1-SOL
Querying

©
-
O
w
O
5 @ solidq
o ltzik Ben-Gan
DEERRERE
@ Adam Machanic
Kevin Farlee

o Microsoft

T-SQL Querying

Itzik Ben-Gan
Dejan Sarka
Adam Machanic
Kevin Farlee

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2015 by Itzik Ben-Gan, Dejan Sarka, Adam Machanic, and Kevin Farlee. All rights reserved.

No part of the contents of this book may be reproduced or transmitted in any form or by any means without
the written permission of the publisher.

Library of Congress Control Number: 2014951866
ISBN: 978-0-7356-8504-8

Printed and bound in the United States of America.
First Printing

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Support at mspinput@microsoft.com. Please tell us what you think of this
book at http://aka.ms/tellpress.

This book is provided “as-is” and expresses the authors’ views and opinions. The views, opinions, and information
expressed in this book, including URL and other Internet website references, may change without notice.

Some examples depicted herein are provided for illustration only and are fictitious. No real association or
connection is intended or should be inferred.

Microsoft and the trademarks listed at http://www.microsoft.com on the “Trademarks” webpage are trademarks
of the Microsoft group of companies. All other marks are the property of their respective owners.

Acquisitions Editor: Devon Musgrave

Developmental Editor: Devon Musgrave

Project Editor: Carol Dillingham

Editorial Production: Curtis Philips, Publishing.com

Technical Reviewer: Alejandro Mesa; Technical Review services provided by
Content Master, a member of CM Group, Ltd.

Copyeditor: Roger LeBlanc

Proofreader: Andrea Fox

Indexer: William P. Meyers

Cover: Twist Creative « Seattle and Joel Panchot

mailto:mspinput@microsoft.com
http://aka.ms/tellpress
http://www.microsoft.com

To Lilach, for giving meaning to everything that | do.

—Iltzik

Contents at a glance

CHAPTER 1
CHAPTER 2
CHAPTER 3
CHAPTER 4
CHAPTER 5
CHAPTER 6
CHAPTER 7
CHAPTER 8
CHAPTER 9
CHAPTER 10
CHAPTER 11

Foreword
Introduction

Logical query processing

Query tuning

Multi-table queries

Grouping, pivoting, and windowing
TOP and OFFSET-FETCH

Data modification

Working with date and time

T-SQL for BI practitioners
Programmable objects

In-Memory OLTP

Graphs and recursive queries

Index

XV

XVil

41
187
259
341
373
419
473
525
671
707

803

Contents

FOreword. XV
INtroduction XVii
Chapter 1 Logical query processing 1
Logical query-processing phases. ..., 3
Logical query-processing phases in brief 4
Sample query based on customers/orders scenario. 6
Logical query-processing phase details 8
Step 1: The FROM phase.o 8

Step 2: The WHERE phase. ... 14

Step 3: The GROUP BY phase. ... 15

Step 4: The HAVING phase. 16

Step 5: The SELECT phase. 17

Step 6: The ORDERBY phase 20

Step 7: Apply the TOP or OFFSET-FETCH filter 22
Further aspects of logical query processing 26
Table operators. 26
Window functions 35

The UNION, EXCEPT, and INTERSECT operators 38
CONCIUSION .« o 39
Chapter 2 Query tuning 41
Internals 41
Pagesand extents ... 42

Table organization........... 43

Tools to measure query performance. ..., 53

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

vi

Contents

Access methods. 57

Table scan/unordered clustered indexscan 57
Unordered covering nonclustered index scan 60
Ordered clustered indexscan ..., 62
Ordered covering nonclustered indexscan 63
The storage engine’s treatment of scans....................... 65
Nonclustered index seek + range scan + lookups............... 81
Unordered nonclustered index scan + lookups................. 91
Clustered index seek + rangescan................ccoviinnnn... 93
Covering nonclustered index seek + rangescan................ 94
Cardinality estimates i 97
Legacy estimator vs. 2014 cardinality estimator................. 98
Implications of underestimations and overestimations 99
StatisticS. . .o 101
Estimates for multiple predicates 104
Ascending key problem ... 107
UNKNOWNS . . .o 110
Indexing features i 115
Descending iNdeXes.ttt 115
Included non-key columns. oo i 119
Filtered indexes and statistics, 120
Columnstore indexes.t 123
Inline index definition.......... 130
Prioritizing queries for tuning with extended events................. 131
Index and query information and statistics 134
Temporary objects 139
Set-based vs. iterative solutions. oo 149
Query tuning with query revisions i 153
Parallel query execution o 158
How intraquery parallelismworks. 158
Parallelism and query optimization 175
The parallel APPLY query pattern..................oooii... 181
CONCIUSION .« .o et 186

Chapter 3 Multi-table queries 187

SUDQUENIES . . e 187
Self-contained subqueries i 187
Correlated subqueries. 189
The EXISTS predicate. 194
Misbehaving subqueries. 201

Table eXpressionso 204
Derived tables. 205
O I 207
VIBWS 211
Inline table-valued functions.............., 215
Generating nUMbers 215

The APPLY Operatorttt 218
The CROSS APPLY operator ...t 219
The OUTER APPLY operator.vvuiiiiiieennnnn 221
Implicit APPLY . .. 221
Reuse of columnaliases o i 222

JOINS. L 224
CrOSS JOIN .« e e e e e e e 224
INNEr JOIN . 228
OULEN JOIN e 229
Self Join .o 230
Equi and non-equijoins 230
Multi-join queries. 231
Semiand anti SeMi JOINS 237
Joinalgorithms. 239
Separating elements 245

The UNION, EXCEPT, and INTERSECT operators..................... 249
The UNION ALL and UNION operators.............ccouvuunn.. 250
The INTERSECT operator.t 253
The EXCEPT operator.ooii e 255

CoNCIUSION . o 257

Contents vii

viii

Contents

Chapter 4 Grouping, pivoting, and windowing 259

Chapter 5

Window functions. 259
Aggregate window functions.o 260
Ranking window functions................ 281
Offset window functions. 285
Statistical window functions. L 288
Gapsandislands. 291

PIVOTING. . .o 299
ONe-to-0Ne PIVOL. ...ttt 300
Many-to-0one Pivot.t 304

UNPIVOTING .« o oot e 307
Unpivoting with CROSS JOIN and VALUES 308
Unpivoting with CROSS APPLY and VALUES 310
Using the UNPIVOT operator. 312

Custom aggregations.o it 313
USING @ CUISOT. . oottt ittt e 314
Using PIVOLING. . ..o oo 315
Specialized solutions 316

GroUPINg SETS .« ..t 327
GROUPING SETS subclause, 328
CUBEand ROLLUP clauses i, 331
Grouping setsalgebra.......... 333
Materializing grouping sets..............coiiiiiiii . 334
SOtING .« o ot 337

CoONCIUSION .« . oot 339

TOP and OFFSET-FETCH 341

The TOP and OFFSET-FETCH filters i, 341
The TOPfilter e 341
The OFFSET-FETCH filter. 345

Optimization of filters demonstrated through paging 346
Optimization of TOP s 346

Chapter 6

Optimization of OFFSET-FETCH. oo, 354

Optimization of ROW_NUMBER 358
Using the TOP option with modifications. 360
TOP with modifications. i 360
Modifyinginchunks 361
TOP N Per group . ..o oot 363
Solution using ROW_NUMBER. 364
Solution using TOP and APPLY o i 365
Solution using concatenation (a carry-along sort). 366
Median . ..o 368
Solution using PERCENTILE_CONTcoiiiiiiio... 369
Solution using ROW_NUMBER. 369
Solution using OFFSET-FETCH and APPLY 370
CoONCIUSION .« . 371
Data modification 373
Inserting data.ooi 373
SELECT INTO ..ot e 373
Bulk import 376
Measuring the amount of logging 377
BULK rowset provider 378
SEQUENCES . ottt 381
Characteristics and inflexibilities of the identity property 381
The sequence object ... 382
Performance considerations.o i 387
Summarizing the comparison of identity with sequence........ 394
Deletingdata. ... 395
TRUNCATE TABLE. . . 395
Deleting duplicatescooo i 399
Updatingdata. ... 401
Update using table expressions. 402
Update using variables i i 403

Contents

ix

Chapter 7

Chapter 8

Merging data.ooii 404
MERGE examples 405
Preventing MERGE conflicts.............. 408
ONisn'tafilter... 409
USING is similarto FROMo 410

The OUTPUT Clause . ..ottt 411
Example with INSERT and identity 412
Example for archiving deleted data 413
Example with the MERGE statement 414
Composable DML. . ..o 417

CONCIUSION .ot 417

Working with date and time 419

Date and time datatypes i 419

Date and time functions 422

Challenges working with date and time............................ 434
Literals ..o 434
Identifying weekdays. 436
Handling date-only or time-only data with DATETIME and
SMALLDATETIME . .. oo e 439
First, last, previous, and next date calculations 440
Searchargument 445
Rounding issUeso 447

Querying dateand timedata......... i i 449
Grouping by theweek. 449
Intervals. 450

CoNCIUSION .« .ttt 471

T-SQL for Bl practitioners 473

Data preparation.t 473
Sales analysis VIEWo 474

FreqUeNCIS . .o oot 476
Frequencies without window functions....................... 476

Chapter 9

Frequencies with window functions.......................... 477

Descriptive statistics for continuous variables....................... 479
Centers of a distribution.......... L 479
Spread of a distribution oo 482
Higher population moments.............o 487

Linear dependencies.ttt 495
Two continuous variables o oo 495
Contingency tables and chi-squared 501
Analysis of variance 505
Definite integration 509

Moving averages and entropyttt 512
MOVING @Veragesot 512
ENtropy. ..o 518

CONCIUSION .« .o oot 522

Programmable objects 525

Dynamic SQL 525
Using the EXECcommand ... 525
Using the sp_executesql procedure. 529
Dynamic Pivot. . ..ot 530
Dynamic search conditions. i 535
Dynamic sorting. ... 542

User-defined functions 546
Scalar UDFs . ..o 546
Multistatement TVFs 550

Stored procedures 553
Compilations, recompilations, and reuse of execution plans. 554
Table type and table-valued parameters...................... 571
EXECUTEWITH RESULT SETS 573

4o o =T 3P 575
Trigger types and USest 575
Efficient trigger programming. i 581

Contents

Xi

SQLCLR programmingooviie it 585

SQLCLR architecture ... 586

CLR scalar functions and creating your first assembly 588
Streaming table-valued functions. 597
SQLCLR stored procedures and triggers 605
SQLCLR user-defined typest 617
SQLCLR user-defined aggregates 628
Transaction and CONCUITENCY . ..ot 632
Transactions described 633

Locks and blockingo 636

Lock escalation. 641
Delayed durability 643
Isolation levels i 645
Deadlocks 657

Error handling 662
The TRY-CATCH construct ...t 662
Errorsin transactions. ... 666

Retry [0giC. . ..o 669
CONCIUSION . oot 670
Chapter 10 In-Memory OLTP 671
In-Memory OLTP OVervVIeWoun i 671
Data is always in memory. ...t 672
Native compilation. 673

Lock and latch-free architecture 673

SQL Serverintegrationco i i 674
Creating memory-optimized tables 675
Creating indexes in memory-optimized tables...................... 676
Clustered vs. nonclustered indexes. 677
Nonclustered indexes 677
Hashindexes......... ... i 680

xii Contents

Execution environments 690

QUErY INTEIOP . o o 690
Natively compiled procedures.o 699
Surface-area restrictions i 703
Table DDL ..o 703

DML Lt 704
CONCIUSION .« oo 705
Chapter 11 Graphs and recursive queries 707
Terminologyo oot 707
Graphs . 707
TS L 708
Hierarchies. o 709
SCENAMIOS. « o ottt e 709
Employee organizational chart, 709

Bill of materials (BOM) 711

Road system 715
Iteration/recursion 718
Subgraph/descendants......... i 719
Ancestors/path. 730
Subgraph/descendants with path enumeration................ 733
SOMtING . o ettt 736
CyCles o 740
Materialized path 742
Maintainingdata o 743
QUEIYING .« o ettt 749
Materialized path with the HIERARCHYID datatype 754
Maintainingdata 756
QUEIYING .« oottt 763
Further aspects of working with HIERARCHYID 767
Nested sets. 778
Assigning leftand rightvalues 778
QUEIYING .« oottt 784

Contents

xiii

xiv Contents

Transitive closure.
Directed acyclicgraph. ... i

CONCIUSION . .o

Index

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Foreword

have been with Microsoft and working with the Microsoft SQL Server team since 1993.

It has been one heck of a ride to watch this product mature into what it is today. It has
been exciting to watch how the Microsoft SQL Server customer base uses SQL Server
to run their mission-critical businesses. Most of all, it has been an honor to support the
most vibrant, passionate technology community | have ever seen.

The Microsoft SQL Server community is filled with truly amazing, smart people. They
take pride in sharing their great knowledge with others, all for making the community
stronger. Anyone in the world can jump on Twitter and ask any question to #sqlhelp,
and within seconds one of the smartest experts in the world will be responding. If
you are looking for expertise in performance, storage, query optimization, large-scale
design, modeling, or any data-related topic, these experts are in the community today
sharing their expertise. You will get to know them not only by their expertise but by
their unique, friendly personalities as well. We in the SQL Server community world refer
to this as our SQL family.

Everyone in the community knows the major contributors by their expertise in
particular areas. If you ask who the best database performance expert is, people in the
community will give you the same four or five names. If you ask for the best storage
expert, again people will give you the same four or five storage expert names. You'll
always find a few experts in the community who are the very best for a specific area of
database domain expertise. There is only one exception to this that | am aware of, and
that is the T-SQL language. There are a lot of talented T-SQL experts, but if you ask for
the best everyone will give you one name: Itzik Ben-Gan.

Itzik asked me to write this foreword for his new book, and | am honored to do so.
His previous books—Inside Microsoft SQL Server: T-SQL Querying (Microsoft Press,
2009), Inside Microsoft SQL Server: T-SQL Programming (Microsoft Press, 2009), and
Microsoft SQL Server High-Performance T-SQL Using Window Functions (Microsoft Press,
2012)—are sitting on the shelves of every DBA | know. These books add up to over
2,000 pages of top-notch technical knowledge about Microsoft SQL Server T-SQL, and
they set the standard for high-quality database content.

| am excited about this new book, T-SQL Querying. Not only does it combine mate-
rial from his three previous books, but it also adds material from SQL Server 2012 and
2014, including window functions, the new cardinality estimator, sequences, column-
store, In-Memory OLTP, and much more. Itzik has a few exciting co-authors as well:
Kevin Farlee, Adam Machanic, and Dejan Sarka. Kevin is part of the Microsoft SQL

Xvi

Foreword

Server engineering team and someone | have been working with for many years. Adam
is one of those few names that | refer to above as one of the best database perfor-
mance experts in the world, and Dejan is well known for his Bl and data-modeling
expertise.

| fully expect this book to be the standard T-SQL guide for the Microsoft SQL Server
community.
Mark Souza

General Manager, Cloud and Enterprise Engineering
Microsoft

Introduction

pdating both Inside Microsoft SQL Server 2008: T-SQL Querying (Microsoft Press,
2009) and parts of Inside Microsoft SQL Server 2008: T-SQL Programming (Microsoft
Press, 2009), this book gives database developers and administrators a detailed look
at the internal architecture of T-SQL and a comprehensive programming reference.
It includes coverage of SQL Server 2012 and 2014, but in many cases deals with areas
that are not version-specific and will likely be relevant in future versions of SQL Server.
Tackle the toughest set-based querying and query-tuning problems—guided by an
author team with in-depth, inside knowledge of T-SQL. Deepen your understanding of
architecture and internals—and learn practical approaches and advanced techniques to
optimize your code’s performance. This book covers many unique techniques that were
developed, improved, and polished by the authors over their many years of experience,
providing highly efficient solutions for common challenges. There's a deep focus on
the performance and efficiency of the techniques and solutions covered. The book also
emphasizes the need to have a correct understanding of the language and its underly-
ing mathematical foundations.

Who should read this book

This book is designed to help experienced T-SQL practitioners become more knowl-
edgeable and efficient in this field. The book’s target audience is T-SQL developers,
DBAs, Bl pros, data scientists, and anyone who is serious about T-SQL. Its main purpose
is to prepare you for real-life needs, as far as T-SQL is concerned. Its main focus is not
to help you pass certification exams. That said, it just so happens that the book covers
many of the topics that exams 70-461 and 70-464 test you on. So, even though you
shouldn’t consider this book as the only learning tool to prepare for these exames, it is
certainly a tool that will help you in this process.

Assumptions

This book assumes that you have at least a year of solid experience working with SQL
Server, writing and tuning T-SQL code. It assumes that you have a good grasp of T-SQL
coding and tuning fundamentals, and that you are ready to tackle more advanced
challenges. This book could still be relevant to you if you have similar experience with
a different database platform and its dialect of SQL, but actual knowledge and experi-
ence with SQL Server and T-SQL is preferred.

Xvii

This book might not be for you if...

This book might not be for you if you are fairly new to databases and SQL.

Organization of this book

The book starts with two chapters that lay the foundation of logical and physical query
processing required to gain the most from the rest of the chapters.

The first chapter covers logical query processing. It describes in detail the logi-
cal phases involved in processing queries, the unique aspects of SQL querying,
and the special mindset you need to adopt to program in a relational, set-oriented
environment.

The second chapter covers query tuning and the physical layer. It describes inter-
nal data structures, tools to measure query performance, access methods, cardinality
estimates, indexing features, prioritizing queries with extended events, columnstore
technology, use of temporary tables and table variables, sets versus cursors, query tun-
ing with query revisions, and parallel query execution. (The part about parallel query
execution was written by Adam Machanic.)

The next five chapters deal with various data manipulation-related topics. The
coverage of these topics is extensive; beyond explaining the features, they focus a lot
on the performance of the code and the use of the features to solve common tasks.
Chapter 3 covers multi-table queries using subqueries, the APPLY operator, joins, and
the UNION, INTERSECT, and EXCEPT relational operators. Chapter 4 covers data analysis
using grouping, pivoting, and window functions. Chapter 5 covers the TOP and OFFSET-
FETCH filters, and solving top N per group tasks. Chapter 6 covers data-modification
topics like minimally logged operations, using the sequence object efficiently, merging
data, and the OUTPUT clause. Chapter 7 covers date and time treatment, including the
handling of date and time intervals.

Chapter 8 covers T-SQL for Bl practitioners and was written by Dejan Sarka. It
describes how to prepare data for analysis and how to use T-SQL to handle statisti-
cal data analysis tasks. Those include frequencies, descriptive statistics for continuous
variables, linear dependencies, and moving averages and entropy.

Chapter 9 covers the programmability constructs that T-SQL supports. Those are
dynamic SQL, user-defined functions, stored procedures, triggers, SQLCLR program-
ming (written by Adam Machanic), transactions and concurrency, and error handling.

xviii Introduction

Previously, these topics were covered in the book Inside Microsoft SQL Server: T-SQL
Programming.

Chapter 10 covers one of the major improvements in SQL Server 2014—the In-
Memory OLTP engine. This chapter was written by Microsoft's Kevin Farlee, who was
involved in the actual development of this feature.

Chapter 11 covers graphs and recursive queries. It shows how to handle graph
structures such as employee hierarchies, bill of materials, and maps in SQL Server using
T-SQL. It shows how to implement models such as the enumerated path model (using
your own custom solution and using the HIERARCHYID data type) and the nested sets
model. It also shows how to use recursive queries to manipulate data in graphs.

System requirements

You will need the following software to run the code samples in this book:
® Microsoft SQL Server 2014:

e Edition: 64-bit Enterprise, Developer, or Evaluation; other editions do not
support the In-Memory OLTP and columnstore technologies that are covered
in the book. You can download a trial version here: http://www.microsoft.
com/sql.

e For hardware and software requirements see http.//msdn.microsoft.com/
en-us/library/ms143506(v=sql.120).aspx.

e In the Feature Selection dialog of the SQL Server 2014 setup program,
choose the following components: Database Engine Services, Client Tools
Connectivity, Documentation Components, Management Tools — Basic,
Management Tools — Complete.

® Microsoft Visual Studio 2013 with Microsoft SQL Server Data Tools (SSDT):

e You can find the system requirements and platform compatibil-
ity for Visual Studio 2013 here: http://www.visualstudio.com/products/
visual-studio-2013-compatibility-vs.

e For information about installing SSDT, see http://msdn.microsoft.com/en-us/
data/tools.aspx.

Depending on your Windows configuration, you might require Local Administrator
rights to install or configure SQL Server 2014 and Visual Studio 2013.

Introduction Xix

http://www.microsoft.com/sql
http://www.microsoft.com/sql
http://msdn.microsoft.com/en-us/library/ms143506(v=sql.120).aspx
http://msdn.microsoft.com/en-us/library/ms143506(v=sql.120).aspx
http://www.visualstudio.com/products/visual-studio-2013-compatibility-vs
http://www.visualstudio.com/products/visual-studio-2013-compatibility-vs
http://msdn.microsoft.com/en-us/data/tools.aspx
http://msdn.microsoft.com/en-us/data/tools.aspx

XX

Downloads: Code samples

This book contains many code samples. You can download the source code for this
book from the authors’ site: http://tsql.solidg.com/books/tq3.

The source code is organized in a compressed file named T-SQL Querying -
YYYYMMDD.zip, where YYYYMMDD stands for the last update date of the content.
Follow the instructions in the Readme.txt file that is included in the compressed file to
install the code samples.

Acknowledgments

A number of people contributed to making this book a reality, whether directly or indi-
rectly, and deserve thanks and recognition. It's certainly possible that | omitted some
names unintentionally and | apologize for this ahead of time.

To Lilach: you're the one who makes me want to be good at what | do. Besides being
my inspiration in life, you had an active unofficial role in this book. You were the book'’s
first reader! So many hours we spent reading the text together looking for errors before
| sent it to the editors. | have a feeling that you know some things about T-SQL better
than people who are professionals in the field.

To my parents, Mila and Gabi, and to my siblings, Mickey and Ina, for the constant
support and for accepting the fact that I'm away. You experienced so much turbulence
in the last few years, and I'm hoping that the coming years will be healthy and happy.

To the coauthors of the book, Dejan Sarka, Adam Machanic, and Kevin Farlee. It's a
true privilege to be part of such a knowledgeable and experienced group of people.
Each of you are such experts in your areas that | felt that your topics would be best
served if covered by you: Dejan with the chapter on T-SQL for Bl practitioners, Adam
with the sections on parallel query execution and SQL CLR programming, and Kevin
with the chapter on In-Memory OLTP. Thanks for taking part in this book.

To the technical reviewer of the book, Alejandro Mesa: you read and unofficially
reviewed my previous books. You're so passionate about the topic that I'm glad with
this book you took a more official reviewer role. | also want to thank the reviewer of the
former edition of the book, Steve Kass: you did such thorough and brilliant work that a
lot of it echoes in this one.

Introduction

http://tsql.solidq.com/books/tq3

To Mark Souza: you were there pretty much since the inception of the product,
being involved in technical, management, and community-related roles. If anyone feels
the heartbeat of the SQL Server community, it is you. We're all grateful for what you do,
and it is a great honor to have you write the foreword.

Many thanks to the editors at Microsoft Press. To Devon Musgrave, who played both
the acquisitions editor and developmental editor roles: you are the one who made this
book a reality and handled all the initial stages. | realize that this book is very likely one
of many you were responsible for, and I'd like to thank you for dedicating the time and
effort that you did. To Carol Dillingham, the book’s project editor: you spent so many
hours on this project, and you coordinated it delightfully. It was a pleasure working
with you. Also, thanks to Curtis Philips, the project manager from Publishing.com. It
was a complex project, and I'm sure it wasn't a picnic for you. Also, many thanks to the
copyeditor, Roger LeBlanc, who worked on my previous books, and to the proofreader,
Andrea Fox. It was a pleasure to work with you guys.

To SolidQ, my company for over a decade: it's gratifying to be part of such a great
company that evolved into what it is today. The members of this company are much
more than colleagues to me; they are partners, friends, and family. Thanks to Fernando
G. Guerrero, Douglas McDowell, Herbert Albert, Dejan Sarka, Gianluca Hotz, Antonio
Soto, Jeanne Reeves, Glenn McCoin, Fritz Lechnitz, Eric Van Soldt, Berry Walker, Marilyn
Templeton, Joelle Budd, Gwen White, Jan Taylor, Judy Dyess, Alberto Martin, Lorena
Jimenez, Ron Talmage, Andy Kelly, Rushabh Mehta, Joe Chang, Mark Tabladillo, Eladio
Rincon, Miguel Egea, Alejandro J. Rocchi, Daniel A. Seara, Javier Loria, Paco Gonzaélez,
Enrique Catald, Esther Nolasco Andreu, Rocio Guerrero, Javier Torrenteras, Rubén
Garrigds, Victor Vale Diaz, Davide Mauri, Danilo Dominici, Erik Veerman, Jay Hackney,
Grega Jerki¢, Matija Lah, Richard Waymire, Carl Rabeler, Chris Randall, Tony Rogerson,
Christian Rise, Raoul lllyés, Johan Ahlén, Peter Larsson, Paul Turley, Bill Haenlin, Blythe
Gietz, Nigel Semmi, Paras Doshi, and so many others.

To members of the Microsoft SQL Server development team, past and present:
Tobias Ternstrom, Lubor Kollar, Umachandar Jayachandran (UC), Boris Baryshnikov,
Conor Cunningham, Kevin Farlee, Marc Friedman, Milan Stojic, Craig Freedman,
Campbell Fraser, Mark Souza, T. K. Rengarajan, Dave Campbell, César Galindo-Legaria,
and I'm sure many others. | know it wasn't a trivial effort to add support for window
functions in SQL Server. Thanks for the great effort, and thanks for all the time you
spent meeting with me and responding to my emails, addressing my questions, and
answering my requests for clarification.

Introduction

xxi

To members of the SQL Server Pro editorial team, past and present: Megan Keller,
Lavon Peters, Michele Crockett, Mike Otey, Jayleen Heft, and I'm sure many others. I've
been writing for the magazine for over a decade and a half, and | am grateful for the
opportunity to share my knowledge with the magazine’s readers.

To SQL Server MVPs, past and present: Paul White, Alejandro Mesa, Erland
Sommarskog, Aaron Bertrand, Tibor Karaszi, Benjamin Nevarez, Simon Sabin, Darren
Green, Allan Mitchell, Tony Rogerson, and many others—and to the MVP lead, Simon
Tien. This is a great program that I'm grateful and proud to be part of. The level of
expertise of this group is amazing, and I'm always excited when we all get to meet, both
to share ideas and just to catch up at a personal level over beer. | have to extend special
thanks to Paul White. I've learned so much from you, and | thoroughly enjoy reading
your work. | think it's safe to say that you're my favorite author. Who knows, maybe one
day we'll get to work on something together.

Finally, to my students: teaching about T-SQL is what drives me. It's my passion.
Thanks for allowing me to fulfill my calling and for all the great questions that make me
seek more knowledge.

—Cheers, Itzik

Errata, updates, & book support

We've made every effort to ensure the accuracy of this book. If you discover an
error, please submit it to us via mspinput@maicrosoft.com. You can also reach the
Microsoft Press Book Support team for other assistance via the same email address.
Please note that product support for Microsoft software and hardware is not offered
through the previous addresses. For help with Microsoft software or hardware, go to
http://support.microsoft.com.

Free ebooks from Microsoft Press

From technical overviews to in-depth information on special topics, the free ebooks
from Microsoft Press cover a wide range of topics. These ebooks are available in PDF,
EPUB, and Mobi for Kindle formats, ready for you to download at:

http://aka.ms/mspressfree

Check back often to see what is new!

xxii Introduction

mailto:mspinput@microsoft.com
http://support.microsoft.com
http://aka.ms/mspressfree

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://aka.ms/tellpress

We know you're busy, so we've kept it short with just a few questions. Your
answers go directly to the editors at Microsoft Press. (No personal information will be
requested.) Thanks in advance for your input!

Stay in touch

Let's keep the conversation going! We're on Twitter: http://twitter.com/MicrosoftPress.

Introduction xxiii

http://aka.ms/tellpress
http://aka.ms/tellpress

This page intentionally left blank

This page intentionally left blank

TOP and OFFSET-FETCH

lassic filters in SQL like ON, WHERE, and HAVING are based on predicates. TOP and OFFSET-

FETCH are filters that are based on a different concept: you indicate order and how many rows to
filter based on that order. Many filtering tasks are defined based on order and a required number of
rows. It's certainly good to have language support in T-SQL that allows you to phrase the request in a
manner that is similar to the way you think about the task.

This chapter starts with the logical design aspects of the filters. It then uses a paging scenario to
demonstrate their optimization. The chapter also covers the use of TOP with modification statements.
Finally, the chapter demonstrates the use of TOP and OFFSET-FETCH in solving practical problems like
top N per group and median.

The TOP and OFFSET-FETCH filters

You use the TOP and OFFSET-FETCH filters to implement filtering requirements in your queries in an
intuitive manner. The TOP filter is a proprietary feature in T-SQL, whereas the OFFSET-FETCH filter is a
standard feature. T-SQL started supporting OFFSET-FETCH with Microsoft SQL Server 2012. As of SQL
Server 2014, the implementation of OFFSET-FETCH in T-SQL is still missing a couple of standard ele-
ments—interestingly, ones that are available with TOP. With the current implementation, each of the
filters has capabilities that are not supported by the other.

I'll start by describing the logical design aspects of TOP and then cover those of OFFSET-FETCH.

The TOP filter

The TOP filter is a commonly used construct in T-SQL. Its popularity probably can be attributed to
the fact that its design is so well aligned with the way many filtering requirements are expressed—for
example, "Return the three most recent orders.” In this request, the order for the filter is based on
orderdate, descending, and the number of rows you want to filter based on this order is 3.

You specify the TOP option in the SELECT list with an input value typed as BIGINT indicating how
many rows you want to filter. You provide the ordering specification in the classic ORDER BY clause.
For example, you use the following query to get the three most recent orders.

341

342

USE TSQLV3;

SELECT TOP (3) orderid, orderdate, custid, empid
FROM Sales.Orders

ORDER BY orderdate DESC;

| got the following output from this query:

orderid orderdate custid empid
11077 2015-05-06 65 1
11076 2015-05-06 9 4
11075 2015-05-06 68 8

Instead of specifying the number of rows you want to filter, you can use TOP to specify the per-
cent (of the total number of rows in the query result). You do so by providing a value in the range 0
through 100 (typed as FLOAT) and add the PERCENT keyword. For example, in the following query
you request to filter one percent of the rows:

SELECT TOP (1) PERCENT orderid, orderdate, custid, empid
FROM Sales.Orders
ORDER BY orderdate DESC;

SQL Server rounds up the number of rows computed based on the input percent. For example, the
result of 1 percent applied to 830 rows in the Orders table is 8.3. Rounding up this number, you get 9.
Here's the output | got for this query:

orderid orderdate custid empid
11074 2015-05-06 73 7
11075 2015-05-06 68 8
11076 2015-05-06 9 4
11077 2015-05-06 65 1
11070 2015-05-05 44 2
11071 2015-05-05 46 1
11072 2015-05-05 20 4
11073 2015-05-05 58 2
11067 2015-05-04 17 1

Note that to translate the input percent to a number of rows, SQL Server has to first figure out the
count of rows in the query result, and this usually requires extra work.

Interestingly, ordering specification is optional for the TOP filter. For example, consider the follow-
ing query:

SELECT TOP (3) orderid, orderdate, custid, empid
FROM Sales.Orders;

TOP and OFFSET-FETCH

I got the following output from this query:

orderid orderdate custid empid
10248 2013-07-04 85 5
10249 2013-07-05 79

10250 2013-07-08 34 4

The selection of which three rows to return is nondeterministic. This means that if you run the
query again, without the underlying data changing, theoretically you could get a different set of
three rows. In practice, the row selection will depend on physical conditions like optimization choices,
storage engine choices, data layout, and other factors. If you actually run the query multiple times,
as long as those physical conditions don't change, there’s some likelihood you will keep getting the
same results. But it is critical to understand the "physical data independence” principle from the
relational model, and remember that at the logical level you do not have a guarantee for repeatable
results. Without ordering specification, you should consider the order as being arbitrary, resulting in a
nondeterministic row selection.

Even when you do provide ordering specification, it doesn't mean that the query is deterministic.
For example, an earlier TOP query used orderdate, DESC as the ordering specification. The orderdate
column is not unique; therefore, the selection between rows with the same order date is nondeter-
ministic. So what do you do in cases where you must guarantee determinism? There are two options:
using WITH TIES or unique ordering.

The WITH TIES option causes ties to be included in the result. Here's how you apply it to our
example:
SELECT TOP (3) WITH TIES orderid, orderdate, custid, empid
FROM Sales.Orders
ORDER BY orderdate DESC;

Here's the result | got from this query:

orderid orderdate custid empid
11077 2015-05-06 65 1
11076 2015-05-06 9 4
11075 2015-05-06 68 8
11074 2015-05-06 73 7

SQL Server filters the three rows with the most recent order dates, plus it includes all other rows
that have the same order date as in the last row. As a result, you can get more rows than the number
you specified. In this query, you specified you wanted to filter three rows but ended up getting four.
What's interesting to note here is that the row selection is now deterministic, but the presentation
order between rows with the same order date is nondeterministic.

TOP and OFFSET-FETCH 343

344

A quick puzzle

What is the following query looking for? (Try to figure this out yourself before looking at the
answer.)
SELECT TOP (1) WITH TIES orderid, orderdate, custid, empid

FROM Sales.Orders
ORDER BY ROW_NUMBER() OVER(PARTITION BY custid ORDER BY orderdate DESC, orderid DESQC);

Answer: This query returns the most recent order for each customer.

The second method to guarantee a deterministic result is to make the ordering specification
unique by adding a tiebreaker. For example, you could add orderid, DESC as the tiebreaker in our
example. This means that, in the case of ties in the order date values, a row with a higher order ID
value is preferred to a row with a lower one. Here's our query with the tiebreaker applied:

SELECT TOP (3) orderid, orderdate, custid, empid
FROM Sales.Orders
ORDER BY orderdate DESC, orderid DESC;

This query generates the following output:

orderid orderdate custid empid
11077 2015-05-06 65 1
11076 2015-05-06 9 4
11075 2015-05-06 68 8

Use of unique ordering makes both the row selection and presentation ordering deterministic. The
result set as well as the presentation ordering of the rows are guaranteed to be repeatable so long as
the underlying data doesn't change.

If you have a case where you need to filter a certain number of rows but truly don't care about
order, it could be a good idea to specify ORDER BY (SELECT NULL), like so:

SELECT TOP (3) orderid, orderdate, custid, empid
FROM Sales.Orders
ORDER BY (SELECT NULL);

This way, you let everyone know your choice of arbitrary order is intentional, which helps to avoid
confusion and doubt.

As a reminder of what | explained in Chapter 1, “"Logical query processing,” about the TOP and
OFFSET-FETCH filters, presentation order is guaranteed only if the outer query has an ORDER BY
clause. For example, in the following query presentation, ordering is not guaranteed:

SELECT orderid, orderdate, custid, empid
FROM (SELECT TOP (3) orderid, orderdate, custid, empid
FROM Sales.Orders
ORDER BY orderdate DESC, orderid DESC) AS D;

TOP and OFFSET-FETCH

To provide a presentation-ordering guarantee, you must specify an ORDER BY clause in the outer
query, like so:

SELECT orderid, orderdate, custid, empid
FROM (SELECT TOP (3) orderid, orderdate, custid, empid

FROM Sales.Orders

ORDER BY orderdate DESC, orderid DESC) AS D
ORDER BY orderdate DESC, orderid DESC;

The OFFSET-FETCH filter

The OFFSET-FETCH filter is a standard feature designed similar to TOP but with an extra element. You
can specify how many rows you want to skip before specifying how many rows you want to filter.

As you could have guessed, this feature can be handy in implementing paging solutions—that is,
returning a result to the user one chunk at a time upon request when the full result set is too long to
fit in one screen or web page.

The OFFSET-FETCH filter requires an ORDER BY clause to exist, and it is specified right after it. You
start by indicating how many rows to skip in an OFFSET clause, followed by how many rows to filter in
a FETCH clause. For example, based on the indicated order, the following query skips the first 50 rows
and filters the next 25 rows:

SELECT orderid, orderdate, custid, empid
FROM Sales.Orders

ORDER BY orderdate DESC, orderid DESC
OFFSET 50 ROWS FETCH NEXT 25 ROWS ONLY;

In other words, the query filters rows 51 through 75. In paging terms, assuming a page size of 25
rows, this query returns the third page.

To allow natural declarative language, you can use the keyword FIRST instead of NEXT if you like,
though the meaning is the same. Using FIRST could be more intuitive if you're not skipping any rows.
Even if you don't want to skip any rows, T-SQL still makes it mandatory to specify the OFFSET clause
(with 0 ROWS) to avoid parsing ambiguity. Similarly, instead of using the plural form of the keyword
ROWS, you can use the singular form ROW in both the OFFSET and the FETCH clauses. This is more
natural if you need to skip or filter only one row.

If you're curious what the purpose of the keyword ONLY is, it means not to include ties. Standard
SQL defines the alternative WITH TIES; however, T-SQL doesn’t support it yet. Similarly, standard SQL
defines the PERCENT option, but T-SQL doesn’t support it yet either. These two missing options are
available with the TOP filter.

TOP and OFFSET-FETCH 345

As mentioned, the OFFSET-FETCH filter requires an ORDER BY clause. If you want to use arbitrary
order, like TOP without an ORDER BY clause, you can use the trick with ORDER BY (SELECT NULL),
like so:

SELECT orderid, orderdate, custid, empid
FROM Sales.Orders

ORDER BY (SELECT NULL)

OFFSET O ROWS FETCH NEXT 3 ROWS ONLY;

The FETCH clause is optional. If you want to skip a certain number of rows but not limit how many
rows to return, simply don't indicate a FETCH clause. For example, the following query skips 50 rows
but doesn't limit the number of returned rows:

SELECT orderid, orderdate, custid, empid
FROM Sales.Orders

ORDER BY orderdate DESC, orderid DESC
OFFSET 50 ROWS;

Concerning presentation ordering, the behavior is the same as with the TOP filter; namely, with
OFFSET-FETCH also, presentation ordering is guaranteed only if the outermost query has an ORDER
BY clause.

Optimization of filters demonstrated through paging

346

So far, | described the logical design aspects of the TOP and OFFSET-FETCH filters. In this section, I'm
going to cover optimization aspects. I'll do so by looking at different paging solutions. I'll describe
two paging solutions using the TOP filter, a solution using the OFFSET-FETCH filter, and a solution
using the ROW_NUMBER function.

In all cases, regardless of which filtering option you use for your paging solution, an index on the
ordering elements is crucial for good performance. Often you will get good performance even when
the index is not a covering one. Curiously, sometimes you will get better performance when the index
isn't covering. I'll provide the details in the specific implementations.

I'll use the Orders table from the PerformanceV3 database in my examples. Suppose you need to
implement a paging solution returning one page of orders at a time, based on orderid as the sort key.
The table has a nonclustered index called PK_Orders defined with orderid as the key. This index is not
a covering one with respect to the paging queries | will demonstrate.

Optimization of TOP

There are a couple of strategies you can use to implement paging solutions with TOP. One is an
anchor-based strategy, and the other is TOP over TOP (nested TOP queries).

The anchor-based strategy allows the user to visit adjacent pages progressively. You define a
stored procedure that when given the sort key of the last row from the previous page, returns the
next page. Here's an implementation of such a procedure:

TOP and OFFSET-FETCH

USE PerformanceV3;
IF OBJECT_ID(N'dbo.GetPage', N'P') IS NOT NULL DROP PROC dbo.GetPage;

GO

CREATE PROC dbo.GetPage
@orderid AS INT = 0, -- anchor sort key
@pagesize AS BIGINT = 25

AS

SELECT TOP (@pagesize) orderid, orderdate, custid, empid
FROM dbo.Orders

WHERE orderid > @orderid

ORDER BY orderid;

GO

Here I'm assuming that only positive order IDs are supported. Of course, you can implement such
an integrity rule with a CHECK constraint. The query uses the WHERE clause to filter only orders with
order IDs that are greater than the input anchor sort key. From the remaining rows, using TOP, the
query filters the first @pagesize rows based on orderid ordering.

Use the following code to request the first page of orders:
EXEC dbo.GetPage @pagesize = 25;

I got the following result (but yours may vary because of the randomization aspects used in the
creation of the sample data):

orderid orderdate custid empid

2011-01-01 C0000005758 205

2 2011-01-01 C0000015925 251
24 2011-01-01 C0000003541 316
25 2011-01-01 C0000005636 256

In this example, the last sort key in the first page is 25. Therefore, to request the second page of
orders, you pass 25 as the input anchor sort key, like so:

EXEC dbo.GetPage @orderid = 25, @pagesize = 25;

Of course, in practice the last sort key in the first page could be different than 25, but in my sam-
ple data the keys start with 1 and are sequential. | got the following result when running this code:

orderid orderdate custid empid
26 2011-01-01 C0000017397 332
27 2011-01-01 C0000012629 27
28 2011-01-01 C0000016429 53
49 2011-01-01 C0000015415 95
50 2010-12-06 C0000008667 117

To ask for the third page of orders, you pass 50 as the input sort key in the next page request:
EXEC dbo.GetPage @orderid = 50, @pagesize = 25;

TOP and OFFSET-FETCH 347

348

I got the following output for the execution of this code:

orderid orderdate custid empid
51 2011-01-01 C0O000000797 438
52 2011-01-01 C0000015945 47
53 2011-01-01 C0000013558 364
74 2011-01-01 C0000019720 249
75 2011-01-01 C0000000807 160

The execution plan for the query is shown in Figure 5-1. I'll assume the inputs represent the last
procedure call with the request for the third page.

D 25 |::| 25 @ 25 “L“ﬁ;

SELECT Top Nested Lot_)ps Index Seek (NonClustered)
Cost: 0 % Cost: 0 % (Inner Join) [Orders] . [PK_Orders]
’ ’ Cost: 0 % Cost: 4 %
Top Expression [@pagesize] Seek Predicates

Seek Keys[1]: Start: [PerformanceV3].[dbe].
[Orders].orderid = Scalar Operator{[@ crderid])

T
25

Key Lookup (Clustered)
[Orders].[idx_c1_od]
Cost: 96 %

Number of Executions 25

FIGURE 5-1 Plan for TOP with a single anchor sort key.

I'll describe the execution of this plan based on data flow order (right to left). But keep in mind that
the API call order is actually left to right, starting with the root node (SELECT). I'll explain why that’s
important to remember shortly.

The Index Seek operator performs a seek in the index PK_Orders to the first leaf row that satisfies
the Start property of the Seek Predicates property: orderid > @orderid. In the third execution of the
procedure, @orderid is 50. Then the Index Seek operator continues with a range scan in the index leaf
based on the seek predicate. Absent a Prefix property of the Seek Predicates property, the range scan
normally continues until the tail of the index leaf. However, as mentioned, the internal API call order
is done from left to right. The Top operator has a property called Top Expression, which is set in the
plan to @pagesize (25, in our case). This property tells the Top operator how many rows to request
from the Nested Loops operator to its right. In turn, the Nested Loops operator requests the specified
number of rows (25, in our case) from the Index Seek operator to its right. For each row returned from
the Index Seek Operator, Nested Loops executes the Key Lookup operator to collect the remaining
elements from the respective data row. This means that the range scan doesn't proceed beyond the
25th row, and this also means that the Key Lookup operator is executed 25 times.

TOP and OFFSET-FETCH

Not only is the range scan in the Index Seek operator cut short because of TOP's row goal (Top
Expression property), the query optimizer needs to adjust the costs of the affected operators based
on that row goal. This aspect of optimization is described in detail in an excellent article by Paul
White: “Inside the Optimizer: Row Goals In Depth.” The article can be found here: http.//sqlblog.com/
blogs/paul_white/archive/2010/08/18/inside-the-optimiser-row-goals-in-depth.aspx.

The 1/O costs involved in the execution of the query plan are made of the following:
m Seek to the leaf of index: 3 reads (the index has three levels)
m Range scan of 25 rows: 0-1 reads (hundreds of rows fit in a page)

m Nested Loops prefetch used to optimize lookups: 9 reads (measured by disabling prefetch with
trace flag 8744)

m 25 key lookups: 75 reads

In total, 87 logical reads were reported for the processing of this query. That's not too bad. Could
things be better or worse? Yes on both counts. You could get better performance by creating a cover-
ing index. This way, you eliminate the costs of the prefetch and the lookups, resulting in only 3-4 logi-
cal reads in total. You could get much worse performance if you don't have any good index with the
sort column as the leading key—not even a noncovering index. This results in a plan that performs a
full scan of the data, plus a sort. That's a very expensive plan, especially considering that you pay for it
for every page request by the user.

With a single sort key, the WHERE predicate identifying the start of the qualifying range is straight-
forward: orderid > @orderid. With multiple sort keys, it gets a bit trickier. For example, suppose that
the sort vector is (orderdate, orderid), and you get the anchor sort keys @orderdate and @orderid as
inputs to the GetPage procedure. Standard SQL has an elegant solution for this in the form of a fea-
ture called row constructor (aka vector expression). Had this feature been implemented in T-SQL, you
could have phrased the WHERE predicate as follows: (orderdate, orderid) > (@orderdate, @orderid).
This also allows good optimization by using a supporting index on the sort keys similar to the optimi-
zation of a single sort key. Sadly, T-SQL doesn’t support such a construct yet.

You have two options in terms of how to phrase the predicate. One of them (call it the first
predicate form) is the following: orderdate >= @orderdate AND (orderdate > @orderdate OR orderid
> @orderid). Another one (call it the second predicate form) looks like this: (orderdate = @orderdate
AND orderid > @orderid) OR orderdate > @orderdate. Both are logically equivalent, but they do get
handled differently by the query optimizer. In our case, there's a covering index called idx_od_oid_i_
cid_eid defined on the Orders table with the key list (orderdate, orderid) and the include list (custid,
empid).

TOP and OFFSET-FETCH 349

http://sqlblog.com/blogs/paul_white/archive/2010/08/18/inside-the-optimiser-row-goals-in-depth.aspx
http://sqlblog.com/blogs/paul_white/archive/2010/08/18/inside-the-optimiser-row-goals-in-depth.aspx

Here's the implementation of the stored procedure with the first predicate form:

IF OBJECT_ID(N'dbo.GetPage', N'P') IS NOT NULL DROP PROC dbo.GetPage;

GO

CREATE PROC dbo.GetPage
@orderdate AS DATE = '00010101', -- anchor sort key 1 (orderdate)
@orderid AS INT 0, -- anchor sort key 2 (orderid)
@pagesize AS BIGINT = 25

AS

SELECT TOP (@pagesize) orderid, orderdate, custid, empid
FROM dbo.Orders
WHERE orderdate >= @orderdate

AND (orderdate > @orderdate OR orderid > @orderid)
ORDER BY orderdate, orderid;
GO

Run the following code to get the first page:
EXEC dbo.GetPage @pagesize = 25;

| got the following output from this execution:

orderid orderdate custid empid
310 2010-12-03 C0000014672 218
330 2010-12-03 C0000009594 10
90 2010-12-04 C0000012937 231
300 2010-12-07 C0000019961 282
410 2010-12-07 C0000001585 342

Run the following code to get the second page:
EXEC dbo.GetPage @orderdate = '20101207', @orderid = 410, @pagesize = 25;

| got the following output from this execution:

orderid orderdate custid empid
1190 2010-12-07 C0000004678 465
1270 2010-12-07 C0000015067 376
1760 2010-12-07 C0000009532 104
2470 2010-12-09 C0000008664 205
2830 2010-12-09 C0000010497 221

Run the following code to get the third page:
EXEC dbo.GetPage @orderdate = '20101209', @orderid = 2830, @pagesize = 25;

I got the following output from this execution:

350 TOP and OFFSET-FETCH

orderid orderdate custid empid

3120 2010-12-09 C0000015659 381
3340 2010-12-09 C0000008708 272
3620 2010-12-09 C0000009367 312
2730 2010-12-10 C0000015630 317
3490 2010-12-10 C0000002887 306

As for optimization, Figure 5-2 shows the plan | got for the implementation using the first predi-

cate form.
Cost: 0 % Cost: 1 % . _unc_od_oid_i_cid_

Cost: 99 %

Predicate

[PerformanceV3].[dbo] [Crders].[orderdate] »
[@orderdate] OR. [PerformanceV3].[dbo].[Crders].
[orderid] =[@ orderid]

Seek Predicates

Seek Keys[1]: Start: [PerformanceV3].[dbol.
[Qrders].crderdate »= Scalar Operator([@crderdate])

FIGURE 5-2 Plan for TOP with multiple anchor sort keys, first predicate form.

Observe that the Start property of the Seek Predicates property is based only on the predicate

orderdate >= @orderdate. The residual predicate is orderdate > @orderdate OR orderid > @orderid.
Such optimization could result in some unnecessary work scanning the pages holding the first part of
the range with the first qualifying order date with the nonqualifying order IDs—in other words, the
rows where orderdate = @orderdate AND orderid <= @orderid are going to be scanned even though

they need not be returned. How many unnecessary page reads will be performed mainly depends

on the density of the leading sort key—orderdate, in our case. The denser it is, the more unnecessary
work is likely going to happen. In our case, the density of the orderdate column is very low (~1/1500);
it is so low that the extra work is negligible. But, when the leading sort key is dense, you could get a

noticeable improvement by using the second form of the predicate. Here's an implementation of the

stored procedure with the second predicate form:

IF OBJECT_ID(N'dbo.GetPage', N'P') IS NOT NULL DROP PROC dbo.GetPage;
GO
CREATE PROC dbo.GetPage

@orderdate AS DATE = '00010101', -- anchor sort key 1 (orderdate)
@orderid AS INT =0, -- anchor sort key 2 (orderid)
@pagesize AS BIGINT = 25

AS

SELECT TOP (@pagesize) orderid, orderdate, custid, empid
FROM dbo.Orders
WHERE (orderdate = @orderdate AND orderid > @orderid)
OR orderdate > @orderdate
ORDER BY orderdate, orderid;
GO

TOP and OFFSET-FETCH

351

352

Run the following code to get the third page:
EXEC dbo.GetPage @orderdate = '20101209', @orderid = 2830, @pagesize = 25;

The query plan for the implementation with the second form of the predicate is shown in
Figure 5-3.

= = 53

SELECT Top ord In;le?zeek (Nozclgjt?req; -
Cost: 0 % Cost: O % rders].[idx_unc_od_oid_i_cid_ei
Cost: 100 %

Seek Predicates

[1] Seek Keys[1]: Prefix: [PerformanceV3].[dbo].
[Crders].orderdate = Scalar Operator([@orderdate]),
Start: [PerformanceV/3].[dbo].[Orders].orderid » Scalar
Operator([@ orderid]), [2] Seek Keys[1]: Start:
[PerformanceV3].[dbo].[Crders] orderdate » Scalar
Operator([@ orderdate])

FIGURE 5-3 Plan for TOP with multiple anchor sort keys, second predicate form.

Observe that there's no residual predicate, only Seek Predicates. Curiously, there are two seek
predicates. Remember that, generally, the range scan performed by an Index Seek operator starts
with the first match for Prefix and Start and ends with the last match for Prefix. In our case, one
predicate (marked in the plan as [1] Seek Keys...) starts with orderdate = @orderdate AND orderid >
@orderid and ends with orderdate = @orderdate. Another predicate (marked in the plan as [2] Seek
Keys...) starts with orderdate = @orderdate and has no explicit end. What's interesting is that during
query execution, if Top Expression rows are found by the first seek, the execution of the operator
short-circuits before getting to the second. But if the first seek isn't sufficient, the second will be exe-
cuted. The fact that in our example the leading sort key (orderdate) has low density could mislead you
to think that the first predicate form is more efficient. If you test both implementations and compare
the number of logical reads, you might see the first one performing 3 or more reads and the second
one performing 6 or more reads (when two seeks are used). But if you test the solutions with a dense
leading sort key, you will notice a significant difference in favor of the second solution.

There's another method to using TOP to implement paging. You can think of it as the TOP over
TOP, or nested TOP, method. You work with @pagenum and @pagesize as the inputs to the Get-
Page procedure. There's no anchor concept here. You use one query with TOP to filter @pagenum *
@pagesize rows based on the desired order. You define a table expression based on this query (call it
DI). You use a second query against D1 with TOP to filter @pagesize rows, but in inverse order. You
define a table expression based on the second query (call it D2). Finally, you write an outer query
against D2 to order the rows in the desired order. Run the following code to implement the GetPage
procedure based on this approach:

TOP and OFFSET-FETCH

IF OBJECT_ID(N'dbo.GetPage', N'P') IS NOT NULL DROP PROC dbo.GetPage;
GO
CREATE PROC dbo.GetPage
@pagenum AS BIGINT = 1,
@pagesize AS BIGINT = 25
AS

SELECT orderid, orderdate, custid, empid
FROM (SELECT TOP (@pagesize) *
FROM (SELECT TOP (@pagenum * @pagesize) *
FROM dbo.Orders
ORDER BY orderid) AS D1
ORDER BY orderid DESC) AS D2
ORDER BY orderid;
GO

Here are three consecutive calls to the procedure requesting the first, second, and third pages:
EXEC dbo.GetPage @pagenum = 1, @pagesize = 25;

EXEC dbo.GetPage @pagenum = 2, @pagesize = 25;
EXEC dbo.GetPage @pagenum = 3, @pagesize = 25;

The plan for the third procedure call is shown in Figure 5-4.

D s [2h 25 D PR | B D 75 @ 75 @

SELECT sort Top Sort Top I‘;;sted ;ogp; Ind[eox dScan] ([NPnKn[(;Iudster]ed)
Cost: 0 % Cost: 10 % Cost: 0 % Cost: 10 % Cost: 0 % nner Jein raersJ. LFRUrders
Cost: O % Cost: 3 %

Key Lookup (Clustered)
[Orders]. [1dx_c1_od]
Cost: 76 %

Number of Executions 75

FIGURE 5-4 Plan for TOP over TOP.

The plan is not very expensive, but there are three aspects to it that are not optimal when com-
pared to the implementation based on the anchor concept. First, the plan scans the data in the
index from the beginning of the leaf until the last qualifying row. This means that there's repetition
of work—namely, rescanning portions of the data. For the first page requested by the user, the plan
will scan 1 * @pagesize rows, for the second page it will scan 2 * @pagesize rows, for the nth page it
will scan n * @pagesize rows. Second, notice that the Key Lookup operator is executed 75 times even
though only 25 of the lookups are relevant. Third, there are two Sort operators added to the plan:
one reversing the original order to get to the last chunk of rows, and the other reversing it back to the
original order to present it like this. For the third page request, the execution of this plan performed
241 logical reads. The greater the number of pages you have, the more work there is.

The benefit of this approach compared to the anchor-based strategy is that you don't need to
deal with collecting the anchor from the result of the last page request, and the user is not limited to
navigating only between adjacent pages. For example, the user can start with page 1, request page 5,
and so on.

TOP and OFFSET-FETCH 353

354

Optimization of OFFSET-FETCH

The optimization of the OFFSET-FETCH filter is similar to that of TOP. Instead of reinventing the wheel
by creating an entirely new plan operator, Microsoft decided to enhance the existing Top opera-

tor. Remember the Top operator has a property called Top Expression that indicates how many rows
to request from the operator to the right and pass to the operator to the left. The enhanced Top
operator used to process OFFSET-FETCH has a new property called OffsetExpression that indicates
how many rows to request from the operator to the right and not pass to the operator to the left.
The OffsetExpression property is processed before the Top Expression property, as you might have
guessed.

To show you the optimization of the OFFSET-FETCH filter, I'll use it in the implementation of the
GetPage procedure:

IF OBJECT_ID(N'dbo.GetPage', N'P') IS NOT NULL DROP PROC dbo.GetPage;
GO
CREATE PROC dbo.GetPage
@pagenum AS BIGINT = 1,
@pagesize AS BIGINT = 25
AS

SELECT orderid, orderdate, custid, empid

FROM dbo.Orders

ORDER BY orderid

OFFSET (@pagenum - 1) * @pagesize ROWS FETCH NEXT @pagesize ROWS ONLY;
GO

As you can see, OFFSET-FETCH allows a simple and flexible solution that uses the @pagenum and
@pagesize inputs. Use the following code to request the first three pages:

EXEC dbo.GetPage @pagenum = 1, @pagesize = 25;
EXEC dbo.GetPage @pagenum = 2, @pagesize = 25;
EXEC dbo.GetPage @pagenum = 3, @pagesize = 25;

Note Remember that under the default isolation level Read Committed, data changes
between procedure calls can affect the results you get, causing you to get the same row

in different pages or skip some rows. For example, suppose that at point in time T1, you
request page 1. You get the rows that according to the paging sort order are positioned

1 through 25. Before you request the next page, at point in time T2, someone adds a new
row with a sort key that makes it the 20th row. At point in time T3, you request page 2. You
get the rows that, in T1, were positioned 25 through 49 and not 26 through 50. This behav-
ior could be awkward. If you want the entire sequence of page requests to interact with the
same state of the data, you need to submit all requests from the same transaction running
under the snapshot isolation level.

TOP and OFFSET-FETCH

The plan for the third execution of the procedure is shown in Figure 5-5.

3 . @ . = L,

SELECT Top Nested Lot_)ps Index Scan (NonClustered)
Cost: 0 % Cost: 0 % (Inner Join) [Orders].[PK_Orders]
’ : Cost: 0 % Cost: 4 %
OffsetExpression ([@pagenum]-(1))*[@pagesize]
Top Expression @pagesize] 0%0:3
75

Key Lookup (Clustered)
[Orders].[1dx_c1_od]
Cost: 96 %

Number of Executions 75

FIGURE 5-5 Plan for OFFSET-FETCH.

As you can see in the plan, the Top operator first requests OffsetExpression rows (50, in our
example) from the operator to the right and doesn’t pass those to the operator to the left. Then it
requests Top Expression rows (25, in our example) from the operator to the right and passes those to
the operator to the left. You can see two levels of inefficiency in this plan compared to the plan for
the anchor solution. One is that the Index Scan operator ends up scanning 75 rows, but only the last
25 are relevant. This is unavoidable without an input anchor to start after. But the Key Lookup opera-
tor is executed 75 times even though, theoretically, the first 50 times could have been avoided. Such
logic to avoid applying lookups for the first OffsetExpression rows wasn't added to the optimizer. The
number of logical reads required for the third page request is 241. The farther away the page number
you request is, the more lookups the plan applies and the more expensive it is.

Arguably, in paging sessions users don't get too far. If users don't find what they are looking for
after the first few pages, they usually give up and refine their search. In such cases, the extra work is
probably negligible enough to not be a concern. However, the farther you get with the page number
you're after, the more the inefficiency increases. For example, run the following code to request page
1000:

EXEC dbo.GetPage @pagenum = 1000, @pagesize = 25;

This time, the plan involves 25,000 lookups, resulting in a total number of logical reads of 76,644.
Unfortunately, because the optimizer doesn’t have logic to avoid the unnecessary lookups, you need
to figure this out yourself if it's important for you to eliminate unnecessary costs. Fortunately, there is
a simple trick you can use to achieve this. Have the query with the OFFSET-FETCH filter return only the
sort keys. Define a table expression based on this query (call it K, for keys). Then in the outer query,

TOP and OFFSET-FETCH 355

356

join K with the underlying table to return all the remaining attributes you need. Here's the optimized
implementation of GetPage based on this strategy:

ALTER PROC dbo.GetPage
@pagenum AS BIGINT 1,
@pagesize AS BIGINT = 25

AS

WITH K AS
(

SELECT orderid

FROM dbo.Orders

ORDER BY orderid

OFFSET (@pagenum - 1) * @pagesize ROWS FETCH NEXT @pagesize ROWS ONLY
)
SELECT 0O.orderid, O.orderdate, O.custid, O.empid
FROM dbo.Orders AS O

INNER JOIN K

ON O.orderid = K.orderid

ORDER BY 0.orderid;
GO

Run the following code to get the third page:
EXEC dbo.GetPage @pagenum = 3, @pagesize = 25;
You will get the plan shown in Figure 5-6.

E 25 @ 25 @ 25 D 75 @

+——— Nested Loops — Nested Loops — +#— Index 5can (NonClustered)

SELECT - - T
Cost: 0 % (Inner Join) (Inner Join) Cost?po % [Orders]. [PK_Orders]
) Cost: 0 % Cost: 0 %) Cost: 4 %
25 g’
Index Seek (NonClustered)
[Orders].[PK_Orders] [0]
Cost: 8 %
MNumber of Executions 25

e
25 o

— Key Lookup (Clustered)
[Orders].[idx_cl_od] [0]
Cost: BB %

Number of Executions 25

FIGURE 5-6 Plan for OFFSET-FETCH, minimizing lookups.

As you can see, the Top operator is used early in the plan to filter the relevant 25 keys. Then only
25 executions of the Index Seek operator are required, plus 25 executions of the Key Lookup operator
(because PK_Orders is not a covering index). The total number of logical reads required for the pro-
cessing of this plan for the third page request was reduced to 153. This doesn’t seem like a dramatic

TOP and OFFSET-FETCH

improvement when compared to the 241 logical reads used in the previous implementation. But try
running the procedure with a page that's farther out, like 1000:

EXEC dbo.GetPage @pagenum = 1000, @pagesize = 25;

The optimized implementation uses only 223 logical reads compared to the 76,644 used in the
previous implementation. That's a big difference!

Curiously, a noncovering index created only on the sort keys, like PK_Orders in our case, can be
more efficient for the optimized solution than a covering index. That's because with shorter rows,
more rows fit in a page. So, in cases where you need to skip a substantial number of rows, you get to
do so by scanning fewer pages than you would with a covering index. With a noncovering index, you
do have the extra cost of the lookups, but the optimized solution reduces the number of lookups to
the minimum.

OFFSET TO | AFTER

As food for thought, if you could change or extend the design of the OFFSET-FETCH filter, what
would you do? You might find it useful to support an alternative OFFSET option that is based on
an input-anchor sort vector. Imagine syntax such as the following (which shows additions to the
standard syntax in bold):

OFFSET { <offset row count> { ROW | ROWS } | { TO | AFTER (<sort vector>) } }

FETCH { FIRST | NEXT } [<fetch first quantity>] { ROW | ROWS } { ONLY | WITH TIES }
[LAST ROW INTO (<variables vector>)]

You would then use a query such as the following in the GetPage procedure (but don't try it,
because it uses unsupported syntax):
SELECT orderid, orderdate, custid, empid
FROM dbo.Orders
ORDER BY orderdate, orderid
OFFSET AFTER (@anchor_orderdate, @anchor_orderid) -- input anchor sort keys

FETCH NEXT @pagesize ROWS ONLY
LAST ROW INTO (@last_orderdate, @last_orderid); -- outputs for next page request

The suggested anchor-based offset has a couple of advantages compared to the exist-
ing row count-based offset. The former lends itself to good optimization with an index seek
directly to the first matching row in the leaf of a supporting index. Also, by using the former,
you can see changes in the data gracefully, unlike with the latter.

TOP and OFFSET-FETCH 357

358

Optimization of ROW_NUMBER

Another common solution for paging is using the ROW_NUMBER function to compute row num-
bers based on the desired sort and then filtering the right range of row numbers based on the input

@pagenum and @pagesize.

Here's the implementation of the GetPage procedure based on this strategy:

IF OBJECT_ID(N'dbo.GetPage', N'P') IS NOT NULL DROP PROC dbo.GetPage;
GO
CREATE PROC dbo.GetPage
@pagenum AS BIGINT = 1,
@pagesize AS BIGINT = 25
AS

WITH C AS
(
SELECT orderid, orderdate, custid, empid,
ROW_NUMBER() OVER(ORDER BY orderid) AS rn
FROM dbo.Orders

)

SELECT orderid, orderdate, custid, empid

FROM C

WHERE rn BETWEEN (@pagenum - 1) * @pagesize + 1 AND @pagenum * @pagesize
ORDER BY rn; -- if order by orderid get sort in plan

GO

Run the following code to request the first three pages:

EXEC dbo.GetPage @pagenum = 1, @pagesize = 25;
EXEC dbo.GetPage @pagenum = 2, @pagesize = 25;
EXEC dbo.GetPage @pagenum = 3, @pagesize = 25;

The plan for the third page request is shown in Figure 5-7.

Ij 25 75 D 75 D»EI 75 75 @

SELECT Eilter Top Sequence Project Segment Nested Loops

. (Compute Scalar) . R (Inner Join)
Cost: 0 % Cost: 0 % Cost: 0 % Cost: O % Cost: 0 % Cost: 0 %

FIGURE 5-7 Plan for ROW_NUMBER.

s o

Index Scan (NonClustered)
[Orders].[PK_Orders]
Cost: 1 %

75 Pt
Key Lookup (Clustered)

[Orders]. [idx_c1_od]
Cost: 99 %

Number of Executions 75

Interestingly, the optimization of this solution is similar to that of the solution based on the
OFFSET-FETCH filter. You will find the same inefficiencies, including the unnecessary lookups. As a
result, the costs are virtually the same. For the third page request, the number of logical reads is 241.

Run the procedure again asking for page 1000:

EXEC dbo.GetPage @pagenum = 1000, @pagesize = 25;

TOP and OFFSET-FETCH

The number of logical reads is now 76,644. You can avoid the unnecessary lookups by applying the
same optimization principle used in the improved OFFSET-FETCH solution, like so:

ALTER PROC dbo.GetPage
@pagenum AS BIGINT 1,
@pagesize AS BIGINT = 25

AS

WITH C AS

(
SELECT orderid, ROW_NUMBER() OVER(ORDER BY orderid) AS rn
FROM dbo.Orders

)
K AS
(
SELECT orderid, rn
FROM C
WHERE rn BETWEEN (@pagenum - 1) * @pagesize + 1 AND @pagenum * @pagesize
)

SELECT O.orderid, O.orderdate, O.custid, O.empid
FROM dbo.Orders AS O
INNER JOIN K
ON O.orderid = K.orderid
ORDER BY K.rn;
GO

Run the procedure again requesting the third page:
EXEC dbo.GetPage @pagenum = 3, @pagesize = 25;

The plan for the optimized solution is shown in Figure 5-8.

=9 ., 8 . 8 .=m.3, ¥ .m 52
«— Nested Loops £— ~ Mested Loops - — +— Sequence Project +— +=— Index Scan (NonClustered)
SELECT a Soim (1 Join) Filter Top (Compute Scalar) segment [Orders]. [PK_Orders]
Cost: 0 % nner Join nner Join Cost: 0 % Cost: 0 % ompute Scalar Cost: 0 % rders]. _Orders

Cost: 0 % Cost: 0 % Cost: 0 % Cost: 6 %

s

Index Seek (NonClustered)
[orders].[PK_Orders] [0]
Cost: 47 %

; [
i Number of Executions 25

o

25

Key Lookup (Clustered)

[Orders].[idx_c1_od] [0]
Cost: 47 %

Number of Executions 25

FIGURE 5-8 Plan for ROW_NUMBER, minimizing lookups.

Observe that the Top operator filters the first 75 rows, and then the Filter operator filters the last
25, before applying the seeks and the lookups. As a result, the seeks and lookups are executed only
25 times. The execution of the plan for the third page request involves 153 logical reads, compared
to 241 required by the previous solution.

Run the procedure again, this time requesting page 1000:
EXEC dbo.GetPage @pagenum = 1000, @pagesize = 25;

TOP and OFFSET-FETCH 359

This execution requires only 223 logical reads, compared to 76,644 required by the previous
solution.

Using the TOP option with modifications

360

T-SQL supports using the TOP filter with modification statements. This section first describes this
capability, and then its limitation and a workaround for the limitation. Then it describes a practical use
case for this capability when you need to delete a large number of rows.

In my examples, I'll use a table called MyOrders. Run the following code to create this table as an
initial copy of the Orders table in the PerformanceV3 database:

USE PerformanceV3;

IF OBJECT_ID(N'dbo.MyOrders', N'U') IS NOT NULL DROP TABLE dbo.MyOrders;

GO

SELECT * INTO dbo.MyOrders FROM dbo.Orders;

CREATE UNIQUE CLUSTERED INDEX idx_od_oid ON dbo.MyOrders(orderdate, orderid);

TOP with modifications

With T-SQL, you can use TOP with modification statements. Those statements are INSERT TOP, DELETE
TOP, UPDATE TOP, and MERGE TOP. This means the statement will stop modifying rows once the
requested number of rows are affected. For example, the following statement deletes 50 rows from
the table MyOrders:

DELETE TOP (50) FROM dbo.MyOrders;

When you use TOP in a SELECT statement, you can control which rows get chosen using the
ORDER BY clause. But modification statements don’t have an ORDER BY clause. This means you can
indicate how many rows you want to modify, but not based on what order—at least, not directly.

So the preceding statement deletes 50 rows, but you cannot control which 50 rows get deleted. You
should consider the order as being arbitrary. In practice, it depends on optimization and data layout.

This limitation is a result of the design choice that the TOP ordering is to be defined by the tradi-
tional ORDER BY clause. The traditional ORDER BY clause was originally designed to define presenta-
tion order, and it is available only to the SELECT statement. Had the design of TOP been different,
with its own ordering specification that is not related to presentation ordering, it would have been
natural to use also with modification statements. Here's an example for what such a design might
have looked like (but don't run the code, because this syntax isn't supported):

DELETE TOP (50) OVER(ORDER BY orderdate, orderid) FROM dbo.MyOrders;

Fortunately, when you do need to control which rows get chosen, you can use a simple trick as a
workaround. Use a SELECT query with a TOP filter and an ORDER BY clause. Define a table expression
based on that query. Then issue the modification against the table expression, like so:

TOP and OFFSET-FETCH

WITH C AS

(
SELECT TOP (50) *
FROM dbo.MyOrders
ORDER BY orderdate, orderid

)
DELETE FROM C;

In practice, the rows from the underlying table will be affected. You can think of the modification
as being defined through the table expression.

The OFFSET-FETCH filter is not supported directly with modification statements, but you can use a
similar trick like the one with TOP.

Modifying in chunks

Having TOP supported by modification statements without the ability to indicate order might seem
futile, but there is a practical use case involving modifying large volumes of data. As an example, sup-
pose you need to delete all rows from the MyOrders table where the order date is before 2013. The
table in our example is fairly small, having about 1,000,000 rows. But imagine there were 100,000,000
rows, and the number of rows to delete was about 50,000,000. If the table was partitioned (say, by
year), things would be easy and highly efficient. You switch a partition out to a staging table and then
drop the staging table. However, what if the table is currently not partitioned? The intuitive thing to
do is to issue a simple DELETE statement to do the job as a single transaction, like so (but don't run
this statement):

DELETE FROM dbo.MyOrders WHERE orderdate < '20130101';

Such an approach can get you into trouble in a number of ways.

A DELETE statement is fully logged, unlike DROP TABLE and TRUNCATE TABLE statements. Log
writes are sequential; therefore, log-intensive operations tend to be slow and hard to optimize
beyond a certain point. For example, deleting 50,000,000 rows can take many minutes to finish.

There's a section in the log considered to be the active portion, starting with the oldest open
transaction and ending with the current pointer in the log. The active portion cannot be recycled. So
when you have a long-running transaction, it can cause the transaction log to expand, sometimes well
beyond its typical size for your database. This can be an issue if you have limited disk space.

Modification statements acquire exclusive locks on the modified resources (row or page locks, as
decided by SQL Server dynamically), and exclusive locks are held until the transaction finishes. Each
lock is represented by a memory structure that is approximately 100 bytes in size. Acquiring a large
number of locks has two main drawbacks. For one, it requires large amounts of memory. Second, it
takes time to allocate the memory structures, which adds to the time it takes the transaction to com-
plete. To reduce the memory footprint and allow a faster process, SQL Server will attempt to escalate
from the initial granularity of locks (row or page) to a table lock (or partition, if configured). The first
trigger for SQL Server to attempt escalation is when the same transaction reaches 5,000 locks against
the same object. If unsuccessful (for example, another transaction is holding locks that the escalated

TOP and OFFSET-FETCH 361

362

lock would be in conflict with), SQL Server will keep trying to escalate every additional 1,250 locks.
When escalation succeeds, the transaction locks the entire table (or partition) until it finishes. This
behavior can cause concurrency problems.

If you try to terminate such a large modification that is in progress, you will face the consequences
of a rollback. If the transaction was already running for a while, it will take a while for the rollback to
finish—typically, more than the original work.

To avoid the aforementioned problems, the recommended approach to apply a large modification
is to do it in chunks. For our purge process, you can run a loop that executes a DELETE TOP state-
ment repeatedly until all qualifying rows are deleted. You want to make sure that the chunk size is not
too small so that the process will not take forever, but you want it to be small enough not to trigger
lock escalation. The tricky part is figuring out the chunk size. It takes 5,000 locks before SQL Server
attempts escalation, but how does this translate to the number of rows you're deleting? SQL Server
could decide to use row or page locks initially, plus when you delete rows from a table, SQL Server
deletes rows from the indexes that are defined on the table. So it’s hard to predict what the ideal
number of rows is without testing.

A simple solution could be to test different numbers while running a trace or an extended events
session with a lock-escalation event. For example, | ran the following extended events session with a
Live Data window open, while issuing DELETE TOP statements from a session with session ID 53:

CREATE EVENT SESSION [Lock_Escalation] ON SERVER
ADD EVENT sqglserver.lock_escalation(
WHERE ([sqglserver].[session_id]=(53)));

| started with 10,000 rows using the following statement:
DELETE TOP (10000) FROM dbo.MyOrders WHERE orderdate < '20130101';

Then | adjusted the number, increasing or decreasing it depending on whether an escalation event
took place or not. In my case, the first point where escalation happened was somewhere between
6,050 and 6,100 rows. Once you find it, you don't want to use that point minus 1. For example, if you
add indexes later on, the point will become lower. To be on the safe side, | take the number that | find
in my testing and divide it by two. This should leave enough room for the future addition of indexes.
Of course, it's worthwhile to retest from time to time to see if the number needs to be adjusted.

Once you have the chunk size determined (say, 3,000), you implement the purge process as a loop
that deletes one chunk of rows at a time using a DELETE TOP statement, like so:

SET NOCOUNT ON;

WHILE 1 =1

BEGIN
DELETE TOP (3000) FROM dbo.MyOrders WHERE orderdate < '20130101';
IF @@ROWCOUNT < 3000 BREAK;

END

TOP and OFFSET-FETCH

The code uses an infinite loop. Every execution of the DELETE TOP statement deletes up to 3,000
rows and commits. As soon as the number of affected rows is lower than 3,000, you know that you've
reached the last chunk, so the code breaks from the loop. If this process is running (and during peak
hours), you want to abort it, and it's quite safe to stop it. Only the current chunk will undergo a roll-
back. You can then run it again in the next window you have for this and the process will simply pick
up where it left off.

Top N per group

The top N per group task is a classic task that appears in many shapes in practice. Examples include
the following: “Return the latest price for each security,” “Return the employee who handled the most
orders for each region,” "Return the three most recent orders for each customer,” and so on. Interest-
ingly, like with many other examples in T-SQL, it's not like there’s one solution that is considered the
most efficient in all cases. Different solutions work best in different circumstances. For top N per group
tasks, two main factors determine which solution is most efficient: the availability of a supporting
index and the density of the partitioning (group) column.

The task I will use to demonstrate the different solutions is returning the three most recent orders
for each customer from the Sales.Orders table in the TSQLV3 database. In any top N per group task,
you need to identify the elements involved: partitioning, ordering, and covering. The partitioning ele-
ment defines the groups. The ordering element defines the order—based on which, you filter the first
N rows in each group. The covering element simply represents the rest of the columns you need to
return. Here are the elements in our sample task:

m Partitioning: custid
m Ordering: orderdate DESC, orderid DESC
m Covering: empid

As mentioned, one of the important factors contributing to the efficiency of solutions is the
availability of a supporting index. The recommended index is based on a pattern | like to think of as
POC—the acronym for the elements involved (partitioning, ordering, and covering). The PO elements
should form the index key list, and the C element should form the index include list. If the index is
clustered, only the key list is relevant; all the rest of the columns are included in the leaf row, anyway.
Run the following code to create the POC index for our sample task:

USE TSQLV3;

CREATE UNIQUE INDEX idx_poc ON Sales.Orders(custid, orderdate DESC, orderid DESC)
INCLUDE (empid);

The other important factor in determining which solution is most efficient is the density of the par-
titioning element (custid, in our case). The Sales.Orders table in our example is very small, but imagine
the same structure with a larger volume of data—say, 10,000,000 rows. The row size in our index is

TOP and OFFSET-FETCH 363

364

quite small (22 bytes), so over 300 rows fit in a page. This means the index will have about 30,000
pages in its leaf level and will be three levels deep. I'll discuss two density scenarios in my examples:

= Low density: 1,000,000 customers, with 10 orders per customer on average
m High density: 10 customers, with 1,000,000 orders per customer on average

I'll start with a solution based on the ROW_NUMBER function that is the most efficient in the low-
density case. I'll continue with a solution based on TOP and APPLY that is the most efficient in the
high-density case. Finally, I'll describe a solution based on concatenation that performs better than
the others when a POC index is not available, regardless of density.

Solution using ROW_NUMBER

Two main optimization strategies can be used to carry out our task. One strategy is to perform a seek
for each customer in the POC index to the beginning of that customer’s section in the index leaf, and
then perform a range scan of the three qualifying rows. Another strategy is to perform a single scan
of the index leaf and then filter the interesting rows as part of the scan.

The former strategy is not efficient for low density because it involves a large number of seeks. For
1,000,000 customers, it requires 1,000,000 seeks. With three levels in the index, this approach trans-
lates to 3,000,000 random reads. Therefore, with low density, the strategy involving a single full scan
and a filter is more efficient. From an I/O perspective, it should cost about 30,000 sequential reads.

To achieve the more efficient strategy for low density, you use the ROW_NUMBER function. You
write a query that computes row numbers that are partitioned by custid and ordered by orderdate
DESC, orderid DESC. This query is optimized with a single ordered scan of the POC index, as desired.
You then define a CTE based on this query and, in the outer query, filter the rows with a row num-
ber that is less than or equal to 3. This part adds a Filter operator to the plan. Here's the complete
solution:

WITH C AS
(
SELECT
ROW_NUMBER() OVER(
PARTITION BY custid
ORDER BY orderdate DESC, orderid DESC) AS rownum,
orderid, orderdate, custid, empid
FROM Sales.Orders
)
SELECT custid, orderdate, orderid, empid
FROM C
WHERE rownum <= 3;

The execution plan for this solution is shown in Figure 5-9.

TOP and OFFSET-FETCH

= B ks

SeueCr T et T g e S g I Sean (nclustered
Cost: 0 % Cost: 6 % Cost: 1% Cost: 0 % Cost: 07 %

FIGURE 5-9 Plan for a solution with ROW_NUMBER.

As you can see, the majority of the cost of this plan is associated with the ordered scan of the POC
index. As mentioned, if the table had 10,000,000 rows, the I/O cost would be about 30,000 sequential
reads.

Solution using TOP and APPLY

If you have high density (10 customers, with 1,000,000 rows each), the strategy with the index scan is
not the most efficient. With a small number of partitions (customers), a plan that performs a seek in
the POC index for each partition is much more efficient.

If only a single customer is involved in the task, you can achieve a plan with a seek by using the
TOP filter, like so:

SELECT TOP (3) orderid, orderdate, empid
FROM Sales.Orders

WHERE custid = 1

ORDER BY orderdate DESC, orderid DESC;

To apply this logic to each customer, use the APPLY operator with the preceding query against the
Customers table, like so:

SELECT C.custid, A.orderid, A.orderdate, A.empid
FROM Sales.Customers AS C
CROSS APPLY (SELECT TOP (3) orderid, orderdate, empid
FROM Sales.Orders AS O
WHERE O.custid = C.custid
ORDER BY orderdate DESC, orderid DESC) AS A;

The execution plan for this solution is shown in Figure 5-10.

= c] I,

SELECT === Nested Loops &=—— Index Scan (MNonClustered)
Cost: 0 % (Inner Join) [Customers].[1dx_nc_region] [C]
: Cost: 5 % Cost: 14 %
e ————— Top == Index Seek (NonClustered)
Cost: 0 % [Orders].[1dx_poc] [0]

Cost: B1 %

FIGURE 5-10 Plan for a solution with TOP and APPLY.

You get the desired plan for high density. With only 10 customers, this plan requires about 30 logi-
cal reads. That's big savings compared to the cost of the scan strategy, which is 30,000 reads.

TOP and OFFSET-FETCH 365

366

TOP OVER

Again, as a thought exercise, if you could change or extend the design of the TOP filter, what
would you do? In the existing design, the ordering specification for TOP is based on the under-
lying query’s ORDER BY clause. An alternative design is for TOP to use its own ordering specifi-
cation that is separate from the underlying query’'s ORDER BY clause. This way, it is clear that the
TOP ordering doesn't provide any presentation-ordering guarantees, plus it would allow you to
use a different ordering specification for the TOP filter and for presentation purposes. Further-
more, the TOP syntax could benefit from a partitioning element, in that the filter is applied per
partition. Because the OVER clause used with window functions already supports partitioning
and ordering specifications, there's no need to reinvent the wheel. A similar syntax can be used
with TOP, like so:

TOP (< expression >) [PERCENT] [WITH TIES]
[OVERC [PARTITION BY (< partition by 1list >)] [ORDER BY (<order by Tist>)]) 1]

You then use the following query to request the three most recent orders for each customer
(but do not run this query, because it relies on unsupported syntax):
SELECT TOP (3) OVER (PARTITION BY custid ORDER BY orderdate, orderid)

orderid, orderdate, custid, empid

FROM dbo.Orders
ORDER BY custid, orderdate, orderid;

You can find a request to Microsoft to improve the TOP filter as described here in the
following link: http.//connect.microsoft.com/SQLServer/feedback/details/254390/over-clause-
enhancement-request-top-over. Implementing such a design in SQL Server shouldn’t cause

compatibility issues. SQL Server could assume the original behavior when an OVER clause isn't
present and the new behavior when it is.

Solution using concatenation (a carry-along sort)

Absent a POC index, both solutions | just described become inefficient and have problems scaling.
The solution based on the ROW_NUMBER function will require sorting. Sorting has n log n scaling,
becoming more expensive per row as the number of rows increases. The solution with the TOP filter
and the APPLY operator might require an Index Spool operator (which involves the creation of an
index during the plan) and sorting.

Interestingly, when N equals 1 in the top N per group task and a POC index is absent, there’s a third
solution that performs and scales better than the other two.

Make sure you drop the POC index before proceeding:
DROP INDEX 1idx_poc ON Sales.Orders;

The third solution is based on the concatenation of elements. It implements a technique you can
think of as a carry-along sort. You start by writing a grouped query that groups the rows by the P

TOP and OFFSET-FETCH

http://connect.microsoft.com/SQLServer/feedback/details/254390/over-clause-enhancement-request-top-over
http://connect.microsoft.com/SQLServer/feedback/details/254390/over-clause-enhancement-request-top-over

element (custid). In the SELECT list, you convert the O (orderdate DESC, orderid DESC) and C (empid)
elements to strings and concatenate them into one string. What's important here is to convert the
original values into string forms that preserve the original ordering behavior of the values. For exam-
ple, use leading zeros for integers, use the form YYYYMMDD for dates, and so on. It's only important
to preserve ordering behavior for the O element to filter the right rows. The C element should be
added just to return it in the output. You apply the MAX aggregate to the concatenated string. This
results in returning one row per customer, with a concatenated string holding the elements from the
most recent order. Finally, you define a CTE based on the grouped query, and in the outer query you
extract the individual columns from the concatenated string and convert them back to the original
types. Here's the complete solution query:

WITH C AS
(
SELECT
custid,
MAX((CONVERT(CHAR(8), orderdate, 112)
+ RIGHT('000000000"' + CAST(orderid AS VARCHAR(10)), 10)
+ CAST(empid AS CHAR(10))) COLLATE Latinl_General_BIN2) AS s
FROM Sales.Orders
GROUP BY custid

)

SELECT custid,
CAST(SUBSTRING(s, 1, 8) AS DATE) AS orderdate,
CAST(SUBSTRING(s, 9, 10) AS INT) AS orderid,
CAST(SUBSTRING(s, 19, 10) AS CHAR(10)) AS empid

FROM C;

What's nice about this solution is that it scales much better than the others. With a small input
table, the optimizer usually sorts the data and then uses an order-based aggregate (the Stream
Aggregate operator). But with a large input table, the optimizer usually uses parallelism, with a local
hash-based aggregate for each thread doing the bulk of the work, and a global aggregate that
aggregates the local ones. You can see this approach by running the carry-along-sort solution against
the Orders table in the PerformanceV3 database:

USE PerformanceV3;

WITH C AS
(
SELECT
custid,
MAX((CONVERT(CHAR(8), orderdate, 112)
+ RIGHT('000000000"' + CAST(orderid AS VARCHAR(10)), 10)
+ CAST(empid AS CHAR(10))) COLLATE Latinl_General_BIN2) AS s
FROM dbo.Orders
GROUP BY custid

)

SELECT custid,
CAST(SUBSTRING(s, 1, 8) AS DATE) AS orderdate,
CAST(SUBSTRING(s, 9, 10) AS INT) AS orderid,
CAST(SUBSTRING(s, 19, 10) AS CHAR(10)) AS empid

FROM C;

TOP and OFFSET-FETCH 367

The execution plan for this query is shown in Figure 5-11.

= e =3 23 |
= ¢ g ¥ 2 = 2
SELECT Compute scalar Parallelism Hash Match Parallelism Hash Match Compute Scalar Index Scan (NonClustered)

- o (Gather streams) (Aggregate) (Repartition Streams) (Partial Aggregate) o) [Orders]. [dx_un<_od_oid_i_cid_eid]
Cost: 0% Cost: 0% Cost: 1% Cost: 5 % Cost: 2 % Cost: 38 % Cost: 0% Cost: 54 %

FIGURE 5-11 Plan for a solution using concatenation.

This exercise emphasizes again that there are usually multiple ways to solve any given querying
task, and it's not like one of the solutions is optimal in all cases. In query tuning, different factors are
at play, and under different conditions different solutions are optimal.

Median

368

Given a set of values, the median is the value below which 50 percent of the values fall. In other
words, median is the 50th percentile. Median is such a classic calculation in the statistical analysis of
data that many T-SQL solutions were created for it over time. | will focus on three solutions. The first
uses the PERCENTILE_CONT window function. The second uses the ROW_NUMBER function. The third
uses the OFFSET-FETCH filter and the APPLY operator.

Our calculation of median will be based on the continuous-distribution model. What this translates
to is that when you have an odd number of elements involved, you should return the middle element.
When you have an even number, you should return the average of the two middle elements. The
alternative to the continuous model is the discrete model, which requires the returned value to be an
existing value in the input set.

In my examples, I'll use a table called T1 with groups represented by a column called grp and
values represented by a column called val. You're supposed to compute the median value for each
group. The optimal index for median solutions is one defined on (grp, val) as the key elements. Use
the following code to create the table and fill it with a small set of sample data to verify the validity of
the solutions:

USE tempdb;
IF OBJECT_ID(N'dbo.T1', N'U') IS NOT NULL DROP TABLE dbo.T1;
GO

CREATE TABLE dbo.T1

(

id INT NOT NULL IDENTITY
CONSTRAINT PK_T1 PRIMARY KEY,

grp INT NOT NULL,

val INT NOT NULL

H

CREATE INDEX idx_grp_val ON dbo.T1l(grp, val);
INSERT INTO dbo.T1(grp, val)

VALUES(1, 30),(1, 10),(1, 100),
(2, 65),(2, 60),(2, 65),(2, 10);

TOP and OFFSET-FETCH

Use the following code to populate the table with a large set of sample data (10 groups, with
1,000,000 rows each) to check the performance of the solutions:

DECLARE
@numgroups AS INT = 10,
@rowspergroup AS INT = 1000000;

TRUNCATE TABLE dbo.T1;
DROP INDEX idx_grp_val ON dbo.T1;

INSERT INTO dbo.T1l WITH(TABLOCK) (grp, val)
SELECT G.n, ABS(CHECKSUM(NEWID())) % 10000000
FROM TSQLV3.dbo.GetNums(1l, @numgroups) AS G
CROSS JOIN TSQLV3.dbo.GetNums(l, @rowspergroup) AS R;

CREATE INDEX idx_grp_val ON dbo.T1l(grp, val);

Solution using PERCENTILE_CONT

Starting with SQL Server 2012, T-SQL supports window functions to compute percentiles. PERCEN-
TILE_CONT implements the continuous model, and PERCENTILE_DISC implements the discrete model.
The functions are not implemented as grouped, ordered set functions; rather, they are implemented
as window functions. This means that instead of grouping the rows by the grp column, you will define
the window partition based on grp. Consequently, the function will return the same result for all rows
in the same partition instead of once per group. To get the result only once per group, you need to
apply the DISTINCT option. Here's the solution to compute median using the continuous model with
PERCENTILE_CONT:

SELECT
DISTINCT grp, PERCENTILE_CONT(0.5) WITHIN GROUP(ORDER BY val) OVER(PARTITION BY grp) AS median
FROM dbo.T1;

After you overcome the awkwardness in using a window function instead of a grouped one, you
might find the solution agreeable because of its simplicity and brevity. That's until you actually run it
and look at its execution plan (which is not for the faint of heart). The plan for the solution is very long
and inefficient. It does two rounds of spooling the data in work tables, reading each spool twice—
once to get the detail and once to compute aggregates. It took the solution 79 seconds to complete
in my system against the big set of sample data. If good performance is important to you, you should
consider other solutions.

Solution using ROW_NUMBER

The second solution defines two CTEs. One called Counts is based on a grouped query that computes
the count (column cnt) of rows per group. Another is called RowNums, and it computes row numbers
(column n) for the detail rows. The outer query joins Counts with RowNums, and it filters only the
relevant values for the median calculation. (Keep in mind that that the relevant values are those where
nis (cnt+1)/2 or (cnt+2)/2, using integer division.) Finally, the outer query groups the remaining rows

TOP and OFFSET-FETCH 369

370

by the grp column and computes the average of the val column as the median. Here's the complete
solution:

WITH Counts AS
(
SELECT grp, COUNT(*) AS cnt
FROM dbo.T1
GROUP BY grp
),
RowNums AS
(
SELECT grp, val,
ROW_NUMBER() OVER(PARTITION BY grp ORDER BY val) AS n
FROM dbo.T1
)
SELECT C.grp, AVG(1l. * R.val) AS median
FROM Counts AS C
INNER MERGE JOIN RowNums AS R
on C.grp = R.grp
WHERE R.n IN ((C.cnt +1) /2, (C.ecnt +2) / 2)
GROUP BY C.grp;

The plan for this solution is shown in Figure 5-12.

= E — 3T
I @g b
% I % b5
SELECT Compute Scalar Stream Aggregate Merge loin Compute Scalar Stream Aggregate Index Scan (NonClustered)
Cost: 0 % Cost: 0 % (Aggregate) (Inner Join) Cost: 0 % (Aggregate) [T11.[idx_grp_vall
) . Cost: 6 % Cost: 32 %) Cost: 6 % Cost: 27 %
Compute Scalar Sequence Project Segment Index Scan (NonClustered)
Cost: 1 % (Compute Scalar) Cost: 0 % [T1]. [idx_grp_val]
) Cost: 1 %) Cost: 27 %

FIGURE 5-12 Plan for a solution using ROW_NUMBER.

SQL Server chose a serial plan that performs two scans of the index, a couple of order-based
aggregates, a computation of row numbers, and a merge join. Compared to the previous solution
with the PERCENTILE_CONT function, the new solution is quite efficient. It took only 8 seconds to
complete in my system. Still, perhaps there’s room for further improvements. For example, you could
try to come up with a solution that uses a parallel plan, you could try to reduce the number of pages
that need to be scanned, and you could try to eliminate the fairly expensive merge join.

Solution using OFFSET-FETCH and APPLY

The third solution I'll present uses the APPLY operator and the OFFSET-FETCH filter. The solution
defines a CTE called C, which is based on a grouped query that computes for each group parameters
for the OFFSET and FETCH clauses based on the group count. The offset value (call it ov) is computed
as (count — 1) / 2, and the fetch value (call it fv) is computed as 2 — count % 2. For example, if you have
a group with 11 rows, ovis 5 and fv is 1. For a group with 12 rows, ovis 5 and fv is 2. The outer query
applies to each group in C an OFFSET-FETCH query that retrieves the relevant values. Finally, the outer
query groups the remaining rows and computes the average of the values as the median.

TOP and OFFSET-FETCH

WITH C AS
(
SELECT grp,
COUNT(*) AS cnt,
(COUNT(*) - 1) / 2 AS ov,
2 - COUNT(*) % 2 AS fv
FROM dbo.T1
GROUP BY grp
)
SELECT grp, AVG(1l. * val) AS median
FROM C
CROSS APPLY (SELECT 0.val
FROM dbo.T1 AS O
where 0.grp = C.grp
order by 0.val
OFFSET C.ov ROWS FETCH NEXT C.fv ROWS ONLY) AS A
GROUP BY grp;

The plan for this solution is shown in Figure 5-13.

DT T
)—l 2 2
el = = 3 b it 53
— :
Nested Loops Compute Scalar —_ Conpute Scalar +— Stream Aggregate «— Par'a'!'\e'hsm +~— Stream Aggregate <] Index Scan (NonClustered)
(Inner Join) Cost: 0 % Cost: 0 % (Aggregate) (Repartition Streams) (Aggregate) [T1]. [idx_grp_val]
Cost: 0 % P P Cost: 0 % Cost: 0% Cost: 7 % Cost: 92 %
= ! oL
= £ 1a. T TIndex Seek (NonClustered)
Top Compute Scalar [T1].idx_arp_vall [0]
Cost: 0 % Cost: 0 % . —are-
Cost: 0 %
T
= : £ - 1
k T = e
SELECT " Compute Scalar +— Stream Aggregate ~— Parallelisa +—— Stream Agoregate
Cost: 0 % Cost: 0 % (Aggregate) (Gather Streams) (Aggregate)
° ° Cost: 0 % Cost: 0 % Cost: 0 %

FIGURE 5-13 Plan for a solution using OFFSET-FETCH and APPLY.

The plan for the third solution has three advantages over the plan for the second. One is that
it uses parallelism efficiently. The second is that the index is scanned in total one and a half times
rather than two. The cost of the seeks is negligible here because the data has dense groups. The third
advantage is that there’s no merge join in the plan. It took only 1 second for this solution to complete
on my system. That's quite impressive for 10,000,000 rows.

Conclusion

This chapter covered the TOP and OFFSET-FETCH filters. It started with a logical description of the
filters. It then continued with optimization aspects demonstrated through paging solutions. You saw
how critical it is to have an index on the sort columns to get good performance. Even with an index, |
gave recommendations how to alter the solutions to avoid unnecessary lookups.

The chapter also covered modifying data with the TOP filter. Finally, the chapter concluded by
demonstrating the use of TOP and OFFSET-FETCH to solve common tasks like top N per group and
using a median value.

TOP and OFFSET-FETCH 371

This page intentionally left blank

Index

Symbols

= (equality) operator

cardinality estimates for, 110, 113-114, 561

equi joins, 230-231
> (greater than) operator, cardinality estimates for, 561
< (less than) operator, cardinality estimates for, 561

A

absolute frequencies, 476-479
absolute percentages, 476-479
absolute values, computing, 323-324
access methods. See also scans; seeks
allocation order scan safety issues, 65-76
allocation order scans vs. index order scans, 65
clustered index seek + range scan, 93-94
cost associations of, 57
covering nonclustered index seek + range scan,
94-97
dm_db_index_usage_stats function, 135-136
index order scan issues. See index order scans
index seek, 49. See also Index Seek operator
logical reads as performance metric for, 57
nonclustered index seek + range scan + lookups,
81-90
ordered clustered index scans, 62-63
ordered covering nonclustered index scans, 63-65
Read Uncommitted isolation level, 68-69, 78, 81
table scan/unordered clustered index scan, 57-60
unordered covering nonclustered index scans,
60-62
unordered nonclustered index scans + lookups,
91-93
acyclic graphs, 708. See also directed acyclic graphs
(DAGsS)
add outer rows logical processing phase, 4-5, 13
ADO.NET context connection strings with SQLCLR,
603-605
Affinity Mask setting, 175, 177
AFTER DDL triggers, 579-581
AFTER DML triggers, 575-578, 581-583

AFTER UPDATE triggers, 575-578
aggregate calculations, custom
carry-along-sort solutions, 326-327
cursors for, 314-315
FOR XML string concatenation, 317-319
hierarchical levels of aggregation. See grouping sets
modes, 324-327
overview of, 313-314
pivoting for, 315-316, 318-319
products, 322-324
SELECT @local_variable method, 319-322
user-defined. See SQLCLR user-defined aggregates
aggregate functions
AVG. See averages, AVG window function
cardinality overestimations, effects of, 100
cardinality underestimations, effects of, 99
COUNT. See COUNT function
cumulative aggregate function plans, 274-275
expected frequency calculations with, 504-505
limitations of, 261-262
parallelism inhibited by certain, 179
scalar aggregates, 179
subquery inputs prohibited, 17
SUM. See SUM function; SUM OVER window
function
window functions. See aggregate window functions
aggregate window functions
packing interval solutions, 466-468
similarity to grouped functions, 260
aggregation
custom calculations of. See aggregate calculations,
custom
functions for. See aggregate functions
persisting with grouping sets, 334-337
user-defined. See SQLCLR user-defined aggregates
aliases, column
ensuring uniqueness in queries with, 204
inline vs. external, for derived tables, 205
in ORDER BY clauses, 14, 20
referencing, 8, 17
reuse with APPLY operator, 222-224
ALL variant of UNION operator, 37-38, 250
all-at-once operations, 17-18

803

Allen’s interval algebra

804

Allen’s interval algebra, 452
allocation order scans
defined, 44

multiple occurrences of rows problem, 65-67

skipping rows problem, 67-68
storage engine treatment of, 65-76
storage engine’s choice situations, 59
Table Scan operator processing, 58
vs. index order scans, 47, 65
allocation units
pages belonging to, 42
types of, 44
ALTER INDEX REBUILD command, 48

ALTER TABLE not supported by In-Memory OLTP, 704

ALTER_TABLE events, 579-580

A-Marks, 10

analysis of variance (ANOVA), 505-508, 523
ancestors

GetAncestor method of HIERARCHYID data type,

758, 764-765
materialized path solutions, returning with,
751-753

nested sets graph solution, returning with, 786

parents. See parent nodes
returning, 730-733
AND operator
intersection calculations with, 452—-455
interval determinations with, 456
vs. BETWEEN, 784
ANOVA (analysis of variance), 505-508, 523
ANSI_ set options, 568
ANSI SQL standards, 1-2
anti semi joins, 237-238
APPLY operator
CROSS APPLY operator, 219-220
CROSS vs. OUTER, 28
elements of, 27
implicit, 221-222
median calculations with, 370-371
OUTER APPLY operator, 221
Parallel APPLY Pattern, 183-186
phase in logical query processing, 26-29
reuse of column aliases, 222-224
types of, 218
ARITHABORT set option, 568
arithmetic means. See means
arrays tables, separating elements of, 245-249
AS, SELECT clauses with, 17
ascending keys
B-trees page splits with, 48
cardinality estimate problems, 564-568
statistics problems, 107-110
assemblies, .NET, 587-588
ASSEMBLY keyword, 493-494
assignment SELECT for string concatenation,
319-322
ATOMIC blocks, In-Memory OLTP, 698

atomicity property of transactions, 633
authentication with users’ credentials, 614
autocommit default mode for transactions, 633
AUTO_CREATE_STATISTICS property, 93, 102, 111
average fragmentation in percent, 47-48
averages

AVG window function, 274-275

means. See means

medians. See medians

modes. See modes

moving. See moving average value computations

backward scans, 116-117, 179
balanced trees, 46
batch execution mode
columnstore use of, 128-130
hash algorithm for joins, 243
batches, calling vs. execution, 525
BCL (.NET Base Class Library), 597
bcp.exe utility, 376, 378
BEGIN TRAN command, 633-636
BETWEEN operator
cardinality estimates with, 112-113
vs. AND, 784
Bl (business intelligence). See statistics for Bl
(business intelligence)
bill of materials (BOM) scenario, 711-714
BINARY function, 326
binary variables, 474
bitmaps, query tuning with, 170-171
blocks. See locks
BOM (bill of materials) scenario, 711-714
broadcast parallel distribution scheme, 163
B-trees
advantages vs. heaps, 43-44
ascending key pattern, 48
balanced trees, 46
bulk-logging requirements, 376
BW-Tree structure, 677-679
clustered indexes structured as, 46-50
leaf levels, 46-47

nonclustered index seek + range scan + lookups,

83-90

nonclustered indexes structured on, 52-53

uniquifier columns, 46—47

unordered clustered index scans of, 57-60
buffers

buffer pools, 42

DROPCLEANBUFFERS, 53

log buffers, flushing of, 634
bulk loads of data

2012 vs. 2014 versions, parallel execution plans,

174
BULK INSERT command, 376, 378

BULK statements, MERGE statements using,
410-411
bulk-import tools, list of, 376
eager writes for, 374-375
measuring logging, 377-378
minimal logging, requirements for, 376
OPENROWSET function, 378-380
SELECT INTO for, 173-174, 373-376
bulk rowset provider tool, 378-380
BULK_LOGGED recovery model for transactions, 634
business intelligence. See statistics for Bl (business
intelligence)
BW-Tree structure, 677-679

C

C#. See SQLCLR programming
caches
cleaning before measuring performance, 53
defaults for, determining, 387-390
identity property with, 382
pages in, 42
sequence creation performance issues from,
387-394
temporary table issues from, 147-148
cardinality estimates
cardinality estimator component, 97-98
computed column creation for, 107
disjunction (OR) queries, 106-107
equality operator estimates, 110, 113-114, 561
exponential backoff, 106
filtered index creation for, 107
hardcoded estimates, table of, 561
histogram refresh rate issues, 564-565
histograms, derived from, 103-104
inaccurate, detecting, 98
inaccurate, implications of, 100-101, 557-558
join order issues, 233
legacy vs. 2014 estimators, 98-99, 104-107, 114
LIKE predicate with, 112-115
multiple predicate estimates, 104-107
nonclustered index seek + range scan + lookups,
84-85
operator unknowns, table of estimates for, 110
overestimations, implications of, 100-101
BETWEEN predicate with, 112-113
RECOMPILE option, 110
refresh rate issues, legacy vs. new, 107-110
sniffing, disabling, 110
table variables, 143-146
temporary objects for, 139
trace flag 2389, 109
TVPs, for, 572
underestimations, implications of, 99-100
unknowns in, 110-115
unordered nonclustered index scans + lookups,
92-93

clustered indexes

variable sniffing, lack of, 560-564
variables as unknown values, 104, 110
viewing, 98
carry-along-sort solutions, 326-327, 366-368
Cartesian products. See also cross joins
logical query-processing phase details, 8-9
as logical query-processing phases, 4
CASE expressions
PIVOT implicit use of, 30-31
type-conversion errors from, 542-543
case sensitivity
collation of strings issues, 595
of method and property names in SQLCLR user-
defined types, 621
.NET SQLCLR issues, 595-597
casting
CAST with SELECT INTO, 374
DATE or TIME to DATETIME, 440
CD (coefficient of determination), 498-499
Celko, Joe, 778
centers of distribution, 479-481
CHARINDEX function, 247-248
check constraints
CHECK option, views, 212
negative logic with, 201
not supported by In-Memory OLTP, 704
UNKNOWN values with, 11
CHECKIDENT command, 381
CHECKPOINT command, 53
checkpoint process, 42-43
child nodes. See also descendants
adding, long paths resulting from, 767
defined, 708
HIERARCHYID children queries, 765
nested sets model of, 778
next level, of, 718
parent-child adjacency lists, converting to
HIERARCHYID, 771-773
chi-squared tests, 501-505, 523
chunked modification with TOP filters, 361-363
cloud platform. See SQL Database
CLR (Common Language Runtime)
enabling in a SQL Server instance, 493
HIERARCHYID. See HIERARCHYID data type
SQLCLR. See SQLCLR programming
UDFs (user-defined functions). See SQLCLR
programming
UDFs with DataAccessKind.Read, 179
user-defined aggregates, 490-495
Virtual Studio for developing, 589-591
clustered indexes
ALTER INDEX REBUILD command, 48
B-tree structure of, 46
B-trees resulting from, 43-44, 46-50
clustered index keys with nonclustered indexes
access, 62
clustered index seek + range scan access method,
93-94

COALESCE function

806

clustered indexes, continued
CLUSTERED keyword, 43
covering indexes, 93-94
creating, 43
FILLFACTOR option, 48
imports, performance hits with, 44
index order scans, 46—-47
leaf levels, 46-47
levels in, determining number of, 49-50
levels of, 48-49
not supported by In-Memory OLTP, 704
ordered clustered index scans, 62-63
root pages, 48
uniquifier columns, 46-47
unordered clustered index scans, 57-60
updateable, columnstore indexes, 128-129
COALESCE function, 316
Codd, Edgar F,, 2
coefficient of the variation (CV), 486, 523
coefficient of determination (CD), 498-499, 523
cold caches, 53
collection classes, .NET, 629-630
columns
alias processing order issue with SELECT clauses,
14, 20
changes in, recompiles triggered by, 570-571
changing names and types with RESULTS SETS
clauses, 574-575
computed columns not supported for In-Memory
OLTP, 703
creation order, 21
dense partitioning issue, 150, 154
name requirement in queries against table
expressions, 204
referencing, 8, 17
SQL_VARIANT type, 300
subquery correlations, 189
substitution errors in names in subqueries,
201-202
swapping values of, 18
as variables, 473
columnstore indexes
2012 vs. 2014 capabilities, 125, 128
advantages of, 125-127
batch execution, 128-130
clustered, updateable, columnstore indexes,
128-129
column segments, 126
compression, 125, 129
CPU cost benefits, 128
data organization with, 125-126
data type restrictions, 130
data warehousing as target for, 123
delete bitmaps, 129
deltastores, 129
dictionaries, 126
execution plans, 127
hash algorithm for joins, 243

1/0 cost reduction benefit, 127
rebuild table recommendation, 129
rowgroups, 126
rowstore vs. columnstore efficiencies, 123-127
segment elimination, 127
syntax example, 125
tuple mover process, 129
update handling, 129
user views of, 129
COLUMNS_UPDATED function, 577
commands. See specific command names
COMMIT TRAN command, 634-636
commit validation errors, 693-696
Common Language Runtime. See CLR (Common
Language Runtime)

common table expressions. See CTEs (common table

expressions)
compilations (recompilations), 568-571
composable DML, 417
computed columns not supported for In-Memory
OLTP, 703
CONCAT function, 316
concatenation
concatenation with comma separation, 629-632
CONCAT_NULL_YIELDS_NULL set option,
568-570
top N per group task solution using, 366—-368
concurrency models
pessimistic vs. optimistic concurrency models,
674
vs. isolation levels, table of, 646
consistency property of transactions, 634
console applications, analysis of variations with,
506-508
constraints
CHECK. See check constraints
DEFAULT with NEXT VALUE FOR, 384
dropping, 385
immediacy of for transactions, 634
kinds not supported by In-Memory OLTP, 704
for memory-optimized tables, 676
unique. See UNIQUE constraints
context connection strings, 603-605, 607
CONTEXT_INFO with triggers, 584
contingency tables, 501-505, 523
continuous variables, statistics for
centers of distribution, 479-481
defined, 474
descriptive statistics overview, 479
higher population moments, 487-494
kurtosis, 489-495, 523
means, 479, 481-482, 484, 523
medians. See medians
modes of, 324-327, 479-480, 523
normal distributions, 487-488, 509-512
population moments, 479
ranges of distributions, 482-483
skewness, 479, 488-489, 490-495, 523

spread of distribution, 482-486
standard deviations, 486-487, 490, 498, 511, 523
conversion functions
CAST function. See casting
date and time conversions, 431-432
failures from, 431-432
rounding issues, 447-449
TRY_ versions of, 431-432
CONVERT function for dates and times, 431, 433, 435
coordinator threads, 164-165
correlated subqueries, 187, 189-194
correlated tables, 184
correlation coefficients, 498-499, 523
correlation vs. causation, 499
Cost Threshold for Parallelism setting, 175-176
COUNT function
GROUP BY with, 16
HAVING with, 16-17
mode calculations with, 324-327
outer joins issue, 17
phase in logical processing, 36-37
covariance, 495-498, 523
covering indexes
benefits of, 93
clustered indexes as, 93-94
memory optimized indexes are always, 677
stored procedures with, 558
covering nonclustered index seek + range scan,
94-97
CPUs
costs, viewing, 176-177
parallel query execution dependence on number
of logical, 89-90
CREATE ASSEMBLY command, 493-494, 587-588,
591
CREATE CLUSTERED INDEX, 43
CREATE TYPE command, 571-573
CREATE_TABLE events, triggers on, 579-580
CROSS APPLY operator
column alias preservation with, 223
expense of, 141-142
logical query-processing phase for, 27-28
MAX OVER window function with, 275-276
multi-table queries with, 219-220
Parallel APPLY Pattern, 183-186
unpivoting with, 310-311
cross joins
Cartesian product results of, 224
logical query-processing phases, 4, 8-9
physical-join evaluation order, 232-233
rows, generating large numbers of, 216-217
sample data generation with, 225
subquery optimization with, 226-227
syntax, 224
unpivoting with, 308-310
vs. non-equi joins, 231
cross-container queries, 703

cyclic graphs

cross-database transactions, not supported by
In-Memory OLTP, 705
csc.exe (C# compiler), 589
CTEs (common table expressions)
ancestors, returning, 730-733
anchor members, 722
anchor/recursive data type matching
requirement, 736
cycle detection in graphs, 740-742
descendants, returning, 722-723
expensive work, avoiding repetition of, 140-143
MAXRECURSION hint, 728-729
mode computations with, 324-327
multiple in WITH statements, 208
multiple references to allowed, 208-209
nesting of, 208
performance issues, 209
persistence of results, 140-142
query requirements for, 204-205
recursive, 209-211, 718-719
recursive graph solutions, 718-719, 722-723,
731-733
recursive, parallelism inhibited by, 179
scopes of, 204
shortest-path solutions vs. loops, 792-801
subgraph solution, 722-723, 725
subgraphs with path enumeration, 736
syntax of, 207
temporary objects of, 139-140
topological sorts with, 736-739
troubleshooting multiple, 208
updating data with, 402-403
vs. derived tables, 207-208
CUBE function, 331-333
CUME_DIST OVER window function
frequency calculations with, 477
vs. PERCENT_RANK for ranking, 288-289
cumulative F distributions, 506-508
cumulative frequencies, 476-479
cumulative percentages, 476-479
CURRENT ROW delimiter, 269-270, 274, 276-278
CURRENT_TIMESTAMP function, 422
cursors
bad reputation of, 581
custom aggregate calculations with, 314-315
exponential moving average calculations with,
515-518
FAST_FORWARD option, 152
fetching, T-SQL inefficiency, 151-153
iterative solutions with, 151-152
not supported by In-Memory OLTP, 704
returned by ORDER BY clauses, 21-22
string concatenation with, 314-315
syntax example, 151
triggers using, 581-583
CV (coefficient of the variation), 486
CXPacket data structure, 163
cyclic graphs, 708, 715-718, 740-742, 792-801

807

DAGs

D DATEDIFF function, 426-430, 438, 440-445
DATEFIRST option, 436-439
DAGs. See directed acyclic graphs (DAGs) DATEFORMAT option, 434, 436
data caches. See caches DATEFROMPARTS function, 431, 441
Data Definition Language. See DDL (Data Definition DATENAME function, 415
Language) date-only data with DATETIME, 439-440
data integrity, filtered indexes to enforce, 122 DATEPART function, 423-424, 436-438, 449-450
Data Manipulation Language. See DML (Data DATETIME data type, 419-420, 436, 439-440,
Manipulation Language) 447-449
data structures, internal. See internal data structures DATETIME2 data type, 419-420, 427, 436, 595
data type precedence, 542 DATETIME2FROMPARTS function, 431
data warehousing DATETIMEFROMPARTS function, 431
bitmaps for parallel optimization of star join DATETIMEOFFSET data type, 419-420, 423, 426,
queries, 171 436, 595
columnstore technology for. See columnstore DATETIMEOFFSETFROMPARTS function, 431
indexes DAY function, 425
ETL processes, isolation level for, 648 daylight saving time, extracting state of,
grouping sets for persisting aggregates, 328 423-425
hash algorithm for joins, 243-244 daylight saving time issues, 420-421
indexing issues, 125 diff and modulo method for weekdays, 437-438
rowstore technology, inefficiency of, 123-127 differences between dates, calculating, 426-430
slowly changing dimensions type 2, 417 entry formats, table of, 420
star schema model, 123 EOMONTH function, 431, 441
data-analysis calculations extracting parts of dates, 423
aggregates. See aggregation filtering SARGability, 445-446
defined, 259 first or last day of a period, finding, 440-441
filters with, 262-263 first or last weekday calculations, 443-445
grouping sets with. See grouping sets FORMAT function, 432-433
inverse distribution functions, 289-291 functions returning current date and time, list of,
limitations without window functions, 261-263 422
medians, calculating, 289-291 GETDATE function, 422
ranking calculations with window functions, GETUTCDATE function, 422
281-285 grouping by weeks, 449-459
scalar aggregate subqueries for, 261-262 intersecting intervals, 452-456
statistics window functions, 288-291 interval calculations, 450-471
window functions for. See window functions ISDATE function, 425
year-to-date (YTD) calculation, 280-281 IsDaylightSavingTime method, 424
databases island problems with, 295-299
assembly (.NET) attachment to, 587 language-dependent results, 425, 434-437
compatibility levels, setting, 98-99 language-neutral formats, 436
cross-database transactions, not supported by last day of the year calculation, 547-549
In-Memory OLTP, 705 last modification tracking, 576
tempdb, 140, 581 leap seconds, 421-422
DATEFIRST set option, 568 literals, issues with, 434-436
DATEFORMAT set option, 568 maximum concurrent interval problems, 456-465
dates and times Microsoft Windows time, 421-422
adding or subtracting units, 426 midnight, issues from rounding near, 447
anchor dates, 440-444 MONTH function, 425
BETWEEN predicate errors, 447 offsets (UTC), extracting, 423
character string conversions, 447-449 packing intervals, 466-471
compensation method for weekdays, 438 PARSE function for, 431-433, 435
CONVERT function for, 431, 433, 435 performance enhancements for interval
current date or time, returning, 422 calculations, 450-451, 458-465, 470-471
CURRENT_TIMESTAMP function, 422 performance issues, 432-433
data type conversion ambiguities, 436 precision of types, 420
data types for, 419-422 previous or next weekday calculations, 441-443
DATE data type, 419-420, 422, 436, 440, 595 proleptic Gregorian calendar, use of, 419
DATEADD function, 426-427, 440—445, 449450 query tuning for, 445446

808

rounding issues, 447-449
search arguments (SARGs), 445-446
SMALLDATETIME data type, 419-420, 439-440,
448
SMALLDATETIMEFROMPARTS function, 431
SQLCLR type translation issues with, 595
storage requirements, table of, 420
SWITCHOFFSET function, 425-426
SYSDATETIME function, 422, 436-437, 440-441,
448-449
SYSDATETIMEOFFSET function, 421-424
SYSUTCDATETIME function, 422
TIME data type, 419-420, 422, 440, 595
time zone issues, 420-421
TIMEFROMPARTS function, 431
time-only data with DATETIME, 439-440
TODATETIMEOFFSET function, 426
TRY_CAST function, 432
TRY_CONVERT function, 431-432
unambiguous formats, table of, 436
UTC compared to, 420-421
weekdays, 423, 436-439, 441-445
WHERE clauses with, 445-446
Windows Time service, 421-422
YEAR function, 425
YYYYMMDD format, 435-436
DAY function, 425
daylight saving time, 420-425
DBCC commands
IND, 70-71
OPTIMIZER_WHATIF, 89-90
SHOW_STATISTICS, 101-102
dbo schema, 620
DDL (Data Definition Language)
In-Memory OLTP surface-area restrictions,
703-704
recompilations, 568
triggers on DDL_DATABASE_LEVEL_EVENTS,
579-581
triggers on DDL_TABLE_EVENTS, 579-580
deadlocks
choosing victims to terminate, 657
DEADLOCK_PRIORITY option, 657
error messages generated by, 657-659
example of generating, 657-658
graphs generated for, 657
indexes, relation to, 658-659
isolation levels, relation to, 660
lengths of transactions, 660
measures to reduce, 658-660
mechanics of, 657
physical resource access order issue, 659
query interop environment, In-Memory OLTP,
691-693
retry logic after, 669-670
single-table deadlocks, 660-662
SQL Server monitoring of, 657
trace flags for, 657

deviations

DECIMAL data type, 592-593
deduplification, 399-401
DEFAULT constraints with NEXT VALUE FOR, 384
definite integration, 509-512, 523
degree of parallelism. See DOP (degree of
parallelism)
degrees of freedom
in analysis of variance, 505-508
chi-squared critical points, 502
defined, 485, 523
delayed durability, 634, 643-645
DELETE clauses
AFTER DELETE triggers with, 575-578
DELETE FROM statements, 361, 399-400
DELETE TOP filters, 360-363, 400
INSTEAD OF triggers with, 578
in MERGE statements, 405-406
with OUTPUT, 413-414
deleting data
archiving deleted data, 413-414
deduplification, 399-401
DELETE for. See DELETE clauses
SELECT INTO another table method, 400-401
TRUNCATE TABLE statements for, 395-399
Demand parallel distribution scheme, 163, 171-173
dense partitioning issue, 150, 154
DENSE_RANK OVER window function, 282-283, 285,
294-296
density vectors, statistics, 102-103
derived tables
aliasing computed columns requirement, 205
APPLY operator for column alias preservation,
222-224
disadvantages of, 206
execution plans of, 206
external aliasing, 205-206
inline aliasing, 205-206
multiple references to, issue with, 207
nesting issues, 206
persistence of results, 140-142
query requirements for, 204-205
scopes of, 204
syntax for creating, 205
temporary objects of, 139-140
DESC keyword in index definitions, 115-116
DESC option, TOP filters, 344-345
descendants. See also subgraphs
children. See child nodes
CTEs (common table expressions), returning with,
722-723
GetDescendant method of HIERARCHYID data
type, 757-759
queries on HIERARCHYID data type, 763-764
descending indexes, 63, 115-118
deviations
mean absolute (MAD), 484
mean squared (MSD), 484
standard, 486-487, 490, 498, 511, 523

809

dichotomous variables

810

dichotomous variables, 474
digraphs. See directed graphs (digraphs)
directed acyclic graphs (DAGs)
bill of materials (BOM) scenario, 711-714
defined, 708
hierarchies as, 709
sorting, 736-739
topological sorts, 736-739
transitive closure of, 787-792
two table requirement, 711
directed graphs (digraphs)
defined, 707-708
returning subgraphs, 719-729
transitive closure of. See transitive closure
dirty pages
CHECKPOINT forced writing of, 377
eager writes, 140, 174-175
mechanics of, 42-43
dirty reads
defined, 645
Read Uncommitted isolation level, 647
vs. isolation levels, table of, 646
discrete variables, 474
disjunctions not allowed by In-Memory OLTP, 705
DISTINCT clauses
improper uses of, 231-232
NULLs, treatment of, 11
ORDER BY clauses with, 20-22
phase in logical processing, 6, 18-20
semi joins with, 237
distinct predicate not supported, 408
distributions
centers of distribution, 479-481
contingency tables, 501-505
degrees of freedom, 485, 502, 505-508
deviations, mean absolute (MAD), 484
deviations, mean squared (MSD), 484
distribution functions, 509-512
frequency distributions, 476-478
higher population moments, 487-494
inter-quartile ranges, 483
inverse distribution functions, 289-291
kurtosis, 489-495, 523
means of, 479, 481-482, 484, 523
medians of. See medians
modes of, 324-327, 479-480, 523
normal distributions, 487-488, 509-512
ranges of, 482-483
skewness, 479, 488-489, 490-495, 523
spread of distribution, 482-486
standard deviations, 486—487, 490, 498, 511, 523
standard normal distributions, 487-488
variances, 485-486, 505-508
distributor threads, 164-165
divide and conquer algorithms, 733
DLLs in SQLCLR, 587, 591
dm_db_index_operational_stats function, 135
dm_db_index_physical_stats function, 135

dm_db_index_usage_stats function, 135-136
dm_db_missing_index_columns function, 136-137
dm_db_missing_index_details view, 136
dm_db_missing_index_group_stats view, 136
dm_exec_procedure_stats, 138
dm_exec_query_profiles view, 138-139
dm_exec_query_stats view, 137-138
dm_exec_trigger_stats, 138
DMFs (dynamic management functions), 134-139
DML (Data Manipulation Language)
composable DML, 417
In-Memory OLTP surface-area restrictions,
704-705
DMVs (dynamic management views), 134-139
DOP (degree of parallelism)
for costing number, 177
defined, 159
execution plan examples, 161-162, 164
Max Degree of Parallelism setting, 175-177
viewing for a plan, 164
driver tables, 184
DROPCLEANBUFFERS, 53
duplicate row removal. See DISTINCT clauses
duplicates, deleting, 399-401
durability property of transactions, 634
dynamic filtering, 535-542
dynamic management functions (DMFs), 134-139
dynamic management views (DMVs), 134-139
dynamic pivoting, 530-535
dynamic schema, 300-301
dynamic SQL
batches of code in, 525
dynamic pivoting, 530-535
dynamic search conditions, 535-542
dynamic sorting, 542-546
EXEC AT command, 529
EXEC command, 525-529
interface support, 525-526, 529-530
performance benefits, 539-540
performance issues, 526
security issues, 526-530, 533, 545
sp_executesql procedures, 529-530, 539-540
tools for building and executing, 525
UDF prohibition of, 546

eager writes, 140, 174-175
EAV (entity, attribute, value) model, 300-301
edges

defined, 707

directed vs. undirected, 707-708

transitive closure duplicate edge elimination, 789
elements, separating from arrays, 245-249
EMAs (exponential moving averages), 515-518
employee organizational chart scenario, 709-711
end of year calculations, 547-549

entropy calculations, 518-521, 523
EOMONTH function, 431, 441
equality operator (=)
cardinality estimates, hardcoded, 561
equi joins, 230-231
equality predicate access method issues, 95-97
equi joins, 230-231
@@error function, 662-663
ERROR_ functions, 664-666
error handling
commit validation errors, 693-696, 702
ERROR_ functions, list of, 664
RAISERROR command, 664-665
retry logic, 669-670
rollbacks as part of, 668
transactions, errors in, 666—668
TRY-CATCH for. See TRY-CATCH constructs
ERROR_NUMBER function, 664-666
escalation of locks, 641-643
estimators, 512
EVENT SESSION clauses, 132
EVENTDATA function, 579-580
events, routines triggered by. See triggers
EXCEPT operator
EXCEPT ALL implementation, 255-256
for handling NULLs in merges, 407-408
logical query-processing phase for, 38-39
NULLs, treatment of, 11
relational operator characteristics of, 249
returned values of, 255
exception handling for SQLCLR stored procedures,
609-613
Exchange operators, 160-166
exclusive locks (X), 636—637
EXEC AT command, dynamic SQL, 529
EXEC command, dynamic SQL
code input to, 525-529
security risks of, 526-529
WITH RESULT SETS clauses, 573-575
EXECUTE AS clauses, 546
execution plans
Bitmap operator in, 170-171
cached plans, set options of, 568-570
cardinality estimates in, viewing, 98-100
CLR scalar functions vs. T-SQL scalar functions,
588-589
clustered index seek + range scan, 93-94
columnstore indexes, 127
covering nonclustered index seek + range scan,
96
CPU costs, viewing, 176-177
cursor-based queries, 152
derived table expressions, 206
descending index plans, 116
Distribute Streams variant of Exchange operator,
160-163
dm_exec_query_profiles view, 138-139
Exchange operators, 160-163

execution plans

expensive part of, identification, 154

few outer rows optimization, 168-170

filter selectivity, example of plan dependence on,
555-556

Gather Streams variant of Exchange operator,
160-163, 165-166

Hash Match operator, 167

Include Actual Execution Plan option, 138-139

index order, reliance on, 543

Index Scan operators, 65, 168-170

I/O costs, viewing, 176

join algorithm identification in, 239

KEEPFIXED PLAN hint, 570-571

Nested Loops operators, 98, 183-186, 240-241

nonclustered index seek + range scan + lookups,
81-90

NonParallelPlanReason node, 180-181

operator interfaces, 162

OPTIMIZE FOR hint, 561-562

ordered clustered index scans, 62-63

ordered covering nonclustered index scans,
63-65

Ordered property in, 65

Parallel APPLY Pattern, 185

parallel query plans, 159-160

parameter sniffing, 555-558

partitioned tables with demand-based row
distribution, 173

physical execution plans, 97

Plan Explorer tool, 139

plan optimality, 568, 570-571

plan stability, 568-570

properties window features, 164

query optimizer, SQL, 2

query revisions effects on, 154

recompilations, 568-571

recursive CTE queries, 211

Repartition Streams variant of Exchange operator,
161

requesting, 53-54

reusable vs. one-time issues, 535-542, 561-562

rowstore technology, 124-125

SARG vs. non-SARG, 446

scalar UDFs, of, 548

Seek Predicates property, 96

SELECT INTO parallel plans, 174

stored procedures, example of plan dependence
on filter selectivity, 555

stored procedures, preventing reuse for, 558-560

stored procedures, reuse for, 554-558

strategies, testing for desired, 154-158

Stream Aggregate in, 153, 167

Table Scan operators, 65

table scan/unordered clustered index, 57-58

table variables and recompiles, 145

temporary tables, of, 147

trivial plans, 93

unknowns in cardinality estimates, 110-115

811

existing value range identification

812

execution plans, continued
unordered covering nonclustered index scans,
60-61
unordered nonclustered index scans + lookups,
91-92
variables, stored procedure, 561-562
existing value range identification. See island
problems
EXISTS predicate
anti semi joins with NOT, 238
identifying gaps problem, 198-200
minimum missing values, finding, 195-200
nested NOT EXISTS, 200-201
NOT EXISTS vs. NOT IN, 204
positive vs. negative logic, 200-201
returns true or false, 194-195
semi joins with, 237
subqueries as inputs to, 194-201
subquery SELECT list index ignored, 195
tuning with, 157
vs. IN predicate, 194-195
EXP function, 322-324
expected frequencies, 501-505
exponential backoff, 106
exponential moving averages (EMAs), 515-518
Extended Events sessions
creating, 132
extracting statistics from, 132-134
performance, code for viewing, 54
prioritizing queries for tuning, 131-134
query_hash action, 131-134, 137-138
query_post_execution_showplan event, 138
statement completed events, 131-134
Watch Live Data window statistics, 56
extents, 42-43

F

FALSE value, 10
few outer rows optimization, 168-170
filegroup, memory optimized data, 675
FileTable feature with HIERARCHYID type, 754
filtered indexes, 120-122
filters
access methods for. See access methods
cardinality overestimations, effects of, 100
cardinality underestimations, effects of, 99
with data-analysis calculations, 262-263
date and time SARGability, 445-446
deadlocks resulting from no supporting index,
658-659
dynamic filtering, 535-542
multiple predicate cardinality estimates, 104-107
multiple predicate issue, 95-97
NULL values, treatment of, 11
selectivity, example of execution plan
dependence on, 555-556

UNKNOWN values, treatment of, 11
unordered nonclustered index scans + lookups,
91-92
user-defined, dynamic, 535-542
WHERE-based. See WHERE filters
window functions using, 263-264
first regression line, 500
FIRST_VALUE OVER window function, 285-286, 511
FLOOR function, 468
flow diagram, logical query-processing, 5
fn_dblog function, 377-378
FOLLOWING keyword, 269, 273-274
FOR XML string concatenation, 317-319
FORCE ORDER hint for joins, 233, 236-237, 245
FORCEPLAN set option, 568

foreign-key constraints not supported by In-Memory

OLTP, 704
forests, 708. See also graphs; trees
FORMAT function, 432-433
fragmentation
allocation vs. index order scans, effects of, 65
average page population, 135
code for checking level of, 70-71
defined, 47-48
dm_db_index_physical_stats function, 135
logical scan fragmentation, 135
rebuilding as remedy, 135
frames, window. See window frames
frequency calculations
defined, 523
expected frequencies, 501-505
frequency distribution analysis, 476-479
for use in chi-squared calculations, 502-505
with window functions, 477-479
without window functions, 476
FROM clauses
aliases created in, visibility of, 222-223
derived tables using, 205-207
logical order of, 3-5
logical query-processing phase details, 8-14
multiple operators, processing order of, 14
phase in logical processing, 4-5
sample query for logical phases, 7
table operators in, logical phases of, 26-35
virtual tables generated by, 8
F-tests, 506-508, 523
Full data recovery model
durability guarantee from, 634
SELECT INTO operations with, 377-378
FULL OUTER JOIN clauses, 13
full table scans when no order required, 57-60

G

GAC (Global Assembly Cache), 587
GAMs (global allocation maps), 42
gaps problems, 291-292

Gather Streams operation, 88, 160-166
Gaussian curves, 487-488
GETDATE function, 422
GETUTCDATE function, 422
global allocation maps (GAMs), 42
Global Assembly Cache (GAC), 587
graphical execution plans. See execution plans
graphs
acyclic, 708. See also directed acyclic graphs
(DAGS)
ancestors, returning, 730-733
components of, 707-708
CTE-based solutions. See CTEs (common table
expressions)
cycle detection, 740-742
cyclic, 708, 715-718, 792-801
directed, 707-708, 719-729
directed acyclic. See directed acyclic graphs
(DAGS)
edges of, 707-708, 789
HIERARCHYID data type for materialized path
model. See HIERARCHYID data type
iterative solutions. See iterative graph solutions
materialized paths for solving. See materialized
path model
MAXRECURSION hint, 728-729
nested sets solution, 778-786
nodes of. See nodes
paths, returning, 730-733
recursive solutions to, 718-719, 722-723
scenarios used to illustrate, 709-718
sorting, 736-739
subgraphs, algorithm for returning, 719-729
subgraphs with path enumeration, 733-736
transitive closure of directed. See transitive
closure
trees as, 708
types of, 707-708
undirected, 708
undirected cyclic. See undirected cyclic graphs
vertexes. See nodes
weighted, 714, 718
greater than (>) operator cardinality estimates,
hardcoded, 561
Gregorian calendar, use of, 419
GROUP BY clauses
COUNT with, 16
dates and times, grouping by weeks, 449-459
grouping sets, 15
GROUPING SETS subclauses, 328-331
logical order of, 3-5
logical phase order sample, 7
NULL value treatment, 11
phase in logical processing, 4-5, 15-16
with PIVOT operators, 30
running total calculation with, 272-273
SELECT with, 16
group functions vs. window functions, 259

hierarchies

grouped query data-analysis calculation limitations,
261
grouping sets
addition, 333-334
CUBE function for, 331-333
execution plans for, 330, 333
feature list for, 327
GROUPING function for ordering, 337-338
GROUPING SETS clause, 328-331
GROUPING_ID function, 334-337
indexes to support sorting, 331
merging new aggregates with, 336-337
multiple sets of, advantages of, 328
multiplication, 333
ordering issues, 337-338
parentheses use in defining, 328
persisting aggregates with, 334-337
power sets, 331
querying a single set, 334-337
ROLLUP function for, 331-334
sets algebra with, 333-334
sets as inputs, 333
UNION ALL alternative, 329-330
groups, WHERE filters, not allowed in, 14

H

hashes
cardinality overestimations, effects of, 100
cardinality underestimations, effects of, 99
hash algorithm for joins, 243-245
Hash Join operators in parallel query execution,
170-171
Hash Match operator, 167
hash parallel distribution scheme, 163-165
HAVING filters
COUNT with, 16-17
logical order of, 3-5
logical phase order sample, 7
phase in logical processing, 4-5, 16-17
subquery inputs prohibited, 17
UNKNOWN values, treatment of, 11
headers, page, 42
headers, statistics, 102
heaps
bulk-logging requirements, 376
nonclustered index seek + range scan + lookups,
81-83
nonclustered indexes structured on, 50-51
organization of, 43-46
table scans of, 57-60
Hekaton project. See In-Memory OLTP
hierarchies
defined, 709
employee organizational chart scenario, 709-711
HIERARCHYID for representing. See
HIERARCHYID data type

813

HIERARCHYID data type

814

HIERARCHYID data type
adding leaf nodes, 756-759
advantages for materialized path model, 754
ancestors queries, 764-765
case sensitivity, 755
children queries, 765
compared to custom graph implementation, 754
conflict prevention, 757-758
data maintenance requirements, 756
DescendantLimit internal method, 763-764
descendants queries, 763-764
execution plans for, 764
GetAncestor method, 758, 765
GetDescendant method, 757-759
GetReparentedValue method, 760-762
GetRoot method, 757
hid attribute, 757-762, 766
index creation for, 755
IP address sorting with, 773-777
IsDescendantOf method, 760, 763
leaf node queries, 765
long paths issue, 767-771
methods provided by, 755
normalizing values of, 767-771
parent-child adjacency lists, converting to
HIERARCHYID, 771-773
path calculations, 757-762
path queries, 764-765
portability issue, 754
presentation queries, 766
querying solutions built with, 758-759, 763-766
sibling positioning, 758
sorting separated lists, 773-777
stored procedures using, 756-757
subgraph queries, 763-764
subtrees, moving, 760-762
table creation using, 755
validity of trees, enforcing, 756
higher population moments, 487-494
histograms
AUTO_CREATE_STATISTICS option, 102
AVG_RANGE_ROWS, 102-104
cardinality estimates from, 103-104
creation scenarios, 102
DISTINCT_RANGE_ROWS, 102-103
EQ_ROWS, 102-103
filtered index, 120-122
frequency of data, 476-479
of index key values, 85-86
of non-index key columns, 93
not maintained for table variables, 553
RANGE_HI_KEY, 102-104
RANGE_ROWS, 102-103
refresh rate issues, 107-110, 564-565
steps in, 103
trace flag 2389, 109
HOBT (heap or B-tree) organization, 43-44

HOLDLOCK hint, 409
Hyper-Threading, 178

IAMs (index allocation maps), 44-45, 47
identifying gaps problem, 198-200
identity columns, 412-413
identity property
aspects and properties of, 394-395
cache performance issues, 387-394
caches with, 382-383
IDENTITY function, 374
limitations of, 381-382
manual value changes, 381
missing values, causes of, 387
performance considerations, 387-394
SELECT INTO copying of, 374
sequence objects, compared to, 390-395
surrogate key generation with, 381-382
trace flag 272, 382, 387
TRUNCATE TABLE, preserving despite, 396-397
identity values, capturing multiple, 412-413
I-Marks, 10
implicit APPLY operator, 221-222
IMPLICIT_TRANSACTIONS option, 633
importing data. See bulk loads of data
IN disjunctions not allowed by In-Memory OLTP, 705
IN predicate vs. EXISTS predicate, 194-195
INCLUDE clauses, 119
included non-key columns, 119-120
inconsistent analysis, 645
INDEX <index_name> CLUSTERED, 43
index allocation maps (IAMs), 44-45, 47
index order scans
defined, 46
safety issues with, 76-81
storage engine choice situations, 59
vs. allocation order scans, 47, 65
Index Scan operators, 65, 168-170
index seek access method, 49
Index Seek operator. See also seeks
forcing as part of a strategy, 154-155
index seek + range scan + lookups access
method, 81-82
inefficiency in Max Concurrent Intervals task, 459
optimizing with subqueries, 192-193
parallel scans with, 168
TOP filters with various indexes, optimization of,
348-352
indexes
ALTER INDEX REBUILD command, 48
clustered. See clustered indexes
columnstore. See columnstore indexes
covering. See covering indexes
deadlocks from lack of, 658-659

descending, 63, 115-118
dm_db_index_operational_stats function, 135
dm_db_index_usage_stats function, 135-136
dm_exec_query_stats view, 137-138
filtered, 120-122
frequency of use, determining, 135-136
imports, performance hits with, 44
INCLUDE clauses in, column order issues, 95-96
included non-key columns, 119-120
INDEXPROPERTY function, 49
inline index definition, 130-131
join nested loops, for, 239-240
key updates as a source of row return errors,
76-81
leaf updates as a source of row return errors,
76-81
levels in, determining number of, 49-50
memory-optimized tables. See indexes for
memory-optimized tables
missing index information objects, 136
nonclustered. See nonclustered indexes
page data structure for, 42
POC (partitioning, ordering, covering) pattern,
192, 271-273, 284-285
REBUILD keyword, 135
REORGANIZE keyword, 135
root pages, 48
statistics created with, 85-86, 101
TOP filters, effects on optimization of, 349
UDF CLR functions, setting on, 590
WHERE clause predicate, 120
indexes for memory-optimized tables
BW-Tree structure, 677-679
clustered vs. nonclustered not meaningful, 677
covering nature of, 677, 680
hash indexes, 680-690
key values, 679
latch-free nature of, 679
leaf pages, 679
must be specified in CREATE TABLE statements,
675
nonclustered indexes, 677-680
page-mapping tables, 678
payloads, 679
pointer-based nature of, 676
single-direction nature of, 679-680
syntax for creating nonclustered, 677
information theory, 518-521
inhibitors of parallelism, 178-181
inline index definition, 130-131
inline TVFs (table-valued functions)
end of year calculation example, 548-549
input parameter support, 215
integer sequence generator, 215-218
query requirements for, 204-205
scopes of, 204
syntax for, 215

IN_ROW_DATA allocation units

In-Memory OLTP

2014 introduction of, 671

ALTER TABLE not supported by, 704

ATOMIC blocks, 698

blocking, 691-693

check constraints not supported, 704

clustered indexes not supported by, 704

commit validation errors, 693-696, 702

computed columns not supported, 703

constraints not supported, types of, 704

cross-container queries, 703

cross-database query execution bar, 696

cursors not supported, 704

data always in memory, 672-673

deadlocks, 691-693

DURABILITY option, 675

execution engine efficiency, 673

execution environment for, 690

foreign-key constraints not supported, 704

indexes for. See indexes for memory-optimized
tables

integration with SQL Server, 674

isolation levels in query interop, 691

isolation semantics for transactions, 690

LOB data types not supported, 704

lock and latch-free architecture of, 673-674

memory optimized data filegroup, 675

MEMORY_OPTIMIZED option, 675

memory-optimized tables, 672

modern computing environment for, 671-672

native compilation of stored procedures, 673

natively compiled procedures. See natively
compiled procedures environment,
In-Memory OLTP

optimistic concurrency model, 674

page elimination, 672-673

parallelism not used currently, 696-697

query interop environment, 690-698

schema options, 675

statistics generation for optimization, 697-698

surface-area restrictions, 703-705

tables, memory-optimized, 675-676

timestamps, 672

transaction isolation and consistency, 672

unique constraints not supported, 704

inner joins

default type with JOIN keyword, 229
logical steps in, 228

logical-join evaluation order, 234-237
ON clauses mandatory, 228

ON vs. WHERE clauses with, 15
physical-join evaluation order, 232-233
running total calculation with, 272-273
syntax for, 228

WHERE clauses with, 228

inner queries. See subqueries
IN_ROW_DATA allocation units, 44

815

INSERT clauses

816

INSERT clauses
AFTER INSERT triggers with, 575-578, 581-585
EXEC statements, full logging vs. other bulk
methods, 376
INSTEAD OF INSERT triggers with, 578
INTO clauses with, 412-413
in MERGE statements, 405-406
QUTPUT clauses with, 412-413
INSERT SELECT clauses
casting column types with, 374
guaranteed identity value order, 374
identity property, as alternative to, 381
minimal logging, requirements for, 376
OUTPUT clauses with, 417
SELECT INTO compared to, 374-375
INSERT TOP filters, 360
inserting data, SELECT INTO command for, 140,
173-174, 373-376
instance-level parallelism setting, 175-176
INSTEAD OF DML triggers, 578
integration, definite, 509-512
intent exclusive locks (I1X), 637
intent shared locks (IS), 637-639
intercepts, 499-501
internal data structures
allocation units, 44
B-trees as. See B-trees
extents, 42-43
headers, page, 42
heaps as. See heaps
heaps, nonclustered indexes structured on, 50-51
IAMs (index allocation maps), 44-45, 47
leaf levels, 46-49
pages, 42-48
partitions, 44
row-offset arrays of pages, 42
table organization, 43-53
internal nodes, 708
inter-quartile ranges, 483, 523
INTERSECT operator
characteristics of, 249
INTERSECT ALL version implementation, 254
logical query-processing phase for, 38-39
NULLs, treatment of, 11, 249, 253
ORDER BY clauses with, 249
syntax for, 253
intersection interval calculations for dates and times,
452-456
interval calculations for dates and times
Allen’s interval algebra, 452
AND operator performance issues, 252-255
CTE for counting active intervals, 457
delimiters, open vs. closed, 256
grouping counted intervals, 458
index optimization for, 252-255
intersections, 452-456
maximum concurrent interval problems, 456-465
packing intervals, 466-471

parallel treatment for performance, 464-465,
470-471
performance in max concurrences solutions,
458-465
performance vs. simplicity of queries, 450-451
Relational Interval Tree (RI-tree) model, 456
ROW_NUMBER OVER window function for,
461-465
window aggregate function with frame solution
to max concurrences task, 459-461
INTERVAL not supported, 276-277
intraquery parallelism. See parallel query execution
inverse distribution window functions, 289-291
1/0O costs, viewing, 176
IP address sorting, 773-777
IQRs (inter-quartile ranges), 483, 523
ISDATE function, 425
IsDaylightSavingTime method, 424
island problems
date/time based, 295-299
DENSE_RANK queries, 294-296
existing value range identification equivalence,
291
ignoring small gaps variation, 296-299
LAG OVER function for, 296-299
ROW_NUMBER OVER queries, 293-294
SUM OVER function for, 296-299
ISNULL function, 323
ISO SQL standards, 1-2
isolation levels
consistent data control purpose of, 645
cross-container queries, for, 703
deadlocks, relationship to, 660
defaults, 646
dirty reads, 645
isolation models, 646
lost updates, 645
NOLOCK hints, 647-648
nonrepeatable reads, 645
phantoms, 645-646
query interop environment, In-Memory OLTP,
691
query level hints, 646
Read Committed, 646, 648-650, 660
Read Committed Snapshot, 646, 652, 655-656,
660
Read Uncommitted, 646, 647-648
READPAST hint, 646
Repeatable Read, 646, 649-651
Serializable, 409, 646, 651-652
SET TRANSACTION ISOLATION LEVEL statements,
646
Snapshot, 646, 652-655
table of available, 646
isolation property of transactions, 634
iterative graph solutions
advantages of, 718
ancestors, returning, 730-733

CTEs for, 718-719, 722-723
logic encapsulation choices, 718-719
loops in, 718, 721, 723-728, 730-733
next levels, 718
recursion vs. loops, 718
stored procedures for, 718-719
subgraphs, algorithm for returning, 719-729
subgraphs with path enumeration, 733-736
traversing by stored edges, 718
iterative solutions
cursor-based solutions, 151-152
inefficiency in T-SQL, 149-150, 152-153
iterative execution model of SQL Server, 149-150
separating elements problem, inefficiency of, 246
strong concatenation using cursors, 314-315
superiority of CLR functions for, 597
UDFs using, 549-550
vs. set-based approaches, 149-153

J

joins
algorithms for, 239-245
anti semi, 237-238
cardinality overestimations, effects of, 100
cardinality underestimations, effects of, 99
Cartesian product logical processing phase, 8-9
cross. See Cartesian products; cross joins
default type with JOIN keyword, 229
equi, 230-231
FORCE ORDER hint, 233, 236-237, 245
forcing algorithm strategies for, 244-245
hash algorithm for, 243-245
index support for, 239-240, 243
inner. See inner joins
JOIN operator, elements of, 27
left. See left outer joins
left outer. See left outer joins
logical phase order sample, 7
logical-join evaluation order, 234-237
LOOP hint for nested loops algorithm, 244-245
merge algorithm, 241-243, 244-245
multi-join queries, 231-237
nested loops join algorithm, 239-241, 244-245
Nested Loops performance issue with, 184
non-equi, 230-231
operator for, 27
OPTION clause hints, 244-245
outer. See outer joins
parentheses with multiple, 235-236
physical-join evaluation order, 232-233
prefetches with, 241
self, 230
semi, 237-238
SQL-89 vs. SQL-92 syntax, 224-229
star. See star join queries
suboptimal join order issues, 232-233

left outer joins

K

KEEPFIXED PLAN hint, 570-571
keys
automating creation with sequence objects,
384-385
columns defined as in B-tree clustered indexes,
46
density, effects on optimization, 351-352
foreign-key constraints not supported by
In-Memory OLTP, 704
index seek access method for, 49
key columns added to index implicitly, 102
key lists, restrictions on, 119
lookups in nonclustered indexes, 53
lookups, nonclustered index seek + range
scan +, 81-90
primary, 43, 408-409
values, histograms of, 85-86
Kriegel, Hans-Peter, 456
kurtosis, 489-495, 523

L

LAG OVER window function, 287, 296-299
languages
LANGUAGE option, 568
SET LANGUAGE command, 434-435
last day of the year calculations, 547-549
LAST_VALUE OVER window function, 285-286, 287,
511
latches, 673-674
lateral derived tables. See APPLY operator
lazywriter process, 42-43
LEAD OVER window function, 287, 291-292
leaf layout, showing with DBCC IND command,
70-71
leaf levels
clustered index, rows stored in, 46-47
ordered clustered index scans of, 62—-63
rows, clustered index, 93
leaf nodes
adding into HIERARCHYID graphs, 756-759
shake effects of adding new, 743, 782
vs. internal nodes, 708
leaf pages
BW-Tree structure, 678-679
density, 48-49
rows per, access method dependence, 94-95
splits, 47-48
leap seconds, 421-422
left outer joins. See also outer joins
anti semi joins from, 238
followed by other joins, issues with, 234-235
LEFT JOIN, LEFT OUTER JOIN equivalence, 229
logical phase order sample, 7
preserved tables, 13

817

left outer joins

818

left outer joins, continued
self join example, 230
subphase of logical processing of, 8-9
vs. right outer joins, 230
less than (<) operator cardinality estimates, 561
LIKE predicate, cardinality estimates with, 112-115
linear dependencies
chi-squared tests, 501-505, 523
coefficient of determination (CD), 498-499,
523
correlation coefficients, 498-499, 523
covariance, 495-498, 523
intercepts, 499-501
linear regression, 499-501, 523
slopes, 499-501
two continuous variable dependencies, 495-500
literals, date and time, 434-436
LOB (Large Object) data types
LOB_DATA allocation units, 44
not supported by In-Memory OLTP, 704
@local_variable method, 319-322
locks
blocking function of, 636
blocking situations, 638-640, 657-658. See also
deadlocks
deadlocks resulting from. See deadlocks
delayed durability, 643-645
dm_exec_connections view for troubleshooting,
639-640
dm_exec_requests view for troubleshooting, 640
dm_exec_sessions view for troubleshooting, 640
dm_os_waiting_tasks view for troubleshooting,
640
dm_tran_locks view for troubleshooting, 639
escalation, 361-363, 641-643
exclusive locks (X), 636-637
In-Memory OLTP vs. traditional, 691-693
intent exclusive locks (I1X), 637
intent shared locks (IS), 637-639
isolation function of, 636
isolation levels with. See isolation levels
KILL command, 641
LOCK_TIMEOUT option, 638, 641
memory requirements of, 641
NOLOCK hints, 647-648
Read Committed isolation level, 638
Read Uncommitted isolation level, 636-637
READPAST hint, 646
resource hierarchy conflict detection, 637
SELECT INTO, created by, 375
shared locks (S), 636-639, 648-649
shared with intent exclusive locks (SIX), 637
SQL Database alternative model for, 636
TOP modification statement issues from, 361-362
update locks (U), 637
UPDLOCK hints, 637, 650-651
WAIT status, 639
write-ahead logging, 643

logarithms, 322-324
Logical Operation property, 239
logical order vs. typed order, 3
logical processing order vs. physical order, 2-3
logical query-processing phases
add outer rows phase, 4-5, 13
APPLY operator, 26-29
Cartesian product phase, 4-5, 8-9
descriptions of, brief, 4, 6
DISTINCT phase, 6, 18-20
evaluate expressions phase, 6
EXCEPT operator, 38-39
flow diagram of, 5
FROM phase, 4-5, 8-14
GROUP BY phase, 4-5, 15-16
HAVING phase, 4-5, 16-17
INTERSECT operator, 38-39
logical order vs. typed order, 3
OFFSET-FETCH filter, 6, 22-26
ON predicate phase, 4-5, 9, 11-13
ORDER BY, 6, 20-22
order of phases, 3-4
PIVOT operator, 29-31
sample query, 6-8
SELECT phase, 4-5, 17-20
step numbers, 3
table operators, 26-27
TOP filter, 6, 22-26
UNION operator, 38-39
UNPIVOT operator, 27, 31-35
virtual table generation, 4
WHERE phase, 4-5, 14-15
window functions, 35-37, 268-269
logical reads
as performance metric for access methods, 57
STATISTICS 10 output data, 55
logs
active portion, expansion issues, 361
flushing buffers to complete transactions, 634
log-intensive operations, 361
measuring logging, 377-378
SELECT INTO command logging options, 374
test for statistics during sequence creation,
390-393
write-ahead logging, 643
lookups
expense of, minimizing with covering indexes, 93
join nested loops, generated by, 239
key lookups, 53
nonclustered index seek + range scan + lookups,
81-90
RID lookups, 51
unordered nonclustered index scans + lookups,
91-93
loops
CTEs shortest-path solutions vs., 792-801
indexes for join nested loops, 239-240
iterative graph solutions with, 718, 721, 723-728,
730-733

LOOP hint for nested loops join algorithm,
244-245
Nested Loops operators, 98, 183-186, 240-241
recursion vs., 718
shortest-path solutions vs. CTEs, 792-801
WHILE loops with TOP on key order, no key index,
581
lost updates, 645-646
LRU-K2 algorithm, 42

M

Machanic, Adam, 641
MAD (mean absolute deviation), 484, 523
many-to-one pivots, 304-307
Martin, Laurent, 456
materialized path model
adding leaves, stored procedure for, 744-745
advantages of, 743
ancestors, returning, 751-753
defined, 742
execution plans for, 750, 754
HIERARCHYID data type for implementing. See
HIERARCHYID data type
index creation for, 743-744
index key size limitations, 743
leaf nodes, returning, 751
level and path revisions, 745-748
performance issues, 752
queries, 749-754
shake effects, 743
sorting, 753-754
splitting paths, 752-753
subtrees, moving, 745-748
subtrees, removing, 748-749
subtrees, returning, 751
Max Degree of Parallelism setting, 175-178
MAX function
with CASE expressions, 301-302
window function (OVER) version of, 275-276
Max Worker Threads setting, 176-178
max_dop setting, 176
maximum concurrent interval problems, 456-465
MAXRECURSION hint, 728-729
mean absolute deviation (MAD), 484, 523
mean squared deviation (MSD), 484, 523
means
arithmetic, 479, 523
of continuous variables, 487-488, 509-512
MAD (mean absolute deviation), 484, 523
MSD (mean squared deviation), 484, 523
medians
continuous-distribution model, 368
defined, 479, 523
OFFSET-FETCH with APPLY solution, 370-371
PERCENTILE_CONT solution, 369
PERCENTILE_CONT solutions, 480-481

moving average value computations

PERCENTILE_DISC function for, 480-481
ROW_NUMBER solution, 369-370
table for testing, 368—-369
window functions for, 289-291
memory
leak handling by SQLOS, 586, 588
OLTP in. See In-Memory OLTP
memory optimized data filegroup, 675
MEMORY_OPTIMIZED option, 140
memory-optimized tables, parallelism inhibited by,
179
merge algorithm for joins, 241-245
MERGE statements
conflict prevention, 408-409
DELETE clauses with, 405-406, 414-416
full logging vs. other bulk methods, 376
INSERT clauses with, 405-406, 414-416
INTO updating persisted sets with, 336-337
MERGE INTO clauses, 405
MERGE ON predicates, 409-410
multiple source rows matched to target errors,
406
NULL handling, 407
ON predicates, 405
OPENROWSET BULK clauses with, 410-411
OUTPUT clause with, 414-416
SERIALIZABLE isolation level for, 409
sources of data allowed for, 410-411
UPDATE clauses with, 405-406, 414-416
USING clauses, 405, 410-411
WHEN MATCHED clauses, 405-407, 415-416
WHEN NOT MATCHED clauses, 404-407
MERGE TOP filters, 360
merging exchange variant of Gather Streams,
165-166
Microsoft Azure SQL Database alternative lock
model, 636
Microsoft SQL Server. See SQL Server
Microsoft Virtual Academy (MVA), 224
Microsoft Visual Studio for CLR code, 589-591
Microsoft Windows time, 421-422
minimum missing values, finding, 195-199
missing values
finding, 195-200, 291-292
treatment of, 10
mixed extents, 43
modes
as centers of distributions, 479, 523
custom aggregate calculations of, 324-327
TOP WITH TIES to calculate, 480
MONTH function, 425
moving average value computations
advantages over other statistics, 512-513
defined, 523
exponential moving averages, 515-518
simple moving averages, 513-514
weighted moving averages, 514
window functions for, 274

819

MSD

820

MSD (mean squared deviation), 484, 523
multi-join queries
DISTINCT clauses in, 231-232
FORCE ORDER option, 236-237
left outer joins followed by other joins, issues
with, 234-235
logical-join evaluation order, 234-237
multiple ON clauses in, 236
optimization, bushy plant, 236-237
parentheses with, 235-236
physical-join evaluation order, 232-233
right outer joins for optimization, 235
multiple occurrences of rows
allocation order scan sources of, 65-76
index order scan sources of, 76-81
multistatement TVFs (table-valued functions),
550-553
multi-table queries
APPLY operator based, 218-223
joins in. See joins
relational operators in. See relational operators
subqueries as. See subqueries
table expressions as. See table expressions
multi-valued subqueries, 188-189
MVA (Microsoft Virtual Academy), 224

N

name resolution, implied, errors from, 201-202
National Institute of Standards and Technology
(NIST), 707
natively compiled procedures environment,
In-Memory OLTP
advantages of, 690
ATOMIC blocks, 698
cross-container queries, for, 703
cursors not supported, 704
performance vs. interop, 699
retry logic, 702
statistics generation, 697-698
stored procedures (SQL) not callable within, 705
TVPs for, 699-702
validation errors, 702
negative vs. positive logic, 200-201
nested loops join algorithms
AND vs. BETWEEN in queries, 784
forcing an optimization strategy, 244-245
index performance issues, 239-241
Nested Loops operator
bottlenecks, eliminating with Parallel APPLY
Pattern, 183-186
cardinality estimate problems with, 98
parallel scans with, 169-170
nested sets graph solution
advantages of, 778
ancestors of nodes, returning, 786
dynamic trees defect, 778, 782

indexes for, 779
leaf nodes of roots, returning, 785
performance issues, 782-783
querying, 784-786
shake effect, 782
sort paths for nodes, 781
subordinates of nodes, counting, 786
subtrees of roots, returning, 784-785
value assignments, 778-784
nesting
CTEs, 208
derived tables, issues from, 206
loops. See nested loops join algorithms
of triggers, 577-578
TRY-CATCH constructs, 664
.NET Base Class Library, 597
.NET Framework, Microsoft. See SQLCLR
programming
Nevarez, Benjamin, 233
NEWID function, UDF prohibition of, 546
NEXT VALUE FOR function, 382-386
NIST (National Institute of Standards and
Technology), 707
NO_BROWSETABLE option, 568
nodes
adding, long paths resulting from, 767
ancestor. See ancestors
child. See child nodes
connections between. See edges
defined, 707
descendant. See descendants
directed vs. undirected edges with, 707-708
next levels of, 718
parent. See parent nodes
subtrees, returning, 719-720
types of, 708
NOLOCK hints, 68, 72, 647-648
nonclustered index seek + range scan + lookups,
81-90
nonclustered indexes
clustering keys, 52-53
covering nonclustered index seek + range scan,
96
data structure with, 43-44
filtered, 120-122
full scans of, avoiding, 153-156
included non-key columns in indexes, 119-120
In-Memory OLTP requirement for, 704
key lists, restrictions on, 119
key lookups, 53
levels of, calculating, 49-50
memory-optimized tables with, 677-680
nonclustered index seek + range scan + lookups,
81-90
ordered covering nonclustered index scans,
63-65
row identifiers (RIDs), 51
seek operations in, 52-53

structured on B-trees, 52-53
structured on heaps, 50-51
uniquifiers, 52-53
unordered covering nonclustered index scans,
60-62
unordered nonclustered index scans + lookups,
91-93
non-equi joins, 230-231
NonParallelPlanReason node, 180-181
nonrepeatable reads, 645-646
normal distributions, 487-488, 509-512
NOT EXISTS clauses. See EXISTS predicate
NOT IN clauses, 203-204
NTILE OVER window function, 282-283, 285
null hypotheses, 495
NULLs
CONCAT_NULL_YIELDS_NULL set option,
568-570
ISNULL function, 323
IsNull property, SQLCLR, 596
missing value nature of, 10-11
NOT NULL constraints, 203-204
ORDER BY treatment of, 22
relational operators with, 249
subquery errors from, 203-204
UNION, EXCEPT, and INTERSECT operations on,
39
NUMERIC data type, 592-593
NUMERIC_ROUNDABORT option, 569
NVARCHAR type, 593-595

(0

objects, page membership in, 42
OFFSET BY clauses, 3-5
offset window functions, 285-287
OFFSET-FETCH filters
2012 vs. 2014 versions of, 341
execution plans, 355-356
FETCH clause optional, 346
FIRST keyword, 345
index optimization, 357
isolation level effects on output, 354
median calculations with, 370-371
NEXT keyword, 345
offset required, 345
OffsetExpression property in plan, 354-357
ONLY keyword, 345
optimization of, 354-357
ORDER BY (SELECT NULL), 346
ORDER BY clause required, 345-346
ordering issues, 23-26, 345
paging solutions with, 345, 354-357
phase in logical processing, 6, 22-26
ROW/ROWS keywords, 345
similarity to TOP filters, 345
syntax for, 23, 345

ordered covering nonclustered index scans

ties not supported, 345
TO | AFTER imagined syntax, 357
Top operator to process, 354-357
OLAP (online analytical processing) Max Degree Of
Parallelism setting, 178
OLTP workloads
In-Memory feature. See In-Memory OLTP
Max Degree Of Parallelism setting for, 178
merging data for, 404
ON predicate
inner joins, mandatory for, 228
missing values, treatment of, 10
multiple ON clauses in multi-join queries, 236
outer joins using, 230
phase in logical processing, 4, 9-13
UNKNOWN values, treatment of, 11
WHERE clauses, vs. in outer joins, 14-15
one-to-one pivots, 300-304
online transaction processing. See OLTP workloads
open schema, 300-301
OPENROWSET function
inserting data with, 378-380
MERGE statements using, 410-411
operators, query plan. See execution plans
optimistic concurrency model, 674
optimization of queries. See query tuning
OPTIMIZE FOR hint, 561-562
optimizer. See query optimizer
OPTIMIZER_WHATIF command (DBCC), 89-90
OPTION(LABEL = 'some label') hint, 556
OR disjunctions not allowed by In-Memory OLTP, 705
ORDER BY clause
with SQLCLR table-valued functions, 600
ORDER BY clauses
column aliases from SELECT phase, 17
cursors returned by, 21-22
DISTINCT clauses with, 20-22
dynamic sorting with, 542-546
grouping sets with or without, 337-338
logical order of, 3-5
logical phase order sample, 7
NULL value treatment, 11, 22
OFFSET-FETCH filter with, ordering issues, 22-26,
345-346
phase in logical processing, 6, 20-22
prohibited in set operation queries, 38-39
relational operators with, 249
SELECT @local_variable method with, 319-322
SELECT NULL trick, 285, 344
table expression inner query issues with, 204
TOP filter with, 22-26, 341-342
window functions in, 35-37
order of processing
logical order, 3-6
physical order, 2-3
typed order, 3
ordered clustered index scans, 62-63
ordered covering nonclustered index scans, 63-65

821

ordered set functions

822

ordered set functions, 290, 326-327
OUTER APPLY operator, 27-28, 221
outer joins
FULL keyword with, 229
LEFT keyword with, 229. See also left outer joins
logical processing phase, 13
not allowed by In-Memory OLTP, 705
ON clauses, 230
ON vs. WHERE clauses with, 14-15
physical-join evaluation order, 232-233
preserved tables, 13, 229-230
RIGHT keyword with, 229
syntax issues from, 224-225
type specification of, 13
WHERE clauses, 230
outer rows, 13
out-of-order pages, 47
OUTPUT clauses
$action function in, 414-416
chunking with, 414
column identification in, 411
DELETE statements with, 413-416
flexibility of, 411
INSERT clauses with, 412-416
INSERT SELECT clauses with, 417
INTO clauses with, 411, 412-413, 414
MERGE statements with, 414-416
UPDATE statements with, 411, 414-416

P

packing intervals for dates and times, 466-471
page free space (PFS), 45
pages
elimination by In-Memory OLTP, 672-673
extents of, 43
out-of-order, 47
splits, 47-48
structure of, 42
table structure with, 44-45
paging solutions
with OFFSET-FETCH filters, 345
optimization of OFFSET-FETCH for, 354-357
optimization of ROW_NUMBER for, 358-360
optimization of TOP for, 346-353
parallel query execution
advantages of, 158
Affinity Mask setting, 175, 177
APPLY pattern, 181-186
broadcast distribution scheme, 163
Bulk Copy API, 173
cardinality overestimations, effects of, 100
cardinality underestimations, effects of, 99
configuration guidelines, 177-178
Cost Threshold for Parallelism setting, 175-176
costs, parallel vs. serial executions, 87-90
CPU costs, viewing, 176-177

CXPacket data structure, 163

degree of parallelism (DOP), 159, 161-162, 164,
175

Demand distribution scheme, 163, 171-172

dependence on number of logical CPUs, 89-90

Distribute Streams variant of Exchange operator,
160-163

Exchange operators, 160-166

execution plan icons indicating, 159-160

factory line model of, 158

few outer rows optimization, 168-170

forward scans only rule, 116

Gather Streams variant of Exchange operator,
160-163, 165-166

hash distribution scheme, 163-165

Hash Join operators in, 170-171

Hash Match operator, 167

inhibitors of parallelism, 178-181

instance-level settings, 175-176

interval calculations with, 464-465

legacy vs. 2014 versions, 174

manual rewrites as alternative to query optimizer,
181-186

Max Degree of Parallelism setting, 175-178

Max Worker Threads setting, 176-178

max_dop setting, 176

memory-optimized table transactions, not used
with, 696-697

merging exchange variant of Gather Streams,
165-166

nested loop solutions, 181-186

nonclustered index seek + range scan + lookups,
87-90

NonParallelPlanReason node, 180-181

optimization process, 176-177

packing tasks with, 470-471

Parallel APPLY Pattern, 181-186

Parallelism (Gather Streams) operator, 88,
160-163

partial aggregation, 166-167

partitioned tables, 171-173

—Pn startup parameter tool, 90

properties window features, 164

query cost metric, 178

query plans with, 159-160

range distribution scheme, 163

Repartition Streams operator, 161, 163, 169-170

Resource Governor settings, 175-176

round robin distribution scheme, 163, 169-170

row-distribution strategies, 163-165

scans, parallel, 168-170

SELECT INTO bulk operations, 173-174, 374

sorting, 165-166

stream-based model used by SQL Server, 159

threads per zone, 159, 161

trace flag 8649 tool, 90, 117

UDF inhibition of, 179-180, 548

XPacket data structure, 163

parameters
compiled values, 555-558
passed vs. declared within procedures, 559
preventing sniffing, 564-568
sniffing, 555-558
parent nodes
as ancestors. See ancestors
defined, 708
nested sets model of, 778
parent-child adjacency lists, converting to
HIERARCHYID, 771-773
PARSE function for dates and times, 431-433, 435
partial aggregation, 166-167

partitioning, ordering, covering pattern for indexing.

See POC (partitioning, ordering, covering)
pattern for indexing
partitions
allocation unit types used by, 44
changes in, recompiles triggered by, 570-571
creating, 171-172
descending indexes with PARTITION BY, 117-118
parallel query execution with, 171-173
ranking with window functions, 281-285
structure of, 44
window functions with PARTITION BY, 263-266
paths. See also edges
ancestors, returning, 730-733
cycles in, determining if, 740-742
cyclic vs. acyclic, 708
HIERARCHYID data type for materialized path
model. See HIERARCHYID data type
long paths issue, 767-771
materialized algorithms for solving. See
materialized path model
multiple into a node, 711
subgraphs with paths, 733-736
topological sorts using, 736739
transitive closure of directed. See transitive
closure
Pearson chi-squared formula, 501-505
PERCENT input indicator, TOP filters, 342
percentages
absolute, 476-479
cumulative, 476-479
frequency calculations with PERCENT_RANK
OVER, 477-478
grand totals, of, 268-269
PERCENT_RANK OVER window function, 288-289
percentiles
inter-quartile range calculations, 483
inverse distribution functions for calculating,
289-291
PERCENTILE_CONT for finding inter-quartile
ranges, 483
PERCENTILE_CONT for finding medians, 369,
480-481
PERCENTILE_CONT window function, 289-291

PRECEDING keyword

PERCENTILE_DISC window function, 289-291,
480-481
performance
DMVs (dynamic management views), 134-139
query tuning for. See query tuning
tools for measuring. See execution plans;
statistics, performance related
typical workloads, measuring. See Extended
Events sessions
pessimistic concurrency model, 674
PFS (page free space), 45
phantom reads
defined, 645-646
Serializable level for preventing, 651-652
vs. isolation levels, table of, 646
phases, logical query processing. See logical query-
processing phases
phone numbers, cleaning up, 549-550
physical execution plans, 97
physical layer, query tuning dependence on, 41
Physical Operation property, 239
physical processing order, 2-3
physical reads, 55
physical-query execution plans, 2
pivoting. See also unpivoting
actual frequencies, calculating with PIVOT
operator, 503
CASE expressions, implicit use of, 30-31
custom aggregations with, 315-316, 318-319
dynamic, 530-535
FOR XML with, 318-319
implicit grouping phase, 30
many-to-one pivots, 304-307
one-to-one pivots, 300-304
phase in logical processing, 27, 29-31
PIVOT operator elements, 27
PIVOT operator syntax, 302-304
row counting with PIVOT, 534
spreading attributes, 301-302
use cases for, 299
Plan Explorer tool, 139
plan optimality, 568, 570-571
plan stability, 568-570
plans, parallel. See parallel query execution
plans, query execution. See execution plans
POC (partitioning, ordering, covering) pattern for
indexing
correlated subquery optimization, 192
ranking optimization with, 284-285
running totals optimization, 271-273
top N per group tasks, recommended for,
363-365
population moments, 479, 490. See also distributions
positive vs. negative logic, 200-201
Potke, Marco, 456
power sets, CUBE function for creating, 331-333
PRECEDING keyword, 269-274, 277, 280-281

823

predicates, multiple, cardinality estimates for

predicates, multiple, cardinality estimates for,
104-107
prefetches
joins generating, 241
statistics on, 55
preserved tables of outer joins, 13
primary keys
clustered indexes resulting from, 43
merges causing violations, 408-409
procedure statistics, 138
processing order, physical vs. logical, 2-3
processing queries. See logical query-processing
phases
programmable objects
Dynamic SQL. See Dynamic SQL
SQLCLR. See SQLCLR programming
stored procedures. See stored procedures
triggers. See triggers
user-defined functions. See UDFs (user-defined
functions)
proleptic Gregorian calendar, use of, 419

Q

query cost metric, 178
query execution plans. See execution plans
query interop environment, In-Memory OLTP
ATOMIC blocks, 698
blocking, 691-693
cardinality estimates, 697
commit validation errors, 693-696
cross-database query execution bar, 696
deadlocks, 691-693
isolation levels available in, 691
parallelism not used currently, 696-697
similarity to standard SQL Server, 690
statistics generation, 697-698
query optimizer
cardinality estimator component of, 97-98
cost breakdowns, 176
Cost Threshold for Parallelism setting, 175-176
flaws in, 154, 156
manual rewrites as alternative, 181-186
ordering issues, 543
parallel optimization process, 176-177
parallel plans, criteria for, 175
plans created by. See execution plans
SQL Server, as component of, 2
unnesting of subqueries, 156
query processing. See logical query-processing
phases
query processor, query optimizer component of, 97
query tuning
access method issues. See access methods
allocation order scans, 65-76
bitmaps for, 170-171

cardinality estimates for. See cardinality estimates
clustered index seek + range scan, 93-94
cost breakdowns, 176
covering nonclustered index seek + range scan,
94-97
CPU costs, viewing, 176-177
data structures. See internal data structures
date and time calculations, 445-446
DMVs (dynamic management views), 134-139
early row reduction benefit, 166
execution plans for. See execution plans
extended events, prioritizing with, 131-134
Extended Events session statistics, 54, 56
filtered indexes, 120-122
graphical execution plans for. See execution plans
hash join and bitmap in parallel queries, 170-171
histograms for. See histograms
included non-key columns in indexes, 119-120
index order scan safety issues, 76-81
inline index definition, 130-131
join order optimization, 232-233
multiplicity of tasks and optimal solutions, 368
nonclustered index seek + range scan + lookups,
81-90
Parallel APPLY Pattern, 183-186
parallel optimization process, 176-177
partial aggregation, 166-167
PARTITION BY clauses, 117-118
partitioned tables, parallelism for, 171-173
physical layer, importance of, 41
prioritization of queries with Extended Events
sessions, 131-134
query cost metric, 178
query revisions for, 153-157
safety issues, allocation order scan, 65-76
SARGs, 445-446
scaling issue, 153
SELECT INTO bulk operations, 173-174
set-based vs. iterative solutions, 149-153
statistical vs. transactional query optimization,
473
statistics for. See statistics, performance related
storage engine scan treatment, 65-76
stored procedure tuning, 554-568
strategies, testing for desired execution plans,
154-158
TOP filters to avoid unnesting, 156
unordered nonclustered index scans + lookups,
91-93
query_hash action, 131-134, 137-138
query-processing phases, logical. See logical query-
processing phases
QUOTED_IDENTIFIER option, 569
QUOTENAME function, 318-319

R

RAISERROR command, 664-665
RAND function, UDF prohibition of, 546
range of a distribution, 482-483, 523
range parallel distribution scheme, 163
range predicate access method issues, 95-97
range scans. See scans
RANGE UNBOUNDED PRECEDING phrase, 279-280
RANGE unit for window frames, 276-280
rank, calculating
CUME_DIST OVER, 288-289
PERCENT_RANK OVER, 288-289
rank distribution window functions, 288-289
RANK OVER window function, 282-283, 285
window functions for, 281-285
RDBMS (relational database management system), 2
Read Committed isolation level, 646, 648-650, 660
Read Committed Snapshot isolation level, 646, 652,
655-656, 660
Read Uncommitted isolation level
compared to other isolation levels, 646
no shared locks, results of, 646-648
NOLOCK resulting in, 68, 81
shared locks not acquired on rows, 78-81
unsafe category allocation order scans, 68—69
reads
access method use of. See access methods
DataAccessKind.Read, 179
dirty, 645-647
isolation level settings for. See isolation levels
logical, 55, 57
phantom, 645-646, 651-652
read-ahead, 55
REBUILD keyword, 135
rebuilding indexes, 135
recompilations of stored procedures, 568-571
RECOMPILE option
efficiency benefits from, 537-539
issues with, 559
statement-level vs. procedure-level, 537, 559
stored procedures, preventing plan reuse,
558-560, 562-563
table variables with, 143-145, 148
unknowns, allowing sniffing of, 110
recovery models for database, 376-378
recovery models for transactions, 634
recursion
ancestors, returning, 730-733
limiting in an ON clause, 729
MAXRECURSION hint, 728-729
recursive CTEs, 209-211, 718-719, 722-723
triggers, 577-578
reduce and conquer algorithms, 733
references
column, table-qualified, 8
correlations, 189

row identifiers

regression, linear, 499-501
relational database management system (RDBMS), 2
relational division, 188
relational engine, SQL Server, 97
Relational Interval Tree (RI-tree) model, 456
relational model
of missing values, 10
SQL deviation from for duplicate rows, 18
relational operators
EXCEPT, 249, 255-256
input requirements, 249
INTERSECT, 249, 252-254
NULLs, treatment of, 11
ORDER BY clauses with, 249
precedence of, 249
result column names, 249
syntax of, 249
UNION, 249-252
relations, application of operators to, 38
relative standard deviations, 486
REORGANIZE keyword, 135
Repartition Streams operator
bottleneck from early use of, 183
redistribution of streams role, 161, 169-170
row-distribution strategies of optimizer, 163
too few rows triggering, 169-170
Repeatable Read isolation level, 646, 649-651, 691
REPLACE function, 597
Resource Governor parallelism settings, 175-176
RESULTS SETS clauses, 573-575
retry logic, 669-670
RIDs (row identifiers)
nonclustered index seek + range scan + lookups,
81-90
structure of, 51
right outer joins
optimizing multi-join queries with, 235
preserved tables, 13
RIGHT keyword, 229
vs. left outer joins, 230
Rl-tree (Relational Interval Tree) model, 456
road system scenario, 715-718
rollbacks
ROLLBACK TRAN command, 634-635
sequence object issues from, 386
temporary table and variable behavior, 148-149
ROLLUP function, 331-334, 337-338
root nodes, 708
root pages, 48
round robin parallel distribution scheme, 163,
169-170
rounding
dates and times issues, 447-449
ROUND function, 322
row constructor Standard SQL feature, 349
row identifiers (RIDs), 51, 81-90

825

row numbers

826

row numbers
calculations of, 477-478
generation, determined vs. random, 283
window function for. See ROW_NUMBER OVER
window function
@@rowcount, triggers using, 582
row-distribution parallel strategies, 163-165
ROW_NUMBER OVER window function
islands task solutions with, 292-294
maximum concurrent intervals task, 461-465
medians, calculating, 369-370
optimization of, 358-360
packing interval solutions, 466, 468-471
paging solutions with, 358-360
ranking function of, 282-285
separating elements with, 248
top N per group solution with, 364-365
topological sorts with, 736-739
row-offset arrays of pages, 42
ROW_OVERFLOW_DATA allocation units, 44
rows
errors due to access methods, 65-81. See also
scans
estimated by histograms, 102-103
estimated from density vectors, 103
estimated in execution plans, 98
generating large numbers of with cross joins,
216-217
outer rows, 13
ranking. See ROW_NUMBER OVER window
function
ROWS as a window frame unit, 269-276
ROWS UNBOUNDED PRECEDING phrase, 270-271,
273,281
running total calculations
SUM OVER window elements example, 264
window functions for, 271-273, 477
year-to-date (YTD) calculation, 280-281

S

sample data generation with cross joins, 225
SARGs (search arguments), 445-446
SAVE TRAN command, 635
scalar subqueries, 187-188
scaling
databases, query tuning issue, 153-157
parallel stream-based model, 159
sort parallelism, 165-166
window functions vs. join and grouping for
running totals, 273
scans
allocation order. See allocation order scans
backward, 116-117, 179
clustered index seek + range scan, 93-94
covering nonclustered index seek + range scan,
94-97

expensive part of plans, identification of, 154
fragmentation, 47-48
full, of nonclustered indexes, avoiding, 153-156
full scans of leaf level unclustered, expensiveness
of, 154
full scans when no order required, 57-60
full table, resulting in deadlocks, 658
index order scans, 46-47, 59, 65, 76-81
ordered clustered index scans, 62-63
ordered covering nonclustered index scans,
63-65
parallel, 168-170
RIDs, using in, 51
scan count statistic, 55
storage engine treatment of, 65-81
table scan/unordered clustered index scan access
method, 57-60
unordered covering nonclustered index scans,
60-62
unordered nonclustered index scans + lookups,
91-93
SCHEMABINDING option, views, 212
scope
batches, relationship to, 525
SCOPE_IDENTITY function, 412
of table expressions, 204
temporary objects (tables and variables), 140, 148
search arguments, 445-446
second regression line, 500
security issues
Dynamic SQL EXEC parameters, 526—-528
EXECUTE AS clauses, 546
SQLCLR stored procedure credentials, 614
seeks
clustered index seek + range scan access method,
93-94
cost in an index, 154
cost in reads, 49-50, 82
covering nonclustered index seek + range scan
access method, 94-97
forcing as part of a strategy, 154-155
generated by POC index strategies, 364
index seek access method, 49
looking for particular key in nonclustered
indexes, 52
operators using. See Index Seek operator
Segment operator, 64
Seidl, Thomas, 456
SELECT clauses
all-at-once operations, 17-18
AS with, 17
column aliases and processing order issue, 14
column references with, 17
Evaluate Expressions phase, 17-18
evaluate expressions phase, 6
INTO with. See SELECT INTO command
logical order of, 3-5
ORDER BY clauses with, 20-22

phase in logical processing, 4-5, 17-20
sample query for logical phases, 7
SELECT @local_variable method, 319-322
window functions in, 35-37
SELECT INTO command
bulk operations, 173-174
deduplification with, 400-401
drawbacks of, 375
eager writes, 140, 374-375
execution plans, 374
IDENTITY function with, 381
identity property copying, 374
In-Memory OLTP, not supported by, 705
INSERT SELECT as alternative, 374-375
logging, measuring, 377-378
logging options, 374
materials copied by, 373
metadata access blocking issue, 375-376
parallelism capability of, 374
self joins, 230
self-contained subqueries, 187-189
semi joins, 237-238
separating elements of arrays tables, 245-249
SEQUEL (Structured English QUEry Language), 2-3
sequence objects
ALTER SEQUENCE command, 382, 384
aspects and properties of, 394-395
cache performance issues, 387-394
CREATE SEQUENCE command, 382
CYCLE option, 383
data types supported by, 382
default values, 382
identity property, compared to, 384, 390-395
INCREMENT BY property, 383
keys, automating creation of, 384-385
MAXVALUE property, 382-383
MINVALUE property, 382-383
missing values, causes of, 387
NEXT VALUE FOR function, 382-386
NULLs allowed in target columns, 385
overwriting existing keys with, 385
performance considerations, 387-394
rolled back transaction issues, 386
START WITH property, 383
storing values for use, 385
syntax for creating, 382
sys.Sequences view metadata, 384
sequences of numbers, generating
identify property for. See identity property
performance considerations, 387-394
row numbers. See row numbers
sequence objects for. See sequence objects
table expressions for, 215-218
Serializable isolation level
compared to other levels, 646
implementing, 651-652
merger conflict prevention with, 409

spooling optimization for window functions

query interop environment with, 691
session contexts, 584
set-based approaches
nested sets graph solution, 778-786
separating elements problem, 245-249
sets defined, 149
vs. iterative solutions, 149-153
SGAMs (shared global allocation maps), 42
Shannon, Claude E., 518
shared global allocation maps (SGAMs), 42
shared locks (S), 636—639, 648-649
shared with intent exclusive locks (SIX), 637
shortest-path solutions, 791-801
Showplan Statistics Profile events, 138
Showplan XML Statistics events, 138
SHOW_STATISTICS command, 101-102
sibling nodes
defined, 708
sorting within, 736-739
significance, statistical, 498, 502, 509-512
Simple data recovery model
cache performance test with, 390-394
SELECT INTO operations with, 378
simple moving averages (SMAs), 513-514
SIMPLE recovery model for transactions, 634
SINGLE_ options, OPENROWSET function, 379-380
skewness, 479, 488-489, 490-495, 523
skipping rows
allocation order scan sources of, 65-76
index order scan sources of, 76-81
slopes, 499-501
SMALLDATETIME data type, 419-420
SMALLDATETIMEFROMPARTS function, 431
SMAs (simple moving averages), 513-514. See also
moving average value computations
Snapshot isolation level, 646, 652-655, 691
sniffing, disabling, 110
Sommarskog, Erland, 249, 542, 573
sorting
cardinality overestimations, effects of, 100
cardinality underestimations, effects of, 99
carry-along sorts, 366-368
dynamic, 542-546
graphs, hierarchical, 736-739
IP addresses, 773777
nonlinear scaling of Sort operation, 183
ORDER BY for. See ORDER BY clauses
parallel execution of, 165-166
separated lists of values, 773-777
Sort operator, expense of, 326-327
TOP filter ordering issues, 22-26
sp_executesql procedures, 529-530, 539-540
splits, page
allocation order scan errors from, 65-68
causes of, 47-48
spooling optimization for window functions,
278-279

827

spreading attributes

828

spreading attributes, 301-303, 305, 315-316
spreads of distributions
inter-quartile ranges, 483
mean absolute deviations, 484
mean squared deviations, 484-485
ranges, 482-483
standard deviations, 486—-487, 490, 498, 511, 523
variances, 485-486, 505-508
sp_statement_completed events, 131
SQL, 1-2. See also T-SQL (Transact SQL)
SQL Database
alternative lock model, 636
default isolation level, 646
SQL injection attacks, 526-530, 533
SQL Sentry, 139
SQL Server
Data Tools (SSDT), 589
Management Studio. See SSMS (SQL Server
Management Studio)
query optimization component of. See query
optimizer
relationship to T-SQL, 1
SQLOS (SQL operating system), 586, 588
SQLCLR programming
advantages of scalar functions, 597
advantages over UDFs, 550
AppDomain management and scope, 587, 589
architecture of, 585-588
assembly hosting, 587-588
AUTHORIZATION options, 588
calling CLR functions, 592, 600
CAS (Code Access Security), 588
case sensitivity issues, 595-597
context connection strings, 603-605, 607
CREATE ASSEMBLY command, 587-588, 591
CREATE FUNCTION statements, 590-591
creating table-valued functions, 598-600
database access by functions, 603-605
DataRow type, 604
date and time types issues, 595
DLLs in, 587, 591
enabling code, 587
EXTERNAL_ACCESS permission set, 587-588, 605
fill row method, 598-599, 604
FillRowMethodName option, 599
function creation, 589-590
HostProtection attribute, 588
I[Enumerable values, 598
indexes on functions, setting, 590
in-process hosting model, 586
IsNull property, 596, 599
memory utilization, 600-603
modifying of databases capability. See SQLCLR
stored procedures
.NET Base Class Library, 597
.NET basis of, 585-586
nullable types, 595
NUMERIC type issues, 592-593

offloading to an application server, 597

ORDER BY clause with, 600

ownership of assemblies, 588

PERMISSION_SET options, 587-588

project properties, setting, 591

publishing assemblies, 591-592

query plans of scalar functions, 588-589

read-only nature of access, 604

relation to T-SQL, 585

remote server access, 605

SAFE permission set, 587, 591

sandboxes, memory, 588

scalar function use cases, 597

security privileges of, 586

SqlCompareOptions enumeration, 595-597

SqlFacet attribute, 593, 596

SqlFunction attribute, 590-595, 599

SQLOS integration, 586

SqlString type, 590, 595-597

SqlTypes namespace, 590-595

SSDT projects, 589-590

stored procedures. See SQLCLR stored procedures

string splitting, 598-603

string type issues, 593-595, 595-597

stub scripts, custom, 595

TableDefinition, 599

table-valued functions, streaming, 598

TRUSTWORTHY mode, 605

T-SQL stub function creation, 591-592

type compatibility with SQL Server, 590-595

type fixes, making in Visual Studio, 593

UDF CLR scalar functions, 588-596

UNSAFE permission set, 587-588

user-defined aggregates. See SQLCLR user-
defined aggregates

user-defined types. See SQLCLR user-defined
types

Value property of SqlTypes, 594

SQLCLR stored procedures

compared to other options, 605
context connections, 607

creating, 606-607

@@ERROR function, 613
EventData property, 616

exception handling, 609-613
ExecuteAndSend method, 610-612
executing, 606-607
impersonation, 614

modifying of databases capability, 605
publication of, 606

RAISERROR issues, 611-612

return values, 606

security credentials with, 614

Send methods, 607-609
SqglContext class, 608, 614-616
SqlPipe class, 607-609

templates for, 606

THROW statements, 613

triggers, 615-616
try-catch blocks for exceptions, 612-613
SQLCLR user-defined aggregates
Accumulate method, 629-630
binary formatting, 628-629
collection classes in .NET for strings, 629-630
concatenation with comma separation, 629-632
creating, 628-629
duplicate value options, 631
IBinarySerialize interface implementation,
630-631
Init method, 628, 630, 632
IsinvariantToOrder option, 631
life cycles of, 628-629
Merge method, 629-630
methods, mandatory, 628-629
query plan limitation, 631
Read method, 631-632
schema reference requirement, 629
serialization requirement, 629
SqlString default type, 629-630
SqlUserDefinedAggregate settings, 631
template for, 628
Terminate method, 629-630
testing, 632
Write method, 631-632
SQLCLR user-defined types
byte ordered option, 625
case sensitivity of method and property names,
621
complex type issues, 621-627
conversion issues, 620
creating, 617-618
deploying, 619-620
factory methods, 624-625
functionality of, 617
IBinarySerialize interface, 625-626
instantiating, 620
INullable interface, 618
Native formatting, 620-621
Null property, 618
Parse method, 618-619, 621, 623-624
public accessor properties, 623-624
publishing, 619-620
Read method, 626-627
required interfaces, attributes and methods, 618
schema of, 620
Serializable attribute, 618
SqlUserDefinedType attribute, 618, 625
street address complex types, 621-625
stubs for, 620
template for, 617-618
ToString method, 618-619, 621, 627
UserDefined byte size, 625
Write method, 626-627
SqlFacet attribute, SQLCLR, 593, 596
SQLOS (SQL operating system), 586, 588
SQLOS schedulers, 175-177

statistics for Bl

sgl_statement_completed events, 131
SqlString type, SQLCLR, 590, 595-597
SqlTypes namespace, SQLCLR, 590-595
SQL_VARIANT type, 542-543
SSDT (SQL Server Data Tools), 589
SSMS (SQL Server Management Studio)
Display Estimated Execution Plan, 53
Include Actual Execution Plan option, 138-139,
151-152
performance of queries, measuring, 54
standard deviations, 486-487, 490, 498, 511, 523
standard normal distributions, 487-488
standard SQL, 1
star join queries
bitmaps for parallel optimization, 171
columnstore performance statistics, 130
rowstore vs. columnstore efficiencies, 123-127
statement completed events, Extended Events
sessions, 131-134
statistics for Bl (business intelligence)
analysis of variance, 505-508, 523
cases, 473-474
centers of distribution, 479-481
chi-squared tests, 501-505, 523
coefficient of determination (CD), 498-499,
523
coefficient of the variation (CV), 486, 523
contingency tables, 501-505, 523
correlation coefficients, 498-499, 523
covariance, 495-498, 523
CUME_DIST frequency calculations, 477-478
definite integration, 509-512, 523
degrees of freedom, 485, 502, 505-508, 523
descriptive statistics for continuous variables,
479-494
discrete variables, 474
entropy calculations, 518-521, 523
frequency calculations, 476-479, 523
frequency distributions, 477-479
F-tests, 506-508, 523
higher population moments, 487-494
histograms, 476-479
importance of, 473
inter-quartile ranges, 483, 523
kurtosis, 489-495, 523
linear dependencies, 495-511
linear regression, 499-501, 523
mean absolute deviations, 484, 523
mean squared deviations, 484-485, 523
means. See means
medians. See medians
modes, 324-327, 479-480, 573
moving averages. See moving average value
computations
normal distributions, 509-512
PERCENT_RANK frequency calculations, 477-478
preparing data for, 473-474
ranges of distributions, 482-483, 523

829

statistics, performance related

830

statistics for Bl (business intelligence), continued

row number calculations, 477-478

running totals, 477

SalesAnalysis view sample data, 474-475
significance, statistical, 498, 502, 509-512
skewness, 479, 488-489, 490-495, 523

slopes, 499-501

spread of distribution, 482-486

standard deviations, 486-487, 490, 498, 511, 523
variables, 473-474

variances, 485-486, 505-508, 523

window functions for data calculations, 288-291

statistics, performance related

ascending key problems, 107-110

AUTO_CREATE_STATISTICS option, 102, 111

cardinality. See cardinality estimates

density vectors, 102, 103

dm_db_index_operational_stats function, 135

dm_db_index_physical_stats function, 135

dm_db_index_usage_stats function, 135-136

dm_db_missing_index_columns function,
136-137

dm_db_missing_index_details view, 136

dm_db_missing_index_group_stats view, 136

dm_exec_procedure_stats, 138

dm_exec_query_profiles view, 138-139

dm_exec_query_stats view, 137-138

dm_exec_trigger_stats, 138

DMFs (dynamic management functions), 134-139

DMVs (dynamic management views), 134-139

DROP command, 111

filtered, creating, 120

filtered index, 120-122

headers, 102

histogram. See histograms

indexes, creation with, 101

main types created by SQL Server, 101

output interpretation, STATISTICS option, 55

refresh rate issues, 107-110

SHOW_STATISTICS command, 101-102

sniffing, disabling, 110

STATISTICS 10 option, 55-56

STATISTICS 10 spooling optimization stats, 279

STATISTICS PROFILE option, 138

STATISTICS TIME option, 55-56

STATISTICS tool syntax, 54

STATISTICS XML option, 138

for temporary objects (tables and variables), 143

trace flag 2371, 110

trace flag 2389, 109

unknowns in cardinality estimates, 110-115

variables as unknown values, 104, 110

WHERE clause predicate, 120

STDEV function, 486-487

STDEVP function, 486-487

step numbers, logical query-processing phases, 3
storage engine

clustered index seek + range scan, 93-94

consistency requirements, 65

covering nonclustered index seek + range scan,
96

NOLOCK effect, 68, 72

Read Uncommitted isolation level, 68-69, 78, 81,
647-648

safe category, 69-70, 72

TABLOCK effect, 69

treatment of scans, 65-81

unordered nonclustered index scans + lookups,
91-92

unsafe category, 68, 72-74

stored procedures

adding leaves to graphs, 744-745

advantages of, 553

cardinality estimates, implications of inaccuracy,
557-558

covering indexes for, 558

database designation for execution, 533

deployments of changes to, 553

dynamic filtering example, 535-542

dynamic pivoting example, 531-533

dynamic sorting example, 542-546

execution plan reuse, 554-558

initial compilations of, 554

iterative graph solutions with, 718-719

KEEPFIXED PLAN hint, 570-571

native compilation by In-Memory OLTP, 673

not supported within In-Memory OLTP natively
compiled processes, 705

parameter sniffing, 555-558

parameter sniffing, preventing, 564-568

parameterized queries in, 553

parameters passed vs. declared within
procedures, 559

preventing execution plan reuse, 558-560

recompilations, 568-571

RECOMPILE option, 558-560, 562-563

set options, plan affecting, 568-569

sp_statement_completed events, 131

SQLCLR. See SQLCLR stored procedures

transactions using, 635-636

triggered by events. See triggers

tuning, 554-568

TVPs in, 571-573

variable sniffing, lack of, 560-564

Stream Aggregate operator, 153, 167, 272
streaming table-valued functions, SQLCLR, 597-605
street addresses, 621-622

string concatenation

COALESCE function, 316

CONCAT function, 316

concatenation with comma separation, 629-632
cursors for, 314-315

FOR XML method, 317-319

pivoting for, 315-316, 318-319

SELECT @local_variable method, 319-322
separators, adding, 318

types of custom aggregate calculations of,
313-314
strings
cleaning, 549-550
collection classes in .NET for, 629-630
comma separated values SQLCLR examples,
598-603
REPLACE function, String.Replace SQLCLR
function performance vs., 597
separating elements of, 245-249
SQLCLR string type issues, 593-597
Structured English QUEry Language (SEQUEL), 2-3
structures, internal data. See internal data structures
STUFF function, 318, 549-550
subgraphs. See also descendants
algorithm for returning, 719-729
with path enumeration, 733-736
subqueries
correlated, 187, 189-194
cross joins for optimization, 226-227
EXISTS predicate with, 194-201
identifying gaps problem, 198-200
In-Memory OLTP, not supported by, 705
multi-valued, 188-189
nesting capabilities of, 187
NULLs, errors from, 203-204
optimizing Index Seek operators, 192-193
POC (partitioning, ordering, covering) pattern for
indexing, 192
scalar, 187-188
scalar aggregate, 191
self-contained, 187-189
substitution errors in column names, 201-202
table expressions with, 204-205
TOP filter based, 191-194
troubleshooting self-contained vs. correlated,
187,189
SUBSTRING function, 246-248
subtrees. See also trees
moving, 745-748
removing, 748-749
returning, 719-720
SUM function, 261-262, 265-268
SUM OVER window function
advantages over SUM function, 263-264
frame delimiters with, 269-272
GROUP BY with, 267-269
islands solution with, 296-299
maximum concurrent intervals task, 459-461
packing interval solutions with, 466-468
PARTITION BY with, 263-265
performance of, 266-268
window elements supported by, 264
surface-area restrictions, In-Memory OLTP, 703-705
surrogate key generation
identity property for, 381-382
sequence object for, 382-386
UPDATE with variables method, 403-404

tables

swapping column values, 18

SWITCHOFFSET function, 425-426
sys.allocation_units view, 42

SYSDATETIME function, 422
SYSDATETIMEOFFSET function, 421-424
sys.partitions view, 42
sys.system_internals_allocation_units view, 44
SYSUTCDATETIME function, 422

T

table expressions
CTEs. See CTEs (common table expressions)
derived tables. See derived tables
inline TVFs. See inline TVFs (table-valued
functions)
kinds of, 204
query requirements for, 204-205
updating data with, 402-403
views. See views
table operators
Cartesian product logical processing phase, 8-9
evaluation order of, 27
joins. See joins
logical query processing of, 8-14
logical query-processing phase for, 26-35
table scans
Table Scan operators, 65
table scan/unordered clustered index scan access
method, 57-60
table variables
advantages over temporary tables, 143
cardinality estimates, 143-146
declaring, 144
declaring with table types, 571-572
inline index definition with, 130-131
INTO clauses directing rows to, 412-413
parallelism inhibited by modification of, 179
RECOMPILE option, 143-145
rollbacks with, 148-149
scopes of, 140, 148
statistics available for, 143
table types for, 571-573
temporary. See temporary table and variable
objects
trace flag 2453, 146
transactions failures, advantages with, 148-149
as TVF outputs, 550-553
tables
allocation units, 44
B-trees, 43-44, 46-50
changes in, recompiles triggered by, 570-571
CTEs. See CTEs (common table expressions)
deleting all rows from with TRUNCATE TABLE,
395-399
expressions. See table expressions
heap data structure, 43-46

831

table-valued functions, SQLCLR

THROW statements, 613, 665
tile numbers, NTILE for, 282-283

tables, continued
HOBT (heap or B-tree) organization, 43-44
IAMs (index allocation maps), 44-45, 47 TIME data type, 419-420, 422, 440, 595
inline TVFs. See inline TVFs (table-valued TIMEFROMPARTS function, 431
functions) times. See dates and times
internal data structures for, 43-53 TODATETIMEOFFSET function, 426
memory optimized. See In-Memory OLTP TOP filters

memory optimized, defining as, 140

memory optimized, parallelism inhibited by, 179

MEMORY_OPTIMIZED option, 572
operators. See table operators
partitioned. See partitions
scans. See table scans
temporary. See temporary table and variable
objects
temporary local, with triggers, 584-585
TVPs (table-valued parameters), 571-573
type definitions, 571-573
variables. See table variables
views. See views
table-valued functions, SQLCLR, 597-605
table-valued parameters (TVPs), 571-573
TABLOCK hint, 69
tempdb
batch spills to, 128-129
cardinality estimate effects, 99-100
tables in not indexed, issues from, 581
temporary object use of, 140
temporary table and variable objects
caching mechanism issues, 147-148
cardinality estimates with, 139
cases to use for query tuning, 139
CTE expensive work, avoiding repetition of,
140-143
disk activity from, 140
eager writes, 140
global temporary tables, 148
local temporary table qualities, 139-140
non-tuning usage of, 139
RECOMPILE option, 143-145, 148
rollbacks with, 148-149
scope of, 140, 148
statistics maintained for, 143
table cardinality estimates, 146-147
table execution plans, 147
table expression qualities, 139-140
table variable qualities, 139-140
tables vs. variables, performance, 143
tempdb use, 140
types of temporary objects, 139-140
threads
CXPacket data structure, 163
distributor or coordinator threads, 164-165
Max Degree of Parallelism setting, 175-178
Max Worker Threads setting, 176-178

anchor-based paging strategy, 346-352

chunked modification with, 361-363

DELETE statements with, 360-363

DESC option, 344-345

elements of, 22

execution plan for TOP over TOP, 353

execution plans for anchor sorts, 348, 351, 352

index choices, effects on optimization, 349

inner ORDER BY clauses do not guarantee order,
344-345

INSERT TOP statements, 360

MERGE TOP statements, 360

minimum missing values, finding with, 196-198

modes, TOP WITH TIES to calculate, 480

modification statements of, 360-363

nested TOP paging strategy, 352—-353

optimization of paging solutions, 346-353

ORDER BY clauses with, 341-342

ORDER BY (SELECT NULL), 344

ordering issues, 22-26, 342-343

parallelism inhibited by certain, 179

PERCENT input indicator, 342

phase in logical processing, 6, 22-26

predicate phrasing, effects on performance,
349-352

proprietary to T-SQL, 341

suggestion to add OVER to, 366

syntax of, 341

tie breaking with subqueries, 191-194

Top Expression property of Top operator, 348

Top operator in execution plans, 64, 348

unnesting of subqueries, avoiding with, 156

UPDATE TOP statements, 360

WHILE loops with TOP on key order, no key index,
581

WITH TIES option, 343-344

top N per group tasks

APPLY with TOP solutions, 365-366

carry-along sorts for, 366-368

concatenation solutions, 366-368

CROSS APPLY solution to, 219-220

density of partitioning elements, 363-364

elements of, 363

factors influencing efficiency of T-SQL solutions
to, 363-364

N=1 solution, 366-368

POC index support for, 192, 363

ROW_NUMBER based solution, 364-365

parallel query execution number of, 159, 161, 164 topological sorts, 736-739
quantum punishment of, 586 trace flag 272, 382, 387
three-value logic, 10 trace flag 2371, 110

832

trace flag 2389, 109
trace flag 2453, 146
trace flag 8649, 90, 117, 465
Transact SQL (T-SQL). See T-SQL (Transact SQL)
transactional replication bulk-logging requirements,
376
transactions
ACID properties, list of, 633
AFTER DML triggers with, 575-578
atomicity property, 633
autocommit default mode, 633
BEGIN TRAN command, 633-636
BULK_LOGGED recovery model for, 634
COMMIT TRAN command, 634-636
commit validation errors, 693-696, 702
completion guarantees, 634
consistency property, 634
constraints, immediacy of, 634
deadlocks of. See deadlocks
delayed durability, 634
doomed state, 666
durability property, 634
errors in, 666—-668
failed state, 666
FULL recovery model for, 634
IMPLICIT_TRANSACTIONS option, 633
In-Memory OLTP of. See In-Memory OLTP
isolation level settings. See isolation levels
isolation property, 634
locks from. See locks
log buffers, flushing of, 634
nesting not supported, 634-635
recovery models, 633-634
redo phase of recovery process, 633
ROLLBACK TRAN command, 634-635
SAVE TRAN command, 635
savepoints, 635-636
SIMPLE recovery model for, 634
stored procedures in, 635-636
@@trancount, 635, 666-667
undo phase of recovery process, 633
UPDATE variable method for gapless sequences,
403-404
XACT_ABORT option, 666-667
XACT_STATE option, 667-668
transitive closure
cycle-detection logic for, 793
defined, 787
directed acyclic graphs, of, 787-792
distance calculations, 789-790
duplicate edge elimination, 789
efficiency of solutions, 787
filtering shortest paths, 791-792
materializing result sets, 799
shortest-path solutions, 791-801
undirected cyclic graphs, 792-801
trapezoidal rule, 509-510

TRY-CATCH constructs

trees
B-tree table representations. See B-trees
components of, 708
defined, 708
employee organizational chart scenario, 709-711
HIERARCHYID for representing. See
HIERARCHYID data type
materialized path solutions for. See materialized
path model
nested sets graph solution, 778-786
parent-child adjacency lists, converting to
HIERARCHYID, 771-773
subtrees, moving, 745-748
subtrees, removing, 748-749
subtrees, returning, 719-720
triggers
AFTER DDL triggers, 579-581
AFTER DML triggers, 575-578, 581-585
AFTER UPDATE triggers, 576-577
CREATE TRIGGER command, 576-578
cursors with, 581-583
defined, 575
disabling, 583-584
INSTEAD OF DML triggers, 578
integrity enforcement for, 583
nesting and recursion of, 577-578
ON ALL SERVER, 580
ON DATABASE, 580
performance issues for, 581-585
rollbacks with, 149
row processing options for, 581
@@rowcount with, 582
session contexts, 584
SQLCLR based, 615-616
temporary local tables with, 584-585
TRUE value, 10
TRUNCATE TABLE statements
DML statement nature of, 399
identity property handling, 396-397
keys and views preventing execution, 397-398
partition switching alternative to, 397-399
permissions required for, 395
speed advantage over DELETE statements, 395
syntax of, 395
TRY_CAST function, 432
TRY-CATCH constructs
advantages over @@error function, 662-663
ERROR_ functions with, 664
ERROR_NUMBER functions in, 664-666
mechanics of, 663
nesting, 664
non-trappable errors, 664
retry logic, 669-670
syntax, 663-664
THROW statements in, 665-666
transaction errors in TRY blocks, 666-668
trapped errors not reported, 664
UDF prohibition of, 546

833

TRY_CONVERT function

TRY_CONVERT function, 431-432
T-SQL (Transact SQL)
inefficiency of iterative solutions, 149-150,
152-153
relation to industry standards, 1
tuning queries. See query tuning
tuples, 18. See also rows
TVFs (table valued functions), 550-553
TVPs (table-valued parameters)
for In-Memory OLTP procedures, 699-702
for stored procedures, 571-573
type-conversion errors, 542
typed order vs. logical order, 3

U

UDAs (user-defined aggregates) for skewness and
kurtosis, 490-495
UDFs (user-defined functions)
capabilities of, 546
CLR-based. See SQLCLR programming
inline, encapsulating, 719
iterative graph solutions using, 718-719
iterative logic in, 549-550
limitations of, 546-547
multiple statements in, 549-550
parallelism inhibited by, 179-180, 548
performance penalties associated with, 547-549
scalar-valued, 546-550
subgraph solution, 718-724
TDFs as alternatives to, 548-549
UNBOUNDED keyword, 269-272, 277-281, 286
undirected cyclic graphs
conversion to directed graphs, 792-793
road system scenario, 715-718
transitive closure of, 792-801
weighted, 718
undirected graphs, 708. See also undirected cyclic
graphs
uniform extents, 43
UNION operator
ALL variant, 37-38, 250
CHECK constraints with, 251-252
costs, 251
DISTINCT implied, 250
execution plans for, 251-252
grouping sets with, 329-330
logical query-processing phase for, 38-39
NULLs, treatment of, 11, 249
ORDER BY with, 249
precedence, 249
unions not allowed by In-Memory OLTP, 705
UNIQUE constraints
filtered indexes with, 122
not supported by In-Memory OLTP, 704
NULL value treatment, 11
uniquifier columns, 46-47, 52-53

UNKNOWN value, 10-11
unknowns in cardinality estimates, 110-115
unordered clustered index scans, 57-60
unordered covering nonclustered index scans, 60—62
unordered nonclustered index scans + lookups,
91-93
unpivoting. See also pivoting
with CROSS APPLY and VALUES, 310-311
with CROSS JOIN and VALUES, 308-310
purpose of, 307-308
with UNPIVOT operator, 312-313
UNPIVOT operator elements, 27
UNPIVOT operator phase in logical processing,
31-35
unrestricted cross joins. See Cartesian products
UPDATE statements
AFTER UPDATE triggers with, 575-578
INSTEAD OF UPDATE triggers with, 578
in MERGE statements, 405-406
with OPENROWSET function, 380
OUTPUT clauses with, 411
overwriting existing keys with sequence objects,
385
swapping column values, 18
UPDATE TOP filters, 360
updating tables with CTEs, 402-403
variable assignment method, 403-404
updating data
Repeatable Read isolation level for preventing
conflicts, 650
Snapshot isolation level for preventing conflicts,
652-655
as a source of row return errors, 76—-81
table expressions for, 402-403
UPDATE function test for updated columns, 577
update locks (U), 637
variable assignment method for, 403-404
UPDLOCK hints, 650-651, 757-758
user-defined functions. See UDFs (user-defined
functions)
user-defined types, SQLCLR. See SQLCLR user-
defined types
USING clauses, 410-411
UTC (Coordinated Universal Time), 420-421

\'

validation errors, 693-696, 702
value method, 317-318
variables
chi-squared tests of independence of, 501-505
as columns, 473
continuous, 474
correlations between, 495-501
discrete, 474
independence of, assumptions about, 499
relationships between. See linear dependencies

sniffing, lack of, 560-564
temporary table. See temporary table and
variable objects
variances
analysis of, 505-508
covariance, 495-498
defined, 523
VAR and VARP functions, 485-486
vector expression Standard SQL feature, 349
vertexes. See nodes
views
CHECK option, 212
data not stored, just metadata, 212
input parameter support lacking, 215
INSTEAD OF DML triggers, 578
of joined partitioned tables, 212-214
performance issues, 213-214
query requirements for, 204-205
reusable nature of, 211-212
SCHEMABINDING option, 212
scopes of, 204
virtual tables
add outer rows results, 13
APPLY operator generation of, 26-29
FROM clauses, generated by, 8-14
generation, 4-6
GROUP BY phase, 15-16
PIVOT operator generation of, 29-31
TOP filters, generated by, 22-26
UNPIVOT operator generation of, 31-35
WHERE phase, 14-15
Visual Studio for CLR code, 589-591

w

Waymire, Richard, 528
weekdays, calculating, 423, 436-439, 441-445
weeks, grouping by, 449-450
weighted graphs, 714, 718
weighted moving averages (WMAs), 514
WHEN NOT MATCHED BY SOURCE clauses, 404-407
WHERE filters
column IS NOT NULL, 122
dates and times filtered by, 445-446
groups not allowed in, 14
inner joins with, 228
logical order of, 3-5
logical phase order sample, 7
NULLs, subquery errors from, 203-204
ON clause, vs. in outer joins, 14-15
outer joins with, 230
phase in logical processing, 4-5, 14-15
UNKNOWN values, treatment of, 11
window functions using, 263-264
WHILE loops with TOP on key order, no key index,
581
White, Paul, 148, 349, 543

window functions

window aggregate functions. See aggregate window

functions

window frames

CURRENT ROW delimiter, 269-270, 274, 276-278

default, 286

delimiters for, 269

as elements of window functions, 264

fast-track optimization cases, 272

FOLLOWING keyword, 269, 273-274

INTERVAL not supported, 276-277

offset functions, for, 286

offsets with RANGE, 276

offsets with ROWS, 273-274

partitions, relationship to, 269

PRECEDING keyword, 269-274, 277, 280-281

RANGE UNBOUNDED PRECEDING phrase,
279-280

RANGE unit with, 276-280

ROWS delimiters, 269-276

ROWS UNBOUNDED PRECEDING phrase,
270-271, 273, 281

spooling optimization, 278-279

ties in ordering value, RANGE vs. ROWS, 278

UNBOUNDED keyword, 269-272, 277-281, 286

year-to-date (YTD) calculation, 280-281

window functions

advantages of, 263

aggregates. See aggregate window functions
AVG OVER, 274-275

CUME_DIST OVER, 288-289

DENSE_RANK OVER, 282-283, 285, 294-296
elegance for calculations, 259

fast-track optimization plan, 271-272

filters with, 263-264

FIRST_VALUE OVER, 285-286, 511

frames of. See window frames

frequency calculations, 476-479

gaps problems, 291-292

GROUP BY with, 267-269

INTERVAL not supported, 276-277

inverse distribution functions, 289-291
island problems, 291-299

LAG OVER, 287, 296-299

LAST_VALUE OVER, 285-287, 511

LEAD OVER, 287, 291-292

legacy vs. 2012 versions, 259

limited to SELECT and ORDER BY clauses, 263
logical query-processing phases, 35-37

MAX OVER, 275-276

medians, finding with PERCENTILE_CONT, 369
moving average value computations with, 274
NTILE OVER, 282-283, 285

offset functions, 285-287

offsets with ROWS, 273-274

optimization of, 266-268

OVER clauses, 259, 263

packing interval solutions, 466-471
parallelism inhibited by certain, 179

835

window sets

window functions, continued WITHIN GROUP clauses, 327
PARTITION BY with, 263-266 WMAs (weighted moving averages), 514. See also
partitions with rankings, 281-285 moving average value computations
PERCENTILE_CONT, 289-291, 369 write-ahead logging, 643

PERCENTILE_DISC, 289-291
PERCENT_RANK OVER, 288-289

percents of grand totals with, 268-269 X

POC indexes with, 271-273, 284-285

rank distribution, 288-289 XML features

RANK OVER, 282-283, 285 EVENTDATA as XML function, 579-580

ranking calculations with, 281-285 EventData property for SQLCLR triggers, 616

ROW_NUMBER OVER. See ROW_NUMBER OVER FOR XML string concatenation, 317-319
window function PATH mode, 317, 531

ROWS delimiters, 269-276 TYPE directive, 317

running total calculations with, 271-273 XPacket data structure, 163

spooling optimization, 278-279
structures for, 264
SUM OVER. See SUM OVER window function Y
lyi | f, 2
\lj:der ying resu ts, exposure of, 263 YEAR function, 425
. group functions, 259 .
windows of rows. 259 year-to-date (YTD) calculation, 280-281
year-to-date (YTD) calculation, 280-281
window sets, 35-37
Windows Time service, 421-422 Z
WITH RESULT SETS clauses, 573-575 Z distribution, 487-488

836

About the authors

ITZIK BEN-GAN is a mentor for and co-founder of SolidQ. A SQL Server
Microsoft MVP (Most Valuable Professional) since 1999, Itzik has delivered
numerous training events around the world focused on T-SQL querying, query
tuning, and programming. Itzik has authored several T-SQL books as well as
articles for SQL Server Pro, SolidQ Journal, and MSDN. ltzik's speaking activi-
ties include TechEd, SQLPASS, SQL Server Connections, SolidQ events, and
various user groups around the world. Itzik is the author of SolidQ’s Advanced T-SQL
Querying, Programming and Tuning, and T-SQL Fundamentals courses, along with
being a primary resource within the company for its T-SQL-related activities.

DEJAN SARKA, MCT and SQL Server MVP, is an independent consultant,
trainer, and developer focusing on database and business intelligence applica-
tions. His specialties are advanced topics like data modeling, data mining, and
data quality. On these tough topics, he works and researches together with
SolidQ and the Data Quality Institute. He is the founder of the Slovenian SQL
Server and .NET Users Group. Dejan Sarka is the main author or coauthor of
11 books about databases and SQL Server, with more to come. He also has developed
and is continuing to develop many courses and seminars for SolidQ and Microsoft. He
has been a regular speaker at many conferences worldwide for more than 15 years,
including Microsoft TechEd, PASS Summit, and others.

ADAM MACHANIC is a Boston-based SQL Server developer, writer, and
speaker. He focuses on large-scale data warehouse performance and devel-
opment, and he is the author of the award-winning SQL Server monitoring
stored procedure sp_WholsActive. Adam has written for numerous websites
and magazines, including SQLblog, Simple Talk, Search SQL Server, SQL Server
Professional, CoDe, and VSJ. He has also contributed to several books on SQL
Server, including SQL Server 2008 Internals (Microsoft Press, 2009) and Expert
SQL Server 2005 Development (Apress, 2007). Adam regularly speaks at conferences
and training events on a variety of SQL Server topics. He is a Microsoft Most Valuable
Professional (MVP) for SQL Server, a Microsoft Certified IT Professional (MCITP), and an
alumnus of the INETA North American Speakers Bureau.

KEVIN FARLEE has over 25 years in the industry, in both database and
storage-management software. In his current role as a Storage Engine Pro-
gram Manager on the Microsoft SQL Server team, he brings these threads
together. His current projects include the SQL Server Project "Hekaton” In-
Memory OLTP feature.

This page intentionally left blank

Free [ebooks

D/

From technical overviews to drilldowns on special topics, get
free ebooks from Microsoft Press at:

www.microsoftvirtualacademy.com/ebooks

Download your free ebooks in PDF, EPUB, and/or Mobi for
Kindle formats.

Look for other great resources at Microsoft Virtual Academy,
where you can learn new skills and help advance your career
with free Microsoft training delivered by experts.

Microsoft Press

www.microsoftvirtualacademy.com/ebooks

Now that

you've
read the
book...

Tell us what you think!

Was it useful?
Did it teach you what you wanted to learn?
Was there room for improvement?

Let us know at http://aka.ms/tellpress

Your feedback goes directly to the staff at Microsoft Press,
and we read every one of your responses. Thanks in advance!

5 Microsoft

http://aka.ms/tellpress

	Contents
	Introduction
	Foreword
	Chapter 5 TOP and OFFSET-FETCH
	The TOP and OFFSET-FETCH filters
	The TOP filter
	The OFFSET-FETCH filter

	Optimization of filters demonstrated through paging
	Optimization of TOP
	Optimization of OFFSET-FETCH
	Optimization of ROW_NUMBER

	Using the TOP option with modifications
	TOP with modifications
	Modifying in chunks

	Top N per group
	Solution using ROW_NUMBER
	Solution using TOP and APPLY
	Solution using concatenation (a carry-along sort)

	Median
	Solution using PERCENTILE_CONT
	Solution using ROW_NUMBER
	Solution using OFFSET-FETCH and APPLY

	Conclusion

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

