== Microsoft

Exam Ref 70-483: Programming in C#

Wouter de Kort

ISBN-13: 978-0-7356-7682-4

First printing: July, 2013

To ensure the ongoing accuracy of this book and its companion content, we've reviewed and
confirmed the errors listed below. If you find a new error, we hope you'll report it to us on our
website: www.microsoftpressstore.com/contact-us/errata.

Page Location Description Date corrected
XVi Who should Remove the following paragraph at the end of Who should read this 8/9/2013
read this book book:

6 Listing 1-4

9 1st paragraph

Last updated 11/26/2014

Developers reading this book should have a basic understanding of
writing a simple C# program. You can create and run applications by
using Visual Studio.

Add the following to the Assumptions section behind behind the first
sentence:

To run the examples from this book you should be able to create a
console application in Visual Studio.

Remove the following lines from Listing 1-4: 10/11/2013

public static void ThreadMethod(object o)
{

for(int | =0: I< (int)o;i++)

{

Console.WriteLine("ThreadProc: {0}", 1);
Thread.Sleep(0);

}

}

Reads:
You can use the Thread.Current-Thread class to ask for information
about the thread that’s executing.

Should read:

You can use the Thread.CurrentThread property to ask for
information about the thread that’s executing.

Page 1 of 9

Page
18

33

89

42

43

52

59

Location

1st paragraph
after Listing
1.18

Listing 1-37

Listing 1-44

Listing 1-46

Listing 1-50

Listing 1-69

Paragraph
before Listing
1-79

Last updated 11/26/2014

Description
Change the first line after Listing 1-18

Reads:
Because the entry method of an application can't be marked as async,
the example uses the Wait method in Main.

Should read:

Because the entry method of an application can't be marked as async,
the example accesses the Result property in the Main method which
blocks the code until the async method DownloadContent is finished.

The second Console.WriteLine reads:
Console.WriteLine("Locked A and B")

Should read:
Console.WriteLine("Locked B and A")

Add the following line after the closing } of the while statement:

throw new OperationCanceledException();
Change Listing title to:

Using the equality operator
Change the listing title to:

Short-circuiting the AND operator
Change listing title to:

Implementing a for loop with a while statement

Reads:

Listing 1-79 shows how you would write the example in Listing 1-73
with newer lambda syntax.

Should read:
Listing 1-79 shows how you would write the example in Listing 1-75
with newer lambda syntax.

Date corrected
10/11/2013

8/9/2013

8/9/2013

8/9/2013

8/9/2013

8/9/2013

Page 2 of 9

Page Location Description Date corrected
80 Listing 1-98 Reads:
protected OrderProcessingException(SerializationInfo info,
StreamingContext context)
Should read:
protected EntityOperationException(SerializationInfo info,
StreamingContext context) : base(info, context)
Reads:
public void GetObjectData(SerializationInfo info, StreamingContext
context)
{
info.AddValue("Orderld", Orderld, typeof(int));
}
Should read:
public override void GetObjectData(SerializationInfo info,
StreamingContext context)
{
base.GetObjectData(info, context);
info.AddValue("entityld", Entityld, typeof (int));
}
82 Objective Objective 1.5, question 3. All occurrences of LogonFailed in answer A-
review #3 D should be changed to LogonFailedException.
98 Listing 2-11 Reads: 10/11/2013
this.maximumNumberOfCards = maximumNumberOfCards;
Should read:
_maximumNumberOfCards = maximumNumberOfCards;
109 Objective 2.2 - Reads: 8/9/2013
explicit Where you can go implicitly from a derived type to a base type, you
conversion need to cast from a derived to a base type
Should read:
Where you can go implicitly from a derived type to a base type, you
need to cast from a base type to a derived type
116 Table 2-3 Change the description in Table 2-3 for the public accessmodifer to: 10/11/2013
None; unrestricted access.
123 Objective Remove the comma between protected, internal. 10/11/2013
summary, 5th
bullet Reads:

Last updated 11/26/2014

The access modifiers are public, internal, protected, protected,
internal, and private.

Should read:

The access modifiers are public, internal, protected, protected
internal, and private.

Page 3 of 9

Page Location Description Date corrected
132 Listing 2-50 Change the code in Listing 2-50 to: 10/11/2013

class Rectangle

{
public Rectangle(int width, int height)

{

Width = width;
Height = height;
}

public virtual int Height { get; set; }
public virtual int Width { get; set; }

publicint Area

{

get { return Height*Width; }
}

}

Change the code in Listing 2-51 to:

private class Square : Rectangle
{

public Square(int size)

: base(size, size)

{

}

public override int Width
{

get { return base.Width; }
set

{

base.Width = value;
base.Height = value;

}

}

public override int Height
{

get { return base.Height; }
set

{

base.Height = value;
base.Width = value;

}

}

}

Last updated 11/26/2014 Page 4 of 9

Page Location
133 1st sentence
of section

Implementing
standard .NET
Framework
interfaces

141 Paragraph
below the
listing 2-62

141 Listing 2-62

142 Listing 2-66

153 2nd paragraph

Last updated 11/26/2014

Description Date corrected

Reads: 10/11/2013
"...that can you can use on your own types"

Should read:
"...that you can use on your own types"

Change GetAttribute and GetAttributes to GetCustomAttribute and
GetCustomAttributes in the paragraph below Listing 2-62.

Reads:

ConditionalAttribute conditionalAttribute =
(ConditionalAttribute)Attribute.GetCustomAttribute(
typeof(ConditionalClass), typeof(ConditionalAttribute));

Should read:

ConditionalAttribute conditionalAttribute =
(ConditionalAttribute)Attribute.GetCustomAttributes(

typeof(ConditionalClass), typeof(ConditionalAttribute)).First();

Change AttributeTargets.Class to AttributeTargets.Parameter in

Listing 2-66

Reads: 10/11/2013
Idiposable

Should read:
Idisposable

Page 5 of 9

Page Location
154 Example 2-84

Last updated 11/26/2014

Description Date corrected
Change the Implementing IDisposable and a finalizer section to: 8/9/2013

Implementing IDisposable and a finalizer
Creating your own custom type that implements IDisposable and a
finalizer correctly is not a trivial task.

As an example, suppose you have a wrapper class around a file
resource and an unmanaged buffer. You implement Idisposable so
users of your class can immediately cleanup if they want. You also
implement a finalizer in case they forget to call Dispose. Listing 2-84
shows how to do this.

LISTING 2-84 Implementing Idisposable and a finalizer.
Using System;

using System.lO;

using System.Runtime.InteropServices;

class UnmanagedWrapper : Idisposable

{

private IntPtr unmanagedBuffer;

public FileStream Stream { get; private set; }

public UnmanagedWrapper()

{

CreateBuffer();

this.Stream = File.Open("temp.dat", FileMode.Create);
}

private void CreateBuffer()

{

byte[] data = new byte[1024];

new Random().NextBytes(data);

unmanagedBuffer = Marshal.AllocHGlobal(data.Length);
Marshal.Copy(data, 0, unmanagedBuffer, data.Length)

}

~UnmanagedWrapper()
{

Dispose(false);

}

public void Close()

{
Dispose();
}

public void Dispose()
{

Dispose(true);

Page 6 of 9

Page

160

Location

Description

System.GC.SuppressFinalize(this);
}

protected virtual void Dispose(bool disposing)

{
Marshal.FreeHGlobal(unmanagedBuffer);

if (disposing)

{

if (Stream !=null)
{

Stream.Close();

}

There are a couple of things to notice about this implementation:

e The finalizer only calls Dispose passing false for disposing.

¢ The extra dispose method with the Boolean argument does the real
work. This method checks if it’s being called in an explicit dispose or if
it’s being called from the finalizer:

o If the finalizer called Dispose, you only release the unmanaged
buffer. The Stream object also implements a finalizer and the garbage
collector will take care of calling the finalizer of the FileStream
instance. Because the order in which the garbage collector calls the
finalizers is unpredictable you can’t call any methods on the
FileStream.

O If Dispose is called explicitly, you also close the underlying
FlleStream. It’s important to be defensive in coding this method and
always check for any source of possible exceptions It could be that
Dispose is called multiple times and that shouldn’t cause any errors.

¢ The regular Dispose method calls GC.SuppressFinalize(this) to make
sure that the object is removed from the finalization list that the
garbage collector is keeping track of. The instance has already cleaned
up after itself; so it’s not necessary that the garbage collector calls the
finalizer.

EXAM TIP

It’s important to know the difference between implementing
Idisposable and a finalizer. Both cleanup your object but a finalizer is
called by the Garbage Collector while the Dispose method can be
called from code.

MORE INFO Implementing Idisposable and a finalizer
For more information on how to implement Idisposable and a finalizer
see: http://msdn.microsoft.com/en-us/library/b1lyfkh5e.aspx.

Next to last line The paragraph after Listing 2-88 reads:

Last updated 11/26/2014

new String("x", 10000)

Should read:
new String('x',10000)

Date corrected

Page 7 of 9

Page Location Description Date corrected
161 4th paragraph Reads: 10/11/2013
TextWriter
Should read:
TextReader
175 Example 1-1 Remove the line //ThreadProc: 10 at the end of the listing. 8/9/2013
189 Listing 3-11 Change listing title to: 8/9/2013
Collapse multiple spaces with RegEx
201 Fourth After Listing 3-22 (4th paragraph) remove the line: This means that
paragraph you can check to determine whether two items are equal by checking
their hash codes.
226 2nd paragraph The sentence should read 'You can instruct the compiler...' 10/11/2013
under
Managing
program
database...
226 Listing 3-43 Change the first line of Listing 3-43to: [DebuggerDisplay("Name =
{FirstName} {LastName}")]
243 3rd bullet of Reads: 10/11/2013
Performance AvergateTimer32
Counter types
Should read:
AverageTimer32
247 Objective 3.1 The extra comma (,) after 'the user enters an invalid date' should be 10/11/2013
Review removed.
question 1
answer A
247 Within The answer for Objective 3.1, question 1 is missing. The answer
Objective 3.1: should be:
Review
1. Correct answer: B
A. Incorrect: The regular Parse method will throw an exception if the
value the user entered is not a DateTime. This is something you need
to expect when you parse user input. Using TryParse avoids the
exception.
B. Correct: TryParse should be used when working with user input.
C. Incorrect: Convert.ToDateTime calls Parse internally. This will throw
an exception when the user input is not in the correct format.
D. Incorrect: RegEx.Match will search the input string for the first
match to the specified regular expression. It won't convert the input
string to a DateTime.
248 Objective 3.2: Objective 3.2 question number 3 should have C marked as Incorrect in
Review #3 C the answers section.
Last updated 11/26/2014 Page 8 of 9

Page
249

259

260

286

314

330

333

333

Location
Objective 3.3:
Review -
Question 2

Paragraph
below the
listing 4-12

LISTING 4-43

2nd paragraph
in the chapter
"Using

DataContract"

Answer 2 D

Objective 4.5

Objective 4.5:
Objective
review 1 D

Last updated 11/26/2014

Description Date corrected
Mark answer D for question 2 of objective 3.3 on page 249 as correct. 10/11/2013

Should read:
Correct. Strongly naming an assembly is required to deploy an
assembly to the GAC where it can be shared by all applications.

Change GetExtensions to GetExtension

In Listing 4-14, 4-15, 4-18 and 4-19 replace the << character with ": 10/11/2013

string path = @"c:\temp\test.dat"; On page 261 in Listing 4-15
change <MyValue> to "MyValue" Listing 4-19 change <<A line of
tekst.>>to "A line of text."

In Listing 4-43 the line: xmIReader.ReadStartElement("Person"); 10/11/2013
should be changed to: xmIReader.ReadStartElement("person");
And the line: xmlIReader.ReadStartElement("ContactDetails");

should be changed to:
xmlReader.ReadStartElement("contactdetails");

Reads:

The most noticeable difference is that you use DataContractAttribute
instead of SerializableAttribute. Another important difference is that
members are not serialized by default. You have to explicitly mark
them with the DataMember attribute.

Should read:

The most noticeable difference is that you use DataContractAttribute
instead of SerializableAttribute. If you omit both the DataContract and
DataMember attribute, your public members are serialized. With the
DataContract attribute applied, you have to specify which members
you want to serialize by using the DataMember attribute on them.

Change the explanation for answer D, question 4.2 to the following:

A Web service will only move the problem to another layer of your

application. Inside the Web service you still have to use some kind of

storage to save your application data.

On question 2 for Objective 4.5, the answer B should be removed 10/11/2013
both from the first line and the Correct should be changed to

incorrect. Only answer D is correct.

The first answer should only have B marked as correct. D should be 10/11/2013
incorrect.

Page 9 of 9

