

Exam Ref 70-481
Essentials of Developing
Windows Store Apps
Using HTML5 and
JavaScript

Wouter de Kort

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2014 by Wouter de Kort

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2014940677
ISBN: 978-0-7356-8529-1

Printed and bound in the United States of America.

First Printing

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/en-us/legal/intellectualproperty/Trademarks/
EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of their respective
owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions Editor: Anne Hamilton
Developmental Editor: Karen Szall
Editorial Production: Box Twelve Communications
Technical Reviewer: Todd Meister
Cover: Twist Creative • Seattle

http://www.microsoft.com/learning/booksurvey
http://www.microsoft.com/en-us/legal/intellectualproperty/Trademarks/EN-US.aspx
http://www.microsoft.com/en-us/legal/intellectualproperty/Trademarks/EN-US.aspx

Contents at a glance

Introduction	 xiii

Preparing for the exam	 xvii

Chapter 1	 Design Windows Store apps	 1

Chapter 2	 Develop Windows Store apps	 57

Chapter 3	 Create the user interface	 125

Chapter 4	 Program user interaction	 191

Chapter 5	 Manage security and data	 243

Index	 295

This page intentionally left blank

v

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Contents

Introduction	 xiii
Microsoft certifications	 xiii

Acknowledgments	 xiv

Free ebooks from Microsoft Press	 xiv

Errata, updates, & book support	 xv

We want to hear from you	 xv

Stay in touch	 xv

Preparing for the exam	 xvii

Chapter 1	 Design Windows Store apps	 1
Objective 1.1: Design the UI layout and structure . 1

Evaluating the conceptual design 	 2

Deciding how the UI will be composed 	 7

Designing for the inheritance and reuse of visual elements 	 10

Designing for accessibility	 11

Deciding when custom controls are needed	 12

Using the Hub App template	 13

Objective summary	 15

Objective review	 16

Objective 1.2: Design for separation of concerns. 17

Planning the logical layers of your solution to meet
application requirements	 17

Designing loosely coupled layers	 19

Incorporating WinMD Components	 22

Objective summary	 24

Objective review	 25

http://www.microsoft.com/learning/booksurvey/

vi Contents

Objective 1.3: Design and implement Process Lifetime
Management (PLM). 26

Choosing a state management strategy	 26

Handling the onactivated event	 27

Handling the suspend event (oncheckpoint)	 31

Preparing for app termination	 32

Checking the ActivationKind and previous state	 37

Objective summary	 39

Objective review	 39

Objective 1.4: Plan for an application deployment. 40

Planning a deployment based on Windows 8
application certification requirements	 40

Preparing an app manifest (capabilities and declarations)	 44

Signing an app	 48

Planning the requirements for an enterprise deployment	 49

Objective summary	 50

Objective review	 51

Answers. 52

Chapter 2	 Develop Windows Store apps	 57
Objective 2.1: Access and display contacts. 57

Calling the ContactPicker class 	 58

Filtering which contacts to display 	 59

Displaying a set number of contacts	 61

Creating and modifying contact information	 65

Selecting specific contact data	 66

Objective summary	 68

Objective review	 68

Objective 2.2: Design for charms and contracts. 69

Choosing the appropriate charms based on app requirements	 69

Designing an application to be charm- and contract-aware	 74

Configuring the application manifest for correct permissions	 75

Objective summary	 76

Objective review	 77

viiContents

Objective 2.3: Implement search. 78

Providing search suggestions using the SearchPane and
SearchBox control classes	 78

Searching and launching other apps	 81

Providing and constraining search within an app	 81

Providing search result previews	 82

Implementing activation from within search	 84

Configuring search contracts	 84

Objective summary	 86

Objective review	 86

Objective 2.4: Implement Share in an app. 87

Using the DataTransferManager class to share data with
other apps	 87

Accepting sharing requests by implementing activation
from within Share	 90

Limiting the scope of sharing using the DataPackage object	 92

Implementing in-app Share outside of the Share charm	 93

Using web links and application links	 93

Objective summary	 95

Objective review	 96

Objective 2.5: Manage application settings and preferences. 97

Choosing which application features are accessed in AppSettings	97

Adding entry points for AppSettings in the Settings window	 98

Creating settings flyouts using the SettingsFlyout control	 99

Adding settings options to the SettingsFlyout control	 101

Storing and retrieving settings from the roaming app data store	105

Objective summary	 108

Objective review	 108

Objective 2.6: Integrate media features. 109

Supporting DDS images	 110

Implementing video playback	 111

Implementing XVP and DXVA	 112

Implementing TTS	 113

Implementing audio and video playback using HTML5 DRM	 115

viii Contents

Objective summary	 116

Objective review	 116

Answers. 118

Chapter 3	 Create the user interface	 125
Objective 3.1: Implement WinJS controls. 125

Using a FlipView control	 126

Using a flyout	 130

Using a Grid layout and a List layout	 132

Using a menu object	 135

Using a WebView control	 138

Using an item container	 140

Using the Repeater control	 142

Objective summary	 145

Objective review	 146

Objective 3.2: Implement HTML layout controls. 147

Implementing layout controls to structure your layout	 147

Implementing templates and bindings	 154

Supporting scrolling and zooming with CSS3	 156

Managing text flow and presentation, including overflow	 159

Objective summary	 161

Objective review	 161

Objective 3.3: Create layout-aware apps to handle windowing modes. 162

Using CSS3 media queries to adapt to different devices	 162

Responding to changes in orientation	 165

Adapting to new windowing modes by using the View-
Management namespace	 167

Managing settings for an apps view	 168

Objective summary	 170

Objective review	 170

Objective 3.4: Design and implement the app bar. 171

Determining what to put on the app bar based on app
requirements	 171

Styling and positioning app bar items	 173

ixContents

Designing the placement of controls on the app bar	 175

Handling AppBar events	 176

Objective summary	 177

Objective review	 178

Objective 3.5: Apply CSS styling. 179

Implementing gradients	 179

Implementing Grid layouts	 181

Implementing zooming	 182

Implementing scroll snapping	 182

Implementing media queries	 183

Objective summary	 183

Objective review	 184

Answers. 185

Chapter 4	 Program user interaction	 191
Objective 4.1: Manage input devices . 191

Capturing gesture library events	 192

Creating custom gesture recognizers	 196

Listening to mouse events or touch gestures	 198

Managing stylus input and inking	 198

Handling drag-and-drop events	 199

Objective summary	 201

Objective review	 202

Objective 4.2: Design and implement navigation in an app. 202

Handling navigation events, checking navigation
properties, and calling navigation functions by using
the WinJS.Navigation namespace	 203

Designing navigation to meet app requirements	 206

Using semantic zoom	 207

Loading HTML fragments	 210

Objective summary	 212

Objective review	 213

Objective 4.3: Create and manage tiles . 214

Creating and updating tiles and tile contents	 214

x Contents

Creating and updating badges (the TileUpdateManager class)	 219

Responding to notification requests	 221

app requirements	 224

Objective summary	 226

Objective review	 226

Objective 4.4: Notify users by using toast . 227

Enabling an app for toast notifications	 227

Populating toast notifications with images and text by
using ToastUpdateManager	 229

Playing sounds with toast notifications	 230

Responding to toast events	 231

Controlling toast duration	 232

Configuring and using Microsoft Azure Mobile Services
for push notifications	 232

Objective summary	 235

Objective review	 236

Answers. 237

Chapter 5	 Manage security and data	 243
Objective 5.1: Choose a data access strategy . 243

Choosing the appropriate data access strategy based
on requirements	 244

Objective summary	 250

Objective review	 250

Objective 5.2: Retrieve data remotely. 251

Using XHR or HttpClient to retrieve web services	 252

Setting appropriate HTTP verbs for REST	 255

Handling progress of data requests	 258

Consuming SOAP/WCF services	 259

Using WebSockets for bidirectional communication	 260

Objective summary	 262

Objective review	 262

Objective 5.3: Implement data binding . 263

xiContents

Binding data to controls by using data-win-control and
data-win-bind	 263

Choosing and implementing data-bound controls	 265

Binding data to item templates such as WinJS.Binding.Template	 266

Configuring an iterator with data-win-options	 266

Enabling filtering, sorting, and grouping data in the
user interface	 267

Objective summary	 269

Objective review	 270

Objective 5.4: Manage Windows authentication and authorization. . . . 271

Storing and retrieving credentials by using the
PasswordVault class	 271

Implementing the CredentialPicker class	 273

Verifying credential existence by using Credential Locker	 276

Storing account credentials in app settings	 278

Objective summary	 280

Objective review	 281

Objective 5.5: Manage web authentication. 282

Using the Windows.Security.Authentication.Web namespace	 282

Setting up OAuth2 for authentication	 283

Setting up Single Sign-On (SSO)	 284

Implementing the CredentialPicker class	 285

Implementing credential roaming	 285

Implementing the WebAuthenticationBroker class	 285

Supporting proxy authentication for enterprises	 286

Objective summary	 288

Objective review	 288

Answers. 290

Index	 295

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

http://www.microsoft.com/learning/booksurvey/

This page intentionally left blank

xiii

Introduction

Building apps for all kinds of devices is becoming more and more popular. If it’s your goal to
prove that you have the skills to build apps for the Microsoft ecosystem, this book is for you.

This book focuses on building Windows Store apps with HTML, JavaScript, and CSS. With
experience in building web applications—be it on the Microsoft platform or on another
platform—you can now use your existing skills to build Windows Store apps that run on
millions of devices and leverage all the functionality that Windows offers you.

This book covers Exam 70-481, Essentials of Developing Windows Store Apps Using
HTML5 and JavaScript, meaning that it closely follows the outline of the exam to help you
quickly find the content you need to prepare yourself for the exam.

You will learn how to design and develop your app, and how to create both a great UI and
user experience while making sure that everything is secure—both for the user and for your
app.

After finishing this book, you will understand how to build Windows Store apps that
prepare you for the ever-growing market of building apps.

This book covers every exam objective, but it does not cover every exam question.
Only the Microsoft exam team has access to the exam questions themselves and Microsoft
regularly adds new questions to the exam, making it impossible to cover specific questions.
You should consider this book a supplement to your relevant real-world experience and other
study materials. If you encounter a topic in this book that you do not feel completely com-
fortable with, use the links you’ll find in the text to find more information and take the time to
research and study the topic. Great information is available on MSDN, TechNet, and in blogs
and forums.

Microsoft certifications

Microsoft certifications distinguish you by proving your command of a broad set of skills and
experience with current Microsoft products and technologies. The exams and corresponding
certifications are developed to validate your mastery of critical competencies as you design
and develop, or implement and support, solutions with Microsoft products and technologies
both on-premises and in the cloud. Certification brings a variety of benefits to the individual
and to employers and organizations.

xiv Introduction

MORE INFO  ALL MICROSOFT CERTIFICATIONS

For information about Microsoft certifications, including a full list of available certifica-
tions, go to http://www.microsoft.com/learning/en/us/certification/cert-default.aspx.

Acknowledgments

I’d like to thank the following people:

■■ Jeff Riley, for your excellent role in managing the production of this book.

■■ Karen Szall, for helping me through the whole editing process. I learned a lot from
your feedback and advice.

■■ Todd Meister, for your help in reviewing all the content and all your suggestions.

■■ Devon Musgrave, for helping me through the early stages of acquisitions and
contracts.

■■ To my wife, Elise, for her support.

■■ And to all the other people who played a role in getting this book ready. Thanks for
your hard work!

Free ebooks from Microsoft Press

From technical overviews to in-depth information on special topics, the free ebooks from Mi-
crosoft Press cover a wide range of topics. These ebooks are available in PDF, EPUB, and Mobi
for Kindle formats, ready for you to download at:

http://aka.ms/mspressfree

Check back often to see what is new!

http://www.microsoft.com/learning/en/us/certification/cert-default.aspx
http://aka.ms/mspressfree

xvIntroduction

Errata, updates, & book support

We’ve made every effort to ensure the accuracy of this book and its companion content. You
can access updates to this book—in the form of a list of submitted errata and their related
corrections—at:

http://aka.ms/ER481R2

If you discover an error that is not already listed, please submit it to us at the same page.

If you need additional support, email Microsoft Press Book Support at mspinput@micro-
soft.com.

Please note that product support for Microsoft software and hardware is not offered
through the previous addresses. For help with Microsoft software or hardware, go to http://
support.microsoft.com.

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset. Please tell us what you think of this book at:

http://aka.ms/tellpress

The survey is short, and we read every one of your comments and ideas. Thanks in ad-
vance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

http://aka.ms/ER481R2
http://support.microsoft.com
http://support.microsoft.com
http://aka.ms/tellpress
http://twitter.com/MicrosoftPress

This page intentionally left blank

xvii

Preparing for the exam

Microsoft certification exams are a great way to build your resume and let the world know
about your level of expertise. Certification exams validate your on-the-job experience and
product knowledge. While there is no substitution for on-the-job experience, preparation
through study and hands-on practice can help you prepare for the exam. We recommend
that you round out your exam preparation plan by using a combination of available study
materials and courses. For example, you might use this Exam Ref and another study guide for
your “at home” preparation and take a Microsoft Official Curriculum course for the classroom
experience. Choose the combination that you think works best for you.

Note that this Exam Ref is based on publicly available information about the exam and the
author’s experience. To safeguard the integrity of the exam, authors do not have access to the
live exam.

This page intentionally left blank

		 	 1

C H A P T E R 1

Design Windows Store apps
When you have a great idea for an app, it’s hard to resist the temptation to start up Visual
Studio and begin working on the new app. Resisting that temptation is necessary for building
a great app, however.

Windows Store apps are more than just a clever implementation; they require upfront
design, during which you consider the design goals that Microsoft describes for them.
Thinking about the goal of your app, designing a UI, and making sure that you follow the
Windows Store design principles are only some of the steps you need to consider.

This chapter helps you design your app, from initial
idea, to coding, and then planning for deployment. This
chapter covers the first objective in the Exam 70-481
objective domain (and this major topic area makes up
about 20 percent of the exam’s material). Although this
chapter isn’t code-heavy, there is a lot of discussion about
the process of designing an app.

Objectives in this chapter:
■■ Objective 1.1: Design the UI layout and structure

■■ Objective 1.2: Design for separation of concerns

■■ Objective 1.3: Design and implement Process Lifetime Management (PLM)

■■ Objective 1.4: Plan for an application deployment

Objective 1.1: Design the UI layout and structure

Designing your UI is the most important part of building a great app that appeals to users.
When going through the Windows Store, most users skim through screen shots and a short
list of features that your app has to offer. Making sure that you stand out, both graphically
and in the features you offer, is the core requirement for building a great app.

i m p o r t a n t

Have you read
page xvii?
It contains valuable
information regarding
the skills you need to
pass the exam.

	 2	 CHAPTER 1	 Design Windows Store apps

This objective covers how to:
■■ Evaluate the conceptual design

■■ Decide how the UI will be composed

■■ Design for the inheritance and reuse of visual elements (for example, styles,
resources)

■■ Design for accessibility

■■ Decide when custom controls are needed

■■ Use the Hub App template

Evaluating the conceptual design
The release of Windows Phone 7 started a new era for Microsoft because it released a
version of Windows that showcases beautiful apps that follow a strict design philosophy.
With Windows 8, this experience is expanded to other devices. Although the possibilities in
your app and in the Windows ecosystem can be overwhelming, Microsoft offers clear design
guidance that can help you transform your idea into a real app. Using these principles when
evaluating your own design can help you develop and fine-tune your app until it becomes
something that everyone wants to have.

Microsoft design principles
Microsoft’s five foundational design principles include:

■■ Pride in craftsmanship

■■ Fast and fluid

■■ Authentically digital

■■ Do more with less

■■ Win as one

When designing your app, be prepared to devote time to the smallest details of all parts
of your app. Take pride in craftsmanship; see your app as a real work of craft. Make sure that
you are using the correct fonts and typography, are aligning all your pixels correctly, and are
taking pride in what you are doing.

Fast and fluid comes down to responsiveness and using the right animations. You have
probably seen Microsoft PowerPoint presentations in which an author creates too many
animations. Every slide comes in from a different direction, all elements appear with some
kind of animation, and you are distracted from the real goal of the presentation. Your apps
will also use animations, but animations and transitions should support the user experience,
not distract from it. Making sure that your app is responsive and uses simple but direct
animations to guide users through your app is what fast and fluid is all about.

	 Objective 1.1: Design the UI layout and structure	 CHAPTER 1	 3

What’s the icon you use to save a document in Visual Studio? It’s a floppy disk! Depending
on your age, you might never have used a real floppy disk in your life. Maybe you save your
files to a regular hard drive, to a solid-state drive (SSD), or directly to the cloud. Should the
icon change depending on the location in which you save the file? Or should you accept the
fact that the digital world is different from the real world? That’s what being authentically
digital means. It can be a principle when designing small things such as adding a shadow to
an element. Why mimic the real world by adding a shadow when the user knows there isn’t
actually a shadow there?

Extending this principle, you can create digital experiences that are not possible in the real
world. Semantic zoom is one such area. If you open the Weather app on your Windows 8 PC,
you can use Ctrl+scroll wheel to zoom in and out. But instead of showing the information on
the screen smaller or larger, the app switches to a completely new view. Within this view, you
can pick a different category or switch dates. Although the process is different from what you
expect in the real world, it is perfectly possible in a digital app.

Doing more with less is another core principle of designing a Windows Store app. Compare
the screen shot of OneNote 2013 running on your desktop in Figure 1-1 to the screen shot of
OneNote 2013 running as a Windows Store app in Figure 1-2.

FIGURE 1-1  OneNote 2013 as a desktop app

	 4	 CHAPTER 1	 Design Windows Store apps

FIGURE 1-2  OneNote 2013 as a Windows Store app

The desktop app shows a lot more on the screen, but is that really beneficial? What is
OneNote about? Isn’t it about taking notes, viewing pages, and easily jotting down your
thoughts? The Windows Store app version of OneNote focuses on those things. It shows options
for formatting and other commands only when you need them, so a much larger portion of the
screen can be used to accomplish the goal of your app: showing notes. Reducing chrome and
navigation elements is key. Of course, reducing elements shouldn’t be done so thoroughly that
users are completely lost in your app. For example, Microsoft made the decision to add a search
box directly to the interface of the Windows Store, as you can see in Figure 1-3. This search box
immediately helps users find the right place to search for an app.

The last design principle, Win as one, is about integrating with the existing Windows 8
ecosystem. Users learn that they can change settings for applications by using the Settings
charm, they expect to swipe up to open the app bar, and they can integrate with other apps
that are installed on their device. Making sure that your app immediately feels familiar helps
them use your app and ensures that they will return to it.

These five principles should guide you through the design of your app. Try to keep these
design principles in mind and let them guide every decision you make during development.

	 Objective 1.1: Design the UI layout and structure	 CHAPTER 1	 5

FIGURE 1-3  A Windows Store app showing the search box

EXAM TIP

Make sure you know the five design principles for the exam. Understand the difference
between a regular desktop app and a Windows Store app.

Creating a vision
Look at the design principles that should guide your app. Your app shouldn’t be a monolithic,
giant application that can do everything a user will ever want. Focus on the experience that
you want to offer instead of the features. This is where a vision comes in. You should have
a clear idea of what your app is great at. Imagine that someone comes to you with the idea
of building a ToDo app. They visualize that users should be able to add tasks, mark them as
complete, and see a quick overview of what they still have to do. Try to determine what the
experience is that you want to give to users instead of only a list of features.

Why would a user use your app? What’s your app all about? After some brainstorming,
suppose that you come up with the following list:

■■ Add new tasks

■■ Mark tasks as completed

	 6	 CHAPTER 1	 Design Windows Store apps

■■ Collaborate with others on some tasks

■■ Remove tasks

■■ Get a list of uncompleted tasks

■■ Search through tasks

■■ Specify deadlines for tasks

Take a step back from this list of features and think about what would make your app
great. What scenario would make your app stand out from the competition?

One scenario that jumps out is the one about collaborating on tasks. Maybe you can think
of other scenarios that could be even better, but try to pick one single scenario to guide
your app.

Next, formulate your apps vision in a great at statement:

My ToDo app is great at letting people work together on a list of tasks.

Suddenly you have a clearer vision of your app. You can now check each feature that you
think of against your vision. Does it help with your vision or distract users from it?

The second step is deciding what user activities to support. Which steps are important for
users reaching the scenario of working together on a list of tasks? What is the ideal flow that
they should go through? Maybe you come up with something like this:

■■ Create a new task list

■■ Add tasks

■■ Share it with another user

■■ Report progress

These are the basic steps that form the flow of your app.

Now that you know what you want and which user activities you want to support, you
should start researching your platform. Windows 8 offers a broad set of capabilities that you
can use—from different controls and animations to ways to integrate with other applications.
For example, you can use the Share contract to implement the idea of sharing a task list with
someone else. You can use built-in controls to show a list of tasks and use the standard touch
gestures to let users select tasks and mark them as completed by clicking a button in the
app bar.

And there are many more possibilities! This book is about all the options that Windows 8
gives you when building apps, from tiles to notifications, from form factors to contracts. Many
things are possible when developing Windows Store apps, and you should be aware of those
that can help you with your design.

Now your app idea is coming together. You have a clear vision, you have targeted activities
that you want to support, and you understand the wealth of options that you can use when
coding your app.

	 Objective 1.1: Design the UI layout and structure	 CHAPTER 1	 7

But before you start developing, you should create some prototypes of your app. You
might start with simple sketches on paper, but you can also use tools such as Expression
Sketchflow or even PowerPoint with the Storyboarding plug-in.

Figure 1-4 shows an example of what a prototype can look like in PowerPoint. The
advantage of these types of prototypes is that you can have users test them and give you
feedback without having to do any time-consuming development.

FIGURE 1-4  PowerPoint storyboarding for Windows Store apps

After following these steps, you will have some clear prototypes of your app and you can
start thinking about implementation.

Deciding how the UI will be composed
When creating a new Windows Store app in Visual Studio, you have several different options.
Figure 1-5 shows the project templates from which you can choose.

Deciding on the template to start with is an important step. If you have created some
sketches, you probably have figured out what the flow of your application will be. Choosing a
template that matches your flow closely can save you a lot of work.

	 8	 CHAPTER 1	 Design Windows Store apps

FIGURE 1-5  Creating a new JavaScript Windows Store app

The available templates are the following:

■■ Blank App

■■ Grid App

■■ Split App

■■ Hub App

■■ Navigation App

Selecting the right template depends on the type of navigation that you want to support.
You can choose a flat navigation if all content resides on the same hierarchical level (Internet
Explorer or a game, for example). If you have content that is hierarchical, such as categories
and items, you can choose for a hierarchical navigation pattern.

The Blank App template is the only template that comes without a navigation model.
This template gives you an empty app with only HTML, cascading style sheets (CSS), and
JavaScript files, together with some required files for a package manifest; a file to sign your
app; and some default images.

	 Objective 1.1: Design the UI layout and structure	 CHAPTER 1	 9

Although it is not recommended to start with the Blank App template, you can use it if
you need a simple environment to test some features or if you have layout requirements that
don’t fit in the standard Windows Store model.

The Grid App template is the basis for apps that let the user browse through categories and
then navigate to individual items (a shopping or news app, for example). After creating this
project, you have a default structure of categories with items in them shown in three layers:
overview, category details, and item details. It implements navigation between pages and
comes with some sample data that you can customize.

The Split App template combines showing a list of items with item details on one page.
Think of it as a master-detail view of your data. It can be useful for building a blog reader
app, for example.

The Hub App template was added to Visual Studio 2013 with the release of Windows 8.1. This
template shows content in a horizontally panning view. The Hub App template is different from
other project templates because it uses a mix of sections that represent the items in your app.
Whereas the Grid App and Split App templates have a very specific way of showing items, the
Hub App template mixes all those approaches to create a compelling UI.

EXAM TIP

Be sure to try out the different project templates in Visual Studio. Become familiar with the
content of each template and try sketching some simple app ideas (such as a shopping app
or a chess game) with each so you understand how a template can get you started in the
right direction.

One aspect of the templates in Visual Studio that might not be immediately obvious is that
those templates implement a single-page application (SPA) structure. Regular websites use
multiple pages and hyperlinks to navigate from one page to another. While the page is loading,
your screen refreshes and a complete page is loaded.

An SPA uses a different architecture. Instead of having multiple pages, you load one page
when it starts and then use JavaScript to enable and disable elements. This process avoids
complete page reloads and gives your app a more fluid interface. When composing your
UI, keep this important aspect in mind. You can reuse the skeleton of your page and switch
different elements when navigating from “page to page.”

After you select your project template, you can use several item templates, as shown in
Figure 1-6. Those templates help you implement specific functionality, such as contracts, in
your app.

	10	 CHAPTER 1	 Design Windows Store apps

FIGURE 1-6  The Add New Item dialog box

Designing for the inheritance and reuse of visual elements
When building software, you can easily fall into the trap of simply copying and pasting
elements (HTML, CSS, or some JavaScript) whenever you need them. However, although
simply duplicating code can give you some velocity, it slows you down in the end.

The more code you have in your project, the harder it is to understand. Maintainability
also becomes an issue; making a change to each copy of an element is not only cumbersome
but can also lead to errors when you forget to change a copy.

During the design phase, you can easily see where certain elements will be repeated, so
make sure from the start that you find a suitable solution instead of a plain copy-and-paste
process.

Of course, remember principles such as Keep It Simple (KIS) and You Aren’t Gonna Need It
(YAGNI), which remind you that you shouldn’t go overboard planning to reuse elements that
you will never reuse. Instead of wasting time on creating complex controls that can easily be
reused but never will be, start with a simple solution and make sure that you adapt it when-
ever the requirements change.

	 Objective 1.1: Design the UI layout and structure	 CHAPTER 1	 11

Using HTML, CSS, and JavaScript for your app development gives you ample opportunities
for reusing elements in your app.

CSS is probably the easiest to reuse. You should move styles that are used in multiple
places in your app to a common file and then reference that file whenever needed. Especially
because you are using the SPA architecture, you can load CSS elements once and then reuse
them throughout your application.

JavaScript is also easily reusable. You can include certain utility functions in your JavaScript
and call them from anywhere in your application. The next objective looks at structuring your
JavaScript in a reusable way.

You can also reuse HTML by using JavaScript controls. For example, HTML PageControl
enables you to reuse HTML pages by loading them through JavaScript. You can also build
custom controls if you want to create a reusable unit of HTML, JavaScript, and CSS.

These options are discussed in more detail throughout the book.

Designing for accessibility
Imagine using your app if you are colorblind or completely blind. What if you are deaf or
can’t use a mouse or touch device easily? Keeping users’ disabilities in mind is very important
for the design process.

Maybe you are faced with legal requirements that force you to make your app accessible.
Or maybe you are just thinking about all the possible users who can’t use your app if you
don’t design for accessibility.

Fortunately, implementing accessibility in your app isn’t difficult. HTML already has good
support for creating accessible websites, and your Windows Store app can expand on that
foundation.

Make sure that your HTML not only looks nice but also specifies what it does. Accessible
rich Internet applications (ARIAs) are defined for this purpose. An ARIA defines a set of special
attributes that can be added to your HTML. Those attributes describe the description and role
of elements that can be used by screen readers—for example, to help a user understand what
an element does.

Next to using ARIA attributes, you should also make sure that your app is accessible only
by using a keyboard, which means thinking about the tab index of elements, making sure that
a user can use the arrow keys to navigate and implement accelerator keys.

You should also test your app under different conditions. The testing could be with varying
resolutions and when using high-contrast teams or a larger font.

The Windows software development kit (SDK) comes with two tools that you can use to test
the accessibility of your app: Inspect and UI Accessibility Checker (AccChecker). Of course, you

	12	 CHAPTER 1	 Design Windows Store apps

can also do some manual testing: Unplug your mouse, change your color theme, and adjust
font size. Narrator is an application that verifies your app can be used with a screen reader.

If you have followed the guidelines for accessibility, you can submit your app to the
Windows Store as being accessible, which helps users with disabilities find your app more
easily. Of course, Microsoft checks to see whether your app is accessible before allowing it.

MORE INFO  MAKING YOUR APP ACCESSIBLE

To learn more about accessibility in Windows Store apps using HTML and JavaScript, see
http://msdn.microsoft.com/en-us/library/windows/apps/hh452681.aspx. This page gives
you links to examples of using ARIAs, checklists, and tools that you need to make your app
accessible.

Deciding when custom controls are needed
When building your app, you’ll use standard HTML elements and prebuild Windows Library
for JavaScript (WinJS) controls created by Microsoft. With only these controls, you can build
most apps without many problems. They can be styled with CSS, and you can often attach
JavaScript to extend the behavior.

Sometimes you might need a custom control. Perhaps you want a calendar, some graph
controls, or something else that’s completely specific to your app.

First, see whether someone has already built your custom control. Companies such
as Telerik create control suites for all types of applications. A good starting point is
http://services.windowsstore.com/. You can find custom controls in the Controls & Frameworks
section.

A basic reusable piece of code can be created by using HtmlControl or PageControl.
More-complex controls can be implemented the same way as WinJS controls.

EXAM TIP

The exam requirements for Exam 70-481 don’t state that you should be able to create a
custom control. Exam 70-482 (Advanced Windows Store App Development Using HTML5
and JavaScript) requires you to create custom controls.

http://msdn.microsoft.com/en-us/library/windows/apps/hh452681.aspx
http://services.windowsstore.com/

	 Objective 1.1: Design the UI layout and structure	 CHAPTER 1	 13

Using the Hub App template
You have learned about composing your UI and choosing a template. The exam specifically
focuses on the Hub App template, so make sure that you understand how it works.

The Hub App template is an implementation of the hierarchical navigation pattern. The
Start screen is shown in Figure 1-7.

The template has a horizontal layout that shows the sections you defined. Within those
sections, you can show individual items. A user can select sections marked with > to view all
the items in that section. When you select an individual item, a details page displays.

Figure 1-8 shows the initial files created by the template. The most interesting part is the
Pages folder, which contains the Hub, Item, and Section pages. The data for Section and Item
pages is loaded from the static data.js file in the js folder.

FIGURE 1-7  Hub App template Start screen

	14	 CHAPTER 1	 Design Windows Store apps

FIGURE 1-8  Files created by the Hub App template

Adapting the template is easy. Get some meaningful data in for your app, which can be
static test data that you put in the data.js file or that is asynchronously loaded by the app
from an external data source.

Adding your own styling and behavior is just as important, of course. Using the Hub App
template as a foundation for your app steers you in the right direction for an attractive app!

MORE INFO  CHANGING THE HUB APP TEMPLATE

Microsoft published a complete example that shows you how to change the Hub
App template to load data asynchronously. This is a good way to get started with
the template! You can find it here: http://code.msdn.microsoft.com/windowsapps/
Hub-template-sample-with-4b70002d.

http://code.msdn.microsoft.com/windowsapps/Hub-template-sample-with-4b70002d
http://code.msdn.microsoft.com/windowsapps/Hub-template-sample-with-4b70002d

	 Objective 1.1: Design the UI layout and structure	 CHAPTER 1	 15

Thought experiment 
Designing your app

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You are implementing an app for a popular restaurant, and the owners want users
to be able to place orders through the app. The app should keep track of the users’
preferences and make special offers based on their purchase history.

1.	 Formulate a “great at” statement for your app.

2.	 Decide which template to use as the basis for your app.

3.	 Decide whether your app should be accessible.

Objective summary
■■ When designing your app, make sure to follow the Microsoft design principles: pride in

craftsmanship, fast and fluid, authentically digital, do more with less, and win as one.

■■ Make sure that you have a “My app is great at” statement to focus your app on one
single user scenario and implement it fully.

■■ Visual Studio offers project templates that you can use as a starting point for your app:
the Blank App, Hub App, Navigation App, Split App, and Grid App templates.

■■ You can easily reuse HTML, CSS, and JavaScript throughout your app to create a
consistent look and feel and to ensure maintainability.

■■ Accessibility is important for creating an app that can be used by users with disabilities.

■■ Custom controls that you create can be used to reuse HTML, JavaScript, and CSS.

■■ The Hub App template is a new template in Windows 8.1 that you can use to create
attractive apps that use a mixed mode of showing content to the user.

	16	 CHAPTER 1	 Design Windows Store apps

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You are developing the ToDo app in collaboration with designers who are new at
Windows Store development. They encourage you to use animations in your app. What
should you do?

A.	 Explain that animations are of the past and are distractions that Windows Store
apps should avoid.

B.	 Agree with them and let them describe a list of animations that they want to use.

C.	 Refer them to the documentation and show them the list of animations used in
Windows Store apps.

D.	 Meet with the designers and create custom animations that are useful for your
application.

2.	 Why is the “great at” statement so important for an app?

A.	 A great at statement isn't important; apps are not allowed to become popular
because the platform doesn't support it.

B.	 A great at statement isn't important because apps are only allowed to have limited
functionality.

C.	 Without a “great at” statement, you can’t follow the Microsoft design principles.

D.	 It creates a vision that you can use to guide the development of your app and
make sure your app truly excels in your supported user goal.

3.	 Which of the following Microsoft design principles are important when designing your
app? (Choose all that apply.)

A.	 Pride in craftsmanship

B.	 Integrate with the cloud

C.	 Fast and fluid

D.	 Authentically digital

E.	 Do more with less

F.	 Win as one

	 Objective 1.2: Design for separation of concerns	 CHAPTER 1	 17

Objective 1.2: Design for separation of concerns

Software development is still a relatively young profession. Although other disciplines have
established well-defined and accepted rules for their craft, the rules of software development
are still evolving.

This objective discusses the principles that the software industry has established in the last
couple of decades. These principles revolve around building maintainable software that can
be easily understood and extended. You will learn how to use layers to build your application
and how Windows Metadata (WinMD) Components fit in the picture.

This objective covers how to:
■■ Plan the logical layers of your solution to meet application requirements

■■ Design loosely coupled layers

■■ Incorporate WinMD Components

Planning the logical layers of your solution to meet
application requirements
When doing some handiwork (or watching someone else do it) you probably use a variety
of tools. Some tools, like a multi tool, can be used for a multiple scenarios. However, you can
imagine scenarios where some parts of a multi tool become obsolete or broken. Changes to
one element of your tool will affect other parts. Having dedicated tools with a specific goal
often use fuller and requires less maintenance.

Maintenance and having a specific goal is also important for software design. But when
building software, it’s a lot harder to recognize and avoid mistakes in these types of designs.

Separation of concerns (SoC) entails splitting a computer program into logical sections so
that each section addresses a specific concern. SoC is important for creating maintainable
applications that can be easily tested.

Typical examples of SoC are HTML, JavaScript, and CSS. Each performs a unique role in
creating a webpage or app. HTML is the semantic structure of your page, CSS is the styling,
and JavaScript adds client-side functionality.

You can mix these three concerns. For example, although you can add styling directly on
your HTML elements, these designs are unnecessarily complex, hard to maintain, and difficult
to extend.

	18	 CHAPTER 1	 Design Windows Store apps

How does SoC apply to your app? A typical app has to do multiple things: fetch data from
somewhere, extract the necessary fields from it, and maybe perform some other validations
on it before showing it on the screen. These tasks should not be plunged into one single
monolithic object that spans your whole app. Instead, you should divide those tasks into
separate areas and make them work together.

This process is called layering, and an application can consist of several logical layers. An
application typically includes a UI layer, service layer, business layer, and data layer.

The layers have specific tasks. The business layer doesn’t have to know how to fetch data;
that is the responsibility of the data layer. The data layer doesn’t know how the data is dis-
played on the screen; that is the work of the UI layer.

A typical diagram of this architecture is shown in Figure 1-9.

UI

Business

Data

FIGURE 1-9  Diagram showing layering architecture

The diagram shows three typical layers stacked on top of each other. All layers also must
address security and logging.

Before you start coding your app, you should have a reasonable idea of the different layers
that you need in your application.

When you create a new app from one of the templates (the Hub App template, for example),
you see that data.js is responsible for fetching data. In this way, you centralize all knowledge
about data access to one location. Other parts of your app can call into the data object and use
it without knowing anything about the specifics of your data storage mechanism.

Logical layers of an application differ from tiers. Maybe you have heard the term N-tiered
application. A tier is a layer (or a couple of layers) that is physically separated from other
layers. It might be a web service running somewhere in the cloud on Microsoft Azure that
contains a piece of functionality from your app or from a database that stores the data for
your app.

	 Objective 1.2: Design for separation of concerns	 CHAPTER 1	 19

Logical layers can be placed on separate tiers, but it’s not a requirement to do so to
achieve a well-designed app.

Designing loosely coupled layers
JavaScript as a language has its own particular challenges for designing large-scale applications.
Languages such as C++ or C# implement a paradigm called object-oriented programming, which
enables you to create small classes that are targeted at doing one single task. You can configure
scope for objects, group them, and build your application this way.

JavaScript is a powerful language, but it wasn’t designed for building large applications.
Ideas from object-oriented languages such as classes and modules are not built in to the
JavaScript language.

Of course, you can just jump in and start developing your app without thinking too much
about layering. However, as your app starts to grow, maintainability and the overall quality of
your app will be negatively affected.

Avoiding global state
In JavaScript, everything you create is globally accessible by default, so every variable you
declare can be modified anywhere in your code. Naming conflicts can occur when you
declare the same variable twice, which can lead to unforeseen problems when a variable is
modified somewhere in the application without an easy way to track the changes.

These conflicts don’t occur for variables and functions declared inside a function. JavaScript
limits the scope of those objects to the scope of the function. This limitation enables you to
implement the concept of private (which you can find in languages such as C#) in JavaScript.

To avoid global state and create private data, the default JavaScript files created by the
Visual Studio templates wrap their content like this:

(function () {
 ...
})();

What you see here is an anonymous, self-invoking function. The function is declared with-
out a name, and it is immediately executed at the end of its declaration. This function allows
you to scope all the items inside the function.

You don’t want to keep all items private; some functions or variables should be exposed.
To help you, WinJS uses the concept of namespaces.

By using the WinJS.Namespace.define method, you can set a name for your namespace
and configure which items are accessible:

var namespacePublicMembers = { clickEventHandler: button1Click };
 WinJS.Namespace.define("startPage", namespacePublicMembers);

	20	 CHAPTER 1	 Design Windows Store apps

In this example, you define a namespace called startPage and expose a variable named
clickEventHandler. This event handler points to the button1Click function defined inside your
anonymous method.

Instead of having to use only plain functions and exposing them through namespaces, you
can use WinJS to create classes. By using the WinJS.Class.define method, you can create a new
class that has both behavior and data.

You can use the following plain JavaScript code to create a class-like object:

function Robot(name) {
 this.name = name;
}

Robot.prototype.modelName = '4500';
Robot.harmsHumans = false;

You create a class named Robot that expects a name on creation. It also has a modelName
property that’s unique for each instance. The harmsHumans property is static, meaning that it
is shared across all instances.

Instead of using this syntax, WinJS exposes a helper method called WinJS.Class.define. You
can use the following code to create your Robot class:

var Robot = WinJS.Class.define(
 // The constructor function.
 function(name) {
 this.name = name;
 },
 // The set of instance members.
 { modelName: "" },
 // The set of static members.
 { harmsHumans: false });

var myRobot = new Robot("Mickey");

myRobot.modelName = "4500";
Robot.harmsHumans = false;

WinJS also gives you a helper method to implement inheritance, which is a concept of
object-oriented development in which you define base classes and derived classes. You can
create a hierarchy of classes that all share behavior and data, but can also add additional
elements to their base class.

A classic example is found with animals. If you have a base class Animal, you can add
elements to it such as IsAlive or Age. Now you can derive specific subtypes such as Mammal
or Bird. They can add their own data such as IsWarmBlooded or Fly.

There are problems, however. Can all birds fly? How should you express that not all types
of birds can fly? You can start adding checks to make sure you don’t execute a method that’s
not implemented on the current class, but going down this road where not all subclasses sup-

	 Objective 1.2: Design for separation of concerns	 CHAPTER 1	 21

port the methods defined on a base class leads to code that’s unmaintainable. Discussing all the
fine-grained details of developing class hierarchies is outside the scope of this exam. If you start
building more-complex applications, it pays to be familiar with object-oriented design concepts.

MORE INFO  OBJECT-ORIENTED DESIGN

Lots of books, articles, tutorials, and other material exist on the topic of object-oriented
design. A good starting point is reading material produced by Robert Martin, who is
considered to be one of the founders of object-oriented design: http://www.objectmentor.
com/omSolutions/oops_what.html.

Using strict mode
JavaScript is usually very forgiving of the way you write your code. You can use a variable
without ever declaring it, write to a read-only property, extend objects that are marked as not
extensible, delete functions, or duplicate properties and other strange errors that won’t be
immediately obvious when they start producing errors in your code.

Strict mode is a feature in JavaScript that you must explicitly enable. Enabling it results in
better error-checking in your code to avoid the types of errors mentioned previously. You en-
able strict mode by adding the following line to your programs:

"use strict";

This line can be scoped to global scope (which applies to all code in your whole application,
even external code), or you can use it inside a function that scopes it to the function.

Using TypeScript
JavaScript needs some help to become suitable for building large applications. Microsoft also
noticed this lack, so it started developing TypeScript.

TypeScript is a superset of JavaScript that still compiles to plain JavaScript that can be used
to run your apps. At development time, it adds extra features such as typing, classes, modules,
generics, and inheritance.

These features significantly improve working with JavaScript. Look at the following
TypeScript code:

class Greeter {
 greeting: string;
 constructor(message: string) {
 this.greeting = message;
 }
 greet() {
 return "Hello, " + this.greeting;
 }
}
var greeter = new Greeter("world");

http://www.objectmentor.com/omSolutions/oops_what.html
http://www.objectmentor.com/omSolutions/oops_what.html

	22	 CHAPTER 1	 Design Windows Store apps

The class keyword, constructors, and property typing are elements that are added by
TypeScript, which allows the compiler to give you much better support. It finds errors, helps
you with IntelliSense, and works with other Visual Studio features that improve your workflow.

There is nothing that stops you from using TypeScript for building your Windows Store
apps. There are even TypeScript definition files for the Document Object Model (DOM) and
WinJS libraries. As a JavaScript developer, you should definitely consider using TypeScript.

MORE INFO  TYPESCRIPT

For more information on TypeScript, see the TypeScript website at http://www.typescript-
lang.org/. An open-source repository for type definitions can be found at https://github.
com/borisyankov/DefinitelyTyped. You can download definition files to start working with
WinJS libraries.

Incorporating WinMD Components
When working on your Windows Store apps with HTML, JavaScript, and CSS, you call in to
libraries defined in WinJS, which are built on the native C++ WinRT run time.

Calling in to a native dynamic-link library (DLL) from JavaScript is normally not supported.
Microsoft put a lot of effort into creating an infrastructure that supports the interoperability
of different languages to create apps for the Windows platform.

A regular C++ native component does not include metadata, which is necessary to create
the correct mapping between the native components and the other languages. To make this
work, Microsoft created a new file type named Windows Metadata (WinMD).

If you are running Windows 8, you can find these files in C:\Windows\System32\
WinMetadata. The format of these files is the same as used by the .NET Framework for the
Common Language Infrastructure (CLI).

WinMD files can contain both code and metadata. Those in your System32 directory
contain only metadata, however. This metadata is used by Visual Studio to provide IntelliSense
at design time. At run time, the metadata is used to signal that the implementation of all the
methods found there is supplied by the run time, which is why the files don’t have to contain
actual code; they make sure that the methods are mapped to the correct methods in WinRT.

When building JavaScript apps, you have the choice to implement part of your application
in another language, such as C# or C++. Those projects can contain code that’s hard to
implement in JavaScript while still integrating nicely with your app.

If you want to create your own WinMD assembly, create a WinRT Component in Visual
Studio. The WinRT Component compiles down to a .winmd file that you can then use.

http://www.typescriptlang.org/
http://www.typescriptlang.org/
https://github.com/borisyankov/DefinitelyTyped
https://github.com/borisyankov/DefinitelyTyped

	 Objective 1.2: Design for separation of concerns	 CHAPTER 1	 23

The following example shows some code that you can have inside your WinRT project:

namespace MyComponent
{
 public sealed class MyClass
 {
 public int DoSomething(int x)
 {
 return x + 42;
 }

 }
}

If you add a reference to your WinRT Component project in your app project, you can use
the MyClass class from the C# project in the following way from your JavaScript code:

 var myClass = new MyComponent.MyClass();
 var value = myClass.doSomething(42);

This code calls in to the C# code and executes a method. The function name starts with a
lowercase “d” in the JavaScript code. C# has the convention that element names should start
with an uppercase character; JavaScript follows a convention in which each element starts
with a lowercase character. This is why a method starting with an uppercase character in C#
starts with a lowercase letter in JavaScript.

EXAM TIP

Remember that you can mix JavaScript and C# or C++ code when building your app.

There are a couple of restrictions when you use WinRT Components:

■■ The fields, parameters, and return values of all the public types and members in your
component must be WinRT types.

■■ Public classes and interfaces can contain methods, properties, and events. A public
class or interface can’t do the following, however:

■■ Be generic

■■ Implement an interface that is not a WinRT interface

■■ Derive from types that are not inside the WinRT

■■ Public classes must be sealed.

■■ Public structures can have only public fields as members, which must be value types or
strings.

■■ All public types must have a root namespace that matches the assembly name and
does not start with Windows.

	24	 CHAPTER 1	 Design Windows Store apps

MORE INFO  WINMD COMPONENTS

For more info on creating WinMD Components, see the official documentation at
http://msdn.microsoft.com/library/windows/apps/hh779077.aspx.

Thought experiment 
Designing a large application

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

Your company is starting a new app project, and you are asked to sketch the initial
architecture. You have read about the advantages of using a layered application,
but a colleague argues against that architecture.

How should you react to his following statements?

1.	 A layered application complicates development.

2.	 Layering slows down development because developers have to wait for a layer to
be completed before they can continue.

3.	 JavaScript can’t be used to build a layered application.

Objective summary
■■ Dividing your application into distinct layers helps you create maintainable applications

that are easier to extend.

■■ Typical layers are the UI, business, and data layers.

■■ When working with JavaScript, pay attention to how you structure your code to avoid
some of the inherent JavaScript problems such as global state. You can use self-invoking
anonymous functions to apply some scoping to your code.

■■ TypeScript is a superset of JavaScript that helps you write application-scale JavaScript.

■■ WinMD Components can be written in other languages such as C++ and C#, and can
then be used from JavaScript Windows Store apps.

http://msdn.microsoft.com/library/windows/apps/hh779077.aspx

	 Objective 1.2: Design for separation of concerns	 CHAPTER 1	 25

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You are designing an app that connects to an external web service to load data for the
app. This data is then processed and displayed on the screen. From which layer should
the web service be called?

A.	 Data layer

B.	 Service layer

C.	 Business layer

D.	 UI layer

2.	 Should you avoid global state in JavaScript applications?

A.	 No. Global state is easy because you can share data between different parts of
your app.

B.	 No. It’s not possible to avoid global state in JavaScript.

C.	 Yes. Avoiding global state keeps your code free from unwanted side effects and
aids maintainability.

D.	 Yes. Global state is not possible in Windows Store apps.

3.	 Which elements can you use to build a layered application? (Choose all that apply.)

A.	 WinJS.Class.define

B.	 WinJS.Namespace.define

C.	 WinMD Components

D.	 Web services

	26	 CHAPTER 1	 Design Windows Store apps

Objective 1.3: Design and implement Process Lifetime
Management (PLM)

When working with regular desktop applications, you are used to launching and closing them
yourself. When you switch to another application, other running applications stay in memory,
and you can easily switch back to them. When your computer starts running slowly, you start
closing applications and maybe even open Task Manager to check what’s happening.

Windows Store apps behave differently. Microsoft doesn’t want users to bother with
actively closing applications, so it created Process Lifetime Management (PLM) for Windows
Store apps that manages the lifetime of an app without any user intervention.

The life cycle of your app is the foundation on which you build. Make sure that you get
it right. You can have a beautiful app, but when it doesn’t behave as users expect, you will
lose them.

This objective covers how to:
■■ Choose a state management strategy

■■ Handle the suspend event (oncheckpoint)

■■ Prepare for app termination

■■ Handle the onactivated event

■■ Check the ActivationKind and previous state

Choosing a state management strategy
Windows Store apps can be launched and terminated in a couple of different ways. Un-
derstanding the application life cycle and anticipating it in your app lead to a better user
experience in which your app naturally behaves as a user would expect.

Apps start their lives in the not running state. You launch the app by clicking the tile on the
Start screen; your app then displays its splash screen, loads data, and begins running.

That’s the easy track. In reality, however, a lot more can happen. Figure 1-10 shows the
typical life cycle of an app.

	 Objective 1.3: Design and implement Process Lifetime Management (PLM)	 CHAPTER 1	 27

Low Resources

Resuming

Activated Suspending
Running

Not running

Terminated
Suspended

FIGURE 1-10  The life cycle of an app

When your app is in the suspended state, it consumes less memory than it consumes in the
running state and it doesn’t get scheduled for CPU time, which saves power to enable longer
battery times on tablets and laptops. Although Windows tries to keep as many apps as pos-
sible in the suspended state, when the operating system is running low on resources (typically
memory), Windows starts terminating apps that haven’t been used for some time.

Choosing your state management strategy comes down to understanding the life cycle
of your app and responding appropriately. What does this mean? When users (game or blog
readers, for example) leave your app and then return to it, they expect to come back at the
same point with the same settings as when they left.

In the meantime, maybe Windows suspended your app or even terminated it. However,
the users don’t know the situation and want to continue working with your app. So you have
to respond to the events such as suspension or resumption and make sure that you save the
correct state and restore it whenever necessary so users don’t notice anything.

You can take this process one step farther. Because apps can be installed on multiple
devices, you should accommodate a user switching between those devices when using your
app. You need to save all the details of the users’ actions to an external source and reload
them whenever an app launches on a device. Windows helps you by automatically roaming
data to all user devices so that you can share state across devices and provide a seamless
experience.

Handling the onactivated event
Your app can be activated in a variety of ways. The most obvious one, of course, is a user
directly launching it by clicking the app tile on the Start screen. There are also many more
ways to activate apps. If you use toast notifications (which are discussed in more detail in

	28	 CHAPTER 1	 Design Windows Store apps

Chapter 4, “Program user interaction”), a user can launch your app by clicking a notification.
If you are implementing contracts (see Chapter 2, “Develop Windows Store apps,” for more
details), a user can launch your app with the Search or Share charms, by file type, or with URI
associations.

These activation events require a different strategy. Fortunately, the Visual Studio
templates give you some boilerplate code that you can use to react to those events. After you
create a new app from the Blank App template, you see the following code in the default.js
file:

app.onactivated = function (args) {
 if (args.detail.kind === activation.ActivationKind.launch) {
 if (args.detail.previousExecutionState !==
 activation.ApplicationExecutionState.terminated) {
 // TODO: This application has been newly launched. Initialize
 // your application here.
 } else {
 // TODO: This application has been reactivated from suspension.
 // Restore application state here.
 }
 args.setPromise(WinJS.UI.processAll());
 }
};

The code shows how to subscribe to the onactivated event of your WinJS application. Inside
the event handler, you can see whether your app is newly launched or you are resuming from a
suspended state.

This state affects the steps you need to take. If the app is newly launched, initialize the app
and show its home screen to users. If users return to your app, make sure that they return to
the exact same point.

If the UI content has changed since the app was suspended, you need to load the new
data and update your UI accordingly. Your app’s activated event is running while Windows
shows the splash screen, which is why you should make sure that your initialization is as fast
as possible.

Your app can also be associated with a certain file type or a URI. Associating your app with
a file type is configured in the application manifest.

Figure 1-11 shows the Manifest Designer with the File Type Association configured for files
that have an extension of .my.

	 Objective 1.3: Design and implement Process Lifetime Management (PLM)	 CHAPTER 1	 29

FIGURE 1-11  The Manifest Designer dialog box showing the File Type Associations

After configuring these settings, launch the app from Visual Studio to register your new
file type with Windows. You can then create a new text file and change the extension to .my.
Double-click the new file to launch your app.

During the activated event of your app, you can see whether the app is launched from an
associated file:

if (args.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.file) {
 var file = args.detail.files[0];
 Windows.Storage.FileIO.readTextAsync(file).then(function (text) {
 });

 // The number of files received is eventArgs.detail.files.size
 // The first file is eventArgs.detail.files[0].name
}

	30	 CHAPTER 1	 Design Windows Store apps

This code checks to see whether ActivationKind is of type file. If so, the arguments passed
to your activated event handler contain a details.files property that contains information
about the file or files that a user selected when launching your app. In this example, you are
dealing with a plain text file, so you can pass it to Windows.Storage.FileIO.readTextAsync and
read the text content of the file.

Your app can also be activated from a URI. One example is the Windows Store. By
navigating to a URI of the form ms-windows-store:PDP?PFN=, you launch the Windows
Store and navigate to the specified Package Family Name. The ms-windows-store part of
the URI is called the protocol.

You can add your own protocols to the app to associate it with specific URIs. Figure 1-12
shows the Manifest Designer with a newly added protocol of mypro.

FIGURE 1-12  The Manifest designer dialog box showing the Protocol declaration

Of course, it’s important to configure a logo and descriptive display name, after which you
can launch the app to register your protocol with Windows. Opening Windows Explorer and
navigating to mypro://content launches your app.

	 Objective 1.3: Design and implement Process Lifetime Management (PLM)	 CHAPTER 1	 31

Just as with File Type Associations, you can see whether the app is launched from a URI in
your activated event:

if (args.detail.kind === activation.ActivationKind.protocol) {
 var uri = args.detail.uri;
 var rawUri = uri.rawUri;
}

The args.detail.uri property contains information about the URI that launched your app. It
is up to you to parse the URI and take appropriate action.

Remember that both the files and URIs that launch your app can be harmful. You should
never trust the input a user gives you and always use security measures when dealing with
external input.

Handling the suspend event (oncheckpoint)
When a user switches to another app, Windows suspends your app after a couple of seconds,
which enables the user to immediately switch back to your app without it having to do
any work.

Whenever Windows notices that the user isn’t coming back right away, your app is
suspended. Windows then raises the checkpoint event. In this event, you can save any user
state that you want to restore when the app would be resumed from termination.

The syntax of subscribing to the checkpoint event is as follows:

 app.oncheckpoint = function (args) {
 };

Inside the function, you can save any state or other data that you want to restore when the
app moves from terminated to running in the WinJS.Application.sessionState object. The con-
tent of this object is serialized to your local appdata folder. When the app is activated again
from the terminated state, the sessionState object is rehydrated from your local appdata
folder. You can then use the data inside the sessionState object to reinitialize your app.

This process can be as easy, as the following example shows:

app.onactivated = function (args) {
 if (args.detail.kind === activation.ActivationKind.launch) {
 if (args.detail.previousExecutionState !==
 activation.ApplicationExecutionState.terminated) {
 // TODO: This application has been newly launched. Initialize
 // your application here.
 } else {
 var value = WinJS.Application.sessionState.value;
 }
 args.setPromise(WinJS.UI.processAll());
 }
};

app.oncheckpoint = function (args) {
 WinJS.Application.sessionState.value = 42;
};

	32	 CHAPTER 1	 Design Windows Store apps

When your app goes into suspension, a value of 42 is saved inside your sessionState object.
When the app launches from a terminated state, the value is retrieved from the object.

You can also use the WinJS.Application object directly to write and read state from the
local, temp, or roaming folders. Writing directly to those folders can be useful if your data
can’t be directly serialized to a string or if you want specific control over the location of
your data.

When using any asynchronous actions inside a checkpoint event, you have to signal it to
the operating system. Windows assumes that you saved all your state when the checkpoint
events returns, so it doesn’t give your app any CPU time. To avoid losing CPU time with
asynchronous operations, you can use the args.setPromise() method, as in the activated
event.

Remember that you never get more than five seconds. If you don’t return from the
checkpoint method or finish all your asynchronous operations within five seconds, your app is
terminated.

Preparing for app termination
When your app goes from running to suspended, you receive a notification from the
Windows operating system. But when your app goes from suspended to terminated, your app
doesn’t receive a notification. This is by design and is actually quite logical.

Your app is terminated because the operating system is low on resources. Activating your
app only to prepare itself for termination could become troublesome because the sole act of
activating the app uses resources. And when your app tries to save some state to disk or call
web services, even more memory is used.

To save resources, your app doesn’t get called when your app terminates. Instead, you
should do all your work in the checkpoint event discussed in the previous section. Then when-
ever your app goes from suspended to terminated, you have saved all the required state.

EXAM TIP

Remember that there is no separate event for termination. You should save all state in the
checkpoint event and make sure that your app can completely recover from termination.

Using background tasks
But what if you want to keep running when the user closes your app? You can do so by using
background tasks. You can request Windows to grant permission to execute code in the
background by using the application Manifest Designer.

Figure 1-13 shows the application Manifest Designer with a BackgroundTask extension.

	 Objective 1.3: Design and implement Process Lifetime Management (PLM)	 CHAPTER 1	 33

The background task is configured to trigger on a system event and on a timer. When the
Background Task is triggered, it launches the JavaScript file js\backgroundtask.js. Your back-
ground task consists of two parts: the actual task and the code to register your task.

FIGURE 1-13  The Manifest Designer dialog box showing the Background Tasks declaration

Begin with registration. The following method lets you register a background task:

function registerTask(taskEntryPoint, taskName, trigger, condition) {

 var builder = new Windows.ApplicationModel.Background.BackgroundTaskBuilder();

 builder.name = taskName;
 builder.taskEntryPoint = taskEntryPoint;
 builder.setTrigger(trigger);

 if (condition !== null) {
 builder.addCondition(condition);
 builder.cancelOnConditionLoss = true;
 }

 var task = builder.register();

	34	 CHAPTER 1	 Design Windows Store apps

 task.addEventListener("progress", new BackgroundTaskSample.progressHandler(task).
onProgress);
 task.addEventListener("completed", new BackgroundTaskSample.completeHandler(task).
onCompleted)

 var settings = Windows.Storage.ApplicationData.current.localSettings;
 settings.values.remove(taskName);
};

This method takes a parameter that points to your JavaScript file that contains the actual
task, a name, the trigger you want to use, and a condition that determines whether the task
should run. You can call the method like this:

registerTask("js\\backgroundtask.js",
 "SampleJavaScriptBackgroundTask",
 new Windows.ApplicationModel.Background.SystemTrigger(
 Windows.ApplicationModel.Background.
SystemTriggerType.timeZoneChange, false),
 null);

This code registers a background task that runs whenever users change their time zone
without any other conditions.

Triggers can be any of the following:

■■ SmsReceived  The background task is triggered when a new Short Message Service
(SMS) message is received by an installed mobile broadband device.

■■ UserPresent  The background task is triggered when the user becomes present.

■■ UserAway  The background task is triggered when the user becomes absent.

■■ NetworkStateChange  The background task is triggered when a network change
occurs, such as a change in cost or connectivity.

■■ ControlChannelReset  The background task is triggered when a control channel is
reset.

■■ InternetAvailable  The background task is triggered when the Internet becomes
available.

■■ SessionConnected  The background task is triggered when the session is connected.

■■ ServicingComplete  The background task is triggered when the system has finished
updating an app.

■■ LockScreenApplicationAdded  The background task is triggered when a tile is added
to the lock screen.

■■ LockScreenApplicationRemoved  The background task is triggered when a tile is
removed from the lock screen.

■■ TimeZoneChange  The background task is triggered when the time zone changes on
the device (for example, when the system adjusts the clock for daylight savings time
[DST]).

	 Objective 1.3: Design and implement Process Lifetime Management (PLM)	 CHAPTER 1	 35

■■ OnlineIdConnectedStateChange  The background task is triggered when the
Microsoft account connected to the account changes.

■■ BackgroundWorkCostChange  The background task is triggered when the cost of
background work changes.

Remember that for triggers such as user presence and others, your app must also be
visible on the lock screen.

If you are not interested in every trigger change, you can add additional conditions to your
background task:

■■ UserPresent  Specifies that the background task can run only when the user is present.
If a background task with the UserPresent condition is triggered and the user is away,
the task doesn’t run until the user is present.

■■ UserNotPresent  Specifies that the background task can run only when the user is not
present. If a background task with the UserNotPresent condition is triggered and the
user is present, the task doesn’t run until the user becomes inactive.

■■ InternetAvailable  Specifies that the background task can run only when the Internet
is available. If a background task with the InternetAvailable condition is triggered and
the Internet is not available, the task doesn’t run until the Internet is available again.

■■ InternetNotAvailable  Specifies that the background task can run only when the
Internet is not available. If a background task with the InternetNotAvailable condition
is triggered, and the Internet is available, the task doesn’t run until the Internet is
unavailable.

■■ SessionConnected  Specifies that the background task can run only when the user’s
session is connected. If a background task with the SessionConnected condition is
triggered and the user session is not logged on, the task runs when the user logs on.

■■ SessionDisconnected  Specifies that the background task can run only when the
user’s session is disconnected. If a background task with the SessionDisconnected
condition is triggered and the user is logged on, the task runs when the user logs off.

■■ FreeNetworkAvailable  Specifies that the background task can run only when a free
(nonmetered) network connection is available.

■■ BackgroundWorkCostNotHigh  Specifies that the background task can run only
when the cost to do background work is low.

After configuring the triggers and conditions, the only thing you need is the actual task. In
the previous example, you pointed to a specific JavaScript file: js/backgroundtask.js.

	36	 CHAPTER 1	 Design Windows Store apps

A simple background task can look like this:

(function () {
 "use strict";

 var cancel = false,
 progress = 0,
 backgroundTaskInstance = Windows.UI.WebUI.WebUIBackgroundTaskInstance.current,
 cancelReason = "";

 function onCanceled(cancelEventArg) {
 cancel = true;
 cancelReason = cancelEventArg.type;
 }
 backgroundTaskInstance.addEventListener("canceled", onCanceled);

 function onTimer() {
 var key = null,
 settings = Windows.Storage.ApplicationData.current.localSettings,
 value = null;

 if ((!cancel) && (progress < 100)) {
 setTimeout(onTimer, 1000);
 progress += 10;
 backgroundTaskInstance.progress = progress;
 } else {
 backgroundTaskInstance.succeeded = (progress === 100);
 value = backgroundTaskInstance.succeeded ? "Completed" : "Canceled with
reason: " + cancelReason;

 key = backgroundTaskInstance.task.name;
 settings.values[key] = value;

 close();
 }
 }
 setTimeout(onTimer, 1000);
})();

This code is a self-enclosing function that contains the task, which consists of the onTimer
method that does the actual work. It also has a cancel event handler to see whether the task
should be canceled.

The Windows.UI.WebUI.WebUIBackgroundTaskInstance.current property gives you access
to the background task framework of Windows. You can check for cancellation and signal
success or failure by using this object.

The call to close at the end of your task is required to signal that your task is done.

Background tasks are not meant to be used for long-running tasks. They should be used
to respond to changes in the environment and run short tasks on a timer.

	 Objective 1.3: Design and implement Process Lifetime Management (PLM)	 CHAPTER 1	 37

Checking the ActivationKind and previous state
For the exam, make sure that you understand the reasoning behind the ActivationKind enu-
meration and the value for the previous state of your app.

When you look at the activated event, you see both the kind and the previous state used:

app.onactivated = function (args) {
 if (args.detail.kind === activation.ActivationKind.launch) {
 if (args.detail.previousExecutionState !==
 activation.ApplicationExecutionState.terminated) {
 } else {
 }
 args.setPromise(WinJS.UI.processAll());
 }
};

ActivationKind can have a lot of different values:

■■ Launch  The user launched the app or tapped a content tile.

■■ Search  The user wants to search with the app.

■■ ShareTarget  The app is activated as a target for share operations.

■■ File  An app launched a file whose file type is registered to be handled by this app.

■■ Protocol  An app launched a URL whose protocol is registered to be handled by
this app.

■■ FileOpenPicker  The user wants to pick files provided by the app.

■■ FileSavePicker  The user wants to save a file and selects the app as the location.

■■ CachedFileUpdater  The user wants to save a file for which the app provides content
management.

■■ ContactPicker  The user wants to pick contacts.

■■ Device  The app handles AutoPlay.

■■ PrintTaskSettings  The app handles print tasks.

■■ CameraSettings  The app captures photos or video from an attached camera.

■■ RestrictedLaunch  The user launched the restricted app.

■■ AppointmentsProvider  The user wants to manage appointments provided by the
app.

■■ Contact  The user wants to handle calls or messages for the phone number of a
contact provided by the app.

■■ LockScreenCall  The app launches a call from the lock screen. If the user wants to
accept the call, the app displays its call UI directly on the lock screen without requiring
the user to unlock. A lock screen call is a special type of launch activation.

	38	 CHAPTER 1	 Design Windows Store apps

Most values come from integrating with the operating system. When you start imple-
menting contracts, your app can be activated in a lot of different scenarios that you need to
handle. Chapter 2 provides more detail on implementing contracts.

If the user explicitly closed your app, you can assume that there was some kind of error
that the user wanted to correct. Restoring the state to the point where the user closed your
app doesn’t help. Instead, you should do a clean initialize of your app.

You can use the args.detail.previousExecutionState property to check the previous state of
the app. It can be one of the following values:

■■ NotRunning  The app is not running.

■■ Running  The app is running.

■■ Suspended  The app is suspended.

■■ Terminated  The app was terminated after being suspended.

■■ ClosedByUser  The app was closed by the user.

A previous state of NotRunning, which is the most common one, occurs whenever a user
launches your app for the first time. It can happen after installing the app, but also after a
computer reboot or when switching accounts.

A previous state of Running means that your app is already running, but one of its contracts
or extensions is activated.

Suspended happens whenever Windows kept your app in memory but didn’t assign any
CPU to it. When this happens, you might want to update any on-screen content to make sure
everything is up to date.

Terminated is the state you learned about in the previous sections. Whenever Windows
determines that your app should be removed from memory, it terminates your app. When
resuming from a terminated state, you need to reload all state, which can be done from the ses-
sionState object or from an external web service (when you want to make sure that everything
is up to date).

ClosedByUser has a different behavior. Whenever the user forcefully closes your app
(through Alt+F4 or the close gesture) and returns within 10 seconds, you do a clean startup
because Windows assumes that there was an error, and the user restarts the app. When the
user takes longer to return, you need to restore state so the user can continue.

	 Objective 1.3: Design and implement Process Lifetime Management (PLM)	 CHAPTER 1	 39

Thought experiment 
Strengthening your foundation

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You have developed an app sharing task lists with other users. However, your first
version is running, and users are reporting problems. What can you do to solve the
following problems?

1.	 Users want to create a task list on their main PC and then view it on their phone.
However, the changes never sync between devices, making it impossible.

2.	 After coming back to their app, changes are lost, and they have to start over.

3.	 Users report that after launching their app, they sometimes see data that’s out of
date.

Objective summary
■■ Windows Store apps go through a life cycle in which an app can be not running,

running, suspended, or terminated.

■■ The activated event is important for initializing your app for users.

■■ The checkpoint event allows you to save any user state and data before your app gets
suspended and possibly terminated.

■■ When your app gets activated, it is important to know the reason why your app is
activated and its previous state.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You are creating a game as a Windows Store app that features real-time action, and
you are thinking about state management. Which of the following statements is true
about state management? (Choose all that apply.)

A.	 For a game, you don’t have to consider state management.

B.	 You need to implement the activated event.

C.	 You need to implement the checkpoint event.

D.	 You need to implement the terminated event.

	40	 CHAPTER 1	 Design Windows Store apps

2.	 A user closes your Windows 8.1 app by pressing Alt+F4. What should you do when the
user returns the following day?

A.	 Do a fresh start of the app because the user forcefully closed the app.

B.	 Reload all user state and continue as if the user never left.

C.	 Show a dialog box that asks whether the user wants to continue or start over.

D.	 Restart the application behind the scenes to force a clean start.

3.	 You want to restore any saved state when the app resumes. Which event do you use?

A.	 Ready

B.	 Loaded

C.	 Checkpoint

D.	 Activated

Objective 1.4: Plan for an application deployment

No matter how good your app is, users won’t use it if you don’t deploy it. Planning your
deployment is an important part of developing your application. Microsoft decided that not
all apps are allowed in to the Windows Store. Knowing these requirements and understanding
how to configure your app for deployment is the topic of this objective.

You also learn how to deploy an app for your enterprise when you don’t use the public
Windows Store.

This objective covers how to:
■■ Plan a deployment based on Windows 8 application certification requirements

■■ Prepare an app manifest (capabilities and declarations)

■■ Sign an app

■■ Plan the requirements for an enterprise deployment

Planning a deployment based on Windows 8 application
certification requirements
To publish your app to the Windows Store, the first step is to acquire a developer account.
The Express editions of Visual Studio require you to purchase such an account. MSDN
subscribers already have an account that they can use for free.

	 Objective 1.4: Plan for an application deployment	 CHAPTER 1	 41

After you have an account, register your new app with the Windows Store to reserve the
name that you want to use. This name is then reserved for you for one year. After one year,
the name will be free for other developers to use.

During this process, you also have to configure the way your app will be sold. Is it free?
Are you using a trial? Or maybe in-app purchases? Answering these questions forces you to
think about those steps before you start your app. You can plan your app around the business
model that you want to support and make sure that your app fully supports it.

When you finish your app, you can submit it to the Windows Store. If you haven’t done so,
you can now supply the information on your app name, selling details, and services such as
in-app purchases or trial support.

You also need a rating for your app, which can be an age rating (such as 3+ or 16+) or a
rating board (such as ESRB or PEGI). Think carefully about this rating; when in doubt, choose
the strictest one. Especially if your app uses some public Internet service (such as Twitter), you
need to use a rating of at least 12+ or even 16+ because you never know what shows up on
users’ screens.

If your app uses some form of cryptography, you need to mention it. Other very important
parts are the description, feature list, and screen shots of your app. Make sure to consider
these options carefully. This information will show up in the Windows Store and it should
convince a user to install your app.

Another important step is to ensure that the tester can fully use your app. If your app
requires a web service to be available, make sure that the web service is running when your
app goes through submission. If the tester needs to log on to your app, supply a demo
account that gives the tester access to all features of your app.

Creating your app package
The most important part of your submission is the actual application data. Your app is
submitted in what’s called an app package.

The easiest way to create an app package is with Visual Studio. If you are running the
Express edition of Visual Studio, you have a Store menu with an option to Create App
Packages. If you run Visual Studio Professional or higher, you can find the Store menu as a
submenu of Project.

The Create App Package allows you to build a package and upload it to the Windows Store
or to create it locally.

The package that gets created is an .appx file, which is a zip file. You can open it in Windows
Explorer and check out the files in it after changing the extension to .zip. The package contains
everything that’s required for your app, such as JavaScript, CSS, HTML, and images. It also con-
tains some metadata in the form of a manifest (which you will learn about in the next section), a
signature, and a block map.

	42	 CHAPTER 1	 Design Windows Store apps

The block map is a description of the data in your package, split into distinct blocks of
data. By splitting your package into separate parts, the Windows Store can download only
the parts that have changed when an update of your app is released. Downloading only the
updated parts saves users a lot of bandwidth, which is becoming more and more important
with mobile devices.

Certification requirements
After creating your package and submitting all the required information, you can submit your
app to the Windows Store. Your app then goes through a series of tests to check your app
thoroughly before it is allowed or disallowed from the Windows Store.

Microsoft released an official document (see the following More Info box) that outlines all
certification requirements for the Windows Store. This document is frequently updated, so
become familiar with it before publishing your app.

MORE INFO  APP CERTIFICATION REQUIREMENTS FOR THE WINDOWS STORE

The complete description of app certification requirements can be found at http://msdn.
microsoft.com/en-us/library/windows/apps/hh694083.aspx.

Some steps in this document are obvious. You shouldn’t submit an app that doesn’t work,
doesn’t add any value, or is not branded. You are not allowed to hack the system. Trying to
communicate with other apps or loading remote scripts is forbidden. Be careful with privacy-
related data by giving the user some consent options.

Windows App Certification Kit
The Windows App Certification Kit helps you test your app in an automated way similar to the
way Microsoft will test your app upon submission. The easiest way to run the Windows App
Certification Kit is to create your app package from Visual Studio. After the package is created,
Visual Studio asks you whether you want to start the validation process (see Figure 1-14).

MORE INFO  COMPLETE LIST OF TESTS

For a complete description of all the tests run by the Windows App Certification Kit and
how to troubleshoot failures, see http://msdn.microsoft.com/en-us/library/windows/apps/
jj657973.aspx.

http://msdn.microsoft.com/en-us/library/windows/apps/hh694083.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh694083.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj657973.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj657973.aspx

	 Objective 1.4: Plan for an application deployment	 CHAPTER 1	 43

FIGURE 1-14  The Create App Packages dialog box

After starting the Windows App Certification Kit, some information is collected; then you
see the dialog box shown in Figure 1-15. The Windows App Certification Kit runs many tests
for you.

FIGURE 1-15  The Windows App Certification Kit dialog box

	44	 CHAPTER 1	 Design Windows Store apps

Additional certification requirements
You shouldn’t depend solely on the results of the Windows App Certification Kit; you should
also perform extensive manual testing of your app.

For example, you should test your app on multiple platforms. Maybe your app works
great on your local PC, but that doesn’t mean it will work on a Microsoft Surface tablet or
other less-resource-intensive systems. In some countries/regions, Microsoft helps by having
special app development days during which you can come in and test your app on a series of
devices. Microsoft also advises you about any issues your app may have.

MORE INFO  TEST CASES

MSDN provides a list of possible test cases that you can run against your app at
http://msdn.microsoft.com/en-us/library/windows/apps/dn275879.aspx.

Preparing an app manifest (capabilities and declarations)
When you create a new Windows Store app, Visual Studio adds a file called
package.apxxmanifest to your project.

This file is called an application manifest. When you open the manifest, the Manifest
Designer loads (see Figure 1-16).

The Manifest Designer includes pages that you can use to configure your app:

■■ Application  Allows you to set some application-wide settings such as a start page
and supported rotations. You can also configure notifications and tile update settings.

■■ Visual Assets  Allows you to configure different resolutions for images that are shown
in the Windows Store. You can also configure tile images and your splash screen.

■■ Capabilities  Specifies the features or devices that your app can use on the user’s
system.

■■ Declarations  You configure how your app integrates with Windows and other apps.

■■ Content URIs  Your app can load web pages into an iframe. Those pages are normally
restricted and have limited access to the user’s system. Here you can specify URIs that
can access geolocation devices and the Clipboard, and can send script notifications to
your app.

■■ Packaging  Allows you to configure the display name of your package, version, and
publisher information.

http://msdn.microsoft.com/en-us/library/windows/apps/dn275879.aspx

	 Objective 1.4: Plan for an application deployment	 CHAPTER 1	 45

FIGURE 1-16  The Manifest Designer, showing the Application page

The exam requires you to understand all elements of the manifest, but it pays special
attention to the capabilities and declaration settings.

Why are those settings so important? They configure what your app is allowed to do on a
user’s system. Instead of allowing every integration by default, Windows Store apps need to
explicitly ask for permission. Users can see the list of required permissions when installing an
app from the Windows Store and can decide whether they trust your app enough to allow
those permissions.

	46	 CHAPTER 1	 Design Windows Store apps

For example, it would be strange if your RSS Reader app needed access to your webcam. It
is a lot more likely for a chat application that features video chat. You can ask permission for
the following capabilities:

■■ Enterprise Authentication  Typically not needed for an app; it allows your app to
connect to resources on an intranet that requires domain authentication.

■■ Internet (Client)  Requests Internet action over public networks. This option is enabled
by default and should be disabled if your app does not require the Internet.

■■ Internet (Client & Server)  Allows both inbound and outbound connections.

■■ Location  Requests access to the current location (from a GPS sensor or from network
information).

■■ Microphone  Requests access to the microphone’s audio feed.

■■ Music Library  Requests access to the music library to add, change, or delete files.

■■ Pictures Library  Requests access to the pictures library to add, change, or delete files.

■■ Private Network (Client & Server)  Requests access to inbound and outbound net-
work access for a user’s trusted places (such as home and work devices that are on the
same network).

■■ Proximity  Requests the capability to connect to other devices through Wi-Fi Direct or
near field proximity radio.

■■ Removable Storage  Requests access to removable storage devices. Allows you to
add, change, or delete file types that you have defined in the Declarations page.

■■ Shared User Certificates  Gives you access to application programming interfaces
(APIs) for requesting the user to authenticate through a security card, certificate, and
so on.

■■ Videos Library  Requests access to the videos library to add, change, or delete files.

■■ Webcam  Requests access to the webcam’s video feed so you can take snapshots or
movies.

Although you should never select more capabilities than are strictly required, trying to
access a restricted area of the system without the required capability results in an error.

Next to capabilities, you also need to configure your declarations, which are required
to support contracts and extensions. (A contract defines an agreement between apps; an
extension is an agreement between your app and Windows.)

MORE INFO  CONTRACTS AND EXTENSIONS

Contracts and extensions are discussed in more detail in Chapter 2.

	 Objective 1.4: Plan for an application deployment	 CHAPTER 1	 47

The declarations that you can configure are the following:

■■ Account Picture Provider  Allows users to use your app to change their account
pictures.

■■ AutoPlay  Allows users to choose your app in the auto play dialog box.

■■ Background Tasks  Apps can use background tasks to run app code even when the
app is suspended. Background tasks are intended for small work items that require no
interaction with the user.

■■ Cached File Updater  If your app caches file is on local disk, you can subscribe to
events such as the user opening the file (so you can check to see whether there is a
newer version) or to download newer versions of a file as soon as they are available.
OneDrive (formerly known as SkyDrive) is a good example of this kind of behavior.

■■ Camera Settings  Allows you to customize the flyout that displays camera options.

■■ Contact Picker  Enables your app to show up in the list of apps that can provide
contact data whenever a user looks for a contact.

■■ File Type Associations  Allows your app to register for handling certain file types (files
with the same extension). The file type can be an existing file type or a new file type
that’s specific for your app.

■■ File Open Picker  Allows users to directly select files from your app while using another
app.

■■ File Save Picker  Allows users to save files directly to your app from another app.

■■ Print Task Settings  Allows you to customize the flyout that displays advanced print
settings.

■■ Search  Adds a search pane to your app that allows users to search in your app and in
the data of other apps.

■■ Share Target  Allows users to share data from your app with other apps.

There are many possibilities for integrating your app with other apps and with Windows.
Whenever you want to implement any of these features, you should update your manifest
accordingly.

An exception is when you add a Share or File Open contract. You can add these contracts
in Visual Studio in the Add New Item dialog box (see Figure 1-17). When you use this dialog
box, your manifest is updated accordingly.

	48	 CHAPTER 1	 Design Windows Store apps

FIGURE 1-17  The Add New Item dialog box

EXAM TIP

Make sure that you understand how to use the manifest to configure what your app is
allowed to do on a user’s device. Remember that you need a privacy statement when your
app communicates with the Internet.

Signing an app
To publish your app in the Windows Store, it has to be signed with a certificate. When locally
testing your app, Visual Studio generates a certificate that can be used to install your app on
a machine that has a developer license.

After creating your package through Visual Studio, you can find the package in the
AppPackage folder. Inside this folder, you see a .cer file containing your certificate. When you
publish your app to the Windows Store, a new certificate is generated that is linked to your
publishers account. This certificate is then used by users to install the app.

	 Objective 1.4: Plan for an application deployment	 CHAPTER 1	 49

MORE INFO  CREATING A CERTIFICATE

If you want to manually create a certificate, you can use command-line tools that are part of
the Windows Driver Kit (WDK). Documentation can be found at http://msdn.microsoft.com/
en-us/library/windows/apps/jj835832.aspx.

Planning the requirements for an enterprise deployment
When deploying an enterprise app to users outside of your company, the easiest option is to
use the Windows Store. By adding a sign-in page to your app, you can manage licenses and
restrict access to your app.

However, if you want to deploy an app to internal users only, you probably don’t want to
use the Windows Store. This process is called sideloading.

Although your app is not validated for the Windows Store, you should make sure that
you still follow the certification requirements for the Windows Store. Use the Windows App
Certification Kit to validate your app before distributing it inside your company.

The Windows Store normally creates a trusted certificate for you, but you have to create it
if you deploy your app without the Windows Store. Make sure that your app is signed with a
certificate that’s trusted by the PCs on which you will install your app. You can use a certificate
that’s already installed on your company’s network or install a custom certificate specifically
for your app.

When your company devices are domain-joined, you can easily configure a Group Policy
that allows apps to be sideloaded. You can then install the apps by using the Deployment
Image Servicing and Management (DISM) command-line tool or by running Windows
PowerShell cmdlets.

Another option is to use Microsoft System Center Configuration Manager or Windows
Intune. These commercial products that can manage Windows installations in a corporate
environment are available from Microsoft.

MORE INFO  SYSTEM CENTER AND INTUNE

For more information on System Center, see http://blogs.technet.com/b/keithmayer/
archive/2013/02/25/step-by-step-deploying-windows-8-apps-with-system-center-201
2-service-pack-1.aspx#.UuuSxPldXxQ. Documentation for Intune can be found at
http://blogs.technet.com/b/windowsintune/archive/2012/10/31/deploying-windows-
8-apps-using-windows-intune.aspx.

http://msdn.microsoft.com/en-us/library/windows/apps/jj835832.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj835832.aspx
http://blogs.technet.com/b/keithmayer/archive/2013/02/25/step-by-step-deploying-windows-8-apps-with-system-center-2012-service-pack-1.aspx#.UuuSxPldXxQ
http://blogs.technet.com/b/keithmayer/archive/2013/02/25/step-by-step-deploying-windows-8-apps-with-system-center-2012-service-pack-1.aspx#.UuuSxPldXxQ
http://blogs.technet.com/b/keithmayer/archive/2013/02/25/step-by-step-deploying-windows-8-apps-with-system-center-2012-service-pack-1.aspx#.UuuSxPldXxQ
http://blogs.technet.com/b/windowsintune/archive/2012/10/31/deploying-windows-8-apps-using-windows-intune.aspx
http://blogs.technet.com/b/windowsintune/archive/2012/10/31/deploying-windows-8-apps-using-windows-intune.aspx

	50	 CHAPTER 1	 Design Windows Store apps

Thought experiment 
Distributing your app

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You are creating an app that will be distributed through the Windows Store with
your branding and by several companies that have their own branding. With this in
mind, answer the following questions:

1.	 Do you need to follow the official certification requirements?

2.	 How can you easily change the branding of your app?

3.	 Can you use the Windows Store certificate to distribute your app in enterprise
environments?

Objective summary
■■ Microsoft has created specific requirements for apps that want to be distributed

through the Windows Store.

■■ Use the Windows App Certification Kit to validate your app.

■■ An app manifest describes your app and states which integration with the operating
system and other apps it supports.

■■ A certificate is required to distribute your app to other users. The Windows Store helps
you generate a certificate.

■■ You can distribute your app within an enterprise by a process called sideloading, so
you don’t have to use the Windows Store.

	 Objective 1.4: Plan for an application deployment	 CHAPTER 1	 51

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 What is contained inside your app package? (Choose all that apply.)

A.	 HTML, JavaScript, and CSS files

B.	 A block description

C.	 A certificate

D.	 A manifest

2.	 You want to access an external web service from your app. Which capability do you
require?

A.	 Internet (Client & Server)

B.	 Internet (Client)

C.	 Private network (Client & Server)

D.	 Home Network (Client & Server)

3.	 You want to send your Windows 8 app to a group of testers. What should you do?

A.	 Ask them to install Visual Studio and send them the source code of your app.

B.	 Send them an app package with Windows PowerShell scripts.

C.	 Create a Windows Installer to install the app on their devices.

D.	 Submit the app to the Store so they can install it.

	52	 CHAPTER 1	 Design Windows Store apps

Answers

This section contains the solutions to the thought experiments and answers to the lesson
review questions in this chapter.

Objective 1.1: Thought experiment
1.	 The My Restaurant app is great at helping users find the food they love. Of course, you

can come up with other “great at” statements. The point is to choose one and use it to
guide your app.

2.	 You can use the Grid App template if you want to center your app on categories of
food or recommendations.

3.	 Yes. A restaurant attracts a variety of individuals, so you should anticipate that some
might have disabilities.

Objective 1.1: Review
1.	 Correct answer: C

A.	 Incorrect: Animations should be used in a Windows Store app. You can use the
animations already created for you by Microsoft.

B.	 Incorrect: You shouldn’t design your own animations. You want a consistent
feeling across all apps, which is why Microsoft created an animation library.

C.	 Correct: Animations should be used in your app. The documentation shows
which animations are suggested by Microsoft, and your designer can use those
animations in his design.

D.	 Incorrect: You should use the animation library instead of creating completely
custom animations.

2.	 Correct answer: D

A.	 Incorrect: The platform supports apps of any size.

B.	 Incorrect: Apps can support multiple user scenarios. They should use the
“great at” statement to make sure that all scenarios contribute to one great user
experience.

C.	 Incorrect: Having an app that looks beautiful, is fast and fluid, and integrates with
other apps doesn’t require a “great at” statement. The statement is about what
your app does and the user experience it delivers.

D.	 Correct: Your “great at” statement brings focus to your app and helps you to excel
at what you want your app to do.

	 Answers	 CHAPTER 1	 53

3.	 Correct answers: A, C, D, E, F

A.	 Correct: Pride in craftsmanship is a Microsoft design principle.

B.	 Incorrect: Cloud integration is not a Microsoft design principle.

C.	 Correct: Fast and fluid is a Microsoft design principle.

D.	 Correct: Authentically digital is a Microsoft design principle.

E.	 Correct: Do more with less is a Microsoft design principle.

F.	 Correct: Win as one is a Microsoft design principle.

Objective 1.2: Thought experiment
1.	 It is true that a layered application initially adds complexity to your code. Code is

spread over several files, and not all code is allowed to call all other code. However, this
does increase maintainability and helps you to centralize code around specific tasks,
which pays off in the end.

2.	 This is not true. When a layer defines its interface, other layers can depend on those
interface definitions. An implementation could then be faked (such as a static set of
test data). You could also implement your application in vertical slices of functionality
by developing all layers simultaneously instead of layer by layer.

3.	 Although JavaScript was not created with large-scale applications in mind, you can
certainly create a good architecture in JavaScript. Another way is to use TypeScript to
extend JavaScript and make it more suitable for large-scale applications.

Objective 1.2: Review
1.	 Correct answer: A

A.	 Correct: The data layer is responsible for fetching data from an external web
service.

B.	 Incorrect: The service layer is not meant to fetch data from external resources.
Instead, it should coordinate actions in your own app.

C.	 Incorrect: The business layer enforces business rules and functionality; it does not
communicate with external web services.

D.	 Incorrect: The UI layer should not communicate with external data sources.

2.	 Correct answer: C

A.	 Incorrect: Sharing data should not be done through global state because it might
create unwanted side effects.

B.	 Incorrect: You can avoid global state by scoping data to the containing function.

C.	 Correct: Avoiding global state creates a better maintainable app.

D.	 Incorrect: Global state is possible in every JavaScript project.

3.	 Correct answers: A, B, C, D

A.	 Correct: Creating classes is a core element of building a layered application.

B.	 Correct: Namespaces group classes, which helps you separate code into distinct areas.

C.	 Correct: WinMD Components can be used to create C# assemblies. This separation
in assemblies automatically creates a separation in your code.

D.	 Correct: A web service is a distinct tier of your application that can host one or
more layers.

Objective 1.3: Thought experiment
1.	 Windows Store apps can save data to a roaming folder, which is automatically synced

between all user devices.

2.	 By handling the checkpoint event, you can save data before the app is suspended.
When resuming from a terminated state, you can then restore this data.

3.	 When resuming your app, you need to restore data from the user’s folder, but you
should also make sure that data is not out of date. By using your activated event, you
can refresh your external data.

Objective 1.3: Review
1.	 Correct answers: B, C

A.	 Incorrect: A game needs state management just like every other app. Make sure
that users can continue playing games from the moment they left.

B.	 Correct: The activated event should be used to restore any state after the app
terminated.

C.	 Correct: The checkpoint event can be used to save state before the app is
suspended and eventually terminated.

D.	 Incorrect: The terminated event does not exist.

	 Answers	 CHAPTER 1	 55

2.	 Correct answer: B

A.	 Incorrect: Starting with Windows 8.1, you should completely refresh any data only
if the user returns within 10 seconds after closing the app.

B.	 Correct: If a user doesn’t launch the app within 10 seconds, treat the close action
as a normal suspend and terminate.

C.	 Incorrect: This is never an option. You should not show unnecessary dialog boxes
to the user.

D.	 Incorrect: Restarting the application is not an option. You can decide what you
want to do with the current application state. However, you should try to follow the
required action of resuming the app if the user does not return within 10 seconds.

3.	 Correct answer: D

A.	 Incorrect: This is a DOM event that you don’t have to use inside your app. WinJS
offers convenient events that map to your app life cycle.

B.	 Incorrect: This is a DOM event that you don’t have to use inside your app. WinJS
offers convenient events that map to your app life cycle.

C.	 Incorrect: The checkpoint event should be used to save any state before the app
is suspended.

D.	 Correct: A web service is a distinct tier of your application that can host one or
more layers.

Objective 1.4: Thought experiment
1.	 Yes, especially because your app will be deployed to the public Windows Store. For the

internal distributed apps, it is also a good idea to follow all certification requirements.

2.	 The manifest enables you to specify different files for screen shots, tiles, and the splash
screen. Other branding can be done like any HTML and CSS app. You can configure
different images and CSS files to style your app.

3.	 No, this certificate is generated when publishing your app to the Windows Store. For
internal distribution, you need to sign your app.

	56	 CHAPTER 1	 Design Windows Store apps

Objective 1.4: Review
1.	 Correct answers: A, B, C, D

A.	 Correct: All your content files are included in the package.

B.	 Correct: The block description is included, which is used to split your app into
smaller chunks to make the update process easier.

C.	 Correct: A certificate is required for signing your app.

D.	 Correct: A manifest is required to describe your app. It is used to show your app in
the Windows Store, and to install and run the app on a user’s device.

2.	 Correct answer: B

A.	 Incorrect: The client and server requirement is used only if your app receives
requests from external sources. You are connecting only from your app to an
external web service.

B.	 Correct: It allows you to connect to your web service.

C.	 Incorrect: A private network is required only when you want to connect to other
devices inside the network; for example, inside a domain or inside a home net-
work.

D.	 Incorrect: The home network option does not exist.

3.	 Correct answer: B

A.	 Incorrect: Installing Visual Studio and having access to the source is not required,
and it would probably be too much work for testers.

B.	 Correct: Windows PowerShell scripts can install the app locally and test it.

C.	 Incorrect: A Windows Installer is not required. An app package can be installed
with the generated Windows PowerShell scripts.

D.	 Incorrect: If you want users to test your app, you should not submit it to the
Windows Store. That way, everyone can access your app. And because your app is
not yet ready, it will probably fail submission.

295

AppBar events,  176–177
appendResultSuggestion method,  83
ApplicationDataCreateDisposition enumeration,  280
ApplicationData.RoamingStorageQuota property,  106
applicationHidden event,  232
application links, sharing data,  93–95
Application page (Manifest Designer),  44–45
ApplicationView object,  167
applying CSS styling,  179–183

gradients,  179–180
Grid layouts,  181
media queries,  183–184
scroll snapping,  182
zooming,  182

app manifest,  44–48,  75–76
App Manifest Designer

configuring tile sizes,  214–215
ContactPicker declaration,  62
enabling toast notifications,  227–228
list of declarations,  75
Minimum Width property,  162–163
Search declaration,  84–85
Share declaration,  90

AppointmentsProvider value (ActivationKind
enumeration),  37

app requirements
app bar,  171–172
data binding,  265–266
navigation,  206–207

apps
deployment planning,  40–49

app manifest,  44–48
requirements for enterprise deployment,  49
signing an app,  48
Windows 8 certification requirements,  40–43

design
planning app deployment,  40–49
PLM (Process Lifetime Management),  26–38

Index

Symbols
@font-face CSS rule,  159

A
AccChecker (UI Accessibility Checker) tool,  11
accepting share requests,  90–92
accessibility, UI layout,  11
accessible rich Internet applications (ARIAs),  11
accessing

contacts,
ContactPicker class,  58–59
creating/modifying contact information,  65–66
filtering contacts to display,  59–61
selecting specific data,  66–67
set number of contacts,  61–65

data,  243–249
local data,  244–247
remote data,  247–249

Account Picture Provider declaration,  47
activated events,  64
ActivateKind enumeration, PLM,  37–39
activating apps,  27
ActivationKind enumeration,  84
add event handler,  64
Add New Item dialog box,  9–10, 47–48
Addresses property (Contact class),  65
AdjacentToLeftDisplayEdge property,  167
AdjacentToRightDisplayEdge property,  167
AJAX (Asynchronous JavaScript and XML),  252
AlwaysDisplayDialog property,  274
app bar,  171–176

AppBar events,  176–177
app requirements,  171–172
placement of controls,  175–176
styling and positioning items,  173–175

296

AppSettings

B
Background Task extension, Manifest Designer,  32–33
background tasks,  32–36
Background Tasks declaration,  47
BackgroundWorkCostChange trigger,  35
BackgroundWorkCostNotHigh condition, background

tasks,  35
badges,  219–221
Basic authentication protocol,  275
beginZoom method,  210
bidirectional communication, WebSockets,  260–261
binding data,  263–268

configuring iterators with data-win-options,  266
data-win-bind attribute,  263–264
data-win-control attribute,  263–264
filtering, sorting, and grouping data,  267–268
HTML layout controls,  154–156
item templates,  266
meeting requirements with data-bound

controls,  265–266
Blank App template,  8
Blob storage,  247–249
block compressed images sample,  110
break-after property,  153
break-before property,  153
break-inside property,  153
Button control, settings flyout,  102
buttons, app bar,  174

C
Cached File Updater declaration,  47
CachedFileUpdater value (ActivationKind

enumeration),  37
CallerSavesCredential property,  274
Camera Settings declaration,  47
CameraSettings value (ActivationKind enumeration),  37
canGoBack property,  139
canGoForward property,  139
capabilities, app manifest,  45
Capabilities page (Manifest Designer),  44
Caption property,  275
capturing gesture library events,  192–195
certification requirements,  40–43
changes in orientation, responding to,  165–166
charms,  69–76

separation of concerns,  17–23
UI layout and structure,  1–14

development
accessing and displaying contacts,  57–67
charms and contracts,  69–79
integration of media features,  109–115
managing application setting s and

preferences,  97–107
Search charm,  78–85
sharing data,  87–95

People,  61
AppSettings

adding entry points,  98
choosing accessible features,  97–98

args.detail.previousExecutionState property,  38
ARIAs (accessible rich Internet applications),  11
Asynchronous JavaScript and XML (AJAX),  252
asynchronous methods,  58
AsyncOperation,  259
audio

playback, HTML5 DRM,  115–116
playing sounds with toast notifications,  230–231

authentically digital design principle,  3
authentication,  271–280

Credential Locker,  276–277
CredentialPicker class,  273–276
storing account credentials,  278–281
storing/retrieving credentials,  271–273
web authentication,  282–287

CredentialPicker class,  285
credential roaming,  285
OAuth2,  283–284
proxy authentication,  286–287
SSO (Single Sign-On),  284–285
WebAuthenticationBroker class,  285
Windows.Security.Authentication.Web

namespace,  282–283
AuthenticationProtocol property,  274
authorization,  271–280

Credential Locker,  276–277
CredentialPicker class,  273–276
storing account credentials,  278–281
storing/retrieving credentials,  271–273

auto keyword (Grid layout columns and rows),  149
AutoPlay declaration,  47
avoiding global state, loosely coupled layers,  19–20

297

controls

ClosedByUser (previous state of app),  38
columns, Grid layout,  149
commands, app bar,  173
compareGroups method,  134
ComponentLoadFailed event,  115
conceptual design, UI layout

creating a vision,  5–7
Microsoft design principles,  2–5

conditions, background tasks,  35
configureForZoom method,  210
configuring

iterators, data-win-options,  266
Mobile Services for push notifications,  232–235
search contracts,  84–85
tile sizes,  214–215

ConnectedServiceAccounts property (Contact class),  65
consuming SOAP/WCF services,  259–260
Contact class,  65–66
ContactFieldType property,  59
ContactPicker class,  58–59
ContactPicker declaration, App Manifest

Designer,  47, 62
contactPicker.js file,  63
contact pickers,  61–62
ContactPicker value (ActivationKind enumeration),  37
contacts, accessing and displaying,  57–67

ContactPicker class,  58–59
creating/modifying contact information,  65–66
filtering contacts to display,  59–61
selecting specific data,  66–67
set number of contacts,  61–65

Contact value (ActivationKind enumeration),  37
Content property,  253
contracts,  69–76

app requirements,  69–74
configuring app manifest for correct

permissions,  75–76
designing app to be charm- and

contract-aware,  74–75
ControlChannelReset trigger,  34
controls

custom,  12
flyouts,  131
HTML layout controls,  147–160

structuring layout,  147–154
templates and bindings,  154–156

ListView,  132–134
implementing data-bound controls,  265–266

app requirements,  69–74
configuring app manifest for correct

permissions,  75–76
designing app to be charm- and

contract-aware,  74–75
Devices,  74
Search,  77–85

activation from within search,  84
configuring search contracts,  84–85
providing/constraining search within an app,  81
searching and launching other apps,  81–82
SearchPane and SearchBox control

classes,  78–80
search result previews,  82–84

Settings,  95–107
adding entry points for AppSettings,  98
adding setting options to SettingsFlyout

control,  101–104
choosing accessible features in

AppSettings,  97–98
creating setting flyouts,  99–101
storing and retrieving settings,  105–107

Share,  86–95
accepting sharing requests,  90–92
DataTransferManager class,  87–90
implementing in-app Share outside of charm,  93
limiting scope of sharing using DataPackage

object,  92
web links and application links,  93–95

charms bar,  69
checkpoint event,  31–32
classes

Contact,  65–66
ContactPicker,  58–59
CredentialPicker,  273–276, 285
DataTransferManager,  87–90
Horizontal,  157
InputPane,  167
PageControlNavigator,  204, 207
PasswordVault,  271–273
SimpleOrientationSensor,  165
SpeechSynthesizer,  113
TileUpdateManager,  219–221
ToastUpdateManager,  229–230
WebAuthenticationBroker,  285
Windows.UI.Input.Inking.InkManager,  198
Windows.UI.StartScreen.SecondaryTile,  218
WinJS.Binding.List,  267

298

CookieManager

credentials
storing and retrieving,  271–273
storing in app settings,  278–281
verifying with Credential Locker,  276–277

CredentialSaveOption property,  275
CredSsp authentication protocol,  275
crossSlideExact property,  196
crossSlideHorizontally property,  196
crossSlideThresholds property,  196
CRUD (Create, Read, Update, and Delete)

operations,  249, 256
cryptography,  41
CSS3

media queries,  162–165
scrolling and zooming,  156–158

CSS styling,  179–183
Flyout control,  132
gradients,  179–180
Grid layouts,  181
media queries,  183–184
scroll snapping,  182
zooming,  182

Custom authentication protocol,  275
CustomAuthenticationProtocol property,  275
custom contact pickers,  61–62
custom controls,  12
custom formats,  89
custom gesture recognizers,  196–197
custom layout, app bar layout,  176

D
data

binding,  263–268
configuring iterators with data-win-options,  266
data-win-bind attribute,  263–264
data-win-control attribute,  263–264
filtering, srting, and grouping data,  267–268
HTML layout controls,  154–156
item templates,  266
meeting requirements with data-bound

controls,  265–266
formats that can be shared,  88
management

data access strategy,  243–249
data binding,  263–268
retrieving data remotely,  251–260

implementing drag-and-drop,  199–201
placement on app bar,  175–176
SemanticZoom,  209
SettingsFlyout

adding settings options to,  101–104
creating setting flyouts,  99–101

WinJS,  125–145
FlipView,  126–130
flyout,  130–132
Grid and List layout,  132–135
item containers,  140–142
menu objects,  135–137
Repeater,  142–145
WebView,  138–140

WinJS.UI.AppBar,  173
CookieManager,  254
Create App Packages dialog box,  43
CreateCollisionOption parameter

(createFileAsync method),  245
createFileAsync method,  245
createFiltered method,  267
createGrouped method,  134, 267
Create, Read, Update, and Delete (CRUD)

operations,  249, 256
createSorted method,  267
creating

app packages,  41–42
contact information,  65–66
custom gesture recognizers,  196–197
setting flyouts,  99–101
tiles,  214–225

creating and updating badges,  219–221
periodic notifications,  222–223
push notifications,  223–224
responding to notification requests,  221
scheduled notifications,  221–222
tile update schedule,  224–225
updating tiles and tile content,  214–219

UI (user interface)
app bar,  171–176
CSS styling,  179–183
HTML layout controls,  147–160
layout-aware apps,  162–169
WinJS controls,  125–145

Credential Locker,  276–277
CredentialPicker class,  273–276, 285
CredentialPickerOptions object,  274
credential roaming,  285

299

enableNotificationQueue method

desiredFieldsWithContactFieldType property,  59
development, Windows Store apps

accessing and displaying contacts,  57–67
charms and contracts,  69–79
integration of media features,  109–115
managing application settings and

preferences,  97–107
Search charm,  78–85
sharing data,  87–95

Devices charm,  74
Device value (ActivationKind enumeration),  37
dialog boxes

Add New Item,  9–10, 47–48
Create App Packages,  43
Manifest Designer,  29
Speech Properties,  114
Windows App Certification Kit,  43

Digest authentication protocol,  275
Digital Rights Management (DRM),  115–116
DirectDraw Surface (DDS) images,  110–111
DirectX Video Acceleration (DXVA),  112
DISM (Deployment Image Servicing and Management)

command-line tool,  49
displaying

contacts,  57–67
ContactPicker class,  58–59
creating/modifying contact information,  65–66
filtering contacts to display,  59–61
selecting specific data,  66–67
set number of contacts,  61–65

DisplayName property (Contact class),  65
drag-and-drop events,  199–201
dragenter event,  141
dragenter event handler,  200
dragleave event,  141
dragleave event handler,  200
dragover event,  141
dragstart event,  141
DRM (Digital Rights Management),  115–116
drop event,  141
drop event handler,  200
DXVA (DirectX Video Acceleration),  112

E
Emails property (Contact class),  65
enableNotificationQueue method,  223

roaming,  105–107
sharing,  87–95

accepting share requests,  90–92
DataTransferManager class,  87–90
implementing in-app Share outside of charm,  93
limiting scope of sharing using DataPackage

object,  92
web links and application links,  93–95

temporary,  105
data-bound controls,  265–266
DataPackage object,  92
DataRequestedEventArgs,  88
datarequested handler,  88
dataSource property,  127
DataSuppliers property (Contact class),  65
DataTransferManager class,  87–90
data-win-bind attribute,  155, 263–264
data-win-control attribute,  126, 263–264
data-win-options, configuring iterators,  266
DDS (DirectDraw Surface) images,  110–111
declarations, app manifest, 45, 75
Declarations page (Manifest Designer),  44
DeleteAsync method,  257
delivery methods, tiles,  224
Deployment Image Servicing and Management (DISM)

command-line tool,  49
deployment of apps, planning,  40–49

app manifest,  44–48
requirements for enterprise deployment,  49
signing an app,  48
Windows 8 certification requirements,  40–43

design
app bar,  171–176

AppBar events,  176–177
app requirements,  171–172
placement of controls,  175–176
styling and positioning items,  173–175

Microsoft design principles,  2–5
navigation,  202–212

loading HTML fragments,  210–212
meeting app requirements,  206–207
semantic zoom,  207–210
WinJS.Navigation namespace,  203–206

Windows Store apps
planning app deployment,  40–49
PLM (Process Lifetime Management),  26–38
separation of concerns,  17–23
UI layout and structure,  1–14

300

enabling apps for toast notifications

G
GenerateUniqueName value (CreateCollisionOption

parameter),  245
gesture recognizers,  196–197
gestures,  192–195

custom gesture recognizers,  196–197
touch,  198

gestureSettings property,  196
GetAsync(Uri, HttpCompletionOption) method,  256
GetAsync(Uri) method,  256
GetBufferAsync method,  256
getCommandById method,  176
getCurrentItem method,  210
getDeferral method,  89
getGroupKey method,  134
GetInputStreamAsync method,  256
getPanAxis method,  210
GetStockPrice method,  259
GetStringAsync method,  253, 256
global positioning of commands, app bar,  175
global searches,  70
global state, loosely coupled layers,  19–20
glyph badges,  220–221
gradients, CSS styling,  179–180
Grid App template,  9
Grid layout,  132–135, 149–151,  181
grouping data,  267–268

H
handlePointer method,  210
handwriting recognition,  198
hashing algorithms,  279
hashing data,  278
Headers property,  253
HonorificNamePrefix property (Contact class),  65
HonorificNameSuffix property (Contact class),  65
Horizontal class,  157
HTML5 DRM (Digital Rights Management),  115–116
HTML fragments, navigation,  210–212
HTML layout controls,  147–160

scrolling and zooming with CSS3,  156–158
structuring layout,  147–154

Flexible Box (FlexBox) layout,  147–149
Grid layout,  149–151
multi-column layout,  152–154

enabling apps for toast notifications,  227–229
encrypting data,  278
endZoom method,  210
Enterprise Authentication capability,  46
enterprise deployment, planning requirements,  49
entry points,  98–101
ErrorCode property,  275
error codes,  275
Error method,  204
event.detail.insertAfterIndex property,  201
event handlers,  64
event.preventDefault method,  199
Expression Sketchflow,  7

F
FailIfExists value (CreateCollisionOption parameter),  245
fast and fluid design principle,  2
FIFO (first-in, first-out) approach,  223
File Open Picker declaration,  47
FileOpenPicker value (ActivationKind enumeration),  37
files

contactPicker.js,  63
ui.js,  126

File Save Picker declaration,  47
FileSavePicker value (ActivationKind enumeration),  37
File Type Associations declaration,  47
File value (ActivationKind enumeration),  37
filtering

contacts,  59–61
data,  267–268

findAllByResource method,  273, 277
findAllByUserName method,  273
first-in, first-out (FIFO) approach,  223
FirstName property (Contact class),  65
FlexBox (Flexible Box) layout,  147–149
Flexible Box (FlexBox) layout,  147–149
FlipView control,  126–130
flyouts,  99-101, 130–132
formats, sharing data,  88
fraction unit (Grid layout columns and rows),  150
FreeNetworkAvailable condition, background tasks,  35
functions.  See also methods

pickContactsAsync,  59
rgba,  180
template,  129

301

InternetAvailable trigger

accepting share requests,  90–92
DataTransferManager class,  87–90
implementing in-app Share outside of charm,  93
limiting scope of sharing using DataPackage

object,  92
web links and application links,  93–95

WinJS controls,  125–145
FlipView,  126–130
flyout,  130–132
Grid and List layout,  132–135
item containers,  140–142
menu objects,  135–137
Repeater,  142–145
WebView,  138–140

ImportantDates property (Contact class),  65
in-app searches,  70,  78
in-app Share,  93
inheritance, designing UI layout,  10–11
Init method,  204
inking,  198–199
InkManager class,  198
InkStroke objects,  198
input devices,  191–201

capturing gesture library events,  192–195
custom gesture recognizers,  196–197
drag-and-drop events,  199–201
listening to mouse events or touch gestures,  198
stylus input and inking,  198–199

Input Ink sample (SDK),  199
InputPane class,  167
Input: Simplified ink sample (SDK),  199
Inspect tool,  11
integration

apps, charms and contracts,  69–76
configuring app manifest for correct

permissions,  75–76
designing app to be charm- and

contract-aware,  74–75
media features,  109–115

audio and video playback using HTML5
DRM,  115–116

DXVA,  112
supporting DDS images,  110–111
TTS,  113–115
video playback,  111
XVP,  112

InternetAvailable condition, background tasks,  35
InternetAvailable trigger,  34

Regions layout,  153–154
templates and bindings,  154–156
text flow and presentation,  159–160

HTML PageControl,  11
HttpBaseProtocolFilter,  254
HttpClient, retrieving web servicves,  252–255
HttpDelete requests,  256
HttpGet actions,  256–257
HttpPost,  257–258
HttpPut verb,  257
HttpResponseMessage object,  253
Hub App template,  12–15
Hyperlink control, settings flyout,  102

I
Id property,  65, 167
implementation

app bar,  171–176
AppBar events,  176–177
app requirements,  171–172
placement of controls,  175–176
styling and positioning items,  173–175

HTML layout controls,  147–160
structuring layout,  147–154
templates and bindings,  154–156

navigation,  202–212
loading HTML fragments,  210–212
meeting app requirements,  206–207
semantic zoom,  207–210
WinJS.Navigation namespace,  203–206

PLM (Process Lifetime Management),  26–38
ActivateKind enumeration,  37–39
onactivated event,  27–30
preparing for app termination,  32–36
previous state,  37–39
state management strategy,  26
suspended event,  31–32

Search charm,  78–85
activation from within search,  84
configuring search contracts,  84–85
providing/constraining search within an app,  81
searching and launching other apps,  81–82
SearchPane and SearchBox control classes,  78–

80
search result previews,  82–84

Share charm,  87–95

302

Internet (Client) capability

multi-column layout,  152–154
Regions layout,  153–154

templates and bindings,  154–156
text flow and presentation,  159–160

layout, UI,  1–14
conceptual design evaluation,  2–7

creating a vision,  5–7
Microsoft design principles,  2–5

custom controls,  12
designing for accessibility,  11
Hub App template,  13–15
inheritance and reuse of visual elements,  10–11
project templates,  7–10

life cycle, apps,  26
limiting scope of sharing, DataPackage object,  92
linear gradients,  179
LinguisticDetails

(SearchBoxQuerySubmittedEventArgs),  79
List layout,  132–135
List objects,  127
ListView control,  132–134

implementing data-bound controls,  265–266
implementing drag-and-drop,  199–201

live tiles,  214
loading HTML fragments, navigation,  210–212
local data,  105,  244–247
localSettings property,  279
Location capability,  46
LockScreenApplicationAdded trigger,  34
LockScreenApplicationRemoved trigger,  34
LockScreenCall value (ActivationKind enumeration),  37
logical layers,  17–18
long-duration toasts,  232
lookup method,  280
looping sounds,  230
loosely coupled layers,  19–22

avoiding global state,  19–20
strict mode,  21
TypeScript,  21–22

M
Mail share target, sharing data,  73
main content (flyouts),  131
maintainable software,  17–23

integrating WinMD Components,  22–23
loosely coupled layers,  19–22

Internet (Client) capability,  46
Internet (Client & Server) capability,  46
InternetNotAvailable condition, background tasks,  35
invokeScryptAsync method,  139
IsFullScreen property,  167
IsOnLockScreen property,  167
IsScreenCaptureEnabled property,  167
IsSuccessStatusCode property,  253
item containers,  140–142
itemDataSource property,  127
itemdragdrop event,  201
itemdragend event handler,  199
itemdragenter event,  201
itemdragstart event handler,  199
item templates,  9–10,  266
iterators, configuring with data-win-options,  266
IZoomableView interface,  209, 210

J
JobInfo property (Contact class),  65

K
Keep It Simple (KIS) principle,  10
Kerberos authentication protocol,  275
KeyModifiers (SearchBoxQuerySubmittedEventArgs),  79
KIS (Keep It Simple) principle,  10

L
Language (SearchBoxQuerySubmittedEventArgs),  79
LastName property (Contact class),  65
launching apps, Search charm,  81–82
Launch value (ActivationKind enumeration),  37
layout-aware apps, creating,  162–169

CSS3 media queries,  162–165
responding to changes in orientation,  165–166
settings for an apps view,  168–170
ViewManagement namespace,  167–168

layout controls,  147–160
scrolling and zooming with CSS3,  156–158
structuring layout,  147–154

Flexible Box (FlexBox) layout,  147–149
Grid layout,  149–151

303

methods

Media Foundation Transcode Video Processor
(XVP),  112

MediaProtectionManager object,  115
media queries

creating layout-aware apps,  162–165
CSS styling,  183–184

menu objects,  135–137
Message property,  275
methods.  See also functions

appendResultSuggestion,  83
beginZoom,  210
compareGroups,  134
configureForZoom,  210
createFileAsync,  245
createFiltered,  267
createGrouped,  134, 267
createSorted,  267
DeleteAsync,  257
delivery methods for tiles,  224
enableNotificationQueue,  223
endZoom,  210
Error,  204
event.preventDefault,  199
findAllByResource,  273, 277
findAllByUserName,  273
GetAsync(Uri),  256
GetAsync(Uri, HttpCompletionOption),  256
GetBufferAsync,  256
getCommandById,  176
getCurrentItem,  210
getDeferral,  89
getGroupKey,  134
GetInputStreamAsync,  256
getPanAxis,  210
GetStockPrice,  259
GetStringAsync,  253, 256
handlePointer,  210
Init,  204
invokeScryptAsync,  139
lookup,  280
myFunction,  139
navigateToString,  138
onTimer,  36
pickAsync,  274
pickContactsAsync,  58
positionItem,  210
PostAsync,  257
Processed,  204

planning logical layers,  17–18
management

application settings and preferences,  97–107
adding entry points for AppSettings,  98
adding setting options to SettingsFlyout

control,  101–104
choosing accessible features in

AppSettings,  97–98
creating setting flyouts,  99–101
storing and retrieving settings,  105–107

data
data access strategy,  243–249
data binding,  263–268
retrieving data remotely,  251–260

input devices,  191–201
capturing gesture library events,  192–195
custom gesture recognizers,  196–197
drag-and-drop events,  199–201
listening to mouse events or touch gestures,  198
stylus input and inking,  198–199

security
authorization and authentication,  271–280
web authentication,  282–287

settings for an apps view,  168–170
tiles,  214–225

creating and updating badges,  219–221
periodic notifications,  222–223
push notifications,  223–224
responding to notification requests,  221
scheduled notifications,  221–222
tile update schedule,  224–225
updating tiles and tile content,  214–219

mandatory snapping,  158, 182
Manifest Designer

Application page,  44–45
Background Task extension,  32–33

Manifest Designer dialog box,  29
matrices,  194
max-content keyword (Grid layout columns and

rows),  150
media features, integration,  109–115

audio and video playback using HTML5
DRM,  115–116

DXVA,  112
supporting DDS images,  110–111
TTS,  113–115
video playback,  111
XVP,  112

304

Microphone capability

Mobile Services, configuring for push
notifications,  232–235

modifying contact information,  65–66
more with less design principle,  3
mouse events,  198
MrfCrf444 mode,  112
ms-appdata protocol,  139
ms-content-zooming property,  158
ms-content-zooming: zoom property,  182
MSCSSMatrix object,  194
ms-flex: 2 property,  149
ms-flex-align property,  149
ms-flexbox property,  148
ms-flex-pack property,  149
ms-flex-wrap property,  149
MSGestureChange event,  193
MSGestureEnd event,  193
MSGestureHold event,  193
MSGestureStart event,  193
MSGestureTap event,  193
ms-grid-column-align property,  150
ms-grid-column-span property,  150
ms-grid-row-align property,  150
ms-grid-row-span property,  150
ms-scroll-snap-type property,  158, 182
MSWebViewAsyncOperation object,  139
MSWebViewScriptNotify event,  140
multi-column layout,  152–154
Music Library capability,  46
myFunction method,  139

N
namespaces

ViewManagement,  167–168
Windows.Applicationmodel. Contacts,  58
Windows.Media.SpeechSynthesis,  113
Windows.Media.Transcoding,  112
Windows.Security.Authentication.Web,  282–283
Windows.Security.Credentials.UI,  274
Windows.UI.Input.GestureRecognizer,  196
Windows.UI.Notification,  217
WinJS.Navigation,  203–206
WinJS.UI.Fragments,  210

Narrator,  12
navigateToString method,  138
navigation,  202–212

PutAsync,  257
Ready,  204
response.ensureSuccessStatusCode(),  254
retrieveAll,  273
sensor.getCurrentOrientation(),  166
SetApplicationLink,  89, 92
SetBitmap,  89, 92
setCurrentItem,  210
SetData,  89, 92
SetDataProvider,  89, 92
SetHtmlFormat,  89, 92
SetRtf,  89, 92
SetStorageItems,  89, 92
SetText,  89, 92
SetUri,  89, 92
SetWebLink,  89, 92
showMenu,  136
swapDisplaysForViewsAsync,  169
synthesizeSsmlToStreamAsync,  114
synthesizeTextToStreamAsync,  114
Unload,  204
UpdateLayout,  205
WebAuthenticationBroker.authenticateAsync,  283
Windows.Devices.Sensors.SimpleOrientationSensor.

getDefault(),  165
Windows.UI.ViewManagement.ApplicationView.

getForCurrentView(),  167, 168
WinJS.Binding.as,  264
WinJS.Binding.as ‘,  155
WinJS.Binding.processAll,  155
WinJS.Class.define,  20
WinJS.Namespace.define,  19
WinJS.Navigation.back,  206
WinJS.Navigation.forward,  206
WinJS.Navigation.navigate,  206
WinJS.UI.Pages.define,  204
WinJS.UI.processAll,  126
WinJS.xhr,  252
writeBytesAsync,  245

Microphone capability,  46
Microsoft design principles,  2–5
MiddleName property (Contact class),  65
min-content keyword (Grid layout columns and

rows),  149
Minimum Width property,  162–163
minmax(a, b) keyword (Grid layout columns and

rows),  150
mipmaps,  110

305

PLM (Process Lifetime Management)

onaftershow event,  176
onbeforehide event,  176
onbeforeshow event,  176
one-directional communication,  260
OnlineIdConnectedStateChange trigger,  35
onpagecomplete event,  129
onpageselected event,  129
onpagevisibilitychanged event,  129
onTimer method,  36
OpenIfExists value (CreateCollisionOption

parameter),  245
openMenuButton HTML element,  136
OrientationChanged event,  165
orientation changes, responding to,  165–166
Orientation property,  167
overflow, presenting text,  160
overloads, CredentialPicker,  274

P
Package Family Name (PFN),  94
Packaging page (Manifest Designer),  44
PAC (Privilege Attribute Certificate),  286
PageControlNavigator class,  204, 207
panning,  156–158
PasswordVault class,  271–273
People app,  61
periodic notifications, tiles,  222–223
Permissions option (Settings charm),  97
PFN (Package Family Name),  94
Phones property (Contact class),  66
pickAsync method,  274
pickContactAsync callback,  61
pickContactsAsync method,  58–59
Pictures Library capability,  46
pinch gesture,  192
placement, app bar controls,  175–176
planning

app deployment,  40–49
app manifest,  44–48
requirements for enterprise deployment,  49
signing an app,  48
Windows 8 certification requirements,  40–43

logical layers,  17–18
playing sounds, toast notifications,  230–231
PLM (Process Lifetime Management),  26–38

ActivateKind enumeration,  37–39

loading HTML fragments,  210–212
meeting app requirements,  206–207
semantic zoom,  207–210
WinJS.Navigation namespace,  203–206

Navigation App template,  8
NCP (Notification Client Platform),  223
Negotiate authentication protocol,  275
NetworkStateChange trigger,  34
nonlooping sounds,  230
Notes property (Contact class),  65
Notification Client Platform (NCP),  223
notifications

tiles,  221
toast,  227–235

configuring Mobile Services for push
notifications,  232–235

controlling toast duration,  232
enabling apps for,  227–229
populating with images and text,  229–230
responding to toast events,  231–232

NotificationsExtensions library,  217
NotRunning (previous state of app),  38
N-tiered applications,  18
Ntlm authentication protocol,  275
number badges,  220

O
OAuth2 authentication,  283–284
object-oriented design concepts,  21
objects

ApplicationView,  167
CredentialPickerOptions,  274
DataPackage,  92
HttpResponseMessage,  253
InkStroke,  198
List,  127
MediaProtectionManager,  115
MSCSSMatrix,  194
MSWebViewAsyncOperation,  139
searchSuggestionCollection,  82
shareOperation,  91
WinJS.Application,  32
WinJS.Application.sessionState,  31
XMLHttpRequest,  252

onactivated event, PLM,  27–30
onafterhide event,  176

306

pointer input

scheduled notifications,  221–222
tile update schedule,  224–225
updating tiles and tile content,  214–219

toast notifications,  227–235
configuring Mobile Services for push

notifications,  232–235
controlling toast duration,  232
enabling apps for,  227–229
populating with images and text,  229–230
responding to toast events,  231–232

progress updates, data requests,  258–259
ProjectionManager,  169
project templates, UI layout,  7–10
properties

AdjacentToLeftDisplayEdge,  167
AdjacentToRightDisplayEdge,  167
AlwaysDisplayDialog,  274
ApplicationData.RoamingStorageQuota,  106
AuthenticationProtocol,  274
break-after,  153
break-before,  153
break-inside,  153
CallerSavesCredential,  274, 275
canGoBack,  139
canGoForward,  139
Caption,  275
Contact class,  65–66
ContactFieldType,  59
Content,  253
CredentialSaveOption,  275
crossSlideExact,  196
crossSlideHorizontally,  196
crossSlideThresholds,  196
CustomAuthenticationProtocol,  275
dataSource,  127
data-win-bind,  155
desiredFieldsWithContactFieldType,  59
ErrorCode,  275
event.detail.insertAfterIndex,  201
gestureSettings,  196
Headers,  253
HttpResponseMessage object,  253
Id,  167
IsFullScreen,  167
IsOnLockScreen,  167
IsScreenCaptureEnabled,  167
IsSuccessStatusCode,  253

onactivated event,  27–30
preparing for app termination,  32–36
previous state,  37–39
state management strategy,  26
suspended event,  31–32

pointer input,  192
poll notifications,  223
positioning app bar items,  173–175
positionItem method,  210
PostAsync method,  257
preferences,  97–107

adding entry points for AppSettings,  98
adding setting options to SettingsFlyout

control,  101–104
choosing accessible features in AppSettings,  97–98
creating setting flyouts,  99–101
storing and retrieving settings,  105–107

presentation, HTML layout controls,  159–160
press and hold gesture,  192
previews, search results,  82–84
PreviousCredential property,  275
previous state, PLM,  37–39
pride in craftsmanship design principle,  2
Print Task Settings declaration,  47
PrintTaskSettings value (ActivationKind

enumeration),  37
Private Network (Client & Server) capability,  46
Privilege Attribute Certificate (PAC),  286
Process Lifetime Management.  See PLM
Processed method,  204
program user interaction

input devices,  191–201
capturing gesture library events,  192–195
custom gesture recognizers,  196–197
drag-and-drop events,  199–201
listening to mouse events or touch gestures,  198
stylus input and inking,  198–199

navigation,  202–212
loading HTML fragments,  210–212
meeting app requirements,  206–207
semantic zoom,  207–210
WinJS.Navigation namespace,  203–206

tiles,  214–225
creating and updating badges,  219–221
periodic notifications,  222–223
push notifications,  223–224
responding to notification requests,  221

307

responding to toast events

push notifications
configuring Mobile Services for,  232–235
tiles,  223–224

PutAsync method,  257

Q
querysubmitted event,  79–80
query suggestions, searches,  72, 79, 82
QueryText (SearchBoxQuerySubmittedEventArgs),  79

R
radial gradients,  179
Radio Button control, settings flyout,  102
RandomAccessStreamReference,  83
Rate And Review option (Settings charm),  97
ratings,  41
Ready method,  204
real-time communication, WebSockets,  260–261
ReasonPhrase property,  253
RebootNeeded event,  115
Regions layout,  153–154
remote data, access strategy,  247–249
remote retrieval of data,  251–260

consuming SOAP/WCF services,  259–260
handling progress of data requests,  258–259
setting HTTP verbs for REST,  255–258
using WebSockets for bidirectional

communication,  260–261
XHR or HTTPClient,  252–255

Removable Storage capability,  46
Repeater control,  142–145
ReplaceExisting value (CreateCollisionOption

parameter),  245
Representational State Transfer (REST)

services,  255–258
request.data property,  89
RequestMessage property,  253
requirements, apps

app bar,  171–172
charms and contracts,  69–74
data binding,  265–266
navigation,  206–207

responding to toast events,  231–232

itemDataSource,  127
localSettings,  279
Message,  275
Minimum Width,  162–163
ms-content-zooming,  158
ms-content-zooming: zoom,  182
ms-flex: 2,  149
ms-flex-align,  149
ms-flexbox,  148
ms-flex-pack,  149
ms-flex-wrap,  149
ms-grid-column-align,  150
ms-grid-column-span,  150
ms-grid-row-align,  150
ms-grid-row-span,  150
ms-scroll-snap-type,  158, 182
Orientation,  167
PreviousCredential,  275
ReasonPhrase,  253
request.data,  89
RequestMessage,  253
responseData,  284
roamingSettings,  279
RoamingSettings,  105
RoamingStorageQuota,  244
scheme,  168
selectionDisabled,  141
selectionMode,  59
Source,  253
StatusCode,  253
TargetName,  275
TerminateAppOnFinalViewClose,  167
text-overflow,  160
Title,  167
touch-action CSS,  158
Value,  167
Version,  253
Windows.Media.SpeechSynthesis.SpeechSynthesizer.

allVoices,  114
WinJS.Binding.optimizeBindingReferences,  154
z-index,  150

Protocol value (ActivationKind enumeration),  37
prototypes,  7
ProviderProperties property (Contact class),  66
Proximity capability,  46
proximity snapping,  158, 182
proxy authentication,  286–287

308

responseData property

SearchPane control,  78–80
search result previews,  82–84
searchSuggestionCollection object,  82
Search value (ActivationKind enumeration),  37
secondary tiles,  218
security management

authorization and authentication,  271–280
Credential Locker,  276–277
CredentialPicker class,  273–276
storing account credentials,  278–281
storing/retrieving credentials,  271–273

web authentication,  282–287
CredentialPicker class,  285
credential roaming,  285
OAuth2,  283–284
proxy authentication,  286–287
SSO (Single Sign-On),  284–285
WebAuthenticationBroker class,  285
Windows.Security.Authentication.Web

namespace,  282–283
Segoe UI font family,  159
Select Control, settings flyout,  102
selectionDisabled property,  141
selectionMode property,  59
Selection option, positioning commands on app

bar,  175
semantic zoom,  207–210
SemanticZoom control,  209
sensor.getCurrentOrientation() method,  166
separation of concerns.  See SoC
separators, app bar,  175
ServiceRequested event,  115
ServicingComplete trigger,  34
SessionConnected condition, background tasks,  35
SessionConnected trigger,  34
SessionDisconnected condition, background tasks,  35
SetApplicationLink method,  89, 92
SetBitmap method,  89, 92
setCurrentItem method,  210
SetData method,  89, 92
SetDataProvider method,  89, 92
SetHtmlFormat method,  89, 92
SetRtf method,  89, 92
SetStorageItems method,  89, 92
SetText method,  89, 92
setting flyouts,  99–101
Settings charm,  74, 97–107

adding entry points for AppSettings,  98

responseData property,  284
response.ensureSuccessStatusCode() method,  254
REST (Representational State Transfer)

services,  255–258
RestrictedLaunch value (ActivationKind

enumeration),  37
restrictions, using WinRT Components,  23
resultsuggestionchosen event,  83
result suggestions, searches,  72, 79, 82
retrieveAll method,  273
retrieving

credentials,  271–273
data,  251–260

consuming SOAP/WCF services,  259–260
handling progress of data requests,  258–259
setting HTTP verbs for REST,  255–258
using WebSockets for bidirectional

communication,  260–261
XHR or HTTPClient,  252–255

settings from roaming app data store,  105–107
reuse of visual elements, designing UI layout,  10–11
rgba function,  180
roaming app data store, storing and retrieving

settings,  105–107
roaming folder, storing local data,  244
RoamingSettings property,  105, 279
RoamingStorageQuota property,  244
rows, Grid layout,  149

S
scheduled notifications, tiles,  221–222
scheme property,  168
scrolling,  156–158
scroll snapping,  182
SDK (software development kit),  11, 199
SearchBox control,  78–80
SearchBoxResultSuggestionChosenEventArgs,  83
Search charm,  70–72, 78–85

activation from within search,  84
configuring search contracts,  84–85
providing/constraining search within an app,  81
searching and launching other apps,  81–82
SearchPane and SearchBox control classes,  78–80
search result previews,  82–84

search contracts, configuring,  84–85
Search declaration,  47,  84–85

309

Storyboarding plug-in

SimpleOrientationSensorOrientation
ChangedEventArg,  166

simulators
testing apps,  164
testing gestures,  195

single-page application (SPA) structure,  9, 203
Single Sign-On (SSO),  284–285
slide gesture,  192
SmsReceived trigger,  34
snapping,  158
SOAP (Simple Object Access Protocol) services,

consuming,  259–260
SoC (separation of concerns),  17–23

integrating WinMD Components,  22–23
loosely coupled layers,  19–22
planning logical layers,  17–18

software development kit (SDK),  11, 199
software development, maintainability,  17–23

integrating WinMD Components,  22–23
loosely coupled layers,  19–22
planning logical layers,  17–18

solid-state drives (SSDs),  3
sorting data,  267–268
sound, playing sounds with toast notifications,  230–231
Source property,  253
SPA (single-page application) structure,  9, 203
Speech Properties dialog box,  114
Speech Synthesis Markup Language (SSML),  113
SpeechSynthesizer class,  113
Split App template,  9
SSDs (solid-state drives),  3
SSML (Speech Synthesis Markup Language),  113
SSO (Single Sign-On),  284–285
standard length unit (Grid layout columns and

rows),  149
standard toasts,  232
state management, PLM (Process Lifetime

Management),  26
static tiles,  214
StatusCode property,  253
storage

account credentials,  278–281
credentials,  271–273
data

local data,  244–246
remote data,  247–249

settings from roaming app data store,  105–107
Storyboarding plug-in,  7

adding setting options to SettingsFlyout
control,  101–104

choosing accessible features in AppSettings,  97–98
creating setting flyouts,  99–101
storing and retrieving settings,  105–107

SettingsFlyout control
adding settings options to,  101–104
creating setting flyouts,  99–101

Settings window,  98
SetUri method,  89, 92
SetWebLink method,  89, 92
Share charm,  72–73, 87–95

accepting sharing requests,  90–92
DataTransferManager class,  87–90
implementing in-app Share outside of charm,  93
limiting scope of sharing using DataPackage

object,  92
web links and application links,  93–95

Share contract,  72–73
Shared Access Signatures,  247
Share declaration, App Manifest Designer,  90
Shared User Certificates capability,  46
shareOperation object,  91
Share Target declaration,  47
share targets,  73
ShareTarget value (ActivationKind enumeration),  37
sharing

contact information,  57–67
ContactPicker class,  58–59
creating/modifying contact information,  65–66
filtering contacts to display,  59–61
set number of contacts,  61–65

data,  87–95
accepting sharing requests,  90–92
DataTransferManager class,  87–90
implementing in-app Share outside of charm,  93
limiting scope of sharing using DataPackage

object,  92
web links and application links,  93–95

showMenu method,  136
sideloading apps,  49
SignalR,  224
SignificantOthers property (Contact class),  66
signing an app,  48
Simple Object Access Protocol (SOAP) services,

consuming,  259–260
SimpleOrientation enumeration,  166
SimpleOrientationSensor class,  165

310

strict mode, loosely coupled layers

tiers,  18
tiles,  214–225

creating and updating badges,  219–221
periodic notifications,  222–223
push notifications,  223–224
responding to notification requests,  221
scheduled notifications,  221–222
tile update schedule,  224–225
updating tiles and tile content,  214–219

TileTemplateType enumeration,  217
TileUpdateManager class,  219–221
TileUpdateManager.getTemplateContent,  217
TimeZoneChange trigger,  34
Title (flyout),  131
Title property,  167
toast events,  231–232
toast notifications,  227–235

configuring Mobile Services for push
notifications,  232–235

controlling toast duration,  232
enabling apps for,  227–229
populating with images and text,  229–230
responding to toast events,  231–232

ToastUpdateManager class,  229–230
toggles, app bar,  174
Toggle Switch control, settings flyout,  102
tools

AccChecker (UI Accessibility Checker),  11
DISM (Deployment Image Servicing and

Management) command-line tool,  49
Inspect,  11

touch-action CSS property,  158
touch gestures,  198
transcoding video,  112
triggers, background tasks,  34
TTS (Text To Speech),  113–115
turn gesture,  192
TypeScript,  21–22

U
UI Accessibility Checker (AccChecker) tool,  11
ui.js files,  126
UI (user interface)

creating
app bar,  171–176

strict mode, loosely coupled layers,  21
structure, UI,  1–14

conceptual design evaluation,  2–7
creating a vision,  5–7
Microsoft design principles,  2–5

custom controls,  12
designing for accessibility,  11
Hub App template,  13–15
inheritance and reuse of visual elements,  10–11
project templates,  7–10

structuring layout, HTML layout controls,  147–154
Flexible Box (FlexBox) layout,  147–149
Grid layout,  149–151
multi-column layout,  152–154
Regions layout,  153–154

styling, app bar,  173–175
stylus input,  198–199
suggestionsrequested event,  80, 82
suspended event, PLM,  31–32
Suspended (previous state of app),  38
suspended state, apps,  27
swapDisplaysForViewsAsync method,  169
swipe gesture,  192
synthesizeSsmlToStreamAsync method,  114
synthesizeTextToStreamAsync method,  114

T
tap gesture,  192
TargetName property,  275
Telerik,  12
template function,  129
templates

HTML layout controls and,  154–156
Hub App,  13–15

temporary data,  105
temporary folder, storing local data,  244
TerminateAppOnFinalViewClose property,  167
Terminated (previous state of app),  38
termination of apps, PLM,  32–36
testing gestures,  194
text flow, HTML layout controls,  159–160
Text Input Box control, settings flyout,  102
text-overflow property,  160
Text To Speech (TTS),  113–115
Thumbnail property (Contact class),  66

311

Window Communication Foundation (WCF) service, consuming

V
Value property,  167
verifying credentials, Credential Locker,  276–277
Version property,  253
video playback,  111,  115–116
Videos Library capability,  46
ViewManagement namespace,  167–168
vision, UI layout,  5–7
Visual Assets page (Manifest Designer),  44
Visual Studio, creating app packages,  41

W
WCF (Window Communication Foundation) service,

consuming,  259–260
Weather app

app bars,  172
Settings charm,  74
Share charm,  73

web authentication,  282–287
CredentialPicker class,  285
credential roaming,  285
OAuth2,  283–284
proxy authentication,  286–287
SSO (Single Sign-On),  284–285
WebAuthenticationBroker class,  285
Windows.Security.Authentication.Web

namespace,  282–283
WebAuthenticationBroker,  283
WebAuthenticationBroker.authenticateAsync

method,  283
WebAuthenticationBroker class,  285
Webcam capability,  46
WebGL,  110
web links, sharing data,  93–95
Web Proxy Auto-Discovery (WPAD),  286
web services, retrieving with XHR or

HTTPClient,  252–255
Websites property (Contact class),  66
WebSockets, bidirectional communication,  260–261
WebView control,  138–140
win as one design principle,  4
Window Communication Foundation (WCF) service,

consuming,  259–260

CSS styling,  179–183
HTML layout controls,  147–160
layout-aware apps,  162–169
WinJS controls,  125–145

layout and structure,  1–14
conceptual design evaluation,  2–7
custom controls,  12
designing for accessibility,  11
Hub App template,  13–15
inheritance and reuse of visual elements,  10–11
project templates,  7–10

Unload method,  204
UpdateLayout method,  205
update schedule, tiles,  224–225
updating tiles and tile content,  214–219
UserAway trigger,  34
user interaction

input devices,  191–201
capturing gesture library events,  192–195
custom gesture recognizers,  196–197
drag-and-drop events,  199–201
listening to mouse events or touch gestures,  198
stylus input and inking,  198–199

navigation,  202–212
loading HTML fragments,  210–212
meeting app requirements,  206–207
semantic zoom,  207–210
WinJS.Navigation namespace,  203–206

tiles,  214–225
creating and updating badges,  219–221
periodic notifications,  222–223
push notifications,  223–224
responding to notification requests,  221
scheduled notifications,  221–222
tile update schedule,  224–225
updating tiles and tile content,  214–219

toast notifications,  227–235
configuring Mobile Services for push

notifications,  232–235
controlling toast duration,  232
enabling apps for,  227–229
populating with images and text,  229–230
responding to toast events,  231–232

user interface.  See UI (user interface)
UserNotPresent condition, background tasks,  35
UserPresent condition, background tasks,  35
UserPresent trigger,  34

312

windowing modes, creating layout-aware apps

WinJS.Binding.List class,  267
WinJS.Binding.optimizeBindingReferences

property,  154
WinJS.Binding.processAll method,  155
WinJS.Binding.Template,  266
WinJS.Class.define method,  20
WinJS controls,  125–145

FlipView,  126–130
flyout,  130–132
Grid and List layout,  132–135
item containers,  140–142
menu objects,  135–137
Repeater,  142–145
WebView,  138–140

WinJS.Namespace.define method,  19
WinJS.Navigation.back method,  206
WinJS.Navigation namespace,  203–206
WinJS.Navigation.navigate method,  206
WinJS.UI.AppBar control,  173
WinJS.UI.BackButton,  205
WinJS.UI.Fragments namespace,  210
WinJS.UI.Pages.define method,  204
WinJS.UI.processAll method,  126
WinJS.xhr method,  252
WinMD Components, incorporation,  22–23
WNS (Windows Push Notification Services),  223
WPAD (Web Proxy Auto-Discovery),  286
writeBytesAsync method,  245

X
XHR, retrieving web services,  252–255
XMLHttpRequest object,  252
XML templates

support for tiles,  216
toasts,  229

XVP (Media Foundation Transcode Video
Processor),  112

Y
YAGNI (You Aren’t Gonna Need It) principle,  10
YomiDisplayName property (Contact class),  66
YomiFamilyName property (Contact class),  66

windowing modes, creating layout-aware
apps,  162–169

CSS3 media queries,  162–165
responding to changes in orientation,  165–166
settings for an apps view,  168–170
ViewManagement namespace,  167–168

Windows 8 certification requirements,  40–43
Windows App Certification Kit,  42–44
Windows App Certification Kit dialog box,  43
Windows.Applicationmodel. Contacts namespace,  58
Windows Dev Center page (WebView control),  138
Windows.Devices.Sensors.SimpleOrientationSensor.

getDefault() method,  165
Windows.Media.SpeechSynthesis namespace,  113
Windows.Media.SpeechSynthesis.SpeechSynthesizer.

allVoices property,  114
Windows.Media.Transcoding namespace,  112
Windows Push Notification Services (WNS),  223
Windows.Security.Authentication.Web

namespace,  282–283
Windows.Security.Credentials.UI namespace,  274
Windows Store apps

design
planning app deployment,  40–49
PLM (Process Lifetime Management),  26–38
separation of concerns,  17–23
UI layout and structure,  1–14

development
accessing and displaying contacts,  57–67
charms and contracts,  69–79
integration of media features,  109–115
managing application setting s and

preferences,  97–107
Search charm,  78–85
sharing data,  87–95

Windows.UI.Input.GestureRecognizer namespace,  196
Windows.UI.Input.Inking.InkManager class,  198
Windows.UI.Notification namespace,  217
Windows.UI.StartScreen.SecondaryTile class,  218
Windows.UI.ViewManagement.ApplicationView.

getForCurrentView() method,  167, 168
Windows.UI.WebUI.WebUIBackgroundTaskInstance.

current property,  36
WinJS.Application object,  32
WinJS.Application.onsettings event,  98
WinJS.Application.sessionState object,  31
WinJS.Binding.as method,  155, 264

313

zooming, CSS3

YomiGivenName property (Contact class),  66
You Aren’t Gonna Need It (YAGNI) principle,  10

Z
z-index property,  150
zoomedInListView,  209
zoomedOutListView,  209
ZoomFactor,  209
zooming, CSS3,  156–158, 182

This page intentionally left blank

About the author
WOUTER DE KORT was born in a little place in the Netherlands called
Grootebroek (literal translation: large pants!) in 1986. He started playing with
software development when he was seven years old, when his dad came home
with their first computer. Wouter works with C# and .NET on a daily basis and
has done so since their inception. He is now a software architect focusing

on Application Lifecycle Management for everything that runs on the Microsoft stack. As a
Microsoft Certified Trainer, he loves helping companies stay on the cutting edge of software
development, solving complex problems, and teaching others how to become better developers.

	Contents
	Introduction
	Microsoft certifications
	Acknowledgments
	Free ebooks from Microsoft Press
	Errata, updates, & book support
	We want to hear from you
	Stay in touch

	Preparing for the exam
	Chapter 1 Design Windows Store apps
	Objective 1.1: Design the UI layout and structure
	Evaluating the conceptual design
	Deciding how the UI will be composed
	Designing for the inheritance and reuse of visual elements
	Designing for accessibility
	Deciding when custom controls are needed
	Using the Hub App template
	Objective summary
	Objective review

	Objective 1.2: Design for separation of concerns
	Planning the logical layers of your solution to meet application requirements
	Designing loosely coupled layers
	Incorporating WinMD Components
	Objective summary
	Objective review

	Objective 1.3: Design and implement Process Lifetime Management (PLM)
	Choosing a state management strategy
	Handling the onactivated event
	Handling the suspend event (oncheckpoint)
	Preparing for app termination
	Checking the ActivationKind and previous state
	Objective summary
	Objective review

	Objective 1.4: Plan for an application deployment
	Planning a deployment based on Windows 8 application certification requirements
	Preparing an app manifest (capabilities and declarations)
	Signing an app
	Planning the requirements for an enterprise deployment
	Objective summary
	Objective review

	Answers

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

