select Add > New Item, and

select Page Control. This will create suitably named .html, .js. and .css files in that folder.

Now let’s look at the body of default.html (omitting the standard header and a commented-out

AppBar control):

22 The Quickstart: using single-page navigation topic also shows a clever way to hijack HTML <a href> hyperlinks and hook
them into WinJS.Navigation.navigate. This can be a useful tool, especially if you’re importing code from a web app or

otherwise want to create page links in declarative markup.

http://code.msdn.microsoft.com/windowsapps/App-activation-events-and-d39c53d5
http://code.msdn.microsoft.com/windowsapps/App-activating-and-ec15b168
http://code.msdn.microsoft.com/windowsapps/Navigation-sample-cf242faa
http://code.msdn.microsoft.com/windowsapps/Navigation-sample-cf242faa
http://msdn.microsoft.com/en-us/library/windows/apps/hh452768.aspx

140

<body>

 <div id="contenthost" data-win-control="Application.PageControlNavigator"

 data-win-options="{home: '/pages/home/home.html'}"></div>

</body>

All we have here is a single container div named contenthost (it can be whatever you want), in

which we declare the Application.PageControlNavigator as a custom WinJS control. (This is the

purpose of data-win-control and data-win-options, as we’ll see in Chapter 5.) With this we specify

a single option to identify the first page control it should load (/pages/home/home.html). The

PageControlNavigator will be instantiated within our activated handler’s call to

WinJS.UI.processAll.

Within home.html we have the basic markup for a page control. Below is what the Navigation App

template provides as a home page by default, and it’s pretty much what you get whenever you add a

new page control from the item template (with different filenames, of course):

<!DOCTYPE html>

<html>

<head>

 <!--... typical HTML header and WinJS references omitted -->

 <link href="/css/default.css" rel="stylesheet">

 <link href="/pages/home/home.css" rel="stylesheet">

 <script src="/pages/home/home.js"></script>

</head>

<body>

 <!-- The content that will be loaded and displayed. -->

 <div class="fragment homepage">

 <header aria-label="Header content" role="banner">

 <button data-win-control="WinJS.UI.BackButton"></button>

 <h1 class="titlearea win-type-ellipsis">

 Welcome to NavApp!

 </h1>

 </header>

 <section aria-label="Main content" role="main">

 <p>Content goes here.</p>

 </section>

 </div>

</body>

</html>

The div with fragment and homepage CSS classes, along with the header, creates a page with a

standard silhouette and a WinJS.UI.BackButton control that automatically wires up keyboard, mouse,

and touch events and again keeps itself hidden when there’s nothing to navigate back to. (Isn’t that

considerate of it!) All you need to do is customize the text within the h1 element and the contents

within section, or just replace the whole smash with the markup you want. (By the way, even though

the WinJS files are referenced in each page control, they aren’t actually reloaded; they exist here to

allow you to edit a standalone page control in Blend.)

141

Tip The leading / on what looks like relative paths to CSS and JavaScript files actually creates an

absolute reference from the package root. If you omit that /, there are many times—especially with

path controls—when the relative path is not what you’d expect, and the app doesn’t work. In general,

unless you really know you want a relative path, use the leading /.

The definition of the actual page control is in pages/home/home.js; by default, the templates just

provide the bare minimum:

(function () {

 "use strict";

 WinJS.UI.Pages.define("/pages/home/home.html", {

 // This function is called whenever a user navigates to this page. It

 // populates the page elements with the app's data.

 ready: function (element, options) {

 // TODO: Initialize the page here.

 }

 });

})();

The most important part is WinJS.UI.Pages.define, which associates a project-based URI (the

page control identifier, always starting with a /, meaning the project root), with an object containing

the page control’s methods. Note that the nature of define allows you to define different members of

the page in multiple places: multiple calls to WinJS.UI.Pages.define with the same URI will add

members to an existing definition and replace those that already exist.

Tip Be mindful that if you have a typo in the URI that creates a mismatch between the URI in define

and the actual path to the page, the page won’t load but there won’t be an exception or other visible

error. You’ll be left wondering what’s going wrong! So, if your page isn’t loading like you think it

should, carefully examine the URI and the file paths to make sure they match exactly.

For a page created with the Page Control item template, you get a couple more methods in the

structure (some comments omitted; in this example page2 was created in the pages/page2 folder):

(function () {

 "use strict";

 WinJS.UI.Pages.define("/pages/page2/page2.html", {

 ready: function (element, options) {

 },

 unload: function () {

 // TODO: Respond to navigations away from this page.

 }

 updateLayout: function (element) {

 // TODO: Respond to changes in layout.

 },

 });

})();

142

A page control is essentially just an object with some standard methods. You can instantiate the

control from JavaScript with new by first obtaining its constructor function from WinJS.UI.Pages.-

get(<page_uri>) and then calling that constructor with the parent element and an object containing

its options. This operation already encapsulated within WinJS.UI.Pages.render, as we’ll see shortly.

Although a basic structure for the ready method is provided by the templates, WinJS.UI.Pages

and the PageControlNavigator will make use of the following if they are available, which are

technically the members of an interface called WinJS.UI.IPageControlMembers:

PageControl Method When Called
init Called before elements from the page control have been created.

processed Called after WinJS.UI.processAll is complete (that is, controls in the page have been instantiated,

which is done automatically), but before page content itself has been added to the DOM. Once you

return from this method—or a promise you return is fulfilled—WinJS animates the new page into

view with WinJS.UI.Animation.enterPage, so all initialization of properties and data-binding

should occur within this method; it’s also a good place to load string resources.

ready Called after the page have been added to the DOM (and before the unload of the previous page;

note that in WinJS 1.0 this was called after the previous page’s unload).

error Called if an error occurs in loading or rendering the page.

unload Called when navigation has left the page. By default, WinJS automatically disposes of controls on a

page when that page is unloaded; see “Sidebar: The Ubiquitous dispose Method” in Chapter 5.

updateLayout Called in response to the window.onresize event, which signals changes between various view

states.

Note that WinJS.UI.Pages calls the first four methods; the unload and updateLayout methods, on

the other hand, are used only by the PageControlNavigator.

Of all of these, the ready method is the most common one to implement. It’s where you’ll do

further initialization of controls (e.g., populate lists), wire up other page-specific event handlers, and so

on. Any processing that you want to do before the page content is added to the DOM should happen

in processed, and note that if you return a promise from processed, WinJS will wait until that promise

is fulfilled before starting the enterpage animation.

The unload method is also where you’ll want to remove event listeners for WinRT objects, as

described earlier in this chapter in “WinRT Events and removeEventListener.” The updateLayout

method is important when you need to adapt your page layout to a new view, as we’ve been doing in

the Here My Am! app.

As for the PageControlNavigator itself, which I’ll just refer to as the “navigator,” the code in

js/navigator.js shows how it’s defined and how it wires up navigation events in its constructor:

(function () {

 "use strict";

 // [some bits omitted]

 var nav = WinJS.Navigation;

 WinJS.Namespace.define("Application", {

 PageControlNavigator: WinJS.Class.define(

http://msdn.microsoft.com/library/windows/apps/jj126146.aspx
http://msdn.microsoft.com/library/windows/apps/br212672.aspx

143

 // Define the constructor function for the PageControlNavigator.

 function PageControlNavigator (element, options) {

 this.element = element || document.createElement("div");

 this.element.appendChild(this._createPageElement());

 this.home = options.home;

 // ...

 // Adding event listeners; addRemovableEventListener is a helper function

 addRemovableEventListener(nav, 'navigating',

 this._navigating.bind(this), false);

 addRemovableEventListener(nav, 'navigated',

 this._navigated.bind(this), false);

 // ...

 }, {

 // ...

First we see the definition of the Application namespace as a container for the PageControl-

Navigator class (see “Sidebar: WinJS.Namespace.define and WinJS.Class.define” later). Its constructor

receives the element that contains it (the contenthost div in default.html), or it creates a new one if

none is given. The constructor also receives an options object that is the result of parsing the data-

win-options string of that element. The navigator then appends the page control’s contents to this

root element, adds listeners for the WinJS.Navigation.onnavigated event, among others.23

The navigator then waits for someone to call WinJS.Navigation.navigate, which happens in the

activated handler of js/default.js, to navigate to either the home page or the last page viewed if

previous session state was reloaded:

if (app.sessionState.history) {

 nav.history = app.sessionState.history;

}

args.setPromise(WinJS.UI.processAll().then(function () {

 if (nav.location) {

 nav.history.current.initialPlaceholder = true; // Don’t add first page to nav stack

 return nav.navigate(nav.location, nav.state);

 } else {

 return nav.navigate(Application.navigator.home);

 }

}));

Notice how this code is using the WinJS sessionState object exactly as described earlier in this

chapter, taking advantage again of sessionState being automatically reloaded when appropriate.

When a navigation happens, the navigator’s _navigating handler is invoked, which in turn calls

WinJS.UI.Pages.render to do the loading, the contents of which are then appended as child

23 If the use of .bind(this) is unfamiliar to you, please see my blog post, The purpose of this<event>.bind(this).

http://kraigbrockschmidt.com/blog/?p=32

144

elements to the navigator control:

_navigating: function (args) {

 var newElement = this._createPageElement();

 var parentedComplete;

 var parented = new WinJS.Promise(function (c) { parentedComplete = c; });

 this._lastNavigationPromise.cancel();

 this._lastNavigationPromise = WinJS.Promise.timeout().then(function () {

 return WinJS.UI.Pages.render(args.detail.location, newElement,

 args.detail.state, parented);

 }).then(function parentElement(control) {

 var oldElement = this.pageElement;

 if (oldElement.winControl && oldElement.winControl.unload) {

 oldElement.winControl.unload();

 }

 WinJS.Utilities.disposeSubTree(this._element);

 this._element.appendChild(newElement);

 this._element.removeChild(oldElement);

 oldElement.innerText = "";

 parentedComplete();

 }.bind(this));

 args.detail.setPromise(this._lastNavigationPromise);

},

If you look past all the business with promises that you see here (which essentially makes sure the

rendering and parenting process is both asynchronous and yields the UI thread), you can see how the

navigator is handling the core process shown earlier in Figure 3-4. It first creates a new page element.

Then it calls the previous page’s unload event, after which it asynchronously loads the new page’s

content. Once that’s complete, the new page’s content is added to the DOM and the old page’s

contents are removed. Note that the navigator uses the WinJS disposal helper, WinJS.Utilities.-

disposeSubTree to make sure that we fully clean up the old page. This disposal pattern invokes the

navigator’s dispose method (also in navigator.js), which makes sure to release any resources held by

the page and any controls within it, including event listeners. (More on this in Chapter 5.)

Tip In a page control’s JavaScript code you can use this.element.querySelector rather than

document.querySelector if you want to look only in the page control’s contents and have no need to

traverse the entire DOM. Because this.element is just a node, however, it does not have other

traversal methods like getElementById (which, by the way, operates off an optimized lookup table

and actually doesn’t traverse anything).

And that, my friends, is how it works! In addition to the HTML Page controls sample, and to show a

concrete example of doing this in a real app, the code in the HereMyAm3c sample has been converted

to use this model for its single home page. To make this conversion, I started with a new project by

using the Navigation App template to get the page navigation structures set up. Then I copied or

imported the relevant code and resources from HereMyAm3b, primarily into pages/home/home.html,

http://msdn.microsoft.com/library/windows/apps/dn301980.aspx
http://msdn.microsoft.com/library/windows/apps/dn301980.aspx
http://code.msdn.microsoft.com/windowsapps/Page-Controls-sample-568b10b4

145

home.js, and home.css. And remember how I said that you could open a page control directly in Blend

(which is why pages have WinJS references)? As an exercise, open the HereMyAm3c project in Blend.

You’ll first see that everything shows up in default.html, but you can also open home.html by itself and

edit just that page.

Note To give an example of calling removeEventListener for the WinRT datarequested event, I

make this call in the unload method of pages/home/home.js.

Be aware that WinJS calls WinJS.UI.processAll in the process of loading a page control (before

calling the processed method), so we don’t need to concern ourselves with that detail when using

WinJS controls in a page. On the other hand, reloading state when previousExecutionState ==

terminated needs some attention. Because this is picked up in the WinJS.Application.onactivated

event before any page controls are loaded and before the PageControlNavigator is even instantiated,

we need to remember that condition so that the home page’s ready method can later initialize itself

accordingly from app.sessionState values. For this I simply write another flag into

app.sessionState called initFromState (true if previousExecutionState is terminated, false

otherwise.) The page initialization code, now in the page’s ready method, checks this flag to determine

whether to reload session state.

The other small change I made to HereMyAm3c is to use the updateLayout method in the page

control rather than attaching my own handler to window.onresize. With this I also needed to add a

height: 100%; style to the #mainContent rule in home.css. In previous iterations of this example, the

mainContent element was a direct child of the body element and it inherited the full screen height

automatically. Now, however, it’s a child of the contentHost, so the height doesn’t automatically pass

through and we need to set it to 100% explicitly.

Sidebar: WinJS.Namespace.define and WinJS.Class.define

WinJS.Namespace.define provides a shortcut for the JavaScript namespace pattern. This helps

to minimize pollution of the global namespace as each app-defined namespace is just a single

object in the global namespace but can provide access to any number of other objects, functions,

and so on. This is used extensively in WinJS and is recommended for apps as well, where you

define everything you need in a module—that is, within a (function() { ... })() block—and

then export selective variables or functions through a namespace. In short, use a namespace

anytime you’re tempted to add any global objects or functions!

Here’s the syntax: var ns = WinJS.Namespace.define(<name>, <members>) where <name>

is a string (dots are OK) and <members> is any object contained in { }’s. Also, WinJS.Namespace.-

defineWithParent(<parent>, <name>, <members>) defines one within the <parent>

namespace.

If you call WinJS.Namespace.define for the same <name> multiple times, the <members> are

http://msdn.microsoft.com/library/windows/apps/br212667.aspx

146

combined. Where collisions are concerned, the most recently added members win. For example:

WinJS.Namespace.define("MyNamespace", { x: 10, y: 10 });

WinJS.Namespace.define("MyNamespace", { x: 20, z: 10 });

//MyNamespace == { x: 20, y: 10, z: 10}

WinJS.Class.define is, for its part, a shortcut for the object pattern, defining a constructor

so that objects can be instantiated with new.

Syntax: var className = WinJS.Class.define(<constructor>, <instanceMembers>,

<staticMembers>) where <constructor> is a function, <instanceMembers> is an object with

the class’s properties and methods, and <staticMembers> is an object with properties and

methods that can be directly accessed via <className>.<member> (without using new).

Variants: WinJS.Class.derive(<baseClass>, ...) creates a subclass (... is the same arg

list as with define) using prototypal inheritance, and WinJS.Class.mix(<constructor>,

[<classes>]) defines a class that combines the instance (but not static) members of one or

more other <classes> and initializes the object with <constructor>.

Finally, note that because class definitions just generate an object, WinJS.Class.define is

typically used inside a module with the resulting object exported to the rest of the app as a

namespace member. Then you can use new <namespace>.<class> anywhere in the app.

For more details on classes in WinJS, see Appendix B.

Sidebar: Helping Out IntelliSense

If you start poking around in the WinJS source code—for example, to see how WinJS.UI.Pages

is implemented—you’ll encounter certain structures within code comments, often starting with a

triple slash, ///. These are used by Visual Studio and Blend to provide rich IntelliSense within the

code editors. You’ll see, for example, /// <reference path…/> comments, which create a

relationship between your current script file and other scripts to resolve externally defined

functions and variables. This is explained on the JavaScript IntelliSense page in the

documentation. For your own code, especially with namespaces and classes that you will use

from other parts of your app, use these comment structures to describe your interfaces to

IntelliSense. For details, see Extending JavaScript IntelliSense, and again look around the WinJS

JavaScript files for many examples.

The Navigation Process and Navigation Styles
Having seen how page controls, WinJS.UI.Pages, WinJS.Navigation, and the PageControl-

Navigator all relate, it’s straightforward to see how to navigate between multiple pages within the

context of a single HTML container (e.g., default.html). With the PageControlNavigator instantiated

and a page control defined via WinJS.UI.Pages, simply call WinJS.Navigation.navigate with the

URI of that page control (its identifier). This loads that page’s contents into a child element inside the

http://msdn.microsoft.com/library/windows/apps/br229813.aspx
http://msdn.microsoft.com/library/bb385682.aspx
http://msdn.microsoft.com/library/hh874692.aspx

147

PageControlNavigator, unloading any previous page. That becomes page visible, thereby

“navigating” to it so far as the user is concerned. You can also use (like the WinJS BackButton does) the

other methods of WinJS.Navigation to move forward and back in the nav stack, which results in page

contents being added and removed. The WinJS.Navigation.canGoBack and canGoForward

properties allow you to enable/disable navigation controls as needed. Just remember that all the while,

you’ll still be in the overall context of your host page where you created the PageControlNavigator

control.

As an example, create a new project using the Grid App template and look at these particular areas:

 pages/groupedItems/groupedItems is the home or “hub” page. It contains a ListView control

(see Chapter 6, “Data Binding, Templates, and Collections”) with a bunch of default items.

 Tapping a group header in the list navigates to section page (pages/groupDetail). This is done

in pages/groupedItems/groupedItems.html, where an inline onclick handler event navigates

to pages/groupDetail/groupDetail.html with an argument identifying the specific group to

display. That argument comes into the ready function of pages/groupDetail/groupDetail.js.

 Tapping an item on the hub page goes to detail page (pages/itemDetail). The itemInvoked

handler for the items, the _itemInvoked function in pages/groupedItems/groupedItem.js, calls

WinJS.Navigation.navigate("/pages/itemDetail/itemDetail.html") with an argument

identifying the specific item to display. As with groups, that argument comes into the ready

function of pages/itemDetail/itemDetail.js.

 Tapping an item in the section page also goes to the details page through the same

mechanism—see the _itemInvoked function in pages/groupDetail/groupDetail.js.

 The back buttons on all pages wire themselves into WinJS.Navigation.back for keyboard,

mouse, and touch events.

The Split App template works similarly, where each list item on pages/items is wired to navigate to

pages/split when invoked. Same with the Hub App template that has a hub page using the

WinJS.UI.Hub control that we’ll meet in Chapter 8.

The Grid App and Hub App templates also serve as examples of what‘s called the Hub-Section-Item

navigation style (it’s most explicitly so in the Hub App). Here the app’s home page is the hub where the

user can explore the full extent of the app. Tapping a group header navigates to a section, the second

level of organization where only items from that group are displayed. Tapping an item (in the hub or in

the section) navigates to a details page for that item. You can, of course, implement this navigation

style however you like; the Grid App template uses page controls, WinJS.Navigation, and the

PageControlNavigator. (Semantic zoom, as we’ll see in Chapter 7, “Collection Controls,” is also

supported as a navigation tool to switch between hubs and sections.)

An alternate navigation choice is the Flat style, which simply has one level of hierarchy. Here,

navigation happens to any given page at any time through a navigation bar (swiped in along with the

app bar, as we’ll see in Chapter 9). When using page controls and PageControlNavigator, navigation

148

commands or buttons can just invoke WinJS.Naviation.navigate for this purpose. Note that in this

style, there typically is no back button: users are expected to always swipe in the navigation bar from

the top and go directly to the desired page.

These styles, along with many other UI aspects of navigation, can be found on Navigation design for

Windows Store apps. This is an essential topic for designers.

Sidebar: Initial Login and In-App Licensing Agreements (EULA) Pages

Some apps might require either a login or acceptance of a license agreement to do anything,

and thus it’s appropriate that such pages are the first to appear in an app after the splash screen.

In these cases, if the user does not accept a license or doesn’t provide a login, the app should

display a message describing the necessity of doing so, but it should always leave it to the user

to close the app if desired. Do not close the app automatically. (This is a Store certification

requirement.)

Typically, such pages appear only the first time the app is run. If the user provides a valid

login, or if you obtain an access token through the Web Authentication Broker (see Chapter 4),

those credentials/token can be saved for later use via the Windows.Security.Credentials.-

PasswordVault API. If the user accepts a EULA, that fact should be saved in appdata and

reloaded anytime the app needs to check. These settings (login and acceptance of a license)

should then always be accessible through the app’s Settings charm. Legal notices, by the way, as

well as license agreements, should always be accessible through Settings as well. See Guidelines

and checklist for login controls.

Optimizing Page Switching: Show-and-Hide

Even with page controls, there is still a lot going on when navigating from page to page: one set of

elements is removed from the DOM, and another is added in. Depending on the pages involved, this

can be an expensive operation. For example, if you have a page that displays a list of hundreds or

thousands of items, where tapping any item goes to a details page (as with the Grid App template),

hitting the back button from a detail page will require complete reconstruction of the list (or at least its

visible parts if the list is virtualized, which could still take a long time).

Showing progress indicators can help alleviate the user’s anxiety, of course, but users are notoriously

impatient and will likely want to quickly switch between a list of items and item details. (You’ve

probably already encountered apps that seem to show progress indicators all the time for just about

everything—how do they make you feel?) Indeed, the recommendation is that switching between fully

interactive pages takes a quarter second or less, if possible, and no more than half a second. In some

cases, completely swapping out chunks of the DOM with page controls will just become too time-

consuming. (You could use a split master-detail view, of course, but that means splitting the available

screen real estate.)

http://msdn.microsoft.com/library/windows/apps/hh761500.aspx
http://msdn.microsoft.com/library/windows/apps/hh761500.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.passwordvault.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.passwordvault.aspx
http://msdn.microsoft.com/library/windows/apps/hh965453.aspx
http://msdn.microsoft.com/library/windows/apps/hh965453.aspx

149

A good alternative is to actually keep the list/master page fully loaded the whole time. Instead of

navigating to the item details page in the way we’ve seen, simply render that details page (using

WinJS.UI.Pages.render directly) into another div that occupies the whole screen and overlays the

list (similar to what we do with an extended splash screen), and then make that div visible without

removing the list page from the DOM. When you dismiss the details page, just hide its div. This way

you get the same effect as navigating between pages but the whole process is much quicker. You can

also apply WinJS animations like enterContent and exitContent to make the transition more fluid.

If necessary, you can clear out the details div by just setting its innerHTML to "". However, if each

details page has the same structure for every item, you can leave it entirely intact. When you “navigate”

to the next details page, you would go through and refresh each element’s data and properties for the

new item before making that page visible. This could be significantly faster than rebuilding the details

page all over again.

Note that because the PageControlNavigator implementation in navigator.js is provided by the

templates and becomes part of your app, you can modify it however you like to handle these kinds of

optimizations in a more structured manner that’s transparent to the rest of your code.

Page-Specific Styling
When creating an app that uses page controls, you’ll end up with each page having its own .css file in

which you place page-specific styles. What’s very important to understand here, though, is that while

each page’s HTML elements are dynamically added to and removed from the DOM, any and all CSS

that is loaded for page controls is cumulative to the app as a whole. That is, styles behave like script and

are preserved across page “navigations.” This can be a source of confusion and frustration, so it’s

essential to understand what’s happening here and how to work with it.

Let's say the app's root page is default.html and its global styles are in css/default.css. It then has

several page controls defined in pages/page1 (page1.html. page1.js, page1.css), pages/page2

(page2.html. page2.js, page2.css), and pages/page1 (page3.html. page3.js, page3.css). Let's also say that

page1 is the “home” page that’s loaded at startup. This means that the styles in default.css and

page1.css have been loaded when the app first appears.

Now the user navigates to page2. This causes the contents of page1.html to be dumped from the

DOM, but its styles remain in the stylesheet. So when page2 is loaded, page2.css gets added to the

overall stylesheet as well, and any styles in page2.css that have identical selectors to page1.css will

overwrite those in page1.css. And when the user navigates to page3 the same thing happens again: the

styles in page3.css are added in and overwrite any that already exist. But so far we haven’t seen any

unexpected effect of this.

Now, say the user navigates back to page1. Because the apphost's rendering engine has already

loaded page1.css into the stylesheet, page1.css won't be loaded again. This means that any styles that

were overwritten by other pages' stylesheets will not be reset to those in page1.css—basically you get

whichever ones were loaded most recently. As a result, you can see some mix of the styles in page2.css

http://msdn.microsoft.com/library/windows/apps/Hh701582.aspx
http://msdn.microsoft.com/library/windows/apps/hh701585.aspx

150

and page3.css being applied to elements in page1.24

There are two ways to handle CSS files to avoid these problems. The first way is to take steps to

avoid colliding selectors: use unique selectors for each page or can scope your styles to each page

specifically. For the latter, wrap each page’s contents in a top-level div with a unique class (as in <div

class="page1">) so that you can scope every rule in page1.css with the page name. For example:

.page1 p {

 font-weight: bold;

}

Such a strategy can also be used to define stylesheets that are shared between pages, as with

implementing style themes. If you scope the theme styles with a theme class, you can include that class

in the top-level div to apply the theme.

A similar case arises if you want to use the ui-light.css and ui-dark.css WinJS stylesheets in different

pages of the same app. Here, whichever one is loaded second will define the global styles such that

subsequent pages that refer to ui-light.css might appear with the dark styles.

Fortunately, WinJS already scopes those styles that differ between the two files: those in ui-light.css

are scoped with a CSS class win-ui-light and those in ui-dark.css are scoped with win-ui-dark. This

means you can just refer to whichever stylesheet you use most often in your .html files and then add

either win-ui-light or win-ui-dark to those elements that you need to style differently. When you

add either class, note that the style will apply to that element and all its children. For a simple

demonstration of an app with one dark page (as the default) and one light page, see the PageStyling

example in the companion content.

The other way of avoiding collisions is to specifically unload and reload CSS files by modifying

<link> tags in the page header. You can either remove one <link> tag and add a different one,

toggle the disabled attribute for a tag between true and false, or change the href attribute of an

existing link. These methods are demonstrated for styling an iframe in the CSS styling and branding

your app sample, which swaps out and enables/disables both WinJS and app-specific stylesheets.

Another demonstration for switching between the WinJS stylesheets is in scenario 1 of the HTML

NavBar control sample that we’ll see more of in Chapter 9 (js/1-CreateNavBar.js):

function switchStyle() {

 var linkEl = document.querySelector('link');

 if (linkEl.getAttribute('href') === "//Microsoft.WinJS.2.0 /css/ui-light.css") {

 linkEl.setAttribute('href', "//Microsoft.WinJS.2.0 /css/ui-dark.css");

 } else {

 linkEl.setAttribute('href', "//Microsoft.WinJS.2.0 /css/ui-light.css");

 }

}

24 The same thing happens with .js files, by the way, which are not reloaded if they've been loaded already. To avoid
collisions in JavaScript, you either have to be careful to not duplicate variable names or to use namespaces to isolate

them from one another.

http://code.msdn.microsoft.com/windowsapps/App-Branding-sample-9f87b7a2
http://code.msdn.microsoft.com/windowsapps/App-Branding-sample-9f87b7a2
http://code.msdn.microsoft.com/windowsapps/HTML-NavBar-control-sample-4472d92a
http://code.msdn.microsoft.com/windowsapps/HTML-NavBar-control-sample-4472d92a

151

The downside of this approach is that every switch means reloading and reparsing the CSS files and

a corresponding re-rendering of the page. This isn’t much of an issue during page navigation, but

given the size of the WinJS files I recommend using it only for your own page-specific stylesheets and

using the win-ui-light and win-ui-dark classes to toggle the WinJS styles.

Async Operations: Be True to Your Promises

Even though we’ve just got our first apps going, we’ve already seen a lot to do with async operations

and promises. We’ve seen their basic usage, and in the “Moving the Captured Image to AppData (or

the Pictures Library)” section of Chapter 2, we saw how to combine multiple async operations into a

sequential chain. At other times you might want to combine multiple parallel async operations into a

single promise. Indeed, as you progress through this book you’ll find that async APIs, and thus

promises, seem to pop up as often as dandelions in a lawn (without being a noxious weed, of course)!

Indeed, the implementation of the PageControlNavigator._navigating method that we saw earlier

has a few characteristics that are worth exploring.

To reiterate a very important point, promises are simply how async operations in WinRT are

projected into JavaScript, which matches how WinJS and other JavaScript libraries typically handle

asynchronous work. And because you’ll be using all sorts of async APIs in your development work,

you’re going to be using promises quite frequently and will want to understand them deeply.

Note There are a number of different specifications for promises. The one presently used in WinJS and

the WinRT API is known as Common JS/Promises A. Promises in jQuery also follow this convention and

are thus interoperable with WinJS promises.

The subject of promises gets rather involved, however, so instead of burdening you with the details

in the main flow of this chapter, you’ll find a full treatment of promises in Appendix A, “Demystifying

Promises.” Here I want to focus on the most essential aspects of promises and async operations that

we’ll encounter throughout the rest of this book, and we’ll take a quick look at the features of the

WinJS.Promise class. Examples of the concepts can be found in the WinJS Promise sample.

Using Promises
The first thing to understand about a promise is that it’s really nothing more than a code construct or a

calling convention. As such, promises have no inherent relationship to async operations—they just so

happen to be very useful in that regard! A promise is simply an object that represents a value that

might be available at some point in the future (or might be available already). It’s just l ike we use the

term in human relationships. If I say to you, “I promise to deliver a dozen donuts,” it doesn’t matter

when and how I get them (or even whether I have them already in hand), it only matters that I deliver

them at some point in the future.

A promise, then, implies a relationship between two people or, to be more generic, two agents, as I

http://wiki.commonjs.org/wiki/Promises/A
http://code.msdn.microsoft.com/windowsapps/Promise-e1571015

152

call them. There is the originator who makes the promise—that is, the one who has some goods to

deliver—and the consumer or recipient of that promise, who will also be the later recipient of the

goods. In this relationship, the originator creates a promise in response to some request from the

consumer (typically an API call). The consumer can then do whatever it wants with both the promise

itself and whatever goods the promise delivers. This includes sharing the promise with other interested

consumers—the promise will deliver its goods to each of them.

The way a consumer listens for delivery is by subscribing a completed handler through the promise’s

then or done methods. (We’ll discuss the differences later.) The promise invokes this handler when it

has obtained its results. In the meantime, the consumer can do other work, which is exactly why

promises are used with async operations. It’s like the difference between waiting in line at a restaurant’s

drive-through for a potentially very long time (the synchronous model) and calling out for pizza

delivery (the asynchronous model): the latter gives you the freedom to do other things.

Of course, if the promised value is already available, there’s no need to wait: it will be delivered

synchronously to the completed handler as soon as then/done is called.

Similarly, problems can arise that make it impossible to fulfill the promise. In this case the promise

will invoke any error handlers given to then/done as the second argument. Those handlers receive an

error object containing name and message properties with more details, and after this point the

promise is in what’s called the error state. This means that any subsequent calls to then/done will

immediately (and synchronously) invoke any given error handlers.

A consumer can also cancel a promise if it decides it no longer needs the results. A promise has a

cancel method for this purpose, and calling it both halts any underlying async operation represented

by the promise (however complex it might be) and puts the promise into the error state.

Some promises—which is to say, some async operations—also support the ability to report

intermediate results to any progress handlers given to then/done as the third argument. Check the

documentation for the particular API in question.25

Finally, two static methods on the WinJS.Promise object might come in handy when using

promises:

 is determines whether an arbitrary value is a promise, returning a Boolean. It basically makes

sure it’s an object with a function named “then”; it does not test for “done”.

 theneach takes an array of promises and subscribes completed, error, and progress handlers to

each promise by calling its then method. Any of the handlers can be null. The return value of

theneach is itself a promise that’s fulfilled when all the promises in the array are fulfilled. We

call this a join, as described in the next section.

25 If you want to impress your friends while reading the WinRT API documentation, know that if an async function shows it
returns IAsync[Action | Operation]WithProgress (for whatever result type), it will invoke progress handlers. If it lists

only IAsync[Action | Operation], progress is not supported.

http://msdn.microsoft.com/library/windows/apps/br211667.aspx
http://msdn.microsoft.com/library/windows/apps/br211867.aspx
http://msdn.microsoft.com/library/windows/apps/br211765.aspx
http://msdn.microsoft.com/library/windows/apps/br229727.aspx

153

Tip If you’re new to the concept of static methods, these refer to functions that exist on an object class

that you call directly through the fully-qualified name, such as WinJS.Promise.theneach. These are

distinct from instance methods, which must be called through a specific instance of the class. For

example, if you have a WinJS.Promise object in the variable p, you cancel that particular instance with

p.cancel().

Joining Parallel Promises

Because promises are often used to wrap asynchronous operations, it’s certainly possible that you can

have multiple operations going on in parallel. In these cases you might want to know either when one

promise in a group is fulfilled or when all the promises in the group are fulfilled. The static functions

WinJS.Promise.any and WinJS.Promise.join provide for this. Here’s how they compare:

Function any join

Arguments An array of promises An array of promises

Fulfilled when One of the promises is fulfilled (a logical OR) All of the promises are fulfilled (a logical AND)

Fulfilled result This is a little odd. It’s an object whose key

property identifies the promise that was

fulfilled and whose value property is an

object containing that promise’s state. Within

that state is a _value property that contains

the actual result of that promise.

This isn’t clearly documented but can be

understood from the source code or simple

tests from the consumer side. If the promises in

the join all complete, the completed handler

receives an array of results from the individual

promises (even if those results are null or

undefined). If there’s an error in the join, the

error object passed to the error handler is an

array that contains the individual errors.

Progress behavior None Reports progress to any subscribed handlers

where the intermediate results are an array of

results from those individual promises that

have been fulfilled so far.

Behavior after fulfillment All the operations for the remaining promises

continue to run, calling whatever handlers

might have been subscribed individually.

None—all promises have been fulfilled.

Behavior upon cancellation Canceling the promise from any cancels all

promises in the array, even if the first has

already been fulfilled.

Cancels all other promises that are still

pending.

Behavior upon errors Invokes the subscribed error handler for every

error in the individual promises. This one error

handler, in other words, can monitor

conditions of the underlying promises.

Invokes the subscribed error handler with an

array of error objects from any failed promises,

but the remainder continue to run. In other

words, this reports cumulative errors in the way

that progress reports cumulative completions.

Appendix A, by the way, has a small code snippet that shows how to use join and the array’s

reduce method to execute parallel operations but have their results delivered in a specific sequence.

Sequential Promises: Nesting and Chaining

In Chapter 2, when we added code to Here My Am! to copy the captured image to another folder, we

got our first taste of using chained promises to run sequential async operations. To review, what makes

this work is that any promise’s then method returns another promise that’s fulfilled when the given

http://msdn.microsoft.com/library/windows/apps/br229660.aspx
http://msdn.microsoft.com/library/windows/apps/br211774.aspx

154

completed handler returns. (That returned promise also enters the error state if the first promise has an

error.) That completed handler, for its part, returns the promise from the next async operation in the

chain, the results of which are delivered to the next completed handler down the line.

Though it may look odd at first, chaining is the most common pattern for dealing with sequential

async operations because it works better than the more obvious approach of nesting. Nesting means to

call the next async API within the completed handler of the previous one, fulfilling each with done. For

example (extraneous code removed for simplicity):

//Nested async operations, using done with each promise

captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo)

 .done(function (capturedFileTemp) {

 //...

 local.createFolderAsync("HereMyAm", ...)

 .done(function (myFolder) {

 //...

 capturedFile.copyAsync(myFolder, newName)

 .done(function (newFile) {

 })

 })

 });

The one advantage to this approach is that each completed handler will have access to all the

variables declared before it. Yet the disadvantages begin to pile up. For one, there is usually enough

intervening code between the async calls that the overall structure becomes visually messy. More

significantly, error handling becomes much more difficult. When promises are nested, error handling

must be done at each level with distinct handlers; if you throw an exception at the innermost level, for

instance, it won’t be picked up by any of the outer error handlers. Each promise thus needs its own

error handler, making real spaghetti of the basic code structure:

captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo)
 .done(function (capturedFileTemp) {
 //...
 local.createFolderAsync("HereMyAm", ...)
 .done(function (myFolder) {
 //...
 capturedFile.copyAsync(myFolder, newName)
 .done(function (newFile) {
 },
 function (error) {
 })
 },
 function (error) {
 });
 },

 function (error) {

 });

I don’t know about you, but I really get lost in all the }’s and)’s (unless I try hard to remember my

LISP class in college), and it’s hard to see which error function applies to which async call. And just

imagine throwing a few progress handlers in as well!

155

Chaining promises solves all of this with the small tradeoff of needing to declare a few extra temp

variables outside the chain for any variables that need to be shared amongst the various completed

handlers. Each completed handler in the chain again returns the promise for the next operation, and

each link is a call to then except for a final call to done to terminate the chain. This allows you to indent

all the async calls only once, and it has the effect of propagating errors down the chain, as any

intermediate promise that’s in the error state will be passed through to the end of the chain very

quickly. This allows you to have only a single error handler at the end:

captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo)

 .then(function (capturedFileTemp) {

 //...

 return local.createFolderAsync("HereMyAm", ...);

 })

 .then(function (myFolder) {

 //...

 return capturedFile.copyAsync(myFolder, newName);

 })

 .done(function (newFile) {

 },

 function (error) {

 })

To my eyes (and my aging brain), this is a much cleaner code structure—and it’s therefore easier to

debug and maintain. If you like, you can even end the chain with done(null, errorHandler), as we

did in Chapter 2:

captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo)

 //...

 .then(function (newFile) {

 })

 .done(null, function (error) {

 })

})

Remember, though, that if you need to pass a promise for the whole chain elsewhere, as to a

setPromise method, you’ll use then throughout.

Error Handling in Promise Chains: then vs. done

This brings us to why we have both then and done and to why done is used at the end of a chain as

well as for single async operations. To begin with, then returns another promise, thereby allowing

chaining, whereas done returns undefined, so it always occurs at the end of a chain. Second, if an

exception occurs within one async operation’s then method and there’s no error handler at that level,

the error gets stored in the promise returned by then (that is, the returned promise is in the error

state). In contrast, if done sees an exception and there’s no error handler, it throws that exception to the

app’s event loop. This will bypass any local (synchronous) try/catch block, though you can pick them

up in either in WinJS.Application.onerror or window.onerror handlers. (The latter will get the

error if the former doesn’t handle it.) If you don’t have an app-level handler, the app will be terminated

156

and an error report sent to the Windows Store dashboard. For that reason we recommend that you

implement an app-level error handler using one of the events above.

In practical terms, then, this means that if you end a chain of promises with a then and not done, all

exceptions in that chain will get swallowed and you’ll never know there was a problem! This can place

an app in an indeterminate state and cause much larger problems later on. So, unless you’re going to

pass the last promise in a chain to another piece of code that will itself call done (as you do, for

example, when using a setPromise deferral or if you’re writing a library from which you return

promises), always use done at the end of a chain even for a single async operation.26

Promise error events If you look carefully at the WinJS.Promise documentation, you’ll see that it has

an error event along with addEventListener, removeEventListener, and dispatchEvent methods.

This is primarily used within WinJS itself and is fired on exceptions (but not cancellation). Promises from

async WinRT APIs, however, do not fire this event, so apps typically use error handlers passed to

then/done for this purpose.

Managing the UI Thread with the WinJS Scheduler

JavaScript, as you are probably well aware, is a single-threaded execution environment, where any and

all of your code apart from web workers and background tasks run on what we call the UI thread. The

internal working of asynchronous APIs, like those of WinRT, happen on other threads as well, and the

internal engines of the app host are also very much optimized for parallel processing.27 But regardless

of how much work you offload to other threads, there’s one very important characteristic to always

keep in mind:

The results from all non-UI threads eventually get passed back to the app on the main UI

thread through callback functions such as the completed handler given to a promise.

Think about this very clearly: if you make a whole bunch of async WinRT cal ls within a short amount

of time, such as to make HTTP requests or retrieve information from files, those tasks will execute on

separate threads but each one will pass their results back to the UI thread when the task is complete.

What this means is that the UI thread can become quite overloaded with such incoming traffic!

Furthermore, what you do (or what WinJS does on your behalf) in response to the completion of each

operation—such as adding elements to the DOM or innocently changing a simple layout-affecting

style—can trigger more work on the UI thread, all of which competes for CPU time. As a result, your UI

can become sluggish and unresponsive, the very opposite of “fast and fluid”!

26 Some samples in the Windows SDK might still use then instead of done, especially for single async operations. This came

from the fact that done didn’t yet exist at one point and not all samples have been updated.

27 In Windows 8 and Internet Explorer 10, most parsing, JavaScript execution, layout, and rendering on a single thread.
Rewriting these processes to happen in parallel is one of the major performance improvements for Windows 8.1 and

Internet Explorer 11, from which apps also benefit.

157

This is something we certainly saw with JavaScript apps on Windows 8, and developers created a

number of strategies to cope with it such as starting async operations in timed batches to manage their

rate of callbacks to the UI thread, and batching together work that triggers a layout pass so as to

combine multiple changes in each pass.

Still, after plenty of performance analysis, the WinJS and app host teams at Microsoft found that

what was really needed is a way to asynchronously prioritize different tasks on the UI thread itself. This

meant creating some low-level scheduling APIs in the app host such as MSApp.executeAtPriority.

But don’t use such methods directly—use the WinJS.Utilities.Scheduler API instead. The reason

for this is that WinJS very carefully manages its own tasks through the Scheduler, so by using it

yourself you ensure that all the combined work is properly coordinated. This API also provides a simpler

interface to the whole process, especially where promises are concerned.

Let’s first understand what the different priorities are, then we’ll see how to schedule and manage

work at those priorities. Keep in mind, though, that using the scheduler is not at all required—it’s there

to help you tune the performance of your app, not to make your life difficult!

Scheduler Priorities

The relative priorities for the WinJS Scheduler are expressed in the Scheduler.Priority

enumeration, which I list here in descending order: max, high, aboveNormal, normal (the default for

app code), belowNormal, idle, and min. Here’s the general guidance on how to use these:

Priority Best Usage

max, high Use sparingly for truly high priority work as these priorities take priority over layout

passes in the rendering engine. If you overuse these priorities, the app can actually

become less responsive!

aboveNormal, normal, belowNormal Use these to indicate the relative importance between most of your tasks.

idle, min Use for long-running and/or maintenance tasks where there isn’t a UI dependency.

Although you need not use the scheduler in your own code, a little analysis of your use of async

operations will likely reveal places where setting priorities might make a big difference. Earlier i n

“Optimizing Startup Time,” for example, we talked about how you want to prioritize non-UI work while

your splash screen is visible, because the splash screen is noninteractive by definition. If you’re doing

some initial HTTP requests, for example, set the most critical ones for your home page to max or high,

and set secondary requests to belowNormal. This will help those first requests get processed ahead of

UI rendering, whereas your handling of the secondary requests will then happen after your home page

has come up. This way you won’t make the user wait for completion of those secondary tasks before

the app becomes interactive. Other requests that you want to start, perhaps to cache data for a

secondary leaderboard page, can be set to belowNormal or idle. Of course, if the user navigates to a

secondary page, you’ll want to change its task priorities to aboveNormal or high.

WinJS, for its part, makes extensive use of priorities. For example, it will batch edits to a data -binding

source at high priority while scheduling cleanup tasks at idle priority. In a complex control like the

ListView, fetching new items that are necessary to render the visible part of a ListView control is done at

http://msdn.microsoft.com/library/windows/apps/dn301978.aspx
http://msdn.microsoft.com/library/windows/apps/dn301907.aspx

158

max, rendering of the visible items is done at aboveNormal, pre-loading the next page of items forward

is set to normal (anticipating that the user will pan ahead), and pre-loading of the previous page (to

anticipate a reverse pan) is set to belowNormal.

Scheduling and Managing Tasks
Now that we know about scheduling priorities, the way to asynchronously execute code on the UI

thread at a particular priority is by calling the Scheduler.schedule method (whose default priority is

normal). This method allows you to provide an optional object to use as this inside the function along

with a name to use for logging and diagnostics.28

As a simple example, scenario 1 of the HTML Scheduler sample schedules a bunch of functions at

different priorities in a somewhat random order (js/schedulesjobscenario.js):

window.output("\nScheduling Jobs...");

var S = WinJS.Utilities.Scheduler;

S.schedule(function () { window.output("Running job at aboveNormal priority"); },

 S.Priority.aboveNormal);

window.output("Scheduled job at aboveNormal priority");

S.schedule(function () { window.output("Running job at idle priority"); },

 S.Priority.idle, this);

window.output("Scheduled job at idle priority");

S.schedule(function () { window.output("Running job at belowNormal priority"); },

 S.Priority.belowNormal);

window.output("Scheduled job at belowNormal priority");

S.schedule(function () { window.output("Running job at normal priority"); }, S.Priority.normal);

window.output("Scheduled job at normal priority");

S.schedule(function () { window.output("Running job at high priority"); }, S.Priority.high);

window.output("Scheduled job at high priority");

window.output("Finished Scheduling Jobs\n");

The output then shows that the “jobs,” as they’re called, which execute in the expected order:

Scheduling Jobs...

Scheduled job at aboveNormalPriority

Scheduled job at idlePriority

Scheduled job at belowNormalPriority

Scheduled job at normalPriority

Scheduled job at highPriority

Finished Scheduling Jobs

Running job at high priority

28 The Scheduler.execHigh method is also a shortcut for directly calling MSApp.execAtPriority with Priority.high. This

method does not accommodate any added arguments.

http://msdn.microsoft.com/library/windows/apps/dn301941.aspx
http://code.msdn.microsoft.com/windowsapps/HTML-Scheduler-Sample-4b8084f2
http://msdn.microsoft.com/library/windows/apps/dn301933.aspx

159

Running job at aboveNormal priority

Running job at normal priority

Running job at belowNormal priority

Running job at idle priority

No surprises here, I hope!

When you call schedule, what you get back is an object with the Scheduler.IJob interface, which

defines the following methods and properties:

Properties Description
id (read-only) A unique id assigned by the scheduler.

name (read-write) The app-provided name assigned to the job, if any. The name argument to schedule

will be stored here.

priority (read-write) The priority assigned through schedule; setting this property will change the priority.

completed (read-only) A Boolean indicating whether the job has completed (that is, the function given to

schedule has returned and all its dependent async operations are complete).

owner (read-write) An owner token that can be used to group jobs. This is undefined by default.

Methods Description
pause Halts further execution of the job.

resume Resumes a previously paused job (no effect if the job isn’t paused).

cancel Removes the job from the scheduler.

In practice, if you’ve scheduled a job at a low priority but navigate to a page that really needs that

job to complete before the page is rendered, you simply bump up its priority property (and then

drain the scheduler as we’ll see in a moment). Similarly, if you scheduled some work on a page that you

don’t need to continue when navigating away, then call the job’s cancel method within the page’s

unload method. Or perhaps you have an index page from which you typically navigate into a details

page, and then back again. In this case you can pause any jobs on the index page when navigating to

the details, then resume them when you return to the index. See scenarios 2 and 3 of the sample for

some demonstrations.

Scenario 2 also shows the utility of the owner property (the code is thoroughly mundane so I’ll leave

you to examine it). An owner token is something created through Scheduler.createOwnerToken and

then assigned to a job’s owner (which replaces any previous owner). An owner token is simply an object

with a single method called cancelAll that calls the cancel method of whatever jobs are assigned to

it, nothing more. It’s a simple mechanism—the owner token really does nothing more than maintain an

array of jobs—but clearly allows you to group related jobs together and cancel them with a single call.

This way you don’t need to maintain your own lists and iterate through them for this purpose. (To do

the same for pause and resume you can, of course, just duplicate the pattern in your own code.)

The other important feature of the Scheduler is the requestDrain method. This ensures that all jobs

scheduled at a given priority or higher are executed before the UI thread yields. You typically use this

to guarantee that high priority jobs are completed before a layout pass. requestDrain returns a

promise that is fulfilled when the jobs are drained, at which time you can drain lower priority tasks or

schedule new ones.

http://msdn.microsoft.com/library/windows/apps/dn255156.aspx
http://msdn.microsoft.com/library/windows/apps/dn301931.aspx
http://msdn.microsoft.com/library/windows/apps/dn255179.aspx
http://msdn.microsoft.com/library/windows/apps/dn301934.aspx

160

A simple demonstration is shown in scenario 5 of the sample. It has two buttons that schedule the

same set of varying jobs and then call requestDrain with either high or belowNormal priority. When

the returned promise completes, it outputs a message to that effect (js/drainingscenario.js):

S.requestDrain(priority).done(function () {

 window.output("Done draining");

});

Comparing the output of these two side by side (high on the left, belowNormal on the right), as

below, you can see that the promise is fulfilled at different points depending on the priority:

Draining scheduler to high priority

Running job2 at high priority

Done draining

Running job1 at normal priority

Running job5 at normal priority

Running job4 at belowNormal priority

Running job3 at idle priority

Draining scheduler to belowNormal priority

Running job2 at high priority

Running job1 at normal priority

Running job5 at normal priority

Running job4 at belowNormal priority

Done draining

Running job3 at idle priority

The other method that exists on the Scheduler is retrieveState, a diagnostic aid that returns a

descriptive string for current jobs and drain requests. Adding a call to this in scenario 5 of the sample

just after the call to requestDrain will return the following string:

Jobs:

 id: 28, priority: high

 id: 27, priority: normal

 id: 31, priority: normal

 id: 30, priority: belowNormal

 id: 29, priority: idle

Drain requests:

 *priority: high, name: Drain Request 0

Setting Priority in Promise Chains

Let’s say you have a set of async data-retrieval methods that you want to execute in a sequence as

follows, processing their results at each step:

getCriticalDataAsync().then(function (results1) {

 var secondaryPages = processCriticalData(results1);

 return getSecondaryDataAsync(secondaryPages);

}).then(function (results2) {

 var itemsToCache = processSecondaryData(results2);

 return getBackgroundCacheDataAsync(itemsToCache);

}).done(function (results3) {

 populateCache(results3);

});

By default, all of this would run at the current priority against everything else happening on the UI

thread. But you probably want the call to processCriticalData to run at a high priority,

http://msdn.microsoft.com/library/windows/apps/dn301935.aspx

161

processSecondaryData to run at normal, and populateCache to run at idle. With schedule by itself,

you’d have to do everything the hard way:

var S = WinJS.Utilities.Scheduler;

getCriticalDataAsync().done(function (results1) {

 S.schedule(function () {

 var secondaryPages = processCriticalData(results1);

 S.schedule(function () {

 getSecondaryDataAsync(secondaryPages).done(function (results2) {

 var itemsToCache = processSecondaryData(results2);

 S.schedule(function () {

 getBackgroundCacheDataAsync(itemsToCache).done(function (results3) {

 populateCache(results3);

 });

 }, S.Priority.idle);

 });

 }, S.Priority.normal);

 }, S.Priority.high);

});

Urg. Blech. Ick. It’s more fun going to the dentist than writing code like this! To simplify matters, you

could encapsulate the process of setting a new priority within another promise that you can then insert

into the chain. The best way to do this is to dynamically generate a completed handler that would take

the results from the previous step in the chain, schedule a new priority, and return a promise that

delivers those same results (see Appendix A for the use of new WinJS.Promise):

function schedulePromise(priority) {

 //This returned function is a completed handler.

 return function completedHandler (results) {

 //The completed handler returns another promise that's fulfilled

 //with the same results it received...

 return new WinJS.Promise(function initializer (c) {

 //But the delivery of those results are scheduled according to a priority.

 WinJS.Utilities.Scheduler.schedule(function () {

 c(results);

 }, priority);

 });

 }

}

Fortunately we don’t have to write this code ourselves. The WinJS.Utilities.Scheduler already

has five pre-made completed handlers like this that also automatically cancel a job if there is an error.

These are called schedulePromiseHigh, schedulePromiseAboveNormal, schedulePromiseNormal,

schedulePromiseBelowNormal, or schedulePromiseIdle.

Because these APIs are pre-made completed handlers rather than methods you call directly, simply

insert the appropriate name at those points in a promise chain where you want to change the priority,

as highlighted below:

var S = WinJS.Utilities.Scheduler;

http://msdn.microsoft.com/library/windows/apps/dn301938.aspx
http://msdn.microsoft.com/library/windows/apps/dn301936.aspx
http://msdn.microsoft.com/library/windows/apps/dn301940.aspx
http://msdn.microsoft.com/library/windows/apps/dn301937.aspx
http://msdn.microsoft.com/library/windows/apps/dn301939.aspx

162

getCriticalDataAsync().then(S.schedulePromiseHigh).then(function (results1) {

 var secondaryPages = processCriticalData(results1);

 return getSecondaryDataAsync(secondaryPages);

}).then(S.schedulePromise.normal).then(function (results2) {

 var itemsToCache = processSecondaryData(results2);

 return getBackgroundCacheDataAsync(itemsToCache);

}).then(S.schedulePromiseIdle).done(function (results3) {

 populateCache(results3);

});

Long-Running Tasks

All the jobs that we’ve seen so far are short-running in that we schedule a worker function at a certain

priority and it just completes its work when it’s called. However, some tasks might take much longer to

complete, in which case you don’t want to block higher priority work on your UI thread. To help with

this, the scheduler has a built-in interval timer of sorts for tasks that are scheduled at aboveNormal

priority or lower, so a task can check whether it should cooperatively yield and have itself rescheduled

for its next bit of work. Let me stress that word cooperatively: nothing forces a task to yield, but because

all of this is affecting the UI performance of your app and your app alone, if you don’t play nicely you’ll

just be hurting yourself!

The mechanism for this is provided through a job info object that’s passed as an argument to the

worker function itself. To make sure we’re clear on how this fits in, let’s first look at everything a worker

has available within its scope, which is best explained with a few comments within the basic code

structure:

var job = WinJS.Utilities.Scheduler.schedule(function worker(jobInfo) {

 //jobInfo.job is the same as the job returned from schedule.

 //Scheduler.currentPriority will match the second argument to schedule.

 //this will be the third argument passed to schedule.

}, S.Priority.idle, this);

The members of the jobInfo object are defined by Scheduler.IJobInfo:

Properties Description
job (read-only) The same job object as returned from schedule.

shouldYield (read-only) A Boolean flag that is typically false when the worker is first called and then changes

to true if the worker should yield the UI thread and reschedule its work.

Methods Description
setWork Provides the worker for the rescheduled task.

setPromise Provides a promise that the scheduler will wait upon before rescheduling the task, where the

worker to reschedule is the fulfillment value of the promise.

Scenario 4 of the HTML Scheduler sample shows how to work with these. When you press the

Execute a Yielding Task button, it schedules a function called worker at idle priority that just spins

within itself until you press the Complete Yielding Task button, which sets the taskCompleted flag

below to true (js/yieldingscenario.js, with the 2s interval changed to 200ms):

http://msdn.microsoft.com/library/windows/apps/dn255148.aspx
http://code.msdn.microsoft.com/windowsapps/HTML-Scheduler-Sample-4b8084f2

163

S.schedule(function worker(jobInfo) {

 while (!taskCompleted) {

 if (jobInfo.shouldYield) {

 // not finished, run this function again

 window.output("Yielding and putting idle job back on scheduler.");

 jobInfo.setWork(worker);

 break;

 }

 else {

 window.output("Running idle yielding job...");

 var start = performance.now();

 while (performance.now() < (start + 200)) {

 // do nothing;

 }

 }

 }

 if (taskCompleted) {

 window.output("Completed yielding task.");

 taskCompleted = false;

 }

}, S.Priority.idle);

Provided that the task is active, it does 200ms of work and then checks if shouldYield has changed

to true. If so, the worker calls setWork to reschedule itself (or another function if it wants). You can

trigger this while the idle worker is running by pressing the Add Higher Priority Tasks to Queue button

in the sample. You’ll then see how those tasks are run before the next call to the worker. In addition,

you can poke around elsewhere in the UI to observe that the idle task is not blocking the UI thread.

Note here that the worker function checks shouldYield first thing to immediately yield if necessary.

However, it’s perfectly fine to do a little work first and then check. Again, this is all about cooperating

within your own app code, so such self-throttling is your choice.

As for setPromise, this is slightly tricky. Calling setPromise tells the scheduler to wait until that

promise is fulfilled before rescheduling the task, where the next worker function for the task is provided

directly through the promise’s fulfillment value. (As such, IJobInfo.setPromise doesn’t pertain to

handling async operations like other setPromise methods in WinJS that are tied in with WinRT

deferrals. If you called IJobInfo.setPromise with a promise from some random async API, the

scheduler would attempt to use the fulfillment value of that operation—which could be anything—as a

function and thus likely throw an exception.)

In short, whereas setWork says “go ahead and reschedule with this worker,” setPromise says “hold

off rescheduling until I deliver the worker sometime later.” This is primarily useful to create a work

queue composed of multiple jobs with an ongoing task to process that queue. To illustrate, consider

the following code for such an arrangement:

var workQueue = [];

function addToQueue(worker) {

 workQueue.push(worker);

164

}

S.schedule(function processQueue(jobInfo) {

 while (work.length) {

 if (jobInfo.shouldYield) {

 jobInfo.setWork(processQueue);

 return;

 }

 work.shift()(); //Pull the first from the FIFO queue and call it.

 }

}}, S.Priority.belowNormal);

Assuming that there are some jobs in the queue when you first call schedule, the processQueue task

will cooperatively empty that queue. And if new jobs are added to the queue in the meantime,

processQueue will continue to be rescheduled.

The problem, however, is that the processQueue worker will finish and exit as soon as the queue is

empty, meaning that any jobs you add to the queue later on won’t be processed. To fix this you could

just have processQueue repeatedly call setWork on itself again and again even when the queue is

empty, but that would be wasteful. Instead, you can use setPromise to have the scheduler wait until

there is more work in the queue. Here’s how that would work:

var workQueue = [];

var haveWork = function () { }; //This function is just a placeholder

function addToQueue(worker) {

 workQueue.push(worker);

 haveWork();

}

S.schedule(function processQueue(jobInfo) {

 while (work.length) {

 if (jobInfo.shouldYield) {

 jobInfo.setWork(processQueue);

 return;

 }

 work.shift()(); //Pull the first from the FIFO queue and call it.

 }

 //If we reach here the queue is empty, but we don't want to exit the worker.

 //Instead of calling setWork without work to do, create a promise that's fulfilled

 //when addToQueue is called again, which we do by replacing the haveWork function

 //with one that calls the promise's completed handler.

 jobInfo.setPromise(new WinJS.Promise(function (completeDispatcher) {

 haveWork = function () { completeDispatcher(processQueue) };

 }))

});

With this code, say we populate workQueue with a number of jobs and then make the call to

schedule. Up to this point and so long as the queue doesn’t become empty, we stay inside the while

loop of processQueue. Any call to the empty haveWork function so far is just a no-op.

165

If the queue becomes empty, however, we’ll exit the while loop but we don’t want processQueue to

exit. Instead, we want to tell the scheduler to wait until more work is added to the queue. This is why

we have that placeholder function for haveWork, because we can now replace it with a function that

will complete the promise with processQueue, thereby triggering a rescheduling of that worker

function.

Note that an alternate way to accomplish the same goal is to use this assignment for haveWork:

haveWork = completeDispatcher.bind(null, processQueue);

This accomplishes the same result as an anonymous function and avoids creating a closure.

Debugging and Profiling

As we’ve been exploring the core anatomy of an app in this chapter along with performance, now’s a

good time to talk about debugging and profiling. This means, as I like to put it, becoming a doctor of

internal medicine for your app and learning to diagnose how well that anatomy is working.

Tip Debug logging, which is local to and only relevant on your development machine, is a very

different concern from telemetry logging, with which you monitor and record user activity. See

“Instrumenting Your App for Telemetry and Analytics” in Chapter 20.

Debug or release? Because JavaScript is not a compiled language, it lacks conditional compilation

directives like #ifdef in C#/C++. There are, however, a few ways to more or less make this

determination at run time (with some caveats). See “Sidebar: Debug or Release?” in Chapter 2.

Debug Output and Logging
It’s sometimes heartbreaking to developers that window.prompt and window.alert are not available

to Windows Store apps as quickie debugging aids. Fortunately, you have two other good options for

that purpose. One is Windows.UI.Popups.MessageDialog, which is actually what you use for real user

prompts in general (see Chapter 9). The other is console.log, as we’ve used in our code already, which

sends text to Visual Studio’s output pane. These messages can also be logged as Windows events, as

we’ll see shortly.

For readers who are seriously into logging, beyond the kind you do with chainsaws, there are two

other options: a more flexible method in WinJS called WinJS.log, and the logging APIs in

Windows.Foundation.Diagnostics.

WinJS.log is a curious beast because although it’s ostensibly part of the WinJS namespace, it’s

actually not implemented within WinJS itself! At the same time, it’s used all over the place in the library

for errors and other reporting. For instance:

WinJS.log && WinJS.log(safeSerialize(e), "winjs", "error");

http://msdn.microsoft.com/library/windows/apps/jj150612.aspx

166

This kind of JavaScript syntax, by the way, means “check whether WinJS.log exists and, if so, call it.”

The && is a shortcut for an if statement: the JavaScript engine will not execute the part after the && if

the first part is null, undefined, or false. It’s a very convenient bit of concise syntax.

Anyway, the purpose of WinJS.log is to allow you to implement your own logging function and

have it pick up WinJS’s logging as well as any you add to your own code. What’s more, you can turn

the logging on and off at any time, something that’s not possible with console.log unless, well, you

write a wrapper like WinJS.log!

Your WinJS.log function, as described in the documentation, should accept three parameters:

1. The message to log (a string).

2. A string with a tag or tags to categorize the message. WinJS always uses “winjs” and sometimes

adds an additional tag like “binding”, in which case the second parameter is “winjs binding”. I

typically use “app” in my own code.

3. A string describing the type of the message. WinJS will use “error”, “info”, “warn”, and “perf”.

Conveniently, WinJS offers a basic implementation of this which you set up by calling

WinJS.Utilities.startLog(). This assigns a function to WinJS.log that uses WinJS.Utilities.-

formatLog to produce decent-looking output to the console. What’s very useful is that you can pass a

list of tags (in a single string) to startLog and only those messages with those tags will show up.

Multiple calls to startLog will aggregate those tags. Then you can call WinJS.Utilities.stopLog to

turn everything off and start again if desired (stopLog is not made to remove individual tags). As a

simple example, see the HereMyAm3d example in the companion content.

Tip Although logging will be ignored for released apps that customers will acquire from the Store, it’s

a good idea to comment out your one call to startLog before submitting a package to the Store and

thus avoid making any unnecessary calls at run time.

WinJS.log is highly useful for generating textual logs, but if you want to go much deeper you’ll

want to use the WinRT APIs in Windows.Foundation.Diagnostics, namely the LoggingSession and

FileLoggingSession classes. These work with in-memory and continuous file-based logging,

respectively, and generate binary “Event Trace Log” (ETL) data that can be further analyzed with the

Windows Performance Analyzer (wpa.exe) and the Trace Reporter (tracerpt.exe) tools in the Windows

SDK. This is a subject well beyond the scope of this book (and this author’s experience), so refer to the

Windows Performance Analyzer documentation for more, along with the LoggingSession sample and

FileLoggingSession sample.

Error Reports and the Event Viewer

Similar to window.alert, another DOM API function to which you might be accustomed is

window.close. You can still use this as a development tool, but in released apps Windows interprets

this call as a crash and generates an error report in response. This report will appear in the Store

http://msdn.microsoft.com/library/windows/apps/hh701617.aspx
http://msdn.microsoft.com/library/windows/apps/hh701587.aspx
http://msdn.microsoft.com/library/windows/apps/hh701587.aspx
http://msdn.microsoft.com/library/windows/apps/hh701626.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.foundation.diagnostics.aspx
http://msdn.microsoft.com/library/hh448170.aspx
http://code.msdn.microsoft.com/windowsapps/LoggingSession-Sample-ccd52336/view/SourceCode
http://code.msdn.microsoft.com/windowsapps/FileLoggingSession-Sample-2bc103d9

167

dashboard for your app, with a message telling you to not use it! Generally, Store apps should not

provide their own close affordances.

There might be situations, however, when a released app absolutely needs to close itself in response

to unrecoverable conditions. Although you can use window.close for this, it’s better to use

MSApp.terminateApp because it allows you to also include information as to the exact nature of the

error. These details show up in the Store dashboard, making it easier to diagnose the problem.

In addition to the Store dashboard, you should make fast friends with the Windows Event Viewer.29

This is where error reports, console logging, and unhandled exceptions (which again terminate the app

without warning) can be recorded. To enable this, start Event Viewer, navigate to Application And

Services Logs on the left side (after waiting for a minute while the tool initializes itself), and then

expand Microsoft > Windows > AppHost. Then left-click to select Admin (this is important), right-click

Admin, and select View > Show Analytic And Debug Logs. This turns on full output, including tracing

for errors and exceptions, as shown in Figure 3-5. Then right-click AppTracing (also under AppHost)

and select Enable Log. This will trace any calls to console.log as well as other diagnostic information

coming from the app host.

FIGURE 3-5 App host events, such as unhandled exceptions, load errors, and logging can be found in Event Viewer.

We already introduced Visual Studio’s Exceptions dialog in Chapter 2; refer back to Figure 2-16. For

each type of JavaScript exception, this dialog supplies two checkboxes labeled Thrown and User-

29 If you can’t find Event Viewer, press the Windows key to go to the Start screen and then invoke the Settings charm. Select

Tiles, and turn on Show Administrative Tools. You’ll then see a tile for Event Viewer on your Start screen.

168

unhandled. Checking Thrown will display a dialog box in the debugger (see Figure 3-6) whenever an

exception is thrown, regardless of whether it’s handled and before reaching any of your error handlers.

FIGURE 3-6 Visual Studio’s exception dialog. As the dialog indicates, it’s safe to press Continue if you have an error

handler in the app; otherwise the app will terminate. Note that the checkbox in this dialog is a shortcut to toggle

the Thrown checkbox for this exception type in the Exceptions dialog.

If you have error handlers in place, you can safely click the Continue button in the dialog of Figure

3-6 and you’ll eventually see the exception surface in those error handlers. (Otherwise the app will

terminate; see below.) If you click Break instead, you can find the exception details in the debugger’s

Locals pane, as shown in Figure 3-7.

FIGURE 3-7 Information in Visual Studio’s Locals pane when you break on an exception.

The User-unhandled option (enabled for all exceptions by default) will display a similar dialog

whenever an exception is thrown to the event loop, indicating that it wasn’t handled by an app-

provided error function (“user” code from the system’s perspective).

You typically turn on Thrown for only those exceptions you care about; turning them all on can

make it very difficult to step through your app! But it’s especially helpful if you’re debugging an app

and end up at the debugger line in the following bit of WinJS code, just before the app is terminated:

var terminateAppHandler = function (data, e) {

 debugger;

 MSApp.terminateApp(data);

};

169

If you turn on Thrown for all JavaScript exceptions, you’ll then see exactly where the exception

occurred. You can also just check Thrown for only those exceptions you expect to catch.

Do leave User-unhandled checked for everything else. In fact, unless you have a specific reason not

to, make sure that User-unhandled is checked next to the topmost JavaScript Runtime Exceptions item

because this includes all exceptions not otherwise listed. This way you can catch (and fix) exceptions

that might abruptly terminate the app, which is something your customers should never experience.

WinJS.validation Speaking of exceptions, if you set WinJS.validation to true in your app, you’ll

instruct WinJS to perform a few extra checks on arguments and internal state, and throw exceptions if

something is amiss. Just search on “validation” in the WinJS source files for where it’s used.

Async Debugging
Working with asynchronous APIs presents a challenge where debugging is concerned. Although we

have a means to sequence async operations with promise chains (or nested calls, for that matter), each

step in the sequence involves an async call, so you can’t just step through as you would with

synchronous code. If you try this, you’ll step through lots of promise code (in WinJS or the JavaScript

projection layer for WinRT) rather than your completed handlers, which isn’t particularly helpful.

What you’ll need to do instead is set a breakpoint on the first line of each completed handler and

on the first line of each error function. As each breakpoint is hit, you can step through that handler.

When you reach the next async call in a completed handler, click the Continue button in Visual Studio

so that the async operation can run. After that you’ll hit the breakpoint in the next completed handler

or the breakpoint in the error handler.

When you stop at a breakpoint, or when you hit an exception within an async process, take a look at

the debugger’s Call Stack pane (typically in the lower right of Visual Studio), as shown here:

The Call Stack shows you the sequence of functions that lead up to the point where the debugger

stopped, at which point you can double-click any of the lines and examine that function’s context. With

async calls, this can get really messy with all the generic handlers and other chaining that happens

within WinJS and the JavaScript projection layer. Fortunately—very fortunately!—Visual Studio spares

http://msdn.microsoft.com/library/windows/apps/br230472.aspx

170

you from all that. It condenses such code into the gray [Async Call] and [External Code] markers,

leaving only a clear call chain for your app’s code. In this example I set a breakpoint in the completed

handler for geolocation in HereMyAm3d. That completed handler is an anonymous function, as the

first line of the Call Stack indicates, but the next reference to the app code clearly shows that the real

context is the ready method within home.js, which itself is part of a longer chain that originated in

default.js. Double-clicking any one of the app code references will open that code in Visual Studio and

update the Locals pane to that context.

The real utility of this comes when an exception occurs somewhere other than within you own

handlers, because you can then easily trace the causality chain that led to that point.

The other feature for async debugging is the Tasks pane, as shown below. You turn this on through

the Debug > Windows >Tasks menu command. You’ll see a full list of active and completed async

operations that are part of the current call stack.

Performance and Memory Analysis

Alongside its excellent debugging tools, Visual Studio also offers additional aids to help evaluate the

performance of an app, analyze its memory usage, and otherwise discover and diagnose problems that

affect the user experience and the app’s effect on the system. To close this chapter, I wanted to give

you a brief overview of what’s available along with pointers to where you can learn more—because this

subject could fill a book in itself! (In lieu of that, a general pointer is to filter the //build 2013 videos by

the “performance” tag, which turns up a healthy set.)

For starters, the Writing efficient JavaScript topic is well worth a read (as are its siblings under Best

practices using JavaScript), because it explains various things you should and should not do in your

code to help the JavaScript engine run best. One thing you shouldn’t worry about is the performance of

querySelector and getElementById, both of which are highly optimized because they’re used so

often. Keep this in mind, because I know for myself that any function that starts with “query” just

sounds like it’s going to do a lot of work, but that’s not true here.

Next, when thinking about performance, start by setting specific goals for your user experience,

such as “the app should become interactive within 1.5 seconds” and “navigating between the gallery

and details pages happens in 0.5 seconds or less.” In fact, such goals should really be part of the app’s

design that you discuss with your designers, because they’re just as essential to the overall user

http://channel9.msdn.com/Events/Build/2013?sort=sequential&direction=desc&term=&t=performance
http://channel9.msdn.com/Events/Build/2013?sort=sequential&direction=desc&term=&t=performance
http://msdn.microsoft.com/library/windows/apps/hh781219.aspx
http://msdn.microsoft.com/library/windows/apps/hh465194.aspx
http://msdn.microsoft.com/library/windows/apps/hh465194.aspx

171

experience as static considerations like layout. In the end, performance is not about numbers but about

creating a great user experience.

Establishing goals also helps you stay focused on what matters. You can measure all kinds of

different performance metrics for an app, but if they aren’t serving your real goals, you end up with a

classic case of what Tom DeMarco, in his book Why Does Software Cost So Much? (Dorset House, 1995),

calls “measurement dysfunction”: lots of data with meaningless results or results that lead to undesired

action.30

Along the same lines, when running analysis tools, it’s important that you exercise the app like a user

would. That way you get results that are meaningful to the real user experience—that is, the human

experience!—rather than results that would be meaningful to a robot. In the end, all the performance

analysis in the world won’t be worth anything unless is translates into two things: better ratings and

reviews in the Windows Store, and greater app revenue.

With your goals in mind, run analysis tools on a regular basis and evaluate the results against your

goals. Then adjust your code, run the tools again, and evaluate. In other words, running performance

tools to evaluate your performance goals is just another part of making sure you’re creating the app

according to its design—the static and dynamic parts alike.

Remember also to run performance analysis on a variety of hardware, especially lower-end devices

such as ARM tablets that are much more sensitive to performance issues than is your souped-up dev

machine. In fact, slower devices are the ones you should be most concerned about, because their users

will probably be the first to notice any issues and ding your app ratings accordingly. And yes, you can

run the performance tools on a remote machine in the same way you can do remote debugging (but

not in the simulator). Also be aware that analysis tools always run outside of the debugger for obvious

reasons, because stopping at breakpoints and so forth would produce bad performance data!

I very much encourage you, then, to spend a few hours exercising the available tools and getting

familiar with the information they provide. Make them a regular part of your coding/testing cycle so

that you can catch performance and memory issues early on, when it’s easier and less costly to fix

them. Doing so will also catch what we call “regressions,” where a later change to the code causes

performance problems that you fixed a long time ago to rear their ugly heads once again. As the

character Alistor Moody of the Harry Potter books says, “Constant vigilance!”

30 DeMarco tells an amusing story of metrics at their worst: “Consider the case of the Soviet nail factory that was measured

on the basis of the number of nails produced. The factory managers hit upon the idea of converting their entire factory to

production of only the smallest nails, tiny brads. Some commissar, realizing this as a case of dysfunction, came up with a

remedy. He instituted measurement of tonnage of nails produced, rather than numbers. The factory immediately
switched over to producing only railroad spikes. The image I propose to mark the dysfunction end of the spectrum is a

Soviet carpenter, looking perplexed, with a useless brad in one hand and an equally useless railroad spike in the other.”

172

Tip Two topics in the documentation also contain loads of detailed information in these areas:

Performance best practices for Windows Store apps using JavaScript and General best practices for

performance.

So, on to the tools. These are found on the Debug > Performance And Diagnostics… menu, which

brings up the hub shown below with tools that are appropriate to your project’s language:

Get Visual Studio updates New tools are often released with updates to Visual Studio, so be sure to

install them and read the accompanying blogs or release notes to understand what’s new.

By default, Visual Studio will set the target to be the currently loaded project. However, you can run

the tools on any app by using the options on the Change Target drop-down:

As the drop-down indicates, the Installed App option will launch an app anew, whereas the Running

App option attaches to one that’s already been launched. Both are essential for profiling apps on

http://msdn.microsoft.com/library/windows/apps/hh465194.aspx
http://msdn.microsoft.com/library/windows/apps/hh994633.aspx
http://msdn.microsoft.com/library/windows/apps/hh994633.aspx

173

devices where your full project is not present; the latter is also useful if your app is already running and

you want to analyze specific user interactions for a set of conditions that you’ve already set up. This

way you won’t collect a bunch of extra data that you don’t need.

Note that you can run these tools on any installed app, not just your own, which means you can

gather data from other apps that have the level of performance you’d like to achieve for yours.

The Performance and Diagnostic Hub as a whole is designed to be extensible with third-party tools,

giving you a one-stop shop for enabling multiple tools simultaneously. The ones shown above are

those built into Visual Studio, and be sure to install new Visual Studio updates because that’s often how

new tools are released.

Here’s a quick overview of what the current tools accomplish:

Tool Description

HTML UI Responsiveness Provides a graph of Visual Throughput (frames per second) for the rendering engine over time,

helping to identify places where your UI is not as responsive as you’d like. It also provides a

millisecond breakdown of CPU utilization in various subsystems: loading, scripting, garbage

collection, styling, rendering, and image decoding, with various important lifecycle events

indicated along the way. This data is also shown on a time line where you can select any part to

see the breakdown in more detail. All this is helpful for finding areas where the interactions

between subsystems is adding lots of overhead, where there’s excessive fragmentation, or

where work being done in a particular subsystem is causing a drop in visual throughput. A

walkthrough is on HTML UI Responsiveness tool in Visual Studio 2013 (MSDN blogs). Also see

Analyze UI responsiveness.

Energy Consumption Launches the app and collects data about power usage (in milliwatts) over time, split up by

CPU, display, and network. This is very important to writing power-efficient apps for tablet

devices. It can also help you determine whether it’s more power efficient to use the local CPU

or a network server for certain tasks, as network I/O can take as much and even more power

than a burst of CPU activity. For more, see Energy Consumption tool in Visual Studio 2013.

JavaScript Memory Launches the app and provides a dynamic graph of memory usage over time as well as the

ability to take heap snapshots, allowing you to see memory spikes that occur in response to

user activity, and whether that memory is being properly freed. Refer to JavaScript memory

anaylsis for Windows Store apps in Visual Studio 2012 (MSDN blogs) and Analyzing memory

usage in Windows Store apps.

JavaScript Function Timing

(also called the JavaScript

Profiler)

Displays data on when and where function calls are being made in JavaScript and how much

time is spent in what part of your code. A walkthrough can be found on How to profile a

JavaScript App for performance problems (MSDN blogs). Also see Analyizing JavaScript

Performance in Windows Store apps, which covers both local and remote machines.

CPU Sampling Similar to the JavaScript Function Timing tool but works for managed (C#/Visual Basic) and

native (C++) code. This is useful only if you’re writing a multi-language app with both

JavaScript and one of the other languages.

For a video demonstration of most of these, watch the Visual Studio 2013 Performance and

Diagnostics Hub video on Channel 9 and Diagnosing Issues in JavaScript Windows Store Apps with

Visual Studio 2013 from the //build 2013 conference, both by Andrew Hall, the real expert on these

matters. Note that everything you see in these video (with the exception of the console app profiler) is

http://blogs.msdn.com/b/visualstudioalm/archive/2013/07/16/html-ui-responsiveness-tool-in-visual-studio-2013.aspx
http://msdn.microsoft.com/library/windows/apps/dn194502.aspx
http://blogs.msdn.com/b/visualstudioalm/archive/2013/07/10/energy-consumption-tool-in-visual-studio-2013.aspx
http://blogs.msdn.com/b/visualstudio/archive/2013/01/28/javascript-memory-analysis-for-windows-store-apps-in-visual-studio-2012.aspx
http://blogs.msdn.com/b/visualstudio/archive/2013/01/28/javascript-memory-analysis-for-windows-store-apps-in-visual-studio-2012.aspx
http://msdn.microsoft.com/library/windows/apps/jj819177.aspx
http://msdn.microsoft.com/library/windows/apps/jj819177.aspx
http://blogs.msdn.com/b/visualstudioalm/archive/2013/04/24/how-to-profile-a-javascript-windows-store-app-for-performance-problems.aspx
http://blogs.msdn.com/b/visualstudioalm/archive/2013/04/24/how-to-profile-a-javascript-windows-store-app-for-performance-problems.aspx
http://msdn.microsoft.com/library/windows/apps/hh780915.aspx
http://msdn.microsoft.com/library/windows/apps/hh780915.aspx
http://channel9.msdn.com/Shows/Visual-Studio-Toolbox/Visual-Studio-2013-Performance-and-Diagnostic-Hub
http://channel9.msdn.com/Shows/Visual-Studio-Toolbox/Visual-Studio-2013-Performance-and-Diagnostic-Hub
http://channel9.msdn.com/Events/Build/2013/3-312
http://channel9.msdn.com/Events/Build/2013/3-312

174

available in the Visual Studio Express edition that we’ve been using, and if you want to skip the part

about XAML UI responsiveness in the first video, you can jump ahead to about 13:30 where he talks

about the JavaScript tools.

Tip In the first video, the responsiveness problems for the demo apps written both in XAML/C# and

HTML/JavaScript primarily come from loading full image files just to generate thumbnails for gallery

views. As the video mentions, you can avoid this entirely and achieve much better performance by

using Windows.Storage.StorageFile.getThumbnailAsync. This API draws on thumbnail caches and

other mechanisms to avoid the memory overhead and CPU cost of loading full image files. We’ll see

more of this in Chapter 11.

It’s important, of course, with all these tools to clearly correlate certain events in the app with the

various measurements. This is the purpose of the performance.mark function, which exists in the

global JavaScript namespace.31 Events written with this function appear as User Marks in the timelines

generated by the different tools, as shown in Figure 3-8. In looking at the figure, note that the

resolution of marks on the Memory Analyzer timeline on the scale of seconds, so use marks to indicate

only significant user interaction events rather than every function entry and exit. (With other tools,

however, the resolution is much finer, so you can use performance.mark more frequently.)

FIGURE 3-8 Output of the JavaScript Memory analyzer annotated with different marks. The red dashed line is also

added in this figure to show the ongoing memory footprint; it is not part of the tool’s output.

As one example of using these tools, let’s run the Here My Am! app through the memory analyzer

to see if we have any problems. We’ll use the HereMyAm3d example in the companion code where I’ve

31 This function is part of a larger group of methods on the performance object that reflect developing standards. For more

details, see Timing and Performance APIs. performance.mark specifically replaces msWriteProfilerMark.

http://msdn.microsoft.com/library/windows/apps/br211377.aspx
http://msdn.microsoft.com/library/windows/apps/jj572389.aspx
http://msdn.microsoft.com/library/windows/apps/jj572389.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh767418.aspx

175

added some performance.mark calls for events like startup, capturing a new photo, rendering that

photo, and exercising the Share charm. Figure 3-8 shows the results. For good measure—logging,

actually!—I’ve also converted console.log calls to WinJS.log, where I’ve used a tag of “app” in each

call and in the call to WinJS.Utilities.startLog (see default.js).

Referring to Figure 3-8, here’s what I did after starting up the app in the memory analyzer. Once the

home page was up (first mark), I repositioned the map and its pushpin (second mark), and you can see

that this increased memory usage a little within the Bing maps control. Next I invoked the camera

capture UI (third mark), which clearly increased memory use as expected. After taking a picture and

displaying it in the app (fourth mark), you can see that the allocations from the camera capture UI have

been released, and that we land at a baseline footprint that now includes a rendered image. I then do

into the capture UI two more times, and in each case you can see the memory increase during the

capture, but it comes back to our baseline each time we return to the main app. There might be some

small differences in memory usage here depending on the size of the image, but clearly we’re cleaning

up the image when it get replaced. Finally I invoked the Share charm (last mark), and we can see that

this causes no additional memory usage in the source app, which is expected because all the work is

being done in the target. As a result, I feel confident that the app is managing its memory well. If, on

the other hand, that baseline kept increasing over time, then I’d know I have a leak somewhere.

Tip There’s no rule anywhere that says you have to profile your full app project. When you’re trying to

compare different implementation strategies, it can be much easier to create a simple test project and

run the profiling tools on it so that you can obtain very focused comparisons for different approaches.

Doing so will speed up your investigations and avoid disturbing your main project in the process.

The Windows App Certification Toolkit

The other tool you should run on a regular basis is the Windows App Certification Toolkit (WACK),

which is actually one of the first tools that’s automatically run on your app when you submit it to the

Windows Store. If this toolkit reports failures on your local machine, you can be certain that you’ll fail

certification very early in the process.

Running the toolkit can be done as part of building an app package for upload, but until then,

launch it from your Start screen (it’s called Windows App Cert Kit). When it comes up, select Validate

Windows Store App, which (after a disk-chewing delay) presents you with a list of installed apps,

including those that you’ve been running from Visual Studio. It takes some time to generate that list if

you have lots of apps installed, so you might use the opportunity to take a little stretching break. Then

select the app you want to test, and take the opportunity to grab a snack, take a short walk, play a few

songs on the guitar, or otherwise entertain yourself while the WACK gives your app a good whacking.

Eventually it’ll have an XML report ready for you. After saving it (you have to tell it where), you can

view the results. Note that for developer projects it will almost always report a failure on bytecode

generation, saying “This package was deployed for development or authoring mode. Uninstall the

package and reinstall it normally.” To fix this, uninstall it from the Start menu, select a Release target in

Visual Studio, and then use the Build > Deploy Solution menu command. But you can just ignore this

176

particular error for now. Any other failure will be more important to address early on—such as crashes,

hangs, and launch/suspend problems—rather than waiting until you’re ready to submit to the Store.

Note Visual Studio also has a code analysis tool on the Build > Run Code Analysis On Solution menu,

which examines source code for common defects and other violation of best practices. However, this

tool does not presently work with JavaScript.

What We’ve Just Learned

 How apps are activated (brought into memory) and the events that occur along the way.

 The structure of app activation code, including activation kinds, previous execution states, and

the WinJS.UI.Application object.

 Using deferrals when needing to perform async operations behind the splash screen, and

optimizing startup time.

 How to handle important events that occur during an app’s lifetime, such as focus events,

visibility changes, view state changes, and suspend/resume/terminate.

 The basics of saving and restoring state to restart after being terminated, and the WinJS utilities

for implementing this.

 How to implement page-to-page navigation within a single page context by using page

controls, WinJS.Navigation, and the PageControlNavigator from the Visual Studio/Blend

templates, such as the Navigation App template.

 Details of promises that are commonly used with, but not limited to, async operations.

 How to join parallel promises as well as execute a sequential async operations with chained

promises.

 How exceptions are handled within chained promises and the differences between then and

done.

 How to create promises for different purposes.

 Using the APIs in WinJS.Utilities.Scheduler for prioritizing work on the UI thread,

including the helpers for prioritizing different parts of a promise chain.

 Methods for getting debug output and error reports for an app, within the debugger and the

Windows Event Viewer.

 How to debug asynchronous code and how Visual Studio makes it easy to see the causality

chain.

 The different performance and memory analysis tools available in Visual Studio.

	Cover
	Copyright page
	Table of Contents
	Introduction
	Who This Book Is For
	What You'll Need (Can You Say “Samples”?)
	A Formatting Note
	Acknowledgements
	Free Ebooks from Microsoft Press
	The “Microsoft Press Guided Tours” App
	Errata & Book Support
	We Want to Hear from You
	Stay in Touch

	Chapter 3: App Anatomy and Performance Fundamentals
	App Activation
	Branding Your App 101: The Splash Screen and Other Visuals
	Activation Event Sequence
	Activation Code Paths
	WinJS.Application Events
	Activation Deferrals and setPromise

	Optimizing Startup Time

	WinRT Events and removeEventListener
	App Lifecycle Transition Events and Session State
	Suspend, Resume, and Terminate
	Suspending Deferrals and Deadlines

	Basic Session State in Here My Am!

	Page Controls and Navigation
	WinJS Tools for Pages and Page Navigation
	The Navigation App Template, PageControl Structure, and PageControlNavigator
	The Navigation Process and Navigation Styles
	Optimizing Page Switching: Show-and-Hide
	Page-Specific Styling

	Async Operations: Be True to Your Promises
	Using Promises
	Joining Parallel Promises
	Sequential Promises: Nesting and Chaining
	Error Handling in Promise Chains: then vs. done

	Managing the UI Thread with the WinJS Scheduler
	Scheduler Priorities
	Scheduling and Managing Tasks
	Setting Priority in Promise Chains
	Long-Running Tasks

	Debugging and Profiling
	Debug Output and Logging
	Error Reports and the Event Viewer
	Async Debugging
	Performance and Memory Analysis
	The Windows App Certification Toolkit

	What We’ve Just Learned

