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Introduction 

Good judgment comes from experience, and experience comes from 
bad judgment.

—Fred Brooks

We find that the preceding quote contains the essence of software architecture 
and the gist of the architect’s role. Software architecture requires judgment 

because not all scenarios are the same. To exercise sound judgment, you need 
experience, and in this imperfect world, experience mostly comes from making some 
mistakes and bad choices—from bad judgment. 

However, the world we live in often doesn’t give you the opportunity (or even the 
time) to form your own experience-based knowledge from which good judgment is 
developed. More often than not, all that executives want from architects is the right 
architecture right away. 

We’ve written this book primarily to endow you with a solid, reusable, and easily 
accessible base of knowledge about software architecture. In past years, we’ve com-
pleted projects using technologies like Microsoft Windows DNA, Distributed COM, 
multitier CRUD, SOA, DDD, CQRS, and event sourcing. We’ve used Microsoft Visual 
Basic 6 as well as C#, C++, Java, and JavaScript. We’ve seen technical solutions change 
frequently and perspectives about these approaches also evolve. 

In the end, we came to the same conclusion as Fred Brooks. We don’t wear white 
coats, we’re not doctors, and we’re not writing prescriptions. Our purpose here is 
to aggregate various positions, add our own annotations and comments to those 
positions, and generate an honest summary of facts and perspectives. 

In these times in which developers and architects are asked to do it right and right 
away, we offer a snapshot of knowledge—a readymade software architect’s digest for 
you to use as the starting point for further investigation and to use to build up your 
own judgment. If software architecture were a theorem, this book (we hope) would 
provide a collection of necessary lemmas. 
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Organization of this book
Software architecture has some preconditions (design principles) and one post-
condition (an implemented system that produces expected results). Part I of this book, 
titled “Foundation,” lays the foundation of software architecture and focuses on the 
role of the architect, the inherent mechanics of software projects, and aspects—like 
testability and readability—that turn software into top-quality software.   

Part II, “Devising the architecture,” focuses on the topmost layers that form a 
typical enterprise system: the presentation layer and business layer. We left for later 
the canonical third layer: the data access layer. We push a relatively new approach for 
designing a system and call it UX-first. It is a task-based methodology that leads to 
commands and domain events starting from agreed-upon mockups and screens. In a 
task-based design philosophy, the role of the domain model is much less central and 
the same data access layer is just part of the infrastructure, and it’s not necessarily 
based on canonical relational tables. However, the most forceful chapter in Part II—the 
one we recommend everybody read—is Chapter 5, “Discovering the domain architec-
ture.” In a nutshell, the chapter makes the point that only a deep understanding of the 
domain can lead to discovering an appropriate architecture. And, maybe more impor-
tantly, the resulting architecture doesn’t have to be a single, top-level architecture for 
the entire application. As you recognize subdomains, you can model each to subappli-
cations and give each the most effective architecture. As weird as it might sound, this is 
the core lesson of Domain-Driven Design (DDD).

Part III, “Supporting architectures,” covers three supporting architectures you can 
use to build the various subdomains you recognized. For each architecture, we have 
a couple of chapters—an introduction and an implementation. The first supporting 
architecture we consider is the Domain Model. Next we head to Command/Query 
Responsibility Segregation (CQRS) and event sourcing. 

Finally, Part IV, “Infrastructure,” contains a single chapter—it deals with infrastructure 
and the persistence layer. This is interesting because it’s not simply a chapter about 
SQL, Entity Framework, and relational databases. We primarily talk polyglot persistence, 
NoSQL data stores, and services used to hide storage details. 

So, in the end, what’s this book about? 

It’s about what you need to do and know to serve your customers in the best 
possible way as far as the .NET platform is concerned. The patterns, principles, and 
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techniques we describe are valid in general and are not specific to complex line-of-
business applications. A good software architecture helps control the complexity of the 
project. And controlling complexity and favoring maintainability are the best strategies 
we have for fighting the canonical Murphy’s Law of technology: “Nothing ever gets 
built on schedule or within budget.” To get there, there’s just one thing you’re not 
allowed to fail on: understanding (deeply) the business domain.

Who should read this book
Software architects are the ideal audience for this book, but lead developers and 
developers of any type of .NET applications will find this book beneficial. Everyone who 
wants to be an architect should find this book helpful and worth the cost.

Is this book only for .NET professionals? Although all chapters have a .NET flavor, 
most of the content is readable by any software professional. 

Assumptions
Strong object-oriented programming skills are a requirement for using this book. 
A good foundation in using the .NET platform and knowledge of some data-access 
techniques will also help. We put great effort into making this book read well. It’s not 
a book about abstract design concepts, and it’s not a classic architecture book either, 
full of cross-references and fancy strings in square brackets that hyperlink to some old 
paper listed in a bibliography at the end of the book. 

This book might not be for you if…
This book might not be for you if you’re seeking a reference book to pick up to find 
out how to use a given pattern. Instead, our goal is sharing and transferring knowl-
edge so that you know what to do at any point. Or, at least, you know what two other 
guys—Dino and Andrea—would do in an analogous situation. This is (hopefully) a book 
to read from cover to cover and maybe more than once. It’s not a book to keep on the 
desk for random reference only.
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Downloads: Code samples
In the book, we present several code snippets and discuss sample applications with the 
primary purpose of illustrating principles and techniques for readers to apply in their 
own projects. In a certain way, we tried to teach fishing but we aren’t providing sample 
fish to take home. However, there’s a CodePlex site we want to point you to:

http://naa4e.codeplex.com/ 

There you find a few Visual Studio 2013 projects, one for each of the supporting 
architectures we describe in the book. A sample online store system—the I-Buy-Stuff 
project—is written according to the Domain Model architecture and then ported to 
CQRS. Two more projects complete the set: a live-scoring application and a mini-ERP 
system that illustrates event sourcing.

We invite you to follow the project because we plan to add more demos in the 
future.

The sample code has a few dependencies on common technologies such as Visual 
Studio 2013 and SQL Server. Projects make use of Entity Framework, ASP.NET MVC, 
RavenDB, Bootstrap and WURFL. Everything is linked to the project through Nuget. 
Refreshing the packages ensures you’re able to reproduce the demo. In particular, you 
don’t need a full installation of SQL Server; SQL Express will suffice.

Acknowledgments
When Andrea and I wrote the first edition of this book back in the summer of 2008 it 
was a completely different world. The huge economic downturn that hit the United 
States and other parts of the world, and still bites Europe, was just on the horizon. And 
Entity Framework was still to come. We covered patterns and technologies that are 
much less relevant today, and there was no cloud, mobile, or NoSQL. Still, at several 
times we caught the book ranked among Amazon’s Top 10 in some category as long 
as four or five years after publication. For a technical book, lifespan of five years is like 
a geological era. We’ve been asked several times to work on a second edition, but the 
right astral conjunction never arrived until the spring of 2014. So here we are. Thanks 
to Devon Musgrave, Steve Sagman, Roger LeBlanc, and Carol Dillingham—a wonderful 
team. 

As emphatic and partisan as it may sound, in over 20 book projects so far, I never 
left a lot of work for technical reviewers to do. And I hardly learned much from peer 
reviewers—for whatever reason. Well, this time it was different. Cesar De la Torre 

http://naa4e.codeplex.com/
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Llorente—our peer reviewer—did a fantastic job. He promptly caught issues with the 
outline and content, even deep issues that I missed entirely and Andrea just perceived 
as glitches that were hard to explain in detail and fix. Cesar convinced us to restructure 
the content several times, reshaping the book to what it needed to be, and leading it to 
become what, we think, it should be.

Finally, I wish to reserve a word or two for some people that shared—sometimes 
without even realizing it—insights and remarks as valuable as gold. One is Hadi Hariri 
for his constantly updated vision of the IT world. Another is Jon Smith for reminding 
us of the many facets of the architect’s role. Yet another is Giorgio Garcia-Agreda for 
conveying to me some of the innate attitude for problem solving (especially in harsh 
conditions). Last, but not least, my thanks also go to Roberto Raschetti. He may wonder 
why he deserves this accolade, but without doubt, he showed me the way, from the 
time I was a freshly graduated student to that huge project we had in store for months 
to come.  

Finally, Mom, Dad—this is another one for your bookshelf! Sure you don’t need a 
bigger one?  

PS: Follow us on Facebook (facebook.com/naa4e) and tweet using #naa4e.

—Dino

This book would not exist without Dino . Dino is the one who caused me to accept the 
daunting task of writing a sequel to a book that, to my dismay, revealed itself to be a 
huge hit and applied a lot of pressure on me . 

Never again is what you swore the time before.

Dino approached me several times to ask my feelings about writing a second edi-
tion, had the patience to accept a bunch of refusals, and then, after getting me com-
mitted, understood that this writing had to be a “two-paces process” because it would 
take time for me to write what he could, in just a few hours, put into elegant, insightful 
words. 

Not only am I slow at writing, but I’m quite fussy. But Dino has always been very 
supportive in my struggle to make sure that this book would be at least as good as the 
previous edition, and then some.

I’m taking a ride with my best friend.

Being as fussy as I am, I was really pleased to have Cesar De la Torre Llorente as 
our peer reviewer because he did a fantastic job, not only at reviewing the contents, 
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but also at giving us valuable advice about how to restructure our content. Thank you 
Cesar. We really owe you a lot.

He knows where’s he’s taking me, taking me where I want to be.

But for this book to exist and, in my opinion, be a good one, we still needed a 
wonderful team behind us, and that’s where the support we got from Devon Musgrave, 
Steve Sagman, Roger LeBlanc, and Carol Dillingham really made a difference. Thank 
you guys!

This is real fun, this is fun.

Writing a book while being a full-time consultant meant devoting a lot of time to 
being in front of your PC instead of being free and with the people you love, and that 
could be quite frustrating for both sides. Nevertheless, Laura and mum understood how 
important this book was for me and bestowed me with terrific support. And love.

You’re like an angel and you give me your love, and I just can’t seem to get 
enough of.

Finally, I want to thank all the guys at Managed Designs: without the experience 
gained because of all our endeavors, this book would not be half as good.

My secret garden’s not so secret anymore!

And last, but not least, thank you Helen and Maruska for having been there when I 
struggled for words. Thank you from the bottom of my heart, miladies.

Welcome to my world, step right through the door.

PS: Follow us on Facebook (facebook.com/naa4e) and tweet using #naa4e.

						      —Andrea

Errata, updates, & book support
We’ve made every effort to ensure the accuracy of this book and its companion 
content. If you discover an error, please submit it to us via mspinput@microsoft.com. 
You can also reach the Microsoft Press Book Support team for other support via the 
same alias. Please note that product support for Microsoft software and hardware is 
not offered through this address. For help with Microsoft software or hardware, go to 
http://support.microsoft.com.

http://support.microsoft.com
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Free ebooks from Microsoft Press
From technical overviews to in-depth information on special topics, the free ebooks 
from Microsoft Press cover a wide range of topics. These ebooks are available in PDF, 
EPUB, and Mobi for Kindle formats, ready for you to download at:

http://aka.ms/mspressfree

Check back often to see what is new!

We want to hear from you
At Microsoft Press, your satisfaction is our top priority, and your feedback our most 
valuable asset. Please tell us what you think of this book at:

http://aka.ms/tellpress

We know you’re busy, so we’ve kept it short with just a few questions. Your 
answers go directly to the editors at Microsoft Press. (No personal information will be 
requested.) Thanks in advance for your input!

Stay in touch
Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

The authors will be maintaining a Facebook page at facebook.com/naa4e. 

Please precede comments, posts, and tweets about the book with the #naa4e 
hashtag.

http://aka.ms/mspressfree
http://aka.ms/tellpress
http://twitter.com/MicrosoftPress
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C H A P T E R  5

Discovering the domain 
architecture

Essentially, all models are wrong, but some are useful. 
—George P. O. Box

Software definitely stems from mathematics and is subject to two opposing forces: the force of 
just doing things and the force of doing things right. We like to think that software is overall a big 

catch-me-if-you-can game. Visionary developers riding on the wings of enthusiasm quickly build a 
prototype that just works. The prototype then becomes a true part of the business; sometimes what 
originally was just a prototype changes and expands the business. Next, more down-to-earth devel-
opers join in to analyze, stabilize, consolidate or, in some cases, rewrite the software as it should have 
been done the first time, in accordance to theoretical principles.

Software, however, cannot be constrained into too-formal and rigid theorems. 

Software mirrors real life, and life follows well-known rules defined in the context of some model. 
Unfortunately, at some given time, T1, we find that our understanding of the model is in some way 
limited. At some later time, T2, our understanding might deepen and we become aware of extended 
rules that better explain the overall model. 

That’s how things go in the real world out there; but it’s not always how we make things go in real 
software.

Software architects tend to restrict the solution within the boundaries of a fixed, top-level 
architecture. We have done it ourselves many times. If we look back, we find it is a common error 
to start defining some top-level architecture (for example, Client/Server, Layered Architecture, 
Hexagonal) and then use it everywhere in our business application. That approach might work in the 
end, but the working solution you reach descends from the wrong approach. It’s a sort of technical 
debt you are going to end up paying at some point.

Because software is expected to mirror real life, as a software architect you should first understand 
the segment of the real world you are modeling with software. That segment of the real world is 
the business domain, and it might contain multiple business contexts, each calling for its own ideal 
architecture.  
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The real added value of domain-driven design 

Domain-Driven Design, or DDD for short, is a particular approach to software design and 
development that Eric Evans introduced over a decade ago. The essence and details of DDD are 
captured in the book Domain-Driven Design, which Evans wrote for Prentice Hall back in 2003. The 
book subtitle transmits a much clearer message about the purpose of DDD: Tackling Complexity in the 
Heart of Software.

When it debuted, DDD was perceived as an all-or-nothing approach to application design. You 
were given a method, some quite innovative guidelines, and the promise that it would work. Using 
DDD was not actually cheating, and we dare say that it really fulfilled the promise of “making it 
work”—except that it works only if you do it right. Doing it right is not immensely hard; but it’s also 
immensely easy to do it wrong. (See Figure 5-1.)

Start Success
Theory

Practice

FIGURE 5-1  The DDD road to success is not always as smooth and easy as you expect.

What makes DDD so powerful but also so error prone? We think it’s the context. 

DDD is about crunching knowledge about a given business domain and producing a software 
model that faithfully mirrors it. The business domain is how a company conducts its own business: 
it’s about organization, processes, practices, people, and language. The business domain lives in a 
context. Even very similar businesses may live in different contexts. 

DDD is easy and powerful to use if you crunch enough knowledge and can model faithfully. DDD 
is painful and poor if you lack knowledge or fail to turn your knowledge into a model that fits the 
business domain.

What’s in DDD for me?
However you want to frame it, DDD represents a significant landmark in software development. Not 
coincidentally, DDD initially was developed in the Java space, where the adoption of advanced design 
techniques (in the beginning of the last decade) was much faster and more widespread than in the 
.NET space. For many years, the scope and relevance of DDD was not really perceived in the .NET 
space. 

Do we really need it? That was the question we are often asked and have asked ourselves 
many times.
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DDD is not right for every project because it requires mastery and might have high startup costs. 
At the same time, nothing in DDD prevents you from using it in a relatively simple system. As we see 
it, the crucial point to using DDD is understanding where its real value lies and learning techniques 
to take advantage of it. The two biggest mistakes you can make with DDD are jumping on the DDD 
bandwagon just because it sounds cool, and stubbornly ignoring DDD because in the end you think 
your system is only a bit more complex than a plain CRUD. 

In summary, we think DDD has two distinct parts. You always need one and can sometimes happily 
ignore the other. 

DDD has an analytical part that sets out an approach to express the top-level architecture of the 
business domain in terms of bounded contexts. In addition, DDD has a strategic part that relates to 
defining a supporting architecture for the identified bounded contexts.

The real added value of DDD lies in using the analytical part to identify bounded business 
contexts. Next, the strategic design might or might not be leveraged to implement any of the 
bounded contexts.

Conducting analysis using DDD
The analytical part of DDD consists of two correlated elements: the ubiquitous language and bounded 
contexts. 

The ubiquitous language is a vocabulary shared by all parties involved in the project and 
thoroughly used throughout the projects, ideally in all forms of spoken and written communication. 
As an architect, you typically populate the vocabulary of verbs and nouns as you acquire knowledge 
about the domain. This is the most common approach to starting to populate the vocabulary. More 
generally, you should also carefully look into adverbial phrases you find in requirements, because they 
might reveal a lot about the domain, such as events, processes, and triggers of processes.

The ubiquitous language is also the template that inspires the names and structure of the classes 
you end up writing. The ubiquitous language serves to improve and speed up the acknowledgment 
of requirements and simplify communication between parties so that they avoid misunderstandings, 
flawed assumptions, and botched translations when moving from one set of jargon to another.

Initially, there’s just one ubiquitous language and a single business domain to understand and 
model. As you come to understand the requirements and explore the domain further, you might 
discover some overlap between nouns and verbs and find that they have different meanings in differ-
ent areas of the domain. This might lead you to think the original domain should be split into multiple 
subdomains. 

Bounded context is the term used with DDD to refer to areas of the domain that are better treated 
independently because of their own ubiquitous language. Put another way, you recognize a new 
bounded context when the ubiquitous language changes. Any business domain is made of contexts, 
and each context is shaped by logical contours. The primary responsibility of a software architect is 
identifying business contexts in a domain and defining their logical contours. 
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Context mapping is an expression often used to refer to the analytical part of DDD. Context map-
ping is a universal technique that can be applied to nearly any software scenario. Context mapping 
builds a high-level view of the domain from the perspective of a software architect. It shows subdo-
mains and their relationships and helps you make strategic decisions. 

Strategic model design
Coupled with context mapping is strategic model design. Once you identify the various bounded con-
texts, your next problem is determining the best architecture for each. DDD offers a recommended 
architecture in the form of the layered architecture and Domain Model. The term domain model here 
is subject to interpretation and deserves a bit of attention. 

In the definition of DDD that Evans gives in his seminal book, the term domain model gives a nod 
to the Domain Model pattern formalized by Martin Fowler: http://martinfowler.com/eaaCatalog/do-
mainModel.html. It consists of special flavor of an object model (also known as the domain model or 
entity model) and a set of domain service classes. More recently, the internal structure of the domain 
model is being reconsidered within the community. While seeing the domain model as an ad hoc 
collection of objects is still the most common perspective, a functional vision of it is gaining ground. 
Functional programming is, in fact, in many ways preferable to object-orientation for implementing 
tasks and expressing business concepts.

In the end, we can rephrase the whole thing today by saying that DDD suggests a layered archi-
tecture designed around a model of the domain. The model is mostly an object model, but it can be 
other things too—for example, a collection of functions. The persistence of data also depends on the 
structure of the model. It might require an O/RM tool if the model is a collection of objects; it might 
even be based on stored procedures invoked from idiomatic wrapper components if the model is, for 
example, function-based.

In the next chapters, we’ll explore in depth the most common scenario for the domain model—
when it takes the form of a special object model. 

Note  According to the original definition given by Evans, DDD is in a way the next natu-
ral step for developers versed in object-oriented design (OOD). The first principle of OOD 
recommends finding “pertinent classes,” as you saw in Chapter 3, “Principles of software 
design.” DDD recommends that you model the domain carefully—and that you model the 
domain carefully by discovering pertinent classes.

The phase of strategic model design consists of evaluating the various architectural options and 
choosing the architecture for each bounded context. Beyond the layered architecture, with a domain 
model there are usually other options such as a plain CRUD, a CMS (when the bounded context is 
expected to be a website), or even more sophisticated things, such as event sourcing (which we’ll talk 
about in upcoming chapters.

http://martinfowler.com/eaaCatalog/domainModel.html
http://martinfowler.com/eaaCatalog/domainModel.html
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Which parameters should drive your choice?

Overall, we think that today there’s only one guiding rule, and it’s based on the (carefully) estimat-
ed lifetime of the software you are about to write. Let’s go through a few scenarios.

Fast-food applications 
Suppose you are writing a short-term, one-off application such as a survey web application or some 
analogous set of pages aimed at collecting raw data for your analysts. You know that the expected 
lifetime is very short and that after the expected data has been collected the app will be bluntly 
dismissed. 

Does it really make sense to invest more than the least amount of time that could possibly make it 
work? It probably doesn’t.

So you can go with the quickest possible CRUD you can arrange, whether it is by using Web Forms, 
Silverlight, or plain HTML, depending on the skills and the target audience. If you are about to think 
something like, “Hey, I’m a senior architect, and no boss would pay my time for such trivial prob-
lems,” well, you are probably just experiencing the power of bounded contexts already. Taken out of 
context, a fast-food application is undoubtedly a very basic—even silly—example. But it might be 
just one bounded context of a much larger and more complex domain that you, as a senior architect, 
helped to map.

Front-end websites
The project you’re on requires a web front end. It has a sufficiently complex back end, where a lot of 
business rules must be taken into account and a bunch of external web services must be coordinated, 
but at the end of the day the front end is a plain set of read-only pages with zero or limited forms. 
The most important requirement you have for it is, “It must be shockingly cool and engage people.” 

Web Forms can be immediately ruled out because of its limited flexibility due to server controls. 
ASP.NET MVC is a much better option because it allows full control of HTML and can be effectively 
styled with CSS. Should you really go with an ASP.NET MVC solution from scratch?

Couldn’t a CMS be a quicker and equally cool solution? 

We can probably hear the same objections—it’s a silly example for a book that claims to target 
software architects. Yes, but a software architect recognizes complexity where she sees it and doesn’t 
create any unnecessary complexity.

You might know that plugins can extend a CMS, like WordPress, to do almost anything you 
can think of. It’s not a far-fetched idea to just get a cool WordPress theme and a bunch of plugins, 
including custom plugins, to do the job. 

Again, it’s a matter of opportunity and skills. It’s a matter of context.
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Any other types of applications 
As Thomas Edison used to say, the value of an idea lies in the using of it. So make-the-code-just-work 
is a common approach, especially in these hectic days of emerging ideas and startups. The make-the-
code-just-work motto is fine if you don’t need to touch the code once it’s done and it works. 

No matter what the customer might say and no matter what the current plans are, there’s just one 
reason that any software avoids further changes: it gets dismissed. If the software is not expected to 
be dismissed in just a few months, as an architect you better consider a more thoughtful approach 
than just fast-food code. And Domain Model and the other supporting architectures we’re slated to 
discuss in the upcoming chapters are the best options available for simplifying code maintenance. 

Note  This is simply a gentle reminder that, not coincidentally, maintainability is both an 
OOD design goal and a class of requisites according to ISO 9126.

The ubiquitous language

Requirements are always communicated, but we all know that making sense of user requirements is 
sometimes hard. In addition, the inability to completely comprehend user requirements is probably 
the primary cause of misunderstandings between business and development teams. 

As a way to mitigate the risks of misunderstandings at any time, Eric Evans suggested the use of a 
common language that he called the ubiquitous language. 

Purpose of the ubiquitous language
We write software for a specific business, but we’re software architects in the end and we might not 
be black-belt experts of the specific business domain. Likewise, domain experts might have some 
working knowledge of software development but probably not enough to avoid misunderstandings 
and incorrect assumptions. 

Developers and domain experts often just speak different languages, and each group has its own 
jargon. Furthermore, it is not unlikely that different business people involved—say, from different 
departments—might use different jargon and give the same term different meanings. The language 
barrier might not preclude business from taking place, but it certainly makes any progress much slow-
er than expected and acceptable. Translation from one language to another must be arranged; jargon 
expressions must be adjusted and put into context. This not only takes time, but it also introduces the 
risk of losing details along the way.

The purpose of the ubiquitous language is to define a common terminology shared by all involved 
parties—managers, end users, developers, and stakeholders in general—and at all levels—spoken 
and written communication, documentation, tests, and code. A common language reduces the 
need for translating concepts from the business to the development context, promotes clarity, and 
minimizes assumptions. 
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Once defined, the ubiquitous language becomes the official, all-encompassing language of the 
project. 

Structure of the ubiquitous language
The ubiquitous language is not the raw language of the business, nor is it the language of the 
development teams. Both business and development language are forms of jargon, and both 
languages, if taken literally, might lack or skim over essential concepts, as well as generate 
misunderstandings and communication bottlenecks.

Figure 5-2 shows the canonical diagram used in literature to indicate the relationship between 
ubiquitous language and native languages spoken by domain experts and development teams. 

Domain
experts

Development
teams

Ubiquitous
language

FIGURE 5-2  The canonical diagram that illustrates how the ubiquitous language unifies domain and technical 
concepts and extends them.

The figure shows that the ubiquitous language is a combination of domain and technical jargon. 
However, the ubiquitous language is expected to contain, for the most part, words and verbs that 
reflect the semantics of the business domain rather than technology terms. 

It is not limited to the business jargon, however. While technical concepts like caching data, 
invoking a service, and deleting records of a database should not be part of the language, terms that 
indicate persistent actions, the response of the system, or notifications sent or received might be 
necessary to make the resulting language faithfully express the final behavior of the system.

The ubiquitous language exists in the subsoil of the domain. The architect must dig it out at the 
beginning of the project.  

How to define the ubiquitous language
The ubiquitous language is not artificially created in a lab and then submitted for approval to 
involved parties. Quite the reverse—the language emerges out of interviews and meetings and gets 
its final shape iteratively along the way. It might take several steps of refinement and adjustment 
before the language flows as expected and faithfully expresses the reality of the system being built. 
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The first draft of the language commonly results from acknowledging requirements as architects 
rewrite and make sense of raw requirements collected during elicitation. 

As a technical person, you should expect the language to be rigorous (for example, strictly 
unambiguous and consistent), fluent, and made of simple elements that can be combined to compose 
more sophisticated concepts and actions.

As a domain expert, you should hesitate to accept any terms and concepts the language might 
contain that are unknown in the domain and that are not clearly referring to a process or business 
concept. Also, as a domain expert, you should ensure that all relevant business terms are defined in 
the language and, more importantly, are given the right meaning. For example, if the language con-
tains the term account, the term must refer to the meaning that account has in the domain space. 

Note  In general, the ubiquitous language contains business terms (nouns and verbs) plus 
new terms (mostly verbs) that more or less directly map to technical actions, such deal-
ing with databases, cache and security, services and so forth. The number of nonbusiness 
concepts, however, should be kept to a minimum.

The ubiquitous language is the official language of the project, and the vocabulary of terms is 
inspired and then validated by domain experts. Everything in the project, from documentation to 
actual code, is permeated by the language. 

How would you physically express and save the vocabulary of the ubiquitous language? In practical 
terms, it consists of a glossary of terms and expressions saved to a Microsoft Word or Microsoft Excel 
document or even some UML diagrams. Each term is fully explained in a way that makes it under-
standable to both domain experts and developers. 

It should be the responsibility of the team to keep the glossary up to date throughout the project. 
The ubiquitous language, in fact, is anything but static. It can change and evolve over time to reflect 
new insights gained about the domain. 

Important  There are two main scenarios where the analytical part of DDD excels. One 
is when there’s really a lot of domain logic to deal with that is tricky to digest, distill, and 
organize. Having a ubiquitous language here is key because it ensures that all terms used 
are understood and that no other terms are used to express requirements, discuss features, 
and write code. 

Another scenario is when the business logic is not completely clear because the actual 
business is being built and the software is just part of the initial effort. Startups are an 
excellent example of this scenario. In this case, the domain logic is being discovered and 
refined along the way, making the availability of a ubiquitous language a great benefit to 
understand where one is and where the business can move forward.



	 CHAPTER 5  Discovering the domain architecture	 121

Keeping language and model in sync
Naming and coding conventions used in the domain model should reflect naming conventions set in 
the ubiquitous language. This relationship should not vary during the lifetime of the project. 

If the language changes because of a different level of understanding, or a new requirement, then 
the naming and coding conventions in the domain model should be updated. Also, the opposite is 
true to a large extent, in the sense that renaming a class or a method is always possible but doing 
so should require approval if the class or method is pervasive and the change affects a key term of 
the language. At the same time, it nearly goes without saying that if a given class or method exists 
only to serve implementation purposes, the constraint doesn’t apply and you can rename it without 
restrictions.

Let’s briefly look at an example that refers to the code we’ll be examining in more detail in 
Chapter 8, “Introducing the domain model,” and beyond. The domain is an online store, and the use-
case we focus on is the placement of an order. 

Each order is reasonably associated with a record in a table and with a column that indicates the 
current state. The order ID is used to track ordered items from another table. Processing the order 
requires first a check to see if there are pending or delayed payments from the same customer. Next, 
the process requires a check on goods in store and, finally, a call to the shipping and payment web 
services and the creation of a new order record. 

Here’s a more domain-driven way of expressing the same use-case. As you can see, the description 
is more concise and uses fewer technical details. The terms used should also reflect the jargon used 
within the organization. Here’s an example.

As a registered customer of the I-Buy-Stuff online store, I can redeem a voucher for an order I place 
so that I don’t actually pay for the ordered items myself. 

There are a few business terms here—registered customer, order, order items, and voucher. There 
are also actions, such as placing an order and redeeming a voucher. All these belong to the ubiqui-
tous language glossary. In particular, the term voucher here is the term used in the business, and once 
it is added to the ubiquitous language, nobody will ever think of using synonyms (such as coupon, gift 
card, credit note and so forth).

When coding the use-case, a developer will likely create a class to access the database table of 
orders, and instances of the order class will be materialized from the database and saved back there. 
However, these are just technical details that don’t belong in the business context. As such, those 
details should be buried in the folds of the implementation, limited to technical meetings between 
developers, and never surface in official communication with business people. 

This is the essence of the ubiquitous language.
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Bounded contexts

In the beginning, you assume one indivisible business domain and start processing requirements to 
learn as much as possible about it and build the ubiquitous language. As you proceed, you learn how 
the organization works, which processes are performed, how data is used and, last but not least, you 
learn how things are referred to. 

Especially in a large organization, the same term often has different meanings when used by 
different people, or different terms are used to mean the same thing. When this happens, you 
probably crossed the invisible boundaries of a subdomain. This probably means that the business 
domain you assumed to be one and indivisible is, in reality, articulated in subdomains. 

In DDD, a subdomain in the problem space is mapped to a bounded context in the solution space. 

A bounded context is an area of the application that requires its own ubiquitous language and its 
own architecture. Or, put another way, a bounded context is a boundary within which the ubiquitous 
language is consistent. A bounded context can have relationships to other bounded contexts.

Important  Subdomains and bounded contexts are concepts that sometimes appear to be 
similar and can be confusing. However, both concepts can be easily understood by looking 
at the difference between a domain and domain model, which is probably easier to grasp. 
The domain represents the problem to solve; the domain model is the model that imple-
ments the solution to the problem. Likewise, a subdomain is a segment of the domain, and 
a bounded context is a segment of the solution. 

Discovering contexts
Without flying too high conceptually, consider a simple booking system. The front-end web site is 
certainly a subdomain. Is it the only one? Most likely, the system needs a back-office panel to put 
content on the site and perhaps extract statistics. This probably makes for another subdomain.

In the current draft of the top-level architecture, we have two candidate bounded contexts. 

There are two additional aspects vital to investigate: the boundaries of each bounded context and 
their relationships. 

Marking boundaries of contexts 
Sometimes it’s relatively easy to split a business domain into various subdomains, each representing a 
bounded context to render with software. 

But is it splitting or is it partitioning? There is a huge difference between the two.

In the real world, you don’t often see business domains that can be easily partitioned in child 
domains with nearly no overlapping functions and concepts. So in our experience, it is more a case of 
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splitting than just partitioning. The problems with splitting a business domain are related to marking 
the boundaries of each context, identifying areas of overlap, and deciding how to handle those areas. 

As mentioned, the first concrete clue that you have a new subdomain is when you find a new term 
used to express a known concept or when the same term is found to have a second meaning. This 
indicates some overlapping between subdomains. (See Figure 5-3.)

Payment

Backoffice

Member

Booking

Court

Guest

Fee Club site

FIGURE 5-3  Two business contexts with some overlapping. 

The business domain is made of a subdomain (say, club site) that, among other features, offers the 
booking of courts. The booking of courts involves members and payments. The back office is a dis-
tinct but related subdomain. Both subdomains deal with members and payments, even though each 
has a different vision of them.

The first decision to be made is whether you need to treat those subdomains separately and, if so, 
where you draw the boundaries. 

Splitting a domain into bounded contexts
Working on a single, all-encompassing model is always dangerous, and the level of complexity grows 
as the number of entities and their relationships grow. The resulting graph can be crowded; entities 
and related code can become quite coupled, and it doesn’t take much to serve up the perfect Big Ball 
of Mud. 

Splitting is always a good idea, especially when this leads you to creating software subsystems that 
reflect the structure of the organization. The back-office system, for example, will be used by different 
people than the club site. 
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Let’s say you go for distinct bounded contexts. 

How would you deal with overlapping logic? The concept of “club member” exists in both contexts, 
but in the back-office context the club member has nearly no behavior and is a mere container of 
personal and financial data. In the club-site context, on the other hand, the member has some specific 
behaviors because she can book a court or add herself to an existing booking. For doing so, the 
Member entity will just need an ID, user name, and possibly an email address. 

In general, having a single, shared definition of an entity will have the side effect of padding the 
definition with details that might be unnecessary in some of the other contexts. With reference to 
Figure 5-3, family members are not necessary to book a court from the club site, but they are relevant 
to calculating the yearly fee.  

The fundamental point to resolve when conceptual overlapping is detected is which of the 
following options is more appropriate:

•	 A single bounded context that includes all entities 

•	 A distinct bounded context with a shared kernel of common entities

•	 A distinct bounded context with distinct definitions of common entities

The options are graphically summarized in Figure 5-4.
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FIGURE 5-4  Resolving the conceptual overlapping of contexts.
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There’s also a fourth option. Is the entire model entirely inadequate and in need of refinement so 
that in the end you can have partitions instead of subsets? 

That’s what it means to mark the boundaries of bounded contexts.

By the way, it’s not us dodging the issue by not taking a clear stand on a particular option. It’s 
that, well, it just depends. It depends on other information about the domain. It depends on time and 
budget. It depends on skills. It also depends on your personal view of the domain.

That’s what makes it so fun to mark the boundaries of bounded contexts.

Bounded context and the organization
The number of contexts and relationships between bounded contexts often just reflect the physical 
organization of the enterprise. It is common to have a bounded context for each business department 
such as human resources, accounting, sales, inventory, and the like. 

Different development teams are typically assigned to each bounded context, and different 
artifacts are generally produced, scheduled, and maintained. 

The overlapping of concepts is quite natural in business domains; speaking in general, the best 
way to handle such overlapping is to use different bounded contexts, as shown in the third option of 
Figure 5-4.

Just sharing entities between development teams, as a common kernel, might prefigure risky 
scenarios, where changes of team 1 might break the code of team 2 and compromise the integ-
rity of the model. Shared kernels work great if an effective shared kernel exists—such as different 
organizations just using the same entities. 

Otherwise, it’s the first step toward a true mess. 

Context mapping
Bounded contexts are often related to each other. In DDD, a context map is the diagram that provides 
a comprehensive view of the system being designed. In the diagram, each element represents a 
bounded context. The diagrams in Figure 5-4 are actually all examples of a context map.

Relational patterns
Connections between elements of a context map depict the relationship existing between bounded 
contexts. DDD defines a few relational patterns.

Relational patterns identify an upstream context and downstream context. The upstream context 
(denoted with a u) is the context that influences the downstream and might force it to change. 
Denoted with d, the downstream context is passive and undergoes changes on the upstream context. 
Table 5-1 lists DDD relational patterns.
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TABLE 5-1  DDD relational patterns

DDD relational pattern Description

Anticorruption layer (ACL) Indicates an extra layer of code that hides to the downstream context any changes 
implemented at some point in the upstream context. More on this later.

Conformist The downstream context just passively conforms to whatever model the upstream 
context comes up with. Typically, the conformist pattern is a lighter approach than ACL 
and the downstream context also receives data it might not need. 

Customer/Supplier Two contexts are in a classic upstream/downstream relationship, where the supplier is 
the upstream. The teams, however, work together to ensure that no unnecessary data 
is sent. This aspect marks the difference with Conformist.

Partnership Two contexts are developed independently; no code is shared, but both contexts are 
upstream and downstream at the same time. There’s a sort of mutual dependency 
between the two, and one can’t just ignore the other for delivery and change.

Shared kernel Two contexts share a subset of the model. Contexts are therefore tightly coupled, and 
no team can change the shared kernel without synchronizing with the other team.

Figure 5-5 is the graphical representation of a context map. Each block represents a bounded 
context. The Sales block is connected to the upstream External Service block, and an ACL ensures 
that changes in the service don’t force changes in the Sales context. The upstream and downstream 
contexts are labeled with the u and d marks.
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Forecasts
(external)

Core
Domain

Backoffice
Club site

Customer/Supplier

Customer/Supplier

Partner

Anti-corruption
layer

u

d

uu

dd

FIGURE 5-5  A sample context map showing some of the DDD relational patterns.

Context mapping is part of the strategic design of the solution. It doesn’t produce code or 
deployable artifacts, but it can be immensely helpful to grab a better understanding of the system. 

Note  Many DDD experts advise that because software ultimately mirrors the structure 
of business organizations, a context map should ideally reflect the organization of the 
enterprise. Sometimes, it turns out that the ideal context map for the system to build 
doesn’t actually reflect the real organization. When this happens—and it does happen—
well, things are not going to be easy!
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Anticorruption layers
Relationships between bounded contexts pose the problem of how the development of one context 
influences the other over time. The safest way of dealing with related contexts is by creating an 
anticorruption layer (ACL). 

It’s the safest way because all the changes required to keep the contexts in sync when one 
undergoes changes are isolated in the anticorruption layer, as shown in Figure 5-6.

Weather
Forecasts
(external)

Club site Anti-corruption
layer

FIGURE 5-6  The anticorruption layer is an interfacing layer that separates two connected contexts. 

The interface that the ACL exposes to the downstream context (the club site in this case) is an 
invariant. The ACL, in fact, absorbs the changes in the upstream context (Weather Forecasts ser-
vice in this case) and does any conversion work that might be required. Updating the ACL when the 
upstream context changes usually requires less work and is less obtrusive than updating the club-site 
context. 

The ACL is particularly welcome when one of the bounded contexts encapsulates a chunk of legacy 
code or just an external service that none of the teams building the system has control over.

Giving each context its own architecture
Each bounded context is a separate area of the overall application. You are forced to use DDD 
strategic modeling to implement each bounded context, and not only because you identified the 
bounded context using a DDD methodology. As an architect, you should validate the context map 
and then focus on each context separately.

For example, the Core Domain area of the application might be implemented using a Domain 
Model approach. The club-site context can be an ASP.NET MVC application with a layered back end 
that uses an application layer on top of MVC controllers. The application layer uses services in the 
Core Domain context for changing the state of the application. Finally, a simpler subsystem like Back 
Office can be efficiently given a data-driven design and result in a simple two-layer architecture 
with only presentation and data access. (Concretely, this could be a Web Forms application using 
DataGrids.)

Another option might be separating the front end of the club site from, say, the booking module. 
You could use ASP.NET MVC for the booking module and a CMS (for example, WordPress) for the few 
pages with news, photos, and static content.

Mixing multiple supporting architectures in the realm of a single system is far from wrong. 
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Common supporting architectures
The process of identifying business contexts already reveals a lot about the nature of the domain and 
subdomains. To an expert eye that knows about technologies and frameworks, a good candidate 
solution appears immediately for a given context. 

Just as a quick glossary, Table 5-2 lists the most commonly used supporting architectures you 
might find in the industry.

TABLE 5-2  A list of supporting architectures.

Supporting architecture Brief description

Multilayer architecture Canonical segmentation based on presentation, business, and data layers. The 
architecture might come in slightly different flavors, such as an additional appli-
cation layer between the presentation and business layers and with the business 
layer transformed into a domain layer by the use of a DDD development style.
Layered architecture is just another name for a multilayer architecture. We’ll be 
using the term layered architecture instead of multilayer in the rest of this chapter 
and throughout the book.

Multitier architecture Segmentation that is in many ways similar to that of a multilayer architecture 
except that now multiple tiers are involved instead of layers. (More on the possible 
downsides of a layer-to-tier mapping in a moment.)  

Client/server architecture Classic two-layer (or two-tier) architecture that consists only of presentation plus 
data access.

Domain Model Layered architecture based on a presentation layer, an application layer, a domain 
layer, and an infrastructure layer, designed in accordance with the DDD develop-
ment style. In particular, the model is expected to be a special type of object 
model.

Command-Query Responsibility 
Segregation (CQRS)

Two-fold layered architecture with parallel sections for handling command and 
query sides. Each section can be architected independently, even with a separate 
supporting architecture, whether that is DDD or client/server.

Event sourcing Layered architecture that is almost always inspired by a CQRS design that focuses 
its logic on events rather than plain data. Events are treated as first-class data, and 
any other queryable information is inferred from stored events.

Monolithic architecture The context is a standalone application or service that exposes an API to the rest 
of the world. Typical examples are autonomous web services (for example, Web 
API host) and Windows services. Yet another example is an application hosting a 
SignalR engine.

As we write this chapter, another architectural style is gaining in popularity: micro-services. At 
first, micro-services don’t sound like a completely new idea and are not really presented like that. 
There’s a lot of service-oriented architecture (SOA) in micro-services, such as the fact that services are 
autonomous and loosely coupled. However, micro-services also explicitly call out for lightweight HTTP 
mechanisms for communication between processes. For more information on micro-services, you can 
check out the Martin Fowler’s site at http://martinfowler.com/articles/microservices.html.

The reason why we mention micro-services here is that, abstractly speaking, the overall idea of 
micro-services weds well with identifying business contexts, discovering relationships, and giving each 
its own architecture and autonomous implementation. Micro-services, therefore, can be yet another 
valid entry in Table 5-2.

http://martinfowler.com/articles/microservices.html
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Layers and tiers might not be interchangeable 
Layers and tiers are not the same. A layer is a logical container for different portions of code; a tier is 
a physical container for code and refers to its own process space or machine. All layers are actually 
deployed to a physical tier, but different layers can go to different tiers.

That’s precisely the point we want to raise here.

In Table 5-2, we listed multilayer architecture and multitier architecture. Admittedly, they look the 
same except that one separates blocks of code logically and the other physically. We suggest, how-
ever, that you consider those architectures as different options to be evaluated individually to see if 
they fit in the solution.

The error that many system integrators made in the past was to deploy a multilayer architecture as 
a multitier architecture. In doing so, they matched layers to tiers one-to-one. This led to segregating 
in different tiers the presentation layer of a Web Forms application and the business layer using WCF, 
Web services or even, in the old days, .NET Remoting. It apparently looked like a better architecture, 
but it created latency between tiers and had a deep impact on the performance of the system. In 
addition, system maintenance (for example, deploying updates) is harder and more expensive in a 
multitier scenario. 

Tiers are heavy but can be used to scale the application. However, just having tiers doesn’t 
automatically ensure your application is faster. Generally speaking, we tend to prefer the deployment 
of the entire application stack on a single tier, if that’s ever possible.

The layered architecture

In the rest of this chapter, we’ll provide an overview of the layered architecture—the multilayer 
architecture introduced in Evans’ book about DDD. The layered architecture is probably the most 
common type of architecture that results from DDD analysis.

Origins of the layered architecture
In the 1990s, most computing scenarios consisted of one insanely powerful server (at least for the 
time it was) and a few far slower personal computers. Software architecture was essentially client/
server: the client focused on data presentation and commands, and the server mostly implemented 
persistence. Any business logic beyond basic CRUD (Create, Read, Update, Delete) was stuffed in 
stored procedures to further leverage the capacity of the insanely powerful server machine.  

Over the years, we all managed to take larger and larger chunks of the business logic out of stored 
procedures and place them within new components. This originated the classic (up to) three-segment 
model, which is shown in Figure 5-7. Note that the figure also shows a direct connection between the 
presentation and data layers in memory of SQL data binding. 
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Presentation
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Data
Layer

FIGURE 5-7  The classic three-segment architecture.

Note that we’re using the term segment here as a general way to interchangeably refer to both 
tiers and layers.

From what we have seen, learned, and done ourselves, we’d say that the largest share of systems 
inspired by the three-segment architecture is actually implemented as a layered system deployed on 
two physical tiers. For a website, for example, one tier is the ASP.NET application running within the 
Internet Information Services (IIS) process space and another was the Microsoft SQL Server service 
providing data. (See Figure 5-8.)

Presentation

Business

Data

IIS

DB

FIGURE 5-8  Common deployment of a multilayer ASP.NET application.

For the most part, the data model of any three-segment architecture is the relational data model 
of the data store. The growing complexity of applications has led developers to a more conceptual 
view of that data. As patterns like the Domain Model and approaches like Domain-Driven Design 
(DDD) were developed and exercised, the internal structure of a layered architecture evolved quite a 
bit. (See Figure 5-9.)
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FIGURE 5-9  A more modern version of a layered architecture.

Roughly speaking, the presentation layer is the same in both architectures and the infrastructure 
layer includes the data layer of Figure 5-7 but is not limited to that. The infrastructure layer, in 
general, includes anything related to any concrete technologies: data access via O/RM tools, imple-
mentation of IoC containers, and the implementation of many other cross-cutting concerns such as 
security, logging, caching, and more.

The business layer exploded into the application and domain layer. Upon a more thoughtful look, 
the layered architecture of Figure 5-9 results from a better application of the separation of concerns 
(SoC) principle. In systems inspired by the schema of Figure 5-7, the actual business logic is sprinkled 
everywhere, mostly in the business logic but also in the presentation and data layers.

The layered architecture of Figure 5-9 attempts to clear up such gray areas. 

Note  Repositories are generally placed in the domain layer as far as their interfaces are 
concerned. The actual implementation, however, usually belongs to the infrastructure layer.

Presentation layer
The presentation layer is responsible for providing some user interface (UI) to accomplish any tasks. 
Presentation is a collection of screens; each screen is populated by a set of data and any action that 
starts from the screen forwards another well-defined set of data. 

Generally speaking, we’ll refer to any data that populates the presentation layer as the view model. 
We’ll refer to any data that goes out of the screen triggering a back-end action as the input model. 
Although a logical difference exists between the two models, most of the time the view model and 
input model coincide. (See Figure 5-10.)
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FIGURE 5-10  Describing the data that goes into and out of presentation screens.

Application layer
As we see it, the application layer is an excellent way to separate interfacing layers such as 
presentation and domain. In doing so, the application layer contributes immensely to the clarity of 
the entire design. In the past, a typical gray area of many architectures was the placement of the part 
of the business code that needed to be aware of the presentation. 

The application layer is the additional layer that reports to the presentation and orchestrates any 
further business action. The application layer is where you orchestrate the implementation of use-cases.

Entry point in the system’s back end
Each interactive element of the user interface (for example, buttons) triggers an action in the back 
end of the system. In some simple scenarios, the action that follows some user’s clicking takes just one 
step to conclude. More realistically, instead, the user’s clicking triggers something like a workflow. 

According to Figure 5-9, the application layer is the entry point in the back end of the system and 
the point of contact between the presentation and back end. The application layer consists of meth-
ods bound in an almost one-to-one fashion to the use-cases of the presentation layer. Methods can 
be grouped in any way that makes sense to you. 

For example, in an ASP.NET MVC application, we expect the application layer classes to go hand 
in hand with controllers. The HomeController class, therefore, will have injected some HomeCon-
trollerService worker class. Here’s a quick sample:

public class HomeController 
{ 
    private readonly IHomeControllerService _service; 
    public HomeController(IHomeControllerService service) 
    { 
       _service = service; 
    } 
    public ActionResult Index() 
    { 
       var model = _service.FillHomePage( /* input model */ ); 
       return View(model); 
    } 
    ... 
}
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The mechanism of injection can happen at your leisure. It can happen via Unity or any other 
Inversion of Control (IoC) container, or it can be done through poor man’s dependency injection, as 
shown here:

public class HomeController 
{ 
    private readonly IHomeControllerService _service; 
    public HomeController() : this(new HomeControllerService()) 
    { 
    } 
    public HomeController(IHomeControllerService service) 
    { 
       _service = service; 
    } 
}

In a nutshell, the application layer is responsible for the implementation of the application’s 
use-cases. All it does is orchestrate tasks and delegate work to other layers down the stack. 

We think there can be two flavors of an application layer: inside or outside the business logic. 
Neither is preferable to the other; it’s all about how you envision the system.

Orchestrating the business logic
In general, the application layer is bound one-to-one to the presentation with the notable exception 
of unattended systems. The structure of the layer is driven by the actionable controls in the vari-
ous user interface screens. With reference to Figure 5-5, this flavor of application layer lives in the 
club-site context and orchestrates workflows involving components in the Core Domain and external 
services. Key aspects of this application layer are these:

■■ It might or might not be consumable by different front ends because, for example, a mobile 
front end might have slightly different use-cases than the web front end or ends.

■■ It can be stateful at least as far the progress of a UI task is concerned.

■■ It gets its input from the presentation and sends a view model back as shown in Figure 5-10.

The application layer holds references to the domain layer and infrastructure layer. Finally, the 
application layer has no knowledge of business rules and doesn’t hold any business-related state 
information.  

As the name suggests, the application layer is just application specific. If our aforementioned 
booking system must be consumed by a website and a mobile application, we’re going to have two 
distinct application layers—one on the site and one either within the mobile application or exposed 
as an HTTP service. Are these layers actually different? 

Well, they might be different; and if they’re different, different layers should be implemented. To 
continue with the booking example, the application layer of the website might redirect to the credit 
card site to pay and then proceed with the persistence of the booking data. The application layer of 
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the mobile app might use in-app payment features or just use stored payment information and pass 
them along in some way to the domain layer.

Note  The DDD jargon uses the term application services to refer to services that sit atop 
the domain layer and orchestrate business use-cases.  

Domain layer
The domain layer hosts the entire business logic that is not specific to one or more use-cases. In other 
words, the domain layer contains all business logic that remains once you have compiled the applica-
tion layer. 

The domain layer consists of a model (known as the domain model) and possibly a family of 
services. The nature of the model can vary. Most of the time, it is an entity-relationship model, but it 
can be made of functions too. Let’s stick to what appears to be the most common scenario. So let’s 
say that at the end of the day an entity model is an object model. 

However, in an entity model, constituent classes usually follow certain conventions. We’ll return in 
detail to domain modeling and DDD conventions for entities in upcoming chapters. For now, it suf-
fices to say that entities in the model are expected to expose both data and behavior. A model with 
entities devoid of any significant behavior—that is, merely data structures—form an anemic domain 
model.

The ultimate goal of a domain model is to implement the ubiquitous language and express the 
actions that business processes require. In this regard, exposing some behavior tends to be more 
relevant than holding some data.

Along with an entity model, the domain model layer features domain services. 

Domain services are pieces of domain logic that, for some reason, don’t fit into any of the existing 
entities. A domain service is a class, and it groups logically related behaviors that typically operate on 
multiple domain entities. A domain service often also requires access to the infrastructure layer for 
read/write operations. In the aforementioned club-site context, a domain service can be the code to 
book a court:

void BookCourt(Court court, ClubMember member)

Court and ClubMember are domain entities, and the method BookCourt knows how to retrieve and 
apply due policies.

Infrastructure layer
The infrastructure layer is anything related to using concrete technologies, whether it is data 
persistence (O/RM frameworks like Entity Framework), specific security API, logging, tracing, IoC 
containers, caching, and more. 
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The most prominent component of the infrastructure layer is the persistence layer—which is nothing 
more than the old-faithful data access layer, only possibly extended to cover a few data sources other 
than plain relational data stores. The persistence layer knows how to read and/or save data. 

The data can reside on a relational server as well as in a NoSQL data store or in both. The data 
can be accessible through web services (for example, CRM or proprietary services) or live in the file 
system, cloud, or in-memory databases such as Memcached, ScaleOut, or NCache.

Summary

We dare say that the software industry moved from one extreme to the other. Decades ago, writing 
software was inspired by the slogan “model first, code later.” This led to considerable efforts to have 
a big comprehensive design up front. There’s nothing wrong with an upfront design, except that it is 
like walking on water. It’s definitely possible if requirements, like water, are frozen. 

Maybe because of global warming, requirements hardly ever freeze these days. Subsequently, 
whomever embarks in an upfront design risks sinking after only a few steps. 

Mindful of failures of upfront design, architects and developers moved in the opposite direction: 
code first, model later. This philosophy, although it is awkward, moves things ahead. It just works, in 
the end. Adopting this approach makes it hard to fix things and evolve, but it delivers working solu-
tions as soon as possible, and if something was wrong, it will be fixed next. Like it or not, this model 
works. As our friend Greg Young used to write in his old posts, you should never underestimate the 
value of working software. 

What we’re trying to say, however, is that some middle ground exists, and you get there by 
crunching knowledge and deeply understanding the domain. Understanding the domain leads to 
discovering an appropriate architecture. However, it doesn’t have to be a single, top-level architecture 
for the entire application. As you recognize subdomains, you can model each to subapplications, each 
coded with the most effective architecture. If it still sounds hard to believe, consider that it’s noth-
ing more than the old motto Divide-et-Impera that—historians report—helped Julius Caesar and 
Napoleon to rule the world.

Finishing with a smile

Developers sometimes enter into God mode and go off on a tangent, thus losing perspective on their 
code. We try to see models everywhere and to see each model as a special case. This makes soft-
ware design cumbersome at times, and funny. For more tongue-in-cheek examples of Murphy’s law 
beyond the following ones, have a look at http://www.murphys-laws.com:

■■ All generalizations are false, including this one.

■■ The weakest link is the most stable one.

■■ Never underestimate the value of working software.

http://www.murphys-laws.com
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C H A P T E R  1 0

Introducing CQRS

Beware of false knowledge; it is more dangerous than ignorance. 
—George Bernard Shaw

As discussed in Chapter 5, “Discovering the domain architecture,” there are two distinct but 
interoperating parts in Domain-Driven Design (DDD). The analytical part is about discovering the 

top-level architecture, using the ubiquitous language to dig out bounded contexts and their relation-
ships. The strategic part is about giving each bounded context the most appropriate architecture. 
A decade ago, the standard architecture for a bounded context was a layered architecture, with a 
domain layer made of an object-oriented, all-encompassing model and domain services. The effort of 
developers was then to crunch knowledge about the domain and render it through a web of inter-
connected objects with state and behavior. The model was unique and intended to fully describe the 
entire business domain. 

It didn’t look, in the beginning, like a thing that’s far easier to say than do. 

Some projects that embraced DDD eventually worked; other projects failed. Success stories can 
be told too, but many people still believe that DDD is hard to do even though it can possibly deliver 
significant benefits. The point is that, for many people, the perception that DDD holds benefits is 
much less concrete than the perception of the damage that might result from using DDD and failing. 

Is there anything wrong with DDD?

The analytical part of DDD has little to do with code and software design. It’s all about figuring 
out the top-level architecture while using ad hoc tools like the ubiquitous language. This is an excel-
lent approach to take for just about any project. In complex scenarios, it helps to understand the big 
picture and lay out modules and services. In simple scenarios, it boils down to having just one context 
and a single module to build.  

The critical part of the original vision of DDD is the suggested architecture for a bounded context. 
First and foremost, the layered architecture with an object-oriented model and services is just one 
option, and simpler solutions—for example, Content Management System (CMS), Customer Relation-
ship Management (CRM), coupled CRUD, and two-layer systems—certainly are not banned as long as 
they fit the needs. Second, even when the layered architecture with a domain layer appears to be the 
ideal solution for a bounded context, the model doesn’t have to be object-oriented, nor does it have 
to be an all-encompassing model for the entire context.
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In this chapter, we introduce a pattern that splits the domain model in two, actually achieving 
much more than just separation of concerns.

Separating commands from queries

Most of the difficulties that early adopters of DDD faced were in designing a single model to take care 
of all aspects of the domain. Generally speaking, any actions performed on a software system belong 
to one of the following two categories: query or command. In this context, a query is an operation 
that doesn’t alter in any way the state of the system and just returns data. The command, on the other 
hand, does alter the state of the system and doesn’t return data, except perhaps for a status code or 
an acknowledgment.

The logical separation that exists between queries and commands doesn’t show up clearly if the 
two groups of actions are forced to use the same domain model. For this reason, a new supporting 
architecture emerged in the past few years called CQRS, which is short for Command/Query 
Responsibility Segregation.

Generalities of the CQRS pattern
Since the days of ancient Rome, Divide et Impera has been an extremely successful approach to 
actually getting things done. Roman ruler Julius Caesar won a number of battles fighting against the 
entire enemy army, but when things got more complicated, he implemented a strategy of leading his 
enemy into dividing forces across the battlefields so that he could fight against a smaller army.   

Similarly, the CQRS pattern is based on a simple, almost commonplace, idea: queries and 
commands (sometimes also referred to as reads and writes) are very different things and should be 
treated separately. Yet, for a long time, developers—like short-sighted commanders—insisted on 
having the same conceptual model for both queries and commands in their systems.

Especially in complex business scenarios, a single model soon becomes unmanageable. It doesn’t 
just grow exponentially large and complex (and subsequently absorb time and budget), it also never 
ends up working the way it should. 

Note  We wouldn’t be too surprised to find out at some point that developers insisted 
for years on having a single model because having two distinct models might seem like a 
negative statement about their ability to work out a single, all-encompassing model. Our 
egos grow big sometimes and obscures a proper perspective on things! 

From domain model to CQRS
In a way, CQRS is a form of lateral thinking resulting from the difficulty of finding a well-conceived 
model for complex domains. If the Domain Model turns out to be expensive and objectively complex, 
are we sure we’re approaching it right? That was probably the question that led to investigating and 
formalizing a different pattern.
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At the end of the day, CQRS uses two distinct domain layers rather than just one. The separation 
is obtained by grouping operations that are queries in one layer and operations that are commands 
in another. Each layer, then, has its own architecture and its own set of services dedicated to only 
queries and commands, respectively. Figure 10-1 captures the difference.

Infrastructure layer Infrastructure layer

Domain layer Domain
layer

Application layer Application
layer

Presentation layer Presentation layer

Data
access

+
DTO

Commands Queries

Domain Model CQRS

FIGURE 10-1  Visual comparison between Domain Model and CQRS.

In CQRS, it is not a far-fetched idea to have the query stack based exclusively on SQL queries and 
completely devoid of models, an application layer, and a domain layer. Having a full domain-model 
implementation in the query stack is not common. In general, the query stack should be simplified to 
the extreme. In addition, typically a CQRS approach has a different database for each side.  

Structure of the query and command domain layers 
As surprising as it might sound, the simple recognition that commands and queries are two different 
things has a deep impact on the overall architecture of the system. In Figure 10-1, we split the domain 
layer into two blocks. 

Are they just two smaller and simpler versions of a domain layer like we discussed in the past two 
chapters? 

The interesting thing is that with the architecture of the system organized as two parallel branches 
as shown in Figure 10-1, the requirement of having a full-fledged domain model is much less strict. 
For one thing, you might not need a domain model at all to serve queries. Queries are now just data 
to be rendered in some way through the user interface. There’s no command to be arranged on 
queried data; as such, many of the relationships that make discovering aggregates so important in a 
classic domain model are unnecessary. The model for the domain layer of the query side of a CQRS 
system can be simply a collection of made-to-measure data-transfer objects (DTOs). Following this 
consideration, the domain services might become just classes that implement pieces of business logic 
on top of an anemic model. 
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Similar things can be said for the domain layer of the command side of the system. Depending 
on the commands you actually implement, a classic domain model might or might not be necessary. 
In general, there’s a greater chance you might need a domain model for the command side because 
here you express business logic and implement business rules. At any rate, the domain model you 
might have on the command side of a CQRS system is likely far simpler because it is tailor-made for 
the commands. 

In summary, recognizing that queries and commands are different things triggers a chain reaction 
that sets the foundation for domain modeling, as discussed in the past two chapters. We justified 
domain models as the ideal way to tackle complexity in the heart of software. Along the way, we 
ended up facing a good deal of complexity and thought it was, for the most part, complexity that is 
inherent to the business domain. Instead, most of that complexity results from the Cartesian product 
of queries and commands. Separating commands from queries can reduce complexity by an order of 
magnitude.

Note  Just in case you were wondering, a Cartesian product is a mathematical operation 
that, given two or more sets, returns a new and larger set made of all ordered pairs (or 
tuples), where each element belongs to a different set. The cardinality of the resulting set is 
the product of the cardinalities of all input sets. 

CQRS is not a top-level architecture
Unlike DDD, CQRS is not a comprehensive approach to the design of an enterprise-class system. 
CQRS is simply a pattern that guides you in architecting a specific bounded context of a possibly 
larger system. Performing a DDD analysis based on a ubiquitous language and aimed at identifying 
bounded contexts remains a recommended preliminary step.

Next, CQRS becomes a valid alternative to Domain Model, CRUD, and other supporting 
architectures for the implementation of a particular bounded context. 

Benefits of CQRS
The list of benefits brought about by using CQRS to implement a bounded context is not particularly 
long. Overall, we think that there are essentially two benefits. Their impact on the solution, though, is 
dramatic. 

Simplification of the design
As our interactions with the Domain Model taught us, most of the complexity you face in a software 
system is usually related to operations that change the state of the system. Commands should 
validate the current state and determine whether they can run. Next, commands should take care of 
leaving the system in a consistent state. 
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Finally, in a scenario in which reading and writing operations share the same representation 
of data, it sometimes becomes hard to prevent unwanted operations from becoming available in 
reading or writing. We already raised this point in the last chapter when we pointed out that it’s 
nearly impossible to give, say, a list of order items a single representation that fits in both the query 
and command scenarios. Anyway, we’ll return to this aspect in a moment with a detailed example.

We stated in an earlier note that the complexity of the Domain Model results from the Cartesian 
product of queries and commands. If we take the analysis one step further, we can even measure by 
a rule of thumb the amount of reduced complexity. Let’s call N the complexity of queries and com-
mands. In a single domain model, where requirements and constraints of queries affect commands 
and vice versa, like in a Cartesian product, you have a resulting complexity of NxN. By separating 
queries from commands and treating them independently, all you have is N+N. 

Potential for enhanced scalability
Scalability has many faces and factors; the recipe for scalability tends to be unique for each system 
you consider. In general, scalability defines the system’s ability to maintain the same level of perfor-
mance as the number of users grows. A system with more users performs certain operations more 
frequently. Scalability, therefore, depends on the margins that architects have to fine-tune the system 
to make it perform more operations in the same unit of time. 

The way to achieve scalability depends on the type of operations most commonly performed. If 
reads are the predominant operation, you can introduce levels of caching to drastically reduce the 
number of accesses to the database. If writes are enough to slow down the system at peak hours, you 
might want to consider switching from a classic synchronous writing model to async writes or even 
queues of commands. 

Separating queries from commands gives you the chance to work on the scalability aspects of both 
parts in total isolation. 

Note  A good example of what it means to treat reads and writes separately is given by a 
cloud platform such as Microsoft Azure. You deploy query and command layers as distinct 
web or worker roles and scale them independently, both in terms of instances and the size 
of each instance. Similarly, when reads are vastly predominant, you can decide to offload 
some pages to a distinct server with a thick layer of caching on top. The ability to act 
on query and command layers separately is invaluable. Note also that the investment in 
Microsoft Azure is focused more on websites, WebJobs, and even mobile services rather 
than the original web roles and worker roles. In particular, WebJobs is more of a light-
weight approach than web roles and worker roles.
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Pleasant side effects of CQRS
A couple of other pleasant side effects of CQRS are worth noting here. First, CQRS leads you to a deep 
understanding of what your application reads and what it processes. The neat separation of modules 
also makes it safe to make changes to each without incurring some form of regression on one or the 
other.

Second, thinking about queries and commands leads to reasoning in terms of tasks and a task-
based user interface, which is very good for end users.

Fitting CQRS in the business layer
Honestly, we don’t think there are significant downsides to CQRS. It all depends in the end on what 
you mean exactly by using CQRS. So far we just defined it as a pattern that suggests you have two 
distinct layers: one filled with the model and services necessary for reading, and one with the model 
and services for commands. What a model is—whether it is an object model, a library of functions, or 
a collection of data-transfer objects—ultimately is an implementation detail.

With this definition in place, nearly any system can benefit from CQRS and coding it doesn’t 
require doing things in a different way. Neither does it mean learning new and scary things. 

Noncollaborative vs. collaborative systems
The point, however, is that CQRS also induces some deeper architectural changes that maximize the 
return in terms of scalability and reduced complexity but that require some investment in learning 
and performing a preliminary analysis. 

In the end, CQRS was discovered by looking for more effective ways to tackle complex systems in 
which multiple actors—both end users and software clients—operate on the data concurrently and 
sophisticated and ever-changing business rules apply. The major proponents of CQRS—Udi Dahan 
and Greg Young—called these systems collaborative systems.

Let’s try to formalize the landmarks of a collaborative system a bit better. 

In a collaborative system, the underlying data can change at any time from the effect of the 
current user, concurrent users connected through various front ends, and even back-end software. 
In a collaborative system, users compete for the same resources, and this means that whatever data 
you get can be stale in the same moment that it is read or even long before it is displayed. One of 
the reasons for this continuous change is that the business logic is particularly complex and involves 
multiple modules that sometimes need to be loaded dynamically. The architect has two main options:

■■ Lock the entire aggregate for the time required to complete any operation.

■■ Keep the aggregate open to change at the cost of possibly showing out-of-sync data that 
eventually becomes consistent. (This is often referred to as eventual consistency.)
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The first option is highly impractical for a collaborative system—the back end would be locked 
while serving a single request at nearly any time, and the throughput would be very low. The sec-
ond option might be acceptable but, if the system is not properly fine-tuned, it can end up giving 
inaccurate results and taking too long a time to respond. 

This is the scenario that led to formalizing CQRS.

CQRS to the rescue
CQRS is not simply about using different domain layers for queries and commands. It’s more about 
using distinct stacks for queries and commands architected by following a new set of guidelines. (See 
Figure 10-2.) 
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FIGURE 10-2  The big picture of the CQRS implementation of a collaborative system.

In the command pipeline, any requests from the presentation layer become a command ap-
pended to the queue of a processor. Each command carries information and has its own handler that 
knows about the logic. In this way, each command is a logical unit that can thoroughly validate the 
state of the involved objects and intelligently decide which updates to perform and which to decline. 
The command handler processes the command just once. Processing the command might generate 
events handled by other registered components. In this way, other software can perform additional 
tasks. One of the common tasks is performing periodical updates of a database cache that exists for 
the sole purpose of the query pipeline.
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When the business logic is extremely sophisticated, you can’t afford to handle commands synchro-
nously. You can’t do that for two reasons:

■■ It slows down the system.

■■ The domain services involved become way too complex, perhaps convoluted and subject to 
regression, especially when rules change frequently.

With a CQRS architecture, the logic can be expressed through single commands that result in 
distinct, individual components that are much easier to evolve, replace, and fix. In addition, these 
commands can be queued if necessary. 

Note  In a CQRS scenario, one-way commands that do not return any response do not 
conceptually exist. They should be modeled as events fired for one or more event handlers 
to handle. 

The query pipeline is quite simple, on the other hand. All it has is a collection of repositories that 
query content from ad hoc caches of denormalized data. The structure of such database cache tables 
(most of the time, plain Microsoft SQL Server tables) closely reflects the data required by the user 
interface. So, for example, if a page requires the customer name while displaying the order details, 
you can arrange to have the ID and name readymade in a cache without having to JOIN every time. 
Furthermore, because the query pipeline is separated, it can offload to a dedicated server at any time.

CQRS always pays the architecture bill
Many seem to think that outside the realm of collaborative systems, the power of CQRS diminishes 
significantly. On the contrary, the power of CQRS really shines in collaborative systems because it 
lets you address complexity and competing resources in a much smoother and overall simpler way. 
There’s more to it than meets the eye, we think.  

In our opinion, CQRS can sufficiently pay your architecture bills even in simpler scenarios, where 
the plain separation between query and command stacks leads to simplified design and dramati-
cally reduces the risk of design errors. You don’t need to have super-skilled teams of developers 
to do CQRS. Quite the opposite: using CQRS enables nearly any team to do a good job in terms of 
scalability and cleanliness of the design. 

Transaction script in the command stack
CQRS is a natural fit in a system dependent on collaboration. However, the benefits of command/
query separation can apply to nearly all systems. 

Most systems out there can be summarized as “CRUD with some business logic around.” In 
these cases, you can just use the Transaction Script (TS) pattern (as discussed in Chapter 7, “The 
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mythical business layer”) in the implementation of the command stack. TS is an approach that has 
you partition the back end of the system—overall, business logic—in a collection of methods out 
of a few container classes. Each method essentially takes care of a command and provides a full 
implementation for it. The method, therefore, takes care of processing input data, invoking local 
components or services in another bounded context, and writing to the database. All these steps take 
place in a single “logical” transaction.

As Fowler said, the glory of TS is in its simplicity. TS is a natural fit for applications with a small 
amount of logic. The major benefit of TS is there’s only minor overhead for development teams in 
terms of learning and performance.  

Note  CQRS suggests—or just makes it reasonable sometimes—to use distinct databases 
for reading and writing. When this happens, the adoption of TS in the organization of the 
business logic raises the problem of figuring out the ideal way to handle eventual consis-
tency. We’ll return to this point in the next chapter about CQRS implementation.

EDMX for the read model
What’s the easiest way to build a data access layer that serves the purposes of the presentation layer 
with no extra whistles and bells? Once you know the connection string to the database to access, all 
you do is create an Entity Framework wrapper in the form of an EDMX designer file in Microsoft Visual 
Studio.

Running the Entity Framework designer on the specified connection string infers an object model 
out of the database tables and relationships. Because it comes from Entity Framework, the object 
model is essentially anemic. However, the C# mechanism of partial classes enables you to add 
behavior to classes, thus adding a taste of object orientation and domain modeling to the results. 

Arranging queries—possibly just LINQ queries—on top of this object model is easy for most 
developers, and it’s effective and reliable. Expert developers can work very quickly with this approach, 
and junior developers can learn from it just as quickly. 

The pragmatic architect’s perspective
Taking the point of view of an architect, you might wonder what the added value of CQRS is in 
relatively simple systems with only a limited amount of business logic.

You set the architecture to define the boundaries of command and query stacks. You pass each 
developer an amount of work that is commensurate to that developer’s actual skills. You still have 
distinct stacks to be optimized independently or even rewritten from scratch if necessary.

In a word, an expert architect has a far better chance to take on the project comfortably, even with 
only junior developers on the team.
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The query stack

Let’s delve a bit deeper into the two pipelines that make up the CQRS architecture. In doing so, 
another key aspect that drives the adoption of CQRS in some highly collaborative systems will emerge 
clearly—the necessity of dealing with stale data. 

The read domain model
A model that deals only with queries would be much easier to arrange than a model that has to 
deal with both queries and commands. For example, a prickly problem we hinted at in Chapter 8, 
“Introducing the domain model,” is brilliantly and definitely solved with the introduction of a read-
only domain model.  

Why you need distinct models
The problem was summarized as follows. The Order class has an Items property that exposes the 
list of ordered products. The property holds inherently enumerable content, but which actual type 
should you use for the Items property? The first option that probably comes to mind is IList<T>. 
It might work, but it’s not perfect. So let’s put ourselves in a Domain Model scenario and assume 
we want to have a single model for the entire domain that is used to support both queries and 
commands. Also, let’s say we use a plain list for the Items property:

public IList<OrderItem> Items { get; private set; }

The private setter is good, but it prevents only users of an Order from replacing it. Any code that 
gets an instance of Order can easily add or remove elements from it. This might or might not be a 
legitimate operation; it depends on the use-case. If the use-case is managing the order, exposing 
order items through a list is just fine. If the use-case is showing the last 10 orders, a list is potentially 
dangerous because no changes to the order are expected.

Important  The domain model is the API of the business domain. Once publicly exposed, 
an API can be invoked to perform any action it allows. To ensure consistency, the API 
should not rely on developers to use it only the right way. If Murphy (of “Murphy’s laws”) 
were a software engineer, he would say something like, “If a developer can call an API the 
wrong way, he will.” 

On the other hand, if you expose the list as a plain enumeration of order items, you have no way 
to create an order and add items to it. In addition, individual items are still modifiable through direct 
access:

public IEnumerable<OrderItem> Items { get; private set; }

Things don’t change even if you use ReadOnlyCollection<T> instead of IEnumerable. A Microsoft 
.NET Framework read-only collection is read-only in the sense that it doesn’t allow changes to the 
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structure of the collection. Furthermore, if the read-only collection is created as a wrapper for a 
regular list, changes to the underlying list do not affect the read-only wrapper. Here’s an example 
where order items are exposed as a read-only collection but methods still make it possible to 
populate the collection:

public class Order 
{ 
    private readonly IList<OrderItem> _items; 
    public Order() 
    { 
        _items = new List<MOrderItem>(); 
    } 
    public ReadOnlyCollection<OrderItem> Items 
    { 
        get 
        { 
            return new ReadOnlyCollection<OrderItem>(_items); 
        } 
    } 
 
    public void Add(int id, int quantity) 
    { 
        _items.Add(new OrderItem(id, quantity)); 
    } 
} 
public class OrderItem 
{ 
    public OrderItem(int id, int quantity) 
    { 
        Quantity = quantity; 
        ProductId = id; 
    } 
    public int Quantity { get; /*private*/ set; } 
    public int ProductId { get; /*private*/ set; } 
}

However, direct access to elements in the collection is still possible—whether it is gained during a 
for-each loop, out of a LINQ query, or by index:

foreach (var i in order.Items) 
{ 
    i.Quantity ++; 
    Console.WriteLine(i); 
}

To prevent changes to the data within the collection, you have to make the setter private. 

This would work beautifully if it weren’t for yet another possible issue. Is it worthwhile to turn the 
OrderItem entity of the domain model into an immutable object? 

Classes in the domain model are modified and made more and more complex because they can be 
used interchangeably in both query and command scenarios. Using the read-only wrapper, ultimately, 
is the first step toward making a read version of the Order entity.
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Note  We are not trying to say that having Items coded as a list is dangerous; instead, 
we just want to point out a consistency hole and a sort of violation of the syntax rules of 
the ubiquitous language. The order displayed for review is not the order created out of a 
request. This is what CQRS is all about.

From a domain model to a read model
When your goal is simply creating a domain model for read-only operations, everything comes easier 
and classes are simpler overall. Let’s look at a few varying points.

The notion of aggregates becomes less central, and with it the entire notion of the domain model 
as explained in Chapter 8. You probably still need to understand how entities aggregate in the model, 
but there’s no need to make this knowledge explicit through interfaces. 

The overall structure of classes is more similar to data-transfer objects, and properties tend to 
be much more numerous than methods. Ideally, all you have are DTOs that map one-to-one with 
each screen in the application. Does that mean that model becomes anemic? Well, the model is 100 
percent anemic when made of just data. An Order class, for example, will no longer have an AddItem 
method. 

Again, there’s no issue with CQRS having a 100 percent anemic read model. Methods on such 
classes can still be useful, but only as long as they query the object and provide a quick way for the 
presentation or application layer to work. For example, a method IsPending on an Order class can still 
be defined as follows:

public bool IsPending() 
{ 
   return State == OrderState.Pending; 
}

This method is useful because it makes the code that uses the Order class easier to read and, more 
importantly, closer to the ubiquitous language.

Designing a read-model façade
The query stack might still need domain services to extract data from storage and serve it up to the 
application and presentation layers. In this case, domain services, and specifically repositories, should 
be retargeted to allow only read operations on the storage. 

Restricting the database context 
In the read stack, therefore, you don’t strictly need to have classic repositories with all CRUD methods 
and you don’t even need to expose all the power of the DbContext class, assuming you’re in an Entity 
Framework Code-First scenario, as described in Chapter 9, “Implementing the domain model,” and as 
it will be used in future chapters.
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In Chapter 9, we had a class wrapping the Entity Framework DbContext and called it 
DomainModelFacade. The structure of the class is shown here:

public class DomainModelFacade : DbContext  
{ 
   public DomainModelFacade() : base("naa4e-09")   
   { 
      Products = base.Set<Product>(); 
      Customers = base.Set<Customer>(); 
      Orders = base.Set<Order>(); 
   } 
 
   public DbSet<Order> Orders { get; private set; }  
   public DbSet<Customer> Customers { get; private set; }  
   public DbSet<Product> Products { get; private set; }  
   ... 
}

The DbSet class provides full access to the underlying database and can be used to set up queries 
and update operations via LINQ-to-Entities. The fundamental step toward a query pipeline is limiting 
the access to the database to queries only. Here are some changes:

public class ReadModelFacade : DbContext  
{ 
   public ReadModelFacade() : base("naa4e-09")   
   { 
      Products = base.Set<Product>(); 
      Customers = base.Set<Customer>(); 
      Orders = base.Set<Order>(); 
   } 
 
   public IQueryable<Customer> Customers 
   { 
       get { return _customers; } 
   } 
 
   public IQueryable<Order> Orders 
   { 
       get { return _orders; } 
   } 
 
   public IQueryable<Product> Products 
   { 
       get { return _products; } 
   } 
   ... 
}

Collections to query from the business logic on are now exposed via IQueryable interfaces. We 
said that the notion of aggregates loses focus in a read model. However, queryable data in the read-
model façade mostly corresponds to aggregates in a full domain model.
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Adjusting repositories
With a read-model façade, any attempt to access the database starts with an IQueryable object. You 
can still have a set of repository classes, populate them with a bunch of FindXxx methods, and use 
them from domain services and the application layer. 

In doing so, you’ll certainly run into simple situations such as just needing to query all orders 
that have not been processed two weeks after they were placed. The FindXxx method can return a 
collection of Order items:

IEnumerable<Order> FindPendingOrderAfter(TimeSpan timespan);

But there are also situations in which you need to get all orders whose total exceeds a threshold. 
In this case, you need to report order details (like ID, date of creation, state, payment details) as well 
as customer details (at least the name and membership status). And, above all, you need to report the 
total of the order. There’s no such type in the domain; you need to create it. OK, no big deal: it’s just a 
classic DTO type: 

IEnumerable<OrderSummary> FindOrdersBeyond(decimal threshold);

All is good if the OrderSummary DTO is general enough to be used in several repository queries. 
If it is not, you end up with too many DTO classes that are also too similar, which ultimately also 
poses a problem with names. But beyond the name and quantity of DTOs, there’s another underlying 
issue here: the number of repository methods and their names and implementation. Readability and 
maintainability are at stake. 

A common way out is leaving only common queries as methods in the repositories that return 
common DTOs and handling all other cases through predicates:

public IEnumerable<T> Find(Expression<Func<T, Boolean>> predicate) 

In this case, though, you’re stuck with using type T, and it might not be easy to massage any 
queried data into a generic DTO within a single method. 

Important  We decided to introduce relevant aspects of CQRS starting from a DDD 
perspective and then discuss issues that arise from using it, as well as what has been done 
to smooth out the rough spots according to the key guidelines of CQRS. 

As far as repositories are concerned, the bottom line is that you don’t likely need them in 
the query stack. The entire data access layer can be articulated through LINQ queries on 
top of some Object/Relational Mapper (O/RM) classes placed directly in the application 
layer. Also, a full-fledged O/RM like Entity Framework sometimes might be overkill. You 
might want to consider a micro O/RM for the job, such as PetaPoco.  
(See http://www.toptensoftware.com/petapoco.) 

Looking ahead to .NET, a better option probably is the upcoming Entity Framework 7, 
which will be a lot more lightweight and aligned with ASP.NET vNext. 

http://www.toptensoftware.com/petapoco
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Layered expression trees
Over the past 20 years of developing software, we have seen a recurring pattern: when a 
common-use solution gets overwhelmingly complex and less and less manageable over time, it’s 
probably because it doesn’t address the problem well. At that point, it might be worth investigating a 
different approach to the problem. The different approach we suggest here to reduce the complexity 
of repositories and DTOs in a read model leverages the power of LINQ and expression trees.

Realistic scenarios
Let’s focus first on a few realistic scenarios where you need to query data in many different ways that 
are heavily dependent on business rules:

■■ Online store  Given the profile of the user, the home page of the online store will present 
the three products that match the profile with the highest inventory level. It results in two con-
ceptual queries: getting all products available for sale, and getting the three products with the 
highest inventory level that might be interesting to the user. The first query is common and 
belongs to some domain service. The second query is application specific and belongs to the 
application layer. 

■■ ERP  Retrieve all invoices of a business unit that haven’t been paid 30 days after their due 
payment terms. There are three conceptual queries here: getting all invoices, getting all 
invoices for the business unit, and getting all invoices for the business unit that are unpaid 30 
days later. The first two queries are common and belong to some domain services. The third 
query sounds more application specific. 

■■ CMS  Retrieve all articles that have been published and, among them, pick those that match 
whatever search parameters have been specified. Again, it’s two conceptual queries: one 
domain-specific and one application-specific.  

Why did we use the term conceptual query?

If you look at it conceptually, you see distinct queries. If you look at it from an implementation 
perspective, you just don’t want to have distinct queries. Use-cases often require queries that can be 
expressed in terms of filters applied over some large sets of data. Each filter expresses a business rule; 
rules can be composed and reused in different use-cases. 

To get this, you have two approaches:

■■ Hide all filters in a repository method, build a single super-optimized query, run it, and 
return results. Each result is likely a different DTO. In doing this, you’re going to have nearly 
one method for each scenario and new or modified methods when something changes. The 
problem is not facing change; the problem is minimizing the effort (and risk of regression) 
when change occurs. Touching the repository interface is a lot of work because it might have 
an impact on upper layers. If you can make changes only at the application level, it would be 
much easier to handle and less invasive.

■■ Try LINQ and expression trees.
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Let’s see what it takes to use layered expression trees (LET).

Using IQueryable as your currency
The idea behind LET is enabling the application layer to receive IQueryable<T> objects wherever 
possible. In this way, the required query emerges through the composition of filters and the actual 
projection of data is specified at the last minute, right in the application layer where data is being 
used to generate the view model for the presentation to render.

With this idea in mind, you don’t even need repositories in a read model, and perhaps not even as 
a container of common queries that return direct and immediately usable data that likely will not be 
filtered any more. A good example of a method you might still want to have in a separate repository 
class is a FindById.  

You can use the public properties of the aforementioned read façade as the starting point to 
compose your queries. Or, if necessary, you can use ad hoc components for the same purpose. In 
this way, in fact, you encapsulate the read-model façade—still a point of contact with persistence 
technology—in such components. Here’s what the query to retrieve three products to feature on the 
home page might look like. This code ideally belongs to the application layer:

var queryProducts = (from p in CatalogServices.GetProductsAvailableForSale()  
                        orderby p.UnitsInStock descending  
                        select new ProductDescriptor  
                        { 
                           Id = p.Id, 
                           Name = p.Name, 
                           UnitPrice = p.UnitPrice, 
                           UnitsInStock = p.UnitsInStock, 
                        }).Take(3);

Here’s another example that uses the recommended async version of LINQ methods:

var userName = _securityService.GetUserName(); 
var currentEmployee = await _database 
         .Employees 
         .AsNoTracking() 
         .WhereEmployeeIsCurrentUser(userName) 
         .Select(employee => 
             new CurrentEmployeeDTO 
             { 
                 EmployeeId = employee.Id, 
                 FirstName = employee.PersonalInformation.FirstName, 
                 LastName = employee.PersonalInformation.LastName, 
                 Email = employee.PersonalInformation.Email, 
                 Identifier = employee.PersonalInformation.Identifier, 
                 JobTitle = employee.JobTitle, 
                 IsManager = employee.IsTeamManager, 
                 TeamId = employee.TeamId, 
             }).SingleOrDefaultAsync(); 
currentEmployee.PictureUrl = Url.Link("EmployeePicture",  
                                new { employeeId = currentEmployee.EmployeeId });
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As you might have noticed, the first code snippet doesn’t end with a call to ToList, First, or similar 
methods. So it is crucial to clarify what it means to work with IQueryable objects.

The IQueryable interface allows you to define a query against a LINQ provider, such as a database. 
The query, however, has deferred execution and subsequently can be built in multiple steps. No 
database access is performed until you call an execution method such as ToList. For example, when 
you query all products on sale, you’re not retrieving all 200,000 records that match those criteria. 
When you add Take(3), you’re just refining the query. The query executes when the following code is 
invoked:

var featuredProducts = queryProducts.ToList();

The SQL code that hits the database has the following template: 

SELECT TOP 3 ... WHERE ...

In the end, you pass the IQueryable object through the layers and each layer can add filters along 
the way, making the query more precise. You typically resolve the query in the application layer and 
get just the subset of data you need in that particular use-case.

Isn’t LET the same as an in-memory list?
No, LET is not the same as having an in-memory list and querying it via LINQ-to-Objects. If you load 
all products in memory and then use LINQ to extract a subset, you’re discarding tons of data you 
pulled out of the database. 

LET still performs a database access using the best query that the underlying LINQ provider can 
generate. However, IQueryable works transparently on any LINQ provider. So if the aforementioned 
method GetProductsAvailableForSale internally uses a static list of preloaded Product instances, 
the LET approach still works, except that it leverages LINQ-to-Objects instead of the LINQ dialect 
supported by the underlying database access layer.

Using LET is not the same as having a static list, but that doesn’t mean having a static list is a 
bad thing. If you see benefits in keeping, say, all products in memory, a static list is probably a good 
approach. LET is a better approach if the displayed data is read from some database every time.

Note  Crucial to CQRS is the fact that the database you query might not be the core 
database where commands write. It can easily be a separate database optimized for 
reading and built to denormalize some of the content in the core database. This approach 
is often referred to as the “pure CQRS approach.”
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Upsides of LET
The use of LET has several benefits. The most remarkable benefit is that you need almost no DTOs. 
More precisely, you don’t need DTOs to carry data across layers. If you let queries reach the applica-
tion layer, all you do is fetch data directly in the view model classes. On the other hand, a view model 
is unavoidable because you still need to pass data to the user interface in some way.

Note  As you might have noticed, we’re using different names—DTO and view model 
classes—for two software entities that can be described using the same words: classes that 
just carry data. ASP.NET MVC view model classes are actually DTOs, and the reason we’re 
using different names here is to emphasize that one of the benefits of LET is that you can 
forget about intermediate classes you might need in the classic Domain Model to carry 
data across layer. In CQRS with LET, all you need is LINQ to query data and a DTO to return 
data to the presentation. There are no other intermediaries—just LINQ queries and, in  
ASP.NET MVC, view model classes.

Another benefit is that the code you write is somehow natural. It’s really like you’re using the 
database directly, except that the language is much easier to learn and use than plain-old T-SQL.

Queries are DDD-friendly because their logic closely follows the ubiquitous language, and 
sometimes it seems that domain experts wrote the queries. Among other things, DDD-friendly 
queries are also helpful when a customer calls to report a bug. You look into the section of the code 
that produces unexpected results and read the query. You can almost read your code to the customer 
and quickly figure out whether the reason unexpected data is showing up on the screen is logical 
(you wrote the wrong query) or technical (the implementation is broken). Have a look at the following 
code:

var db = new ReadModelFacade(); 
var model = from i in db.IncomingInvoices 
                        .ForBusinessUnit(buId) 
                        .Expired() 
            orderby i.PaymentDueDate 
            select new SummaryViewModel.Invoice 
                       { 
                           Id = i.ID, 
                           SupplierName = i.Party.Name, 
                           PaymentDueDate = i.PaymentDueDate.Value, 
                           TotalAmount = i.TotalPrice, 
                           Notes = i.Notes 
                       };



	 CHAPTER 10  Introducing CQRS	 273

The code filters all invoices to retrieve those charged to a given business unit that haven’t 
been paid yet. Methods like ForBusinessUnit and Expired are (optional) extension methods on the 
IQueryable type. All they do is add a WHERE clause to the final query:

public static IQueryable<Invoice> ForBusinessUnit(this IQueryable<Invoice> query, int buId) 
{ 
    var invoices = from i in query 
                   where i.BusinessUnit.OrganizationID == buId 
                   select i; 
    return invoices; 
}

Last but not certainly least, LET fetches all data in a single step. The resulting query might be 
complex, but it is not necessarily too slow for the application. Here we can’t help quoting the timeless 
wisdom of Donald Knuth: “Premature optimization is the root of all evil.” As Andrea repeats in every 
class he teaches, three things are really important in the assessment of enterprise architecture: mea-
sure, measure, and measure. We’re not here to say that LET will always outperform any other solution, 
but before looking for alternative solutions and better SQL code, first make sure you have concrete 
evidence that LET doesn’t work for you.

Downsides of LET
Overall LET is a solution you should always consider, but like anything else it is not a silver bullet. Let’s 
see which factors might make it less than appealing. 

The first point to consider is that LET works beautifully on top of SQL Server and Entity Framework, 
but there’s no guarantee it can do the same when other databases and, more importantly, other LINQ 
providers are used. 

LET sits in between the application layer and persistence in much the same way repositories do. 
So is LET a general abstraction mechanism? The IQueryable interface is, in effect, an abstraction 
layer. However, it strictly depends on the underlying LINQ provider, how it maps expression trees to 
SQL commands, and how it performs. We can attest that things always worked well on top of Entity 
Framework and SQL Server. Likewise, we experienced trouble using LET on top of the LINQ provider 
you find in NHibernate. Overall, the argument that LET is a leaky abstraction over persistence is 
acceptable in theory. 

In practice, though, not all applications are really concerned about switching the data-access 
engine. Most applications just choose one engine and stick to that. If the engine is SQL Server 
and you use Entity Framework, the LET abstraction is not leaky. But we agree that if you’re build-
ing a framework that can be installed on top of your database of choice, repositories and DTOs are 
probably a better abstraction to use.

Finally, LET doesn’t work over tiers. Is this a problem? Tiers are expensive, and we suggest you 
always find a way to avoid them. Yet sometimes tiers provide more scalability. However, as far as 
scalability is concerned, let us reiterate a point we made in a past chapter: if scalability is your major 
concern, you should also consider scaling out by keeping the entire stack on a single tier and running 
more instances of it on a cloud host such as Microsoft Azure. 
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Note  When you use LET, testing can happen only on top of the LINQ-to-Objects provider 
built into the .NET Framework or any other LINQ provider that can be used to simulate the 
database. In any case, you’re not testing LET through the real provider. For the nature of 
LET, however, this is the barrier that exists between unit and integration tests. 

The command stack

In a CQRS scenario, the command stack is concerned only about the performance of tasks that modify 
the state of the application. As usual, the application layer receives requests from the presentation 
and orchestrates their execution. So what’s going to be different in a CQRS scenario?

As shown in Figure 10-1, CQRS is about having distinct domain layers where the business logic—
and objects required to have it implemented—is simpler to write because of the separation of 
concerns. This is already a benefit, but CQRS doesn’t stop here. Additionally, it lays the groundwork 
for some more relevant design changes. 

In the rest of the chapter, we drill down into concepts that slowly emerged as people increasingly 
viewed query and command stacks separately. These concepts are still evolving and lead toward the 
event-sourcing supporting architecture we’ll discuss thoroughly in the next couple of chapters.  

Getting back to presentation
A command is an action performed against the back end, such as registering a new user, processing 
the content of a shopping cart, or updating the profile of a customer. From a CQRS perspective, a 
task is monodirectional and generates a work flow that proceeds from the presentation down to the 
domain layer and likely ends up modifying some storage.

Tasks are triggered in two ways. One is when the user explicitly starts the task by acting on some 
UI elements. The other is when some autonomous services interact asynchronously with the system. 
As an example, you can think of how a shipping company interacts with its partners. The company 
might have an HTTP service that partners invoke to place requests. 

The command placed updates the state of the system, but the caller might still need to receive 
some feedback.

Tasks triggered interactively 
Imagine a web application like the I-Buy-Stuff online store we presented in Chapter 9. When the user 
clicks to buy the content of the shopping cart, she triggers a business process that creates an order, 
places a request for delivery, and processes payment—in a nutshell, it modifies the state of multiple 
systems, some interactively and some programmatically. 

Yet the user who originally triggered the task is there expecting some form of feedback. That’s no 
big deal when commands and queries are in the same context—the task modifies the state and reads 
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it back. But what about when commands and queries are in separated contexts? In this case, you have 
two tasks: one triggered interactively and one triggered programmatically. Here’s some code from an 
ASP.NET MVC application:

[HttpPost] 
[ActionName("AddTo")] 
public ActionResult AddToShoppingCart(int productId, int quantity=1) 
{ 
    // Perform the requested task using posted input data 
    var cart = RetrieveCurrentShoppingCart(); 
    cart = _service.AddProductToShoppingCart(cart, productId, quantity); 
    SaveCurrentShoppingCart(cart); 
 
    // Query task triggered programmatically 
    return RedirectToAction("AddTo");   
} 
 
[HttpGet] 
[ActionName("AddTo")] 
public ActionResult DisplayShoppingCart() 
{ 
    var cart = RetrieveCurrentShoppingCart(); 
    return View("shoppingcart", cart); 
}

The method AddToShoppingCart is a command triggered interactively, as evidenced by the 
HttpPost attribute. It reads the current state of the shopping cart, adds the new item, and saves 
it back. The command Add-to-Shopping-Cart ends here, but there’s a user who still needs some 
feedback. 

In this specific case—an ASP.NET application—you need a second command triggered program-
matically that refreshes the user interface by placing a query or, like in this case, performing an action 
within the realm of the application layer. This is the effect of RedirectToAction, which places another 
HTTP request—a GET this time—that invokes the DisplayShoppingCart method.

What if you have a client-side web application—for example, a Single-Page application? In 
this case, you use some JavaScript to trigger the call to a Web API or SignalR endpoint. The task 
completes, but this time there’s no strict need for the web back end to execute a second task 
programmatically to get back to the presentation. The nature of the client makes it possible to display 
feedback in the form of an acknowledgment message:

$("#buttonBuy").click(function() { 
   // Retrieve input data to pass 
   ... 
   $.post(url, { p1: ..., p2: ... }) 
    .done(function(response) { 
        // Use the response from the task endpoint to refresh the UI 
        ... 
    }); 
});



276	 PART III  Supporting architectures

A similar mechanism applies when the client is a desktop or mobile application, whether it’s 
Microsoft Windows, Windows Store, Windows Phone, Android, iOS, or something else.

Important  In the case of an ASP.NET front end, the use of a redirect call to refresh the user 
interface is doubly beneficial because it defeats the notorious F5/Refresh effect. Browsers 
usually keep track of the last request and blindly repeat it when the user presses F5 or 
refreshes the current page. Especially for tasks that update the state of the system, reiter-
ating a post request might repeat the task and produce unwanted effects—for example, 
the same item can be added twice to the shopping cart. A page refreshed after the task 
through a redirect leaves a GET operation in the browser memory. Even if it is repeated, no 
bad surprises can show up.

Tasks triggered programmatically
A system that exposes a public HTTP API is subject to receive calls from the outside. The call merely 
consists of the invocation of a method through an HTTP request, and the response is just an HTTP 
response. Here, the fundamentals of HTTP rule over all. Here’s a sample Web API template for tasks to 
be invoked programmatically:

public class ExternalRequestController : ApiController 
{ 
    public HttpResponseMessage PostDeliveryRequest(DeliveryRequest delivery)  
    {     
       // Do something here to process the delivery request coming from a partner company 
       ... 
 
       // Build a response for the caller: 
       // Return HTTP 201 to indicate the successful creation of a new item 
       var response = Request.CreateResponse<String>(HttpStatusCode.Created, "OK");     
 
       // Add the location of new item for their reference 
       var trackingId = ...; 
       var path = "/delivery/processed/" + delivery.PartnerCode + "/" + trackingId;     
       response.Headers.Location = new Uri(Request.RequestUri, path);     
       return response; 
   } 
}

In this example, you have a Web API controller that receives delivery requests from a partner 
company. The request is processed and generates a tracking ID that must be communicated back to 
indicate the success of the operation. 

There are various ways you can do this, and it mostly depends on your personal perspective 
regarding Web APIs. If you’re a REST person, you would probably go with the code shown earlier. If 
you’re more inclined toward remote procedure calls (RPCs), you can just return the tracking ID as a 
plain string in a generic HTTP 200 response.
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Formalizing commands and events
All software systems receive input from some front-end data source. A data source can be any 
number of things, like a sensor connected to a hardware device that pumps real-time data, a feed 
asynchronously provided by a remote service, or—the most common scenario—a presentation 
layer equipped with a comfortable user interface. The input data travels from the front end to the 
application layer, where the processing phase of the input data is orchestrated.  

Abstractly speaking, any front-end request for input processing is seen as a message sent to the 
application layer—the recipient. A message is a data transfer object that contains the plain data 
required for any further processing. In such an architecture, it is assumed that messages are fully 
understood by the recipient. Such a definition of a message leaves room for a number of concrete 
implementations. In most cases, you might want to start with a Message base class that acts as a data 
container:

public class Message 
{ 
    // Optionally, a few common properties here. 
    // The class, however, can even be a plain marker with no properties. 
    ... 
}

The front end can deliver the message to the application layer in a number of ways. Commonly, 
the delivery is a plain method invocation—for example, an application service invoked from within 
an ASP.NET MVC controller method. In more sophisticated scenarios, such as where scalability is the 
top priority, you might want to have a service bus in your infrastructure that also supports brokered 
messaging. In this way, you ensure delivery of the message to the intended recipient under any 
conditions, including when the recipient is not online.  

Events vs. commands
There are two types of messages: commands and events. In both cases, messages consist of a packet 
of data. Some subtle differences exist, however, between events and commands. 

A command is an imperative message that sounds like an explicit request made to the system to 
have some tasks performed. Here are some other characteristics of a command:

■■ A command is directed at one handler.

■■ A command can be rejected by the system.

■■ A command can fail while being executed by some handler.

■■ The net effect of the command can be different depending on the current state of the system. 

■■ A command doesn’t generally trespass the boundaries of a given bounded context. 

■■ The suggested naming convention for commands says that they should be imperative and 
specify what needs to be done.
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An event is a message that serves as a notification for something that has already happened. It has 
the following characteristics:

■■ An event can’t be rejected or canceled by the system. 

■■ An event can have any number of handlers interested in processing it. 

■■ The processing of an event can, in turn, generate other events for other handlers to process. 

■■ An event can have subscribers located outside the bounded context from which it originated. 

Note  The key difference between CQRS and the Event Sourcing architecture we’ll cover in 
Chapter 12, “Introducing Event Sourcing,” is this: in an Event Sourcing scenario, messages 
can be persisted to form a detailed and exhaustive audit log. This gives you a great chance 
at any later time to look back at what has happened within the system. Once you have the 
record of all that happened, you can set up a what-if elaboration, replay events to figure 
out the current state, and extrapolate models of any kind. 

Writing an event class
In terms of source code, commands and events are both classes derived from Message. Dealing with 
commands and events through different classes makes the design of the system more logical and 
simpler overall. Here’s a sample command class: 

public class CheckoutCommand : Message 
{ 
    public string CartId { get; private set; } 
    public string CustomerId { get; private set; } 
 
    public CheckoutCommand(string cartId, string customerId) 
    { 
        CartId = cartId; 
        CustomerId = customerId; 
    } 
}

Conversely, here’s the layout of an event class. 

public class DomainEvent : Message  
{ 
   // Common properties 
   ... 
} 
 
public class OrderCreatedEvent : DomainEvent 
{ 
    public string OrderId { get; private set; } 
    public string TrackingId { get; private set; } 
    public string TransactionId { get; private set; } 
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    public OrderCreatedEvent(string orderId, string trackingId, string transactionId) 
    { 
        OrderId = orderId; 
        TrackingId = trackingId; 
        TransactionId = transactionId; 
    } 
}

As you can see, the structure of event and command classes is nearly the same except for the 
naming convention. A fundamental guideline for designing domain events is that they should be as 
specific as possible and clearly reveal intent. 

As an example, consider the form through which a customer updates the default credit card he 
uses in transactions. Should you fire a rather generic CustomerUpdated event? Or is a more specific 
CreditCardUpdated event preferable? Both options lead to a working solution, but which option works 
for you should be evident and stand on its own. It depends on the ubiquitous language and the level 
of granularity you have in place. We believe that a finer granularity here is a significant asset.  

We generally recommend that the intent of the event be made clear in the name and all ambiguity 
be removed. If some ambiguity around a single event surfaces, you’ll probably find that it’s safer to 
have two distinct events. 

Which properties should you have in the base class DomainEvent?

We’d say that at a minimum you want to have a timestamp property that tracks the exact time 
at which the event was fired. Moreover, you might want to have a property containing the name (or 
ID) of the user who caused the firing of the event. Another piece of data you might want to have is a 
version number that handlers can use to determine whether they can or cannot handle the event. The 
point here is that the definition of an event might change over time. A version number can help in 
this regard. 

The implementation of the version number is completely up to the team. It can be a Version object 
as well as a string or a number. It can be bound to the application build number, or it can even be 
referred to the version of the event class:

public class DomainEvent : Message 
{ 
    public DateTime TimeStamp { get; private set; } 
    public DomainEvent() 
    { 
        TimeStamp = DateTime.Now; 
    } 
}

An event class should be considered immutable for the simple reason that it represents something 
that has already happened. Immutable here means that there should be no way to alter the value 
of properties. The combination of private setters, no write methods, and a plain constructor will do 
the trick.



280	 PART III  Supporting architectures

Handling commands and events
Commands are managed by a processor that usually is referred to as a command bus. Events are 
managed by an event bus component. It is not unusual, however, that commands and events are 
handled by the same bus. Figure 10-3 presents the overall event-based architecture of a CQRS 
solution. This architecture is more standard and is an alternative to the one we mentioned earlier that 
was based on the TS pattern.

Commands/Events
of interest

Saga
Commands/Events

of interest

Saga
Commands/Events

of interest

Saga

Start command

Orchestration of the process via commands and events
Complete

BUS

Application layer

Request

Command

UI Tasks

Gain access and read from the event store if required

DB

FIGURE 10-3  The command stack of an event-based CQRS architecture. 

Any interaction that takes place in the user interface generates some requests to the system. In an 
ASP.NET MVC scenario, these requests take the form of controller actions and methods in the applica-
tion layer. In the application layer, a command is created and pushed to some machinery for actual 
processing. 

The bus component
The command bus holds a list of known business processes that can be triggered by commands. 
Active instances of such processes can be further advanced by commands. Processing a command 
can sometimes generate an event within the domain; the generated event is published to the same 
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command bus or to a parallel event bus, if any. Processes that handle commands and related events 
are usually referred to as sagas. 

The command bus is a single class that receives messages (requests of executing commands and 
notifications of events) and finds a way to process them. The bus doesn’t actually do the work itself; 
instead, it selects a registered handler that can take care of the command or event. Here’s a pos-
sible template for a bus class that handles commands and events. We use the interface IHandles as a 
placeholder for actions. The interface has a single void method:

public interface IHandles 
{ 
   void Handle(T message); 
}

The bus uses the interface to handle both commands and events:

public class Bus 
{ 
    private static readonly Dictionary<Type, Type> SagaStarters =  
             new Dictionary<Type, Type>(); 
    private static readonly Dictionary<string, object> SagaInstances =  
             new Dictionary<string, object>(); 
 
    public static void RegisterSaga<TStartMessage, TSaga>() 
    { 
        SagaStarters.Add(typeof(TStartMessage), typeof(TSaga)); 
    } 
 
    public static void Send<T>(T message) where T : Message 
    { 
        // Publish the event  
        if (message is IDomainEvent) 
        { 
            // Invoke all registered sagas and give each  
            // a chance to handle the event. 
            foreach(var saga in SagaInstances) 
            { 
               var handler = (IHandles<T>) saga; 
               if (handler != null) 
                   handler.Handle(message); 
            } 
        } 
 
        // Check if the message can start one of the registered sagas 
        if (SagaStarters.ContainsKey(typeof (T))) 
        { 
            // Start the saga creating a new instance of the type 
            var typeOfSaga = SagaStarters[typeof (T)]; 
            var instance = (IHandles<T>) Activator.CreateInstance(typeOfSaga); 
            instance.Handle(message); 
 
            // At this point the saga has been given an ID;  
            // let's persist the instance to a (memory) dictionary for later use. 
            var saga = (SagaBase) instance; 
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            SagaInstances.Add(saga.Data.Id, instance); 
            return; 
        } 
 
        // The message doesn't start any saga. 
        // Check if the message can be delivered to an existing saga instead 
        if (SagaInstances.ContainsKey(message.Id)) 
        { 
            var saga = (IHandles<T>) SagaInstances[message.Id]; 
            saga.Handle(message); 
 
            // Saves saga back or remove if completed 
            if (saga.IsComplete()) 
                SagaInstances.Remove(message.Id); 
            else 
                SagaInstances[message.Id] = saga; 
        } 
    } 
}

The bus has two internal dictionaries: one to map start messages and saga types, and one to track 
live instances of sagas. In the latter dictionary, you can typically have multiple instances of the same 
saga type that are bound to different IDs.

The saga component
In general, a saga component looks like a collection of logically related methods and event handlers. 
Each saga is a component that declares the following information:

■■ A command or event that starts the process associated with the saga

■■ Commands the saga can handle and events the saga is interested in

Whenever the bus receives a command (or an event) that can start a saga, it creates a new saga 
object. The constructor of the saga generates a unique ID, which is necessary to handle concurrent 
instances of the same saga. The ID can be a GUID as well as a hash value from the starter command 
or anything else, like the session ID. Once the saga is created, it executes the command or runs the 
code that handles the notified event. Executing the command mostly means writing data or executing 
calculations. 

At some point in the lifetime of the saga instance, it might be necessary to send another command 
to trigger another process or, more likely, fire an event that advances another process. The saga does 
that by pushing commands and events back to the bus. It might also happen that a saga stops at 
some point and waits for events to be notified. The concatenation of commands and events keeps the 
saga live until a completion point is reached. In this regard, you can also think of a saga as a workflow 
with starting and ending points.  
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Events raised by sagas pass through the bus, and the bus passes them as messages to whomever 
subscribed to that event. Raising an event from within the saga requires code like that shown here:

// Raise the PaymentCompleted event 
var theEvent = new PaymentCompletedEvent( /* add transaction ID */ ); 
theEvent.SagaId = message.Cart.Id; 
Bus.Send(theEvent);

From the application layer, you invoke the bus as shown in the following example. This example 
simulates a scenario in which an ASP.NET MVC application is called back from the payment page on a 
bank service gateway:

public ActionResult CompleteProcessOrder(String transactionId) 
{ 
    // Retrieve shopping cart from session state 
    var cart = RetrieveCurrentShoppingCart(); 
 
    // Prepare and queue a Process-Order command 
    var command = new ProcessOrderCommand(transactionId, cart.CartId); 
    Bus.Send(command); 
 
    // Refresh view: in doing so, results of previous command might be captured, if ready. 
    return RedirectToAction("Done"); 
}

As you might have noticed, the command bus doesn’t return a response. This is not coincidental. 
The refresh of the user interface—wherever necessary—is left to a subsequent read command that 
queries data from any place—storage, cache, or whatever—where output is expected to be.

What we mostly want from a command bus is to decouple the application layer from the domain 
services. Doing so opens up new opportunities, such as handling domain service calls asynchronously. 
Other scenarios that the command bus can simplify are adding cross-cutting filters along the way, 
such as transactions, logging, and general injection points for optional logic. In any of these cases, all 
you need to do is change the command-bus class—no changes are required to the application layer 
and domain services. 

Important  As battlefield experience grows around CQRS, some practices consolidate and 
tend to become best practices. Partly contrary to what we just stated about async domain 
services, it is a common view today to think that both the command handler and the appli-
cation need to know how the transactional operation went. Results must be known, and if 
the command needs to run asynchronously, it should be designed as an event rather than 
as a command. 



284	 PART III  Supporting architectures

The combined effect of commands and events 
When you write systems based on very dynamic business rules, you might want to seriously consider 
leaving the door open to making extensions and changes to certain workflows without patching the 
system. 

Think, for example, of an e-commerce website that launches a marketing campaign so that any 
user performing certain actions through the site will accrue points on some sort of a customer-loyalty 
program. Because of the huge success of the campaign, the company decides to extend the incen-
tives to more actions on the site and even double the points if a given action (say, buying suggested 
products) is repeated over time. How would you effectively handle that? 

You can certainly fix and extend the application layer, which turns out to be the nerve center that 
governs the workflow. Anyway, when the business logic is expressed through the composition of 
small, independent and even autonomous commands and events, everything is much easier to han-
dle. This is a classic scenario for collaborative systems. Let’s say you use the flowchart in Figure 10-4 to 
implement the process of an order being submitted.

Update
Fidelity Card

Register
order

Payment

Enough
goods left?

Enough
points?

Refill
command

OrderCreated
command

Is-Gold
event

END

No

FIGURE 10-4  A sample workflow that handles the purchase of a few products.

Having the entire business logic of the workflow in a single method might make maintenance and 
testing problematic. However, even in the simple case of having split blocks in the workflow in simple 
commands, it might be difficult to do things properly. Let’s consider the update of the customer’s 
status in the fidelity program after an order is processed. 

Instead of having the Register-Order command invoke the Update-Fidelity-Card command, isn’t 
it more flexible if the Register-Order command just fires an event saying that a new order has been 
created? With this approach, a handler for that event can kick off and check whether the customer 
is eligible for Gold status and fire another event for other handlers to jump in and update databases. 
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This would isolate each action, keep each form of validation small and in reusable pieces, and keep 
the amount of logic in each command to the bare minimum.

Note  When it comes to events, we highly recommend that the naming convention 
reflect the occurrence of something. For example, the generic Not-In-Store and Is-Gold 
events should be implemented through classes with more evocative names, such as 
ItemWasNotInStoreWhenPayingEvent and CustomerReachedGoldStatusEvent.

Sagas and transactions
Looking back at Chapter 8 where we introduced the Domain Model architecture, we can say that a 
saga is the evolution of the application service concept. 

In an application service you orchestrate the tasks that serve a user request. The application service 
takes care of setting up transactions--possibly distributed transactions--and like a state-machine it 
coordinates the next step until the end of a workflow is reached. Abstractly speaking, a saga does the 
same except that it removes the need for a single component to know about the entire workflow and 
uses events to break an otherwise monolithic workflow into the combined effect of smaller command 
handlers raising events to coordinate with others. 

This makes the entire solution a lot more flexible and reduces the surface of code subject to 
changes when business changes. 

In addition, a saga reduces the need of distributed transactions when long-running processes are 
involved that span across multiple bounded contexts. The structure of a saga--a collection of rather 
independent command and event handlers--lends to easily define compensating behavior for each 
command executed. Thus if at some point a saga command fails, it can execute the compensating 
behavior for what it knows has happened and raise an event at the saga level to undo or compensate 
the work completed. 

Note  In the case of failures, saga methods might receive the same event twice or more. 
It might not be easy to figure out the event is a repeat. If it can be figured out, methods 
should avoid repeating action (idempotency)

Downsides of having a command bus 
There are contrasting feelings about the command bus. A common criticism is that it just adds an 
extra layer and contributes to making the code less easy to read. You need to go through some more 
classes to figure out what happens.

This aspect can be mitigated by using proper naming conventions so that the name of the handler 
matches the name of the command class being queued to the bus. In this way, you know exactly 
where to look, and looking into the implementation of methods takes only a few more clicks than 
with application services, as discussed in past chapters. 
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With classic application services, you see the call to the method right from controllers and can 
use a tool like ReSharper to jump directly to the source code. With a command bus, you see the 
command and know by convention the name of the class in which you need to look.

Readymade storage 
Most real-world systems write data and read it back later. Before CQRS appeared on the horizon, 
reads and writes took place within the same stack and often within the same transactional context. 
CQRS promotes the neat separation of queries and commands and pushes the use of different stacks. 
As you saw in this chapter, though, the internal architecture of the two stacks can be significantly dif-
ferent. You typically have a domain layer in the command stack and a far simpler data-access layer in 
the query stack.

What about databases, then? Should you use different databases too: one to save the state of the 
system and one to query for data? 

Optimizing storage for queries
Many real-world systems use a single database for reading and writing purposes—and this happens 
regardless of CQRS architectures. You can have distinct command and query models and still share 
the same database. It’s all about the scenarios you deal with. 

Our thought is that using CQRS—at least in its lightweight form of using different models—is 
mostly beneficial for every system because it splits complexity, enables even different teams to work 
in parallel, and can suggest using something even simpler than a Domain Model for each stack. So 
CQRS is also about simplification.

However, for most practical purposes, using a single relational database is still the best option. 
When CQRS is used for scalability in a highly collaborative system, however, you might want to 
think about a couple of other aspects. (CQRS with a single database is sometimes referred to as 
hybrid-CQRS.)

In the query stack, what you query for has nearly the same schema as the view model. Most likely, 
these view models come from tables that are largely denormalized and that have very few links to 
other tables. In other words, the tables you really need are specialized for the queries you need to 
run. 

A question that naturally arises is this: do you actually need a relational database for queries? We 
say you don’t strictly need a relational database, but it’s probably the best option you have, even 
though NoSQL solutions might be handier at times. More importantly—we’d say—you don’t strictly 
need the same database where the state of the system is persisted. 

Creating a database cache
If you’re using one database to store the state of the system and another database to store data in 
a format that is quick and effective to query for the purposes of presentation, who’s in charge of 
keeping the two databases in sync?
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This seems to be the final step of nearly any command whose action affects the query database. 
To avoid giving too many responsibilities to each command, the most obvious approach is that any 
command whose action affects the query database fires an event at the end. The event handler will 
then take care of updating the query database. The query database doesn’t fully represent the busi-
ness behind the application; it only contains data—possibly denormalized data—in a format that 
matches the expectations of the user interface. For example, if you’re going to display pending orders, 
you might want to have a query database just for the information you intend to display for orders. 
In doing so, you don’t store the customer ID or product ID, just the real name of the customer, a full 
description of the product, and a calculated total of the order that includes taxes and shipping costs.

Stale data and eventual consistency 
When each stack in CQRS owns its database, the command database captures the state of the system 
and applies the “official” data model of the business domain. The query database operates as a cache 
for data readymade for the presentation’s needs. Keeping the two databases in sync incurs a cost. 
Sometimes this cost can be postponed; sometimes not. 

If you update the query database at the end of a command, just before the end of the saga or 
at any point of the workflow when it makes sense, you automatically keep the command and query 
databases in sync. Your presentation layer will constantly consume fresh data.  

Another approach that is sometimes used in the concrete implementations consists of delaying 
the synchronization between the command and query databases. The command database is regu-
larly updated during the execution of the command so that the state of the application is consistent. 
Those changes, though, are not replicated immediately to the query side. This typically happens for 
performance reasons and to try to keep scalability at the maximum. 

When the query and command databases are not in sync, the presentation layer might show stale 
data and the consistency of the entire system is partial. This is called eventual consistency—at some 
point, the databases are consistent, but consistency is not guaranteed all the time. 

Is working with stale data a problem? It depends. 

First and foremost, there should be a reason for having stale data; often, the reason is to speed up 
the write action to gain greater scalability. If scalability is not a concern, there’s probably no reason 
for stale data and eventual consistency. Beyond that, we believe that very few applications can’t 
afford displaying stale data for a short amount of time (with “short amount of time” being defined by 
the context). In many write-intensive systems, writes are sometimes performed in the back end and 
only simulated on the presentation to give the illusion of full synchronicity. The canonical example is 
when you post on a social network and the following two things happen:

■■ The back end of the system is updated through a command.

■■ At the end of the command, the DOM of the page is updated via JavaScript with the changes.

In other words, what appears as the real status of the system is simply the effect of a client-side 
command. At some point, however, in a few seconds (or minutes or days) something happens that 
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restores full consistency so that when the page is displayed from scratch reading from the server, it 
presents aligned data.

Eventual consistency is commonly achieved through scheduled jobs that run periodically or via 
queues that operate asynchronously. In this case, the saga ends by placing an event to a separate bus, 
possibly on a persistent queue. The queue will then serve events one at a time, causing the handler to 
fire and update the query database.

Summary

A decade ago, DDD started an irreversible, yet slow, process that is progressively changing the way 
many approach software architecture and development. In particular, DDD had the positive effect 
of making it clear that a deep understanding of the domain is key. And above everything else, DDD 
provided the tools for that: a ubiquitous language and bounded context.  

Initially, DDD pushed the layered architecture with an object-oriented model as the recommended 
architecture for a bounded context. Years of experience suggested that a single domain model to 
handle all aspects of the business logic—specifically, commands and queries—was probably taking 
the complexity up to a vertical asymptote. From that point, there was an effort in the industry to find 
a different approach—one that could retain the good parts of DDD while making the implementation 
simpler and more effective.

CQRS was one of the answers. 

CQRS propounds the separation between domain layers and the use of distinct models for reading 
and writing—a brilliantly simple idea that, however, had a far broader scope than first imagined. 
CQRS is perfect for highly collaborative systems, but it also can serve well in simpler scenarios if you 
apply it in a lighter form. That’s a fundamental point and—as we see it—also the source of a lot of 
confusion. 

CQRS is primarily about separating the stack of commands from the stack of queries. Realizing 
this architectural separation is not necessarily complex or expensive. However, if you take CQRS one 
or two steps further, it can really deliver a lot of added value in terms of the ability to manage much 
more business complexity while making your system much easier to scale out. To achieve this, you 
need to restructure and largely rethink the command and query sides and introduce LET, command 
buses, handlers, domain and integration events, and (likely) distinct storage for reads and writes. This 
flavor of architecture is ideal for collaborative systems, but it can be expensive to use in some systems. 
In the end, full-blown CQRS is a good solution, but not for every problem.  
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Finishing with a smile

To generate a smile or two at the end of this chapter, we selected three popular but largely 
anonymous quotes in the spirit of Murphy’s laws: 

■■ To understand what recursion is, you must first understand recursion.

■■ Before software can be reusable, it first has to be usable.

■■ Ninety percent of everything is CRUD.

In addition, we saved two funny but deep pearls of wisdom for last, from two people who 
contributed a lot to the software industry and computer science as a whole:

■■ If debugging is the process of removing software bugs, then programming must be the 
process of putting them in. (E. W. Diijkstra)

■■ C makes it easy to shoot yourself in the foot; C++ makes it harder, but when you do, it blows 
away your whole leg. (Bjarne Stroustrup)
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levels of, 28
mapping to features, 29
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Scrum methodology, 17, 37–38
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in state machines, 103

teams. See development team
technical debt, 34–35, 85
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test harnesses, 88–89
testing, 88–101
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code coverage, 98–99
dependency injection and, 72
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priority of, 100–101
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relevancy of, 99
responsibilities of, 14
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timing of, 31, 98
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diagrams of, 138–139
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user experience (UX), 141
user experience first (UX-first), 138–146

designing, 143–146
interactions, focusing on, 138–140
tools for, 141–142
vs. user interface, 140
UX experts, 141

	 user experience first (UX-first)



394

user interface (UI), 147
data flow from, 248
designing, 138–140
F5/Refresh effect, 276
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in web applications, 151–152
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UXPin, 142
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