

Windows PowerShell 3.0
First Steps

Ed Wilson

Copyright © 2013 by Ed Wilson
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-8100-2

1 2 3 4 5 6 7 8 9 LSI 8 7 6 5 4 3

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions and Developmental Editor: Michael Bolinger

Production Editor: Melanie Yarbrough

Editorial Production: Box Twelve Communications

Technical Reviewer: Brian Wilhite

Indexer: Box Twelve Communications

Cover Design: Twist Creative • Seattle

Cover Composition: Ellie Volckhausen

Illustrator: Rebecca Demarest

http://www.microsoft.com/learning/booksurvey
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

To Teresa, my soul mate.
—Ed Wilson

Contents at a glance

Foreword	 xv

Introduction	 xvii

Chapter 1	 Overview of Windows PowerShell 3.0	 1

Chapter 2	 Using Windows PowerShell cmdlets	 21

Chapter 3	 Filtering, grouping, and sorting	 41

Chapter 4	 Formatting output	 53

Chapter 5	 Storing output	 69

Chapter 6	 Leveraging Windows PowerShell providers	 79

Chapter 7	 Using Windows PowerShell remoting	 99

Chapter 8	 Using WMI	 113

Chapter 9	 Using CIM	 127

Chapter 10	 Using the Windows PowerShell ISE	 141

Chapter 11	 Using Windows PowerShell scripts	 153

Chapter 12	 Working with functions	 183

Chapter 13	 Debugging scripts	 203

Chapter 14	 Handling errors	 217

Appendix A	 Windows PowerShell FAQ	 229

Appendix B	 Windows PowerShell 3.0 coding conventions	 239

Index	 247

vii

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Contents

Foreword	 xv

Introduction	 xvii

Chapter 1	 Overview of Windows PowerShell 3.0	 1
Understanding Windows PowerShell . 1

Working with Windows PowerShell. 2

Security issues with Windows PowerShell	 4

Using Windows PowerShell cmdlets. 6

The most common verb: Get	 6

Supplying options for cmdlets. 12

Using single parameters	 13

Introduction to parameter sets	 16

Using command-line utilities	 18

Working with Help options. 19

Summary. 20

Chapter 2	 Using Windows PowerShell cmdlets	 21
Understanding the basics of cmdlets . 22

Common Windows PowerShell parameters	 22

Starting the Windows PowerShell transcript	 24

Stopping and reviewing the Windows PowerShell transcript	 25

Searching the Help topics. 26

Using the Get-Help cmdlet	 26

Using the About conceptual Help topics 	 29

viii Contents

Using the Get-Command to find cmdlets. 30

Using the Get-Member cmdlet. 33

Exploring property members	 34

Using the Show-Command cmdlet . 34

Setting the Script Execution Policy . 36

Creating a basic Windows PowerShell profile. 37

Determining if a Windows PowerShell profile exists	 38

Creating a new Windows PowerShell profile	 38

Summary. 39

Chapter 3	 Filtering, grouping, and sorting	 41
Introduction to the pipeline. 41

Sorting output from a cmdlet. 42

Grouping output after sorting. 44

Grouping information without element data	 45

Filtering output from one cmdlet . 46

Filtering by date	 47

Filtering to the left	 49

Filtering output from one cmdlet before sorting. 50

Summary. 51

Chapter 4	 Formatting output	 53
Creating a table. 53

Choosing specific properties in a specific order	 54

Controlling the way the table displays	 55

Creating a list. 58

Choosing properties by name	 59

Choosing properties by wildcard	 59

Creating a wide display. 61

Using the -AutoSize parameter to configure the output	 61

Customizing the Format-Wide output	 62

ixContents

Creating an output grid. 63

Sorting output by using the column buttons	 64

Filtering output by using the filter box	 66

Summary. 67

Chapter 5	 Storing output	 69
Storing data in text files. 69

Redirect and append	 70

Redirect and overwrite	 71

Controlling the text file	 72

Storing data in .csv files. 73

No type information	 73

Using type information 	 75

Storing data in XML. 76

The problem with complex objects	 76

Using XML to store complex objects	 76

Summary. 78

Chapter 6	 Leveraging Windows PowerShell providers	 79
Understanding Windows PowerShell providers . 80

Understanding the Alias provider	 80

Understanding the Certificate provider	 82

Understanding the Environment provider	 85

Understanding the File System provider	 86

Understanding the Function provider	 88

Understanding the Registry provider	 89

Understanding the Variable provider	 96

Summary. 97

Chapter 7	 Using Windows PowerShell remoting	 99
Using Windows PowerShell remoting. 99

Classic remoting	 99

x Contents

Configuring Windows PowerShell remoting. 101

Running commands	 103

Creating a persisted connection	 107

Troubleshooting Windows PowerShell remoting. 110

Summary. 111

Chapter 8	 Using WMI	 113
Understanding the WMI Model. 113

Working with objects and namespaces	 114

Listing WMI providers	 114

Working with WMI classes	 115

Querying WMI: The basics. 117

Tell me everything about everything	 120

Tell me selected things about everything	 122

Tell me everything about some things	 123

Tell me selected things about some things	 125

Summary. 125

Chapter 9	 Using CIM	 127
Using CIM cmdlets to explore WMI classes. 127

Using the classname parameter	 128

Finding WMI class methods	 128

Filtering classes by qualifier	 130

Reducing returned properties and instances	 133

Cleaning up output from the command	 134

Working with associations. 134

Summary. 140

Chapter 10	 Using the Windows PowerShell ISE	 141
Running the Windows PowerShell ISE. 141

Navigating the Windows PowerShell ISE	 142

Working with the Script pane	 145

Tab expansion and Intellisense	 146

xiContents

Working with Windows PowerShell ISE snippets . 148

Using Windows PowerShell ISE snippets to create code	 148

Creating new Windows PowerShell ISE snippets	 149

Removing user-defined Windows PowerShell ISE snippets	 150

Summary. 151

Chapter 11	 Using Windows PowerShell scripts	 153
Why write Windows PowerShell scripts?. 153

Scripting fundamentals. 155

Running Windows PowerShell scripts	 155

Enabling Windows PowerShell scripting support	 156

Transitioning from command line to script	 157

Running Windows PowerShell scripts	 159

Understanding variables and constants	 160

Using the While statement. 162

Constructing the While statement	 162

A practical example of using the While statement	 164

Using special features of Windows PowerShell	 164

Using the Do…While statement. 165

Using the range operator	 166

Operating over an array	 166

Casting to ASCII values	 167

Using the Do…Until statement. 168

Using the Windows PowerShell Do…Loop statement	 168

Using the For statement . 170

Creating a For…Loop	 170

Using the ForEach statement	 172

Exiting the ForEach statement early	 174

Using the If statement. 175

Using assignment and comparison operators	 177

Evaluating multiple conditions	 178

xii Contents

Using the Switch statement. 179

Using the basic Switch statement	 180

Controlling matching behavior	 182

Summary. 182

Chapter 12	 Working with functions	 183
Understanding functions. 183

Using a type constraint	 190

Using multiple input parameters. 192

Using functions to encapsulate business logic . 194

Using functions to provide ease of modification . 196

Summary. 201

Chapter 13	 Debugging scripts	 203
Understanding debugging in Windows PowerShell. 203

Debugging the script. 203

Setting breakpoints	 204

Setting a breakpoint on a line number	 204

Setting a breakpoint on a variable	 206

Setting a breakpoint on a command	 209

Responding to breakpoints	 211

Listing breakpoints	 213

Enabling and disabling breakpoints	 215

Deleting breakpoints	 215

Summary. 216

Chapter 14	 Handling errors	 217
Handling missing parameters. 217

Creating a default value for the parameter	 218

Making the parameter mandatory	 219

xiiiContents

Limiting choices. 220

Using PromptForChoice to limit selections	 220

Using Test-Connection to identify accessible computers	 222

Using the contains operator to examine contents of an array	 223

Handling missing rights. 225

Attempting and failing	 226

Checking for rights and exiting gracefully	 226

Using Try/Catch/Finally. 227

Summary. 228

Appendix A	 Windows PowerShell FAQ	 229

Appendix B	 Windows PowerShell 3.0 coding conventions	 239
General script construction. 239

Include functions in the script that uses the functions	 239

Use full cmdlet names and full parameter names	 240

Use Get-Item to convert path strings to rich types	 241

General script readability. 241

Formatting your code . 242

Working with functions	 244

Creating template files	 244

Writing your own functions	 245

Variables, constants, and naming	 245

Index	 247

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

xv

Foreword

There are many reasons to get started with automation. For me it was a little turtle from a
program called LOGO. Of course, at the time I had no idea I was learning programming.

I was just a kid in elementary school having fun, drawing little pictures. Years later, I became
an IT administrator and developed an aversion to tedious tasks, such as manually copying a
file to 100 remote servers. I started automating because I just couldn’t stand the thought of
repeating monotonous tasks over and over again. It took a while before I connected the dots
and realized that the little turtle had paved the way for a career focused on using and teach-
ing automation.

Windows PowerShell has really hit a sweet spot with automation in the Windows universe,
balancing powerful and far-reaching capabilities while remaining simple enough that some-
one without deep technical expertise can start taking advantage of it quickly. Though Win-
dows PowerShell can be a simple automation environment, it has nuances that can make it a
bit tricky to really master, akin to driving a car with a manual transmission. It might be tricky
to get started, but once the car is moving in first gear, the rest comes pretty easily. Ed Wilson
has done a wonderful job in this book getting you started in Windows PowerShell, providing
simple, prescriptive guidance to get you into first gear quickly.

As a Senior Premier Field Engineer and a Windows PowerShell Technology Lead for Micro-
soft Services, I spend most of my days in front of Microsoft’s customers trying to teach them
Windows PowerShell and hopefully getting them to love Windows PowerShell as much as I
do. In every class I teach, I can’t stress enough the return on investment (ROI) you get from
learning Windows PowerShell. It never ceases to amaze me how once you grasp the core
concepts of Windows PowerShell, you can apply them over and over again to get so much
business value and personal satisfaction.

One point I try to make during every class I teach is that the words “Windows PowerShell” and
“scripting” can most definitely be mutually exclusive. Technically speaking, Windows PowerShell
one-liners are still “scripts,” but to me they strike a nice balance between the creation of solutions
and the need for developer-oriented skills. One-liners are usually very task-oriented and logically
simple, yet they can accomplish a staggering amount of automation. Those who are just getting
started with Windows PowerShell will find that they can become great at Windows Power-
Shell without writing scripts. Throughout much of this book, Ed has focused on the concepts
and simplicity of Windows PowerShell. He doesn’t talk directly about scripting until late in the
book. Ultimately, scripting and tool-making become parts of the advanced user’s skill set, but
you can go a long way before that needs to happen.

No matter how diverse the skill set of my students, there is something for everyone in my
classroom. Windows PowerShell has been created in such a way that it can be fun and effec-
tive for everyone from the IT novice to the expert developer. For example, the fact that it is

xvi Foreword

fully object-based and sits on top of the .NET Framework is a detail that pure beginners might
have no knowledge of. They can go about their Windows PowerShell days simply running
commands, never really digging into the object model, but still implement valuable automa-
tion. The day they learn about objects, they can start to unlock so much more. The fact that
Windows PowerShell can appeal to such diverse skills levels simultaneously is amazing to me.

When I really think about the value of Windows PowerShell and why someone new to it
should dive right in, I think about the fundamental comparison of “creation” vs. “operation.”
By over-simplifying the roles in IT, you can see a dividing line between developers and ad-
ministrators. Developers are creating solutions, and administrators are managing the design,
deployment, and operation of the systems used in the process. Windows PowerShell can
bridge the dividing gap to link it all together. It also allows administrators to create automa-
tion solutions without needing a true developer. There are enough elements in the Windows
PowerShell language that hide and simplify the true complexity that lurks under the surface,
allowing IT pros to be more effective and valuable in the workplace. Learning Windows Pow-
erShell is an incredibly powerful tool that will truly make you more valuable to your business
and often make your life easier in the process.

Ed “The Scripting Guy” Wilson is what some people call a “PowerShellebrity.” He’s a su-
perstar in the Windows PowerShell world, has extensive scripting experience, and is one of
the most energetic and passionate people I have ever met. I am grateful that Ed writes these
books because it allows so many people access to his extensive experience and knowledge.
This book is such a concise and easy way to get started with Windows PowerShell, I can’t
imagine putting it down if I were a beginner. Whether you have already started your Win-
dows PowerShell journey or are just getting started, this book will help define your next steps
with Windows PowerShell.

—Gary Siepsert
Senior Premier Field Engineer (PFE)
Microsoft Corporation

xvii

Introduction

Gary said nearly everything I wanted to include in the Introduction. I designed this book
for the complete beginner, and you should therefore read the book from beginning to

end. If you want a more reference oriented book, you should check out my PowerShell Best
Practices books, or even PowerShell 3.0 Step by Step. Actually, the Step by Step book is not
really a reference, but a hands-on learning guide. It is, ideally, the book you graduate to once
you have completed this one. For your daily dose of PowerShell, you should check out my Hey
Scripting Guy blog at www.ScriptingGuys.com/blog. I post new content there twice a day.

System Requirements

Hardware Requirements
Your computer should meet the following minimum hardware requirements:

■■ 2.0 GB of RAM (more is recommended)

■■ 80 GB of available hard disk space

■■ Internet connectivity

Software Requirements
To complete the exercises in this book, you should have Windows PowerShell 3.0 installed:

■■ You can obtain Windows PowerShell 3.0 from the Microsoft Download Center by
downloading the Windows Management Framework and installing it on either Win-
dows 7 Service Pack 1, Windows Server 2008 R2 SP1, or Windows Server 2008 Service
Pack 2.

■■ Windows PowerShell 3.0 is already installed on Windows 8 and on Windows Server
2012. You can obtain evaulation versions of those operating systems from TechNet:

http://technet.microsoft.com/en-US/evalcenter/hh699156.aspx?ocid=wc-tn-wctc

http://technet.microsoft.com/en-US/evalcenter/hh670538.aspx?wt.mc_id=TEC_108_1_4

■■ The section on Active Directory requires access to Active Directory Domain Services.
For those examples, ensure you have access to Windows Server 2012.

■■ For the chapter on Exchange server, you need access to a server running Microsoft
Exchange Server 2013. You can obtain an evaluation version of that from TechNet:

http://technet.microsoft.com/en-us/evalcenter/hh973395.aspx

http://www.scriptingguys.com/blog
http://technet.microsoft.com/en-US/evalcenter/hh699156.aspx%3Focid%3Dwc-tn-wctc
http://technet.microsoft.com/en-US/evalcenter/hh670538.aspx%3Fwt.mc_id%3DTEC_108_1_4
http://technet.microsoft.com/en-US/evalcenter/hh670538.aspx%3Fwt.mc_id%3DTEC_108_1_4
http://technet.microsoft.com/en-US/evalcenter/hh670538.aspx%3Fwt.mc_id%3DTEC_108_1_4
http://technet.microsoft.com/en-US/evalcenter/hh670538.aspx%3Fwt.mc_id%3DTEC_108_1_4
http://technet.microsoft.com/en-US/evalcenter/hh670538.aspx%3Fwt.mc_id%3DTEC_108_1_4
http://technet.microsoft.com/en-US/evalcenter/hh670538.aspx%3Fwt.mc_id%3DTEC_108_1_4

xviii Introduction

Acknowledgments

Many people contributed the success of this book. The first person is Teresa Wilson, aka "The
Scripting Wife." She is always my first reader, and nothing leaves the house without her ap-
proval. Second, I must mention my tech reviewer, Brian Wilhite, who did a great job of catching
bugs, errors, and things that are misleading. I also want to thank the Charlotte PowerShell User
Group whose questions, comments, and the like contributed in a significant way to the book.
I kept them in mind as I wrote. I also want to thank Michael Bolinger and Melanie Yarbrough
from O'Reilly for doing a great job seeing this project to completion.

Support & Feedback

The following sections provide information on errata, book support, feedback, and contact
information.

Errata
We have made every effort to ensure the accuracy of this book and its companion content.
Any errors that have been reported since this book was published are listed on our Microsoft
Press site:

http://aka.ms/WinPS3FS/errata

If you find an error that is not already listed, you can report it to us through the same
page.

If you need additional support, please email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the ad-
dresses above.

We Want to Hear from You
At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in ad-
vance for your input!

Stay in Touch
Let us keep the conversation going! We are on Twitter: http://twitter.com/MicrosoftPress

http://aka.ms/WinPS3FS/errata
http://www.microsoft.com/learning/booksurvey

		 	 1

C H A P T E R 1

Overview of Windows
PowerShell 3.0

■■ Understanding Windows PowerShell

■■ Working with Windows PowerShell

■■ Using Windows PowerShell cmdlets

■■ Supplying options for cmdlets

■■ Working with Help options

When you first start Windows PowerShell, whether it is the Windows PowerShell con-
sole or the Windows PowerShell Integrated Scripting Environment (ISE), the blank

screen simply waits for your command. The problem is there are no hints as to what that
command might be. There are no wizards or other Windows types of features to guide you
in using the shell.

The name is Windows PowerShell for two reasons: It is a shell, and it is powerful. It is a
mistake to think that Windows PowerShell is simply a scripting language because it is much
more than that. In the same way, it is a mistake to think that Windows PowerShell is limited
to running only a few cmdlets. Through scripting, it gains access to the entire realm of man-
agement technology available in the Windows world.

This chapter introduces you to Windows PowerShell and illustrates the incredible power
available to you from this flexible and useful management tool.

Understanding Windows PowerShell

Windows PowerShell comes in two flavors. The first is an interactive console (similar to
a KORN or BASH console in the UNIX world) built into the Windows command prompt.
The Windows PowerShell console makes it simple to type short commands and to receive
sorted, filtered, and formatted results. These results easily display to the console but also
can redirect to .xml, .csv, or text files. The Windows PowerShell console offers several advan-
tages such as speed, low memory overhead, and a comprehensive transcription service that
records all commands and command output.

	 2	 CHAPTER 1	 Overview of Windows PowerShell 3.0

The other flavor of Windows PowerShell is the Windows PowerShell ISE. The Windows
PowerShell ISE is an Integrated Scripting Environment, but this does not mean you must use
it to write scripts. In fact, many Windows PowerShell users like to write their code in the Win-
dows PowerShell ISE to take advantage of syntax coloring, drop-down lists, and automatic
parameter revelation features.

In addition, the Windows PowerShell ISE has a feature called Show Command Add-On
that allows you to use a mouse to create Windows PowerShell commands from a graphical
environment. Once you create the command, the command either runs directly or is added
to the Script pane. The choice is up to you. For more information about using the Windows
PowerShell ISE, see Chapter 10, “Using the Windows PowerShell ISE.”

NOTE  When I work with single commands, for simplicity I show the command and results
from within the Windows PowerShell console. But keep in mind that all commands also
run from within the Windows PowerShell ISE. Whether the command runs in the Windows
PowerShell console, in the Windows PowerShell ISE, as a scheduled task, or as a filter for
Group Policy, Windows PowerShell is Windows PowerShell is Windows PowerShell. In its
most basic form, a Windows PowerShell script is simply a collection of Windows PowerShell
commands.

Working with Windows PowerShell

Windows PowerShell 3.0 is included on Windows 8 and Windows Server 2012. On Windows
8, you need only type the first few letters of the word PowerShell in the Start window before
Windows PowerShell appears as an option. Figure 1-1 illustrates this point. I typed only pow
in the Search box before the Start window offered Windows PowerShell as an option.

	 Working with Windows PowerShell	 CHAPTER 1	 3

FIGURE 1-1  Typing in the Start window opens the Search window highlighting the Windows PowerShell
console.

Because navigating to the Start window and typing pow each time I want to launch Win-
dows PowerShell is a bit cumbersome, I prefer to pin shortcuts to the Windows PowerShell
console (and the Windows PowerShell ISE) to both the Start window and the Windows task-
bar. This technique of pinning shortcuts to the applications, as shown in Figure 1-2, provides
single-click access to Windows PowerShell from wherever I might be working.

FIGURE 1-2  By right-clicking the Windows PowerShell icon in the Search results box, the Pin to Start and
the Pin to taskbar options appear.

	 4	 CHAPTER 1	 Overview of Windows PowerShell 3.0

On Windows Server 2012, it is unnecessary to find the icon by using the Search box on the
Start window because an icon for the Windows PowerShell console exists by default on the
taskbar of the desktop.

NOTE  The Windows PowerShell ISE (the script editor) does not exist by default on Win-
dows Server 2012. You need to add the Windows PowerShell ISE as a feature. I show how to
use the Windows PowerShell ISE in Chapter 10, “Using the Windows Powershell ISE.”

Security issues with Windows PowerShell
There are two ways to launch Windows PowerShell: as an administrator or as a normal, or
non-elevated, user. As a best practice, start Windows PowerShell with minimum rights. On
Windows 7 and Windows 8, this means simply clicking on the Windows PowerShell icon. It
opens as a non-elevated user, even if you are logged on with administrator rights. On Win-
dows Server 2012, Windows PowerShell automatically launches with the rights of the current
user. Therefore, if you are logged on as a domain administrator, the Windows PowerShell con-
sole launches with domain administrator rights.

Running as a non-elevated user
Because Windows PowerShell adheres to Windows security constraints, a user of Windows
PowerShell cannot do anything the user account does not have permission to do. Therefore, if
you are a non-elevated user, you do not have rights to perform tasks such as installing printer
drivers, reading from the Security Log, or changing the system time.

If you are an administrator on a local Windows 7 or Windows 8 computer and you do not
launch Windows PowerShell with administrator rights, you will get errors when you attempt
to take certain actions, such as viewing the configuration of your disk drives. The following
example shows the command and associated error:

PS C:\> get-disk
get-disk : Access to a CIM resource was not available to the client.
At line:1 char:1
+ get-disk
+ ~~~~~~~~
 + CategoryInfo : PermissionDenied: (MSFT_Disk:ROOT/Microsoft/Windows/S
 torage/MSFT_Disk) [Get-Disk], CimException
 + FullyQualifiedErrorId : MI RESULT 2,Get-Disk

	 Working with Windows PowerShell	 CHAPTER 1	 5

TIP  If you attempt to run cmdlets that require elevated rights, you will encounter incon-
sistencies with errors. For example, in a non-elevated Windows PowerShell console, the
error from the Get-Disk cmdlet is Access To A CIM Resource Was Not Available To The Cli-
ent. The error from the Stop-Service cmdlet is Cannot Open XXX Service On Computer. The
Get-VM cmdlet simply returns no information and no error. Therefore, check for console
rights as a first step in troubleshooting.

Launching Windows PowerShell with administrator rights
To perform tasks that require administrator rights, you must start the Windows PowerShell
console with administrator rights. To do this, right-click the Windows PowerShell icon (the one
pinned to the taskbar, the one on the Start window, or the one found by using the Search box
in the Start window) and select the Run As Administrator option from the Action menu. The
great advantage of this technique is that you can launch either the Windows PowerShell con-
sole (the first item on the menu) as an administrator, or from the same screen you can launch
the Windows PowerShell ISE as an administrator. Figure 1-3 shows these options.

FIGURE 1-3  Right-click the Windows PowerShell icon to bring up the option to Run as Administrator.

Once you launch the Windows PowerShell console with administrator rights, the User Ac-
count Control (UAC) dialog box appears, requesting permission to allow Windows PowerShell
to make changes to the computer. In reality, Windows PowerShell is not making changes to
the computer, at least not yet. But using Windows PowerShell, you can certainly make chang-
es to the computer if you have the rights. This is what the dialog box is prompting you for.

NOTE  It is possible to avoid this prompt by turning off UAC. However, UAC is a signifi-
cant security feature, so I do not recommend disabling it. The UAC has been fine-tuned on
Windows 7 and Windows 8. The number of UAC prompts has been greatly reduced from
the number that used to exist with the introduction of UAC on Windows Vista.

	 6	 CHAPTER 1	 Overview of Windows PowerShell 3.0

Now that you are running Windows PowerShell with administrator rights, you can do any-
thing your account has permission to do. For example, if you run the Get-Disk cmdlets, you
will see information similar to the following:

PS C:\> get-disk

Number Friendly Name Operational Total Size Partition
 status Style
------ ------------- ------------ ---------- -----------
0 INTEL SSDSA2BW160G3L Online 149.05 GB MBR

Using Windows PowerShell cmdlets

Windows PowerShell cmdlets all work in a similar fashion. This simplifies their use. All Win-
dows PowerShell cmdlets have a two-part name. The first part is a verb, although the verb
is not always strictly grammatical. The verb indicates the action for the command to take.
Examples of verbs include Get, Set, Add, Remove, and Format. The noun is the thing to which
the action will apply. Examples of nouns include Process, Service, Disk, and NetAdapter. A dash
combines the verb with the noun to complete the Windows PowerShell command. Windows
PowerShell commands are named cmdlets (pronounced command let) because they behave
like small commands or programs that are used standalone or pieced together through
a mechanism called the pipeline. For more information about the pipeline, see Chapter 2,
“Using Windows PowerShell Cmdlets.”

The most common verb: Get
Out of nearly 2,000 cmdlets (and functions) on Windows 8, over 25 percent of them use the
verb Get. The verb Get retrieves information. The noun portion of the cmdlet specifies the
information retrieved. To obtain information about the processes on your system, open the
Windows PowerShell console by either clicking the Windows PowerShell icon on the taskbar
or typing PowerShell on the Start window of Windows 8 to bring up the search results for
Windows PowerShell, as discussed in a preceding section, “Launching Windows PowerShell
with administrator rights.”

Once the Windows PowerShell console appears, run the Get-Process cmdlet. To do this,
use the Windows PowerShell Tab Completion feature to complete the cmdlet name. Once the
cmdlet name appears, press the Enter key to cause the command to execute.

	 Using Windows PowerShell cmdlets	 CHAPTER 1	 7

NOTE  The Windows PowerShell Tab Completion feature is a great time saver. It not only
saves time by reducing the need for typing, but it also helps to ensure accuracy because
tab completion accurately resolves cmdlet names. It is like a spelling checker for cmdlet
names. For example, attempting to type a lengthy cmdlet name such as Get-NetAdapter-
EncapsulatedPacketTaskOffload accurately could be an exercise in frustration. But if you
use tab completion, you have to type only Get-Net and press the Tab key about six times
before the correctly spelled cmdlet name appears in the Windows PowerShell console.
Learning how to quickly and efficiently use tab completion is one of the keys to success for
using Windows PowerShell.

Finding process information
To use the Windows PowerShell Tab Completion feature to enter the Get-Process cmdlet
name at the Windows PowerShell console command prompt, type the following on the first
line of the Windows PowerShell console, then press the Tab key followed by Enter:

Get-Pro

This order of commands—command followed by Tab and Enter—is called tab expansion.
Figure 1-4 shows the Get-Process command and associated output.

FIGURE 1-4  The Windows PowerShell Get-Process cmdlet returns detailed Windows process information.

	 8	 CHAPTER 1	 Overview of Windows PowerShell 3.0

To find information about Windows services, use the verb Get and the noun Service. In the
Windows PowerShell console, type the following, then press the Tab key followed by Enter:

Get-Servi

NOTE  It is a Windows PowerShell convention to use singular nouns. While not universally
applied (my computer has about 50 plural nouns), it is a good place to start. So if you are
not sure if a noun (or parameter) is singular or plural, choose the singular. Most of the time
you will be correct.

Identifying installed Windows hotfixes
To find a listing of Windows hotfixes applied to the current Windows installation, use the
Get-Hotfix cmdlet. The verb is Get and the noun is Hotfix. In the Windows PowerShell console,
type the following, then press the Tab key followed by Enter:

Get-Hotf

Figure 1-5 shows the Get-Hotfix command and associated output.

FIGURE 1-5  Use the Get-Hotfix cmdlet to obtain a detailed listing of all applied Windows hotfixes.

	 Using Windows PowerShell cmdlets	 CHAPTER 1	 9

Getting detailed service information
To find information about services on the system, use the Get-Service cmdlet. Once again, it
is not necessary to type the entire command. The following command uses tab expansion to
complete the Get-Service command and execute it:

Get-Servi

NOTE  The efficiency of tab expansion depends upon the number of cmdlets, functions, or
modules installed on the computer. As more commands become available, the efficiency of
tab expansion reduces correspondingly.

The following (truncated) output appears following the Get-Service cmdlet:

PS C:\> Get-Service

Status Name DisplayName
------ ---- -----------
Running AdobeActiveFile... Adobe Active File Monitor V6
Stopped AeLookupSvc Application Experience
Stopped ALG Application Layer Gateway Service
Stopped AllUserInstallA... Windows All-User Install Agent
<TRUNCATED OUTPUT>

Identifying installed network adapters
To find information about network adapters on your Windows 8 or Windows Server 2012
machine, use the Get-NetAdapter cmdlet. Using tab expansion, type the following then press
Tab, followed by Enter:

Get-NetA

The following example shows the command and associated output:

PS C:\> Get-NetAdapter

Name InterfaceDescription ifIndex Status
---- -------------------- ------- ------
Network Bridge Microsoft Network Adapter Multiplexo... 29 Up
Ethernet Intel(R) 82579LM Gigabit Network Con... 13 Not Pre...
vEthernet (WirelessSwi... Hyper-V Virtual Ethernet Adapter #4 31 Up
vEthernet (External Sw... Hyper-V Virtual Ethernet Adapter #3 23 Not Pre...
vEthernet (InternalSwi... Hyper-V Virtual Ethernet Adapter #2 19 Up
Bluetooth Network Conn... Bluetooth Device (Personal Area Netw... 15 Disconn...
Wi-Fi Intel(R) Centrino(R) Ultimate-N 6300... 12 Up

	10	 CHAPTER 1	 Overview of Windows PowerShell 3.0

Retrieving detected network connection profiles
If you want to see the network connection profile that Windows 8 or Windows Server 2012
detected for each interface, use the Get-NetConnectionProfile cmdlet. To run this command,
use the following command with tab expansion:

Get-NetC

The following example shows the command and associated output:

PS C:\> Get-NetConnectionProfile

Name : Unidentified network
InterfaceAlias : vEthernet (InternalSwitch)
InterfaceIndex : 19
NetworkCategory : Public
IPv4Connectivity : NoTraffic
IPv6Connectivity : NoTraffic

Name : Network 10
InterfaceAlias : vEthernet (WirelessSwitch)
InterfaceIndex : 31
NetworkCategory : Public
IPv4Connectivity : Internet
IPv6Connectivity : NoTraffic

NOTE  Windows PowerShell is not case sensitive. There are a few instances where case
sensitivity is an issue (for example, when using regular expressions) but cmdlet names, pa-
rameters, and values are not case sensitive. Windows PowerShell convention uses a combi-
nation of uppercase and lowercase letters, generally at syllable breaks in long noun names
such as NetConnectionProfile. However, this is not a requirement for Windows PowerShell
to interpret the command accurately. This combination of uppercase and lowercase letters
is for readability. If you use tab expansion, Windows PowerShell automatically converts the
commands to this format.

Getting the current culture settings
A typical Windows computer has two categories of culture settings. The first category con-
tains the culture settings for the current culture settings, which includes information about
the keyboard layout and the display format of items such as numbers, currency, and dates. To
find the value of these cultural settings, use the Get-Culture cmdlet. To call the Get-Culture
cmdlet using tab expansion to complete the command, type the following at the command
prompt of the Windows PowerShell console, then press the Tab key followed by Enter:

Get-Cu

When the command runs basic information such as the Language Code ID number (LCID),
the name of the culture settings, in addition to the display name of the culture settings,

	 Using Windows PowerShell cmdlets	 CHAPTER 1	 11

return to the Windows PowerShell console. The following example shows the command and
associated output:

PS C:\> Get-Culture

LCID Name DisplayName
---- ---- -----------
1033 en-US English (United States)

The second category is the current user interface (UI) settings for Windows. The UI culture
settings determine which text strings appear in user interface elements such as menus and
error messages. To determine the current UI culture settings that are active, use the Get-UI-
Culture cmdlet. Using tab expansion to call the Get-UICulture cmdlet, type the following, then
press the Tab key followed by Enter:

Get-Ui

The following example shows the command and associated output:

PS C:\> Get-UICulture

LCID Name DisplayName
---- ---- -----------
1033 en-US English (United States)

NOTE  On my computer, both the current culture and the current UI culture are the same.
This is not always the case, and at times I have seen a computer have issues when the user
interface is set for a localized language while the computer itself is set for U.S. English. This
is especially problematic when using virtual machines created in other countries. In this
case, even a simple task such as typing in a password becomes very frustrating. To fix these
types of situations, you can use the Set-Culture cmdlet.

Finding the current date and time
To find the current date or time on the local computer, use the Get-Date cmdlet. Tab expan-
sion does not help much for this cmdlet because there are 15 cmdlets (on my computer) that
have a cmdlet name that begins with the letters Get-Da. This includes all the Direct Access
cmdlets as well as the Remote Access cmdlets. Therefore, using tab expansion to get the date
requires me to type the following before pressing the Tab key followed by the Enter key:

Get-Dat

The preceding command syntax is the same number of keys to press as the following
combined with the Enter key:

Get-Date

	12	 CHAPTER 1	 Overview of Windows PowerShell 3.0

The following example shows the command and associated output:

PS C:\> Get-Date

Tuesday, November 20, 2012 9:54:21 AM

Generating a random number
Windows PowerShell 2.0 introduced the Get-Random cmdlet, and when I saw it I was not too
impressed at first because I already knew how to generate a random number. As shown in
the following example, I can use the .NET Framework System.Random class to create a new
instance of the System.Random object and call the next method:

PS C:\> (New-Object system.random).next()
225513766

Needless to say, I did not create many random numbers. Who wants to do all that typing?
But once I had the Get-Random cmdlet, I actually began using random numbers for all sorts
of actions. For example, I have used the Get-Random cmdlet to do the following:

■■ Pick prize winners for the Scripting Games.

■■ Pick prize winners for Windows PowerShell user group meetings.

■■ Connect to remote servers in a random way for load-balancing purposes.

■■ Create random folder names.

■■ Create temporary users in Active Directory with random names.

■■ Wait a random amount of time prior to starting or stopping processes and services
(great for performance testing).

The Get-Random cmdlet has turned out to be one of the more useful cmdlets. To generate
a random number in the Windows PowerShell console using tab expansion, type the follow-
ing on the first line in the console, then press the Tab key followed by the Enter key:

Get-R

The following example shows the command and associated output:

PS C:\> Get-Random
248797593

Supplying options for cmdlets

The easiest Windows PowerShell cmdlets to use require no options. Unfortunately, that is only
a fraction of the total number of cmdlets (and functions) available in Windows PowerShell 3.0
as it exists on either Windows 8 or Windows Server 2012. Fortunately, the same tab expansion
technique used to create the cmdlet names on the Windows PowerShell console works with
parameters as well.

	 Supplying options for cmdlets	 CHAPTER 1	 13

Using single parameters
When working with Windows PowerShell cmdlets, often the cmdlet requires only a single
parameter to filter out the results. If a parameter is the default parameter, you do not have to
specify the parameter name; you can use the parameter positionally. This means that the first
value appearing after the cmdlet name is assumed to be a value for the default (or position 1)
parameter. On the other hand, if a parameter is a named parameter, the parameter name (or
parameter alias or partial parameter name) is always required when using the parameter.

Finding specific types of hotfixes
To find all the Windows Update hotfixes, use the Get-HotFix cmdlet with the -Description
parameter and supply a value of update to the -Description parameter. This is actually easier
than it sounds. Once you type Get-Hot and press the Tab key, you have the Get-Hotfix por-
tion of the command. Then a space and -D + Tab completes the Get-HotFix -Description por-
tion of the command. Now you need to type Update and press Enter. With a little practice,
using tab expansion becomes second nature.

Figure 1-6 shows the Get-Hotfix command and associated output.

FIGURE 1-6  Add the -Description parameter to the Get-HotFix cmdlet to see specific hotfixes such as
updates in a filtered list.

If you attempt to find only update types of hotfixes by supplying the value update in the
first position, an error appears. The following example shows the offending command and
associated error:

PS C:\> Get-HotFix update
Get-HotFix : Cannot find the requested hotfix on the ‘localhost’ computer. Verify
the input and run the command again.
At line:1 char:1
+ Get-HotFix update
+ ~~~~~~~~~~~~~~~~~
 + CategoryInfo : ObjectNotFound: (:) [Get-HotFix], ArgumentException
 + FullyQualifiedErrorId : GetHotFixNoEntriesFound,Microsoft.PowerShell.Commands
 .GetHotFixCommand

	14	 CHAPTER 1	 Overview of Windows PowerShell 3.0

The error, while not really clear, seems to indicate that the Get-HotFix cmdlet attempts to
find a hotfix named update. This is, in fact, the attempted behavior. The Help file information
for the Get-HotFix cmdlet reveals that -ID is position 1, as shown in the following example:

 -Id <String[]>
 Gets only hotfixes with the specified hotfix IDs. The default is all
 hotfixes on the computer.

 Required? false
 Position? 1
 Default value All hotfixes
 Accept pipeline input? false
 Accept wildcard characters? False

You might ask, “What about using the -Description parameter?” The Help file states that
the -Description parameter is a named parameter. This means you can use the -Description
parameter only if you specify the parameter name, as shown earlier in this section. Following
is the applicable portion of the Help file for the -Description parameter:

 -Description <String[]>
 Gets only hotfixes with the specified descriptions. Wildcards are
 permitted. The default is all hotfixes on the computer.

 Required? false
 Position? named
 Default value All hotfixes
 Accept pipeline input? false
 Accept wildcard characters? True

Finding specific processes
To find process information about a single process, I use the -Name parameter. Because the
-Name parameter is the default (position 1) parameter for the Get-Process cmdlet, you do not
have to specify the -Name parameter when calling Get-Process if you do not want to do so.
For example, to find information about the Windows PowerShell process by using the Get-
Process cmdlet, perform the following command at the command prompt of the Windows
PowerShell console by using tab expansion:

Get-Pro + <TAB> + <SPACE> + Po + <TAB> + <ENTER>

The following example shows the command and associated output:

PS C:\> Get-Process powershell

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 607 39 144552 164652 718 5.58 4860 powershell

	 Supplying options for cmdlets	 CHAPTER 1	 15

You can tell the Get-Process cmdlet accepts the -Name parameter in a positional manner
because the Help file states it is in position 1. The following example shows this position:

 -Name <String[]>
 Specifies one or more processes by process name. You can type multiple
 process names (separated by commas) and use wildcard characters. The
 parameter name (“Name”) is optional.

 Required? false
 Position? 1
 Default value
 Accept pipeline input? true (ByPropertyName)
 Accept wildcard characters? True

NOTE  Be careful using positional parameters because they can be confusing. For example,
the first parameter for the Get-Process cmdlet is the –Name parameter, but the first posi-
tion parameter for the Stop-Parameter is the –ID parameter. As a best practice, always refer
to the Help files to see what the parameters actually are called and the position in which
they are expected. This is even more important when using a cmdlet with multiple param-
eters, such as the Get-Random cmdlet discussed in the following section.

Generating random numbers in a range
When used without any parameters, the Get-Random cmdlet returns a number that is in the
range of 0 to 2,147,483,647. We have never had a Windows PowerShell user group meeting
in which there were either 0 people in attendance or 2,147,483,647 people in attendance.
Therefore, if you use the Get-Random cmdlet to select winners so you can hand out prizes at
the end of the day, it is important to set a different minimum and maximum number.

NOTE  When you use the -Maximum parameter for the Get-Random cmdlet, keep in mind
that the maximum number never appears. Therefore, if you have 15 people attending your
Windows PowerShell user group meeting, you should set the -Maximum parameter to 16
(unless you do not like the number 15 person and do not want him to win any prizes).

The default parameter for the Get-Random cmdlet is the -Maximum parameter. This means
you can use the Get-Random cmdlet to generate a random number in the range of 0 to 20 by
using tab expansion on the first line of the Windows PowerShell console. Remember that Get-
Random never reaches the maximum number, so always use a number that is 1 greater than
the desired upper number. Perform the following:

Get-R + <TAB> + <SPACE> + 21

	16	 CHAPTER 1	 Overview of Windows PowerShell 3.0

If you want to generate a random number between 1 and 20, you might think you could
use Get-Random 1 21, but that generates an error. The following example shows the com-
mand and error:

PS C:\> Get-Random 1 21
Get-Random : A positional parameter cannot be found that accepts argument ‘21’.
At line:1 char:1
+ Get-Random 1 21
+ ~~~~~~~~~~~~~~~
 + CategoryInfo : InvalidArgument: (:) [Get-Random], ParameterBindingEx
 ception
 + FullyQualifiedErrorId : PositionalParameterNotFound,Microsoft.PowerShell.Comm
 ands.GetRandomCommand

The error states that a positional parameter cannot be found that accepts argument 21.
This is because Get-Random has only one positional parameter, the -Maximum parameter.
The -Minimum parameter is a named parameter. This parameter appears in the Help file for
the Get-Random cmdlet. I show you how to use the Help files in Chapter 2, “Using Windows
PowerShell cmdlets.”

To generate a random number in the range of 1 to 20, use named parameters. For as-
sistance in creating the command, use tab expansion for the cmdlet name as well as for the
parameter names. Perform the following at the command prompt to create the command
using tab expansion:

Get-R + <TAB> + -M + <TAB> + <SPACE> + 21 + -M + <TAB> + <SPACE> + 1 + <ENTER>

The following example shows the command and associated output:

PS C:\> Get-Random -Maximum 21 -Minimum 1
19

Introduction to parameter sets
One potentially confusing characteristic of Windows PowerShell cmdlets is that there are
often different ways of using the same cmdlet. For example, you can specify the -Minimum
and -Maximum parameters, but you cannot also specify the -Count parameter. This is a bit
unfortunate because it would seem that using the -Minimum and -Maximum parameters to
specify the minimum and maximum numbers for random numbers makes sense. When the
Windows PowerShell user group has five prizes to give away, it is inefficient to write a script to
generate the five random numbers or run the same command five times.

This is where command sets come into play. The -Minimum and -Maximum parameters
specify the range within which to pick a single random number. To generate more than one
random number, use the -Count parameter. The following example shows the two parameter
sets:

Get-Random [[-Maximum] <Object>] [-Minimum <Object>] [-SetSeed <Int32>]
[<CommonParameters>]

Get-Random [-InputObject] <Object[]> [-Count <Int32>] [-SetSeed <Int32>]
[<CommonParameters>]

	 Supplying options for cmdlets	 CHAPTER 1	 17

The first parameter set accepts -Maximum, -Minimum, and -SetSeed. The second param-
eter set accepts -InputObject, -Count, and -SetSeed. Therefore, you cannot use -Count with
-Minimum or -Maximum because they are in two different groups of parameters (called
parameter sets).

NOTE  It is quite common for Windows PowerShell cmdlets to have multiple parameter
sets. Tab expansion offers only parameters from one parameter set. Therefore, when you
choose a parameter such as –Count from Get-Random, the non-compatible parameters do
not appear in tab expansion. This feature keeps you from creating invalid commands. For
an overview of cmdlets parameter sets, use the Get-Help cmdlet.

Generating a certain number of random numbers
The Get-Random cmdlet, when used with the -Count parameter, accepts an -InputObject
parameter. The -InputObject parameter is quite powerful. The following excerpt from the
Help file states that it accepts a collection of objects:

-InputObject <Object[]>
 Specifies a collection of objects. Get-Random gets randomly selected
 objects in random order from the collection. Enter the objects, a variable
 that contains the objects, or a command or expression that gets the
 objects. You can also pipe a collection of objects to Get-Random.

 Required? true
 Position? 1
 Default value
 Accept pipeline input? true (ByValue)
 Accept wildcard characters? False

An array (or a range) of numbers just happens to also be a collection of objects. The easi-
est way to generate a range (or an array) of numbers is to use the range operator. The range
operator is two dots (periods) between two numbers. As shown in the following example, the
range operator does not require spaces between the numbers and dots:

PS C:\> 1..5
1
2
3
4
5

Now, to pick five random numbers from the range of 1 to 10 requires only the command
to appear here. The parentheses are required around the range of 1 to 10 numbers to ensure
the range of numbers is created prior to selecting five from the collection:

Get-Random -InputObject (1..10) -Count 5

	18	 CHAPTER 1	 Overview of Windows PowerShell 3.0

The following example shows the command and associated output:

PS C:\> Get-Random -InputObject (1..10) -Count 5
7
5
10
1
8

Using command-line utilities
As easy as Windows PowerShell is to use, there are times when it is easier to find informa-
tion by using a command-line utility. For example, to find IP configuration information, you
need only use the Ipconfig.exe utility. You can type this directly into the Windows PowerShell
console and read the output in the console. The following example shows the command and
associated output in truncated form:

PS C:\> ipconfig

Windows IP Configuration

Wireless LAN adapter Local Area Connection* 14:

 Media State : Media disconnected

 Connection-specific DNS Suffix . :

Ethernet adapter vEthernet (WirelessSwitch):

 Connection-specific DNS Suffix . : quadriga.com

 Link-local IPv6 Address : fe80::915e:d324:aa0f:a54b%31

 IPv4 Address. : 192.168.13.220

 Subnet Mask : 255.255.248.0

 Default Gateway : 192.168.15.254

Wireless LAN adapter Local Area Connection* 12:

 Media State : Media disconnected

 Connection-specific DNS Suffix . :

Ethernet adapter vEthernet (InternalSwitch):

 Connection-specific DNS Suffix . :

 Link-local IPv6 Address : fe80::bd2d:5283:5572:5e77%19

 IPv4 Address. : 192.168.3.228

	 Working with Help options	 CHAPTER 1	 19

 Subnet Mask : 255.255.255.0

 Default Gateway : 192.168.3.100

<OUTPUT TRUNCATED>

To obtain the same information using Windows PowerShell, you need a more complex
command. The command to obtain IP information is Get-NetIPAddress. But there are several
advantages. For one thing, the output from the IpConfig.exe command is text, whereas the
output from Windows PowerShell is an object. This means you can group, sort, filter, and
format the output in an easy way.

The big benefit is that with the Windows PowerShell console, you have not only the
simplicity of the command prompt, but you also have the powerful Windows PowerShell
language built in. Therefore, if you need to refresh Group Policy three times and wait for five
minutes between refreshes, you can use the command shown in the following example (loop-
ing is covered in Chapter 11, “Using Windows PowerShell Scripts”):

1..3 | % {gpupdate ; sleep 300}

Working with Help options

To use Help files effectively, the first thing you need to do is update them on your system.
This is because Windows PowerShell 3.0 introduces a new model in which Help files update
on a regular basis.

To update Help on your system, you must open the Windows PowerShell console with
administrator rights. This is because Windows PowerShell Help files reside in the protected
Windows\System32\WindowsPowerShell directory. Once you have launched the Windows
PowerShell console with administrator rights, you need to ensure your computer has Inter-
net access so it can download and install the updated files. If your computer does not have
Internet connectivity, it will take several minutes before the command times out because
Windows PowerShell tries really hard to obtain the updated files. If you run the Update-Help
cmdlet with no parameters, Windows PowerShell attempts to download updated Help for all
modules stored in the default Windows PowerShell modules locations that support updatable
Help. To run Update-Help more than once a day, use the -Force parameter, as shown in the
following example:

Update-Help -Force

Even without downloading updated Windows PowerShell Help, the Help subsystem dis-
plays the syntax of the cmdlet and other rudimentary information about the cmdlet.

To display Help information from the Internet, use the -Online switch. When used in this
way, Windows PowerShell causes the default browser to open to the appropriate page from
the Microsoft TechNet website.

	20	 CHAPTER 1	 Overview of Windows PowerShell 3.0

In an enterprise, network administrators might want to use the Save-Help cmdlet to down-
load Help from the Internet. Once downloaded, the Update-Help cmdlet can point to the
network share for the files. This is an easy task to automate and can run as a scheduled task.

Summary

This chapter began with an overview of Windows PowerShell. In particular, it contrasted some
of the differences and similarities between the Windows PowerShell console and the Windows
PowerShell ISE. It explained that, regardless of where a Windows PowerShell command runs,
the results are the same.

Windows PowerShell uses a verb and noun naming convention. To retrieve information,
use the Get verb. To specify the type of information to obtain, use the appropriate noun. An
example of this convention is the Get-HotFix cmdlet that returns hotfix information from the
local system.

One of the most important concepts to understand about Windows PowerShell is that it
allows a user to perform an action only if the security model permits it. For example, if a user
has permission to stop a service by using the Services.MSC tool, the user will have permis-
sion to stop a service from within Windows PowerShell. But if a user is not permitted to stop
a service elsewhere, Windows PowerShell does not permit the service to stop. Windows
PowerShell also respects UAC. By default on Windows 7 and Windows 8, Windows PowerShell
opens in least privilege mode. To perform actions requiring administrator rights, you must
start Windows PowerShell as an administrator.

Many Windows PowerShell cmdlets run without any options and return valid data. This
includes cmdlets such as Get-Process or Get-Service. However, most Windows PowerShell
cmdlets require additional information to work properly. For example, the Get-EventLog
cmdlet requires the name of a particular event log to return information.

The first thing you should do when logging onto the Windows PowerShell console is to
run the Update-Help cmdlet. Note that this requires administrator rights and an Internet
connection.

		 	 99

C H A P T E R 7

Using Windows PowerShell
remoting

■■ Using PowerShell remoting

■■ Configuring Windows PowerShell remoting

■■ Troubleshooting Windows PowerShell remoting

When you need to use Windows PowerShell on your local computer, it is pretty easy:
You open the Windows PowerShell console or the Windows PowerShell ISE, and you

run a command or a series of commands. Assuming you have rights to make the changes in
the first place, it just works. But what if the change you need to make must be enacted on a
hundred or a thousand computers? In the past, these types of changes required expensive
specialized software packages, but with Windows PowerShell 3.0 running a command on
a remote computer is as easy as running the command on your local computer; in some
cases, it is even easier.

Using Windows PowerShell remoting

One of the great improvements in Windows PowerShell 3.0 is the change surrounding
remoting. The configuration is easier than it was in Windows PowerShell 2.0, and in many
cases, Windows PowerShell remoting "just works." When we talk about Windows PowerShell
remoting, a bit of confusion can arise because there are several different ways of running
commands against remote servers. Depending on your particular network configuration
and security needs, one or more methods of remoting might not be appropriate.

Classic remoting
Classic remoting relies on protocols such as the Distributed Component Object Model
(DCOM) and remote procedure call (RPC) to make connections to remote machines. Tradi-
tionally, these techniques require opening many ports in the firewall and starting various
services the different cmdlets utilize. To find the Windows PowerShell cmdlets that natively
support remoting, use the Get-Help cmdlet. Specify a value of computername for the pa-
rameter of the Get-Help cmdlet. This command produces a nice list of all cmdlets that have
native support for remoting. The following example shows the command and associated

	100	 CHAPTER 7 	 Using Windows PowerShell remoting

output (this command does not display all cmdlets with support for computername unless the
associated modules are preloaded):

PS C:\> Get-Help * -Parameter computername | sort name | ft name, synopsis -auto -wrap

Name Synopsis
---- --------
Add-Computer Add the local computer to a domain or workgroup.
Add-Printer Adds a printer to the specified computer.
Add-PrinterDriver Installs a printer driver on the specified
 computer.
Add-PrinterPort Installs a printer port on the specified computer.
<…Output Truncated …>

Some of the cmdlets provide the ability to specify credentials. This allows you to use a dif-
ferent user account to make the connection and retrieve the data.

The following example shows this technique of using the computername and the creden-
tial parameters in a cmdlet:

PS C:\> Get-WinEvent -LogName application -MaxEvents 1 -ComputerName ex1 -Credential
nwtraders\administrator

TimeCreated ProviderName Id Message
----------- ------------ -- -------
7/1/2012 11:54:14 AM MSExchange ADAccess 2080 Process MAD.EXE (...

However, as mentioned earlier, use of these cmdlets often requires opening holes in the
firewall or starting specific services. By default, these types of cmdlets fail when run against
remote machines that have not relaxed access rules. The following example shows this type of
error:

PS C:\> Get-WinEvent -LogName application -MaxEvents 1 -ComputerName dc1 -Credential
nwtraders\administrator
Get-WinEvent : The RPC server is unavailable
At linE:1 chaR:1
+ Get-WinEvent -LogName application -MaxEvents 1 -ComputerName dc1 -Credential iam
...
+ ~~
 + CategoryInfo : NotSpecifieD: (:) [Get-WinEvent], EventLogException
 + FullyQualifiedErrorId : System.Diagnostics.Eventing.Reader.EventLogException,
 Microsoft.PowerShell.Commands.GetWinEventCommand

Other cmdlets, such as Get-Service or Get-Process, do not have a credential parameter, and
therefore the command impersonates the logged-on user, as shown in the following example:

PS C:\> Get-Service -ComputerName hyperv -Name bits

Status Name DisplayName
------ ---- -----------
Running bits Background Intelligent Transfer Ser...

PS C:\>

	 Configuring Windows PowerShell remoting	 CHAPTER 7 	 101

Just because the cmdlet does not support alternative credentials does not mean the cmd-
let must impersonate the logged-on user. Holding down the Shift key and right-clicking on
the Windows PowerShell icon brings up an action menu that allows you to run the program
as a different user. When you use the Run as different user dialog box, you have alternative
credentials available for Windows PowerShell cmdlets that do not support the credential
parameter.

Configuring Windows PowerShell remoting

Windows Server 2012 installs with Windows Remote Management (WinRm) configured and
running to support remote Windows PowerShell commands. WinRm is the Microsoft imple-
mentation of the industry standard WS-Management Protocol. As such, WinRM provides a
firewall-friendly method of accessing remote systems in an interoperable manner. It is the
remoting mechanism used by the new Common Information Model (CIM) cmdlets (the CIM
cmdlets are covered in Chapter 9, "Using CIM"). As soon as Windows Server 2012 is up and
running, you can make a remote connection and run commands or open an interactive Win-
dows PowerShell console. A Windows 8 client, on the other hand, ships with WinRm locked
down. Therefore, the first step is to use the Enable-PSRemoting function to configure remot-
ing. When running the Enable-PSRemoting function, the following steps occur:

1.	 Starts or restarts the WinRM service.

2.	 Sets the WInRM service startup type to Automatic.

3.	 Creates a listener to accept requests from any Internet Protocol (IP) address.

4.	 Enables inbound firewall exceptions for WS_Management traffic.

5.	 Sets a target listener named Microsoft.powershell.

6.	 Sets a target listener named Microsoft.powershell.workflow.

7.	 Sets a target listener named Microsoft.powershell32.

During each step of this process, the function prompts you to agree or not agree to
performing the specified action. If you are familiar with the steps the function performs, and
you do not make any changes from the defaults, you can run the command with the Force
switched parameter and it will not prompt prior to making the changes. The following ex-
ample shows the syntax of this command:

Enable-PSRemoting -Force

	102	 CHAPTER 7 	 Using Windows PowerShell remoting

The following example shows the use of the Enable-PSRemoting function in interactive
mode, along with all associated output from the command:

PS C:\> Enable-PSRemoting

WinRM Quick Configuration
Running command "Set-WSManQuickConfig" to enable remote management of this computer
by using the Windows Remote Management (WinRM) service.
 This includes:
 1. Starting or restarting (if already started) the WinRM service
 2. Setting the WinRM service startup type to Automatic
 3. Creating a listener to accept requests on any IP address
 4. Enabling Windows Firewall inbound rule exceptions for WS-Management traffic
(for http only).

Do you want to continue?
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
WinRM has been updated to receive requests.
WinRM service type changed successfully.
WinRM service started.

WinRM has been updated for remote management.
Created a WinRM listener on HTTP://* to accept WS-Man requests to any IP on this mac
hine.
WinRM firewall exception enabled.

Confirm
Are you sure you want to perform this action?
Performing operation "Set-PSSessionConfiguration" on Target "Name:
microsoft.powershell SDDL:
O:NSG:BAD:P(A;;GA;;;BA)(A;;GA;;;RM)S:P(AU;FA;GA;;;WD)(AU;SA;GXGW;;;WD). This will
allow selected users to remotely run Windows PowerShell commands on this computer".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y

Confirm
Are you sure you want to perform this action?
Performing operation "Set-PSSessionConfiguration" on Target "Name:
microsoft.powershell.workflow SDDL:
O:NSG:BAD:P(A;;GA;;;BA)(A;;GA;;;RM)S:P(AU;FA;GA;;;WD)(AU;SA;GXGW;;;WD). This will
allow selected users to remotely run Windows PowerShell commands on this computer".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y

Confirm
Are you sure you want to perform this action?
Performing operation "Set-PSSessionConfiguration" on Target "Name:
microsoft.powershell32 SDDL:
O:NSG:BAD:P(A;;GA;;;BA)(A;;GA;;;RM)S:P(AU;FA;GA;;;WD)(AU;SA;GXGW;;;WD). This will
allow selected users to remotely run Windows PowerShell commands on this computer".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
PS C:\>

	 Configuring Windows PowerShell remoting	 CHAPTER 7 	 103

Once configured, use the Test-WSMan cmdlet to ensure the WinRM remoting is properly
configured and is accepting requests. A properly configured system replies with the following
data:

PS C:\> Test-WSMan -ComputerName w8c504

wsmid : httP://schemas.dmtf.org/wbem/wsman/identity/1/wsmanidentity.xsd
ProtocolVersion : httP://schemas.dmtf.org/wbem/wsman/1/wsman.xsd
ProductVendor : Microsoft Corporation
ProductVersion : OS: 0.0.0 SP: 0.0 Stack: 3.0

This cmdlet works with Windows PowerShell 2.0 remoting as well. Keep in mind that
configuring WinRM through the Enable-PSRemoting function does not enable the WinRM
firewall exception, and therefore PING commands will not work by default when pinging to a
Windows 8 client system.

Running commands
For simple configuration on a single remote machine, entering a remote Windows PowerShell
session is the answer. To enter a remote Windows PowerShell session, use the Enter-PSSession
cmdlet to create an interactive remote Windows PowerShell session on a target machine. If
you do not supply credentials, the remote session impersonates your current logon. The out-
put in the following example illustrates connecting to a remote computer named dc1:

PS C:\> Enter-PSSession -ComputerName dc1
[dc1]: PS C:\Users\Administrator\Documents> sl C:\
[dc1]: PS C:\> gwmi win32_bios

SMBIOSBIOSVersion : A01
Manufacturer : Dell Computer Corporation
Name : Default System BIOS
SerialNumber : 9HQ1S21
Version : DELL - 6

[dc1]: PS C:\> exit
PS C:\>

Once established, the Windows PowerShell prompt changes to include the name of the
remote system. The Set-Location (sl is an alias) changes the working directory on the remote
system to C:\. Next, the Get-WmiObject cmdlet retrieves the BIOS information on the remote
system. The Exit command exits the remote session and the Windows PowerShell prompt
returns to the default.

The good thing is that when using the Windows PowerShell transcript tool through Start-
Transcript, the transcript tool captures output from the remote Windows PowerShell session
as well as output from the local session. Indeed, all commands typed appear in the transcript.

	104	 CHAPTER 7 	 Using Windows PowerShell remoting

The following commands illustrate beginning a transcript, entering a remote Windows Power-
Shell session, typing a command, exiting the session, and stopping the transcript:

PS C:\> Start-Transcript
Transcript started, output file is C:\Users\administrator.IAMMRED\Documents\PowerShe
ll_transcript.20120701124414.txt
PS C:\> Enter-PSSession -ComputerName dc1
[dc1]: PS C:\Users\Administrator\Documents> gwmi win32_bios

SMBIOSBIOSVersion : A01
Manufacturer : Dell Computer Corporation
Name : Default System BIOS
SerialNumber : 9HQ1S21
Version : DELL - 6

[dc1]: PS C:\Users\Administrator\Documents> exit
PS C:\> Stop-Transcript
Transcript stopped, output file is C:\Users\administrator.IAMMRED\Documents\PowerShe
ll_transcript.20120701124414.txt
PS C:\>

Figure 7-1 shows the transcript from the preceding remote Windows PowerShell session.
The transcript contains all commands, including the ones from the remote computer, and as-
sociated output.

FIGURE 7-1  The transcript tool works in remote Windows PowerShell sessions as well as in local Windows
PowerShell console sessions.

	 Configuring Windows PowerShell remoting	 CHAPTER 7 	 105

Running a single Windows PowerShell command
When you have a single command to run, it does not make sense to go through all the
trouble of building and entering an interactive, remote Windows PowerShell session. Instead
of creating a remote Windows PowerShell console session, you can run a single command by
using the Invoke-Command cmdlet. If you have a single command to run, use the cmdlet di-
rectly and specify the computer name as well as any credentials required for the connection.
The following example shows this technique, with the last process running on the ex1 remote
server:

PS C:\> Invoke-Command -ComputerName ex1 -ScriptBlock {gps | select -Last 1}

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName PSComputerName
------- ------ ----- ----- ----- ------ -- ----------- ------------
 224 34 47164 51080 532 0.58 10164 wsmprovhost ex1

When you work interactively in a Windows PowerShell console, you might not want to
type a long command, even when using tab expansion to complete the command. To shorten
the amount of typing, you can use the icm alias for the Invoke-Command cmdlet. You can also
rely upon positional parameters (the first parameter is the computer name and the second
parameter is the script block). By using aliases and positional parameters, the previous com-
mand shortens considerably, as shown in the following example:

PS C:\> icm ex1 {gps | select -l 1}

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName PSComputerName
------- ------ ----- ----- ----- ------ -- ----------- ------------
 221 34 47260 51048 536 0.33 4860 wsmprovhost ex1

Running a single command against multiple computers
Use of the Invoke-Command exposes one of the more powerful aspects of Windows
PowerShell remoting, which is running the same command against a large number of re-
mote systems. The secret behind this power is that the computername parameter from the
Invoke-Command cmdlet accepts an array of computer names. In the output appearing here,
an array of computer names is stored in the variable $cn. Next, the $cred variable holds the
credential object for the remote connections. Finally, the Invoke-Command cmdlet is used
to make connections to all the remote machines and to return the BIOS information from
the systems. The nice thing about this technique is that an additional parameter, PSCom-
puterName, is added to the returning object, permitting easy identification of which BIOS is
associated with which computer system. The following example shows the commands and
associated output:

PS C:\> $cn = "dc1","dc3","ex1","sql1","wsus1","wds1","hyperv1","hyperv2","hyperv3"
PS C:\> $cred = Get-Credential iammred\administrator
PS C:\> Invoke-Command -cn $cn -cred $cred -ScriptBlock {gwmi win32_bios}

	106	 CHAPTER 7 	 Using Windows PowerShell remoting

SMBIOSBIOSVersion : BAP6710H.86A.0072.2011.0927.1425
Manufacturer : Intel Corp.
Name : BIOS Date: 09/27/11 14:25:42 Ver: 04.06.04
SerialNumber :
Version : INTEL - 1072009
PSComputerName : hyperv3

SMBIOSBIOSVersion : A11
Manufacturer : Dell Inc.
Name : Phoenix ROM BIOS PLUS Version 1.10 A11
SerialNumber : BDY91L1
Version : DELL - 15
PSComputerName : hyperv2

SMBIOSBIOSVersion : A01
Manufacturer : Dell Computer Corporation
Name : Default System BIOS
SerialNumber : 9HQ1S21
Version : DELL - 6
PSComputerName : dc1

SMBIOSBIOSVersion : 090004
Manufacturer : American Megatrends Inc.
Name : BIOS Date: 03/19/09 22:51:32 Ver: 09.00.04
SerialNumber : 3692-0963-1044-7503-9631-2546-83
Version : VRTUAL - 3000919
PSComputerName : wsus1

SMBIOSBIOSVersion : V1.6
Manufacturer : American Megatrends Inc.
Name : Default System BIOS
SerialNumber : To Be Filled By O.E.M.
Version : 7583MS - 20091228
PSComputerName : hyperv1

SMBIOSBIOSVersion : 080015
Manufacturer : American Megatrends Inc.
Name : Default System BIOS
SerialNumber : None
Version : 091709 - 20090917
PSComputerName : sql1

SMBIOSBIOSVersion : 080015
Manufacturer : American Megatrends Inc.
Name : Default System BIOS
SerialNumber : None
Version : 091709 - 20090917
PSComputerName : wds1

SMBIOSBIOSVersion : 090004
Manufacturer : American Megatrends Inc.
Name : BIOS Date: 03/19/09 22:51:32 Ver: 09.00.04
SerialNumber : 8994-9999-0865-2542-2186-8044-69
Version : VRTUAL - 3000919
PSComputerName : dc3

	 Configuring Windows PowerShell remoting	 CHAPTER 7 	 107

SMBIOSBIOSVersion : 090004
Manufacturer : American Megatrends Inc.
Name : BIOS Date: 03/19/09 22:51:32 Ver: 09.00.04
SerialNumber : 2301-9053-4386-9162-8072-5664-16
Version : VRTUAL - 3000919
PSComputerName : ex1

PS C:\>

Creating a persisted connection
If you anticipate making multiple connections to a remote system, use the New-PSSession
cmdlet to create a remote Windows PowerShell session. The New-PSSession cmdlet permits
you to store the remote session in a variable and provides you with the ability to enter and
leave the remote session as often as required, without the additional overhead of creating
and destroying remote sessions. In the commands that follow, a new Windows PowerShell
session is created through the New-PSSession cmdlet. The newly created session is stored in
the $dc1 variable. Next, the Enter-PSSession cmdlet is used to enter the remote session by
using the stored session. A command retrieves the remote hostname, and the remote ses-
sion is exited through the Exit command. Next, the session is re-entered and the last process
retrieved. The session is exited once again. Finally, the Get-PSSession cmdlet retrieves Win-
dows PowerShell sessions on the system, and all sessions are removed through the Remove-
PSSession cmdlet:

PS C:\> $dc1 = New-PSSession -ComputerName dc1 -Credential iammred\administrator
PS C:\> Enter-PSSession $dc1
[dc1]: PS C:\Users\Administrator\Documents> hostname
dc1
[dc1]: PS C:\Users\Administrator\Documents> exit
PS C:\> Enter-PSSession $dc1
[dc1]: PS C:\Users\Administrator\Documents> gps | select -Last 1

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 292 9 39536 50412 158 1.97 2332 wsmprovhost

[dc1]: PS C:\Users\Administrator\Documents> exit
PS C:\> Get-PSSession

 Id Name ComputerName State ConfigurationName Availability
 -- ---- ------------ ----- ----------------- ------------
 8 Session8 dc1 Opened Microsoft.PowerShell Available

PS C:\> Get-PSSession | Remove-PSSession
PS C:\>

	108	 CHAPTER 7 	 Using Windows PowerShell remoting

If you have several commands, or if you anticipate making multiple connections, the
Invoke-Command cmdlet accepts a session parameter in the same manner as the Enter-
PSSession cmdlet does. In the output appearing here, a new PSSession is created to a remote
computer named dc1. The remote session is used to retrieve two different pieces of informa-
tion. Once completed, the session stored in the $dc1 variable is explicitly removed:

PS C:\> $dc1 = New-PSSession -ComputerName dc1 -Credential iammred\administrator
PS C:\> Invoke-Command -Session $dc1 -ScriptBlock {hostname}
dc1
PS C:\> Invoke-Command -Session $dc1 -ScriptBlock {Get-EventLog application -Newest 1}

 Index Time EntryType Source InstanceID Message PSCompu
 terName
 ----- ---- --------- ------ ---------- ------- -------
 17702 Jul 01 12:59 Information ESENT 701 DFSR... dc1

PS C:\> Remove-PSSession $dc1

You can also create persisted connection to multiple computers. This enables you to use
the Invoke-Command cmdlet to run multiple commands against multiple remote computers.
The first thing is to create a new PSSession that contains multiple computers. You can do this
by using alternative credentials. Create a variable that holds the credential object returned
by the Get-Credential cmdlet. A dialog box appears, permitting you to enter the credentials.
Figure 7-2 shows the dialog box.

FIGURE 7-2  Store remote credentials in a variable populated through the Get-Credential cmdlet.

Once you have stored the credentials in a variable, create another variable to store the
remote computer names. Next, use the New-PSSession cmdlet to create a new Windows
PowerShell session using the computer names stored in the computer name variable and
the credentials stored in the credential variable. To be able to reuse the Windows PowerShell
remote session, store the newly created Windows PowerShell session in a variable as well.
The following example illustrates storing the credentials, computer names, and newly created
Windows PowerShell session:

	 Configuring Windows PowerShell remoting	 CHAPTER 7 	 109

$cred = Get-Credential -Credential iammred\administrator
$cn = "ex1","dc3"
$ps = New-PSSession -ComputerName $cn -Credential $cred

Once the Windows PowerShell session is created and stored in a variable, it can be used
to execute commands against the remote computers. To do this, use the Invoke-Command
cmdlet, as shown in the following example:

PS C:\> Invoke-Command -Session $ps -ScriptBlock {gsv | select -First 1}

Status Name DisplayName PSComputerName
------ ---- ----------- --------------
Stopped AeLookupSvc Application Experience ex1
Running ADWS Active Directory Web Services dc3

The great thing about storing the remote connection in a variable is that it can be used for
additional commands as well. The following example shows the command that returns the
first process from each of the two remote computers:

PS C:\> Invoke-Command -Session $ps -ScriptBlock {gps | select -First 1}

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName PSComputerName
------- ------ ----- ----- ----- ------ -- ----------- ------------
 47 7 1812 6980 53 0.70 3300 conhost dc3
 32 4 824 2520 22 0.22 1140 conhost ex1

Figure 7-3 shows the commands to store the credentials, create a remote Windows Power
Shell connection to two different computers, and run two remote commands against them.
Figure 7-3 also shows the output associated with the commands.

FIGURE 7-3  By creating and by storing a remote Windows PowerShell connection, it becomes easy to run
commands against multiple computers.

	110	 CHAPTER 7 	 Using Windows PowerShell remoting

Troubleshooting Windows PowerShell remoting

The first tool to use to see if Windows PowerShell remoting is working or not is the Test-
WSMan cmdlet. Use it first on the local computer (no parameters are required). The following
example shows the command and associated output:

PS C:\> Test-WSMan

wsmid : http://schemas.dmtf.org/wbem/wsman/identity/1/wsmanidentity.xsd
ProtocolVersion : http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd
ProductVendor : Microsoft Corporation
ProductVersion : OS: 0.0.0 SP: 0.0 Stack: 3.0

To test a remote computer, specify the -ComputerName parameter. The following example
shows the command running against a Windows Server 2012 domain controller named dc3:

PS C:\> Test-WSMan -ComputerName dc3

wsmid : http://schemas.dmtf.org/wbem/wsman/identity/1/wsmanidentity.xsd
ProtocolVersion : http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd
ProductVendor : Microsoft Corporation
ProductVersion : OS: 0.0.0 SP: 0.0 Stack: 3.0

However, the Test-WSMan cmdlet also works against a computer running Windows Power-
Shell 2.0. The following example shows the command running against a Windows Server 2008
domain controller named dc1:

PS C:\> Test-WSMan -ComputerName dc1

wsmid : http://schemas.dmtf.org/wbem/wsman/identity/1/wsmanidentity.xsd
ProtocolVersion : http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd
ProductVendor : Microsoft Corporation
ProductVersion : OS: 0.0.0 SP: 0.0 Stack: 2.0

To examine a specific Windows PowerShell session, use the Get-PSSession cmdlet. The
easiest way to do this is to pipeline the variable containing the Windows PowerShell session to
the Get-PSSession cmdlet. The key items to pay attention to are the computer name, the state
of the session, and the availability of the session. The following example shows this technique:

PS C:\> $ps | Get-PSSession

 Id Name ComputerName State ConfigurationName Availability
 -- ---- ------------ ----- ----------------- ------------
 3 Session3 ex1 Opened Microsoft.PowerShell Available
 4 Session4 dc3 Opened Microsoft.PowerShell Available

	 Summary	 CHAPTER 7 	 111

To focus on a specific session, reference the session by either ID or by Name. Send the re-
turned session object over the pipeline to the Format-List cmdlet and select all the properties.
The following example shows this technique (using fl as an alias for the Format-List cmdlet):

PS C:\> Get-PSSession -Name Session4 | fl *

State : Opened
IdleTimeout : 7200000
OutputBufferingMode : None
ComputerName : dc3
ConfigurationName : Microsoft.PowerShell
InstanceId : c15cc80d-64f0-4096-a010-0211f0188aec
Id : 4
Name : Session4
Availability : Available
ApplicationPrivateData : {PSVersionTable}
Runspace : System.Management.Automation.RemoteRunspace

You can remove a remote Windows PowerShell session by pipelining the results of Get-
PSSession to the Remove-PSSession cmdlet, as shown in the following example:

Get-PSSession -Name Session4 | Remove-PSSession

You can also remove a PS session directly by specifying the name to the Remove-PSSession
cmdlet, as shown in the following example:

Remove-PSSession -Name session3

Summary

This chapter discussed the reason to use Windows PowerShell remoting. We covered the
different types of remoting, such as classic remoting and Windows Remote Management
Windows PowerShell (WinRM) remoting. In addition, we covered how to enable Windows
PowerShell remoting and how to run a single command against a remote computer. Finally,
we examined running multiple commands, creating persisted connections, and troubleshoot-
ing Windows PowerShell remoting.

247

B
backing up profiles,  38
backtick (`) character,  158
BadScript.ps1 script,  206
breakpoints, debugging scripts

deleting,  215–216
listing,  213–215
responding to,  211–212
setting,  204–211

commands,  209–211
line number,  204–205
variables,  206–209

Break statement, scripts,  174
BusinessLogicDemo.ps1 script,  194
business logic, encapsulating with functions,  194–196
buttons, Add Criteria,  66
Bypass level (script support),  36, 156

C
$caption variable,  220
Case Else expression,  179
case-sensitivity issues,  10
Certificate provider,  82–84
checking for rights,  226
choice limitations, error handling,  220–225

contains operator,  223–225
PromptForChoice method,  220–221
Test-Connection cmdlet,  222

$choiceRTN variable,  221
CIM (Common Information Model),  127–140

associations,  134–140
cleaning up output,  134

Index

A
About conceptual Help topics,  29–30
accessing PowerShell, Start window,  2–4
AccountsWithNoRequiredPassword.ps1 script,  154
Action parameter,  209
Add-Content cmdlet,  87
Add Criteria button,  66
AddTwo function,  211
administrative rights

error handling,  225–226
security issues,  5–6

aliases
data type, functions,  190
properties, Get-Process cmdlet,  54

Alias provider,  80–82
AllSigned level (script support),  36, 156
appending information, text files,  70–71
arguments, positional,  187
arrays

evaluating with Switch statement,  181
indexing,  138

$ary variable,  173
ASCII values, DemoDoWhile.ps1 script,  167
assignment operators,  177–178
associations

CIM (Common Information Model),  134–140
qualifiers,  131

asterisk (*) parameter,  82
attempt and fail, handling missing rights,  226
$_ automatic variable,  159
AutoSize parameter,  56, 61–62

248

classes

Get-Member,  33–34
Get-NetAdapter,  9, 42
Get-NetConnectionProfile,  10
Get-Process,  7–8, 42
Get-PSDrive,  89
Get-PSProvider,  80
Get-Random,  12
Get-Service,  9, 43
Get-UICulture,  11
Get-VM,  42
Get-WinEvent,  27–28
Get-WmiObject,  114
Group-Object,  44–46
Help topics,  26
Import-Clixml,  77
Import-Module,  83
intellisense display,  147–148
Invoke-Command,  105
Invoke-Item,  83
New-Alias,  82
New-IseSnippet,  149
New-Item,  38, 94
New-PSDrive,  89
New-PSSession,  107
New-WebServiceProxy,  191
Out-File,  72
Out-GridView,  63–67
parameters,  22–24

EntryType,  50
ErrorAction parameter,  23–24
Verbose,  22–23

parameter sets,  16–18
Pop-Location,  92, 94
property members,  34–35
Push-Location,  92
Read-Host,  186
Remove-Item,  81, 150
Remove-PSBreakpoint,  215
Remove-PSSession,  107
Save-Help,  20
Select-Object,  115
Select-String,  118–120
Set-ExecutionPolicy,  36–38, 156–157, 226
Set-Item,  93
Set-ItemProperty,  94
Set-Location,  81, 87, 92
Set-PropertyItem,  94
Set-PSBreakpoint,  204

cmdlets,  127–132
classname parameter,  128
filtering WMI classes by qualifiers,  130–132
finding WMI class methods,  128–129

reducing returned properties and instances,  133
retrieving WMI instances,  132

classes
Win32_PingStatus WMI,  222
WMI (Windows Management

Instrumentation),  115–117, 127–132
classic remoting,  99–101
class methods (WMI),  128–129
classname parameter,  128
cmdlets,  6–16

About conceptual Help topics,  29–30
Add-Content,  87
CIM (Common Information Model),  127–132

classname parameter,  128
filtering WMI classes by qualifiers,  130–132
finding WMI class methods,  128–129

debugging scripts,  203–204
Disable-PSBreakpoint,  215
Enable-Netadapter,  42
Enable-PSBreakpoint,  215
Enter-PSSession,  103, 107
Export-Clixml,  77
Export-CSV,  73–76
ForEach-Object,  159, 173
Format-List,  54, 58–61, 111
Format-Table,  53–57

controlling table display,  55–57
Format-Wide,  61–63
Get-Alias,  165
Get-AppxPackage,  50–51
Get-ChildItem,  80, 88, 90
Get-CimAssociatedInstance,  134, 138
Get-CimClass,  127
Get-CimInstance,  132
Get-Command,  30–33, 183–185
Get-Content,  87
Get-Credential,  108
Get-Culture,  10–11
Get-Date,  11
Get-EventLog,  49–50
Get-Help,  26–28
Get-Hotfix,  8
Get-ISESnippet,  150
Get-ItemProperty,  90

249

debugging scripts

contains operator,  223–225
control, text files,  72–73
core classes, WMI,  115
creating

code, ISE snippets,  148–149
default value for missing parameters,  218–220
For...Loop,  170–172
functions,  185
lists,  58–61

properties by name,  59
properties by wildcard,  59–61

output grids,  63–67
column buttons,  64–66
filter box,  66–67

profiles,  37–38
registry keys,  92–93
snippets (ISE),  149–150
tables,  53–57

display,  55–57
ordering properties,  54–55

$cred variable,  105
.csv (Comma Separated Value) files, storing output, 

73–76
NoTypeInformation parameter,  73–75
type information,  75–76

culture settings, Get-Culture cmdlet,  10–11
CurrentUser scope (execution policy),  36, 156
customizing Format-Wide output,  62–63

D
data

leveraging providers.  See providers
storage.  See storing output

data pipeline,  41
filtering output,  46–51
grouping output after sorting,  44–46
sorting output from a cmdlet,  42–44

datasets,  117
data type aliases, functions,  190
dates, retrieving with Get-Date cmdlet,  11
DateTime object,  48
DCOM (Distributed Component Object Model),  99
debugging scripts,  203–216

cmdlets,  203–204
deleting breakpoints,  215–216
listing breakpoints,  213–215

Set-PSDebug,  203
Show-Command,  34–35
single parameters,  12–16

Description parameter,  13–14
Maximum parameter,  15–16
Name parameter,  14–15

Sort-Object,  42, 47–48, 76
Start-Transcript,  24, 38
Start-VM,  42
Stop-Transcript,  25
Test-Connection,  222
Test-Path,  38, 92, 95
Test-WSMan,  103, 110
two-part name,  6
Update-Help, Force parameter,  19–20
Win32_Process,  135
Write-Host,  209

$cn variable,  105
code, creating with ISE snippets,  148–149
column buttons, output grids,  64–66
Column parameter,  63
Command Add-on, Script pane,  145
Command Add-on window,  142–143
command-line parameters, assigning default values

to,  218–219
command-line utilities,  18–19
Command parameter,  209–211
commands.  See cmdlets

debugger commands,  211
remoting,  103–107
Script pane,  145
setting breakpoints on,  209–211

Comma Separated Value files.  See .csv files
common classes, WMI,  115
Common Information Model.  See CIM
comparison operators,  176–178
complex objects, storing in XML,  76–78
computername parameter,  105
concatenation operator,  159
conceptual Help topics,  26
conditions, If statements,  178–179
configuring remoting,  101–103
Confirm parameter (cmdlets),  22
console,  1
constants, scripts,  160–161
construction, While statement,  162–164
consumers, WMI (Windows Management

Instrumentation),  113

250

Debug parameter (cmdlets)

responding to breakpoints,  211–212
setting breakpoints,  204–211

commands,  209–211
line number,  204–205
variables,  206–209

Debug parameter (cmdlets),  22
declared variables,  160
DefaultDisplayPropertySet configuration,  119
Default statement, scripts,  180
default values, missing parameters,  218–220
deleting breakpoints,  215–216
DemoBreakFor.ps1 script,  174
DemoDoWhile.ps1 script,  166–168
DemoDoWhile.vbs script,  165
DemoExitFor.ps1 script,  175
DemoExitFor.vbs script,  174
DemoForEachNext.vbs script,  172
DemoForEach.ps1 script,  173
DemoForLoop.ps1 script,  170
DemoForLoop.vbs script,  170
DemoForWithoutInitOrRepeat.ps1 script,  170
demoIfElseIfElse.ps1 script,  178
DemoIfElseIfElse.vbs script,  178
DemoIf.ps1 script,  176
DemoIf.vbs script,  176
DemoSelectCase.vbs script,  179
DemoSwitchArrayBreak.ps1 script,  182
DemoSwitchArray.ps1 script,  181
DemoSwitchCase.ps1 script,  180
DemoSwitchMultiMatch.ps1 script,  181
DemoTrapSystemException.ps1 script,  191–192
DemoWhileLessThan.ps1 script,  162
Deployment Image Servicing and Management (DISM)

Get-WindowsDriver function,  47
deprecated qualifier,  130
Description parameter (cmdlets),  13–14
Description parameter, snippets,  149
dialog boxes, UAC (User Account Control),  5
DirectoryListWithArguments.ps1 script,  154
Disable-PSBreakpoint cmdlet,  215
DISM (Deployment Image Servicing and Management)

Get-WindowsDriver function,  47
display

formatting output,  61–63
lists,  61
tables,  55–57

DisplayCapitalLetters.ps1 script,  167
Distributed Component Object Model (DCOM),  99

DivideNum function,  211
Do...Loop statement, scripts,  168–170
DotSourceScripts.ps1 script,  198
Do...Until statement, scripts,  168
DoWhileAlwaysRuns.ps1 script,  169–170
Do...While statements, scripts,  165–168

casting to ASCII values,  167–168
operating over an array,  166–167
range operators,  166

drives, Registry provider,  89–90
dynamic classes, WMI,  115
dynamic qualifier,  131

E
ease of modification, functions,  196–201
editing profiles,  38
Enable-Netadapter cmdlet,  42
Enable-PSBreakpoint cmdlet,  215
Enable-PSRemoting function,  101
enabling support, scripts,  156–157
encapsulating business logic, functions,  194–196
EndlessDoUntil.ps1 script,  169
Enter-PSSession cmdlet,  103, 107
EntryType parameter,  50
Environment provider,  85–86
ErrorAction parameter,  158
ErrorAction parameter (cmdlets),  23–24
error handling

forcing intentional errors,  24
limiting choices,  220–225

contains operator,  223–225
PromptForChoice method,  220–221
Test-Connection cmdlet,  222

missing parameters,  217–220
creating default value,  218–220
making parameters mandatory,  219–220

missing rights,  225–226
Try/Catch/Finally block,  227–228

ErrorVariable parameter (cmdlets),  22
escape character,  163
Examples parameter, Get-Help cmdlet,  27
Exit For statements (VBScript),  174
exiting ForEach statement,  174–176
Exit statement, scripts,  174–175
expanding strings,  163
expired certificates,  84–85

251

Get-Discount function

ExpiringInDays parameter,  84
Export-Clixml cmdlet,  77
Export-CSV cmdlet,  73–76
extensible providers,  79

F
files

.csv.  See .csv (Comma Separated Value) files
text.  See text files

File System provider,  86–87
filter boxes, output grids,  66–67
filtering

output,  46–51
before sorting,  50–51
by dates,  47–49
to the left,  49–50

WMI classes,  130–132
Filter parameter,  124, 139
finding cmdlets, Get-Command cmdlet,  30–33
FindLargeDocs.ps1 script,  196
Fix it Center,  191
Force parameter, Update-Help cmdlet,  19–20
forcing intentional errors,  24
ForEach-Object cmdlet,  159, 173
ForEach statement, scripts,  172–175
ForEndlessLoop.ps1 script,  171
For...Loop, creating,  170–172
Format-IPOutput function,  200
Format-List cmdlet,  54, 58–61, 111
Format-NonIPOutput function,  200
Format-Table cmdlet,  53–57
formatting output

lists,  58–61
properties by name,  59
properties by wildcard,  59–61

output grids,  63–67
column buttons,  64–66
filter box,  66–67

tables,  53–57
display,  55–57
ordering properties,  54–55

wide displays,  61–63
AutoSize parameter,  61–62
customizing Format-Wide output,  62–63

Format-Wide cmdlet,  61–63
For statement, scripts,  170–172

ft alias,  134
Full parameter, Get-Help cmdlet,  27
Function provider,  88–89
functions

AddTwo,  211
DivideNum,  211
ease of modification,  196–201
encapsulating business logic,  194–196
Get-AllowedComputer,  224
multiple input parameters,  192–194
type constraints,  190–192
understanding,  183–190

creating functions,  185
naming functions,  185
variable scope,  188
verbs,  187–188

fundamentals
writing scripts,  155–161

enabling support,  156–157
running scripts,  155, 159–160
transitioning from command line to,  157–159
variables/constants,  160–161

G
GC alias,  165
gcim alias,  133
generating random numbers, Get-Random cmdlet,  12

Maximum parameter,  15–16
parameter sets,  17–18

Get-Alias cmdlet,  165
Get-AllowedComputer function,  224
Get-AllowedComputers.ps1 script,  224
Get-AppxPackage cmdlet,  50–51
Get-ChildItem cmdlet,  80, 88, 90
Get-ChoiceFunction.ps1 script,  220
Get-CimAssociatedInstance cmdlet,  134, 138
Get-CimClass cmdlet,  127
Get-CimInstance cmdlet,  132
Get-Command cmdlet,  30–33, 183–185
Get-Content cmdlet,  87
Get-Credential cmdlet,  108
Get-Culture cmdlet,  10–11
Get-Date cmdlet,  11
Get-DirectoryListing function,  193
Get-DirectoryListingToday.ps1 script,  193
Get-Discount function,  194

252

Get-Doc function

missing parameters,  217–220
creating default value,  218–220
making parameters mandatory,  219–220

missing rights,  225–226
Try/Catch/Finally block,  227–228

Help options,  19–20
Help topics,  26
hotfixes, Get-Hotfix cmdlet,  8
HSG registry key,  92

I
icm alias,  105
identifying network adapters, Get-NetAdapter cmd-

let,  9
If...Else...End construction (VBScript),  177
If statement, scripts,  175–179

assignment and comparison operators,  177–178
multiple conditions,  178–179

If…Then…End If statements (VBScript),  175
Import-Clixml cmdlet,  77
Import-Module cmdlet,  83
infrastructure, WMI (Windows Management Instrumen-

tation),  113
InLineGetIPDemo.ps1 script,  196
InputObject parameter (cmdlets), as part of parameter

set,  17–18
input parameters, functions,  192–194
Integrated Scripting Environment.  See ISE
intellisense,  146–148
intentional errors, forcing,  24
interactive Windows PowerShell console,  142
Invoke-Command cmdlet,  105
Invoke-Item cmdlet,  83
ISE (Integrated Scripting Environment),  2

navigation,  142–144
running,  141–148
Script pane,  145–147
snippets,  148–151

creating,  149–150
creating code with,  148–149
removing,  150–151

tab expansion and Intellisense,  146–148

Get-Doc function,  196
Get-EnabledBreakpointsFunction.ps1 script,  214
Get-EventLog cmdlet,  49–50
Get-Help cmdlet,  26–28
Get-Hotfix cmdlet,  8, 13–14
GetInfoByZip method,  191
GetIPDemoSingleFunction.ps1 script,  197
Get-IPObjectDefaultEnabledFormatNonIPOutput.ps1

script,  200
Get-IPObjectDefaultEnabled.ps1 script,  199
Get-IPObject function,  200
Get-ISESnippet cmdlet,  150
Get-ItemProperty cmdlet,  90
Get-Member cmdlet,  33–34
Get-NetAdapter cmdlet,  9, 42
Get-NetConnectionProfile cmdlet,  10
Get-OperatingSystemVersion.ps1 script,  185
Get-Process cmdlet,  7–8, 42, 54
Get-PSDrive cmdlet,  89
Get-PSProvider cmdlet,  80
Get-Random cmdlet,  12, 17–18
Get-Service cmdlet,  9, 43
Get-TextStatisticsCallChildFunction-DoesNOTWork-

MissingClosingBracket.ps1 script,  189
Get-TextStatisticsCallChildFunction.ps1 script,  188
Get-TextStatistics function,  186
Get-UICulture cmdlet,  11
Get-VM cmdlet,  42
Get-Volume function,  69, 70
Get-WindowsDriver function (DISM),  47
Get-WinEvent cmdlet,  27–28
Get-WmiObject cmdlet,  114
Get-WmiProvider function,  115
grave character,  158
grids, output,  63–67

column buttons,  64–66
filter boxes,  66–67

grouping output,  44–46
Group-Object cmdlet,  44–46
gwmi alias,  116

H
handling errors

limiting choices,  220–225
contains operator,  223–225
PromptForChoice method,  220–221
Test-Connection cmdlet,  222

253

$noun variable

methods
GetInfoByZip,  191
PromptForChoice,  220–221

Microsoft Fix it Center,  191
Microsoft Management Console (MMC),  83
missing parameters, error handling,  217–220

creating default value,  218–220
making parameters mandatory,  219–220

missing registry property values,  95–96
missing rights, error handling,  225–226
MMC (Microsoft Management Console),  83
Mode parameter,  206
modifying functions,  196–201
multiple conditions, If statements,  178–179
multiple input parameters, functions,  192–194

N
Name parameter (cmdlets),  14–15
Name parameter, Get-Help cmdlet,  26
namespaces, WMI (Windows Management Instrumen-

tation),  114
naming functions,  185
navigation, ISE (Integrated Scripting Environment), 

142–144
network adapters, identifying with Get-NetAdapter

cmdlet,  9
New-Alias cmdlet,  82
New-IseSnippet cmdlet,  149
New-Item cmdlet,  38, 94
New-PSDrive cmdlet,  89
New-PSSession cmdlet,  107
New-WebServiceProxy cmdlet,  191
NoElement switched parameter,  46
NoExit argument,  159–160
non-elevated users, security issues,  4–5
non-terminating errors,  226
NotAfter property,  84
Notepad

scripts.  See scripts
transcript log file,  25

NoTypeInformation parameter,  73–75
$noun variable,  223

K
keywords, Trap,  191

L
Language Code ID number (LCID),  10
launching

ISE,  141–142
ISE snippets,  148

LCID (Language Code ID number),  10
left, filtering to,  49–50
leveraging providers.  See providers
limiting choices, error handling,  220–225

contains operator,  223–225
PromptForChoice method,  220–221
Test-Connection cmdlet,  222

line number, setting breakoints,  204–205
Line parameter,  204
listing breakpoints,  213–215
ListProcessesSortResults.ps1 script,  154
lists, formatting output,  58–61

properties by name,  59
properties by wildcard,  59–61

literal strings,  163–164
LocalMachine scope (execution policy),  36, 156
logic

business,  194–196
program,  194

LogName parameter,  59
looping technology

Do...Loop statement,  168–169
Do...Until statement,  168
Do...While statement,  165–167

M
Mandatory parameter attribute,  219
MandatoryParameter.ps1 script,  219
mandatory parameters,  219–220
matching Switch statements, scripts,  180–182
Maximum parameter (cmdlets),  15–16
MemberType parameter (cmdlets),  34–35

254

objects

EntryType,  50
ErrorAction,  23–24
NoElement switched,  46
single parameters,  12–16
Verbose,  22–23

Column,  63
Command,  209–211
computername,  105
ErrorAction,  158
error handling,  217–220

creating default value,  218–220
making parameters mandatory,  219–220

ExpiringInDays,  84
Filter,  124, 139
Force, Update-Help cmdlet,  19–20
intellisense display,  147–148
ISE snippets

Description,  149
Text,  149
Title,  149

Line,  204
LogName,  59
Mode,  206
multiple input parameters and functions,  192–194
NoTypeInformation,  73–75
PassThru,  158
PSComputerName,  105
qualifier,  130–132
Quiet,  222
Recurse,  88
resultclassname,  138
Script,  204
Subject,  85
Value,  93
wildcard asterisk (*),  82
Wrap,  57
$zip input,  191

parameter sets, cmdlets,  16–18
Param statement, assigning default value to

command-line parameter,  218–219
Param statements,  193
PassThru parameter,  158
persisted connections, remoting,  107–110
pipeline,  41

filtering output,  46–51
grouping output after sorting,  44–46
sorting output from a cmdlet,  42–44

Pop-Location cmdlet,  92, 94

O
objects

DateTime,  48
ProcessThreadCollection,  76
WMI (Windows Management Instrumentation),  114

offline analysis technique,  75–76
Online switch, displaying Help information,  19
operators

assignment,  177–178
comparison,  176–178
concatenation,  159
contains,  223–225
range,  17, 166
redirect and append,  70–71
redirect and overwrite,  71–72

ordering properties, tables,  54–55
OutBuffer parameter (cmdlets),  22
Out-File cmdlet,  72
Out-GridView cmdlet,  63–67
output

filtering,  46–51
formatting

lists,  58–61
output grids,  63–67
tables,  53–57
wide displays,  61–63

grouping,  44–46
sorting,  42–44
storing

.csv files,  73–76
text files,  69–73
XML,  76–78

output grids, creating,  63–67
column buttons,  64–66
filter box,  66–67

OutVariable parameter (cmdlets),  22
overwriting information, text files,  71–72

P
pagers, displaying Help information,  27–28
parameters

Action,  209
AutoSize,  56, 61–62
classname,  128
cmdlets,  22–24

255

Remove-PSSession cmdlet

Q
qualifier parameter,  130–132
queries, WMI (Windows Management

Instrumentation),  117–125
return a specific instance,  123–124
return only a few properties,  125–126
return only properties interested in,  122–123
select query,  120–122
Select-String cmdlet,  118–120

Quiet parameter,  222

R
random numbers, generating with Get-Random

cmdlet,  12
Maximum parameter,  15–16
parameter sets,  17–18

range operator,  17, 166
Read-Host cmdlet,  186
Recurse parameter,  88
redirect and append operator,  70–71
redirect and overwrite operator,  71–72
redirecting information, text files,  70–72
registry keys

creating,  92–93
setting default value,  93–94

Registry, Registry provider,  89–96
creating registry keys,  92–93
drives,  89–90
missing registry property values,  95–96
modifying registry property value,  94–95
New-Item cmdlet,  94
retrieving registry values,  90–92
setting default value for the key,  93–94

remote procedure call (RPC),  99
RemoteSigned level (scripting support),  156
RemoteSigned level (script support),  36
remoting,  99–112

classic,  99–101
commands,  103–107
configuring,  101–103
persisted connections,  107–110
troubleshooting,  110–111

Remove-Item cmdlet,  81, 150
Remove-PSBreakpoint cmdlet,  215
Remove-PSSession cmdlet,  107

positional arguments,  187
position message,  158
Process.csv text file,  74
ProcessInfo.csv file,  76
Process scope (execution policy),  36, 156
ProcessThreadCollection object,  76
$process variable,  159
$profile automatic variable,  37
profiles,  37–38
program logic,  194
PromptForChoice method,  220–221
properties

DateTime object,  48
Get-Process cmdlet,  54
lists,  59–61
NotAfter,  84
PSISContainer,  84
Site,  60
Status,  66
Subject,  83
tables,  54–55

property members,  34–35
provider class, WMI,  115
providers,  79–97

Alias,  80–82
Certificate,  82–84
Environment,  85–86
File System,  86–87
Function,  88–89
Get-PSProvider cmdlet,  80
Registry,  89–96

creating registry keys,  92–93
drives,  89–90
missing registry property values,  95–96
modifying registry property value,  94–95
New-Item cmdlet,  94
retrieving registry values,  90–92
setting default value for the key,  93–94

Variable,  96–97
WMI (Windows Management Instrumenta-

tion),  114–115
PSComputerName parameter,  105
PSISContainer property,  84
PSScheduledJob module,  154
PSStatus property set,  120
Push-Location cmdlet,  92

256

removing snippets (ISE)

DemoForLoop.ps1,  170
DemoForLoop.vbs,  170
DemoForWithoutInitOrRepeat.ps1,  170
demoIfElseIfElse.ps1,  170
DemoIfElseIfElse.vbs,  178
DemoIf.ps1,  176
DemoIf.vbs,  176
DemoSelectCase.vbs,  179
DemoSwitchArrayBreak.ps1,  182
DemoSwitchArray.ps1,  181
DemoSwitchCase.ps1,  180
DemoSwitchMultiMatch.ps1,  181
DemoTrapSystemException.ps1,  191–192
DemoWhileLessThan.ps1,  162
DirectoryListWithArguments.ps1,  154
DisplayCapitalLetters.ps1,  167
Do...Loop statement,  168–170
DotSourceScripts.ps1,  198
Do...Until statement,  168
DoWhileAlwaysRuns.ps1,  169–170
Do...While statement,  165–168

casting to ASCII values,  167–168
operating over an array,  166–167
range operator,  166

EndlessDoUntil.ps1,  169
FindLargeDocs.ps1,  196
ForEach statement,  172–175
ForEndlessLoop.ps1,  171
For statement,  170–172
fundamentals,  155–161

enabling support,  156–157
running scripts,  155, 159–160
transitioning from commandline to,  157–159
variables/constants,  160–161

Get-AllowedComputers.ps1,  224
Get-ChoiceFunction.ps1,  220
Get-DirectoryListingToday.ps1,  193
Get-EnabledBreakpointsFunction.ps1,  214
GetIPDemoSingleFunction.ps1,  197
Get-IPObjectDefaultEnabledFormatNonIPOutput.

ps1,  200
Get-IPObjectDefaultEnabled.ps1,  199
Get-OperatingSystemVersion.ps1,  185
Get-TextStatisticsCallChildFunction-DoesNOTWork-

MissingClosingBracket.ps1,  189
Get-TextStatisticsCallChildFunction.ps1,  188
If statement,  175–179

assignment and comparison operators,  177–178
multiple conditions,  178–179

removing snippets (ISE),  150–151
Resolve-ZipCode.ps1 script,  191
resources, WMI (Windows Management

Instrumentation),  113
responding to breakpoints,  211–212
Restricted level (script support),  36, 156
resultclassname parameter,  138
retrieving information, Get cmdlets,  6–12

Get-Culture,  10–11
Get-Date,  11
Get-Hotfix,  8
Get-NetAdapter,  9
Get-NetConnectionProfile,  10
Get-Process,  7–8
Get-Random,  12
Get-Service,  9

retrieving registry values, Registry provider,  90–92
RPC (remote procedure call),  99
running

ISE (Integrated Scripting Environment),  141–148
scripts,  155, 159–160

S
Save-Help cmdlet,  20
ScheduledTasks module,  154
scheduled tasks, scripts,  154
script blocks,  49, 162
Script pane (ISE),  145–147
Script parameter,  204
scripts

AccountsWithNoRequiredPassword.ps1,  154
BadScript.ps1,  206
BusinessLogicDemo.ps1,  194
debugging,  203–216

cmdlets,  203–204
deleting breakpoints,  215–216
listing breakpoints,  213–215
responding to breakpoints,  211–212
setting breakpoints,  204–211

DemoBreakFor.ps1,  174
DemoDoWhile.ps1,  166–168
DemoDoWhile.vbs,  165
DemoExitFor.ps1,  175
DemoExitFor.vbs,  174
DemoForEachNext.vbs,  172
DemoForEach.ps1,  173

257

Switch syntax, creating an ISE snippet

Description parameter,  13–14
Maximum parameter,  15–16
Name parameter,  14–15

Site property,  60
snippets (ISE),  148–151

creating,  149–150
creating code with,  148–149
removing,  150–151

sorting output,  42–44
Sort-Object cmdlet,  76

sorting dates,  47–48
sorting output from a cmdlet,  42

special variables, associated meanings,  161
starting

ISE,  141–142
ISE snippets,  148
transcripts,  24

Start-Transcript cmdlet,  24, 38
Start-VM cmdlet,  42
Start window, accessing PowerShell,  2–4
Status property,  66
StopNotepad.ps1 script,  157
StopNotepadSilentlyContinuePassThru.ps1 script,  159
StopNotepadSilentlyContinue.ps1 script,  158
stopping transcripts,  25
Stop-Transcript cmdlet,  25
storing output

.csv files,  73–76
NoTypeInformation parameter,  73–75
type information,  75–76

text files,  69–73
control,  72–73
redirecting and appending information,  70–71
redirecting and overwriting information,  71–72

XML,  76–78
strings

expanding,  163
literal,  163–164

Subject parameter,  85
Subject property,  83
support, scripts,  156–157
Switch statement, scripts,  179–182

controlling matching behavior,  182
Default condition,  180
evaluating arrays,  181
matching,  180–181

Switch syntax, creating an ISE snippet,  149

InLineGetIPDemo.ps1,  196
ListProcessesSortResults.ps1,  154
MandatoryParameter.ps1,  219
profiles,  37–38
reasons for writing,  153–154
Resolve-ZipCode.ps1,  191
Set-ExecutionPolicy cmdlet,  36–38
StopNotepad.ps1,  157
StopNotepadSilentlyContinuePassThru.ps1,  159
StopNotepadSilentlyContinue.ps1,  158
Switch statement,  179–182

controlling matching behavior,  182
Default condition,  180
evaluating arrays,  181
matching,  180–181

Test-ComputerPath,  222
TestTryCatchFinally.ps1,  227–228
WhileDoesNotRun.ps1,  170
WhileReadLine.ps1,  164
WhileReadLineWend.VBS,  164
While statement,  162–165

construction,  162–164
practical example,  164

Write statement,  164–165
searching specific certificates,  83–84
security issues,  4–6

administrator rights,  5–6
non-elevated users,  4–5

Select Case statement (VBScript),  179
Select-Object cmdlet,  115
select query, WMI (Windows Management

Instrumentation),  120–122
Select-String cmdlet,  118–120
Set-ExecutionPolicy cmdlet,  36–38, 156–157, 226
Set-Item cmdlet,  93
Set-ItemProperty cmdlet,  94
Set-Location cmdlet,  81, 87, 92
Set-PropertyItem cmdlet,  94
Set-PSBreakpoint cmdlet,  204
Set-PSDebug cmdlet,  203
setting breakpoints, debugging scripts,  204–211

commands,  209–211
line number,  204–205
variables,  206–209

Show Command Add-On,  2
Show-Command cmdlet,  34–35
SilentlyContinue value (ErrorAction parameter),  158
single parameters, cmdlets,  12–16

258

Tab Completion feature

V
Value parameter,  93
values, ErrorAction parameter,  24
Variable provider,  96–97
variables

$ary,  173
$_ automatic,  159
$caps,  167
$caption,  220
$choiceRTN,  221
$cn,  105
$cred,  105
$dc1,  107
$discount,  195
$fileContents,  164
$logon,  135
$message,  220
$noun,  223
$obj1,  227
$process,  159
scripts,  160–161
setting breakpoints,  206–209
special variables with associated meanings,  161

variable scope,  188
VBScript

Exit For statements,  174
For...Each...Next construction,  172
For...Next...Loop,  170
If...Else...End construction,  177
If…Then…End If statements,  175
Select Case statement,  179
While...Wend loop,  162
Wscript.Quit statements,  175

Verbose parameter (cmdlets),  22–23
verbs, functions,  187–188

W
WarningAction parameter (cmdlets),  22
WarningVariable parameter (cmdlets),  22
WhatIf parameter (cmdlets),  22
Where-Object filter,  46–47
WhileDoesNotRun.ps1 script,  170
WhileReadLine.ps1 script,  164
WhileReadLineWend.VBS script,  162

T
Tab Completion feature,  7
tab expansion,  146–148
tables, formatting output,  53–57

display,  55–57
ordering properties,  54–55

terminating errors,  226
Test-ComputerPath script,  222
Test-Connection cmdlet,  222
Test-Path cmdlet,  38, 92, 95
Test registry key,  93
TestTryCatchFinally.ps1 script,  227–228
Test-WSMan cmdlet,  103, 110
text files, storing output,  69–73

control,  72–73
redirecting and appending information,  70–71
redirecting and overwriting information,  71–72

Text parameter, snippets,  149
time, retrieving with Get-Date cmdlet,  11
Title parameter, snippets,  149
transcript log files, Notepad,  25
transcripts

starting,  24
stopping,  25

Trap keyword,  191
Try/Catch/Finally blocks,  227–228
type constraints, functions,  190–192
type information, .csv files,  75–76

U
UAC (User Account Control) dialog box,  5
UAC (User Account Control) feature,  225
UI (user interface) culture settings,  11
Undefined level (script support),  36, 156
Unrestricted level (script support),  36, 156
Update-Help cmdlet, Force parameter,  19–20
updating Help,  19–20
User Account Control (UAC) dialog box,  5
User Account Control (UAC) feature,  225
user-defined snippets (ISE),  149–151
user interface (UI) culture settings,  11
users

administrators, security issues,  5–6
non-elevated, security issues,  4–5

259

$zip input parameter

X
XML, storing output,  76–78

Z
$zip input parameter,  191

While statement, scripts,  162–165
construction,  162–164
practical example,  164

While...Wend loop (VBScript),  162
wide display

formatting output
AutoSize parameter,  61–62
customizing Format-Wide output,  62–63

lists,  61
wild card asterisk (*) parameter,  82
wildcard search pattern, Command Add-On,  143
wildcards, selecting properties to display,  59–61
Win32_PingStatus WMI class,  222
Win32_Process cmdlet,  135
windows

Command Add-on,  142–143
Start, accessing PowerShell,  2–4

Windows Management Instrumentation.  See WMI
Windows Remote Management (WinRm),  101
WinRm (Windows Remote Management),  101
WMI (Windows Management Instrumentation), 

113–125
classes,  115–117
classes, exploring with CIM cmdlets,  127–132
consumers,  113
filtering classes with CIM cmdlets,  130–132
finding class methods, CIM,  128–129
infrastructure,  113
objects and namespaces,  114
providers,  114–115
queries,  117–125

return a specific instance,  123–124
return only a few properties,  125–126
return only properties interested in,  122–123
select query,  120–122
Select-String cmdlet,  118–120

resources,  113
retrieving instances, CIM,  132

Wrap parameter,  57
Write-Host cmdlet,  209
Write-Path function,  188
Write statement, scripts,  164–165
writing scripts.  See scripts
Wscript.Quit statements (VBScript),  175

 Now that
you’ve
read the
book...

Was it useful?
Did it teach you what you wanted to learn?
Was there room for improvement?

Let us know at http://aka.ms/tellpress

Your feedback goes directly to the staff at Microsoft Press,
and we read every one of your responses. Thanks in advance!

Tell us what you think!

	Foreword
	Introduction
	Chapter 1: Overview of Windows PowerShell 3.0
	Understanding Windows PowerShell
	Working with Windows PowerShell
	Security issues with Windows PowerShell

	Using Windows PowerShell cmdlets
	The most common verb: Get

	Supplying options for cmdlets
	Using single parameters
	Introduction to parameter sets
	Using command-line utilities

	Working with Help options
	Summary

	Chapter 7: Using Windows PowerShell remoting
	Using Windows PowerShell remoting
	Classic remoting

	Configuring Windows PowerShell remoting
	Running commands
	Creating a persisted connection

	Troubleshooting Windows PowerShell remoting
	Summary

	Index

