

Exam Ref 70-487:
Developing Windows
Azure and Web Services

William Ryan
Wouter de Kort
Shane Milton

Copyright © 2013 by Microsoft Press, Inc.

All rights reserved. No part of the contents of this book may be reproduced
or transmitted in any form or by any means without the written permission of
the publisher.

ISBN: 978-0-7356-7724-1

1 2 3 4 5 6 7 8 9 QG 8 7 6 5 4 3

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors
worldwide. If you need support related to this book, email Microsoft Press
Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/
en/us/IntellectualProperty/Trademarks/EN-US.aspx are trademarks of the
Microsoft group of companies. All other marks are property of their respec-
tive owners.

The example companies, organizations, products, domain names, email ad-
dresses, logos, people, places, and events depicted herein are fictitious. No
association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information con-
tained in this book is provided without any express, statutory, or implied
warranties. Neither the authors, Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or
alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Jeff Riley
Developmental Editor: Ginny Bess Munroe
Production Editor: Kara Ebrahim
Editorial Production: Box Twelve Communications
Technical Reviewer: Shane Milton
Copyeditor: Nancy Sixsmith
Indexer: Angie Martin
Cover Design: Twist Creative • Seattle
Cover Composition: Ellie Volckhausen
Illustrator: Rebecca Demarest

mailto:mspinput%40microsoft.com?subject=
http://www.microsoft.com/learning/booksurvey
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

Contents at a glance

Introduction xv

ChAPTER 1 Accessing data 1

ChAPTER 2 Querying and manipulating data by using the
Entity Framework 111

ChAPTER 3 Designing and implementing WCF Services 169

ChAPTER 4 Creating and consuming Web API-based services 287

ChAPTER 5 Deploying web applications and services 361

Index 437

v

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Contents

Introduction xv
Microsoft certifications xv

Acknowledgments xvi

Errata & book support xvi

We want to hear from you xvi

Stay in touch xvi

Preparing for the exam xvii

Chapter 1 Accessing data 1
Objective 1.1: Choose data access technologies . 1

Choosing a technology (ADO.NET, Entity Framework,
WCF Data Services) based on application requirements 1

Choosing EF as the data access technology 11

Choosing WCF Data Services as the data access technology 31

Objective summary 35

Objective review 35

Objective 1.2: Implement caching . 36

Understanding caching options 37

Using the ObjectCache 38

Using the HttpContext.Cache 43

Objective summary 51

Objective review 52

Objective 1.3: Implement transactions . 53

Understanding characteristics of transactions 53

vi Contents

Implementing distributed transactions 54

Specifying a transaction isolation level 55

Managing transactions by using the API from the
System.Transactions namespace 57

Using the EntityTransaction 58

Using the SqlTransaction 59

Objective summary 60

Objective review 60

Objective 1.4: Implement data storage in Windows Azure 61

Accessing data storage in Windows Azure 61

Choosing a data storage mechanism in Windows Azure
(blobs, tables, queues and SQL Database) 64

Distribute data by using the Windows Azure Content
Delivery Network (CDN) 69

Manage Windows Azure Caching 71

Handling exceptions by using retries (SQL Database) 72

Objective summary 74

Objective review 75

Objective 1.5: Create and implement a WCF Data Services service 75

Addressing resources 76

Creating a query 79

Accessing payload formats 83

Working with interceptors and service operators 83

Objective summary 85

Objective review 86

Objective 1.6: Manipulate XML data structures. 86

Reading, filtering, creating, and modifying XML structures 87

Manipulating XML data 90

XPath 95

LINQ-to-XML 96

Advanced XML manipulation 100

Objective summary 102

Objective review 103

Chapter summary . 103

Answers . 105

viiContents

Chapter 2 Querying and manipulating data by using the
Entity Framework 111

Objective 2.1: Query and manipulate data by using the Entity
Framework . 111

Querying, updating, and deleting data by using DbContext 112

Building a query that uses deferred execution 113

Implementing lazy loading and eager loading 115

Creating and running compiled queries 118

Querying data by using Entity SQL 119

Objective summary 121

Objective review 121

Objective 2.2: Query and manipulate data by using Data
Provider for Entity Framework . 122

Querying and manipulating data by using Connection,
DataReader, Command from the System.Data.
EntityClient namespace 122

Performing synchronous and asynchronous operations 124

Managing transactions (API) 124

Objective summary 126

Objective review 126

Objective 2.3: Query data by using LINQ to Entities 127

Querying data using LINQ operators 128

IEnumerable versus IQueryable 129

Logging queries 129

Objective summary 130

Objective review 131

Objective 2.4: Query and manipulate data by using ADO.NET 131

Querying data using Connection, DataReader,
Command, DataAdapter, and DataSet 132

SqlConnection 132

SqlCommand 133

SqlDataReader 134

Performing synchronous and asynchronous operations 141

Managing transactions 142

viii Contents

Objective summary 143

Objective review 144

Objective 2.5: Create an Entity Framework data model 145

Structuring the data model using Table-per-Type and
Table-per-Hierarchy inheritance 145

Choosing and implementing an approach to manage a
data model (code first vs. model first vs. database first) 146

Implementing POCOs 153

Describing a data model using conceptual schema
definitions, storage schema definitions, and mapping
language (CSDL, SSDL, & MSL) 156

Objective summary 160

Objective review 160

Chapter summary . 161

Answers . 162

Chapter 3 Designing and implementing WCF Services 169
Objective 3.1: Create a WCF service . 170

Defining SOA concepts 170

Creating contracts 171

Implementing inspectors 192

Implementing message inspectors 194

Objective summary 197

Objective review 198

Objective 3.2: Configure WCF services by using configuration
settings . 199

Configuring service behaviors 200

Creating a new service 200

Specifying a new service element (service) 201

Specifying a new service element (contract) 202

Specifying a new service element (communication mode) 203

Specifying a new service element (interoperability mode) 203

Resulting configuration file 204

Exposing service metadata 205

ixContents

Objective summary 211

Objective review 212

Objective 3.3: Configure WCF services by using the API 212

Configuring service endpoints 213

Configuring service behaviors 214

Configuring bindings 217

Specifying a service contract 221

Objective summary 225

Objective review 226

Objective 3.4: Secure a WCF service . 227

Implementing message level security 227

Implementing transport level security 229

Implementing certificates 230

Objective summary 231

Objective review 232

Objective 3.5: Consume WCF services . 233

Generating proxies using Svcutil.exe 233

Generating proxies by creating a service reference 235

Creating and implementing channel factories 239

Objective summary 242

Objective review 243

Objective 3.6: Version a WCF service . 244

Versioning different types of contracts 244

Configuring address, binding, and routing service versioning 246

Objective summary 247

Objective review 247

Objective 3.7: Create and configure a WCF service on
Windows Azure . 249

Creating and configuring bindings for WCF services 249

Relaying bindings to Azure using service bus endpoints 252

Integrating with the Azure service bus relay 252

Objective summary 254

Objective review 254

x Contents

Objective 3.8: Implement messaging patterns . 255

Implementing one-way, request/reply, streaming, and
duplex communication 256

Implementing Windows Azure service bus and
Windows Azure queues 260

Objective summary 262

Objective review 263

Objective 3.9: Host and manage services . 264

Managing services concurrency 264

Choosing an instancing mode 265

Creating service hosts 266

Choosing a hosting mechanism 270

Creating transactional services 271

Hosting services in a Windows Azure worker role 272

Objective summary 273

Objective review 274

Chapter summary . 275

Answers . 276

Chapter 4 Creating and consuming Web API-based services 287
Objective 4.1: Design a Web API . 287

Choosing appropriate HTTP methods 288

Mapping URI space using routing 299

Choosing appropriate formats for responses to meet
requirements 304

Planning when to make HTTP actions asynchronous 304

Objective summary 306

Objective review 307

Objective 4.2: Implement a Web API . 308

Accepting data in JSON format 308

Using content negotiation to deliver different data formats 312

Defining actions and parameters to handle data binding 315

Using HttpMessageHandler to process client requests
and server responses 316

Implementing dependency injection 317

xiContents

Implementing action filters and exception filters 320

Implementing asynchronous and synchronous actions 321

Implementing streaming actions 321

Objective summary 323

Objective review 324

Objective 4.3: Secure a Web API . 324

Authenticating and authorizing users 325

Implementing HttpBasic authentication 326

Implementing Windows Authentication 329

Preventing cross-site request forgery 330

Enabling cross-domain requests 333

Implementing and extending authorization filters 334

Objective summary 336

Objective review 336

Objective 4.4: Host and manage a Web API . 337

Self-hosting a Web API 338

Hosting Web API in an ASP.NET app 340

Hosting services in a Windows Azure worker role 341

Restricting message size 342

Configuring the host server for streaming 343

Objective summary 345

Objective review 345

Objective 4.5: Consume Web API web services . 346

Consuming Web API services 346

Sending and receiving requests in different formats 350

Objective summary 352

Objective review 352

Chapter summary . 353

Answers . 354

Chapter 5 Deploying web applications and services 361
Objective 5.1: Design a deployment strategy . 362

Deploying a web application by using XCopy 362

Creating an IIS install package 367

xii Contents

Automating a deployment from TFS or Build Server 367

Deploying to web farms 371

Objective summary 373

Objective review 373

Objective 5.2: Choose a deployment strategy for a Windows
Azure web application . 374

Performing an in-place upgrade and VIP Swap 374

Configuring an upgrade domain 375

Upgrading through a VIP Swap 376

Creating and configuring input and internal endpoints 377

Specifying operating system configuration 380

Objective summary 382

Objective review 383

Objective 5.3: Configure a web application for deployment 383

Switching from production/release mode to debug 384

Transforming web.config by XSLT 385

Using SetParameters to set up an IIS app pool 387

Configuring Windows Azure configuration settings 390

Objective summary 392

Objective review 392

Objective 5.4: Manage packages by using NuGet 393

Installing and updating an existing NuGet package 394

Creating and configuring a NuGet package 399

Setting up your own package repository 403

Objective summary 405

Objective review 406

Objective 5.5: Create, configure, and publish a web package 406

Creating an IIS InstallPackage 407

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

xiiiContents

Configuring the build process to output a web package 415

Applying pre- and post-condition actions 416

Objective summary 417

Objective review 417

Objective 5.6: Share assemblies between multiple applications
and servers . 418

Preparing the environment for use of assemblies across
multiple servers 419

Signing assemblies by using a strong name 420

Deploying assemblies to the global assembly cache 422

Implementing assembly versioning 423

Creating an assembly manifest 426

Objective summary 427

Objective review 428

Chapter summary . 429

Answers . 430

Index 437

xv

Introduction

Most books take a low-level approach, teaching you how to use individual classes and how to
accomplish granular tasks. Like other Microsoft certification exams, this book takes a high-
level approach, building on your knowledge of lower-level Microsoft Windows application
development and extending it into application design. Both the exam and the book are so
high level that there is little coding involved. In fact, most of the code samples in this book
illustrate higher-level concepts.

The exam is written for developers who have three to five years of experience developing
Web Services and at least one year of experience developing Web API and Azure solutions.
Developers should also have at least three years of experience working with Relational Data-
base Management systems and ADO.NET and at least one year of experience with the Entity
Framework.

This book covers every exam objective, but it does not cover every exam question. Only
the Microsoft exam team has access to the exam questions themselves, and Microsoft regu-
larly adds new questions to the exam, making it impossible to cover specific questions. You
should consider this book a supplement to your relevant real-world experience and other
study materials. If you encounter a topic in this book that you do not feel completely com-
fortable with, use the links you’ll find in the text to find more information and take the time
to research and study the topic. Valuable information is available on MSDN, TechNet, and in
blogs and forums.

Microsoft certifications

Microsoft certifications distinguish you by proving your command of a broad set of skills and
experience with current Microsoft products and technologies. The exams and corresponding
certifications are developed to validate your mastery of critical competencies as you design
and develop, or implement and support, solutions with Microsoft products and technologies
both on-premise and in the cloud. Certification brings a variety of benefits to the individual
and to employers and organizations.

MORE INFO ALL MICROSOFT CERTIFICATIONS

For information about Microsoft certifications, including a full list of available certifica-
tions, go to http://www.microsoft.com/learning/en/us/certification/cert-default.aspx.

http://www.microsoft.com/learning/en/us/certification/cert-default.aspx

xvi Introduction

Acknowledgments

I’d like to thank Ginny Munroe and Shane Milton for the immense help they provided in pre-
paring this book. My wife and daughter were extremely supportive throughout this stressful
and difficult time. I’d also like to thank Walter Bellhaven and Herb Sewell for always keeping
things uplifting.

Errata & book support

We’ve made every effort to ensure the accuracy of this book and its companion content.
Any errors that have been reported since this book was published are listed on our Microsoft
Press site:

http://aka.ms/ER70-487/errata

If you find an error that is not already listed, you can report it to us through the same
page.

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

http://aka.ms/ER70-487/errata
mailto:mspinput%40microsoft.com?subject=
mailto:mspinput%40microsoft.com?subject=
http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress

xviiIntroduction

Preparing for the exam

Microsoft certification exams are a great way to build your resume and let the world know
about your level of expertise. Certification exams validate your on-the-job experience and
product knowledge. While there is no substitution for on-the-job experience, preparation
through study and hands-on practice can help you prepare for the exam. We recommend
that you round out your exam preparation plan by using a combination of available study
materials and courses. For example, you might use the Exam Ref and another study guide for
your "at home" preparation, and take a Microsoft Official Curriculum course for the classroom
experience. Choose the combination that you think works best for you.

Note that this Exam Ref is based on publically available information about the exam and
the author's experience. To safeguard the integrity of the exam, authors do not have access to
the live exam.

 1

C h A P T E R 1

Accessing data
It’s hard to find a modern software application that

doesn’t make extensive use of data access. Some exist,
but particularly in the business realm, most have a heavy
data access component. There are many ways to build
data-centric applications and many technologies that can
be used. Microsoft provides several, including ADO.NET,
Entity Framework, and SQL Server. This objective covers
about 24 percent of the exam’s questions.

Objectives in this chapter:
■■ Objective 1.1: Choose data access technologies

■■ Objective 1.2: Implement caching

■■ Objective 1.3: Implement transactions

■■ Objective 1.4: Implement data storage in Windows Azure

■■ Objective 1.5: Create and implement a WCF Data Services service

■■ Objective 1.6: Manipulate XML data structures

Objective 1.1: Choose data access technologies

There’s no law that states that only one data access technology must be used per applica-
tion. However, unless you have a specific need, it’s generally advisable to pick a data access
technology and stick with it throughout the application. Three obvious choices covered by
this exam are ADO.NET, Entity Framework (EF), and WCF Data Services.

This objective covers how to:
■■ Choose a technology (ADO.NET, Entity Framework, WCF Data Services) based

on application requirements

i m p o r t a n t

Have you read
page xvii?
It contains valuable
information regarding
the skills you need to
pass the exam.

 2 ChAPTER 1 Accessing data

Choosing a technology (ADO.NET, Entity Framework,
WCF Data Services) based on application requirements
Choosing a data access technology is something that requires thought. For the majority of
cases, anything you can do with one technology can be accomplished with the other tech-
nologies. However, the upfront effort can vary considerably. The downstream benefits and
costs are generally more profound. WCF Data Services might be overkill for a simple one-user
scenario. A console application that uses ADO.NET might prove much too limiting for any
multiuser scenario. In any case, the decision of which technology to use should not be under-
taken lightly.

Choosing ADO.NET as the data access technology
If tasked to do so, you could write a lengthy paper on the benefits of using ADO.NET as a
primary data access technology. You could write an equally long paper on the downsides of
using ADO.NET. Although it’s the oldest of the technologies on the current stack, it still war-
rants serious consideration, and there’s a lot to discuss because there’s a tremendous amount
of ADO.NET code in production, and people are still using it to build new applications.

ADO.NET was designed from the ground up with the understanding that it needs to be
able to support large loads and to excel at security, scalability, flexibility, and dependability.
These performance-oriented areas (security, scalability, and so on) are mostly taken care of by
the fact that ADO.NET has a bias toward a disconnected model (as opposed to ADO’s com-
monly used connected model). For example, when using individual commands such as INSERT,
UPDATE, or DELETE statements, you simply open a connection to the database, execute the
command, and then close the connection as quickly as possible. On the query side, you create
a SELECT query, pull down the data that you need to work with, and immediately close the
connection to the database after the query execution. From there, you’d work with a localized
version of the database or subsection of data you were concerned about, make any changes
to it that were needed, and then submit those changes back to the database (again by open-
ing a connection, executing the command, and immediately closing the connection).

There are two primary reasons why a connected model versus disconnected model is im-
portant. First of all, connections are expensive for a relational database management system
(RDBMS) to maintain. They consume processing and networking resources, and database
systems can maintain only a finite number of active connections at once. Second, connections
can hold locks on data, which can cause concurrency problems. Although it doesn’t solve all
your problems, keeping connections closed as much as possible and opening them only for
short periods of time (the absolute least amount of time possible) will go a long way to miti-
gating many of your database-focused performance problems (at least the problems caused
by the consuming application; database administrator (DBA) performance problems are an
entirely different matter).

To improve efficiency, ADO.NET took it one step farther and added the concept of
connection pooling. Because ADO.NET opens and closes connections at such a high rate, the
minor overheads in establishing a connection and cleaning up a connection begin to affect

 Objective 1.1: Choose data access technologies ChAPTER 1 3

performance. Connection pooling offers a solution to help combat this problem. Consider
the scenario in which you have a web service that 10,000 people want to pull data from over
the course of 1 minute. You might consider immediately creating 10,000 connections to the
database server the moment the data was requested and pulling everybody’s data all at
the same time. This will likely cause the server to have a meltdown! The opposite end of the
spectrum is to create one connection to the database and to make all 10,000 requests use
that same connection, one at a time.

Connection pooling takes an in-between approach that works much better. It creates a
few connections (let’s say 50). It opens them up, negotiates with the RDBMS about how it will
communicate with it, and then enables the requests to share these active connections, 50 at
a time. So instead of taking up valuable resources performing the same nontrivial task 10,000
times, it does it only 50 times and then efficiently funnels all 10,000 requests through these
50 channels. This means each of these 50 connections would have to handle 200 requests in
order to process all 10,000 requests within that minute. Following this math, this means that,
if the requests can be processed on average in under ~300ms, you can meet this require-
ment. It can take ~100ms to open a new connection to a database. If you included that within
that 300ms window, 33 percent of the work you have to perform in this time window is dedi-
cated simply to opening and closing connections, and that will never do!

Finally, one more thing that connection pooling does is manage the number of active
connections for you. You can specify the maximum number of connections in a connection
string. With an ADO.NET 4.5 application accessing SQL Server 2012, this limit defaults to
100 simultaneous connections and can scale anywhere between that and 0 without you as a
developer having to think about it.

ADO.NET compatibility
Another strength of ADO.NET is its cross-platform compatibility. It is compatible with much
more than just SQL Server. At the heart of ADO.NET is the System.Data namespace. It contains
many base classes that are used, irrespective of the RDBMS system. There are several vendor-
specific libraries available (System.Data.SqlClient or System.Data.OracleClient, for instance) as
well as more generic ones (System.Data.OleDb or System.Data.Odbc) that enable access to
OleDb and Odbc-compliant systems without providing much vendor-specific feature access.

ADO.NET architecture
The following sections provide a quick overview of the ADO.NET architecture and then
discuss the strengths and benefits of using it as a technology. A few things have always been
and probably always will be true regarding database interaction. In order to do anything, you
need to connect to the database. Once connected, you need to execute commands against
the database. If you’re manipulating the data in any way, you need something to hold the
data that you just retrieved from the database. Other than those three constants, everything
else can have substantial variability.

 4 ChAPTER 1 Accessing data

NOTE PARAMETERIZE YOUR QUERIES

There is no excuse for your company or any application you work on to be hacked by an in-
jection attack (unless hackers somehow find a vulnerability in the DbParameter class that’s
been heretofore unknown). Serious damage to companies, individual careers, and unknow-
ing customers has happened because some developer couldn’t be bothered to clean up his
dynamic SQL statement and replace it with parameterized code. Validate all input at every
level you can, and at the same time, make sure to parameterize everything as much as
possible. This one of the few serious bugs that is always 100 percent avoidable, and if you
suffer from it, it’s an entirely self-inflicted wound.

.NET Framework data providers
According to MSDN, .NET Framework data providers are described as “components that have
been explicitly designed for data manipulation and fast, forward-only, read-only access to
data.” Table 1-1 lists the foundational objects of the data providers, the base class they derive
from, some example implementations, and discussions about any relevant nuances.

TABLE 1-1 .NET Framework data provider overview

Provider object Interface Example items Discussion

DbConnection IDbConnection SqlConnection,
OracleConnection,
EntityConnection,
OdbcConnection,
OleDbConnection

Necessary for any database interaction.
Care should be taken to close connections
as soon as possible after using them.

DbCommand IDbCommand SqlCommand,
OracleCommand,
EntityCommand,
OdbcCommand,
OleDbCommand

Necessary for all database interactions in
addition to Connection. Parameterization
should be done only through the
Parameters collection. Concatenated
strings should never be used for the
body of the query or as alternatives to
parameters.

DbDataReader IDataReader SqlDataReader,
OracleDataReader,
EntityDataReader,
OdbcDataReader,
OleDbDataReader

Ideally suited to scenarios in which speed
is the most critical aspect because of its
forward-only nature, similar to a Stream.
This provides read-only access to the data.

DbDataAdapter IDbDataAdapter SqlDataAdapter,
OracleDataAdapter,
OdbcDataAdapter,
OleDbDataAdapter

Used in conjunction with a Connection
and Command object to populate a
DataSet or an individual DataTable, and
can also be used to make modifications
back to the database. Changes can be
batched so that updates avoid unneces-
sary roundtrips to the database.

 Objective 1.1: Choose data access technologies ChAPTER 1 5

Provider object Interface Example items Discussion

DataSet N/A No provider-specific
implementation

In-memory copy of the RDBMS or portion
of RDBMS relevant to the application. This
is a collection of DataTable objects, their
relationships to one another, and other
metadata about the database and com-
mands to interact with it.

DataTable N/A No provider-specific
implementation

Corresponds to a specific view of data,
hether from a SELECT query or generated
from .NET code. This is often analogous to
a table in the RDBMS, although only par-
tially populated. It tracks the state of data
stored in it so, when data is modified, you
can tell which records need to be saved
back into the database.

The list in Table 1-1 is not a comprehensive list of the all the items in the System.Data (and
provider-specific) namespace, but these items do represent the core foundation of ADO.NET.
A visual representation is provided in Figure 1-1.

FIGURE 1-1 .NET Framework data provider relationships

DataSet or DataReader?
When querying data, there are two mechanisms you can use: a DataReader or a DataAdapter.
These two options are more alike than you might think. This discussion focuses on the differ-
ences between using a DataReader and a DataAdapter, but if you said, “Every SELECT query
operation you employ in ADO.NET uses a DataReader,” you’d be correct. In fact, when you
use a DataAdapter and something goes wrong that results in an exception being thrown,
you’ll typically see something like the following in the StackTrace of the exception: “System.
InvalidOperationException: ExecuteReader requires an open and available Connection.” This

 6 ChAPTER 1 Accessing data

exception is thrown after calling the Fill method of a SqlDataAdapter. Underneath the ab-
stractions, a DataAdapter uses a DataReader to populate the returned DataSet or DataTable.

Using a DataReader produces faster results than using a DataAdapter to return the same
data. Because the DataAdapter actually uses a DataReader to retrieve data, this should not
surprise you. But there are many other reasons as well. Look, for example, at a typical piece of
code that calls both:

[TestCase(3)]
public static void GetCustomersWithDataAdapter(int customerId)
{
 // ARRANGE
 DataSet customerData = new DataSet("CustomerData");
 DataTable customerTable = new DataTable("Customer");
 customerData.Tables.Add(customerTable);

 StringBuilder sql = new StringBuilder();
 sql.Append("SELECT FirstName, LastName, CustomerId, AccountId");
 sql.Append(" FROM [dbo].[Customer] WHERE CustomerId = @CustomerId ");

 // ACT
 // Assumes an app.config file has connectionString added to <connectionStrings>
section named "TestDB"
 using (SqlConnection mainConnection =
 new SqlConnection(ConfigurationManager.ConnectionStrings["TestDB"].
ConnectionString))
 {
 using (SqlCommand customerQuery = new SqlCommand(sql.ToString(), mainConnection))
 {
 customerQuery.Parameters.AddWithValue("@CustomerId", customerId);
 using (SqlDataAdapter customerAdapter = new SqlDataAdapter(customerQuery))
 {
 try
 {
 customerAdapter.Fill(customerData, "Customer");
 }
 finally
 {
 // This should already be closed even if we encounter an exception
 // but making it explicit in code.
 if (mainConnection.State != ConnectionState.Closed)
 {
 mainConnection.Close();
 }
 }
 }
 }
 }

 // ASSERT
 Assert.That(customerTable.Rows.Count, Is.EqualTo(1), "We expected exactly 1 record
to be returned.");
 Assert.That(customerTable.Rows[0].ItemArray[customerTable.Columns["customerId"].
Ordinal],
 Is.EqualTo(customerId), "The record returned has an ID different than

 Objective 1.1: Choose data access technologies ChAPTER 1 7

expected.");
}

Query of Customer Table using SqlDataReader

[TestCase(3)]
public static void GetCustomersWithDataReader(int customerId)
{
 // ARRANGE
 // You should probably use a better data structure than a Tuple for managing your
data.
 List<Tuple<string, string, int, int>> results = new List<Tuple<string, string, int,
int>>();

 StringBuilder sql = new StringBuilder();
 sql.Append("SELECT FirstName, LastName, CustomerId, AccountId");
 sql.Append(" FROM [dbo].[Customer] WHERE CustomerId = @CustomerId ");

 // ACT
 // Assumes an app.config file has connectionString added to <connectionStrings>
section named "TestDB"
 using (SqlConnection mainConnection =
 new SqlConnection(ConfigurationManager.ConnectionStrings["TestDB"].
ConnectionString))
 {
 using (SqlCommand customerQuery = new SqlCommand(sql.ToString(),
mainConnection))
 {
 customerQuery.Parameters.AddWithValue("@CustomerId", customerId);
 mainConnection.Open();
 using (SqlDataReader reader = customerQuery.ExecuteReader(CommandBehavior.
CloseConnection))
 {
 try
 {
 int firstNameIndex = reader.GetOrdinal("FirstName");
 int lastNameIndex = reader.GetOrdinal("LastName");
 int customerIdIndex = reader.GetOrdinal("CustomerId");
 int accountIdIndex = reader.GetOrdinal("AccountId");

 while (reader.Read())
 {
 results.Add(new Tuple<string, string, int, int>(
 (string)reader[firstNameIndex], (string)reader[lastNameIndex],
 (int)reader[customerIdIndex], (int)reader[accountIdIndex]));
 }
 }
 finally
 {
 // This will soon be closed even if we encounter an exception
 // but making it explicit in code.
 if (mainConnection.State != ConnectionState.Closed)
 {
 mainConnection.Close();
 }
 }
 }

 8 ChAPTER 1 Accessing data

 }
 }

 // ASSERT
 Assert.That(results.Count, Is.EqualTo(1), "We expected exactly 1 record to be
returned.");
 Assert.That(results[0].Item3, Is.EqualTo(customerId),
 "The record returned has an ID different than expected.");
}

Test the code and note the minimal differences. They aren’t identical functionally, but
they are close. The DataAdapter approach takes approximately 3 milliseconds (ms) to run;
the DataReader approach takes approximately 2 ms to run. The point here isn’t that the
DataAdapter approach is 50 percent slower; it is approximately 1 ms slower. Any data access
times measured in single-digit milliseconds is about as ideal as you can hope for in most
circumstances. Something else you can do is use a profiling tool to monitor SQL Server (such
as SQL Server Profiler) and you will notice that both approaches result in an identical query to
the database.

IMPORTANT MAKE SURE THAT YOU CLOSE EVERY CONNECTION YOU OPEN

To take advantage of the benefits of ADO.NET, unnecessary connections to the database
must be minimized. Countless hours, headaches, and much misery result when a developer
takes a shortcut and doesn’t close the connections. This should be treated as a Golden
Rule: If you open it, close it. Any command you use in ADO.NET outside of a DataAdapter
requires you to specifically open your connection. You must take explicit measures to
make sure that it is closed. This can be done via a try/catch/finally or try/finally structure,
in which the call to close the connection is included in the finally statement. You can also
use the Using statement (which originally was available only in C#, but is now available in
VB.NET), which ensures that the Dispose method is called on IDisposable objects. Even if
you use a Using statement, an explicit call to Close is a good habit to get into. Also keep in
mind that the call to Close should be put in the finally block, not the catch block, because
the Finally block is the only one guaranteed to be executed according to Microsoft.

The following cases distinguish when you might choose a DataAdapter versus a
DataReader:

■■ Although coding styles and technique can change the equation dramatically, as a gen-
eral rule, using a DataReader results in faster access times than a DataAdapter does.
(This point can’t be emphasized enough: The actual code written can and will have a
pronounced effect on overall performance.) Benefits in speed from a DataReader can
easily be lost by inefficient or ineffective code used in the block.

 Objective 1.1: Choose data access technologies ChAPTER 1 9

■■ DataReaders provide multiple asynchronous methods that can be employed (BeginEx-
ecuteNonQuery, BeginExecuteReader, BeginExecuteXmlReader). DataAdapters on the
other hand, essentially have only synchronous methods. With small-sized record sets,
the differences in performance or advantages of using asynchronous methods are
trivial. On large queries that take time, a DataReader, in conjunction with asynchronous
methods, can greatly enhance the user experience.

■■ The Fill method of DataAdapter objects enables you to populate only DataSets and
DataTables. If you’re planning to use a custom business object, you have to first re-
trieve the DataSet or DataTables; then you need to write code to hydrate your business
object collection. This can have an impact on application responsiveness as well as the
memory your application uses.

■■ Although both types enable you to execute multiple queries and retrieve multiple re-
turn sets, only the DataSet lets you closely mimic the behavior of a relational database
(for instance, add Relationships between tables using the Relations property or ensure
that certain data integrity rules are adhered to via the EnforceConstraints property).

■■ The Fill method of the DataAdapter completes only when all the data has been re-
trieved and added to the DataSet or DataTable. This enables you to immediately deter-
mine the number of records in any given table. By contrast, a DataReader can indicate
whether data was returned (via the HasRows property), but the only way to know the
exact record count returned from a DataReader is to iterate through it and count it out
specifically.

■■ You can iterate through a DataReader only once and can iterate through it only in a
forward-only fashion. You can iterate through a DataTable any number of times in any
manner you see fit.

■■ DataSets can be loaded directly from XML documents and can be persisted to XML
natively. They are consequently inherently serializable, which affords many features
not natively available to DataReaders (for instance, you can easily store a DataSet or
a DataTable in Session or View State, but you can’t do the same with a DataReader).
You can also easily pass a DataSet or DataTable in between tiers because it is already
serializable, but you can’t do the same with a DataReader. However, a DataSet is also
an expensive object with a large memory footprint. Despite the ease in doing so, it
is generally ill-advised to store it in Session or Viewstate variables, or pass it across
multiple application tiers because of the expensive nature of the object. If you serialize
a DataSet, proceed with caution!

■■ After a DataSet or DataTable is populated and returned to the consuming code, no
other interaction with the database is necessary unless or until you decide to send the
localized changes back to the database. As previously mentioned, you can think of the
dataset as an in-memory copy of the relevant portion of the database.

 10 ChAPTER 1 Accessing data

IMPORTANT FEEDBACK AND ASYNCHRONOUS METHODS

Using any of the asynchronous methods available with the SqlDataReader, you can provide
feedback (although somewhat limited) to the client application. This enables you to write
the application in such a way that the end user can see instantaneous feedback that some-
thing is happening, particularly with large result sets. DataReaders have a property called
HasRows, which indicates whether data was returned from the query, but there is no way
to know the exact number of rows without iterating through the DataReader and counting
them. By contrast, the DataAdapter immediately makes the returned record count for each
table available upon completion.

EXAM TIP

Although ADO.NET is versatile, powerful, and easy to use, it’s the simplest of the choices
available. When studying for the exam, you won't have to focus on learning every nuance
of every minor member of the System.Data or System.Data.SqlClient namespace. This is a
Technical Specialist exam, so it serves to verify that you are familiar with the technology
and can implement solutions using it. Although this particular objective is titled “Choose
data access technology,” you should focus on how you’d accomplish any given task and
what benefits each of the items brings to the table. Trying to memorize every item in each
namespace is certainly one way to approach this section, but focusing instead on “How do
I populate a DataSet containing two related tables using a DataAdapter?” would probably
be a much more fruitful endeavor.

Why choose ADO.NET?
So what are the reasons that would influence one to use traditional ADO.NET as a data access
technology? What does the exam expect you to know about this choice? You need to be able
to identify what makes one technology more appropriate than another in a given setting. You
also need to understand how each technology works.

The first reason to choose ADO.NET is consistency. ADO.NET has been around much lon-
ger than other options available. Unless it’s a relatively new application or an older applica-
tion that has been updated to use one of the newer alternatives, ADO.NET is already being
used to interact with the database.

The next reason is related to the first: stability both in terms of the evolution and quality of
the technology. ADO.NET is firmly established and is unlikely to change in any way other than
feature additions. Although there have been many enhancements and feature improvements,
if you know how to use ADO.NET in version 1.0 of the .NET Framework, you will know how to
use ADO.NET in each version up through version 4.5. Because it’s been around so long, most
bugs and kinks have been fixed.

ADO.NET, although powerful, is an easy library to learn and understand. Once you under-
stand it conceptually, there’s not much left that’s unknown or not addressed. Because it has

 Objective 1.1: Choose data access technologies ChAPTER 1 11

been around so long, there are providers for almost every well-known database, and many
lesser-known database vendors have providers available for ADO.NET. There are examples
showing how to handle just about any challenge, problem, or issue you would ever run into
with ADO.NET.

One last thing to mention is that, even though Windows Azure and cloud storage were not
on the list of considerations back when ADO.NET was first designed, you can use ADO.NET
against Windows Azure’s SQL databases with essentially no difference in coding. In fact, you
are encouraged to make the earlier SqlDataAdapter or SqlDataReader tests work against a
Windows Azure SQL database by modifying only the connection string and nothing else!

Choosing EF as the data access technology
EF provides the means for a developer to focus on application code, not the underlying
“plumbing” code necessary to communicate with a database efficiently and securely.

The origins of EF
Several years ago, Microsoft introduced Language Integrated Query (LINQ) into the .NET
Framework. LINQ has many benefits, one of which is that it created a new way for .NET
developers to interact with data. Several flavors of LINQ were introduced. LINQ-to-SQL was
one of them. At that time (and it’s still largely the case), RDBMS systems and object oriented
programming (OOP) were the predominant metaphors in the programming community. They
were both popular and the primary techniques taught in most computer science curriculums.
They had many advantages. OOP provided an intuitive and straightforward way to model
real-world problems.

The relational approach for data storage had similar benefits. It has been used since at
least the 1970s, and many major vendors provided implementations of this methodology.
Most all the popular implementations used an ANSI standard language known as Structured
Query Language (SQL) that was easy to learn. If you learned it for one database, you could
use that knowledge with almost every other well-known implementation out there. SQL was
quite powerful, but it lacked many useful constructs (such as loops), so the major vendors
typically provided their own flavor in addition to basic support for ANSI SQL. In the case of
Microsoft, it was named Transact SQL or, as it’s commonly known, T-SQL.

Although the relational model was powerful and geared for many tasks, there were some
areas that it didn’t handle well. In most nontrivial applications, developers would find there
was a significant gap between the object models they came up with via OOP and the ideal
structures they came up with for data storage. This problem is commonly referred to as
impedance mismatch, and it initially resulted in a significant amount of required code to deal
with it. To help solve this problem, a technique known as object-relational mapping (ORM,
O/RM, or O/R Mapping) was created. LINQ-to-SQL was one of the first major Microsoft initia-
tives to build an ORM tool. By that time, there were several other popular ORM tools, some
open source and some from private vendors. They all centered on solving the same essential
problem.

 12 ChAPTER 1 Accessing data

Compared to the ORM tools of the time, many developers felt LINQ-to-SQL was not
powerful and didn’t provide the functionality they truly desired. At the same time that LINQ-
to-SQL was introduced, Microsoft embarked upon the EF initiative. EF received significant
criticism early in its life, but it has matured tremendously over the past few years. Right now,
it is powerful and easy to use. At this point, it’s also widely accepted as fact that the future of
data access with Microsoft is the EF and its approach to solving problems.

The primary benefit of using EF is that it enables developers to manipulate data as
domain-specific objects without regard to the underlying structure of the data store.
Microsoft has made (and continues to make) a significant investment in the EF, and it’s hard to
imagine any scenario in the future that doesn’t take significant advantage of it.

From a developer’s point of view, EF enables developers to work with entities (such as Cus-
tomers, Accounts, Widgets, or whatever else they are modeling). In EF parlance, this is known
as the conceptual model. EF is responsible for mapping these entities and their corresponding
properties to the underlying data source.

To understand EF (and what’s needed for the exam), you need to know that there are three
parts to the EF modeling. Your .NET code works with the conceptual model. You also need
to have some notion of the underlying storage mechanism (which, by the way, can change
without necessarily affecting the conceptual model). Finally, you should understand how EF
handles the mapping between the two.

EF modeling
For the exam and for practical use, it’s critical that you understand the three parts of the EF
model and what role they play. Because there are only three of them, that’s not difficult to
accomplish.

The conceptual model is handled via what’s known as the conceptual schema definition
language (CSDL). In older versions of EF, it existed in a file with a .csdl extension. The data
storage aspect is handled through the store schema definition language (SSDL). In older ver-
sions of EF, it existed in a file with an .ssdl file extension. The mapping between the CSDL
and SSDL is handled via the mapping specification language (MSL). In older versions of EF, it
existed in a file with an .msl file extension. In modern versions of EF, the CSDL, MSL, and SSDL
all exist in a file with an .edmx file extension. However, even though all three are in a single
file, it is important to understand the differences between the three.

Developers should be most concerned with the conceptual model (as they should be);
database folk are more concerned with the storage model. It’s hard enough to build solid
object models without having to know the details and nuances of a given database imple-
mentation, which is what DBAs are paid to do. One last thing to mention is that the back-end
components can be completely changed without affecting the conceptual model by allowing
the changes to be absorbed by the MSL’s mapping logic.

 Objective 1.1: Choose data access technologies ChAPTER 1 13

Compare this with ADO.NET, discussed in the previous section. If you took any of the
samples provided and had to change them to use an Oracle database, there would be major
changes necessary to all the code written. In the EF, you’d simply focus on the business ob-
jects and let the storage model and mappings handle the change to how the data came from
and got back to the database.

Building EF models
The early days of EF were not friendly to the technology. Many people were critical of the lack
of tooling provided and the inability to use industry-standard architectural patterns because
they were impossible to use with EF. Beginning with version 4.0 (oddly, 4.0 was the second
version of EF), Microsoft took these problems seriously. By now, those complaints have been
addressed.

There are two basic ways you can use the set of Entity Data Model (EDM) tools to create
your conceptual model. The first way, called Database First, is to build a database (or use an
existing one) and then create the conceptual model from it. You can then use these tools to
manipulate your conceptual model. You can also work in the opposite direction in a process
called Model First, building your conceptual model first and then letting the tools build out
a database for you. In either case, if you have to make changes to the source or you want to
change the source all together, the tools enable you to do this easily.

NOTE CODE FIRST

An alternative way to use EF is via a Code First technique. This technique enables a devel-
oper to create simple classes that represent entities and, when pointing EF to these classes,
enables the developer to create a simple data tier that just works. Although you are en-
couraged to further investigate this technique that uses no .edmx file, the exam does not
require that you know how to work with this technique much beyond the fact that it exists.
As such, anywhere in this book that discusses EF, you can assume a Model First or Database
First approach.

When you create a new EF project, you create an .edmx file. It’s possible to create a project
solely from XML files you write yourself, but that would take forever, defeat the purpose for
using the EF, and generally be a bad idea. The current toolset includes four primary items that
you need to understand:

■■ The Entity Model Designer is the item that creates the .edmx file and enables you to
manipulate almost every aspect of the model (create, update, or delete entities), ma-
nipulate associations, manipulate and update mappings, and add or modify inheri-
tance relationships.

■■ The Entity Data Model Wizard is the true starting point of building your conceptual
model. It enables you to use an existing data store instance.

 14 ChAPTER 1 Accessing data

■■ The Create Database Wizard enables you to do the exact opposite of the previous
item. Instead of starting with a database, it enables you to fully build and manipulate
your conceptual model, and it takes care of building the actual database based on the
conceptual model.

■■ The Update Model Wizard is the last of the tools, and it does exactly what you’d expect
it to. After your model is built, it enables you to fully modify every aspect of the con-
ceptual model. It can let you do the same for both the storage model and the map-
pings that are defined between them.

There’s one other tool that’s worth mentioning, although it’s generally not what develop-
ers use to interact with the EF. It’s known as the EDM Generator and is a command-line utility
that was one of the first items built when the EF was being developed. Like the combination
of the wizard-based tools, it enables you to generate a conceptual model, validate a model
after it is built, generate the actual C# or VB.NET classes that are based off of the concep-
tual model, and also create the code file that contains model views. Although it can’t hurt to
know the details of how this tool works, the important aspects for the exam focus on each of
the primary components that go into an EDM, so it is important to understand what each of
those are and what they do.

Building an EF Model using the Entity Data Model Wizard
This section shows you how to use the tools to build a simple model against the TestDB creat-
ed in the beginning of Chapter 1. You can alternatively manually create your models and use
those models to generate your database if you alter step 3 and choose Empty Model instead.

However, before you begin, make sure that your TestDB is ready to go, and you’re familiar
with how to connect to it. One way is to ensure that the tests back in the ADO.NET section
pass. Another way is to ensure that you can successfully connect via SQL Server Manage-
ment Studio (SSMS). For the included screen shots, the EF model is added to the existing
MySimpleTests project.

1. First, right-click on your Project in Solution Explorer and add a New Item.

2. In the Add New Item dialog box, select Visual C# Items → Data on the left and
ADO.NET Entity Data Model in the middle (don’t let the name of this file type throw
you off because it does include “ADO.NET” in the name). Name this MyModel.edmx
and click Add (see Figure 1-2).

 Objective 1.1: Choose data access technologies ChAPTER 1 15

FIGURE 1-2 ADO.NET Entity Data Model Wizard dialog box

3. In the Entity Data Model Wizard dialog box, select Generate From Database and click
Next.

4. Next, the Entity Data Model Wizard requires that you connect to your database. Use
the New Connection button to connect and test your connection. After you’re back to
the Entity Data Model Wizard dialog box, ensure that the check box to save your con-
nection settings is selected and name it TestEntities (see Figure 1-3).

 16 ChAPTER 1 Accessing data

FIGURE 1-3 Choose Your Data Connection dialog box

5. In the next screen of the Entity Data Model Wizard, select all the tables and select both
check boxes under the database objects. Finally, for the namespace, call it TestModel
and click Finish (see Figure 1-4).

 Objective 1.1: Choose data access technologies ChAPTER 1 17

FIGURE 1-4 Choose Your Database Objects And Settings dialog box

6. You should now see the Entity Model Designer in a view that looks similar to an entity
relationship diagram shown in Figure 1-5.

 18 ChAPTER 1 Accessing data

FIGURE 1-5 Entity Model view

After generating your EF models, you now have a fully functioning data tier for simple
consumption! Quickly test this to investigate everything you just created. See the code for a
quick test of your new EF data tier:

Entity Framework test

[TestCase(3)]
public static void GetCustomerById(int customerId)
{
 // ARRANGE
 TestEntities database = new TestEntities();

 // ACT
 Customer result = database.Customers.SingleOrDefault(cust => cust.CustomerId ==
customerId);

 // ASSERT
 Assert.That(result, Is.Not.Null, "Expected a value. Null here indicates no record
with this ID.");
 Assert.That(result.CustomerId, Is.EqualTo(customerId), "Uh oh!");
}

There are a few things to note about what happens in this test. First, the complexity of the
code to consume EF is completely different compared with the prior ADO.NET tests! Second,

 Objective 1.1: Choose data access technologies ChAPTER 1 19

this test runs in approximately 4 ms compared with the 2–3 ms for ADO.NET. The difference
here isn’t so much 50–100 percent, but rather 1–2 ms for such a simple query. Finally, the
query that runs against SQL Server in this case is substantially different from what was run
with the ADO.NET queries for two reasons: EF does some ugly (although optimized) aliasing
of columns, tables, and parameters; and this performs a SELECT TOP (2) to enforce the con-
straint from the use of the Linq SingleOrDefault command.

MORE INFO SINGLE VERSUS FIRST IN LINQ

When using LINQ, if you have a collection and you want to return a single item from it,
you have two obvious options if you ignore nulls (four if you want to handle nulls). The
First function effectively says, “Give me the first one of the collection.” The Single function,
however, says, “Give me the single item that is in the collection and throw an exception if
there are more or fewer than one item.” In both cases, the xxxOrDefault handles the case
when the collection is empty by returning a null value. A bad programming habit that
many developers have is to overuse the First function when the Single function is the ap-
propriate choice. In the previous test, Single is the appropriate function to use because you
don’t want to allow for the possibility of more than one Customer with the same ID; if that
happens, something bad is going on!

As shown in Figure 1-6, there’s a lot behind this .edmx file you created. There are two
things of critical importance and two things that are mostly ignorable. For now, ignore the
MyModel.Designer.cs file, which is not currently used, and ignore the MyModel.edmx.diagram
file, which is used only for saving the layout of tables in the visual designer.

FIGURE 1-6 EF-generated files

 20 ChAPTER 1 Accessing data

MORE INFO T4 CODE GENERATION

T4 text template files can often be identified by the .tt extension. T4 is the templating
and code generation engine that EF uses to generate code so you don’t have to manage
it yourself. It’s useful if you know how to automatically generate code in bulk based on
known variables. In this case, your known variables are your database structure and, more
importantly, your conceptual model. Because you created the various models in your
.edmx file, you now have a handy definition file for your conceptual model.

First, look at the MyModel.tt file and then its Customer.cs file. Double-click the MyModel.
tt file and you’ll see the contents of this T4 text template. This template generates simple
classes that represent the records in your tables in your database. Now open the Customer.cs
file. The only two pieces of this file that might be new to you are the ICollection and Hash-
Set types. These are simple collection types that are unrelated to EF, databases, or anything
else. ICollection<T> is a simple interface that represents a collection; nothing special here. A
HashSet<T> is similar to a generic List<T>, but is optimized for fast lookups (via hashtables, as
the name implies) at the cost of losing order.

T4-Generated Customer.cs

public partial class Customer
{
 public Customer()
 {
 this.Transactions = new HashSet<Transaction>();
 }

 public int CustomerId { get; set; }
 public int AccountId { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }

 public virtual Account Account { get; set; }
 public virtual ICollection<Transaction> Transactions { get; set; }
}

Next, look at the file MyModel.Context.tt generated: MyModel.Context.cs. There are three
important things to see in this file. First, the TestEntities class inherits the DbContext class. This
class can be thought of as the EF runtime that does all the magic work. The DbContext API
was introduced with EF 4.1, and Microsoft has an excellent series of documentation on how to
work with this API at http://msdn.microsoft.com/en-us/data/gg192989.aspx.

Inheriting DbContext enables it to talk to a database when coupled with the .edmx file and
the connection string in the config file. Looking at this example, notice that the parameter
passes to the base constructor. This means that it depends on the config file having a prop-
erly configured EF connection string named TestEntities in the config file. Take a look at it and
notice how this connection string differs from the one you used for the ADO.NET tests. Also

http://msdn.microsoft.com/en-us/data/gg192989.aspx

 Objective 1.1: Choose data access technologies ChAPTER 1 21

notice the DbSet collections. These collections are what enable us to easily work with each
table in the database as if it were simply a .NET collection. Chapter 2, “Querying and manipu-
lating data by using the Entity Framework,” investigates this in more detail.

T4-Generated MyModel.Context.cs

public partial class TestEntities : DbContext
{
 public TestEntities()
 : base("name=TestEntities")
 {
 }

 protected override void OnModelCreating(DbModelBuilder modelBuilder)
 {
 throw new UnintentionalCodeFirstException();
 }

 public DbSet<Account> Accounts { get; set; }
 public DbSet<Customer> Customers { get; set; }
 public DbSet<Transaction> Transactions { get; set; }
 public DbSet<TransactionDetail> TransactionDetails { get; set; }
}

Entity Data Model Designer
When you double-click the .edmx file and are given the ERD-like view, you invoke the EDM
Designer. This is the primary tool for manipulating your models, whether you’re manually
creating a new one, updating your existing models based on changes in the schema of your
data, or choosing to manually tweak your conceptual model without changes to your storage
model.

When you have the Designer open, there is a window that is useful to have at times that
can be opened by clicking View → Other Windows → Entity Data Model Browser. This is es-
pecially useful as your .edmx begins to cover a large number of tables and you have difficulty
locating a particular one.

If you want to manage your models in the Designer, typically you’d just right-click any-
where inside the design canvas of the .edmx model file you’re working with or on a specific
entity or property that you want to manage. If you want to update your models based on
data schema changes, it can be done with the Update Model Wizard by right-clicking in the
design canvas and selecting Update Model From Database. In the Update Model Wizard, you
can choose to add new tables or simply click Finish for it to pull in schema changes to existing
tables.

The options that might raise some questions are likely to be the Inheritance and Complex
Type options. Otherwise, editing the conceptual model is straightforward. Inheritance is a way
to create entities with OOP class hierarchies that is primarily used in Code First and Model
First (but not Database First) scenarios. With Inheritance, you can have both an Employee and

 22 ChAPTER 1 Accessing data

Customer type that inherits a Person type. Although an Employee might have a Salary field, a
Customer certainly wouldn’t. Behind-the-scenes in your data store, this can be represented in
a couple different ways.

The default mapping strategy, called Table per Hierarchy (TPH), is the most straightforward
way to do this. It creates a single table for all objects in an inheritance hierarchy, and it simply
has nullable columns for fields that aren’t common across all types. It also adds a Discrimina-
tor column so EF can keep track of the type of each individual record. This strategy is often
the best balance of tradeoffs available because it provides the best performance. The primary
disadvantage is that your data is slightly denormalized.

The prevailing alternative strategy, called Table per Type (TPT), creates a table for your
base type that has all common fields in it, a table for each child type that stores the additional
fields, as well as an ID to the base type’s record that stores the common fields. The multiple
inheriting types’ tables are linked to one another via a foreign key that has a shared primary
key value. In this case, to get all the data for a single entity, EF must perform a join across
multiple tables. The primary advantage is that your data is properly normalized. The primary
disadvantage is that your performance suffers.

Your other mapping options include Table per Concrete Type (TPC) and Mixed Inheritance.
These two options are not currently supported in the EDM Designer, although the EF runtime
does support them. The exam will likely not cover these mapping options, nor are they usually
your most practical choice to use because of the limited tooling support for them.

A Complex Type is a logical designation for a common group of fields on multiple entities.
When you have a Complex Type, your conceptual model has an object to work with for easier
usability of these repeated groups of fields (an example is a date range). Many tables in many
databases have a StartDate field and a StopDate field. You could take these two fields, identify
them as being parts of a Complex Type called a DateRange, and then your conceptual model
could specify when an entity has a Date Range instead of arbitrary date fields.

The only other major item is the actual editing of the conceptual entity items. If you select
any given entity on the conceptual model canvas, right-click it, and select Add New, you’ll see
a menu with the following items:

■■ Scalar Property

■■ Navigation Property

■■ Complex Property

■■ Association

■■ Inheritance

■■ Function Import

From there, the remaining features are self-explanatory. Following is a brief description of
each:

 Objective 1.1: Choose data access technologies ChAPTER 1 23

■■ Table Mapping enables you to change the relationship to the underlying table. For
instance, you can add fields, remove fields, or change fields from the specific property
originally mapped to.

■■ Stored Procedure Mapping is based on the Stored Procedures defined in the data-
base. It enables you specify an Insert, Update, and Delete function. Select queries are
already handled by the language semantics of LINQ.

■■ Update Model from Database is the same behavior described previously in the
canvas-based designer.

■■ Generate Database from Model is the same behavior described previously in the
canvas-based designer.

■■ Validate is the same behavior described previously in the canvas-based designer that
ensures the validity of the .edmx file.

Using the generated items
So far, everything has involved the .edmx files and their respective components. It’s critical to
understand each of the pieces and why they matter when designing an application, but un-
derstanding how to generate a model is only one part of the equation. A tremendous amount
of time is spent developing and maintaining business objects and their interaction with the
database, so having this handled for you is beneficial. But just as important is to understand
what you do with everything after it is generated.

In the simplest scenario, the conceptual model provides you with classes that map directly
to the underlying tables in your RDBMS structure (unless, of course, you specify otherwise).
These classes are actual C# or VB.NET code, and you can work with them just like any other
class you create. To understand things and prepare for the exam, I highly recommend that
you generate a few different .edmx files (try both Database First and Model First) and exam-
ine them closely.

At the top level, the primary object you’ll work with is an ObjectContext or DbContext
object. Choose a name for the context early on in the wizard. It can be changed just like
everything else, but the important takeaway for the exam is that this is the primary item from
which everything else flows. If you do want to change the name, however, you simply have
focus in the Designer for the .edmx file and set the Entity Container Name value in the Prop-
erties window.

ObjectContext versus DbContext
Older versions of EF did not have DbContext. Instead, ObjectContext was the equivalent class
that funneled most of the functionality to the developer. Modern versions of EF still support
the ObjectContext object, and you can even consume modern EF in much the same way as
the older versions. Suffice it to say, if you’re beginning a new project, DbContext is where
you should look to for your EF needs. However, both flavors of the API are important from
a real-world legacy code perspective as well as a testing perspective for this exam. In other

 24 ChAPTER 1 Accessing data

words, be prepared to answer questions about both ways of using EF. Fortunately, many of
the concepts from the one flavor are directly applicable to the other flavor.

The steps for creating an .edmx are intended for creating a DbContext usage scenario. If
you want to work in an ObjectContext scenario, you have three primary options. The intimate
details of these approaches are beyond this book; you are encouraged to investigate these
approaches:

■■ Legacy approach Follow similar steps using Visual Studio 2008 or 2010 to create an
.edmx file and its corresponding ObjectContext and entities.

■■ Downgrading your entities Take the .edmx file that was generated, open the
Properties window, and set focus in the Designer’s canvas. From here, change the Code
Generation Strategy from None to Default in the Properties window. Finally, delete the
two .tt files listed as children to your .edmx file in the Solution Explorer window.

■■ hybrid approach Get the ObjectContext (via a nonobvious approach) from the
DbContext and work with the ObjectContext directly. Note that even with modern ver-
sions of EF, in some rare and advanced scenarios this is still required:

Hybrid approach

public static ObjectContext ConvertContext(DbContext db)
{
 return ((IObjectContextAdapter)db).ObjectContext;
}

[TestCase(3)]
public static void GetCustomerByIdOnObjectContext(int customerId)
{
 // ARRANGE
 TestEntities database = new TestEntities();
 ObjectContext context = ConvertContext(database);

 // ACT
 ObjectSet<Customer> customers = context.CreateObjectSet<Customer>("Customers");
 Customer result = customers.SingleOrDefault(cust => cust.CustomerId == customerId);
 //Customer result = database.Customers.SingleOrDefault(cust => cust.CustomerId ==
customerId);

 // ASSERT
 Assert.That(result, Is.Not.Null, "Expected a value. Null here indicates no record
with this ID.");
 Assert.That(result.CustomerId, Is.EqualTo(customerId), "Uh oh!");
}

As you can tell from this test with the commented line of code, basic consumption of a
DbContext is quite similar to that of an ObjectContext. In fact, most T4 templated instances
of ObjectContexts already have properties pregenerated for you, so you can simply ac-
cess the equivalent ObjectSet<Customer> collection directly off of the generated class that
derives ObjectContext. This simple consumption truly is identical to that of a the generated
DbContext-derived class and its DbSet collection.

 Objective 1.1: Choose data access technologies ChAPTER 1 25

ObjectContext management
Two important things happen when an ObjectContext constructor is called. The generated
context inherits several items from the ObjectContext base class, including a property known
as ContextOptions and an event named OnContextCreated. The ContextOptions class has five
primary properties you can manipulate:

■■ LazyLoadingEnabled

■■ ProxyCreationEnabled

■■ UseConsistentNullReferenceBehavior

■■ UseCSharpNullComparisonBehavior

■■ UseLegacyPreserveChangesBehavior

The LazyLoadingEnabled property is set when any instance of the context is instantiated
and is used to enable lazy loading. If left unspecified, the default setting is true. Lazy loading
enables entities to be loaded on-demand without thought by the developer. Although this
can be handy in some scenarios, this behavior can have very serious performance implications
depending on how relationships are set up. A good deal of thought should be taken into con-
sideration regarding this enabling or disabling lazy loading. Feature development and even
application architecture might change one way or another based on the use of this feature.
And some architectures make it necessary to disable this feature.

In EF, lazy loading is triggered based on a Navigation Property being accessed. By simply
referencing a navigation property, that entity is then loaded. As an example, let’s take the
Customer class and the related Transaction class. If LazyLoadingEnabled is set to true, and
you load one customer, you’ll just get back data just for that customer record. But if you
later access a Navigation Property within the same ObjectContext, another roundtrip to the
database will be made to fetch that data. If you loop through a collection of entities (in this
case, the Transactions), an individual roundtrip is made to the database for each entity. If you
have LazyLoadingEnabled set to false, you have two options. You can either use explicit lazy
loading with the ObjectContext’s LoadProperty() method or you can use eager loading with
the ObjectSet’s Include() method. With explicit lazy loading, you must write code to explicitly
perform this additional roundtrip to the database to conditionally load the data. With eager
loading, you must specify up front what related data you want loaded. Although explicit lazy
loading, like regular lazy loading, can reduce the amount of data flowing back and forth, it’s a
chatty pattern, whereas eager loading is a chunky pattern.

 26 ChAPTER 1 Accessing data

NOTE CHATTY VERSUS CHUNKY

Assume it takes 100 ms per MB of data. In just transfer times alone, that puts you at 2.5
seconds versus 1 second transferring data. However, assume there is also a 100 ms delay
for every round trip (quite common on the Internet and is not too terribly uncommon in
high-availability environments). In addition to data transfer times, you must also add 100
ms to the 25 MB transfer, but a huge 10 seconds to the 10 MB transfer times. So in the end,
it would take only 2.6 seconds for 25 MB, but 11 seconds for 10 MB, simply because you
chose to be chatty instead of chunky with the architectural decision! Now if the transfer
times were the same but the latency was only 1 ms (back to the two VMs on one host), you
would be looking at 2.501 seconds versus 1.1 seconds, and the chattier of the two options
would have been the better choice!

Of the five ContextOption properties, LazyLoadingEnabled is by far the most important
one with the most serious implications for your application. Although it is inappropriate to
refer to the other properties as unimportant, lazy loading can very quickly make or break
your application.

The ProxyCreationEnabled property is one of the other properties of the
ObjectContextOptions class that simply determines whether proxy objects should be created
for custom data classes that are persistence-ignorant, such as plain old common object
(POCO) entities (POCO entities are covered more in Chapter 2). It defaults to true and, unless
you have some specific reason to set it to false, it generally isn’t something you need to be
overly concerned about.

This property is available only in newer versions of EF. A very common problem with this
property occurs if you initially target .NET Framework 4.5 with your application code, refer-
ence this property, and then later drop down to .NET 4.0 where this property does not exist.

This functionality that this property controls is a little confusing if you disable lazy load-
ing and load a Customer object from the TestDB database. If you inspect the AccountId, you
can see a value of the parent record. But if you inspect the Account navigation property, it is
null because it has not yet been loaded. Now with the UseConsistentNullReferenceBehavior
property set to false, you can then attempt to set the Account navigation property to
null, and nothing will happen when you try to save it. However, if this setting is set to
true, the act of setting the Account navigation property to null attempts to sever the
relationship between the two records upon saving (which results in an error because the
AccountId is not a nullable field). If, on the other hand, you had the Customer object loaded
and its Account property was also loaded (either by eager loading or lazy loading), the
UseConsistentNullReferenceBehavior setting has no effect on setting the Account property
to null.

 Objective 1.1: Choose data access technologies ChAPTER 1 27

As the name implies, C# NullComparison behavior is enabled when set to true; otherwise,
it is not enabled. The main implication of this property is that it changes queries that require
null comparisons. For example, take a look at a test and see what happens. To set the data up
for this test, ensure that your Account table has three records in it: one with an AccountAlias
set to Home, one with an AccountAlias set to Work, and one with AccountAlias set to null.
You can tweak the second parameter of the test to other numbers if you want to work with a
different number of records:

Null comparison behavior

[TestCase(true, 2)]
[TestCase(false, 1)]
public static void GetAccountsByAliasName(bool useCSharpNullBehavior, int recordsToFind)
{
 // ARRANGE
 TestEntities database = new TestEntities();
 ObjectContext context = ConvertContext(database);
 ObjectSet<Account> accounts = context.CreateObjectSet<Account>("Accounts");

 // ACT
 context.ContextOptions.UseCSharpNullComparisonBehavior = useCSharpNullBehavior;
 int result = accounts.Count(acc => acc.AccountAlias != "Home");

 // ASSERT
 Assert.That(result, Is.EqualTo(recordsToFind), "Uh oh!");
}

Behind the scenes, when this setting is enabled, EF automatically tweaks your query to also
include cases in which AccountAlias is set to null. In other words, depending on whether it is
enabled or disabled, you might see the two following queries hitting your database:

SELECT COUNT(*) FROM Account WHERE AccountAlias <> 'Home' – Disabled
SELECT COUNT(*) FROM Account WHERE AccountAlias <> 'Home' OR AccountAlias IS NULL --
Enabled

This property can be set to true or false and is quite confusing. This setting causes EF
to use either the .NET Framework 4.0 (and newer) functionality for MergeOption.Pre-
serveChanges or use the .NET Framework 3.5 SP1 version when merging two entities on a
single context. Setting this to true gives you some control over how to resolve Optimistic
Concurrency Exceptions while attaching an entity to the ObjectContext when another copy of
that same entity already exists on the context. Starting with.NET Framework version 4.0, when
you attach an entity to the context, the EF compares the current local values of unmodified
properties against those already loaded in the context. If they are the same, nothing happens.
If they are different, the state of the property is set to Modified. The legacy option changes
this behavior. When the entity is attached, the values of unmodified properties are not cop-
ied over; instead, the context’s version of those properties is kept. This might be desirable,
depending on how you want to handle concurrency issues in your application. Dealing with
concurrency issues and all the implications that come with it is well beyond the scope of both
the exam and this book.

 28 ChAPTER 1 Accessing data

ObjectContext entities
Understanding the structure of ObjectContext is critical for the exam. In addition, you need to
understand the structure of the Entity classes that are generated for it. Thanks to the appro-
priate T4 templates, each entity that you define in the conceptual model gets a class gener-
ated to accompany it. There are a few options for the types of entities that can be generated.
In EF 4.0, the default base class for entities was EntityObject. Two other types of entities could
also be created: POCO entities (no required base class for these) and Self-Tracking entities
(STEs) (no base class, but they implemented IObjectWithChangeTracker and INotifyProper-
tyChanged). Chapter 2 covers POCO entities and STE in more detail, but very little knowledge
of them is required for the exam.

The ObjectContext entities of significant interest inherit from the EntityObject class. The
class declaration for any given entity resembles the following:

public partial class Customer : EntityObject
{
 /* ... */
}

EXAM TIP

As noted earlier, you need to pay attention to the derived class that the given context
is derived from because it is likely to be included in the exam. The same is the case with
entities that derive from the EntityObject base class. These entities have several attributes
decorating the class definition that you should be familiar with. There are also several simi-
lar distinctions surrounding properties of each entity class (or attributes, as they are called
in the conceptual model).

Next, each entity will be decorated with three specific attributes:
■■ EdmEntityTypeAttribute

■■ SerializableAttribute

■■ DataContractAttribute

So the full declaration looks something like the following:

[EdmEntityTypeAttribute(NamespaceName = "MyNameSpace", Name = "Customer")]
[Serializable()]
[DataContractAttribute(IsReference = true)]
public partial class Customer : EntityObject
{
 /* ... */
}

The Entity class needs to be serializable. If you want to persist the object locally, pass it
between tiers, or do much else with it, it has to be serializable. Because ObjectContext’s incar-
nations of the EF were created to work in conjunction with WCF and WCF Data Services, the

 Objective 1.1: Choose data access technologies ChAPTER 1 29

DataContractAttribute must decorate the class (more on this later in the chapter, but for now,
just understand that this is required for WCF’s default serialization).

The last attribute is the EdmEntityTypeAttribute, which contains the item’s namespace and
the Name. Remember that the power of the EF comes from the fact that it gives you such
tremendous designer support. In order to do that, you’d need either a lot of code or a lot of
metadata, and in most cases, a decent amount of both. This EdmEntityTypeAttribute does
little more than tell the world that the class is an EDM type and then provides a basic amount
of supporting information about it.

Look at the definition of each class that’s generated corresponding to each entity and
as much as possible in the .edmx. Each property needs to be marked with the DataMember
attribute (more about this in Objective 1.5). In addition to the DataMember attribute, the
EdmScalarProperty Attribute decorates each property definition. The two main properties
that it defines are EntityKeyProperty and IsNullable. The EntityKeyProperty simply indicates
whether it is an EntityKey or not. IsNullable simply indicates whether this value allows Nulls.

C# 3.0 introduced a new kind of property: auto-properties. An example of an auto-
property might look like this:

public int CustomerID { get; set; }

No matching private variables were declared, and the backing variables were just inferred.
They were still there, but it was essentially syntactical sugar to save a few lines of code. The
one big “gotcha” was that it was usable only when the get and set accessors did nothing but
return or accept a value. If any logic happened inside of the accessor, you still needed to de-
fine a backing variable. An example of an EntityKey property on an entity follows:

[EdmScalarPropertyAttribute(EntityKeyProperty=true, IsNullable=false)]
[DataMemberAttribute()]
public global::System.Int32 CustomerId
{
 get
 {
 return _CustomerId;
 }
 set
 {
 if (_CustomerId != value)
 {
 OnCustomerIdChanging(value);
 ReportPropertyChanging("CustomerId");
 _CustomerId = StructuralObject.SetValidValue(value, "CustomerId");
 ReportPropertyChanged("CustomerId");
 OnCustomerIdChanged();
 }
 }
}
private global::System.Int32 _CustomerId;
partial void OnCustomerIdChanging(global::System.Int32 value);
partial void OnCustomerIdChanged();

 30 ChAPTER 1 Accessing data

The get accessor does nothing but return the private backing variable. The set accessor
verifies that the value you’re attempting to set is different from the value it currently holds. This
makes sense, if you’re only going to set something back to itself; why waste the effort? Once it
verifies that the value has in fact changed, the OnChanged event is raised passing in the new
value. Next, the ReportPropertyChanging event is raised, passing in a string corresponding to
the entity name. The ReportPropertyChanging and ReportPropertyChanged events (the latter
of which is called shortly afterward) are both members of the EntityObject base class and are
used for fundamentally different purposes than the entity-specific events are.

So after the ReportPropertyChanging event is raised, the backing variable is updated with
the new value. After that’s been successfully completed, the ReportPropertyChanged event
is raised, indicating that the operation has completed as far as the UI or host is concerned.
Finally, the OnXChangedEvent specific to that entity is raised and processing is finished.

NOTE THOSE WEREN’T EVENTS

Even though these last few paragraphs just called some things “events,” what you see in
the generated code aren’t events. Technically, they’re nothing more than partial methods
that are invoked. Even if some other portion of this partial class implements them, doing so
doesn’t make them events. However, the underlying implementation of these partial func-
tions does, in fact, raise the events we’re discussing. So although you might not actually
see any generated code working with events here, this generated code does result in the
discussed events being raised.

Why choose the EF?
The EF is just one of many choices you have available for data access. Compared with
ADO.NET data services, you could argue that it’s more similar than different; however, the
opposite is true. Microsoft has made a tremendous investment in the EF and continues to,
which is indicative of its future plans and where it intends data access to go. The EF provides
many benefits over previous data access technologies, and now that the toolset has matured,
there’s not much downside. Following are the benefits:

■■ There is tremendous tooling support that enables you to build and maintain the data
access elements of your application in a much shorter time than ADO.NET would.

■■ You can focus on dealing with business objects of your application and don’t have to
spend your time overly concerned about the underlying data store.

■■ It allows for a clear separation of concerns between the conceptual model and the
underlying data store.

 Objective 1.1: Choose data access technologies ChAPTER 1 31

■■ The data store can be changed (quite dramatically) without having to rewrite core
application logic. Microsoft has made a tremendous investment into the EF, and all
indications point to the fact it has made a firm commitment to the success of the EF.

■■ The EF is built to fit right in with WCF, which makes them very complementary
technologies.

Choosing WCF Data Services as the data access technology
The development landscape has changed over the past few years, even faster and more
dynamically than it has in other equivalent periods. Three of the highly notable changes are
these:

■■ Open Data Protocol (OData)

■■ Representational State Transfer (REST)

■■ JavaScript Object Notation (JSON)

WCF Data Services, originally called ADO.NET Data Services, is the main mechanism of
Microsoft to deal with exposing these features to developers. WCF Data Services are par-
ticularly well-suited to applications that are exposed via Service-Oriented Architecture (SOA)
and enable you to build applications that outsiders (and insiders for that matter) can easily
consume and work with. Web Services and Windows Communication Foundation (WCF) were
certainly big steps forward in this regard, but WCF Data Services takes it all one step farther
in making the whole process a much easier endeavor.

Changing the nature of data access
If you think of how you typically approach getting a set of data, the first thing that probably
comes to mind is writing a SQL query. If you’ve been a user of EF, you might think of an Entity
Model. If you want to make the application accessible to outsiders, you will likely consider
building and publishing a web service.

Consumers of that web service would have to go through several steps to build an ap-
plication that consumed your service. This typically involves using the Web Service Defini-
tion Language (WSDL) to let the consumer know what methods were available. From there,
they’d query it and likely use a tool to automate referencing the service. In the .NET world,
the toolset would look at the metadata and build a proxy class that handled all the network
communication. The proxy class would typically be written in C# or VB.NET and, once gener-
ated, the developer would use it just like any other class.

 32 ChAPTER 1 Accessing data

OData
OData is an abbreviated form of the name Open Data Protocol. OData.org describes OData in
the following way:

The Open Data Protocol (OData) is a Web protocol for querying and updat-
ing data that provides a way to unlock your data and free it from silos that
exist in applications today. OData does that by applying and building upon
Web Technologies such as HTTP, Atom Publishing Protocol (AtomPub) and
JSON to provide access to information from a variety of applications, services
and stores. The protocol emerged from experiences implementing AtomPub
clients and servers in a variety of products over the past several years. OData
is being used to expose and access information from a variety of sources in-
cluding, but not limited to, relational database, file systems, content manage-
ment systems and traditional websites.

OData is consistent with the way the Web works—it makes a deep com-
mitment to URIs for resource identification and commits to an HTTP-based,
uniform interface for interacting with those resources (just like the Web). This
commitment to core Web principles allows OData to enable a new level of
data integration and interoperability across a broad range of clients, servers,
services, and tools.

JSON
According to json.org, JSON is described as follows:

JSON (JavaScript Object Notation) is a lightweight data-interchange format.
It is easy for humans to read and write. It is easy for machines to parse and
generate... These properties make JSON an ideal data-interchange language.

JSON is easy to use and consume. It is built on two fundamental mechanisms:

■■ A name/value pair of data You have a name that you reference it by and a value
that corresponds to that name.

■■ An ordered list of values The list can take just about any form and serves as a con-
tainer or collection to hold the name/value pairs.

Because JSON is little more than text, there are no proprietary file formats to deal with, it
is straightforward, and it lends itself well to the mechanisms that comprise WCF Data Services.

 Objective 1.1: Choose data access technologies ChAPTER 1 33

WCF Data Services as data access mechanisms
Because Microsoft moved its original Web Services implementation (.asmx) to WCF, service
names now end in the .svc extension. WCF is powerful and provides features well beyond
what will be discussed here, but for the time being, it is worth it to understand that, underly-
ing it all, the name was originally ADO.NET Data Services and has since been changed to WCF
Data Services. Despite this change in name, the underlying technology is still much the same
in that it intends to be a data access mechanism.

In a typical scenario, you build a WCF Data Service by performing the following steps:

1. Create an ASP.NET Web Application.

2. Use the EF to define an EDM.

3. Add a Data Service to the Web Application (which is there just to host the application
and expose it over the web).

4. Enable access to the service.

Why choose WCF Data Services?
WCF Data Services has advantages and disadvantages. Because it uses the EF as a foundation,
most (but not all) scenarios that were appropriate for one would be appropriate for the other.
WCF Data Services would be overkill for simple one-user scenarios. On the other hand, it
provides several out-of-the-box benefits that ADO.NET and the EF do not. These include the
following:

■■ Because data is exposed, when using OData, resources are addressable via URIs. That
alone makes it very nonproprietary and opens the service up to be consumed by
everyone from Microsoft developers, to folks writing apps for iPhones, and everyone in
between.

■■ WCF Data Services are accessed over HTTP, and almost everyone is familiar with HTTP
these days and has access to it. Someone can literally query your application and get
data back without having to write a single line of code.

■■ OData feeds can take several different forms, including Atom, JSON, or XML. All those
formats can be represented as text, so many problems with firewalls, security, installing
applications, and so forth immediately disappear.

■■ Very powerful queries can be constructed with very simple semantics. Without know-
ing SQL, someone would have a hard time returning all the Customers from your in-
house database, let alone returning a customer with the last name of Doe.

In SQL, they’d have to have a specific toolset, know the connection information to your
database, and then write something like “SELECT * FROM Customers WHERE LastName =
‘Doe’ (and yes, in a production app the = ‘Doe’ should be parameterized, but this is just for
the sake of illustration). To do the same with WCF Data Services, all they’d need to do is enter

 34 ChAPTER 1 Accessing data

http://my company uri/MyApplication/MyService.svc/Customers in the address bar of Internet
Explorer to get a list of all the customers. To return the exact equivalent of what was shown
before, they’d simply need to make one small change: http://my company uri/MyApplication/
MyService.svc/Customers(‘Doe’).

To take full advantage of WCF Data Services, the EF is meant to be used. But the EF can get
its data from just about anywhere, and the tooling support makes it very easy to swap out or
modify underlying data sources.

WCF Data Services provide a feature known as Interceptors. Interceptors enable you to
build in quite sophisticated business logic, as you’ll see when you build a WCF Data Service.

Thought experiment
Dealing with legacy issues

In the following thought experiment, apply what you learned about the “Choosing
a data access technology” objective to determine the data access strategy for new
application development at your company. You can find answers to these questions
in the “Answers” section at the end of this chapter.

Contoso has several applications that currently use ADO.NET to interact with the
database. Each application used to run locally inside the corporate network. Now,
there’s tremendous pressure to expose many of them to the outside world. You’re
tasked with deciding whether ADO.NET should continue to be used or whether
a move should be made to another technology. If a move away from ADO.NET is
made, you need to decide which other technology should be used.

With this in mind, answer the following questions:

1. Should you continue building applications with ADO.NET?

2. Does using the EF provide any benefit toward the stated goal that ADO.NET
doesn’t?

3. Would WCF Data Services provide any benefit toward the stated goal that ADO.
NET doesn’t?

 Objective 1.1: Choose data access technologies ChAPTER 1 35

Objective summary
1. ADO.NET has been around the longest and has several advantages. It does not require

persistent connections to the underlying data store, enables you to access virtually
all major database implementations, and enables you to access data through cus-
tom objects or through objects specifically suited to the tasks at hand (DataSet and
DataTable).

2. By using the EF, developers can focus on the conceptual model (solving business logic
and dealing with business issues) without being overly concerned with the underlying
data store. EF is specifically focused on working with an entity, but not quite as much
as working with bulk data all at once.

3. With EF, the underlying data stores can be easily modified and changed without
requiring changes of the client code. The EF enables you to generate models based on
an existing database schema, or it can work in reverse and build a database schema
based on a conceptual model. Both are supported and quite easy to learn and use.

4. WCF Data Services let your applications provide universal data access. The con-
sumption of WCF Data Services is not tied to any proprietary technology, so can be
consumed by both Microsoft and non-Microsoft technologies. WCF Data Services are
meant to be used in conjunction with the EF on the back end. They provide a very
fast and easy way to build applications and make the data easily accessible to any
consumer.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter

1. You are building an ADO.NET EF application. You need to add a property of type
NVARCHAR(50) named Notes to the underlying database table named Customer and
have it reflected in the Customer entity. What should you do?

A. Drop the Customer table and re-create it with the new field; then choose the
Generate Database From Model option.

B. Add the field to the underlying table, add a Scalar property of type String to the
Customer entity, and update the mapping.

C. Run the Update Model Wizard.

D. Run the EDM Generator.

 36 ChAPTER 1 Accessing data

2. You have been asked to choose a data access technology to retrieve data from a SQL
Server database and have it exposed over the web. The application will be consumed
exclusively by external parties that have no access to the internal database. Which data
access technologies should you recommend? (Choose all that apply.)

A. LINQ-to-SQL

B. ADO.NET Entity Framework

C. WCF Data Services

D. ADO.NET Data Services

3. You are working with an EDM and suspect there’s a problem with the mappings. Which
file should you look at to see the underlying code?

A. CSDL file

B. SSDL file

C. MSL file

D. EDMX file

Objective 1.2: Implement caching

The way applications are used and the corresponding demands have changed in just the last
few years. Users are much more demanding, less tolerant of inconveniences, and much more
concerned about performance. It is commonly mentioned that if users have to wait more than
five seconds for a page to load, they will typically leave the page.

Just try to imagine how many users an application like Bing has, and imagine what would
happen if Bing kept open connections to the underlying databases for each user. There are
several techniques that have been developed to deal with such issues, but one of the most ef-
fective ones is caching. Some data (for instance, stock quotes) needs to be the absolute latest
every time it is accessed in some applications. Other data, such as a list of states that popu-
lates a combo box control, seldom changes and needs to be accessed rarely after initially
retrieved.

If used effectively, data caching can greatly enhance responsiveness and provide a much
better user experience. However, it must be used carefully. To see why, simply imagine a
hospital’s patient management system. During intake, the patient is unconscious, but the
staff can get much of what it needs from information in the patient’s wallet. They enter the
data and assume that it is immediately cached and updated only every 12 hours. Imagine
then that a member of the patient’s family arrives and informs the staff that the patient
is a Type 1 diabetic and has several medical allergies. If this information isn’t immediately
reflected in the application, the patient could end up facing severe consequences because
doctors made decisions based on stale information.

 Objective 1.2: Implement caching ChAPTER 1 37

This objective covers how to:
■■ Understand caching options

■■ Use the ObjectCache

■■ Use the HttpContext.Cache

Understanding caching options
There are several caching mechanisms you need to be familiar with for the exam. The first is
the ObjectCache class. Although there are several different ways to cache data via the .NET
Framework, not to mention your own or custom approaches, for the exam you should focus
on the ObjectCache and the HttpContext.Cache items in particular. ASP.NET (which is not the
specific target of this exam, but has aspects that might be covered) has Application State,
Session State, and View State, all of which can be considered caching mechanisms. Outside of
specific mechanisms, items such as DataSets, DataTables, or serializable business objects can
all be serialized and therefore be considered cached in such a state. Finally, classes and prop-
erties (and methods, for that matter) can all be defined as static, which can have the effective
result of providing cache functionality. For this portion of the exam, you should focus on the
ObjectCache and its features, as well as HttpContext.Cache. Although many different items
and technologies might qualify semantically as a cache, this chapter looks at those features
built specifically to address caching needs.

NOTE WINDOWS AZURE–PROVIDED CACHING OPTIONS

Although this version of the exam does not require you know the caching options
available specifically in Windows Azure, you certainly should be aware of them.
These options will certainly be on future versions of the exam! You currently have
two primary options: Shared or Co-Located Caching and Dedicated Caching.

With Co-Located Caching, Windows Azure takes a sliver of your Web Role or Worker
Role instance’s resources (memory being one of the most important resources) and
uses that to store the cached data. The value here is that you don’t have to pay for
anything extra in terms of price; it is just a slight performance hit. If your cache
needs to store only a few MB of data, this is a very good option.

With Dedicated Caching, you add a new role type to your project, a Cache Worker
Role, which results in an instance whose entire purpose in life is to manage and
host the cache. The benefits are that you can easily manage the number of these in-
stances independent of other instances, and hosting very large amounts of cached
data doesn’t directly affect performance on your other servers or your application.

 38 ChAPTER 1 Accessing data

Using the ObjectCache
To put data into the ObjectCache, it first needs to be created. The current constructor is
protected, so it isn’t instantiated using the new keyword. Instead, you use the MemoryCache.
Default property to get an instance.

Conveniently, the ObjectCache class alone provides nearly all the functionality for caching.
Outside of the Extension methods, it is simple to memorize all its properties (there are four).
Depending on the version of the .NET Framework being used, there are about 10 methods,
and most of them have names used extensively throughout the Framework, so they are dead
giveaways as to what they do. When you exclude methods that have unquestionably clear
features (for example, GetEnumerator and GetCount), you’re left with Add, AddOrGetExisting,
Get, and Set. Some classes, particularly those that inherit from powerful base classes, have
large numbers of extension methods, or implement multiple interfaces, and won’t be so easy
to memorize by just looking at a few code snippets, but many classes will. So when preparing
for this exam, look at the following code samples to get a visual understanding of how things
work and what the most commonly used major features are.

Very simple ObjectCache example

[TestCase("Cache1", 1)]
[TestCase("Cache1", 2)]
[TestCase("Cache1", 3)]
public void CanCache(string key, int value)
{
 // ARRANGE
 ObjectCache cache = MemoryCache.Default;
 var policy = new CacheItemPolicy
 {
 AbsoluteExpiration = new DateTimeOffset(DateTime.Now.AddMinutes(1))
 };

 // ACT
 cache.Remove(key);
 cache.Add(key, value, policy);
 int fetchedValue = (int)cache.Get(key);

 // ASSERT
 Assert.That(fetchedValue, Is.EqualTo(value), "Uh oh!");
}

This code example has various numbers in the cache for up to one minute. Notice that it
first removes the item from cache. If the item isn’t in cache, this gracefully fails and contin-
ues; you can never be guaranteed that an item is in a cache at any moment in time, even if
you just checked for it 3 ms ago. You remove it because the second time this test runs, the
item from the first run will still be in there. The way the Add method works in this case is that
it calls the underlying AddOrGetExisting method (more on this later), so it doesn’t actually
replace an existing value when used this way. Try the tests again, but delete the line calling
Remove and see what happens.

 Objective 1.2: Implement caching ChAPTER 1 39

After you create an instance of the cache and put items in it, you can verify the existence
of those items by using the default indexer on the ObjectCache and the string value you
chose as a key whenever you added the item. Assume, for instance, that you added a string
value that was the PublicKeyValue of an encryption key. The following code tells you whether
the item was in the ObjectCache (using the as keyword enables you to attempt the reference
without throwing an exception if the item is not present). You don’t have to use this technique
specifically, but you will want to verify that something exists in the cache before trying to
reference it just like as would with any other collection.

Safely checking cached items

String encryptionPublicKey = CacheInstance["encryptionpublickey"] as String;
if (String.IsNullOrWhiteSpace(encryptionPublicKey))
{
 // Build encryption policy here and cache it.
}

There are several mechanisms for adding items into the CacheInstance:

■■ Add(CacheItem, CacheItemPolicy)
■■ Add(String key, Object value, DateTimeOffset absoluteExpiration)
■■ Add(String key, Object value, CacheItemPolicy policy, String regionName)
■■ AddOrGetExisting(CacheItem, CacheItemPolicy)
■■ AddOrGetExisting(String key, Object value, DateTimeOffset absoluteExpiration)
■■ AddOrGetExisting(String key, Object value, CacheItemPolicy policy, String regionName)
■■ Set(CacheItem, CacheItemPolicy)
■■ Set(String key, Object value, CacheItemPolicy policy, String regionName)

As noted, the items in the cache are stored as key/value pairs. When examining the
overloads for the Add and AddOrGetExisting methods, overloads support both entering in a
key/value pair or a CacheItem. The three primary properties in the CacheItem base class are,
unsurprisingly, Key, Value, and RegionName. If you examine each of the overloads for Add or
AddOrGetExisting, you’ll note that they’re functionally equivalent in the sense that you can
use a Key to reference the item, or you can use a CacheItem to reference it, which in turn,
provides the Key, and, if desired, the Value and RegionName. The cache implementation is
allowed to store the cached data in any internal format it wants. The only restrictions are that
the APIs provide that the data is represented in CacheItem objects, not that those CacheItem
objects are actually stored internally.

It’s worth noting that many of these are functional equivalents. For instance, according to
the MSDN documentation, the Add method that uses a CacheItem and CacheItemPolicy as
parameters does the following: When overridden in a derived class, it tries to insert a cache
entry into the cache as a CacheItem instance and adds details about how the entry should
be evicted. It describes the equivalent Set method as follows: When overridden in a derived
class, it inserts the cache entry into the cache as a CacheItem instance, specifying information
about how the entry will be evicted.

 40 ChAPTER 1 Accessing data

The main differences between the two reside in the return types. With the Add method, a
value of True is returned if no item with that key was present and the insertion was success-
ful. When a value of False is returned, there is no need to add it because it already exists, so
insertion of the value actually failed. Internally, the Add method actually calls the AddOrGet
Existing method.

The Set method has no return value, and if the key is not present, it inserts the value. If the
key is present, it is updated with the value from the CacheItem parameter. In the previous test
case, Set would have been a more appropriate method to use, but would have missed show-
ing this very important point. You should review these on MSDN if they aren’t immediately
intuitive, but they each work the same way. The only real nuance is setting the CacheItem-
Policy, which is also quite straightforward.

CacheItemPolicy
Using a CacheItemPolicy is simple. Once you instantiate an instance of it, you’ll then want
to set an expiration policy by using either an AbsoluteExpiration or a SlidingExpiration. The
difference between the two is apparent to most. With the AbsoluteExpiration, the CacheItem
is purged after a specified amount of time. With the SlidingExpiration, it is purged only if it
has not been accessed after a specified amount of time. Using either mechanism is simply a
matter of determining which one you want to use and picking an interval to use in conjunc-
tion with it.

The previous test used an AbsoluteExpiration; the following test shows a SlidingExpiration
in action:

SlidingExpiration

[TestCase("Sliding1", 1)]
[TestCase("Sliding2", 2)]
[TestCase("Sliding3", 3)]
public void TestSlidingExpiration(string key, int value)
{
 // ARRANGE
 ObjectCache cache = MemoryCache.Default;
 CacheItemPolicy policy = new CacheItemPolicy
 {
 SlidingExpiration = new TimeSpan(0, 0, 2)
 };
 cache.Set(key, value, policy);

 // ACT
 for (var i = 0; i < 22; i++)
 {
 System.Threading.Thread.Sleep(100);
 Assume.That(cache.Get(key), Is.EqualTo(value));
 }
 System.Threading.Thread.Sleep(2001);

 // ASSERT
 Assert.That(cache.Get(key), Is.Null, "Uh oh!");
}

 Objective 1.2: Implement caching ChAPTER 1 41

NOTE THREAD.SLEEP

In this last test, you can easily create a much faster test that tests the SlidingExpiration
functionality and have it fail for all the wrong reasons. If you were to instead set the
SlidingExpiration timer for one second and change nothing else in that test, you could
very well see the Assume statements fail. The reason for this is unrelated to any caching
concepts; it is that Thread.Sleep is a nondeterministic operation. What this means is that,
in this for loop, it guarantees that it will pause execution for at least 100 ms, but it could
even pause it for well over one second. It’s even possible that you will see the published
test fail for this reason on a slower or taxed system. Any time you use Thread.Sleep, always
realize that it could actually pause execution for much longer than you anticipate, and if
you depend upon it promptly resuming execution, you are setting yourself up for a race
condition!

CacheItemPriority
Both the System.Web.Caching and System.Runtime.Caching namespaces have a CacheItem-
Priority Enumeration that dictates the order of item removal from the cache. Both of these
will be discussed because they might appear on the exam, but it’s important to know the
difference between them and that they are not the same enumeration even if they share
the same name, same function, and many other characteristics. For now, the focus is on the
System.Runtime.Caching namespace.

If no value is specified for the CacheItemPriority, the default value of Default is used. A
value of Default means that there is No Priority. Although trying to memorize every member
and every property of everything covered on the exam would be a challenging undertak-
ing, memorizing each of the possible values of this version of the CacheItemPriority and the
resulting behavior is so simple that I highly recommend doing so. See Table 1-2 to see each of
the available values and what happens as a result of using the value.

TABLE 1-2 System.Runtime.Caching.CacheItemPriority enumeration value

Item name Description

Default There is no priority for removing this entry. As noted previously, this is the default
value for the enumeration, so unless your intent is to make your code’s intention
clear, there’s no value in setting this property and using this value.

Not Removable Specifies that this entry should never be removed from the cache.

If you’re thinking that the only two options seem to be to set no priority at all or set the
priority in a way that ensures it’s never automatically removed, you’re correct.

One common source of confusion regarding CacheItemPriority (both the System.Runtime.
Caching and the System.Web.Caching version) is that, by setting it, you could somehow create
a situation in which the item can never be removed after it is inserted into the cache. That

 42 ChAPTER 1 Accessing data

is not the case. Each version of the cache has methods specifically created for the removal
of items from the cache. These values simply dictate the order of importance of the Cache
Items when resources are low and the runtime needs to clean things up in order to continue
processing.

Setting the value to NotRemovable can have very serious consequences, and you should
clearly understand what they are before using this value. Setting the value to Default simply
specifies that all CacheItems should be treated equally when a decision needs to be made to
purge them because the system is getting low on resources. Striking the correct balance here
is important because it is much better to take a painful database hit that causes an operation
to be slow or even time out when the alternative is that the application crashes due to insuf-
ficient memory.

It is easy to overuse caching. There are many items that are clear candidates for caching
and others that should almost never be placed into a cache. This determination is not always
an easy one to make before an application goes to production with respect to each item you
might choose to place in cache. Although this can be debated, it is often best to err on the
side of not caching a particular set of data until you have the metrics necessary to prove that
the data should be cached for performance reasons and can be done so without negatively
affecting functionality.

If you choose the NotRemovable option, it is critical that you effectively monitor the
object you’re dealing with and take steps to ensure its removal from the cache explicitly.
As previously mentioned, CacheItemPriority has no bearing on whether something can be
removed manually; it simply prevents system optimization operations for purging it when try-
ing to free up resources. If it stopped such removals from happening, anything put into cache
with a CacheItemPriority would exist in cache for the life of the session, no matter what else
happened. If you do not watch the items you marked as NotRemovable, you could easily find
yourself in a situation in which the application’s resources are completely consumed and it
has no means by which to free up enough of them to keep functioning correctly.

The ChangeMonitor class
In addition to understanding the expiration policy, you need to be aware of the
ChangeMonitor class, which the CacheItemPolicy has a collection of. If you refer to my exam-
ple about the hospital intake application, it’s quite obvious that, if the underlying data source
changes, the cache needs to know about it. If it doesn’t, there will be latency and a potential
for very serious problems in many applications.

Although you don’t use the ChangeMonitor class directly, it’s a base class that has several
derivations (and other ones can certainly be added):

■■ CacheEntryChangeMonitor

■■ FileChangeMonitor

■■ HostFileChangeMonitor

■■ SqlChangeMonitor

 Objective 1.2: Implement caching ChAPTER 1 43

The CacheEntryChangeMonitor serves as a base class to build derived classes from that
simply monitor the CacheItems for changes.

The FileChangeMonitor does exactly what its name implies: It monitors a specific file to
see whether any changes are made to it, and, if so, the changes will be reflected in the cache,
provided the CacheItemPolicy dictates it.

The HostFileChangeMonitor monitors directories and file paths for changes to them. If it
detects changes, it responds accordingly. Because files and directories are fundamentally dif-
ferent from the other items, there are several specific items this class handles that you don’t
necessarily need to memorize for the exam, but should at least be familiar with. Each of the
following triggers a change notification if a HostFileChangeMonitor is being used:

■■ The name of the monitored file or directory changed.

■■ The specified file or directory did not exist at the time the monitor was created, but
was created later. In other words, a file or directory was created in the scope of the
monitored items.

■■ The size of a monitored file changed.

■■ The contents of a monitored file changed, or the contents of a monitored directory
changed.

■■ The access control list (ACL) of the file or directory changed.

■■ The monitored file or directory was deleted.

Using the HttpContext.Cache
ASP.NET applications (which are frequently used to host WCF Data Services) natively provide
several different caching mechanisms. Because HTTP is a stateless protocol, state manage-
ment is more of a challenge than it would be for a technology that used a different underly-
ing protocol. In ASP.NET, you can use Application State, Session State, and View State to store
values and thereby minimize roundtrips to the database. Each has strengths and weaknesses,
and decisions about which to use should be undertaken carefully. Additionally, there are sev-
eral options with regard to those features on what backing store can be used to host the data.

Because ASP.NET and applications hosted in Internet Information Server, for example,
communicate using the HTTP protocol, it should come as no surprise that such applications
are built in a way to include an HttpContext. The Cache class resides in the System.Web library
and the System.Web.Caching namespace specifically. In a typical ASP.NET web application
or service that’s hosted in ASP.NET, the cache is accessed through the HttpContext.Current
object. (The Page object also has a Page.Cache property and a Page.Context.Cache property;
there are multiple ways to get to the Cache object.)

One of the most important things to understand about the Cache class is that it was built
specifically for use with ASP.NET applications. If you need caching functionality in another
type of application (for instance, a Windows Forms application), you should specifically use
the ObjectCache class instead. (This might seem obvious, but more than a few developers

 44 ChAPTER 1 Accessing data

have tried to add the System.Web.dll reference to Winforms apps or similar application types
just so they could use the Cache feature.)

The following code snippet could certainly be added to a Console or Winforms application
(provided that a reference to System.Web were added), but if you tried to execute it, it would
result in a Null Reference Exception (and should be used only as an example of what not to do):

[Test]
public void BadCaching()
{
 // ARRANGE
 System.Web.Caching.Cache myCache = new System.Web.Caching.Cache();

 // ACT
 // ASSERT
 Assert.Throws<NullReferenceException>(() => myCache.Insert("asdf", 1));
}

If you want to pursue things that won’t work and that you shouldn’t do, you can try to add
an HttpContext instance to a Winforms or Console app and then try to get the caching to
work using it. The System.Web.Caching.Cache is meant to be used only with ASP.NET applica-
tions, not with other types of applications.

EXAM TIP

When taking the exam, you might see questions that specifically reference the
HttpContext.Cache (or Page.Cache or some other similar form) directly. Such a question
might be: “Datum Corporation has an application that’s currently caching several collec-
tions of data in the HttpContext.Cache object. You need to _____. How should you do it?”
In such cases, you can and should make the assumption that the application is an ASP.NET
application or a WCF Data Service hosted inside of ASP.NET. Everything else that makes
reference to caches (from determining what mechanism should be used the whole way to
specific implementations) should be assumed to be referencing the ObjectCache unless
specifically stated otherwise.

Another noteworthy item is that this class is created only once per AppDomain. Once
created, it remains alive (even if it’s empty) as long as the AppDomain is still active. There are
several ways to add data to it, retrieve data from it, and control other aspects of its behavior,
so let’s go through them one at a time.

Cache items are implemented as name/value pairs where the name is implemented as
System.String and the value is implemented as System.Object. You can put any serializable
object in the cache (whether you should is a different decision altogether).

Abbreviated System.Web.Caching.Cache usage
The actual cache discussed is a property of HttpContext. You can refer to it directly as
Cache[“Key”] instead of HttpContext.Cache[“Key”], which is done for the sake of readability.

 Objective 1.2: Implement caching ChAPTER 1 45

NOTE CACHE BEST PRACTICE

Production code should minimize the use of quoted strings, particularly in cases where
the string values are being used as keys to collections (such as caches). There are several
reasons for this, including performance, maintainability, and ease of use. Defining the
string literals using the const keyword at the class level is often appropriate, although in
most caching scenarios, the string references will be made from several places. As such, it
is often advisable to create the strings as constants or properties and keep them in classes
of their own. Such approaches would add virtually no value from an exam preparation per-
spective, but would certainly add to the length of the code and decrease the readability. So
the code samples throughout the chapter use quoted strings, but you shouldn’t in any way
infer that using them in this way is advisable or should be copied.

In its simplest form, you reference the cache, provide a key name, and give it a value:

Cache["FullNameKey"] = "John Q. Public";

This works in a manner reminiscent of View State or Session State. If there is already a key
defined in the collection with the same name, the value you specify overwrites it. If no such
key/value pair exists already, it simply adds it. Because the value part of the equation is typed
as System.Object, you can set the value to just about anything.

In addition to the Add method, you can use the Insert method, which has several over-
loads; the simplest needs only a Key and a Value:

HttpContext.Current.Cache.Insert("AccountIdKey", new Account());

Table 1-3 shows each of the Cache.Insert overloads.

TABLE 1-3 Cache.insert overloads

Name Description

Insert(String Key, Object Value) Inserts an item into the cache with the corresponding key
name and Object Value. The CacheItemPriority enumeration
value is set to its default value, Normal.

Insert(String Key, Object Value,
CacheDependency dependencyItem)

Inserts an item into the cache with the corresponding key
name and Object Value that has file dependencies, key de-
pendencies, or both.

Insert(String Key, Object Value,
CacheDependency dependencyItem,
DateTime absoluteExpiration, TimeSpan
slidingExpiration)

Inserts an item into the cache with the corresponding key
name and Object Value. This overload also includes file
or key dependencies and expiration policies. When set-
ting expiration policies, either the NoAbsoluteExpiration or
NoSlidingExpiration predetermined value must be passed for
the expiration policy not being used.

 46 ChAPTER 1 Accessing data

Name Description

Insert(String Key, Object Value,
CacheDependency dependency-
Item, DateTime absoluteExpira-
tion, TimeSpan slidingExpiration,
CacheItemUpdateCallback updateCall-
back).

Inserts an item into the cache with the corresponding key
name and Object Value. This overload includes key or file
dependencies as well as expiration policies. It also includes a
delegate object that can provide notification before an item is
removed from the Cache collection.

Insert(String Key, Object Value,
CacheDependency dependencyItem,
DateTime absoluteExpiration, TimeSpan
slidingExpiration, CacheItemPriority pri-
ority, CacheItemRemovedCallback rem-
oveCallback).

Inserts an item into the cache with the corresponding key
name and Object Value. This overload includes key or file
dependencies as well as expiration policies. It also includes a
delegate object that can provide notification that the inserted
item is removed from the Cache collection.

The initial example showed how to use the simplest method to add an item to the cache.
The second showed an example of using the Insert method and provided a list of overloads
and their corresponding signatures. Figure 1-7 shows the signature of the Add method of
the cache.

FIGURE 1-7 System.Web.Caching.Cache Add signature

If you compare Add to the last version of the Insert method, you should notice quite a few
similarities. In fact, they are virtually identical in just about every regard. For something to be
added to the cache, you need a Key and a Value at a minimum.

If there are either file dependencies or dependencies to other cache keys, they are handled
via the CacheDependency parameter. It’s worth a quick digression to mention this. Although
there are several overloaded constructors for a CacheDependency, it is safe to describe them
collectively as definitions for dependencies related to both cache keys and files (well, files or
directories).

So the Insert method, just like the most comprehensive version of the Add method, ac-
cepts a string name for the Key, an object for the Value, CacheDependencies if they are to be
included, a DateTime value that indicates an AbsoluteExpiration DateTime, a TimeSpan pa-
rameter to indicate how much time should elapse without an object being accessed before it

 Objective 1.2: Implement caching ChAPTER 1 47

is removed from the cache, a CacheItemPriority value to indicate where the given object falls
on the removal hierarchy, and finally a delegate that can be used to notify the application if/
when the corresponding CacheItem was removed.

In the final analysis, the only real difference between the two methods involves Update-
Callback in the Insert method as opposed to CacheItemRemovedCallback employed in the
Add method. They seem to be the same, so what’s the noteworthy differentiator?

RemoveCallback (whose type is System.Web.Caching.CacheItemRemovedCallback) is called
when an object is removed from the cache. UpdateCallback (whose type is System.Web.Cach-
ing.CacheItemUpdateCallback) executes a notification right before an object is removed from
the cache. The behavioral difference can be exploited so that the cached item is updated and
can be used to prevent the item from being removed from the cache. It’s a subtle difference
and one that you don’t typically find necessary in many applications. Much of the time, when
an item is removed from the cache, it is done so intentionally. However, expiration policy can
cause objects to be removed from a cache without someone intentionally trying to remove it.
Coupled with CacheItemPriority, scenarios can definitely be presented in which an item might
be removed from cache contrary to the initial intention. When an item is different from oth-
ers in terms of being automatically removed from the cache or when you need to be careful
that it isn’t removed (perhaps because retrieval of the object is quite expensive or resource-
intensive), you might want to fine-tune behavior using the CacheItemUpdateCallback as op-
posed to the CacheItemRemovedCallback.

As mentioned earlier, both the System.Web.Caching and System.Runtime.Caching
namespaces have a CacheItemPriority Enumeration that dictates the order of item removal
from the cache. Although the one in the System.Runtime.Caching namespace is limited in
what it provides, the one in the System.Web.Caching namespace affords a granular level of
behavioral control.

The values of the enumeration are mostly self-explanatory because they do exactly what
you expect, but Table 1-4 provides each available value and a description of the correspond-
ing behavior. Just note that, although CacheItemPriority.Default was the behavior in System.
Runtime.Caching version, a value of CacheItemPriority.Normal is the default value of the
System.Web.Caching CacheItemPriority. Oddly enough, CacheItemPriority.Default here actu-
ally sets it to a Normal priority.

TABLE 1-4 System.Web.Caching.CachItemPriority enumeration values

Member Description

Low The lowest priority and therefore the first to be removed if the system starts
removing items to free resources.

BelowNormal The second least critical indicator of the enumeration. Only items marked as
Low have lower priority.

Normal The midpoint of what the system will remove. Lower in priority than High and
AboveNormal, and more important than Low and BelowNormal.

 48 ChAPTER 1 Accessing data

Member Description

AboveNormal These items are considered less important than those specified as High, but
more important than those specified as Normal.

High These items are considered the most important and are the last to be removed
when the system attempts to free memory by removing cached items.

NotRemoveable Although this value stops something from being removed when resources are
needed, it does not interfere with either the Absolute or Sliding expiration
defined in the policy.

Default Sets the value to Normal.

Using the CacheDependency class enables you to monitor and respond to a wide vari-
ety of changes to underlying objects. In most cases, you’ll find that the CacheDependency
can handle your needs quite well. If you are caching data that is sourced from a SQL Server
database (versions 7.0, 2000, 2005, and later are supported), you can use the SqlCacheDe-
pendency class. SqlCacheDependency monitors the underlying table that the data originally
came from. If any changes are made to the table, the items added to the Cache are removed,
and a new version of the item is added to the cache.

To create a SqlCacheDependency, you can use either of two overloads:

1. You provide a SqlCommand instance. This initializes a new instance of the
SqlCacheDependency class and, coupled with the command, creates a cache-key
dependency.

2. You provide two strings. The first string is the name of the database defined in the
databases element of the application’s web.config file. The second string is the name of
the table that the SqlCacheDependency will be associated with.

As you can imagine, creating such a dependency carries overhead and is laden with nu-
ances that you need to be aware of. It is rare that you’ll run into a situation in which some
item outside of your application dictates what constructor must be used, but there are several
“gotchas” related to the SqlCacheDependency in general. For instance, the version of SQL
Server that’s being used can dictate which constructor must be used.

It’s worth noting that the baggage that comes with using the SqlCacheDependency is so
significant that many consider it too substantial to justify the benefits. If you read through
the MSDN documentation combined with what I call out in the following list, you’ll find that
there are many requirements that come with using the SqlCacheDependency, and a tremen-
dous number of things need to be in place in order for it to be used correctly. If you know
all of them, you know that there are several things that can result in not being able to use
SqlCacheDependency for an application. Knowing these can certainly help you eliminate pos-
sible choices when it comes to answering test questions:

 Objective 1.2: Implement caching ChAPTER 1 49

■■ The constructor that takes SqlCommand as a parameter is the one that should be used
if you are using SQL Server 2005 or later. The fact that different constructors are sup-
posed to be used based on the underlying database version is quite inconvenient in
theory, but in practice most companies have at least migrated to SQL Server 2005 by
now.

■■ With the SqlCommand-based constructor, two exceptions can be encountered: the
ArgumentNullException and the HttpException. The first arises if you pass in a Sql-
Command value that’s null. This should come as no surprise because, without a valid
command, it is impossible to determine what source the data came from. The second
exception, however, is a little strange. It happens only when the SqlCommand passed
to the constructor has the NotificationAutoEnlist value set to true and the @Output-
Cache directive is set on the page and it has a SqlDependency attribute value set to
CommandNotification.

■■ Table names that are used in the CommandText property of SqlCommand must
include the name of the table owner. So if your initial query’s command text were
“SELECT FirstName, LastName FROM Customer,” the association would not work. If
you use the same query but change the last portion to “… FROM dbo.Customer,” the
association should work if everything else is in place.

■■ Although using “SELECT *” is generally considered a poor practice from a per-
formance perspective, using it actually breaks the functionality provided by the
SqlCacheDependency. Using the previous query as an example, “SELECT * FROM dbo.
Customer” would result in a failure.

■■ If page-level output caching is enabled on the page, this first constructor does not
perform the association.

Although it might seem like this constructor carries with it a rather large number of re-
quirements, those pale in comparison to the requirements and issues that surround the use of
the second constructor:

■■ When using the second constructor, six different exceptions can be encountered (as
opposed to just two when using the first one). These include HttpException, Argument
Exception, ConfiguationErrorsException, DatabaseNotEnabledForNotificationsExcep-
tion, TableNotEnabledForNotificationsException, and ArgumentNullException. Table
1-5 provides a list of each of the exceptions and all the conditions that can trigger
them.

■■ The connectionString that contains the table that the SqlCacheDependency is enabled
for must be specifically included in the <connectionStrings> section of the web.config
file of the ASP.NET application.

■■ The SQL Server database specified in the databaseEntryName parameter must have
notifications enabled.

■■ The table specified in the tableName parameter must have notifications enabled as
well.

 50 ChAPTER 1 Accessing data

■■ You cannot set monitoring up on multiple tables with one SqlCacheDependency. Da-
taSets and most EF models make frequent use of related tables, and it seldom makes
sense to cache a parent table and not any of the related tables. If you need this func-
tionality, set up separate dependencies for each of the tables you are querying against
and write application logic to deal the changes at each level in many cases. Suppose
you have an Accounts table and a related AccountDetails table. If you wanted to imple-
ment a caching strategy, you’d probably want to cache both the Account information
and the corresponding AcccountDetails information as well. At some point, however,
any benefit realized by caching is offset by the overhead associated with the additional
code required for cache monitoring. Finding that point is not always obvious and is
often difficult.

TABLE 1-5 Exceptions related to second SqlCacheDependency constructor

Name Description

HttpException SqlClientPermission was not present or did not allow the
operation access required.
The DatabaseEntryName was not found in the list of
databases.
SqlCacheDependency could not make a connection to the
configured database when the instance was initialized.
The configured account lacked the permissions (either on
the database or the stored procedures used internally to
support SqlCacheDependency).

ArgumentException The TableName parameter used to create the dependency
association has a value of String.Empty.

ArgumentNullException DatabaseEntryName passed in to the constructor was null.
The TableName parameter used to create the dependency
association was null. (Yes, this is different than if the pa-
rameter were an empty string.)

ConfigurationErrorsException SqlCacheDependency does not have Polling enabled.
Polling is enabled, but the interval is not correctly
configured.
There was no connectionString matching the parameter
name in the <connectionStrings> section of the configura-
tion file.
The connectionString specified in the configuration file
could not be found.
The connectionString specified in the configuration file
contained an empty string.
Although the MSDN documentation doesn’t men-
tion it specifically, if the connectionString is con-
figured in an invalid format or can’t be parsed, a
ConfigurationErrorsException is thrown as well.

DatabaseNotEnabledForNotificationException The configured database entry indicated by the databas-
eEntryName parameter does not have change notifications
enabled.

TableNotEnabledForNotifications The name of the table specified in the tableName param-
eter does not have change notifications enabled.

 Objective 1.2: Implement caching ChAPTER 1 51

Using a SqlCacheDependency can be a daunting task. Spend the time to configure ev-
erything necessary to actually see SqlCacheDependency in action; doing so will certainly be
educational.

Thought experiment
Develop a caching strategy

In the following thought experiment, apply what you’ve learned about the “Imple-
ment caching” objective to predict what steps you need to develop an effective
caching strategy. You can find answers to these questions in the “Answers” section
at the end of this chapter.

Contoso has determined that its primary database is experiencing tremendous traf-
fic volumes. Upon analysis, it determines that much of the traffic is around identical
requests.

With this in mind, answer the following questions:

1. What type of data would you consider as a candidate for caching?

2. What factors would you consider when determining a caching strategy?

3. What would you contemplate regarding data changes?

Objective summary
■■ Although caching data isn’t a magic wand to fix performance problems, most applica-

tions have very obvious aspects that lend themselves well to data caching.

■■ ObjectCache is the primary mechanism you can use to cache data.

■■ The Cache property of HttpContext can be used to provide caching functionality in
ASP.NET applications.

■■ When using ObjectCache, the two most high profile elements are ExpirationPolicy and
ChangeMonitoring.

■■ A specific date and time can trigger cache expiration, which is known as AbsoluteEx-
piration. For instance, by using AbsoluteExpiration, you can wipe out the cache or re-
move an item from it at midnight every day, once an hour, or at whatever time makes
sense.

■■ Expiration can be handled so that an object is removed from the cache only if it has
not been accessed for a certain specified interval using SlidingExpiration. For instance,
you can remove an item from the cache if it has not been accessed for two hours.

 52 ChAPTER 1 Accessing data

Objective review
Answer the following questions to test your knowledge of the information discussed in this
objective. You can find the answers to these questions and their corresponding explanations
in the “Answers” section at the end of this chapter.

1. Which of the following are provided for use by the .NET Framework as
ChangeMonitors when defining a CacheItemPolicy? (Choose all that apply.)

A. CacheEntryChangeMonitor

B. FileChangeMonitor

C. MsmqChangeMonitor

D. SqlChangeMonitor

2. Which values are valid choices when defining the Priority property of the CacheItem-
Policy using the System.Runtime.Caching version of the Cache? (Choose all that apply.)

A. Normal

B. High

C. NotRemovable

D. Low

3. You have set up an ObjectCache instance using the following code:

List<String> fileList = new List<String>();
fileList.Add(@"C:\SomeDirectory\SampleFile.txt");
ObjectCache cacheInstance = MemoryCache.Default;
CacheItemPolicy accountPolicy = new CacheItemPolicy();
accountPolicy.Priority = CacheItemPriority.Default;
accountPolicy.AbsoluteExpiration = DateTime.Now.AddMinutes(60);
accountPolicy.ChangeMonitors.Add(new HostFileChangeMonitor(fileList));
CacheItem exampleItem1 = new CacheItem("ExampleItemId", "Example Item Value",
"AccountObjects");

Which of the following items add an item to the cache with a key named “ExampleIt-
emId,” a value of “Example Item Value,” a region named “AccountObjects,” and a
CacheItemPolicy with a Default CacheItemPriority? (Choose all that apply.)

A. cacheInstance.Add(exampleItem1, accountPolicy);

B. cacheInstance.Add(exampleItem1, accountPolicy.Priority.Default);

C. cacheInstance.Add(“ExampleItemId”, “Example Item Value”, accountPolicy);

D. cacheInstance.Add(“ExampleItemId”, “Example Item Value”, accountPolicy,
“AccountObjects”);

 Objective 1.3: Implement transactions ChAPTER 1 53

Objective 1.3: Implement transactions

Once upon a time, flat indexed sequential access method (ISAM) databases ruled the world,
and transactions weren’t a big deal and were seldom even a concern on most developers’
minds. Today, with e-commerce booming and even traditional commerce being largely com-
puterized, the need for transactions shows itself frequently in applications (and this should in
no way imply that transactions are only relevant to commerce).

Transactions are powerful and, when used correctly, provide tremendous functional-
ity commensurate to the effort it takes to use them. At the same time, transactions are not
free in terms of resource utilization, and incorrect implementations have been the source
of countless headaches for database administrators, developers, salespeople, and end users
alike.

For this exam, you should be familiar with how to effectively implement a transaction with
ADO.NET, the EF, and general characteristics of transactions. System.Transactions is the core
namespace that facilitates generic transaction functionality. You also need at least a basic
understanding of EntityTransaction (located in the System.Data.EntityClient namespace) and
the SqlTransaction class.

This objective covers how to:
■■ Understand the characteristics of transactions

■■ Implement distributed transactions

■■ Specify a transaction isolation level

■■ Use the TransactionScope

■■ Use the EntityTransaction

■■ Use the SqlTransaction

Understanding characteristics of transactions
To meet the technical criteria for a database transaction, it must be what’s known as ACID,
which is an acronym for atomic, consistent, isolated, and durable. Entire books and research
papers have been written on the subject, so being an expert in transaction theory is not
necessary (or even necessarily helpful) for this exam, but it will help you understand why the
specific implementations that are covered on the exam operate as they do.

Although referencing Wikipedia is something that must be done with extreme caution, the
content in one Wikipedia article is good. It states that transactions have two primary purposes:

To provide reliable units of work that allow correct recovery from failures and
keep a database consistent even in cases of system failure, when execution

 54 ChAPTER 1 Accessing data

stops (completely or partially) and many operations upon a database remain
uncompleted, with unclear status.

To provide isolation between programs accessing a database concurrently. If
this isolation is not provided, the program’s outcome, are possibly erroneous.

Transactions serve to make database interactions all-or-nothing propositions. Once
executed, they need to complete successfully, or they need to be completely undone and
leave things exactly as they were had the change attempt not been made if they failed. If you
understand that, you understand the fundamental concept of transactions.

One aspect of transactions that you probably need to know for the exam is the concept of
isolation levels. To be of much value, one transaction needs to be kept from, or isolated from,
all other transactions. SQL Server has extensive support for both transactions and isolation
levels, so they are likely to appear on the exam.

The other concept that you will likely encounter is that of simple transactions versus distrib-
uted transactions. A simple transaction is the most common-use case you’ve probably heard
of. An application attempts to insert a record into an Account table and then an Account
Details table. If either fails, both should be undone, so there aren’t any orphaned records or
incorrectly recorded items. Simple transactions affect one database, although multiple tables
might be involved. Other cases, and this is particularly relevant in today’s world of large dis-
tributed networks, are distributed transactions that span multiple systems.

Implementing distributed transactions
It’s not uncommon for one company to purchase software products for specific functionality
that’s written by different vendors. They often write an application that consolidates critical
information from each system into one place or that tries to get the applications to work to-
gether. Proprietary software that wasn’t designed to work with external systems was once the
norm, but that time has passed, and customers increasingly find such self-serving functional-
ity unacceptable. In these cases, transactions become important.

Imagine a system that handles front-end cash register purchases, and imagine another one
that records the purchases and returns in the accounting system. If a purchase is made and
successfully recorded in the register system but it fails to record the transaction in the ledger
system, a problem results. If the reverse is true, it is also a serious problem.

Now imagine that you also incorporate an inventory system in the equation that automati-
cally handles ordering things when certain thresholds are set. If this system goes down for 30
minutes, if the purchases are made and recorded correctly, and the items are accounted for in
the accounting system correctly, but the inventory system has no idea any of these sales just
happened, it would think that many things still existed in inventory that didn’t. So it wouldn’t
order more of them to replenish inventory just yet. You can see how this can have serious
consequences for the company.

The problem is that, in a case like this, you’d likely be dealing with three separate applica-
tions written by three separate companies, so the simple transaction model wouldn’t work.

 Objective 1.3: Implement transactions ChAPTER 1 55

That’s because in a simple transaction scenario, one database connection is used. In this case,
you have three separate ones, and it’s possible that those three databases aren’t even of the
same type. Although this in no way indicates a deficiency on the part of the developers of the
System.Data.SqlClient.SqlTransaction class, it should come as little surprise that it does not
provide support for an Oracle database, a Sybase database, or a CouchDB database. It doesn’t
mean that they aren’t sufficient or couldn’t be used individually on each machine, but that
wouldn’t do much to solve the problem at hand.

To address these scenarios, Microsoft made a significant investment in building solid
tools to deal with them using distributed transactions. These tools will be discussed in depth
and, outside of a limited number of questions on basic transactions, it’s likely you’ll see at
least some questions on the exam related to distributed transactions. The core Transactions
objects exist in in the System.Transactions namespace. The two other relevant ones are the
System.Data.SqlClient and System.Data.EntityClient namespaces (the latter being from the
System.Data.Entity assembly).

Specifying a transaction isolation level
The IsolationLevel enum is used to manage how multiple transactions interact with one
another. Another way to describe it is that IsolationLevels control the locking behavior
employed for the execution of a command. However, there’s a problem that many develop-
ers stumble over, so let’s first get this out of the way. There are actually two Isolation enums:
one in System.Data.IsolationLevel and a second in System.Transaction.IsolationLevel. Just as
there were two CacheItemPriority enums that generally served the same purpose, these two
IsolationLevel enums generally serve the same purpose, but for two different sets of classes.
Fortunately, both have the same values, so there isn’t much to remember between the two
other than the fact that the two exist; sometimes you need one, and other times you need
the other.

EXAM TIP

The IsolationLevel enumeration values have not changed since the enumeration was intro-
duced initially. Table 1-6 covers each of the values and what they do, but you would be well
advised to learn each of these and understand them. The official documentation for each
behavior is available on MSDN at the following URL: http://msdn.microsoft.com/en-us/
library/system.data.isolationlevel.aspx. Because questions regarding IsolationLevel are very
likely to appear on the exam, by understanding what each level does, you’ll be able to dis-
tinguish the correct answer based on requirements mentioned in the question. You’ll likely
see something in a question stub indicating that you need to allow or prevent exclusive
range locks or you need to ensure that users are prevented from reading data locked by
other transactions. Such verbiage is a dead giveaway to which isolation level is correct.

http://msdn.microsoft.com/en-us/library/system.data.isolationlevel.aspx
http://msdn.microsoft.com/en-us/library/system.data.isolationlevel.aspx

 56 ChAPTER 1 Accessing data

Table 1-6 lists each value of the enumeration and describes the implications of using it
according to MSDN:

TABLE 1-6 System.Data.IsolationLevel

Member Description

Unspecified The actual transaction level being used cannot be determined. According to
MSDN, if you are using an OdbcConnection and do not set this value at all, or you
do set it to Unspecified, the transaction executes according to the isolation level
that is determined by the driver that is being used.

Chaos The pending changes from more highly isolated transactions cannot be overwrit-
ten. This is not supported in SQL Server or Oracle, so it has very limited use.

ReadUncommitted No shared locks are issued; exclusive locks are not honored. The important impli-
cation is that this isolation level can result in a dirty read, which is almost always
undesirable.

ReadCommitted Shared locks are held during reads. This has the result of avoiding dirty reads, un-
like ReadUncommitted. However, the data can be changed before the end of the
transaction, resulting in nonrepeatable reads or phantom data.

RepeatableRead Locks are placed on all data used in the query, which completely prevents others
from updating any data covered by the lock. It stops nonrepeatable reads, but the
phantom data problem is still possible.

Serializable A range lock is placed specifically on a DataSet. No one else can update the data or
insert rows into the set until the transaction is completed. Although very powerful
and robust, this state can cause major problems if it is not used quickly.

Snapshot An effective copy of the data is made, so one version of the application can read
the data while another is modifying the same data. You can’t see data from one
transaction in another one, even if you run the query again. The size of them can
also cause problems if overused.

NOTE CHANGING THE ISOLATIONLEVEL DURING EXECUTION

As you look at the constructors of classes such as EntityCommand, SqlCommand, Transac-
tionScope, and many other data classes, you’ll notice they each have the ability to specify
a transaction. Although there are not many use cases you’ll typically run across, you might
encounter a situation in which a different IsolationLevel is desired for different phases of
the transaction’s execution. The default IsolationLevel of one set initially remains in effect
for the life of the transaction, unless it is explicitly changed. It can be changed at any time
the transaction is alive. The new value takes effect at execution time, not parse time. So if
the IsolationLevel is changed somewhere midstream in execution, it applies to all remain-
ing statements.

 Objective 1.3: Implement transactions ChAPTER 1 57

Managing transactions by using the API from the
System.Transactions namespace
The TransactionScope class was introduced in version 2.0 of the .NET Framework. It’s easy to
use and powerful. Other than the declaration and instantiation of it, the only thing you need
to know about it is that it has a method named Complete() that you should call if you are
satisfied it completed successfully. This is a key point. Calling Complete() tells the transaction
manager that everything should be committed. If it isn’t called, the transaction is automati-
cally rolled back. Also, when called correctly in a using block, if an Exception is thrown during
execution inside the TransactionScope, the transaction will be rolled back as well.

Here’s a nonfunctional sample (connections and commands aren’t what they should be) of
how to use the TransactionScope in conjunction with a SqlConnection:

using (TransactionScope mainScope = new TransactionScope())
{
 using (SqlConnection firstConnection = new SqlConnection("First"))
 {
 firstConnection.Open();
 using (SqlCommand firstCommand = new SqlCommand("FirstQueryText", firstConnection))
 {
 Int32 recordsAffected = firstCommand.ExecuteNonQuery();
 }
 using (SqlConnection secondConnection = new SqlConnection("Second"))
 {
 secondConnection.Open();
 using (SqlCommand secondCommand = new SqlCommand("SecondQueryText",
secondConnection))
 {
 Int32 secondAffected = secondCommand.ExecuteNonQuery();
 }
 }
 }
 mainScope.Complete();
}

Besides its simplicity, it also has the benefit of being able to handle both simple and
distributed connections and promote simple transactions to distributed ones automatically.
In the previous example, a new TransactionScope was declared and instantiated. Then two
SqlConnections were created inside of it and two corresponding SqlCommands. There are no
exception handlers, so any exceptions result in the transaction being rolled back.

There are two important takeaways here. First, when the call to Open() is made
on FirstConnection, it’s created inside a simple transaction. When Open is called on
SecondConnection, the transaction is escalated to a full distributed transaction. This happens
automatically with no intervention on the developer’s part. The second takeaway is that, in
order for everything to happen correctly, the last statement, the call to Complete(), must hap-
pen before the transaction commits.

 58 ChAPTER 1 Accessing data

Distributed transactions are not simple in just about any regard, even if the Transaction-
Scope makes it look easy. A lot has to happen in order for them to work correctly. People fre-
quently assume that they can do anything inside a TransactionScope (such as copy files or call
Web Services), and if Complete isn’t called, it’s all rolled back. Although Web Services can be
created to support transactions, it doesn’t just happen automatically. In the same respect, not
all databases support transactions, so if one is being used that doesn’t, there’s not much that
can be done about it. Another obvious example is that, if you send an e-mail in the middle of
a TransactionScope, you cannot undo sending that e-mail just because you don’t call Com-
plete on your TransactionScope later.

It’s doubtful that much would be covered in the exam with respect to the Transaction-
Scope outside of what has been covered already: know to call Complete(), know that promo-
tion happens automatically, know that some additional requirements are there if you want
to have distributed transactions, and know that exceptions result in a rollback if you use the
TransactionScope inside a using block. Focusing on those aspects is much more fruitful than
trying to memorize the complete list of items supported by the distributed transaction coor-
dinator.

Using the EntityTransaction
The main purpose of this class is to specify a transaction for an EntityCommand or to use in
conjunction with an EntityConnection. It inherits from the DBTransaction base class. The En-
tityTransaction class has two main properties to be concerned with: the Connection property
and the IsolationLevel property. It has two methods of primary concern as well: Commit() and
Rollback(). There are a few other methods, such as Dispose(), CreateObjReference(), ToString(),
and some others, but they are unlikely to appear on the exam.

One important note is that, when trying to implement a transaction within the EF, it isn’t
necessary to explicitly use the EntityTransaction class (or TransactionScope, for that matter).
Look at the following code:

 using (TestEntities database = new TestEntities())
{
 Customer cust = new Customer();
 cust.FirstName = "Ronald";
 cust.LastName = "McDonald";
 cust.AccountId = 3;
 database.Customers.Add(cust);
 database.SaveChanges();
}

Although it might not be obvious (especially because this is a section on the EntityTrans-
action class), the SaveChanges method of the DbContext automatically operates within the
context of a transaction. When the SaveChanges() method is called, each item in the current
context instance is examined for its EntityState. For each record that has a status of Added,
Deleted, or Modified, an attempt is made to update the underlying store corresponding to

 Objective 1.3: Implement transactions ChAPTER 1 59

the EntityState. If any of the items can’t be saved back to the source, an exception is thrown,
and the transaction that the changes were executing in is rolled back.

Of course, there are times when you are using a different approach or need to explic-
itly manage the transactions yourself. If you are in a situation in which you are using an
EntityCommand instead of the ObjectContext, you can use the EntityTransaction almost
identically to the way you use the SqlTransaction: You simply create a new EntityConnection,
declare a new EntityTransaction by calling BeginTransaction, and then perform your logic.
Based on the results, you can choose to call the Commit method or the Rollback method.

using (EntityConnection connection = new EntityConnection("TestEntities"))
{
 using (EntityTransaction trans = connection.BeginTransaction(System.Data.
IsolationLevel.Serializable))
 {
 EntityCommand CurrentCommand = new EntityCommand("SOME UPDATE STATEMENT",
connection, trans);
 connection.Open();
 Int32 RecordsAffected = CurrentCommand.ExecuteNonQuery();
 trans.Commit();
 }
}

Using the ObjectContext and SaveChanges is usually more than sufficient for most ap-
plication needs, and the TransactionScope can equally handle most cases when transactional
functionality is needed. If you need to use the EntityCommand specifically, however, you can
use the EntityTransaction, as shown previously.

Using the SqlTransaction
If you look at the last few paragraphs, the discussion there is virtually identical to what’s cov-
ered here. The behavior of the SqlTransaction is identical; to perform the same scenario, the
only things that changed were the names of the objects and their types.

You create a SqlConnection, call the BeginTransaction() method specifying an
IsolationLevel, create a SqlCommand setting the CommandText Property (or Stored Proce-
dure name and changing the CommandType property), add a SqlConnection to it, and pass
in a SqlTransaction as the last parameter. Then you perform whatever action you want on the
SqlCommand instance, and call Rollback or Commit when you’re done, depending on the
outcome of the execution.

 60 ChAPTER 1 Accessing data

Thought experiment
Working with transactions

In the following thought experiment, apply what you’ve learned about the “Imple-
ment transactions” objective to predict what steps you should take to effectively
manage transactions. You can find answers to these questions in the “Answers” sec-
tion at the end of this chapter.

Contoso has several mission-critical processes that are starting to cause problems.
Users are reporting increasingly frequent processing errors. Additionally, there are
several problems with partial or incomplete records being created. For instance,
users are receiving Order Processing Failure messages and then getting tracking
numbers for their order.

With this in mind, answer the following questions:

1. What would make an operation a good candidate for a transaction?

2. Why not make every operation transactional?

3. What considerations would guide the choice of transaction implementation?

Objective summary
■■ There are several ways to implement database transactions in the current .NET

Framework, including using the EF SaveChanges method, the EntityTransaction, the
SqlTransaction, and the TransactionScope.

■■ TransactionScope is often the quickest and easiest way to work with transactions in
.NET.

■■ IsolationLevel is common to every form of transaction and is the one thing that has the
biggest effect on transaction behavior. Its importance is often taken for granted, but
it is probably the most important aspect of any transaction besides committing and
rolling back.

■■ Transactions can take two forms: simple and distributed. You can often identify distrib-
uted transactions by seeing multiple or different types of connection objects.

Objective review
Answer the following question to test your knowledge of the information discussed in this
objective. You can find the answers to this question and its corresponding explanation in the
“Answers” section at the end of this chapter.

 Objective 1.4: Implement data storage in Windows Azure ChAPTER 1 61

1. You are developing an ASP.NET application that reads data from and writes data to a
SQL Server database. You should avoid nonrepeatable reads and not concern yourself
with phantom data. Which isolation level should you use?

A. ReadUncommitted

B. RepeatableRead

C. Chaos

D. Snapshot

2. Which items would benefit from being made transactional?

A. Long-running queries that span multiple tables

B. Quick-running queries that involve only one table

C. Queries that make use of the file system on a Windows operating system.

D. Queries that make use of the file system of a non-Windows operating system.

Objective 1.4: Implement data storage in
Windows Azure

You wouldn’t be taking this test if you weren’t at least nominally familiar with Web Services
and the cloud. Windows Azure is a big area, and there are several books on it. This objective
specifically relates to data storage in Windows Azure. Although learning all about other as-
pects of Windows Azure is great, keep focused on the fact that you are just dealing with data
storage for this particular objective.

This objective covers how to:
■■ Access data storage in Windows Azure

■■ Choose a data storage mechanism in Windows Azure (blobs, tables, queues and
SQL Database)

■■ Distribute data by using the Windows Azure Content Delivery Network (CDN)

■■ Manage Windows Azure Caching

■■ Handle exceptions by using retries (SQL Database)

Accessing data storage in Windows Azure
Data storage can mean a lot of things and cover a lot of areas, so let’s be specific. You should
make sure that you fully understand the storage options that are available and their respec-
tive strengths and weaknesses. You should understand how to read and write data using
these methods. There are several other objectives in other chapters that relate to multiple
other aspects of Windows Azure, but for this portion, keep focused on data storage.

 62 ChAPTER 1 Accessing data

Whether you’re pondering it in the real world or just for the exam, when deciding about
data storage in Windows Azure, it needs to be compared against something. What is that
something? You can come up with all sorts of options: a USB flash drive, an SD card, a USB or
SATA drive, a traditional hard drive, or all of these in a storage area network. But that’s the
wrong context. No one is running a production SQL Server and storing the data on a USB
card. Because this is a Microsoft-specific exam, you can also rule out non-Microsoft solutions.
So data storage with Windows Azure versus data storage in a Windows Server environment is
what you need.

You can deduce that, if Windows Azure data storage options didn’t work closely to existing
mechanisms, it would greatly impede adoption. Few people have gotten fired for playing it
safe and doing what always worked (although they often sit by and watch companies slowly
die of attrition). Countless numbers of people have been fired for pushing some new technol-
ogy that results in failure. You can be sure that a company such as Microsoft is quite aware of
such dynamics. It is also aware of the fact that people focus on total cost of ownership. So any
benefits from Windows Azure will be weighed against costs and compared against the exist-
ing storage solution. There’s nothing Windows Azure could offer that would convince many
companies to adopt it if doing so meant porting all their existing apps to a brand new storage
mechanism that was totally different from what they have now. So things, for the most part,
map to existing technologies quite well, and in many cases can be migrated transparently.

But everyone who has ever written software and lived through a few versions is aware
of how challenging issues such as breaking changes and legacy anchors can be. It’s impos-
sible to make any substantive improvements without some risk. And sometimes you have no
choice but to introduce breaking changes and end support for items. Similarly, cloud-based
storage, for instance, has to have some other benefits and features other than “someone else
can worry about our data.” That’s a verbose way of saying that, although much of what you’ll
encounter in Windows Azure data storage is identical to that of Windows Server storage,
there are a few things that are notably different or completely new.

Finally, following are some significant concerns to be aware of when implementing data
storage in Windows Azure:

■■ Applications ported to the Windows Azure platform are dependent on network ac-
cess. Lose your Internet connection and you have problems. This is a lot different from
the typical in-house application scenario, in which you can take consistent access to
resources such as the database or a message queue for granted.

■■ If you use local storage with Windows Azure, existing code and methodologies are al-
most identical. It’s only when you are dealing with Table and Blob storage (introduced
shortly) that you see access methods different from what you’re familiar with.

 Objective 1.4: Implement data storage in Windows Azure ChAPTER 1 63

You are dealing with a large layer between your application and the data store. The whole
reason to use cloud-based options is so you no longer have to worry about data storage or
uptime of the apps; someone else does. But that doesn’t magically make things always work.
A Service Level Agreement (SLA) or Uptime Agreement might promise the mythical 5-9s, but
that doesn’t mean it is so. It just means you have recourse if the expectations aren’t met. Just
as you don’t have unlimited processor utilization, you also can’t take always-available Internet
for granted.

Depending on how you want to count things, there are either five or three storage offer-
ings in Windows Azure. Table 1-7 shows these offerings. You can consider Windows Azure
storage as an offering, or you can consider each individual component as an offering. At the
highest level, you have Local Storage, Windows Azure Storage, and SQL Database as options
(three). If you count the components of each, you have Local Storage, Blob, Table, and Queue
(all of which are part of Windows Azure storage), and SQL Database.

TABLE 1-7 Windows Azure platform storage options

Offering Purpose Capacity

Local Storage Per-instance temporary storage <20 GB–2 TB

Blob Durable storage for large binary objects (audio, video,
image files)

200 GB–1 TB (1 TB per
page Blob, 100 TB per
account)

Table Tabular or structured data 100 TB

Queue Items that you normally store in a Message Queue (MSMQ) 100 TB

SQL Database Exactly what you expect: an online version of SQL Server 150 GB

Please make sure that you understand the differences between these options. There’s also
additional detail available at http://social.technet.microsoft.com/wiki/contents/articles/1674.
data-storage-offerings-on-the-windows-azure-platform.aspx, which you will likely find helpful.

For the exam, it is likely that you will run into a situation in which you are given a scenario
and then asked what items fit each piece of it. When you read Video, Audio, Image, it’s almost
certain to be a candidate for Blob storage. When it’s structured data of any format, it will be
Table storage or SQL Database storage if the structured data is also relational. Queue storage
is typically hinted at by something along the lines of needing a guarantee of message deliv-
ery. SQL Database items should be clear enough to denote in and of themselves. That leaves
Local storage. The clue to it is that it is temporary storage, it mimics your typical file system,
and it is per-instance.

http://social.technet.microsoft.com/wiki/contents/articles/1674.data-storage-offerings-on-the-windows-azure-platform.aspx
http://social.technet.microsoft.com/wiki/contents/articles/1674.data-storage-offerings-on-the-windows-azure-platform.aspx

 64 ChAPTER 1 Accessing data

Choosing a data storage mechanism in Windows Azure
(blobs, tables, queues and SQL Database)
At the most basic level, blobs, queues, and tables differ in the following ways:

■■ Blobs are ideally suited for unstructured binary and text data. There’s nothing stop-
ping you from breaking apart an Excel file and storing it as binary in Blob storage.
There’s nothing even stopping you from taking a SQL Server or Oracle data file, read-
ing the bytes and storing it as a blob. But it makes little sense to do so because there
are much better ways to store structured data (just in case you missed it, each of the
aforementioned items is considered a traditional “structured” data store). In the same
respect, though, storing backups or copies of these files is something you might typi-
cally consider doing. You can store structured data in Blob storage, but the cases in
which you’ll need or want to do it are few if any.

■■ Tables are ideally suited for storing structured but nonrelational data. If you’re familiar
with them, think NoSQL databases such as CouchDB or MongoDB. Suppose that you
were developing a YouTube-like service that enabled users to upload videos, and you
wanted to store the metadata of the video, the user, and so on. You’d typically want to
store the videos in Blob storage and store the other metadata in Table storage (which
might entail multiple tables or just one).

■■ Queues are essentially the Windows Azure equivalents of an MSMQ. If you’re unfa-
miliar with Queues or MSMQ, do a quick search and become familiar with them. A
queue is a First In, First Out (FIFO) data structure that can store almost anything that
can be serialized. Queues are ideally suited for situations in which delivery of a mes-
sage or processing of information absolutely must happen. It’s similarly well suited to
operations characterized by long-running processes and asynchronous jobs. There is
a specific WCF Binding to use for queues that is the primary way reliable messaging is
facilitated with Windows Azure.

Bindings and reliable messaging haven’t been introduced yet, but if you’re unfamiliar with
them, an overview is provided in the following coverage.

Blob storage
Blob storage enables you to retrieve and store large amounts of unstructured data. One of
the main benefits is that, once stored, the corresponding information can be accessed from
anywhere using the HTTP or HTTPS protocols. If you have Internet access, you can retrieve
and manipulate these items. The items you store in Blob storage can range in size up to 100
TB, although the more likely scenario is that you will deal with several smaller items.

Recall that you can store SQL Server data files or Oracle data files in Blob storage, but it
makes little sense to do so because you have the option to use SQL, Windows Azure, and
Table storage. At the same time, it makes perfect sense to store your backups for them in
Blob storage. Why one and not the other? Because Blob storage is ideally suited to large sizes
and unstructured data. The data file for a production database needs to be written to and

 Objective 1.4: Implement data storage in Windows Azure ChAPTER 1 65

read from constantly, whereas the backup just needs to be uploaded and accessed if and
when needed. Blob storage is ideally suited for the following:

■■ Images that can be directly viewed in a browser

■■ Document storage

■■ Secure backups as part of a disaster recovery plan

■■ Streaming video and audio

The structural makeup of Blob storage needs to be discussed at this point. At the high-
est level, you have the storage account. Storage accounts hold containers. Containers in turn
contain blobs.

At the top of the entire storage structure is the storage account. Without it, you have noth-
ing. You’ll notice that in Table 1-8, there is a 1 terabyte (TB) limit on Page Blob size, but there’s
a 100 TB limit on a storage account. If your data storage exceeds 100 TB, you have to handle
everything notably differently than you would otherwise. If you are dealing with that much
data, however, there will be some complexities and difficulties irrespective of storage mecha-
nism. A storage account’s main purpose with respect to blobs is to be a holding mechanism
for containers. In practical terms, there’s no limit on the number of containers that a storage
account can hold (as long as they don’t exceed the size limit).

Although hardly a perfect metaphor, think of a container as a subdirectory used to
organize your blobs within a storage account. Although containers cannot be nested within
one another, they can be used in many different ways for organizational purposes. A storage
account can contain any number of containers, provided that the sum of each container’s size
doesn’t exceed 100 TB. Containers have one essential task: to provide a logical and physical
grouping for blobs.

A blob is merely a file. There are no type restrictions, so they can hold almost anything.
Windows Azure has two distinct categories of blobs:

■■ Blocks

■■ Pages

Block blobs have a 200 gigabyte (GB) size limit. Page blobs, on the other hand, can store
anything up to 1 TB.

You have two choices for accessing blob data. The first is that you can just reference it by
URL. The structure of the URL uses the following format:

http://<storage account name>.blob.core.windows.net/<container>/<blob>

The next method involves using the API. To reference these namespaces, you have to add
a project reference to the Microsoft.WindowsAzure.Storage.dll assembly. The API for Blob
storage includes the following namespaces:

■■ Microsoft.WindowsAzure.Storage

■■ Microsoft.WindowsAzure.Storage.Auth

■■ Microsoft.WindowsAzure.Storage.Blob

 66 ChAPTER 1 Accessing data

Ensure that you have a storage account created within your Windows Azure subscription.
The storage account is represented by the CloudStorageAccount class. It’s instantiated in a
few ways. First, you can use the two constructors, which work in one of two ways. The first
overload takes an instance of StorageCredentials as the first argument and then a uniform
resource identifier (URI) representing the blob endpoint, Queue endpoint, or Table endpoint,
in that order. If you’re using the Blob, as in this case, just leave the other values null. You do
the same sort of thing if you are using just a queue or just a table. The second one works
similarly: Specify an instance of the StorageCredentials and whether to use HTTPS. You need
to set the values for the URIs in your code afterward or manually configure them through the
Windows Azure UI:

First Blob storage upload

[TestCase("1234", "count.txt", "file", "INSERT YOUR ACCOUNT NAME", "INSERT YOUR KEY")]
public void UploadBlob(string fileContents, string filename, string containerName,
string accountName, string accountKey)
{
 // ARRANGE
 StorageCredentials creds = new StorageCredentials(accountName, accountKey);
 CloudStorageAccount acct = new CloudStorageAccount(creds, true);
 CloudBlobClient client = acct.CreateCloudBlobClient();
 CloudBlobContainer container = client.GetContainerReference(containerName);

 // ACT
 container.CreateIfNotExists();
 ICloudBlob blob = container.GetBlockBlobReference(filename);
 using (MemoryStream stream = new MemoryStream(Encoding.UTF8.GetBytes(fileContents)))
 {
 blob.UploadFromStream(stream);
 }

 // ASSERT
 Assert.That(blob.Properties.Length, Is.EqualTo(fileContents.Length));
}

A much better way to do this is using the static Parse or TryParse methods of the
CloudStorageAccount. You have two choices with either approach. You can use the specific
CloudConfigurationManager and call the GetSetting method, which pulls the setting from
the .CSCFG file associated with your compiled Windows Azure Cloud project. Or you can use
the ConfigurationManager from the System.Configuration assembly; reference the name key
as a parameter; and use the ConnectionStrings property, which will pull the setting from the
application’s web.config or app.config file.

Following is an example that pulls the connection info from the test project’s app.config
file:

[TestCase("1234", "count.txt", "file")]
public void UploadBlobFromConfig(string fileContents, string filename, string
containerName)
{

 Objective 1.4: Implement data storage in Windows Azure ChAPTER 1 67

 // ARRANGE
 CloudStorageAccount acct = CloudStorageAccount.Parse(ConfigurationManager.Connection
Strings["StorageConnection"].ConnectionString);
 CloudBlobClient client = acct.CreateCloudBlobClient();
 CloudBlobContainer container = client.GetContainerReference(containerName);

 // ACT
 container.CreateIfNotExists();
 ICloudBlob blob = container.GetBlockBlobReference(filename);
 using (MemoryStream stream = new MemoryStream(Encoding.UTF8.GetBytes(fileContents)))
 {
 blob.UploadFromStream(stream);
 }

 // ASSERT
 Assert.That(blob.Properties.Length, Is.EqualTo(fileContents.Length));
}

To get this to work, you need the following line in your app.config file, slightly tweaked
with your settings:

<add name="StorageConnection" connectionString="DefaultEndpointsProtocol=https;Account

Name=ACCOUNT_NAME_GOES_HERE;AccountKey=ACCOUNT_KEY_GOES_HERE" />

You can, and probably should, use the TryParse method in a similar fashion. The debate
between using Parse versus TryParse is out of the scope of this book.

After you build up a storage account reference, you need to create a client using the
CloudBlobClient class. Next, get a container reference, ensure that it’s been created,
get your blob reference, and save it. Downloading blobs is just as easy when using the
DownloadToStream method from the ICloudBlob object.

Remember that blobs come in two forms: Block blobs and Page blobs. As such, there’s a
CloudBlockBlob class and a CloudPageBlob class to represent either of them. You retrieve
either of them by using the CloudBlobContainer class and calling the GetBlockBlobReference
method or the GetPageBlobReference method passing in the name of the item, respectively.
They both work the exact same way as the prior tests.

The next thing is how to write to a blob. Once you have a reference to a CloudBlockBlob
or CloudPageBlob, you need to call the UploadFromStream method, passing in a FileStream
or some other Stream reference. There are several overloads and asynchronous methods to
accompany it, and it's a good idea to do a quick review of them when preparing for the exam.
Uploading huge amounts of data isn’t usually the fastest process in the world, so you typically
should make sure that you use asynchronous methodology so you don’t block the primary
thread of your application.

You should wrap the call to the UploadFromStream in an exception handler and respond
to any problems that you might encounter. Keep in mind that UploadFromStream overwrites
data if it is already there, so that’s the mechanism for updating existing blobs, too. Deleting
blobs is just a matter of calling the Delete or DeleteIfExists methods of the respective items:

 68 ChAPTER 1 Accessing data

[TestCase("count.txt", "file")]
public void DeleteBlobFromConfig(string filename, string containerName)
{
 // ARRANGE
 CloudStorageAccount acct = CloudStorageAccount.Parse(ConfigurationManager.Connection
Strings["StorageConnection"].ConnectionString);
 CloudBlobClient client = acct.CreateCloudBlobClient();
 CloudBlobContainer container = client.GetContainerReference(containerName);

 // ACT
 container.CreateIfNotExists();
 ICloudBlob blob = container.GetBlockBlobReference(filename);
 bool wasDeleted = blob.DeleteIfExists();

 // ASSERT
 Assert.That(wasDeleted, Is.EqualTo(true));
}

All the default functionality with blobs and containers creates them in a secure manner.
All the previous tests that created containers actually created private containers. However,
with different settings, you can also create public containers. Likewise, you can take a private
container and modify it to be publicly available.

If you want to create a public container, it can be done with the container’s SetPermissions
method, in which you pass in a BlobContainerPermissions object preconfigured with
PublicAccess enabled. You can also distribute storage access signatures to users to give
temporary access to private containers or blobs via the GetSharedAccessSignature method on
either the blob or container object. If you do this, be careful about the policy you set on the
shared access signature.

Table and Queue storage
Table and Queue storage APIs are similar to Blob storage APIs at a high level. To work with
tables and queues, you again start with the CloudStorageAccount object to access the obvi-
ous CreateCloudTableClient and CreateCloudQueueClient methods. Unlike blobs, queues and
tables are always private and have no public access capabilities, so this simplifies the API a bit.

Queues are the simpler of the two in that there is no real searching functionality. Aside
from the capability to get an approximate count of items in the queue, it’s mostly just a push-
and-pop mechanism to get messages into or off of the queue. The only interesting aspect of
working with the queue API is what happens when you get a message. The act of getting a
message does not actually perform the pop for that message. In fact, it causes that message
to become invisible for a period of time (it defaults to one minute, but you can also specify it).
During this period of time, you’re guaranteed that nobody else will retrieve this message. If
it takes you longer than this time period to process the message, you should periodically up-
date the message to keep it hidden while you continue to process it. After you finish process-
ing the message, you should then delete the message from the queue.

Tables are a little more interesting in that you can search the data and interact with it. The
main way to fetch a single record is to execute a TableOperation. However, if you want to

 Objective 1.4: Implement data storage in Windows Azure ChAPTER 1 69

fetch many records, use a TableQuery. Following is a test showing the lifecycle of creating a
table, adding a record, fetching that record, and then deleting that record. Notice the Record
class it references and how it derives the TableEntity class. This enables you to quickly and
easily manage the schema of the table as well as having .NET objects that can represent the
data in the tables.

public class Record : TableEntity
{
 public Record() : this(DateTime.UtcNow.ToShortDateString(), Guid.NewGuid().
ToString())
 { }
 public Record(string partitionKey, string rowKey)
 {
 this.PartitionKey = partitionKey;
 this.RowKey = rowKey;
 }

 public string FirstName { get; set; }
 public string LastName { get; set; }
}

[TestCase("file")]
public void UploadTableFromConfig(string tableName)
{
 // ARRANGE
 CloudStorageAccount acct = CloudStorageAccount.Parse(ConfigurationManager.Connection
Strings["StorageConnection"].ConnectionString);
 CloudTableClient client = acct.CreateCloudTableClient();
 var table = client.GetTableReference(tableName);
 Record entity = new Record("1", "asdf"){FirstName = "Fred", LastName =
"Flintstone"};

 // ACT
 table.CreateIfNotExists(); // create table
 TableOperation insert = TableOperation.Insert(entity);
 table.Execute(insert); // insert record
 TableOperation fetch = TableOperation.Retrieve<Record>("1", "asdf");
 TableResult result = table.Execute(fetch); // fetch record
 TableOperation del = TableOperation.Delete(result.Result as Record);
 table.Execute(del); // delete record

 // ASSERT
 Assert.That(((Record)result.Result).FirstName, Is.EqualTo("Fred"));
}

Distribute data by using the Windows Azure Content
Delivery Network (CDN)
The Windows Azure Content Delivery Network (CDN) is a way to cache Windows Azure blobs
and static content. The idea is that you can use specific strategically placed nodes to maxi-
mize performance and bandwidth. Currently, you can specify node locations in the United

 70 ChAPTER 1 Accessing data

States, Europe, Asia, Australia, and South America. (When the number of missing nodes is
greater than the number of nodes shown, it is probably a good sign that things are out of
date and not worth going into.) In any case, the important takeaway is that you use CDN
when performance is absolutely critical or when there are times you need to distribute the
load placed on your resources (think Amazon on Cyber-Monday).

So the two primary benefits, according to MSDN, are these:

■■ Better performance and user experience for end users who are far from a content
source, and are using applications in which many Internet trips are required to load
content.

■■ Large distributed scale to better handle instantaneous high load, say at the start of an
event such as a product launch.

This section is intentionally short because CDN-specific questions are rare in the exam be-
cause it’s changed substantively (this is not an official statement from Microsoft). The UI, for
instance, has changed regularly over the course of its existence, and screen shots I took from
some previous writing on the subject were completely obsolete by the time I started writing
this book.

CDN is an advanced feature, and although useful and necessary, it is something that’s
unquestionably going to evolve over the next few months and years. Focus on understanding
what CDN is used for, the use cases, and a basic overview of it, and you should be prepared
for the exam.

To use CDN, you must enable it on your storage account in the Windows Azure Manage-
ment Portal. (At the time of the writing of this book, the CDN management tools are available
only in the legacy version of the Windows Azure Management Portal.)

Next, understand how a request processed through CDN differs from a traditional request.
Remember that a big selling point of the cloud is that you don’t have to worry about many of
the specifics about where things are stored (other than a URI). So when you make a request,
the request is processed through the blob service or hosted service where your data is
located. When the same thing is done with CDN enabled and configured, the request is trans-
parently redirected to the closest endpoint to the location where the request was made. This
minimizes the Internet trips mentioned previously. But there’s a little more to it than this. All
your data is not stored at the closest node, and you can’t know in advance where the request
will be made. So the only way to make sure that any given blob was at the closest node would
be to have it on all nodes that were accessible. This is problematic because ,the first time a
request is made, the item won’t be at the closest node in many circumstances. In those cases,
it is retrieved from the service and cached, actually causing a one-time performance hit prior
to the performance gains. Subsequent requests to that node will use the cached item.

The only real nuance is staleness of the cached files. Anyone making any request after
the first user gets a cached copy, so if the item changes frequently, it needs to be updated
frequently. If it needs to be updated constantly (imagine a spreadsheet with stock quotes), the
expiration needs to happen so frequently that it would offset any benefit from the caching.

 Objective 1.4: Implement data storage in Windows Azure ChAPTER 1 71

Expiration is handled specifically by setting the Time To Live (TTL) value, which controls cache
expiration.

How exactly do you make content available on CDN? First, it must exist in a public contain-
er. Second, the public container must be available for anonymous access. Again, only items
that are publically available can be cached using CDN. This can be done through the Win-
dows Azure Management Portal, but can also be facilitated through the API and the Cloud-
BlobContainer class, for instance, in conjunction with the BlobContainerPermissions class. The
CloubBlobContainer’s Permissions property has a PublicAccess property of type BlobContain-
erPublicAccessType. The three values are Container, Off, and Blob. In this case, the container
must be public, so BlobContainerPublicAccessType.Container should be used.

So after a container is set up, it’s simply a matter of setting up the expiration policy and
accessing the data. To access the content directly from the blob service, the URI is identical to
what it was originally:

http://<storage account name>.blob.core.windows.net/<container>/<blob>

To access it directly through the Windows Azure CDN URL, use the following syntax, which
is almost identical:

http://<storage account name>.vo.msecnd.net/<container>/<blob>

For the purposes of this exam, the hosted services component of CDN is pretty much iden-
tical other than the URIs. There are some other general things to keep in mind, though, when
using CDN. Remember that you’re using cached objects, so the more dynamic the object, the
less likely it is a good candidate for caching. In fact, if it’s too dynamic or the policy is too fre-
quent in terms of expiration, it adversely affects performance. And that’s part of the problem.
What is too frequent? Every case will be different.

Manage Windows Azure Caching
Keep in mind that caching in Windows Azure is a completely different creature from the
other types of caching discussed in this chapter. They are completely different. In a nutshell,
it provides a caching layer to your Windows Azure applications. There are times when you
benefit from caching with self-hosted applications after all, so why wouldn’t the same hold
true for Windows Azure-hosted applications? Moreover, CDN does cache data, but it’s hardly
the comprehensive caching solution needed for many much simpler scenarios.

Caching in the Windows Azure context has one additional advantage over traditional
caching. In the Windows Azure context, it can greatly reduce costs associated with database
transactions when using SQL databases. If you cache an item that is accessed 10,000 times,
for instance, that’s 10,000 fewer requests to the SQL database that are being made. Depend-
ing on the item, this could be quite substantial. I also point out that, if ignored or taken for
granted, it could end up being a very costly mistake.

 72 ChAPTER 1 Accessing data

Caching in Windows Azure is known as role-based caching. That’s because, as you might
infer, it enables you to host caching within any Windows Azure role. Any given cache can be
used by any of the other roles within the same cloud service deployment.

To facilitate this, there are two main mechanisms or topologies: dedicated topology and
co-located topology. The names are the dead giveaway here, but in a dedicated topology,
you define a role that is specifically designated to handle the caching. The Worker Role’s
available memory (all of it, if necessary) is dedicated to caching items in it and the necessary
overhead to manage access to and from it.

In a co-located topology scenario, you assign specific thresholds, and only those thresh-
olds or amounts under them can be used to facilitate the caching. If you had four Web Role
instances, you could assign 25 percent to each of them.

Outside of these two mechanisms is an optional service known as Windows Azure shared
caching. It’s optional, and each separate service that employs caching is consumed as a man-
aged service. These caches, unlike the role-based counterparts, do not exist in your own roles.
They exist instead in a group of servers in a multitenant environment.

Handling exceptions by using retries (SQL Database)
Using a SQL Database in the cloud can be useful. You get a completely managed database
without any prior configuration. It scales well and can be used from within your cloud or on-
premise applications.

However, there is one thing different in the cloud than running a SQL database on-premise:
latency. Because the physical distance between your database and application server is de-
termined by the infrastructure in the datacenter, you get a higher latency than you would in
an on-premise environment. Because of this, you will be more likely to experience timeouts
when connecting to a database.

These types of errors are transient, meaning those errors will often go away after some
time. For these types of errors, it makes sense to implement retry logic. This basically means
that you inspect the error code that’s returned from SQL Server, determine whether it’s tran-
sient, wait for a set amount of time, and then try again to access the database.

The amount of time you wait before trying the action can be flexible. Maybe you want to
retry three times, such as after one second, then two seconds, and then five seconds. Win-
dows Azure offers the transient fault handling framework to help you with creating retry logic
in your own applications. The following code shows an example of a retry strategy that retries
on deadlocks and timeouts:

class MyRetryStrategy : ITransientErrorDetectionStrategy
{
 public bool IsTransient(Exception ex)
 {
 if (ex != null && ex is SqlException)
 {
 foreach (SqlError error in (ex as SqlException).Errors)
 {

 Objective 1.4: Implement data storage in Windows Azure ChAPTER 1 73

 switch (error.Number)
 {
 case 1205:
 System.Diagnostics.Debug.WriteLine("SQL Error: Deadlock
condition. Retrying...");
 return true;

 case -2:
 System.Diagnostics.Debug.WriteLine("SQL Error: Timeout expired.
Retrying...");
 return true;
 }
 }
 }

 // For all others, do not retry.
 return false;
 }

}

You can use the retry strategy when executing a query from ADO.NET:

RetryPolicy retry = new RetryPolicy<MyRetryStrategy>(5, new TimeSpan(0, 0, 5));

using (SqlConnection connection = new SqlConnection(<connectionstring>))
{
 connection.OpenWithRetry(retry);

 SqlCommand command = new SqlCommand("<sql query>");
 command.Connection = connection;
 command.CommandTimeout = CommandTimeout;

 SqlDataReader reader = command..ExecuteReaderWithRetry(retry);

 while (reader.Read())
 {
 // process data
 }
}

When working on your application or service in Visual Studio you work with a lot of files.
Some of those files contain code; others contain markup or configuration settings.

MORE INFO TRANSIENT FAULT HANDLING FRAMEWORK

For more information on the transient fault handling framework, see http://social.technet.
microsoft.com/wiki/contents/articles/4235.retry-logic-for-transient-failures-in-windows-
azure-sql-database.aspx.

http://social.technet.microsoft.com/wiki/contents/articles/4235.retry-logic-for-transient-failures-in-windows-azure-sql-database.aspx
http://social.technet.microsoft.com/wiki/contents/articles/4235.retry-logic-for-transient-failures-in-windows-azure-sql-database.aspx
http://social.technet.microsoft.com/wiki/contents/articles/4235.retry-logic-for-transient-failures-in-windows-azure-sql-database.aspx

 74 ChAPTER 1 Accessing data

Thought experiment
Choosing a Windows Azure strategy

In the following thought experiment, apply what you’ve learned about the “Imple-
ment data storage in Windows Azure” objective to design an appropriate Windows
Azure strategy. You can find answers to these questions in the “Answers” section at
the end of this chapter.

Your company is looking to move its core applications to the cloud. You have two
primary applications: one that hosts video training files and another that provides
advanced statistics about user interaction patterns. All the consumers of the appli-
cation are currently clustered around three major metropolitan U.S. cities.

With these items in mind, answer the following questions:

1. What storage options would you consider for each of the two scenarios?

2. Would one storage option suffice or would you want more than one?

3. Would this be a good candidate for the CDN? Why or why not?

Objective summary
■■ Windows Azure offers a variety of storage options. Some of these are very similar to

what on-premises servers utilize; others are very different.

■■ Local storage is available on most Windows Azure hosting offerings, including all cloud
services and VMs.

■■ Blob storage is available for storing files in a durable file store. Blob storage can be
empowered by the CDN to provide faster downloads and lower latencies for end users
downloading files during heavy loads.

■■ Queue storage is similar to MSMQ and is the storage mechanism of choice for messag-
es that need guaranteed delivery, even when the receiving system is down for hours at
a time.

■■ Table storage is Windows Azure’s NoSQL implementation. It allows for some very high-
volume and high-speed inserts and accesses, much higher than what SQL databases
allow if architected properly.

■■ Windows Azure offers you an additional caching framework that is very easy to use
and can grow as your number of servers grows or can remain stable with dedicated
instances.

 Objective 1.5: Create and implement a WCF Data Services service ChAPTER 1 75

Objective review
Answer the following question to test your knowledge of the information discussed in this
objective. You can find the answer to this question and its corresponding explanation in the
“Answers” section at the end of this chapter.

1. You are developing an ASP.NET application that hosts an online chat room. What
Windows Azure Storage options should you consider for storing the contents of these
chat rooms?

A. Table storage

B. Queue storage

C. Blob storage

D. CDN storage

2. Benefits of using Windows Azure Content Delivery Network include (choose all that
apply)?

A. Increased performance for users geographically close to the content source.

B. Increased performance for users geographically far from a content source.

C. Large distributed scale to better handle instanteously increased loads.

D. Improved security.

3. Which of the following queries take advantage of the Content Delivery network?

A. http://atlanta.vo.mysite.net/documents

B. http://myaccount.blob.core.windows.net/documents

C. http://myaccount.atlanta.blob.core.windows.net/documents

D. http://atlanta.mysite.net/documents

Objective 1.5: Create and implement a WCF Data
Services service

The discussion of WCF Data Services was short compared with the other technologies in
Objective 1.1’s coverage because it is discussed in depth in this objective. This section walks
through creating and implementing a service and shows a few examples of how to work
with it. Just keep in mind that, throughout the coverage, you specifically deal with WCF Data
Services, WCF, the EF, and SQL Server. (Yes, there could be other data stores, but there aren’t a
lot of questions about MySql on the exam.)

 76 ChAPTER 1 Accessing data

This objective covers how to:
■■ Address resources

■■ Create a query

■■ Access payload formats (including JSON)

■■ Work with interceptors and service operators

Addressing resources
Visual Studio gives you ample tools for building and implementing WCF Data Services, but a
basic walkthrough of how to do it is of little value for preparation of the exam. The approach
in this section is to show you how to create the WCF Data Service and focus on generated
content and what you need to know for the exam.

MSDN provides the following link, which has a start-to-finish walkthrough of creating a
WCF Data Service (http://msdn.microsoft.com/en-us/library/vstudio/cc668184.aspx). Generally,
you’ll need to do the following:

1. Create an ASP.NET application (this serves as the host for the Data Service).

2. Use the EF tools to build an EntityModel.

3. Add a WCF Data Service to the ASP.NET application.

4. Specify a type for the Service’s definition (which is the name of the model container
created in your EF project).

5. Enable access to the Data Service. This is accomplished by explicitly setting specific
properties of the DataServiceConfiguration (SetEntitySetAccessRule, SetServiceOpera-
tionAccessRule and DataServiceBehavior).

When you add a WCF Data Service to an ASP.NET application (and you can certainly use
other hosting mechanisms and hand-code all this if you’re so inclined; it’s just a lot more cum-
bersome and error-prone), you get a class definition that looks something like the following:

public class ExamSampleService : DataService<FILL IN MODEL NAME NERE>
{}

First, make sure that you understand that WCF Data Services inherit from the System.Data.
Services.DataService base class. The constructor takes in a generic type that is indicated by
the template class and is absolutely instrumental to the way everything operates.

The next thing you can see in the generated code is the InitializeService method, which
takes in a parameter of type DataServiceConfiguration. The generated code is marked with a
TODO comment and some commented-out code that is used as a visual tool to help you get
started. It looks like this:

// This method is called only once to initialize service-wide policies.
public static void InitializeService(DataServiceConfiguration config)
{

http://msdn.microsoft.com/en-us/library/vstudio/cc668184.aspx

 Objective 1.5: Create and implement a WCF Data Services service ChAPTER 1 77

 // TODO: set rules to indicate which entity sets and service operations are visible,
updatable, etc.
 // Examples:
 // config.SetEntitySetAccessRule("MyEntityset", EntitySetRights.AllRead);
 // config.SetServiceOperationAccessRule("MyServiceOperation", ServiceOperationRights.
All);
 config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2;
}

There are several properties and methods defined in the DataServiceConfiguration class,
but the important ones to be familiar with are the SetEntitySetAccessRule method, the
SetServiceOperationAccessRule method, and the DataServiceBehavior.MaxProtocolVersion
property.

SetEntityAccessRule
This method takes two parameters and is very easy to understand and use. The first parame-
ter is a string that names the entity set that the next parameter applies to. The next parameter
is the Rights parameter, which is part of the EntitySetRights enumeration. The one noteworthy
thing about this enumeration is that it is decorated with the Flags attribute and intended to
be used that way. So, for example, when the access rules for the Courses entity set and give it
AllRead and WriteMerge permissions, the following definition is used:

config.SetEntitySetAccessRule("Courses", EntitySetRights.AllRead | EntitySetRights.
WriteMerge);

Because it’s likely to come up in one form or another, walk through the EntitySetRights
enumeration’s possible values. The names are intuitive, but it’s likely that you’ll see something
in a question stub that might tip you off to the necessity of one or more of them. Table 1-8
shows each member and behavior of the EntitySetRights enumeration.

TABLE 1-8 EntitySetRights

Member name Behavior

None All rights to the data are explicitly revoked.

ReadSingle Single data items can be read.

ReadMultiple Entire sets of data can be read.

WriteAppend New items of this type can be added to data sets.

WriteReplace Data can be updated or replaced.

WriteDelete Data can be deleted.

WriteMerge Data can be merged.

AllRead Across-the-board access to read data of this type.

AllWrite Across-the-board access to write data of this type.

All All Creation, Read, Update and Delete operations can be performed.

 78 ChAPTER 1 Accessing data

It should go without saying, but just for the sake of being clear, none of these override
permissions are set by the DBA or defined at the database level. You can have the All permis-
sion, for instance, but if the DBA revokes your access to the database or that object, you won’t
be able to access it just because it’s specified here.

What might not seem quite as obvious, though, is that EntitySetRight values can be over-
ruled by ServiceOperationRights. As you’ll see, ServiceOperationRights are intended to be
used as flags, so whatever other values are specified, the OverrideEntitySetRights value can be
set, too. When there’s a conflict, EntitySetRights lose to both the database’s permission and
the ServiceOperationRights.

SetServiceOperationAccessRule
This method is commented out, but it is part of the TODO section, as you saw with Entity-
SetRights. It pertains to any given operation name, and it too defines the permissions that
should be applied to the operation through the ServiceOperationRights enumeration (which
is also decorated with the flags attributed and is meant to be used as such).

config.SetServiceOperationAccessRule("OperationName", ServiceOperationRights.All);

Table 1-9 describes this enumeration in detail, and again it’s worth a look so you can rec-
ognize values when you see them if they appear on the exam.

TABLE 1-9 ServiceOperationRights

Member name Behavior

None No authorization to access the operation is granted.

ReadSingle One single data item can be read using this operation.

ReadMultiple Multiple data items can be read using this operation.

AllRead Single and multiple data item reads are allowed.

All All rights are granted to the service operation.

OverrideEntitySetRights Overrides EntitySetRights that are explicitly defined in
the Data Service.

DataServiceBehavior.MaxProtocolVersion
This value affects the service only to the extent that it will be used with OData (this feeble at-
tempt at humor is actually intentional; it’s there to drive home how important this seemingly
simple and mundane property is).

Table 1-10 shows the allowable values of this enumeration (which is not decorated with the
Flags attribute, as you probably guessed).

 Objective 1.5: Create and implement a WCF Data Services service ChAPTER 1 79

TABLE 1-10 DataServiceProtocolVersion

Member name Behavior

V1 Supports version 1.0 of the OData Protocol

V2 Supports version 2.0 of the OData Protocol

Obviously, I’m not saying you need to know nothing else, but for the exam, make sure that
you understand fully what the constructor for a WCF Data Service looks like, what base class
it inherits from, how to specify the generic type parameter in the base class’ constructor, and
the details discussed previously.

Creating a query
Sometimes it’s a little awkward to discuss things in different sections. This is one of those
cases. QueryInterceptors and ChangeInterceptors would probably fit pretty well in this dis-
cussion, but I will defer coverage until the end because they deserve their own section, that
and the fact that you need to understand how to query data before some of the coverage for
those features will make sense.

OData Support is one of the main reasons to use WCF Data Services, and it is URI address-
able. You can query data and do quite a bit with it by changing and manipulating URIs. For
each example, assume that you have a WCF Service defined and it is named the ExamPrep-
Service. It is based on an Entity Model that contains topics, questions, and answers as entities.

If you want to get all the topics from the service, use the following query:

http://servicehost/ExamPrepService.svc/Topics

Use Service/EntitySetName to get all the entities. Assume that you want to do the same
thing, but instead of wanting all Topic items returned, you want just the Topic named “First”
returned:

http://servicehost/ExamPrepService.svc/Topics('First')

In this case, it is Service/EntitySetName to get the entity, (‘KeyValue’) to restrict results to
the item that has a key matching items in the parentheses.

Assume that this time you want to do the same as the previous example, but you need
only the Description property returned. Here’s how to do it:

http://servicehost/ExamPrepService.svc/Topics('First')/Description

So to return just the specified property, add another slash to the previous query and add
the Property name to it.

At any time, if you want just the primitive type, not the corresponding XML, you can ac-
complish it by appending $value at the end of your URI (query). Using the previous example,

 80 ChAPTER 1 Accessing data

returning just the primitive value string, just use the same query, with /$value appended on
the end:

http://servicehost/ExamPrepService.svc/Topics('First')/Description/$value

As long as there are relationships defined in the Entity Model, you can use a few different
semantics to return related entities. Each of the following is supported:

■■ Parent entity—Specific child entity

■■ Parent entity—All child entities

■■ Set of related entities

Change things up and assume (just for review) that you want to return the Question entity
with a key value of “1” and you want just the QuestionText property:

http://servicehost/ExamPrepService.svc/Questions('1')/QuestionText

That would give you the Question text, but what if you wanted the Answers to it? You
would use:

http://servicehost/ExamPrepService.svc/Questions('1')/Answers

You can work it the other way around, too, of course. If you want the Question that cor-
responded to an Answer entity with a key of (‘1:4’):

http://servicehost/ExamPrepService.svc/Answers('1:4')/Question

You can technically “filter” data using the previous semantics, but filtering can be ap-
plied using the filter keyword, and in many cases needs to be. In the previous example, you
returned questions that had a key value of ‘1,’ which had the effect of filtering it to a SQL
statement that might look like the following:

SELECT Field1, Field2, Field3 etc from Questions WHERE KEY = '1'

All the previous semantics filter only according to key values. Sure, keys are good (and fre-
quent) properties to run queries off of, but there are times when you need to use other values
and combinations of values. If you need to restrict based off of anything other than key, you’ll
need to use the filter keyword.

 Objective 1.5: Create and implement a WCF Data Services service ChAPTER 1 81

EXAM TIP

Most developers and even computer science students who are not just starting their
programs are familiar with SQL. SQL is easy to learn, and it’s so common that most people
have come across it. Although I can run through every single query and feature available
through OData and toying with the URIs, understanding how different URIs translate to
SQL might be helpful to drive home your understanding. I’ve seen quite a few cases in
which people have missed questions on this exam that they unquestionably knew the
SQL for, but got confused on the OData portion. If you create a service, turn on Profiler
in SQL Server and watch the results as you change different URIs; you’ll see exactly what
it’s being translated to behind the scenes. Watching what’s going on in Profiler is a very
helpful learning tool in many cases, not just this one. It does add a slight resource load to
the SQL Server, so clear it with your DBA or use an instance that you know isn’t being used
by anyone for anything important at the time. I highly recommend that you do a quick
runthrough, watching what happens in Profiler just to drive the point home if you have any
extra time to do so.

If you want to return all the topics greater than Topic 1, though, using the previous se-
mantics wouldn’t work. What if you want to return just topic items that had the phrase “Data
Service” in their text? Because their Text property isn’t the key, you couldn’t use what you
have done so far. You don’t have a way to append X number of additional keys into the one
parenthesis, and at this point, you’re not even sure whether that will work (it doesn’t) or even
necessarily know how many different topics there are. Who knows, that might be what you
want to find out. So that’s where filters come in. If you need a range of values, if you need to
restrict data based on something that isn’t a key field, or if you have multiple conditions, you
need to start using the $filter value.

To tailor the behavior of queries, you need to take advantage of the various OData query
options. $filter is one of the most common.

MORE INFO ODATA FILTER OPERATORS

OData.org (http://www.odata.org/documentation/odata-v2-documentation/uri-conventions/)
provides a full list of the OData URL conventions and how to use them. Refer to it if you have
any questions about specific usage.

Table 1-11 shows a list of each of the query options available for OData through WCF Data
Services.

http://www.odata.org/documentation/odata-v2-documentation/uri-conventions/

 82 ChAPTER 1 Accessing data

TABLE 1-11 Query options

Member name Behavior

$orderby Defines a sort order to be used. You can use one or more properties that need to be
separated by commas if more than one will be used:
http://servicehost/ExamPrepService.svc/Questions?$orderby=Id,Description

$top The number of entities to return in the feed. Corresponds to the TOP function in SQL:
http://servicehost/ExamPrepService.svc/Questions?$top=5

$skip Indicates how many records should be ignored before starting to return values.
Assume that there are 30 topics in the previous data set, and you want to skip the first
10 and return the next 10 after that. The following would do it:
http://servicehost/ExamPrepService.svc/Questions?$skip=10&$top=5

$filter Specifies a condition or conditions to filter on:
http://servicehost/ExamPrepService.svc/Questions?$filter=Id gt 5

$expand Indicates which related entities are returned by the query. They will be included either
as a feed or as an entry inline return with the query:
http://servicehost/ExamPrepService.svc/Questions?$expand=Answers

$select By default, all properties of an entity are returned in the feed. This is the equiva-
lent of SELECT * in SQL. By using $select, you can indicate a comma separated list
to just return the fields you want back: http://servicehost/ExamPrepService.svc/
Questions&$select=Id, Text,Description,Author

$inlinecount Returns the number of entries returned (in the <count> element). If the following col-
lection had 30 total values, the feed would have a <count> element indicating 30:
http://servicehost/ExamPrepService.svc/Questions?$inlinecount=allpages

In addition to making requests through a URI, you can execute queries through code im-
peratively. To facilitate this, the DataServiceQuery class is provided.

If you want to use the DataServiceQuery approach to get the same functionality, you build
your service just as you already have, and you set up a DataServiceQuery instance and use
the AddQueryOptions method. A quick sample should suffice:

String ServiceUri = "http://servicehost/ExamPrepService.svc";
ExamServiceContext ExamContext = new ExamServiceContext(new Uri(ServiceUri);
DataServiceQuery<Questions> = ExamContext.Question
 .AddQueryOptions("$filter", "id gt 5")
 .AddQueryOptions("$expand", "Answers");

You can, of course, accomplish the same thing using straight LINQ/EF syntax, but because
that approach would have nothing specific to WCF Data Services to it, it might appear on
some other exam or portion of the exam (but probably not appear here).

 Objective 1.5: Create and implement a WCF Data Services service ChAPTER 1 83

EXAM TIP

In the exam, you’ll probably be presented with some definition of an Entity Model (even
if it’s just a small piece of it) and then ,told that you need to “create a query that… .” You’ll
then be presented with a list of possible queries that would return the desired results. Un-
derstanding the items in Table 1-12 and how they affect the resulting query is indispens-
able for answering such questions correctly. $orderby, $select, $top, and $inlinecount are
obvious in what they do and how they are used, and there’s not much to them. That leaves
$filter, $skip, and $expand to study.

Accessing payload formats
There is support for both Atom and JSON formats. They are easy to use and are intuitive; you
use the $format option with one of two values: $format=atom or $format=json. If you decide
instead to access it via the WebClient or by specifying it through the request header, it works
the same way, with just a small change: You need to append “application/” to the headers. To
use JSON, you simply need to specify “application/json” or “application/atom+xml.”

The issue of JSON and Atom as payload formats appears extensively in other portions of
the exam, but in terms of the Data Service component, there’s not much more to know than
what was mentioned previously.

Working with interceptors and service operators
The WCF Data Services infrastructure enables you to intercept requests and provide custom
logic to any given operation. Interceptors, as the name implies, are the mechanism you can
use to accomplish this. When a request is made, it can be intercepted, and additional custom
logic can be applied to the operation. Common use cases for interception include validation
of inbound messages and changing the scope of a request.

To facilitate interception, you use the Interceptor type name, passing in the corresponding
parameters, and decorate the method with it.

There are two basic types of interceptors you should be familiar with: ChangeInterceptors
and QueryInterceptors. As the names imply, they have distinct usages depending on what you
are looking for. ChangeInterceptors are used for NON-Query operations; QueryInterceptors
are used for Query operations.

ChangeInterceptors are used for all nonquery operations and have no return type (void in
C#, Nothing in VB.NET). They must accept two parameters:

 84 ChAPTER 1 Accessing data

■■ Type A parameter of type that corresponds to the entity type associated with the
entity set.

■■ UpdateOperations When the operation is invoked, this value references the request
that you want to perform.

The definition for the attribute on a method handling OnChangeTopics looks like the
following:

[ChangeInterceptor("Topics")]

public void OnChangeTopics(Topic topic, UpdateOperations operations)

According to MSDN, QueryInterceptor items must meet the following conditions.

■■ Entity set authorization and validation is handled by methods decorated with the
QueryInterceptor attribute.

■■ Entity set access control and validation is enabled through query operations by using
composition. To accomplish this, the following conditions must be met:

■■ The method must have public scope.

■■ It must be decorated with the QueryInterceptor attribute.

■■ The QueryInterceptor must take the name of an entity set as a parameter.

■■ The method must not take any parameters.

■■ The method must return an expression of type Expression<Func<T, Boolean>> that
serves as the filter for the entity set.

So the signature for a method implementing a QueryInterceptor looks like the following:

[QueryInterceptor("Topics")]
public Expression<Func<Topic, bool>> FilterTopics(){}

The tipoff for which to use and when to use it is determined by what it is used for. It
is denoted by the signature of the method. If you see <Func<SomeEntity, bool>> What-
ever(), you can tell immediately that it’s a QueryInterceptor. If you see anything else, it’s a
ChangeInterceptor.

Similarly, you can tell by the behavior which is which and which is being asked for. Delete-
Topics would be a ChangeInterceptor question; a GetAdvancedTopics method asking about
filtering Topics entity would be a QueryInterceptor question.

 Objective 1.5: Create and implement a WCF Data Services service ChAPTER 1 85

Thought experiment
Querying data services

In the following thought experiment, apply what you’ve learned about the “Create
and implement WCF Data Services” objective to design a transport server infra-
structure. You can find answers to these questions in the “Answers” section at the
end of this chapter.

Your company has an application that currently is consumed by in-house applica-
tions. There is a need to make it accessible to outside parties that use this in-house
application but extend it. As such, the capability to consume and manipulate the
data is critical. Enabling users to accomplish this through URI-based semantics
seems like the optimal solution.

With these facts in mind, answer the following questions:

1. Would it be possible to provide access through URI-based semantics using Data
Services?

2. What operations are easily supported?

Objective summary
■■ WCF Data Services provide easily accessible data operations through OData.

■■ WCF Data Services can make use of both JSON and Atom.

■■ The SetEntitySetAccessRule controls the how an entity can be queried.

■■ The EntitySetRights enumeration is created with the Flags attribute and is intended to
be used as such. In many or most cases, you’ll specify more than one value for such
access rules.

■■ Queries can be performed using URIs, and tremendous functional enhancements can
be implemented by small changes.

■■ QueryOperations are denoted with the $ at the beginning of an operation and can
control a wide variety of functions, including the number of items returned to specify-
ing the TOP x of the resultset.

 86 ChAPTER 1 Accessing data

Objective review
Answer the following questions to test your knowledge of the information discussed in this
objective. You can find the answers to these questions and their corresponding explanations
in the “Answers” section at the end of this chapter.

1. You need to create an interceptor that runs each time you try to return Topic items.
Which items should you use? (Choose all that apply.)

A. ChangeInterceptor

B. QueryInterceptor

C. DataServiceProtocolVersion

D. SetEntitySetAccessRule

2. You need to return all questions that have an Id greater than 5. Which query should
you use?

A. http://servicehost/ExamPrepService.svc/Questions?$filter=Id gt 5

B. http://servicehost/ExamPrepService.svc/Questions?$filter(ID> 5)

C. http://servicehost/ExamPrepService.svc/Questions(>5)

D. http://servicehost/ExamPrepService.svc/Questions?$select(Id) gt 5

3. Assume you have the following C# code snippet.

var selectedQuestions = from q in context.Questions
 where q.QuestionNumber > 30
 orderby q.QuestionId descending
 select q;

Which of the following URI queries is the equivalent?

A. http://Service/Question.svc/Questions?Orderby=QuestionId&?$QuestionNumber
(gt 30)

B. http://Service/Question.svc/Questions?Orderby=QuestionId&?$QuestionNumber gt 30

C. http://Service/Question.svc/Questions?Orderby=QuestionId&?filte
r=(QuestionNumber > 30)

D. http://Service/Question.svc/Questions?Orderby=QuestionId&?filte
r=QuestionNumber gt 30

Objective 1.6: Manipulate XML data structures

Ever since it showed up on the scene, XML has made a huge impact. Today, virtually every
application makes use of XML in some way or other. In some cases, it is used as a serialization
format. In others, it is used to store configuration data in a way that doesn’t necessitate

 Objective 1.6: Manipulate XML data structures ChAPTER 1 87

registry access and the permissions such access requires. It is also used as a basis for Web
Services and as a file format (as a matter of fact, it’s the underlying file format for this
document). These are just a few areas of what XML is used for. XML is the answer to so many
problems that plagued the development world that it’s one of the few technologies that not
only lived up to the hype that surrounded it (and there was plenty) but it also completely
exceeded the hype by a huge margin.

This objective covers how to:
■■ Read, filter, create, and modify XML structures

■■ Manipulate XML data by using XMLReader, XMLWriter, XMLDocument, XPath,
and LINQ-to-XML

■■ Advanced XML manipulation

Reading, filtering, creating, and modifying XML structures
The first component of an XML Document is typically known as the XML declaration. The XML
declaration isn’t a required component, but you will typically see it in an XML Document. The
two things it almost always includes are the XML version and the encoding. A typical declara-
tion looks like the following:

<?xml version="1.0" encoding="utf-8" ?>

You need to understand the concept of “well-formedness” and validating XML. To be well-
formed, the following conditions need to be met:

■■ There should be one and only one root element.

■■ Elements that are opened must be closed and must be closed in the order they were
opened.

■■ Any element referenced in the document must also be well-formed.

The core structures of XML are elements and attributes. Elements are structures that rep-
resent a component of data. They are delineated by less-than and greater-than signs at the
beginning and end of a string. So an element named FirstName looks like this:

<FirstName>

Each element must be closed, which is indicated by slash characters at the beginning of
the element:

</FirstName>

To define an element named FirstName with the value “Fred” in it, this is what it would
look like:

<FirstName>Fred</FirstName>

 88 ChAPTER 1 Accessing data

If an element has no data value, you can represent it in one of two ways:

■■ An opening element followed by a closing element with no value in between them:

<FirstName></FirstName>

■■ An opening element with a slash at the end of string instead of the beginning:

<FirstName/>

Attributes differ from elements in both syntax and nature. For instance, you might have
the following structure that describes a “Name”:

<?xml version="1.0" encoding="utf-8" ?>
<Name>
 <FirstName>John</FirstName>
 <MiddleInitial>Q</MiddleInitial>
 <LastName>Public</LastName>
</Name>

Name in this case is its own element, and FirstName, MiddleInitial, and LastName are their
own elements, but have context and meaning only within a Name element. You could do the
same thing with attributes, although they are necessarily part of the element to which they
belong:

<Name FirstName="John" MiddleInitial="Q" LastName="Public"></Name>

If you tried to consume this data, the way you access it would differ, but the end result
would be that you’d retrieve information about a Name, and the data would be identical.
Which is better? Which one should you use? There’s no correct answer to either question. It
depends on style and personal preference. The Internet is full of passionate debate about this
subject, which is testimony to the fact that there is not a definitive right or wrong answer for
every case.

Manipulating elements and attributes are the crux of what you’ll encounter on the exam,
but for the sake of being thorough, there are two other items you should be familiar with:
comments and namespaces. I can’t say that you’ll never need to concern yourself with retriev-
ing comment information, but it’s not something you come across very often, and I’ve never
had to do it (and I’ve done a lot of XML parsing). The main thing you need to know is simply
how to identify comments so you can distinguish them from other XML elements. You delin-
eate a comment with the following character sequence:

<!-- Then you end it with the following:-->

So a full comment looks like this:

<!-- this is a comment about the Name element. Blah blah blah-->

Namespaces are a little more involved. Assume that you want to use an element name—
something common. If namespaces didn’t exist, it would mean that, after an element name
was used, it couldn’t be used for anything else. You can imagine how much difficulty this
would cause when you’re dealing with different vendors, all adding to an existing snippet of
XML. This would be particularly problematic even if you didn’t have different vendors but had

 Objective 1.6: Manipulate XML data structures ChAPTER 1 89

a case in which different XML fragments were used. If you are familiar with DLL Hell, this is its
evil cousin.

So namespaces were added to the spec. You can define namespaces in the root node or in
the element node. In either case, they are delineated with the following syntax:

xmlns:Prefix="SomeValueUsuallyACompanyUrl"

The xmlns portion is what denotes a namespace declaration (xml NameSpace is abbrevi-
ated to xmlns). You then specify what prefix you want to use (Prefix in the previous example).
Then you use an equal sign and give it a unique value. You could use any value you know
to be unique, but using your own company URL is usually a good practice, coupled with
something specific about the namespace. If you use namespaces only in the context of your
company, you can use a slash and some other name that you know to be unique. If you don’t,
you’ll have a collision that will make things confusing. So using this approach, here’s what the
document definition would look like along with an example of each being used in an element:

<DocumentCore xmlns:johnco="http://www.yourcompany.com/Companies" xmlns:billco="http://
www.mycompany.com/Customers">
 <johnco:Name>
 <johnco:Company>JohnCo</johnco:Company>
 </johnco:Name>
 <billco:Name>
 <billco:FirstName>John</billco:FirstName>
 <billco:MiddleInitial>Q</billco:MiddleInitial>
 <billco:LastName>Public</billco:LastName>
 </billco:Name>
</DocumentCore>

The previous example includes two different vendors, BillCo and JohnCo, that each hap-
pened to use an element named Name. Once you define a namespace, you simply prefix the
element with the namespace and a colon, and then include the element name, as indicated
previously.

You can also define namespaces at the element level instead. This is the same principle
with just a slightly different definition. In general, it’s more concise to define the namespaces
globally if you have repeated instances of an element. Think of several Name instances of
both the johnco: and the billco: Name element. Defining it inline each time would be repeti-
tive, inefficient, and a lot harder to read. The following shows how to define a namespace
inline:

<DocumentCore>
 <johnco:Name xmlns:johnco="http://www.yourcompany.com/Companies">
 <johnco:Company>JohnCo</johnco:Company>
 </johnco:Name>
 <billco:Name xmlns:billco="http://www.mycompany.com/Customers">
 <billco:FirstName>John</billco:FirstName>
 <billco:MiddleInitial>Q</billco:MiddleInitial>
 <billco:LastName>Public</billco:LastName>
 </billco:Name>
</DocumentCore>

 90 ChAPTER 1 Accessing data

The pros and cons of using each approach is beyond the scope of this discussion and not
relevant for the test. You simply need to know that both forms of the syntax are valid and get
you to the same place.

Manipulating XML data
The previous items are all the primary classes you can use to manipulate XML data outside of
the LINQ namespace. They belong to the System.Xml namespace and all work essentially the
same way. They have all been around for a while as far as the .NET Framework is concerned,
and it’s doubtful they’ll comprise much of the exam as far as XML manipulation goes. They
are important, but they have been around since version 1 of the Framework, and you’re much
more likely to encounter questions focused on LINQ. A basic familiarity with them, knowledge
of their existence, and a basic understanding of how they work should more than suffice for
the purposes of the exam.

XmlWriter class
The XmlWriter class can be used to write out XmlDocuments. It’s intuitive to use and needs
little explanation. The steps are as follows:

■■ Create a new instance of the XmlWriter Class. This is accomplished by calling the static
Create method of the XmlWriter class (and for convenience, passing in a file name as a
parameter).

■■ Call the WriteStartDocument method to create the initial document.

■■ Call the WriteStartElement, passing in a string name for the element name for the root
element.

■■ Use the WriteStartElement again to create an instance of each child element of the
root element you just created in the previous step.

■■ Use the WriteElementString method passing in the element name and value as
parameters.

■■ Call the WriteEndElement method to close each element you created.

■■ Call the WriteEndElement method to close the root element.

■■ Call the WriteEndDocument method to close the document you created initially.

There are several other methods you can use, such as WriteComment, WriteAttributes, or
WriteDocType. Additionally, if you opt to use Asynchronous methodology, you can call the
corresponding Async methods that bear the same names, but have Async at the end of them.

NOTE SAMPLE CODE IS FOCUSED ON BEING READABLE

I intentionally left out items such as overloading base class methods and some other things
I’d include in production code for the purposes of readability. So the class definition is
hardly an example of an ideal sample of production code. In the same respect, the exam
has to take readability into account, so it’s likely to follow similar conventions.

 Objective 1.6: Manipulate XML data structures ChAPTER 1 91

Assume that you have the following class definition for Customer:

public class Customer
{
 public Customer() { }
 public Customer(String firstName, String middleInitial, String lastName)
 {
 FirstName = firstName;
 MiddleInitial = middleInitial;
 LastName = lastName;
 }
 public String FirstName { get; set; }
 public String MiddleInitial { get; set; }
 public String LastName { get; set; }
}

The following shows code based on the class definition and follows the steps outlined in
the previous list:

public static class XmlWriterSample
{
 public static void WriteCustomers()
 {
 String fileName = "Customers.xml";
 List<Customer> customerList = new List<Customer>();
 Customer johnPublic = new Customer("John", "Q", "Public");
 Customer billRyan = new Customer("Bill", "G", "Ryan");
 Customer billGates = new Customer("William", "G", "Gates");
 customerList.Add(johnPublic);
 customerList.Add(billRyan);
 customerList.Add(billGates);

 using (XmlWriter writerInstance = XmlWriter.Create(fileName))
 {
 writerInstance.WriteStartDocument();
 writerInstance.WriteStartElement("Customers");

 foreach (Customer customerInstance in customerList)
 {
 writerInstance.WriteStartElement("Customer");
 writerInstance.WriteElementString("FirstName", customerInstance.
FirstName);
 writerInstance.WriteElementString("MiddleInitial", customerInstance.
MiddleInitial);
 writerInstance.WriteElementString("LastName", customerInstance.
LastName);
 writerInstance.WriteEndElement();
 }
 writerInstance.WriteEndElement();
 writerInstance.WriteEndDocument();
 }
 }
}

 92 ChAPTER 1 Accessing data

This code produces the following output:

<?xml version="1.0" encoding="UTF-8"?>
<Customers>
 <Customer>
 <FirstName>John</FirstName>
 <MiddleInitial>Q</MiddleInitial>
 <LastName>Public</LastName>
</Customer>-<Customer>
 <FirstName>Bill</FirstName>
 <MiddleInitial>G</MiddleInitial>
 <LastName>Ryan</LastName>
</Customer>-<Customer>
 <FirstName>William</FirstName>
 <MiddleInitial>G</MiddleInitial>
 <LastName>Gates</LastName>
 </Customer>
</Customers>

XmlReader class
The XmlReader is the counterpart to the XmlWriter, and it’s equally simple to use. Although
there are several different cases you can check for (attributes, comments, namespace declara-
tions, and so on), in its simplest form, you simply do the following:

■■ Instantiate a new XmlReader instance passing in the file name of the XML file you want
to read.

■■ Create a while loop using the Read method.

■■ While it iterates the elements, check for whatever you want to check looking at the
XmlNodeType enumeration.

The following method iterates the document created in the previous section and outputs it
to the console window:

public static void ReadCustomers()
{
 String fileName = "Customers.xml";
 XmlTextReader reader = new XmlTextReader(fileName);
 while (reader.Read())
 {
 switch (reader.NodeType)
 {
 case XmlNodeType.Element: // The node is an element.
 Console.Write("<" + reader.Name);
 Console.WriteLine(">");
 break;
 case XmlNodeType.Text: //Display the text in each element.
 Console.WriteLine(reader.Value);
 break;
 case XmlNodeType.EndElement: //Display the end of the element.
 Console.Write("</" + reader.Name);
 Console.WriteLine(">");
 break;

 Objective 1.6: Manipulate XML data structures ChAPTER 1 93

 }
 }
}

There’s no need to go through each item available in the XmlNodeType enumeration, but
you can become familiar with the available items on MSDN: http://msdn.microsoft.com/en-us/
library/system.xml.xmlnodetype.aspx.

XmlDocument class
The XmlDocument class is the parent of the others in some ways, but it’s even easier to use.
You typically do the following:

■■ Instantiate a new XmlDocument class.

■■ Call the Load method pointing to a file or one of the many overloaded items.

■■ Extract the list of nodes.

■■ Iterate.

The following code shows how to walk through a Node collection and extracts the
InnerText property (which is the value contained in the nodes). Although there are other
properties you can take advantage of, this chapter is about data and working with it:

String fileName = "Customers.xml";
XmlDocument documentInstance = new XmlDocument();
documentInstance.Load(fileName);
XmlNodeList currentNodes = documentInstance.DocumentElement.ChildNodes;
foreach (XmlNode myNode in currentNodes)
{
 Console.WriteLine(myNode.InnerText);
}

Writing data using the XmlDocument class works intuitively. There’s a CreateElement
method that accepts a string as a parameter. This method can be called on the document
itself (the first of which creates the root node) or any given element. So creating an initial
document and then adding a root node named Customers that contains one element named
Customer is created like this:

XmlDocument documentInstance = new XmlDocument();
XmlElement customers = documentInstance.CreateElement("Customers");
XmlElement customer = documentInstance.CreateElement("Customer");

In order to make this work right, you must remember the rules of well-formedness (and
these in particular):

■■ Any tag that’s opened must be closed (explicitly or with an close shortcut for an empty
element, i.e., <FirstName/>.

■■ Any tag that’s opened must be closed in a Last Opened First Closed manner. <Custo
mers><Customer>SomeCustomer</Customer></Customers> is valid; <Customers>
<Customer>SomeCustomer</Customers></Customer> is not.

http://msdn.microsoft.com/en-us/library/system.xml.xmlnodetype.aspx
http://msdn.microsoft.com/en-us/library/system.xml.xmlnodetype.aspx

 94 ChAPTER 1 Accessing data

To that end, in the previous code, the XmlElement named Customers should be the last of
the group to have a corresponding AppendChild method called on it, followed only by the
AppendChild being called on the document itself.

One more thing needs to be mentioned here. The CreateElement method simply creates
the element; it does nothing else. So if you want to create an element named FirstName and
then add a value of John to it, use the following syntax:

XmlElement FirstNameJohn = DocumentInstance.CreateElement("FirstName");
FirstNameJohn.InnerText = "John";

The following segment shows the process, from start to finish, of creating the output
specified after it:

Code

XmlDocument documentInstance = new XmlDocument();
XmlElement customers = documentInstance.CreateElement("Customers");
XmlElement customer = documentInstance.CreateElement("Customer");
XmlElement firstNameJohn = documentInstance.CreateElement("FirstName");
XmlElement middleInitialQ = documentInstance.CreateElement("MiddleInitial");
XmlElement lastNamePublic = documentInstance.CreateElement("LastName");
firstNameJohn.InnerText = "John";
middleInitialQ.InnerText = "Q";
lastNamePublic.InnerText = "Public";
customer.AppendChild(firstNameJohn);
customer.AppendChild(middleInitialQ);
customer.AppendChild(lastNamePublic);
customers.AppendChild(customer);
documentInstance.AppendChild(customers);

Output

<Customers>
 <Customer>
 <FirstName>John</FirstName>
 <MiddleInitial>Q</MiddleInitial>
 <LastName>Public</LastName>
 </Customer>
</Customers>

If you wanted to add additional Customer elements, you’d follow the same style, append-
ing them to the corresponding parent element in the same manner as you did here.

For attributes, there’s a SetAttribute method that accepts two strings as parameters and
can be called on any given element. The first string is the attribute name; the second is the
attribute value. Using the example, you can attain the same goal you accomplished earlier by
using the XmlDocument class, as shown in the following:

Code

String fileName = "CustomersPartial2.xml";
XmlDocument documentInstance = new XmlDocument();
XmlElement customers = documentInstance.CreateElement("Customers");
XmlElement customer = documentInstance.CreateElement("Customer");
customer.SetAttribute("FirstNameJohn", "John");
customer.SetAttribute("MiddleInitialQ", "Q");

 Objective 1.6: Manipulate XML data structures ChAPTER 1 95

customer.SetAttribute("LastNamePublic", "Public");
customers.AppendChild(customer);
documentInstance.AppendChild(customers);
documentInstance.Save(fileName);

Output

<Customers>
<Customer LastNamePublic="Public" MiddleInitialQ="Q" FirstNameJohn="John"/>
</Customers>

XPath
One feature of navigating through a document is XPath, a kind of query language for XML
documents. XPath stands for XML Path Language. It’s a language that is specifically designed
for addressing parts of an XML document.

XmlDocument implements IXPathNavigable so you can retrieve an XPathNavigator object
from it. The XPathNavigator offers an easy way to navigate through an XML file. You can use
methods similar to those on an XmlDocument to move from one node to another or you can
use an XPath query. This allows you to select elements or attributes with certain values.

Let’s say you are working with the following XML:

<?xml version="1.0" encoding="utf-8" ?>
<People>
 <Person firstName="John" lastName="Doe">
 <ContactDetals>
 <EmailAddress>john@unknown.com</EmailAddress>
 </ContactDetals>
 </Person>
 <Person firstName="Jane" lastName="Doe">
 <ContactDetals>
 <EmailAddress>jane@unknown.com</EmailAddress>
 <PhoneNunmber>001122334455</PhoneNunmber>
 </ContactDetals>
 </Person>
</People>

You can now use an XPath query to select a Person by name:

XmlDocument doc = new XmlDocument();
doc.LoadXml(xml);

XPathNavigator nav = doc.CreateNavigator();
string query = "//People/Person[@firstName='Jane']";
XPathNodeIterator iterator = nav.Select(query);

Console.WriteLine(iterator.Count); // Displays 1

while(iterator.MoveNext())
{
 string firstName = iterator.Current.GetAttribute("firstName","");
 string lastName = iterator.Current.GetAttribute("lastName","");
 Console.WriteLine("Name: {0} {1}", firstName, lastName);
}

 96 ChAPTER 1 Accessing data

This query retrieves all people with a first name of Jane. Because of the hierarchical struc-
ture of XML, an XPath query can help you when you’re trying to retrieve data.

MORE INFO XPATH LANGUAGE

For a complete overview of the XPath language, see http://www.w3.org/TR/xpath/.

LINQ-to-XML
LINQ will likely be featured prominently in the exam. Entire books are written on LINQ and
how to use it; this coverage is not intended to be a comprehensive discussion of LINQ (or
anything even close to it). It does, however, cover the elements (no pun intended) that you’re
likely to encounter as you take the exam.

There’s one point that can’t be emphasized enough. The more you know about the tech-
nology, the more likely you are to be able to rule out incorrect answers. I have not only taken
several certification exams and participated in every aspect of the process more times than I
can count, but I have also been an item writer. Trust me; it’s not an easy task. I won’t go into
all the details about it, but you almost always have to rely on subtle differences to come up
with valid questions that adequately differentiate them from each other. The more you know
about the technology, the more likely you are to pick up on something that just doesn’t look
right or that you know can’t be the case. In most instances, that just increases the probability
of guessing the right answer. On the visual drag-and-drop questions, having such knowledge
can enable you to use the process of elimination, which can greatly increase your chances of
getting the question right. LINQ semantics feature prominently in .NET Framework since it
was introduced, and features have been added to the runtime just to support LINQ. Although
this isn’t a LINQ exam by any stretch, a good knowledge of LINQ and how it works is some-
thing I can all but promise you will be rewarding, both at work and on the exam.

The coverage of LINQ-to-XML is covered after the coverage of the primary System.Xml
namespace classes. This is not an accident. Other than some tweaks and small improvements,
the System.Xml namespace in version 4.0 or version 4.5 of the Framework is still very similar
to what it was in earlier versions. There’s not a lot of new material to cover there, so although
it is certainly fair game for the exam, it’s doubtful that you’ll find a whole lot of emphasis on
it. I can assure you, however, that LINQ-to-XML will be covered on the exam.

Coverage of System.Xml preceded LINQ-to-XML because the hope was to drive home how
awkward XML parsing using traditional means is (and although the traditional means might
be awkward or inelegant, they are much more elegant than the alternatives of the time) by
juxtaposing it against the elegance and simplicity that LINQ-to-XML provides.

To take advantage of it, note that, to provide the features it does, it takes much advantage
of the more modern aspects of each .NET language and the .NET Framework, such as each of
these:

■■ Anonymous methods

http://www.w3.org/TR/xpath/

 Objective 1.6: Manipulate XML data structures ChAPTER 1 97

■■ Generics

■■ Nullable types

■■ LINQ query semantics

To begin the discussion, let’s start with where everything here lives. You’ll find the classes
for the LINQ-to-XML API in the System.Xml.Linq namespace.

The XElement class is one of the core classes of the LINQ-to-XML API and something you
should be familiar with. It has five constructor overloads:

public XElement(XName someName);
public XElement(XElement someElement);
public XElement(XName someName, Object someValue);
public XElement(XName someName, params Object[] someValueset);
public XElement(XStreamingElement other);

Remember what you had to do before with the XDocument class to create a Customers
element: a Customer element and then a FirstName, MiddleInitial, and LastName element
corresponding to it. (To emphasize the difference, you might want to refer to the previous
section if you can’t immediately visualize it.)

Now let’s look at the same process using just the XElement class:

XElement customers = new XElement("Customers", new XElement("Customer",
 new XElement("FirstName", "John"), new XElement("MiddleInitial", "Q"),
 new XElement("LastName", "Public")));

The code snippet produces the following output:

<Customers>
 <Customer>
 <FirstName>John</FirstName>
 <MiddleInitial>Q</MiddleInitial>
 <LastName>Public</LastName>
 </Customer>
</Customers>

That’s just the beginning. You can easily reference items inside the node. Although these
are all strings, you can easily cast them to different .NET types as needed if you query against
a different object type or structure. Examine the following code:

XElement customers = new XElement("Customers", new XElement("Customer",
 new XElement("FirstName", "John"), new XElement("MiddleInitial", "Q"),
 new XElement("LastName", "Public")));
String fullName = customers.Element("Customer").Element("FirstName").ToString() +
 customers.Element("Customer").Element("MiddleInitial").ToString() +
 customers.Element("Customer").Element("LastName").ToString();

This code produces the corresponding output:

<FirstName>John</FirstName><MiddleInitial>Q</MiddleInitial><LastName>Public</LastName>

 98 ChAPTER 1 Accessing data

NOTE XELEMENT AND ESCAPE CHARACTERS

Like any language, XML has characters that define it. You might come across situations in
which you need to use those characters (and many of them happen to be characters that
are used quite often). Greater-than and less-than symbols are part of the language syntax;
ampersands are as well. Normally, you have to manually escape these. > is used instead
of a greater-than symbol; < needs to be used in place of a less-than symbol; & re-
places an ampersand character. XElement automatically calls the XmlConvert class, which
escapes these for you. As such, the following code snippet would work just fine:

XElement customers = new XElement("CustomerNote", "The customer

really likes to use < and > in their correspondence. They love using &

and </div> as well");

The XDocument class almost seems redundant when compared with the XElement class. To
quote MSDN:

The XDocument class contains the information necessary for a valid XML
document. This includes an XML declaration, processing instructions and
comments. Note that you only have to create XDocument objects if you
require the specific functionality provided by the XDocument class. In many
cases you can work with the XElement. Working directly with XElement is a
simpler programming mode.

The following list summarizes the basic components of an XDocument instance:

■■ One XDeclaration object The declaration enables you to specify the version of
XML being used, the encoding, and whether the document contains a document type
definition.

■■ One XElement object Because a valid document must contain one root node, there
must be one XElement present. Note that, although you need to use an XElement to
use an XDocument, the reverse is not the case.

■■ XProcessingInstruction objects Represents an XML processing instruction.

■■ XComment objects As with XProcessingInstruction, you can have one or more.
According to MSDN, the only caveat is that this can’t be the first argument in the con-
structor list. Valid documents can’t start with a comment. The irony here is that there
are no warnings generated if you use it as the first argument; the document parses
correctly, and MSDN’s own examples show example after example that specifically
violate this rule. Answers to questions on the exam have to be 100 percent correct and
provable. If you look around the Internet, there’s a good bit of debate about this sub-
ject. It’s doubtful you’ll see questions on the exam that differentiates the correct versus
incorrect answer. Suffice to say that, although MSDN says one thing, its own examples
directly violate this rule, so if you did happen to fail the exam by this one question, you
can certainly argue your case.

 Objective 1.6: Manipulate XML data structures ChAPTER 1 99

Because the issue is possibly confusing, the following example shows passing in an
XComment as the first argument and the output:

Code:

XDocument sampleDoc = new XDocument(new XComment("This is a comment sample"),
 new XElement("Customers",
 new XElement("Customer",
 new XElement("FirstName", "John"))));
sampleDoc.Save("CommentFirst.xml");

Output:

<?xml version="1.0" encoding="utf-8"?>
<!--This is a comment sample-->
<Customers>
 <Customer>
 <FirstName>John</FirstName>
 </Customer>
</Customers>

The XAttribute class is so simple that it doesn’t need much discussion. To declare one, you
simply instantiate it, passing in the name of the attribute and the value:

XAttribute sampleAttribute = new XAttribute("FirstName", "John");

Attributes, by definition, have no meaning outside of the context of an element, so they
are obviously used only in conjunction with an XElement.

XNamespace is easy to create and work with:

XNamespace billCo = "http://www.billco.com/Samples";

If you want to use an XNamespace in conjunction with an XElement, you simply append
it to the Element Name. The following illustrates both the declaration and how to use it in
conjunction with an XElement:

XNamespace billCo = "http://www.billco.com/Samples";
XElement firstNameBillCo = new XElement(billCo + "FirstName", "John");

This is a subject that has endless possibilities and permutations and is impossible to illus-
trate completely. The main thing to understand is how to create an XNamespace and how to
use it.

Declaring and instantiating each of the X classes isn’t complicated. However, things get
tricky when it comes to queries. Let’s look at the following code snippet:

String documentData = @"<Customers><Customer><FirstName>John</FirstName></Customer>
 <Customer><FirstName>Bill</FirstName></Customer>
 <Customer><FirstName>Joe</FirstName></Customer></Customers>";
XDocument docSample = XDocument.Parse(documentData);
var descendantsQuery = from desc in docSample.Root.Descendants("Customer")
 select desc;
var elementsQuery = from elem in docSample.Root.Elements("Customer")
 select elem;
Int32 descendantsCount = descendantsQuery.Count();
Int32 elementsCount = elementsQuery.Count();

 100 ChAPTER 1 Accessing data

Console.WriteLine(descendantsCount.ToString());
Console.WriteLine(elementsCount.ToString());

The output in both cases is 3. From a behavioral point of view, they look identical, don’t
they? Search on MSDN and see the way they are each defined and described in almost identi-
cal terms. The way to think of it is this: Descendants return whatever elements you choose
from the entire subtree of each element. Elements, on the other hand, yield only the child ele-
ments. There are 1,000 different examples to illustrate this point, but they are more confusing
than helpful. The only time it matters is when there are not child elements inside one of the
ones you are searching for. It behaves differently only if there are child elements that also
have the same name as the element you are looking for. The same queries run against this
snippet yield the same results as they did originally, even though there are nested elements:

String documentData = @"<Root><CustomerName><FirstName>John</FirstName></CustomerName>
 <CustomerName><FirstName>Bill</FirstName>
</CustomerName>
 <CustomerName><Other><Another>Blah</Another>
</Other><FirstName>Joe</FirstName>
<MiddleInitial>Q</MiddleInitial>
 <LastName>Public</LastName>
</CustomerName></Root>";

Make a slight modification, in which the search element name is used in a nested element,
and you have totally different behavior:

String documentData = @"<Root><CustomerName><FirstName>John</FirstName></CustomerName>
 <CustomerName><FirstName>Bill</FirstName></CustomerName>
 <CustomerName><Other><CustomerName>Blah
</CustomerName></Other><FirstName>Joe</FirstName>
<MiddleInitial>Q</MiddleInitial>
 <LastName>Public</LastName>
</CustomerName></Root>";

There are countless extension methods, but most are self-explanatory or used rarely
enough so they shouldn’t present much of a problem from an exam perspective. Just remem-
ber the difference in behaviors between these two because questions are likely to appear on
the exam.

Advanced XML manipulation
If you know only LINQ, and you are an absolute expert, you’ll probably do well on this portion
of the exam (but don’t take that as any sort of endorsement to not study the System.Xml.
Linq namespace objects). Recall that you have to specifically escape several reserved charac-
ters and sequences unless you are using a class, method, or property that does it for you. So
the first thing to know is that XmlConvert automatically escapes reserved items. It also does
more than that. Think of the Convert class in the System namespace. It has several methods,
such as ToInt32, ToDateTime, ToBoolean, and many more. Think of the XmlConvert class as its
Xml obsessed sibling. XmlConvert.ToDateTime, XmlConvert.ToDecimal, XmlConvert.ToGuid,
and any other method that contains “To,” followed by a framework type, should be self-

 Objective 1.6: Manipulate XML data structures ChAPTER 1 101

explanatory, but some aren’t as intuitive (see Figure 1-8). Again, take a look at the class, run
through it, and familiarize yourself with as much as possible; then determine whether things
are valid or invalid. Table 1-12 covers several of these methods (this list is not comprehensive,
but covers some of the less intuitive methods you might encounter).

TABLE 1-12 XmlConvert class methods

Name Behavior

DecodeName Decodes the name of an item that’s been encoded already. The samples that
follow this table illustrate it.

EncodeName Encodes a string so that it can definitely be used as an XML node name.

EncodeLocalName Behaves virtually identically to EncodeName, but with one major difference:
It actually encodes the colon character, which ensures that Name can be used
as the local name element of a namespace-qualified name. Again this method
will be emphasized in the following code sample.

EncodeNmToken Returns a valid name for a node according to the XML Language spec. It
might sound identical to EncodeName, and they are very similar. The primary
difference that EncodeNmToken encodes colons wherever they appear, which
means that it could return a “valid” element according to syntax rules, but not
according to the namespace specification.

IsStartNCNameChar Determines whether the parameter is a valid non-colon-character type.

IsPublicIdChar If the parameter is a valid public identifier, it returns it; otherwise, it returns
null. If you’re not familiar with XML public and system identifiers, try entering
“XML Public Identifier” into Bing—there are plenty of links available on it. In
reality, however, public identifiers are just magic strings and mainly exist be-
cause of legacy behavior more than any necessity.

ToDateTimeOffset Represents a specific point in time with respect to Coordinated Universal
Time (UTC). There are three overloads for this method: one that just accepts
a string, one that accepts a string and a second string that represents the
format the date is represented in within the string, and the last that accepts a
string and an array of strings containing the formats.

There are countless overloads for members, such as ToInt32 or ToDateTime, and they
behave just as you expect and are easy to follow. The following code illustrates the encoding
and decoding issues, which are the most relevant and what you’re most likely to run into on
the exam:

Code

String encodedFirstName = XmlConvert.EncodeName("First Name");
Console.WriteLine("Encoded FirstName: {0}", encodedFirstName);
String decodedFirstName = XmlConvert.DecodeName(encodedFirstName);
Console.WriteLine("Encoded FirstName: {0}", decodedFirstName);
String encodedFirstNameWithColon = XmlConvert.EncodeLocalName("First:Name");
Console.WriteLine("Encoded FirstName with Colon: {0}", encodedFirstNameWithColon);
decodedFirstName = XmlConvert.DecodeName(encodedFirstNameWithColon);
Console.WriteLine("Encoded FirstName with Colon: {0}", decodedFirstName);

The output is shown in Figure 1-8.

 102 ChAPTER 1 Accessing data

FIGURE 1-8 Encoding and decoding using the XmlConvert class

Thought experiment
Creating an XML manipulation strategy

In the following thought experiment, apply what you’ve learned about the “Manip-
ulate XML data structures” objective to determine the data access strategy for new
application development at your company. You can find answers to these questions
in the “Answers” section at the end of this chapter.

You are building an application that makes extensive use of XML. The document
structures follow very consistent patterns, and sometimes large applications to
manipulate these structures are similar.

With this in mind, answer the following questions:

1. Would your application benefit from using LINQ-to-XML?

2. What could be done to simplify consumption of the documents?

Objective summary
■■ The XElement and XDocument classes are the primary or topmost objects you’ll typi-

cally be working with, although XElement is frequently the better choice.

■■ Although very similar in most regards, the XDocument represents an entire XML docu-
ment, whereas the XElement represents an XML fragment. The practical differences
between those two are often trivial or nonexistent, but it’s worth noting.

■■ Escaping reserved characters and dealing with namespaces are the two other nuances
you’ll probably encounter on the exam. You don’t need to be an expert in either, but
you should at least be familiar with the XmlConvert and XmlNamespace classes and
what they are used for.

 Chapter summary ChAPTER 1 103

■■ Although there are different classes and methodologies in the .NET Framework
regarding XML manipulation, don’t think that you have to use either one approach
(System.Xml) or the other (System.Xml.Linq). LINQ is built into the Framework, as its
name indicates, and you can certainly use an XmlWriter class and then query a struc-
ture using LINQ-to-XML features. (The point is that you can mix and match as you see
fit or as needed; using one methodology doesn’t force your hand in dealing with the
other.)

■■ Make sure that you understand the difference in behavior between the Elements and
Descendants methods of the XContainer class.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1. You need to use an ampersand in the name of an element you create with an XElement
item. Which of the following allows a correctly created element name?

A. Just pass in the string to the XElement constructor; it handles it automatically by
calling the XmlConvert class transparently.

B. Manually escape the character sequence.

C. Use the XmlConvert.Encode method to create the string to pass into the
constructor.

D. All of the above.

2. Which of the following are requirements for a valid and well-formed XML document?

A. Every element must have a corresponding closing element.

B. Every element must have at least one attribute.

C. Every attribute must have a corresponding closing attribute.

D. Elements and attributes can be used interchangeably as long as they have open
and closing tags.

Chapter summary

■■ Microsoft provides developers with several different ways to access and manipulate
data. These range from the older and more traditional to more cutting edge. ADO.NET,
the EF, and ADO.NET Data Services are the three core areas that handle data access.

■■ Each of the data access methods provides many of the same features (with limited
exceptions), but the ease with which they do it and tooling support varies greatly.

 104 ChAPTER 1 Accessing data

■■ Constantly querying the database for items that are relatively static just produces
unnecessary overhead on the database, network resources, and server resources. By
implementing a caching strategy, much of that overhead can be reduced.

■■ Caching, although very beneficial in many cases, must be carefully considered, and the
costs and benefits must be weighed carefully. You can fix one type of problem (perfor-
mance) while introducing very serious other types of problems (stale data) if you’re not
careful. This problem might be trivial or completely catastrophic, depending on the
application’s requirements.

■■ In complex distributed systems, transactions are more a necessity than a luxury. Trans-
actions allow things to happen in an all-or-nothing fashion and enable you to walk
back failures and mistakes without having to resort to costly and serious measures such
as database restores.

■■ There are two types of transactions: simple and distributed. Simple transactions cover
one connection to one data source; distributed transactions cover connections to one
or more sources.

■■ You can implement transactions with the System.Transactions.TransactionScope class or
the SqlTransaction class (or OracleTransaction and other implementations, as the case
may be). TransactionScopes provide the benefit of being able to transparently handle
both simple and distributed transactions by invisibly promoting them when needed
without any developer involvement. Compared to how difficult performing distributed
transactions were just a few years ago, the simplicity the TransactionScope provides is
nothing short of amazing.

■■ Windows Azure provides several means for data storage when requirements dictate
cloud-based storage. For structured data, you have TableStorage for nonrelational data
and SQL databases for relational data. For large unstructured binary data, you have
Blob storage. For less-complex scenarios, you have local storage that provides per-
instance temporary storage.

■■ WCF Data Services are the latest incarnation of ADO.NET Data Services. Using the EF
as a backdrop to manipulate entities in the form of .NET classes, Data Services enables
you to build fully functioning data services that enable users to employ a full array of
options in data manipulation. It has the elegance of allowing queries to be URL ad-
dressable and has a rich variety of formats that data can be transmitted with, including
Atom and JSON.

■■ With the popularity of XML, even many tools and libraries meant to deal with XML
parsing are still awkward and discomforting for many. There are existing well-
established libraries for manipulating XML data, and there are many more-modern
libraries, too. On the one hand, you have the System.Xml namespace items; on the
other, you have System.Xml.Linq. The beauty is that they can almost always be used
in conjunction with each other if you prefer, so you’re never bound to just one or the
other. Virtually everything you could ever need or want to do with XML can be done
with these two libraries.

 Answers ChAPTER 1 105

Answers

This section contains the solutions to the thought experiments and answers to the lesson
review questions in this chapter.

Objective 1.1: Thought experiment
1. If you continue to build using ADO.NET, meeting application requirements will be in-

creasingly difficult. It would provide consistency, but any functionality that needs to be
exposed to the outside world will take more and more effort (arguably wasted effort
to accomplish).

2. In and of itself, the EF doesn’t get you closer to the goal, but it would enable easier
interoperability with WCF Data Services, for instance. It would set the groundwork for
moving to OData.

3. Moving legacy applications to WCF Data Services would not be trivial. They are already
built and tested. However, moving them so they could be consumed externally will
require changes, no matter how it is accomplished. WCF Data Services would allow for
all the required features that don’t currently exist.

Objective 1.1: Review
1. Correct answers: A, B, C, D

A. Correct: This is technically correct, but dropping the table means that all the data
goes with it. That could work in some development environments, but in produc-
tion it is a terrible idea. Because the environment wasn’t mentioned, this is still a
correct answer.

B. Correct: This would update the entity and the data source correctly.

C. Correct: This would update the entity and the data source correctly.

D. Correct: This would update the entity and the data source correctly.

2. Correct answer: C

A. Incorrect: LINQ-to-SQL will facilitate data access, but does nothing to expose the
data to the web.

B. Incorrect: The EF will facilitate data access, but does nothing to expose the data to
the web.

C. Correct: This would enables you to meet all the data requirements as well as the
transmission requirements.

D. Incorrect: This technology no longer exists.

 106 ChAPTER 1 Accessing data

3. Correct answer: D

A. Incorrect: This file technically no longer exists, so wouldn’t be appropriate.

B. Incorrect: This file technically no longer exists, so wouldn’t be appropriate.

C. Incorrect: This file technically no longer exists, so wouldn’t be appropriate.

D. Correct: Each of the preexisting files, including the mapping files, is included here.

Objective 1.2: Thought experiment
1. The more static and less volatile it is, the better the candidate is for caching.

2. How frequent repeat trips are to the source coupled with the size of it. At some point,
reducing trips to the database can be offset by size of the data. Local storage or cache
storage sizes can be burdensome, so caching isn’t a magic bullet.

3. The more frequently data changes, the less likely it is to be a viable candidate for cach-
ing. Monitoring is not inexpensive, and although very helpful in some cases, it would
offset the benefit of caching. In the same respect, if the expiration policy is very small,
the benefit of caching is diminished. If monitoring needs to happen in most cases,
any benefit from caching will be greatly reduced, and a scenario could arise in which
things are much worse because of it. Such scenarios are atypical and usually arise from
overuse, but they do happen.

Objective 1.2: Review
1. Correct answers: A, B, D

A. Correct: CacheEntryChangeMonitor is a valid option.

B. Correct: FileChangeMonitor is a valid option.

C. Incorrect: There is no such thing as an MsmqChangeMonitor.

D. Correct: SqlChangeMonitor is a valid option.

2. Correct answer: C

A. Incorrect: The System.Runtime.Caching.CacheItemPriority enum does not have
a Normal option. It does exist, however, in the System.Web.Caching.CacheItem
Priority enum.

B. Incorrect: The System.Runtime.Caching.CacheItemPriority enum does not
have a High option. It does exist, however, in the System.Web.Caching.
CacheItemPriority enum.

C. Correct: There is a NotRemovable option.

D. Incorrect: The System.Runtime.Caching.CacheItemPriority enum does
not have a Low option. It does exist, however, in the System.Web.Caching.
CacheItemPriority enum.

 Answers ChAPTER 1 107

3. Correct answers: A, D

A. Correct: This would accomplish the requirements.

B. Incorrect: The second parameter cannot be a CacheItemPriority. It will not
compile.

C. Incorrect: This does not set the Region name.

D. Correct: This would accomplish the requirements.

Objective 1.3: Thought experiment
1. Clearly defined boundaries are the main consideration. The more items affected in a

transaction and the longer an operation takes, the more problems you’ll see related to
making it transactional.

2. There are several costs associated with implementing transactions, and these costs can
add up quickly. If every operation were transactional, it would add tremendous cost
without necessary benefit.

3. The importance of the data is one main consideration. How long-running the pro-
cess is would be another consideration. The number of resources affected would be
another one.

Objective 1.3: Review
1. Correct answers: B, D

A. Incorrect: ReadUncommitted would result in nonrepeatable reads.

B. Correct: RepeatableRead would be the loosest IsolationLevel that would meet
these requirements.

C. Incorrect: Chaos does not work with SQL Server.

D. Correct: Snapshot would meet these requirements but might be overkill.

2. Correct answer: B

A. Incorrect: Long running operations that span several tables may necessitate trans-
actional support, but the duration and complexity would generally pose serious
locking and contention issues.

B. Correct: Small fast operations are generally the best candidates for transactions.

C. Incorrect: Operations that involve the file system would generally be problematic
and would not benefit from transactions.

D. Incorrect: A non-Windows operating system would present many problems and
would not be a good candidate for transactional support.

 108 ChAPTER 1 Accessing data

Objective 1.4: Thought experiment
1. Blog storage for the video and table storage for the statistical information would prob-

ably be best here.

2. It might be possible to use just one approach. However, although you could use Blob
storage to store the statistical information, you couldn’t use table storage for the me-
dia files in any practical sense.

3. If consumption is all clustered in well-defined areas, using CDN could be very
beneficial.

Objective 1.4: Review
1. Correct answer: A

A. Correct: Chatroom data is mostly nonrelational conversations that have structure
to them. This is a perfect candidate for Table storage.

B. Incorrect: Queues are not a good mechanism at all for this type of data because
there is no way to query and fetch data based on those results.

C. Incorrect: Blob storage is a terrible option for this type of data because it would
lose any structure the data had and would be on a slow medium.

D. Incorrect: The CDN would not work for this type of data.

2. Correct answers: B, C

A. Incorrect: CDN allows manipulation of nodes to reduce intermediate traffic. The
whole idea is to have nodes closer to the traffic source. Little or no benefit will be
realized if the traffic source is already close.

B. Correct: By specifying nodes closer to the traffic source, increased performance
can be realized.

C. Correct: CDN helps distributed scale issues and is particularly well suited to traffic
spikes and surges (such as ones associated with product launches).

D. Incorrect: CDN doesn’t offer any security advantages that aren’t already present
in Azure offerings that do not take advantage of it.

3. Correct answer: A

A. Correct: An Azure CDN URL is in the format http://<identifier>.vo.mscend.net/.

B. Incorrect: This is a standard Azure storage URL.

C. Incorrect: This is a standard Azure storage URI with a misplaced identifier.

D. Incorrect: This is a completely malformed Azure storage URI.

 Answers ChAPTER 1 109

Objective 1.5: Thought experiment
1. Yes, in fact, that’s the primary benefit. Items can be accessed using traditional code or

using URI-based semantics, but in this case, URI semantics would be particularly useful.

2. All Create, Retrieve, Update, and Delete (CRUD) operations.

Objective 1.5: Review
1. Correct answer: B

A. Incorrect: This would be right only if the data were being changed. It’s just being
queried.

B. Correct: This is the only one that can handle items when they are queried.

C. Incorrect: This simply would not work for the task at hand or even come close
to it.

D. Incorrect: This simply would not work for the task at hand or even come close
to it.

2. Correct answer: A

A. Correct: The entity name, followed by a filter condition using gt for greater than 5
is what’s required here.

B. Incorrect: The query and filter syntax is incorrect.

C. Incorrect: No mention is made of a filter here, and the syntax is incorrect.

D. Incorrect: The id field and operator are correct, but the syntax is incorrect.

3. Correct answer: D

A. Incorrect: The filter and query syntax are incorrect.

B. Incorrect: The filter and query syntax are incorrect.

C. Incorrect: The filter syntax is incorrect.

D. Correct: The OrderBy field is specified correctly, as is the filter field.

Objective 1.6: Thought experiment
1. The more consistent the structures are, the more any approach will be simplified. LINQ

semantics allow much simpler interaction with the documents, although any of the
existing .NET XML libraries can work.

2. The more consistent the data, the more one approach can be reused. Because the
documents are all similar, the hard part, so to speak, is largely addressed. You might
consider doing an intermediate transform on the documents, though, to render them
as one very consistent format that might make it even simpler.

 110 ChAPTER 1 Accessing data

Objective 1.6: Review
1. Correct answer: D

A. Incorrect: Technically correct, but other answers are all correct, so choice D is the
only one.

B. Incorrect: Technically correct, but other answers are all correct, so choice D is the
only one.

C. Incorrect: Technically correct, but other answers are all correct, so choice D is the
only one.

D. Correct: Because each of the other answers is correct, this one is the right answer.

2. Correct answer: A

A. Correct: An element can self-close, but each opening element must be closed.

B. Incorrect: Elements might have attributes, but there is no requirement for an ele-
ment to have an attribute.

C. Incorrect: Attributes don’t require matching closure tags.

D. Incorrect: Elements can be nested and structured in a way that accomplishes the
same goal as attributes, but attributes can’t contain elements.

437

reading, filtering, creating, and modifying,
87–90

AccountAlias property, 128
ACID properties, transactions, 53
ActionFilterAttribute attribute, 320
action filters, Web API implementation, 320
action handlers, 295
action methods, 295
ActionNameAttribute attribute, 303
actions, LINQ queries, 128
Add Application Pool dialog box, 341
Add method, 38, 112
Add New Project dialog box, 174–175
AddOrGetExisting method, 38
AddQueryOptions method, 82
address resources, WCF Data Services, 76–79
address versioning, WCF Services, 246
Add Service Reference dialog box, 236
Add Service Reference menu, 235–236
Add Web Reference dialog box, 239
ADO.NET, 2–12

architecture, 3–4
compatibility, 3
.NET Framework data providers, 4–11
querying and manipulating data, 131–142

SqlCommand, 133–134
SqlConnection, 132–133
SqlDataAdapter, 135–141
SqlDataReader, 134
synchronous/asynchronous operations, 141–143

reasons for choosing, 10
advanced manipulation, XML data structures, 100–102
AfterCall method, 193–194
AfterReceiveReply method, 196
AfterReceiveRequest method, 195
aggregate functions, 118
agile software development, 367

Index

A
AbsoluteExpiration, 40
AcceptChangesDuringFill property, 137–138
AcceptChangesDuringUpdate property, 139
Accept headers, 304
accepting data, JSON format, 308–312
accessing data

implementing caching, 36–51
HttpContext.Cache, 43–50
ObjectCache class, 38–43
options, 37

technologies, 1–37
ADO.NET, 2–12
EF (Entity Framework), 11–33
WCF Data Services, 31–34

transactions, 53–60
characteristics of, 53–54
distributed transactions, 54–55
EntityTransaction class, 58–59
isolation levels, 55–57
SqlTransaction, 59
TransactionScope class, 57–58

WCF Data Services, 75–84
address resources, 76–79
creating queries, 79–82
interceptors and service operators, 83–84
payload formats, 83

Windows Azure data storage, 61–72
accessing, 61–63
caching, 71
CDN (Content Delivery Network), 69–70
storage mechanisms, 64–70

XML data structures, 86–101
advanced manipulation, 100–102
LINQ-to-XML, 96–101
manipulating, 90–95

438

AJAX (Asynchronous JavaScript and XML)

AssemblyDescriptionAttribute, 427
AssemblyFileVersionAttribute, 424
AssemblyTitleAttribute, 427
AssemblyVersionAttribute, 424
AuthorizeAttribute, 334
DataContract, 292
DataContractAttribute, 28
DataMember, 29, 292
EdmEntityTypeAttribute, 28
EdmScalarPropertyAttribute, 29
ExceptionFilterAttribute, 320
Flags, 77
FromBody, 315
FromUri, 315
locator, 387–388
NonAction, 303
osFamily, 381
osVersion, 381
SerializableAttribute, 28
transform, 387
upgradeDomainCount, 375
ValidateAntiForgeryToken, 332
waitChangeNotification, 366
xdt:Locator, 386
xdt:Transform, 386

authentication (security), 227
HttpBasic, 326–329

client-side processing, 327–328
enabling SSL, 328–329

users, Web APIs, 325–326
Windows Authentication, Web APIs, 329–330

authorization
filters, Web API security, 334–335
header, 327
users, Web APIs, 326

AuthorizationFilterAttribute, 334
AuthorizeAttribute attribute, 334
automating deployment, TFS or Build Server, 367–371
auto-properties, 29

B
Base64-encoded header values, 326
BasicHttpBinding, 217
BasicHttpSecurityMode, 228
BeforeCall method, 193–194
BeforeSendReply method, 195

AJAX (Asynchronous JavaScript and XML)
calls, 310
DELETE request, 331

AllocatePublicPortFrom element, 380
Allowed operation (TransactionFlow attribute), 271
ALM (Application Lifecycle Management) solution, 369
AntiForgeryToken method, 332–333
ApiController class, 295
APIs (application programming interfaces), configuring

WCF Services, 212–224
bindings, 217–221
service behaviors, 214–217
service endpoints, 213–214
specifying service contracts, 221–225

application configuration files, 424
Application Lifecycle Management (ALM) solution, 369
application programming interfaces. See APIs
App_offline.htm files, 365–366
App_Start folder, 299–300
architecture, ADO.NET, 3–4
ASP.NET apps, hosting Web APIs, 340–341
aspnet_intern command, 420
assemblies, sharing, 418–427

assembly versioning, 423–426
creating an assembly manifest, 426–427
deploying to global assembly cache, 422–423
preparing environment, 419–420
signing with a strong name, 420–422

AssemblyCultureAttribute attribute, 427
AssemblyDescriptionAttribute attribute, 427
AssemblyFileVersionAttribute attribute, 424
AssemblyInfo.cs files, 424
assembly interning, 419
Assembly Name settings, 177
AssemblyTitleAttribute attribute, 427
AssemblyVersionAttribute attribute, 424
/asnyc switch (Svcutil.exe command-line utility), 234
Asynchronous JavaScript and XML. See AJAX
asynchronous operations

ADO.NET, 141–143
feedback, 10
HTTP actions, 304–306, 321
querying data using Data Provider for EF, 124–126

Attach method, 112
attributes

ActionFilterAttribute, 320
ActionNameAttribute, 303
AssemblyCultureAttribute, 427

439

classes

options, 37
Windows Azure, 71

CancellationToken property, 124
CDN (Content Delivery Network), Windows Azure,

69–70
Certificate elements, 391
certificates, WCF Service security, 230–231
ChangeInterceptors, 83–84
ChangeMonitor class, 42
channel factories, consuming WCF Services, 239–241
ChannelFactory class, 239
Chaos isolation level, transactions, 56
chunky communications, 26
CI (continuous integration), 368
classes

ApiController, 295
BufferedMediaTypeFormatter, 350
CacheEntryChangeMonitor, 43
ChangeMonitor, 42
ChannelFactory, 239
CloudBlobClient, 67
CloudBlockBlob, 67
CloudPageBlob, 67
CloudStorageAccount, 66
ContextOptions, 25–27
DataServiceConfiguration

DataServiceBehavior.MaxProtocolVersion
method, 78

SetEntityAccessRule method, 77–78
SetServiceOperationAccessRule method, 78

DataServiceQuery, 82
DbContext, 20
EntityCommand, 123–124
EntityConnection, 122–123
EntityObject, 28
EntityTransaction, 58–59, 124
Exception, 189
FileChangeMonitor, 43
HostFileChangeMonitor, 43
HttpClient, 330–331, 346
HttpClientHandler, 330
HttpListener, 379
HttpResponseMessage, GetAsync method, 347
HttpSelfHostConfiguration, 339–340
HttpSelfHostServer, 340
IDependencyResolver, 318
IHostBufferPolicySelector, 343
IndexOutOfRangeException, 190

BeforeSendRequest method, 196
BeginTransaction method, 59, 123
behaviors

configuring WCF Services, 214–217
SqlDataAdapter, 138–139

BinaryMessageEncodingBindingElement, 220
BindingConfigurations, 209
binding data, Web APIs, 315–316
bindings

creating for WCF services, 249–251
relaying, 252

bindings (WCF Services)
configuring, 209–211, 217–221
custom, 219–221
system-provided bindings, 179–180
versioning WCF Services, 246

Bitbucket, 369
Blob storage, Windows Azure, 63–68
block blobs, 65–66
Bootstrapper.cs files, 319
breaking changes, 147
brokered messaging, 251
BufferedMediaTypeFormatter class, 350
buffered transfer mode, streaming data, 257
Buffered value (TransferMode enumeration), 259
build configurations

debug, 384–385
production/release, 384–385

Build Definition files, 371
Build Definition (MSBuild), 416
Build Number (assemblies), 424
Build Server, automating deployment, 367–371
BuiltInTypeKind property (EnumMember attribute), 189

C
CacheDependency parameter, 46
CacheEntryChangeMonitor class, 43
Cache.Insert overloads, 45
CacheItemPolicy, 40–41
CacheItemPriority, 41–43
caching, 36–51

ChangeMonitor class, 42
HttpContext.Cache, 43–50
ObjectCache class, 38–43
ObjectContext class

CacheItemPolicy, 40–41
CacheItemPriority, 41–43

440

clients, creating to communicate with service bus relay

code, configuring WCF Services, 212–224
bindings, 217–221
service behaviors, 214–217
service endpoints, 213–214
specifying service contracts, 221–225

Code First Migrations (EF), 411
Co-Located Caching, Windows Azure, 37
co-located topology, Windows Azure caching, 72
Command implementation (ADO.NET), 132
command-line tools, creating Web Deployment

packages, 413–415
commands

aspnet_intern, 420
declareParamFile, 389
New-WDPublishSettings, 415
setParamFile, 389
Sync-WDApp, 415
Update-Package, 398

comments, XML data structures, 88
Commit method, 58, 124
CommunicationExceptions, 191
compatibility, ADO.NET, 3
compiled queries, 118–119
Complete method, 57, 126
Complex Types, 22
CompositeDuplexBindingElement, 219
conceptual model, EF (Entity Framework), 12
conceptual schema definition language (CSDL), 12, 157
ConcurrencyMode enumeration, 264–265
confidentiality (security), 227
Configuration Editor (WCF Services)

Create a New Service option, 200–201
Security tab, 228–229

configuration settings, WCF Services, 199–212
Create a New Service option (Configuration

Editor), 200–201
exposing service metadata, 205–211
New Service Element Wizard page (communication

mode), 203–204
New Service Element Wizard page (contract),

202–203
New Service Element Wizard page (interoperability

mode), 203–204
New Service Element Wizard page (service),

201–202
resulting configuration file, 204–205
service behaviors, 200

JsonMediaTypeFormatter, 348
MediaTypeFormatter, 348, 350
MessageFault, 191
MetadataExchangeBindings, 224
ModelName.Context.cs, 157
ModelName.Designer.cs, 157
ObjectCache, 37, 38–43
ObjectContext

CacheItemPolicy, 40–41
CacheItemPriority, 41–43

ObjectQuery, 128
OracleConnection, 122–123
PushStreamContent, 321
ServiceBehaviorAttribute, 214
ServiceHost, 266, 269–271
SqlCacheDependency, 48–49
SqlChangeMonitor, 42
SqlConnection, 122
SqlParameter, 133
SupportedMediaTypes, 350
System.Web.Http.AcceptVerbsAttribute, 302
TestEntities, 20
TransactionScope, 57–58, 271
UserNameInspectorAttribute, 194
WebApiConfig, 316–317
WebClient, 317
WebClientContentRepository, 319
WebHostBufferPolicySelector, 343
XAttribute, 99
XElement, 97
XmlConvert, 100–102
XmlDocument, 93–95
XmlReader, 92–93
XmlWriter, 90–92

clients, creating to communicate with service bus
relay, 252–253

client-side processing
HttpBasic authentication, 327–328
Windows Authentication, 329–330

closing connections, 8
CloudBlobClient class, 67
CloudBlockBlob class, 67
CloudConfigurationManager, 66
CloudPageBlob class, 67
Cloud Project, 378
CloudStorageAccount class, 66
codebase elements, 425

441

creating

continuous delivery, 368
continuous integration (CI), 368
contracts, WCF Services, 171–192

DataContract, 185–187
DataMember, 187–188
endpoints, 179–181
EnumMember attribute, 188–189
FaultContracts, 189–192
processing pipeline, 181–185
specifying service contracts, 221–225
versioning, 245–246

controllers, creating (Web APIs), 295–300
Copy Website Tool, 366–367
CORS (cross-origin resource sharing), 333
Create a New Binding dialog box, 209
Create a New Service option (WCF Service Configura-

tion Editor), 200–201
CreateCloudQueueClient method, 68
CreateCloudTableClient method, 68
Create Database Wizard, 14
CreateElement method, 93
CreateMexHttpBinding method, 224
CreateMexHttpsBinding method, 224
CreateMexNamedPipeBinding method, 224
CreateMexTcpBinding method, 224
CreateParameter method, 123
Create, Read, Update, and Delete (CRUD)

operations, 289
Create, Retrieve, Update, Delete (CRUD) operations, 135
creating

compiled queries, 118–119
controllers, Web APIs, 295–300
Entity Framework data model, 145–159

CSDL, SSDL, and MSL, 156–159
inheritance mechanisms, 145–146
POCOs (plain old common objects), 153–156
selecting approach, 146–153

hosting servers, Web APIs, 339–340
models, Web APIs, 294–295
NuGet packages, 399–403
WCF Data Services, 75–84

address resources, 76–79
interceptors and service operators, 83–84
payload formats, 83
queries, 79–82

WCF Services, 170–197
contracts, 171–192
inspectors, 192–194

configuring
bindings for WCF services, 249–251
host servers for streaming, 343–344
IIS (Internet Information Services), 363–365
NuGet packages, 399–403
WCF Services

API, 212–224
configuration settings, 199–212

web applications
SetParameters file, 387–390
switching from production/release mode to

debug, 384–385
web.config transformations, 385–387
Windows Azure configuration settings, 390–392

Web Deployment packages, 406–416
IIS InstallPackage, 407–415

connected models vs disconnected models, 2
ConnectionFactoryConfigurator, 401
Connection implementation (ADO.NET), 132
ConnectionOrientedTransportBinding, 220
connection pooling, 2–3
Connection property, 58
connections, opening/closing, 8
ConnectionStrings property, 66
consistency, ADO.NET, 10
constructors

EntityConnection class, 123
ServiceBehaviorAttribute, 215

consuming
WCF Services, 233–242

channel factories, 239–241
generating proxies, 233–240

Web APIs, 346–351
exception handling, 349
HttpDelete operations, 349
HttpGet operations, 347
HttpPost operations, 348
HttpPut operations, 348
sending/receiving requests, 350–352

containers, storage accounts (Windows Azure Blob
storage), 65

Content Delivery Network (CDN), Windows Azure,
69–70

content folder, 400
content negotiation, Web API implementation, 304,

312–315
ContextOptions class, 25
ContinueUpdateOnError property, 139

442

cross-cutting concern, message handlers

DataMember attribute, WCF Services, 187–188
data model (EF), creating, 145–159

CSDL, SSDL, and MSL, 156–159
inheritance mechanisms, 145–146
POCOs (plain old common objects), 153–156
selecting approach, 146–153

Data Provider for EF, querying and manipulating
data, 122–126

asynchronous operations, 124–126
managing transactions, 124–126
synchronous operations, 124–126

data providers, .NET Framework, 4–11
DataReader implementation (ADO.NET), 132
DataReader vs DataAdapter, 5–10
DataRowState, 136
DataServiceBehavior.MaxProtocolVersion method, 78
DataServiceConfiguration class

DataServiceBehavior.MaxProtocolVersion
method, 78

SetEntityAccessRule method, 77–78
SetServiceOperationAccessRule method, 78

DataServiceQuery class, 82
DataSets, 5

implementation, 132
typed vs untyped, 138

DataTables, 5
implementation, 132
primary keys, 136
typed vs untyped, 138

DbCommand, 4
DbConnection, 4
DbContext, 20

ObjectContext objects versus, 23–24
POCOs (plain old common objects), 155
updating and deleting data, 112–113

dbDacFx, 411
DbDataAdapter, 4
DbDataReader, 4
dbFullSql Provider, 411
DbTransaction, 124
debug mode, configuring web applications, 384–385
declareParamFile command, 389
DecodeName method, 101
Dedicated Caching, Windows Azure, 37
dedicated topology, Windows Azure caching, 72
Default Namespace settings, 177
deferred execution, queries, 113–115
delayed signing, 422

message inspectors, 194–196
SOA concepts, 170–171

Web Deployment packages, 406–416
IIS InstallPackage, 407–415

XML data structures, 87–90
cross-cutting concern, message handlers, 316
cross-domain requests, Web API security, 333–334
cross-origin resource sharing (CORS), 333
cross-platform compatibility, ADO.NET, 3
cross-site request forgery (XSRF), 330–333
CRUD (Create, Read, Update, and Delete)

operations, 289
CRUD (Create, Retrieve, Update, Delete) operations, 135
CSDL (conceptual schema definition language), 12, 157
CustomBinding constructor, 219
custom bindings, 219–221
custom media-type formatters, 304
Custom Tool property, 153

D
/d option (XCopy DOS command), 363
data

acceptance, JSON format, 308–312
accessing

implementing caching, 36–51
technologies, 1–37
transactions, 53–60
WCF Data Services, 75–84
Windows Azure data storage, 61–72
XML data structures, 86–101

binding, Web APIs, 315–316
querying and manipulating

ADO.NET, 131–142
Data Provider for Entity Framework, 122–126
Entity Framework, 111–118
LINQ to Entities, 127–129

storage, Windows Azure, 61–72
streaming, MEPs (message exchange patterns),

257–259
DataAdapter implementation (ADO.NET), 132
DataAdapter vs DataReader, 5–10
database first approach, managing a data model, 146
DataColumns, 135
DataContract attribute, 171, 178, 185–187, 292
DataContractAttribute attribute, 28
DataMember attribute, 29, 292

443

EF (Entity Framework)

New Web Site, 172
Service Reference Settings, 236
Web API template, 293

digest authentication, 326
/directory:<directory> switch (Svcutil.exe command-line

utility), 234
direct ports, 380
disconnected models vs connected models, 2
distributed environments, 371–372
distributed transactions, 54–55
distributing data, Windows Azure CDN, 69–70
Documentation property (EnumMember attribute), 189
DoS (denial of service) attacks, 342
DownloadString method, 305
DownloadStringTaskAsync method, 305
DownloadToStream method, 67
Dropbox, 369
duplex communication, MEPs (message exchange

patterns), 257–260

E
/E option (XCopy DOS command), 363
eager loading, 115–118
EDM (Entity Data Model)

Designer, 13, 21–23
Generator, 14
tools, 13
Wizard, 14–20

EdmEntityTypeAttribute, 28
EdmScalarProperty Attribute, 29
EDMX files, 156
EDMX files, 13
EF (Entity Framework), 11–33

building EF models, 13–21
creating a data model, 145–159

CSDL, SSDL, and MSL, 156–159
inheritance mechanisms, 145–146
POCOs (plain old common objects), 153–156
selecting approach, 146–153

DataProvider for EF, 122–126
EDM Designer, 21–23
modeling, 12
ObjectContext entities, 28–32
ObjectContext management, 25–28
ObjectContext vs DbContext objects, 23–24
origins, 11–12

delete and redeploy option, updating applications, 375
DeleteAsync method, 349
DeleteCommand property, 139
denial of service (DoS) attacks, 342
dependency injection, 317–320, 368
deployment

assemblies to global assembly cache, 422–423
web applications and services

configuring application, 383–391
design, 362–372
managing packages by NuGet, 393–405
sharing assemblies, 418–427
Web Deployment packages, 406–416
Windows Azure, 374–381

design
deployment, web applications and services,

362–372
automating deployment from TFS or Build

Server, 367–371
IIS install packages, 367
web farms, 371–372
XCopy, 362–367

WCF Services
configuring, 199–225
consuming, 233–242
creating, 170–197
host and managed services, 264–273
MEPs (message exchange patterns), 255–260
security, 227–231
versioning, 244–248

Web APIs, 287–306
choosing appropriate HTTP methods, 288–292
choosing formats for responses, 304
defining HTTP resources with HTTP actions,

292–299
mapping URI space using routing, 299–303
planning when to make HTTP actions

asynchronous, 304–306
DevOps culture, 368
dialog boxes

Add Application Pool, 341
Add New Project, 174–175
Add Service Reference, 236
Add Web Reference, 239
Create a New Binding, 209
Entity Data Model Wizard, 15
New Project, 174–175
New Subscription, 375–376

444

EmitDefaultValue property (DataMember attribute)

NullReferenceExceptions, 314
SqlExceptions, 140

ExecuteNonQuery method, 123
ExecuteReader method, 124
ExecuteScalar method, 124
expiration policy (CacheItemPolicy), 40
explicit loading, 115
extensibility, WCF, 193
Extension methods (ObjectCache class), 38
eXtreme Programming (XP), 367

F
FaultCode, 191
FaultContracts, WCF Services, 171, 189–192
FaultExceptions, 191–193
FaultReasons, 191
feedback, asynchronous methods, 10
Fiddler tool, 313
FileChangeMonitor class, 43
files

application configuration, 424
App_offline.htm, 365–366
AssemblyInfo.cs, 424
Bootstrapper.cs, 319
Build Definition, 371
deploying to a production environment, 362–367
EDMX, 13, 156
machine-configuration, 424
ModelName.Context.tt, 157
nuspec, 399
packages.config, 394–395
Parameters.xml, 388–389
PE (Portable Executable), 427
publisher policy, 424
ServiceConfiguration.Cloud.cscfg, 390
ServiceConfiguration.cscfg, 380–382
ServiceConfiguration.Local.cscfg, 390
ServiceDefinition.csdef, 378
SetParameters, 387–390
T4 text template, 20
transformation, 385–386
WebApiConfig.cs, 300

Fill method, 9, 135
FillSchema property, 139
filtering XML data structures, 87–90
filter operators, OData, 81

querying and manipulating data, 111–118
DbContext, 112–113
deferred execution, 113–115
lazy loading and eager loading, 115–118
SqlQuery method, 112

reasons to choose, 30
EmitDefaultValue property (DataMember

attribute), 188
enabling SSL, HttpBasic authentication, 328–329
EncodeLocalName method, 101
EncodeName method, 101
EncodeNmToken method, 101
EndpointBehaviors, 206
endpoints, WCF Services, 179–181

configuring service endpoints, 207–208, 213–214
configuring WCF Services, 213–214
metadata endpoints, 205–211

EnsureSuccessStatusCode property, 349
EntityCommand class, 123–124
EntityConnection class, 122–123
EntityConnectionStringBuilder, 123
EntityConnectionStringBuilder.Metadata property, 123
Entity Data Model. See EDM
Entity Data Model Wizard dialog box, 15
Entity Framework. See EF
EntityKeyProperty property, 29
EntityObject class, 28
EntitySetRights enumeration, 77–78
EntityTransaction class, 58–59, 124
EnumMember attribute, WCF Services, 188–189
enums (enumerations)

ConcurrencyMode, 264–265
EntitySetRights, 77–78
IsolationLevel, 55–56
SecurityMode, 228
ServiceOperationRights, 78–79
TransferMode, 258

events
OnContextCreated, 25
OnXChangedEvent, 30

Exception class, 189
ExceptionFilterAttribute attributes, 320
exception filters, Web API implementation, 320
exception handling, consuming Web APIs, 349
exceptions

FaultContracts, 190–193
handling using retries, 72–73
IndexOutOfRangeException, 183

445

IDependencyResolver class

hosting WCF services, 250
hosting Web APIs, 337–344

ASP.NET apps, 340–341
configuring host servers for streaming, 343–344
restricting message size, 342–343
self-hosting, 338–340
Windows Azure, 341–342

host servers, Web APIs, 339–340, 343–344
host services (WCF), 264–273

ConcurrencyMode enumeration, 264–265
hosting mechanisms, 270–271
InstanceCintextMode setting, 265–266
service hosts, 266–270
transactional services, 271–272

Html.AntiForgeryToken method, 332–333
HTTP actions

asynchronous, 304–306
defining HTTP resources, 292–299

HttpBasic authentication, 326–329
client-side processing, 327–328
enabling SSL, 328–329

HttpClient class, 330–331, 346
HttpClientHandler class, 330
HttpConfiguration instance, 314
HttpContext.Cache, 43–50
HttpDelete operations, 289–290, 349
HttpGet operations, 289, 347
HttpListener class, 379
HttpMessageHandler, Web API implementation,

316–317
HttpPost operations, 290–291, 348
HttpPut operations, 291–292, 348
HttpRequest header, content negotiation, 312–315
HTTP resources, designing Web APIs, 292–299
HttpResponseMessage class, GetAsync method, 347
HttpSelfHostConfiguration class, 339–340
HttpSelfHostServer class, 340
HttpsTransportBindingElement, 220
HttpTransportBindingElement, 220

I
/I option (XCopy DOS command), 363
IAuthorizationFilter, 334
IClientMessageInspector interface, 196
IContentNegotiator service, 314
IDependencyResolver class, 318

filters
authorization, Web API security, 334–335
Web API implementation, 320

First function, 19
FirstOrDefault function, 118
Flags attribute, 77
folders

App_Start, 299–300
content, 400
lib, 400
Temporary ASP.NET Files, 419
tools, 401–402

Formatters collection (HttpConfiguration), 314
FromBody attribute, 315
FromUri attribute, 315
functions

aggregate, 118
First, 19
FirstOrDefault, 118
Single, 19

G
GAC (global assembly cache), deploying assemblies

to, 422–423
Generate Database from Model (EDM Designer), 23
Generate From Database option, 148–149
generating proxies, consuming WCF Services

service references, 235–239
Svcutil.exe tool, 233–236

get accessors, 30
GetAsync method, 347
GetContext method, 379
Get method, 38
GetQuestionText method, 183
GetSetting method, 66
GetSharedAccessSignature method, 68
Github, 369
global assembly cache (GAC), deploying assemblies

to, 422–423

h
/help switch (Svcutil.exe command-line utility), 234
HostFileChangeMonitor class, 43
hosting mechanisms, WCF Services, 270–271

446

IDispatchMessageInspector interface

inheritance mechanisms, creating a data model
(EF), 145–146

Inheritance option, 21
InitializeService method, 76
injection attacks, 330
in-place upgrades, Windows Azure web

applications, 374–376
InProc session state, 372
input endpoints, 377–380
InsertCommand property, 139
inspectors, creating WCF Services, 192–194
installation

NuGet packages, 394–399
Web API self-hosting, 338

install packages, IIS (Internet Information Services), 367,
407–415

command-line tools, 413–415
IIS Manager, 411–413
Visual Studio, 407–411

InstanceCintextMode setting, WCF Services, 265–266
InstanceInputEndpoint option, 380
integration tests, 369
integrity (security), 227
interceptors, WCF Data Services, 83–84
interfaces

IClientMessageInspector, 196
IDispatchMessageInspector, 195–196
IParameterInspector, 193

/internal switch (Svcutil.exe command-line utility), 234
internal endpoints, 377–380
Internet Information Services (IIS), 267

configuring, 363–365
install packages, 367, 407–415

command-line tools, 413–415
IIS Manager, 411–413
Visual Studio, 407–411

IParameterInspector interface, 193
IQueryable items, 129–130
ISAM (index sequential access method) databases, 53
IsNullable property, 29
IsolationLevel enum, 55–56
IsolationLevel property, 58
isolation levels, transactions, 55–57
IsOneWay parameter, 256
IsPublicIdChar method, 101
IsRequired property (DataMember attribute), 188
IsStartNCNameChar method, 101
IsSuccessStatusCode property, 347

IDispatchMessageInspector interface, 195–196
IEnumerable items, 129–130
IHostBufferPolicySelector class, 343
IIS (Internet Information Services), 267

configuring, 363–365
install packages, 367, 407–415

command-line tools, 413–415
IIS Manager, 411–413
Visual Studio, 407–411

IIS Manager, 363–364, 411–413
IMetadataExchange contract, 224
impedance mismatch, 113–114
implementation

assembly versioning, 423–426
caching, 36–51

HttpContext.Cache, 43–50
ObjectCache class, 38–43
options, 37

data storage in Windows Azure, 61–72
accessing, 61–63
caching, 71
CDN (Content Delivery Network), 69–70
storage mechanisms, 64–70

transactions, 53–60
characteristics of, 53–54
distributed transactions, 54–55
EntityTransaction class, 58–59
isolation levels, 55–57
SqlTransaction, 59
TransactionScope class, 57–58

WCF Data Services, 75–84
address resources, 76–79
interceptors and service operators, 83–84
payload formats, 83
queries, 79–82

Web APIs, 308–323
accepting data in JSON format, 308–312
action filters/exception filters, 320
asynchronous/synchronous actions, 321
content negotiation, 312–315
data binding, 315–316
dependency injection, 317–320
HttpMessageHandler, 316–317
streaming actions, 321–323

IndexOutOfRangeException class, 190
IndexOutOfRangeException exception, 183
index sequential access method (ISAM) databases, 53

447

MEPs (message exchange patterns)

management
NuGet packages, 393–405

creating/configuring, 399–403
installing/updating existing packages, 394–399
setting up package repository, 403–405

ObjectContext objects, 25–28
Web APIs, 337–344

ASP.NET apps, 340–341
configuring host servers for streaming, 343–344
restricting message size, 342–343
self-hosting, 338–340
Windows Azure, 341–342

Management Portal (Windows Azure), 70, 369
Manage NuGet Packages window, 396
Mandatory operation (TransactionFlow attribute), 271
manifest, creating an assembly manifest, 426–427
manipulating data

ADO.NET, 131–142
SqlCommand, 133–134
SqlConnection, 132–133
SqlDataAdapter, 135–141
SqlDataReader, 134
synchronous/asynchronous operations, 141–143

Data Provider for Entity Framework, 122–126
Entity Framework, 111–118

DbContext, 112–113
deferred execution, 113–115
lazy loading and eager loading, 115–118
SqlQuery method, 112

LINQ to Entities, 127–129
manipulating XML data structures, 90–95

XmlDocument class, 93–95
XmlReader class, 92–93
XmlWriter class, 90–92

MapHttpRoute method, 340
mapping specification language (MSL), 12, 157–159
mapping, URI space using routing (Web API

design), 299–303
maxAllowedContentLength property, 344
MaxBufferSize property, 343
MaxReceivedMessageSize property, 343
maxReceivedMessageSize value, 258
maxRequestLength property, 344
mechanisms, Windows Azure data storage, 64–70
MediaTypeFormatter class, 348, 350
MediaTypeFormatters, 304
MEPs (message exchange patterns), 255–260

duplex communication, 257–260

J
JavaScript Object Notation (JSON), 32–33
jQuery, 393
JSON format, accepting data, 308–312
JSON (JavaScript Object Notation), 32–33
JsonMediaTypeFormatter class, 348

K
Knockout, 393
KnownType attribute, 186

L
/language switch (Svcutil.exe command-line utility), 235
Language Integrated Query. See LINQ
language-specific constructs, 182
lax versioning, WCF Services, 246
lazy loading, 25, 114–118
LazyLoadingEnabled property, 25
lib folder, 400
LINQ (Language Integrated Query)

LINQ-to-SQL, 11–12
LINQ-to-XML, 96–101
querying data using LINQ to Entities, 127–129

load balancers, web farms, 372–373
loading

eager, 115–118
explicit, 115
lazy, 114–118

local storage, Windows Azure, 63
locator attribute, 387–388
logging queries, 129

M
machine-configuration files, 424
Major Version (assemblies), 423
managed services (WCF), 264–273

ConcurrencyMode enumeration, 264–265
hosting mechanisms, 270–271
InstanceCintextMode setting, 265–266
service hosts, 266–270
transactional services, 271–272

448

message exchange patterns

GetQuestionText, 183
GetSetting, 66
GetSharedAccessSignature, 68
Html.AntiForgeryToken, 332–333
HttpDelete, 289–290
HttpGet, 289
HttpPost, 290–291
HttpPut, 291
InitializeService, 76
MapHttpRoute, 340
Negotiate, 314–315
OnStreamAvailable, 321–322
OpenAsync, 340
Parse, 66
PostAsJsonAsync, 348
PostAsync, 348
PutAsJsonAsync, 348
PutAsync, 348
ReadAsAsync, 348
ReadFromStream, 351
Register, 316
Remove, 113
Rollback, 58, 124
SaveChanges, 58, 112
ServiceBehaviorAttribute, 215
Set, 38
SetAttribute, 94
SetEntityAccessRule, 77–78
SetPermissions, 68
SetServiceOperationAccessRule, 78
SqlQuery, querying data, 112
ToArray, 118
ToDictionary, 118
ToList, 118
ToTraceString, 130
TryParse, 66
UploadFromStream, 67
UseBufferedInputStream, 343
WebApiConfig.Register, 334
WriteToStream, 351
XmlConvert class, 101–102

mexHttpBinding, 223
mexHttpBinding endpoint, 205
mexHttpsBinding, 223
mexHttpsBinding endpoint, 205
mexMsmqBinding endpoint, 205
mexNamedPipeBinding, 223

one-way communication, 256–258
request/reply communication pattern, 260–261
streaming data, 257–259

message exchange patterns. See MEPs
MessageFault class, 191
message handlers, 316–317
message inspectors, creating WCF Services, 194–196
message-level security, WCF Services, 227–229
messaging (brokered), 251
metadata endpoints, configuring WCF Services,

205–211
MetadataExchangeBindings class, 224
methods

Add, 38, 112
AddOrGetExisting, 38
AddQueryOptions, 82
AfterCall, 193–194
AfterReceiveReply, 196
AfterReceiveRequest, 195
asynchronous, 10
Attach, 112
BeforeCall, 193–194
BeforeSendReply, 195
BeforeSendRequest, 196
BeginTransaction, 59, 123
Commit, 58, 124
Complete, 57, 126
CreateCloudQueueClient, 68
CreateCloudTableClient, 68
CreateElement, 93
CreateMexHttpBinding, 224
CreateMexHttpsBinding, 224
CreateMexNamedPipeBinding, 224
CreateMexTcpBinding, 224
CreateParameter, 123
DataServiceBehavior.MaxProtocolVersion, 78
DeleteAsync, 349
DownloadString, 305
DownloadStringTaskAsync, 305
DownloadToStream, 67
ExecuteNonQuery, 123
ExecuteReader, 124
ExecuteScalar, 124
Fill, 9, 135
Get, 38
GetAsync, 347
GetContext, 379

449

origins, EF (Entity Framework)

interoperability mode, 203–204
service, 201–202

New Subscription dialog box, 375–376
New-WDPublishSettings command, 415
New Web Site dialog box, 172
Ninject, 393
/noLogo switch (Svcutil.exe command-line utility), 234
NonAction attribute, 303
NotAllowed setting (TransactionFlow attribute), 271
NuGet packages, management, 393–405

creating/configuring, 399–403
installing/updating existing packages, 394–399
setting up package repository, 403–405

NullReferenceExceptions, 314
nuspec files, 399

O
ObjectCache class, 37, 38–43
ObjectContext class, 156–157

CacheItemPolicy, 40–41
CacheItemPriority, 41–43

ObjectContext objects
DbContext objects versus, 23–24
entities, 28–32
management, 25–28

ObjectQuery class, 128
objects, XPathNavigator, 95–96
objects, .NET Framework data providers, 4
OData (Open Data Protocol), 32, 79–82
Off mode session state, 372
OnContextCreated event, 25
OneWayBindingElement, 219
one-way communication, MEPs (message exchange

patterns), 256–258
OnRowUpdated property, 139
OnRowUpdating property, 139
OnStreamAvailable method, 321–322
OnXChangedEvent event, 30
OpenAsync method, 340
Open Data Protocol (OData), 32, 79–82
opening connections, 8
OperationContract attribute, 171, 178
operators (LINQ), querying data, 128–129
OracleConnection class, 122–123
Order property (DataMember attribute), 188
origins, EF (Entity Framework), 11–12

mexNamedPipeBinding endpoint, 205
mexTcpBinding, 223
Minor Version (assemblies), 423
MissingSchemaAction property, 136
Mixed Inheritance, 22
mocking tools, 368
ModelBinders feature, 315
model-first approach, managing a data model,

146–147
ModelName.Context.cs class, 157
ModelName.Context.tt files, 157
ModelName.Designer.cs class, 157
ModelName.edmx.Diagram, 157–158
models

EF (Entity Framework), 12
building models, 13–21

Web APIs
binding, 291
creating, 294–295

Modernizr, 393
modifying XML data structures, 87–90
MSBuild, 370–371, 415–416
MSDeploy, 413
MSL (mapping specification language), 12, 157–159
MsmqIntegrationBindingElement, 220
MsmqTransportBindingElement, 220
MtomMessageEncodingBindingElement, 220
Multiple value (ConcurrencyMode enumeration), 265

N
NamedPipeTransportBindingElement, 220
Name property

DataMember attribute, 188
EnumMember attribute, 189

namespaces, XML data structures, 88–89
Negotiate method, 314–315
.NET Framework data providers, 4–11
NetMsmqBinding, 218
NetNamedPipeBinding, 218–219
NetNamedPipeSecurityMode, 228
NetworkConfiguration element, 391
New Project dialog box, 174–175
New Service Element Wizard page, configuring WCF

Services
communication mode, 203–204
contract, 202–203

450

osFamily attribute

CancellationToken, 124
Connection, 58
ConnectionStrings, 66
ContextOptions class, 25
ContinueUpdateOnError, 139
Custom Tool, 153
DataMember attribute, 187–188
DeleteCommand, 139
EnsureSuccessStatusCode, 349
EntityConnectionStringBuilder.Metadata, 123
EntityKeyProperty, 29
EnumMember attribute, 188–189
FillSchema, 139
InsertCommand, 139
IsNullable, 29
IsolationLevel, 58
IsSuccessStatusCode, 347
maxAllowedContentLength, 344
MaxBufferSize, 343
MaxReceivedMessageSize, 343
maxRequestLength, 344
MissingSchemaAction, 136
OnRowUpdated, 139
OnRowUpdating, 139
Routes, 340
SelectCommand, 139
ServiceBehaviorAttribute, 215
TransactionAutoComplete, 271
TransactionScopeRequired, 271
TransferMode, 344
UpdateBatchSize, 139
UpdateCommand, 139
UseDefaultCredentials, 330

Properties window, Entities model, 116
protection, XSRF, 331–332
proxies, consuming WCF Services

service references, 235–239
Svcutil.exe tool, 233–236

ProxyCreationEnabled property, 25–27
public containers, Blob storage, 68
publisher policy files, 424–425
publishing Web Deployment packages, 406–416
Publish tool, 407
Publish Web Wizard, 407–408
PushStreamContent class, 321
PutAsJsonAsync method, 348
PutAsync method, 348

osFamily attribute, 381
osVersion attribute, 381
/out switch (Svcutil.exe command-line utility), 235
overloads, FaultExceptions, 192–193

P
Package Manager Console, 397
packages.config files, 394–395
Page blobs (Windows Azure Blob storage), 67
parameter inspection, WCF extensibility, 193–194
parameters

CacheDependency, 46
IsOneWay, 256
Rights, 77
Type, 84
UpdateOperations, 84

Parameters.xml files, 388–389
Parse method, 66
partial signing, 422
payload formats, WCF Data Services, 83
PeerTransportBindingElement, 220
PE (Portable Executable) files, 427
PerCall value (InstanceContextMode setting), 266
PerSession value (InstanceContextMode setting), 265
plain old common objects (POCOs)

creating an EF data model, 153–156
entities, 28

POCOs (plain old common objects)
creating an EF data model, 153–156
entities, 28

Portable Executable (PE) files, 427
PostAsJsonAsync method, 348
PostAsync method, 348
post-condition actions, Web Deployment

packages, 416
pre-condition actions, Web Deployment packages, 416
primary keys, DataTables, 136
private containers, Blob storage, 68
processing pipeline, WCF Services, 181–185, 193
production/release mode, configuring web

applications, 384–385
properties

AcceptChangesDuringFill, 137–138
AcceptChangesDuringUpdate, 139
AccountAlias, 128

451

/serializer switch (Svcutil.exe command-line utility)

retries, handling exceptions, 72–73
Revision (assemblies), 424
RFC 2617, 326
Rights parameter, 77
role-based caching, 72
Rollback method, 58, 124
Routes property, 340
routing, mapping URI space (Web API design), 299–303
routing service versioning, WCF Services, 246
Routing Table, 299–301
running, compiled queries, 118–119

S
/S option (XCopy DOS command), 363
SaveChanges method, 58, 112
scaling out, 371
scaling up, 371
SCRUM, 367
second SqlCacheDependency constructors, 49–50
security

WCF Services, 227–231
certificates, 230–231
message-level security, 227–229
transport-level security, 229–230

Web APIs, 324–335
authorization filters, 334–335
cross-domain requests, 333–334
HttpBasic authentication, 326–329
user authentication/authorization, 325–326
Windows Authentication, 329–330
XSRF (cross-site request forgery), 330–333

SecurityBindingElement, 219
SecurityMode enumeration, 228
Security tab, WCF Service Configuration Editor,

228–229
SelectCommand property, 139
SELECT statements, 135–136
self-hosting

WCF Services, 266
Web APIs, 338–340

Self-Tracking entities, 28
sending requests, Web API consumption, 350–352
SerializableAttribute attribute, 28
Serializable isolation level, transactions, 56
serialization, 170
/serializer switch (Svcutil.exe command-line utility), 235

Q
queries

compiled queries, 118–119
logging, 129
WCF Data Services, 79–82

querying data
ADO.NET, 131–142

SqlCommand, 133–134
SqlConnection, 132–133
SqlDataAdapter, 135–141
SqlDataReader, 134
synchronous/asynchronous operations, 141–143

Data Provider for Entity Framework, 122–126
Entity Framework, 111–118

DbContext, 112–113
deferred execution, 113–115
lazy loading and eager loading, 115–118
SqlQuery method, 112

LINQ to Entities, 127–129
logging queries, 129

QueryInterceptors, 83–84
queues, implementing, 260–261
Queue storage, Windows Azure, 63–64, 68–70
quoted strings, 45

R
Razor view Engine, 308–310
ReadAsAsync method, 348
ReadCommitted isolation level, transactions, 56
ReadFromStream method, 351
reading XML data structures, 87–90
ReadUncommitted isolation level, transactions, 56
receiving requests, Web API consumption, 350–352
Reentrant value (ConcurrencyMode enumeration), 265
Register method, 316
regular assemblies, 420
relaying bindings, 252
release mode, configuring web applications, 384–385
ReliableSessionBindingElement, 219
Remove method, 113
RepeatableRead isolation level, transactions, 56
Representational State Transfer (REST) services, 288
request/reply communication pattern, MEPs (message

exchange patterns), 260–261
REST (Representational State Transfer) services, 288

452

server-side processing, Windows Authentication

deploying to global assembly cache, 422–423
preparing environment, 419–420
signing with a strong name, 420–422

signing assemblies, 420–422
Signing page (Visual Studio), 421
Single function, 19
Single value

ConcurrencyMode enumeration, 264
InstanceContextMode setting, 265

SlidingExpiration, 40
Snapshot isolation level, transactions, 56
SOA (Service-Oriented Architecture) concepts, WCF

Services, 170–171
SOLID principles, 317
Solution Explorer window, 175–177
SqlCacheDependency class, 48–49
SqlChangeMonitor class, 42
SqlCommand (ADO.NET), 133–134
SqlConnection (ADO.NET), 132–133
SqlConnection class, 122
SqlConnectionStringBuilder, 123
SqlDataAdapter (ADO.NET), 135–141
SQL Database

handling exceptions, 72–73
storage, 63

SqlDataReader (ADO.NET), 134
SqlExceptions, 140
SQL injection attacks, 330
SqlParameter class, 133
SqlQuery method, querying data, 112
SQL Server Management Studio (SSMS), 14
SQLServer mode session state, 372
SqlTransaction, 59
SSDL (store schema definition language), 12
SSL, enabling (HttpBasic authentication), 328–329
SslStreamSecurityBindingElement, 220
SSMS (SQL Server Management Studio), 14
stability, ADO.NET, 10
StateServer session state, 372
status codes, Http Methods, 288
storage

accounts, Windows Azure Blob storage, 65
data, Windows Azure, 61–72

Stored Procedure Mapping (EDM Designer), 23
store schema definition language (SSDL), 12
StreamedRequest value (TransferMode

enumeration), 259

server-side processing, Windows Authentication, 329
ServiceBehaviors, 206, 214–217
service bus endpoints

creating, 252
relaying bindings, 252

service buses, implementing, 260–261
service bus relay, creating clients to communicate

with, 252–253
ServiceConfiguration.Cloud.cscfg files, 390
ServiceConfiguration.cscfg files, 380–382
ServiceConfiguration.Local.cscfg files, 390
ServiceContract attribute, 171
service contracts, configuring WCF Services, 221–225
ServiceDefinition.csdef files, 378
ServiceDefinition schema, 378
service definition (WCF), 170
service endpoints, configuring, 213–214
ServiceHost class, 266, 269–271
service hosts, WCF Services, 266–270
ServiceOperationRights enumeration, 78–79
service operators, WCF Data Services, 83–84
Service-Oriented Architecture (SOA) concepts, 170–171
Service Reference Settings dialog box, 236
service references, generating proxies (WCF

Services), 235–239
services

deployment strategies
configuring application, 383–391
design, 362–372
managing packages by NuGet, 393–405
sharing assemblies, 418–427
Web Deployment packages, 406–416
Windows Azure, 374–381

WCF. See WCF services
session state, web farms, 372
set accessors, 30
SetAttribute method, 94
SetEntityAccessRule method, 77–78
Set method, 38
SetParameters files, 387–390
setParamFile command, 389
SetPermissions method, 68
SetServiceOperationAccessRule method, 78
shadow copying (ASP.NET), 419
shared caching, Windows Azure, 37, 72
sharing assemblies, 418–427

assembly versioning, 423–426
creating an assembly manifest, 426–427

453

transactions

building EF models, 13–21
EDM Designer, 21–23
modeling, 12
ObjectContext entities, 28–32
ObjectContext management, 25–28
ObjectContext vs DbContext objects, 23–24
origins, 11–12
reasons to choose, 30

WCF Data Services, 31–34
changing the nature of data access, 31–32
data access mechanism, 33
JSON, 32–33
OData, 32
reasons to choose, 33–34

technology-agnostic services, 182
templates, creating a WCF Service, 172
Temporary ASP.NET Files folder, 419
TestEntities class, 20
TextMessageEncodingBinding, 221
TextMessageEncodingBindingElement, 220
TFS (Team Foundation Server), automating

deployment, 367–371
Thread.Sleep, 41
ToArray method, 118
ToDateTimeOffset method, 101
ToDictionary method, 118
ToList method, 118
tools, 370–371

Fiddler, 313
MSDeploy, 413
Publish, 407
Strong Name, 422
Unity, 319

tools folder, 401–402
tool supports, XCopy deployments, 366–367
ToTraceString method, 130
TPC (Table per Concrete Type), 22
TPH (Table-per-Hierarchy), 22, 145
TPT (Table-per-Type), 22, 145
transactional services, WCF Services, 271–272
TransactionAutoComplete property, 271
TransactionFlow attribute, 271
TransactionFlowBindingElement, 219
transactions, 53–60

characteristics of, 53–54
distributed, 54–55
Entity Framework, 124–126
EntityTransaction class, 58–59

StreamedResponse value (TransferMode
enumeration), 259

Streamed value (TransferMode enumeration), 259
streaming

actions, Web API implementation, 321–323
data, MEPs (message exchange patterns), 257–259

strict versioning, WCF Services, 245–247
strings, quoted, 45
strong-named assemblies, 420–422
Strong Name tool, 422
StructureMap, 393
SupportedMediaTypes class, 350
/svcutilConfig:<configFile> switch (Svcutil.exe

command-line utility), 234
Svcutil.exe tool, generating proxies (WCF

Services), 233–236
switches, Svcutil.exe command-line utility, 234–235
synchronous operations

ADO.NET, 141–143
querying data using Data Provider for EF, 124–126
Web API implementation, 321

Sync-WDApp command, 415
Syndication Service Library template, 172
System.Web.Http.AcceptVerbsAttribute class, 302

T
T4 text template files, 20
Table Mapping (EDM Designer), 23
TableOperations, 68
Table per Concrete Type (TPC), 22
Table-per-Hierarchy (TPH), 22, 145–146
Table-per-Type (TPT), 22, 145–146
TableQuery, 69
Table storage, Windows Azure, 63–64, 68–70
/target:<output type> switch (Svcutil.exe command-line

utility), 234
TcpTransportBindingElement, 220
Team Foundation Server (TFS), automating

deployment, 367–371
technologies, accessing data, 1–37

ADO.NET, 2–12
architecture, 3–4
compatibility, 3
.NET Framework data providers, 4–11
reasons for choosing, 10

EF (Entity Framework), 11–33

454

TransactionScope class

users, Web APIs
authentication, 325–326
authorization, 326

using block, 132

V
ValidateAntiForgeryToken attribute, 332
Validate (EDM Designer), 23
Value property (EnumMember attribute), 189
versioning

assembly, 423–426
WCF Services, 244–248

address versioning, 246
bindings, 246
contract versioning, 245–246
lax versioning, 246
minimizing problems, 248
routing service versioning, 246
strict versioning, 245–247

VIP Swaps, Windows Azure web applications, 374–377
Virtual Machines (VMs), Windows Azure, 342
Visual Studio

creating Web API project, 294
creating Web Deployment packages, 407–411
Signing page, 421
updating cloud service, 375–376

VMs (Virtual Machines), Windows Azure, 342
vulnerabilities, preventing XSRF, 331

W
waitChangeNotification attribute, 366
WAS (Windows Activation Service), 267
WCF Application template, 172
WCF Data Services, 31–34, 75–84

accessing payload formats, 83
address resources, 76–79
changing the nature of data access, 31–32
creating queries, 79–82
data access mechanism, 33
interceptors and service operators, 83–84
JSON, 32–33
OData, 32
reasons to choose, 33–34

isolation levels, 55–57
SqlTransaction, 59
TransactionScope class, 57–58

TransactionScope class, 57–58, 125–126, 142, 271
TransactionScopeRequired property, 271
TransferMode enumeration, 258
TransferMode property, 344
transformation files, 385–386
transform attribute, 387
transforming web.config files, 385–387
transient fault handling framework, 73
transport security, WCF Services, 229–230
try/finally block, 132
TryParse method, 66
TypeConverters feature, 315
typed DataSets, 138
typed DataTables, 138
TypeId property (DataMember attribute), 188
Type parameter, 84

U
unit tests, 368–369
Unity tool, 319
Unspecified isolation level, transactions, 56
untyped DataSets, 138
untyped DataTables, 138
UpdateBatchSize property, 139
UpdateCommand property, 139
Update Model from Database (EDM Designer), 23
Update Model Wizard, 14, 21
UpdateOperations parameter, 84
Update-Package command, 398
updates

HTTP methods, 292
NuGet packages, 394–399

upgradeDomainCount attribute, 375
UploadFromStream method, 67
URI space, mapping using routing (Web API

design), 299–303
UseBufferedInputStream method, 343
UseConsistentNullReferenceBehavior property, 25
UseCSharpNullComparisonBehavior property, 25
UseDefaultCredentials property, 330
UseLegacyPreserveChangesBehavior property, 25
UserNameInspectorAttribute class, 194

455

WebClient class

Web APIs
consuming, 346–351

exception handling, 349
HttpDelete operations, 349
HttpGet operations, 347
HttpPost operations, 348
HttpPut operations, 348
sending/receiving requests, 350–352

creating in Visual Studio, 294
design, 287–306

choosing appropriate HTTP methods, 288–292
choosing formats for responses, 304
defining HTTP resources with HTTP actions,

292–299
mapping URI space using routing, 299–303
planning when to make HTTP actions

asynchronous, 304–306
hosting/managing, 337–344

ASP.NET apps, 340–341
configuring host servers for streaming, 343–344
restricting message size, 342–343
self-hosting, 338–340
Windows Azure, 341–342

implementation, 308–323
accepting data in JSON format, 308–312
action filters/exception filters, 320
asynchronous/synchronous actions, 321
content negotiation, 312–315
data binding, 315–316
dependency injection, 317–320
HttpMessageHandler, 316–317
streaming actions, 321–323

security, 324–335
authorization filters, 334–335
cross-domain requests, 333–334
HttpBasic authentication, 326–329
user authentication/authorization, 325–326
Windows Authentication, 329–330
XSRF (cross-site request forgery), 330–333

Web API template dialog box, 293
web applications, deployment strategies

configuring application, 383–391
design, 362–372
managing packages by NuGet, 393–405
sharing assemblies, 418–427
Web Deployment packages, 406–416
Windows Azure, 374–381

WebClient class, 317

WCF Service Configuration Editor
Create a New Service option, 200–201
Security tab, 228–229

WCF Service Library template, 172
WCF services

configuring bindings for, 249–251
creating bindings for, 249–251
hosting, 250

WCF (Windows Communication Foundation) Services
configuring

API, 212–224
configuration settings, 199–212

consuming, 233–242
channel factories, 239–241
generating proxies, 233–240

creating, 170–197
contracts, 171–192
inspectors, 192–194
message inspectors, 194–196
SOA concepts, 170–171

host and manage services, 264–273
ConcurrencyMode enumeration, 264–265
hosting mechanisms, 270–271
InstanceCintextMode setting, 265–266
service hosts, 266–270
transactional services, 271–272

MEPs (message exchange patterns), 255–260
duplex communication, 257–260
one-way communication, 256–258
request/reply communication pattern, 260–261
streaming data, 257–259

security, 227–231
certificates, 230–231
message-level security, 227–229
transport-level security, 229–230

versioning, 244–248
address versioning, 246
bindings, 246
contract versioning, 245–246
lax versioning, 246
routing service versioning, 246
strict versioning, 245–247

WCF Workflow Service Application template, 172
WDeploySnapin3.0 snap-in, 414
WebApiConfig class, 316–317
WebApiConfig.cs file, 300
WebApiConfig.Register method, 334

456

WebClientContentRepository class

WriteToStream method, 351
WSDL (Web Service Definition Language), 171
wsHttpBinding, 217–218
WS-ReliableMessaging protocol, 214
WWW-Authentication header, 327

X
XAttribute class, 99
XCopy deployments, 362–367

configuring IIS, 363–365
preparing website for, 365–366
tool supports, 366–367

XDocument instance, components, 98
xdt:Locator attribute, 386
xdt:Transform attribute, 386
XElement class, 97
XML, XPath, 95–96
XmlConvert class, 100–102
XML data structures, 86–101

advanced manipulation, 100–102
LINQ-to-XML, 96–101
manipulating, 90–95

XmlDocument class, 93–95
XmlReader class, 92–93
XmlWriter class, 90–92

reading, filtering, creating, and modifying, 87–90
XmlDocument, 95–96
XmlDocument class, 93–95
XML-Document-Transform syntax, 386
XmlPoke, 389
XmlReader class, 92–93
XmlSerializer versus DataContract, 185
XmlWriter class, 90–92
XPath, 95–96
XPathNavigator object, 95–96
XP (eXtreme Programming), 367
XSRF (cross-site request forgery), 330–333

WebClientContentRepository class, 319
web.config transformations, 385–387
Web Deployment Framework, 367, 414
Web Deployment packages, 406–416

applying pre- and post-condition actions, 416
configuring the build process, 415–416
IIS InstallPackage, 407–415

command-line tools, 413–415
IIS Manager, 411–413
Visual Studio, 407–411

web farms, deploying to, 371–372
WebHostBufferPolicySelector class, 343
Web Service Definition Language (WSDL), 171
-whatif flag (MSDeploy), 414
windows

Manage NuGet Packages, 396
Properties, Entities model, 116
Solution Explorer, 175–177

Windows Activation Service (WAS), 267
Windows Authentication, Web APIs, 329–330
Windows Azure

caching options, 37
cloud services, hosting Web APIs, 342
configuration settings, 390–392
data storage, 61–72

accessing, 61–63
caching, 71
CDN (Content Delivery Network), 69–70
mechanisms, 64–70

deployment strategies, web applications, 374–381
in-place upgrades/VIP Sawps, 374–376
input and internal endpoints, 377–380
operating system configuration, 380–382
upgrading through VIP Swaps, 376–377

hosting Web APIs, 341–342
Management Portal, 70, 369
shared caching, 72

Windows Azure-based hosting, 268
Windows Azure Websites, hosting Web APIs, 342
Windows Communication Foundation

Services. See WCF Services
WindowsStreamSecurityBindingElement, 220
wizards

Create Database, 14
Entity Data Model, 13, 14–20
Publish Web, 407–408
Update Model, 14, 21

Workflow Foundation, 172

About the authors

BILL RYAN is a Software Architect at Dynamics Four, a Microsoft Gold Partner and one of
the nation's most innovative Dynamics CRM consultancies. He lives in Greenville, SC, with his
wife and daughter. Bill has won Microsoft's Most Valuable Professional award 9 years in a row
in several different product groups and was one of 20 people invited into Microsoft's Data
Access Insiders program. Bill has been actively involved in Microsoft's exam development
for the last seven years, serving as a subject matter expert in various technologies including
SQL Server Administration, Business Intelligence, .NET, Windows Communication Founda-
tion, Workflow Foundation, and Windows Phone. Outside of technology, he spends his time
listening to the Phil Hendrie show and wrangling the many rescue pups he and his wife have
fostered.

WOUTER DE KORT is an independent technical coach, trainer, and developer
at Seize IT. He is MCSD certified. As a software architect, he has directed the
development of complex web applications. He has also worked as a technical
evangelist, helping organizations stay on the cutting edge of web develop-
ment. Wouter has worked with C# and .NET since their inception; his expertise
also includes Visual Studio, Team Foundation Server, Entity Framework, Unit
Testing, design patterns, ASP.NET, and JavaScript.

ShANE MILTON is a Senior Architect creating enterprise systems running in Windows
Azure and is currently designing cloud-based Smart Grid solutions to manage energy for
millions of homes and businesses throughout the US. As an active leader in training and
educating teams in cloud technologies and various Agile techniques, he takes particular
interest in offering his expertise to community user groups and regional conferences in
and around Indianapolis.

 Now that
you’ve
read the
book...

Was it useful?
Did it teach you what you wanted to learn?
Was there room for improvement?

Let us know at http://aka.ms/tellpress

Your feedback goes directly to the staff at Microsoft Press,
and we read every one of your responses. Thanks in advance!

Tell us what you think!

	Contents
	Introduction
	Microsoft certifications
	Acknowledgments
	Errata & book support
	We want to hear from you
	Stay in touch

	Preparing for the exam
	Chapter 1: Accessing data
	Objective 1.1: Choose data access technologies
	Choosing a technology (ADO.NET, Entity Framework,
WCF Data Services) based on application requirements
	Choosing EF as the data access technology
	Choosing WCF Data Services as the data access technology
	Objective summary
	Objective review

	Objective 1.2: Implement caching
	Understanding caching options
	Using the ObjectCache
	Using the HttpContext.Cache
	Objective summary
	Objective review

	Objective 1.3: Implement transactions
	Understanding characteristics of transactions
	Implementing distributed transactions
	Specifying a transaction isolation level
	Managing transactions by using the API from the
System.Transactions namespace
	Using the EntityTransaction
	Using the SqlTransaction
	Objective summary
	Objective review

	Objective 1.4: Implement data storage in
Windows Azure
	Accessing data storage in Windows Azure
	Choosing a data storage mechanism in Windows Azure (blobs, tables, queues and SQL Database)
	Distribute data by using the Windows Azure Content Delivery Network (CDN)
	Manage Windows Azure Caching
	Handling exceptions by using retries (SQL Database)
	Objective summary
	Objective review

	Objective 1.5: Create and implement WCF Data Services
	Addressing resources
	Creating a query
	Accessing payload formats
	Working with interceptors and service operators
	Objective summary
	Objective review

	Objective 1.6: Manipulate XML data structures
	Reading, filtering, creating, and modifying XML structures
	Manipulating XML data
	XPath
	LINQ-to-XML
	Advanced XML manipulation
	Objective summary
	Objective review

	Chapter summary
	Answers

	Index

