
Pr
of

es
sio

na
l

Celebrating 30 years!

Program
m

ing M
icrosoft

ASP.N
ET M

VC

Develop next-generation web applications with
ASP.NET MVC
Go deep into the architecture and features of ASP.NET MVC 5,
and learn how to build web applications that work well on both
the desktop and mobile devices. Web development expert Dino
Esposito takes you through the web framework’s Model-View-
Controller (MVC) design model, and covers the tools you need
to cleanly separate business logic from the user interface. If
you’re an experienced web developer new to ASP.NET MVC, this
practical guide will get you going.

Discover how to:
•	Build web applications that are easy to test and maintain
•	Dive into the functions of controllers—the heart of an MVC site
•	Explore the structure and behavior of a view engine
•	Process a variety of input data using a custom model binder
•	Automate the writing of input forms, and streamline validation
•		Design websites for mobile devices, localization, and error

handling
•		Provide security by implementing a membership and identity

system
•	 Inject script code into your site using JavaScript and jQuery
•		Use Responsive Web Design and Wireless Universal Resource FiLe

(WURFL) to make sites mobile-friendly

Download code samples at:
http://aka.ms/programASP-NET_MVC/files

About the Author
Dino	Esposito	is a well-known web
and mobile development expert. He
speaks at industry events, including
DevConnections and Microsoft TechEd,
and contributes to MSDN Magazine
and other publications. He has written
several popular Microsoft Press books,
including Architecting Mobile Solutions
for the Enterprise.

Programming Microsoft ASP.NET MVC
Third Edition

Programming
Microsoft
ASP.NET MVC
Third Edition

microsoft.com/mspress

Programming/Microsoft ASP.NET MVC

U.S.A. $49.99
Canada $52.99

[Recommended]

Esposito

Dino Esposito

edition
3

Programming Microsoft
ASP.NET MVC, Third
Edition

Dino Esposito

mvc5_book.indb 1 2/6/14 1:55 PM

Copyright © 2014 Leonardo Esposito
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-8094-4

Second Printing: April 2014

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fi ctitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the author, O’Reilly Media, Inc., Microsoft Corporation, nor
its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly or
indirectly by this book.

Acquisitions and Developmental Editors: Russell Jones and Rachel Roumeliotis

Production Editor: Kristen Brown

Editorial Production: Dianne Russell, Octal Publishing, Inc.

Technical Reviewer: John Mueller

Copyeditor: Bob Russell, Octal Publishing, Inc.

Indexer: BIM Indexing Services

Cover Design: Twist Creative • Seattle and Joel Panchot

Cover Composition: Ellie Volckhausen

Illustrator: Rebecca Demarest

mvc5_cr.indd iimvc5 cr indd ii 4/9/14 12:33 PM4/9/14 12:33 PM

To Silvia, Francesco, Michela, and my back for sustaining me.
—Dino

mvc5_book.indb 3 2/6/14 1:55 PM

mvc5_book.indb 4 2/6/14 1:55 PM

mvc5_book.indb 6 2/6/14 1:55 PM

 vii

Contents

Introduction . xiii

PART I ASP.NET MVC FUNDAMENTALS

Chapter 1 ASP.NET MVC controllers 3
Routing incoming requests . 4

Simulating the ASP.NET MVC runtime . 4

The URL routing HTTP module . 7

Application routes . 9

The controller class .15

Aspects of a controller .16

Writing controller classes . 17

Processing input data .22

Producing action results .25

Summary. .30

Chapter 2 ASP.NET MVC views 33
The structure and behavior of a view engine .34

The mechanics of a view engine .34

Definition of the view template .39

HTML helpers .42

Basic helpers .43

Templated helpers .48

Custom helpers .51

The Razor view engine .54

Inside the view engine .54

Designing a sample view .59

Coding the view .65

Modeling the view .65

Advanced features .70

Summary. .73

mvc5_book.indb 7 2/6/14 1:55 PM

viii Contents

Chapter 3 The model-binding architecture 75
The input model . 76

Evolving from the Web Forms input processing 76

Input processing in ASP.NET MVC. .78

Model binding .79

Model-binding infrastructure .79

The default model binder .80

Customizable aspects of the default binder .91

Advanced model binding .93

Custom type binders .93

A sample DateTime model binder .96

Summary. .101

Chapter 4 Input forms 103
General patterns of data entry .104

A classic Select-Edit-Post scenario .104

Applying the Post-Redirect-Get pattern .112

Automating the writing of input forms .117

Predefined display and editor templates .117

Custom templates for model data types .125

Input validation .130

Using data annotations .130

Advanced data annotations .135

Self-validation .142

Summary. .146

PART II ASP.NET MVC SOFTWARE DESIGN

Chapter 5 Aspects of ASP.NET MVC applications 151
ASP.NET intrinsic objects .151

HTTP response and SEO .152

Managing the session state .155

Caching data .157

mvc5_book.indb 8 2/6/14 1:55 PM

 ix

Error handling .163

Handling program exceptions .163

Global error handling .169

Dealing with missing content .172

Localization .175

Using localizable resources .175

Dealing with localizable applications .182

Summary. .187

Chapter 6 Securing your application 189
Security in ASP.NET MVC .189

Authentication and authorization .190

Separating authentication from authorization192

Implementing a membership system .195

Defining a membership controller .196

The Remember-Me feature and Ajax .204

External authentication services .207

The OpenID protocol .208

Authenticating via social networks .215

Summary. .223

Chapter 7 Design considerations for ASP.NET MVC controllers 225
Shaping up your controller .226

Choosing the right stereotype .226

Fat-free controllers .230

Connecting the presentation and back end. .237

The Layered Architecture pattern .237

Injecting data and services in layers .244

Gaining control of the controller factory .250

Summary. .253

mvc5_book.indb 9 2/6/14 1:55 PM

x Contents

Chapter 8 Customizing ASP.NET MVC controllers 255
The extensibility model of ASP.NET MVC .255

The provider-based model .256

The Service Locator pattern .259

Adding aspects to controllers .263

Action filters .263

Gallery of action filters .267

Special filters .274

Building a dynamic loader filter .279

Action result types .285

Built-in action result types .285

Custom result types .290

Summary. .299

Chapter 9 Testing and testability in ASP.NET MVC 301
Testability and design. .302

DfT .302

Loosen up your design .304

The basics of unit testing .308

Working with a test harness .309

Aspects of testing .313

Testing your ASP.NET MVC code .319

Which part of your code should you test? .319

Unit testing ASP.NET MVC code .322

Dealing with dependencies .326

Mocking the HTTP context .328

Summary. .335

Chapter 10 An executive guide to Web API 337
The whys and wherefores of Web API .337

The need for a unified HTTP API .338

MVC controllers vs. Web API .339

mvc5_book.indb 10 2/6/14 1:55 PM

 Contents xi

Putting Web API to work .341

Designing a RESTful interface .342

Expected method behavior .346

Using the Web API .348

Designing an RPC-oriented Interface .352

Security considerations .355

Negotiating the response format. .359

The ASP.NET MVC approach .359

How content negotiation works in Web API360

Summary. .363

PART III MOBILE CLIENTS

Chapter 11 Effective JavaScript 367
Revisiting the JavaScript language .368

Language basics .368

Object-orientation in JavaScript .373

jQuery’s executive summary .377

DOM queries and wrapped sets .377

Selectors .379

Events .384

Aspects of JavaScript programming .387

Unobtrusive code .387

Reusable packages and dependencies .388

Script and resource loading .391

Bundling and minification .394

Summary. .397

Chapter 12 Making websites mobile-friendly 399
Technologies for enabling mobile on sites .399

HTML5 for the busy developer .400

RWD .407

jQuery Mobile’s executive summary .413

Twitter Bootstrap at a glance .423

mvc5_book.indb 11 2/6/14 1:55 PM

xii Contents

Adding mobile capabilities to an existing site .430

Routing users to the correct site .431

From mobile to devices .436

Summary. .437

Chapter 13 Building sites for multiple devices 439
Understanding display modes in ASP.NET MVC .440

Separated mobile and desktop views .440

Rules for selecting the display mode .442

Adding custom display modes. .443

Introducing the WURFL database .446

Structure of the repository .447

Essential WURFL capabilities .451

Using WURFL with ASP.NET MVC display modes .454

Configuring the WURFL framework .454

Detecting device capabilities .456

Using WURFL-based display modes .459

The WURFL cloud API .464

Why you should consider server-side solutions .466

Summary. .467

Index 469

About the author 495

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

mvc5_book.indb 12 2/6/14 1:55 PM

 xiii

Introduction

Get your facts first, and then you can distort them as much as you
please.

—Mark Twain

ASP.NET was devised in the late 1990s at a time when many companies in various
industry sectors were rapidly discovering the Internet. The primary goal of ASP.NET

was to make it possible for developers to build applications quickly and effectively with-
out having to deal with low-level details such as HTTP, HTML, and JavaScript intricacies.
That was exactly what the community loudly demanded at that time. ASP.NET is what
Microsoft delivered to address this request, exceeding expectations by a large extent.

Today, more than ten years later, ASP.NET is showing signs of age, and many started
even questioning the real necessity of having a web framework at all. It’s an amazing
time, and several options exist. There are Web Forms and ASP.NET MVC applications,
and then there are more JavaScript-intensive client applications (single-page applica-
tions) that just use a server-side back end for delivering the basic layout of the few
pages they actually expose and for ad hoc services such as bundling.

Curiously, with the Web Forms paradigm, you can still write functional applications
even though ASP.NET MVC addresses more closely the present needs of developers.
The most common scenario of Web Forms is applications for which you focus on
presenting data and use some third-party high-quality suite of controls for that. ASP.NET
MVC is for everything else, including the scaffolding of client-side single-page applications.

The way web applications are changing proves that ASP.NET MVC probably failed to
replace ASP.NET Web Forms in the heart of many developers, but it was the right choice
and qualifies to be the ideal web platform for any application that needs a back end of
some substance; in particular (as I see things), web applications that aim at being multi-
device functional. And yes, that likely means all web applications in less than two years.

Switching to ASP.NET MVC is more than ever the natural follow-up for ASP.NET
developers.

mvc5_book.indb 13 2/6/14 1:55 PM

xiv Introduction

Who should read this book

Over the years, quite a few people have read quite a few books and articles of mine.
These readers are already aware that I’m not good at writing step-by-step, reference-
style books, in the similar manner that I'm unable to teach the same class twice, running
topics in the same order and showing the same examples.

This book is not for absolute beginners; but I do feel it is a book for all the oth-
ers, including those who are still fairly new to ASP.NET MVC. The higher your level of
competency and expertise, the less you can expect to find here that adds value in your
particular case. However, this book benefits from a few years of real-world practice; so
I’m sure it has a lot of solutions that might also appeal to the experts, particularly with
respect to mobile devices.

If you use ASP.NET MVC, I’m confident that you’ll find something in this book that
makes it worthwhile.

Assumptions
This book expects that you have at least a minimal understanding of ASP.NET development.

Who should not read this book

If you’re looking for a step-by-step guide to ASP.NET MVC, this is not the ideal book
for you.

Organization of this book

This book is divided into three sections. Part I, “ASP.NET MVC fundamentals,” provides a
quick overview of the foundation of ASP.NET and its core components. Part II, “ASP.NET
MVC software design,” focuses on common aspects of web applications and specific
design patterns and best practices. Finally, Part III, “Mobile clients,” is about JavaScript
and mobile interfaces.

mvc5_book.indb 14 2/6/14 1:55 PM

 Introduction xv

System requirements

You preferably have the following software installed in order to run the examples pre-
sented in this book:

■■ One of the following operating systems: Windows 8/8.1, Windows 7, Windows
Vista with Service Pack 2 (except Starter Edition), Windows XP with Service Pack
3 (except Starter Edition), Windows Server 2008 with Service Pack 2, Windows
Server 2003 with Service Pack 2, or Windows Server 2003 R2

■■ Microsoft Visual Studio 2013, any edition (multiple downloads might be re-
quired if you’re using Express Edition products)

■■ Microsoft SQL Server 2012 Express Edition or higher, with SQL Server Manage-
ment Studio 2012 Express or higher (included with Visual Studio; Express Edi-
tions require a separate download)

Depending on your Windows configuration, you might require Local Administrator
rights to install or configure Visual Studio 2013 and SQL Server 2012 products.

Code samples

Most of the chapters in this book include exercises with which you can interactively try
out new material learned in the main text. You can download all sample projects, in
both their pre-exercise and post-exercise formats, from the following page:

http://aka.ms/programASP-NET_MVC/files

Follow the instructions to download the asp-net-mvc-examples.zip file.

Installing the code samples
Perform the following steps to install the code samples on your computer so that you
can use them with the exercises in this book.

1. Unzip the asp-net-mvc-examples.zip file that you downloaded from the book’s
website (name a specific directory along with directions to create it, if necessary).

2. If prompted, review the displayed end-user license agreement. If you accept the
terms, select the Accept option, and then click Next.

mvc5_book.indb 15 2/6/14 1:55 PM

Note If the license agreement doesn’t appear, you can access it from the
same webpage from which you downloaded the asp-net-mvc-examples.zip file.

Using the code samples
The folder created by the Setup.exe program contains one subfolder for each chapter.
In turn, each chapter might contain additional subfolders. All examples are organized in
a single Visual Studio 2013 solution. You open the solution file in Visual Studio 2013 and
navigate through the examples.

Errata & book support

We’ve made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed on our
Microsoft Press site:

http://aka.ms/programASP-NET_MVC/errata

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com.

Please note that product support for Microsoft software is not offered through the
aforementioned addresses.

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://aka.ms/tellpress

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

mvc5_book.indb 16 2/6/14 1:55 PM

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

 75

C H A P T E R 3

The model-binding architecture

It does not matter how slowly you go, so long as you do not stop.
—Confucius

By default, the Microsoft Visual Studio standard project template for ASP.NET MVC applications
includes a Models folder. If you look around for some guidance on how to use it and informa-

tion about its intended role, you'll quickly reach the conclusion that the Models folder exists to store
model classes. Fine, but which model is it for? Or, more precisely, what’s the definition of a “model”?

I like to say that “model” is the most misunderstood idea in the history of software. As a concept,
it needs to be expanded a bit to make sense in modern software. When the Model-View-Controller
(MVC) pattern was introduced, software engineering was in its infancy, and applications were much
simpler than today. Nobody really felt the need to break up the concept of model into smaller pieces.
Such smaller pieces, however, existed.

In general, I find at least two distinct models: the domain model and the view model. The former
describes the data you work with in the middle tier and is expected to provide a faithful representa-
tion of the entities and relationships that populate the business domain. These entities are typically
persisted by the data-access layer and consumed by services that implement business processes. This
domain model pushes a vision of data that is, in general, distinct and likely different from the vision
of data you find in the presentation layer. The view model just describes the data that is being worked
on in the presentation layer. A good example might be the canonical Order entity. There might be
use-cases in which the application needs to present a collection of orders to users but not all prop-
erties are required. For example, you might need ID, date, and total, and likely a distinct container
class—a data-transfer object (DTO).

Having said that, I agree with anyone who points out that not every application needs a neat sepa-
ration between the object models used in the presentation and business layers. You might decide that
for your own purposes the two models nearly coincide, but you should always recognize the existence
of two distinct models that operate in two distinct layers.

This chapter introduces a third type of model that, although hidden for years in the folds of the
ASP.NET Web Forms runtime, stands on its own in ASP.NET MVC: the input model. The input model
refers to the model through which posted data is exposed to controllers and subsequently received
by the application. The input model defines the DTOs the application uses to receive data from input
forms.

mvc5_book.indb 75 2/6/14 1:56 PM

76 PArT I ASP.NET MVC fundamentals

Note Yet another flavor of model not mentioned here is the data model or the (mostly re-
lational) model used to persist data.

The input model

Chapter 1, “ASP.NET MVC controllers,” discusses request routing and the overall structure of controller
methods. Chapter 2, “ASP.NET MVC views,” explores views as the primary result of action processing.
However, neither chapter thoroughly discusses how in ASP.NET MVC a controller method gets input
data.

In ASP.NET Web Forms, we had server controls, view state, and the overall page life cycle working
in the background to serve input data that was ready to use. With ASP.NET Web Forms, developers
had no need to worry about an input model. Server controls in ASP.NET Web Forms provided a faith-
ful server-side representation of the client user interface. Developers just needed to write C# code to
read from input controls.

ASP.NET MVC makes a point of having controllers receive input data, not retrieve it. To pass input
data to a controller, you need to package data in some way. This is precisely where the input model
comes into play.

To better understand the importance and power of the new ASP.NET MVC input model, let’s start
from where ASP.NET Web Forms left us.

Evolving from the Web Forms input processing
An ASP.NET Web Forms application is based on pages, and each server page is based on server con-
trols. The page has its own life cycle that spans from processing the raw request data to arranging the
final response for the browser. The page life cycle is fed by raw request data such as HTTP headers,
cookies, the URL, and the body, and it produces a raw HTTP response containing headers, cookies,
the content type, and the body.

Inside the page life cycle, there are a few steps in which HTTP raw data is massaged into more eas-
ily programmable containers—server controls. In ASP.NET Web Forms, these “programmable contain-
ers” are never perceived as being part of an input object model. In ASP.NET Web Forms, the input
model is just based on server controls and the view state.

role of server controls
Suppose that you have a webpage with a couple of TextBox controls to capture a user name and
password. When the user posts the content of the form, there is likely a piece of code to process the
request similar to what is shown in the following code:

mvc5_book.indb 76 2/6/14 1:56 PM

 CHAPTER 3 The model-binding architecture 77

public void Button1_Click(Object sender, EventArgs e)
{
 // You're about to perform requested action using input data.
 CheckUserCredentials(TextBox1.Text, TextBox2.Text);
 ...
}

The overall idea behind the architecture of ASP.NET Web Forms is to keep the developer away
from raw data. Any incoming request data is mapped to properties on server controls. When this is
not possible, data is left parked in general-purpose containers such as QueryString or Form.

What would you expect from a method such as the Button1_Click just shown? That method is the
Web Forms counterpart of a controller action. Here’s how to refactor the previous code to use an
explicit input model:

public void Button1_Click(Object sender, EventArgs e)
{
 // You're actually filling in the input model of the page.
 var model = new UserCredentialsInputModel();
 model.UserName = TextBox1.Text;
 model.Password = TextBox2.Text;

 // You're about to perform the requested action using input data.
 CheckUserCredentials(model);
 ...
}

The ASP.NET runtime environment breaks up raw HTTP request data into control properties, thus
offering a control-centric approach to request processing.

role of the view state
Speaking in terms of a programming paradigm, a key distinguishing characteristic between ASP.NET
Web Forms and ASP.NET MVC is the view state. In Web Forms, the view state helps server controls to
always be up to date. Because of the view state, as a developer you don’t need to care about seg-
ments of the user interface that you don’t touch in a postback. Suppose that you display a list of
choices into which the user can drill down. When the request for details is made, in Web Forms all you
need to do is display the details. The raw HTTP request, however, posted the list of choices as well as
key information to find. The view state makes it unnecessary for you to deal with the list of choices.

The view state and server control build a thick abstraction layer on top of classic HTTP mechanics,
and they make you think in terms of page sequences rather than successive requests. This is neither
wrong nor right; it is just the paradigm behind Web Forms. In Web Forms, there’s no need for clearly
defining an input model. If you do that, it’s only because you want to keep your code cleaner and
more readable.

mvc5_book.indb 77 2/6/14 1:56 PM

78 PArT I ASP.NET MVC fundamentals

Input processing in ASP.NET MVC
Chapter 1, explains that a controller method can access input data through Request collections—such
as QueryString, Headers, or Form—or value providers. Although it’s functional, this approach is not
ideal from a readability and maintenance perspective. You need an ad hoc model that exposes data
to controllers.

The role of model binders
ASP.NET MVC provides an automatic binding layer that uses a built-in set of rules for mapping raw
request data from any value providers to properties of input model classes. As a developer, you are
largely responsible for the design of input model classes. The logic of the binding layer can be cus-
tomized to a large extent, thus adding unprecedented heights of flexibility, as far as the processing of
input data is concerned.

Flavors of a model
The ASP.NET MVC default project template offers just one Models folder, thus implicitly pushing the
idea that “model” is just one thing: the model of the data the application is supposed to use. Gener-
ally speaking, this is a rather simplistic view, though it’s effective in very simple sites.

If you look deeper into things, you can recognize three different types of “models” in ASP.NET
MVC, as illustrated in Figure 3-1.

FIGURE 3-1 Types of models potentially involved in an ASP.NET MVC application.

The input model provides the representation of the data being posted to the controller. The view
model provides the representation of the data being worked on in the view. Finally, the domain
model is the representation of the domain-specific entities operating in the middle tier.

Note that the three models are not neatly separated, which Figure 3-1 shows to some extent. You
might find overlap between the models. This means that classes in the domain model might be used
in the view, and classes posted from the client might be used in the view. The final structure and dia-
gram of classes is up to you.

mvc5_book.indb 78 2/6/14 1:56 PM

 CHAPTER 3 The model-binding architecture 79

Model binding

Model binding is the process of binding values posted over an HTTP request to the parameters used
by the controller’s methods. Let’s find out more about the underlying infrastructure, mechanics, and
components involved.

Model-binding infrastructure
The model-binding logic is encapsulated in a specific model-binder class. The binder works under the
control of the action invoker and helps to figure out the parameters to pass to the selected controller
method.

Analyzing the method’s signature
Chapter 1 points out that each and every request passed to ASP.NET MVC is resolved in terms of a
controller name and an action name. Armed with these two pieces of data, the action invoker—a
native component of the ASP.NET MVC runtime shell—kicks in to actually serve the request. First, the
invoker expands the controller name to a class name and resolves the action name to a method name
on the controller class. If something goes wrong, an exception is thrown.

Next, the invoker attempts to collect all values required to make the method call. In doing so,
it looks at the method’s signature and attempts to find an input value for each parameter in the
signature.

Getting the binder for the type
The action invoker knows the formal name and declared type of each parameter. (This information
is obtained via reflection.) The action invoker also has access to the request context and to any data
uploaded with the HTTP request—the query string, the form data, route parameters, cookies, head-
ers, files, and so forth.

For each parameter, the invoker obtains a model-binder object. The model binder is a component
that knows how to find values of a given type from the request context. The model binder applies its
own algorithm, which includes the parameter name, parameter type, and request context available,
and returns a value of the specified type. The details of the algorithm belong to the implementation
of the model binder being used for the type.

ASP.NET MVC uses a built-in binder object that corresponds to the DefaultModelBinder class. The
model binder is a class that implements the IModelBinder interface.

public interface IModelBinder
{
 Object BindModel(ControllerContext controllerContext, ModelBindingContext bindingContext);
}

Let’s first explore the capabilities of the default binder and then see what it takes to write custom
binders for specific types later.

mvc5_book.indb 79 2/6/14 1:56 PM

80 PArT I ASP.NET MVC fundamentals

The default model binder
The default model binder uses convention-based logic to match the names of posted values to
parameter names in the controller’s method. The DefaultModelBinder class knows how to deal with
primitive and complex types as well as collections and dictionaries. In light of this, the default binder
works just fine most of the time.

Note If the default binder supports primitive and complex types and the collections
thereof, will you ever feel the need to use something other than the default binder? You
will hardly ever feel the need to replace the default binder with another general-purpose
binder. However, the default binder can’t apply your custom logic to massage request data
into the properties of a given type. As you’ll see later, a custom binder is helpful when the
values being posted with the request don’t exactly match the properties of the type you
want the controller to use. In this case, a custom binder makes sense and helps keep the
controller’s code lean and mean.

Binding primitive types
Admittedly, it sounds a bit magical at first, but there’s no actual wizardry behind model binding. The
key fact about model binding is that it lets you focus exclusively on the data you want the controller
method to receive. You completely ignore the details of how you retrieve that data, whether it comes
from the query string or the route.

Suppose that you need a controller method to repeat a particular string a given number of times.
Here’s what you do:

public class BindingController : Controller
{
 public ActionResult Repeat(String text, Int32 number)
 {
 var model = new RepeatViewModel {Number = number, Text = text};
 return View(model);
 }
}

Designed in this way, the controller is highly testable and completely decoupled from the ASP.NET
runtime environment. There’s no need for you to access the Request object or the Cookies collection
directly.

Where do the values for text and number come from? And, which component is actually reading
them into text and number parameters?

The actual values are read from the request context, and the default model-binder object does the
trick. In particular, the default binder attempts to match formal parameter names (text and number in
the example) to named values posted with the request. In other words, if the request carries a form
field, a query-string field, or a route parameter named text, the carried value is automatically bound

mvc5_book.indb 80 2/6/14 1:56 PM

 CHAPTER 3 The model-binding architecture 81

to the text parameter. The mapping occurs successfully as long as the parameter type and actual
value are compatible. If a conversion cannot be performed, an argument exception is thrown. The
next URL works just fine:

http://server/binding/repeat?text=Dino&number=2

Conversely, the following URL causes an exception:

http://server/binding/repeat?text=Dino&number=true

The query-string field text contains Dino, and the mapping to the String parameter text on the
method Repeat takes place successfully. The query-string field number, on the other hand, contains
true, which can’t be successfully mapped to an Int32 parameter. The model binder returns a parame-
ters dictionary in which the entry for number contains null. Because the parameter type is Int32—that
is, a non-nullable type—the invoker throws an argument exception.

Dealing with optional values
An argument exception that occurs because invalid values are being passed is not detected at the
controller level. The exception is fired before the execution flow reaches the controller. This means
that you won’t be able to catch it with try/catch blocks.

If the default model binder can’t find a posted value that matches a required method parameter,
it places a null value in the parameter dictionary returned to the action invoker. Again, if a value of
null is not acceptable for the parameter type, an argument exception is thrown before the controller
method is even called.

What if a method parameter must be considered optional?

A possible approach entails changing the parameter type to a nullable type, as shown here:

public ActionResult Repeat(String text, Nullable<Int32> number)
{
 var model = new RepeatViewModel {Number = number.GetValueOrDefault(), Text = text};
 return View(model);
}

Another approach consists of using a default value for the parameter:

public ActionResult Repeat(String text, Int32 number=4)
{
 var model = new RepeatViewModel {Number = number, Text = text};
 return View(model);
}

Any decisions about the controller method’s signature are up to you. In general, you might want
to use types that are very close to the real data being uploaded with the request. Using parameters
of type Object, for example, will save you from argument exceptions, but it will make it hard to write
clean code to process the input data.

mvc5_book.indb 81 2/6/14 1:56 PM

82 PArT I ASP.NET MVC fundamentals

The default binder can map all primitive types, such as String, integers, Double, Decimal, Boolean,
DateTime, and related collections. To express a Boolean type in a URL, you resort to the true or false
strings. These strings are parsed using .NET native Boolean parsing functions, which recognize true
and false strings in a case-insensitive manner. If you use strings such as yes/no to mean a Boolean, the
default binder won’t understand your intentions and places a null value in the parameter dictionary,
which might cause an argument exception.

Value providers and precedence
The default model binder uses all the registered value providers to find a match between posted val-
ues and method parameters. By default, value providers cover the collections listed in Table 3-1.

TABLE 3-1 Request collections for which a default value provider exists

Collection Description

Form Contains values posted from an HTML form, if any

RouteData Contains values excerpted from the URL route

QueryString Contains values specified as the URL’s query string

Files A value is the entire content of an uploaded file, if any

Table 3-1 lists request collections being considered in the exact order in which they are processed
by the default binder. Suppose that you have the following route:

routes.MapRoute(
 "Test",
 "{controller}/{action}/test/{number}",
 new { controller = "Binding", action = "RepeatWithPrecedence", number = 5 }
);

As you can see, the route has a parameter named number. Now, consider this URL:

/Binding/RepeatWithPrecedence/test/10?text=Dino&number=2

The request uploads two values that are good candidates to set the value of the number param-
eter in the RepeatWithPrecedence method. The first value is 10 and is the value of a route parameter
named number. The second value is 2 and is the value of the QueryString element named number. The
method itself provides a default value for the number parameter:

public ActionResult RepeatWithPrecedence(String text, Int32 number=20)
{
 ...
}

Which value is actually picked up? As Table 3-1 suggests, the value that is actually passed to the
method is 10, which is the value read from the route data collection.

mvc5_book.indb 82 2/6/14 1:56 PM

 CHAPTER 3 The model-binding architecture 83

Binding complex types
There’s no limitation regarding the number of parameters you can list on a method’s signature. How-
ever, a container class is often better than a long list of individual parameters. For the default model
binder, the result is nearly the same whether you list a sequence of parameters or just one parameter
of a complex type. Both scenarios are fully supported. Here’s an example:

public class ComplexController : Controller
{
 public ActionResult Repeat(RepeatText inputModel)
 {
 var model = new RepeatViewModel
 {
 Title = "Repeating text",
 Text = inputModel.Text,
 Number = inputModel.Number
 };
 return View(model);
 }
}

The controller method receives an object of type RepeatText. The class is a plain data-transfer
object, defined as follows:

public class RepeatText
{
 public String Text { get; set; }
 public Int32 Number { get; set; }
}

As you can see, the class just contains members for the same values you passed as individual
parameters in the previous example. The model binder works with this complex type as well as it did
with single values.

For each public property in the declared type—RepeatText in this case—the model binder looks
for posted values whose key names match the property name. The match is case insensitive. Here’s a
sample URL that works with the RepeatText parameter type:

http://server/Complex/Repeat?text=ASP.NET%20MVC&number=5

Figure 3-2 shows the output that the URL might generate.

mvc5_book.indb 83 2/6/14 1:56 PM

84 PArT I ASP.NET MVC fundamentals

FIGURE 3-2 Repeating text with values extracted from a complex type.

Binding collections
What if the argument that a controller method expects is a collection? For example, can you bind the
content of a posted form to an IList<T> parameter? The DefaultModelBinder class makes it possible,
but doing so requires a bit of contrivance of your own. Have a look at Figure 3-3.

FIGURE 3-3 The page will post an array of strings.

When the user clicks the Send button, the form submits its content. Specifically, it sends out the
content of the various text boxes. If the text boxes have different IDs, the posted content takes the
following form:

TextBox1=admin@contoso.com&TextBox2=&TextBox3=&TextBox4=&TextBox5=

mvc5_book.indb 84 2/6/14 1:56 PM

 CHAPTER 3 The model-binding architecture 85

In classic ASP.NET, this is the only possible way of working because you can’t just assign the same
ID to multiple controls. However, if you manage the HTML yourself, nothing prevents you from
assigning the five text boxes in the figure the same ID. The HTML DOM, in fact, fully supports this
scenario (though it is not recommended). Therefore, the following markup is entirely legal in ASP.NET
MVC and produces HTML that works on all browsers:

@using (Html.BeginForm())
{
 <h2>List your email address(es)</h2>
 foreach(var email in Model.Emails)
 {
 <input type="text" name="email" value="@email" />

 }
 <input type="submit" value="Send" />
}

What’s the expected signature of a controller method that has to process the email addresses
typed in the form? Here it is:

public ActionResult Emails(IList<String> email)
{
 ...
}

Figure 3-4 shows that an array of strings is correctly passed to the method, thanks to the default
binder class.

FIGURE 3-4 An array of strings has been posted.

As is dicussed in greater detail in Chapter 4, “Input forms,” when you work with HTML forms, you
likely need to have a pair of methods: one to handle the display of the view (the verb GET), and one to
handle the scenario in which data is posted to the view. The HttpPost and HttpGet attributes make it
possible for you to mark which scenario a given method is handling for the same action name. Here’s
the full implementation of the example, which uses two distinct methods to handle GET and POST
scenarios:

[ActionName("Emails")]
[HttpGet]
public ActionResult EmailForGet(IList<String> emails)

mvc5_book.indb 85 2/6/14 1:56 PM

86 PArT I ASP.NET MVC fundamentals

{
 // Input parameters
 var defaultEmails = new[] { "admin@contoso.com", "", "", "", "" };
 if (emails == null)
 emails = defaultEmails;
 if (emails.Count == 0)
 emails = defaultEmails;
 var model = new EmailsViewModel {Emails = emails};
 return View(model);
}

[ActionName("Emails")]
[HttpPost]
public ActionResult EmailForPost(IList<String> email)
{
 var defaultEmails = new[] { "admin@contoso.com", "", "", "", "" };
 var model = new EmailsViewModel { Emails = defaultEmails, RegisteredEmails = email };
 return View(model);
}

Here’s the full Razor markup for the view you see rendered in Figure 3-5:

@model BindingFun.ViewModels.Complex.EmailsViewModel

<h2>List your email address(es)</h2>
@using (Html.BeginForm())
{
 foreach(var email in Model.Emails)
 {
 <input type="text" name="email" value="@email" />

 }
 <input type="submit" value="Send" />
}

<hr />
<h2>Emails submitted</h2>

@foreach (var email in Model.RegisteredEmails)
{
 if (String.IsNullOrWhiteSpace(email))
 {
 continue;
 }
 @email
}

mvc5_book.indb 86 2/6/14 1:56 PM

 CHAPTER 3 The model-binding architecture 87

FIGURE 3-5 The page rendered after a POST.

In the end, to ensure that a collection of values is passed to a controller method, you need to en-
sure that elements with the same ID are emitted to the response stream. The ID, then, must match to
the controller method’s signature according to the normal rules of the binder.

In case of collections, the required match between names forces you to violate basic naming
conventions. In the view, you have input fields and would like to call them, for instance, email using
the singular. When you name the parameter in the controller, because you’re getting a collection,
you would like to name it, for instance, emails. Instead, you’re forced to use either email or emails all
the way through. The workaround comes in a moment when we move on to consider customizable
aspects of model binders.

Binding collections of complex types
The default binder can also handle situations in which the collection contains complex types, even
nested, as demonstrated here:

[ActionName("Countries")]
[HttpPost]
public ActionResult CountriesForPost(IList<Country> country)
{
 ...
}

[F03xx05]

mvc5_book.indb 87 2/6/14 1:56 PM

88 PArT I ASP.NET MVC fundamentals

As an example, consider the following definition for type Country:

public class Country
{
 public Country()
 {
 Details = new CountryInfo();
 }
 public String Name { get; set; }
 public CountryInfo Details { get; set; }
}
public class CountryInfo
{
 public String Capital { get; set; }
 public String Continent { get; set; }
}

For model binding to occur successfully, all you really need to do is use a progressive index on the
IDs in the markup. The resulting pattern is prefix[index].Property, where prefix matches the name of
the formal parameter in the controller method’s signature:

@using (Html.BeginForm())
{
 <h2>Select your favorite countries</h2>
 var index = 0;
 foreach (var country in Model.CountryList)
 {
 <fieldset>
 <div>
 Name

 <input type="text"
 name="countries[@index].Name"
 value="@country.Name" />

 Capital

 <input type="text"
 name="country[@index].Details.Capital"
 value="@country.Details.Capital" />

 Continent

 @{
 var id = String.Format("country[{0}].Details.Continent", index++);
 }
 @Html.TextBox(id, country.Details.Continent)

 </div>
 </fieldset>
 }
 <input type="submit" value="Send" />
}

mvc5_book.indb 88 2/6/14 1:56 PM

 CHAPTER 3 The model-binding architecture 89

The index is numeric, 0-based, and progressive. In this example, I’m building user interface blocks
for each specified default country. If you have a fixed number of user interface blocks to render, you
can use static indexes.

<input type="text"
 name="country[0].Name"
 value="@country.Name" />

<input type="text"
 name="country[1].Name"
 value="@country.Name" />

Be aware that holes in the series (for example, 0 and then 2) stop the parsing, and all you get back
is the sequence of data types from 0 to the hole.

The posting of data works fine, as well. The POST method on the controller class will just receive
the same hierarchy of data, as Figure 3-6 shows.

FIGURE 3-6 Complex and nested types posted to the method.

Rest assured that if you’re having trouble mapping posted values to your expected hierarchy of
types, it might be wise to consider a custom model binder.

Binding content from uploaded files
Table 3-1 indicates that uploaded files can also be subject to model binding. The default binder
does the binding by matching the name of the input file element used to upload with the name of a
parameter. The parameter (or the property on a parameter type), however, must be declared of type
HttpPostedFileBase:

public class UserData
{
 public String Name { get; set; }
 public String Email { get; set; }
 public HttpPostedFileBase Picture { get; set; }
}

mvc5_book.indb 89 2/6/14 1:56 PM

90 PArT I ASP.NET MVC fundamentals

The following code shows a possible implementation of a controller action that saves the uploaded
file somewhere on the server computer:

public ActionResult Add(UserData inputModel)
{
 var destinationFolder = Server.MapPath("/Users");
 var postedFile = inputModel.Picture;
 if (postedFile.ContentLength > 0)
 {
 var fileName = Path.GetFileName(postedFile.FileName);
 var path = Path.Combine(destinationFolder, fileName);
 postedFile.SaveAs(path);
 }

 return View();
}

By default, any ASP.NET request can’t be longer than 4 MB. This amount should include any up-
loads, headers, body, and whatever is being transmitted. You can configure the value at various levels.
You do that through the maxRequestLength entry in the httpRuntime section of the web.config file:

<system.web>
 <httpRuntime maxRequestLength="6000" />
</system.web>

Obviously, the larger a request is, the more room you potentially leave for hackers to prepare at-
tacks on your site. Also keep in mind that in a hosting scenario your application-level settings might
be ignored if the host has set a different limit at the domain level and locked down the maxRequest-
Length property at lower levels.

What about multiple file uploads? As long as the overall size of all uploads is compatible with the
current maximum length of a request, you can upload multiple files within a single request. However,
consider that web browsers just don’t know how to upload multiple files. All a web browser can do is
upload a single file, and only if you reference it through an input element of type file. To upload mul-
tiple files, you can resort to some client-side ad hoc component or place multiple <input> elements
in the form. If you use multiple <input> elements that are properly named, a class like the one shown
here will bind them all:

public class UserData
{
 public String Name { get; set; }
 public String Email { get; set; }
 public HttpPostedFileBase Picture { get; set; }
 public IList<HttpPostedFileBase> AlternatePictures { get; set; }
}

The class represents the data posted for a new user with a default picture and a list of alternate
pictures. Here is the markup for the alternate pictures:

<input type="file" id="AlternatePictures[0]" name="AlternatePictures[0]" />
<input type="file" id="AlternatePictures[1]" name="AlternatePictures[1]" />

mvc5_book.indb 90 2/6/14 1:56 PM

 CHAPTER 3 The model-binding architecture 91

ASP.NET application account
Creating files on the web server is not usually an operation that can be accomplished relying
on the default permission set. Any ASP.NET application runs under the account of the worker
process serving the application pool to which the application belongs. Under normal circum-
stances, this account is NETWORK SERVICE, and it isn’t granted the permission to create new
files. This means that to save files, you must change the account behind the ASP.NET applica-
tion or elevate the privileges of the default account.

For years, the identity of the application pool has been a fixed identity—the aforemen-
tioned NETWORK SERVICE account, which is a relatively low-privileged, built-in identity in
Microsoft Windows. Originally welcomed as an excellent security measure, in the end the prac-
tice of using a single account for a potentially high number of concurrently running services
created more problems than it helped to solve.

In a nutshell, services running under the same account could tamper with one another. For
this reason, in Microsoft Internet Information Services 7.5, by default, worker processes run
under unique identities that are automatically and transparently created for each newly created
application pool. The underlying technology is known as Virtual Accounts and is currently sup-
ported by Windows Server 2008 R2 and Windows 7 and newer versions. For more information,
have a look at http://technet.microsoft.com/library/dd548356.aspx.

Customizable aspects of the default binder
Automatic binding stems from a convention-over-configuration approach. Conventions, though,
sometimes harbor bad surprises. If for some reason you lose control over the posted data (for ex-
ample, in the case of data that has been tampered with), it can result in undesired binding; any posted
key/value pair will, in fact, be bound. For this reason, you might want to consider using the Bind at-
tribute to customize some aspects of the binding process.

The Bind attribute
The Bind attribute comes with three properties, which are described in Table 3-2.

TABLE 3-2 Properties for the BindAttribute class

Property Description

Prefix String property. It indicates the prefix that must be found in the name of the posted value
for the binder to resolve it. The default value is the empty string.

Exclude Gets or sets a comma-delimited list of property names for which binding is not allowed.

Include Gets or sets a comma-delimited list of property names for which binding is permitted.

You apply the Bind attribute to parameters on a method signature.

mvc5_book.indb 91 2/6/14 1:56 PM

92 PArT I ASP.NET MVC fundamentals

Creating whitelists of properties
As mentioned, automatic model binding is potentially dangerous when you have complex types.
In such cases, in fact, the default binder attempts to populate all public properties on the complex
types for which it finds a match in the posted values. This might end up filling the server type with
unexpected data, especially in the case of request tampering. To avoid that, you can use the Include
property on the Bind attribute to create a whitelist of acceptable properties, such as shown here:

public ActionResult RepeatOnlyText([Bind(Include = "text")]RepeatText inputModel)
{
 ...
}

The binding on the RepeatText type will be limited to the listed properties (in the example, only
Text). Any other property is not bound and takes whatever default value the implementation of
RepeatText assigned to it. Multiple properties are separated by a comma.

Creating blacklists of properties
The Exclude attribute employs the opposite logic: It lists properties that must be excluded from bind-
ing. All properties except those explicitly listed will be bound:

public ActionResult RepeatOnlyText([Bind(Exclude = "number")]RepeatText inputModel)
{
 ...
}

You can use Include and Exclude in the same attribute if doing so makes it possible for you to
better define the set of properties to bind. For instance, if both attributes refer to the same property,
Exclude will win.

Aliasing parameters by using a prefix
The default model binder forces you to give your request parameters (for example, form and query
string fields) given names that match formal parameters on target action methods. Using the Prefix
attribute, you can change this convention. By setting the Prefix attribute, you instruct the model bind-
er to match request parameters against the prefix rather than against the formal parameter name. All
in all, alias would have been a much better name for this attribute. Consider the following example:

[HttpPost]
[ActionName("Emails")]
public ActionResult EmailForPost([Bind(Prefix = "email")]IList<String> emails)
{
 ...
}

For the emails parameter to be successfully filled, you need to have posted fields whose name is
email, not emails. The Prefix attribute makes particular sense on POST methods and fixes the afore-
mentioned issue with naming conventions and collections of parameters.

mvc5_book.indb 92 2/6/14 1:56 PM

 CHAPTER 3 The model-binding architecture 93

Finally, note that if a prefix is specified, it becomes mandatory; subsequently, fields whose names
are not prefixed are not bound.

Note Yes, the name chosen for the attribute—Prefix—is not really explanatory of the sce-
narios it addresses. Everybody agrees that Alias would have been a much better name. But,
now it’s too late to change it!

Advanced model binding

So far, we’ve examined the behavior of the default model binder. The default binder does excellent
work, but it is a general-purpose tool designed to work with most possible types in a way that is not
specific to any of them. The Bind attribute gives you some more control over the binding process,
but there are some reasonable limitations to its abilities. If you want to achieve total control over the
binding process, all you do is create a custom binder for a specific type.

Custom type binders
There’s just one primary reason you should be willing to create a custom binder: The default binder is
limited to taking into account only a one-to-one correspondence between posted values and proper-
ties on the model.

Sometimes, though, the target model has a different granularity than the one expressed by form
fields. The canonical example is when you employ multiple input fields to let users enter content for
a single property; for example, distinct input fields for day, month, and year that then map to a single
DateTime value.

Customizing the default binder
To create a custom binder from scratch, you implement the IModelBinder interface. Implementing the
interface is recommended if you need total control over the binding process. For example, if all you
need to do is to keep the default behavior and simply force the binder to use a non-default construc-
tor for a given type, inheriting from DefaultModelBinder is the best approach. Here’s the schema to
follow:

public RepeatTextModelBinder : DefaultModelBinder
{
 protected override object CreateModel(
 ControllerContext controllerContext,
 ModelBindingContext bindingContext,
 Type modelType)
 {
 ...
 return new RepeatText(...);
 }
}

mvc5_book.indb 93 2/6/14 1:56 PM

94 PArT I ASP.NET MVC fundamentals

Another common scenario for simply overriding the default binder is when all you want is the abil-
ity to validate against a specific type. In this case, you override OnModelUpdated and insert your own
validation logic, as shown here:

protected override void OnModelUpdated(ControllerContext controllerContext,
 ModelBindingContext bindingContext)
{
 var obj = bindingContext.Model as RepeatText;
 if (obj == null)
 return;

 // Apply validation logic here for the whole model
 if (String.IsNullOrEmpty(obj.Text))
 {
 bindingContext.ModelState.AddModelError("Text", ...);
 }
 ...
}

You override OnModelUpdated if you prefer to keep in a single place all validations for any proper-
ties. You resort to OnPropertyValidating if you prefer to validate properties individually.

Important When binding occurs on a complex type, the default binder simply copies
matching values into properties. You can’t do much to refuse some values if they put the
instance of the complex type in an invalid state.

A custom binder could integrate some logic to check the values being assigned to proper-
ties and signal an error to the controller method or degrade gracefully by replacing the
invalid value with a default one.

Although it’s possible to use this approach, it’s not commonly employed because there are
more powerful options in ASP.NET MVC that you can use to deal with data validation across
an input form. And that is exactly the topic I address in Chapter 4.

Implementing a model binder from scratch
The IModelBinder interface is defined as follows:

public interface IModelBinder
{
 Object BindModel(ControllerContext controllerContext,
 ModelBindingContext bindingContext);
}

Following is the skeleton of a custom binder that directly implements the IModelBinder interface.
The model binder is written for a specific type—in this case, MyComplexType:

mvc5_book.indb 94 2/6/14 1:56 PM

 CHAPTER 3 The model-binding architecture 95

public class MyComplexTypeModelBinder : IModelBinder
{
 public Object BindModel(ControllerContext controllerContext,
 ModelBindingContext bindingContext)
 {
 if (bindingContext == null)
 throw new ArgumentNullException("bindingContext");

 // Create the model instance (using the ctor you like best)
 var obj = new MyComplexType();

 // Set properties reading values from registered value providers
 obj.SomeProperty = FromPostedData<string>(bindingContext, "SomeProperty");
 ...
 return obj;
}

// Helper routine
private T FromPostedData<T>(ModelBindingContext context, String key)
{
 // Get the value from any of the input collections
 ValueProviderResult result;
 context.ValueProvider.TryGetValue(key, out result);

 // Set the state of the model property resulting from value
 context.ModelState.SetModelValue(key, result);

 // Return the value converted (if possible) to the target type
 return (T) result.ConvertTo(typeof(T));
}

The structure of BindModel is straightforward. You first create a new instance of the type of inter-
est. In doing so, you can use the constructor (or factory) you like best and perform any sort of custom
initialization that is required by the context. Next, you simply populate properties of the freshly cre-
ated instance with values read or inferred from posted data. In the preceding code snippet, I assume
that you simply replicate the behavior of the default provider and read values from registered value
providers based on a property name match. Obviously, this is just the place where you might want to
add your own logic to interpret and massage what’s being posted by the request.

Keep in mind that when writing a model binder, you are in no way restricted to getting informa-
tion for the model only from the posted data, which represents only the most common scenario. You
can grab information from anywhere (for example, from the ASP.NET cache and session state), parse
it, and store it in the model.

Note ASP.NET MVC comes with two built-in binders beyond the default one. These
additional binders are automatically selected for use when posted data is a Base64
stream (ByteArrayModelBinder type) and when the content of a file is being uploaded
(HttpPostedFileBaseModelBinder type).

mvc5_book.indb 95 2/6/14 1:56 PM

96 PArT I ASP.NET MVC fundamentals

registering a custom binder
You can associate a model binder with its target type globally or locally. In the former case, any oc-
currence of model binding for the type will be resolved through the registered custom binder. In the
latter case, you apply the binding to just one occurrence of one parameter in a controller method.

Global association takes place in the global.asax file as follows:

void Application_Start()
{
 ...
 ModelBinders.Binders[typeof(MyComplexTypeModelBinder)] =
 new MyCustomTypeModelBinder();
}

Local association requires the following syntax:

public ActionResult RepeatText(
 [ModelBinder(typeof(MyComplexTypeModelBinder))] MyComplexType info)
{
 ...
}

Local binders always take precedence over globally defined binders.

As you can glean clearly from the preceding code within Application_Start, you can have multiple
binders registered. You can also override the default binder, if required:

ModelBinders.Binders.DefaultBinder = new MyNewDefaultBinder();

However, modifying the default binder can have a considerable impact on the behavior of the ap-
plication and should therefore be a very thoughtful choice.

A sample DateTime model binder
With input forms, it is quite common to have users enter a date. You can sometimes use a jQuery user
interface to let users pick dates from a graphical calendar. If you use HTML5 markup on recent brows-
ers, the calendar is automatically provided. The selection is translated to a string and saved to a text
box. When the form posts back, the date string is uploaded and the default binder attempts to parse
it to a DateTime object.

In other situations, you might decide to split the date into three distinct text boxes, one each for
day, month, and year. These pieces are uploaded as distinct values in the request. The result is that the
default binder can manage them only separately; the burden of creating a valid DateTime object out
of day, month, and year values is up to the controller. With a custom default binder, you can take this
code out of the controller and still enjoy the pleasure of having the following signature for a control-
ler method:

public ActionResult MakeReservation(DateTime theDate)

Let’s see how to arrange a more realistic example of a model binder.

mvc5_book.indb 96 2/6/14 1:56 PM

 CHAPTER 3 The model-binding architecture 97

The displayed data
The sample view we consider next shows three text boxes for the items that make up a date as well
as a submit button. You enter a date, and the system calculates how many days have elapsed since or
how many days you have to wait for the specified day to arrive. Here’s the Razor markup:

@model DateEditorResponseViewModel
@section title{
 @Model.Title
}

@using (Html.BeginForm())
{
<fieldset>
 <legend>Date Editor</legend>
 <div>
 <table><tr>
 <td>@DateHelpers.InputDate("theDate", Model.DefaultDate)</td>
 <td><input type="submit" value="Find out more" /></td>
 </tr></table>
 </div>
</fieldset>
}
<hr />
@DateHelpers.Distance(Model.TimeToToday)

As you can see, I’m using a couple of custom helpers to better encapsulate the rendering of some
view code. Here’s how you render the date elements:

@helper InputDate(String name, DateTime? theDate)
{
 String day="", month="", year="";
 if(theDate.HasValue)
 {
 day = theDate.Value.Day.ToString();
 month = theDate.Value.Month.ToString();
 year = theDate.Value.Year.ToString();
 }
 <table cellpadding="0">
 <thead>
 <th>DD</th>
 <th>MM</th>
 <th>YYYY</th>
 </thead>
 <tr>
 <td><input type="number" name="@(name + ".day")"
 value="@day" style="width:30px" /></td>
 <td><input type="number" name="@(name + ".month")"
 value="@month" style="width:30px"></td>
 <td><input type="number" name="@(name + ".year")"
 value="@year" style="width:40px" /></td>
 </tr>
 </table>
}

mvc5_book.indb 97 2/6/14 1:56 PM

98 PArT I ASP.NET MVC fundamentals

Figure 3-7 shows the output.

FIGURE 3-7 A sample view that splits date input text into day-month-year elements.

The controller methods
The view in Figure 3-7 is served and processed by the following controller methods:

public class DateController : Controller
{
 [HttpGet]
 [ActionName("Editor")]
 public ActionResult EditorForGet()
 {
 var model = new EditorViewModel();
 return View(model);
 }

 [HttpPost]
 [ActionName("Editor")]
 public ActionResult EditorForPost(DateTime theDate)
 {
 var model = new EditorViewModel();
 if (theDate != default(DateTime))
 {
 model.DefaultDate = theDate;
 model.TimeToToday = DateTime.Today.Subtract(theDate);
 }
 return View(model);
 }
}

After the date is posted back, the controller action calculates the difference with the current day
and stores the results back in the view model by using a TimeSpan object. Here’s the view model
object:

mvc5_book.indb 98 2/6/14 1:56 PM

 CHAPTER 3 The model-binding architecture 99

public class EditorViewModel : ViewModelBase
{
 public EditorViewModel()
 {
 DefaultDate = null;
 TimeToToday = null;
 }
 public DateTime? DefaultDate { get; set; }
 public TimeSpan? TimeToToday { get; set; }
}

What remains to be examined is the code that performs the trick of transforming three distinct
values uploaded independently into one DateTime object.

Creating the DateTime binder
The structure of the DateTimeModelBinder object is not much different from the skeleton I described
earlier. It is just tailor-made for the DateTime type.

public class DateModelBinder : IModelBinder
{
 public Object BindModel(ControllerContext controllerContext, ModelBindingContext
bindingContext)
 {
 if (bindingContext == null)
 {
 throw new ArgumentNullException("bindingContext");
 }

 // This will return a DateTime object
 var theDate = default(DateTime);

 // Try to read from posted data. xxx.Day|xxx.Month|xxx.Year is assumed.
 var day = FromPostedData<int>(bindingContext, "Day");
 var month = FromPostedData<int>(bindingContext, "Month");
 var year = FromPostedData<int>(bindingContext, "Year");

 return CreateDateOrDefault(year, month, day, theDate);
 }

 // Helper routines
 private static T FromPostedData<T>(ModelBindingContext context, String id)
 {
 if (String.IsNullOrEmpty(id))
 return default(T);

 // Get the value from any of the input collections
 var key = String.Format("{0}.{1}", context.ModelName, id);
 var result = context.ValueProvider.GetValue(key);
 if (result == null && context.FallbackToEmptyPrefix)

mvc5_book.indb 99 2/6/14 1:56 PM

100 PArT I ASP.NET MVC fundamentals

 {
 // Try without prefix
 result = context.ValueProvider.GetValue(id);
 if (result == null)
 return default(T);
 }

 // Set the state of the model property resulting from value
 context.ModelState.SetModelValue(id, result);

 // Return the value converted (if possible) to the target type
 T valueToReturn = default(T);
 try
 {
 valueToReturn = (T)result.ConvertTo(typeof(T));
 }
 catch
 {
 }

 return valueToReturn;
 }

 private DateTime CreateDateOrDefault(Int32 year, Int32 month, Int32 day,
 DateTime? defaultDate)
 {
 var theDate = defaultDate ?? default(DateTime);
 try
 {
 theDate = new DateTime(year, month, day);
 }
 catch (ArgumentOutOfRangeException e)
 {
 }

 return theDate;
 }
}

The binder makes some assumptions about the naming convention of the three input elements.
In particular, it requires that those elements be named day, month, and year, possibly prefixed by the
model name. It is the support for the prefix that makes it possible to have multiple date input boxes in
the same view without conflicts.

With this custom binder available, all you need to do is register it either globally or locally. Here’s
how to make it work with just a specific controller method:

[HttpPost]
[ActionName("Editor")]
public ActionResult EditorForPost([ModelBinder(typeof(DateModelBinder))] DateTime theDate)
{

}

Figure 3-8 shows the final page in action.

mvc5_book.indb 100 2/6/14 1:56 PM

 CHAPTER 3 The model-binding architecture 101

FIGURE 3-8 Working with dates using a custom type binder.

Summary

In ASP.NET MVC as well as in ASP.NET Web Forms, posted data arrives within an HTTP packet and is
mapped to various collections on the Request object. To offer a nice service to developers, ASP.NET
then attempts to expose that content in a more usable way.

In ASP.NET Web Forms, the content is parsed and passed on to server controls; in ASP.NET MVC,
on the other hand, it is bound to parameters of the selected controller’s method. The process of
binding posted values to parameters is known as model binding and occurs through a registered
model-binder class. Model binders provide you with complete control over the deserialization of
form-posted values into simple and complex types.

In functional terms, the use of the default binder is transparent to developers—no action is
required on your end—and it keeps the controller code clean. By using model binders, including cus-
tom binders, you also keep your controller’s code free of dependencies on ASP.NET intrinsic objects
and thus make it cleaner and more testable.

The use of model binders is strictly related to posting and input forms. In Chapter 4, I discuss
aspects of input forms, input modeling, and data validation.

mvc5_book.indb 101 2/6/14 1:56 PM

mvc5_book.indb 102 2/6/14 1:56 PM

mvc5_book.indb 468 2/6/14 1:56 PM

 469

Accuracy mode, 459
action attributes, 353
ActionFilterAttribute class, 267, 272
action filters

built-in, 266
custom

adding response header, 267–268
compressing response, 268–271
view selector, 271–275

defined, 255, 263
dynamic loader filter

adding action filter using fluent code, 280
customizing action invoker, 280–282
enabling via filter provider, 282–285
interception points, 279–280
registering custom invoker, 282

embedded, 263–264
external, 263–264
global, 266–267
implementing as attribute, 264
types of, 265–266

Action HTML helper, 72
action invoker

defined, 79
replaceable components, 256, 258
view engine and, 37–38

ActionLink HTML helper, 18, 43, 47, 53
action links, 46–47
action methods

controller classes, 20–22
example of proper, 236
keeping lean, 231–236
restricting, 190–191
routing to

REST, 344–346
RPC, 353

Index

Symbols
51degrees.mobi, 447
200 response code (HTTP), 347
202 response code (HTTP), 348
204 response code (HTTP), 347
301 response code (HTTP), 152–153, 155
302 response code (HTTP), 8, 113, 152, 172
400 response code (HTTP), 163
403 response code (HTTP), 172, 286
404 response code (HTTP), 8, 172–173
500 response code (HTTP), 163, 345
$ function, 377
, (comma), 381
{ } curly brackets, 10
. (dot), 380
/ (forward slash), 10, 13
+ operator, 380
== operator, 369
=== operator, 369
> operator, 380
| (pipe symbol), 370
@ symbol, 44, 55–56, 58
~ (tilde), 177, 381, 455

A
AAA (arrange, act, assert), 311
acceptance tests, 322
Accept-Encoding header, 269, 270, 392
Accept header, 360
AcceptVerbs attribute, 19, 348, 353, 355
access tokens

social authorization, 221–223
Web API, 357

Account controller, 218

mvc5_book.indb 469 2/6/14 1:56 PM

ActionMethodSelectorAttribute class

470 Index

ActionMethodSelectorAttribute class, 277
ActionName attribute, 19, 275, 278
ActionNameSelectorAttribute class, 275
ActionResult class, 22, 26, 285–286, 290, 340
action results

built-in
returning custom status code, 285–287
returning HTML, 28–29
returning JavaScript, 287–288
returning JSON, 29–31, 288–290
returning primitive types, 290

custom
returning binary data, 295–297
returning JSONP, 290–292
returning PDF files, 297–299
returning syndication feed, 293–295

mechanics of, 27–28
types of, 26–28

Actions and HTTP verbs, 19–20
ActionScript, 368
action selectors

action method selectors, 276–277
action name selectors, 274–275
restricting method to Ajax calls only, 277–278
restricting method to button, 277–279

addMethod function, 144
adjacent operator, 380
advertised_browser capability, 458
advertised_device_os capability, 458
advertised_device_os_version capability, 458
Ajax (Asynchronous JavaScript and XML)

form submission using, 104, 116
in jQM, 416
JavaScript history, 367
Remember-Me feature and

reproducing problem, 204–205
solving, 205–207

restricting method to calls using, 277–278
WURFL capability group, 448

Ajax.BeginForm, 139
Ajax helper, 51, 53
Ajax property, 58
aliasing parameters, 92–93
AllowAnonymous attribute, 191, 356
Android, 399
AngularJS, 367
:animated filter, 381

annotations
form display templates, 117–120
input validation

client-side validation, 139–140
cross-property validation, 135–137
culture-based validation, 140–141
custom validation attributes, 137–139
decorating model class, 132–133
enumerated types, 133–134
error messages, 134–135
validating properties remotely, 141–142
validation provider, 130–131

anonymous functions, 372
anonymous users

authorization and, 191
vs. not authorized, 193

AntiForgeryToken method, 48
ApiController class, 341–344, 361
Appcelerator Titanium, 367
Apple Safari, 402
ApplicationConfigurer class, 455
ApplicationDbContext class, 203
ApplicationException class, 164
application layer, 240–241
application routes

defining, 11–12
processing, 12–13

Application_Start event handler, 11, 36, 251
ApplicationUser class, 202, 203
architectural style, 342
AreaMasterLocationFormats property, 54–55
AreaPartialViewLocationFormats property, 54–55
AreaViewLocationFormats property, 54–55
ArgumentException, 165, 312
ArgumentNullException, 165
arrange, act, assert (AAA), 311
Array object, 368
<article> elements, 401
aspect-ratio property, 409
AspNetCacheService class, 161
ASP.NET MVC

backward compatibility, 4
version 4, 34, 61

.aspx files, 39
ASPX pages and security, 189
ASPX view engine, 28, 34, 38, 40, 42
assemblies

for resources, 177
referencing embedded files, 178
visibility of internal members, 318

mvc5_book.indb 470 2/6/14 1:56 PM

 binding, model

 Index 471

assemblyinfo.cs file, 179, 317
assertions, 317
Assert.Throws method, 313
async attribute, 391
asynchronous calls to Web API, 351–352
Asynchronous JavaScript and XML. See Ajax
async keyword, 30, 351
AsyncTimeout filter, 266
Atom Syndication Format, 293
at symbol, 44, 55–56, 58
AttemptedValue property, 25
AttributeEncode method, 48
attribute filters, jQuery, 383
attribute routing

defined, 15
enabling, 354–355
overview, 353–354

audio in HTML5, 406–407
AuthController class, 196
authentication

authentication filters, 194–195
configuring, 190
membership system

identity system, 201–204
integrating with roles, 200–201
Membership API, 198–199
overview, 195
SimpleMembership API, 200–201
validating user credentials, 196–198

methods for, 189
OpenID protocol

vs. OAuth, 214–216
overview, 208
using, 209–214

Remember-Me feature and Ajax
reproducing problem, 204–205
solving, 205–207

social networks
access tokens, 221–223
enabling social authentication, 217–218
membership system, 220–221
registering application with Twitter, 215–216
starting process, 218–219
Twitter response, 219

Twitter, 221
AuthenticationResult class, 219, 222
<authentication> section, 190
authorization

action methods restrictions, 190–191
allowing anonymous callers, 191

anonymous vs. not authorized, 193
hiding user interface elements, 192
output caching and, 192

authorization filters, 265
Authorize action filter, 286
Authorize attribute, 190–192, 355–356
AuthorizeAttribute class, 356
AuthorizedOnly attribute, 206
Authorize filter, 266
AuthorizeRequest action filter, 73
Autofac, 249
AutoMapper, 243
AVI codec, 407
await keyword, 30, 351

B
background-position property, 393
basic authentication, 357–358
basic helpers

action links, 46–47
forms, 44–46
HtmlHelper class, 48
input elements, 46
partial views, 47

bearer capability group, 448
BeginForm HTML helper, 43–45, 109, 116
BeginRequest event, 432
BeginRouteForm HTML helper, 43–45
 element, 403
<big> element, 403
binary data, returning using action result, 295–297
Bind attribute

overview, 91
using, 107

bind function, 384
binding events using jQuery, 384–385
binding layer, 78
binding, model

custom type binders
creating, 94–95
customizing default binder, 93–94
registering, 96

DateTime model binder
code for, 99–101
controller method, 98–99
displayed data, 97–98
overview, 96

mvc5_book.indb 471 2/6/14 1:56 PM

black-box testing

472 Index

default model binder
aliasing parameters, 92–93
Bind attribute, 91
binding collections, 84–89
binding complex types, 83–84
binding content from uploaded files, 89–91
binding primitive types, 80–81
blacklist of properties, 92
optional values, 81–82
value providers, 82
whitelist of properties, 92

method signature, 79
model binders, 79

black-box testing, 321
blacklist of properties, 92
block elements, 401
blur event, 385
<body> tag, 391
Bootstrap

button groups, 429–430
drop-down menus, 427–429
feature detection, 407
glyph icons, 427
grid system, 425–426
images, 427
mobile-friendly websites, 412, 423
navigation bars, 426–427
overview, 423–424
setting up, 424–425

brand_name capability, 451–452
.browser files, 444
browsers, specific content for, 452–453
btn-group style, 429
built-in action filters, 266
built-in action results

returning custom status code, 285–287
returning JavaScript, 287–288
returning JSON, 288–290
returning primitive types, 290

BundleCollection class, 395
BundleConfig class, 395
BundleFileSetOrdering class, 396
bundling JavaScript

overview, 394–395
resources, 395
script files, 395–397

button groups, 429–430
ByteArrayModelBinder class, 95

C
cache capability group, 448
Cache object

caching method response, 161–162
distributed caching, 161–162
HttpContext and, 152
injecting caching service, 158–160
mocking, 333–335
OutputCache attribute, 161–162
overview, 157
partial caching, 162
pros and cons, 157–158

CacheProfile property, 162
caching layer, 107
camelCasing, 361
can_assign_phone_number capability, 451–452
CanReadType method, 361
CanWriteType method, 361
capabilities, device

accuracy vs. performance, 458–459
processing HTTP request, 456
virtual capabilities, 457–458
WURFL capability groups, 448–449

Capabilities dictionary, 465
caret segment, 430
Cascading Style Sheets. See CSS
case for URLs, and SEO, 154
Castle DynamicProxy, 328
Castle Windsor, 249
catch-all route, 172–174
CDN (content delivery network), 392, 424
cell phones, 436
<center> element, 403
centralized validation, 143
chaining operations

queries, 378
wrapped sets, 384

Chakra JavaScript engine, 368
change event, 385
ChangePassword method, 198
CheckBoxFor HTML helper, 43
CheckBox HTML helper, 43
ChildActionMvcHandler class, 73
ChildActionOnly attribute, 73, 162, 266
child actions, 73–74
chips capability group, 448
chtml_ui capability group, 448
ClassCleanup attribute, 311
ClassInitialize attribute, 311

mvc5_book.indb 472 2/6/14 1:56 PM

 controllers

 Index 473

class-level validation, 143
click event, 385
client-side validation, 130, 139–140, 403
closures (JavaScript), 374–376
Cloud API, WURFL

vs. on-premise API, 465
overview, 462–463
setting up, 464–465

code
coverage, 318
decoupling from serialization, 340
layers of, 3
nuggets, Razor view engine

conditional nuggets, 58
overview, 55–57
special expressions of, 57

Code Contracts, 146, 236
collapsible elements

HTML5, 402–403
jQuery Mobile, 422–423

collections, naming of, 87
comma (,), 381
comments in Razor code, 57
Compare annotation, 131, 137
complex types, binding, 83–84
Compress attribute, 270, 280
consumer key/secret, 216
container style, 425
:contains filter, 382
content delivery network (CDN), 392, 424
Content-Disposition header, 296
Content-Encoding header, 269, 270
Content folder, 177
content negotiation

default formatters, 361–362
defined, 360
defining formatters for types, 362–363
HTTP headers, 360–361

ContentResult class, 26, 29, 290
Content-Type header, 360
ContentType property, 296
ContextCondition property, 442, 443
Context property, 58
ControllerBase class, 49
Controller class, 110, 263, 340, 342
ControllerContext class, 273
controller factory

creating, 251–252
multiple instances and, 261
registering custom, 251

replaceable components, 256, 258
Unity-based, 252–253

controllers
action filters

built-in, 266
custom, 267–274
embedded, 263–264
external, 263–264
global, 266–267
types of, 265–266

action results
ActionResult class, 26
mechanics of, 27–28
returning binary data, 295–297
returning custom status code, 285–287
returning HTML, 28–29
returning JavaScript, 287–288
returning JSON, 29–31, 288–290
returning JSONP, 290–292
returning PDF files, 297–299
returning primitive types, 290
returning syndication feed, 293–295
types of, 26–28

action selectors
action method selectors, 276–277
action name selectors, 274–275
restricting method to Ajax calls only, 277–278
restricting method to button, 277–279

classes for
action methods, 20–22
Actions and HTTP verbs, 19–20
from routing to actions, 19
from routing to controllers, 17–19

dynamic loader filter
adding action filter using fluent code, 280
customizing action invoker, 280–282
enabling via filter provider, 282–285
interception points, 279–280
registering custom invoker, 282

extensibility models, 255
folder for, 226
granularity of, 16
injecting data and services

“Dependency Injection” pattern, 247–248
Dependency Inversion Principle, 244–245
IoC tools, 248–249
poor man’s dependency injection, 249–250
“Service Locator” pattern, 245–247

input model and, 76

mvc5_book.indb 473 2/6/14 1:56 PM

Controllers namespace

474 Index

keeping lean
action method sample, 236
action methods coded as view model

builders, 231–232
short is always better, 230–231

“Layered Architecture” pattern
application layer, 240–241
domain layer, 241–242
exposing entities of domain, 242–243
infrastructure layer, 243–244
overview, 237–238
presentation layer, 239

layering, 16
processing input data

from multiple sources, 23–24
from Request object, 22–25
from route, 23
ValueProvider dictionary, 24–25

provider-based extension model
alternate TempData storage example, 257
extensibility points, 256–257
using custom components, 257–259

routing requests
attribute routing, 15
defining application routes, 11–12
for physical files, 14
preventing for defined URLs, 14–15
processing routes, 12–13
route handler, 13–14
simulating ASP.NET MVC runtime, 4–7
URL patterns and routes, 10
URL Routing HTTP module, 7–9

Service Locator extension model
in ASP.NET MVC, 260–261
dependency resolvers, 261–262
vs. Dependency Injection, 259–260

Session object and, 156
stateless components, 16
stereotypes for

Controller stereotype, 228–229
Coordinator stereotype, 229–230
request execution and, 227–228
Responsibility-Driven Design, 226–227

testability, 17
vs. Web API

advantages of Web API, 340–341
Controller class, 340
overview, 339
RESTful applications, 341

Controllers namespace, 18

Controller stereotype, 228–229
controls

assigning same ID to, 85
properties for, 77

controls attribute, 407
Convention-over-Configuration pattern, 70
Cookies collection, 22, 25
cookie_support capability, 452
Coordinator stereotype, 227, 229–230
CORS (cross-origin resource sharing), 358–359
CountryIsValid method, 111
coupling and testability, 307
CreateController method, 251
CreateMetadata method, 124
Create/Read/Update/Delete. See CRUD
CreateRequest method, 211
CreateUser method, 198
Credentials property, 170
cross-origin resource sharing (CORS), 358
cross-property validation, 135–137
CRUD (Create/Read/Update/Delete)

REST and, 341, 342
validation and, 130

.cshtml files, 29, 39
css capability group, 448
CSS (Cascading Style Sheets)

Editor/Display helpers and, 120
jQuery, 378, 379
media queries, 408–410
Media Queries Level 4, 410
RWD and, 439
view templates, 39

CssMinify transformer, 397
culture

changing programmatically, 183–186
validation based on, 140–141

CultureAttribute class, 185, 271
Culture property, 58, 140, 182
curly brackets { }, 10
CurrentCulture property, 183
Current property, 124
CurrentUICulture property, 183
custom action filters

adding response header, 267–268
compressing response, 268–271
view selector, 271–275

custom action results
returning binary data, 295–297
returning JSONP, 290–292
returning PDF files, 297–299
returning syndication feed, 293–295

mvc5_book.indb 474 2/6/14 1:56 PM

 <details> element

 Index 475

custom binders, 80
custom helpers

Ajax helper example, 53
HTML helper example, 52
MvcHtmlString wrapper object, 51–53
structure of, 51

CustomValidation annotation, 131, 136–138, 143
custom view engines, 71–72

D
data access layer, 321
DataAnnotationsModelMetadataProvider class, 124
DataAnnotationsModelValidatorProvider class, 131
data-* attributes, 414–415
databases, localized resources, 186
data-collapsed attribute, 422
data-content-theme attribute, 422
data-driven tests, 313–314, 327–328
data entry patterns

Post-Redirect-Get pattern
overview, 112–113
saving data across redirects, 114–117
splitting POST and GET actions, 113–114
syncing content and URL, 112–113
updating via POST, 113–114

Select-Edit-Post pattern
editing data, 106–108
overview, 104–105
presenting data, 105–106
saving data, 108–111

data-filter attribute, 419
data-icon attribute, 416
data-id attribute, 417
data-inset attribute, 419
datalist element, 405
data model, 76
data-position attribute, 417
data-role attribute, 415–416, 418
DataSource attribute, 313
data-theme attribute, 414–415
data-title attribute, 416
data-toggle attribute, 429
data-transfer objects (DTOs), 242, 342
DataType annotation, 118, 123
Date object, 368
DateTime model binder

code for, 99–101
controller method, 98–99

displayed data, 97–98
overview, 96

date type, 404–405
DbContext class, 203
dblclick event, 385
DDD (Domain-Driven Design), 241
DDR (Device Description Repository), 446
debugging vs. testing, 302
decision coverage, 318
declarative helpers, 63–65
DefaultActionInvoker class, 256
DefaultBundleOrderer class, 395
DefaultControllerFactory class, 251, 256
DefaultDisplayMode class, 442, 443
default model binder

aliasing parameters, 92–93
Bind attribute, 91
binding collections, 84–89
binding complex types, 83–84
binding content from uploaded files, 89–91
binding primitive types, 80–81
blacklist of properties, 92
class for, 80, 84, 93
optional values, 81–82
value providers, 82
whitelist of properties, 92

defaultRedirect attribute, 172
default route, 173
defer attribute, 391
DELETE method (HTTP)

expected behavior for Web API, 347–348
REST and, 341

dependencies, testing
data access code, 327–328
fake objects, 326–327
mock objects, 326–327

Dependency Injection. See DI
DependencyResolver class, 262
dependency resolvers, 125, 261–262
design and testability

coupling and, 307
Design for Testability

control, 303
simplicity, 303–304
visibility, 303

interface-based programming, 304–306
object-oriented design and, 308–309
relativity of testability, 306–307

<details> element, 401, 402

mvc5_book.indb 475 2/6/14 1:56 PM

Developer Tools (IE)

476 Index

Developer Tools (IE), 441
device-aspect-ratio property, 409
Device Description Repository (DDR), 446
<device> elements, 447
device-height property, 409, 410
device identification

accuracy vs. performance, 458–459
overview, 451–452
processing HTTP request, 456
virtual capabilities, 457–458

device_os capability, 451, 452
device_os_version capability, 451, 452
device-width property, 409, 410
DfT (Design for Testability)

control, 303
defined, 302
simplicity, 303–304
visibility, 303

dictionaries, in JavaScript, 371
Dictionary values, 256, 258
DI (Dependency Injection)

overview, 247–248
poor man’s dependency injection, 249–250
vs. Service Locator extension model, 259–260

die method, 386
DIP (Dependency Inversion Principle)

overview, 244–245
SOLID principles, 306

DisableCors attribute, 359
display capability group, 448
DisplayColumn attribute, 130
DisplayConfig class, 460
DisplayFor HTML helper, 49
DisplayFormat annotation, 118
DisplayForModel HTML helper, 49, 51, 119, 125
Display HTML helper, 49
DisplayModeProvider class, 441
display modes

built-in support for mobile views, 440–441
custom, 444–446
default configuration for mobile views, 441–442
defined, 271
example using, 461–462
listing available, 443–444
matching rules, 461–462
naming, 442
overview, 440
selecting, 459–461

DisplayName annotation, 118

display templates
folder for, 122
for forms, 117

distributed caching, 161–162
<div> elements, 401
DLR (Dynamic Language Runtime), 66
DNOA (DotNetOpenAuth) library, 209
Document Object Model. See DOM
document root object, 386
Domain-Driven Design (DDD), 241
domain layer

exposing entities, 242–243
overview, 241–242
testing, 321

domain model, 75, 242
DOM (Document Object Model)

control IDs, 85
querying with jQuery, 377–379
readiness of, 386–387
selectors, 379
SPAs, 367

dot (.), 380
DotNetOpenAuth (DNOA) library, 209
DOTX files, 298
drm capability group, 448
dropdown class, 428
dropdown-header class, 429
DropDownListFor HTML helper, 43
DropDownList HTML helper, 43
drop-down menus, 427–429
DTOs (data-transfer objects), 242, 342
Duration property, 162
Dynamic Language Runtime (DLR), 66
dynamic loader filter

adding action filter using fluent code, 280
customizing action invoker, 280–282
enabling via filter provider, 282–285
interception points, 279–280
registering custom invoker, 282

E
Echo method, 23
ECMA-262 standard, 368
EcmaScript, 368
Edit-and-Post pattern, 104
Edit method, 20
EditorForModel HTML helper, 51, 119, 125, 132
Editor helpers, 49–51

mvc5_book.indb 476 2/6/14 1:56 PM

 FilePathResult class

 Index 477

editor templates
folder for, 122
for forms, 117

ELMAH (Error Logging Modules And Handlers), 170
email type, 403, 405
embedded action filters, 263–264
Embedded Resource build action, 178
:empty filter, 382
EmptyResult class, 26, 29, 290
em unit, 412
EnableClientValidation method, 48
EnableCorsAttribute class, 359
EnableOptimization property, 395
EnableUnobtrusiveJavaScript method, 48
Encode method, 48
endpoints, HTTP, 339
Engines collection, 35, 40
engines, JavaScript, 368
Enterprise Library Validation Application Block, 142
Entity Framework, 203, 242, 243
EnumDataType annotation, 131, 133
:eq filter, 381
Equals method, 137
ErrorController class, 174
Error event, 169
error handling

exceptions
HandleError attribute, 167–168
handling directly, 163–165
intercepting model-binding exceptions, 171–

172
overriding OnException method, 165–168
route exceptions, 171–172

global error handling
from global.asax, 169–170
using HTTP module, 170

input validation messages, 134–135
missing content

catch-all route, 172–174
overriding IIS policies, 174

overview, 163–164
Error Logging Modules And Handlers (ELMAH), 170
ErrorMessage property, 134
ErrorMessageResourceName property, 135
ErrorMessageResourceType property, 135
Error object, 368
error pages, built-in still showing, 168
ErrorViewModel class, 173
:even filter, 381
EvenNumber attribute, 140, 144

Event object, 385
events, jQuery

binding and unbinding, 384–385
DOM readiness and, 386–387
live event binding, 385–386

Exception class, 164
ExceptionContext class, 166
exception filters, 265
exception handling

HandleError attribute, 167–168
handling directly, 163–165
intercepting model-binding exceptions, 171–172
invalid values passed, 81
overriding OnException method, 165–168
testing for, 312

Exclude attribute, 91–92
ExecuteAsync method, 344
ExecuteResult method, 285, 292, 296
ExpectedException attribute, 313
ExtendedMembershipProvider class, 200
extensibility models for controllers, 255
extensibility point, 255
Extensible Markup Language. See XML
external action filters, 263–264
ExternalLoginCallback method, 219, 222
ExternalLogin method, 218
ExternalLoginResult class, 218
ExtraData property, 222

F
Facebook

authentication using, 194
Client SDK for C#, 222
social authentication importance, 215
SSO, 214

fake objects
testing dependencies, 326–327
unit testing, 315–316

Fakes, 308
fall_back attribute, 447
feature detection

defined, 439
overview, 407–408

<figure> element, 401
FileContentResult class, 26–27, 296
FileDownloadName property, 296
FileExtensions property, 54–55
FilePathResult class, 26–27, 296–297

mvc5_book.indb 477 2/6/14 1:56 PM

FileResult class

478 Index

FileResult class, 296
Files collection, 82
FileSetOrderList property, 396
FileStream property, 297
FileStreamResult class, 26–27, 296
file uploads, 90
FilterAttribute class, 266–267
Filter class, 284
FilterInfo class, 279
filters, authentication, 194–195
FilterScope enumeration, 284
filters, jQuery

overview, 381–383
vs. find, 383–384

find method, jQuery, 383–384
FindPartialView method, 36–37
FindView method, 36–37
Firefox, 367–368
:first-child filter, 382
:first filter, 381
Flags attribute, 20
flash_lite capability group, 448
Flickr, 208
fluid layout

jQuery Mobile, 420–421
overview, 411–412

focus event, 385
footer

HTML element, 401
jQuery Mobile, 416–418

FormattedModelValue property, 120
formatters

default, 361–362
defined, 340
defining for types, 362–363

Formatters collection, 361
Form collection, 22, 25, 82
<form> element, 46
forms

data entry patterns
Post-Redirect-Get pattern, 112–117
Select-Edit-Post pattern, 104–111

HTML helpers, 44–46
templates

annotating data members, 117–120
custom, 122–124, 126–129
default templates, 120–121
display and editor templates, 117
nested models, 128–129

read-only members, 123–125
tabular templates, 126–128

validating input
centralized validation advantages, 143
client-side validation, 139–140
cross-property validation, 135–137
culture-based validation, 140–141
custom validation attributes, 137–139
decorating model class, 132–133
enumerated types, 133–134
error messages, 134–135
IClientValidatable interface, 143–145
IValidatableObject interface, 142–143
overview, 130–131
server-side validation, 145–148
validating properties remotely, 141–142
validation provider, 130–131

FormsAuthentication class, 198
FormsCookieName property, 214
forward slash (/), 10, 13
Foundation framework, 424
<frame> element, 403
FriendlyIdentifierForDisplay property, 211
full_flash_support capability, 452
functional programming, 372
function coverage, 318
function filter, 383
functions (JavaScript), 372–373
Function type, 368

G
Gecko JavaScript engine, 368
geolocation, 183, 186
GetAllCapabilities method, 457
GetAll method, 244, 345
GetCapability method, 457
GetControllerInstance method, 251
GetControllerSessionBehavior method, 251
GetControllerType method, 251
GetDeviceForRequest method, 456, 459
GetDeviceInfo method, 465
GetFilters method, 279, 283
get function, 379
GetGlobalResourceObject method, 178
GetHttpHandler method, 14
GetHttpMethodOverride method, 276
getJSON function, 293
GetLocalizedUrl method, 324

mvc5_book.indb 478 2/6/14 1:56 PM

 HttpDelete attribute

 Index 479

GET method (HTTP)
defined, 20
example using, 85
Post-Redirect-Get pattern, 113–114
simulating in test, 329
Web API, 341, 345

GetOrderById method, 15
GetPreferredEncoding method, 270
GetSingle function, 244
GetUser method, 198
GetValue method, 24–25
GetWebResourceUrl method, 179
gif capability, 452
global action filters, 266–267
global.asax file

Cache object, 157
global error handling from, 169–170
model binders, 96
registering custom filters, 283
routes, 12

global error handling
from global.asax, 169–170
using HTTP module, 170

GlobalFilters collection, 267
glyph icons, 427
Google

case for URLs, 154
OpenID protocol, 208

Google Chrome, 367–368, 402, 404
granularity of controllers, 16
greyscale capability, 452
grid system, 425–426
:gt filter, 381
Gumby framework, 424
gzip compression, 269, 392

H
HandleError attribute, 167–168, 266
has_cellular_radio capability, 452
:has filter, 382
header

HTML5 element, 401
jQuery Mobile, 416–418

:header filter, 381
Headers collection, 25
headers, HTTP, 360–361
HEAD requests, 348
height property, 409–410

@helper keyword, 64
HiddenFor HTML helper, 43
Hidden HTML helper, 43
HiddenInput annotation, 118, 130
hoisting in JavaScript, 370–371
HomeController class, 341
Href property, 58
HTML5 (Hypertext Markup Language 5)

audio and video, 406–407
<datalist> element, 405
input types, 403–405
local storage, 406
native collapsible element, 402–403
semantic markup, 400–401

HtmlHelper class, 43, 48, 51
HTML helpers

basic helpers
action links, 46–47
forms, 44–46
HtmlHelper class, 48
input elements, 46
partial views, 47

custom helpers
Ajax helper example, 53
HTML helper example, 52
MvcHtmlString wrapper object, 51–53
structure of, 51

overview, 42–43
templated helpers

Display helpers, 49
Editor helpers, 49–51
types of, 48–49

HTML (Hypertext Markup Language)
returning from action result, 28–29
viewport meta attribute, 453

Html property, 58
html_ui capability group, 448
HttpApplication class, 169
HttpClient class, 351
HttpConfiguration class, 344, 359
HTTP context, mocking

Cache object, 333–335
HttpContext object, 329
overview, 328–329
Request object, 329–330
Response object, 330–331
Session object, 331–333

HttpCookieCollection class, 331
HttpDelete attribute, 353, 355

mvc5_book.indb 479 2/6/14 1:56 PM

HttpGet attribute

480 Index

HttpGet attribute, 19–20, 85, 353, 355
HTTP handler

behavior of, 5–6
invoking, 6–7

HTTP (Hypertext Transfer Protocol)
200 response code, 347
202 response code, 348
204 response code, 347
301 response code, 152–153, 155
302 response code, 8, 113, 152, 172
400 response code, 163
403 response code, 172, 286
404 response code, 8, 172–173
500 response code, 163, 345
compression, 268
CRUD operations and, 341
endpoints, 339
headers and content negotiation, 360–361
HEAD requests, 348
online resources, 152
returning custom status code, 285–287
stateless protocol, 107
verbs for, and Actions, 19–20

HttpMethodOverride method, 46, 48
HTTP module, 170
HttpNotFoundResult class, 26–27
HttpPost attribute, 19–20, 85, 353, 355
HttpPostedFileBase class, 89
HttpPostedFileBaseModelBinder class, 95
HttpPut attribute, 19, 353, 355
HttpRequestBase class, 276
HttpRequest class, 152, 276
HttpResponse class

devising URLs, 153–154
HttpContext and, 152
mocking, 330
permanent redirection, 152–153
trailing slash, 154–155

HttpResponseMessage class, 346–347
httpRuntime section, 90
HttpSessionState class

HttpContext and, 152
overview, 155

HTTPS (Hypertext Transfer Protocol Secure), 357
HttpStatusCodeResult class, 285
HttpUnauthorizedResult class, 26–27, 286
HttpVerbs enum, 20
Hypertext Markup Language. See HTML
Hypertext Markup Language 5. See HTML5

Hypertext Transfer Protocol. See HTTP
Hypertext Transfer Protocol Secure (HTTPS), 357

I
IActionFilter interface, 263, 265
IAuthenticationFilter interface, 194, 265
IAuthenticationManager interface, 203
IAuthorizationFilter interface, 265
IBundleOrderer interface, 395
IBundleTransform interface, 397
ICacheService interface, 158, 333
IClientValidatable interface, 140, 143–145
IControllerFactory interface, 251
id attribute, 447
IdentityDbContext class, 203
identity system, 201–204
IdentityUser class, 202
IDevice interface, 461
IE. See Internet Explorer
<i> element, 403
IExceptionFilter interface, 167, 265
<iframe> element, 403
if statements, 52
Ignore attribute, 312
IgnoreList property, 397
IHtmlString interface, 52
IHttpHandler interface, 5
IHttpRouteConstraint interface, 355
IIS (Internet Information Services)

HTTP compression, 268
requests and, 8
rewrite module, 155
security mechanisms and, 189
version 7.5, 91
Virtual Accounts feature, 91
Web API and, 341

ILogger interface, 305, 315
image_format capability group, 448
image_inlining capability, 452–453
images, in Bootstrap, 427
img-responsive class, 427
 tag, 393
IModelBinder interface, 93–94, 256
IModelBinderProvider interface, 256
@Import directive, 68
Include method, 395
Include property, 91–92
index parameter, 345–346

mvc5_book.indb 480 2/6/14 1:56 PM

 IWURFLConfigurer interface

 Index 481

Information holder stereotype, 227
infrastructure layer, 243–244
Inherits attribute, 68
injecting data and services

“Dependency Injection” pattern, 247–248
Dependency Inversion Principle, 244–245
IoC tools, 248–249
poor man’s dependency injection, 249–250
“Service Locator” pattern, 245–247

InMemoryConfigurer class, 455
<input> element, 403
input elements, 46
input model

defined, 75
model binders, 78
server controls role, 76–77
view state, 77–78

input types in HTML5, 403–405
input validation. See validation, input
Instance property, 456
IntelliSense, 376
interface-based programming, 304–306
Interfacer stereotype, 227
Interface Segregation Principle, 199, 306
InternalsVisibleTo attribute, 317
Internet Explorer

Developer Tools, 441
HTML5 and, 402, 404
JavaScript engine, 368

Internet Information Services. See IIS
intrinsic objects

Cache object
caching method response, 161–162
distributed caching, 161–162
injecting caching service, 158–160
OutputCache attribute, 161–162
overview, 157
partial caching, 162
pros and cons, 157–158

HttpResponse class
devising URLs, 153–154
permanent redirection, 152–153
trailing slash, 154–155

overview, 151–152
Session object

controller and, 156
overview, 155–156

InvalidOperationException, 165

InvokeActionMethodWithFilters method, 279–280
IoC (Inversion of Control)

extensibility model and, 255
injecting caching service, 158
Select-Edit-Post pattern, 105
tools for, 248–249

iOS, 399
IP addresses, 186
IResourceProvider interface, 187
IResultFilter interface, 265
IRouteHandler interface, 13
IsAjax property, 58
is_android capability, 458
is_app capability, 458
is_full_desktop capability, 458
is_html_preferred capability, 458
is_ios capability, 458
is_largescreen capability, 458
is_mobile capability, 458
IsMobileDevice method, 444
ISO/IEC 16262:201 standard, 368
isolation, testing in, 314
IsPost property, 59
is_robot capability, 458
IsSectionDefined method, 62
is_smartphone capability, 458
is_smarttv capability, 451
is_tablet capability, 450, 451, 452
is_touchscreen capability, 458
IsValidForRequest method, 277
IsValid method, 138
is_windows_phone capability, 458
is_wireless_device capability, 451, 452, 459
is_wml_preferred capability, 458
is_xhtmlmp_preferred capability, 458
ITempDataProvider interface, 256
iTextSharp, 298
IUseFixture interface, 311
IUser interface, 201
IUserStore interface, 202
IValidatableObject interface, 142–143
IValueProvider interface, 25, 256
IViewEngine interface, 36, 256
IViewSelector interface, 273
IWURFLConfigurer interface, 455

mvc5_book.indb 481 2/6/14 1:56 PM

j2me capability group

482 Index

J
j2me capability group, 448
JavaScript

bundling
overview, 394–395
resources, 395
script files, 395–397

invoking Web API from, 349–350
jQuery

DOM queries, 377–379
events, 384–386
overview, 377
root object, 377–378
selectors, 379–384
wrapped sets, 378–379

language
functions, 372–373
hoisting, 370–371
local and global variables, 369–370
null vs. undefined values, 369
objects, 371–372
type system, 368

loading scripts and resources
download is synchronous, 391
scripts at bottom, 391
sprites, 393–394
static files, 392

minification, 397
object-orientation in

closures, 374–376
making objects look like classes, 374
prototypes, 375–376

overview, 367
packaging for reuse

Module pattern, 389–391
Namespace pattern, 388–389

returning using action result, 287–288
unobtrusive code, 387–388

JavaScript Object Notation. See JSON
JavaScript Object Notation with Padding

(JSONP), 290–292
JavaScriptResult class, 26–27, 287
JavaScriptSerializer class, 29, 288, 350
jpg capability, 452
jQM. See jQuery Mobile
jQuery. See also jQuery Mobile

Ajax calls, 293
Bootstrap requirements, 425
chained queries, 378

client-side validation, 403
date picker, 96
documentation, 377
DOM queries, 377–379
events

binding and unbinding, 384–385
DOM readiness and, 386–387
live event binding, 385–386

globalization plugin, 140
in Ajax helper, 53
Mobile framework, 399
modal dialogs, 104
older browsers and, 407
overview, 377
prototypes and, 376
root object, 377–378
selectors

basic selectors, 379–380
chaining operations on wrapped set, 384
compound selectors, 380–381
filters, 381–383
filter vs. find, 383–384

Validation plugin, 116, 140, 144
wrapped sets, 378–379

jQuery Mobile
collapsible panels, 422–423
data-* attributes, 414–415
fluid layout, 420–421
header and footer, 416–418
lists, 418–421
overview, 413–414
pages in, 415–416
themes, 414

JScript, 368
JScript.NET, 368
JSLint, 370, 373
JsMinify transformer, 397
JsonCamelCaseFormatter class, 361
JSON (JavaScript Object Notation)

formatters, 340
returned by method, 21
returning from action result, 29–31, 288–290
return payload, 141
WCF and, 338
Web storage, 406

JsonMediaTypeFormatter class, 361
Json method, 289, 340
JSONP (JavaScript Object Notation with

Padding), 290–292
JsonpResult class, 291, 293
JsonResult class, 27, 288, 340

mvc5_book.indb 482 2/6/14 1:56 PM

 Microsoft.AspNet.Identity.EntityFramework namespace

 Index 483

K
Kendo UI, 414, 423
keyup event, 385
KnockoutJS, 349, 367

L
LabelFor HTML helper, 43
Label HTML helper, 43
lambda expressions, 117
LanguageController class, 185
:last-child filter, 382
:last filter, 381
latency, 186
layer, defined, 237
“Layered Architecture” pattern

application layer, 240–241
domain layer, 241–242
exposing entities of domain, 242–243
infrastructure layer, 243–244
overview, 237–238
presentation layer, 239

layering controllers, 16
layout breakpoint, 408
Layout property, 59, 60
Leaner CSS (LESS), 410, 424
Least-Recently-Used (LRU) algorithm, 457
length property, 379
LESS (Leaner CSS), 410, 424
LinkedIn

authentication using, 194
SSO, 214

<link> element, 154, 410
Liskov’s Substitution Principle, 306
ListBoxFor HTML helper, 43
ListBox HTML helper, 43
lists, using jQuery Mobile, 418–421
listview role, 418
live event binding using jQuery, 385–386
live method, 386
localization

auto-adapting applications, 182–183
changing culture programmatically, 183–186
files for, 177–178
getting localized data from service, 187
multilingual applications, 183
referencing embedded files, 178–180
storing resources in database, 186
text, 175–177

unit testing, 323–325
views, 180–181

local storage, HTML5, 406
localStorage property, 406
local variables in JavaScript, 369–370
Location property, 162
Logoff method, 196
Logon method, 196
LogonViewModel class, 198
LRU (Least-Recently-Used) algorithm, 457
:lt filter, 381

M
maintainability, 304
MapHttpAttributeRoutes method, 354
MapRoute method, 11
marketing_name capability, 451
markup capability group, 448
MasterLocationFormats property, 54, 55
Master property, 168, 193
master view

overview, 42
Razor view engine, 60–61

matching rules for display modes, 443, 461–462
Math object, 368
max_image_width capability, 451
maxRequestLength attribute, 90
media attribute, 409
Media Queries Level 4, CSS, 410
MediaTypeFormatter class, 361
Membership class, 198
MembershipProvider class, 198
membership system (authentication)

identity system, 201–204
integrating with roles, 200–201
Membership API, 198–199
overview, 195
SimpleMembership API, 200–201
social authentication and, 220–221
validating user credentials, 196–198

Memcached, 157
MemoryCache class, 161
message handlers, 357
Message Queuing (MSMQ), 338
metadata provider, 117
Microsoft.AspNet.Identity.Core namespace, 202
Microsoft.AspNet.Identity.EntityFramework

namespace, 202

mvc5_book.indb 483 2/6/14 1:56 PM

Microsoft IntelliSense

484 Index

Microsoft IntelliSense, 376
Microsoft Internet Explorer. See Internet Explorer
Microsoft Internet Information Services. See IIS
Microsoft.Owin.Security namespace, 203
Microsoft Passport, 208
MIME (Multipurpose Internet Mail Extensions), 453
minifying JavaScript, 397
missing content

catch-all route, 172–174
overriding IIS policies, 174

mms capability group, 448
mobile.browser file, 444
mobile-first approach, 413
mobile-friendly websites

Bootstrap
button groups, 429–430
drop-down menus, 427–429
glyph icons, 427
grid system, 425–426
images, 427
navigation bars, 426–427
overview, 423–424
setting up, 424–425

HTML5
audio and video, 406–407
<datalist> element, 405
input types, 403–405
local storage, 406
native collapsible element, 402–403
semantic markup, 400–401

jQuery Mobile
collapsible panels, 422–423
data-* attributes, 414–415
fluid layout, 420–421
header and footer, 416–418
lists, 418–421
overview, 413–414
pages in, 415–416
themes, 414

routing users from existing site
configuration files, 435–436
implementing routing, 432–434
overview, 430–431
routing algorithm, 432
tracking chosen route, 434–435

RWD
CSS media queries, 408–410
feature detection, 407–408
fluid layout, 411–412
overview, 412–413

mobile views
built-in support for, 440–441
default configuration for, 441–442

mock objects
mocking Cache object, 333–335
mocking HttpContext object, 329
mocking Request object, 329–330
mocking Response object, 330–331
mocking Session object, 331–333
testing dependencies, 326–327
unit testing, 315–316

modal dialogs, 104
mode attribute, 458
model binding

custom type binders
creating, 94–95
customizing default binder, 93–94
registering, 96

DateTime model binder
code for, 99–101
controller method, 98–99
displayed data, 97–98
overview, 96

default model binder
aliasing parameters, 92–93
Bind attribute, 91
binding collections, 84–89
binding complex types, 83–84
binding content from uploaded files, 89–91
binding primitive types, 80–81
blacklist of properties, 92
optional values, 81–82
value providers, 82
whitelist of properties, 92

exception handling for, 171–172
method signature, 79
model binders, 79
replaceable components, 256, 258

Model metadata, 256, 258
ModelMetadataProvider class, 125, 256
model_name capability, 451, 452
Model property, 59
models. See also model binding

data model, 76
domain model, 75
input model

defined, 75
model binders, 78
server controls role, 76–77
view state, 77–78

mvc5_book.indb 484 2/6/14 1:56 PM

 object_download capability group

 Index 485

modeling view
packaging view-model classes, 70
strongly typed view models, 67–70
ViewBag dictionary, 66–67
ViewData dictionary, 65–66

types of, 78
view model, 75

ModelState dictionary, 110, 115, 132
@ModelType keyword, 60
Model validator, 256, 258
ModelValidatorProvider class, 256
Model-View-Controller pattern. See MVC pattern
Modernizr, 367
Module pattern, 389–391
Moles, 308, 333
MooTools, 376
Moq, 316, 326
MOV codec, 407
Mozilla Firefox, 367–368
MP4 codec, 407
MSMQ (Message Queuing), 338
MSTest, 309, 313, 318
multi-device sites

display modes
built-in support for mobile views, 440–441
custom, 444–446
default configuration for mobile views, 441–

442
example using, 461–462
listing available, 443–444
matching rules, 443, 461–462
naming, 442
overview, 440
selecting, 459–461

server-side solution advantages, 466–467
WURFL database

capability groups, 448–449
Cloud API, 462–465
detecting device capabilities, 456–459
identifying current device, 451–452
initializing runtime, 456
installing NuGet package, 454–455
overview, 446–447
patch files, 450–451
referencing device database, 455–456
serving browser-specific content, 452–453
XML schema, 447

multilingual applications, 183. See also localization
Multipurpose Internet Mail Extensions (MIME), 453

multitransport services, 338
MvcHtmlString wrapper object, 51–53
MVC (Model-View-Controller) pattern

ASP.NET runtime and, 3
history, 75

myOpenID, 209

N
naked domains, 155
Namespace pattern, 388–389
navbar style, 426
nav class, 426
navigation bars, 426–427
NCache, 157
nested layouts, 63–64
nested models, 128–129
NETWORKSERVICE account, 91
new operator, 373–374
next operator, 381
Ninject, 249
NMock2, 316
Node.js, 367
NonAction attribute, 19, 276, 346
NoSQL, 239
NoStore property, 162
:not filter, 381
NotSupported exception, 14
:nth-child filter, 382
NuGet, 139
NullReferenceException, 165
null type

JavaScript primitive types, 368
vs. undefined type, 369

number type, 368, 405
NUnit, 309

O
OAuth

ASP.NET identity, 204
authentication filters, 194
vs. OpenID protocol, 214–216
Web API, 358–359

OAuthWebSecurity class, 217
ObjectCache class, 161
Object.cshtml file, 121
object_download capability group, 448

mvc5_book.indb 485 2/6/14 1:56 PM

object model

486 Index

object model, 242
object-oriented programming. See OOP
Object/Relational Mapper (O/RM), 241, 244
objects in JavaScript, 371–372
Object type, 368
:odd filter, 381
off function, 386
Office automation, 298
OnActionExecuted method, 263, 265
OnActionExecuting method, 185, 263, 265, 282
OnAuthenticationChallenge method, 194
OnAuthentication method, 194, 265
OnAuthorization method, 193, 265
onclick attribute, 429
OnException method, 165–168, 265
on function, 386
onload event, 386
:only-child filter, 382
OnModelUpdated method, 94
OnPropertyValidating method, 94
OnResultExecuted method, 265
OnResultExecuting method, 265, 272
OOP (object-oriented programming)

in JavaScript
closures, 374–376
making objects look like classes, 374
prototypes, 375–376

testability and, 308–309
open attribute, 402
Open/Closed Principle, 306
OpenID protocol

vs. OAuth, 214–216
overview, 208
using, 209–214

OpenIdRelyingParty class, 211
Open Web Interface for .NET (OWIN), 203
Opera, 368, 404
orchestration, defined, 240
orchestration layer, 321
Orderer property, 395
Order property, 266
orientation property, 409
O/RM (Object/Relational Mapper), 241, 244
OutputCache attribute, 73, 161–162, 192, 266
output caching, 192
OWIN (Open Web Interface for .NET), 203

P
packaging JavaScript for reuse

Module pattern, 389–391
Namespace pattern, 388–389

Page class, 39
pageinit event, 415, 416
parameters, aliasing, 92–93
:parent filter, 382
partial caching, 162
Partial HTML helper, 43, 47, 108, 180
PartialViewLocationFormats property, 54–55
PartialViewResult action result type, 27
partial views

folder for, 71–72
HTML helpers, 47

PascalCasing, 361
PasswordFor HTML helper, 43
Password HTML helper, 43
patch files for WURFL database, 450–451
path coverage, 318
pathInfo parameter, 15
pdf capability group, 449
PDF files, returning using action result, 297–299
Performance mode, 459
Pex add-in, 319
PhoneGap, 367
pipe symbol (|), 370
placeholder attribute, 405
playback capability group, 449
png capability, 452
pointing_method capability, 451–452
poster attribute, 407
POST method (HTTP)

defined, 20
example using, 85
expected behavior for Web API, 346–347
Post-Redirect-Get pattern, 113–114
REST and, 341
simulating in test, 329
X-HTTP-Method-Override, 46

Post-Redirect-Get pattern
overview, 112–113
saving data across redirects, 114–117
splitting POST and GET actions, 113–114
syncing content and URL, 112–113
updating via POST, 113–114

PostResolveRequestCache event, 9
preferred_markup capability, 452–453
Prefix attribute, 91, 92

mvc5_index.indd 486 2/6/14 2:10 PM

 Request class

 Index 487

presentation layer, 238, 239
PRG pattern. See Post-Redirect-Get pattern
primitive types

binding with default model binder, 80–81
returning using action result, 290

PrivateObject class, 318
product_info capability group, 449
properties, whitelist/blacklist of, 92
proportional layout, 412
prototypes

in JavaScript, 375–376
performance, 376

provider-based extension model
alternate TempData storage example, 257
extensibility points, 256–257
using custom components, 257–259

PUT method (HTTP)
expected behavior for Web API, 347
REST and, 341

Q
QueryString collection, 22, 25, 82

R
RadioButtonFor HTML helper, 43
RadioButton HTML helper, 43
RAD (Rapid Application Development), 301
Range annotation, 131
Raw HTML helper, 57
Raw method, 48
RawValue property, 25
Razor view engine

code nuggets
conditional nuggets, 58
overview, 55–57
special expressions of, 57

comments, 57
declarative helpers, 63–65
default for ASP.NET MVC 5, 35
master view, 60–61
model for view, 59
nested layouts, 63–64
Razor view object, 58–59
search locations, 54–55
sections

default content for, 62
overview, 61–62

RazorViewEngine class, 441
RDD (Responsibility-Driven Design)

defined, 105
overview, 226–227

readability, 304
ReadFromStreamAsync method, 361
ReadOnly attribute, 118, 123
read-only members, 123–125
ready event, 386, 415
readyState property, 386
Really Simple Syndication. See RSS
Redirect method, 152
RedirectPermanent method, 153
RedirectResult class, 27, 153, 325
redirects, HTTP

permanent, 152–153
Post-Redirect-Get pattern, 114–117
unit testing, 325

RedirectToRouteResult class, 27, 325
refreshing page, avoiding with Ajax, 116
RegExp object, 368
RegisterCacheService method, 160
RegisterDisplayModes method, 460–461
RegisterRoutes method, 11, 18, 325
RegularExpression annotation, 131
ReleaseController method, 251
ReleaseView method, 36–37
RelyingParty property, 211
Remember-Me feature and Ajax

reproducing problem, 204–205
solving, 205–207

Remote annotation, 131, 141
remote procedure calls. See RPC
remote property validation, 141–142
RenderAction HTML helper, 72, 162
render actions, 72–73, 156
RenderBody method, 60–61
RenderPage method, 62
RenderPartial HTML helper, 43, 47, 62, 108, 180
RenderSection method, 61–62
RepeatWithPrecedence method, 82
replaceable components

listing of, 256
registering, 258

Reporting Services, 298
Representational State Transfer. See REST
RequestAuthentication method, 218
Request class

mocking, 329–330
processing input from, 22–25

mvc5_book.indb 487 2/6/14 1:56 PM

RequestContext class

488 Index

RequestContext class, 13, 324
Required annotation, 127, 131
RequireHttps filter, 266
ResetAll, 396
resolution_height capability, 451–452
resolution_width capability, 451–452
resources

folder for, 176
separate assembly for, 177
storing in database, 186

Response class, 330–331
response format

ASP.NET MVC approach, 359–360
content negotiation

default formatters, 361–362
defining formatters for types, 362–363
HTTP headers, 360–361

Responsibility-Driven Design. See RDD
Responsive Web Design. See RWD
REST (Representational State Transfer)

application routes and, 9
vs. RPC, 352
Web API

ApiController class, 344
vs. MVC controllers, 341
naming conventions, 346
resource type, 342–343
routing to action methods, 344–346

result filters, 265
.resx files, 175
rewrite module, 155
RFC 2616, 270
Rhino Mocks, 316
Rich Site Summary (RSS), 293
RoleProvider class, 200
roles

authorization of, 191
integrating membership system, 200–201

RouteData collection, 13, 23, 82
route exceptions, 171–172
RouteExistingFiles property, 14
route handler

overview, 13–14
processing input from, 23

RouteLink HTML helper, 18, 43, 46
Routes collection, 11
routing

to action methods
REST, 344–346
RPC, 353

from existing website to mobile-friendly
configuration files, 435–436
implementing routing, 432–434
overview, 430–431
routing algorithm, 432
tracking chosen route, 434–435

unit testing routes, 325–326
routing requests

attribute routing, 15
defining application routes, 11–12
for physical files, 14
preventing for defined URLs, 14–15
processing routes, 12–13
route handler, 13–14
simulating ASP.NET MVC runtime

behavior of HTTP handler, 5–6
invoking HTTP handler, 6–7
syntax of recognized URLs, 4–5

subdomains and, 47
URL patterns and routes, 10
URL Routing HTTP module

internal structure of, 9
routing requests, 8–9
superseding URL rewriting, 7–8

row style, 425
RPC (remote procedure calls)

action attributes, 353
attribute routing

enabling, 354–355
overview, 353–354

routing to action methods, 353
vs. REST, 352
Web API and, 337

rss capability group, 449
RSS (Rich Site Summary), 293
rulesets, VAB, 145
runtime, simulating

behavior of HTTP handler, 5–6
invoking HTTP handler, 6–7
syntax of recognized URLs, 4–5

RWD (Responsive Web Design)
CSS media queries, 408–410
feature detection, 407–408
feature-detection and, 439
fluid layout, 411–412
mobile-friendly technologies, 399
overview, 412–413
pitfalls, 466

mvc5_book.indb 488 2/6/14 1:56 PM

 sms capability group

 Index 489

S
same-origin policy, 358
ScaffoldColumn attribute, 130
ScaleOut, 157
ScientiaMobile, 447
ScriptBundle class, 397
<script> element, 288, 293, 391, 416
Script property, 287
scripts, loading of

bottom of page, 391
download is synchronous, 391

SearchedLocations property, 37
search engine optimization. See SEO
sections, Razor view engine, 61–62
security

authentication
authentication filters, 194–195
configuring, 190
membership system, 195–204
OpenID protocol, 208–215
Remember-Me feature and Ajax, 204–207
using social networks, 215–223

authorization
action methods restrictions, 190–191
allowing anonymous callers, 191
anonymous vs. not authorized, 193
hiding user interface elements, 192
output caching and, 192

Web API
access tokens, 357
basic authentication, 357–358
CORS, 358–359
host handles, 355–356
OAuth, 358–359

security capability group, 449
segmented buttons, 429
Select-Edit-Post pattern

defined, 104
editing data, 106–108
overview, 104–105
presenting data, 105–106
saving data, 108–111

selectors, jQuery
basic selectors, 379–380
chaining operations on wrapped set, 384
compound selectors, 380–381
filters, 381–383
filter vs. find, 383–384

self-validation
centralized validation advantages, 143
IClientValidatable interface, 143–145
IValidatableObject interface, 142–143
server-side validation, 145–148

semantic markup of HTML5, 400–401
Sencha, 414, 423
SEO (search engine optimization)

case for URLs, 154
HttpResponse class and

devising URLs, 153–154
permanent redirection, 152–153
trailing slash, 154–155

subdomains, 155
URLs for, 7

Separation of Concerns (SoC), 16, 230
serialization, 340
server controls, 43
server-side validation, 141, 145–148
ServerVariables collection, 22
service layer, 238
Service Locator extension model

in ASP.NET MVC, 260–261
dependency resolvers, 261–262
vs. Dependency Injection, 259–260

“Service Locator” pattern, 245–247
Service-Oriented Architecture (SOA), 240, 338
Service provider stereotype, 227
Session object

controller and, 156
mocking, 331–333
overview, 155–156
saving temporary data, 114

sessionStorage, 406
setAction function, 278
SetResolver method, 262
Shared folder, 42
SimpleMembership API, 200–201
Simple Object Access Protocol (SOAP), 338
single-page applications (SPAs), 239
Single-Page Applications (SPAs), 367
Single Responsibility Principle, 306
single sign-on (SSO), 214
size function, 379
Skeleton framework, 424
<small> element, 427
smartphones, 399, 400, 436
smarttv capability group, 449
Smart TVs, 436
sms capability group, 449

mvc5_book.indb 489 2/6/14 1:56 PM

SmtpClient class

490 Index

SmtpClient class, 170
SOAP (Simple Object Access Protocol), 338
SOA (Service-Oriented Architecture), 240, 338
social authentication

access tokens, 221–223
enabling, 217–218
importance of, 215
membership system, 220–221
popularity, 189
registering application with Twitter, 215–216
starting process, 218–219
Twitter response, 219

SoC (Separation of Concerns), 16, 230
SOLID principles, 199, 230, 259, 306
SortEncodings method, 271
sound_format capability group, 449
 element, 427
span style, 425
Spark view engine, 28
SPAs (Single-Page Applications), 239, 367
split method, 368
Spring.NET, 249
sprites, 393–394
SqlDependency property, 162
SSO (single sign-on), 214
stateless components, 16
statement coverage, 318
stereotypes for controllers

Controller stereotype, 228–229
Coordinator stereotype, 229–230
request execution and, 227–228
Responsibility-Driven Design, 226–227

StopRoutingHandler class, 14
storage capability group, 449
streaming capability group, 449
StringBuilder class, 43
StringLength annotation, 131
string type, 368
StructureMap, 249
Structurer stereotype, 227
StyleBundle class, 397
subdomains

routing and, 47
SEO and, 155

substring method, 368
<summary> element, 402
SwitchToErrorView method, 166
syndication feed, returning using action result, 293–

295
SyndicationItem class, 295

SyndicationResult class, 293, 295
System.ComponentModel.DataAnnotations

namespace, 118
System.ComponentModel namespace, 118
System.Net.Http namespace, 351
System.ServiceModel assembly, 293
System.ServiceModel.Syndication namespace, 293
System.Web.Http assembly, 342, 344
System.Web.Mvc namespace, 279
System.Web.Routing namespace, 13

T
tablets, 399, 400, 436
tabular templates, 126–128
TagBuilder class, 51
tel type, 403, 405
TempData

controller extensibility example, 257
replaceable components, 256, 258
saving data across redirects, 114–115

TemplateDepth property, 129
templated helpers

Display helpers, 49
Editor helpers, 49–51
types of, 48–49

TemplateHint property, 124
TemplateInfo property, 121
templates, for forms

annotating data members, 117–120
custom, 122–124, 126–129
default templates, 120–121
display and editor templates, 117
nested models, 128–129
read-only members, 123–125
tabular templates, 126–128

testability. See testing
TestClass attribute, 311
TestCleanup attribute, 311
TestContext variable, 313
test doubles, 314, 326
test fixtures, 310–311
testing

controllers testability, 17
vs. debugging, 302
dependencies

data access code, 327–328
fake objects, 326–327
mock objects, 326–327

mvc5_book.indb 490 2/6/14 1:56 PM

 unit testing

 Index 491

design and testability
coupling and, 307
Design for Testability, 302–304
interface-based programming, 304–306
object-oriented design and, 308–309
relativity of testability, 306–307

importance of, 301–302
mocking HTTP context

mocking Cache object, 333–335
mocking HttpContext object, 329
mocking Request object, 329–330
mocking Response object, 330–331
mocking Session object, 331–333
overview, 328–329

unit testing
arrange, act, assert, 311–312
assertions per test, 317
choosing environment, 309–310
code coverage, 318
data-driven tests, 313–314
defined, 308–309
fakes and mocks, 315–316
inner members, 317–318
limited scope, 314
localization, 323–325
overview, 321
redirections, 325
routes, 325–326
test fixtures, 310–311
testing in isolation, 314
using test harness, 309
views, 322–323

which code to test
data access layer, 321
domain layer, 321
orchestration layer, 321
overview, 319–320

TestInitialize attribute, 311
TestMethod attribute, 313
TextAreaFor HTML helper, 43
TextArea HTML helper, 43
TextBoxFor HTML helper, 43
TextBox HTML helper, 43
text, localizing, 175–177
themes for jQuery Mobile, 414
this keyword, 370
ThreadAbortException, 166
tier, defined, 237
tiff capability, 452
tilde (~), 177, 381, 455

TimeSpan class, 98
<title> element, 416
ToBool method, 462
ToInt method, 462
trailing slash, 154–155
Transact-SQL (T-SQL), 16
transcoding capability group, 449
try/catch blocks, 163
TrySkipIisCustomErrors property, 174
T-SQL (Transact-SQL), 16
TweetSharp, 222
Twitter

authentication response, 219
OAuth, 194
registering application with, 215–216
social authentication importance, 215
SSO, 214
testing authentication, 221

Twitter Bootstrap. See Bootstrap
Typemock, 308, 316, 333
typeof method, 369
type system in JavaScript, 368

U
<u> element, 403
UICulture property, 59, 182
UIHint annotation, 118, 123–124
UI (user interface)

hiding elements, 192
mobile-friendly websites, 399

unbind function, 384
unbinding events in jQuery, 384–385
undefined type

JavaScript primitive types, 368
vs. null type, 369

Uniform Resource Identifier (URI), 4
Uniform Resource Locators. See URLs
Uniform Resource Name (URN), 4
unit testing

arrange, act, assert, 311–312
assertions per test, 317
choosing environment, 309–310
code coverage, 318
data-driven tests, 313–314
defined, 308–309
fakes and mocks, 315–316
inner members, 317–318
limited scope, 314
localization, 323–325

mvc5_book.indb 491 2/6/14 1:56 PM

Unity

492 Index

overview, 321
quality of numbers, 322
redirections, 325
routes, 325–326
test fixtures, 310–311
testing in isolation, 314
using test harness, 309
views, 322–323
white-box testing, 321

Unity
controller factory based on, 252–253
dependency resolver, 261
IoC frameworks, 249
online resources, 249

unobtrusive code, 387–388
untestable code, 307
URI (Uniform Resource Identifier), 4
Url.Content method, 177
UrlHelper class, 47, 324
Url property, 47
URL Routing HTTP module

internal structure of, 9
routing requests, 8–9
superseding URL rewriting, 7–8

URLs (Uniform Resource Locators)
case for, 154
defined, 4
parameters, 10
patterns and routes, 10
Post-Redirect-Get pattern, 112–113
preventing routing for defined, 14–15
SEO and, 153–154
syntax of recognized, 4–5

url type, 403, 405
URN (Uniform Resource Name), 4
user agents, 447, 452
UserData property, 212, 214
User Experience First (UXF), 240
user interface. See UI
UserManager class, 201–202
UserStore class, 202
“Use-That-Not-This” pattern, 373
UXF (User Experience First), 240

V
V8 JavaScript engine, 368
VAB (Validation Application Block), 145
ValidateAntiForgeryToken filter, 266

ValidateInput filter, 266
Validate, jQuery, 116
Validate method, 143
ValidateUser method, 198–199
Validation Application Block (VAB), 145
ValidationAttribute class, 131
ValidationContext parameter, 136
validation, input

data annotations
client-side validation, 139–140
cross-property validation, 135–137
culture-based validation, 140–141
custom validation attributes, 137–139
decorating model class, 132–133
enumerated types, 133–134
error messages, 134–135
validating properties remotely, 141–142
validation provider, 130–131

overview, 130–131
self-validation

centralized validation advantages, 143
IClientValidatable interface, 143–145
IValidatableObject interface, 142–143
server-side validation, 145–148

ValidationMessageFor HTML helper, 43
ValidationMessage HTML helper, 43, 46, 109–110,

132
ValidationSummary HTML helper, 43, 137
ValueProvider dictionary, 24–25
ValueProviderResult type, 24
value providers, 82
ValuesController class, 341
var keyword, 369, 371, 376
Varnish, 392
VaryByContentEncoding property, 162
VaryByCustom property, 162
VaryByHeader property, 162
VaryByParam property, 162
.vbhtml files, 29, 39
VerifyAuthentication method, 219
video in HTML5, 406–407
ViewBag dictionary, 42, 49, 59, 66–67, 156
ViewData dictionary, 42, 59, 65–66, 68, 121, 156, 173
View engine, 256, 258
ViewEngineResult class, 37
ViewEngines class, 35
ViewLocationFormats property, 54, 55
view model, 75
ViewName property, 273
viewport meta attribute, 424, 453

mvc5_book.indb 492 2/6/14 1:56 PM

 web.config file

 Index 493

viewport_supported capability, 452–453
View property, 168, 193
ViewResult class, 27, 274
views

child actions, 73–74
custom view engines, 71–72
HTML helpers

basic helpers, 43–48
custom helpers, 51–53
overview, 42–43
templated helpers, 48–51

localizing, 180–181
modeling view

packaging view-model classes, 70
strongly typed view models, 67–70
ViewBag dictionary, 66–67
ViewData dictionary, 65–66

Razor view engine
code nuggets, 55–57
conditional nuggets, 58
declarative helpers, 63–65
master view, 60–61
model for view, 59
nested layouts, 63–64
Razor view object, 58–59
search locations, 54–55
sections, 61–62
sections, default content for, 62
special expressions of code nuggets, 57

render actions, 72–73
unit testing, 322–323
view engine

action invoker and, 37–38
anatomy of, 36–37
detecting, 34–36
view object, 38–39

view template
default conventions and folders, 39–41
master view, 42
overview, 41–42
resolving, 39

view selector, 271–275
view state, 77–78
Virtual Accounts feature, 91
virtual capabilities, 457–458
VirtualPathProviderViewEngine class, 441
Visual Studio, 195
.vsdoc.js files, 397

W
W3C (World Wide Web Consortium), 153, 348
wap_push capability group, 449
WCF (Windows Communication Foundation), 232,

338–339
Web API

asynchronous calls, 351–352
client applications and, 339
expected method behavior

DELETE method, 347–348
other methods, 348
POST method, 346–347
PUT method, 347

importance of, 338
invoking from JavaScript, 349–350
invoking from server-side code, 350–351
vs. MVC controllers

advantages of Web API, 340–341
Controller class, 340
overview, 339
RESTful applications, 341

response format
ASP.NET MVC approach, 359–360
default formatters, 361–362
defining formatters for types, 362–363
HTTP headers, 360–361

REST
ApiController class, 344
naming conventions, 346
resource type, 342–343
routing to action methods, 344–346

RPC
action attributes, 353
attribute routing, 353–354
routing to action methods, 353
vs. REST, 352

security
access tokens, 357
basic authentication, 357–358
CORS (cross-origin resource sharing), 358–359
host handles, 355–356
OAuth, 358–359

WCF and, 338–339
Web Forms applications, 339

WebApiConfig class, 344
web.config file

adding mobile router to site, 435
authentication in, 190
client-side validation, 139

mvc5_book.indb 493 2/6/14 1:56 PM

Web Forms

494 Index

custom error flag, 171
error handling, 163
globalization section, 182
httpRuntime section, 90
IoC configuration, 262
maxRequestLength attribute, 90
Unity configuration, 252
WURFL in, 450

Web Forms
moving to input model

server controls role, 76–77
view state, 77–78

switching views, 274
view templates and, 41
Web API and, 339

WebFormsViewEngine class, 441
webHttpBinding binding, 338
WebMatrix, 39
WebSecurity class, 200
web service, 338
Web storage, 406
WebViewPage class, 60, 62
white-box testing, 321
whitelist of properties, 92
width property, 409–410
window object, 370
Windows 7, 91
Windows 8, 91
Windows authentication

defined, 190
overview, 195

Windows Communication Foundation (WCF), 232,
338–339

Windows Phone, 399
Windows Server 2008 R2, 91
Windows Server AppFabric Caching Services, 157,

161
wml_ui capability group, 449
worker services, 231–236
World Wide Web Consortium (W3C), 153, 348
wrapped sets, jQuery

chaining operations, 384
defined, 378
overview, 378–379

WriteFile method, 296
WriteToStreamAsync method, 361
WS-* protocols, 338

WURFL database
capability groups, 448–449
Cloud API

vs. on-premise API, 465
overview, 462–463
setting up, 464–465

detecting device capabilities
accuracy vs. performance, 458–459
processing HTTP request, 456
virtual capabilities, 457–458

display modes
example using, 461–462
matching rules, 461–462
selecting, 459–461

identifying current device, 451–452
initializing runtime, 456
installing NuGet package, 454–455
overview, 446–447
patch files, 450–451
referencing device database, 455–456
return values, 457
serving browser-specific content, 452–453
XML schema, 447

WURFLManagerBuilder class, 456

X
XHR (XmlHttpRequest), 116, 204, 277
XHTML MP format, 453
xhtml_ui capability group, 449
X-HTTP-Method-Override header, 46, 276
XML (Extensible Markup Language)

formatters, 340
requesting format, 360
VAB rulesets, 145
WURFL database schema, 447

XMLHttpRequest class, 116, 204, 277
xUnit.net, 309, 311, 313

Y
YAGNI (You Aren’t Gonna Need It) principle, 158
Yahoo!, 208

mvc5_book.indb 494 2/6/14 1:56 PM

	Contents
	Introduction
	Chapter 3: The model-binding architecture
	Index

