

Microsoft .NET:
Architecting Applications
for the Enterprise,
Second Edition

Dino Esposito
Andrea Saltarello

Table of Contents

Introduction 	xiii
Errata, updates, & book support. . xviii

Free ebooks from Microsoft Press. . xix

We want to hear from you . . xix

Stay in touch . . xix

Foundation 	 1

Architects and architecture today	 3
What’s software architecture, anyway?. . 4

Applying architectural principles to software. 4

Acknowledging requirements. . 7

What’s architecture and what’s not . . 11

The architecture process. . 14

Who’s the architect, anyway?. . 17

An architect’s responsibilities. . 18

The role of the architect . . 20

Common misconceptions about architects. . 21

Summary . . 24

Finishing with a smile. . 25

Designing for success	 27
The “Big Ball of Mud”. . 28

Causes of the “Big Ball of Mud”. . 28

Symptoms of the “Big Ball of Mud” . . 32

Using metrics to detect a BBM . . 34

Mechanics of software projects. . 35

Organizational culture. . 35

Helping the team write better code. . 38

Getting out of the mess . . 43

That odd thing called “legacy code”. .44

Checkmate in three moves. . 45

Deciding whether or not to add manpower. 49

Summary. .50

Finishing with a smile. . 51

Principles of software design	 53
Universal principles of software design . . 54

From spaghetti code to lasagna code . . 54

Separation of concerns. . 57

Isolation. . 57

Object-oriented design. . 57

Pertinent classes. . 58

Program to an interface . 59

Composition vs. inheritance. . 61

A second pass at object-orientation. . 63

Development and design vectors . . 64

SOLID principles. . 64

Patterns for handling dependencies. . 69

Coding vectors . . 72

Use of patterns. . 75

Refactoring. . 77

Defensive programming. . 78

The If-Then-Throw pattern. . 78

Software contracts. . 79

Summary. .83

Finishing with a smile. . 84

Writing software of quality	 85
The art of writing testable code. . 86

What is testability, anyway?. . 86

Testing your software. . 88

Common practices of software testing . . 96

The practice of code extensibility . . 101

Interface-based design. . 102

Plugin architecture. . 103

State machines. . 103

Writing code that others can read. . 104

Readability as a software attribute. . 105

Some practical rules for improving readability.107

Summary. .109

Finishing with a smile. . 110

Devising the architecture 	 111

Discovering the domain architecture	 113
The real added value of domain-driven design . . 114

What’s in DDD for me?. . 114

Conducting analysis using DDD . . 115

Strategic model design. . 116

The ubiquitous language. . 118

Purpose of the ubiquitous language . . 118

Structure of the ubiquitous language . . 119

How to define the ubiquitous language . . 119

Keeping language and model in sync. . 121

Bounded contexts. . 122

Discovering contexts. . 122

Context mapping. . 125

Giving each context its own architecture . . 127

The layered architecture. . 129

Origins of the layered architecture. . 129

Presentation layer . . 131

Application layer . . 132

Domain layer. . 134

Infrastructure layer. . 134

Summary. .135

Finishing with a smile. . 135

The presentation layer	 137

User experience first. . 138

Focus on interactions. .138

UX is not UI. . 140

How to create an effective experience . . 143

Realistic scenarios. . 147

ASP.NET websites. . 147

Web Forms vs. ASP.NET MVC. . 152

Adding device support to websites . . 155

Single-page applications . . 160

Desktop rich client . . 164

Summary. .166

Finishing with a smile. . 166

The mythical business layer	 167
Patterns for organizing the business logic. . 167

The fairytale of CRUD and an architecture Prince Charming. 168

The Transaction Script pattern. . 169

The Domain Model pattern. . 172

The Anemic Domain Model (anti-)pattern 174

Moving the focus from data to tasks . . 176

Task orchestration in ASP.NET MVC. . 177

Orchestrating tasks within the domain . . 180

Moving data across the boundaries . . 182

Data flow in layered architecture . . 182

Sharing the Domain Model entities. . 184

Using data-transfer objects. . 185

Summary. .187

Finishing with a smile. . 188

Supporting architectures

Introducing Domain Model	 191
The data-to-behavior shift . . 191

Rationale behind models and domains. . 192

Database is infrastructure . . 195

Inside the domain layer . . 196

Domain model. . 196

Aggregates . . 199

Domain services. . 205

Domain events. . 209

Cross-cutting concerns. . 212

Summary. .215

Finishing with a smile. . 215

Implementing Domain Model	 217
The online store sample project. . 218

Selected use-cases. . 218

Selected approach. . 219

Structure of the I-Buy-Stuff project . . 220

Selected technologies. . 222

Bounded contexts for an online store. . 222

Context map of the I-Buy-Stuff application 224

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2014 by Dino Esposito and Andrea Saltarello

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2014940680
ISBN: 978-0-7356-8535-2

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://aka.ms/tellpress.

Microsoft and the trademarks listed at http://www.microsoft.com/en-us/legal/intellectualproperty/Trademarks/
EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of their respective
owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fi ctitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions and Developmental Editor: Devon Musgrave
Project Editor: Carol Dilllingham
Editorial Production: Waypoint Press, www.waypointpress.com
Peer Reviewer: Cesar De la Torre Llorente
Copyeditor: Roger LeBlanc
Indexer: Christina Yeager
Cover: Twist Creative • Seattle and Joel Panchot

Second Printing: January 2015

http://www.microsoft.com/en-us/legal/intellectualproperty/Trademarks/EN-US.aspx
http://www.microsoft.com/en-us/legal/intellectualproperty/Trademarks/EN-US.aspx
http://www.waypointpress.com
http://aka.ms/tellpress

To my wife Silvia. You make me feel sandy like a clepsydra. I get empty and filled all the time; but
it’s such a thin kind of sand that even when I’m full, without you, I just feel empty.

—Dino

To Laura, mum, and Depeche Mode. Moved, lifted higher. Moved, by a higher love.

—Andrea

This page intentionally left blank

Contents at a glance

PART I	 FOUNDATION

CHAPTER 1	 Architects and architecture today	 3

CHAPTER 2	 Designing for success	 27

CHAPTER 3	 Principles of software design	 53

CHAPTER 4	 Writing software of quality	 85

PART II	 DEVISING THE ARCHITECTURE

CHAPTER 5	 Discovering the domain architecture	 113

CHAPTER 6	 The presentation layer	 137

CHAPTER 7	 The mythical business layer	 167

PART III	 SUPPORTING ARCHITECTURES

CHAPTER 8	 Introducing Domain Model	 191

CHAPTER 9	 Implementing Domain Model	 217

CHAPTER 10	 Introducing CQRS	 255

CHAPTER 11	 Implementing CQRS	 291

CHAPTER 12	 Introducing event sourcing	 311

CHAPTER 13	 Implementing event sourcing	 325

PART IV	 INFRASTRUCTURE

CHAPTER 14	 The persistence layer	 353

This page intentionally left blank

vii

Contents

Introduction. . xiii

PART I	 FOUNDATION 1

Chapter 1	 Architects and architecture today	 3
What’s software architecture, anyway?. . 4

Applying architectural principles to software. 4
Acknowledging requirements. . 7
What’s architecture and what’s not . . 11
The architecture process. . 14

Who’s the architect, anyway?. . 17
An architect’s responsibilities. . 18
The role of the architect . . 20
Common misconceptions about architects. . 21

Summary . . 24
Finishing with a smile. . 25

Chapter 2	 Designing for success	 27
The “Big Ball of Mud”. . 28

Causes of the “Big Ball of Mud”. . 28
Symptoms of the “Big Ball of Mud” . . 32
Using metrics to detect a BBM . . 34

Mechanics of software projects. . 35
Organizational culture. . 35
Helping the team write better code. . 38

Getting out of the mess . . 43
That odd thing called “legacy code”. .44
Checkmate in three moves. . 45
Deciding whether or not to add manpower. 49

Summary. .50
Finishing with a smile. . 51

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

viii	 Contents

Chapter 3	 Principles of software design	 53
Universal principles of software design . . 54

From spaghetti code to lasagna code . . 54
Separation of concerns. . 57
Isolation. . 57

Object-oriented design. . 57
Pertinent classes. . 58
Program to an interface . 59
Composition vs. inheritance. . 61
A second pass at object-orientation. . 63

Development and design vectors . . 64
SOLID principles. . 64
Patterns for handling dependencies. . 69
Coding vectors . . 72
Use of patterns. . 75
Refactoring. . 77

Defensive programming. . 78
The If-Then-Throw pattern. . 78
Software contracts. . 79

Summary. .83
Finishing with a smile. . 84

Chapter 4	 Writing software of quality	 85
The art of writing testable code. . 86

What is testability, anyway?. . 86
Testing your software. . 88
Common practices of software testing . . 96

The practice of code extensibility . . 101
Interface-based design. . 102
Plugin architecture. . 103
State machines. . 103

Writing code that others can read. . 104
Readability as a software attribute. . 105
Some practical rules for improving readability.107

Summary. .109
Finishing with a smile. . 110

PART II	 DEVISING THE ARCHITECTURE 	 111

Chapter 5	 Discovering the domain architecture	 113
The real added value of domain-driven design . . 114

What’s in DDD for me?. . 114

Contents	 ix

Conducting analysis using DDD . . 115
Strategic model design. . 116

The ubiquitous language. . 118
Purpose of the ubiquitous language . . 118
Structure of the ubiquitous language . . 119
How to define the ubiquitous language . . 119
Keeping language and model in sync. . 121

Bounded contexts. . 122
Discovering contexts. . 122
Context mapping. . 125
Giving each context its own architecture . . 127

The layered architecture. . 129
Origins of the layered architecture. . 129
Presentation layer . . 131
Application layer . . 132
Domain layer. . 134
Infrastructure layer. . 134

Summary. .135
Finishing with a smile. . 135

Chapter 6	 The presentation layer	 137
User experience first. . 138

Focus on interactions. .138
UX is not UI. . 140
How to create an effective experience . . 143

Realistic scenarios. . 147
ASP.NET websites. . 147
Web Forms vs. ASP.NET MVC. . 152
Adding device support to websites . . 155
Single-page applications . . 160
Desktop rich client . . 164

Summary. .166
Finishing with a smile. . 166

Chapter 7	 The mythical business layer	 167
Patterns for organizing the business logic. . 167

The fairytale of CRUD and an architecture Prince Charming. 168
The Transaction Script pattern. . 169
The Domain Model pattern. . 172
The Anemic Domain Model (anti-)pattern 174

Moving the focus from data to tasks . . 176
Task orchestration in ASP.NET MVC. . 177
Orchestrating tasks within the domain . . 180

x	 Contents

Moving data across the boundaries . . 182
Data flow in layered architecture . . 182
Sharing the Domain Model entities. . 184
Using data-transfer objects. . 185

Summary. .187
Finishing with a smile. . 188

PART III	 SUPPORTING ARCHITECTURES

Chapter 8	 Introducing Domain Model	 191
The data-to-behavior shift . . 191

Rationale behind models and domains. . 192
Database is infrastructure . . 195

Inside the domain layer . . 196
Domain model. . 196
Aggregates . . 199
Domain services. . 205
Domain events. . 209
Cross-cutting concerns. . 212

Summary. .215
Finishing with a smile. . 215

Chapter 9	 Implementing Domain Model	 217
The online store sample project. . 218

Selected use-cases. . 218
Selected approach. . 219
Structure of the I-Buy-Stuff project . . 220
Selected technologies. . 222
Bounded contexts for an online store. . 222
Context map of the I-Buy-Stuff application 224

The noble art of pragmatic domain modeling . . 225
Behavior is a game-changer . . 225
Entities scaffolding. . 228
Value objects scaffolding. . 231
Identifying aggregates. . 235
Persisting the model. . 243

Implementing the business logic. . 248
Finding an order. . 248
Placing an order. . 249
Fidelity card (or customer loyalty program). 253

Summary. .253
Finishing with a smile. . 254

	 Contents	 xi

Chapter 10	 Introducing CQRS	 255
Separating commands from queries. . 256

Generalities of the CQRS pattern . . 256
Benefits of CQRS. .258
Fitting CQRS in the business layer. . 260
CQRS always pays the architecture bill. . 262

The query stack. . 264
The read domain model. . 264
Designing a read-model façade. . 266
Layered expression trees . . 269

The command stack. . 274
Getting back to presentation. . 274
Formalizing commands and events . . 277
Handling commands and events. . 280
Readymade storage . . 286

Summary. .288
Finishing with a smile. . 289

Chapter 11	 Implementing CQRS	 291
 CQRS implementations. . 291

Plain and simple CQRS . . 292
CQRS with command architecture. . 294

Implementing a query stack. . 296
Creating a read façade . . 296
Packaging data for callers. .298

Implementing a command stack. . 302
Laying the groundwork . . 302
Orchestrating use-cases via commands. . 305

Summary. .309
Finishing with a smile. . 310

Chapter 12	 Introducing event sourcing	 311
The breakthrough of events. . 312

The next big thing (reloaded). . 312
The real world has events, not just models. 312
Moving away from “last-known good state”.313
The deep impact of events in software architecture 315

Event-sourcing architecture . . 318
Persisting events. . 318
Replaying events . . 321

Summary. .323
Finishing with a smile. . 324

xii	 Contents

Chapter 13	 Implementing event sourcing	 325
Event sourcing: Why and when . . 325

Why event sourcing is a resource. . 326
When event sourcing is appropriate. .327

Event sourcing with replay . . 329
A live-scoring system . . 329
Implementation of the system. . 331

Event sourcing with aggregate snapshots. . 342
A mini enterprise resource planning system. 342
Implementation of the system. . 344

Summary. .348
Finishing with a smile. . 349

PART IV	 INFRASTRUCTURE 351

Chapter 14	 The persistence layer	 353
Portrait of a persistence layer. . 353

Responsibilities of the persistence layer. . 354
Design of a Repository pattern. . 355

Implementing repositories . . 359
The query side of repositories. . 359
Persisting aggregates . . 363
Storage technologies. . 364

Why should you consider nonrelational storage?. 368
Familiarizing yourself with NoSQL . . 369
What you gain and what you lose. . 370
Planning a sound choice. . 375

Summary. .377
Finishing with a smile. . 378

Index 379

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

		 xiii

Introduction

Good judgment comes from experience, and experience comes from
bad judgment.

—Fred Brooks

We find that the preceding quote contains the essence of software architecture
and the gist of the architect’s role. Software architecture requires judgment

because not all scenarios are the same. To exercise sound judgment, you need
experience, and in this imperfect world, experience mostly comes from making some
mistakes and bad choices—from bad judgment.

However, the world we live in often doesn’t give you the opportunity (or even the
time) to form your own experience-based knowledge from which good judgment is
developed. More often than not, all that executives want from architects is the right
architecture right away.

We’ve written this book primarily to endow you with a solid, reusable, and easily
accessible base of knowledge about software architecture. In past years, we’ve com-
pleted projects using technologies like Microsoft Windows DNA, Distributed COM,
multitier CRUD, SOA, DDD, CQRS, and event sourcing. We’ve used Microsoft Visual
Basic 6 as well as C#, C++, Java, and JavaScript. We’ve seen technical solutions change
frequently and perspectives about these approaches also evolve.

In the end, we came to the same conclusion as Fred Brooks. We don’t wear white
coats, we’re not doctors, and we’re not writing prescriptions. Our purpose here is
to aggregate various positions, add our own annotations and comments to those
positions, and generate an honest summary of facts and perspectives.

In these times in which developers and architects are asked to do it right and right
away, we offer a snapshot of knowledge—a readymade software architect’s digest for
you to use as the starting point for further investigation and to use to build up your
own judgment. If software architecture were a theorem, this book (we hope) would
provide a collection of necessary lemmas.

xiv	 Introduction

Organization of this book
Software architecture has some preconditions (design principles) and one post-
condition (an implemented system that produces expected results). Part I of this book,
titled “Foundation,” lays the foundation of software architecture and focuses on the
role of the architect, the inherent mechanics of software projects, and aspects—like
testability and readability—that turn software into top-quality software.

Part II, “Devising the architecture,” focuses on the topmost layers that form a
typical enterprise system: the presentation layer and business layer. We left for later
the canonical third layer: the data access layer. We push a relatively new approach for
designing a system and call it UX-first. It is a task-based methodology that leads to
commands and domain events starting from agreed-upon mockups and screens. In a
task-based design philosophy, the role of the domain model is much less central and
the same data access layer is just part of the infrastructure, and it’s not necessarily
based on canonical relational tables. However, the most forceful chapter in Part II—the
one we recommend everybody read—is Chapter 5, “Discovering the domain architec-
ture.” In a nutshell, the chapter makes the point that only a deep understanding of the
domain can lead to discovering an appropriate architecture. And, maybe more impor-
tantly, the resulting architecture doesn’t have to be a single, top-level architecture for
the entire application. As you recognize subdomains, you can model each to subappli-
cations and give each the most effective architecture. As weird as it might sound, this is
the core lesson of Domain-Driven Design (DDD).

Part III, “Supporting architectures,” covers three supporting architectures you can
use to build the various subdomains you recognized. For each architecture, we have
a couple of chapters—an introduction and an implementation. The first supporting
architecture we consider is the Domain Model. Next we head to Command/Query
Responsibility Segregation (CQRS) and event sourcing.

Finally, Part IV, “Infrastructure,” contains a single chapter—it deals with infrastructure
and the persistence layer. This is interesting because it’s not simply a chapter about
SQL, Entity Framework, and relational databases. We primarily talk polyglot persistence,
NoSQL data stores, and services used to hide storage details.

So, in the end, what’s this book about?

It’s about what you need to do and know to serve your customers in the best
possible way as far as the .NET platform is concerned. The patterns, principles, and

Introduction	 xv

techniques we describe are valid in general and are not specific to complex line-of-
business applications. A good software architecture helps control the complexity of the
project. And controlling complexity and favoring maintainability are the best strategies
we have for fighting the canonical Murphy’s Law of technology: “Nothing ever gets
built on schedule or within budget.” To get there, there’s just one thing you’re not
allowed to fail on: understanding (deeply) the business domain.

Who should read this book
Software architects are the ideal audience for this book, but lead developers and
developers of any type of .NET applications will find this book beneficial. Everyone who
wants to be an architect should find this book helpful and worth the cost.

Is this book only for .NET professionals? Although all chapters have a .NET flavor,
most of the content is readable by any software professional.

Assumptions
Strong object-oriented programming skills are a requirement for using this book.
A good foundation in using the .NET platform and knowledge of some data-access
techniques will also help. We put great effort into making this book read well. It’s not
a book about abstract design concepts, and it’s not a classic architecture book either,
full of cross-references and fancy strings in square brackets that hyperlink to some old
paper listed in a bibliography at the end of the book.

This book might not be for you if…
This book might not be for you if you’re seeking a reference book to pick up to find
out how to use a given pattern. Instead, our goal is sharing and transferring knowl-
edge so that you know what to do at any point. Or, at least, you know what two other
guys—Dino and Andrea—would do in an analogous situation. This is (hopefully) a book
to read from cover to cover and maybe more than once. It’s not a book to keep on the
desk for random reference only.

xvi	 Introduction

Downloads: Code samples
In the book, we present several code snippets and discuss sample applications with the
primary purpose of illustrating principles and techniques for readers to apply in their
own projects. In a certain way, we tried to teach fishing but we aren’t providing sample
fish to take home. However, there’s a CodePlex site we want to point you to:

http://naa4e.codeplex.com/

There you find a few Visual Studio 2013 projects, one for each of the supporting
architectures we describe in the book. A sample online store system—the I-Buy-Stuff
project—is written according to the Domain Model architecture and then ported to
CQRS. Two more projects complete the set: a live-scoring application and a mini-ERP
system that illustrates event sourcing.

We invite you to follow the project because we plan to add more demos in the
future.

The sample code has a few dependencies on common technologies such as Visual
Studio 2013 and SQL Server. Projects make use of Entity Framework, ASP.NET MVC,
RavenDB, Bootstrap and WURFL. Everything is linked to the project through Nuget.
Refreshing the packages ensures you’re able to reproduce the demo. In particular, you
don’t need a full installation of SQL Server; SQL Express will suffice.

Acknowledgments
When Andrea and I wrote the first edition of this book back in the summer of 2008 it
was a completely different world. The huge economic downturn that hit the United
States and other parts of the world, and still bites Europe, was just on the horizon. And
Entity Framework was still to come. We covered patterns and technologies that are
much less relevant today, and there was no cloud, mobile, or NoSQL. Still, at several
times we caught the book ranked among Amazon’s Top 10 in some category as long
as four or five years after publication. For a technical book, lifespan of five years is like
a geological era. We’ve been asked several times to work on a second edition, but the
right astral conjunction never arrived until the spring of 2014. So here we are. Thanks
to Devon Musgrave, Steve Sagman, Roger LeBlanc, and Carol Dillingham—a wonderful
team.

As emphatic and partisan as it may sound, in over 20 book projects so far, I never
left a lot of work for technical reviewers to do. And I hardly learned much from peer
reviewers—for whatever reason. Well, this time it was different. Cesar De la Torre

http://naa4e.codeplex.com/

Introduction	 xvii

Llorente—our peer reviewer—did a fantastic job. He promptly caught issues with the
outline and content, even deep issues that I missed entirely and Andrea just perceived
as glitches that were hard to explain in detail and fix. Cesar convinced us to restructure
the content several times, reshaping the book to what it needed to be, and leading it to
become what, we think, it should be.

Finally, I wish to reserve a word or two for some people that shared—sometimes
without even realizing it—insights and remarks as valuable as gold. One is Hadi Hariri
for his constantly updated vision of the IT world. Another is Jon Smith for reminding
us of the many facets of the architect’s role. Yet another is Giorgio Garcia-Agreda for
conveying to me some of the innate attitude for problem solving (especially in harsh
conditions). Last, but not least, my thanks also go to Roberto Raschetti. He may wonder
why he deserves this accolade, but without doubt, he showed me the way, from the
time I was a freshly graduated student to that huge project we had in store for months
to come.

Finally, Mom, Dad—this is another one for your bookshelf! Sure you don’t need a
bigger one?

PS: Follow us on Facebook (facebook.com/naa4e) and tweet using #naa4e.

—Dino

This book would not exist without Dino . Dino is the one who caused me to accept the
daunting task of writing a sequel to a book that, to my dismay, revealed itself to be a
huge hit and applied a lot of pressure on me .

Never again is what you swore the time before.

Dino approached me several times to ask my feelings about writing a second edi-
tion, had the patience to accept a bunch of refusals, and then, after getting me com-
mitted, understood that this writing had to be a “two-paces process” because it would
take time for me to write what he could, in just a few hours, put into elegant, insightful
words.

Not only am I slow at writing, but I’m quite fussy. But Dino has always been very
supportive in my struggle to make sure that this book would be at least as good as the
previous edition, and then some.

I’m taking a ride with my best friend.

Being as fussy as I am, I was really pleased to have Cesar De la Torre Llorente as
our peer reviewer because he did a fantastic job, not only at reviewing the contents,

xviii	 Introduction

but also at giving us valuable advice about how to restructure our content. Thank you
Cesar. We really owe you a lot.

He knows where’s he’s taking me, taking me where I want to be.

But for this book to exist and, in my opinion, be a good one, we still needed a
wonderful team behind us, and that’s where the support we got from Devon Musgrave,
Steve Sagman, Roger LeBlanc, and Carol Dillingham really made a difference. Thank
you guys!

This is real fun, this is fun.

Writing a book while being a full-time consultant meant devoting a lot of time to
being in front of your PC instead of being free and with the people you love, and that
could be quite frustrating for both sides. Nevertheless, Laura and mum understood how
important this book was for me and bestowed me with terrific support. And love.

You’re like an angel and you give me your love, and I just can’t seem to get
enough of.

Finally, I want to thank all the guys at Managed Designs: without the experience
gained because of all our endeavors, this book would not be half as good.

My secret garden’s not so secret anymore!

And last, but not least, thank you Helen and Maruska for having been there when I
struggled for words. Thank you from the bottom of my heart, miladies.

Welcome to my world, step right through the door.

PS: Follow us on Facebook (facebook.com/naa4e) and tweet using #naa4e.

						 —Andrea

Errata, updates, & book support
We’ve made every effort to ensure the accuracy of this book and its companion
content. If you discover an error, please submit it to us via mspinput@microsoft.com.
You can also reach the Microsoft Press Book Support team for other support via the
same alias. Please note that product support for Microsoft software and hardware is
not offered through this address. For help with Microsoft software or hardware, go to
http://support.microsoft.com.

http://support.microsoft.com

	 Introduction	 xix

Free ebooks from Microsoft Press
From technical overviews to in-depth information on special topics, the free ebooks
from Microsoft Press cover a wide range of topics. These ebooks are available in PDF,
EPUB, and Mobi for Kindle formats, ready for you to download at:

http://aka.ms/mspressfree

Check back often to see what is new!

We want to hear from you
At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://aka.ms/tellpress

We know you’re busy, so we’ve kept it short with just a few questions. Your
answers go directly to the editors at Microsoft Press. (No personal information will be
requested.) Thanks in advance for your input!

Stay in touch
Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

The authors will be maintaining a Facebook page at facebook.com/naa4e.

Please precede comments, posts, and tweets about the book with the #naa4e
hashtag.

http://aka.ms/mspressfree
http://aka.ms/tellpress
http://twitter.com/MicrosoftPress

This page intentionally left blank

This page intentionally left blank

		 113

C H A P T E R 5

Discovering the domain
architecture

Essentially, all models are wrong, but some are useful.
—George P. O. Box

Software definitely stems from mathematics and is subject to two opposing forces: the force of
just doing things and the force of doing things right. We like to think that software is overall a big

catch-me-if-you-can game. Visionary developers riding on the wings of enthusiasm quickly build a
prototype that just works. The prototype then becomes a true part of the business; sometimes what
originally was just a prototype changes and expands the business. Next, more down-to-earth devel-
opers join in to analyze, stabilize, consolidate or, in some cases, rewrite the software as it should have
been done the first time, in accordance to theoretical principles.

Software, however, cannot be constrained into too-formal and rigid theorems.

Software mirrors real life, and life follows well-known rules defined in the context of some model.
Unfortunately, at some given time, T1, we find that our understanding of the model is in some way
limited. At some later time, T2, our understanding might deepen and we become aware of extended
rules that better explain the overall model.

That’s how things go in the real world out there; but it’s not always how we make things go in real
software.

Software architects tend to restrict the solution within the boundaries of a fixed, top-level
architecture. We have done it ourselves many times. If we look back, we find it is a common error
to start defining some top-level architecture (for example, Client/Server, Layered Architecture,
Hexagonal) and then use it everywhere in our business application. That approach might work in the
end, but the working solution you reach descends from the wrong approach. It’s a sort of technical
debt you are going to end up paying at some point.

Because software is expected to mirror real life, as a software architect you should first understand
the segment of the real world you are modeling with software. That segment of the real world is
the business domain, and it might contain multiple business contexts, each calling for its own ideal
architecture.

114	 PART II  Devising the architecture

The real added value of domain-driven design

Domain-Driven Design, or DDD for short, is a particular approach to software design and
development that Eric Evans introduced over a decade ago. The essence and details of DDD are
captured in the book Domain-Driven Design, which Evans wrote for Prentice Hall back in 2003. The
book subtitle transmits a much clearer message about the purpose of DDD: Tackling Complexity in the
Heart of Software.

When it debuted, DDD was perceived as an all-or-nothing approach to application design. You
were given a method, some quite innovative guidelines, and the promise that it would work. Using
DDD was not actually cheating, and we dare say that it really fulfilled the promise of “making it
work”—except that it works only if you do it right. Doing it right is not immensely hard; but it’s also
immensely easy to do it wrong. (See Figure 5-1.)

Start Success
Theory

Practice

FIGURE 5-1  The DDD road to success is not always as smooth and easy as you expect.

What makes DDD so powerful but also so error prone? We think it’s the context.

DDD is about crunching knowledge about a given business domain and producing a software
model that faithfully mirrors it. The business domain is how a company conducts its own business:
it’s about organization, processes, practices, people, and language. The business domain lives in a
context. Even very similar businesses may live in different contexts.

DDD is easy and powerful to use if you crunch enough knowledge and can model faithfully. DDD
is painful and poor if you lack knowledge or fail to turn your knowledge into a model that fits the
business domain.

What’s in DDD for me?
However you want to frame it, DDD represents a significant landmark in software development. Not
coincidentally, DDD initially was developed in the Java space, where the adoption of advanced design
techniques (in the beginning of the last decade) was much faster and more widespread than in the
.NET space. For many years, the scope and relevance of DDD was not really perceived in the .NET
space.

Do we really need it? That was the question we are often asked and have asked ourselves
many times.

	 CHAPTER 5  Discovering the domain architecture	 115

DDD is not right for every project because it requires mastery and might have high startup costs.
At the same time, nothing in DDD prevents you from using it in a relatively simple system. As we see
it, the crucial point to using DDD is understanding where its real value lies and learning techniques
to take advantage of it. The two biggest mistakes you can make with DDD are jumping on the DDD
bandwagon just because it sounds cool, and stubbornly ignoring DDD because in the end you think
your system is only a bit more complex than a plain CRUD.

In summary, we think DDD has two distinct parts. You always need one and can sometimes happily
ignore the other.

DDD has an analytical part that sets out an approach to express the top-level architecture of the
business domain in terms of bounded contexts. In addition, DDD has a strategic part that relates to
defining a supporting architecture for the identified bounded contexts.

The real added value of DDD lies in using the analytical part to identify bounded business
contexts. Next, the strategic design might or might not be leveraged to implement any of the
bounded contexts.

Conducting analysis using DDD
The analytical part of DDD consists of two correlated elements: the ubiquitous language and bounded
contexts.

The ubiquitous language is a vocabulary shared by all parties involved in the project and
thoroughly used throughout the projects, ideally in all forms of spoken and written communication.
As an architect, you typically populate the vocabulary of verbs and nouns as you acquire knowledge
about the domain. This is the most common approach to starting to populate the vocabulary. More
generally, you should also carefully look into adverbial phrases you find in requirements, because they
might reveal a lot about the domain, such as events, processes, and triggers of processes.

The ubiquitous language is also the template that inspires the names and structure of the classes
you end up writing. The ubiquitous language serves to improve and speed up the acknowledgment
of requirements and simplify communication between parties so that they avoid misunderstandings,
flawed assumptions, and botched translations when moving from one set of jargon to another.

Initially, there’s just one ubiquitous language and a single business domain to understand and
model. As you come to understand the requirements and explore the domain further, you might
discover some overlap between nouns and verbs and find that they have different meanings in differ-
ent areas of the domain. This might lead you to think the original domain should be split into multiple
subdomains.

Bounded context is the term used with DDD to refer to areas of the domain that are better treated
independently because of their own ubiquitous language. Put another way, you recognize a new
bounded context when the ubiquitous language changes. Any business domain is made of contexts,
and each context is shaped by logical contours. The primary responsibility of a software architect is
identifying business contexts in a domain and defining their logical contours.

116	 PART II  Devising the architecture

Context mapping is an expression often used to refer to the analytical part of DDD. Context map-
ping is a universal technique that can be applied to nearly any software scenario. Context mapping
builds a high-level view of the domain from the perspective of a software architect. It shows subdo-
mains and their relationships and helps you make strategic decisions.

Strategic model design
Coupled with context mapping is strategic model design. Once you identify the various bounded con-
texts, your next problem is determining the best architecture for each. DDD offers a recommended
architecture in the form of the layered architecture and Domain Model. The term domain model here
is subject to interpretation and deserves a bit of attention.

In the definition of DDD that Evans gives in his seminal book, the term domain model gives a nod
to the Domain Model pattern formalized by Martin Fowler: http://martinfowler.com/eaaCatalog/do-
mainModel.html. It consists of special flavor of an object model (also known as the domain model or
entity model) and a set of domain service classes. More recently, the internal structure of the domain
model is being reconsidered within the community. While seeing the domain model as an ad hoc
collection of objects is still the most common perspective, a functional vision of it is gaining ground.
Functional programming is, in fact, in many ways preferable to object-orientation for implementing
tasks and expressing business concepts.

In the end, we can rephrase the whole thing today by saying that DDD suggests a layered archi-
tecture designed around a model of the domain. The model is mostly an object model, but it can be
other things too—for example, a collection of functions. The persistence of data also depends on the
structure of the model. It might require an O/RM tool if the model is a collection of objects; it might
even be based on stored procedures invoked from idiomatic wrapper components if the model is, for
example, function-based.

In the next chapters, we’ll explore in depth the most common scenario for the domain model—
when it takes the form of a special object model.

Note  According to the original definition given by Evans, DDD is in a way the next natu-
ral step for developers versed in object-oriented design (OOD). The first principle of OOD
recommends finding “pertinent classes,” as you saw in Chapter 3, “Principles of software
design.” DDD recommends that you model the domain carefully—and that you model the
domain carefully by discovering pertinent classes.

The phase of strategic model design consists of evaluating the various architectural options and
choosing the architecture for each bounded context. Beyond the layered architecture, with a domain
model there are usually other options such as a plain CRUD, a CMS (when the bounded context is
expected to be a website), or even more sophisticated things, such as event sourcing (which we’ll talk
about in upcoming chapters.

http://martinfowler.com/eaaCatalog/domainModel.html
http://martinfowler.com/eaaCatalog/domainModel.html

	 CHAPTER 5  Discovering the domain architecture	 117

Which parameters should drive your choice?

Overall, we think that today there’s only one guiding rule, and it’s based on the (carefully) estimat-
ed lifetime of the software you are about to write. Let’s go through a few scenarios.

Fast-food applications
Suppose you are writing a short-term, one-off application such as a survey web application or some
analogous set of pages aimed at collecting raw data for your analysts. You know that the expected
lifetime is very short and that after the expected data has been collected the app will be bluntly
dismissed.

Does it really make sense to invest more than the least amount of time that could possibly make it
work? It probably doesn’t.

So you can go with the quickest possible CRUD you can arrange, whether it is by using Web Forms,
Silverlight, or plain HTML, depending on the skills and the target audience. If you are about to think
something like, “Hey, I’m a senior architect, and no boss would pay my time for such trivial prob-
lems,” well, you are probably just experiencing the power of bounded contexts already. Taken out of
context, a fast-food application is undoubtedly a very basic—even silly—example. But it might be
just one bounded context of a much larger and more complex domain that you, as a senior architect,
helped to map.

Front-end websites
The project you’re on requires a web front end. It has a sufficiently complex back end, where a lot of
business rules must be taken into account and a bunch of external web services must be coordinated,
but at the end of the day the front end is a plain set of read-only pages with zero or limited forms.
The most important requirement you have for it is, “It must be shockingly cool and engage people.”

Web Forms can be immediately ruled out because of its limited flexibility due to server controls.
ASP.NET MVC is a much better option because it allows full control of HTML and can be effectively
styled with CSS. Should you really go with an ASP.NET MVC solution from scratch?

Couldn’t a CMS be a quicker and equally cool solution?

We can probably hear the same objections—it’s a silly example for a book that claims to target
software architects. Yes, but a software architect recognizes complexity where she sees it and doesn’t
create any unnecessary complexity.

You might know that plugins can extend a CMS, like WordPress, to do almost anything you
can think of. It’s not a far-fetched idea to just get a cool WordPress theme and a bunch of plugins,
including custom plugins, to do the job.

Again, it’s a matter of opportunity and skills. It’s a matter of context.

118	 PART II  Devising the architecture

Any other types of applications
As Thomas Edison used to say, the value of an idea lies in the using of it. So make-the-code-just-work
is a common approach, especially in these hectic days of emerging ideas and startups. The make-the-
code-just-work motto is fine if you don’t need to touch the code once it’s done and it works.

No matter what the customer might say and no matter what the current plans are, there’s just one
reason that any software avoids further changes: it gets dismissed. If the software is not expected to
be dismissed in just a few months, as an architect you better consider a more thoughtful approach
than just fast-food code. And Domain Model and the other supporting architectures we’re slated to
discuss in the upcoming chapters are the best options available for simplifying code maintenance.

Note  This is simply a gentle reminder that, not coincidentally, maintainability is both an
OOD design goal and a class of requisites according to ISO 9126.

The ubiquitous language

Requirements are always communicated, but we all know that making sense of user requirements is
sometimes hard. In addition, the inability to completely comprehend user requirements is probably
the primary cause of misunderstandings between business and development teams.

As a way to mitigate the risks of misunderstandings at any time, Eric Evans suggested the use of a
common language that he called the ubiquitous language.

Purpose of the ubiquitous language
We write software for a specific business, but we’re software architects in the end and we might not
be black-belt experts of the specific business domain. Likewise, domain experts might have some
working knowledge of software development but probably not enough to avoid misunderstandings
and incorrect assumptions.

Developers and domain experts often just speak different languages, and each group has its own
jargon. Furthermore, it is not unlikely that different business people involved—say, from different
departments—might use different jargon and give the same term different meanings. The language
barrier might not preclude business from taking place, but it certainly makes any progress much slow-
er than expected and acceptable. Translation from one language to another must be arranged; jargon
expressions must be adjusted and put into context. This not only takes time, but it also introduces the
risk of losing details along the way.

The purpose of the ubiquitous language is to define a common terminology shared by all involved
parties—managers, end users, developers, and stakeholders in general—and at all levels—spoken
and written communication, documentation, tests, and code. A common language reduces the
need for translating concepts from the business to the development context, promotes clarity, and
minimizes assumptions.

	 CHAPTER 5  Discovering the domain architecture	 119

Once defined, the ubiquitous language becomes the official, all-encompassing language of the
project.

Structure of the ubiquitous language
The ubiquitous language is not the raw language of the business, nor is it the language of the
development teams. Both business and development language are forms of jargon, and both
languages, if taken literally, might lack or skim over essential concepts, as well as generate
misunderstandings and communication bottlenecks.

Figure 5-2 shows the canonical diagram used in literature to indicate the relationship between
ubiquitous language and native languages spoken by domain experts and development teams.

Domain
experts

Development
teams

Ubiquitous
language

FIGURE 5-2  The canonical diagram that illustrates how the ubiquitous language unifies domain and technical
concepts and extends them.

The figure shows that the ubiquitous language is a combination of domain and technical jargon.
However, the ubiquitous language is expected to contain, for the most part, words and verbs that
reflect the semantics of the business domain rather than technology terms.

It is not limited to the business jargon, however. While technical concepts like caching data,
invoking a service, and deleting records of a database should not be part of the language, terms that
indicate persistent actions, the response of the system, or notifications sent or received might be
necessary to make the resulting language faithfully express the final behavior of the system.

The ubiquitous language exists in the subsoil of the domain. The architect must dig it out at the
beginning of the project.

How to define the ubiquitous language
The ubiquitous language is not artificially created in a lab and then submitted for approval to
involved parties. Quite the reverse—the language emerges out of interviews and meetings and gets
its final shape iteratively along the way. It might take several steps of refinement and adjustment
before the language flows as expected and faithfully expresses the reality of the system being built.

120	 PART II  Devising the architecture

The first draft of the language commonly results from acknowledging requirements as architects
rewrite and make sense of raw requirements collected during elicitation.

As a technical person, you should expect the language to be rigorous (for example, strictly
unambiguous and consistent), fluent, and made of simple elements that can be combined to compose
more sophisticated concepts and actions.

As a domain expert, you should hesitate to accept any terms and concepts the language might
contain that are unknown in the domain and that are not clearly referring to a process or business
concept. Also, as a domain expert, you should ensure that all relevant business terms are defined in
the language and, more importantly, are given the right meaning. For example, if the language con-
tains the term account, the term must refer to the meaning that account has in the domain space.

Note  In general, the ubiquitous language contains business terms (nouns and verbs) plus
new terms (mostly verbs) that more or less directly map to technical actions, such deal-
ing with databases, cache and security, services and so forth. The number of nonbusiness
concepts, however, should be kept to a minimum.

The ubiquitous language is the official language of the project, and the vocabulary of terms is
inspired and then validated by domain experts. Everything in the project, from documentation to
actual code, is permeated by the language.

How would you physically express and save the vocabulary of the ubiquitous language? In practical
terms, it consists of a glossary of terms and expressions saved to a Microsoft Word or Microsoft Excel
document or even some UML diagrams. Each term is fully explained in a way that makes it under-
standable to both domain experts and developers.

It should be the responsibility of the team to keep the glossary up to date throughout the project.
The ubiquitous language, in fact, is anything but static. It can change and evolve over time to reflect
new insights gained about the domain.

Important  There are two main scenarios where the analytical part of DDD excels. One
is when there’s really a lot of domain logic to deal with that is tricky to digest, distill, and
organize. Having a ubiquitous language here is key because it ensures that all terms used
are understood and that no other terms are used to express requirements, discuss features,
and write code.

Another scenario is when the business logic is not completely clear because the actual
business is being built and the software is just part of the initial effort. Startups are an
excellent example of this scenario. In this case, the domain logic is being discovered and
refined along the way, making the availability of a ubiquitous language a great benefit to
understand where one is and where the business can move forward.

	 CHAPTER 5  Discovering the domain architecture	 121

Keeping language and model in sync
Naming and coding conventions used in the domain model should reflect naming conventions set in
the ubiquitous language. This relationship should not vary during the lifetime of the project.

If the language changes because of a different level of understanding, or a new requirement, then
the naming and coding conventions in the domain model should be updated. Also, the opposite is
true to a large extent, in the sense that renaming a class or a method is always possible but doing
so should require approval if the class or method is pervasive and the change affects a key term of
the language. At the same time, it nearly goes without saying that if a given class or method exists
only to serve implementation purposes, the constraint doesn’t apply and you can rename it without
restrictions.

Let’s briefly look at an example that refers to the code we’ll be examining in more detail in
Chapter 8, “Introducing the domain model,” and beyond. The domain is an online store, and the use-
case we focus on is the placement of an order.

Each order is reasonably associated with a record in a table and with a column that indicates the
current state. The order ID is used to track ordered items from another table. Processing the order
requires first a check to see if there are pending or delayed payments from the same customer. Next,
the process requires a check on goods in store and, finally, a call to the shipping and payment web
services and the creation of a new order record.

Here’s a more domain-driven way of expressing the same use-case. As you can see, the description
is more concise and uses fewer technical details. The terms used should also reflect the jargon used
within the organization. Here’s an example.

As a registered customer of the I-Buy-Stuff online store, I can redeem a voucher for an order I place
so that I don’t actually pay for the ordered items myself.

There are a few business terms here—registered customer, order, order items, and voucher. There
are also actions, such as placing an order and redeeming a voucher. All these belong to the ubiqui-
tous language glossary. In particular, the term voucher here is the term used in the business, and once
it is added to the ubiquitous language, nobody will ever think of using synonyms (such as coupon, gift
card, credit note and so forth).

When coding the use-case, a developer will likely create a class to access the database table of
orders, and instances of the order class will be materialized from the database and saved back there.
However, these are just technical details that don’t belong in the business context. As such, those
details should be buried in the folds of the implementation, limited to technical meetings between
developers, and never surface in official communication with business people.

This is the essence of the ubiquitous language.

122	 PART II  Devising the architecture

Bounded contexts

In the beginning, you assume one indivisible business domain and start processing requirements to
learn as much as possible about it and build the ubiquitous language. As you proceed, you learn how
the organization works, which processes are performed, how data is used and, last but not least, you
learn how things are referred to.

Especially in a large organization, the same term often has different meanings when used by
different people, or different terms are used to mean the same thing. When this happens, you
probably crossed the invisible boundaries of a subdomain. This probably means that the business
domain you assumed to be one and indivisible is, in reality, articulated in subdomains.

In DDD, a subdomain in the problem space is mapped to a bounded context in the solution space.

A bounded context is an area of the application that requires its own ubiquitous language and its
own architecture. Or, put another way, a bounded context is a boundary within which the ubiquitous
language is consistent. A bounded context can have relationships to other bounded contexts.

Important  Subdomains and bounded contexts are concepts that sometimes appear to be
similar and can be confusing. However, both concepts can be easily understood by looking
at the difference between a domain and domain model, which is probably easier to grasp.
The domain represents the problem to solve; the domain model is the model that imple-
ments the solution to the problem. Likewise, a subdomain is a segment of the domain, and
a bounded context is a segment of the solution.

Discovering contexts
Without flying too high conceptually, consider a simple booking system. The front-end web site is
certainly a subdomain. Is it the only one? Most likely, the system needs a back-office panel to put
content on the site and perhaps extract statistics. This probably makes for another subdomain.

In the current draft of the top-level architecture, we have two candidate bounded contexts.

There are two additional aspects vital to investigate: the boundaries of each bounded context and
their relationships.

Marking boundaries of contexts
Sometimes it’s relatively easy to split a business domain into various subdomains, each representing a
bounded context to render with software.

But is it splitting or is it partitioning? There is a huge difference between the two.

In the real world, you don’t often see business domains that can be easily partitioned in child
domains with nearly no overlapping functions and concepts. So in our experience, it is more a case of

	 CHAPTER 5  Discovering the domain architecture	 123

splitting than just partitioning. The problems with splitting a business domain are related to marking
the boundaries of each context, identifying areas of overlap, and deciding how to handle those areas.

As mentioned, the first concrete clue that you have a new subdomain is when you find a new term
used to express a known concept or when the same term is found to have a second meaning. This
indicates some overlapping between subdomains. (See Figure 5-3.)

Payment

Backoffice

Member

Booking

Court

Guest

Fee Club site

FIGURE 5-3  Two business contexts with some overlapping.

The business domain is made of a subdomain (say, club site) that, among other features, offers the
booking of courts. The booking of courts involves members and payments. The back office is a dis-
tinct but related subdomain. Both subdomains deal with members and payments, even though each
has a different vision of them.

The first decision to be made is whether you need to treat those subdomains separately and, if so,
where you draw the boundaries.

Splitting a domain into bounded contexts
Working on a single, all-encompassing model is always dangerous, and the level of complexity grows
as the number of entities and their relationships grow. The resulting graph can be crowded; entities
and related code can become quite coupled, and it doesn’t take much to serve up the perfect Big Ball
of Mud.

Splitting is always a good idea, especially when this leads you to creating software subsystems that
reflect the structure of the organization. The back-office system, for example, will be used by different
people than the club site.

124	 PART II  Devising the architecture

Let’s say you go for distinct bounded contexts.

How would you deal with overlapping logic? The concept of “club member” exists in both contexts,
but in the back-office context the club member has nearly no behavior and is a mere container of
personal and financial data. In the club-site context, on the other hand, the member has some specific
behaviors because she can book a court or add herself to an existing booking. For doing so, the
Member entity will just need an ID, user name, and possibly an email address.

In general, having a single, shared definition of an entity will have the side effect of padding the
definition with details that might be unnecessary in some of the other contexts. With reference to
Figure 5-3, family members are not necessary to book a court from the club site, but they are relevant
to calculating the yearly fee.

The fundamental point to resolve when conceptual overlapping is detected is which of the
following options is more appropriate:

•	 A single bounded context that includes all entities

•	 A distinct bounded context with a shared kernel of common entities

•	 A distinct bounded context with distinct definitions of common entities

The options are graphically summarized in Figure 5-4.

Payment

Backoffice

Member

Booking

CourtGuest

Fee

Guest

Fee

Payment

Member Booking

Court

Guest

Fee

Payment

Member

Payment

Member

Booking

Court

Shared kernel Club site

Backoffice Club site

Backoffice & Club site

FIGURE 5-4  Resolving the conceptual overlapping of contexts.

	 CHAPTER 5  Discovering the domain architecture	 125

There’s also a fourth option. Is the entire model entirely inadequate and in need of refinement so
that in the end you can have partitions instead of subsets?

That’s what it means to mark the boundaries of bounded contexts.

By the way, it’s not us dodging the issue by not taking a clear stand on a particular option. It’s
that, well, it just depends. It depends on other information about the domain. It depends on time and
budget. It depends on skills. It also depends on your personal view of the domain.

That’s what makes it so fun to mark the boundaries of bounded contexts.

Bounded context and the organization
The number of contexts and relationships between bounded contexts often just reflect the physical
organization of the enterprise. It is common to have a bounded context for each business department
such as human resources, accounting, sales, inventory, and the like.

Different development teams are typically assigned to each bounded context, and different
artifacts are generally produced, scheduled, and maintained.

The overlapping of concepts is quite natural in business domains; speaking in general, the best
way to handle such overlapping is to use different bounded contexts, as shown in the third option of
Figure 5-4.

Just sharing entities between development teams, as a common kernel, might prefigure risky
scenarios, where changes of team 1 might break the code of team 2 and compromise the integ-
rity of the model. Shared kernels work great if an effective shared kernel exists—such as different
organizations just using the same entities.

Otherwise, it’s the first step toward a true mess.

Context mapping
Bounded contexts are often related to each other. In DDD, a context map is the diagram that provides
a comprehensive view of the system being designed. In the diagram, each element represents a
bounded context. The diagrams in Figure 5-4 are actually all examples of a context map.

Relational patterns
Connections between elements of a context map depict the relationship existing between bounded
contexts. DDD defines a few relational patterns.

Relational patterns identify an upstream context and downstream context. The upstream context
(denoted with a u) is the context that influences the downstream and might force it to change.
Denoted with d, the downstream context is passive and undergoes changes on the upstream context.
Table 5-1 lists DDD relational patterns.

126	 PART II  Devising the architecture

TABLE 5-1  DDD relational patterns

DDD relational pattern Description

Anticorruption layer (ACL) Indicates an extra layer of code that hides to the downstream context any changes
implemented at some point in the upstream context. More on this later.

Conformist The downstream context just passively conforms to whatever model the upstream
context comes up with. Typically, the conformist pattern is a lighter approach than ACL
and the downstream context also receives data it might not need.

Customer/Supplier Two contexts are in a classic upstream/downstream relationship, where the supplier is
the upstream. The teams, however, work together to ensure that no unnecessary data
is sent. This aspect marks the difference with Conformist.

Partnership Two contexts are developed independently; no code is shared, but both contexts are
upstream and downstream at the same time. There’s a sort of mutual dependency
between the two, and one can’t just ignore the other for delivery and change.

Shared kernel Two contexts share a subset of the model. Contexts are therefore tightly coupled, and
no team can change the shared kernel without synchronizing with the other team.

Figure 5-5 is the graphical representation of a context map. Each block represents a bounded
context. The Sales block is connected to the upstream External Service block, and an ACL ensures
that changes in the service don’t force changes in the Sales context. The upstream and downstream
contexts are labeled with the u and d marks.

Weather
Forecasts
(external)

Core
Domain

Backoffice
Club site

Customer/Supplier

Customer/Supplier

Partner

Anti-corruption
layer

u

d

uu

dd

FIGURE 5-5  A sample context map showing some of the DDD relational patterns.

Context mapping is part of the strategic design of the solution. It doesn’t produce code or
deployable artifacts, but it can be immensely helpful to grab a better understanding of the system.

Note  Many DDD experts advise that because software ultimately mirrors the structure
of business organizations, a context map should ideally reflect the organization of the
enterprise. Sometimes, it turns out that the ideal context map for the system to build
doesn’t actually reflect the real organization. When this happens—and it does happen—
well, things are not going to be easy!

	 CHAPTER 5  Discovering the domain architecture	 127

Anticorruption layers
Relationships between bounded contexts pose the problem of how the development of one context
influences the other over time. The safest way of dealing with related contexts is by creating an
anticorruption layer (ACL).

It’s the safest way because all the changes required to keep the contexts in sync when one
undergoes changes are isolated in the anticorruption layer, as shown in Figure 5-6.

Weather
Forecasts
(external)

Club site Anti-corruption
layer

FIGURE 5-6  The anticorruption layer is an interfacing layer that separates two connected contexts.

The interface that the ACL exposes to the downstream context (the club site in this case) is an
invariant. The ACL, in fact, absorbs the changes in the upstream context (Weather Forecasts ser-
vice in this case) and does any conversion work that might be required. Updating the ACL when the
upstream context changes usually requires less work and is less obtrusive than updating the club-site
context.

The ACL is particularly welcome when one of the bounded contexts encapsulates a chunk of legacy
code or just an external service that none of the teams building the system has control over.

Giving each context its own architecture
Each bounded context is a separate area of the overall application. You are forced to use DDD
strategic modeling to implement each bounded context, and not only because you identified the
bounded context using a DDD methodology. As an architect, you should validate the context map
and then focus on each context separately.

For example, the Core Domain area of the application might be implemented using a Domain
Model approach. The club-site context can be an ASP.NET MVC application with a layered back end
that uses an application layer on top of MVC controllers. The application layer uses services in the
Core Domain context for changing the state of the application. Finally, a simpler subsystem like Back
Office can be efficiently given a data-driven design and result in a simple two-layer architecture
with only presentation and data access. (Concretely, this could be a Web Forms application using
DataGrids.)

Another option might be separating the front end of the club site from, say, the booking module.
You could use ASP.NET MVC for the booking module and a CMS (for example, WordPress) for the few
pages with news, photos, and static content.

Mixing multiple supporting architectures in the realm of a single system is far from wrong.

128	 PART II  Devising the architecture

Common supporting architectures
The process of identifying business contexts already reveals a lot about the nature of the domain and
subdomains. To an expert eye that knows about technologies and frameworks, a good candidate
solution appears immediately for a given context.

Just as a quick glossary, Table 5-2 lists the most commonly used supporting architectures you
might find in the industry.

TABLE 5-2  A list of supporting architectures.

Supporting architecture Brief description

Multilayer architecture Canonical segmentation based on presentation, business, and data layers. The
architecture might come in slightly different flavors, such as an additional appli-
cation layer between the presentation and business layers and with the business
layer transformed into a domain layer by the use of a DDD development style.
Layered architecture is just another name for a multilayer architecture. We’ll be
using the term layered architecture instead of multilayer in the rest of this chapter
and throughout the book.

Multitier architecture Segmentation that is in many ways similar to that of a multilayer architecture
except that now multiple tiers are involved instead of layers. (More on the possible
downsides of a layer-to-tier mapping in a moment.)

Client/server architecture Classic two-layer (or two-tier) architecture that consists only of presentation plus
data access.

Domain Model Layered architecture based on a presentation layer, an application layer, a domain
layer, and an infrastructure layer, designed in accordance with the DDD develop-
ment style. In particular, the model is expected to be a special type of object
model.

Command-Query Responsibility
Segregation (CQRS)

Two-fold layered architecture with parallel sections for handling command and
query sides. Each section can be architected independently, even with a separate
supporting architecture, whether that is DDD or client/server.

Event sourcing Layered architecture that is almost always inspired by a CQRS design that focuses
its logic on events rather than plain data. Events are treated as first-class data, and
any other queryable information is inferred from stored events.

Monolithic architecture The context is a standalone application or service that exposes an API to the rest
of the world. Typical examples are autonomous web services (for example, Web
API host) and Windows services. Yet another example is an application hosting a
SignalR engine.

As we write this chapter, another architectural style is gaining in popularity: micro-services. At
first, micro-services don’t sound like a completely new idea and are not really presented like that.
There’s a lot of service-oriented architecture (SOA) in micro-services, such as the fact that services are
autonomous and loosely coupled. However, micro-services also explicitly call out for lightweight HTTP
mechanisms for communication between processes. For more information on micro-services, you can
check out the Martin Fowler’s site at http://martinfowler.com/articles/microservices.html.

The reason why we mention micro-services here is that, abstractly speaking, the overall idea of
micro-services weds well with identifying business contexts, discovering relationships, and giving each
its own architecture and autonomous implementation. Micro-services, therefore, can be yet another
valid entry in Table 5-2.

http://martinfowler.com/articles/microservices.html

	 CHAPTER 5  Discovering the domain architecture	 129

Layers and tiers might not be interchangeable
Layers and tiers are not the same. A layer is a logical container for different portions of code; a tier is
a physical container for code and refers to its own process space or machine. All layers are actually
deployed to a physical tier, but different layers can go to different tiers.

That’s precisely the point we want to raise here.

In Table 5-2, we listed multilayer architecture and multitier architecture. Admittedly, they look the
same except that one separates blocks of code logically and the other physically. We suggest, how-
ever, that you consider those architectures as different options to be evaluated individually to see if
they fit in the solution.

The error that many system integrators made in the past was to deploy a multilayer architecture as
a multitier architecture. In doing so, they matched layers to tiers one-to-one. This led to segregating
in different tiers the presentation layer of a Web Forms application and the business layer using WCF,
Web services or even, in the old days, .NET Remoting. It apparently looked like a better architecture,
but it created latency between tiers and had a deep impact on the performance of the system. In
addition, system maintenance (for example, deploying updates) is harder and more expensive in a
multitier scenario.

Tiers are heavy but can be used to scale the application. However, just having tiers doesn’t
automatically ensure your application is faster. Generally speaking, we tend to prefer the deployment
of the entire application stack on a single tier, if that’s ever possible.

The layered architecture

In the rest of this chapter, we’ll provide an overview of the layered architecture—the multilayer
architecture introduced in Evans’ book about DDD. The layered architecture is probably the most
common type of architecture that results from DDD analysis.

Origins of the layered architecture
In the 1990s, most computing scenarios consisted of one insanely powerful server (at least for the
time it was) and a few far slower personal computers. Software architecture was essentially client/
server: the client focused on data presentation and commands, and the server mostly implemented
persistence. Any business logic beyond basic CRUD (Create, Read, Update, Delete) was stuffed in
stored procedures to further leverage the capacity of the insanely powerful server machine.

Over the years, we all managed to take larger and larger chunks of the business logic out of stored
procedures and place them within new components. This originated the classic (up to) three-segment
model, which is shown in Figure 5-7. Note that the figure also shows a direct connection between the
presentation and data layers in memory of SQL data binding.

130	 PART II  Devising the architecture

Presentation
Layer

Business
Layer

Data
Layer

FIGURE 5-7  The classic three-segment architecture.

Note that we’re using the term segment here as a general way to interchangeably refer to both
tiers and layers.

From what we have seen, learned, and done ourselves, we’d say that the largest share of systems
inspired by the three-segment architecture is actually implemented as a layered system deployed on
two physical tiers. For a website, for example, one tier is the ASP.NET application running within the
Internet Information Services (IIS) process space and another was the Microsoft SQL Server service
providing data. (See Figure 5-8.)

Presentation

Business

Data

IIS

DB

FIGURE 5-8  Common deployment of a multilayer ASP.NET application.

For the most part, the data model of any three-segment architecture is the relational data model
of the data store. The growing complexity of applications has led developers to a more conceptual
view of that data. As patterns like the Domain Model and approaches like Domain-Driven Design
(DDD) were developed and exercised, the internal structure of a layered architecture evolved quite a
bit. (See Figure 5-9.)

	 CHAPTER 5  Discovering the domain architecture	 131

Presentation
Layer

Application
Layer

Domain
Layer

Infrastructure
Layer

Repositories
CacheIoC

Services
Model

FIGURE 5-9  A more modern version of a layered architecture.

Roughly speaking, the presentation layer is the same in both architectures and the infrastructure
layer includes the data layer of Figure 5-7 but is not limited to that. The infrastructure layer, in
general, includes anything related to any concrete technologies: data access via O/RM tools, imple-
mentation of IoC containers, and the implementation of many other cross-cutting concerns such as
security, logging, caching, and more.

The business layer exploded into the application and domain layer. Upon a more thoughtful look,
the layered architecture of Figure 5-9 results from a better application of the separation of concerns
(SoC) principle. In systems inspired by the schema of Figure 5-7, the actual business logic is sprinkled
everywhere, mostly in the business logic but also in the presentation and data layers.

The layered architecture of Figure 5-9 attempts to clear up such gray areas.

Note  Repositories are generally placed in the domain layer as far as their interfaces are
concerned. The actual implementation, however, usually belongs to the infrastructure layer.

Presentation layer
The presentation layer is responsible for providing some user interface (UI) to accomplish any tasks.
Presentation is a collection of screens; each screen is populated by a set of data and any action that
starts from the screen forwards another well-defined set of data.

Generally speaking, we’ll refer to any data that populates the presentation layer as the view model.
We’ll refer to any data that goes out of the screen triggering a back-end action as the input model.
Although a logical difference exists between the two models, most of the time the view model and
input model coincide. (See Figure 5-10.)

132	 PART II  Devising the architecture

Presentation
Layer

Application
Layer

View model

Input model

FIGURE 5-10  Describing the data that goes into and out of presentation screens.

Application layer
As we see it, the application layer is an excellent way to separate interfacing layers such as
presentation and domain. In doing so, the application layer contributes immensely to the clarity of
the entire design. In the past, a typical gray area of many architectures was the placement of the part
of the business code that needed to be aware of the presentation.

The application layer is the additional layer that reports to the presentation and orchestrates any
further business action. The application layer is where you orchestrate the implementation of use-cases.

Entry point in the system’s back end
Each interactive element of the user interface (for example, buttons) triggers an action in the back
end of the system. In some simple scenarios, the action that follows some user’s clicking takes just one
step to conclude. More realistically, instead, the user’s clicking triggers something like a workflow.

According to Figure 5-9, the application layer is the entry point in the back end of the system and
the point of contact between the presentation and back end. The application layer consists of meth-
ods bound in an almost one-to-one fashion to the use-cases of the presentation layer. Methods can
be grouped in any way that makes sense to you.

For example, in an ASP.NET MVC application, we expect the application layer classes to go hand
in hand with controllers. The HomeController class, therefore, will have injected some HomeCon-
trollerService worker class. Here’s a quick sample:

public class HomeController
{
 private readonly IHomeControllerService _service;
 public HomeController(IHomeControllerService service)
 {
 _service = service;
 }
 public ActionResult Index()
 {
 var model = _service.FillHomePage(/* input model */);
 return View(model);
 }
 ...
}

	 CHAPTER 5  Discovering the domain architecture	 133

The mechanism of injection can happen at your leisure. It can happen via Unity or any other
Inversion of Control (IoC) container, or it can be done through poor man’s dependency injection, as
shown here:

public class HomeController
{
 private readonly IHomeControllerService _service;
 public HomeController() : this(new HomeControllerService())
 {
 }
 public HomeController(IHomeControllerService service)
 {
 _service = service;
 }
}

In a nutshell, the application layer is responsible for the implementation of the application’s
use-cases. All it does is orchestrate tasks and delegate work to other layers down the stack.

We think there can be two flavors of an application layer: inside or outside the business logic.
Neither is preferable to the other; it’s all about how you envision the system.

Orchestrating the business logic
In general, the application layer is bound one-to-one to the presentation with the notable exception
of unattended systems. The structure of the layer is driven by the actionable controls in the vari-
ous user interface screens. With reference to Figure 5-5, this flavor of application layer lives in the
club-site context and orchestrates workflows involving components in the Core Domain and external
services. Key aspects of this application layer are these:

■■ It might or might not be consumable by different front ends because, for example, a mobile
front end might have slightly different use-cases than the web front end or ends.

■■ It can be stateful at least as far the progress of a UI task is concerned.

■■ It gets its input from the presentation and sends a view model back as shown in Figure 5-10.

The application layer holds references to the domain layer and infrastructure layer. Finally, the
application layer has no knowledge of business rules and doesn’t hold any business-related state
information.

As the name suggests, the application layer is just application specific. If our aforementioned
booking system must be consumed by a website and a mobile application, we’re going to have two
distinct application layers—one on the site and one either within the mobile application or exposed
as an HTTP service. Are these layers actually different?

Well, they might be different; and if they’re different, different layers should be implemented. To
continue with the booking example, the application layer of the website might redirect to the credit
card site to pay and then proceed with the persistence of the booking data. The application layer of

134	 PART II  Devising the architecture

the mobile app might use in-app payment features or just use stored payment information and pass
them along in some way to the domain layer.

Note  The DDD jargon uses the term application services to refer to services that sit atop
the domain layer and orchestrate business use-cases.

Domain layer
The domain layer hosts the entire business logic that is not specific to one or more use-cases. In other
words, the domain layer contains all business logic that remains once you have compiled the applica-
tion layer.

The domain layer consists of a model (known as the domain model) and possibly a family of
services. The nature of the model can vary. Most of the time, it is an entity-relationship model, but it
can be made of functions too. Let’s stick to what appears to be the most common scenario. So let’s
say that at the end of the day an entity model is an object model.

However, in an entity model, constituent classes usually follow certain conventions. We’ll return in
detail to domain modeling and DDD conventions for entities in upcoming chapters. For now, it suf-
fices to say that entities in the model are expected to expose both data and behavior. A model with
entities devoid of any significant behavior—that is, merely data structures—form an anemic domain
model.

The ultimate goal of a domain model is to implement the ubiquitous language and express the
actions that business processes require. In this regard, exposing some behavior tends to be more
relevant than holding some data.

Along with an entity model, the domain model layer features domain services.

Domain services are pieces of domain logic that, for some reason, don’t fit into any of the existing
entities. A domain service is a class, and it groups logically related behaviors that typically operate on
multiple domain entities. A domain service often also requires access to the infrastructure layer for
read/write operations. In the aforementioned club-site context, a domain service can be the code to
book a court:

void BookCourt(Court court, ClubMember member)

Court and ClubMember are domain entities, and the method BookCourt knows how to retrieve and
apply due policies.

Infrastructure layer
The infrastructure layer is anything related to using concrete technologies, whether it is data
persistence (O/RM frameworks like Entity Framework), specific security API, logging, tracing, IoC
containers, caching, and more.

	 CHAPTER 5  Discovering the domain architecture	 135

The most prominent component of the infrastructure layer is the persistence layer—which is nothing
more than the old-faithful data access layer, only possibly extended to cover a few data sources other
than plain relational data stores. The persistence layer knows how to read and/or save data.

The data can reside on a relational server as well as in a NoSQL data store or in both. The data
can be accessible through web services (for example, CRM or proprietary services) or live in the file
system, cloud, or in-memory databases such as Memcached, ScaleOut, or NCache.

Summary

We dare say that the software industry moved from one extreme to the other. Decades ago, writing
software was inspired by the slogan “model first, code later.” This led to considerable efforts to have
a big comprehensive design up front. There’s nothing wrong with an upfront design, except that it is
like walking on water. It’s definitely possible if requirements, like water, are frozen.

Maybe because of global warming, requirements hardly ever freeze these days. Subsequently,
whomever embarks in an upfront design risks sinking after only a few steps.

Mindful of failures of upfront design, architects and developers moved in the opposite direction:
code first, model later. This philosophy, although it is awkward, moves things ahead. It just works, in
the end. Adopting this approach makes it hard to fix things and evolve, but it delivers working solu-
tions as soon as possible, and if something was wrong, it will be fixed next. Like it or not, this model
works. As our friend Greg Young used to write in his old posts, you should never underestimate the
value of working software.

What we’re trying to say, however, is that some middle ground exists, and you get there by
crunching knowledge and deeply understanding the domain. Understanding the domain leads to
discovering an appropriate architecture. However, it doesn’t have to be a single, top-level architecture
for the entire application. As you recognize subdomains, you can model each to subapplications, each
coded with the most effective architecture. If it still sounds hard to believe, consider that it’s noth-
ing more than the old motto Divide-et-Impera that—historians report—helped Julius Caesar and
Napoleon to rule the world.

Finishing with a smile

Developers sometimes enter into God mode and go off on a tangent, thus losing perspective on their
code. We try to see models everywhere and to see each model as a special case. This makes soft-
ware design cumbersome at times, and funny. For more tongue-in-cheek examples of Murphy’s law
beyond the following ones, have a look at http://www.murphys-laws.com:

■■ All generalizations are false, including this one.

■■ The weakest link is the most stable one.

■■ Never underestimate the value of working software.

http://www.murphys-laws.com

This page intentionally left blank

		 255

C H A P T E R 1 0

Introducing CQRS

Beware of false knowledge; it is more dangerous than ignorance.
—George Bernard Shaw

As discussed in Chapter 5, “Discovering the domain architecture,” there are two distinct but
interoperating parts in Domain-Driven Design (DDD). The analytical part is about discovering the

top-level architecture, using the ubiquitous language to dig out bounded contexts and their relation-
ships. The strategic part is about giving each bounded context the most appropriate architecture.
A decade ago, the standard architecture for a bounded context was a layered architecture, with a
domain layer made of an object-oriented, all-encompassing model and domain services. The effort of
developers was then to crunch knowledge about the domain and render it through a web of inter-
connected objects with state and behavior. The model was unique and intended to fully describe the
entire business domain.

It didn’t look, in the beginning, like a thing that’s far easier to say than do.

Some projects that embraced DDD eventually worked; other projects failed. Success stories can
be told too, but many people still believe that DDD is hard to do even though it can possibly deliver
significant benefits. The point is that, for many people, the perception that DDD holds benefits is
much less concrete than the perception of the damage that might result from using DDD and failing.

Is there anything wrong with DDD?

The analytical part of DDD has little to do with code and software design. It’s all about figuring
out the top-level architecture while using ad hoc tools like the ubiquitous language. This is an excel-
lent approach to take for just about any project. In complex scenarios, it helps to understand the big
picture and lay out modules and services. In simple scenarios, it boils down to having just one context
and a single module to build.

The critical part of the original vision of DDD is the suggested architecture for a bounded context.
First and foremost, the layered architecture with an object-oriented model and services is just one
option, and simpler solutions—for example, Content Management System (CMS), Customer Relation-
ship Management (CRM), coupled CRUD, and two-layer systems—certainly are not banned as long as
they fit the needs. Second, even when the layered architecture with a domain layer appears to be the
ideal solution for a bounded context, the model doesn’t have to be object-oriented, nor does it have
to be an all-encompassing model for the entire context.

256	 PART III  Supporting architectures

In this chapter, we introduce a pattern that splits the domain model in two, actually achieving
much more than just separation of concerns.

Separating commands from queries

Most of the difficulties that early adopters of DDD faced were in designing a single model to take care
of all aspects of the domain. Generally speaking, any actions performed on a software system belong
to one of the following two categories: query or command. In this context, a query is an operation
that doesn’t alter in any way the state of the system and just returns data. The command, on the other
hand, does alter the state of the system and doesn’t return data, except perhaps for a status code or
an acknowledgment.

The logical separation that exists between queries and commands doesn’t show up clearly if the
two groups of actions are forced to use the same domain model. For this reason, a new supporting
architecture emerged in the past few years called CQRS, which is short for Command/Query
Responsibility Segregation.

Generalities of the CQRS pattern
Since the days of ancient Rome, Divide et Impera has been an extremely successful approach to
actually getting things done. Roman ruler Julius Caesar won a number of battles fighting against the
entire enemy army, but when things got more complicated, he implemented a strategy of leading his
enemy into dividing forces across the battlefields so that he could fight against a smaller army.

Similarly, the CQRS pattern is based on a simple, almost commonplace, idea: queries and
commands (sometimes also referred to as reads and writes) are very different things and should be
treated separately. Yet, for a long time, developers—like short-sighted commanders—insisted on
having the same conceptual model for both queries and commands in their systems.

Especially in complex business scenarios, a single model soon becomes unmanageable. It doesn’t
just grow exponentially large and complex (and subsequently absorb time and budget), it also never
ends up working the way it should.

Note  We wouldn’t be too surprised to find out at some point that developers insisted
for years on having a single model because having two distinct models might seem like a
negative statement about their ability to work out a single, all-encompassing model. Our
egos grow big sometimes and obscures a proper perspective on things!

From domain model to CQRS
In a way, CQRS is a form of lateral thinking resulting from the difficulty of finding a well-conceived
model for complex domains. If the Domain Model turns out to be expensive and objectively complex,
are we sure we’re approaching it right? That was probably the question that led to investigating and
formalizing a different pattern.

	 CHAPTER 10  Introducing CQRS	 257

At the end of the day, CQRS uses two distinct domain layers rather than just one. The separation
is obtained by grouping operations that are queries in one layer and operations that are commands
in another. Each layer, then, has its own architecture and its own set of services dedicated to only
queries and commands, respectively. Figure 10-1 captures the difference.

Infrastructure layer Infrastructure layer

Domain layer Domain
layer

Application layer Application
layer

Presentation layer Presentation layer

Data
access

+
DTO

Commands Queries

Domain Model CQRS

FIGURE 10-1  Visual comparison between Domain Model and CQRS.

In CQRS, it is not a far-fetched idea to have the query stack based exclusively on SQL queries and
completely devoid of models, an application layer, and a domain layer. Having a full domain-model
implementation in the query stack is not common. In general, the query stack should be simplified to
the extreme. In addition, typically a CQRS approach has a different database for each side.

Structure of the query and command domain layers
As surprising as it might sound, the simple recognition that commands and queries are two different
things has a deep impact on the overall architecture of the system. In Figure 10-1, we split the domain
layer into two blocks.

Are they just two smaller and simpler versions of a domain layer like we discussed in the past two
chapters?

The interesting thing is that with the architecture of the system organized as two parallel branches
as shown in Figure 10-1, the requirement of having a full-fledged domain model is much less strict.
For one thing, you might not need a domain model at all to serve queries. Queries are now just data
to be rendered in some way through the user interface. There’s no command to be arranged on
queried data; as such, many of the relationships that make discovering aggregates so important in a
classic domain model are unnecessary. The model for the domain layer of the query side of a CQRS
system can be simply a collection of made-to-measure data-transfer objects (DTOs). Following this
consideration, the domain services might become just classes that implement pieces of business logic
on top of an anemic model.

258	 PART III  Supporting architectures

Similar things can be said for the domain layer of the command side of the system. Depending
on the commands you actually implement, a classic domain model might or might not be necessary.
In general, there’s a greater chance you might need a domain model for the command side because
here you express business logic and implement business rules. At any rate, the domain model you
might have on the command side of a CQRS system is likely far simpler because it is tailor-made for
the commands.

In summary, recognizing that queries and commands are different things triggers a chain reaction
that sets the foundation for domain modeling, as discussed in the past two chapters. We justified
domain models as the ideal way to tackle complexity in the heart of software. Along the way, we
ended up facing a good deal of complexity and thought it was, for the most part, complexity that is
inherent to the business domain. Instead, most of that complexity results from the Cartesian product
of queries and commands. Separating commands from queries can reduce complexity by an order of
magnitude.

Note  Just in case you were wondering, a Cartesian product is a mathematical operation
that, given two or more sets, returns a new and larger set made of all ordered pairs (or
tuples), where each element belongs to a different set. The cardinality of the resulting set is
the product of the cardinalities of all input sets.

CQRS is not a top-level architecture
Unlike DDD, CQRS is not a comprehensive approach to the design of an enterprise-class system.
CQRS is simply a pattern that guides you in architecting a specific bounded context of a possibly
larger system. Performing a DDD analysis based on a ubiquitous language and aimed at identifying
bounded contexts remains a recommended preliminary step.

Next, CQRS becomes a valid alternative to Domain Model, CRUD, and other supporting
architectures for the implementation of a particular bounded context.

Benefits of CQRS
The list of benefits brought about by using CQRS to implement a bounded context is not particularly
long. Overall, we think that there are essentially two benefits. Their impact on the solution, though, is
dramatic.

Simplification of the design
As our interactions with the Domain Model taught us, most of the complexity you face in a software
system is usually related to operations that change the state of the system. Commands should
validate the current state and determine whether they can run. Next, commands should take care of
leaving the system in a consistent state.

	 CHAPTER 10  Introducing CQRS	 259

Finally, in a scenario in which reading and writing operations share the same representation
of data, it sometimes becomes hard to prevent unwanted operations from becoming available in
reading or writing. We already raised this point in the last chapter when we pointed out that it’s
nearly impossible to give, say, a list of order items a single representation that fits in both the query
and command scenarios. Anyway, we’ll return to this aspect in a moment with a detailed example.

We stated in an earlier note that the complexity of the Domain Model results from the Cartesian
product of queries and commands. If we take the analysis one step further, we can even measure by
a rule of thumb the amount of reduced complexity. Let’s call N the complexity of queries and com-
mands. In a single domain model, where requirements and constraints of queries affect commands
and vice versa, like in a Cartesian product, you have a resulting complexity of NxN. By separating
queries from commands and treating them independently, all you have is N+N.

Potential for enhanced scalability
Scalability has many faces and factors; the recipe for scalability tends to be unique for each system
you consider. In general, scalability defines the system’s ability to maintain the same level of perfor-
mance as the number of users grows. A system with more users performs certain operations more
frequently. Scalability, therefore, depends on the margins that architects have to fine-tune the system
to make it perform more operations in the same unit of time.

The way to achieve scalability depends on the type of operations most commonly performed. If
reads are the predominant operation, you can introduce levels of caching to drastically reduce the
number of accesses to the database. If writes are enough to slow down the system at peak hours, you
might want to consider switching from a classic synchronous writing model to async writes or even
queues of commands.

Separating queries from commands gives you the chance to work on the scalability aspects of both
parts in total isolation.

Note  A good example of what it means to treat reads and writes separately is given by a
cloud platform such as Microsoft Azure. You deploy query and command layers as distinct
web or worker roles and scale them independently, both in terms of instances and the size
of each instance. Similarly, when reads are vastly predominant, you can decide to offload
some pages to a distinct server with a thick layer of caching on top. The ability to act
on query and command layers separately is invaluable. Note also that the investment in
Microsoft Azure is focused more on websites, WebJobs, and even mobile services rather
than the original web roles and worker roles. In particular, WebJobs is more of a light-
weight approach than web roles and worker roles.

260	 PART III  Supporting architectures

Pleasant side effects of CQRS
A couple of other pleasant side effects of CQRS are worth noting here. First, CQRS leads you to a deep
understanding of what your application reads and what it processes. The neat separation of modules
also makes it safe to make changes to each without incurring some form of regression on one or the
other.

Second, thinking about queries and commands leads to reasoning in terms of tasks and a task-
based user interface, which is very good for end users.

Fitting CQRS in the business layer
Honestly, we don’t think there are significant downsides to CQRS. It all depends in the end on what
you mean exactly by using CQRS. So far we just defined it as a pattern that suggests you have two
distinct layers: one filled with the model and services necessary for reading, and one with the model
and services for commands. What a model is—whether it is an object model, a library of functions, or
a collection of data-transfer objects—ultimately is an implementation detail.

With this definition in place, nearly any system can benefit from CQRS and coding it doesn’t
require doing things in a different way. Neither does it mean learning new and scary things.

Noncollaborative vs. collaborative systems
The point, however, is that CQRS also induces some deeper architectural changes that maximize the
return in terms of scalability and reduced complexity but that require some investment in learning
and performing a preliminary analysis.

In the end, CQRS was discovered by looking for more effective ways to tackle complex systems in
which multiple actors—both end users and software clients—operate on the data concurrently and
sophisticated and ever-changing business rules apply. The major proponents of CQRS—Udi Dahan
and Greg Young—called these systems collaborative systems.

Let’s try to formalize the landmarks of a collaborative system a bit better.

In a collaborative system, the underlying data can change at any time from the effect of the
current user, concurrent users connected through various front ends, and even back-end software.
In a collaborative system, users compete for the same resources, and this means that whatever data
you get can be stale in the same moment that it is read or even long before it is displayed. One of
the reasons for this continuous change is that the business logic is particularly complex and involves
multiple modules that sometimes need to be loaded dynamically. The architect has two main options:

■■ Lock the entire aggregate for the time required to complete any operation.

■■ Keep the aggregate open to change at the cost of possibly showing out-of-sync data that
eventually becomes consistent. (This is often referred to as eventual consistency.)

	 CHAPTER 10  Introducing CQRS	 261

The first option is highly impractical for a collaborative system—the back end would be locked
while serving a single request at nearly any time, and the throughput would be very low. The sec-
ond option might be acceptable but, if the system is not properly fine-tuned, it can end up giving
inaccurate results and taking too long a time to respond.

This is the scenario that led to formalizing CQRS.

CQRS to the rescue
CQRS is not simply about using different domain layers for queries and commands. It’s more about
using distinct stacks for queries and commands architected by following a new set of guidelines. (See
Figure 10-2.)

Application

Presentation

Plain DAL
for reading

layer

layer

Command
processor Event

Handlers
Raise
event

Ad hoc
storage

Database

Update
state

Command Query

Repositories

FIGURE 10-2  The big picture of the CQRS implementation of a collaborative system.

In the command pipeline, any requests from the presentation layer become a command ap-
pended to the queue of a processor. Each command carries information and has its own handler that
knows about the logic. In this way, each command is a logical unit that can thoroughly validate the
state of the involved objects and intelligently decide which updates to perform and which to decline.
The command handler processes the command just once. Processing the command might generate
events handled by other registered components. In this way, other software can perform additional
tasks. One of the common tasks is performing periodical updates of a database cache that exists for
the sole purpose of the query pipeline.

262	 PART III  Supporting architectures

When the business logic is extremely sophisticated, you can’t afford to handle commands synchro-
nously. You can’t do that for two reasons:

■■ It slows down the system.

■■ The domain services involved become way too complex, perhaps convoluted and subject to
regression, especially when rules change frequently.

With a CQRS architecture, the logic can be expressed through single commands that result in
distinct, individual components that are much easier to evolve, replace, and fix. In addition, these
commands can be queued if necessary.

Note  In a CQRS scenario, one-way commands that do not return any response do not
conceptually exist. They should be modeled as events fired for one or more event handlers
to handle.

The query pipeline is quite simple, on the other hand. All it has is a collection of repositories that
query content from ad hoc caches of denormalized data. The structure of such database cache tables
(most of the time, plain Microsoft SQL Server tables) closely reflects the data required by the user
interface. So, for example, if a page requires the customer name while displaying the order details,
you can arrange to have the ID and name readymade in a cache without having to JOIN every time.
Furthermore, because the query pipeline is separated, it can offload to a dedicated server at any time.

CQRS always pays the architecture bill
Many seem to think that outside the realm of collaborative systems, the power of CQRS diminishes
significantly. On the contrary, the power of CQRS really shines in collaborative systems because it
lets you address complexity and competing resources in a much smoother and overall simpler way.
There’s more to it than meets the eye, we think.

In our opinion, CQRS can sufficiently pay your architecture bills even in simpler scenarios, where
the plain separation between query and command stacks leads to simplified design and dramati-
cally reduces the risk of design errors. You don’t need to have super-skilled teams of developers
to do CQRS. Quite the opposite: using CQRS enables nearly any team to do a good job in terms of
scalability and cleanliness of the design.

Transaction script in the command stack
CQRS is a natural fit in a system dependent on collaboration. However, the benefits of command/
query separation can apply to nearly all systems.

Most systems out there can be summarized as “CRUD with some business logic around.” In
these cases, you can just use the Transaction Script (TS) pattern (as discussed in Chapter 7, “The

	 CHAPTER 10  Introducing CQRS	 263

mythical business layer”) in the implementation of the command stack. TS is an approach that has
you partition the back end of the system—overall, business logic—in a collection of methods out
of a few container classes. Each method essentially takes care of a command and provides a full
implementation for it. The method, therefore, takes care of processing input data, invoking local
components or services in another bounded context, and writing to the database. All these steps take
place in a single “logical” transaction.

As Fowler said, the glory of TS is in its simplicity. TS is a natural fit for applications with a small
amount of logic. The major benefit of TS is there’s only minor overhead for development teams in
terms of learning and performance.

Note  CQRS suggests—or just makes it reasonable sometimes—to use distinct databases
for reading and writing. When this happens, the adoption of TS in the organization of the
business logic raises the problem of figuring out the ideal way to handle eventual consis-
tency. We’ll return to this point in the next chapter about CQRS implementation.

EDMX for the read model
What’s the easiest way to build a data access layer that serves the purposes of the presentation layer
with no extra whistles and bells? Once you know the connection string to the database to access, all
you do is create an Entity Framework wrapper in the form of an EDMX designer file in Microsoft Visual
Studio.

Running the Entity Framework designer on the specified connection string infers an object model
out of the database tables and relationships. Because it comes from Entity Framework, the object
model is essentially anemic. However, the C# mechanism of partial classes enables you to add
behavior to classes, thus adding a taste of object orientation and domain modeling to the results.

Arranging queries—possibly just LINQ queries—on top of this object model is easy for most
developers, and it’s effective and reliable. Expert developers can work very quickly with this approach,
and junior developers can learn from it just as quickly.

The pragmatic architect’s perspective
Taking the point of view of an architect, you might wonder what the added value of CQRS is in
relatively simple systems with only a limited amount of business logic.

You set the architecture to define the boundaries of command and query stacks. You pass each
developer an amount of work that is commensurate to that developer’s actual skills. You still have
distinct stacks to be optimized independently or even rewritten from scratch if necessary.

In a word, an expert architect has a far better chance to take on the project comfortably, even with
only junior developers on the team.

264	 PART III  Supporting architectures

The query stack

Let’s delve a bit deeper into the two pipelines that make up the CQRS architecture. In doing so,
another key aspect that drives the adoption of CQRS in some highly collaborative systems will emerge
clearly—the necessity of dealing with stale data.

The read domain model
A model that deals only with queries would be much easier to arrange than a model that has to
deal with both queries and commands. For example, a prickly problem we hinted at in Chapter 8,
“Introducing the domain model,” is brilliantly and definitely solved with the introduction of a read-
only domain model.

Why you need distinct models
The problem was summarized as follows. The Order class has an Items property that exposes the
list of ordered products. The property holds inherently enumerable content, but which actual type
should you use for the Items property? The first option that probably comes to mind is IList<T>.
It might work, but it’s not perfect. So let’s put ourselves in a Domain Model scenario and assume
we want to have a single model for the entire domain that is used to support both queries and
commands. Also, let’s say we use a plain list for the Items property:

public IList<OrderItem> Items { get; private set; }

The private setter is good, but it prevents only users of an Order from replacing it. Any code that
gets an instance of Order can easily add or remove elements from it. This might or might not be a
legitimate operation; it depends on the use-case. If the use-case is managing the order, exposing
order items through a list is just fine. If the use-case is showing the last 10 orders, a list is potentially
dangerous because no changes to the order are expected.

Important  The domain model is the API of the business domain. Once publicly exposed,
an API can be invoked to perform any action it allows. To ensure consistency, the API
should not rely on developers to use it only the right way. If Murphy (of “Murphy’s laws”)
were a software engineer, he would say something like, “If a developer can call an API the
wrong way, he will.”

On the other hand, if you expose the list as a plain enumeration of order items, you have no way
to create an order and add items to it. In addition, individual items are still modifiable through direct
access:

public IEnumerable<OrderItem> Items { get; private set; }

Things don’t change even if you use ReadOnlyCollection<T> instead of IEnumerable. A Microsoft
.NET Framework read-only collection is read-only in the sense that it doesn’t allow changes to the

	 CHAPTER 10  Introducing CQRS	 265

structure of the collection. Furthermore, if the read-only collection is created as a wrapper for a
regular list, changes to the underlying list do not affect the read-only wrapper. Here’s an example
where order items are exposed as a read-only collection but methods still make it possible to
populate the collection:

public class Order
{
 private readonly IList<OrderItem> _items;
 public Order()
 {
 _items = new List<MOrderItem>();
 }
 public ReadOnlyCollection<OrderItem> Items
 {
 get
 {
 return new ReadOnlyCollection<OrderItem>(_items);
 }
 }

 public void Add(int id, int quantity)
 {
 _items.Add(new OrderItem(id, quantity));
 }
}
public class OrderItem
{
 public OrderItem(int id, int quantity)
 {
 Quantity = quantity;
 ProductId = id;
 }
 public int Quantity { get; /*private*/ set; }
 public int ProductId { get; /*private*/ set; }
}

However, direct access to elements in the collection is still possible—whether it is gained during a
for-each loop, out of a LINQ query, or by index:

foreach (var i in order.Items)
{
 i.Quantity ++;
 Console.WriteLine(i);
}

To prevent changes to the data within the collection, you have to make the setter private.

This would work beautifully if it weren’t for yet another possible issue. Is it worthwhile to turn the
OrderItem entity of the domain model into an immutable object?

Classes in the domain model are modified and made more and more complex because they can be
used interchangeably in both query and command scenarios. Using the read-only wrapper, ultimately,
is the first step toward making a read version of the Order entity.

266	 PART III  Supporting architectures

Note  We are not trying to say that having Items coded as a list is dangerous; instead,
we just want to point out a consistency hole and a sort of violation of the syntax rules of
the ubiquitous language. The order displayed for review is not the order created out of a
request. This is what CQRS is all about.

From a domain model to a read model
When your goal is simply creating a domain model for read-only operations, everything comes easier
and classes are simpler overall. Let’s look at a few varying points.

The notion of aggregates becomes less central, and with it the entire notion of the domain model
as explained in Chapter 8. You probably still need to understand how entities aggregate in the model,
but there’s no need to make this knowledge explicit through interfaces.

The overall structure of classes is more similar to data-transfer objects, and properties tend to
be much more numerous than methods. Ideally, all you have are DTOs that map one-to-one with
each screen in the application. Does that mean that model becomes anemic? Well, the model is 100
percent anemic when made of just data. An Order class, for example, will no longer have an AddItem
method.

Again, there’s no issue with CQRS having a 100 percent anemic read model. Methods on such
classes can still be useful, but only as long as they query the object and provide a quick way for the
presentation or application layer to work. For example, a method IsPending on an Order class can still
be defined as follows:

public bool IsPending()
{
 return State == OrderState.Pending;
}

This method is useful because it makes the code that uses the Order class easier to read and, more
importantly, closer to the ubiquitous language.

Designing a read-model façade
The query stack might still need domain services to extract data from storage and serve it up to the
application and presentation layers. In this case, domain services, and specifically repositories, should
be retargeted to allow only read operations on the storage.

Restricting the database context
In the read stack, therefore, you don’t strictly need to have classic repositories with all CRUD methods
and you don’t even need to expose all the power of the DbContext class, assuming you’re in an Entity
Framework Code-First scenario, as described in Chapter 9, “Implementing the domain model,” and as
it will be used in future chapters.

	 CHAPTER 10  Introducing CQRS	 267

In Chapter 9, we had a class wrapping the Entity Framework DbContext and called it
DomainModelFacade. The structure of the class is shown here:

public class DomainModelFacade : DbContext
{
 public DomainModelFacade() : base("naa4e-09")
 {
 Products = base.Set<Product>();
 Customers = base.Set<Customer>();
 Orders = base.Set<Order>();
 }

 public DbSet<Order> Orders { get; private set; }
 public DbSet<Customer> Customers { get; private set; }
 public DbSet<Product> Products { get; private set; }
 ...
}

The DbSet class provides full access to the underlying database and can be used to set up queries
and update operations via LINQ-to-Entities. The fundamental step toward a query pipeline is limiting
the access to the database to queries only. Here are some changes:

public class ReadModelFacade : DbContext
{
 public ReadModelFacade() : base("naa4e-09")
 {
 Products = base.Set<Product>();
 Customers = base.Set<Customer>();
 Orders = base.Set<Order>();
 }

 public IQueryable<Customer> Customers
 {
 get { return _customers; }
 }

 public IQueryable<Order> Orders
 {
 get { return _orders; }
 }

 public IQueryable<Product> Products
 {
 get { return _products; }
 }
 ...
}

Collections to query from the business logic on are now exposed via IQueryable interfaces. We
said that the notion of aggregates loses focus in a read model. However, queryable data in the read-
model façade mostly corresponds to aggregates in a full domain model.

268	 PART III  Supporting architectures

Adjusting repositories
With a read-model façade, any attempt to access the database starts with an IQueryable object. You
can still have a set of repository classes, populate them with a bunch of FindXxx methods, and use
them from domain services and the application layer.

In doing so, you’ll certainly run into simple situations such as just needing to query all orders
that have not been processed two weeks after they were placed. The FindXxx method can return a
collection of Order items:

IEnumerable<Order> FindPendingOrderAfter(TimeSpan timespan);

But there are also situations in which you need to get all orders whose total exceeds a threshold.
In this case, you need to report order details (like ID, date of creation, state, payment details) as well
as customer details (at least the name and membership status). And, above all, you need to report the
total of the order. There’s no such type in the domain; you need to create it. OK, no big deal: it’s just a
classic DTO type:

IEnumerable<OrderSummary> FindOrdersBeyond(decimal threshold);

All is good if the OrderSummary DTO is general enough to be used in several repository queries.
If it is not, you end up with too many DTO classes that are also too similar, which ultimately also
poses a problem with names. But beyond the name and quantity of DTOs, there’s another underlying
issue here: the number of repository methods and their names and implementation. Readability and
maintainability are at stake.

A common way out is leaving only common queries as methods in the repositories that return
common DTOs and handling all other cases through predicates:

public IEnumerable<T> Find(Expression<Func<T, Boolean>> predicate)

In this case, though, you’re stuck with using type T, and it might not be easy to massage any
queried data into a generic DTO within a single method.

Important  We decided to introduce relevant aspects of CQRS starting from a DDD
perspective and then discuss issues that arise from using it, as well as what has been done
to smooth out the rough spots according to the key guidelines of CQRS.

As far as repositories are concerned, the bottom line is that you don’t likely need them in
the query stack. The entire data access layer can be articulated through LINQ queries on
top of some Object/Relational Mapper (O/RM) classes placed directly in the application
layer. Also, a full-fledged O/RM like Entity Framework sometimes might be overkill. You
might want to consider a micro O/RM for the job, such as PetaPoco.
(See http://www.toptensoftware.com/petapoco.)

Looking ahead to .NET, a better option probably is the upcoming Entity Framework 7,
which will be a lot more lightweight and aligned with ASP.NET vNext.

http://www.toptensoftware.com/petapoco

	 CHAPTER 10  Introducing CQRS	 269

Layered expression trees
Over the past 20 years of developing software, we have seen a recurring pattern: when a
common-use solution gets overwhelmingly complex and less and less manageable over time, it’s
probably because it doesn’t address the problem well. At that point, it might be worth investigating a
different approach to the problem. The different approach we suggest here to reduce the complexity
of repositories and DTOs in a read model leverages the power of LINQ and expression trees.

Realistic scenarios
Let’s focus first on a few realistic scenarios where you need to query data in many different ways that
are heavily dependent on business rules:

■■ Online store  Given the profile of the user, the home page of the online store will present
the three products that match the profile with the highest inventory level. It results in two con-
ceptual queries: getting all products available for sale, and getting the three products with the
highest inventory level that might be interesting to the user. The first query is common and
belongs to some domain service. The second query is application specific and belongs to the
application layer.

■■ ERP  Retrieve all invoices of a business unit that haven’t been paid 30 days after their due
payment terms. There are three conceptual queries here: getting all invoices, getting all
invoices for the business unit, and getting all invoices for the business unit that are unpaid 30
days later. The first two queries are common and belong to some domain services. The third
query sounds more application specific.

■■ CMS  Retrieve all articles that have been published and, among them, pick those that match
whatever search parameters have been specified. Again, it’s two conceptual queries: one
domain-specific and one application-specific.

Why did we use the term conceptual query?

If you look at it conceptually, you see distinct queries. If you look at it from an implementation
perspective, you just don’t want to have distinct queries. Use-cases often require queries that can be
expressed in terms of filters applied over some large sets of data. Each filter expresses a business rule;
rules can be composed and reused in different use-cases.

To get this, you have two approaches:

■■ Hide all filters in a repository method, build a single super-optimized query, run it, and
return results. Each result is likely a different DTO. In doing this, you’re going to have nearly
one method for each scenario and new or modified methods when something changes. The
problem is not facing change; the problem is minimizing the effort (and risk of regression)
when change occurs. Touching the repository interface is a lot of work because it might have
an impact on upper layers. If you can make changes only at the application level, it would be
much easier to handle and less invasive.

■■ Try LINQ and expression trees.

270	 PART III  Supporting architectures

Let’s see what it takes to use layered expression trees (LET).

Using IQueryable as your currency
The idea behind LET is enabling the application layer to receive IQueryable<T> objects wherever
possible. In this way, the required query emerges through the composition of filters and the actual
projection of data is specified at the last minute, right in the application layer where data is being
used to generate the view model for the presentation to render.

With this idea in mind, you don’t even need repositories in a read model, and perhaps not even as
a container of common queries that return direct and immediately usable data that likely will not be
filtered any more. A good example of a method you might still want to have in a separate repository
class is a FindById.

You can use the public properties of the aforementioned read façade as the starting point to
compose your queries. Or, if necessary, you can use ad hoc components for the same purpose. In
this way, in fact, you encapsulate the read-model façade—still a point of contact with persistence
technology—in such components. Here’s what the query to retrieve three products to feature on the
home page might look like. This code ideally belongs to the application layer:

var queryProducts = (from p in CatalogServices.GetProductsAvailableForSale()
 orderby p.UnitsInStock descending
 select new ProductDescriptor
 {
 Id = p.Id,
 Name = p.Name,
 UnitPrice = p.UnitPrice,
 UnitsInStock = p.UnitsInStock,
 }).Take(3);

Here’s another example that uses the recommended async version of LINQ methods:

var userName = _securityService.GetUserName();
var currentEmployee = await _database
 .Employees
 .AsNoTracking()
 .WhereEmployeeIsCurrentUser(userName)
 .Select(employee =>
 new CurrentEmployeeDTO
 {
 EmployeeId = employee.Id,
 FirstName = employee.PersonalInformation.FirstName,
 LastName = employee.PersonalInformation.LastName,
 Email = employee.PersonalInformation.Email,
 Identifier = employee.PersonalInformation.Identifier,
 JobTitle = employee.JobTitle,
 IsManager = employee.IsTeamManager,
 TeamId = employee.TeamId,
 }).SingleOrDefaultAsync();
currentEmployee.PictureUrl = Url.Link("EmployeePicture",
 new { employeeId = currentEmployee.EmployeeId });

	 CHAPTER 10  Introducing CQRS	 271

As you might have noticed, the first code snippet doesn’t end with a call to ToList, First, or similar
methods. So it is crucial to clarify what it means to work with IQueryable objects.

The IQueryable interface allows you to define a query against a LINQ provider, such as a database.
The query, however, has deferred execution and subsequently can be built in multiple steps. No
database access is performed until you call an execution method such as ToList. For example, when
you query all products on sale, you’re not retrieving all 200,000 records that match those criteria.
When you add Take(3), you’re just refining the query. The query executes when the following code is
invoked:

var featuredProducts = queryProducts.ToList();

The SQL code that hits the database has the following template:

SELECT TOP 3 ... WHERE ...

In the end, you pass the IQueryable object through the layers and each layer can add filters along
the way, making the query more precise. You typically resolve the query in the application layer and
get just the subset of data you need in that particular use-case.

Isn’t LET the same as an in-memory list?
No, LET is not the same as having an in-memory list and querying it via LINQ-to-Objects. If you load
all products in memory and then use LINQ to extract a subset, you’re discarding tons of data you
pulled out of the database.

LET still performs a database access using the best query that the underlying LINQ provider can
generate. However, IQueryable works transparently on any LINQ provider. So if the aforementioned
method GetProductsAvailableForSale internally uses a static list of preloaded Product instances,
the LET approach still works, except that it leverages LINQ-to-Objects instead of the LINQ dialect
supported by the underlying database access layer.

Using LET is not the same as having a static list, but that doesn’t mean having a static list is a
bad thing. If you see benefits in keeping, say, all products in memory, a static list is probably a good
approach. LET is a better approach if the displayed data is read from some database every time.

Note  Crucial to CQRS is the fact that the database you query might not be the core
database where commands write. It can easily be a separate database optimized for
reading and built to denormalize some of the content in the core database. This approach
is often referred to as the “pure CQRS approach.”

272	 PART III  Supporting architectures

Upsides of LET
The use of LET has several benefits. The most remarkable benefit is that you need almost no DTOs.
More precisely, you don’t need DTOs to carry data across layers. If you let queries reach the applica-
tion layer, all you do is fetch data directly in the view model classes. On the other hand, a view model
is unavoidable because you still need to pass data to the user interface in some way.

Note  As you might have noticed, we’re using different names—DTO and view model
classes—for two software entities that can be described using the same words: classes that
just carry data. ASP.NET MVC view model classes are actually DTOs, and the reason we’re
using different names here is to emphasize that one of the benefits of LET is that you can
forget about intermediate classes you might need in the classic Domain Model to carry
data across layer. In CQRS with LET, all you need is LINQ to query data and a DTO to return
data to the presentation. There are no other intermediaries—just LINQ queries and, in
ASP.NET MVC, view model classes.

Another benefit is that the code you write is somehow natural. It’s really like you’re using the
database directly, except that the language is much easier to learn and use than plain-old T-SQL.

Queries are DDD-friendly because their logic closely follows the ubiquitous language, and
sometimes it seems that domain experts wrote the queries. Among other things, DDD-friendly
queries are also helpful when a customer calls to report a bug. You look into the section of the code
that produces unexpected results and read the query. You can almost read your code to the customer
and quickly figure out whether the reason unexpected data is showing up on the screen is logical
(you wrote the wrong query) or technical (the implementation is broken). Have a look at the following
code:

var db = new ReadModelFacade();
var model = from i in db.IncomingInvoices
 .ForBusinessUnit(buId)
 .Expired()
 orderby i.PaymentDueDate
 select new SummaryViewModel.Invoice
 {
 Id = i.ID,
 SupplierName = i.Party.Name,
 PaymentDueDate = i.PaymentDueDate.Value,
 TotalAmount = i.TotalPrice,
 Notes = i.Notes
 };

	 CHAPTER 10  Introducing CQRS	 273

The code filters all invoices to retrieve those charged to a given business unit that haven’t
been paid yet. Methods like ForBusinessUnit and Expired are (optional) extension methods on the
IQueryable type. All they do is add a WHERE clause to the final query:

public static IQueryable<Invoice> ForBusinessUnit(this IQueryable<Invoice> query, int buId)
{
 var invoices = from i in query
 where i.BusinessUnit.OrganizationID == buId
 select i;
 return invoices;
}

Last but not certainly least, LET fetches all data in a single step. The resulting query might be
complex, but it is not necessarily too slow for the application. Here we can’t help quoting the timeless
wisdom of Donald Knuth: “Premature optimization is the root of all evil.” As Andrea repeats in every
class he teaches, three things are really important in the assessment of enterprise architecture: mea-
sure, measure, and measure. We’re not here to say that LET will always outperform any other solution,
but before looking for alternative solutions and better SQL code, first make sure you have concrete
evidence that LET doesn’t work for you.

Downsides of LET
Overall LET is a solution you should always consider, but like anything else it is not a silver bullet. Let’s
see which factors might make it less than appealing.

The first point to consider is that LET works beautifully on top of SQL Server and Entity Framework,
but there’s no guarantee it can do the same when other databases and, more importantly, other LINQ
providers are used.

LET sits in between the application layer and persistence in much the same way repositories do.
So is LET a general abstraction mechanism? The IQueryable interface is, in effect, an abstraction
layer. However, it strictly depends on the underlying LINQ provider, how it maps expression trees to
SQL commands, and how it performs. We can attest that things always worked well on top of Entity
Framework and SQL Server. Likewise, we experienced trouble using LET on top of the LINQ provider
you find in NHibernate. Overall, the argument that LET is a leaky abstraction over persistence is
acceptable in theory.

In practice, though, not all applications are really concerned about switching the data-access
engine. Most applications just choose one engine and stick to that. If the engine is SQL Server
and you use Entity Framework, the LET abstraction is not leaky. But we agree that if you’re build-
ing a framework that can be installed on top of your database of choice, repositories and DTOs are
probably a better abstraction to use.

Finally, LET doesn’t work over tiers. Is this a problem? Tiers are expensive, and we suggest you
always find a way to avoid them. Yet sometimes tiers provide more scalability. However, as far as
scalability is concerned, let us reiterate a point we made in a past chapter: if scalability is your major
concern, you should also consider scaling out by keeping the entire stack on a single tier and running
more instances of it on a cloud host such as Microsoft Azure.

274	 PART III  Supporting architectures

Note  When you use LET, testing can happen only on top of the LINQ-to-Objects provider
built into the .NET Framework or any other LINQ provider that can be used to simulate the
database. In any case, you’re not testing LET through the real provider. For the nature of
LET, however, this is the barrier that exists between unit and integration tests.

The command stack

In a CQRS scenario, the command stack is concerned only about the performance of tasks that modify
the state of the application. As usual, the application layer receives requests from the presentation
and orchestrates their execution. So what’s going to be different in a CQRS scenario?

As shown in Figure 10-1, CQRS is about having distinct domain layers where the business logic—
and objects required to have it implemented—is simpler to write because of the separation of
concerns. This is already a benefit, but CQRS doesn’t stop here. Additionally, it lays the groundwork
for some more relevant design changes.

In the rest of the chapter, we drill down into concepts that slowly emerged as people increasingly
viewed query and command stacks separately. These concepts are still evolving and lead toward the
event-sourcing supporting architecture we’ll discuss thoroughly in the next couple of chapters.

Getting back to presentation
A command is an action performed against the back end, such as registering a new user, processing
the content of a shopping cart, or updating the profile of a customer. From a CQRS perspective, a
task is monodirectional and generates a work flow that proceeds from the presentation down to the
domain layer and likely ends up modifying some storage.

Tasks are triggered in two ways. One is when the user explicitly starts the task by acting on some
UI elements. The other is when some autonomous services interact asynchronously with the system.
As an example, you can think of how a shipping company interacts with its partners. The company
might have an HTTP service that partners invoke to place requests.

The command placed updates the state of the system, but the caller might still need to receive
some feedback.

Tasks triggered interactively
Imagine a web application like the I-Buy-Stuff online store we presented in Chapter 9. When the user
clicks to buy the content of the shopping cart, she triggers a business process that creates an order,
places a request for delivery, and processes payment—in a nutshell, it modifies the state of multiple
systems, some interactively and some programmatically.

Yet the user who originally triggered the task is there expecting some form of feedback. That’s no
big deal when commands and queries are in the same context—the task modifies the state and reads

	 CHAPTER 10  Introducing CQRS	 275

it back. But what about when commands and queries are in separated contexts? In this case, you have
two tasks: one triggered interactively and one triggered programmatically. Here’s some code from an
ASP.NET MVC application:

[HttpPost]
[ActionName("AddTo")]
public ActionResult AddToShoppingCart(int productId, int quantity=1)
{
 // Perform the requested task using posted input data
 var cart = RetrieveCurrentShoppingCart();
 cart = _service.AddProductToShoppingCart(cart, productId, quantity);
 SaveCurrentShoppingCart(cart);

 // Query task triggered programmatically
 return RedirectToAction("AddTo");
}

[HttpGet]
[ActionName("AddTo")]
public ActionResult DisplayShoppingCart()
{
 var cart = RetrieveCurrentShoppingCart();
 return View("shoppingcart", cart);
}

The method AddToShoppingCart is a command triggered interactively, as evidenced by the
HttpPost attribute. It reads the current state of the shopping cart, adds the new item, and saves
it back. The command Add-to-Shopping-Cart ends here, but there’s a user who still needs some
feedback.

In this specific case—an ASP.NET application—you need a second command triggered program-
matically that refreshes the user interface by placing a query or, like in this case, performing an action
within the realm of the application layer. This is the effect of RedirectToAction, which places another
HTTP request—a GET this time—that invokes the DisplayShoppingCart method.

What if you have a client-side web application—for example, a Single-Page application? In
this case, you use some JavaScript to trigger the call to a Web API or SignalR endpoint. The task
completes, but this time there’s no strict need for the web back end to execute a second task
programmatically to get back to the presentation. The nature of the client makes it possible to display
feedback in the form of an acknowledgment message:

$("#buttonBuy").click(function() {
 // Retrieve input data to pass
 ...
 $.post(url, { p1: ..., p2: ... })
 .done(function(response) {
 // Use the response from the task endpoint to refresh the UI
 ...
 });
});

276	 PART III  Supporting architectures

A similar mechanism applies when the client is a desktop or mobile application, whether it’s
Microsoft Windows, Windows Store, Windows Phone, Android, iOS, or something else.

Important  In the case of an ASP.NET front end, the use of a redirect call to refresh the user
interface is doubly beneficial because it defeats the notorious F5/Refresh effect. Browsers
usually keep track of the last request and blindly repeat it when the user presses F5 or
refreshes the current page. Especially for tasks that update the state of the system, reiter-
ating a post request might repeat the task and produce unwanted effects—for example,
the same item can be added twice to the shopping cart. A page refreshed after the task
through a redirect leaves a GET operation in the browser memory. Even if it is repeated, no
bad surprises can show up.

Tasks triggered programmatically
A system that exposes a public HTTP API is subject to receive calls from the outside. The call merely
consists of the invocation of a method through an HTTP request, and the response is just an HTTP
response. Here, the fundamentals of HTTP rule over all. Here’s a sample Web API template for tasks to
be invoked programmatically:

public class ExternalRequestController : ApiController
{
 public HttpResponseMessage PostDeliveryRequest(DeliveryRequest delivery)
 {
 // Do something here to process the delivery request coming from a partner company
 ...

 // Build a response for the caller:
 // Return HTTP 201 to indicate the successful creation of a new item
 var response = Request.CreateResponse<String>(HttpStatusCode.Created, "OK");

 // Add the location of new item for their reference
 var trackingId = ...;
 var path = "/delivery/processed/" + delivery.PartnerCode + "/" + trackingId;
 response.Headers.Location = new Uri(Request.RequestUri, path);
 return response;
 }
}

In this example, you have a Web API controller that receives delivery requests from a partner
company. The request is processed and generates a tracking ID that must be communicated back to
indicate the success of the operation.

There are various ways you can do this, and it mostly depends on your personal perspective
regarding Web APIs. If you’re a REST person, you would probably go with the code shown earlier. If
you’re more inclined toward remote procedure calls (RPCs), you can just return the tracking ID as a
plain string in a generic HTTP 200 response.

	 CHAPTER 10  Introducing CQRS	 277

Formalizing commands and events
All software systems receive input from some front-end data source. A data source can be any
number of things, like a sensor connected to a hardware device that pumps real-time data, a feed
asynchronously provided by a remote service, or—the most common scenario—a presentation
layer equipped with a comfortable user interface. The input data travels from the front end to the
application layer, where the processing phase of the input data is orchestrated.

Abstractly speaking, any front-end request for input processing is seen as a message sent to the
application layer—the recipient. A message is a data transfer object that contains the plain data
required for any further processing. In such an architecture, it is assumed that messages are fully
understood by the recipient. Such a definition of a message leaves room for a number of concrete
implementations. In most cases, you might want to start with a Message base class that acts as a data
container:

public class Message
{
 // Optionally, a few common properties here.
 // The class, however, can even be a plain marker with no properties.
 ...
}

The front end can deliver the message to the application layer in a number of ways. Commonly,
the delivery is a plain method invocation—for example, an application service invoked from within
an ASP.NET MVC controller method. In more sophisticated scenarios, such as where scalability is the
top priority, you might want to have a service bus in your infrastructure that also supports brokered
messaging. In this way, you ensure delivery of the message to the intended recipient under any
conditions, including when the recipient is not online.

Events vs. commands
There are two types of messages: commands and events. In both cases, messages consist of a packet
of data. Some subtle differences exist, however, between events and commands.

A command is an imperative message that sounds like an explicit request made to the system to
have some tasks performed. Here are some other characteristics of a command:

■■ A command is directed at one handler.

■■ A command can be rejected by the system.

■■ A command can fail while being executed by some handler.

■■ The net effect of the command can be different depending on the current state of the system.

■■ A command doesn’t generally trespass the boundaries of a given bounded context.

■■ The suggested naming convention for commands says that they should be imperative and
specify what needs to be done.

278	 PART III  Supporting architectures

An event is a message that serves as a notification for something that has already happened. It has
the following characteristics:

■■ An event can’t be rejected or canceled by the system.

■■ An event can have any number of handlers interested in processing it.

■■ The processing of an event can, in turn, generate other events for other handlers to process.

■■ An event can have subscribers located outside the bounded context from which it originated.

Note  The key difference between CQRS and the Event Sourcing architecture we’ll cover in
Chapter 12, “Introducing Event Sourcing,” is this: in an Event Sourcing scenario, messages
can be persisted to form a detailed and exhaustive audit log. This gives you a great chance
at any later time to look back at what has happened within the system. Once you have the
record of all that happened, you can set up a what-if elaboration, replay events to figure
out the current state, and extrapolate models of any kind.

Writing an event class
In terms of source code, commands and events are both classes derived from Message. Dealing with
commands and events through different classes makes the design of the system more logical and
simpler overall. Here’s a sample command class:

public class CheckoutCommand : Message
{
 public string CartId { get; private set; }
 public string CustomerId { get; private set; }

 public CheckoutCommand(string cartId, string customerId)
 {
 CartId = cartId;
 CustomerId = customerId;
 }
}

Conversely, here’s the layout of an event class.

public class DomainEvent : Message
{
 // Common properties
 ...
}

public class OrderCreatedEvent : DomainEvent
{
 public string OrderId { get; private set; }
 public string TrackingId { get; private set; }
 public string TransactionId { get; private set; }

	 CHAPTER 10  Introducing CQRS	 279

 public OrderCreatedEvent(string orderId, string trackingId, string transactionId)
 {
 OrderId = orderId;
 TrackingId = trackingId;
 TransactionId = transactionId;
 }
}

As you can see, the structure of event and command classes is nearly the same except for the
naming convention. A fundamental guideline for designing domain events is that they should be as
specific as possible and clearly reveal intent.

As an example, consider the form through which a customer updates the default credit card he
uses in transactions. Should you fire a rather generic CustomerUpdated event? Or is a more specific
CreditCardUpdated event preferable? Both options lead to a working solution, but which option works
for you should be evident and stand on its own. It depends on the ubiquitous language and the level
of granularity you have in place. We believe that a finer granularity here is a significant asset.

We generally recommend that the intent of the event be made clear in the name and all ambiguity
be removed. If some ambiguity around a single event surfaces, you’ll probably find that it’s safer to
have two distinct events.

Which properties should you have in the base class DomainEvent?

We’d say that at a minimum you want to have a timestamp property that tracks the exact time
at which the event was fired. Moreover, you might want to have a property containing the name (or
ID) of the user who caused the firing of the event. Another piece of data you might want to have is a
version number that handlers can use to determine whether they can or cannot handle the event. The
point here is that the definition of an event might change over time. A version number can help in
this regard.

The implementation of the version number is completely up to the team. It can be a Version object
as well as a string or a number. It can be bound to the application build number, or it can even be
referred to the version of the event class:

public class DomainEvent : Message
{
 public DateTime TimeStamp { get; private set; }
 public DomainEvent()
 {
 TimeStamp = DateTime.Now;
 }
}

An event class should be considered immutable for the simple reason that it represents something
that has already happened. Immutable here means that there should be no way to alter the value
of properties. The combination of private setters, no write methods, and a plain constructor will do
the trick.

280	 PART III  Supporting architectures

Handling commands and events
Commands are managed by a processor that usually is referred to as a command bus. Events are
managed by an event bus component. It is not unusual, however, that commands and events are
handled by the same bus. Figure 10-3 presents the overall event-based architecture of a CQRS
solution. This architecture is more standard and is an alternative to the one we mentioned earlier that
was based on the TS pattern.

Commands/Events
of interest

Saga
Commands/Events

of interest

Saga
Commands/Events

of interest

Saga

Start command

Orchestration of the process via commands and events
Complete

BUS

Application layer

Request

Command

UI Tasks

Gain access and read from the event store if required

DB

FIGURE 10-3  The command stack of an event-based CQRS architecture.

Any interaction that takes place in the user interface generates some requests to the system. In an
ASP.NET MVC scenario, these requests take the form of controller actions and methods in the applica-
tion layer. In the application layer, a command is created and pushed to some machinery for actual
processing.

The bus component
The command bus holds a list of known business processes that can be triggered by commands.
Active instances of such processes can be further advanced by commands. Processing a command
can sometimes generate an event within the domain; the generated event is published to the same

	 CHAPTER 10  Introducing CQRS	 281

command bus or to a parallel event bus, if any. Processes that handle commands and related events
are usually referred to as sagas.

The command bus is a single class that receives messages (requests of executing commands and
notifications of events) and finds a way to process them. The bus doesn’t actually do the work itself;
instead, it selects a registered handler that can take care of the command or event. Here’s a pos-
sible template for a bus class that handles commands and events. We use the interface IHandles as a
placeholder for actions. The interface has a single void method:

public interface IHandles
{
 void Handle(T message);
}

The bus uses the interface to handle both commands and events:

public class Bus
{
 private static readonly Dictionary<Type, Type> SagaStarters =
 new Dictionary<Type, Type>();
 private static readonly Dictionary<string, object> SagaInstances =
 new Dictionary<string, object>();

 public static void RegisterSaga<TStartMessage, TSaga>()
 {
 SagaStarters.Add(typeof(TStartMessage), typeof(TSaga));
 }

 public static void Send<T>(T message) where T : Message
 {
 // Publish the event
 if (message is IDomainEvent)
 {
 // Invoke all registered sagas and give each
 // a chance to handle the event.
 foreach(var saga in SagaInstances)
 {
 var handler = (IHandles<T>) saga;
 if (handler != null)
 handler.Handle(message);
 }
 }

 // Check if the message can start one of the registered sagas
 if (SagaStarters.ContainsKey(typeof (T)))
 {
 // Start the saga creating a new instance of the type
 var typeOfSaga = SagaStarters[typeof (T)];
 var instance = (IHandles<T>) Activator.CreateInstance(typeOfSaga);
 instance.Handle(message);

 // At this point the saga has been given an ID;
 // let's persist the instance to a (memory) dictionary for later use.
 var saga = (SagaBase) instance;

282	 PART III  Supporting architectures

 SagaInstances.Add(saga.Data.Id, instance);
 return;
 }

 // The message doesn't start any saga.
 // Check if the message can be delivered to an existing saga instead
 if (SagaInstances.ContainsKey(message.Id))
 {
 var saga = (IHandles<T>) SagaInstances[message.Id];
 saga.Handle(message);

 // Saves saga back or remove if completed
 if (saga.IsComplete())
 SagaInstances.Remove(message.Id);
 else
 SagaInstances[message.Id] = saga;
 }
 }
}

The bus has two internal dictionaries: one to map start messages and saga types, and one to track
live instances of sagas. In the latter dictionary, you can typically have multiple instances of the same
saga type that are bound to different IDs.

The saga component
In general, a saga component looks like a collection of logically related methods and event handlers.
Each saga is a component that declares the following information:

■■ A command or event that starts the process associated with the saga

■■ Commands the saga can handle and events the saga is interested in

Whenever the bus receives a command (or an event) that can start a saga, it creates a new saga
object. The constructor of the saga generates a unique ID, which is necessary to handle concurrent
instances of the same saga. The ID can be a GUID as well as a hash value from the starter command
or anything else, like the session ID. Once the saga is created, it executes the command or runs the
code that handles the notified event. Executing the command mostly means writing data or executing
calculations.

At some point in the lifetime of the saga instance, it might be necessary to send another command
to trigger another process or, more likely, fire an event that advances another process. The saga does
that by pushing commands and events back to the bus. It might also happen that a saga stops at
some point and waits for events to be notified. The concatenation of commands and events keeps the
saga live until a completion point is reached. In this regard, you can also think of a saga as a workflow
with starting and ending points.

	 CHAPTER 10  Introducing CQRS	 283

Events raised by sagas pass through the bus, and the bus passes them as messages to whomever
subscribed to that event. Raising an event from within the saga requires code like that shown here:

// Raise the PaymentCompleted event
var theEvent = new PaymentCompletedEvent(/* add transaction ID */);
theEvent.SagaId = message.Cart.Id;
Bus.Send(theEvent);

From the application layer, you invoke the bus as shown in the following example. This example
simulates a scenario in which an ASP.NET MVC application is called back from the payment page on a
bank service gateway:

public ActionResult CompleteProcessOrder(String transactionId)
{
 // Retrieve shopping cart from session state
 var cart = RetrieveCurrentShoppingCart();

 // Prepare and queue a Process-Order command
 var command = new ProcessOrderCommand(transactionId, cart.CartId);
 Bus.Send(command);

 // Refresh view: in doing so, results of previous command might be captured, if ready.
 return RedirectToAction("Done");
}

As you might have noticed, the command bus doesn’t return a response. This is not coincidental.
The refresh of the user interface—wherever necessary—is left to a subsequent read command that
queries data from any place—storage, cache, or whatever—where output is expected to be.

What we mostly want from a command bus is to decouple the application layer from the domain
services. Doing so opens up new opportunities, such as handling domain service calls asynchronously.
Other scenarios that the command bus can simplify are adding cross-cutting filters along the way,
such as transactions, logging, and general injection points for optional logic. In any of these cases, all
you need to do is change the command-bus class—no changes are required to the application layer
and domain services.

Important  As battlefield experience grows around CQRS, some practices consolidate and
tend to become best practices. Partly contrary to what we just stated about async domain
services, it is a common view today to think that both the command handler and the appli-
cation need to know how the transactional operation went. Results must be known, and if
the command needs to run asynchronously, it should be designed as an event rather than
as a command.

284	 PART III  Supporting architectures

The combined effect of commands and events
When you write systems based on very dynamic business rules, you might want to seriously consider
leaving the door open to making extensions and changes to certain workflows without patching the
system.

Think, for example, of an e-commerce website that launches a marketing campaign so that any
user performing certain actions through the site will accrue points on some sort of a customer-loyalty
program. Because of the huge success of the campaign, the company decides to extend the incen-
tives to more actions on the site and even double the points if a given action (say, buying suggested
products) is repeated over time. How would you effectively handle that?

You can certainly fix and extend the application layer, which turns out to be the nerve center that
governs the workflow. Anyway, when the business logic is expressed through the composition of
small, independent and even autonomous commands and events, everything is much easier to han-
dle. This is a classic scenario for collaborative systems. Let’s say you use the flowchart in Figure 10-4 to
implement the process of an order being submitted.

Update
Fidelity Card

Register
order

Payment

Enough
goods left?

Enough
points?

Refill
command

OrderCreated
command

Is-Gold
event

END

No

FIGURE 10-4  A sample workflow that handles the purchase of a few products.

Having the entire business logic of the workflow in a single method might make maintenance and
testing problematic. However, even in the simple case of having split blocks in the workflow in simple
commands, it might be difficult to do things properly. Let’s consider the update of the customer’s
status in the fidelity program after an order is processed.

Instead of having the Register-Order command invoke the Update-Fidelity-Card command, isn’t
it more flexible if the Register-Order command just fires an event saying that a new order has been
created? With this approach, a handler for that event can kick off and check whether the customer
is eligible for Gold status and fire another event for other handlers to jump in and update databases.

	 CHAPTER 10  Introducing CQRS	 285

This would isolate each action, keep each form of validation small and in reusable pieces, and keep
the amount of logic in each command to the bare minimum.

Note  When it comes to events, we highly recommend that the naming convention
reflect the occurrence of something. For example, the generic Not-In-Store and Is-Gold
events should be implemented through classes with more evocative names, such as
ItemWasNotInStoreWhenPayingEvent and CustomerReachedGoldStatusEvent.

Sagas and transactions
Looking back at Chapter 8 where we introduced the Domain Model architecture, we can say that a
saga is the evolution of the application service concept.

In an application service you orchestrate the tasks that serve a user request. The application service
takes care of setting up transactions--possibly distributed transactions--and like a state-machine it
coordinates the next step until the end of a workflow is reached. Abstractly speaking, a saga does the
same except that it removes the need for a single component to know about the entire workflow and
uses events to break an otherwise monolithic workflow into the combined effect of smaller command
handlers raising events to coordinate with others.

This makes the entire solution a lot more flexible and reduces the surface of code subject to
changes when business changes.

In addition, a saga reduces the need of distributed transactions when long-running processes are
involved that span across multiple bounded contexts. The structure of a saga--a collection of rather
independent command and event handlers--lends to easily define compensating behavior for each
command executed. Thus if at some point a saga command fails, it can execute the compensating
behavior for what it knows has happened and raise an event at the saga level to undo or compensate
the work completed.

Note  In the case of failures, saga methods might receive the same event twice or more.
It might not be easy to figure out the event is a repeat. If it can be figured out, methods
should avoid repeating action (idempotency)

Downsides of having a command bus
There are contrasting feelings about the command bus. A common criticism is that it just adds an
extra layer and contributes to making the code less easy to read. You need to go through some more
classes to figure out what happens.

This aspect can be mitigated by using proper naming conventions so that the name of the handler
matches the name of the command class being queued to the bus. In this way, you know exactly
where to look, and looking into the implementation of methods takes only a few more clicks than
with application services, as discussed in past chapters.

286	 PART III  Supporting architectures

With classic application services, you see the call to the method right from controllers and can
use a tool like ReSharper to jump directly to the source code. With a command bus, you see the
command and know by convention the name of the class in which you need to look.

Readymade storage
Most real-world systems write data and read it back later. Before CQRS appeared on the horizon,
reads and writes took place within the same stack and often within the same transactional context.
CQRS promotes the neat separation of queries and commands and pushes the use of different stacks.
As you saw in this chapter, though, the internal architecture of the two stacks can be significantly dif-
ferent. You typically have a domain layer in the command stack and a far simpler data-access layer in
the query stack.

What about databases, then? Should you use different databases too: one to save the state of the
system and one to query for data?

Optimizing storage for queries
Many real-world systems use a single database for reading and writing purposes—and this happens
regardless of CQRS architectures. You can have distinct command and query models and still share
the same database. It’s all about the scenarios you deal with.

Our thought is that using CQRS—at least in its lightweight form of using different models—is
mostly beneficial for every system because it splits complexity, enables even different teams to work
in parallel, and can suggest using something even simpler than a Domain Model for each stack. So
CQRS is also about simplification.

However, for most practical purposes, using a single relational database is still the best option.
When CQRS is used for scalability in a highly collaborative system, however, you might want to
think about a couple of other aspects. (CQRS with a single database is sometimes referred to as
hybrid-CQRS.)

In the query stack, what you query for has nearly the same schema as the view model. Most likely,
these view models come from tables that are largely denormalized and that have very few links to
other tables. In other words, the tables you really need are specialized for the queries you need to
run.

A question that naturally arises is this: do you actually need a relational database for queries? We
say you don’t strictly need a relational database, but it’s probably the best option you have, even
though NoSQL solutions might be handier at times. More importantly—we’d say—you don’t strictly
need the same database where the state of the system is persisted.

Creating a database cache
If you’re using one database to store the state of the system and another database to store data in
a format that is quick and effective to query for the purposes of presentation, who’s in charge of
keeping the two databases in sync?

	 CHAPTER 10  Introducing CQRS	 287

This seems to be the final step of nearly any command whose action affects the query database.
To avoid giving too many responsibilities to each command, the most obvious approach is that any
command whose action affects the query database fires an event at the end. The event handler will
then take care of updating the query database. The query database doesn’t fully represent the busi-
ness behind the application; it only contains data—possibly denormalized data—in a format that
matches the expectations of the user interface. For example, if you’re going to display pending orders,
you might want to have a query database just for the information you intend to display for orders.
In doing so, you don’t store the customer ID or product ID, just the real name of the customer, a full
description of the product, and a calculated total of the order that includes taxes and shipping costs.

Stale data and eventual consistency
When each stack in CQRS owns its database, the command database captures the state of the system
and applies the “official” data model of the business domain. The query database operates as a cache
for data readymade for the presentation’s needs. Keeping the two databases in sync incurs a cost.
Sometimes this cost can be postponed; sometimes not.

If you update the query database at the end of a command, just before the end of the saga or
at any point of the workflow when it makes sense, you automatically keep the command and query
databases in sync. Your presentation layer will constantly consume fresh data.

Another approach that is sometimes used in the concrete implementations consists of delaying
the synchronization between the command and query databases. The command database is regu-
larly updated during the execution of the command so that the state of the application is consistent.
Those changes, though, are not replicated immediately to the query side. This typically happens for
performance reasons and to try to keep scalability at the maximum.

When the query and command databases are not in sync, the presentation layer might show stale
data and the consistency of the entire system is partial. This is called eventual consistency—at some
point, the databases are consistent, but consistency is not guaranteed all the time.

Is working with stale data a problem? It depends.

First and foremost, there should be a reason for having stale data; often, the reason is to speed up
the write action to gain greater scalability. If scalability is not a concern, there’s probably no reason
for stale data and eventual consistency. Beyond that, we believe that very few applications can’t
afford displaying stale data for a short amount of time (with “short amount of time” being defined by
the context). In many write-intensive systems, writes are sometimes performed in the back end and
only simulated on the presentation to give the illusion of full synchronicity. The canonical example is
when you post on a social network and the following two things happen:

■■ The back end of the system is updated through a command.

■■ At the end of the command, the DOM of the page is updated via JavaScript with the changes.

In other words, what appears as the real status of the system is simply the effect of a client-side
command. At some point, however, in a few seconds (or minutes or days) something happens that

288	 PART III  Supporting architectures

restores full consistency so that when the page is displayed from scratch reading from the server, it
presents aligned data.

Eventual consistency is commonly achieved through scheduled jobs that run periodically or via
queues that operate asynchronously. In this case, the saga ends by placing an event to a separate bus,
possibly on a persistent queue. The queue will then serve events one at a time, causing the handler to
fire and update the query database.

Summary

A decade ago, DDD started an irreversible, yet slow, process that is progressively changing the way
many approach software architecture and development. In particular, DDD had the positive effect
of making it clear that a deep understanding of the domain is key. And above everything else, DDD
provided the tools for that: a ubiquitous language and bounded context.

Initially, DDD pushed the layered architecture with an object-oriented model as the recommended
architecture for a bounded context. Years of experience suggested that a single domain model to
handle all aspects of the business logic—specifically, commands and queries—was probably taking
the complexity up to a vertical asymptote. From that point, there was an effort in the industry to find
a different approach—one that could retain the good parts of DDD while making the implementation
simpler and more effective.

CQRS was one of the answers.

CQRS propounds the separation between domain layers and the use of distinct models for reading
and writing—a brilliantly simple idea that, however, had a far broader scope than first imagined.
CQRS is perfect for highly collaborative systems, but it also can serve well in simpler scenarios if you
apply it in a lighter form. That’s a fundamental point and—as we see it—also the source of a lot of
confusion.

CQRS is primarily about separating the stack of commands from the stack of queries. Realizing
this architectural separation is not necessarily complex or expensive. However, if you take CQRS one
or two steps further, it can really deliver a lot of added value in terms of the ability to manage much
more business complexity while making your system much easier to scale out. To achieve this, you
need to restructure and largely rethink the command and query sides and introduce LET, command
buses, handlers, domain and integration events, and (likely) distinct storage for reads and writes. This
flavor of architecture is ideal for collaborative systems, but it can be expensive to use in some systems.
In the end, full-blown CQRS is a good solution, but not for every problem.

	 CHAPTER 10  Introducing CQRS	 289

Finishing with a smile

To generate a smile or two at the end of this chapter, we selected three popular but largely
anonymous quotes in the spirit of Murphy’s laws:

■■ To understand what recursion is, you must first understand recursion.

■■ Before software can be reusable, it first has to be usable.

■■ Ninety percent of everything is CRUD.

In addition, we saved two funny but deep pearls of wisdom for last, from two people who
contributed a lot to the software industry and computer science as a whole:

■■ If debugging is the process of removing software bugs, then programming must be the
process of putting them in. (E. W. Diijkstra)

■■ C makes it easy to shoot yourself in the foot; C++ makes it harder, but when you do, it blows
away your whole leg. (Bjarne Stroustrup)

This page intentionally left blank

Index

	 379

A
Abelson, Hal, 349
abstraction, 273
acceptance tests, 31, 94–96
accessibility, 10
actions

in Behavior-Driven Design, 95
in Domain-Driven Design, 121
execution through components, 177
implementing as classes, 174
objects representing, 171

Active Record pattern, 168
adapters, 186
ADO.NET, 192
aggregates, 199–205, 266

aggregate root objects, 200, 204–205, 344–346
boundaries of, 202–203
cross-aggregate behavior in domain services, 206
data snapshots, 323, 340–348
event handling, 347–348
identifying, 235–243
locking vs. keeping open to change, 260–261
modeling, 199–200
persistence, 199, 347, 357, 363–364
rebuilding state, 328, 339
repository for, 346–347. See also repositories
snapshots vs. replaying events, 348

Agile development, 15–17
Extreme Programming, 17
Scrum methodology, 17
training and practice, 41
unforeseen events, 37

Agile Project Management with Scrum (Schwaber), 17
agility in architecture, 4, 11–12
Ajax, 152–153
Alexander, Christopher, 75
American National Standards Institute/Institute of Electrical
and Electronics Engineers (ANSI/IEEE) standard 1471, 5
analysts, 18, 22
Anemic Domain Model (ADM), 63, 134, 174–176, 226–227

anticorruption layers (ACLs), 126–127
anti-patterns, 175–176
Apple’s organizational culture, 35
application layer, 132–134, 177–180, 257

connecting to data-access layer, 179–180
connecting to presentation layer, 178–179
in CQRS, 257
event notification from, 336
extending, 284
front ends, 178
messages delivered to, 277
security concerns, 213

application logic, 198
application persistence, 195–196
application services, 134, 149–151, 248–251, 285
architects, 17–24

as analysts, 21–22
code writing, 23–24
and developers, boundary between, 12
flowcharts, use of, 305
misconceptions about, 21–24
openness and transparency, 32
as project managers, 22
responsibilities, 18–20
roles, 4, 20–21

architectural patterns, 19. See also specific pattern names
architecture, 5

agility in, 4, 11–12
of bounded contexts, 127–129
classic three-segment, 129–130, 167
early decisions, 12–14
emerging, 16–17
event-based, 315–318
implementation, 7, 12
layered, 130–131, 167. See also layered architecture
process of, 14–17
requirements, 7. See also requirements
single-tier, 129
tasks, responsibility for, 14
upfront, 15
vision of, 7

380

Ariadne 5 disaster, 8–9, 78, 99
Arrange-Act-Assert (AAA) pattern, 93
arrays, as modeling tools, 245
aspects, 57
ASP.NET

display modes, 222
Identity facilities, 237–238
websites, 147–152

ASP.NET MVC, 10, 177, 222
controllers, 177–179
display modes, 158–159
presentation logic, 147–149
task triggering, 275
TempData facility, 252
vs. Web Forms, 152–155

ASP.NET Web Forms
vs. MVC, 152–155
presentation logic, 149
user interface, 151–152

async database operations, 361
asynchronous query methods, 361
async writes, 259
atomic methods, 364
audit logs, 278, 318
auto-completion, 39
AutoMapper, 186–187
automated testing, 86, 94–95, 101
Azure, 142

B
back ends

commands against, 274
entry point, 132–133
partitioning, 263

bad code, 39–41, 44–48
Ballmer, Steve, 36
Balsamiq, 142
behavior

black box of, 12
domain vs. application logic, 198
flowcharts of, 305
as focus in modeling, 225–228

Behavior-Driven Design (BDD), 95–96
best practices, 14
Big Ball of Mud (BBM), 9, 27

causes, 28–32
detecting, 34–35
requirements churn, 43
symptoms of, 32–34

Big Bang pattern, 93
black box of behavior, 12
black-box testing, 94, 101
blocks of code, 45–48

Boolean conditions, 81–82
Boolean guards, 80
bounded contexts, 47, 121–129, 193

adding, 224
architecting, 116, 127–129, 255, 258. See also
Command/Query Responsibility Segregation (CQRS)
boundaries, marking, 122–123
business domain, decomposing into, 125, 222–223
communication between, 223
context mapping, 116, 125–127
contextual overlaps, 123–124
defined, 122
discovering, 115, 122–125
integration events, 302
in layered architecture, 255
modules, 197
number of, 218
relationships between, 125–126
supporting architecture for, 196
ubiquitous language of, 122

Box, George E. P., 51
breakdown process, 11–12, 19
Brooks, Frederick P., 25, 49, 349
Brooks law, 38
Buschmann, Frank, 76
business domain

bounded contexts, decomposing into, 222–223
context of, 114, 117
entities, state of, 321–323
entity snapshots, 323
jargon, translating to ubiquitous language, 119
partitioning or splitting, 122–124
subdomains of, 122
understanding, 113

business layer, 167–188
CQRS in, 260–262
data flow across boundaries, 182–187
patterns for organizing, 167–176
task-based modeling, 176–182
testing, 100–101

business logic
in domain entities and domain services, 180, 205
events, flow of, 319
hosting, 134
implementing, 167, 248–253. See also business layer
location of, 227–228
modeling, 58
orchestrating, 133–134, 294
patterns for organizing, 13, 167–176
single commands, expressing as, 262
in stored procedures, 129
workflow of, 284

business people, language of, 10–11
business requirements, 28. See also requirements

Ariadne 5 disaster

	 381

business rules
filters, expressing with, 269
modeling with aggregates, 200

C
C#, common conventions for, 107
caching, 259

performance costs, 215
placement of code, 214
in repositories, 366–367

cardinality, 201, 203, 258
Cartesian product, 258–259
case studies, 14
Cassandra, 374
check-in policies, 41, 108
Churchill, Winston, 34
churn, requirement, 43
clarity in code, 108–109
classes. See also modules

anemic domains, 63
base and derived, 62
breakage, 33
cohesion, 55–56
coupling, 56–57
domain models, 63, 173–174
extension, 66
inheritance of, 61
moving, 78
pertinent, 58–59
renaming, 78
sealed and unsealed, 13–14
single responsibility, 56, 65
wrapper, 62

client/server architecture, 128–129
client-side device detection, 159–160
cloud platforms, 259
code

adapting features, 29
check-in policies, 41
costs, 39. See also costs
deterioration, 53
duplication, 74
hacks, 34
line length, 109
maintainability, 53. See also maintainability
quality, 97–98, 110
requirements, mapping to, 29. See also requirements
spaghetti, 54
static code analysis, 34–35
unnecessary, 73–74
validating, 29
vertical scrolling, 109

workarounds, 34
writing from scratch, 33. See also coding

code-analysis tools, 34–35, 45
code-assistant tools, 39–41, 67, 78, 109
codebase

inspecting, 41
legacy code, 44–45
redesigning vs. rewriting, 44

Code Contracts rewriter (Visual Studio), 67, 83
code coverage in testing, 98–99
code fixes, calendar of, 32
code inspections, 39
code kata, 226
code reuse, 61–63, 178
CodeRush (DevExpress), 34, 40
code smell, 88
coding. See also development

bad code, 39–41, 44–48
code-assistant tools, 39–41, 67, 78, 10939–40
code katas, 226
code quality, 38–43. See also quality software
common conventions, 104–109
continuous change and, 43
costs of, 39
deadlines, 42
and design, simultaneous, 55
heroism, avoiding, 42
inspecting code, 41
practicing, 41–42
quality. See quality software
standards, 41
team guidelines, 108
for use-cases, 121

coding vectors, 72–75
cohesion, 55–56
collaborative systems, 260–262, 284
collections

data access, 264–265
exposing to queries, 267
of persistent data, 355
read-only, 264–265

columns, mapping properties to, 246–247
column stores, 320
command and query systems, 171
command architecture, 294–296, 302–309
command bus, 280–283

command processing, 302
naming conventions, 285–286
saga management, 305–309
for workflow implementation in event sourcing,
332–333

command classes, writing, 278
Command pattern, 171

	 Command pattern

382

Command/Query Responsibility Segregation (CQRS),
128, 256–288, 291–292

benefits, 258–260
bounded contexts, architecting, 258
in business layer, 260–262
for collaborative systems, 260–263
with command architecture. See command bus
command bus components, 285–286
commands and queries, separating, 256–263
command stack, 274–288, 302–309
consistency, 263
data access layer, 268
databases in, 286–288, 293–296
vs. Domain Model, 256–257
vs. Event Sourcing architecture, 278
eventual consistency, 287–288
layers, 257
packaging data for callers, 298–301
persistence layer, 355
plain and simple approach, 292–294
preliminary analysis for, 258, 260
pure CQRS approach, 271
query stack, 264–274, 296–301
Repository pattern and, 357
saga components, 285. See also saga components
scalability of systems, 259
stale data, 287–288
tasks, 274

commands
characteristics of, 277
defined, 256, 274
granularity of, 309
handling, 280–286
processing, 302
queues of, 259
in saga components, 305–309
separating from queries, 241, 256–263. See also
Command/Query Responsibility Segregation (CQRS)

command stack
command and event handling, 280–286
command bus components, 280–283
command processing, 261–262, 294
domain model for, 258
event-based CQRS architecture, 280
implementing, 302–309
messages, commands, and events, 277–279
saga components, 281–283, 302–305
save operations, 363
storage, 286–288
tasks, 274–276
Transaction Script pattern, 262–263, 292

comments in code, 105–106, 108
communication in development, 29, 42. See also
ubiquitous language
complexity

bounded contexts, number of, 218
Domain Model pattern for, 173
indicators of, 173
modeling and, 225
perception of, 171
reducing with CQRS, 258–259
solutions, matching to, 168–169

composition vs. inheritance, 61–63
conceptual queries, 269
concerns, 57

cross-cutting, 60, 212–215
conditional statements, 78–79
conformist relational pattern, 126
connection strings, 181, 208, 263
consistency, 108

ACID, 373
boundaries of, 199
with CQRS, 263
eventual. See eventual consistency
transactional, 200

Constantine, Larry, 55
constructors, 230–231, 244
context. See also bounded contexts

design decisions based on, 6, 14
context mapping, 116, 125–127

of online store sample project, 224–225
continuous change, 43
control, 87
controller factories, 178–179, 222
controllers, 146, 248, 251

application and presentation layers, connecting,
178–179
as coordinators, 177–178
presentation logic in, 147–148
testability and, 148
thin, 147

Cook, Rick, 324
costs, 30–31, 38

of bad vs. good code, 39
of code maintenance and evolution, 39
direct and indirect, 49
of event stores, 337
of maintenance, 39, 83
of polyglot persistence, 374
of refactoring, 43
of relational storage, 371, 375
of single-page applications, 163

coupling, 56, 59
Cray, Seymour, 324
crises, recognizing, 32
cross-cutting concerns, 60, 212–215
CRUD (Create, Read, Update, Delete), 168–169

vs. event sourcing, 326, 328
interface, 212
limitations of, 326

Command/Query Responsibility Segregation (CQRS)

	 383

Cunningham, Ward, 34, 56
customer objectives, capturing, 28–30
customers entities, 235–238
customer/supplier relational pattern, 126126

D
Dahan, Udi, 260
data

growth of, 376–377
homogeneity, 376
persistence of, 353–377. See also persistence
reading from permanent stores, 355
schema volatility, 376
source of, 315, 353

Data Access, 365
data access layer

connecting to application layer, 179–180
in CQRS, 268

data annotations, 246
database caches, 286–287
databases

accessing with layered expression trees, 270–272
arrays and, 245
in CQRS systems, 257, 262–263, 286–288, 293–296
in Domain-Driven Design, 195–196
event stores, 317–321
eventual consistency, 287–288, 320
inferring objects from, 175
query-only access, 267
read database context, 298–300
reading optimized, 271
stale data, 287–288
synchronizing data, 295

data clumps, 199, 235
data flow

across boundaries, 182–187
in layered architecture, 182–183, 248

data models, 183, 353. See also modeling
data operations, capturing and tracking, 328. See also
event sourcing (ES)
data snapshots, 323, 340–343
data source context classes, 362
data sources, 277
data stores, 376–377. See also storage technologies
data-transfer objects (DTOs), 140, 185–186

building, 186–187
vs. domain entities, 185–186
layered expression trees and, 272–273
name and quantity, 268
in query stack, 293
reducing need for, 301
returning subsets of data, 359–360

data update conflicts, controlling, 328

DbContext class, 266–267, 296, 298, 361
deadlines, unfair and wrong, 42
decision coverage, 98
defensive programming, 62, 78–83
dependencies

between classes and calling code, 59
coupling and, 56–57
graphs of, 34
ignoring, 91
isolating in testing, 90–91
on LINQ providers, 362–363
number and depth of, 33
patterns for handling, 69–72

Dependency Injection (DI) pattern, 60, 71–72, 178–180
Dependency Inversion principle (DIP), 69–72, 86
derived classes, substitutability, 66–68
design

and coding, simultaneous, 55
idiomatic, 39
immobility of, 33
object-oriented vs. procedural, 169
patterns, 75–77. See also specific pattern names
requirements driven, 19
simplification with CQRS, 258–259
task-based, 138–139
Test-Driven Development aware, 97–98
up-front, 55, 135
user experience first, 138–146

Design by Contract, 79
Design for Testability (DfT), 87
Design Patterns: Elements of Reusable Object-Oriented
Software (Gamma, Helm, Johnson, and Vlissides), 58
design refactoring, 43. See also refactoring
design reviews, 41
desktop rich clients, 164–165
developers. See also coding

and architects, boundary between, 12
augmenting skills, 40–41
heroism, 36, 41–42
objectives, pursuing, 36–37
perspective of, 226
respect through readable code, 106
ubiquitous language use, 118

development
life cycle of, 6
responsibilities of, 14
restarting from scratch, 44
stopping, 45

development team
architects, 12, 17–24, 32, 305
developers. See developers
estimates of projects, 30–31
firefighters, 37–38
knowledge silos, 35
leadership, 38

	 development team

384

development team (continued)
managers, 36–38
negotiation of goals, 36–37
project managers, 15, 20, 22
roles, defining, 12

device description repositories (DDRs), 157
devices

client-side detection, 159–160
display modes, 158–159
feature detection, 155–156
server-side adaptive solutions, 158–159
server-side detection, 157–158

device support for websites, 155–160
Dijkstra, Edsger W., 57, 64, 289
distributed memory caches, 367–368
document databases for event stores, 320
Document/Object NoSQL store, 370
domain, defined, 122
domain architecture, 113

bounded contexts, 121–129
Domain-Driven Design, 114–118
layered architecture, 129–135
ubiquitous language, 118–121

Domain-Driven Design (DDD), 47, 114–118, 191
analytical part, 115, 120, 194, 255
application services, 134
bounded contexts, 47. See also bounded contexts
context mapping, 193
databases as infrastructure, 195–196
domain layer, 191–215. See also domain layer

Domain-Driven Design (DDD) (continued)
entities, 228. See also domain entities
faithfulness to observed processes, 176–177
models and domains, 192–194
relational patterns, 125–126
strategic model design, 116–118
strategic part, 115, 255
subdomains, 122
ubiquitous language, 11. See also ubiquitous
language
validation, 213
viability, 194

Domain-Driven Design: Tackling Complexity in the Heart
of Software (Evans), 114, 116, 193
domain entities

vs. data-transfer objects, 185–186
equality, 229–230
identities, 228–230
operator overloading, 234
private setters, 230
referencing from UI, 185
scaffolding, 228–231
sharing, 184–185
validation, 213

domain events, 209–212. See also events
in command execution, 302
as core of architecture, 315–318
design of, 279
handling, 211–212
implementing, 210–211, 253
raising, 210
when to use, 209–210

domain experts, 18, 118
domain layer, 134, 191–215

aggregates, 199–205
in CQRS, 257
cross-cutting concerns, 212–215
data flow to, 248
domain events, 209–212
domain services, 205–209
entities, 198–199
modules, 197
persistence of entities, 199
repositories, 131
security, 213–214
splitting in CQRS, 257–258
structure of, 196–197
testing, 100–101
validation, 213
value objects, 198

domain logic, 198, 205
Domain Model, 116, 128, 134, 172–174

business logic, location of, 227–228
defined, 122
domain entities, 184. See also domain entities
logging, 214
for online store sample project, 219–220, 225–247
persisting, 208
Repository pattern and, 357–358
and ubiquitous language, syncing conventions, 121

domain modeling, 58, 63, 65, 168, 225–247, 311. See also
Domain-Driven Design (DDD)

aggregates, 199–205
behavior focus, 225–228
complexity and, 225
CQRS systems, 257–258
entity-based, 315
evolution of techniques, 176
of real world, 312–313
vs. scripting objects, 170
traditional approach, 191–192

domain models, 63, 172
behavior-based, 194, 225–226
benefits of, 175
commands and queries, separating, 256–263
constructors, 230–231
defined, 196
exceptions, 213
factories, 230–231

development team

	 385

domain models (continued)
front ends, 185
invariant conditions, 200
object-based, 193
persistence, 183, 195, 243–247
plain-old C# objects, 181
read-only, 264–266, 297
Special Case pattern, 242–243

domain services, 134, 180–181, 205–209
cross-aggregate behavior, 206
naming conventions, 180–181
read operations, allowing, 266
repositories, 207–208

downloader and uploader components, 366
downstream contexts, 125–126
DRY (Don’t Repeat Yourself), 74

E
Edison, Thomas, 118
EDMX wrappers, 263
efficiency, 8
Einstein, Albert, 73
emerging architecture, 16–17
encapsulation, 78
end-to-end scenarios, 28
enterprise architects (EAs), 20
enterprise resource planning system, 329–342
entities, 198–203. See also domain entities
Entity Framework, 174–175, 192, 226, 245, 365

asynchronous query methods, 361
Code-First approach, 222, 245–247, 341
for CQRS data-access layer, 268
database access, 298
Database-First approach, 245
DbContext wrapper class, 246, 267
EDMX wrappers, 263
layered expression trees on, 273
LINQ and, 362
repository classes, implementing, 363–364

entity models, 134, 202
equality, 229–230, 232–233
estimates of software project, 30–31, 49–50
Evans, Eric, 114, 116, 118, 193, 199, 206
event bus components, 280
event classes, 278–279
event-driven architecture, 167
events, 312, 315–318. See also domain events

in aggregate roots, 344–346
characteristics of, 278
as data sources, 315, 325–326
event replay and what-if scenarios, 316
extensibility and, 316
granularity of, 316

handling, 280–286
last-known good state and, 313–315
logging, 343
materializing objects out of, 339
naming convention, 285
persistence of, 311, 318–321, 337–338, 342. See also
event sourcing (ES)
raising from commands, 280, 294
raising from sagas, 282–283
in real world, 312–313
replaying, 316, 321–323, 328–342
repository for, 346
in saga components, 304–309
sequence of, 313–315
state, rebuilding from, 321–323
storing, 328
tracking system with, 315

event sourcing (ES), 274, 311–324
with aggregate snapshots, 342–348
architecture of, 318–323
command bus for workflow implementation,
332–333
vs. CQRS, 278
data snapshots, creating, 340–342
drawbacks, 317–318
event notification, 331, 336
events as data sources, 315
events sequence, 313–315
latency and, 328
log of events, 326–327
need for, 325–326
persisting events, 337–338. See also persistence
real-time systems and, 329
with replay, 329–342, 348
tracking and rebuilding events, 326–327
undo functionality, 336–337, 343
when to use, 327–329

event stores, 317–321
cost of, 337
front end, 340
performance and, 321
replaying events, 338–339
table schema, modeling, 337–338

eventual consistency, 200, 260–261, 287–288, 320, 328
in NoSQL data stores, 372–373

Ewing, Sam, 349
exceptions, testing parameters of, 89–90
expertise, adding to late projects, 50
expression trees, layered, 269–274
expressivity, 234–235
extensibility, 85, 101–103, 109–110, 185
extension points, 103
external quality characteristics, 8
extracting interfaces, 78
extracting methods, 78

	 extracting methods

386

Extreme Programming (Cunningham), 56
Extreme Programming (XP), 17, 56

acceptance tests, 94–95
YAGNI principle, 73–74

extreme scalability, 10

F
F5/Refresh effect, 276
factories, 230–231
fake objects, 91–93
Feathers, Michael, 44, 47
feature detection, 155–156
fields, encapsulating, 78
filters

for business rules, 269
in queries, 270–271, 362

firefighters, 37–38
flowcharts, 305
fluent Code-First API, 246–247
Foote, Brian, 28
Fowler, Martin, 12, 103, 116, 169, 175, 181, 355
fragility of software, 33
front ends, 164, 178, 185

data sources, 277
user interface, refreshing, 276

functionality, 8
layering, 19

functional programming, 116
functional requirements, 7–9, 28. See also requirements

churn in, 43
processing, 11

functional unit testing, 93–94. See also unit tests
function coverage, 98
functions, defined, 8

G
Gagarin, Yuri, 27
Gamma, Erich, 58
Gang of Four (GoF), 58
gated check-ins, 41
Genome, 365
Given/When/Then statements, 96
global methods, 364
goals of project development, negotiation of, 37
GOTO-based code, 54
Graph NoSQL store, 370

H
hash codes, equality and, 233
healthcare.gov, 28, 31–32, 94

Helm, Richard, 58
Henney, Kevin, 105
Hexagonal Architecture (HA), 19
hidden dependencies, 33
homogeneous data, 376
HTML, 164–165
HTTP endpoints, 153–154
HTTP interfaces, 180
HTTP requests and responses, 276
Hunt, Andy, 74, 101
hybrid-CQRS, 286

I
ICanHandleMessageT interface, 306
identity, 228–230
idiomatic design, 39
If-Then-Throw pattern, 78–79
immobility of design, 33
immutable types, 198, 232, 279
implementation of architecture, 7, 12
indexes, updating, 372–373
information hiding, 57
information silos, 35
infrastructure layer, 134–135, 212–215
inheritance, 61–63, 66
in-memory lists, 271
input models, 131, 140, 144–145, 183
integration, 31–32
integration events, 302
integration tests, 31, 93–94

Big Bang pattern, 93
bottom-up, 94
in refactoring, 47

interactions
focusing on, 138–140
views, creating from, 143–144

interfaces
design based on, 102–103
extracting, 78
and implementation, separating, 59–60
programming to, 69
thin, 68–69

Interface Segregation principle (ISP), 68–69
internal quality characteristics, 8
International Obfuscated C Code Contest (IOCCC),
104–105
International Organization for Standards/International
Electrotechnical Commission (ISO/IEC) standards

9126, 7–8, 105
25010, 8
42010, 5, 18

interviews, deriving raw requirements from, 9
invariants, 82, 200

Extreme Programming (Cunningham)

	 387

Inversion of Control (IoC) pattern, 71–72, 178–179
IQueryable interface, 187, 268, 270–271, 273

extensions, 301
objections to, 362–363
returning types, 298–299, 360–362

Isaacson, Walter, 36
isolated code blocks, 46–47
isolation, 57
IStartWithMessageT interface, 306

J
JavaScript in presentation layer, 152
Jobs, Steve, 35–36
Johnson, Ralph, 58
JustCode (Telerik), 40

K
Kay, Alan, 349
key value NoSQL store, 370
KISS (Keep It Simple, Stupid), 73
knowledge silos, 35
Knuth, Donald, 102, 273

L
last-known good state, 313–314
latency, 328
late projects, 49–50
layered architecture, 19, 129–135, 255

application layer, 132–134. See also application layer
boundaries, 48
connecting layers, 178–180
data flow, 182–183
defined, 48
domain entities, 184–185. See also domain entities
domain layer, 134, 196. See also domain layer
infrastructure layer, 134–135, 212–215
for online store sample project, 220–221
origins, 129–131
persistence layer, 353–377
presentation layer, 131–132. See also presentation
layer
priority of layers, 137
vs. tiers, 129
tight coupling, 180

layered expression tree (LET) expressions, 299–301
layered expression trees (LETs), 269–274, 293

vs. in-memory lists, 271
IQueryable objects, 270–271
testing, 274

lead developers, 21

leaders vs. bosses, 38
legacy code, 44–48
Lehman, Manny, 85
libraries, 13, 197
LINQ providers

async version, 270
in CQRS data access layer, 268
dependencies on, 362–363
query composition and execution, 362

LINQ-to-Entities, 267
LINQ-to-SQL, 192
Liskov’s principle (LSP), 66–68
live-scoring sample project, 342–348
LLBLGen Pro, 365
logging, placement of code, 214
login systems, 236–238

M
maintainability, 8, 53, 55, 83, 105–106, 118
maintenance

costs, 39, 83
extensibility and, 101–102
readability and, 106

Managed Extensibility Framework (MEF), 72
managers, 36–38
manpower, adding to late projects, 49–50
Martin, Robert C., 56, 64, 97
Maslow, Abraham, 378
McKean, Alan, 177
MEF 2, 72
Memcached, 367
memory caches, distributed, 367–368
Mercator projection, 193–194
Message base class, 277
messages, 277–279

persistence of, 321
methodologies, 14–15

Agile approach, 15–17
Extreme Programming, 17
Scrum, 17
sprint zero, 17
Waterfall model, 15

methods
conditional statements, 78–79
extracting, 78
invariants, 82
length, 109
naming, 107, 240
postconditions, 81–82
preconditions, 80
private vs. public, 107

metrics of technical debt, 34–35
Meyer, Bertrand, 79

	 Meyer, Bertrand

388

micro-services, 19, 128
Microsoft Azure, 259
Microsoft Entity Framework. See Entity Framework
Microsoft .NET Framework. See .NET Framework
Microsoft Patterns and Practices Unity, 222
Microsoft Pex add-in, 101
Microsoft’s organizational culture, 36
Microsoft SQL Server, 222
Microsoft Team Foundation Server (TFS), 41
Microsoft Unity, 178–179
Microsoft Visual Studio. See Visual Studio
mini enterprise resource planning system, 329–342
mobile applications, 165, 366
mobile devices, 155
mobile-first design, 156–157
mock objects, 91–93
mockups, 141–144
modeling, 146. See also domain modeling; domain
models

object modeling, 65, 74–75, 116
Model-View-Controller (MVC) pattern, 146, 183
Model-View-Presenter (MVP) pattern, 146
Model-View-ViewModel (MVVM) pattern, 146
Modernizr, 156
modular programming, 57
modules, 197

closed for modification, 66
defined, 35
entities, 198
open for extension, 66
separation of, 260
value objects, 198

monolithic architecture, 128
Moq, 92
MSBuild scripts, 41
MSTest, 89
multilayer architecture, 128. See also layered
architecture

data flow, 182–183
deployment of, 130

multitier architecture, 128, 181–182
multivendor systems, 28, 31–32
Mythical Man Month, The (Brooks), 25, 49

N
namespaces, 197
native mobile applications, 165
NDepend, 34
.NET Framework

classes, 198
Code Contracts library, 79–83
developers, typical perspective of, 226
hash codes and equality, 233

immutable types, 198, 232
namespaces, 197
operators, overloading, 234
validation, 213

NEventStore project, 320, 338
new technologies, 14
NHibernate, 174, 245, 365
NMock2, 92
nonfunctional requirements, 7, 9–10, 43. See also
requirements
nonrelational storage, 368–377
North, Dan, 95
NoSQL, 368–370

databases for event stores, 320
eventual consistency, 372–373
flavors, 370
planning decisions, 375–377
use-cases for, 369–370

NUnit, 89

O
OASIS, 366
obfuscated code, 104–105
object composition, 61–63
Object Design: Roles, Responsibilities, and Collaborations
(Wirfs-Brock and McKean), 177
object modeling, 65, 116

Tell-Don’t-Ask principle, 74–75
object orientation (OO), 57–58, 63–64
object-oriented design (OOD), 57–64

cohesion, 56
composition vs. inheritance, 61–63
coupling, 56, 59
defined, 58
pertinent classes, 58–59
programming to interface, 59–60

Object/Relational Mapper (O/RM) tools, 174, 196,
365–366

in CQRS data access layer, 268
persistence responsibilities, 243–244
protected constructors, 231

objects
actions, representing with, 171
attributes, 198
behavior associated with, 174
cardinality, 201, 203
domain logic in, 177
fake, 91–93
inferring from databases, 175
local instantiation of, 180
materializing out of events, 339. See also event
sourcing (ES)
mock, 91–93

micro-services

	 389

online store sample project, 218–225
aggregates, 235–243
bounded contexts, 222–224
business logic, implementing, 248–253
context mapping, 224–225
CQRS command-based architecture, 274–276
design approach, 219–220
domain events, 253
domain modeling, 225–247
entities, 219–220
fidelity card functionality, 253
order processing, 249–253
structure of, 220–221
technologies used, 222
use-cases, 218–219

“On the Role of Scientific Thought” (Dijkstra), 57
Open/Closed principle (OCP), 66
Open Data Protocol (OData), 162–163, 366–367
open for extension, 66
open-source software, 109
Open Web Interface for .NET (OWIN), 155
operator overloading, 234
organizational culture, software project success and,
35–38
over-engineering, 102–103

P
page redirects, 252
partitioning architectural pattern, 19
partnership relational pattern, 126126
path coverage, 98
Pattern-Oriented Software Architecture (Buschmann et
al.), 76
patterns, 75–77. See also specific pattern names

anti-patterns, 175–176
business logic, organizing with, 167–176
cross-cutting concerns, decomposing with, 60
dependencies, handling, 69–72
use of, 75–77
value in, 77

Patterns of Enterprise Application Architecture (Fowler),
12, 169
payment APIs, 252
peer programming, 41
performance

caching and, 215
event stores and, 321
replay of events and, 322

persistence, 174
of aggregates, 347
in applications, 195–196
concessions to, 196, 244–245

default constructors, 244
in domain models, 183, 195, 208, 243–247
of entities, 199
of events, 311, 313–315, 318–321, 337–338
persistence layer. See persistence layer
polyglot, 368, 371, 374
repository classes and, 181
of saga components, 308

persistence layer, 135, 246, 353–377
nonrelational storage, 368–377
polyglot persistence, 368, 371, 374
repositories, implementing, 359–368
Repository pattern, designing, 355–359
responsibilities of, 354–355

pertinent classes, 58–59
PetaPoco, 268
pet-technology anti-pattern, 168
PhoneGap, 13
plain old CLR objects (POCOs), 173
plain old C# objects (POCOs), 181, 236
plugin-based architecture, 103
Plugin pattern, 103
polyglot persistence, 368, 371, 374
portability, 8, 11
postback handlers, 149
postconditions, 81–82
Post-Redirect-Get pattern, 252
practice in coding, 41–42
Pragmatic Programmer: From Journeyman to Master,
The (Hunt and Thomas), 74, 101
preconditions, 80, 95
predefined snippets, 39
predefined templates, 39
presentation layer, 131–132, 137–166

ASP.NET websites, 147–152
connecting to application layer, 178–179
defining, 137
desktop rich clients, 164–165
device support for websites, 155–160
patterns for, 146
presentation model, 184
security, 214
single-page applications, 160–163
stale data, 287–288
user experience first, 138–146
Web Forms vs. ASP.NET MVC, 152–155

presentation logic, 147
in ASP.NET MVC, 147–149
in ASP.NET Web Forms, 149
in controllers, 147–148
in single-page applications, 160–161

presenter elements, 146
primitive types, 234
private setters, 230, 264–266

private setters

390

procedural designs
Anemic Domain Model, 175
Transaction Script pattern, 169–172, 262–263, 292

productivity, code quality and, 110
programming to interface, 59–60
progress tracking, 49
project management, 14
project managers, 18, 20, 22
properties, mapping to columns, 246–247
prototypes, 141, 143–146
public interface, 57
pure CQRS approach, 271. See also Command/Query
Responsibility Segregation (CQRS)

Q
quality assurance (QA), 14
quality software

characteristics of, 7–8
extensibility, 85, 101–103
readability, 85, 104–109
SOLID principles, 86
testability, 85–88
testing, 88–101

queries
composing, 270–271
conceptual, 269
DDD-friendly, 272
defined, 256
separating from commands, 241, 256–263
storage, 286–288

query databases, 286–288
query methods, 359–362
QueryModelDatabase class, 296, 298–299
Query Object pattern, 244
query stack

components, 262
in CQRS, 257
data-access layer, 263, 293
database context, restricting, 266–267
data model, 296–297
data-transfer objects, 293
domain model of, 264–266
eventual consistency, 287–288
implementing, 296–301
layered expression trees, 269–274
packaging data for callers, 298–301
read façade, 266–268, 270, 296–298
repositories for, 268, 359–360
simplification of, 257
stale data, 287–288

R
Rapid Application Development (RAD), 30
Ratchet2, 222
RavenDB, 321, 337–339, 372–373
readability, 85, 104–109

constructors and, 230–231
refactoring for, 77–78

read façade, 266–268, 270, 296–298
read-only domain models, 266
read-only wrappers, 265
read operations. See also queries

external services for, 366
model for, 241
servers for, 355

real-time systems, event sourcing and, 329
redesigns, 44
redirect calls, 276
refactoring, 43, 77–78

continuous, 48
data clumps, 235
effectiveness, 85
operations of, 78
techniques, 45
in Test-Driven Development, 97
testing for, 47–48

regression, 12, 31, 33–34, 47, 260
maintainability and, 53, 55
testing for, 85, 88, 93–94, 97–98

relational DBMS for event stores, 320
relational modeling, 176, 311
relational storage, 368, 370–371, 375–377
reliability, 8
replay of events, 321–323. See also event sourcing (ES)

vs. aggregate snapshots, 343, 348
psuedocode, 338–340

repositories, 131, 179–181, 212
for aggregates, 199, 346–347, 363–364
benefits, 356
caching, 366–367
connection strings in, 181
in CQRS query stack, 268
defined, 208, 355
downloader and uploader components, 366
for events, 346
granularity, 357
implementing, 359–368
interface for, 207–208, 358–359
IQueryable types, returning, 360–362
query methods, 359–363
in read models, 270
read operations, allowing, 266
storage technologies, 364–368
for write actions, 358

procedural designs

	 391

Repository pattern, 355–359
CQRS and, 357
Domain Model and, 357–358

requirements, 7–11
acknowledging, 18, 29
analyzing, 29
changing over time, 15
churn in, 43
communicating, 118. See also ubiquitous language
continuous refinement of, 4
defined, 7
functional, 7–9
gathering, 10–11
grouping raw requirements, 11, 30
learning about problems to be solved, 11, 30
levels of, 28
mapping to features, 29
new or changed, 29
nonfunctional, 7, 9–10
pertinent classes from, 58–59
processing, 11
testing software against, 94–95
ubiquitous language for, 18. See also ubiquitous
language
when dimension, 8–9, 209–210, 313

ReSharper (JetBrains), 34, 40–41
Responsibility-Driven Design (RDD), 177
Responsive Web Design (RWD), 156–157
reusability, 33, 61, 178
rewrites, 44
Rhino Mocks, 92
rich clients over the web, 164–165
rich-Model, 184
rigidity of software, 32–33
runtime errors, Liskov’s principle and, 68

S
saga components, 281–283, 285

aggregate and event handling, 347–348
behavior flowcharts, 305
commands and events in, 304–309
designing, 303–305
implementation code, 334–335
implementing, 302–303
in memory, 333
persistence, 308
starting, 306

Saint-Exupéry, Antoine de, 73
scaffolding, 221

domain entities, 228–231
value objects, 231–235

scalability
CQRS systems, 259
defined, 10
extreme, 10
tiers, multiple, 182

schedules of software project development, 37
schema volatility, 376
Schwaber, Ken, 17
screens, view model classes for, 140, 144
scripting objects vs. domain modeling, 170
Scrum methodology, 17, 37–38
sealed classes, 13–14
security, 10

placement of code, 213–214
separation of concerns (SoC), 57, 131, 147, 221, 274, 356
server-side adaptive solutions for devices, 158–159
server-side device detection, 157–158
Service Locator (SL) pattern, 60, 70–71
Service-Oriented Architecture (SOA), 19
services. See also domain services

domain logic in, 174
setters, private, 264–266
shared entities, 125
shared kernel relational pattern, 126
SharpTestex, 90
Silverlight, 164–165
simplicity, 73, 87
single-page applications (SPA), 160–163

costs, 163
external services, 366
presentation logic in, 160–161
server, transferring data from, 162–163
task triggering, 275
workflow, 161

Single Responsibility principle (SRP), 56, 65
sketches, 141–144
snapshot databases, 331, 336, 340–341
snapshots, data, 323, 340–342
snippets, 39
software anemia, 226–227
software architects, 4, 12, 17–24, 32, 305
software architecture, 3–7. See also architecture
software components. See also classes; methods

extensible design, 102–103
responsibilities and roles of, 177
testing priority, 100–101

software contracts, 79–83
Design by Contract, 79

software design principles, 53–83
coding vectors, 72–75
cohesion, 55–56
coupling, 56
defensive programming, 78–83
isolation, 57

software design principles

392

software design principles (continued)
maintainability, 8, 53, 55, 83, 105–106, 118
of object-oriented design, 57–64
patterns, 75–77
refactoring, 77–78
separation of concerns, 57. See also separation of
concerns (SoC)
SOLID principles, 64–69

software development methodologies, 14–15
software disasters, 27, 38. See also Big Ball of Mud (BBM)
software engineering, 54
software functionality, 57
Software Requirement Patterns (Withall), 10
software reuse, 33
software systems

aspects and features, 12–14
Behavior-Driven Design aware, 95–96
Big Ball of Mud, threat of, 28
breakdown process, 11–12
building, 4. See also architecture
building incrementally, 16–17
code writing process, improving, 38–43
complexity of, 1
context, 6
continuous change, 43
development team. See development team
diagram, 6
disasters, recovering from, 43–50
estimates on development costs, 30–31
fixed price vs. time/materials mode, 49–50
growth of, 50
lifespan of, 50
managers and developers, 36
official language of, 120. See also ubiquitous
language
openness and transparency, 32
organizational culture and, 35–38
organization of, 5
ownership by individuals, 35
ownership of, 31–32
prevention of vs. recovery from disaster, 50
purpose, capturing, 28–30
quality characteristics, 7–8
redesigning, 44
stakeholders, 5, 9–10, 28
successful, 27
successfully designed, 27
unit testing, 93. See also unit tests

SOLID principles, 54, 64–69, 86
solution architects, 4
source control systems, 41
spaghetti code, 54
Special Case pattern, 242–243
specifications, 12, 20
Spolski, Joel, 65

sprint zero development methodology, 17
SQL Server, layered expression trees on, 273
StackOverflow user, 106
stakeholders

acceptance testing, 94–95
communicating with, 32, 118. See also ubiquitous
language
defined, 5
meeting with, 21, 29, 312
representation of, 22
requested system attributes, 9–10
requirements of, 28

stale data, 287–288
state

last-known good state, 313–315
rebuilding, 321–323. See also event sourcing (ES)

state machines, 103
statement coverage, 98
static code analysis, 34–35
Steve Jobs (Isaacson), 36
storage solutions, 286–288

planning, 375–377
storage technologies, 364–368
stored procedures, 129
strategic model design, 116–118
Stroustrup, Bjarne, 289
Structured Design: Fundamentals of a Discipline of
Computer Program and Systems Design (Constantine
and Yourdon), 55
structured programming, 54–57
subdomains, 115–116, 122–124
subsystems, 35
supporting architectures, 127–129

for bounded contexts, 196
CQRS, 255–256. See also Command/Query
Responsibility Segregation (CQRS)
Domain Model, 191. See also Domain Model
event sourcing, 311. See also event sourcing (ES)

switch statements, 103

T
Table Module pattern, 226
Tabular NoSQL store, 370
task-based designs, 138–139, 160
task-based modeling, 169, 176–182
task-based user interfaces, 131, 260
tasks

classes built around, 65
in CQRS, 274
implementing, 209
interactively triggered, 274–276
orchestrating, 133, 148–149, 160
in plugin architecture, 103

software design principles

	 393

tasks (continued)
programmatically triggered, 276
splitting, 14
in state machines, 103

teams. See development team
technical debt, 34–35, 85
technical people, language of, 10–11
technical specifications, 20
technologies

choosing, 20
identifying and evaluating, 19–20

Tell-Don’t-Ask principle, 74–75, 177
templates, 39
testability, 85–88, 109

controllers and, 148
principles of, 87
return-on-investment, 88

test coverings, 47
test doubles, 91–93
Test-Driven Development (TDD), 94, 97–98
test harnesses, 88–89
testing, 88–101

assertions, number of, 90
automated, 86, 101
code coverage, 98–99
dependency injection and, 72
domain layer, 100–101
layered expression trees, 274
priority of, 100–101
for refactoring, 47–48
relevancy of, 99
responsibilities of, 14
Test-Driven Development process, 97–98
timing of, 31, 98

Thomas, Dave, 74, 101
Thompson, Ken, 349
tiers, 181–182

data flow, 182, 185
defined, 48
layered expression trees and, 273
vs. layers, 129

tight coupling, 56–57, 180, 202
Tomlin, Lily, 378
tools. See also Object/Relational Mapper (O/RM) tools

for coding assistance, 39–41, 67, 78, 109
design pattern books, 76
knowledge silos, 35
for productivity, 72
source-code management, 41
static code analysis, 34–35, 45
for testing, 99, 101
for UX development, 141–142

Torvalds, Linus, 217
training of developers, 41, 50

transactional consistency, 200
transactions

atomic and global methods, 364
handling, 354
Unit of Work, 357

Transaction Script (TS) pattern, 169–172, 262–263, 292
Twitter, architectural refactoring, 43
Twitter Bootstrap, 222
Typemock, 92

U
ubiquitous language, 11, 118–121

commands, granularity of, 309
defining, 119–120
and domain model, syncing, 121
domain services, naming, 180–181
first-class concepts, 209
methods, naming, 240
purpose of, 118–119
for requirements, 18
structure of, 119
vocabulary, populating, 115

UI logic, 147
undo functionality, 336–337, 343
unforeseen events, 37
Unified Modeling Language (UML), 138–139
Unit of Work (UoW) pattern, 244, 357, 363–364
unit tests, 31, 88–93

Arrange-Act-Assert (AAA) pattern, 93
automating generation of, 101
from SpecFlow tests, 96
writing, 101

Unity, 72
Unity.Mvc library, 179
universal application projects, 147
unsealed classes, 13–14
upfront architecture, 15, 135
upstream contexts, 125–126
usability, 8
usability reviews, 141
use-cases

commands, orchestrating with, 294
diagrams of, 138–139
domain-driven expressions of, 121
implementation, 132–133
pertinent classes from, 58–59

user experience (UX), 141
user experience first (UX-first), 138–146

designing, 143–146
interactions, focusing on, 138–140
tools for, 141–142
vs. user interface, 140
UX experts, 141

	 user experience first (UX-first)

394

user interface (UI), 147
data flow from, 248
designing, 138–140
F5/Refresh effect, 276
refreshing with redirect call, 276
screens, view model classes for, 140
task-based, 138–139, 260
in web applications, 151–152

user-oriented quality characteristics, 8
users entities, 235–238
UX architects, 141
UX designers, 141
UXPin, 142

V
validation, 213
value objects, 198

data structure, 231–232
equality, 232–233
expressivity, 234–235
operator overloading, 234
scaffolding, 231–235

vertical scrolling, minimizing, 109
view model classes, 140, 144, 248
view model objects, 146
view models, 131, 140, 144, 183, 272
views, 146

prototypes, creating from, 144
virtual methods, Liskov’s principle and, 68
viscosity of design, 34
visibility, 87
Visual Studio

Code Contracts rewriter, 83
Code Coverage tool, 99
debugging tools, 86
logical layers, separating into projects, 221
Pex add-in, 101
SpecFlow, 95–96
static-code analyzer, 34

Vlissides, John, 58

W
Waseem, Muhammad, 349
Waterfall development methodologies, 15
Web API, 150, 154
web applications, 147

single-page applications, 160–163
task triggering, 275
user interface, 151–152

Web Forms, 151–155
vs. ASP.NET MVC, 152–155

web front ends, 164
web rich clients, 164–165
websites

ASP.NET websites, 147–152
device support, 155–160

what-if scenarios and event sourcing, 316, 322
white-box testing, 101
Windows Communication Foundation (WCF) service,
150
Windows Presentation Foundation (WPF), rich client
front ends, 164
wireframes, 141–144
Wirfs-Brock, Rebecca, 177
Wirify, 142
Withall, Stephen, 10
workarounds, 33–34
worker services, 149
workflows

after user action, 100, 132–133
command and event definition, 284–285, 302. See
also saga components
orchestration of, 150, 252
of single-page applications, 161
sketching, 138, 142
tasks in, 177

wrapper classes, 62
write operations. See also commands

async, 259
external services for, 366
model for, 241

writing code. See coding; development
WURFL, 157, 222

X
XPO, 365
xUnit, 89

Y
YAGNI (You Ain’t Gonna Need It), 73–74, 107
Yoder, Joseph, 28
Young, Greg, 260
Yourdon, Edward, 55

user interface (UI)

		

About the authors

Dino Esposito is CTO and cofounder of Crionet, a startup
providing software and IT services to professional tennis
and sports companies. Dino still does a lot of training and
consulting and is the author of several books on web and
mobile development. His most recent books are Architecting
Mobile Solutions for the Enterprise and Programming ASP.NET
MVC, both from Microsoft Press. Dino speaks regularly at

industry conferences, including Microsoft TechEd and DevConnections, and premiere
European events, such as Software Architect, DevWeek, SDD, and BASTA. A technical
evangelist covering Android and Kotlin development for JetBrains, Dino is also on
the development team of WURFL—the ScientiaMobile database of mobile device
capabilities that is used by large organizations such as Facebook.

You can follow Dino on Twitter at @despos and through his blog:
(http://software2cents.wordpress.com).

Andrea Saltarello is CEO and founder of Managed Designs
(http://www.manageddesigns.it), a company providing consul-
tancy services related to software design and development.

A solution architect, Andrea is eager to write code in real
projects to get feedback related to his architectural decisions.
Andrea is also the lead developer of MvcMate, an open source
project aimed at providing useful extensions to the ASP.NET
MVC toolkit.

As a trainer and speaker, Andrea had several speaking engagements for courses and
conferences across Europe, such as BASTA! Italia, DevWeek and Software Architect. He
has also taught "Operating Systems" during the "Master in Editoria Multimediale" class
organized by the University “Politecnico of Milan.”

In 2001 Andrea co-founded UGIdotNET (http://www.ugidotnet.org), the first Italian .NET
User Group, of which he is President and leader.

Andrea is passionate about sports and music, and grew up devoted to volleyball and to
Depeche Mode, which he fell in love with upon first listening to Everything Counts.

You can follow Andrea on Twitter at @andysal74 and through his blog
(http://blogs.ugidotnet.org/mrbrightside)

http://www.manageddesigns.it
http://www.ugidotnet.org
http://software2cents.wordpress.com
http://blogs.ugidotnet.org/mrbrightside

	Contents
	Introduction
	Chapter 5 Discovering the domain architecture
	The real added value of domain-driven design
	The ubiquitous language
	Bounded contexts
	The layered architecture
	Summary
	Finishing with a smile

	Chapter 10 Introducing CQRS
	Separating commands from queries
	The query stack
	The command stack
	Summary
	Finishing with a smile

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

	About the authors

