
Pr
of

es
sio

na
l

José M. Aguilar

SignalR
Programming in
Microsoft ASP.NET

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2014 by Krasis Consulting S.L.

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2014930486
ISBN: 978-0-7356-8388-4

Printed and bound in the United States of America.

First Printing

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty
/Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions Editor: Devon Musgrave
Developmental Editor: Devon Musgrave
Project Editor: Carol Dillingham
Editorial Production: nSight, Inc.
Technical Reviewer: Todd Meister; Technical Review services provided by Content Master, a member of
CM Group, Ltd.
Copyeditor: Richard Carey
Indexer: Lucie Haskins
Cover: Twist Creative • Seattle and Joel Panchot

To my parents, for all the love and unconditional support you
gave that kid who only liked computers.

And to my three girls, Inma, Inmita, and María, for putting up
with me daily and yet being able to give me so much love and
happiness.

—José M. AguilAr

Contents at a Glance

Introduction xiii

CHAPTER 1 Internet, asynchrony, multiuser…wow! 1

CHAPTER 2 HTTP: You are the client, and you are the boss 5

CHAPTER 3 Introducing SignalR 17

CHAPTER 4 Persistent connections 27

CHAPTER 5 Hubs 57

CHAPTER 6 Persistent connections and hubs from other threads 103

CHAPTER 7 Real-time multiplatform applications 117

CHAPTER 8 Deploying and scaling SignalR 151

CHAPTER 9 Advanced topics 181

Index 233

 vii

Contents

Introduction . xiii

Chapter 1 Internet, asynchrony, multiuser…wow! 1

Chapter 2 HTTP: You are the client, and you are the boss 5
HTTP operations . 5

Polling: The answer? . 7

Push: The server takes the initiative . 8

WebSockets . 9

Server-Sent Events (API Event Source) .11

Push today .12

The world needs more than just push .15

Chapter 3 Introducing SignalR 17
What does SignalR offer? .18

Two levels of abstraction .19

Supported platforms .20

OWIN and Katana: The new kids on the block .21

Installing SignalR .25

Chapter 4 Persistent connections 27
Implementation on the server side .28

Mapping and configuring persistent connections28

Events of a persistent connection .30

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

viii Contents

Sending messages to clients .32

Asynchronous event processing .34

Connection groups .35

The OWIN startup class .37

Implementation on the client side .38

Initiating the connection by using the JavaScript client38

Support for older browsers . 41

Support for cross-domain connections . 41

Sending messages .43

Receiving messages .45

Sending additional information to the server46

Other events available at the client .47

Transport negotiation .48

Adjusting SignalR configuration parameters .50

Complete example: Tracking visitors . 51

Project creation and setup .52

Implementation on the client side .53

Implementation on the server side .54

Chapter 5 Hubs 57
Server implementation .58

Hub registration and configuration .58

Creating hubs .59

Receiving messages .60

Sending messages to clients .64

Sending messages to specific users .68

State maintenance .69

Accessing information about the request context71

Notification of connections and disconnections 72

Managing groups .72

Maintaining state at the server .73

Client implementation .78

 Contents ix

JavaScript clients. .79

Generating the proxy .79

Manual generation of JavaScript proxies .81

Establishing the connection .83

Sending messages to the server .86

Sending additional information .89

Receiving messages sent from the server .90

Logging .91

State maintenance .92

Implementing the client without a proxy .93

Complete example: Shared drawing board .96

Project creation and setup .97

Implementation on the client side .98

Implementation on the server side .100

Chapter 6 Persistent connections and hubs from other threads 103
Access from other threads .103

External access using persistent connections105

Complete example: Monitoring connections at the server 106

Project creation and setup .107

Implementing the website .108

System for tracing requests (server side) .109

System for tracing requests (client side) .111

External access using hubs .111

Complete example: Progress bar .113

Project creation and setup .113

Implementation on the client side .114

Implementation on the server side .115

Chapter 7 Real-time multiplatform applications 117
Multiplatform SignalR servers .117

SignalR hosting in non-web applications. .118

SignalR hosting in platforms other than Windows 126

x Contents

Multiplatform SignalR clients .129

Accessing services from .NET non-web clients130

Consumption of services from other platforms149

Chapter 8 Deploying and scaling SignalR 151
Growing pains .152

Scalability in SignalR .155

Scaling on backplanes .159

Windows Azure Service Bus .159

SQL Server .165

Redis .167

Custom backplanes .170

Improving performance in SignalR services .173

Server configuration . 174

Monitoring performance .175

Chapter 9 Advanced topics 181
Authorization in SignalR .181

Access control in persistent connections .181

Access control in hubs .182

Client authentication .184

An extensible framework .191

Dependency injection .196

Manual dependency injection .198

Releasing dependencies .200

Inversion of Control containers .200

Unit testing with SignalR .205

Unit testing of hubs .211

Unit testing persistent connections .215

Intercepting messages in hubs .218

Integration with other frameworks .223

Web API .223

 Contents xi

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

ASP.NET MVC .226

Knockout .227

AngularJS .230

Index 233

 xiii

Introduction

SignalR, Microsoft’s latest addition to the web development technology stack, is a
framework that facilitates the creation of amazing real-time applications, such as

online collaboration tools, multiuser games, and live information services, whose devel-
opment has traditionally been quite complex.

This book provides a complete walkthrough of SignalR development from scratch,
but it will also deal with more advanced topics. The idea is that after reading it you will
be familiar with the possibilities of this framework and able to apply it successfully in
practice in the creation of real time systems of any size. It can also be used as a refer-
ence manual because, although not exhaustively, it includes most features of practical
application in the development of SignalR systems, and it provides the bases for fully
mastering them.

Who should read this book
The aim of this book is to help developers understand, know, and program SignalR-
based components or applications. It can be of special interest to developers who need
to make use of real-time immediacy in existing applications or who want to create new
systems based on this paradigm.

Developers specializing in the back end will learn to implement real-time services
that can be consumed from any client and to address scenarios such as those requiring
scalability or quality improvement via unit tests. Those who are more oriented to the
front end will see how they can consume real-time services and add spectacular fea-
tures to their creations on the client side. Web developers, especially, will find a really
simple way to break the limitations characteristic of the HTTP-based world, thanks to
the use of push and the asynchrony of these solutions.

Assumptions
In this book, we will assume that the reader has a good knowledge of C# and program-
ming within the .NET environment in general. Also, because SignalR itself and many of
the examples and contents are focused on the web world, it is necessary to know the
protocols on which it rests, as well as having a certain knowledge of the basic lan-
guages of these environments, such as HTML and, in particular, JavaScript.

xiv Introduction

Although not strictly necessary, the reader might benefit from some prior knowl-
edge about development with jQuery, Windows Phone 8, or WinRT for the chapters
that develop examples and contents related to them. Familiarity with techniques such
as unit testing, mocking, and dependency injection to get the most out of the final
chapters could also prove helpful.

Who should not read this book
Readers who do not know the .NET platform and C# will not be able to benefit from
this book. If you do not have prior knowledge of JavaScript, it will be difficult to follow
the book’s explanations.

Organization of this book
This book is structured into nine chapters, throughout which we will go over differ-
ent aspects of the development of real-time multiuser systems with SignalR, starting
from scratch and all the way up to the implementation of advanced features of this
framework.

Chapter 1, “Internet, asynchrony, multiuser…wow!“ and Chapter 2, “HTTP: You are the
client, and you are the boss,” are purely introductory, and they will help you understand
the technological context and the foundations on which this new framework rests.

In Chapter 3, “Introducing SignalR,” we will present SignalR at a high level, show-
ing its position in the Microsoft web development technology stack and other related
concepts such as OWIN and Katana.

From this point, we will begin to look in detail at how to develop applications by
using SignalR. We will dedicate Chapter 4, “Persistent connections,” and Chapter 5,
“Hubs,” to study development from different levels of abstraction, using persistent con-
nections and hubs. In Chapter 6, “Persistent connections and hubs from other threads,”
we will study how to integrate these components with other technologies within the
same application, and in Chapter 7, “Real-time multiplatform applications,” we will see
how to implement multiplatform clients.

Chapter 8, “Deploying and scaling SignalR,” will show different deployment sce-
narios and the scaling solutions offered by SignalR. In Chapter 9, “Advanced topics,” we
will find miscellanea where we will deal with more advanced aspects, such as security,
extensibility, testing, and others.

 Introduction xv

Finding your best starting point in this book
Although this book is organized in such a way that it can be read from beginning to
end following a path of increasing depth in the contents addressed, it can also be
used as a reference by directly looking up specific chapters, depending on the level of
knowledge the reader starts with and their individual needs.

Thus, for developers who are approaching SignalR for the first time, the recommen-
dation would be to read the book from beginning to end, in the order that the chap-
ters have been written. However, for those who are acquainted with SignalR and have
already developed with it in any of its versions, it will suffice to take a quick look at the
first three chapters and then to pay closer attention to the ones dedicated to develop-
ment with persistent connections or hubs to find out aspects they did not know about
or changes from previous versions. From there, it would be possible to go directly to
resolving doubts in specific areas, such as the scalability features of the framework,
implementing authorization mechanisms, or the procedure for performing unit tests
on hubs.

In any case, regardless of the chapter or section, it is a good idea to download and
install the related example projects, which will allow practicing and consolidating the
concepts addressed.

Conventions and features in this book
This book presents information using the following conventions designed to make the
information readable and easy to follow:

 ■ Boxed elements with labels such as “Note” provide additional information or
alternative methods for successfully completing a task.

 ■ Text that you type (apart from code blocks) appears in bold.

 ■ A plus sign (+) between two key names means that you must press those keys at
the same time. For example, “Press Alt+Tab” means that you have to hold down
the Alt key while you press the Tab key.

 ■ A vertical bar between two or more menu items (for example, “File | Close”)
means that you should select the first menu or menu item, then the next one,
and so on.

xvi Introduction

System requirements
To be able to adequately follow the examples shown in this book and practice with
them, it is necessary to have, at least, the following hardware and software items:

 ■ A computer equipped with a processor whose speed is at least 1.6 GHz (2 GHz
recommended).

 ■ 2 GB RAM (4 GB is advisable).

 ■ A video card compatible with DirectX 9, capable of resolutions above 1024x768.

 ■ The operating systems Windows 7 SP1, Windows 8, Windows 8.1, or Windows
Server editions above 2008 R2 SP1.

 ■ Internet Explorer 10.

 ■ Visual Studio 2012 or above, in any of its editions. It is possible to use Express
versions in most cases.

 ■ An Internet connection.

Some examples might require that you have a system account with administrator
permissions or that you install complements such as the Windows Phone SDK. In some
chapters, external resources are also used, such as Windows Azure services.

Code samples
Throughout this book you can find examples, and even complete projects, to illustrate
the concepts dealt with. The majority of these, as well as other additional examples, can
be downloaded from the following address:

http://aka.ms/SignalRProg/files

Follow the instructions to download the SignalRProgramming_codesamples.zip file.

Note In addition to the code samples, your system should have Visual
Studio 2012 or 2013 installed.

 Introduction xvii

Notes on the version
This book has been written using version 2.0.0 of SignalR, so throughout it you will find
various references to that specific version.

However, the SignalR team at Microsoft is constantly striving to improve its product,
so it frequently issues software updates. The numbering of these versions is usually of
the 2.0.x or 2.x.0 type. Besides corrections, these updates might include some new or
improved features, but not breaking changes or significant modifications of the devel-
opment APIs.

In any case, the contents of the book will still be valid after updating components to
these new versions, although it will obviously be necessary to modify the existing refer-
ences in the source code of the examples, especially in the case of references to script
libraries.

Thus, if we have a code such as the following:

<script src=”/scripts/jquery.signalR-2.0.0.min.js”></script>

after installing version 2.0.1 of SignalR, it should be changed to this:

<script src=”/scripts/jquery.signalR-2.0.1.min.js”></script>

Installing the code samples
To install the code samples, just download the file indicated and decompress it into a
folder in your system.

Using the code samples
After decompressing the file, a folder structure will have been created. The folders are
organized in the same order as the chapters in the book, starting with Chapter 4, which
is where we will begin to look at examples of code:

…

Chapter 04 – Persistent connections

Chapter 05 – Hubs

Chapter 06 – External access

…

xviii Introduction

Inside each of these folders you can find a subfolder for each sample project
included. These subfolders are numbered in the order that the concepts are dealt with
in the book:

…

Chapter 08 – Scaling

1-AzureServiceBus

2-SqlServer

…

Inside these folders you can find the specific solution file (*.sln) for each example.
The solutions are completely independent of each other and include a fully func-
tional example that is ready to be run (F5 from Visual Studio), although in some cases
it will be necessary to make some prior adjustments in configurations. In such cases,
detailed instructions are always given for this on the main page of the project or in a
readme. txt file.

Acknowledgments
As trite as it might sound, a book such as this would not be possible without the col-
laboration of many people who have helped with their time and effort for it to become
a reality, and it is only fair to dedicate them a special word of thanks.

In particular, I would like to thank my editor at campusMVP.net, Jose M. Alarcón
(on Twitter at @jm_alarcon) for his involvement, his ability in the project management,
coordination, and revision, as well as for his sound advice, all of which have led us here.

Javier Suárez Ruíz’s (@jsuarezruiz) collaboration has also been essential, for his con-
tributions and SignalR client implementation examples in non-web environments such
as Windows Phone or WinRT.

I would like to thank Victor Vallejo, of campusMVP.net, for his invaluable help with
the text.

On the part of Microsoft, I want to give thanks to the acquisitions editor, Devon
Musgrave, for his interest in this project from the start, without which this book would
have never been made. I also want to thank project editor Carol Dillingham for her
expert work. Thanks go out to technical reviewer Todd Meister, copy editor Richard
Carey, project manager Sarah Vostok of nSight, and indexer Lucie Haskins. And thanks
to Sarah Hake and Jenna Boyd of O’Reilly Media for their support.

 Introduction xix

Lastly, I would like to thank Damian Edwards and David Fowler for their invaluable
input. It is a privilege to have been able to benefit from the suggestions and contribu-
tions of the creators of SignalR to make this book as useful as possible.

Errata & book support
We have made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed at:

http://aka.ms/SignalRProg/errata

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

We want to hear from you
At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://aka.ms/tellpress

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in touch
Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

mailto:mspinput@microsoft.com
mailto:mspinput@microsoft.com
http://twitter.com/MicrosoftPress

 5

C H A P T E R 2

HTTP: You are the client, and you
are the boss

HTTP (HyperText Transfer Protocol) is the “language” in which the client and the server of a web
application speak to each other. It was initially defined in 19961, and the simplicity and versatility

of its design are, to an extent, responsible for the success and expansion of the web and the Internet
as a whole.

Although it is still valid in traditional web scenarios, there are others, such as real-time applications
or services, for which it is quite limited.

HTTP operations

An HTTP operation is based on a request-response schema, which is always started by the client. This
procedure is often referred to as the pull model: When a client needs to access a resource hosted
by a server, it purposely initiates a connection to it and requests the desired information using the
“language” defined by the HTTP protocol. The server processes this request, returns the resource that
was asked for (which can be the contents of an existing file or the result of running a process), and the
connection is instantly closed.

If the client needs to obtain a new resource, the process starts again from the beginning: a con-
nection to the server is opened, the request for the resource is sent, the server processes it, it returns
the result, and then the connection is closed. This happens every time we access a webpage, images,
or other resources that are downloaded by the browser, to name a few examples.

As you can guess by looking at Figure 2-1, it is a synchronous process: after sending the request to
the server, the client is left to wait, doing nothing until the response is available.

1 Specification of HTTP 1.0: http://www.w3.org/Protocols/HTTP/1.0/spec.html

http://www.w3.org/Protocols/HTTP/1.0/spec.html

6 CHAPTER 2 HTTP: You are the client, and you are the boss

FIGURE 2-1 HTTP communication between a browser and a web server.

Although this operation is a classic in web systems, the HTTP protocol itself can support
the needs for asynchrony of modern applications, owing to the techniques generally known as
AJAX (Asynchronous JavaScript And XML).

Using AJAX techniques, the exchange of information between the client and the server can be
done without leaving the current page. At any given moment, as shown in Figure 2-2, the client can
initiate a connection to the server by using JavaScript, request a resource, and process it (for example,
updating part of the page).

What is truly advantageous and has contributed to the emergence of very dynamic and interactive
services, such as Facebook or Gmail, is that these operations are carried out asynchronously—that is,
the user can keep using the system while the latter communicates with the server in the background
to send or receive information.

FIGURE 2-2 AJAX in a webpage.

This operating schema continues to use and abide by the HTTP protocol and the client-driven
request-response model. The client is always the one to take the initiative, deciding when to connect
to the server.

However, there are scenarios in which HTTP is not very efficient. With this protocol, it is not easy to
implement instant-messaging applications or chat rooms, collaboration tools, multiuser online games,
or real-time information services, even when using asynchrony.

 HTTP: You are the client, and you are the boss CHAPTER 2 7

The reason is simple: HTTP is not oriented to real time. There are other protocols, such as the pop-
ular IRC2, which are indeed focused on achieving swifter communication to offer more dynamic and
interactive services than the ones we can obtain using pull. In those, the server can take the initiative
and send information to the client at any time, without waiting for the client to request it expressly.

Polling: The answer?

As web developers, when we face a scenario in which we need the server to be the one sending
information to the client on its own initiative, the first solution that intuitively comes to our minds is to
use the technique known as polling. Polling basically consists in making periodic connections from the
client to check whether there is any relevant update at the server, as shown in Figure 2-3.

FIGURE 2-3 Polling in a chat room service.

The main advantages of this solution are, first, its easy implementation and, second, its universal
application: it works in every case, with all browsers and with all servers, because it does nothing
more than use the standard features of HTTP. And, of course, we still use the pull model.

However, sometimes the price of polling is too high. Constant connections and disconnections
have a high cost in terms of bandwidth and processing at both ends of communication. The worst
part is that this cost increases proportionally to our need for faster updates and the number of clients
making use of the service at a given time. In an application providing real-time updates, it is easy
to imagine the load that a server has to bear when it has thousands of users connected, requesting
several updates per second.

2 Internet Relay Chat (IRC) protocol: http://www.ietf.org/rfc/rfc1459.txt

http://www.ietf.org/rfc/rfc1459.txt

8 CHAPTER 2 HTTP: You are the client, and you are the boss

There are techniques to mitigate these problems insofar as possible. One of them is to use adap-
tive intervals so that the interval between queries regularly adapts to the current system load or to
the probability of new updates. This solution is quite easy to implement and can significantly improve
resource consumption in some scenarios.

There is a more conservative variant of polling, but it degrades user experience. It is the technique
called piggy backing, which consists in not making deliberate queries from the client and, instead,
 taking advantage of any interaction between the user and the system to update any necessary infor-
mation. To illustrate this, consider a web mail service: instead of making periodic queries to check for
the arrival of new messages, those checks would be performed each time the user accessed a page,
an email, or any other feature. This can be useful in scenarios that do not require great immediacy
and in which the features of the system itself mean that we can be sure that the user will interact with
the application frequently.

Of course, these variants can be combined with each other to achieve more efficient usage
of resources, offering at the same time a reasonable user experience. For example, to obtain the
updates, it would be possible to update the status of a client via piggy backing when the client
interacts with the server, using polling with or without adaptive periodicity when there is no such
interaction.

In conclusion, polling is a reasonable option despite its disadvantages when we want a solution
that is easy to implement and that can be used universally and in scenarios in which a very high
update frequency is not required. In fact, it is used a lot in current systems. A real-life example of its
application is found in the web version of Twitter, where polling is used to update the timeline every
30 seconds.

Push: The server takes the initiative

We have already said that there are applications where the use of pull is not very efficient. Among
them, we can name instant-messaging systems, real-time collaboration toolsets, multiuser online
games, information broadcasting services, and any kind of system where it is necessary to send infor-
mation to the client right when it is generated.

For such applications, we need the server to take the initiative and be capable of sending informa-
tion to the client exactly when a relevant event occurs, instead of waiting for the client to request it.

This is precisely the idea behind the push, or server push, concept. This name does not make refer-
ence to a component, a technology, or a protocol: it is a concept, a communication model between
the client and the server where the latter is the one taking the initiative in communications.

This concept is not new. There are indeed protocols that are push in concept, such as IRC, the
protocol that rules the operation of classic chat room services, or SMTP, the protocol in charge of
coordinating email sending. These were created before the term that identifies this type of communi-
cation was coined.

 HTTP: You are the client, and you are the boss CHAPTER 2 9

For the server to be able to notify events in real time to a set of clients interested in receiving
them, the ideal situation would be to have the ability to initiate a direct point-to-point connection
with them. For example, a chat room server would keep a list with the IP addresses of the connected
clients and open a socket type connection to each of them to inform them of the arrival of a new
message.

However, that is technically impossible. For security reasons, it is not normally possible to make a
direct connection to a client computer due to the existence of multiple intermediate levels that would
reject it, such as firewalls, routes, or proxies. For this reason, the customary practice is for clients to be
the ones to initiate connections and not vice versa.

To circumvent this issue and manage to obtain a similar effect, certain techniques emerged that
were based on active elements embedded in webpages (Java applets, Flash, Silverlight apps, and so
on). These components normally used sockets to open a persistent connection to the server—that is,
a connection that would stay open for as long as the client was connected to the service, listening for
anything that the server had to notify. When events occurred that were relevant to the client con-
nected, the server would use this open channel to send the updates in real time.

Although this approach has been used in many push solutions, it is tending to disappear. Active
components embedded in pages are being eliminated from the web at a dramatic speed and are
being substituted for more modern, reliable, and universal alternatives such as HTML5. Furthermore,
long-term persistent connections based on pure sockets are problematic when there are intermediary
elements (firewalls, proxies, and so on) that can block these communications or close the connections
after a period of inactivity. They can also pose security risks to servers.

Given the need for reliable solutions to cover these types of scenarios, both W3C and IETF—the
main organizations promoting and defining protocols, languages, and standards for the Internet—
began to work on two standards that would allow a more direct and fluent communication from
the server to the client. They are known as WebSockets and Server-Sent Events, and they both come
under the umbrella of the HTML5 “commercial name.”

WebSockets
The WebSockets standard consists of a development API, which is being defined by the W3C (World
Wide Web Consortium, http://www.w3.org), and a communication protocol, on which the IETF
(Internet Engineering Task Force, http://www.ietf.org) has been working.

Basically, it allows the establishment of a persistent connection that the client will initiate whenever
necessary and which will remain open. A two-way channel between the client and the server is thus
created, where either can send information to the other end at any time, as shown in Figure 2-4.

http://www.w3.org
http://www.ietf.org

10 CHAPTER 2 HTTP: You are the client, and you are the boss

FIGURE 2-4 Operation of the WebSockets standard.

Although at the moment the specifications of both the API and the protocol are quite far
advanced, we cannot yet consider this technology to be universally applicable.

We can find implementations of WebSockets in many current browsers, such as Internet Explorer
10, Internet Explorer 11, Chrome, and Firefox. Some feature only partial implementations (Opera mini,
Android browser), and in others, WebSockets is simply not available3.

Aside from the problem of the different implementation levels at the client side, the fact that
the standard includes an independent protocol for communication (although initially negotiated on
HTTP) means that changes also have to be made on some infrastructural elements, and even on serv-
ers, so that connections using WebSockets are accepted.

For example, it has not been possible to use WebSockets easily on Microsoft technologies up until
the very latest wave of developments (Internet Explorer 10, ASP.NET 4.5, WCF, IIS 8, and so on), in
which it has begun to be supported natively.

From the perspective of a developer, WebSockets offers a JavaScript API that is really simple and
intuitive to initiate connections, send messages, and close the connections when they are not needed
anymore, as well as events to capture the messages received:

var ws = new WebSocket("ws://localhost:9998/echo");
ws.onopen = function() {
 // Web Socket is connected, send data using send()
 ws.send("Message to send");
 alert("Message is sent...");
};
ws.onmessage = function(evt) {
 var received_msg = evt.data;
 alert("Message is received...");
};
ws.onclose = function () {
 // WebSocket is closed.
 alert("Connection is closed...");
};

3 Source: http://caniuse.com/WebSockets

http://caniuse.com/websockets

 HTTP: You are the client, and you are the boss CHAPTER 2 11

As you can see, the connection is opened simply by instantiating a WebSockets object pointing to
the URL of the service endpoint. The URL uses the ws:// protocol to indicate that it is a WebSockets
connection.

You can also see how easily we can capture the events produced when we succeed in opening the
connection, data are received, or the connection is closed.

Without a doubt, WebSockets is the technology of the future for implementing push services in
real time.

Server-Sent Events (API Event Source)
Server-Sent Events, also known as API Event Source, is the second standard on which the W3 consor-
tium has been working. Currently, this standard is in candidate recommendation state. But this time,
because it is a relatively straightforward JavaScript API and no changes are required on underlying
protocols, its implementation and adoption are simpler than in the case of the WebSockets standard.

In contrast with the latter, Server-Sent Events proposes the creation of a one-directional chan-
nel from the server to the client, but opened by the client. That is, the client “subscribes” to an event
source available at the server and receives notifications when data are sent through the channel, as
illustrated in Figure 2-5.

FIGURE 2-5 Operation of the Server-Sent Events standard.

All communication is performed on HTTP. The only difference with respect to a more traditional
connection is the use of the content-type text/event-stream in the response, which indicates that
the connection is to be kept open because it will be used to send a continuous stream of events—or
 messages—from the server.

Implementation at the client is even simpler than the one we saw earlier for WebSockets:

var source = new EventSource(‘/getevents’);
source.onmessage = function(event) {
 alert(event.data);
};

12 CHAPTER 2 HTTP: You are the client, and you are the boss

As you can guess, instantiating the EventSource object initiates the subscription of the client to
the service whose URL is provided in the constructor, and the messages will be processed in the call-
back function specified to that effect.

Currently, almost all browsers support this standard except for Internet Explorer and some mobile-
specific browsers, and this limits its use in real applications. Also, if we look at it from an infrastruc-
tural point of view, we find that although being based on HTTP greatly simplifies its generalization, it
requires the aid of proxies or other types of intermediaries, which must be capable of interpreting the
content-type used and not processing the connections in the same way as the traditional ones—for
example, avoiding buffering responses or disconnections due to time-out.

It is also important to highlight the limitations imposed by the fact that the channel established
for this protocol is one-directional from the server to the client: if the client needs to send data to
the server, it must do so via a different connection, usually another HTTP request, which involves, for
example, having greater resource consumption than if WebSockets were used in this same scenario.

Push today
As we have seen, standards and browsers are both getting prepared to solve the classic push
 scenarios, although we currently do not have enough security to use them universally.

Nevertheless, push is something that we need right now. Users demand ever more interactive,
agile, and collaborative applications. To develop them, we must make use of techniques allowing us
to achieve the immediacy of push but taking into account current limitations in browsers and infra-
structure. At the moment, we can obtain that only by making use of the advantages of HTTP and its
prevalence.

Given these premises, it is easy to find multiple conceptual proposals on the Internet, such as
Comet, HTTP push, reverse AJAX, AJAX push, and so on, each describing solutions (sometimes coin-
ciding) to achieve the goals desired. In the same way, we can find different specific techniques that
describe how to implement push on HTTP more or less efficiently, such as long polling, XHR stream-
ing, or forever frame.

We will now study two of them, long polling and forever frame, for two main reasons. First,
because they are the most universal ones (they work in all types of client and server systems), and
second, because they are used natively by SignalR, as we shall see later on. Thus we will move toward
the objectives of this book.

Long polling
This push technique is quite similar to polling, which we already described, but it introduces certain
modifications to improve communication efficiency and immediacy.

In this case, the client also polls for updates, but, unlike in polling, if there is no data pending to be
received, the connection will not be closed automatically and initiated again later. In long polling, the
connection remains open until the server has something to notify, as shown in Figure 2-6.

 HTTP: You are the client, and you are the boss CHAPTER 2 13

FIGURE 2-6 Long polling.

The connection, which is always initiated by the client, can be closed because of only two things:

 ■ The server sends data to the client through the connection.

 ■ A time-out error occurs due to lack of activity on the connection.

In both cases, a new connection would be immediately established, which would again remain
waiting for updates.

This connection is used exclusively to receive data from the server, so if the client needs to send
information upward, it will open an HTTP connection in parallel to be used exclusively for that
purpose.

The main advantage of long polling is the low delay in updating the client, because as soon as the
server has data to update the state of the client, it will be sent through the channel that is already
open, so the other end will receive it in real time.

Also, because the number of connection openings and closures is reduced, resource optimization
at both ends is much higher than with polling.

Currently, this is a widely used solution due to its relatively simple implementation and the fact
that it is completely universal. No browser-specific feature is used—just capabilities offered by HTTP.

Resource consumption with long polling is somewhat higher than with other techniques where a
connection is kept open. The reason is that there are still many connection openings and closures if
the rate of updates is high, not forgetting the additional connection that has to be used when the cli-
ent wants to send data to the server. Also, the time it takes to establish connections means that there
might be some delay between notifications. These delays could become more evident if the server

14 CHAPTER 2 HTTP: You are the client, and you are the boss

had to send a series of successive notifications to the client. Unless we implemented some kind of
optimization, such as packaging several messages into one same HTTP response, each message would
have to wait to be sent while the client received the previous message in the sequence, processed it,
and reopened the channel to request a new update.

Forever frame
The other technique that we are going to look at is called forever frame and uses the HTML <IFRAME>
tag cleverly to obtain a permanently open connection. In a way, this is very similar to Server-Sent
Events.

Broadly, it consists in entering an <IFRAME> tag in the page markup of the client. In the source of
<IFRAME>, the URL where the server is listening is specified. The server will maintain this connection
permanently open (hence the “forever” in its name) and will use it to send updates in the form of calls
to script functions defined at the client. In a way, we might say that this technique consists in stream-
ing scripts that are executed at the client as they are received.

Because the connection is kept open permanently, resources are employed more efficiently
because they are not wasted in connection and disconnection processes. Thus we can practically
achieve our coveted real time in the server-client direction.

Just like in the previous technique, the use of HTML, JavaScript, and HTTP makes the scope of its
application virtually universal, although it is obviously very much oriented towards clients that sup-
port those technologies, such as web browsers. That is, the implementation of other types of clients,
such as desktop applications, or other processes acting as consumers of those services would be quite
complex, as shown in Figure 2-7.

FIGURE 2-7 Forever frame.

 HTTP: You are the client, and you are the boss CHAPTER 2 15

This technique is not exempt from disadvantages either. In its implementation, it is necessary to
take into account that there might be time-outs caused by the client, the server, or an intermediary
element (such as proxies and firewalls). Also, to obtain the best real-time experience, responses must
be sent to the client immediately and not withheld in buffers or caches. And, because the responses
would accumulate inside the iframe, in client memory, we might end up taking up too much RAM, so
we have to “recycle” or eliminate contents periodically.

Finally, the fact that the connection is used only to send data from the server to the client makes it
necessary to use an additional connection when we want to send it in the opposite direction—that is,
from the client to the server.

The world needs more than just push
Until now, we have seen techniques that allow us to achieve push; that is, they allow the server to be
able to send information to the client asynchronously as it is generated. We have given the initiative
to an element that would normally assume a passive role in communications with the client.

However, in the context of asynchronous, multiuser, and real-time applications, push is but one
of the aspects that are indispensable. To create these always surprising systems, we need many more
capabilities. Here we list a few of them:

 ■ Managing connected users The server must always know which users are connected to the
services, which ones disconnect, and, basically, it must control all the aspects associated with
monitoring an indeterminate number of clients.

 ■ Managing subscriptions The server must be capable of managing “subscriptions,” or
grouping clients seeking to receive specific types of messages. For example, in a chat room
service, only the users connected to a specific room should receive the messages sent to that
room. This way, the delivery of information is optimized and clients do not receive information
that is not relevant to them, minimizing resource waste.

 ■ Receiving and processing actions The server be capable not only of sending information
to clients in real time but also of receiving it and processing it on the fly.

 ■ Monitoring submissions Because we cannot guarantee that all clients connect under the
same conditions, there might be connections at different speeds, line instability, or occasional
breakdowns, and this means that it is necessary to provide for mechanisms capable of queuing
messages and managing information submissions individually to ensure that all clients are
updated.

 ■ Offering a flexible API, capable of being consumed easily by multiple clients This
is even truer nowadays, when there are a wide variety of devices from which we can access
online services.

We could surely enumerate many more, but these examples are more than enough to give you an
idea of the complexity inherent in developing these types of applications.

Enter SignalR….

 27

C H A P T E R 4

Persistent connections

The lower-level API with which we can approach the persistent connection that SignalR offers is
illustrated in Figure 4-1. This API provides us with a layer of abstraction that isolates us from the

complexities inherent to keeping a permanent connection open between the client and the server
and from the transports used to send information between both ends.

FIGURE 4-1 Abstraction levels used by SignalR.

In practice, this API gives us access to the communication channel that is quite similar to the one
used traditionally when working at a low abstraction level with sockets: On the server side, we can
be notified when connections are opened and closed and when data are received, as well as sending
information to clients. On the client side, we can open and close connections, as well as sending and
receiving arbitrary data. Also, just like with sockets, messages have no format; that is, they are raw
data—normally text strings—that we will have to know how to interpret correctly at both ends.

From the point of view of the client, its operation is very easy. We just have to initiate a connection
to the server, and we will be able to use it to send data right away. We will perform the reception of
information using a callback function that is invoked by the framework after its reception.

The server side is not very complex either. Take a look at Figure 4-2. Persistent connections are
classes that inherit from PersistentConnection and override some of the methods that allow
taking control when a relevant event occurs, such as the connection or disconnection of new clients
or the reception of data. From any of them, we will be able to send information to the client that has
caused the event, to all clients connected to the service, or to a group of them.

28 CHAPTER 4 Persistent connections

FIGURE 4-2 Conceptual implementation of persistent connections.

Now we will delve into all these aspects.

Implementation on the server side

For the clients to be able to connect to a SignalR service, first it is necessary to include this frame-
work in our web project. For example, we can quickly do it by entering the following command in the
NuGet package manager console:

PM> Install-package Microsoft.AspNet.Signalr

Each persistent connection is externally reachable via a URL, so, in a similar way to using other
frameworks such as MVC or Web API, the next step could be to configure SignalR and associate each
persistent connection to the path through which it will be available.

Mapping and configuring persistent connections
As usual, this is a process that must take place during application startup. In previous versions of
SignalR, this registration was carried out in the global.asax, using extensions directly on the route col-
lection of the application. However, since version 2.0, there is greater integration with OWIN1, and this
has changed the way it is implemented. In fact, from said version onwards, we need to register and
configure SignalR in the middleware collection of the system in the startup process of the application.

We will come back to this, but for now it will suffice to know that the host process on which our
application runs, based on OWIN, will search for a class called Startup in the root namespace of the
application, and when it finds it, it will execute its Configuration() method. We will see that this
convention can also be modified.

When the Configuration() method is executed, the execution environment will provide it with
an argument in the form of an object implementing the IAppBuilder interface, which basically
represents the application being initialized and contains a dictionary with configuration parameters

1 OWIN (Open Web Interface for .NET): http://owin.org/

 Persistent connections CHAPTER 4 29

and methods that allow us to configure the different OWIN middleware that will process the requests,
such as SignalR, Web API, authentication, tracing, and so on.

Configuration is normally performed by using extension methods on IAppBuilder. These meth-
ods are provided by the frameworks themselves or by middleware to facilitate their implementation.
In our case, we will use the MapSignalR() method, defined by SignalR as an extension method for
IAppBuilder in the Owin namespace, to link the used persistent connections to the paths through
which we access them, as shown in the following OWIN startup class:

public class Startup
{
 public void Configuration(IAppBuilder app)
 {
 app.MapSignalR<EchoConnection>("/echo");

 // Configuration of other OWIN modules
 }
}

In any case, what we will achieve by calling MapSignalR() is “mapping” the paths of the type
“/echo/something” to the class where we will implement the persistent connection, which in this
case we have called EchoConnection. This path identifies the endpoint where the clients must
be connected to consume the services. Obviously, at this point, there must be as many calls to the
MapSignalR<TConnection>() method as the number of connections that are offered to the clients.

When this first step is completed, we are in position to implement the SignalR service, which will
consist only in writing a class inheriting from PersistentConnection (defined in the Microsoft
.AspNet.SignalR namespace):

public class EchoConnection: PersistentConnection
{
 // ...
}

This class will be instantiated by SignalR each time an HTTP connection is opened from a client
to the server to process the request, which might depend on the transport selected each time. For
example, if WebSockets is used as a transport, after the connection is established, the instance of
PersistentConnection will remain active until the client disconnects, because it will be used both
to send and receive data from the server. Contrariwise, if we use forever frame, an object will also
be instantiated each time the client sends data, because those data are transmitted using a different
request from the one used to obtain “push.”

Therefore, it is generally not a good idea to use instance members on this class to maintain system
state because the instances are created and destroyed depending on the transport used to keep
the connection open. For this, static members are normally used, although always appropriately
protected from concurrent accesses that could corrupt their content or cause problems inherent to
multithreaded systems. We also have to take into account that using the memory for storing shared
data limits the scale-out capabilities of SignalR, because it will not be possible to distribute the load
among several servers.

30 CHAPTER 4 Persistent connections

Events of a persistent connection
The PersistentConnection class offers virtual methods that are invoked when certain events occur
that are related to the service and the connections associated with the class, such as the arrival of
a new connection, the disconnection of a client, or the reception of data. To take control and enter
logic where we want, it will suffice to override the relevant methods.

The most frequently used methods, which correspond to the events mentioned, are the following:

protected Task OnConnected(IRequest request, string connectionId)
protected Task OnDisconnected(IRequest request, string connectionId)
protected Task OnReceived(IRequest request, string connectionId,
 string data)

First, note that all of them return a Task type object. This already gives us a clear idea of the
extensive use of asynchrony capabilities present in the latest versions of the .NET platform and
languages, inside which the goal is to always implement code that can be quickly and synchro-
nously executed, or to return a background task represented by a Task object that performs it
asynchronously.

We can also observe that there are always at least two parameters sent to the methods: an
IRequest object and a text string called connectionId.

The first one, IRequest, allows accessing specific information on the request received, such as
cookies, information about the authenticated user, parameters, server variables, and so on, as shown
in Figure 4-3. The IRequest interface is a specific SignalR abstraction that allows separating the
implementation of services from ASP.NET. As we pointed out when we mentioned OWIN, this will
allow them to be hosted in any .NET application. We will look at this in more depth later on.

FIGURE 4-3 IntelliSense showing the members of IRequest.

The second parameter, connectionId, is a unique identifier associated with the connection that
is generated by SignalR automatically during the initial negotiation process. The framework will use a
GUID2 by default, as shown in Figure 4-4.

2 Globally Unique Identifier: http://en.wikipedia.org/wiki/Globally_unique_identifier

 Persistent connections CHAPTER 4 31

FIGURE 4-4 Value of a connectionID.

We can use the connection identifier to send direct messages to specific clients or to perform any
type of personalized monitoring on them.

The following code shows the implementation of a simple service, which just counts the number
of users connected to it and internally displays said number on the debug console. Note the use of
thread-safe constructions to avoid problems associated with concurrent access from different execu-
tion threads to the static variable where the value is stored. These are precautions that we must take
mandatorily when implementing this kind of service:

public class VisitorsCountConnection: PersistentConnection
{
 private static int connections = 0;
 protected override Task OnConnected(IRequest request,
 string connectionId)
 {
 Interlocked.Increment(ref connections);
 Debug.WriteLine("Visitors: " + connections);
 return base.OnConnected(request, connectionId);
 }
 protected override Task OnDisconnected(IRequest request,
 string connectionId)
 {
 Interlocked.Decrement(ref connections);
 Debug.WriteLine("Visitors: " + connections);
 return base.OnDisconnected(request, connectionId);
 }
}

Other less utilized methods also exist in the PersistentConnection class, such as
OnReconnected() and OnRejoiningGroups(). The former can be useful to take control when
there is a reconnection—that is, when the client has connected to the server again after the physical
connection of the transport has closed due to a time-out, a communication problem between the
two ends, an application crash, a server reboot, or any other such incident. From the point of view of
the SignalR connection, it is still the same client and has the same identifier, thus the invocation of
OnReconnected() instead of treating it as a new connection. The OnRejoiningGroups() method
allows taking control when a connection is reopened after a time-out and determining to which
groups the connection should be reassigned.

The OnReceived() method of the persistent connection allows processing the data sent by the
clients. In this method, the information submitted will be received as a text string:

protected override Task OnReceived(IRequest request,
 string connectionId,
 string data)
{

32 CHAPTER 4 Persistent connections

 // Do something interesting here
}

Of course, if an object serialized in any format came in this string, we should deserialize it manu-
ally before processing it. If it was JSON serialized, which will likely be the usual case, we could use the
Json.NET library, which will be available in our project because it is required by SignalR:

using Newtonsoft.Json;
// ...
protected override Task OnReceived(IRequest request,
 string connectionId,
 string data)
{
 var message = JsonConvert.DeserializeObject<ChatMessage>(data);
 if (message.MessageType == MessageType.Private)
 {
 var text = message.Text;
 // ...
 }
 // ...
}

Sending messages to clients
There are tools available to the classes that inherit from PersistentConnection, which allow send-
ing information to all connected clients, to specific clients identified by their connectionId, or to
groups of clients.

To send a message asynchronously to all clients connected to the service, we will use the
Connection property to invoke the Broadcast() method as follows:

protected override Task OnConnected(IRequest request,
 string connectionId)
{
 // Notify all connected clients
 return this.Connection.Broadcast(
 "New connection: " + connectionId);
}

protected override Task OnDisconnect(IRequest request,
 string connectionId)
{
 // Notify all connected clients
 return this.Connection.Broadcast("Bye bye, " + connectionId);
}

In this example, each time a new client connects to the service, the notification text is sent to all
connected clients (including the newcomer) through the SignalR connection. And, in the same way,
we make use of the OnDisconnected() method, by which we are informed of the disconnection of a
client, to notify the rest of the users.

 Persistent connections CHAPTER 4 33

The parameter that we pass to Broadcast() is an object type (as shown in Figure 4-5), which
means that we can send any type of object, which SignalR will serialize to JSON automatically.

FIGURE 4-5 BroadCast() receives an object type parameter.

The Broadcast() method also accepts an optional parameter where we can specify a collection
of connectionIds to which the message will not be sent. The following example shows how to use
this feature to send a notification to all users of the service except the one who has just connected:

protected override Task OnConnected(IRequest request,
 string connectionId)
{
 return this.Connection.Broadcast(
 "A new user is online! Let's give them a warm welcome!",
 connectionId // Do not notify the current user

);
}

The list of identifiers excluded from the return is given in a parameter of the params string[]
type, so they can be specified directly as parameters separated by commas or as an array of text
strings:

protected override Task OnConnected(IRequest request,
 string connectionId)
{
 return this.Connection.Broadcast(
 "A new user is online! Let's give them a warm welcome!",
 new[] { connectionId }

);
}

To send messages to a specific client, we need to know its connectionId. Normally, this is not a
problem, because this information will be available in the methods from which we will use these calls.
The following example displays a welcome message to the client initiating a connection only:

protected override Task OnConnected(IRequest request,
 string connectionId)
{
 return this.Connection.Send(connectionId,
 "Welcome, " + connectionId);
}

34 CHAPTER 4 Persistent connections

A very interesting aspect that we already anticipated is the fact that, both in the Send() method
and in Broadcast(), the message to be sent to the clients is an object type. This means that mes-
sages are not limited to text; it is entirely possible to send any type of object, which will be automati-
cally serialized in JSON format before being returned to the client. This allows sending messages with
a structure beyond the mere character string:

protected override Task OnConnected(IRequest request,
 string connectionId)
{
 var message = new {
 type = MessageType.NewUser,
 id = connectionId
 };
 return this.Connection.Broadcast(message);
}

Note If the object supplied to Send() or Broadcast() is of the ArraySegment<byte>
type, it will not be serialized. This could be useful if we already have the JSON representa-
tion of the object to be sent, because it would prevent double serialization of the object.

Although the most frequent procedure for making deliveries will be using the methods just
described, the Send() method has some additional overloads. One of them receives as argu-
ments a list of strings representing the connection identifiers to which we want to send the mes-
sage. Another, actually used internally by Broadcast() to make the delivery, simply receives a
ConnectionMessage type object that defines the recipients, the message, and, optionally, the con-
nection identifiers that we want to exclude:

var connMessage = new ConnectionMessage(
 Connection.DefaultSignal, textMessage);
return Connection.Send(connMessage);

The preceding code would be equivalent to making a broadcast with the value of textMessage.
In fact, the Broadcast() method uses Send() internally in a way that is quite similar to the one
shown. Connection.DefaultSignal is a unique code made up by the full name of the persistent
connection class preceded by a constant prefix, which in this case indicates that the message must
be sent to all the users “subscribed” to this signal, which are all those connected to the persistent
connection.

Asynchronous event processing
As you can imagine, calls to the Send() or Broadcast() methods that we have already used in some
of our examples could take too long to execute if communications between both ends are very slow,
or if the number of connections is very large. If they were executed synchronously, the threads in
charge of performing these tasks would be blocked until said tasks ended. In high load environments,
this is truly a waste of resources; we want these threads to be released as soon as possible so that they
can keep managing requests and providing their services.

 Persistent connections CHAPTER 4 35

For this reason, those commands are executed asynchronously, returning a Task object represent-
ing the task that will take care of them in the background. Consequently, we can return the result of
the call from the body of the method, as we have been doing with the code shown up until now:

return this.Connection.Broadcast(message);

Following this same example, we must use asynchrony inside the methods of the persistent con-
nection whenever we are to perform long tasks, and especially those requiring the use of external
elements such as the access to web services or external APIs, or heavy queries to databases.

The following example shows how to use the async/await construct of C# 5 to invoke asynchro-
nous methods in a very clean way:

protected override async Task OnConnected(IRequest request,
 string connectionId)
{
 // Store the new connection in the database
 await _services.SaveNewConnectionAsync(connectionId);

 // And then, send the notifications
 await this.Connection.Broadcast("A new user is online!");
 await this.Connection.Send(connectionId,
 "Welcome, " + connectionId);
}

Connection groups
We have seen how SignalR allows sending messages to individual clients, identified by their
 connectionId, or to all clients connected to a service. Although these capabilities cover multiple
scenarios, it would still be difficult to undertake certain tasks that require selective communication
with a specific group of connections.

Imagine a chat service with different rooms. When a user enters a specific room and writes a text,
ideally it would be sent only to the users present in said room. However, with the functionalities stud-
ied up to this point, implementing this very simple feature would not be easy.

For this reason, SignalR offers the possibility of grouping connections based on whatever criteria
we deem relevant. For example, in a chat, we might create a group for each room; in an online game,
we could group the users competing in the same match; in a multiuser document editor similar to
Google Docs, we could create a group for every document being edited.

To manage those groups, we use the Groups property, available in the PersistentConnection
class and thus in all its descendants. This property is of the IConnectionGroupManager type, and,
among other things, it provides methods to add a connection identified by its connectionId to a
group and, likewise, remove it.

36 CHAPTER 4 Persistent connections

The following example shows how we might interpret the commands join <groupname> and
leave <groupname> coming from a client, to respectively add the connection to the group specified
and remove it from it:

protected override Task OnReceived(IRequest request,
 string connectionId,
 string data)
{
 var args = data.Split(new[] {" "},
 StringSplitOptions.RemoveEmptyEntries);

 if(args.Length == 2 && args[0].ToLower()=="join")
 {
 return this.Groups.Add(connectionId, args[1]);
 }
 if (args.Length == 2 && args[0].ToLower() == "leave")
 {
 return this.Groups.Remove(connectionId, args[1]);
 }
 // ...
}

The groups do not need to exist previously nor do they require any kind of additional managing.
They are simply created when the first connection is added to them and are automatically eliminated
when they become empty. And, of course, one connection can be included in as many groups as
necessary.

To send information through the connections included in a group, we can use the Send() method
as follows:

protected override Task OnReceived(IRequest request,
 string connectionId,
 string data)
{
 int i;
 if ((i = data.IndexOf(":")) > -1)
 {
 var groupName = data.Substring(0, i);
 var message = data.Substring(i + 1);
 return this.Groups.Send(groupName, message);
 }
 // ...
}

As you can see, the preceding code would interpret a message such as “signalr:hello!” by sending
the text “hello!” to all clients connected to the “signalr” group.

Also, there is an overload of the Send() method that allows specifying a list of group names as the
recipient:

var groupNames = new[] { "firstgroup", "secondgroup"};
this.Groups.Send(groupNames, message);

 Persistent connections CHAPTER 4 37

Unfortunately, for reasons related to the structural scalability of SignalR, we cannot obtain infor-
mation about the groups, such as the list of connections included in them, not even how many there
are. Neither can we know, a priori, what groups are active at a given moment. If we want to include
these aspects in our applications, we must implement them ourselves, outside SignalR.

The OWIN startup class
We have previously seen where to enter the mapping and configuration code of our persistent con-
nections and, in general, of any middleware based on OWIN. We will now go back to that briefly, to
go over some details that were left pending.

When an OWIN-based system starts up, the host process on which it is executed will try to execute
configuration code that must be implemented in a member predefined by convention. By default, it
will try to execute the Configuration() method of the Startup class, which must be located in the
root namespace of the application. However, to adapt it to our preferences, it is possible to modify
this convention in one of the following ways:

 ■ Specifying the class and the method that we want to employ by using the assembly attribute
OwinStartup:

[assembly:OwinStartup(typeof(MyApp.MyStartupClass),
 methodName: "MyConfigMethod")]

 ■ Including the entry “owin:AppStartup” in the <AppSettings> section of the .config file of
the application and setting as a value the fully qualified name of the class and the method to
be used:

<configuration>
 <appSettings>
 ...
 <add key="owin:AppStartup"
 value="MyApp.MyStartupClass.MyConfigMethod"/>
 </appSettings>
 ...
</configuration>

In either case, the configuration method can be static or an instance method (although in the
latter case the class must have a public constructor without parameters), and it must necessarily be
defined with an IAppBuilder parameter:

namespace MyApp
{
 public class MyStartupClass
 {
 public void MyConfigMethod(IAppBuilder app)
 {
 // Configure OWIN app here
 }
 }
}

38 CHAPTER 4 Persistent connections

Because all the OWIN middleware of the application will be initialized in this method, it might be
advisable to take the specific configuration of SignalR to an independent class. Obviously, if we are
using the conventions of ASP.NET MVC or Web API on file location, it will probably be a much better
idea to enter it into the /App_Start directory and, if the configuration code is too long, we should
even separate it into an independent class and file. The following example shows a possible way to
organize these files:

//
// File: /App_Start/Startup.cs
//
public class Startup
{
 public void Configuration(IAppBuilder app)
 {
 SignalRConfig.Setup(app);
 }
}

//
// File: /App_Start/SignalRConfig.cs
//
public class SignalRConfig
{
 public static void Setup(IAppBuilder app)
 {
 app.MapSignalR<EchoConnection>("/echo");
 }
}

In any case, this does not constitute a norm to be used mandatorily. The point is to stick to the
conventions defined and well-known by the development team so that things are located where it is
expected they should be.

Implementation on the client side

SignalR offers many client libraries with the purpose that practically any kind of application can use
the connection provided by the framework. Although later on we will see examples of implementa-
tions of other types of clients, for the moment we will deal with creating clients from the web using
JavaScript, mainly because it is easy and widely done.

In any case, the concepts and operating philosophy that we are going to see are common to all
clients and project types.

Initiating the connection by using the JavaScript client
An important aspect to underline is that this client is completely and solely based on JavaScript, so
it can be used in any kind of Web project: Web Forms, ASP.NET MVC, Web Pages, PHP, or even from
pure HTML pages.

 Persistent connections CHAPTER 4 39

In fact, to access services in real time from an HTML page, it is enough to reference jQuery (ver-
sion 1.6.4 or above)—because the client is implemented as a plug-in of this renowned framework—
and then the jquery.signalR library (version 2.0.0 or above). We can find both of them in the /Scripts
folder when we install the Microsoft.AspNet.SignalR.JS package from NuGet, or the complete
Microsoft.AspNet.SignalR package, which includes both the client and server components for
web systems.

<script src="Scripts/jquery-1.6.4.min.js"></script>
<script src="Scripts/jquery.signalR-2.0.0.min.js"></script>

After they are referenced, we can begin to work with SignalR from the client side. The first thing
we have to do is open a connection to the server. For this, it is necessary for the client to know the
URL by which the persistent connection is accessible. As we said before, it is assigned during applica-
tion startup. Here you can see an example:

public class Startup
{
 public void Configuration(IAppBuilder app)
 {
 app.MapSignalR<EchoConnection>("/realtime/echo");
 }
}

Given the previous configuration, which maps the path /realtime/echo to the persistent connection
implemented in the EchoConnection class, the following code shows how to create and open a con-
nection to it using JavaScript:

<script type="text/javascript">
 $(function() {
 var connection = $.connection("/realtime/echo");
 connection.start();
 // ...
 });
</script>

As you can see, this call is being entered in the page initialization, following the customary pattern
used to develop with jQuery. Although it does not necessarily have to be this way, this technique
ensures that the code will be executed when the page has loaded completely and the DOM is ready
to be operated on.

The call to the start() method is asynchronous, so the execution of the script will continue on
the next line even if the connection has not been opened yet. This particular detail is very important,
because we will not be able to use the connection until it has been established. If this does not hap-
pen, an exception will be thrown with a very clear message:

40 CHAPTER 4 Persistent connections

Fortunately, this method has overloads that allow us to specify a callback function that will be
executed when the connection is open and the process of transport negotiation with the server has
been completed:

var connection = $.connection("/realtime/echo");
connection.start(function() {
 // Connection established!
 connection.send("Hi there!");
});

It is important to know that the specified callback function will be executed whenever the connec-
tion is initiated. That is, if the start() method is invoked from another point in the client code, the
previously registered callback function will also be executed when the connection process completes
successfully.

It is also possible to use the well-known promise3 pattern and the implementation of jQuery based
on Deferred4 objects to take control when the connection has been successful, as well as in the
event that an error has occurred. This is the recommended option:

var connection = $.connection("/realtime/echo");
connection.start()
 .done(function() {
 connection.send("Hi there!"); // Notify other clients
 })
 .fail(function() {
 alert("Error connecting to realtime service");
 });

After the connection is established, we can begin to send and receive information by using the
mechanisms that are described later in this chapter.

From this point onwards, we can also close the connection explicitly, by invoking the connection
.stop() method, or obtain the identifier of the current connection, generated by the server during
the negotiation phase, through the connection.id property.

3 The promise pattern: http://wiki.commonjs.org/wiki/Promises
4 The Deferred object in jQuery: http://api.jquery.com/category/deferred-object/

http://wiki.commonjs.org/wiki/Promises
http://api.jquery.com/category/deferred-object/

 Persistent connections CHAPTER 4 41

Support for older browsers
A problem that might arise when we open the connection using the start() method is that the
user’s browser might be too old and not have the JSON parser built in—for example, as it happens
with Internet Explorer 7. In this case, execution will stop, indicating the problem and even its solution:

The json2.js file that we are told must be referenced can be easily obtained from NuGet with the
following command in the console:

PM> Install-package json2

When this is done, we would have to include only the reference to the script before doing so with
SignalR:

<script src="Scripts/jquery-1.6.4.min.js"></script>
<script src="Scripts/json2.min.js"></script>
<script src="Scripts/jquery.signalR-2.0.0.min.js"></script>

Support for cross-domain connections
SignalR includes “out-of-the-box” support for connections with a different server from the one that
has served the script currently being executed, something that is normally not allowed for security
reasons. This type of request, called cross-domain, requires the use of some kind of special technique
to avoid this restriction that is usual in browsers. Examples of those techniques are JSONP5 or, only in
some browsers, the use of the CORS6 specification.

JSONP is not particularly recommended for security reasons, but if our service must provide sup-
port to clients using older browsers such as Internet Explorer 7, it might be the only option available
to obtain connections from external domains. This feature is disabled by default at server level, but it
can be activated by supplying a ConnectionConfiguration object during initial mapping, setting
its EnableJSONP property to true:

public class Startup
{
 public void Configuration(IAppBuilder app)
 {
 var config = new ConnectionConfiguration()
 {

5 JSONP (JSON with Padding): http://en.wikipedia.org/wiki/JSONP
6 CORS (Cross-Origin Resource Sharing): http://en.wikipedia.org/wiki/Cross-origin_resource_sharing

http://en.wikipedia.org/wiki/JSONP
http://en.wikipedia.org/wiki/Cross-origin_resource_sharing

42 CHAPTER 4 Persistent connections

 EnableJSONP = true
 };
 app.MapSignalR<EchoConnection>("/realtime/echo", config);
 }
}

This way, the server will be ready to accept connections using long polling transport with JSONP.

Because CORS is quite a cross-cutting technique and independent of frameworks and applications,
it is implemented as OWIN middleware; therefore, to allow this type of connection, it will be neces-
sary to first download the module using NuGet:

PM> Install-Package microsoft.owin.cors

After this, we can specify that we want to use CORS in our initialization method, entering the mod-
ule into the OWIN pipeline with the extension method UseCors() so that it is executed before the
SignalR middleware:

public class Startup
{
 public void Configuration(IAppBuilder app)
 {
 app.Map("/realtime/echo",
 map => {
 map.UseCors(CorsOptions.AllowAll);
 map.RunSignalR<EchoConnection>();
 }

);
 }
}

Note that in this case we have used a different construct to map and configure the service avail-
able in the path /realtime/echo. First, we have used the Map() extension to specify the path just
once, followed by a lambda that receives as a parameter the mapping that we are defining (in turn,
an IAppBuilder object). On this parameter, we have used the extensions provided by the different
modules to enter them into the pipeline associated to the URL provided:

 ■ UseCors() enables the use of CORS at the server, according to the options sent as an argu-
ment in the form of a CorsOptions object. CorsOptions.AllowAll is an object preconfig-
ured in a very permissive mode; it allows all origins, verbs, and headers. However, it is possible
to supply it a customized CorsOptions object to fine-tune its configuration and usage
policies.

 ■ RunSignalR() is the equivalent of the MapSignalR() method that we had been using up
until now, but as opposed to it, we do not need to supply it the path because it has already
been defined.

At the client side, SignalR will automatically detect that we are making a cross-domain connec-
tion if when the connection is made it notices that an endpoint has been specified that is hosted in

 Persistent connections CHAPTER 4 43

a domain different than the one of the current page. In this case, it will try to use CORS to make the
connection. Only if it is not possible will it automatically fall back to JSONP, using long polling as the
transport.

In scenarios where we need to force this last option, we can specifically indicate that we want to
use JSONP when initiating the connection from the client. At this moment, it is possible to send an
object with settings that allow fine-tuning said process:

var connection = $.connection("http://localhost:3701/realtime/echo");
connection.start({ jsonp: true })
 .done(function() {
 alert(connection.transport.name);
 });

The connection.transport property contains the transport used by the current connection.

Sending messages
As you can probably guess, to send information to the server from the JavaScript client, we will use
the send() method available in the connection object, which represents the connection created
before.

This method accepts the object to be sent as a parameter. It will be received in the data parameter
of the OnReceived() method of the server in the form of a text string, as we saw previously:

Of course, we can send any object type. SignalR will serialize it automatically before sending it:

$("#buttonSend").click(function () {
 var obj = {
 messageType: 1, // Broadcast message, type = 1
 text: $("#text").val(),
 from: $("#currentUser").val(),
 };
 connection.send(obj);
});

44 CHAPTER 4 Persistent connections

Because what would arrive at the server would be a text string with the JSON representation of the
object, to manipulate the data comfortably it would be necessary to deserialize the string and turn it
into a CLR object, as we have already seen:

// Server code
protected override Task OnReceived(IRequest request,
 string connectionId,
 string data)
{
 var message = JsonConvert.DeserializeObject<ChatMessage>(data);
 if (message.MessageType == MessageType.Broadcast)
 {
 return this.Connection.Broadcast(
 "Message from "+message.From +
 ": " + message.Text);
 }
 // ...
}

Although the send() method is expected to adhere to the promise pattern in the future, this
is currently not so, and there is no direct way of knowing when the transfer process has ended or
whether there has been an error in its execution.

Nevertheless, it is possible to detect errors on the connection by using the error() method of the
connection to set the callback function to be executed when there is any problem on it:

var connection = $.connection("/chat");
connection.error(function (err) {
 alert("Oops! It seems there is a problem. \n" +
 "Error: " + err.message);
});
connection.start();

The callback function receives a JavaScript object from which we can obtain information describing
the problem that has occurred, as shown in Figure 4-6.

 Persistent connections CHAPTER 4 45

FIGURE 4-6 Connection interrupted captured by the callback.

Receiving messages
The reception of data sent from the server is performed at the JavaScript client by registering the call-
back that will be executed each time information is received. This registration is performed by calling
the received() method of the object that represents the connection with the server and supplying
it the function for data handling:

connection.received(function (msg) {
 $("#contents").append("" + msg + "");
});

As you can see, as a parameter, this function receives the data sent from the server in the form of
a directly usable object. SignalR will be responsible for serializing and deserializing the data on both
ends.

Thus, if a character string has been sent from the server, we can obtain it and process it directly
at the client, as in the preceding example. Conversely, if structured data are sent from the server,
they are automatically serialized to JSON, and in the input parameter of our callback function we will
directly receive the JavaScript object ready for use:

// ==
// Server code
protected override Task OnConnected(IRequest request,
 string connectionId)
{
 var message = new
 {
 type = MessageType.NewUser,
 id = connectionId,
 text = "New user!"
 };

46 CHAPTER 4 Persistent connections

 return this.Connection.Broadcast(message);
}

// ==
// Client code (Javascript)
connection.received(function (msg) {
 $("#contents").append(msg.text + ". Id: " + msg.id);
});

Sending additional information to the server
We have seen that the events available at the server receive an IRequest type parameter through
which it is possible to access the environment of the request that is behind the persistent connection.
Thus, using this object, it would be possible to retrieve, among other things, the identity of the user
authenticated into the system, information sent in cookies, or even the parameters of the query string
or server headers.

For example, if you are using cookie-based authentication, when a user is authenticated in a web-
site, the browser will automatically include the authentication cookie in all requests to SignalR, which
offers the possibility of implementing code such as the following at the server:

protected override Task OnConnected(IRequest request,
 string connectionId)
{
 string message = request.User.Identity.IsAuthenticated
 ? "Welcome, " + request.User.Identity.Name
 : "You must be logged in!";

 return Connection.Send(connectionId, message);
}

In the same vein, when it is necessary to send additional information from the client to the server,
we can make use of cookies. They are easy to manage, and they allow entering arbitrary information
into requests that are going to be made a posteriori, as illustrated in the following example:

// Client side:
var username = prompt("Your username");
document.cookie = "username=" + username;
var connection = $.connection("/realtime/chat");
...
connection.start();

// Server side:
protected override Task OnConnected(IRequest request,
 string connectionId)
{
 Cookie cookie;
 var username =
 request.Cookies.TryGetValue("Username", out cookie)
 ? cookie.Value
 : connectionId;

 Persistent connections CHAPTER 4 47

 var message = "Welcome, " + username + "!";
 return Connection.Send(connectionId, message);
}

Another possibility would be to use the query string to send information. For this, the SignalR
client allows us to specify an additional parameter at the point at which the connection is defined. In
this parameter, we can add key-value mappings, either in the form of a string or an object, which will
be annexed to all the requests made to the SignalR server:

// Client side:
var name = prompt("Your username");
var conn = $.connection(
 "/realtime/chat",
 "username="+name // or { username: name }
);
...
conn.start();

// Server side:
protected override Task OnConnected(IRequest request,
 string connectionId)
{
 var userName = request.QueryString["username"] ?? connectionId;
 var message = "Welcome, " + userName + "!";
 return Connection.Send(connectionId, message);
}

Other events available at the client
The connection object has a large number of events that allow us to take control at certain
moments in the life cycle of the connection if we register the callback methods that we want to be
invoked when the time comes. The most interesting ones are the following:

 ■ received() and error(), which we already saw and which allow us to specify the function
to be executed when data are received or when an error occurs in the connection.

 ■ connectionSlow(), which allows entering logic when the connection is detected to be slow
or unstable.

 ■ stateChanged(), invoked when the state of the connection changes.

 ■ reconnected(), when there is a reconnection of the client after its connection has been
closed due to time-out or any other cause.

In the SignalR repository in GitHub7, you can find the documentation about methods, events, and
properties offered by the JavaScript client connections.

7 Javascript client documentation: https://github.com/SignalR/SignalR/wiki/SignalR-JS-Client

https://github.com/SignalR/SignalR/wiki/SignalR-JS-Client

48 CHAPTER 4 Persistent connections

Transport negotiation

We have seen that, after the reference to the connection is obtained, the start() method really initi-
ates communication with the server, thus beginning the negotiation phase in which the technologies
or techniques to be used to maintain the persistent connection will be selected.

First, there will be an attempt to establish the connection using WebSockets, which is the only
transport that really supports full-duplex on the same channel and is therefore the most efficient
one. If this is not possible, to determine which is the most efficient solution available at both ends, a
fallback procedure will begin:

 ■ In the browsers that support it (basically all with the exception of Internet Explorer), contact
will be attempted using Server-Sent Events, which at least provides a standard mechanism to
obtain push.

 ■ In Internet Explorer, the possibility of using forever frame will be examined.

If neither of the previous steps has succeeded, to maintain the persistent connection, long polling
will be tried.

It is easy to trace this process, because the SignalR web client allows us to activate the tracing of
events with the JavaScript console available in major browsers. (See Figure 4-7.) This option is enabled
at the moment the connection is created, setting the third parameter of the $.connection()
method to true:

var connection = $.connection("/realtime/chat", null, true);

Or, in an equivalent and much more legible way, directly on the logging property of the
connection:

var connection = $.connection("/myconn");
connection.logging = true;

FIGURE 4-7 Trace of the SignalR client in Internet Explorer 11.

 Persistent connections CHAPTER 4 49

We can also trace requests using Fiddler8 or the development tools available in our browsers to
trace requests, and thus we can view the main terms of the “agreement” reached by the client and the
server.

Figure 4-8 shows the tracing of connections using the development tools of Chrome, where you
can see the process of content negotiation between this browser and IIS 8. Both support WebSockets.

FIGURE 4-8 Process of transport negotiation with Chrome.

However, Fiddler9 is used in Figure 4-9 to show the negotiation procedure of Internet Explorer 7
and how the fallback mechanism works to select the best transport supported by it—forever frame:

FIGURE 4-9 Transport negotiation procedure with Internet Explorer 7.

Finally, Figure 4-10 shows the trace by the Firefox console (Firebug) of the negotiation of a cross-
domain connection, which is resolved employing the WebSocket transport using CORS.

FIGURE 4-10 Cross-domain connection negotiation with Firefox.

8 Fiddler: http://www.fiddler2.com
9 Notes on the use of Fiddler with SignalR: https://github.com/SignalR/SignalR/wiki/Using-fiddler-with-signalr

http://www.fiddler2.com
https://github.com/SignalR/SignalR/wiki/Using-fiddler-with-signalr

50 CHAPTER 4 Persistent connections

Adjusting SignalR configuration parameters

SignalR allows us to adjust certain parameters that affect the way in which connections are made, as
well as other aspects related to their management. This is done through a configuration object avail-
able in the global object GlobalHost. As we shall see throughout this book, this object allows static
access to some interesting functions of SignalR, but for now, we will focus on its Configuration
property, which is where we will be able to adjust the value of the following parameters:

 ■ TransportConnectTimeout, which is a TimeSpan that specifies the length of time that a cli-
ent is to allow for the connection to be made using a transport, before falling back to another
with inferior features or before the connection fails. The default value is five seconds.

 ■ ConnectionTimeout is a TimeSpan specifying the length of time for which a connection
must remain open and inactive before a time-out occurs. The default value is 110 seconds. It is
effective only for transports that don’t support keep alive, or if keep alive is disabled.

 ■ DisconnectTimeout specifies the length of time from when a connection is closed until the
disconnect event is fired. The default value is 30 seconds.

 ■ KeepAlive is a nullable TimeSpan that allows us to specify the length of time between
messages sent to the server indicating that the client remains active. The default value is
10 seconds, but we can disable it by setting a null value; see Figure 4-11. In any case, we
cannot enter a value smaller than two seconds nor greater than one third of the value of
DisconnectTimeout.

FIGURE 4-11 Exception during application startup.

 ■ DefaultMessageBufferSize is an integer indicating the size of the message buffer for a
specific signal (connection, group, users, and so on). The default value is 1,000.

 ■ LongPollDelay is a TimeSpan that allows us to specify the length of time that a client must
wait before opening a new long polling connection after having sent data to the server. The
default value is 0.

 Persistent connections CHAPTER 4 51

Some of these parameters, such as TransportConnectTimeout or KeepAliveTimeout, are
sent to the client in the negotiation phase of the connection so that it can apply them during said
connection.

Naturally, for them to take effect, the changes on the configuration properties should be made
during application startup—for example, like this:

public class Startup
{
 public void Configuration(IAppBuilder app)
 {
 GlobalHost.Configuration
 .DisconnectTimeout = TimeSpan.FromSeconds(30);

 app.MapSignalR<EchoConnection>("/echo");
 }
}

Note These settings are also valid when we use hubs, because they are global configura-
tions of the server.

Complete example: Tracking visitors

We will now look at the code of a complete example, both on the client and server sides, with the
purpose of consolidating some of the concepts addressed throughout this chapter.

Specifically, we will track the mouse of the visitors of a page and send this information to the rest
of the users in real time. Thus, every visitor will be able to see the position of other users’ cursors on
their own screen and follow their movement across it.

Figure 4-12 shows the system being executed on a busy page.

52 CHAPTER 4 Persistent connections

FIGURE 4-12 System for tracking users in real time in operation.

Project creation and setup
For the purpose of creating the application that we will develop over the following pages, it is neces-
sary to first create a project of the “ASP.NET Web Application” type from Visual Studio 2013 and then
select the “Empty” template to create a completely empty project10. The version of the .NET frame-
work used must be at least 4.5.

After we have created it, we must install the following package using NuGet:

PM> install-package Microsoft.AspNet.SignalR

10 In Visual Studio 2012, we can achieve the same goal by creating a project from the template “ASP.NET Empty Web Application.”

 Persistent connections CHAPTER 4 53

Implementation on the client side

HTML markup (tracking.html)
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title></title>
 <script src="Scripts/jquery-1.6.4.min.js"></script>
 <script src="Scripts/jquery.signalR-2.0.0.min.js"></script>
 <script src="Scripts/tracking.js"></script>
 <style>
 .client {
 position: absolute;
 background-color: white;
 -moz-box-shadow: 10px 10px 5px #888;
 -webkit-box-shadow: 10px 10px 5px #888;
 box-shadow: 3px 3px 3px #888;
 border: 1px solid #a0a0a0;
 padding: 3px;
 }
 </style>
</head>
<body>
 <h1>Lorem ipsum</h1>
 <p>Lorem ipsum dolor sit amet, […]</p>
 <p>Integer elit augue, […] </p>
</body>
</html>

Scripts (Scripts/Tracking.js)
$(function() {

 /* SignalR client */
 var connection = $.connection("/tracker");
 connection.start(function () {
 startTracking();
 });

 connection.received(function (data) {
 data = JSON.parse(data);

 var domElementId = "id" + data.id;
 var elem = createElementIfNotExists(domElementId);
 $(elem).css({ left: data.x, top: data.y }).text(data.id);
 });

 function startTracking() {
 $("body").mousemove(function (e) {
 var data = { x: e.pageX, y: e.pageY, id: connection.id };
 connection.send(data);
 });
 }

54 CHAPTER 4 Persistent connections

 /* Helper functions */
 function createElementIfNotExists(id) {
 var element = $("#" + id);
 if (element.length == 0) {
 element = $("<span class='client' " +
 "id='" + id +"'>");
 var color = getRandomColor();
 element.css({ backgroundColor: getRgb(color),
 color: getInverseRgb(color) });
 $("body").append(element).show();
 }
 return element;
 }

 function getRgb(rgb) {
 return "rgb(" + rgb.r + "," + rgb.g + "," + rgb.b + ")";
 }

 function getInverseRgb(rgb) {
 return "rgb(" + (255 - rgb.r) + "," +
 (255 - rgb.g) + "," + (255 - rgb.b) + ")";
 }

 function getRandomColor() {
 return {
 r: Math.round(Math.random() * 256),
 g: Math.round(Math.random() * 256),
 b: Math.round(Math.random() * 256),
 };
 }
});

Implementation on the server side

Persistent connection (TrackerConnection.cs)
using System.Threading.Tasks;
using Microsoft.AspNet.SignalR;

public class TrackerConnection : PersistentConnection
{
 protected override Task OnReceived(IRequest request,
 string connectionId,
 string data)
 {
 return Connection.Broadcast(data);
 }
}

 Persistent connections CHAPTER 4 55

Startup code (Startup.cs)
using Owin;

public class Startup
{
 public void Configuration(IAppBuilder app)
 {
 app.MapSignalR<TrackerConnection>("/tracker");
 }
}

Index

 233

A
AAA acronym, 207
access control

in hubs, 182–184
in persistent connections, 181–182

actions, receiving and processing, 15
Active Directory Domain Services (AD DS), 181, 185
AD DS (Active Directory Domain Services), 181, 185
adaptive intervals, 8
Add Counters dialog box, 176–177
AJAX (Asynchronous JavaScript And XML), 6, 190
AJAX push, 12
AjaxMin package, 196
Android platform, 150
AngularJS framework, 230–232
API Event Source (Server-Sent Events)

additional techniques supporting, 15
described, 11–12
forever frame and, 14
push and, 12–15
transport negotiation, 48

ApiController class, 224
appcmd.exe tool, 174
AppFunc (application delegate), 23
application delegate (AppFunc), 23
ArraySegment type, 34
ASP.NET. See also MVC framework

Authorize attribute, 182–184
performance counters, 180
server configuration, 174–175

ASP.NET stack, 17
async/await construct (C#)

asynchronous event processing, 35
communicating with server using hubs, 136
creating and opening persistent connections, 133

receiving messages, 63
sending messages to clients, 67

asynchronous communication
AJAX operations, 6
event processing, 34–35
hub methods, 63
recommendations, 173

Asynchronous JavaScript And XML (AJAX), 6, 190
authentication

client, 184–190
cookie-based, 46, 185
OAuth 2.0, 185
in SignalR, 181–190

authentication tokens, 186
authorization in SignalR, 181–190
Authorize attribute, 182–184
Autofac IoC container, 201
automatic proxies, 79, 83
Available KBytes performance counter, 180
Available MBytes performance counter, 180
Azure Management Tool, 163

B
backplanes

custom, 170–172
described, 156–157
operation with, 156
Redis storage system, 157, 167–170
scaling on, 159–170
SQL Server, 157, 165–167
Windows Azure, 157, 159–164

Browser Link feature, 18
browsers

cookie-based authentication, 46
JSON parser and, 41

234

multiplatform SignalR servers, 120
transport negotiation, 48–49
WebSockets support, 10

buffering, 173

C
C++ client, 149
C# language

application example, 142–147
async/await construct, 35, 63, 67, 133, 136

Calculator class, 208–209
camel casing style, 86
CDN (Content Delivery Networks), 154
client authentication, 184–190
client/server architecture

HTTP operations, 5–7
messaging bus, 19
negotiation, 18
polling technique, 7–8
push concept, 8–15

client-side processing
console application example, 140–141
hubs

communication with server, 135–138
creating and opening connections to,

134–135
described, 78
establishing the connection, 83–85
generating the proxy, 79–81
implementing without a proxy, 93–96
JavaScript clients, 79
logging, 91–92
manual generation of JavaScript proxies,

81–83
progress bar example, 114–115
receiving messages sent from server, 90–91
security and, 9
sending additional information, 89–90
sending message to server, 86–89
shared drawing board example, 98
state maintenance, 92–93

multiplatform applications
accessing services from non-web clients,

130–149
consumption of services from other platforms,

149–150
described, 129–130

persistent connections
creating and opening, 130–133
cross-domain connection support, 41–43
described, 27, 38
events available at, 47
initiating using JavaScript client, 38–40
older browser support, 41
receiving messages, 45–46
sending additional information to server,

46–47
sending and receiving data, 133–134
sending messages, 43–45
tracing requests, 111
tracking visitors example, 53

recommendations, 174
Windows Phone problems, 147–149

Clients property (Hub class)
All value, 64–65, 112, 212
AllExcept value, 65, 112
Caller value, 66, 70, 138
Client value, 66, 68, 112, 214
Clients value, 66
Group value, 66, 72, 112
Groups value, 67, 73, 112
Others value, 66
OthersInGroups value, 67, 72
User value, 67

cloud services, 154
clustering servers, 173
Comet, 12
compression, OWIN middleware modules, 24
ConcurrentDictionary class, 74
.config file, 37, 175
Connection class

AddClientCertificate() method, 131
Closed event, 134
ConnectionId property, 40, 131
ConnectionSlow event, 47, 134
CookieContainer property, 131–132
Credentials property, 132
Error event, 44, 47, 134
Headers property, 132
Logging property, 48
Proxy property, 132
QueryString property, 89
Received event, 45, 47, 134
Reconnected event, 47
Reconnecting event, 134

buffering

 235

Send() method, 43–44, 133, 142–149
Start() method, 39–41, 48, 83–84, 132–133
State property, 132
StateChanged event, 47, 134
Stop() method, 40
Trace() method, 138
TraceLevel property, 138–139
TraceWriter property, 139

connection groups, 35–37
Connection Messages Received/Sec performance

counter, 178
Connection Messages Received Total performance

counter, 178
Connection Messages Sent/Sec performance

counter, 178
Connection Messages Sent Total performance

counter, 178
ConnectionConfiguration class, 41
connectionID identifier, 30–33, 35
ConnectionMessage structure, 34
Connections Connected performance counter, 178
Connections Current performance counter, 178
Connections Disconnected performance counter, 178
Connections Reconnected performance counter, 178
console applications

application example, 140–141
multiplatform SignalR clients, 130
multiplatform SignalR servers, 119–122

Content Delivery Networks (CDN), 154
Context property (Hub class)

ConnectionId value, 71, 212
described, 72, 89
Headers value, 71
QueryString value, 71, 89
RequestCookies value, 71
unit testing example, 212
User value, 71

Controller class, 226
cookie-based authentication, 46, 185
CORS (Cross Origin Resource Sharing)

multiplatform SignalR servers, 120
OWIN middleware modules, 24
persistent connections and, 41–42
responding to requests, 85

Creative Commons license, 21
cross-domain connections, 41–43
Cross Origin Resource Sharing (CORS)

multiplatform SignalR servers, 120

OWIN middleware modules, 24
persistent connections and, 41–42
responding to requests, 85

D
death by success, 153
DefaultDependencyResolver class, 192, 202
Deferred object (jQuery), 40
Dependency Injection (DI)

described, 191, 196–198
Inversion of Control containers, 200–205
manual, 198–200
releasing dependencies, 200

Dependency Resolver, 69, 191–196
deployment scenarios

death by success and, 153
described, 151–153
improving performance in SignalR services,

173–180
OWIN standard example, 23

DI (Dependency Injection)
described, 191, 196–198
Inversion of Control containers, 200–205
manual, 198–200
releasing dependencies, 200

Dictionary class, 74
dynamic proxies, 79–81

E
EchoConnection class, 29, 39, 217
Edwards, Damian, 17
Errors: All/Sec performance counter, 178
Errors: All Total performance counter, 178
Errors: Hub Invocation/Sec performance counter, 178
Errors: Hub Invocation Total performance counter,

178
Errors: Hub Resolution/Sec performance counter, 178
Errors: Hub Resolution Total performance counter,

178
Errors: Transport/Sec performance counter, 178
Errors: Transport Total performance counter, 178
events

asynchronous processing, 34–35
described, 30–32
logging, 91–92, 138–139

 events

236

EventSource object, 12
extensible framework, 191–196

F
Facebook OAuth authentication, 185
FakeItEasy framework, 209
Fakes framework, 209
Fiddler tool, 49, 84
FileSystemWatcher class, 172
forever frame

described, 12, 14–15
persistent connections and, 29
transport negotiation, 48–49

Fowler, David, 17

G
garbage collection, 180
Get-Package command, 25
GlobalHost class

Configuration property, 50–51
ConnectionManager property, 111, 224–225
DependencyResolver property, 192–193
HubPipeline property, 219

globally unique identifier (GUID), 30
GUID (globally unique identifier), 30

H
horizontal scalability, 154–155
hosting

multiplatform SignalR servers
console applications, 119–122
described, 118
platforms other than Windows, 126–129
Windows service, 122–126

OWIN standard, 22–24, 118–119
HTML <IFRAME> tag, 14
HTML5, 9
HTTP (HyperText Transfer Protocol)

503 errors, 175
described, 5
HTTP operations, 5–7
inefficiencies of, 6–7
polling, 7–8, 12–14
Server-Side Events, 11–12

synchronous communication, 5–6
HTTP push, 12
HttpContext class, 184
HttpListener class, 118–119, 123
Hub class

Clients property, 64–68, 70, 72–73, 112, 138, 212,
214

Context property, 71–72, 89, 212
OnConnected() method, 211, 213

HubConnection class
Closed event, 135
CreateHubProxy() method, 135
described, 134–135
Start() method, 135
StateChanged event, 135
Stop() method, 135

HubException exception, 88
HubPipeline class

BuildOutgoing() method, 220
described, 219
OnAfterConnect() method, 221
OnAfterDisconnect() method, 221
OnAfterIncoming() method, 221
OnAfterOutgoing() method, 221
OnAfterReconnect() method, 221
OnBeforeAuthorizeConnect() method, 221
OnBeforeConnect() method, 221
OnBeforeDisconnect() method, 221
OnBeforeIncoming() method, 221
OnBeforeOutgoing() method, 221
OnBeforeReconnect() method, 221
OnIncomingError() method, 221

HubProxy class, 135–136, 138
hubs

access control in, 182–184
access from other threads, 103–105, 111–116
client-side implementation

communication with server, 135–138
creating and opening connections to,

134–135
described, 78
establishing the connection, 83–85
generating the proxy, 79–81
implementing the client without a proxy,

93–96
JavaScript clients, 79
logging, 91–92
manual generation of JavaScript proxies,

81–83

EventSource object

 237

receiving messages sent from server, 90–91
sending additional information, 89–90
sending message to server, 86–89
state maintenance, 92–93

console applications and, 119
Dependency Injection, 196–205
described, 20, 57–58
global configurations, 51
intercepting messages in, 218–222
progress bar example, 113
security and, 50
server-side implementation

accessing request context information, 71
creating hubs, 59–60
hub registration and configuration, 58–59
managing groups, 72–73
notifications of connections and

disconnections, 72
receiving messages, 60–64
sending messages to clients, 64–67
sending messages to specific users, 68–69
state maintenance, 69–70, 73–78

shared drawing board example, 96–101
unit testing, 211–215

HyperText Transfer Protocol (HTTP)
503 errors, 175
described, 5
HTTP operations, 5–7
inefficiencies of, 6–7
synchronous communication, 5–6

I
IAppBuilder interface

described, 28–29, 37
MapSignalR() method, 29, 59
multiplatform SignalR servers, 120

ICalculator interface, 209–210
IClock interface, 201, 203–204
IConnection interface

Broadcast() method, 32–34, 106
DefaultSignal property, 34
Send() method, 34, 36, 106
Task object and, 35

IConnectionGroupManager interface
Add() method, 106
described, 35
Remove() method, 106

Send() method, 106
IDataStore interface, 200
IDependencyResolver interface, 192
IDisposable interface, 200
IETF (Internet Engineering Task Force), 9
<IFRAME> tag, 14
IGroupManager interface, 225
IHubConnectionContext interface, 112, 225
IHubContext interface, 112
IHubPipelineModule interface, 219
IHubProxy interface, 137
IIS Express, 148
IIS (Internet Information Services)

recommendations, 174
server configuration, 174
SignalR support, 20
transport negotiation, 49

IJavaScriptMinifier interface, 196
IJavaScriptProxyGenerator interface, 195
IMessageFormatter interface, 201, 205
Install-Package command, 25, 28
installing SignalR, 25–26
integration with other frameworks

AngularJS, 230–232
described, 223
Knockout, 227–230
MVC, 226
Web API, 226

intercepting messages in hubs, 218–222
Interlocked class, 74
Internet Engineering Task Force (IETF), 9
Internet Information Services (IIS)

recommendations, 174
server configuration, 174
SignalR support, 20
transport negotiation, 49

Internet Relay Chat (IRC), 7
Inversion of Control (IoC)

described, 191, 200–202
Ninject IoC container, 204–205
Unity IoC container, 202–204

IoC (Inversion of Control)
described, 191, 200–202
Ninject IoC container, 204–205
Unity IoC container, 202–204

IoCConfig class, 203
iOS platform, 150
IPersistentConnectionContext interface, 105

 IPersistentConnectionContext interface

238

IRC (Internet Relay Chat), 7–8
IRepository interface, 200–201
IRequest interface

access control in persistent connections, 181–182
accessing information about request context, 71
described, 30
sending additional information to servers, 46
unit testing example, 212

IService interface, 201
IUserIdProvider interface, 68–69

J
JabbR service, 18
jQuery, 39–40
JSON format, 34, 41, 185
JSON with Padding (JSONP), 41–43, 85
json2.js file, 41
Json.NET library, 32
JSONP (JSON with Padding), 41–43, 85
JustMock framework, 209

K
Katana open source project, 24, 185–187
Knockout framework, 227–230
ko object, 229

L
Lazy class, 195
Linux platform, 167–168
load balancers, 154–155
logging events, 91–92
long polling, 12–14

M
manual dependency injection, 198–200
mapping

hubs, 58
persistent connections, 28–29, 59

MbUnit testing framework, 206
memory

performance counters, 180
recommendations, 174
server state and, 76

Memory#bytes performance counter, 180
Message Bus Allocated Workers performance

counter, 178
Message Bus Busy Workers performance counter,

179
Message Bus Messages Published/Sec performance

counter, 179
Message Bus Messages Published Total performance

counter, 179
Message Bus Messages Received/Sec performance

counter, 179
Message Bus Messages Received Total performance

counter, 179
Message Bus Subscribers Current performance

counter, 179
Message Bus Subscribers/Sec performance counter,

179
Message Bus Subscribers Total performance counter,

179
Message Bus Topics Current performance counter,

179
MessageFormatter class, 201
messages

intercepting in hubs, 218–222
receiving from clients, 59
receiving from servers, 45–46, 90–91
recommendations, 173
sending to clients, 32–34, 64–67
sending to servers, 43–45, 86–88
sending to specific users, 68–69
tracing requests, 109, 111

messaging bus, 19, 178–179
Microsoft Patterns & Practices, 202
Microsoft.AspNet.SignalR namespace/package, 29,

39, 59
Microsoft.AspNet.SignalR.Client namespace/

package, 25, 130, 140
Microsoft.AspNet.SignalR.Hubs namespace, 219
Microsoft.AspNet.SignalR.Infrastructure namespace,

68
Microsoft.AspNet.SignalR.JS package, 39
Microsoft.AspNet.SignalR.Redis namespace/package,

169
Microsoft.AspNet.SignalR.SelfHost package, 119, 122
Microsoft.AspNet.SignalR.ServiceBus namespace/

package, 163
Microsoft.AspNet.SignalR.SqlServer namespace/

package, 166

IRC (Internet Relay Chat)

 239

Microsoft.AspNet.SignalR.Utils package, 81, 175
Microsoft.Owin.Compression package, 24
Microsoft.Owin.Cors package, 24, 85, 120
Microsoft.Owin.Host.HttpListener namespace, 24,

118
Microsoft.Owin.Host.SystemWeb package, 118
Microsoft.Owin.Security namespace, 24
Microsoft.Owin.Security.ActiveDirectory module, 185
Microsoft.Owin.Security.Cookies module, 185–187
Microsoft.Owin.Security.Facebook module, 185
Microsoft.Owin.Security.Google module, 185
Microsoft.Owin.Security.Jwt module, 185
Microsoft.Owin.Security.MicrosoftAccount module,

185
Microsoft.Owin.Security.OAuth module, 185
Microsoft.Owin.Security.Twitter module, 185
Microsoft.Owin.StaticFiles package, 24
middleware, OWIN standard, 22–24, 185–186
Model-View-View-Model (MVVM), 227
monitoring

connections at server example, 106–111
performance in SignalR services, 175–180

Mono project, 126–129, 149
MonoDevelop platform, 128, 149
Moq framework, 209–211
multiplatform applications

described, 117
multiplatform SignalR clients, 129–150
multiplatform SignalR servers, 117–128

MVC framework
Authorize attribute, 183
deployment of web applications, 152
OWIN middleware and, 37
positioning in ASP.NET stack, 17
SignalR integration with, 226

MVVM (Model-View-View-Model), 227

N
negotiation, transport, 18, 48–49
Ninject IoC container, 201, 204–205
NServiceBus, 170
NuGet package manager

Get-Package command, 25
Install-package command, 25, 28
packages supported, 25, 39

of current logical Threads performance counter,
180

of current physical Threads performance counter,
180

NUnit testing framework, 206

O
OAuth 2.0 authentication, 185
Office Web Apps, 17
Office365, 17
Open Web Interface for .NET (OWIN)

bifurcation in pipeline, 85
client authentication, 184–190
described, 21–24
Startup class, 28–29, 37–38, 122
system architecture, 185

OpenID, 185
overloaded methods, 61
OWIN (Open Web Interface for .NET)

bifurcation in pipeline, 85
client authentication, 184–190
key features, 21–24
mapping and configuring persistent connections,

28–29
multiplatform SignalR servers, 118–119
Startup class, 28–29, 37–38, 58, 122, 189
system architecture, 185

P
performance counters, 176–180
performance improvement

described, 173–174
monitoring performance, 175–180
server configuration, 174–175

Performance Monitor, 175–177
persistent connections

access control in, 181–182
access from other threads, 103–111
adjusting configuration parameters, 50–51
client-side implementation

creating and opening, 130–133
cross-domain connection support, 41–43
described, 38
events available at, 47
initiating using JavaScript client, 38–40
older browser support, 41
receiving messages, 45–46

 persistent connections

240

sending additional information to server,
46–47

sending and receiving data, 133–134
sending messages, 43–45

console applications and, 119
described, 19–20, 27
forever frame and, 14
impression of, 18
monitoring at server example, 106–111
server-side implementation

asynchronous event processing, 34–35
configuring, 28–29
connection groups, 35–37
events of, 30–32
mapping, 28–29, 59
OWIN startup class, 37–38
sending messages to clients, 32–34

tracking visitors example, 51–55
transport negotiation, 48–49
unit testing, 215–218
WebSockets support, 9

PersistentConnection class
access control and, 181–182
AuthorizeRequest() method, 182
Connection property, 32, 216
described, 27–29
external access using, 105–106
Groups property, 35
Initialize() method, 192
manual dependency injection and, 199–200
OnConnected() method, 30, 216, 218
OnDisconnected() method, 30, 32
OnReceived() method, 30–31, 43, 60, 216
OnReconnected() method, 31
OnRejoiningGroups() method, 31
unit testing example, 215–218

piggy backing technique, 8
polling technique

adaptive intervals, 8
advantages/disadvantages, 7–8
defined, 7
long polling, 12–14

PrincipalUserIdProvider class, 68–69
Processor information / % Processor time

performance counter, 180
progress bar example, 113
proxies

automatic, 79, 83
dynamic, 79–81

generating, 79–81
generating manually, 81–83
receiving messages sent from servers, 90–91
sending messages to servers, 86–88

pull model, 5, 7
push concept

described, 8–9
forever frame and, 14–15
long polling and, 12–14
Server-Sent Events, 11–15
transport negotiation, 48
WebSockets standard, 9–11
XHR streaming and, 12

R
RabbitMQ, 170
real-time multiplatform applications

described, 117
multiplatform SignalR clients, 129–150
multiplatform SignalR servers, 117–128

Redis storage system
activating the backplane, 169–170
installing, 167–169
SignalR backplane support, 157, 167

Remote Procedure Call (RPC), 20, 38
request-response schemas, 5
Requests Current performance counter, 180
Requests Queued performance counter, 180
Requests Rejected performance counter, 180
resource consumption, long polling and, 13–14
reverse AJAX, 12
Rhino Mocks framework, 209
RPC (Remote Procedure Call), 20, 38

S
SaaS (Software as a Service), 158
scalability

custom backplanes, 170–172
death by success and, 153
horizontal, 154–155
improving performance in SignalR services,

173–180
scaling on backplanes, 159–170
session affinity and, 155
in SignalR, 155–159
state storage and, 76, 78

PersistentConnection class

 241

vertical, 153–154
scale-out approach

described, 154–155
performance counters, 179

scale-up approach, 153, 155
Scaleout Errors/Sec performance counter, 179
Scaleout Errors Total performance counter, 179
Scaleout Message Bus Messages Received/Sec

performance counter, 179
Scaleout Send Queue Length performance counter,

179
Scaleout Streams Buffering performance counter,

179
Scaleout Streams Open performance counter, 179
Scaleout Streams Total performance counter, 179
ScaleoutMessageBus class, 170–172
Secure Sockets Layer (SSL), 184
security

authorization in SignalR, 181–190
client communications and, 9
JSONP and, 41
OWIN middleware modules, 24
public methods within hubs, 50
push concept and, 12
state storage and, 78

server push concept
described, 8–9
forever frame and, 14–15
long polling and, 12–14
Server-Sent Events, 11–15
transport negotiation, 48
WebSockets standard, 9–11
XHR streaming and, 12

Server-Sent Events (API Event Source)
additional techniques supporting, 15
described, 11–12
forever frame and, 14
push and, 12–15
transport negotiation, 48

server-side processing
hubs

accessing request context information, 71
creating, 59–60
managing groups, 72–73
notifications of connections and

disconnections, 72
progress bar example, 115–116
receiving messages from clients, 60–64

registration and configuration, 58–59
sending messages to clients, 64–67
sending messages to specific users, 68–69
shared drawing board example, 100
state maintenance, 69–70, 73–78

multiplatform applications
described, 117
non-web applications, 118–126
platforms other than Windows, 126–129

OWIN standard, 22–23
persistent connections

asynchronous event processing, 34–35
configuring, 28–29
connection groups, 35–37
events of, 30–32
mapping, 28–29
OWIN startup class, 37–38
sending messages to clients, 32–34
tracing requests, 109
tracking visitors example, 54

recommendations, 174
Service Locator pattern, 191, 196, 200
ServiceBase class, 123
ServiceBusScaleoutConfiguration class, 164
session affinity, 155
session variables, 174
shared drawing board example, 96–101
SharePoint, SignalR support, 17
SignalR

abstraction levels, 19–20, 27, 57
adjusting configuration parameters, 50–51
advantages, 19
authorization in, 181–190
Authorize attribute, 183
background, 17–18
Dependency Injection, 196–205
extensible framework, 191–196
improving performance in services, 173–180
installing, 25–26
integration with other frameworks, 223–232
intercepting messages in hubs, 218–222
Katana open source project, 24
key features, 18–19
monitoring performance in services, 175–180
multiplatform clients, 129–150
multiplatform servers, 117–129
OWIN standard, 21–24
positioning in ASP.NET stack, 17

 SignalR

242

scalability in, 155–159
supported platforms, 20–21
unified programming model, 19
unit testing, 205–218

SignalR.exe tool, 81–82, 175–176
Single Page Applications (SPA) framework, 230
SkyDrive, SignalR support, 17
SMTP, 8
Software as a Service (SaaS), 158
SPA (Single Page Applications) framework, 230
SQL Server

activating the backplane, 166–167
configuring the database, 165–166
SignalR backplane support, 157, 165

SQL Server Management Studio, 165
SSL (Secure Sockets Layer), 184
Startup class (OWIN)

Configuration() method, 28–29, 37, 58, 189
described, 28–29, 37–38, 58
multiplatform SignalR servers, 122

state maintenance (hubs)
client-side, 92–93
recommendations, 174
server-side, 69–70, 73–78

static files, OWIN middleware modules, 24
sticky sessions, 155
StructureMap IoC container, 201
submissions

monitoring, 15
recommendations, 173

subscriptions, managing, 15
synchronous communication, HTTP operations, 5–6
System.Collections.Concurrent namespace, 74
System.Web.Http namespace, 182, 225
System.Web.Mvc namespace, 226

T
Task object

asynchronous event processing, 35
communicating with server using hubs, 136
creating and opening persistent connections, 132
receiving messages, 63
sending and receiving data using persistent

connections, 133
sending messages to clients, 67

testing
of hubs, 211–215

of persistent connections, 215–218
unit testing, 205–218
Windows Phone solutions, 148

TextWriter class, 139
TraceLevel property (Connection class)

All value, 139
Events value, 138
Messages value, 138
None value, 139
StateChanges value, 138

tracing requests, 109, 111
tracking visitors example, 51–55
transport negotiation, 18, 48–49
Twitter OAuth 2.0 authentication, 185
TypeMock framework, 209

U
Ubuntu platform, 168
unified programming model, 19
unit testing

described, 205–210
of hubs, 211–215
of persistent connections, 215–218

Unity IoC container, 201–204

V
vertical scalability, 153–154
View-Model class, 227–229
Visual Studio

Authorize attribute and, 182–183
Browser Link feature, 18
implementing native clients, 149
testing framework, 206–210

W
W3C (World Wide Web Consortium), 9
Web API

Authorize attribute, 183
deployment of web applications, 152
OWIN middleware and, 37
positioning in ASP.NET stack, 17
SignalR integration with, 226

web applications
deployment scenarios, 152

SignalR.exe tool

 243

MVC framework and, 226
OWIN standard, 22–23
recommendations, 174

Web Forms
positioning in ASP.NET stack, 17
update dependencies, 21

web framework (OWIN), 22–23
Web Pages, positioning in ASP.NET stack, 17
Web Tokens (JSON), 185
WebApp class, 121
WebSockets standard

described, 9–11
persistent connections and, 29
transport negotiation, 48–49

Windows Azure
activating the backplane, 163–164
Azure Management Tool, 163
cache system, 76
cloud services, 154
configuring the service, 159–163
Katana project and, 185
SignalR support, 20, 157, 159

Windows Phone clients, 147–149
Windows platforms

application example, 142–149
recommendations, 174
Redis and, 168–169
SignalR support, 20

Windows Server platform, 20
Windows Services, 122–126
Windsor Castle IoC container, 201
World Wide Web Consortium (W3C), 9
ws://protocol, 11

X
Xamarin Studio, 149–150
XAML application example, 142–147
XHR streaming, 12
XUnit testing framework, 206

 XUnit testing framework

234

multiplatform SignalR servers, 120
transport negotiation, 48–49
WebSockets support, 10

buffering, 173

C
C++ client, 149
C# language

application example, 142–147
async/await construct, 35, 63, 67, 133, 136

Calculator class, 208–209
camel casing style, 86
CDN (Content Delivery Networks), 154
client authentication, 184–190
client/server architecture

HTTP operations, 5–7
messaging bus, 19
negotiation, 18
polling technique, 7–8
push concept, 8–15

client-side processing
console application example, 140–141
hubs

communication with server, 135–138
creating and opening connections to,

134–135
described, 78
establishing the connection, 83–85
generating the proxy, 79–81
implementing without a proxy, 93–96
JavaScript clients, 79
logging, 91–92
manual generation of JavaScript proxies,

81–83
progress bar example, 114–115
receiving messages sent from server, 90–91
security and, 9
sending additional information, 89–90
sending message to server, 86–89
shared drawing board example, 98
state maintenance, 92–93

multiplatform applications
accessing services from non-web clients,

130–149
consumption of services from other platforms,

149–150
described, 129–130

persistent connections
creating and opening, 130–133
cross-domain connection support, 41–43
described, 27, 38
events available at, 47
initiating using JavaScript client, 38–40
older browser support, 41
receiving messages, 45–46
sending additional information to server,

46–47
sending and receiving data, 133–134
sending messages, 43–45
tracing requests, 111
tracking visitors example, 53

recommendations, 174
Windows Phone problems, 147–149

Clients property (Hub class)
All value, 64–65, 112, 212
AllExcept value, 65, 112
Caller value, 66, 70, 138
Client value, 66, 68, 112, 214
Clients value, 66
Group value, 66, 72, 112
Groups value, 67, 73, 112
Others value, 66
OthersInGroups value, 67, 72
User value, 67

cloud services, 154
clustering servers, 173
Comet, 12
compression, OWIN middleware modules, 24
ConcurrentDictionary class, 74
.config file, 37, 175
Connection class

AddClientCertificate() method, 131
Closed event, 134
ConnectionId property, 40, 131
ConnectionSlow event, 47, 134
CookieContainer property, 131–132
Credentials property, 132
Error event, 44, 47, 134
Headers property, 132
Logging property, 48
Proxy property, 132
QueryString property, 89
Received event, 45, 47, 134
Reconnected event, 47
Reconnecting event, 134

buffering

 235

Send() method, 43–44, 133, 142–149
Start() method, 39–41, 48, 83–84, 132–133
State property, 132
StateChanged event, 47, 134
Stop() method, 40
Trace() method, 138
TraceLevel property, 138–139
TraceWriter property, 139

connection groups, 35–37
Connection Messages Received/Sec performance

counter, 178
Connection Messages Received Total performance

counter, 178
Connection Messages Sent/Sec performance

counter, 178
Connection Messages Sent Total performance

counter, 178
ConnectionConfiguration class, 41
connectionID identifier, 30–33, 35
ConnectionMessage structure, 34
Connections Connected performance counter, 178
Connections Current performance counter, 178
Connections Disconnected performance counter, 178
Connections Reconnected performance counter, 178
console applications

application example, 140–141
multiplatform SignalR clients, 130
multiplatform SignalR servers, 119–122

Content Delivery Networks (CDN), 154
Context property (Hub class)

ConnectionId value, 71, 212
described, 72, 89
Headers value, 71
QueryString value, 71, 89
RequestCookies value, 71
unit testing example, 212
User value, 71

Controller class, 226
cookie-based authentication, 46, 185
CORS (Cross Origin Resource Sharing)

multiplatform SignalR servers, 120
OWIN middleware modules, 24
persistent connections and, 41–42
responding to requests, 85

Creative Commons license, 21
cross-domain connections, 41–43
Cross Origin Resource Sharing (CORS)

multiplatform SignalR servers, 120

OWIN middleware modules, 24
persistent connections and, 41–42
responding to requests, 85

D
death by success, 153
DefaultDependencyResolver class, 192, 202
Deferred object (jQuery), 40
Dependency Injection (DI)

described, 191, 196–198
Inversion of Control containers, 200–205
manual, 198–200
releasing dependencies, 200

Dependency Resolver, 69, 191–196
deployment scenarios

death by success and, 153
described, 151–153
improving performance in SignalR services,

173–180
OWIN standard example, 23

DI (Dependency Injection)
described, 191, 196–198
Inversion of Control containers, 200–205
manual, 198–200
releasing dependencies, 200

Dictionary class, 74
dynamic proxies, 79–81

E
EchoConnection class, 29, 39, 217
Edwards, Damian, 17
Errors: All/Sec performance counter, 178
Errors: All Total performance counter, 178
Errors: Hub Invocation/Sec performance counter, 178
Errors: Hub Invocation Total performance counter,

178
Errors: Hub Resolution/Sec performance counter, 178
Errors: Hub Resolution Total performance counter,

178
Errors: Transport/Sec performance counter, 178
Errors: Transport Total performance counter, 178
events

asynchronous processing, 34–35
described, 30–32
logging, 91–92, 138–139

 events

236

EventSource object, 12
extensible framework, 191–196

F
Facebook OAuth authentication, 185
FakeItEasy framework, 209
Fakes framework, 209
Fiddler tool, 49, 84
FileSystemWatcher class, 172
forever frame

described, 12, 14–15
persistent connections and, 29
transport negotiation, 48–49

Fowler, David, 17

G
garbage collection, 180
Get-Package command, 25
GlobalHost class

Configuration property, 50–51
ConnectionManager property, 111, 224–225
DependencyResolver property, 192–193
HubPipeline property, 219

globally unique identifier (GUID), 30
GUID (globally unique identifier), 30

H
horizontal scalability, 154–155
hosting

multiplatform SignalR servers
console applications, 119–122
described, 118
platforms other than Windows, 126–129
Windows service, 122–126

OWIN standard, 22–24, 118–119
HTML <IFRAME> tag, 14
HTML5, 9
HTTP (HyperText Transfer Protocol)

503 errors, 175
described, 5
HTTP operations, 5–7
inefficiencies of, 6–7
polling, 7–8, 12–14
Server-Side Events, 11–12

synchronous communication, 5–6
HTTP push, 12
HttpContext class, 184
HttpListener class, 118–119, 123
Hub class

Clients property, 64–68, 70, 72–73, 112, 138, 212,
214

Context property, 71–72, 89, 212
OnConnected() method, 211, 213

HubConnection class
Closed event, 135
CreateHubProxy() method, 135
described, 134–135
Start() method, 135
StateChanged event, 135
Stop() method, 135

HubException exception, 88
HubPipeline class

BuildOutgoing() method, 220
described, 219
OnAfterConnect() method, 221
OnAfterDisconnect() method, 221
OnAfterIncoming() method, 221
OnAfterOutgoing() method, 221
OnAfterReconnect() method, 221
OnBeforeAuthorizeConnect() method, 221
OnBeforeConnect() method, 221
OnBeforeDisconnect() method, 221
OnBeforeIncoming() method, 221
OnBeforeOutgoing() method, 221
OnBeforeReconnect() method, 221
OnIncomingError() method, 221

HubProxy class, 135–136, 138
hubs

access control in, 182–184
access from other threads, 103–105, 111–116
client-side implementation

communication with server, 135–138
creating and opening connections to,

134–135
described, 78
establishing the connection, 83–85
generating the proxy, 79–81
implementing the client without a proxy,

93–96
JavaScript clients, 79
logging, 91–92
manual generation of JavaScript proxies,

81–83

EventSource object

 237

receiving messages sent from server, 90–91
sending additional information, 89–90
sending message to server, 86–89
state maintenance, 92–93

console applications and, 119
Dependency Injection, 196–205
described, 20, 57–58
global configurations, 51
intercepting messages in, 218–222
progress bar example, 113
security and, 50
server-side implementation

accessing request context information, 71
creating hubs, 59–60
hub registration and configuration, 58–59
managing groups, 72–73
notifications of connections and

disconnections, 72
receiving messages, 60–64
sending messages to clients, 64–67
sending messages to specific users, 68–69
state maintenance, 69–70, 73–78

shared drawing board example, 96–101
unit testing, 211–215

HyperText Transfer Protocol (HTTP)
503 errors, 175
described, 5
HTTP operations, 5–7
inefficiencies of, 6–7
synchronous communication, 5–6

I
IAppBuilder interface

described, 28–29, 37
MapSignalR() method, 29, 59
multiplatform SignalR servers, 120

ICalculator interface, 209–210
IClock interface, 201, 203–204
IConnection interface

Broadcast() method, 32–34, 106
DefaultSignal property, 34
Send() method, 34, 36, 106
Task object and, 35

IConnectionGroupManager interface
Add() method, 106
described, 35
Remove() method, 106

Send() method, 106
IDataStore interface, 200
IDependencyResolver interface, 192
IDisposable interface, 200
IETF (Internet Engineering Task Force), 9
<IFRAME> tag, 14
IGroupManager interface, 225
IHubConnectionContext interface, 112, 225
IHubContext interface, 112
IHubPipelineModule interface, 219
IHubProxy interface, 137
IIS Express, 148
IIS (Internet Information Services)

recommendations, 174
server configuration, 174
SignalR support, 20
transport negotiation, 49

IJavaScriptMinifier interface, 196
IJavaScriptProxyGenerator interface, 195
IMessageFormatter interface, 201, 205
Install-Package command, 25, 28
installing SignalR, 25–26
integration with other frameworks

AngularJS, 230–232
described, 223
Knockout, 227–230
MVC, 226
Web API, 226

intercepting messages in hubs, 218–222
Interlocked class, 74
Internet Engineering Task Force (IETF), 9
Internet Information Services (IIS)

recommendations, 174
server configuration, 174
SignalR support, 20
transport negotiation, 49

Internet Relay Chat (IRC), 7
Inversion of Control (IoC)

described, 191, 200–202
Ninject IoC container, 204–205
Unity IoC container, 202–204

IoC (Inversion of Control)
described, 191, 200–202
Ninject IoC container, 204–205
Unity IoC container, 202–204

IoCConfig class, 203
iOS platform, 150
IPersistentConnectionContext interface, 105

 IPersistentConnectionContext interface

238

IRC (Internet Relay Chat), 7–8
IRepository interface, 200–201
IRequest interface

access control in persistent connections, 181–182
accessing information about request context, 71
described, 30
sending additional information to servers, 46
unit testing example, 212

IService interface, 201
IUserIdProvider interface, 68–69

J
JabbR service, 18
jQuery, 39–40
JSON format, 34, 41, 185
JSON with Padding (JSONP), 41–43, 85
json2.js file, 41
Json.NET library, 32
JSONP (JSON with Padding), 41–43, 85
JustMock framework, 209

K
Katana open source project, 24, 185–187
Knockout framework, 227–230
ko object, 229

L
Lazy class, 195
Linux platform, 167–168
load balancers, 154–155
logging events, 91–92
long polling, 12–14

M
manual dependency injection, 198–200
mapping

hubs, 58
persistent connections, 28–29, 59

MbUnit testing framework, 206
memory

performance counters, 180
recommendations, 174
server state and, 76

Memory#bytes performance counter, 180
Message Bus Allocated Workers performance

counter, 178
Message Bus Busy Workers performance counter,

179
Message Bus Messages Published/Sec performance

counter, 179
Message Bus Messages Published Total performance

counter, 179
Message Bus Messages Received/Sec performance

counter, 179
Message Bus Messages Received Total performance

counter, 179
Message Bus Subscribers Current performance

counter, 179
Message Bus Subscribers/Sec performance counter,

179
Message Bus Subscribers Total performance counter,

179
Message Bus Topics Current performance counter,

179
MessageFormatter class, 201
messages

intercepting in hubs, 218–222
receiving from clients, 59
receiving from servers, 45–46, 90–91
recommendations, 173
sending to clients, 32–34, 64–67
sending to servers, 43–45, 86–88
sending to specific users, 68–69
tracing requests, 109, 111

messaging bus, 19, 178–179
Microsoft Patterns & Practices, 202
Microsoft.AspNet.SignalR namespace/package, 29,

39, 59
Microsoft.AspNet.SignalR.Client namespace/

package, 25, 130, 140
Microsoft.AspNet.SignalR.Hubs namespace, 219
Microsoft.AspNet.SignalR.Infrastructure namespace,

68
Microsoft.AspNet.SignalR.JS package, 39
Microsoft.AspNet.SignalR.Redis namespace/package,

169
Microsoft.AspNet.SignalR.SelfHost package, 119, 122
Microsoft.AspNet.SignalR.ServiceBus namespace/

package, 163
Microsoft.AspNet.SignalR.SqlServer namespace/

package, 166

IRC (Internet Relay Chat)

 239

Microsoft.AspNet.SignalR.Utils package, 81, 175
Microsoft.Owin.Compression package, 24
Microsoft.Owin.Cors package, 24, 85, 120
Microsoft.Owin.Host.HttpListener namespace, 24,

118
Microsoft.Owin.Host.SystemWeb package, 118
Microsoft.Owin.Security namespace, 24
Microsoft.Owin.Security.ActiveDirectory module, 185
Microsoft.Owin.Security.Cookies module, 185–187
Microsoft.Owin.Security.Facebook module, 185
Microsoft.Owin.Security.Google module, 185
Microsoft.Owin.Security.Jwt module, 185
Microsoft.Owin.Security.MicrosoftAccount module,

185
Microsoft.Owin.Security.OAuth module, 185
Microsoft.Owin.Security.Twitter module, 185
Microsoft.Owin.StaticFiles package, 24
middleware, OWIN standard, 22–24, 185–186
Model-View-View-Model (MVVM), 227
monitoring

connections at server example, 106–111
performance in SignalR services, 175–180

Mono project, 126–129, 149
MonoDevelop platform, 128, 149
Moq framework, 209–211
multiplatform applications

described, 117
multiplatform SignalR clients, 129–150
multiplatform SignalR servers, 117–128

MVC framework
Authorize attribute, 183
deployment of web applications, 152
OWIN middleware and, 37
positioning in ASP.NET stack, 17
SignalR integration with, 226

MVVM (Model-View-View-Model), 227

N
negotiation, transport, 18, 48–49
Ninject IoC container, 201, 204–205
NServiceBus, 170
NuGet package manager

Get-Package command, 25
Install-package command, 25, 28
packages supported, 25, 39

of current logical Threads performance counter,
180

of current physical Threads performance counter,
180

NUnit testing framework, 206

O
OAuth 2.0 authentication, 185
Office Web Apps, 17
Office365, 17
Open Web Interface for .NET (OWIN)

bifurcation in pipeline, 85
client authentication, 184–190
described, 21–24
Startup class, 28–29, 37–38, 122
system architecture, 185

OpenID, 185
overloaded methods, 61
OWIN (Open Web Interface for .NET)

bifurcation in pipeline, 85
client authentication, 184–190
key features, 21–24
mapping and configuring persistent connections,

28–29
multiplatform SignalR servers, 118–119
Startup class, 28–29, 37–38, 58, 122, 189
system architecture, 185

P
performance counters, 176–180
performance improvement

described, 173–174
monitoring performance, 175–180
server configuration, 174–175

Performance Monitor, 175–177
persistent connections

access control in, 181–182
access from other threads, 103–111
adjusting configuration parameters, 50–51
client-side implementation

creating and opening, 130–133
cross-domain connection support, 41–43
described, 38
events available at, 47
initiating using JavaScript client, 38–40
older browser support, 41
receiving messages, 45–46

 persistent connections

240

sending additional information to server,
46–47

sending and receiving data, 133–134
sending messages, 43–45

console applications and, 119
described, 19–20, 27
forever frame and, 14
impression of, 18
monitoring at server example, 106–111
server-side implementation

asynchronous event processing, 34–35
configuring, 28–29
connection groups, 35–37
events of, 30–32
mapping, 28–29, 59
OWIN startup class, 37–38
sending messages to clients, 32–34

tracking visitors example, 51–55
transport negotiation, 48–49
unit testing, 215–218
WebSockets support, 9

PersistentConnection class
access control and, 181–182
AuthorizeRequest() method, 182
Connection property, 32, 216
described, 27–29
external access using, 105–106
Groups property, 35
Initialize() method, 192
manual dependency injection and, 199–200
OnConnected() method, 30, 216, 218
OnDisconnected() method, 30, 32
OnReceived() method, 30–31, 43, 60, 216
OnReconnected() method, 31
OnRejoiningGroups() method, 31
unit testing example, 215–218

piggy backing technique, 8
polling technique

adaptive intervals, 8
advantages/disadvantages, 7–8
defined, 7
long polling, 12–14

PrincipalUserIdProvider class, 68–69
Processor information / % Processor time

performance counter, 180
progress bar example, 113
proxies

automatic, 79, 83
dynamic, 79–81

generating, 79–81
generating manually, 81–83
receiving messages sent from servers, 90–91
sending messages to servers, 86–88

pull model, 5, 7
push concept

described, 8–9
forever frame and, 14–15
long polling and, 12–14
Server-Sent Events, 11–15
transport negotiation, 48
WebSockets standard, 9–11
XHR streaming and, 12

R
RabbitMQ, 170
real-time multiplatform applications

described, 117
multiplatform SignalR clients, 129–150
multiplatform SignalR servers, 117–128

Redis storage system
activating the backplane, 169–170
installing, 167–169
SignalR backplane support, 157, 167

Remote Procedure Call (RPC), 20, 38
request-response schemas, 5
Requests Current performance counter, 180
Requests Queued performance counter, 180
Requests Rejected performance counter, 180
resource consumption, long polling and, 13–14
reverse AJAX, 12
Rhino Mocks framework, 209
RPC (Remote Procedure Call), 20, 38

S
SaaS (Software as a Service), 158
scalability

custom backplanes, 170–172
death by success and, 153
horizontal, 154–155
improving performance in SignalR services,

173–180
scaling on backplanes, 159–170
session affinity and, 155
in SignalR, 155–159
state storage and, 76, 78

PersistentConnection class

 241

vertical, 153–154
scale-out approach

described, 154–155
performance counters, 179

scale-up approach, 153, 155
Scaleout Errors/Sec performance counter, 179
Scaleout Errors Total performance counter, 179
Scaleout Message Bus Messages Received/Sec

performance counter, 179
Scaleout Send Queue Length performance counter,

179
Scaleout Streams Buffering performance counter,

179
Scaleout Streams Open performance counter, 179
Scaleout Streams Total performance counter, 179
ScaleoutMessageBus class, 170–172
Secure Sockets Layer (SSL), 184
security

authorization in SignalR, 181–190
client communications and, 9
JSONP and, 41
OWIN middleware modules, 24
public methods within hubs, 50
push concept and, 12
state storage and, 78

server push concept
described, 8–9
forever frame and, 14–15
long polling and, 12–14
Server-Sent Events, 11–15
transport negotiation, 48
WebSockets standard, 9–11
XHR streaming and, 12

Server-Sent Events (API Event Source)
additional techniques supporting, 15
described, 11–12
forever frame and, 14
push and, 12–15
transport negotiation, 48

server-side processing
hubs

accessing request context information, 71
creating, 59–60
managing groups, 72–73
notifications of connections and

disconnections, 72
progress bar example, 115–116
receiving messages from clients, 60–64

registration and configuration, 58–59
sending messages to clients, 64–67
sending messages to specific users, 68–69
shared drawing board example, 100
state maintenance, 69–70, 73–78

multiplatform applications
described, 117
non-web applications, 118–126
platforms other than Windows, 126–129

OWIN standard, 22–23
persistent connections

asynchronous event processing, 34–35
configuring, 28–29
connection groups, 35–37
events of, 30–32
mapping, 28–29
OWIN startup class, 37–38
sending messages to clients, 32–34
tracing requests, 109
tracking visitors example, 54

recommendations, 174
Service Locator pattern, 191, 196, 200
ServiceBase class, 123
ServiceBusScaleoutConfiguration class, 164
session affinity, 155
session variables, 174
shared drawing board example, 96–101
SharePoint, SignalR support, 17
SignalR

abstraction levels, 19–20, 27, 57
adjusting configuration parameters, 50–51
advantages, 19
authorization in, 181–190
Authorize attribute, 183
background, 17–18
Dependency Injection, 196–205
extensible framework, 191–196
improving performance in services, 173–180
installing, 25–26
integration with other frameworks, 223–232
intercepting messages in hubs, 218–222
Katana open source project, 24
key features, 18–19
monitoring performance in services, 175–180
multiplatform clients, 129–150
multiplatform servers, 117–129
OWIN standard, 21–24
positioning in ASP.NET stack, 17

 SignalR

242

scalability in, 155–159
supported platforms, 20–21
unified programming model, 19
unit testing, 205–218

SignalR.exe tool, 81–82, 175–176
Single Page Applications (SPA) framework, 230
SkyDrive, SignalR support, 17
SMTP, 8
Software as a Service (SaaS), 158
SPA (Single Page Applications) framework, 230
SQL Server

activating the backplane, 166–167
configuring the database, 165–166
SignalR backplane support, 157, 165

SQL Server Management Studio, 165
SSL (Secure Sockets Layer), 184
Startup class (OWIN)

Configuration() method, 28–29, 37, 58, 189
described, 28–29, 37–38, 58
multiplatform SignalR servers, 122

state maintenance (hubs)
client-side, 92–93
recommendations, 174
server-side, 69–70, 73–78

static files, OWIN middleware modules, 24
sticky sessions, 155
StructureMap IoC container, 201
submissions

monitoring, 15
recommendations, 173

subscriptions, managing, 15
synchronous communication, HTTP operations, 5–6
System.Collections.Concurrent namespace, 74
System.Web.Http namespace, 182, 225
System.Web.Mvc namespace, 226

T
Task object

asynchronous event processing, 35
communicating with server using hubs, 136
creating and opening persistent connections, 132
receiving messages, 63
sending and receiving data using persistent

connections, 133
sending messages to clients, 67

testing
of hubs, 211–215

of persistent connections, 215–218
unit testing, 205–218
Windows Phone solutions, 148

TextWriter class, 139
TraceLevel property (Connection class)

All value, 139
Events value, 138
Messages value, 138
None value, 139
StateChanges value, 138

tracing requests, 109, 111
tracking visitors example, 51–55
transport negotiation, 18, 48–49
Twitter OAuth 2.0 authentication, 185
TypeMock framework, 209

U
Ubuntu platform, 168
unified programming model, 19
unit testing

described, 205–210
of hubs, 211–215
of persistent connections, 215–218

Unity IoC container, 201–204

V
vertical scalability, 153–154
View-Model class, 227–229
Visual Studio

Authorize attribute and, 182–183
Browser Link feature, 18
implementing native clients, 149
testing framework, 206–210

W
W3C (World Wide Web Consortium), 9
Web API

Authorize attribute, 183
deployment of web applications, 152
OWIN middleware and, 37
positioning in ASP.NET stack, 17
SignalR integration with, 226

web applications
deployment scenarios, 152

SignalR.exe tool

 243

MVC framework and, 226
OWIN standard, 22–23
recommendations, 174

Web Forms
positioning in ASP.NET stack, 17
update dependencies, 21

web framework (OWIN), 22–23
Web Pages, positioning in ASP.NET stack, 17
Web Tokens (JSON), 185
WebApp class, 121
WebSockets standard

described, 9–11
persistent connections and, 29
transport negotiation, 48–49

Windows Azure
activating the backplane, 163–164
Azure Management Tool, 163
cache system, 76
cloud services, 154
configuring the service, 159–163
Katana project and, 185
SignalR support, 20, 157, 159

Windows Phone clients, 147–149
Windows platforms

application example, 142–149
recommendations, 174
Redis and, 168–169
SignalR support, 20

Windows Server platform, 20
Windows Services, 122–126
Windsor Castle IoC container, 201
World Wide Web Consortium (W3C), 9
ws://protocol, 11

X
Xamarin Studio, 149–150
XAML application example, 142–147
XHR streaming, 12
XUnit testing framework, 206

 XUnit testing framework

About the author

JOSÉ M. AGUILAR is a technical computer systems engineer. For more than
20 years he has been working in the world of software development, mainly
with Microsoft technologies. He has worked as a programmer, analyst, head
of computer systems in the area of strategic consulting, and technical director
of a development company. He is currently a freelancer, providing technical
consulting, training, and development services.

He is a recognized expert and periodically writes about subjects related to
software development in his blog in English (http://www.campusmvp.net/blog
/author/jose-m-aguilar) and on Twitter (@jmaguilar). He has been recognized
as a Microsoft MVP in ASP.NET/IIS every year since 2011.

http://www.campusmvp.net/blog/author/jose-m-aguilar
http://www.campusmvp.net/blog/author/jose-m-aguilar

	Cover
	Contents
	Chapter 2
	Chapter 4
	Index

