

Exam Ref 70-483:
Programming in C#

Wouter de Kort

Copyright © 2013 by Microsoft Press, Inc.
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-7682-4

3 4 5 6 7 8 9 10 11 QG 8 7 6 5 4 3

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions and Developmental Editor: Russell Jones

Production Editor: Melanie Yarbrough

Editorial Production: Box Twelve Communications

Technical Reviewer: Auri Rahimzadeh

Copyeditor: Ginny Munroe

Cover Design: Twist Creative • Seattle

Cover Composition: Ellie Volckhausen

Illustrator: Rebecca Demarest

[2013-10-11]

http://www.microsoft.com/learning/booksurvey
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

Dedicated to my parents who encouraged me to start
programming when I was 7.

—Wouter de Kort

Contents at a glance

Introduction xv

Preparing for the exam xxi

ChAPTER 1 Manage program flow 1

ChAPTER 2 Create and use types 89

ChAPTER 3 Debug applications and implement security 179

ChAPTER 4 Implement data access 253

Index 335

vii

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Contents

Introduction xv
Microsoft certifications xv

Who should read this book xvi

Organization of this book xvi

System requirements xvii

Conventions and features in this book xvii

Preparing for the exam xxi

Chapter 1 Manage program flow 1
Objective 1.1: Implement multithreading and

asynchronous processing . 2

Understanding threads 2

Using Tasks 10

Using the Parallel class 16

Using async and await 17

Using Parallel Language Integrated Query (PLINQ) 21

Using concurrent collections 25

Objective summary 30

Objective review 30

Objective 1.2: Manage multithreading . 31

Synchronizing resources 31

Canceling tasks 37

Objective summary 40

Objective review 40

Objective 1.3: Implement program flow . 41

Working with Boolean expressions 41

Making decisions 44

Iterating across collections 50

viii Contents

Objective summary 55

Objective review 56

Objective 1.4: Create and implement events and callbacks 57

Understanding delegates 57

Using lambda expressions 59

Using events 61

Objective summary 67

Objective review 68

Objective 1.5: Implement exception handling . 68

Handling exceptions 69

Throwing exceptions 75

Creating custom exceptions 79

Objective summary 81

Objective review 82

Chapter summary . 82

Answers . 83

Objective 1.1: Thought experiment 83

Objective 1.1: Review 83

Objective 1.2: Thought experiment 84

Objective 1.2: Review 84

Objective 1.3: Thought experiment 85

Objective 1.3: Review 86

Objective 1.4: Thought experiment 87

Objective 1.4: Review 87

Objective 1.5: Thought experiment 88

Objective 1.5: Review 88

Chapter 2 Create and use types 89
Objective 2.1: Create types . 89

Choosing a type to create 90

Giving your types some body 93

Designing classes 99

Using generic types 101

Extending existing types 103

ixContents

Objective summary 106

Objective review 106

Objective 2.2: Consume types . 107

Boxing and unboxing 107

Converting between different types 108

Using dynamic types 112

Objective summary 114

Objective review 115

Objective 2.3: Enforce encapsulation . 116

Using access modifiers 116

Using properties 120

Using explicit interface implementations 121

Objective summary 123

Objective review 124

Objective 2.4: Create and implement a class hierarchy 124

Designing and implementing interfaces 125

Creating and using base classes 128

Implementing standard .NET Framework interfaces 133

Objective summary 138

Objective review 138

Objective 2.5: Find, execute, and create types at runtime by
using reflection . 139

Creating and using attributes 139

Using reflection 143

Using CodeDom and lambda expressions to generate code 145

Objective summary 149

Objective review 149

Objective 2.6: Manage the object life cycle . 150

Understanding garbage collection 150

Managing unmanaged resources 151

Objective summary 157

Objective review 158

x Contents

Objective 2.7: Manipulate strings . 158

Using strings in the .NET Framework 159

Manipulating strings 160

Searching for strings 162

Enumerating strings 163

Formatting strings 163

Objective summary 167

Objective review 167

Chapter summary . 168

Answers . 169

Objective 2.1: Thought experiment 169

Objective 2.1: Review 169

Objective 2.2: Thought experiment 170

Objective 2.2: Review 170

Objective 2.3: Thought experiment 171

Objective 2.3: Review 172

Objective 2.4: Thought experiment 173

Objective 2.4: Review 173

Objective 2.5: Thought experiment 174

Objective 2.5: Review 174

Objective 2.6: Thought experiment 175

Objective 2.6: Review 176

Objective 2.7: Thought experiment 177

Objective 2.7: Review 177

Chapter 3 Debug applications and implement security 179
Objective 3.1: Validate application input . 179

Why validating application input is important 180

Managing data integrity 180

Using Parse, TryParse, and Convert 185

Using regular expressions 188

Validating JSON and XML 189

Objective summary 192

Objective review 192

xiContents

Objective 3.2 Perform symmetric and asymmetric encryption 193

Using symmetric and asymmetric encryption 194

Working with encryption in the .NET Framework 195

Using hashing 199

Managing and creating certificates 202

Using code access permissions 204

Securing string data 206

Objective summary 208

Objective review 209

Objective 3.3 Manage assemblies . 209

What is an assembly? 210

Signing assemblies using a strong name 211

Putting an assembly in the GAC 214

Versioning assemblies 214

Creating a WinMD assembly 217

Objective summary 219

Objective review 219

Objective 3.4 Debug an application . 220

Build configurations 220

Creating and managing compiler directives 222

Managing program database files and symbols 226

Objective summary 230

Objective review 230

Objective 3.5 Implement diagnostics in an application 231

Logging and tracing 231

Profiling your application 238

Creating and monitoring performance counters 241

Objective summary 245

Objective review 245

Chapter summary . 246

Answers . 247

Objective 3.1: Thought experiment 247

Objective 3.1: Review 247

Objective 3.2: Thought experiment 248

xii Contents

Objective 3.2: Review 248

Objective 3.3: Thought experiment 249

Objective 3.3: Review 249

Objective 3.4: Thought experiment 250

Objective 3.4: Review 250

Objective 3.5: Thought experiment 251

Objective 3.5: Review 251

Chapter 4 Implement data access 253
Objective 4.1: Perform I/O operations . 253

Working with files 254

Working with streams 260

The file system is not just for you 263

Communicating over the network 265

Implementing asynchronous I/O operations 266

Objective summary 269

Objective review 269

Objective 4.2: Consume data . 270

Working with a database 271

Using web services 281

Consuming XML 284

Consuming JSON 289

Objective summary 290

Objective review 291

Objective 4.3: Query and manipulate data and objects by using LINQ . 291

Language features that make LINQ possible 292

Using LINQ queries 296

How does LINQ work? 300

Objective summary 305

Objective review 306

Objective 4.4: Serialize and deserialize data . 307

Using serialization and deserialization 307

Using XmlSerializer 308

Using binary serialization 311

Using DataContract 314

xiiiContents

Using JSON serializer 315

Objective summary 316

Objective review 317

Objective 4.5: Store data in and retrieve data from collections 317

Using arrays 318

Understanding generic versus nongeneric 319

Using List 319

Using Dictionary 321

Using sets 322

Using queues and stacks 323

Choosing a collection 324

Creating a custom collection 324

Objective summary 326

Objective review 326

Chapter summary . 327

Answers . 328

Objective 4.1: Thought experiment 328

Objective 4.1: Objective review 328

Objective 4.2: Thought experiment 329

Objective 4.2: Objective review 329

Objective 4.3: Thought experiment 330

Objective 4.3: Objective review 331

Objective 4.4: Thought experiment 332

Objective 4.4: Objective review 332

Objective 4.5: Thought experiment 333

Objective 4.5: Objective review 333

Index 335

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

xv

Introduction

The Microsoft 70-483 exam focuses on a broad range of topics that you can use in your work
as a C# developer. This book helps you understand both the basic and the more advanced
areas of the C# language. It shows you how to use the C# language to create powerful software
applications. This book also shows you how to use the new features that were added to the
C# language, such as support for asynchronous code. This book is aimed at developers who
have some experience with C# but want to deepen their knowledge and make sure they are
ready for the exam. To use the examples in this book, you should be familiar with using Visual
Studio to create a basic Console Application.

This book covers every exam objective, but it does not cover every exam question. Only
the Microsoft exam team has access to the exam questions themselves and Microsoft regu-
larly adds new questions to the exam, making it impossible to cover specific questions. You
should consider this book a supplement to your relevant real-world experience and other
study materials. If you encounter a topic in this book that you do not feel completely com-
fortable with, use the links to find more information and take the time to research and study
the topic. Great information is available on MSDN, TechNet, in blogs, and in forums.

Microsoft certifications

Microsoft certifications distinguish you by proving your command of a broad set of skills and
experience with current Microsoft products and technologies. The exams and corresponding
certifications are developed to validate your mastery of critical competencies as you design
and develop, or implement and support, solutions with Microsoft products and technologies
both on-premise and in the cloud. Certification brings a variety of benefits to the individual
and to employers and organizations.

MORE INFO ALL MICROSOFT CERTIFICATIONS

For information about Microsoft certifications, including a full list of available certifica-
tions, go to http://www.microsoft.com/learning/en/us/certification/cert-default.aspx.

http://www.microsoft.com/learning/en/us/certification/cert-default.aspx

xvi Introduction

Who should read this book

This book is intended for developers who want to achieve certification for the C# program-
ming language. This book prepares you to take and pass the exam 70-483: Programming in
C#. Successfully passing the 70-483 exam also counts as credit toward the Microsoft Certified
Solution Developer (MCSD): Windows Store Apps Using C#.

Assumptions
You should have at least one or more years of experience programming the essential busi-
ness/application logic for a variety of application types and hardware/software platforms
using C#. To run the examples from this book you should be able to create a console applica-
tion in Visual Studio. As you progress with your learning through this book and other study
resources, you will become proficient at developing complex applications. You will be able to
use all features that C# offers. This book is focused on helping those of you whose goal is to
become certified as a C# developer.

You can find information about the audience for Exam 70-483 in the exam prepa-
ration guide, available at http://www.microsoft.com/learning/en/us/exam-70-483.
aspx#fbid=x2KPCL1L6z8.

Organization of this book

This book is divided into four chapters. Each chapter focuses on a different exam domain re-
lated to Exam 70-483: Programming in C#. Each chapter is further broken down into specific
exam objectives that have been published by Microsoft; they can found in the "Skills Being
Measured" section of the Exam 70-483: Programming in C# website at http://www.microsoft.
com/learning/en/us/exam-70-483.aspx#fbid=x2KPCL1L6z8.

The material covered by the exam domain and the objectives has been incorporated into
the book so that you have concise, objective-by-objective content together with strategic
real-world scenarios, thought experiments, and end-of-chapter review questions to provide
readers with professional-level preparation for the exam.

http://www.microsoft.com/learning/en/us/exam-70-483.aspx%23fbid%3Dx2KPCL1L6z8
http://www.microsoft.com/learning/en/us/exam-70-483.aspx%23fbid%3Dx2KPCL1L6z8
http://www.microsoft.com/learning/en/us/exam-70-483.aspx%23fbid%3Dx2KPCL1L6z8
http://www.microsoft.com/learning/en/us/exam-70-483.aspx%23fbid%3Dx2KPCL1L6z8

xviiIntroduction

System requirements

Where you are unfamiliar with a topic covered in this book, you should practice the concept
on your study PC. You will need the following hardware and software to complete the prac-
tice exercises in this book:

■■ One study PC that can be installed with Visual Studio 2012 (see hardware specifications
below) or a PC that allows the installation of Visual Studio 2012 within a virtualized
environment. You can use Visual Studio 2012 Professional, Premium, or Ultimate if you
own a license for one of these. If you don't have access to a licensed version, you can
also use Visual Studio 2012 Express for Windows Desktop, which can be downloaded
from http://www.microsoft.com/visualstudio/eng/downloads.

■■ Visual Studio 2012 supports the following operating systems: Windows 7 SP1 (x86 and
x64), Windows 8 (x86 and x64), Windows Server 2008 R2 SP1 (x64), Windows Server
2012 (x64).

■■ Visual Studio 2012 requires the following minimum hardware requirements: 1.6 GHz or
faster processor, 1 GB of RAM (1.5 GB if running on a virtual machine), 5 GB of avail-
able hard disk space, 100 MB of available hard disk space (language pack), 5400 RPM
hard disk drive, DirectX 9-capable video card running at 1024 x 768 or higher display
resolution.

■■ If you plan to install Visual Studio 2012 in a virtualized environment, you should
consider using Hyper-V and ensure that the minimum hardware requirements are
as follows: x64-based processor, which includes both hardware-assisted virtualiza-
tion (AMD-V or Inter VT) and hardware data execution protection; 4 GB RAM (more
is recommended); network card; video card; DVD-ROM drive; and at least 100 GB of
available disk space available to allow for the storage of multiple virtual machines.

Conventions and features in this book

This book presents information using conventions designed to make the information readable
and easy to follow:

■■ Each exercise consists of a series of tasks, presented as numbered steps listing each
action you must take to complete the exercise.

■■ Boxed elements with labels such as "Note" provide additional information or alterna-
tive methods for completing a step successfully.

■■ Boxed elements with "Exam Tip" labels provide additional information that might offer
helpful hints or additional information on what to expect on the exam.

■■ Text that you type (apart from code blocks) appear in bold.

http://www.microsoft.com/visualstudio/eng/downloads

xviii Introduction

■■ A plus sign (+) between two key names means that you must press those keys at the
same time. For example, "Press Alt+Tab" means that you hold down the Alt key while
you press the Tab key.

■■ A vertical bar between two or more menu items (for example, File | Close) means that
you should select the first menu or menu item, then the next, and so on.

Acknowledgments

I’d like to thank the following people:

■■ To Jeff Riley for providing me the opportunity to write this book.

■■ To Ginny Munroe for helping me through the whole editing process. I learned a lot
from your feedback and advice.

■■ To Auri Rahimzadeh for your technical reviewing skills.

■■ To my wife, Elise, for your support.

And to all the other people who played a role in getting this book ready. Thanks for your
hard work!

Errata & book support

We’ve made every effort to ensure the accuracy of this book and its companion content.
Any errors that have been reported since this book was published are listed on our Microsoft
Press site:

http://aka.ms/ER70-483/errata

If you find an error that is not already listed, you can report it to us through the same page.

If you need additional support, email Microsoft Press Book Support at mspinput@micro-
soft.com.

Please note that product support for Microsoft software is not offered through the addresses
above.

http://aka.ms/ER70-483/errata

xix

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valu-
able asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in ad-
vance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress

xxi

Preparing for the exam

Microsoft certification exams are a great way to build your resume and let the world know
about your level of expertise. Certification exams validate your on-the-job experience and
product knowledge. While there is no substitution for on-the-job experience, preparation
through study and hands-on practice can help you prepare for the exam. We recommend
that you round out your exam preparation plan by using a combination of available study
materials and courses. For example, you might use this Exam Ref and another study guide for
your "at home" preparation, and take a Microsoft Official Curriculum course for the classroom
experience. Choose the combination that you think works best for you.

Note that this Exam Ref is based on publically available information about the exam and
the author's experience. To safeguard the integrity of the exam, authors do not have access to
the live exam.

 1

C h A P T E R 1

Manage program flow
If you could build only programs that execute all their
logic from top to bottom, it would not be feasible to
build complex applications. Fortunately, C# and the .NET
Framework offer you a lot of options for creating complex
programs that don’t have a fixed program flow.

This chapter starts with looking at how to create mul-
tithreaded applications. Those applications can scale well
and remain responsive to the user while doing their work.
You will also look at the new language feature async/
await that was added to C# 5.

You will learn about the basic C# language constructs
to make decisions and execute a piece of code multiple times, depending on the circum-
stances. These constructs form the basic language blocks of each application, and you will
use them often.

After that, you will learn how to create applications that are loosely coupled by us-
ing delegates and events. With events, you can build objects that can notify each other
when something happens and that can respond to those notifications. Frameworks such
as ASP.NET, Windows Presentation Foundation (WPF), and WinForms make heavy use of
events; understanding events thoroughly will help you build great applications.

Unfortunately, your program flow can also be interrupted by errors. Such errors can hap-
pen in areas that are out of your control but that you need to respond to. Sometimes you
want to raise such an error yourself. You will learn how exceptions can help you implement
a robust error-handling strategy in your applications.

Objectives in this chapter:
■■ Objective 1.1: Implement multithreading and asynchronous processing

■■ Objective 1.2: Manage multithreading

■■ Objective 1.3: Implement program flow

■■ Objective 1.4: Create and implement events and callbacks

■■ Objective 1.5. Implement exception handling

i m p o r t a n t

Have you read
page xxi?
It contains valuable
information regarding
the skills you need to
pass the exam.

 2 Chapter 1 Manage program flow

Objective 1.1: Implement multithreading and
asynchronous processing

Applications are becoming more and more complex as user expectations rise. To fully take
advantage of multicore systems and stay responsive, you need to create applications that use
multiple threads, often called parallelism.

The .NET Framework and the C# language offer a lot of options that you can use to create
multithreaded applications.

This objective covers how to:
■■ Understand threads.

■■ Use the Task Parallel Library.

■■ Use the Parallel class.

■■ Use the new async and await keywords.

■■ Use Parallel Language Integrated Query.

■■ Use concurrent collections.

Understanding threads
Imagine that your computer has only one central processing unit (CPU) that is capable of
executing only one operation at a time. Now, imagine what would happen if the CPU has to
work hard to execute a task that takes a long time.

While this operation runs, all other operations would be paused. This means that the whole
machine would freeze and appear unresponsive to the user. Things get even worse when that
long-running operation contains a bug so it never ends. Because the rest of the machine is
unusable, the only thing you can do is restart the machine.

To remedy this problem, the concept of a thread is used. In current versions of Windows,
each application runs in its own process. A process isolates an application from other applica-
tions by giving it its own virtual memory and by ensuring that different processes can’t influ-
ence each other. Each process runs in its own thread. A thread is something like a virtualized
CPU. If an application crashes or hits an infinite loop, only the application’s process is affected.

Windows must manage all of the threads to ensure they can do their work. These manage-
ment tasks do come with an overhead. Each thread is allowed by Windows to execute for a

 Objective 1.1: Implement multithreading and asynchronous processing Chapter 1 3

certain time period. After this period ends, the thread is paused and Windows switches to
another thread. This is called context switching.

In practice, this means that Windows has to do some work to make it happen. The cur-
rent thread is using a certain area of memory; it uses CPU registers and other state data, and
Windows has to make sure that the whole context of the thread is saved and restored on each
switch.

But although there are certain performance hits, using threads does ensure that each
process gets its time to execute without having to wait until all other operations finish. This
improves the responsiveness of the system and gives the illusion that one CPU can execute
multiple tasks at a time. This way you can create an application that uses parallelism, meaning
that it can execute multiple threads on different CPUs in parallel.

Almost any device that you buy today has a CPU with multiple cores, which is similar to
having multiple CPUs. Some servers not only have multicore CPUs but they also have more
than one CPU. To make use of all these cores, you need multiple threads. Windows ensures
that those threads are distributed over your available cores. This way you can perform mul-
tiple tasks at once and improve scalability.

Because of the associated overhead, you should carefully determine whether you need
multithreading. But if you want to use threads for scalability or responsiveness, C# and .NET
Framework offer you a lot of possibilities.

Using the Thread class
The Thread class can be found in the System.Threading namespace. This class enables you to
create new treads, manage their priority, and get their status.

The Thread class isn’t something that you should use in your applications, except when you
have special needs. However, when using the Thread class you have control over all configura-
tion options. You can, for example, specify the priority of your thread, tell Windows that your
thread is long running, or configure other advanced options.

Listing 1-1 shows an example of using the Thread class to run a method on another thread.
The Console class synchronizes the use of the output stream for you so you can write to it
from multiple threads. Synchronization is the mechanism of ensuring that two threads don’t
execute a specific portion of your program at the same time. In the case of a console appli-
cation, this means that no two threads can write data to the screen at the exact same time.
If one thread is working with the output stream, other threads will have to wait before it’s
finished.

 4 Chapter 1 Manage program flow

LISTING 1-1 Creating a thread with the Thread class

using System;
using System.Threading;

namespace Chapter1
{
 public static class Program
 {
 public static void ThreadMethod()
 {
 for (int i = 0; i < 10; i++)
 {
 Console.WriteLine(“ThreadProc: {0}”, i);
 Thread.Sleep(0);
 }
 }

 public static void Main()
 {
 Thread t = new Thread(new ThreadStart(ThreadMethod));
 t.Start();

 for (int i = 0; i < 4; i++)
 {
 Console.WriteLine(“Main thread: Do some work.”);
 Thread.Sleep(0);
 }

 t.Join();

 }

 }

}

// Displays
//Main thread: Do some work.
//ThreadProc: 0
//Main thread: Do some work.
//ThreadProc: 1
//Main thread: Do some work.
//ThreadProc: 2
//Main thread: Do some work.
//ThreadProc: 3
//ThreadProc: 4
//ThreadProc: 5
//ThreadProc: 6
//ThreadProc: 7
//ThreadProc: 8
//ThreadProc: 9

 Objective 1.1: Implement multithreading and asynchronous processing Chapter 1 5

As you can see, both threads run and print their message to the console. The Thread.Join
method is called on the main thread to let it wait until the other thread finishes.

Why the Thread.Sleep(0)? It is used to signal to Windows that this thread is finished. In-
stead of waiting for the whole time-slice of the thread to finish, it will immediately switch to
another thread.

Both your process and your thread have a priority. Assigning a low priority is useful for
applications such as a screen saver. Such an application shouldn’t compete with other applica-
tions for CPU time. A higher-priority thread should be used only when it’s absolutely neces-
sary. A new thread is assigned a priority of Normal, which is okay for almost all scenarios.

Another thing that’s important to know about threads is the difference between fore-
ground and background threads. Foreground threads can be used to keep an application
alive. Only when all foreground threads end does the common language runtime (CLR) shut
down your application. Background threads are then terminated.

Listing 1-2 shows this difference in action.

LISTING 1-2 Using a background thread

using System;
using System.Threading;

namespace Chapter1
{
 public static class Program

 {
 public static void ThreadMethod()
 {
 for (int i = 0; i < 10; i++)
 {
 Console.WriteLine(“ThreadProc: {0}”, i);
 Thread.Sleep(1000);
 }
 }

 public static void Main()
 {
 Thread t = new Thread(new ThreadStart(ThreadMethod));
 t.IsBackground = true;
 t.Start();
 }
 }
}

If you run this application with the IsBackground property set to true, the application exits
immediately. If you set it to false (creating a foreground thread), the application prints the
ThreadProc message ten times.

 6 Chapter 1 Manage program flow

The Thread constructor has another overload that takes an instance of a Parameter-
izedThreadStart delegate. This overload can be used if you want to pass some data through
the start method of your thread to your worker method, as Listing 1-3 shows.

LISTING 1-3 Using the ParameterizedThreadStart

public static void ThreadMethod(object o)
{
 for (int i = 0; i < (int)o; i++)
 {
 Console.WriteLine(“ThreadProc: {0}”, i);

 Thread.Sleep(0);
 }
}

public static void Main()
{
 Thread t = new Thread(new ParameterizedThreadStart(ThreadMethod));
 t.Start(5);
 t.Join();
}

In this case, the value 5 is passed to the ThreadMethod as an object. You can cast it to the
expected type to use it in your method.

To stop a thread, you can use the Thread.Abort method. However, because this method
is executed by another thread, it can happen at any time. When it happens, a ThreadAbort-
Exception is thrown on the target thread. This can potentially leave a corrupt state and make
your application unusable.

A better way to stop a thread is by using a shared variable that both your target and your
calling thread can access. Listing 1-4 shows an example.

LISTING 1-4 Stopping a thread

using System;
using System.Threading;

namespace Chapter1
{
 public static class Program
 {
 public static void Main()
 {

 bool stopped = false;

 Objective 1.1: Implement multithreading and asynchronous processing Chapter 1 7

 Thread t = new Thread(new ThreadStart(() =>
 {
 while (!stopped)
 {
 Console.WriteLine(“Running...”);
 Thread.Sleep(1000);
 }
 }));

 t.Start();
 Console.WriteLine(“Press any key to exit”);
 Console.ReadKey();

 stopped = true;
 t.Join();
 }
 }
}

In this case, the thread is initialized with a lambda expression (which in turn is just a short-
hand version of a delegate). The thread keeps running until stopped becomes true. After that,
the t.Join method causes the console application to wait till the thread finishes execution.

A thread has its own call stack that stores all the methods that are executed. Local vari-
ables are stored on the call stack and are private to the thread.

A thread can also have its own data that’s not a local variable. By marking a field with the
ThreadStatic attribute, each thread gets its own copy of a field (see Listing 1-5).

LISTING 1-5 Using the ThreadStaticAttribute

using System;
using System.Threading;

namespace Chapter1
{
 public static class Program
 {
 [ThreadStatic]
 public static int _field;
 public static void Main()
 {

 new Thread(() =>
 {
 for(int x = 0; x < 10; x++)
 {
 _field++;
 Console.WriteLine(“Thread A: {0}”, _field);
 }
 }).Start();

 new Thread(() =>
 {

 8 Chapter 1 Manage program flow

 for(int x = 0; x < 10; x++)
 {
 _field++;
 Console.WriteLine(“Thread B: {0}”, _field);
 }
 }).Start();

 Console.ReadKey();
 }
 }
}

With the ThreadStaticAttribute applied, the maximum value of _field becomes 10. If you
remove it, you can see that both threads access the same value and it becomes 20.

If you want to use local data in a thread and initialize it for each thread, you can use the
ThreadLocal<T> class. This class takes a delegate to a method that initializes the value. Listing
1-6 shows an example.

LISTING 1-6 Using ThreadLocal<T>

using System;
using System.Threading;

namespace Chapter1
{
 public static class Program
 {
 public static ThreadLocal<int> _field =
 new ThreadLocal<int>(() =>
 {
 return Thread.CurrentThread.ManagedThreadId;

 });

 public static void Main()
 {
 new Thread(() =>

 {

 for(int x = 0; x < _field.Value; x++)
 {
 Console.WriteLine(“Thread A: {0}”, x);
 }

 }).Start();
 new Thread(() =>
 {
 for (int x = 0; x < _field.Value; x++)
 {
 Console.WriteLine(“Thread B: {0}”, x);
 }

 Objective 1.1: Implement multithreading and asynchronous processing Chapter 1 9

 }).Start();

 Console.ReadKey();
 }
 }
}

// Displays
// Thread B: 0
// Thread B: 1
// Thread B: 2
// Thread B: 3
// Thread A: 0
// Thread A: 1
// Thread A: 2

Here you see another feature of the .NET Framework. You can use the Thread.Current-
Thread class to ask for information about the thread that’s executing. This is called the
thread’s execution context. This property gives you access to properties like the thread’s
current culture (a CultureInfo associated with the current thread that is used to format dates,
times, numbers, currency values, the sorting order of text, casing conventions, and string
comparisons), principal (representing the current security context), priority (a value to indicate
how the thread should be scheduled by the operating system), and other info.

When a thread is created, the runtime ensures that the initiating thread’s execution context
is flowed to the new thread. This way the new thread has the same privileges as the parent
thread.

This copying of data does cost some resources, however. If you don’t need this data, you
can disable this behavior by using the ExecutionContext.SuppressFlow method.

Thread pools
When working directly with the Thread class, you create a new thread each time, and the
thread dies when you’re finished with it. The creation of a thread, however, is something that
costs some time and resources.

A thread pool is created to reuse those threads, similar to the way a database connection
pooling works. Instead of letting a thread die, you send it back to the pool where it can be
reused whenever a request comes in.

When you work with a thread pool from .NET, you queue a work item that is then picked
up by an available thread from the pool. Listing 1-7 shows how this is done.

LISTING 1-7 Queuing some work to the thread pool

using System;
using System.Threading;

namespace Chapter1
{
 public static class Program
 {

 10 Chapter 1 Manage program flow

 public static void Main()
 {
 ThreadPool.QueueUserWorkItem((s) =>
 {
 Console.WriteLine(“Working on a thread from threadpool”);
 });

 Console.ReadLine();
 }
 }
}

Because the thread pool limits the available number of threads, you do get a lesser degree
of parallelism than using the regular Thread class. But the thread pool also has many advan-
tages.

Take, for example, a web server that serves incoming requests. All those requests come in
at an unknown time and frequency. The thread pool ensures that each request gets added to
the queue and that when a thread becomes available, it is processed. This ensures that your
server doesn’t crash under the amount of requests. If you span threads manually, you can
easily bring down your server if you get a lot of requests. Each request has unique charac-
teristics in the work they need to do. What the thread pool does is map this work onto the
threads available in the system. Of course, you can still get so many requests that you run
out of threads. Requests then start to queue up and this leads to your web server becoming
unresponsive.

The thread pool automatically manages the amount of threads it needs to keep around.
When it is first created, it starts out empty. As a request comes in, it creates additional threads
to handle those requests. As long as it can finish an operation before a new one comes in,
no new threads have to be created. If new threads are no longer in use after some time, the
thread pool can kill those threads so they no longer use any resources.

MORE INFO THREAD POOL

For more information on how the thread pool works and how you can configure it, see
http://msdn.microsoft.com/en-us/library/system.threading.threadpool.aspx.

One thing to be aware of is that because threads are being reused, they also reuse their
local state. You may not rely on state that can potentially be shared between multiple
operations.

Using Tasks
Queuing a work item to a thread pool can be useful, but it has its shortcomings. There is no
built-in way to know when the operation has finished and what the return value is.

http://msdn.microsoft.com/en-us/library/system.threading.threadpool.aspx

 Objective 1.1: Implement multithreading and asynchronous processing Chapter 1 11

This is why the .NET Framework introduces the concept of a Task, which is an object that
represents some work that should be done. The Task can tell you if the work is completed and
if the operation returns a result, the Task gives you the result.

A task scheduler is responsible for starting the Task and managing it. By default, the Task
scheduler uses threads from the thread pool to execute the Task.

Tasks can be used to make your application more responsive. If the thread that manages
the user interface offloads work to another thread from the thread pool, it can keep process-
ing user events and ensure that the application can still be used. But it doesn’t help with scal-
ability. If a thread receives a web request and it would start a new Task, it would just consume
another thread from the thread pool while the original thread waits for results.

Executing a Task on another thread makes sense only if you want to keep the user in-
terface thread free for other work or if you want to parallelize your work on to multiple
processors.

Listing 1-8 shows how to start a new Task and wait until it’s finished.

LISTING 1-8 Starting a new Task

using System;
using System.Threading.Tasks;

namespace Chapter1
{

 public static class Program
 {
 public static void Main()

 {

 Task t = Task.Run(() =>
 {
 for (int x = 0; x < 100; x++)
 {

 Console.Write(‘*’);
 }
 });

 t.Wait();

 }
 }
}

This example creates a new Task and immediately starts it. Calling Wait is equivalent to
calling Join on a thread. It waits till the Task is finished before exiting the application.

 12 Chapter 1 Manage program flow

Next to Task, the .NET Framework also has the Task<T> class that you can use if a Task
should return a value. Listing 1-9 shows how this works.

LISTING 1-9 Using a Task that returns a value.

using System;
using System.Threading.Tasks;

namespace Chapter1
{
 public static class Program
 {
 public static void Main()
 {
 Task<int> t = Task.Run(() =>
 {
 return 42;
 });
 Console.WriteLine(t.Result); // Displays 42
 }
 }
}

Attempting to read the Result property on a Task will force the thread that’s trying to
read the result to wait until the Task is finished before continuing. As long as the Task has not
finished, it is impossible to give the result. If the Task is not finished, this call will block the
current thread.

Because of the object-oriented nature of the Task object, one thing you can do is add a
continuation task. This means that you want another operation to execute as soon as the Task
finishes.

Listing 1-10 shows an example of creating such a continuation.

LISTING 1-10 Adding a continuation

Task<int> t = Task.Run(() =>
{
 return 42;
}).ContinueWith((i) =>
{
 return i.Result * 2;
});

Console.WriteLine(t.Result); // Displays 84

The ContinueWith method has a couple of overloads that you can use to configure when
the continuation will run. This way you can add different continuation methods that will run
when an exception happens, the Task is canceled, or the Task completes successfully. Listing
1-11 shows how to do this.

 Objective 1.1: Implement multithreading and asynchronous processing Chapter 1 13

LISTING 1-11 Scheduling different continuation tasks

Task<int> t = Task.Run(() =>
{
 return 42;
});

t.ContinueWith((i) =>
{
 Console.WriteLine(“Canceled”);
}, TaskContinuationOptions.OnlyOnCanceled);

t.ContinueWith((i) =>
{
 Console.WriteLine(“Faulted”);
}, TaskContinuationOptions.OnlyOnFaulted);

var completedTask = t.ContinueWith((i) =>
 {
 Console.WriteLine(“Completed”);
 }, TaskContinuationOptions.OnlyOnRanToCompletion);

completedTask.Wait();

Next to continuation Tasks, a Task can also have several child Tasks. The parent Task fin-
ishes when all the child tasks are ready. Listing 1-12 shows how this works.

LISTING 1-12 Attaching child tasks to a parent task

using System;
using System.Threading.Tasks;

namespace Chapter1
{
 public static class Program
 {
 public static void Main()
 {
 Task<Int32[]> parent = Task.Run(() =>
 {
 var results = new Int32[3];
 new Task(() => results[0] = 0,
 TaskCreationOptions.AttachedToParent).Start();
 new Task(() => results[1] = 1,
 TaskCreationOptions.AttachedToParent).Start();
 new Task(() => results[2] = 2,
 TaskCreationOptions.AttachedToParent).Start();

 return results;
 });

 var finalTask = parent.ContinueWith(
 parentTask => {
 foreach(int i in parentTask.Result)
 Console.WriteLine(i);
 });

 14 Chapter 1 Manage program flow

 finalTask.Wait();
 }
 }
}

The finalTask runs only after the parent Task is finished, and the parent Task finishes when
all three children are finished. You can use this to create quite complex Task hierarchies that
will go through all the steps you specified.

In the previous example, you had to create three Tasks all with the same options. To make
the process easier, you can use a TaskFactory. A TaskFactory is created with a certain configu-
ration and can then be used to create Tasks with that configuration. Listing 1-13 shows how
you can simplify the previous example with a factory.

LISTING 1-13 Using a TaskFactory

using System;
using System.Threading.Tasks;

namespace Chapter1
{
 public static class Program
 {
 public static void Main()
 {
 Task<Int32[]> parent = Task.Run(() =>
 {
 var results = new Int32[3];

 TaskFactory tf = new TaskFactory(TaskCreationOptions.AttachedToParent,
 TaskContinuationOptions.ExecuteSynchronously);

 tf.StartNew(() => results[0] = 0);
 tf.StartNew(() => results[1] = 1);
 tf.StartNew(() => results[2] = 2);
 return results;
 });

 var finalTask = parent.ContinueWith(
 parentTask => {
 foreach(int i in parentTask.Result)
 Console.WriteLine(i);
 });

 finalTask.Wait();
 }
 }
}

Next to calling Wait on a single Task, you can also use the method WaitAll to wait for mul-
tiple Tasks to finish before continuing execution. Listing 1-14 shows how to use this.

 Objective 1.1: Implement multithreading and asynchronous processing Chapter 1 15

LISTING 1-14 Using Task.WaitAll

using System.Threading;
using System.Threading.Tasks;

namespace Chapter1
{
 public static class Program
 {
 public static void Main()
 {
 Task[] tasks = new Task[3];

 tasks[0] = Task.Run(() => {
 Thread.Sleep(1000);
 Console.WriteLine(“1”);
 return 1;
 });
 tasks[1] = Task.Run(() => {
 Thread.Sleep(1000);
 Console.WriteLine(“2”);
 return 2;
 });
 tasks[2] = Task.Run(() => {
 Thread.Sleep(1000);
 Console.WriteLine(“3”);
 return 3; }
);

 Task.WaitAll(tasks);
 }
 }
}

In this case, all three Tasks are executed simultaneously, and the whole run takes approxi-
mately 1000ms instead of 3000. Next to WaitAll, you also have a WhenAll method that you
can use to schedule a continuation method after all Tasks have finished.

Instead of waiting until all tasks are finished, you can also wait until one of the tasks is
finished. You use the WaitAny method for this. Listing 1-15 shows how this works.

LISTING 1-15 Using Task.WaitAny

using System;
using System.Linq;
using System.Threading;
using System.Threading.Tasks;

namespace Chapter1
{
 public static class Program
 {
 public static void Main()
 {
 Task<int>[] tasks = new Task<int>[3];

 16 Chapter 1 Manage program flow

 tasks[0] = Task.Run(() => { Thread.Sleep(2000); return 1; });
 tasks[1] = Task.Run(() => { Thread.Sleep(1000); return 2; });
 tasks[2] = Task.Run(() => { Thread.Sleep(3000); return 3; });

 while (tasks.Length > 0)
 {
 int i = Task.WaitAny(tasks);
 Task<int> completedTask = tasks[i];

 Console.WriteLine(completedTask.Result);

 var temp = tasks.ToList();
 temp.RemoveAt(i);
 tasks = temp.ToArray();

 }
 }
 }
}

In this example, you process a completed Task as soon as it finishes. By keeping track of
which Tasks are finished, you don’t have to wait until all Tasks have completed.

Using the Parallel class
The System.Threading.Tasks namespace also contains another class that can be used for paral-
lel processing. The Parallel class has a couple of static methods—For, ForEach, and Invoke—
that you can use to parallelize work.

Parallelism involves taking a certain task and splitting it into a set of related tasks that can
be executed concurrently. This also means that you shouldn’t go through your code to re-
place all your loops with parallel loops. You should use the Parallel class only when your code
doesn’t have to be executed sequentially.

Increasing performance with parallel processing happens only when you have a lot of
work to be done that can be executed in parallel. For smaller work sets or for work that has to
synchronize access to resources, using the Parallel class can hurt performance.

The best way to know whether it will work in your situation is to measure the results.

Listing 1-16 shows an example of using Parallel.For and Parallel.ForEach.

LISTING 1-16 Using Parallel.For and Parallel.Foreach

Parallel.For(0, 10, i =>
{
 Thread.Sleep(1000);
});

var numbers = Enumerable.Range(0, 10);
Parallel.ForEach(numbers, i =>
{
 Thread.Sleep(1000);
});

 Objective 1.1: Implement multithreading and asynchronous processing Chapter 1 17

You can cancel the loop by using the ParallelLoopState object. You have two options to do
this: Break or Stop. Break ensures that all iterations that are currently running will be finished.
Stop just terminates everything. Listing 1-17 shows an example.

LISTING 1-17 Using Parallel.Break

ParallelLoopResult result = Parallel.
 For(0, 1000, (int i, ParallelLoopState loopState) =>
{
 if (i == 500)
 {
 Console.WriteLine(“Breaking loop”);
 loopState.Break();

 }
 return;
});

When breaking the parallel loop, the result variable has an IsCompleted value of false and a
LowestBreakIteration of 500. When you use the Stop method, the LowestBreakIteration is null.

Using async and await
As you have seen, long-running CPU-bound tasks can be handed to another thread by using
the Task object. But when doing work that’s input/output (I/O)–bound, things go a little
differently.

When your application is executing an I/O operation on the primary application thread,
Windows notices that your thread is waiting for the I/O operation to complete. Maybe you
are accessing some file on disk or over the network, and this could take some time.

Because of this, Windows pauses your thread so that it doesn’t use any CPU resources. But
while doing this, it still uses memory, and the thread can’t be used to serve other requests,
which in turn will lead to new threads being created if requests come in.

Asynchronous code solves this problem. Instead of blocking your thread until the I/O op-
eration finishes, you get back a Task object that represents the result of the asynchronous op-
eration. By setting a continuation on this Task, you can continue when the I/O is done. In the
meantime, your thread is available for other work. When the I/O operation finishes, Windows
notifies the runtime and the continuation Task is scheduled on the thread pool.

But writing asynchronous code is not easy. You have to make sure that all edge cases are
handled and that nothing can go wrong. Because of this predicament, C# 5 has added two
new keywords to simplify writing asynchronous code. Those keywords are async and await.

You use the async keyword to mark a method for asynchronous operations. This way,
you signal to the compiler that something asynchronous is going to happen. The compiler
responds to this by transforming your code into a state machine.

 18 Chapter 1 Manage program flow

A method marked with async just starts running synchronously on the current thread.
What it does is enable the method to be split into multiple pieces. The boundaries of these
pieces are marked with the await keyword.

When you use the await keyword, the compiler generates code that will see whether your
asynchronous operation is already finished. If it is, your method just continues running syn-
chronously. If it’s not yet completed, the state machine will hook up a continuation method
that should run when the Task completes. Your method yields control to the calling thread,
and this thread can be used to do other work.

Listing 1-18 shows a simple example of an asynchronous method.

LISTING 1-18 async and await

using System;
using System.Net.Http;
using System.Threading.Tasks;

namespace Chapter1.Threads
{
 public static class Program
 {
 public static void Main()
 {
 string result = DownloadContent().Result;
 Console.WriteLine(result);
 }

 public static async Task<string> DownloadContent()
 {
 using(HttpClient client = new HttpClient())
 {

 string result = await client.GetStringAsync(“http://www.microsoft.com”);
 return result;
 }
 }
 }

}

Because the entry method of an application can’t be marked as async, the example ac-
cesses the Result property in the Main method which blocks the code until the async method
DownloadContent is finished. This class uses both the async and await keywords in the Down-
loadContent method.

The GetStringAsync uses asynchronous code internally and returns a Task<string> to the
caller that will finish when the data is retrieved. In the meantime, your thread can do other work.

The nice thing about async and await is that they let the compiler do the thing it’s best at:
generate code in precise steps. Writing correct asynchronous code by hand is difficult, espe-
cially when trying to implement exception handling. Doing this correctly can become difficult
quickly. Adding continuation tasks also breaks the logical flow of the code. Your code doesn’t
read top to bottom anymore. Instead, program flow jumps around, and it’s harder to follow

 Objective 1.1: Implement multithreading and asynchronous processing Chapter 1 19

when debugging your code. The await keyword enables you to write code that looks synchro-
nous but behaves in an asynchronous way. The Visual Studio debugger is even clever enough
to help you in debugging asynchronous code as if it were synchronous.

So doing a CPU-bound task is different from an I/O-bound task. CPU-bound tasks always
use some thread to execute their work. An asynchronous I/O-bound task doesn’t use a thread
until the I/O is finished.

If you are building a client application that needs to stay responsive while background
operations are running, you can use the await keyword to offload a long-running operation
to another thread. Although this does not improve performance, it does improve responsive-
ness. The await keyword also makes sure that the remainder of your method runs on the
correct user interface thread so you can update the user interface.

Making a scalable application that uses fewer threads is another story. Making code scale
better is about changing the actual implementation of the code. Listing 1-19 shows an ex-
ample of this.

LISTING 1-19 Scalability versus responsiveness

public Task SleepAsyncA(int millisecondsTimeout)
{
 return Task.Run(() => Thread.Sleep(millisecondsTimeout));
}

public Task SleepAsyncB(int millisecondsTimeout)
{
 TaskCompletionSource<bool> tcs = null;
 var t = new Timer(delegate { tcs.TrySetResult(true); }, null, -1, -1);
 tcs = new TaskCompletionSource<bool>(t);
 t.Change(millisecondsTimeout, -1);
 return tcs.Task;
}

The SleepAsyncA method uses a thread from the thread pool while sleeping. The sec-
ond method, however, which has a completely different implementation, does not occupy a
thread while waiting for the timer to run. The second method gives you scalability.

When using the async and await keywords, you should keep this in mind. Just wrapping each
and every operation in a task and awaiting them won’t make your application perform any bet-
ter. It could, however, improve responsiveness, which is very important in client applications.

The FileStream class, for example, exposes asynchronous methods such as WriteAsync and
ReadAsync. They use an implementation that makes use of actual asynchronous I/O. This way,
they don’t use a thread while they are waiting on the hard drive of your system to read or
write some data.

When an exception happens in an asynchronous method, you normally expect an Ag-
gregateException. However, the generated code helps you unwrap the AggregateException
and throws the first of its inner exceptions. This makes the code more intuitive to use and
easier to debug.

 20 Chapter 1 Manage program flow

One other thing that’s important when working with asynchronous code is the concept
of a SynchronizationContext, which connects its application model to its threading model.
For example, a WPF application uses a single user interface thread and potentially multiple
background threads to improve responsiveness and distribute work across multiple CPUs. An
ASP.NET application, however, uses threads from the thread pool that are initialized with the
correct data, such as current user and culture to serve incoming requests.

The SynchronizationContext abstracts the way these different applications work and makes
sure that you end up on the right thread when you need to update something on the UI or
process a web request.

The await keyword makes sure that the current SynchronizationContext is saved and
restored when the task finishes. When using await inside a WPF application, this means that
after your Task finishes, your program continues running on the user interface thread. In an
ASP.NET application, the remaining code runs on a thread that has the client’s cultural, princi-
pal, and other information set.

If you want, you can disable the flow of the SynchronizationContext. Maybe your continu-
ation code can run on any thread because it doesn’t need to update the UI after it’s finished.
By disabling the SynchronizationContext, your code performs better. Listing 1-20 shows an
example of a button event handler in a WPF application that downloads a website and then
puts the result in a label.

LISTING 1-20 Using ConfigureAwait

private async void Button_Click(object sender, RoutedEventArgs e)
{
 HttpClient httpClient = new HttpClient();

 string content = await httpClient
 .GetStringAsync(“http://www.microsoft.com”)
 .ConfigureAwait(false);

 Output.Content = content;
}

This example throws an exception; the Output.Content line is not executed on the UI
thread because of the ConfigureAwait(false). If you do something else, such as writing the
content to file, you don’t need to set the SynchronizationContext to be set (see Listing 1-21).

LISTING 1-21 Continuing on a thread pool instead of the UI thread

private async void Button_Click(object sender, RoutedEventArgs e)
{
 HttpClient httpClient = new HttpClient();

 string content = await httpClient
 .GetStringAsync(“http://www.microsoft.com”)
 .ConfigureAwait(false);

 Objective 1.1: Implement multithreading and asynchronous processing Chapter 1 21

 using (FileStream sourceStream = new FileStream(“temp.html”,
 FileMode.Create, FileAccess.Write, FileShare.None,
 4096, useAsync: true))
 {
 byte[] encodedText = Encoding.Unicode.GetBytes(content);
 await sourceStream.WriteAsync(encodedText, 0, encodedText.Length)
 .ConfigureAwait(false);
 };
}

Both awaits use the ConfigureAwait(false) method because if the first method is already
finished before the awaiter checks, the code still runs on the UI thread.

When creating async methods, it’s important to choose a return type of Task or Task<T>.
Avoid the void return type. A void returning async method is effectively a fire-and-forget
method. You can never inspect the return type, and you can’t see whether any exceptions were
thrown. You should use async void methods only when dealing with asynchronous events.

The use of the new async/await keywords makes it much easier to write asynchronous
code. In today’s world with multiple cores and requirements for responsiveness and scal-
ability, it’s important to look for opportunities to use these new keywords to improve your
applications.

EXAM TIP

When using async and await keep in mind that you should never have a method marked
async without any await statements. You should also avoid returning void from an async
method except when it’s an event handler.

Using Parallel Language Integrated Query (PLINQ)
Language-Integrated Query (LINQ) is a popular addition to the C# language. You can use it to
perform queries over all kinds of data.

Parallel Language-Integrated Query (PLINQ) can be used on objects to potentially turn a
sequential query into a parallel one.

Extension methods for using PLINQ are defined in the System.Linq.ParallelEnumerable
class. Parallel versions of LINQ operators, such as Where, Select, SelectMany, GroupBy, Join,
OrderBy, Skip, and Take, can be used.

Listing 1-22 shows how you can convert a query to a parallel query.

 22 Chapter 1 Manage program flow

LISTING 1-22 Using AsParallel

var numbers = Enumerable.Range(0, 100000000);
var parallelResult = numbers.AsParallel()
 .Where(i => i % 2 == 0)
 .ToArray();

The runtime determines whether it makes sense to turn your query into a parallel one.
When doing this, it generates Task objects and starts executing them. If you want to force
PLINQ into a parallel query, you can use the WithExecutionMode method and specify that it
should always execute the query in parallel.

You can also limit the amount of parallelism that is used with the WithDegreeOfParallel-
ism method. You pass that method an integer that represents the number of processors that
you want to use. Normally, PLINQ uses all processors (up to 64), but you can limit it with this
method if you want.

One thing to keep in mind is that parallel processing does not guarantee any particular
order. Listing 1-23 shows what can happen.

LISTING 1-23 Unordered parallel query

using System;
using System.Linq;

namespace Chapter1
{
 public static class Program
 {
 public static void Main()
 {
 var numbers = Enumerable.Range(0, 10);
 var parallelResult = numbers.AsParallel()
 .Where(i => i % 2 == 0)
 .ToArray();

 foreach (int i in parallelResult)
 Console.WriteLine(i);
 }
 }
}

// Displays
// 2
// 0
// 4
// 6
// 8

As you can see, the returned results from this query are in no particular order. The results
of this code vary depending on the amount of CPUs that are available. If you want to ensure
that the results are ordered, you can add the AsOrdered operator. Your query is still processed
in parallel, but the results are buffered and sorted. Listing 1-24 shows how this works.

 Objective 1.1: Implement multithreading and asynchronous processing Chapter 1 23

LISTING 1-24 Ordered parallel query

using System;
using System.Linq;

namespace Chapter1
{
 public static class Program
 {
 public static void Main()
 {
 var numbers = Enumerable.Range(0, 10);
 var parallelResult = numbers.AsParallel().AsOrdered()
 .Where(i => i % 2 == 0)
 .ToArray();

 foreach (int i in parallelResult)
 Console.WriteLine(i);
 }
 }
}

// Displays
// 0
// 2
// 4
// 6
// 8

If you have a complex query that can benefit from parallel processing but also has some
parts that should be done sequentially, you can use the AsSequential to stop your query from
being processed in parallel.

One scenario where this is required is to preserve the ordering of your query. Listing 1-25
shows how you can use the AsSequential operator to make sure that the Take method doesn’t
mess up your order.

LISTING 1-25 Making a parallel query sequential

var numbers = Enumerable.Range(0, 20);

var parallelResult = numbers.AsParallel().AsOrdered()
 .Where(i => i % 2 == 0).AsSequential();

foreach (int i in parallelResult.Take(5))
 Console.WriteLine(i);

// Displays
// 0
// 2
// 4
// 6
// 8

 24 Chapter 1 Manage program flow

When using PLINQ, you can use the ForAll operator to iterate over a collection when the
iteration can also be done in a parallel way. Listing 1-26 shows how to do this.

LISTING 1-26 Using ForAll

var numbers = Enumerable.Range(0, 20);

var parallelResult = numbers.AsParallel()
 .Where(i => i % 2 == 0);

parallelResult.ForAll(e => Console.WriteLine(e));

In contrast to foreach, ForAll does not need all results before it starts executing. In this
example, ForAll does, however, remove any sort order that is specified.

Of course, it can happen that some of the operations in your parallel query throw an
exception. The .NET Framework handles this by aggregating all exceptions into one Aggrega-
teException. This exception exposes a list of all exceptions that have happened during parallel
execution. Listing 1-27 shows how you can handle this.

LISTING 1-27 Catching AggregateException

using System;
using System.Linq;

namespace Chapter1
{
 public static class Program
 {
 public static void Main()

 {
 var numbers = Enumerable.Range(0, 20);

 try
 {

 var parallelResult = numbers.AsParallel()
 .Where(i => IsEven(i));

 parallelResult.ForAll(e => Console.WriteLine(e));
 }
 catch (AggregateException e)
 {
 Console.WriteLine(“There where {0} exceptions”,
 e.InnerExceptions.Count);
 }
 }

 public static bool IsEven(int i)
 {
 if (i % 10 == 0) throw new ArgumentException(“i”);

 return i % 2 == 0;

 Objective 1.1: Implement multithreading and asynchronous processing Chapter 1 25

 }
 }
}

// Displays
// 4
// 6
// 8
// 2
// 12
// 14
// 16
// 18
// There where 2 exceptions

As you can see, two exceptions were thrown while processing the data. You can inspect
those exceptions by looping through the InnerExceptions property.

Using concurrent collections
When working in a multithreaded environment, you need to make sure that you are not ma-
nipulating shared data at the same time without synchronizing access.

The .NET Framework offers some collection classes that are created specifically for use in
concurrent environments, which is what you have when you’re using multithreading. These
collections are thread-safe, which means that they internally use synchronization to make sure
that they can be accessed by multiple threads at the same time.

Those collections are the following:

■■ BlockingCollection<T>

■■ ConcurrentBag<T>

■■ ConcurrentDictionary<TKey,T>

■■ ConcurrentQueue<T>

■■ ConcurrentStack<T>

BlockingCollection<T>
This collection is thread-safe for adding and removing data. Removing an item from the col-
lection can be blocked until data becomes available. Adding data is fast, but you can set a
maximum upper limit. If that limit is reached, adding an item blocks the calling thread until
there is room.

BlockingCollection is in reality a wrapper around other collection types. If you don’t give it
any specific instructions, it uses the ConcurrentQueue by default.

A regular collection blows up when being used in a multithreaded scenario because an
item might be removed by one thread while the other thread is trying to read it.

Listing 1-28 shows an example of using a BlockingCollection. One Task listens for new items
being added to the collection. It blocks if there are no items available. The other Task adds
items to the collection.

 26 Chapter 1 Manage program flow

LISTING 1-28 Using BlockingCollection<T>

using System;
using System.Collections.Concurrent;
using System.Threading.Tasks;

namespace Chapter1
{
 public static class Program
 {
 public static void Main()
 {
 BlockingCollection<string> col = new BlockingCollection<string>();
 Task read = Task.Run(() =>
 {
 while (true)
 {
 Console.WriteLine(col.Take());
 }
 });

 Task write = Task.Run(() =>
 {
 while (true)
 {
 string s = Console.ReadLine();
 if (string.IsNullOrWhiteSpace(s)) break;
 col.Add(s);
 }
 });

 write.Wait();
 }
 }
}

The program terminates when the user doesn’t enter any data. Until that, every string
entered is added by the write Task and removed by the read Task.

You can use the CompleteAdding method to signal to the BlockingCollection that no more
items will be added. If other threads are waiting for new items, they won’t be blocked any-
more.

You can even remove the while(true) statements from Listing 1-28. By using the GetCon-
sumingEnumerable method, you get an IEnumerable that blocks until it finds a new item. That
way, you can use a foreach with your BlockingCollection to enumerate it (see Listing 1-29).

LISTING 1-29 Using GetConsumingEnumerable on a BlockingCollection

Task read = Task.Run(() =>
 {

 foreach (string v in col.GetConsumingEnumerable())
 Console.WriteLine(v);
 });

 Objective 1.1: Implement multithreading and asynchronous processing Chapter 1 27

MORE INFO IENUMERABLE

For more information about using IEnumerable, see Chapter 2.

ConcurrentBag
A ConcurrentBag is just a bag of items. It enables duplicates and it has no particular order.
Important methods are Add, TryTake, and TryPeek.

Listing 1-30 shows how to work with the ConcurrentBag.

LISTING 1-30 Using a ConcurrentBag

ConcurrentBag<int> bag = new ConcurrentBag<int>();

bag.Add(42);
bag.Add(21);

int result;
if (bag.TryTake(out result))
 Console.WriteLine(result);

if (bag.TryPeek(out result))
 Console.WriteLine(“There is a next item: {0}”, result);

One thing to keep in mind is that the TryPeek method is not very useful in a multithreaded
environment. It could be that another thread removes the item before you can access it.

ConcurrentBag also implements IEnumerable<T>, so you can iterate over it. This operation
is made thread-safe by making a snapshot of the collection when you start iterating it, so
items added to the collection after you started iterating it won’t be visible. Listing 1-31 shows
this in practice.

LISTING 1-31 Enumerating a ConcurrentBag

ConcurrentBag<int> bag = new ConcurrentBag<int>();
Task.Run(() =>
{
 bag.Add(42);
 Thread.Sleep(1000);
 bag.Add(21);
});
Task.Run(() =>
{
 foreach (int i in bag)
 Console.WriteLine(i);
}).Wait();

// Displays
// 42

This code only displays 42 because the other value is added after iterating over the bag
has started.

 28 Chapter 1 Manage program flow

ConcurrentStack and ConcurrentQueue
A stack is a last in, first out (LIFO) collection. A queue is a first in, first out (FIFO) collection.

ConcurrentStack has two important methods: Push and TryPop. Push is used to add an item
to the stack; TryPop tries to get an item off the stack. You can never be sure whether there are
items on the stack because multiple threads might be accessing your collection at the same
time.

You can also add and remove multiple items at once by using PushRange and TryPopRange.
When you enumerate the collection, a snapshot is taken.

Listing 1-32 shows how these methods work.

LISTING 1-32 Using a ConcurrentStack

ConcurrentStack<int> stack = new ConcurrentStack<int>();

stack.Push(42);

int result;
if (stack.TryPop(out result))
 Console.WriteLine(“Popped: {0}”, result);

stack.PushRange(new int[] { 1, 2, 3 });

int[] values = new int[2];
stack.TryPopRange(values);

foreach (int i in values)
 Console.WriteLine(i);

// Popped: 42
// 3
// 2

ConcurrentQueue offers the methods Enqueue and TryDequeue to add and remove items
from the collection. It also has a TryPeek method and it implements IEnumerable by making a
snapshot of the data. Listing 1-33 shows how to use a ConcurrentQueue.

LISTING 1-33 Using a ConcurrentQueue.

ConcurrentQueue<int> queue = new ConcurrentQueue<int>();
queue.Enqueue(42);

int result;
if (queue.TryDequeue(out result))
 Console.WriteLine(“Dequeued: {0}”, result);

// Dequeued: 42

 Objective 1.1: Implement multithreading and asynchronous processing Chapter 1 29

ConcurrentDictionary
A ConcurrentDictionary stores key and value pairs in a thread-safe manner. You can use meth-
ods to add and remove items, and to update items in place if they exist.

Listing 1-34 shows the methods that you can use on a ConcurrentDictionary.

LISTING 1-34 Using a ConcurrentDictionary

var dict = new ConcurrentDictionary<string, int>();
if (dict.TryAdd(“k1”, 42))
{
 Console.WriteLine(“Added”);
}

if (dict.TryUpdate(“k1”, 21, 42))
{
 Console.WriteLine(“42 updated to 21”);
}

dict[“k1”] = 42; // Overwrite unconditionally

int r1 = dict.AddOrUpdate(“k1”, 3, (s, i) => i * 2);
int r2 = dict.GetOrAdd(“k2”, 3);

When working with a ConcurrentDictionary you have methods that can atomically add,
get, and update items. An atomic operation means that it will be started and finished as a
single step without other threads interfering. TryUpdate checks to see whether the current
value is equal to the existing value before updating it. AddOrUpdate makes sure an item is
added if it’s not there, and updated to a new value if it is. GetOrAdd gets the current value of
an item if it’s available; if not, it adds the new value by using a factory method.

Thought experiment
Implementing multithreading

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You need to build a new application, and you look into multithreading capabili-
ties. Your application consists of a client application that communicates with a web
server.

1. Explain how multithreading can help with your client application.

2. What is the difference between CPU and I/O bound operations?

3. Does using multithreading with the TPL offer the same advantages for your
server application?

 30 Chapter 1 Manage program flow

Objective summary
■■ A thread can be seen as a virtualized CPU.

■■ Using multiple threads can improve responsiveness and enables you to make use of
multiple processors.

■■ The Thread class can be used if you want to create your own threads explicitly. Other-
wise, you can use the ThreadPool to queue work and let the runtime handle things.

■■ A Task object encapsulates a job that needs to be executed. Tasks are the recommend-
ed way to create multithreaded code.

■■ The Parallel class can be used to run code in parallel.

■■ PLINQ is an extension to LINQ to run queries in parallel.

■■ The new async and await operators can be used to write asynchronous code more
easily.

■■ Concurrent collections can be used to safely work with data in a multithreaded (con-
current access) environment.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1. You have a lot of items that need to be processed. For each item, you need to perform
a complex calculation. Which technique should you use?

A. You create a Task for each item and then wait until all tasks are finished.

B. You use Parallel.For to process all items concurrently.

C. You use async/await to process all items concurrently.

D. You add all items to a BlockingCollection and process them on a thread created by
the Thread class.

2. You are creating a complex query that doesn’t require any particular order and you
want to run it in parallel. Which method should you use?

A. AsParallel

B. AsSequential

C. AsOrdered

D. WithDegreeOfParallelism

 Objective 1.2: Manage multithreading Chapter 1 31

3. You are working on an ASP.NET application that retrieves some data from another web
server and then writes the response to the database. Should you use async/await?

A. No, both operations depend on external factors. You need to wait before they are
finished.

B. No, in a server application you don’t have to use async/await. It’s only for respon-
siveness on the client.

C. Yes, this will free your thread to serve other requests while waiting for the I/O to
complete.

D. Yes, this put your thread to sleep while waiting for I/O so that it doesn’t use any
CPU.

Objective 1.2: Manage multithreading

Although multithreading can give you a lot of advantages, it’s not easy to write a multi-
threaded application. Problems can happen when different threads access some shared data.
What should happen when both try to change something at the same time? To make this
work successfully, synchronizing resources is important.

This objective covers how to:
■■ Synchronize resources.

■■ Cancel long-running tasks.

Synchronizing resources
As you have seen, with the TPL support in .NET, it’s quite easy to create a multithreaded appli-
cation. But when you build real-world applications with multithreading, you run into prob-
lems when you want to access the same data from multiple threads simultaneously. Listing
1-35 shows an example of what can go wrong.

LISTING 1-35 Accessing shared data in a multithreaded application

using System;
using System.Threading.Tasks;

namespace Chapter1
{
 public class Program
 {
 static void Main()
 {
 int n = 0;

 var up = Task.Run(() =>
 {

 32 Chapter 1 Manage program flow

 for (int i = 0; i < 1000000; i++)
 n++;
 });

 for (int i = 0; i < 1000000; i++)
 n--;

 up.Wait();
 Console.WriteLine(n);
 }
 }
}

What would the output of Listing 1-35 be? The answer is, it depends. When you run this
application, you get a different output each time. The seemingly simple operation of incre-
menting and decrementing the variable n results in both a lookup (check the value of n) and
add or subtract 1 from n. But what if the first task reads the value and adds 1, and at the exact
same time task 2 reads the value and subtracts 1? This is what happens in this example and
that’s why you never get the expected output of 0.

This is because the operation is not atomic. It consists of both a read and a write that
happen at different moments. This is why access to the data you’re working with needs to be
synchronized, so you can reliably predict how your data is affected.

It’s important to synchronize access to shared data. One feature the C# language offers
is the lock operator, which is some syntactic sugar that the compiler translates in a call to
System.Thread.Monitor. Listing 1-36 shows the use of the lock operator to fix the previous
example.

LISTING 1-36 Using the lock keyword

using System;
using System.Threading.Tasks;

namespace Chapter1
{
 public class Program
 {
 static void Main()
 {
 int n = 0;

 object _lock = new object();

 var up = Task.Run(() =>
 {

 for (int i = 0; i < 1000000; i++)
 lock (_lock)
 n++;
 });

 for (int i = 0; i < 1000000; i++)

 Objective 1.2: Manage multithreading Chapter 1 33

 lock (_lock)
 n--;

 up.Wait();
 Console.WriteLine(n);
 }
 }
}

After this change, the program always outputs 0 because access to the variable n is now
synchronized. There is no way that one thread could change the value while the other thread
is working with it.

However, it also causes the threads to block while they are waiting for each other. This can
give performance problems and it could even lead to a deadlock, where both threads wait on
each other, causing neither to ever complete. Listing 1-37 shows an example of a deadlock.

LISTING 1-37 Creating a deadlock

using System;
using System.Threading;
using System.Threading.Tasks;

namespace Chapter1
{
 public class Program
 {
 static void Main()
 {
 object lockA = new object();
 object lockB = new object();

 var up = Task.Run(() =>
 {
 lock (lockA)
 {
 Thread.Sleep(1000);
 lock (lockB)
 {
 Console.WriteLine(“Locked A and B”);
 }
 }
 });

 lock (lockB)
 {
 lock (lockA)
 {
 Console.WriteLine(“Locked B and A”);
 }
 }
 up.Wait();
 }
 }
}

 34 Chapter 1 Manage program flow

Because both locks are taken in reverse order, a deadlock occurs. The first Task locks A and
waits for B to become free. The main thread, however, has B locked and is waiting for A to be
released.

You need to be careful to avoid deadlocks in your code. You can avoid a deadlock by mak-
ing sure that locks are requested in the same order. That way, the first thread can finish its
work, after which the second thread can continue.

The lock code is translated by the compiler into something that looks like Listing 1-38.

LISTING 1-38 Generated code from a lock statement

object gate = new object();
bool __lockTaken = false;
try
{
 Monitor.Enter(gate, ref __lockTaken);
}
finally
{
 if (__lockTaken)
 Monitor.Exit(gate);
}

You shouldn’t write this code by hand; let the compiler generate it for you. The compiler
takes care of tricky edge cases that can happen.

It’s important to use the lock statement with a reference object that is private to the class.
A public object could be used by other threads to acquire a lock without your code knowing.

It should also be a reference type because a value type would get boxed each time you
acquired a lock. In practice, this generates a completely new lock each time, losing the locking
mechanism. Fortunately, the compiler helps by raising an error when you accidentally use a
value type for the lock statement.

You should also avoid locking on the this variable because that variable could be used by
other code to create a lock, causing deadlocks.

For the same reason, you should not lock on a string. Because of string-interning (the pro-
cess in which the compiler creates one object for several strings that have the same content)
you could suddenly be asking for a lock on an object that is used in multiple places.

Volatile class
The C# compiler is pretty good at optimizing code. The compiler can even remove complete
statements if it discovers that certain code would never be executed.

The compiler sometimes changes the order of statements in your code. Normally, this
wouldn’t be a problem in a single-threaded environment. But take a look at Listing 1-39, in
which a problem could happen in a multithreaded environment.

 Objective 1.2: Manage multithreading Chapter 1 35

LISTING 1-39 A potential problem with multithreaded code

private static int _flag = 0;
private static int _value = 0;

public static void Thread1()
{
 _value = 5;
 _flag = 1;
}

public static void Thread2()
{
 if (_flag == 1)
 Console.WriteLine(_value);
}

Normally, if you would run Thread1 and Thread2, you would expect no output or an out-
put of 5. It could be, however, that the compiler switches the two lines in Thread1. If Thread2
then executes, it could be that _flag has a value of 1 and _value has a value of 0.

You can use locking to fix this, but there is also another class in the .NET Framework that
you can use: System.Threading.Volatile. This class has a special Write and Read method, and
those methods disable the compiler optimizations so you can force the correct order in your
code. Using these methods in the correct order can be quite complex, so .NET offers the
volatile keyword that you can apply to a field. You would then change the declaration of your
field to this:

private static volatile int _flag = 0;

It’s good to be aware of the existence of the volatile keyword, but it’s something you
should use only if you really need it. Because it disables certain compiler optimizations, it
will hurt performance. It’s also not something that is supported by all .NET languages (Visual
Basic doesn’t support it), so it hinders language interoperability.

The Interlocked class
Referring to Listing 1-35, the essential problem was that the operations of adding and sub-
tracting were not atomic. This because n++ is translated into n = n + 1, both a read and a
write.

Making operations atomic is the job of the Interlocked class that can be found in the Sys-
tem.Threading namespace. When using the Interlocked.Increment and Interlocked.Decrement,
you create an atomic operation, as Listing 1-40 shows.

LISTING 1-40 Using the Interlocked class

using System;
using System.Threading;
using System.Threading.Tasks;

namespace Chapter1
{

 36 Chapter 1 Manage program flow

 public class Program
 {
 static void Main()
 {
 int n = 0;

 var up = Task.Run(() =>
 {
 for (int i = 0; i < 1000000; i++)
 Interlocked.Increment(ref n);
 });

 for (int i = 0; i < 1000000; i++)
 Interlocked.Decrement(ref n);

 up.Wait();
 Console.WriteLine(n);

 }

 }
}

Interlocked guarantees that the increment and decrement operations are executed atomi-
cally. No other thread will see any intermediate results. Of course, adding and subtracting is a
simple operation. If you have more complex operations, you would still have to use a lock.

Interlocked also supports switching values by using the Exchange method. You use this
method as follows:

if (Interlocked.Exchange(ref isInUse, 1) == 0) { }

This code retrieves the current value and immediately sets it to the new value in the same
operation. It returns the previous value before changing it.

You can also use the CompareExchange method. This method first checks to see whether
the expected value is there; if it is, it replaces it with another value.

Listing 1-41 shows what can go wrong when comparing and exchanging a value in a non-
atomic operation.

LISTING 1-41 Compare and exchange as a nonatomic operation

using System;
using System.Threading;
using System.Threading.Tasks;

public static class Program
{
 static int value = 1;

 public static void Main()
 {
 Task t1 = Task.Run(() =>
 {

 Objective 1.2: Manage multithreading Chapter 1 37

 if (value == 1)
 {
 // Removing the following line will change the output
 Thread.Sleep(1000);
 value = 2;
 }
 });

 Task t2 = Task.Run(() =>
 {
 value = 3;
 });

 Task.WaitAll(t1, t2);
 Console.WriteLine(value); // Displays 2
 }
}

Task t1 starts running and sees that value is equal to 1. At the same time, t2 changes the
value to 3 and then t1 changes it back to 2. To avoid this, you can use the following Inter-
locked statement:

Interlocked.CompareExchange(ref value, newValue, compareTo);

This makes sure that comparing the value and exchanging it for a new one is an atomic
operation. This way, no other thread can change the value between comparing and exchang-
ing it.

Canceling tasks
When working with multithreaded code such as the TPL, the Parallel class, or PLINQ, you
often have long-running tasks. The .NET Framework offers a special class that can help you in
canceling these tasks: CancellationToken.

You pass a CancellationToken to a Task, which then periodically monitors the token to see
whether cancellation is requested.

Listing 1-42 shows how you can use a CancellationToken to end a task.

LISTING 1-42 Using a CancellationToken

CancellationTokenSource cancellationTokenSource =
 new CancellationTokenSource();
CancellationToken token = cancellationTokenSource.Token;

Task task = Task.Run(() =>
{
 while(!token.IsCancellationRequested)
 {

 Console.Write(“*”);
 Thread.Sleep(1000);
 }

}, token);

 38 Chapter 1 Manage program flow

Console.WriteLine(“Press enter to stop the task”);
Console.ReadLine();
cancellationTokenSource.Cancel();

Console.WriteLine(“Press enter to end the application”);
Console.ReadLine();

The CancellationToken is used in the asynchronous Task. The CancellationTokenSource is
used to signal that the Task should cancel itself.

In this case, the operation will just end when cancellation is requested. Outside users of
the Task won’t see anything different because the Task will just have a RanToCompletion state.
If you want to signal to outside users that your task has been canceled, you can do this by
throwing an OperationCanceledException. Listing 1-43 shows how to do this.

LISTING 1-43 Throwing OperationCanceledException

using System;
using System.Threading;
using System.Threading.Tasks;

namespace Chapter1.Threads
{
 public class Program
 {
 static void Main()
 {
 CancellationTokenSource cancellationTokenSource =
 new CancellationTokenSource();
 CancellationToken token = cancellationTokenSource.Token;

 Task task = Task.Run(() =>
 {
 while (!token.IsCancellationRequested)
 {

 Console.Write(“*”);
 Thread.Sleep(1000);
 }

 token.ThrowIfCancellationRequested();

 }, token);

 try
 {

 Console.WriteLine(“Press enter to stop the task”);
 Console.ReadLine();

 cancellationTokenSource.Cancel();
 task.Wait();
 }

 Objective 1.2: Manage multithreading Chapter 1 39

 catch (AggregateException e)
 {
 Console.WriteLine(e.InnerExceptions[0].Message);
 }
 Console.WriteLine(“Press enter to end the application”);
 Console.ReadLine();

 }

 }
}
// Displays
// Press enter to stop the task
// **
// A task was canceled.
// Press enter to end the application

Instead of catching the exception, you can also add a continuation Task that executes only
when the Task is canceled. In this Task, you have access to the exception that was thrown, and
you can choose to handle it if that’s appropriate. Listing 1-44 shows what such a continuation
task would look like.

LISTING 1-44 Adding a continuation for canceled tasks

Task task = Task.Run(() =>
{
 while (!token.IsCancellationRequested)
 {
 Console.Write(“*”);
 Thread.Sleep(1000);
 }
throw new OperationCanceledException();

}, token).ContinueWith((t) =>
{
 t.Exception.Handle((e) => true);
 Console.WriteLine(“You have canceled the task”);
}, TaskContinuationOptions.OnlyOnCanceled);

If you want to cancel a Task after a certain amount of time, you can use an overload of
Task.WaitAny that takes a timeout. Listing 1-45 shows an example.

LISTING 1-45 Setting a timeout on a task

Task longRunning = Task.Run(() =>
{
 Thread.Sleep(10000);
});

int index = Task.WaitAny(new[] { longRunning }, 1000);

if (index == -1)
 Console.WriteLine(“Task timed out”);

 40 Chapter 1 Manage program flow

If the returned index is -1, the task timed out. It’s important to check for any possible errors
on the other tasks. If you don’t catch them, they will go unhandled.

Thought experiment
Implementing multithreading

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You are experiencing deadlocks in your code. It’s true that you have a lot of locking
statements and you are trying to improve your code to avoid the deadlocks.

1. How can you orchestrate your locking code to avoid deadlocks?

2. How can the Interlocked class help you?

Objective summary
■■ When accessing shared data in a multithreaded environment, you need to synchronize

access to avoid errors or corrupted data.

■■ Use the lock statement on a private object to synchronize access to a piece of code.

■■ You can use the Interlocked class to execute simple atomic operations.

■■ You can cancel tasks by using the CancellationTokenSource class with a
CancellationToken.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1. You want to synchronize access by using a lock statement. On which member do you
lock?

A. this

B. string _lock = “mylock”

C. int _lock = 42;

D. object _lock = new object();

 Objective 1.3: Implement program flow Chapter 1 41

2. You need to implement cancellation for a long running task. Which object do you pass
to the task?

A. CancellationTokenSource

B. CancellationToken

C. Boolean isCancelled variable

D. Volatile

3. You are implementing a state machine in a multithreaded class. You need to check
what the current state is and change it to the new one on each step. Which method do
you use?

A. Volatile.Write(ref currentState)

B. Interlocked.CompareExchange(ref currentState, ref newState, expectedState)

C. Interlocked.Exchange(ref currentState, newState)

D. Interlocked.Decrement(ref newState)

Objective 1.3: Implement program flow

One important aspect of managing the flow of your program is making decisions in your ap-
plication, including checking to see whether the user has entered the correct password, mak-
ing sure that a certain value is within range, or one of the myriad other possibilities. C# offers
a couple of statements that can be used when you need to make a decision.

Next to making decisions, another common task is working with collections. C# has lan-
guage features that help you work with collections by allowing you to iterate over collections
and access individual items.

This objective covers how to:
■■ Work with Boolean expressions.

■■ Make decisions in your application.

■■ Iterate across collections.

■■ Use explicit jump statements.

Working with Boolean expressions
When working with flow control statements, you will automatically work with Boolean expres-
sions. A Boolean expression should always produce true or false as the end result, but in doing
so they can be quite complex by using different operators.

 42 Chapter 1 Manage program flow

One such an operator is the equality operator (==). You use this one to test that two values
are equal to each other. Listing 1-46 shows some examples.

LISTING 1-46 Using the equality operator

int x = 42;
int y = 1;
int z = 42;

Console.WriteLine(x == y); // Displays false
Console.WriteLine(x == z); // Displays true

Table 1-1 shows the operators that you can use in C#.

TABLE 1-1 C# relational and equality operators

Operator Description Example

< Less than x < 42;

> Greater than x > 42;

<= Less than or equal to x <= 42;

>= Greater than or equal to x >= 42;

== Equal to x == 42;

!= Not equal to x != 42;

You can combine these operators by using the OR (||), AND (&&), and Exclusive OR (̂) op-
erators. These operators use both a left and a right operand, meaning the left and right part
of the expression.

The OR operator returns true when one of both operands is true. If both are false, it returns
false. If both are true, it will return true. Listing 1-47 shows an example.

LISTING 1-47 Boolean OR operator

bool x = true;
bool y = false;

bool result = x || y;
Console.WriteLine(result); // Displays True

If the runtime notices that the left part of your OR operation is true, it doesn’t have to
evaluate the right part of your expression. This is called short-circuiting. Listing 1-48 shows an
example.

 Objective 1.3: Implement program flow Chapter 1 43

LISTING 1-48 Short-circuiting the OR operator

public void OrShortCircuit()
{
 bool x = true;
 bool result = x || GetY();
}

private bool GetY()
{
 Console.WriteLine(“This method doesn’t get called”);
 return true;
}

In this case, the method GetY is never called and the line is not written to the console.

The AND operator can be used when both parts of an expression need to be true. If either
one of the operands is false, the whole expression evaluates to false. Listing 1-49 uses the
AND operator to check to see whether a value is within a certain range.

LISTING 1-49 Using the AND operator

int value = 42;
bool result = (0 < value) && (value < 100)

In this case, it’s not required to add the extra parentheses around the left and right oper-
and but it does add to the readability of your code. Just as with the OR operator, the runtime
applies short-circuiting. Next to being a performance optimization, you can also use it to your
advantage when working with null values. Listing 1-50 for example uses the AND operator
to check if the input argument is not null and to execute a method on it. If short-circuiting
wouldn’t be used in this situation, the code would throw an exception each time the input
parameter would be null.

LISTING 1-50 Short-circuiting the AND operator

public void Process(string input)
{
 bool result = (input != null) && (input.StartsWith(“v”));
 // Do something with the result
}

The Exclusive OR operator (XOR) returns true only when exactly one of the operands is
true. Table 1-2 gives the possibilities for the XOR operator.

TABLE 1-2 Possible values for the XOR operator

Left operand Right operand Result

True True False

True False True

False True True

False False False

 44 Chapter 1 Manage program flow

Because the XOR operator has to check that exactly one of the operands is true, it doesn’t
apply short-circuiting. Listing 1-51 shows how to use the XOR operator.

LISTING 1-51 Using the XOR operator

bool a = true;
bool b = false;

Console.WriteLine(a ^ a); // False
Console.WriteLine(a ^ b); // True
Console.WriteLine(b ^ b); // False

Making decisions
C# offers several flow control statements that help you determine the path that your applica-
tion follows. You can use the following statements:

■■ if

■■ while

■■ do while

■■ for

■■ foreach

■■ switch

■■ break

■■ continue

■■ goto

■■ Null-coalescing operator (??)

■■ Conditional operator (?:)

Using these constructs, you can create flexible applications that enable you to execute dif-
ferent behavior depending on the circumstances. It’s important to know these statements and
be able to choose between them.

The if statement
The most widely used flow control statement is the if statement. The if statement enables you
to execute a piece of code depending on a specific condition. The general syntax for the if
statement is this:

if (boolean-expression)
 statement to execute

The statement to execute is executed only if the boolean expression evaluates to true. List-
ing 1-52 shows an example of using if.

 Objective 1.3: Implement program flow Chapter 1 45

LISTING 1-52 Basic if statement

bool b = true;
if (b)
 Console.WriteLine(“True”);

In this case, the application outputs “True” because the condition for the if statement is
true. If b would be false, the Console.WriteLine statement would not be executed.

Of course, passing a hard-coded value to the if statement is not very useful. Normally, you
would use the if statement with a more dynamic value that can change during the execution
of the application.

When working with program flow statements, it’s important to know the concept of a
code block, which enables you to write multiple statements in a context in which only a single
statement is allowed.

A block uses curly-braces to denote its start and end:

{
 statements
}

Listing 1-52 showed an if statement that executes a single line of code only if it’s true. You
can, however, also use a code block after the if statement. All code in the block is executed
based on the result of the if statement. You can see an example of this in Listing 1-53.

LISTING 1-53 An if statement with code block

bool b = true;
if (b)
{
 Console.WriteLine(“Both these lines”);
 Console.WriteLine(“Will be executed”);
}

Variables defined within a code block are accessible only within the code block and go out
of scope at the end of the block. This means that you can declare variables inside a block, and
use them within the block but not outside the block. Listing 1-54 shows the scoping differ-
ences. Variable b is declared outside the block and can be accessed both in the outer block
and in the if statement. Variable r, however, can be accessed only in the if statement.

LISTING 1-54 Code blocks and scoping

bool b = true;
if (b)
{
 int r = 42;
 b = false;
}

// r is not accessible
// b is now false

 46 Chapter 1 Manage program flow

You can also execute some code when the if statement evaluates to false. You can do this
by using an else block. The general syntax looks like this:

if (boolean-expression)
 statement
else
 statement

Listing 1-55 shows an example of using an else statement. This outputs “False”.

LISTING 1-55 Using an else statement

bool b = false;

if (b)
{
 Console.WriteLine(“True”);
}
else
{
 Console.WriteLine(“False”);
}

You can use multiple if/else statements as shown in Listing 1-56.

LISTING 1-56 Using multiple if/else statements

bool b = false;
bool c = true;

if (b)
{
 Console.WriteLine(“b is true”);
}
else if (c)
{
 Console.WriteLine(“c is true”);
}
else
{
 Console.WriteLine(“b and c are false”);
}

You can also nest if and else statements. For readability, it’s nice to outline your code cor-
rectly. The following code is perfectly legal, but on first sight it’s hard to see what the code
really does:

if (x) if (y) F(); else G();

When outlined correctly, the code is equal to the one in Listing 1-57, which is much easier
to understand.

 Objective 1.3: Implement program flow Chapter 1 47

LISTING 1-57 A more readable nested if statement

if (x)
{
 if (y)
 {
 F();
 }
 else
 {
 G();
 }
}

The compiler optimizes your code and removes any unnecessary braces and statements.
Under normal circumstances, you should worry more about readability than about the num-
ber of lines you produce. Team members especially appreciate it when you write code that’s
not only correct but also easier to maintain.

The null-coalescing operator
The ?? operator is called the null-coalescing operator. You can use it to provide a default value
for nullable value types or for reference types.

The operator returns the left value if it’s not null; otherwise, the right operand.

Listing 1-58 shows an example of using the operator.

LISTING 1-58 The null-coalescing operator

int? x = null;
int y = x ?? -1;

In this case, the value of y is -1 because x is null.

You can also nest the null-coalescing operator, as Listing 1-59 shows.

LISTING 1-59 Nesting the null-coalescing operator

int? x = null;
int? z = null;
int y = x ??
 z ??
 -1;

Of course, you can achieve the same with an if statement but the null-coalescing operator
can shorten your code and improve its readability.

The conditional operator
The conditional operator (?:) returns one of two values depending on a Boolean expression. If
the expression is true, the first value is returned; otherwise, the second.

Listing 1-60 shows an example of how the operator can be used to simplify some code. In
this case, the if statement can be replaced with the conditional operator.

 48 Chapter 1 Manage program flow

LISTING 1-60 The conditional operator

private static int GetValue(bool p)
{
 if (p)
 return 1;
 else
 return 0;

 return p ? 1 : 0;
}

The switch statement
You can use the switch statement to simplify complex if statements. Take the example of List-
ing 1-61.

LISTING 1-61 A complex if statement

void Check(char input)
{
 if (input == ‘a’
 || input == ‘e’
 || input == ‘i’
 || input == ‘o’
 || input == ‘u’)
 {
 Console.WriteLine(“Input is a vowel”);
 }
 else
 {
 Console.WriteLine(“Input is a consonant”);
 }
}

The switch statement can be used to make this code more comprehensive. A switch state-
ment checks the value of its argument and then looks for a matching label. Listing 1-62 shows
the code from Listing 1-59 as a switch statement.

LISTING 1-62 A switch statement

void CheckWithSwitch(char input)
{
 switch (input)
 {
 case ‘a’:
 case ‘e’:
 case ‘i’:
 case ‘o’:
 case ‘u’:
 {
 Console.WriteLine(“Input is a vowel”);

 Objective 1.3: Implement program flow Chapter 1 49

 break;
 }
 case ‘y’:
 {
 Console.WriteLine(“Input is sometimes a vowel.”);
 break;
 }
 default:
 {
 Console.WriteLine(“Input is a consonant”);
 break;
 }
 }
}

A switch can use one or multiple switch-sections that can contain one or more switch-
labels. In Listing 1-62, all the vowels belong to the same switch-section. If you want, you can
also add a default label that is used when none of the other labels matches.

The end point of a switch statement should not be reachable. You need to have a state-
ment such as break or return that explicitly exits the switch statement, or you need to throw
an exception. This avoids the fall-through behavior that C++ has. This makes it possible for
switch sections to appear in any order without affecting behavior.

Instead of implicitly falling through to another label, you can use the goto statement (see
Listing 1-63).

LISTING 1-63 goto in a switch statement

int i = 1;
switch (i)
{
 case 1:
 {
 Console.WriteLine(“Case 1”);
 goto case 2;
 }
 case 2:
 {
 Console.WriteLine(“Case 2”);
 break;
 }
}

// Displays
// Case 1
// Case 2

 50 Chapter 1 Manage program flow

Iterating across collections
Another subject that has to do with the flow of your program is iterating across collections.
Collections are widely used in C#, and the language offers constructs that you can use with
them:

■■ for

■■ foreach

■■ while

■■ do while

The for loop
You can use a for loop when you need to iterate over a collection until a specific condition
is reached (for example, you have reached the end of a collection). Listing 1-64 shows an
example in which you loop through all items in an array.

LISTING 1-64 A basic for loop

int[] values = { 1, 2, 3, 4, 5, 6 };
for (int index = 0; index < values.Length; index++)
{
 Console.Write(values[index]);
}

// Displays
// 123456

As you can see, the for loop consists of three different parts:

for(initial; condition; loop)

■■ The initial part is executed before the first iteration and declares and initializes the
variables that are used in the loop.

■■ The condition is evaluated on each iteration. When the condition equals false, the loop
is exited.

■■ The loop section is run during every iteration and is normally used to change the coun-
ter that’s used to loop over the collection.

None of these parts is required. You can use for(;;) {} as a perfectly legal for loop that
would never end. You can also use multiple statements in each part of your for loop (see List-
ing 1-65).

 Objective 1.3: Implement program flow Chapter 1 51

LISTING 1-65 A for loop with multiple loop variables

int[] values = { 1, 2, 3, 4, 5, 6 };
for (int x = 0, y = values.Length - 1;
 ((x < values.Length) && (y >= 0));
 x++, y--)
{
 Console.Write(values[x]);
 Console.Write(values[y]);
}

// Displays
// 162534435261

It’s also not required to let the loop value increment or decrement with 1. For example,
you can change Listing 1-64 to increment index with 2 to only display the odd numbers, as
Listing 1-66 shows.

LISTING 1-66 A for loop with a custom increment

int[] values = { 1, 2, 3, 4, 5, 6 };
for (int index = 0; index < values.Length; index += 2)
{
 Console.Write(values[index]);
}

// Displays
// 135

Normally, the for loop ends when the condition becomes false, but you can also decide to
manually break out of the loop. You can do this by using the break or return statement when
you want to completely exit the method. Listing 1-67 shows an example of the break statement.

LISTING 1-67 A for loop with a break statement

int[] values = { 1, 2, 3, 4, 5, 6 };
for (int index = 0; index < values.Length; index++)
{
 if (values[index] == 4) break;

 Console.Write(values[index]);
}

// Displays
// 123

Next to breaking the loop completely, you can also instruct the for loop to continue to
the next item by using the continue statement. Listing 1-68 shows an example in which the
number 4 is skipped in the loop.

 52 Chapter 1 Manage program flow

LISTING 1-68 A for loop with a continue statement

int[] values = { 1, 2, 3, 4, 5, 6 };

for (int index = 0; index < values.Length; index++)
{
 if (values[index] == 4) continue;

 Console.Write(values[index]);
}

// Displays
// 12356

The while and do-while loop
Another looping construction is the while loop. A for loop is nothing more than a convenient
way to write a while loop that does the checking and incrementing of the counter. Listing 1-69
shows an example. Notice the extra parenthesis to restrict the scope of the loop variable.

LISTING 1-69 Implementing a for loop with a while statement

int[] values = { 1, 2, 3, 4, 5, 6 };

{
 int index = 0;
 while (index < values.Length)
 {
 Console.Write(values[index]);
 index++;
 }
}

As you can see, a while loop checks an expression and executes as long as this expression
is true. You should use a for loop when you know the number of iterations in advance. A while
loop can be used when you don’t know the number of iterations.

If the condition of the while loop is false, it won’t execute the code inside the loop. This
is different when using a do-while loop. A do-while loop executes at least once, even if the
expression is false. Listing 1-70 shows an example of using a do-while loop.

LISTING 1-70 do-while loop

do
{
 Console.WriteLine(“Executed once!”);
}
while (false);

Within a while or do-while loop, you can use the continue and break statements just as with
a for loop.

 Objective 1.3: Implement program flow Chapter 1 53

The foreach loop
The foreach loop is used to iterate over a collection and automatically stores the current item
in a loop variable. The foreach loop keeps track of where it is in the collection and protects
you against iterating past the end of the collection.

Listing 1-71 shows an example of how to use the foreach loop.

LISTING 1-71 foreach loop

int[] values = { 1, 2, 3, 4, 5, 6 };

foreach (int i in values)
{
 Console.Write(i);
}

// Displays 123456

As you can see, the foreach loop automatically stores the current item in a strongly typed
variable. You can use the continue and break statements to influence the way the foreach loop
works.

The loop variable cannot be modified. You can make modifications to the object that the
variable points to, but you can’t assign a new value to it. Listing 1-72 shows these differences.

LISTING 1-72 Changing items in a foreach

class Person
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
}

void CannotChangeForeachIterationVariable()
{
 var people = new List<Person>
 {
 new Person() { FirstName = “John”, LastName = “Doe”},
 new Person() { FirstName = “Jane”, LastName = “Doe”},
 };

 foreach (Person p in people)
 {
 p.LastName = “Changed”; // This is allowed
 // p = new Person(); // This gives a compile error
 }
}

You can understand this behavior when you know how foreach actually works. When the
compiler encounters a foreach statement, it generates some code on your behalf; foreach
is syntactic sugar that lets you write some code in a nice way. Listing 1-73 shows what’s
happening.

 54 Chapter 1 Manage program flow

LISTING 1-73 The compiler-generated code for a foreach loop

List<Person>.Enumerator e = people.GetEnumerator();

try
{
 Person v;
 while (e.MoveNext())
 {
 v = e.Current;
 }
}
finally
{
 System.IDisposable d = e as System.IDisposable;
 if (d != null) d.Dispose();
}

If you change the value of e.Current to something else, the iterator pattern can’t determine
what to do when e.MoveNext is called. This is why it’s not allowed to change the value of the
iteration variable in a foreach statement.

MORE INFO ENUMERATORS

For more information on how the GetEnumerator method works and how you can imple-
ment your own enumerators see Chapter 2.

Jump statements
Another type of statement that can be used to influence program flow is a jump statement.
You have already looked at two of those statements: break and continue. A jump statement
unconditionally transfers control to another location in your code.

Another jump statement that can be used to change the flow of a program is goto. The
goto statement moves control to a statement that is marked by a label. If the label can’t be
found or is not within the scope of the goto statement, a compiler error occurs.

Listing 1-74 shows an example of using goto and a label.

LISTING 1-74 goto statement with a label

int x = 3;
if (x == 3) goto customLabel;
x++;

customLabel:
Console.WriteLine(x);
// Displays 3

You cannot make a jump to a label that’s not in scope. This means you cannot transfer
control to another block of code that’s outside of your current block. The compiler also makes
sure that any finally blocks that intervene are executed.

 Objective 1.3: Implement program flow Chapter 1 55

The jump statements such as break and continue can have their uses in some situations. If
possible, however, you should try to avoid them. By refactoring your code, you can remove
them most of the time and this will improve the readability of your code.

The goto statement is even worse. It is considered a bad practice. Although C# restricts the
way the goto operator behaves, as a guideline, you should try to avoid using goto. One area
where goto is used is in generated code like the code the compiler generates when you use
the new async/await feature in C# 5.

MORE INFO JUMP STATEMENTS

For more information about jump statements, see http://msdn.microsoft.com/en-us/library/
d96yfwee.aspx.

Thought experiment
Choosing your program flow statements

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You are updating an old C#2 console application to a WPF C#5 application. The
application is used by hotels to keep track of reservations and guests coming and
leaving. You are going through the old code base to determine whether there is
code that can be easily reused. You notice a couple of things:

■■ The code uses the goto statement to manage flow.

■■ There are a lot of long if statements that map user input.

■■ The code uses the for loop extensively.

1. What is the disadvantage of using goto? How can you avoid using the goto
statement?

2. Which statement can you use to improve the long if statements?

3. What are the differences between the for and foreach statement? When should
you use which?

Objective summary
■■ Boolean expressions can use several operators: ==, !=, <, >, <=, >=, !. Those operators

can be combined together by using AND (&&), OR (||) and XOR ()̂.

■■ You can use the if-else statement to execute code depending on a specific condition.

■■ The switch statement can be used when matching a value against a couple of options.

http://msdn.microsoft.com/en-us/library/d96yfwee.aspx
http://msdn.microsoft.com/en-us/library/d96yfwee.aspx

 56 Chapter 1 Manage program flow

■■ The for loop can be used when iterating over a collection where you know the number
of iterations in advance.

■■ A while loop can be used to execute some code while a condition is true; do-while
should be used when the code should be executed at least once.

■■ foreach can be used to iterate over collections.

■■ Jump statements such as break, goto, and continue can be used to transfer control to
another line of the program.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1. You need to iterate over a collection in which you know the number of items. You need
to remove certain items from the collection. Which statement do you use?

A. switch

B. foreach

C. for

D. goto

2. You have a lot of checks in your application for null values. If a value is not null, you
want to call a method on it. You want to simplify your code. Which technique do you
use?

A. for

B. Conditional operator

C. Null-coalescing operator

D. The short-circuiting behavior of the and operator

3. You are processing some data from over the network. You use a HasNext and Read
method to retrieve the data. You need to run some code on each item. What do you
use?

A. for

B. foreach

C. while

D. do-while

 Objective 1.4: Create and implement events and callbacks Chapter 1 57

Objective 1.4: Create and implement events and
callbacks

An event can be used to provide notifications. You can subscribe to an event if you are inter-
ested in those notifications. You can also create your own events and raise them to provide
notifications when something interesting happens. The .NET Framework offers built-in types
that you can use to create events. By using delegates, lambda expressions, and anonymous
methods, you can create and use events in a comfortable way.

This objective covers how to:
■■ Understand delegates.

■■ Use lambda expressions.

■■ Create and raise events.

Understanding delegates
In C#, delegates form the basic building blocks for events. A delegate is a type that defines a
method signature. In C++, for example, you would do this with a function pointer. In C# you
can instantiate a delegate and let it point to another method. You can invoke the method
through the delegate.

Listing 1-75 shows an example of declaring a delegate and calling a method through it.

LISTING 1-75 Using a delegate

public delegate int Calculate(int x, int y);

public int Add(int x, int y) { return x + y; }
public int Multiply(int x, int y) { return x * y; }

public void UseDelegate()
{
 Calculate calc = Add;
 Console.WriteLine(calc(3, 4)); // Displays 7

 calc = Multiply;
 Console.WriteLine(calc(3, 4)); // Displays 12
}

As you can see, you use the special delegate keyword to tell the compiler that you are
creating a delegate type. Delegates can be nested in other types and they can then be used as
a nested type.

 58 Chapter 1 Manage program flow

Instantiating delegates is easy since C# 2.0 added the automatic creation of a new delegate
when a method group is assigned to a delegate type. An instantiated delegate is an object;
you can pass it around and give it as an argument to other methods.

Another feature of delegates is that you can combine them together. This is called multi-
casting. You can use the + or += operator to add another method to the invocation list of an
existing delegate instance. Listing 1-76 shows an example.

LISTING 1-76 A multicast delegate

public void MethodOne()
{
 Console.WriteLine(“MethodOne”);
}

public void MethodTwo()
{
 Console.WriteLine(“MethodTwo”);
}

public delegate void Del();

public void Multicast()
{
 Del d = MethodOne;
 d += MethodTwo;

 d();
}
// Displays
// MethodOne
// MethodTwo

You can also remove a method from an invocation list by using the decrement assignment
operator (- or -=).

All this is possible because delegates inherit from the System.MulticastDelegate class that
in turn inherits from System.Delegate. Because of this, you can use the members that are
defined in those base classes on your delegates.

For example, to find out how many methods a multicast delegate is going to call, you can
use the following code:

int invocationCount = del.GetInvocationList().GetLength(0);

When you assign a method to a delegate, the method signature does not have to match
the delegate exactly. This is called covariance and contravariance. Covariance makes it pos-
sible that a method has a return type that is more derived than that defined in the delegate.
Contravariance permits a method that has parameter types that are less derived than those in
the delegate type.

Listing 1-77 shows an example of covariance.

 Objective 1.4: Create and implement events and callbacks Chapter 1 59

LISTING 1-77 Covariance with delegates

public delegate TextWriter CovarianceDel();

public StreamWriter MethodStream() { return null; }
public StringWriter MethodString() { return null; }

CovarianceDel del;
del = MethodStream;
del = MethodString;

Because both StreamWriter and StringWriter inherit from TextWriter, you can use the Co-
varianceDel with both methods. An example of contravariance can be seen in Listing 1-78.

LISTING 1-78 Contravariance with delegates

void DoSomething(TextWriter tw) { }
public delegate void ContravarianceDel(StreamWriter tw);

ContravarianceDel del = DoSomething;

Because the method DoSomething can work with a TextWriter, it surely can also work with
a StreamWriter. Because of contravariance, you can call the delegate and pass an instance of
StreamWriter to the DoSomething method.

MORE INFO COVARIANCE AND CONTRAVARIANCE

For more information on covariance and contravariance and how they are implemented
in C#, see the excellent series of blog posts that Eric Lippert wrote at http://blogs.msdn.
com/b/ericlippert/archive/tags/covariance+and+contravariance/.

Using lambda expressions
Sometimes the whole signature of a method can be more code than the body of a method.
There are also situations in which you need to create an entire method only to use it in a
delegate.

For these cases, Microsoft added some new features to C#. In C#, 2.0 anonymous methods
were added. In C# 3.0, things became even better when lambda expressions were added.
Lambda expressions are the preferred way to go when writing new code.

Listing 1-79 shows how you would write the example in Listing 1-73 with newer lambda
syntax.

LISTING 1-79 Lambda expression to create a delegate

Calculate calc = (x, y) => x + y;
Console.WriteLine(calc(3, 4)); // Displays 7
calc = (x, y) => x * y;
Console.WriteLine(calc(3, 4)); // Displays 12

 60 Chapter 1 Manage program flow

When reading this code, you can say go or goes to for the special lambda syntax. For ex-
ample, the first lambda expression in Listing 1-79 is read as “x and y goes to adding x and y.”

The lambda function has no specific name as the methods in Listing 1-75 have. Because of
this, lambda functions are called anonymous functions. You also don’t have to specify a return
type explicitly. The compiler infers this automatically from your lambda. And in the case of
Listing 1-79, the types of the parameters x and y are also not specified explicitly.

As you can see, the syntax for writing a lambda can be compact. If a lambda has only one
parameter, you can even remove the parentheses around the parameter.

You can create lambdas that span multiple statements. You can do this by adding curly
braces around the statements that form the lambda as Listing 1-80 shows.

LISTING 1-80 Creating a lambda expression with multiple statements

Calculate calc =
 (x, y) =>
 {
 Console.WriteLine(“Adding numbers”);
 return x + y;
 };

int result = calc(3, 4);
// Displays
// Adding numbers

Sometimes declaring a delegate for an event feels a bit cumbersome. Because of this, the
.NET Framework has a couple of built-in delegate types that you can use when declaring del-
egates. For the Calculate examples, you have used the following delegate:

 public delegate int Calculate(int x, int y);

You can replace this delegate with one of the built-in types namely Func<int,int,int>. The
Func<…> types can be found in the System namespace and they represent delegates that
return a type and take 0 to 16 parameters. All those types inherit from System.MulticastDel-
egate so you can add multiple methods to the invocation list.

If you want a delegate type that doesn’t return a value, you can use the System.Action
types. They can also take 0 to 16 parameters, but they don’t return a value. Listing 1-81 shows
an example of using the Action type.

LISTING 1-81 Using the Action delegate

Action<int, int> calc = (x, y) =>
{
 Console.WriteLine(x + y);
};

calc(3, 4); // Displays 7

 Objective 1.4: Create and implement events and callbacks Chapter 1 61

Things start to become more complex when your lambda function starts referring to
variables declared outside of the lambda expression (or to the this reference). Normally, when
control leaves the scope of a variable, the variable is no longer valid. But what if a delegate
refers to a local variable and is then returned to the calling method? Now, the delegate has a
longer life than the variable. To fix this, the compiler generates code that makes the life of the
captured variable at least as long as the longest-living delegate. This is called a closure.

Using events
A popular design pattern (a reusable solution for a recurring problem) in application devel-
opment is that of publish-subscribe. You can subscribe to an event and then you are notified
when the publisher of the event raises a new event. This is used to establish loose coupling
between components in an application.

Delegates form the basis for the event system in C#. Listing 1-82 shows how a class can
expose a public delegate and raise it.

LISTING 1-82 Using an Action to expose an event

public class Pub
{
 public Action OnChange { get; set; }

 public void Raise()
 {
 if (OnChange != null)
 {
 OnChange();
 }
 }
}

public void CreateAndRaise()
{
 Pub p = new Pub();
 p.OnChange += () => Console.WriteLine(“Event raised to method 1”);
 p.OnChange += () => Console.WriteLine(“Event raised to method 2”);
 p.Raise();
}

When calling CreateAndRaise, your code creates a new instance of Pub, subscribes to the
event with two different methods and then raises the event by calling p.Raise. The Pub class is
completely unaware of any subscribers. It just raises the event.

If there would be no subscribers to an event, the OnChange property would be null. This is
why the Raise method checks to see whether OnChange is not null.

Although this system works, there are a couple of weaknesses. If you change the subscribe
line for method 2 to the following, you would effectively remove the first subscriber by using
= instead of +=:

 p.OnChange = () => Console.WriteLine(“Event raised to method 2”);

 62 Chapter 1 Manage program flow

In the example from Listing 1-82, the Pub class raises the event. However, nothing prevents
outside users of the class from raising the event. By just calling p.OnChange() every user of the
class can raise the event to all subscribers.

To overcome these weaknesses, the C# language uses the special event keyword. Listing
1-83 shows a modified example of the Pub class that uses the event syntax.

LISTING 1-83 Using the event keyword

public class Pub
{
 public event Action OnChange = delegate { };

 public void Raise()
 {
 OnChange();
 }
}

By using the event syntax, there are a couple of interesting changes. First, you are no lon-
ger using a public property but a public field. Normally, this would be a step back. However,
with the event syntax, the compiler protects your field from unwanted access.

An event cannot be directly assigned to (with the = instead of +=) operator. So you don’t
have the risk of someone removing all previous subscriptions, as with the delegate syntax.

Another change is that no outside users can raise your event. It can be raised only by code
that’s part of the class that defined the event.

Listing 1-83 also uses some special syntax to initialize the event to an empty delegate. This
way, you can remove the null check around raising the event because you can be certain that
the event is never null. Outside users of your class can’t set the event to null; only members
of your class can. As long as none of your other class members sets the event to null, you can
safely assume that it will always have a value.

There is, however, one change you still have to make to follow the coding conventions
in the .NET Framework. Instead of using the Action type for your event, you should use the
EventHandler or EventHandler<T>. EventHandler is declared as the following delegate:

public delegate void EventHandler(object sender, EventArgs e);

By default, it takes a sender object and some event arguments. The sender is by conven-
tion the object that raised the event (or null if it comes from a static method). By using
EventHandler<T>, you can specify the type of event arguments you want to use. Listing 1-84
shows an example.

 Objective 1.4: Create and implement events and callbacks Chapter 1 63

LISTING 1-84 Custom event arguments

public class MyArgs : EventArgs
{
 public MyArgs(int value)
 {
 Value = value;
 }

 public int Value { get; set; }
}

public class Pub
{
 public event EventHandler<MyArgs> OnChange = delegate { };

 public void Raise()
 {
 OnChange(this, new MyArgs(42));
 }
}

public void CreateAndRaise()
{
 Pub p = new Pub();

 p.OnChange += (sender, e)
 => Console.WriteLine(“Event raised: {0}”, e.Value);

 p.Raise();
}

The Pub class uses an EventHandler<MyArgs>, which specifies the type of the event argu-
ments. When raising this event, you are required to pass an instance of MyArgs. Subscribers to
the event can access the arguments and use it.

Although the event implementation uses a public field, you can still customize addition
and removal of subscribers. This is called a custom event accessor. Listing 1-85 shows an exam-
ple of creating a custom event accessor for an event.

 64 Chapter 1 Manage program flow

LISTING 1-85 Custom event accessor

public class Pub
{
 private event EventHandler<MyArgs> onChange = delegate { };
 public event EventHandler<MyArgs> OnChange
 {
 add
 {
 lock (onChange)
 {
 onChange += value;
 }
 }
 remove
 {
 lock (onChange)
 {
 onChange -= value;
 }
 }
 }

 public void Raise()
 {
 onChange(this, new MyArgs(42));
 }
}

A custom event accessor looks a lot like a property with a get and set accessor. Instead of
get and set you use add and remove. It’s important to put a lock around adding and removing
subscribers to make sure that the operation is thread safe.

MORE INFO USING LOCK

For more info on when and how to use locking, see the section titled "Objective 1.2: Man-
age multithreading," earlier in this chapter.

If you use the regular event syntax, the compiler generates the accessor for you. This
makes it clear that events are not delegates; instead they are a convenient wrapper around
delegates.

Delegates are executed in a sequential order. Generally, delegates are executed in the order
in which they were added, although this is not something that is specified within the Common
Language Infrastructure (CLI), so you shouldn’t depend on it.

One thing that is a direct result of the sequential order is how to handle exceptions. Listing
1-86 shows an example in which one of the event subscribers throws an error.

 Objective 1.4: Create and implement events and callbacks Chapter 1 65

LISTING 1-86 Exception when raising an event

public class Pub
{
 public event EventHandler OnChange = delegate { };
 public void Raise()
 {
 OnChange(this, EventArgs.Empty);
 }
}

public void CreateAndRaise()
{
 Pub p = new Pub();

 p.OnChange += (sender,e)
 => Console.WriteLine(“Subscriber 1 called”);

 p.OnChange += (sender, e)
 => { throw new Exception(); };

 p.OnChange += (sender,e)
 => Console.WriteLine(“Subscriber 3 called”);

 p.Raise();
}

// Displays
// Subscriber 1 called

As you can see, the first subscriber is executed successfully, the second one throws an
exception, and the third one is never called.

If this is not the behavior you want, you need to manually raise the events and handle any
exceptions that occur. You can do this by using the GetInvocationList method that is declared
on the System.Delegate base class. Listing 1-87 shows an example of retrieving the subscribers
and enumerating them manually.

 66 Chapter 1 Manage program flow

LISTING 1-87 Manually raising events with exception handling

public class Pub
{
 public event EventHandler OnChange = delegate { };
 public void Raise()
 {
 var exceptions = new List<Exception>();

 foreach (Delegate handler in OnChange.GetInvocationList())
 {
 try
 {
 handler.DynamicInvoke(this, EventArgs.Empty);
 }
 catch (Exception ex)
 {
 exceptions.Add(ex);
 }
 }

 if (exceptions.Any())
 {
 throw new AggregateException(exceptions);
 }
 }
}

public void CreateAndRaise()
{
 Pub p = new Pub();

 p.OnChange += (sender, e)
 => Console.WriteLine(“Subscriber 1 called”);

 p.OnChange += (sender, e)
 => { throw new Exception(); };

 p.OnChange += (sender, e)
 => Console.WriteLine(“Subscriber 3 called”);

 try
 {
 p.Raise();
 }
 catch (AggregateException ex)
 {
 Console.WriteLine(ex.InnerExceptions.Count);
 }
}

// Displays
// Subscriber 1 called
// Subscriber 3 called
// 1

 Objective 1.4: Create and implement events and callbacks Chapter 1 67

MORE INFO EXCEPTION HANDLING

For more information on how to work with exceptions, see the section titled "Objective 1.5:
Implement exception handling" later in this chapter.

Thought experiment
Building a loosely coupled system

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You are working on a desktop application that consists of multiple forms. Those
forms show different views of the same data and they should update in real time.
Your application is extensible, and third parties can add plug-ins that contain their
own views of the data.

1. Should you use delegates or events in this system?

2. How can this help you?

Objective summary
■■ Delegates are a type that defines a method signature and can contain a reference to a

method.

■■ Delegates can be instantiated, passed around, and invoked.

■■ Lambda expressions, also known as anonymous methods, use the => operator and
form a compact way of creating inline methods.

■■ Events are a layer of syntactic sugar on top of delegates to easily implement the
publish-subscribe pattern.

■■ Events can be raised only from the declaring class. Users of events can only remove
and add methods the invocation list.

■■ You can customize events by adding a custom event accessor and by directly using the
underlying delegate type.

 68 Chapter 1 Manage program flow

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1. You have a private method in your class and you want to make invocation of the
method possible by certain callers. What do you do?

A. Make the method public.

B. Use an event so outside users can be notified when the method is executed.

C. Use a method that returns a delegate to authorized callers.

D. Declare the private method as a lambda.

2. You have declared an event on your class, and you want outside users of your class to
raise this event. What do you do?

A. Make the event public.

B. Add a public method to your class that raises the event.

C. Use a public delegate instead of an event.

D. Use a custom event accessor to give access to outside users.

3. You are using a multicast delegate with multiple subscribers. You want to make sure
that all subscribers are notified, even if an exception is thrown. What do you do?

A. Manually raise the events by using GetInvocationList.

B. Wrap the raising of the event in a try/catch.

C. Nothing. This is the default behavior.

D. Let subscribers return true or false instead of throwing an exception.

Objective 1.5: Implement exception handling

When you build your applications, sometimes errors occur. Maybe you want to write a file to
disk, and the disk is full. You try to connect to a database, but the database server is unavail-
able or another unexpected condition exists. Instead of working with error codes, the .NET
Framework uses exceptions to signal errors. You can also use these exceptions to signal errors
that happen in your own applications and you can even create custom exception types to
signal specific errors.

It’s important to know how to work with exceptions so you can implement a well-designed
strategy for dealing with or raising errors.

 Objective 1.5: Implement exception handling Chapter 1 69

This objective covers how to:
■■ Handle exceptions.

■■ Throw exceptions.

■■ Create custom exceptions.

Handling exceptions
When an error occurs somewhere in an application, an exception is raised. Exceptions have a
couple of advantages compared with error codes. An exception is an object in itself that con-
tains data about the error that happened. It not only has a user-friendly message but it also
contains the location in which the error happened and it can even store extra data, such as an
address to a page that offers some help.

If an exception goes unhandled, it will cause the current process to terminate. Listing 1-88
shows an example of an application that throws an error and shuts down.

LISTING 1-88 Parsing an invalid number

namespace ExceptionHandling
{
 public static class Program
 {
 public static void Main()
 {
 string s = “NaN”;
 int i = int.Parse(s);
 }
 }
}
// Displays
// Unhandled Exception: System.FormatException: Input string was not in a correct format.
// at System.Number.StringToNumber(String str, NumberStyles options,
// NumberBuffer& number, NumberFormatInfo info, Boolean parseDecimal)
// at System.Number.ParseInt32(String s, NumberStyles style,
// NumberFormatInfo info)
// at System.Int32.Parse(String s)
// at ExceptionHandling.Program.Main() in c:\Users\Wouter\Documents\
// Visual Studio 2012\Projects\ExamRefProgrammingInCSharp\Chapter1\Program.cs:line 9

The int.Parse method throws an exception of type FormatException when the string is
not a valid number. Throwing an exception halts the execution of your application. Instead
of continuing to the following line, the runtime starts searching for a location in which you
handle the exception. If such a location cannot be found, the exception is unhandled and will
terminate the application.

To handle an exception, you can use a try/catch statement. Listing 1-89 shows an example
of catching the FormatException.

 70 Chapter 1 Manage program flow

LISTING 1-89 Catching a FormatException

using System;
namespace ExceptionHandling
{
 public static class Program
 {
 public static void Main()
 {
 while (true)
 {
 string s = Console.ReadLine();

 if (string.IsNullOrWhiteSpace(s)) break;

 try
 {
 int i = int.Parse(s);
 break;
 }
 catch (FormatException)
 {
 Console.WriteLine(“{0} is not a valid number. Please try again”, s);
 }
 }
 }
 }
}

You need to surround the code that can potentially throw an exception with a try state-
ment. Following the try statement, you can add several different catch blocks. How much
code you put inside each try block depends on the situation. If you have multiple statements
that can throw the same exceptions that need to be handled differently, they should be in
different try blocks.

A catch block can specify the type of the exception it wants to catch. Because all exceptions
in the .NET Framework inherit from System.Exception, you can catch every possible exception
by catching this base type. You can catch more specific exception types by adding extra catch
blocks.

The catch blocks should be specified as most-specific to least-specific because this is the
order in which the runtime will examine them. When an exception is thrown, the first match-
ing catch block will be executed. If no matching catch block can be found, the exception will
fall through. Listing 1-90 shows an example of catching two different exception types.

 Objective 1.5: Implement exception handling Chapter 1 71

If the string s is null, an ArgumentNullException will be thrown. If the string is not a num-
ber, a FormatException will be thrown. By using different catch blocks, you can handle those
exceptions each in their own way.

LISTING 1-90 Catching different exception types

try
{
 int i = int.Parse(s);
}
catch (ArgumentNullException)
{

 Console.WriteLine(“You need to enter a value”);
}
catch (FormatException)
{
 Console.WriteLine(“{0} is not a valid number. Please try again”, s);
}

In C# 1, you could also use a catch block without an exception type. This could be used
to catch exceptions that were thrown from other languages like C++ that don’t inherit from
System.Exception (in C++ you can throw exceptions of any type). Nowadays, each exception
that doesn’t inherit from System.Exception is automatically wrapped in a System.Runtime.
CompilerServices.RuntimeWrappedException. Since this exception inherits from System.
Exception, there is no need for the empty catch block anymore.

It’s important to make sure that your application is in the correct state when the catch
block finishes. This could mean that you need to revert changes that your try block made
before the exception was thrown.

Another important feature of exception handling is the ability to specify that certain code
should always run in case of an exception. This can be done by using the finally block together
with a try or try/catch statement. The finally block will execute whether an exception happens
or not. Listing 1-91 shows an example of a finally block.

 72 Chapter 1 Manage program flow

LISTING 1-91 Using a finally block

using System;

namespace ExceptionHandling
{
 public static class Program
 {
 public static void Main()
 {
 string s = Console.ReadLine();

 try
 {
 int i = int.Parse(s);
 }
 catch (ArgumentNullException)
 {
 Console.WriteLine(“You need to enter a value”);
 }
 catch (FormatException)

 {
 Console.WriteLine(“{0} is not a valid number. Please try again”, s);
 }
 finally
 {

 Console.WriteLine(“Program complete.”);
 }
 }
 }
}

// Displays
// a
// a is not a valid number. Please try again
// Program complete.

Of course, there are still situations in which a finally block won’t run. For example, when the
try block goes into an infinite loop, it will never exit the try block and never enter the finally
block. And in situations such as a power outage, no other code will run. The whole operating
system will just terminate.

There is one other situation that you can use to prevent a finally block from running. Of
course, this isn’t something you want to use on a regular basis, but you may have a situation
in which just shutting down the application is safer than running finally blocks.

Preventing the finally block from running can be achieved by using Environment.FailFast.
This method has two different overloads, one that only takes a string and another one that
also takes an exception. When this method is called, the message (and optionally the excep-
tion) are written to the Windows application event log, and the application is terminated.
Listing 1-92 shows how you can use this method. When you run this application without a
debugger attached, a message is written to the event log.

 Objective 1.5: Implement exception handling Chapter 1 73

LISTING 1-92 Using Environment.FailFast

using System;
namespace ExceptionHandling
{
 public static class Program
 {
 public static void Main()
 {
 string s = Console.ReadLine();

 try
 {
 int i = int.Parse(s);
 if (i == 42) Environment.FailFast(“Special number entered”);
 }
 finally
 {
 Console.WriteLine(“Program complete.”);
 }
 }
 }
}

The line Program Complete won’t be executed if 42 is entered. Instead the application
shuts down immediately.

When you catch an exception, you can use a couple of properties to inspect what’s hap-
pened. Table 1-3 lists the properties of the base System.Exception class.

TABLE 1-3 System.Exception properties

Name Description

StackTrace A string that describes all the methods that are currently in execution. This gives
you a way of tracking which method threw the exception and how that method
was reached.

InnerException When a new exception is thrown because another exception happened, the two
are linked together with the InnerException property.

Message A (hopefully) human friendly message that describes the exception.

HelpLink A Uniform Resource Name (URN) or uniform resource locater (URL) that points to
a help file.

HResult A 32-bit value that describes the severity of an error, the area in which the excep-
tion happened and a unique number for the exception This value is used only
when crossing managed and native boundaries.

Source The name of the application that caused the error. If the Source is not explicitly set,
the name of the assembly is used.

TargetSite Contains the name of the method that caused the exception. If this data is not
available, the property will be null.

Data A dictionary of key/value pairs that you can use to store extra data for your excep-
tion. This data can be read by other catch blocks and can be used to control the
processing of the exception.

 74 Chapter 1 Manage program flow

When using a catch block, you can use both an exception type and a named identifier. This
way, you effectively create a variable that will hold the exception for you so you can inspect
its properties. Listing 1-93 shows how to do this.

LISTING 1-93 Inspecting an exception

using System;

namespace ExceptionHandling
{
 public static class Program
 {
 public static void Main()
 {
 try
 {
 int i = ReadAndParse();
 Console.WriteLine(“Parsed: {0}”, i);
 }
 catch (FormatException e)
 {
 Console.WriteLine(“Message: {0}”,e.Message);
 Console.WriteLine(“StackTrace: {0}”, e.StackTrace);
 Console.WriteLine(“HelpLink: {0}”, e.HelpLink);
 Console.WriteLine(“InnerException: {0}”, e.InnerException);
 Console.WriteLine(“TargetSite: {0}”, e.TargetSite);
 Console.WriteLine(“Source: {0}”, e.Source);
 }

 }

 private static int ReadAndParse()
 {
 string s = Console.ReadLine();
 int i = int.Parse(s);
 return i;
 }
 }
}

//Displays
//Message: Input string was not in a correct format.
//StackTrace: at System.Number.StringToNumber(String str, NumberStyles options,
// NumberBuffer& number, NumberFormatInfo info, Boolean parseDecimal)
// at System.Number.ParseInt32(String s, NumberStyles style,
// NumberFormatInfo info)
// at System.Int32.Parse(String s)
// at ExceptionHandling.Program.ReadAndParse() in
// c:\Users\Wouter\Documents\Visual Studio 2012\Projects\
// ExamRefProgrammingInCSharp\Chapter1\Program.cs:line 27
// at ExceptionHandling.Program.Main() in c:\Users\Wouter\Documents\
// Visual Studio 2012\Projects\ExamRefProgrammingInCSharp\
// Chapter1\Program.cs:line 10
// HelpLink:
// InnerException:

 Objective 1.5: Implement exception handling Chapter 1 75

// TargetSite: Void StringToNumber(System.String, System.Globalization.NumberStyles
// , NumberBuffer ByRef, System.Globalization.NumberFormatInfo, Boolean)
// Source: mscorlib

It’s important to make sure that your finally block does not cause any exceptions. When
this happens, control immediately leaves the finally block and moves to the next outer try
block, if any. The original exception is lost and you can’t access it anymore.

You should only catch an exception when you can resolve the issue or when you want to
log the error. Because of this, it’s important to avoid general catch blocks at the lower layers
of your application. This way, you could accidentally swallow an important exception without
even knowing that it happened. Logging should also be done somewhere higher up in your
application. That way, you can avoid logging duplicate errors at multiple layers in your
application.

Throwing exceptions
When you want to throw an error, you first need to create a new instance of an exception.
You can then use the special throw keyword to throw the exception. After this, the runtime
will start looking for catch and finally blocks.

Listing 1-94 shows how you can throw an exception.

LISTING 1-94 Throwing an ArgumentNullException

public static string OpenAndParse(string fileName)
{
 if (string.IsNullOrWhiteSpace(fileName))
 throw new ArgumentNullException(“fileName”, “Filename is required”);

 return File.ReadAllText(fileName);
}

You should not try to reuse exception objects. Each time you throw an exception, you
should create a new one, especially when working in a multithreaded environment, the stack
trace of your exception can be changed by another thread.

When catching an exception, you can choose to rethrow the exception. You have three
ways of doing this:

■■ Use the throw keyword without an identifier.

■■ Use the throw keyword with the original exception.

■■ Use the throw keyword with a new exception.

The first option rethrows the exception without modifying the call stack. This option
should be used when you don’t want any modifications to the exception. Listing 1-95 shows
an example of using this mechanism.

 76 Chapter 1 Manage program flow

LISTING 1-95 Rethrowing an exception

try
{
 SomeOperation();
}
catch (Exception logEx)
{
 Log(logEx);
 throw; // rethrow the original exception
}

When you choose the second option, you reset the call stack to the current location in
code. So you can’t see where the exception originally came from, and it is harder to debug
the error.

Using the third option can be useful when you want to raise another exception to the
caller of your code.

Say, for example, that you are working on an order application. When a user places an or-
der, you immediately put this order in a message queue so another application can process it.

When an internal error happens in the message queue, an exception of type Message-
QueueException is raised. To users of your ordering application, this exception won’t make
any sense. They don’t know the internal workings of your module and they don’t understand
where the message queue error is coming from.

Instead, you can throw another exception, something like a custom OrderProcessingExcep-
tion, and set the InnerException to the original exception. In your OrderProcessingException
you can put extra information for the user of your code to place the error in context and help
them solve it. Listing 1-96 shows an example. The original exception is preserved, including
the stack trace, and a new exception with extra information is added.

LISTING 1-96 Throwing a new exception that points to the original one

try
{
 ProcessOrder();
}
catch (MessageQueueException ex)
{
 throw new OrderProcessingException(“Error while processing order”, ex);
}

EXAM TIP

Make sure that you don’t swallow any exception details when rethrowing an exception.
Throw a new exception that points to the original one when you want to add extra infor-
mation; otherwise, use the throw keyword without an identifier to preserve the original
exception details.

 Objective 1.5: Implement exception handling Chapter 1 77

In C# 5, a new option is added for rethrowing an exception. You can use the Exception-
DispatchInfo.Throw method, which can be found in the System.Runtime.ExceptionServices
namespace. This method can be used to throw an exception and preserve the original stack
trace. You can use this method even outside of a catch block, as shown in Listing 1-97.

LISTING 1-97 Using ExceptionDispatchInfo.Throw

ExceptionDispatchInfo possibleException = null;

try
{
 string s = Console.ReadLine();
 int.Parse(s);
}
catch (FormatException ex)
{
 possibleException = ExceptionDispatchInfo.Capture(ex);
}

if (possibleException != null)
{
 possibleException.Throw();
}

// Displays
// Unhandled Exception: System.FormatException:
// Input string was not in a correct format.
// at System.Number.StringToNumber(String str, NumberStyles options,
// NumberBuffer& number, NumberFormatInfo info, Boolean parseDecimal)
// at System.Number.ParseInt32(String s, NumberStyles style,
// NumberFormatInfo info)
// at System.Int32.Parse(String s)
// at ExceptionHandling.Program.Main() in c:\Users\Wouter\Documents\
// Visual Studio 2012\Projects\ExamRefProgrammingInCSharp\Chapter1\
// Program.cs:line 17
//--- End of stack trace from previous location where exception was thrown ---
// at System.Runtime.ExceptionServices.ExceptionDispatchInfo.Throw()
// at ExceptionHandling.Program.Main() in c:\Users\Wouter\Documents\
// Visual Studio 2012\Projects\ExamRefProgrammingInCSharp\Chapter1\
// Program.cs:line 6

When looking at the stack trace, you see this line, which shows where the original excep-
tion stack trace ends and the ExceptionDispatchInfo.Throw is used:

--- End of stack trace from previous location where exception was thrown ---

This feature can be used when you want to catch an exception in one thread and throw it
on another thread. By using the ExceptionDispatchInfo class, you can move the exception data
between threads and throw it. The .NET Framework uses this when dealing with the async/
await feature added in C# 5. An exception that’s thrown on an async thread will be captured
and rethrown on the executing thread.

 78 Chapter 1 Manage program flow

MORE INFO THREADS AND ASYNC/AWAIT

For more information on working with threads and the new async/await feature, see the
section titled "Objective 1.1: Implement multithreading and asynchronous processing"
earlier in this chapter.

You shouldn’t throw exceptions when dealing with expected situations. You know that
when users start entering information into your application, they will make mistakes. Maybe
they enter a number in the wrong format or forget to enter a required field. Raising an excep-
tion for these kinds of expected situations is not recommended.

Exception handling changes the normal expected flow of your program. This makes it
harder to read and maintain code that uses exceptions, especially when they are used in
normal situations.

Using exceptions also incurs a slight performance hit. Because the runtime has to search
all outer catch blocks until it finds a matching block, and when it doesn’t, has to look if a
debugger is attached, it takes slightly more time to handle. When a real unexpected situation
occurs that will terminate the application, this won’t be a problem. But for regular program
flow, it should be avoided. Instead you should have proper validation and not rely solely on
exceptions.

When you need to throw an exception of your own, it’s important to know which excep-
tions are already defined in the .NET Framework. Because developers will be familiar with
these exceptions, they should be used whenever possible.

Some exceptions are thrown only by the runtime. You shouldn’t use those exceptions from
your own code. Table 1-4 lists those exceptions.

TABLE 1-4 Runtime exceptions in the .NET Framework

Name Description

ArithmeticException A base class for other exceptions that occur during arith-
metic operations.

ArrayTypeMismatchException Thrown when you want to store an incompatible element
inside an array.

DivideByZeroException Thrown when you try to divide a value by zero.

IndexOutOfRangeException Thrown when you try to access an array with an index
that’s less than zero or greater than the size of the array.

InvalidCastException Thrown when you try to cast an element to an incompat-
ible type.

NullReferenceException Thrown when you try to reference an element that’s null.

OutOfMemoryException Thrown when creating a new object fails because the CLR
doesn’t have enough memory available.

OverflowException Thrown when an arithmetic operation overflows in a
checked context.

 Objective 1.5: Implement exception handling Chapter 1 79

Name Description

StackOverflowException Thrown when the execution stack is full. This can happen
in a recursive operation that doesn’t exit.

TypeInitializationException Thrown when a static constructor throws an exception
that’s goes unhandled.

You shouldn’t throw these exceptions in your own applications. Table 1-5 shows popular ex-
ceptions in the .NET Framework that you can use.

TABLE 1-5 Popular exceptions in the .NET Framework

Name Description

Exception The base class for all exceptions. Try avoiding throwing
and catching this exception because it’s too generic.

ArgumentException Throw this exception when an argument to your method
is invalid.

ArgumentNullException A specialized form of ArgumentException that you can
throw when one of your arguments is null and this isn’t
allowed.

ArgumentOutOfRangeException A specialized form of ArgumentException that you can
throw when an argument is outside the allowable range
of values.

FormatException Throw this exception when an argument does not have a
valid format.

InvalidOperationException Throw this exception when a method is called that’s in-
valid for the object’s current state.

NotImplementedException This exception is often used in generated code where a
method has not been implemented yet.

NotSupportedException Throw this exception when a method is invoked that you
don’t support.

ObjectDisposedException Throw when a user of your class tries to access methods
when Dispose has already been called.

You should avoid directly using the Exception base class both when catching and throwing
exceptions. Instead you should try to use the most specific exception available.

Creating custom exceptions
Once throwing an exception becomes necessary, it’s best to use the exceptions defined in the
.NET Framework. But there are situations in which you want to use a custom exception. This is
especially useful when developers working with your code are aware of those exceptions and
can handle them in a more specific way than the framework exceptions.

A custom exception should inherit from System.Exception. You need to provide at least a
parameterless constructor. It’s also a best practice to add a few other constructors: one that

 80 Chapter 1 Manage program flow

takes a string, one that takes both a string and an exception, and one for serialization. Listing
1-98 shows an example of a custom exception.

LISTING 1-98 Creating a custom exception

[Serializable]
public class OrderProcessingException : Exception, ISerializable
{
 public OrderProcessingException(int orderId)
 {
 OrderId = orderId;
 this.HelpLink = “http://www.mydomain.com/infoaboutexception”;
 }
 public OrderProcessingException(int orderId, string message)
 : base(message)
 {
 OrderId = orderId;
 this.HelpLink = “http://www.mydomain.com/infoaboutexception”;
 }

 public OrderProcessingException(int orderId, string message,
 Exception innerException)
 : base(message, innerException)
 {
 OrderId = orderId;
 this.HelpLink = “http://www.mydomain.com/infoaboutexception”;
 }

 protected OrderProcessingException(SerializationInfo info, StreamingContext context)
 {
 OrderId = (int)info.GetValue(“OrderId”, typeof(int));
 }

 public int OrderId { get; private set; }

 public void GetObjectData(SerializationInfo info, StreamingContext context)
 {
 info.AddValue(“OrderId”, OrderId, typeof(int));
 }
}

By convention, you should use the Exception suffix in naming all your custom exceptions.
It’s also important to add the Serializable attribute, which makes sure that your exception
can be serialized and works correctly across application domains (for example, when a web
service returns an exception).

When creating your custom exception, you can decide which extra data you want to store.
Exposing this data through properties can help users of your exception inspect what has gone
wrong.

You should never inherit from System.ApplicationException. The original idea was that all
C# runtime exceptions should inherit from System.Exception and all custom exceptions from
System.ApplicationException. However, because the .NET Framework doesn’t follow this pat-
tern, the class became useless and lost its meaning.

 Objective 1.5: Implement exception handling Chapter 1 81

Thought experiment
Planning your error strategy

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You are designing a new application and you want to implement a proper error-
handling strategy. You are discussing the topic with some colleagues, and one of
them says that you should use regular error codes to signal errors because that’s
faster and your company has used it in the past.

You are also having a discussion about when to create a custom exception and when
to use the built-in .NET Framework exceptions.

1. Explain to your colleague the advantages of Exceptions compared to error codes.

2. When should you create a custom exception?

Objective summary
■■ In the .NET Framework, you should use exceptions to report errors instead of error

codes.

■■ Exceptions are objects that contain data about the reason for the exception.

■■ You can use a try block with one or more catch blocks to handle different types of
exceptions.

■■ You can use a finally block to specify code that should always run after, whether or not
an exception occurred.

■■ You can use the throw keyword to raise an exception.

■■ You can define your own custom exceptions when you are sure that users of your code
will handle it in a different way. Otherwise, you should use the standard .NET Frame-
work exceptions.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1. You are checking the arguments of your method for illegal null values. If you encounter
a null value, which exception do you throw?

 82 Chapter 1 Manage program flow

A. ArgumentException.

B. InvalidOperationException.

C. NullReferenceException.

D. ArgumentNullException.

2. Your code catches an IOException when a file cannot be accessed. You want to give
more information to the caller of your code. What do you do?

A. Change the message of the exception and rethrow the exception.

B. Throw a new exception with extra information that has the IOException as
InnerException.

C. Throw a new exception with more detailed info.

D. Use throw to rethrow the exception and save the call stack.

3. You are creating a custom exception called LogonFailedException. Which constructors
should you at least add? (Choose all that apply.)

A. LogonFailed()

B. LogonFailed(string message)

C. LogonFailed(string message, Exception innerException)

D. LogonFailed(Exception innerException)

Chapter summary

■■ Multithreading can help you create programs that are responsive and scalable. You can
use the TPL, the Parallel class, and PLINQ for this. The new async/await keywords help
you write asynchronous code.

■■ In a multithreaded environment, it’s important to manage synchronization of shared
data. You can do this by using the lock statement.

■■ C# offers statements for making decisions—if, switch, conditional operator (?) and null-
coalescing operator (??)—iterating (for, foreach, while, do-while), and jump statements
(break, continue, goto, return and throw).

■■ Delegates are objects that point to a method and can be used to invoke the method.
Lambda expressions are a shorthand syntax for creating anonymous methods inline.

■■ Events are a layer on top of delegates that help you with creating a publish-subscribe
architecture.

■■ Exceptions are the preferred way to work with errors in the .NET Framework. You can
throw exceptions, catch them, and run code in a finally block.

 Answers Chapter 1 83

Answers

This section contains the solutions to the thought experiments and answers to the lesson
review questions in this chapter.

Objective 1.1: Thought experiment
1. Multithreading can improve the responsiveness in a client application. The UI thread can

process requests from the user while background threads execute other operations.

2. A CPU-bound operation needs a thread to execute. In a client application, it can make
sense to execute a CPU-bound operation on another thread to improve responsive-
ness. In a server application, you don’t want an extra thread for a CPU-bound op-
eration. Asynchronous I/O operations don’t require a thread while executing. Using
asynchronous I/O frees the current thread to do other work and improves scalability.

3. Using multithreading in a server environment can help you distribute operations
over multiple CPUs. This way, you can improve performance. Using the TPL to create
another thread to execute a CPU-bound operation while the originating thread has to
wait for it won’t help you with increasing performance.

Objective 1.1: Review
1. Correct answer: B

A. Incorrect: Manually creating and managing tasks is not necessary. The Parallel
class takes care of this and uses the optimal configuration options.

B. Correct: Parallel.For is ideal for executing parallel operations on a large set of
items that have to do a lot of work.

C. Incorrect: async/await does not process items concurrently. Instead it waits until
the current task has finished and then continues executing the code.

D. Incorrect: The BlockingCollection can be used to share data between multiple
threads. Using one producer and one consumer thread, however, won’t improve
scalability. The Parallel class is designed for this scenario and should be used.

2. Correct answer: A

A. Correct: AsParallel makes a sequential query parallel if the runtime thinks this will
improve performance.

B. Incorrect: AsSequential is used to make a parallel query sequential again.

C. Incorrect: AsOrdered is used to make sure that the results of a parallel query are
returned in order.

D. Incorrect: WithDegreeOfParallelism is used to specify how many threads the par-
allel query should use.

 84 Chapter 1 Manage program flow

3. Correct answer: C

A. Incorrect: Because you have to wait for external factors (the database and web
response), you should use async/await to free your thread. That way your thread
can do some other work while waiting for the external responses to come back.

B. Incorrect: Async/await can be used to improve responsiveness on the client but
it can also be used in server scenarios. Especially when waiting for an I/O-bound
operation, you can use asynchronous code to free the thread from waiting.

C. Correct: The operating system waits for the I/O request to complete and then
activates a thread that can process the response. In the meantime, the thread can
do other work.

D. Incorrect: Async/await does not put your thread to sleep in an I/O-bound situ-
ation. Instead, your thread can process other work while the operating system
monitors the status of the request. When the request finishes, a thread is used
to process the response. With a CPU-bound operation, your thread waits for the
operation to finish on another thread.

Objective 1.2: Thought experiment
1. It’s important to make sure that all locking follows the same order when locking mul-

tiple objects. As soon as you start locking dependent objects in different orders, you
start getting deadlocks.

2. The Interlocked class can help you to execute small, atomic operations without the
need for locking. When you use locking a lot for these kind of operations, you can
replace them with the Interlocked statement.

Objective 1.2: Review
1. Correct answer: D

A. Incorrect: You should never lock on this. Another part of your code may already
be using your object to execute a lock.

B. Incorrect: You shouldn’t use a string for locking. With string-interning, one object
can be used for multiple strings, so you would be locking on an object that is also
in use in other locations.

C. Incorrect: Locking on a value type will generate a compile error. The value type
will be boxed each time you lock on it, resulting in a unique lock each time.

D. Correct: A private lock of type object is the best choice.

 Answers Chapter 1 85

2. Correct answer: B

A. Incorrect: The CancellationTokenSource is used to generate a CancellationToken.
The token should be passed to the task, and the CancellationTokenSource can then
be used to request cancellation on the token.

B. Correct: A CancellationToken generated by a CancellationTokenSource should be
passed to the task.

C. Incorrect: A Boolean variable can be used to cancel a task, but it’s not the pre-
ferred way. A CancellationToken offers more flexibility and should be used.

D. Incorrect: The volatile keyword should be used to signal to the compiler that the
order of reads and writes on a field is important and that the compiler shouldn’t
change it.

3. Correct answer: B

A. Incorrect: Volatile.Write is used to signal to the compiler that writing the value to a
field should happen at that exact location.

B. Correct: CompareExchange will see whether the current state is correct and it will
then change it to the new state in one atomic operation.

C. Incorrect: Exchange only changes the value; it doesn’t check to see whether the
current state is correct.

D. Incorrect: Decrement is used to subtract one off the value in an atomic operation.

Objective 1.3: Thought experiment
1. Using the goto statement makes your code much harder to read because the appli-

cation flow jumps around. goto is mostly used in looping statements. You can then
replace goto with while or do-while.

2. The switch statement can be used to improve long if statements.

3. The for statement can be used to iterate over a collection by using an index. You can
modify the collection while iterating. You need to use the index to retrieve each item.
foreach is syntactic sugar over the iterator pattern. You don’t use an index; instead the
compiler gives you a variable that points to each iteration item.

 86 Chapter 1 Manage program flow

Objective 1.3: Review
1. Correct answer: C

A. Incorrect: switch is used as a decision statement. You map a value to certain labels
to execute specific code; it doesn’t iterate over collections.

B. Incorrect: Although the foreach statement can be used to iterate over a collection;
it doesn’t allow changes to the collection while iterating.

C. Correct: With for, you can iterate over the collection while modifying it. It’s your
own job to make sure that the index stays correct.

D. Incorrect: goto is a jump statement that should be avoided.

2. Correct answer: D

A. Incorrect: for is an iteration statement that can’t be used to check for null values.

B. Incorrect: The conditional operator can be used to shorten if statements. It’s not
useful to conditionally call a method.

C. Incorrect: The null-coalescing operator does check for null values but it’s used
to provide a default value. It’s not useful when calling a method if the value is not
null.

D. Correct: Short-circuiting enables you to see whether a value is null and call a
member on it in one and statement. If the left value is null, the right operand won’t
be executed.

3. Correct answer: C

A. Incorrect: A for statement is most useful when iterating over a collection in which
you know the number of items beforehand.

B. Incorrect: foreach can be used only on types that implement IEnumerable. It can’t
be easily used with your two custom methods.

C. Correct: You can use while (o.HasNext) { var i = o.Read(); } to process the items.
When o.HasNext returns false, you automatically end the loop.

D. Incorrect: Do-while will run the code at least once. If there are no items on the
network, the code doesn’t have to run.

Objective 1.4: Thought experiment
1. Events are a nice layer on top of delegates that make them easier and safer to use. In

this case, you should use events to make sure that other users won’t be able to clear all
subscriptions. It also makes sure that they can’t raise the event on their own. They can
only listen to changes.

 Answers Chapter 1 87

2. The advantage of using an event system in an application like this is that you can
achieve loose coupling. Your forms don’t have to know anything about each other. The
class that monitors data changes and raises the event doesn’t have to know how many
forms are listening and how they look. Third-party plug-ins can easily subscribe to the
events at runtime to be able to respond to changes without tightly coupling to the
existing system.

Objective 1.4: Review
1. Correct answer: C

A. Incorrect: Making the method public gives access to all users of your class.

B. Incorrect: This doesn’t give users of your class the ability to execute the method.

C. Correct: The method can see whether the caller is authorized and then return a
delegate to the private method that can be invoked at will.

D. Incorrect: Changing the method to a lambda doesn’t change the fact that outside
users can’t access the method.

2. Correct answer: B

A. Incorrect: The compiler restricts the use of events outside of the class where it’s
defined. They can only add and remove subscribers. Only the class itself can raise
the event.

B. Correct: The public method can be called by outside users of your class. Internally
it can raise the event.

C. Incorrect: Using a delegate does allow it to be invoked from outside the class.
However, you lose the protection that an event gives you. A public delegate can be
completely modified by outside users without any restrictions.

D. Incorrect: Canonical name (CNAME) records map an alias or nickname to the real
or canonical name that might lie outside the current zone.

3. Correct answer: A

A. Correct: You can handle each individual error and make sure that all subscribers
are called.

B. Incorrect: Wrapping the raising of the event in one try/catch will still cause the
invocation to stop at the first exception. Later subscribers won’t be notified.

C. Incorrect: By default, the invocation of subscribers stops when the first unhandled
exception happens in one of the subscribers.

D. Incorrect: Exceptions are the preferred way of dealing with errors. Returning a
value from each event still requires you to invoke them manually one by one to
check the return value.

 88 Chapter 1 Manage program flow

Objective 1.5: Thought experiment
1. Exceptions are objects, so they can store extra information that can’t be done with only

an error code. The .NET Framework also offers special support for dealing with excep-
tions. For example, you can use catch blocks to handle certain types of exceptions and
you can use a finally block to make sure that certain code will always run.

2. You should create a custom exception only if you expect developers to handle it or perform
custom logging. If a developer won’t be able to fix the specific error, it won’t make any
sense to create a more specific exception. Custom logging can happen when you throw
more detailed exceptions, so developers can differentiate between the errors that happen.

Objective 1.5: Review
1. Correct answer: D

A. Incorrect: Although the exception has to do with an argument to your method,
you should throw the more specialized ArgumentNullException.

B. Incorrect: InvalidOperationException should be used when your class is not in the
correct state to handle a request.

C. Incorrect: NullReferenceException is thrown by the runtime when you try to refer-
ence a null value.

D. Correct: ArgumentNullException is the most specialized exception that you can use
to tell which argument was null and what you expect.

2. Correct answer: B

A. Incorrect: The Message property of an exception is read-only. You can’t change it
after the exception is created.

B. Correct: The new exception can contain extra info. Setting the InnerException
makes sure that the original exception stays available.

C. Incorrect: Throwing a brand-new exception loses the original exception and the
information that it had.

D. Incorrect: Using throw without an identifier will rethrow the original exception
while maintaining the stack trace, but it won’t add any extra information.

3. Correct answers: A, B, C

A. Correct: You should always add a default empty constructor.

B. Correct: A second constructor should take a descriptive message of why the error
occurred.

C. Correct: An InnerException can be set to correlate two exceptions and show what
the original error was.

D. Incorrect: You don’t have to define a constructor that only takes an InnerException
without a message.

335

applications
debugging, 220–230

assembly management, 209–218
compiler directives, 222–226
configurations, 220–222
diagnostics, 231–244
encryption, 193–208
PDB files and symbols, 226–229
validating application input, 179–191

multithreaded, 2–31
asynchronous processing, 17–21
concurrent collections, 25–29
Parallel class, 16–17
PLINQ, 21–25
tasks, 10–16
threads, 2–10

applying attributes, 139–140
ArgumentException, 190
ArgumentNullException, 71, 186
arguments

named, 95–96
optional, 95–96
overloading, 95–96

Array class, 318
arrays, collections, 318–320
ASCII, 261
as operator, 111–112
AsParallel method, 21–22
assemblies

internal access modifiers, 118–120
management, 209–218

creating a WinMD assembly, 217–219
defining assemblies, 210–211
putting an assembly in the GAC, 214–215
signing with a strong name, 211–214
versioning assemblies, 214–216

AssemblyFileVersionAttribute, 215

Index

A
abstract base classes, 130–131
accessing data. See data access
accessing shared data, multithreaded applications,

31–32
access modifiers, 116–120

internal, 118–120
private, 117–118
protected, 118–119
public, 116

Action type, 147
adding

behaviors to body of types, 93–95
continuations to tasks, 12–13
data to body of types, 96–98

Add method, ConcurrentBag, 27
AddOrUpdate method, ConcurrentDictionary, 29
address, WCF service, 282
Advanced Encryption Standard (AES) algorithm, 195
AES (Advanced Encryption Standard) algorithm, 195
AesManaged class, 195
AggregateExceptions, 19, 24–25
AJAX (Asynchronous JavaScript and XML), 290
algorithms, encryption

.NET Framework, 195–199
symmetric and asymmetric encryption, 194–196

AllowMultiple parameter, 142
AND operator, 42
anonymous functions, 60
anonymous methods, 147
anonymous types, LINQ, 295–296
APIs (application programming interfaces), Office

automation, 112–113
app.config files, connection strings, 273
application configuration files, 215
application programming interfaces (APIs), Office

automation, 112–113

336

AssemblyInfo.cs (class library)

behaviors
adding to body of types, 93–95
base classes, 129–130

BigEndianUnicode, 261
binary serialization, 311–314
BindingFlags enumeration, 144
bindings, WCF service, 282
BlockingCollection collection, 25–26
blueprints, creating types, 98–99
body (creating types), 93–99

adding behaviors, 93–95
adding data, 96–98
blueprints, 98–99
named and optional arguments, 95–96

Boolean expressions, program flow, 41–44
boxing value types, 107–108
branch instructions, 221
breakpoints, setting in Visual Studio, 221–222
BufferedStream, 263
Build Number (assembly), 215

C
CA (Certificate Authority), 202
calling methods, 94
call stacks, 7, 205
Call Stack window, 228
canceling tasks, 37–40
CancellationToken method, 37–40
CancellationTokenSource method, 38
CAS (code access security), 204
catch blocks, 70
central processing units (CPUs), and threads, 2–3
Certificate Authority (CA), 202
certificates, digital, 202–204
chaining constructors, 99
child classes, 129
child elements, XML documents, 285
child Tasks, 13–14
ciphertext, 194
classes

AesManaged, 195
Array, 318
Console synchronization, 3
creating base classes, 128–133
CultureInfo, 186
DbConnection base, 271

AssemblyInfo.cs (class library), 140
AssemblyInfo.cs files, 215
AssemblyVersionAttribute, 215
AsSequential method, 23
asymmetric encryption, 194–196
asynchronous I/O operations, 266–269
Asynchronous JavaScript and XML (AJAX), 290
asynchronous processing, multithreaded

applications, 17–21
async keyword, 266–268
async keyword, asynchronous processing, 17–21
Atomicity property (transactions), 278
atomic operations, 29
attributes

adding metadata to an application, 139–142
AllowMultiple parameter, 142
AssemblyFileVersionAttribute, 215
AssemblyVersionAttribute, 215
ConditionalAttribute, 225
DebuggerDisplayAttribute, 226–227
Flags, enums and, 91
InternalsVisibleToAttribute, 119
OnDeserializedAttribute, 312
OnDeserializingAttribute, 312
OnSerializedAttribute, 312
OnSerializingAttribute, 312
OperationContract, 281
OptionalFieldAttribute, 312
SecurityPermission, 314
SerializableAttribute, 139
ServiceContract, 281
ThreadStatic, 7–8
Trait, 141
XmlSerializer, 309–310

authentication of users. See encryption
auto-implemented properties, 121
automation APIs, 112–113
AverageTimer32 (performance counter), 243
await keyword, 266–268
await keyword, asynchronous processing, 17–21

B
background threads, 5
base classes, 128–133

abstract, 130–131
behavior, 129–130
sealed, 130–131

337

Component Object Model (COM) integration using PIA

XmlWriter, 285–286
XPathNavigator, 285

class hierarchies, 124–137
base classes, 128–133
designing and implementing interfaces, 125–127
.NET Framework standard interfaces, 133–137

closures, 61
CLR (common language runtime) type storage, 92
code access permissions, 204–206
code access security (CAS), 204
codebase element, locating assemblies, 216
code block, if statements, 45
CodeCompileUnit, 145
CodeDOM, 145–146
Code First approach (Entity Framework), 280
collections

BlockingCollection, 25–26
ConcurrentBag, 27
ConcurrentDictionary, 29
ConcurrentQueue, 28
ConcurrentStack, 28
data access, 317–325

arrays, 318–320
choosing a collection type, 324
creating custom collections, 324–326
Dictionary, 321–322
generic versus nongeneric versions, 319
List, 319–320
queues and stacks, 323–324
sets, 322–323

FIFO (first in, first out), 28
iterating across, 50–55

for each loops, 53–54
for loop, 50–51
jump statements, 54
while and do-while loops, 52–53

LIFO (last in, first out), 28
Combine method, 259
COM (Component Object Model) integration using

PIA, 112
COM Interop classes, IUnknown interface, 137
common language runtime (CLR) type storage, 92
CompareExchange method, 36
CompareTo method, 133
compiler directives, 222–226
CompleteAdding method, 26
Component Object Model (COM) integration using

PIA, 112

DbConnectionStringBuilder, 272
DbContext, 121
Debug, 232
design principles, 99–100
Dictionary, 201, 321
Directory, 255
DirectorySecurity, 255–256
DriveInfo, 254
DSACryptoServiceProvider, 197
dynamic types

DynamicObject, 113
ExpandoObject, 113–114

EventLog, 235–237
exposing a public event, 61–62
File, 258
FileStream asynchronous methods, 19
Hashtable, 201
Interlocked synchronizing resources for multithread

applications, 35–36
IXPathNavigable, 288
List, 320
Marshal, 207
OracleConnectionStringBuilder, 272
Path, 259
PerformanceCounter, 242–245
Queue, 323
RSACryptoServiceProvider, 197
SqlConnectionStringBuilder, 272
Stopwatch, 238–241
Stream, 260–261
strings, 160–161
SymmetricAlgorithm, 197
System.Exception properties, 73–74
System.Linq.ParallelEnumerable, 21
System.MulticastDelegate, 58
Task<T>, 12
Thread, 3–9
Thread.CurrentThread, 9
ThreadLocal<T>, 8–9
TraceSource, 232
TransactionScope, 278–279
Volatile, synchronizing resources for multithreaded

applications, 34–35
WebRequest, 265
WebResponse, 265
XElement, 303
XmlDocument, 285, 287–289
XmlReader, 286–287

338

ConcurrentBag collection

ConcurrentBag collection, 27
concurrent collections, multithread applications, 25–29
ConcurrentDictionary collection, 29
ConcurrentQueue collection, 28
ConcurrentStack collection, 28
ConditionalAttribute, 140, 225
conditional operators, 47
ConfigurationManager.ConnectionStrings

property, 273
configurations, debugging applications, 220–222
ConfigureAwait method, 20–21
configuring TraceListener, 234–235
confirming type conversions, 111–112
connected data (ADO.NET), 271
connecting to databases, 271–274
connection pooling, 273–274
connection strings, 271–273
Consistency property (transactions), 278
Console class, synchronization, 3
Console.WriteLine method, 96
constraints, generic type parameter, 102
constructors, 98–100
consuming data

databases, 271–281
connecting to, 271–274
ORM (Object Relational Mapper), 279–280
parameters, 277–278
providers, 271
reading data, 274–276
transactions, 278–279
updating data, 276–277

JSON, 289–290
web services, 281–283
XML, 284–289

.NET Framework, 285
XMLDocument class, 287–289
XMLReader class, 286–287
XMLWriter, 287

consuming types, 107–114
boxing and unboxing value types, 107–108
conversions, 108–111
dynamic types, 112–114

Contains method, 200
content, XML documents, 285
context switching, 3
continuation Tasks, 12–13
ContinueWith method, 12
contracts, WCF service, 282

contravariance, 58
conversions, types, 108–111, 185–187
copying files, 259–260
covariance, 58
CPU sampling option, profiling applications, 240
CPUs (central processing units), and threads, 2–3
CreateAndRaise property, 61
Create method, 265
CreateText method, 261
creating

anonymous methods, 294
anonymous types, 295–296
attributes, 141–142
base classes, 128–133
compiler directives, 222–226
custom collections, 324–326
custom exceptions, 79–80
custom struct, 92
deadlocks, 33–34
directories, 255
extension methods, 103–104
FileStream, 260
finalizers, 152–153
generic types, 147
methods, 94
properties, 120–121
threads, 3–4
types, 89–105

body, 93–99
categories, 90
designing classes, 99–100
enums, 90–91
extension methods, 103–105
generic types, 101–103
value and reference types, 91–93

WinMD assembly, 217–219
Critical option (TraceEventType enum), 233
cryptography, 194
C# types

class hierarchies, 124–137
consuming, 107–114
creating, 89–105
enforcing encapsulation, 116–123
managing object life cycle, 150–157
manipulating strings, 158–166
reflection, 139–148

CultureInfo class, 186
CultureInfo, formatting values, 165

339

decision-making statements, program flow

custom collections, creating, 324–326
custom event accessors, 63
custom event arguments, 62
custom exceptions, 79–80
custom struct, creating, 92
cyclic references, 307

D
data

adding to body of types, 96–98
exporting to Excel, dynamic keyword, 112–113

data access
collections, 317–325

arrays, 318–320
choosing a collection type, 324
creating custom collections, 324–326
Dictionary, 321–322
generic versus nongeneric versions, 319
List, 319–320
queues and stacks, 323–324
sets, 322–323

consuming data, 270–291
databases, 271–281
JSON, 289
web services, 281–284
XML, 284–289

I/O operations, 253–269
asynchronous I/O operations, 266–269
file infrastructure, 254–260
file system, 263–264
network communication, 265–266
streams, 260–263

LINQ, 291–304
functionality, 300–304
language features, 292–295
queries, 296–299

serialization/deserialization, 307–316
binary serialization, 311–314
DataContract Serializer, 314–315
functionality, 307
JSON serializer, 315–316
XmlSerializer, 308–311

Database First approach (Entity Framework), 280
databases, 271–281

connecting to, 271–274
ORM (Object Relational Mapper), 279–280
parameters, 277–278

providers, 271
reading data, 274–276
transactions, 278–279
updating data, 276–277

data consumption. See consuming data
DataContract Serializer, 314–315
Data Encryption Standard (DES) algorithm, 194
data integrity, validating application input, 180–185
data transfer object (DTO), 307
DbConnection base class, 271
DbConnectionStringBuilder classes, 272
DbContext class, 121
deadlocks, 33–34
Debug class, 232
DebuggerDisplayAttribute, 226
debugging applications, 220–230

assembly management, 209–218
creating a WinMD assembly, 217–219
defining assemblies, 210–211
putting an assembly in the GAC, 214–215
signing with a strong name, 211–214
versioning assemblies, 214–216

compiler directives, 222–226
configurations, 220–222
diagnostics, 231–244

logging and tracing, 231–237
performance counters, 241–244
profiling applications, 238–241

encryption, 193–208
code access permissions, 204–206
digital certificates, 202–204
hashing, 199–202
.NET Framework, 195–199
securing string data, 206–208
symmetric and asymmetric encryption, 194–196

PDB files and symbols, 226–229
validating application input, 179–191

data integrity, 180–185
JSON and XML data, 189–191
methods for converting between types, 185–187
reasons for validation, 180
regular expressions, 188–189

Debugging Tools, PDBCopy, 229
debug mode default build configuration, 220
decision-making statements, program flow, 44–49

conditional operators, 47
if statement, 44–47
null-coalescing operators, 47
switch statements, 48–49

340

declarative CAS

DTO (data transfer object), 307
Durability property (transactions), 278
dynamic keyword, types, 112–114
DynamicObject class, 113

E
else blocks, 46–47
encapsulation, 116–123

access modifiers, 116–120
internal, 118–120
private, 117–118
protected, 118–119
public, 116

explicit interface implementations, 121–122
properties, 120–121

encoding standards, 261–262
encryption, 193–208

code access permissions, 204–206
digital certificates, 202–204
hashing, 199–202
.NET Framework, 195–199
securing string data, 206–208
symmetric and asymmetric encryption, 194–196

EndsWith method, 162
enforcing encapsulation, 116–123

access modifiers, 116–120
internal, 118–120
private, 117–118
protected, 118–119
public, 116

explicit interface implementations, 121–122
properties, 120–121

Enqueue method, 28, 323
Entity Framework

approaches, 280
DbContext class, 121
NuGet package, 182

entity integrity (data integrity), 181
EntityValidationErrors property, 184
enumerating a ConcurrentBag collection, 27
enumeration strings, 163
enums

creating, 90–91
TraceEventType, 233–234
TransactionScopeOption, 279

Environment.FailFast method, 72

declarative CAS, 205
declaring an array, 318–319
decoding standards, 261–262
decorator pattern, streams, 262–263
Decrement operators, 35–36
decryption, 194
DefaultTraceListener, 234
deferred execution, 300
#define directive, 223
delegates, 57–59

covariance and contravariance, 58
multicasting, 58–59
ParameterizedThreadStart, 6

deleting
directories, 255
files, 258

deployment, assemblies, 214–215
Dequeue method, 323
derived classes, 129
Descendants method, 302
DES (Data Encryption Standard) algorithm, 194
deserialization (data), 307–316
design

classes, 99–100
interfaces, 125–127
SOLID principles, 100

diagnostics, 231–244
logging and tracing, 231–237
performance counters, 241–244
profiling applications, 238–241

Dictionary class, 201, 321
Dictionary collection, data access, 321–322
digital certificates, 202–204
directories (files), 255–258
Directory class, 255
DirectoryInfo object, 255
DirectoryNotFoundException, 255
DirectorySecurity class, 255–256
directory tree, building, 256
disconnected data (ADO.NET), 271
displaying drive information, 254
Dispose method, 136, 153, 272
Document Type Definition (DTD) files, 285
domain integrity (data integrity), 181
do-while loops, iterating across collections, 52–53
DriveInfo class, 254
drives (files), 254
DSACryptoServiceProvider class, 197
DTD (Document Type Definition) files, 285

341

files

OverflowException, 187
popular, 79–80
runtime, 78–79
ThreadAbortException, 6
throwing, 75–80
UnauthorizedAccessException, 255

Exclusive OR operator, 42–44
ExecuteNonQueryAsync method, 276
ExecuteNonQuery method, 276
ExecutionContext.SuppressFlow method, 9
execution context (threads), 9
Exists method, 255
ExpandoObject class, 113–114
explicit cast operators, 302
explicit conversions, types, 109
explicit interface implementations, encapsulation,

121–122
explicit typing, 292
exporting

data to Excel, dynamic keyword, 112–113
public keys, 197

exposing public events, 61–62
expression trees, reflection, 147
Extensible Markup Language (XML)

consuming data, 284–289
.NET Framework, 285
XMLDocument class, 287–289
XMLReader class, 286–287
XMLWriter, 287

data validation, 189–191
LINQ to, 301

extension methods. LINQ, 295
extension methods, types, 103–105

F
fields, 96–97, 120–121
FIFO (first in, first out) collections, 28, 323
File class, 258
FileInfo object, 258
FileIOPermission, 205
FileNotFoundException, 216
files

app.config, connection strings, 273
application configuration, 215
AssemblyInfo.cs, 215
DTD (Document Type Definition), 285

equality operators, 42
#error directive, 224
error handling

diagnostics
performance counters, 241–244
profiling applications, 238–241

logging and tracing, 231–237
validating application input, 179–191

data integrity, 180–185
JSON and XML data, 189–191
methods for converting between types, 185–187
reasons for validation, 180
regular expressions, 188–189

Error option (TraceEventType enum), 233
errors, exception handling, 68–80

custom exceptions, 79–80
throwing exceptions, 75–80

EventHandler, 62
EventHandler<T>, 62
event ID number, trace methods, 233
event keyword, 62–63
EventLog class, 235–237
events, 57–66

custom accessors, 63
custom arguments, 62
delegates, 57–59
lambda expressions, 59–60
manually raising, 65–66
using events, 61–66

Event Viewer, 236–237
Excel, exporting data to using dynamic keyword,

112–113
ExceptionDispatchInfo.Throw method, 77–78
exception handling, 68–80

custom exceptions, 79–80
throwing exceptions, 75–80

exceptions
AggregateExceptions, 19, 24–25
ArgumentException, 190
ArgumentNullException, 71, 186
DirectoryNotFoundException, 255
FileNotFoundException, 216
FormatException, 69, 186
inspecting, 74–75
InvalidCastException, 108
MessageQueueException, 76
ObjectDisposedException, 153
OperationCanceledException, 38–39

342

FileStream class, asynchronous methods

G
GAC (global assembly cache), deploying assem-

blies, 214–215
garbage collection, 150–151
Generation 0, garbage collection, 151–152
generic collections, 319
generic type parameter,creating an interface, 126
generic types

creating, 147
support for Nullables, 101–103

get and set accessor, 121
GetConsumingEnumerable method, 26
GetData function, WeakReference, 156
GetDirectoryName method, 259
GetEnumerator method, 135, 163
GetExtensions method, 259
GetFileName method, 259
GetHashCode method, 200
GetInvocationList method, 65
GetObjectData method, 314
GetOrAdd method, 29
GetPathRoot method, 259
GetStringAsync method, 18, 267
global assembly cache (GAC), deploying assem-

blies, 214–215
globally unique identifier (GUID), 227
goto statements, 49
grouping LINQ operation, 299
GUID (globally unique identifier), 227
GZipStream, 262

h
handling errors

diagnostics
performance counters, 241–244
profiling applications, 238–241

logging and tracing, 231–237
validating application input, 179–191

data integrity, 180–185
JSON and XML data, 189–191
methods for converting between types, 185–187
reasons for validation, 180
regular expressions, 188–189

infrastructure, 254–260
directories, 255–258
drives, 254
manipulating files, 258–259
paths, 259–260

machine configuration, 215
private symbol, 229
public symbol, 229
publisher policy, 215
WinMD (Windows Metadata), 217

FileStream class, asynchronous methods, 19
FileStream, creating, 260
file system, I/O operations, 263–264
finalization, unmanaged resources, 151–156
finalizers

creating, 152–153
implementation, 154–155

finally blocks, 71–72
first in, first out (FIFO) collections, 28, 323
Flags attribute, enums and, 91
flow control statements, 44–49

conditional oeprators, 47
if statements, 44–47
null-coalescing operators, 47
switch statements, 48–49

ForAll operators, 24–25
for each loops, iterating across collections, 53–54
ForEach method, parallelism, 16–17
foreground threads, 5
foreign keys, 181
for loops, iterating across collections, 50–51
FormatException, 69, 186
formatting strings, 163–166
format, versioning assemblies, 214
For method, parallelism, 16–17
Func<...> delegates, 60
functional construction, 303
functionality

deserialization (data), 307
LINQ, 300–304

creating XML, 303
LINQ to XML, 301
querying XML, 301–302
updating XML, 303–304

reflection, 143–145
serialization (data), 307

functions, 93
Func<..> type, 147

343

I/O operations

infrastructure, files, 254–260
directories, 255–258
drives, 254
manipulating files, 258–259
paths, 259–260

inheritance
class hierarchies, 124–137

base classes, 128–133
designing and implementing interfaces, 125–127
.NET Framework standard interfaces, 133–137

Liskov substitution principle, 131
protected access modifier, 118

initialization vector (IV), 195
InnerExceptions property, 25
innocent users, 180
input (application), validation, 179–191

data integrity, 180–185
JSON and XML data, 189–191
methods for converting between types, 185–187
reasons for validation, 180
regular expressions, 188–189

input/output operations. See I/O operations
inspecting exceptions, 74–75
instantiating concrete types, interface implementa-

tion, 126
instantiating delegates, 58
Instrumentation method, profiling applications, 240
interfaces

designing and implementing, 125–127
encapsulation, 121–122
IDisposable, 153
IFormatProvider, 166–167
IFormattable, 111, 166–167
IPlugin, 143
ISerializable, 313
.NET Framework, 133–137

Interlocked class, synchronizing resources for multi-
threaded applications, 35–36

internal access modifier, 118–120
InternalsVisibleToAttribute attribute, 119
int.Parse method, 69
InvalidCastException, 108
Invoke method, parallelism, 16–17
I/O operations, 253–269

asynchronous I/O operations, 266–269
asynchronous processing, 17–21
file infrastructure, 254–260

directories, 255–258

handling exceptions, 68–80
custom exceptions, 79–80
throwing exceptions, 75–80

hashing, 199–202
Hashtable class, 201
heaps (type storage), 92, 150–151
helper classes, type conversion, 110

I
IComparable interface, 133–135
IDisposable interface, 136–137, 153
IEnumerable interface, 134–136
IEnumerator interface, 134–136
#if directive, 222
IFormatProvider interface, 166–167
IFormattable interface, 111, 166–167
if statements, 44–47
immutability, strings, 159
imperative CAS, 205
implementation

data access
collections, 317–325
consuming data, 270–291
I/O operations, 253–269
LINQ, 291–304

exception handling, 68–80
custom exceptions, 79–80
throwing exceptions, 75–80

interfaces, 125–127
program flow, 41–56

Boolean expressions, 41–44
decison-making statements, 44–49
iterating across collections, 50–55

security
assembly management, 209–218
debugging applications, 220–230
diagnostics, 231–244
encryption, 193–208
validating application input, 179–191

sets, 199–200
implicit conversions, types, 108
implicitly typed variables, LINQ, 292–293
Increment operator, 35–36
indexers, 97
IndexOf method, 162

344

IPlugin interface

var, 292–293
yield, 136

L
lambda expressions, 59–60

LINQ, 294–295
reflection, 147–148

language features, LINQ, 292–295
anonymous types, 295–296
extension methods, 295
implicitly typed variables, 292–293
lambda expressions, 294–295
object initialization syntax, 293–294

Language-Integrated Query. See LINQ
LastIndexOf method, 162
last-in, first-out (LIFO) collections, 28, 323
LIFO (last-in, first-out) collections, 28, 323
#line directive, 224
LINQ (Language-Integrated Query), 21, 104, 291–304

functionality, 300–304
creating XML, 303
LINQ to XML, 301
querying XML, 301–302
updating XML, 303–304

language features, 292–295
anonymous types, 295–296
extension methods, 295
implicitly typed variables, 292–293
lambda expressions, 294–295
object initialization syntax, 293–294

queries, 296–299
LINQPad, 300
Liskov substitution principle, 131
List class, 320
List collection, data access, 319–320
Listeners property, TraceSource classes, 233
List<T> collection type, 97
lock operators, 32–33
lock statement, synchronization, 32–34
logging strategy, 231–237
long-running tasks, CancellationToken, 37–39
loops, iterating across collections

do-while, 52–53
for each loops, 53–54
for loops, 50–51
while, 52–53

drives, 254
manipulating files, 258–259
paths, 259–260

file system, 263–264
network communication, 265–266
streams, 260–263

IPlugin interface, 143
IsDefined method, 141
ISerializable interface, 313
Isolation property (transactions), 278
is operator, 111–112
iterating across collections, 50–55

for each loops, 53–54
for loop, 50–51
jump statements, 54
while and do-while loops, 52–53

iterator pattern, 300
IUnknown interface, 137
IV (initialization vector), 195
IXPathNavigable interface, 288

J
jagged arrays, 318
JavaScript Object Notation (JSON)

consuming data, 289–290
data validation, 189–191

JavaScriptSerializer, 190
join operators, 299
JSON (JavaScript Object Notation)

consuming data, 289–290
data validation, 189–191

JSON serializer, 315–316
jump statements, iterating across collections, 54

K
key containers, storing encryption keys, 198
keys, algorithms, 194–195
keywords

async, 266–268
await, 266–268
dynamic, 112–114
sealed, 104–105
struct, 92–93

345

methods

associated with SecureString, 207
Attribute, 302
calling, 94
CancellationToken, 37–40
CancellationTokenSource, 38
Combine, 259
CompareExchange, 36
CompareTo, 133
CompleteAdding, 26
ConcurrentDictionary collections, 29–30
ConfigureAwait, 20–21
Contains, 200
ContinueWith, 12
Create, 265
CreateAndRaise, 61
CreateText, 261
creating, 94
Dequeue, 323
Descendants, 302
EndsWith, 162
Enqueue, 28, 323
Environment.FailFast, 72
ExceptionDispatchInfo.Throw, 77
ExecuteNonQuery, 276
ExecuteNonQueryAsync, 276
ExecutionContext.SuppressFlow, 9
Exists, 255
ForEach, parallelism, 16–17
For, parallelism, 16–17
functions versus, 93
GetConsumingEnumerable, 26
GetDirectoryName, 259
GetEnumerator, 135, 163
GetExtensions, 259
GetFileName, 259
GetHashCode, 200
GetInvocationList, 65
GetObjectData, 314
GetOrAdd, 29
GetPathRoot, 259
GetStringAsync, 18, 267
IndexOf, 162
int.Parse, 69
Invoke, parallelism, 16–17
IsDefined, 141
LastIndexOf, 162
MoveNext, 135, 301
MoveTo, 257

M
machine configuration files, 215
Major Version (assembly), 215
Makecert.exe tool, 202
malicious users, 180
Managed Extensibility Framework (MEF), 143
management

assemblies, 209–218
creating a WinMD assembly, 217–219
defining assemblies, 210–211
putting an assembly in the GAC, 214–215
signing with a strong name, 211–214
versioning assemblies, 214–216

compiler directives, 222–226
object life cycle, 150–157

garbage collection, 150–151
unmanaged resources, 151–156

PDB files and symbols, 226–229
program flow

events and callbacks, 57–66
exception handling, 68–80
managing multithreading, 31–41
multithread applications, 2–31

manipulating strings, 158–166
classes, 160–161
enumeration, 163
formatting, 163–166
.NET Framework, 159
searching fro strings, 162–164

manually raising events, 65–66
Marshal class, 207
MEF (Managed Extensibility Framework), 143
memory management, garbage collector. See garbage

collector
MessageQueueException, 76
metadata, reflection, 139–148

attributes, 139–142
CodeDOM, 145–146
expression trees, 147
functionality, 143–145
lambda expressions, 147–148

methods
adding behaviors to classes, 93–95
AddOrUpdate, 29
anonymous, 147
AsParallel, 21–22
AsSequential, 23

346

Minor Version (assembly)

multiple inheritance, 127
multithreaded applications, 2–31. See also parallelism

asynchronous processing, 17–21
concurrent collections, 25–29
Parallel class, 16–17
PLINQ, 21–25
synchronizing resources

Interlocked class, 35–36
Volatile class, 34–35

tasks, 10–16
threads, 2–10

Thread class, 3–9
thread pools, 9–10

N
named arguments, 95–96
namespaces

System.Threading
Parallel class, 16–17
Thread class, 3–9

ADO.NET, data access code, 271
.NET Framework

binary serialization, 311–314
built-in types, 185–186
consuming XML, 285
creating web services, 281–283
data access code, 271
database providers, 271
DataContract, 314–315
dynamic types, classes, 113–114
encryption, 195–199
Nullables, 101–102
standard interfaces, 133–137
strings, 159
TraceListeners, 234
transactions, 278–279
XmlSerializer, 308–311

.NET memory allocation method, profiling applica-
tions, 240

network communication, I/O operations, 265–266
Newtonsoft.Json, 290
nonatomic operations, 36–37
nongeneric collections, 319
NonSerialized attribute, 312
no-operation (NOP) instructions, 221
NOP (no-operation) instructions, 221

overriding, 104–105, 129
Parallel.Break, 17
Parallel.Stop, 17
parameters, 95
Parse, 110
Peek, 323
Pop, 323
Push, 28, 323
PushRange, 28
Raise, 61
Read, 35
ReadAsync, 19
returning data, 96
SignHash, 204
StartsWith, 162
static, 98
string.Concat, 107
Thread.Abort, 6
Thread.Join, 5
t.Join, 7
ToList, 301
ToString, 164
ToXmlString, 197
TryDequeue, 28
TryParse, 110
TryPeek, 27
TryPop, 28
TryPopRange, 28
TryTake, 27
TryUpdate, 29
type conversions, 185–187
VerifyHash, 204
WaitAll, 14–15
WaitAny, 15–16
WhenAll, 15
WithDegreeOfParallelism, 22
WithExecutionMode, 22
Write, 35
WriteAsync, 19, 267
XmlWriter.Create, 161

Minor Version (assembly), 215
Model First approach (Entity Framework), 280
Modules window, 227
MoveNext method, 135, 301
MoveTo method, 257
moving files, 258
multicasting delegates, 58–59
multidimensional arrays, 318

347

Performance Monitor

OracleConnectionStringBuilder class, 272
OrderBy operator, 302
ordered parallel queries, 22–23
OrderProcessingException, 76
ORM (Object Relational Mapper), 279–280
OR operators, 42
OverflowException, 187
overloading visibility, 95–96
overriding methods, 104–105, 129

P
paging LINQ operation, 299
parallel asynchronous operations, 268
Parallel.Break method, 17
Parallel class, multithread applications, 16–17
parallelism. See also multithreaded applications

ForEach method, 16–17
For method, 16–17
Invoke method, 16–17

Parallel Language-Integrated Query (PLINQ), 21–25
ParallelLoopState object, 17
parallel queries

converting queries to, 21–22
making sequential, 23
ordered, 23–24
unordered, 22

Parallel.Stop method, 17
parameterized SQL statements, 277–278
ParameterizedThreadStart delegate, 6
parameters

databases, 277–278
methods, 95

parent classes, 129
parent Tasks, attaching child Tasks to, 13–14
Parse method, 110
partial signing, assemblies, 213
Path class, 259
paths, files, 259–260
PDBCopy tool, 229
PDB (program database) files, 226–229
Peek method, 323
performance

counters, 241–244
symmetric and asymmetric encryption, 194

PerformanceCounter class, 242–245
Performance Monitor, 241

NuGet, 182
Nullables, 101–102
null-coalescing operators, 47
NumberOfItems32 (performance counter), 243
NumberOfItems64 (performance counter), 243

O
object constructors, 98–100
ObjectDisposedException, 153
object initialization syntax, LINQ, 293–294
object life cycle, management, 150–157

garbage collection, 150–151
unmanaged resources, 151–156

object-relational impedance mismatch, 279–280
Object Relational Mapper (ORM), 279–280
objects

cyclic references, 307
DirectoryInfo, 255
encapsulation. See encapsulation
FileInfo, 258
ParallelLoopState, 17
SqlCommand, 274
XmlNode, 287

Office automation APIs, 112–113
OnChange property, 61
OnDeserializedAttribute, 312
OnDeserializingAttribute, 312
OnSerializedAttribute, 312
OnSerializingAttribute, 312
OperationCanceledException, 38–39
OperationContract attribute, 281
operators

AND, 42
as, 111–112
Decrement, 35–36
equality, 42
Exclusive OR, 42–44
explicit cast, 302
Increment, 35–36
is, 111–112
OR, 42
OrderBy, 302
standard LINQ query operators, 297–299
Where, 302

optional arguments, 95–96
OptionalFieldAttribute, 312

348

Performance Wizard

creating, 120–121
enforcing encapsulation, 120–121
InnerExceptions, 25
OnChange, 61
System.Exception class, 73–74

protected access modifier, 118–119
protecting applications. See security
providers, databases, 271
public access modifier, 116
public algorithms, 194
public events. exposing, 61–62
Public Key Infrastructure (PKI), 202
public keys

exporting, 197
strong-named assemblies, 211

public symbol files, 229
publisher policy files, 215
publish-subscribe design pattern, 61–64
Push method, 28, 323
PushRange method, 28

Q
queries

converting to parallel queries, 21–22
databases, 274–276
LINQ, 296–299
LINQ (Language-Integrated Query), 21
PLINQ (Parallel Language-Integrated Query), 21–25

query syntax, 296
Queue class, 323
queues

data access collections, 323–324
FIFO (first in, first out) collections, 28

queuing work to the thread pool, 9–10

R
Raise method, 61
raising events

exceptions, 64
manually, 65–66

RanToCompletion state, 38
RateOfCountsPerSecond32 (performance counter), 243
RateOfCountsPerSecond64 (performance counter), 243
ReadAsync method, 19

Performance Wizard, 239
permissions, code access, 204–206
PIA (Primary Interop Assembly), integrating with

COM, 112
PKI (Public Key Infrastructure), 202
PLINQ (Parallel Language-Integrated Query), 21–25
pointer types, 90
pooling, connection, 273–274
Pop method, 323
popular exceptions, 79–80
#pragma warning directive, 224
preprocessor directives, 222
Primary Interop Assembly (PIA), integrating with

COM, 112
primary keys, 181
private access modifier, 117–118
private algorithms, 194
private keys, strong-named assemblies, 211
private symbol files, 229
probing section, locating assemblies, 216–217
procedural code, updating XML, 304–305
profiling applications, 238–241
profiling tools, 239
program flow

events and callbacks, 57–66
delegates, 57–59
lambda expressions, 59–60
using events, 61–66

exception handling, 68–80
custom exceptions, 79–80
throwing exceptions, 75–80

implementation, 41–56
Boolean expressions, 41–44
decison-making statements, 44–49
iterating across collections, 50–55

multithreaded applications, 2–41
asynchronous processing, 17–21
canceling tasks, 37–40
concurrent collections, 25–29
Parallel class, 16–17
PLINQ, 21–25
synchronizing resources, 31–37
tasks, 10–16
threads, 2–10

projection LINQ operation, 299
prolog, 284
properties

auto-implemented, 121
CreateandRaise, 61

349

shared data, accessing in multithreaded applications

search pattern, wildcards, 257
SecureString, 206–207
security

assembly management, 209–218
creating a WinMD assembly, 217–219
defining assemblies, 210–211
putting an assembly in the GAC, 214–215
signing with a strong name, 211–214
versioning assemblies, 214–216

debugging applications, 220–230
compiler directives, 222–226
configurations, 220–222
PDB files and symbols, 226–229

diagnostics, 231–244
logging and tracing, 231–237
performance counters, 241–244
profiling applications, 238–241

encryption, 193–208
code access permissions, 204–206
digital certificates, 202–204
hashing, 199–202
.NET Framework, 195–199
securing string data, 206–208
symmetric and asymmetric encryption, 194–196

validating application input, 179–191
data integrity, 180–185
JSON and XML data, 189–191
methods for converting between types, 185–187
reasons for validation, 180
regular expressions, 188–189

SecurityPermission, 205
SecurityPermission attribute, 314
seeking, streams, 260
sequential parallel queries, 23
SerializableAttribute attribute, 139
serialization (data), 307–316

binary serialization, 311–314
DataContract Serializer, 314–315
functionality, 307
JSON serializer, 315–316
XmlSerializer, 308–311

ServiceContract attribute, 281
set-based collections, 324
set implementation, 199–200
sets, data access collections, 322–323
SHA256Managed algorithm, 201
shared data, accessing in multithreaded

applications, 31–32

reading
attributes, 140–141
data, databases, 274–276
from a stream, 260

Read method, 35
reference types, creating, 91–93
referential integrity (data integrity), 181
reflection, 139–148

attributes, 139–142
CodeDOM, 145–146
expression trees, 147
functionality, 143–145
lambda expressions, 147–148

ReflectionPermission, 205
regex. See regular expressions
regular assemblies, 211, 211–214
regular expressions, validating application input,

188–189
release build, 221
release mode default build configuration, 220
Repository base class, 128
resource contention data method, profiling

applications, 240
resource synchronization, multithreading, 31–37

Interlocked class, 35–36
Volatile class, 34–35

Resume option (TraceEventType enum), 233
rethrowing exceptions, 75
returning a value (tasks), 12
returning data, methods, 96
Revision (assembly), 215
rights, code access permissions, 204
RSACryptoServiceProvider class, 197
runtime exceptions, 78–79
runtime, reflection, 139–148

attributes, 139–142
CodeDOM, 145–146
expression trees, 147
functionality, 143–145
lambda expressions, 147–148

S
scalable applications, 19
sealed base classes, 130–131
sealed keyword, 104–105
searching strings, 162–164

350

short-circuiting OR operators

StringWriter class, 161
strong-named assemblies, 211–214
Strong Name tool, 212
struct keyword, 92
Suspend option (TraceEventType enum), 233
switch statements, 48–49
Symbol Server, PDB files, 228
SymmetricAlgorithm class, 197
symmetric encryption, 194–196
synchronization, Console class, 3
SynchronizationContext, asynchronous code, 20
synchronizing resources, multithreading, 31–37

Interlocked class, 35–36
lock statement, 32–34
Volatile class, 34–35

synchronous code, 266
System.BitConverter helper class, 110
System.Data strong-named assembly, 212
System.Exception class, properties, 73–74
System.Linq.ParallelEnumerable class, 21
System.MulticastDelegate class, 58
System.Threading namespace

Parallel class, 16–17
Thread class, 3–9

T
Take operator, 299
TaskFactory, 14
Tasks

canceling, 37–40
setting a timeout, 39

task scheduler, 11
Tasks, multithread applications, 10–16

attaching child tasks to parent tasks, 13–14
continuation, 12–13
TaskFactory, 14
WaitAll method, 14–15
WaitAny method, 15–16
WhenAll method, 15

Task<T> class, 12
Task.WaitAll method, 14–15
Team Foundation Server (TFS), 229
TextWriteTraceListener, 234
TFS (Team Foundation Server), 229
ThreadAbortException, 6
Thread.Abort method, 6

short-circuiting OR operators, 42–43
side-by-side hosting, 215
SignHash method, 204
signing data, digital certificates, 203–204
Signing page (Visual Studio), 211
single-dimensional arrays, 318
Skip operator, 299
SOLID principles, 100
SqlCommand, 274
SqlCommand object, 274
SqlConnection, 271
SqlConnectionStringBuilder class, 272
SqlDataReader, 275
SQL injection, 277
SQL script, creating tables, 274
stacks, 92

data access collections, 323–324
garbage collection, 150–151
LIFO (last in, first out) collections, 28

standard interfaces, .NET Framework, 133–137
standard LINQ query operators, 297–299
starting tasks, 11
Start option (TraceEventType enum), 233
StartsWith method, 162
static methods, 98
Stop option (TraceEventType enum), 233
stopping a thread, 6–7
Stopwatch class, 238–241
storage

asymmetric keys, 198–199
types, 92
value types, 92, 150–151

Stream class, 260–261
StreamReader, 262
streams, 260–263

base Stream class, 260–261
decorator pattern, 262–263
encoding and decoding, 261–262

StringBuilder class, 160
string.Concat method, 107
string data, securing, 206–208
StringReader class, 161
strings, 158–166

application input, 185
classes, 160–161
enumeration, 163
formatting, 163–166
.NET Framework, 159
searching, 162–164

351

updating data, databases

consuming, 107–114
boxing and unboxing value types, 107–108
conversions, 108–111
dynamic types, 112–114

conversions, 185–187
creating in C#, 89–105

body, 93–99
categories, 90
designing classes, 99–100
enums, 90–91
extension methods, 103–105
generic types, 101–103
value and reference types, 91–93

enforcing encapsulation, 116–123
access modifiers, 116–120
explicit interface implementations, 121–122
properties, 120–121

generic, creating, 147
managing object life cycle, 150–157

garbage collection, 150–151
unmanaged resources, 151–156

manipulating strings, 158–166
classes, 160–161
enumeration, 163
formatting, 163–166
.NET Framework, 159
searching fro strings, 162–164

reflection, 139–148
attributes, 139–142
CodeDOM, 145–146
expression trees, 147
functionality, 143–145
lambda expressions, 147–148

storage, 92

U
UnauthorizedAccessException, 255
unboxing value types, 107–108
#undef directive, 224
Unicode, 261
Unicode Consortium, 261
uniform resource locator (URL), 91
UnitTestAttribute, 142
unmanaged resources, finalization, 151–156
unordered parallel queries, 22
updating data, databases, 276–277

Thread class, 3–9
Thread.CurrentThread class, 9
Thread.Join method, 5
ThreadLocal<T> class, 8–9
thread pools, 9–10
threads, 2–10

Thread class, 3–9
thread pools, 9–10

ThreadStatic attribute, 7–8
throwing exceptions, 75–80
timeout, Tasks, 39
t.Join method, 7
ToList method, 301
tools

Makecert.exe, 202
PDBCopy, 229
profiling, 239
Strong Name, 212
XML Schema Definition, 190

ToString method, 164
ToXmlString method, 197
TraceEventType enum, 233–234
TraceListeners, 233–234
TraceSource class, 232
tracing strategy, 231–237
Trait attribute, 141
TransactionScope class, 278–279
TransactionScopeOption enum, 279
transactions, databases, 278–279
transactions, data integrity, 185
Transfer option (TraceEventType enum), 233
transformation, 303
triggers, 182
try/catch statements, handling exceptions, 69–70
TryDequeue method, 28
TryParse method, 110
TryPeek method, 27
TryPop method, 28
TryPopRange method, 28
TryTake method, 27
TryUpdate method, 29
type parameters, constraints, 102
types

class hierarchies, 124–137
base classes, 128–133
designing and implementing interfaces, 125–127
.NET Framework standard interfaces, 133–137

352

updating XML, LINQ

W
WaitAny method, 15–16
#warning directive, 224
Warning option (TraceEventType enum), 233
WCF (Windows Communication Foundation), creating

services, 281–283
WeakReference, 155
WebRequest class, 265
WebResponse class, 265
web services, data storage, 281–283
WhenAll method, 15
Where operator, 302
while loops, iterating across collections, 52–53
wildcards, search patterns, 257
windows

Call Stack, 228
Modules, 227

Windows Communication Foundation (WCF)
services, 281–283

Windows Metadata (WinMD) files, 217
Windows Runtime component, 218–219
WinMD assembly, creating, 217–219
WinMD (Windows Metadata) files, 217
WinRT runtime, 217
WithDegreeOfParallelism method, 22
WithExecutionMode method, 22
wizards, Performance, 239
wrapper classes, IUnknown interface, 137
WriteAsync method, 19, 267
Write method, 35
writing from a stream, 260

X
X.509 certificates, 202
XElement class, 303
XElement constructor, 303
XmlArray attribute, 309
XmlArrayItem attribute, 309
XmlAttribute, 309
XmlDocument class, 285, 287–289
XmlElement attribute, 309

updating XML, LINQ, 303–304
URL (uniform resource locator), 91
User Account Control. See UAC
user-defined conversions, types, 109
user-defined integrity (data integrity), 181
users

authentication. See encryption
validating application input, 180

UTF7 encoding standard, 261
UTF8 encoding standard, 261
UTF32 encoding standard, 261

V
validation

application input, 179–191
data integrity, 180–185
JSON and XML data, 189–191
methods for converting between types, 185–187
reasons for validation, 180
regular expressions, 188–189

type conversions, 111–112
ValidationEventHandler, 192
value types

boxing and unboxing, 107–108
creating, 91–93
enums, 90–91
storage, 92, 150–151

var keyword, 292–293
Verbose option (TraceEventType enum), 233
VerifyHash method, 204
verifying data, digital certificates, 203–204
versioning assemblies, 214–216
Visual Studio

Performance Wizard, 239
setting breakpoints, 221–222
Signing page, 211

Visual Studio debugger, asynchronous code, 19
Volatile class, synchronizing resources for multithreaded

applications, 34–35

353

yield statements

XML (Extensible Markup Language)
consuming data, 284–289

.NET Framework, 285
XMLDocument class, 287–289
XMLReader class, 286–287
XMLWriter, 287

data validation, 189–191
LINQ to, 301

XmlIgnore attribute, 309
XmlNode objects, 287
XmlReader class, 285, 286–287
XML Schema Definition Tool, 190
XmlSerializer, 308–311
XmlWriter class, 285, 287
XmlWriter.Create method, 161
XOR (Exclusive OR) operators, 43–44
XPath, 288
XPathNavigator class, 285

Y
yield keyword, 136
yield statements, 300

About the author

WOUTER DE KORT is an independent technical coach, trainer, and devel-
oper at Seize IT. He is MCSD certified. As a software architect, he has di-
rected the development of complex web applications. He has also worked
as a technical evangelist, helping organizations stay on the cutting edge of
web development. Wouter has worked with C# and .NET since their incep-
tion; his expertise also includes Visual Studio, Team Foundation Server,
Entity Framework, Unit Testing, design patterns, ASP.NET, and JavaScript.

 Now that
you’ve
read the
book...

Was it useful?
Did it teach you what you wanted to learn?
Was there room for improvement?

Let us know at http://aka.ms/tellpress

Your feedback goes directly to the staff at Microsoft Press,
and we read every one of your responses. Thanks in advance!

Tell us what you think!

	Introduction
	Microsoft certifications
	Who should read this book
	Organization of this book
	System requirements
	Conventions and features in this book

	Preparing for the exam
	Chapter 1: Manage program flow
	Objective 1.1: Implement multithreading and asynchronous processing
	Understanding threads
	Using Tasks
	Using the Parallel class
	Using async and await
	Using Parallel Language Integrated Query (PLINQ)
	Using concurrent collections
	Objective summary
	Objective review

	Objective 1.2: Manage multithreading
	Synchronizing resources
	Canceling tasks
	Objective summary
	Objective review

	Objective 1.3: Implement program flow
	Working with Boolean expressions
	Making decisions
	Iterating across collections
	Objective summary
	Objective review

	Objective 1.4: Create and implement events and callbacks
	Understanding delegates
	Using lambda expressions
	Using events
	Objective summary
	Objective review

	Objective 1.5: Implement exception handling
	Handling exceptions
	Throwing exceptions
	Creating custom exceptions
	Objective summary
	Objective review

	Chapter summary
	Answers
	Objective 1.1: Thought experiment
	Objective 1.1: Review
	Objective 1.2: Thought experiment
	Objective 1.2: Review
	Objective 1.3: Thought experiment
	Objective 1.3: Review
	Objective 1.4: Thought experiment
	Objective 1.4: Review
	Objective 1.5: Thought experiment
	Objective 1.5: Review

	Index

