

Exam Ref 70-480
Programming in HTML5
with JavaScript and CSS3

Rick Delorme

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2014 by Rick Delorme

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2014940678
ISBN: 978-0-7356-7663-3

Printed and bound in the United States of America.

First Printing

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/en-us/legal/intellectualproperty/Trademarks/
EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of their respective
owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions Editor: Anne Hamilton
Developmental Editor: Karen Szall
Editorial Production: Box Twelve Communications
Technical Reviewer: Todd Meister
Cover: Twist Creative • Seattle

http://www.microsoft.com/learning/booksurvey
http://www.microsoft.com/en-us/legal/intellectualproperty/Trademarks/EN-US.aspx
http://www.microsoft.com/en-us/legal/intellectualproperty/Trademarks/EN-US.aspx

iii

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Contents

Introduction	 ix
Microsoft certifications	 ix

Free ebooks from Microsoft Press	 x

Errata, updates, & book support	 x

We want to hear from you	 x

Stay in touch	 x

Preparing for the exam	 xi

Chapter 1	 Implement and manipulate document
structures and objects	 1

Objective 1.1: Create the document structure. 2

Using HTML5 semantic markup	 2

Creating a layout container in HTML	 15

Optimizing for search engines	 16

Optimizing for screen readers	 17

Objective summary	 20

Objective review	 21

Objective 1.2: Write code that interacts with UI controls 22

Adding or modifying HTML elements	 22

Implementing media controls	 34

Implementing graphics with HTML5 <canvas> and SVG	 39

Objective summary	 58

Objective review	 59

http://www.microsoft.com/learning/booksurvey/

iv Contents

Objective 1.3: Apply styling to HTML elements programmatically. 60

Changing the location of an element	 61

Applying a transform	 63

Showing and hiding elements	 67

Objective summary	 71

Objective review	 71

Objective 1.4: Implement HTML5 APIs. 72

Using the storage API	 72

Using the AppCache API	 77

Using the Geolocation API	 81

Objective summary	 85

Objective review	 85

Objective 1.5: Establish the scope of objects and variables 86

Establishing the lifetime of variables and variable scope	 87

Avoiding using the global namespace	 90

Leveraging the this keyword	 91

Objective summary	 92

Objective review	 92

Objective 1.6: Create and implement objects and methods. 93

Implementing native objects	 94

Creating custom objects	 95

Implementing inheritance	 99

Objective summary	 101

Objective review	 101

Answers. 102

Chapter 2	 Implement program flow	 111
Objective 2.1: Implement program flow. 112

Evaluating expressions	 112

Working with arrays	 117

Implementing special types of arrays	 121

Using advanced array methods	 122

vContents

Implementing iterative control flow	 125

Objective summary	 129

Objective review	 130

Objective 2.2: Raise and handle an event. 130

Using events	 131

Handling DOM events	 139

Creating custom events	 146

Objective summary	 147

Objective review	 148

Objective 2.3: Implement exception handling. 149

Implementing try…catch…finally constructs	 149

Checking for null values	 154

Objective summary	 155

Objective review	 155

Objective 2.4: Implement a callback. 156

Implementing bidirectional communication with the
WebSocket API	 157

Making webpages dynamic with jQuery and AJAX	 161

Wiring up an event with jQuery	 165

Implementing a callback with an anonymous function	 167

Using the this pointer	 169

Objective summary	 170

Objective review	 171

Objective 2.5: Create a web worker process. 172

Getting started with a web worker process	 172

Creating a worker process with the Web Worker API	 176

Using web workers	 178

Understanding web worker limitations	 179

Configuring timeouts and intervals	 180

Objective summary	 181

Objective review	 181

Answers. 183

vi Contents

Chapter 3	 Access and secure data	 189
Objective 3.1: Validate user input by using HTML5 elements. 190

Choosing input controls	 190

Implementing content attributes	 206

Objective summary	 209

Objective review	 210

Objective 3.2: Validate user input by using JavaScript. 211

Evaluating regular expressions	 211

Evaluating regular expressions in JavaScript	 214

Validating data with built-in functions	 216

Preventing code injection	 216

Objective summary	 217

Objective review	 218

Objective 3.3: Consume data. 218

Consuming JSON and XML data by using web services	 219

Using the XMLHttpRequest object	 219

Objective summary	 223

Objective review	 223

Objective 3.4: Serialize, deserialize, and transmit data. 224

Sending data by using XMLHttpRequest	 224

Serializing and deserializing JSON data	 225

Serializing and deserializing binary data	 225

Objective summary	 228

Objective review	 229

Answers. 230

Chapter 4	 Use CSS3 in applications	 235
Objective 4.1: Style HTML text properties. 235

Apply styles to text appearance	 236

Apply styles to text font	 238

Applying styles to text alignment, spacing, and indentation	 239

Applying styles to text hyphenation	 241

viiContents

Applying styles for a text drop shadow	 242

Objective summary	 243

Objective review	 243

Objective 4.2: Style HTML box properties. 244

Applying styles to alter appearance attributes	 244

Applying styles to alter graphic effects	 249

Apply styles to establish and change an element’s position	 258

Objective summary	 264

Objective review	 265

Objective 4.3: Create a flexible content layout . 266

Implement a layout using a flexible box model	 266

Implementing a layout using multi-column	 273

Implementing a layout using position, floating, and exclusions	 276

Implementing a layout using grid alignment	 280

Implementing a layout using regions, grouping, and nesting	 286

Objective summary	 287

Objective review	 288

Objective 4.4: Create an animated and adaptive UI. 288

Animating objects by applying CSS transitions	 289

Applying 3-D and 2-D transformations	 291

Adjusting UI based on media queries	 292

Hiding or disabling controls	 297

Objective summary	 299

Objective review	 299

Objective 4.5: Find elements using CSS selectors and jQuery 300

Defining element, style, and attribute selectors	 300

Choosing the correct selector to reference an element	 301

Finding elements by using pseudo-elements
and pseudo-classes	 301

Objective summary	 304

Objective review	 305

viii Contents

Objective 4.6: Structure a CSS file by using CSS selectors. 305

Referencing elements correctly	 306

Implementing inheritance	 307

Overriding inheritance using !important	 307

Styling an element based on pseudo-elements and
pseudo-classes	 308

Objective summary	 309

Objective review	 309

Answers. 312

Index	 321

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

http://www.microsoft.com/learning/booksurvey/

ix

Introduction

The 70-480 exam is a detailed examination of your skills with using HTML5 and CSS3. This
book will guide you through the necessary objectives that you are expected to know to
pass this exam. It is expected that you have at least 2 years’ experience working with these
technologies. This book is structured such that it provides a reference to the key information
required for each objective. This book does not teach every concept but provides an account
of the details you are expected to know for each objective covered on the exam.

This book covers every exam objective, but it does not cover every exam question. Only
the Microsoft exam team has access to the exam questions themselves and Microsoft regu-
larly adds new questions to the exam, making it impossible to cover specific questions. You
should consider this book a supplement to your relevant real-world experience and other
study materials. If you encounter a topic in this book that you do not feel completely com-
fortable with, use the links you’ll find in text to find more information and take the time to
research and study the topic. Great information is available on MSDN, TechNet, and in blogs
and forums.

Microsoft certifications

Microsoft certifications distinguish you by proving your command of a broad set of skills and
experience with current Microsoft products and technologies. The exams and corresponding
certifications are developed to validate your mastery of critical competencies as you design
and develop, or implement and support, solutions with Microsoft products and technologies
both on-premise and in the cloud. Certification brings a variety of benefits to the individual
and to employers and organizations.

MORE INFO  ALL MICROSOFT CERTIFICATIONS

For information about Microsoft certifications, including a full list of available certifica-
tions, go to http://www.microsoft.com/learning/en/us/certification/cert-default.aspx.

http://www.microsoft.com/learning/en/us/certification/cert-default.aspx

x Introduction

Free ebooks from Microsoft Press

From technical overviews to in-depth information on special topics, the free ebooks from
Microsoft Press cover a wide range of topics. These ebooks are available in PDF, EPUB, and
Mobi for Kindle formats, ready for you to download at:

http://aka.ms/mspressfree

Check back often to see what is new!

Errata, updates, & book support

We’ve made every effort to ensure the accuracy of this book and its companion content. You
can access updates to this book—in the form of a list of submitted errata and their related
corrections—at:

http://aka.ms/ER480R2

If you discover an error that is not already listed, please submit it to us at the same page.

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software and hardware is not offered
through the previous addresses. For help with Microsoft software or hardware, go to
http://support.microsoft.com.

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset. Please tell us what you think of this book at:

http://aka.ms/tellpress

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

http://aka.ms/mspressfree
http://aka.ms/ER480R2
http://support.microsoft.com
http://aka.ms/tellpress
http://twitter.com/MicrosoftPress

xi

Preparing for the exam

Microsoft certification exams are a great way to build your resume and let the world know
about your level of expertise. Certification exams validate your on-the-job experience and
product knowledge. While there is no substitution for on-the-job experience, preparation
through study and hands-on practice can help you prepare for the exam. We recommend
that you round out your exam preparation plan by using a combination of available study
materials and courses. For example, you might use this Exam Ref and another study guide for
your "at home” preparation and take a Microsoft Official Curriculum course for the classroom
experience. Choose the combination that you think works best for you.

Note that this Exam Ref is based on publicly available information about the exam and the
author’s experience. To safeguard the integrity of the exam, authors do not have access to the
live exam.

This page intentionally left blank

		 	 189

C H A P T E R 3

Access and secure data
Most web applications require static or dynamic data. Static data is written directly into the
HTML markup, not altered or loaded by code such as JavaScript. It’s rendered and displayed
to users without any way for the data to change. Dynamic data can change. Dynamic data
can update a ticker on a webpage from a news feed, capture user data to perform an
operation and provide results, or perhaps even store just a user’s registration information
in a database.

Both approaches to data have benefits as well as disadvantages. Static data is quite
secure because it doesn’t provide much of an attack surface for a malicious user. However,
as a website transitions into a more dynamic site, with live updates of data and the ability
for users to enter information into various fields, an attack surface opens and the site can
become less secure.

Knowing how to prevent malicious users from causing harm to your application and
possibly your users is important. You can implement the same mechanisms used to pre-
vent malicious usage to simplify the user experience and to keep your data generally clean.
Certain data elements, such as phone numbers and email addresses, can be provided in
different formats. Because such information can be very important, you want to make it
as easy as possible for users to enter it. Having complete address information and ensur-
ing that all the necessary fields are populated also can be very important. HTML5 supports
constructs such as regular expressions and required attributes to support implementing
these types of rules. Throughout the objectives in this chapter, validating user input both
declaratively via HTML5 and also by using JavaScript is covered.

In other scenarios, data coming to and from the website is either consuming data feeds
or providing data to another destination. Websites today commonly have a direct link to
social networking updates. In these cases, the retrieving and sending of the data is invisible in
that users aren’t engaged with the process. These processes should be streamlined and not
interfere with the website’s user experience. In this chapter’s objectives, consuming data from
external sources, transmitting data, and serializing and deserializing data are all covered.

Objectives in this chapter:
■■ Objective 3.1: Validate user input by using HTML5 elements

■■ Objective 3.2: Validate user input by using JavaScript

■■ Objective 3.3: Consume data

■■ Objective 3.4: Serialize, deserialize, and transmit data

	190	 CHAPTER 3	 Access and secure data

Objective 3.1: Validate user input by using HTML5
elements

This objective examines the user interface elements made available by HTML5 that allow
users to provide input. The ability to capture information from users is a great feature. How-
ever, you must ensure that user privacy and safety are protected as best as possible. You also
must ensure that the website doesn’t open any holes that an attacker can exploit to disrupt
the site’s services. Part of protecting the site is choosing the correct user input controls for
the job and setting the appropriate attributes on those controls to ensure that the data is
validated. For the exam, you need to know these input controls and the attributes they use
for this purpose.

This objective covers how to:
■■ Choose input controls and HTML 5 input types

■■ Implement content attributes

Choosing input controls
HTML5 provides a wide assortment of controls to make capturing user input simple and
secure. In this section, you explore the user input controls in greater detail and see examples
of their usage. A simulation of a survey form will be created to demonstrate when each type
of control should be used. Listing 3-1 shows the entire markup for the survey.

LISTING 3-1  HTML5 markup for a customer survey,

<form>
 <div>
 <hgroup>
 <h1>Customer Satisfaction is #1</h1>
 <h2>Please take the time to fill out the following survey</h2>
 </hgroup>
 </div>
 <table>
 <tr>
 <td>Your Secret Code:
 </td>
 <td>
 <input type="text" readonly="readonly" value="00XY998BB"/>
 </td>
 </tr>
 <tr>
 <td>Password:
 </td>
 <td>
 <input type="password"/>
 </td>

	 Objective 3.1: Validate user input by using HTML5 elements	 CHAPTER 3	 191

 </tr>
 <tr>
 <td>First Name:
 </td>
 <td>
 <input type="text" id="firstNameText" maxlength="50"/>
 </td>
 </tr>
 <tr>
 <td>Last Name:
 </td>
 <td>
 <input type="text" id="lastNameText"/>
 </td>
 </tr>
 <tr>
 <td>
 Your favorite website:
 </td>
 <td>
 <input type="url"/>
 </td>
 </tr>
 <tr>
 <td>
 Your age in years:
 </td>
 <td>
 <input type="number"/></td>
 </tr>
 <tr>
 <td>
 What colors have you colored your hair:
 </td>
 <td>
 <input type="checkbox" id="chkBrown" checked="checked"/>
 Brown
 <input type="checkbox" id="chkBlonde"/>
 Blonde
 <input type="checkbox" id="chkBlack"/>
 Black
 <input type="checkbox" id="chkRed"/>
 Red
 <input type="checkbox" id="chkNone"/>
 None
 </td>
 </tr>
 <tr>
 <td>Rate your experience:
 </td>
 <td>
 <input type="radio" id="chkOne" name="experience"/>
 1 - Very Poor
 <input type="radio" id="chkTwo" name="experience"/>
 2

	192	 CHAPTER 3	 Access and secure data

 <input type="radio" id="chkThree" name="experience"/>
 3
 <input type="radio" id="chkFour" name="experience"/>
 4
 <input type="radio" id="chkFive" name="experience" checked="checked"/>
 5 - Very Good
 </td>
 </tr>
 <tr>
 <td>How likely would you recommend the product:
 </td>
 <td>

 <input type="range" min="1" max="25" value="20"/>
 </td>
 </tr>
 <tr>
 <td>
 Other Comments:
 </td>
 <td>
 <textarea id="otherCommentsText" rows="5" cols="20" spellcheck="true">
 </textarea>
 </td>
 </tr>
 <tr>
 <td>
 Email address:
 </td>
 <td>
 <input type="email" placeholder="me@mydomain.com" required/>
 </td>
 </tr>
 <tr>
 <td>
 <input type="submit"/>
 <input type="reset"/>
 <input type="button" value="Cancel"/>
 </td>
 </tr>
 </table>
</form>

NOTE  INPUT CONTROLS

The HTML5 specification defines many more input controls than are explained in this
book. This book focuses specifically on the controls now supported by Internet Explorer,
followed by smaller examples to demonstrate some of the other controls as supported by
other browsers such as Google Chrome.

	 Objective 3.1: Validate user input by using HTML5 elements	 CHAPTER 3	 193

The <input> element in HTML denotes input controls. This element contains a type attri-
bute that specifies the type of input element to render. The exceptions to the <input type=’’>
rule are the <textarea> and <button> elements, which have their own element support.
Table 3-1 outlines the input elements supported in HTML5 and indicates whether an ele-
ment is now supported in Internet Explorer. The additional attributes available to an <input>
element are discussed in later sections.

TABLE 3-1  HTML5 input elements

Element Description

color* Provides a color picker

date* Provides a date picker

datetime* Provides a date/time picker

month* Enables users to select a numeric month and year

week* Enables users to select a numeric week and year

time* Enables users to select a time of day

number* Forces the input to be numeric

Range Allows users to select a value within a range by using a slider bar

tel* Formats entered data as a phone number

url Formats entered data as a properly formatted URL

Radio† Enables users to select a single value for a list of choices

Checkbox† Enables users to select multiple values in a list of choices

Password† Captures a password and glyphs the entered characters

Button† Enables users to perform an action such as run script

Reset† Resets all HTML elements within a form

Submit† Posts the form data to a destination for further processing

*Not supported currently by Internet Explorer
†Not new in HTML5

Using text and textarea input types
The text and textarea input controls are the most flexible. By using these controls, you allow
users to enter any text that they want into a regular text box. A text box provides a single-line
text entry, whereas a textarea allows for a multiline data entry. The following HTML shows the
markup for both types of controls:

<table>
 <tr>
 <td>
 First Name:
 </td>

	194	 CHAPTER 3	 Access and secure data

 <td>
 <input type="text" id="firstNameText"/>
 </td>
 </tr>
 <tr>
 <td>
 Last Name:
 </td>
 <td>
 <input type="text" id="lastNameText"/>
 </td>
 </tr>
…
 <tr>
 <td>Other Comments:
 </td>
 <td>
 <textarea id="otherCommentsText" rows="5" cols="20"></textarea>
 </td>
 </tr>
</table>

Figure 3-1 shows the output of this code.

FIGURE 3-1  HTML markup showing text box data-entry fields

This code adds text boxes to capture information such as first name, last name, and
additional comments. For the first and last names, the input is a standard text box as denoted
by type=”text”. This tells the renderer to display an input field into which users can enter free-
form text. However, this type of input field is limited to a single line. The Other Comments
text box provides a multiline text area for users to enter text into. The rows and cols attributes
define the viewable size of the text area. In this case, users can enter many lines of text into
the text area.

Other attributes that help with controlling how much information is entered into the text
fields is the maxlength attribute:

<input type="text" id="firstNameText" maxlength="50"/>

	 Objective 3.1: Validate user input by using HTML5 elements	 CHAPTER 3	 195

Users can’t enter any more than 50 characters into the text field with the maxlength set to
a value of 50.

In some cases, you might want to ensure that users enter only certain information in a
certain format.

url input type
The <input> type of url displays a text box similar to what the <input> type of text provides.
However, the renderer is instructed that the input type is url, so when users try to submit
a form with this type of information on it, it validates that the text in the box matches the
format of a valid URL.

EXAM TIP

You can validate data in many ways. Even more options become available in HTML5,
such as the url input type. Also available are the pattern attribute and the use of regular
expressions in JavaScript. Both of these are discussed later in this chapter.

The following code demonstrates a url type added to the survey:

<tr>
 <td>Last Name:
 </td>
 <td>
 <input type="text" id="lastNameText"/>
 </td>
</tr>
<tr>
 <td>
 Your favorite website:
 </td>
 <td>
 <input type="url"/>
 </td>
</tr>
<tr>
 <td>
 Other Comments:
 </td>
 <td>
 <textarea id="otherCommentsText" rows="5" cols="20"></textarea>
 </td>
</tr>
…
<tr>
 <td>
 <input type="submit"/>
 </td>
</tr>

	196	 CHAPTER 3	 Access and secure data

This code produces the output shown in Figure 3-2 to the HTML page making up the
survey. This HTML code also adds an input button, as discussed later in the section, "Using the
button input type."

FIGURE 3-2  The url input box added to the survey

This code demonstrates the power of the url input type in validating that the text a user
entered is indeed a valid URL format. If a user typed something other than a URL or an in-
complete URL into the Your Favorite Website box, such as contoso.com, and then clicked the
Submit Query button, the result would be similar to the output shown in Figure 3-3.

FIGURE 3-3  Demonstrating the validation of the url input type

Click the button to invoke the validation. The url box is outlined in red, and a tooltip pops
up to explain the validation error. In this case, it has detected that a valid URL hasn’t been
entered. If the user corrects the data by specifying the URL as http://www.contoso.com, the
validation error doesn’t occur and the input can be submitted successfully.

http://www.contoso.com

	 Objective 3.1: Validate user input by using HTML5 elements	 CHAPTER 3	 197

If you require more flexibility and want to accept partially entered URL information, such
as contoso.com, don’t use the url input box. A regular text input with a pattern specified would
be more appropriate.

Using the password input control
The password input control is the standard method of prompting users for sensitive
information. As you type your password, each character is replaced with a glyph so that any
onlookers can’t see your password.

EXAM TIP

You can’t specify default text in a password box or write to it via JavaScript. This is a se-
curity safeguard to help ensure the safety of passwords. However, the browsers provide a
mechanism to store a password should a user choose to have the password remembered
by the browser.

You can add a password text box to the survey to provide a way to retrieve a survey if a
user wants to complete it later. The password could be stored in a server for later retrieval.
The following markup is added to the HTML:

<tr>
 <td>
 Password:
 </td>
 <td>
 <input type="password"/>
 </td>
</tr>

With this HTML added, the survey now appears as shown in Figure 3-4.

FIGURE 3-4  A password input field added to the form

	198	 CHAPTER 3	 Access and secure data

Again, the password text box doesn’t look any different than any other text box. However,
typing into the box provides a different experience, as shown in Figure 3-5.

FIGURE 3-5  Replacing password input with the glyph character

The password input type captures information securely. Users typing this information don’t
want others who are nearby to be able to see what they’ve been typing and hence compro-
mise their data.

Using the email input type
You can use the email input type to ensure that the format of the text entered into the text
box matches that of a valid email address. Being able to capture an email address is often im-
portant to enable further follow up with a user. This control helps ensure that the information
entered matches what’s expected in the form of an email address.

EXAM TIP

Validation of the email input type confirms only that the information entered matches the
expected format of a valid email address. It in no way verifies that the email address itself
is a valid mailbox that can receive messages.

The following HTML adds an email address input type to the survey:

<tr>
 <td>
 Email address:
 </td>
 <td>
 <input type="email"/>
 </td>
</tr>
<tr>

	 Objective 3.1: Validate user input by using HTML5 elements	 CHAPTER 3	 199

 <td>
 <input type="submit"/>
 </td>
</tr>

Figure 3-6 shows the output of this HTML.

FIGURE 3-6  Output of the email address input type

Just as with the url input type, if you type text that doesn’t match the format of an email
address, you receive a warning message (see Figure 3-7).

FIGURE 3-7  Validation for the email address input type

This validation helps ensure that you don’t mistype your email address. Of course, it
doesn’t prevent you from entering an invalid email address, only one where the format
doesn’t match correctly to what would be expected such as having the @ symbol and ending
with a .com or other domain suffix.

	200	 CHAPTER 3	 Access and secure data

Using the checkbox input type
In some cases when capturing information from users, you need to be able to capture more
than one choice as it relates to a specific question. In this case, the checkbox input control
is the best choice. You can provide a series of check boxes and allow users to select all that
apply.

The survey will now add a question where users can select multiple items, as follows:

<tr>
 <td>Your age in years:</td>
 <td><input type="number" /></td>
</tr>
<tr>
 <td>
 What colors have you colored your hair:
 </td>
 <td>
 <input type="checkbox" id="chkBrown"/> Brown
 <input type="checkbox" id="chkBlonde"/> Blonde
 <input type="checkbox" id="chkBlack"/> Black
 <input type="checkbox" id="chkRed"/> Red
 <input type="checkbox" id="chkNone"/> None
 </td>
</tr>

In this HTML example, users see a list of hair colors that they might have used. Because a
user possibly might have used more than one, she has the option to choose more than one.
Figure 3-8 shows the output of this HTML.

FIGURE 3-8  The input check box added to the HTML form

	 Objective 3.1: Validate user input by using HTML5 elements	 CHAPTER 3	 201

An additional attribute available on the check box is the checked attribute. This attribute
provides a way to default a check box to the “checked” (or selected) state. By default, check
boxes aren’t selected. However, by adding the attribute as follows, the check box defaults to
the “checked” state when the page is loaded:

<input type="checkbox" id="chkBrown" checked="checked"/> Brown

In other cases, when presented with a list of items, users might be able to choose only a
single item from the list.

Using the radio input type
The radio button is similar to the check box in that it provides a list of options for users to
select from. The difference from the check box is that users can select only a single item from
the list. An example would be asking users to rate something on a scale from 1 to 5. To add
this type of question to the survey, incorporate the following HTML beneath the check boxes:

<tr>
 <td>
 Rate your experience:
 </td>
 <td>
 <input type="radio" id="chkOne" name="experience"/> 1 - Very Poor
 <input type="radio" id="chkTwo" name="experience"/> 2
 <input type="radio" id="chkThree" name="experience"/> 3
 <input type="radio" id="chkFour" name="experience"/> 4
 <input type="radio" id="chkFive" name="experience"/> 5 - Very Good
 </td>
</tr>

Notice that as with all HTML elements, each radio input type needs a unique id. However,
the name attribute ties all the radio buttons together. With the same name specified for each
radio type, the browser knows that they are part of a group and that only one radio button
of the group can be selected. Figure 3-9 shows the output of the radio buttons added to the
survey.

In this output, the radio buttons are shown from left to right and enable users to select
only one option. When a user changes the selection to a different option, the previously
selected option is automatically cleared.

	202	 CHAPTER 3	 Access and secure data

FIGURE 3-9  Adding some radio input types to the form

Like with the checkbox input types, defaulting the state of the radio input to selected is
possible. This is done in exactly the same way, by specifying the checked attribute:

<input type="radio" id="chkFive" name="experience" checked="checked"/> 5 - Very Good

In this case, the rating of 5 - Very Good defaults to selected for the group of radio buttons.

You can have multiple groups of radio buttons on the same page by specifying a different
name for each group of buttons. Another way to provide users with the ability to specify a
single value within a group of values is with the use of the range control.

Using the range input type
Using the range input type enables users to specify a value within a predefined range by
using a slider bar. This type can be used in cases where a wider range of values is required to
choose from but using radio buttons would be too unwieldy. Add another rating question to
the survey, as shown in the following HTML after the radio buttons:

<tr>
 <td>How likely would you recommend the product:
 </td>
 <td>
 <input type="range" min="1" max="25" value="20"/>
 </td>
</tr>

This HTML markup provides users with a slider bar that they can use to specify a value
between 1 and 25. The min attribute specifies the minimum value of the range; the max at-
tribute specifies the maximum value. The value attribute specifies a default value. If you omit

	 Objective 3.1: Validate user input by using HTML5 elements	 CHAPTER 3	 203

the value attribute, the range defaults to the minimum value. This HTML displays the output
shown in Figure 3-10.

FIGURE 3-10  A range input element added to the HTML form

In this output, the range control is displayed as a slider bar. The bar defaults to the value of
20 as specified in the markup. Users can grab the black endpoint of the slider and change the
value lower or higher by dragging it left or right. As a user changes the value, a tooltip shows
the current value where the slider resides. In this case, the user is now at the value 17 (see
Figure 3-11).

FIGURE 3-11  The tooltip displaying the current value of the range as the user changes it.

After users enter all the needed information, they need a way to submit or save the
information. The submit button has already been previewed.

Using the button input type
The input type that allows users to submit the form or clear it is button. The button input isn’t
new to HTML5 but is an essential piece to the data-capture puzzle. Buttons are what tell the
website when a user finishes doing something and that they want to perform an action. The
<input> element supports three types of button controls: submit, reset, and button.

	204	 CHAPTER 3	 Access and secure data

EXAM TIP

Anything can be a “button.” Because most DOM elements have a click event or at least
a mousedown and mouseup event, the concept of clicking can be captured and custom
actions processed. This can inherently turn any part of the DOM into a ”button.”

The submit input type tells the HTML form to post its information to the server (or, in some
cases, to another site or webpage). The reset type automatically clears all form elements to
their default values. The button type provides a generic button with no predefined func-
tionality. It can be used to provide a custom function, such as cancel out from this page and
return to the home page. All three button types are added to the bottom of the survey page
as follows:

<tr>
 <td>
 <input type="submit"/>
 <input type="reset"/>
 <input type="button"/>
 </td>
</tr>

That’s all that’s required to add the functionality to the page for each button. Of course,
type=”button” requires some JavaScript to be wired up to actually do something. However,
the submit and reset buttons come with the described functionality built in. The HTML
provides the output on the form as shown in Figure 3-12.

FIGURE 3-12  Buttons added to the HTML form

	 Objective 3.1: Validate user input by using HTML5 elements	 CHAPTER 3	 205

The text on the buttons is the default text. The submit button comes with the text Submit
Query, and the reset button comes with the text Reset. This can’t be changed. However, the
button type doesn’t have any text on it because none was specified and the button doesn’t
come with any predetermined behavior. To specify text for this button, add the value attri-
bute:

<input type="button" value="Cancel"/>

This produces a button as shown in Figure 3-13.

FIGURE 3-13  The button type with text specified

That’s what you get with the input type of button. However, in some cases, more flexibility
in the button’s content is desired. This is where the button element comes in handy.

Using the button element
The button element provides a button on the user interface, just as the name implies.
However, from a graphical perspective, this element behaves very differently.

The button element also supports a type attribute, like as the ones seen previously: submit,
reset, and button. This example steps away from the survey and demonstrates these buttons
on a stand-alone page. The following HTML is added to a page, and the subsequent output is
shown in Figure 3-14:

<button type="button"/>
<button type="reset"/>
<button type="submit"/>

FIGURE 3-14  All three types of button elements

This output displays three buttons, as expected. However, it doesn’t provide any text on
the buttons. The button element provides only the desired click behavior, such as submitting,
resetting, or providing a custom behavior like with type=”button”. Everything else must be
specified in the HTML, including the label or text that goes on the button. In this way, you
have much more control over what’s put on the button. Instead of Submit Query as with the
<input> element, the text can be set as Submit Survey or Save Data. The following HTML
shows the text on the buttons, and Figure 3-15 shows the output:

<button type="button">Go Home</button>
<button type="reset" >Reset</button>
<button type="submit">Submit Survey</button>

	206	 CHAPTER 3	 Access and secure data

FIGURE 3-15  The button elements with text specified

You can take the button element even further. The element’s contents don’t have to be just
plain text. You can embed images within the element by using the element in addition
to text, or embed an entire clickable paragraph. You also can apply cascading style sheets
(CSS) to the button to change its appearance, as shown in Figure 3-16. The HTML is as follows:

<button type="button" style="border-radius: 15px;">
 <p>Something exciting lies behind this button</p>

</button>

FIGURE 3-16  A customized button element

Within the button element lies the capability to create a highly customized button and get
default behavior from the browser.

In addition to what’s provided by the various input types, such as range, email, and url,
other attributes are available and common across most of the input controls and provide ad-
ditional flexibility in how the fields are validated. This is covered next.

Implementing content attributes
Input controls provide content attributes that allow you to control their behavior in the
browser declaratively rather than have to write JavaScript code.

Making controls read-only
Part of the specification for the HTML input controls includes a readonly attribute. If you want
to present information to users in elements such as text boxes but don’t want them to be able
to alter this data, use the readonly attribute. When readonly is specified, the renderer won’t
allow users to change any of the data in the text box. The following HTML demonstrates the
readonly property:

<tr>
 <td>
 Your Secret Code:
 </td>
 <td>
 <input type="text" readonly value="00XY998BB"/>
 </td>
</tr>

	 Objective 3.1: Validate user input by using HTML5 elements	 CHAPTER 3	 207

In this code, at the top of the survey form, users are provided a secret code to correspond
with their survey. They can’t change this because the readonly attribute is specified.

Where fields aren’t read-only and users can type whatever they want into the text box,
providing them with the capability to check spelling is a good idea.

Providing a spelling checker
Checking spelling is another method available to validate user input. The spellcheck attribute
helps provide feedback to users that a word they’ve entered is misspelled. Again, this attri-
bute is applied to the input element:

<textarea id="otherCommentsText" rows="5" cols="20" spellcheck="true"></textarea>

In this HTML, the spellcheck option has been turned on for the Other Comments text area
because users can type whatever they want and might make spelling errors.

The output of a text box with spellcheck isn’t any different until a user starts typing and
enters a spelling error. Figure 3-17 shows the red underlining for the words that are detected
as spelled incorrectly.

FIGURE 3-17  A textarea with spellcheck enabled

In some cases, the built-in validation provided by the input controls isn’t sufficient, and
providing a custom pattern to validate is better, as explored in the next section.

Specifying a pattern
As you saw with the email and url input types, built-in validation is fairly thorough in ensuring
that the information entered is accurate and as expected. However, in some cases you might
require looser or stricter validation. Suppose that you don’t want users to have to specify
the HTTP protocol in a url type, but you want to allow only .com or .ca websites. This can be
achieved by using the pattern attribute, which allows the use of a regular expression to define
the pattern that should be accepted.

EXAM TIP

The pattern attribute applies only to text boxes. It can’t be used to override the validation
built into the email or url types.

	208	 CHAPTER 3	 Access and secure data

The following code shows the pattern attribute used to achieve the desired validation:

<input type="text" title="Only .com and .ca are permitted."
 pattern="^[a-zA-Z0-9\-\.]+\.(com|ca)$"/>

Plenty of regular expressions are available to validate a URL; this one is fairly simple. When
specifying the pattern attribute, you should specify the title attribute as well. The title attri-
bute specifies the error message to users in the tooltip when validation fails.

To ensure that users enter the data in the correct format, you should show them a sample
of what the data should look like. This is achieved with the placeholder attribute.

Using the placeholder attribute
The placeholder attribute enables you to prompt users with what’s expected in a cer-
tain text box. For example, an email text box might show placeholder text such as
me@mydomain.com. More importantly, this placeholder text doesn’t interfere with users
when they start typing their information into the text box. The placeholder attribute achieves
this, as shown in the following HTML and subsequent output in Figure 3-18.

<input type="email" placeholder="me@mydomain.com" /></td>

FIGURE 3-18  The placeholder attribute demonstrating to users what is expected

The placeholder text is slightly lighter in color. As soon as a user puts the mouse cursor
into the box to type, the placeholder text disappears and the user’s typing takes over.

HTML fields can be validated in many ways. In some cases, it’s not so much what is put into
the field, but that the field is indeed filled in. The required attribute controls this for the HTML
elements.

Making controls required
To ensure that a user fills in a field, use the required attribute with the <input> element. Doing
so ensures that users will be told that the field is required. In this example, the email address
will be made a required text box:

<input type="email" placeholder="me@mydomain.com" required/>

With the required control specified, if users try to submit the form without specifying an
email address, they get an error message (see Figure 3-19). Now users can’t submit until they
specify a valid email address.

	 Objective 3.1: Validate user input by using HTML5 elements	 CHAPTER 3	 209

FIGURE 3-19  The required field validation invoked

The capabilities of the input controls can provide quite a robust validation framework.
However, more needs to be done to ensure that the website is safe and secure.

Thought experiment
Creating dynamic forms

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

Building on the thought experiment from Objective 1.3, consider what you need to
do to add custom validation to a control based on what a user has entered in the
previous field. Having a dynamically created form where you can change the valida-
tion rules as a user progresses through the form can be quite powerful. Consider
different cultural variations to rules on phone numbers, postal codes, and email ad-
dress suffixes. Describe how you would implement the validation so that you could
provide context rich validation for the user.

Objective summary
■■ Input controls such as text and textarea allow users to type information into a

webpage.

■■ Some input controls provide built-in validation, such as for URLs and email addresses.

■■ Radio buttons and check boxes provide controls for users to select items in a list.

■■ Reset and submit buttons control behavior of the HTML form.

■■ Users can’t modify the content of a control that has the readonly attribute assigned.

■■ You can add a spelling checker to a text box to help users avoid spelling errors.

■■ The pattern attribute helps define a regular expression for custom validation of
formatted data.

■■ The required attribute ensures that a field is populated before users can submit the
form.

	210	 CHAPTER 3	 Access and secure data

Objective review
1.	 Which input control is better suited for allowing users to make multiple selections?

A.	 radio button

B.	 textarea

C.	 checkbox

D.	 radio or checkbox

2.	 Which input control is designed to allow users to enter secure information in a way
that keeps others from seeing what’s typed?

A.	 text

B.	 textarea

C.	 url

D.	 password

3.	 Which input control posts form data to a server?

A.	 button

B.	 Submit

C.	 Reset

D.	 radio

4.	 Which of the following declarations are valid ways to make a text control non-editable?

A.	 <input type=”text” edit=”false”/>

B.	 <input type=”text” editable=”false”/>

C.	 <input type=”text” readonly=”yes”/>

D.	 <input type=”text” readonly/>

5.	 How can you ensure that all necessary fields are populated before a form can be
submitted?

A.	 Write a JavaScript function to evaluate all the controls on the form for content.

B.	 On the server, evaluate all the controls for data and return an error page for
missing content.

C.	 Add the required attribute on each control so that users get a message that the
field is required.

D.	 Add a label to the page to let users know which controls they must fill in.

	 Objective 3.2: Validate user input by using JavaScript	 CHAPTER 3	 211

Objective 3.2: Validate user input by using JavaScript

The new HTML controls discussed in Objective 3.1 provide some great functionality to
validate user data. However, this functionality has some limitations. This is where further vali-
dation performed in JavaScript comes in handy. JavaScript provides additional functionality
that’s not readily available in the core HTML controls. Although some controls aren’t yet avail-
able in all browsers, you might need to validate user input such as dates, telephone numbers,
or alphanumeric postal codes. This objective demonstrates how to use regular expressions to
validate the input format and how to use the JavaScript built-in functions to ensure that data
is the correct data type. This objective also adds a layer of security by demonstrating how to
prevent malicious code injection.

This objective covers how to:
■■ Evaluate regular expressions

■■ Validate data with built-in functions

■■ Prevent code injection

Evaluating regular expressions
You saw the use of regular expressions in Objective 3.1. In fact, the core HTML input controls
support a pattern attribute that allows you to apply a regular expression to validate user
input. In some cases, though, validating user input in JavaScript can be more effective than
inline with attributes. This section introduces regular expressions. The basic syntax of a regular
expression is explained, as is how to use the expression in JavaScript.

Regular expressions have a unique syntax of their own. They can be daunting to use but
can also be very powerful. Although a full instruction on regular expressions is beyond the
scope of this book, a brief introduction is provided to support the later examples.

EXAM TIP

Regular expressions tend to make their way onto the exams. You should prepare by study-
ing them in more detail. An Internet search should yield many resources freely available
on the topic. Be familiar with how to read an expression for such things as email addresses,
URLs, and phone numbers, among other things.

Regular expressions are a mix of special characters and literal characters that make up the
pattern that someone would want to match. Table 3-1 lists the special characters and their
meaning.

	212	 CHAPTER 3	 Access and secure data

TABLE 3-1  Regular expression special characters

Symbol Description

^ The caret character denotes the beginning of a string.

$ The dollar sign denotes the end of a string.

. The period indicates to match on any character.

[A-Z] Alphabet letters indicate to match any alphabetic character. This is case-sensitive. To match
lowercase letters, use [a-z].

\d This combination indicates to match any numeric character.

+ The plus sign denotes that the preceding character or character set must match at least
once.

* The asterisk denotes that the preceding character or character set might or might not match.
This generates zero or more matches.

[̂] When included in a character set, the caret denotes a negation. [̂ a] would match a string
that doesn’t have an ‘a’ in it.

? The question mark denotes that the preceding character is optional.

\w This combination indicates to match a word character consisting of any alphanumeric
character, including an underscore.

\ The backslash is an escape character. If any special character should be included in the
character set to match on literally, it needs to be escaped with a \. For example, to find a
backslash in a string, the pattern would include \\.

\s This combination indicates to match on a space. When it’s combined with + or *, it can
match on one or more spaces.

This list encompasses the main functions available when string matching with regular
expressions. Building regular expressions requires taking the definition of those characters
and essentially creating a mask out of them to be used by the regular expression engine
to interpret and decide whether there is a match. For example, a Canadian postal code is
comprised of the format A1A 1A1—that is, alternating alphabetic characters and numeric
characters with a space in the middle. Some characters aren’t used in postal codes because
the machines confuse them with other characters (for example, Z and 2). Also, the space isn’t
mandatory. When you need to enforce the data format of the user input, deciding how you
want the data to be captured and how flexible you want it to be is important. Then build your
regular expression to match this.

Now, build the regular expression for a postal code. You first need to denote the begin-
ning of the string, because it helps eliminate unnecessary white space at the lead of the string:

^

The first part of the expression is the caret. The next character must be alphabetic:

^[A-Z,a-z]

	 Objective 3.2: Validate user input by using JavaScript	 CHAPTER 3	 213

Because postal codes aren’t case sensitive, the expression allows the first character to be
either uppercase or lowercase. The next character in the postal code must be a digit:

^[A-Z,a-z]\d

Because the postal code accepts all digits 0-9, \d is used to specify any digit. However,
[0-9] could have been used as well. And now the pattern continues, letter-number-letter
number-letter-number:

^[A-Z,a-z]\d[A-Z,a-z]\d[A-Z,a-z]\d

As was indicated earlier, the space in the middle of the postal code, while common
convention, is optional. This is where deciding how flexible the data validation should be is
required. The expression as it is won’t allow for any space in the middle because the expres-
sion is set to match on consecutive alternating letter-number-letter. Perhaps, for formatting
purposes, a space should be required. In this case, \s would require that a space is included:

^[A-Z,a-z]\d[A-Z,a-z]\s\d[A-Z,a-z]\d

Now, users would be required to enter the postal code with a space in the middle of the
two sets of three characters. But maybe the website doesn’t care about the space in the
middle, because it doesn’t really affect anything. In this case, the \s can be denoted with the *:

^[A-Z,a-z]\d[A-Z,a-z]\s*\d[A-Z,a-z]\d

Now, the expression allows for alternating letter-number-letter and one or more spaces
can occur in the middle. The space is now optional, but a problem has been introduced. The
user can now enter any number of spaces and still pass the validation, such as:

A1A 1A1

That would pass the validation because one or more spaces is required by the \s*. The
desired outcome here is to allow only one space or no spaces. For this, a new element is
added to limit the number of occurrences to just one. This is accomplished by specifying the
maximum length allowed for the character set being matched:

^[A-Z,a-z]\d[A-Z,a-z]\s{1}\d[A-Z,a-z]\d

The {1} says to match the previous character only the specified number of times—in this
case, one time. Now the expression is back to functionality that’s no different than just speci-
fying the \s. What is needed next is something to make the single space optional, as denoted
with the ?. To achieve this effect, the space segment is wrapped in square brackets to make it
a set and followed by the ? to make it optional:

^[A-Z,a-z]\d[A-Z,a-z][\s{1}]?\d[A-Z,a-z]\d

Now you have a regular expression that requires the correct alphanumeric pattern for a
Canadian postal code with an optional space in the middle.

This simple example demonstrates the key elements to a regular expression. Although this
regular expression can be placed into the pattern attribute of the <input> element, this next

	214	 CHAPTER 3	 Access and secure data

section discusses how to use the JavaScript framework to perform pattern matching with
regular expressions.

Evaluating regular expressions in JavaScript
Just like with strings and integers, regular expressions are objects in JavaScript. As such, they
can be created and can provide methods to evaluate strings. Regular expression objects are
created in a similar fashion as strings; however, rather than use “ to encapsulate the expres-
sion, use the forward slash /<expression>/ instead. JavaScript knows that text surrounded
by forward slashes in this way is a regular expression object. Going back to the postal code
example, the following HTML is provided:

<script type="text/javascript">
 function CheckString() {
 try{
 var s = $('#regExString').val();
 var regExpression = /^[A-Z,a-z]\d[A-Z,a-z][\s{1}]?\d[A-Z,a-z]\d/;
 if (regExpression.test(s))
 alert("Valid postal code.");
 else
 alert("Invalid postal code.");
 } catch (e) {
 alert(e.message);
 }
 }
</script>
<body>
 <form>
 <input type="text" id="regExString" />
 <button onclick="CheckString();" >Evaluate</button>
 </form>
</body>

This HTML provides a very basic page with a text box and a button. The button does noth-
ing more than call a function to validate whether the entered text matches the format desired
for a postal code. This page shouldn’t contain anything that you haven’t seen already, except
the line in which the regular expression object is created:

var regExpression = /^[A-Z,a-z]\d[A-Z,a-z][\s{1}]?\d[A-Z,a-z]\d/;

With this line, a regular expression object is created and, as a result, methods are avail-
able. The string is extracted from the text box and passed to the test method of the regular
expression. The test method returns a Boolean to indicate whether the input string matches
the regular expression that was created.

	 Objective 3.2: Validate user input by using JavaScript	 CHAPTER 3	 215

The regular expression object also provides a method called exec. This method returns the
portion of the input string that matches the expression. The following code example illus-
trates this by adding another button and function to use the exec method instead of test:

function CheckStringExec() {
 var s = $('#regExString').val();
 var regExpression = /^[A-Z,a-z]\d[A-Z,a-z][\s{1}]?\d[A-Z,a-z]\d/;
 var results = regExpression.exec(s);
 if(results != null)
 alert("Valid postal code." + results[0]);
 else
 alert("Invalid postal code.");
…
<button onclick="CheckStringExec();" >Evaluate with Exec</button>

With this button, the expression is evaluated just like it was with the test method, except
the match is returned as a string array. That the return result is a string array is important to
note because using regular expressions can result in multiple matches. If a match isn’t made,
the return result will be null. In this example, the results are evaluated by checking whether
the array isn’t null; if it’s not, the postal code is valid and shown back to the user. If the match
isn’t made, the return value will be null.

The string object also provides regular expression methods. The string could be used
directly to evaluate the expression. The string provides the search and match methods. The
search method returns the index of the character in the string where the first match occurred.
The match method returns the part of the string that matches the pattern, much like the exec
method. In addition to these two methods, many of the other string methods accept a regular
expression object, such as indexOf, split, and replace. This provides some advanced functional-
ity for manipulating strings in JavaScript.

EXAM TIP

The example uses a regular expression to validate user input of data entered into the
webpage. Keep in mind that data can come from anywhere, such as an RSS feed or back-
end server providing JavaScript Object Notation (JSON). In this context, where a website
is expecting specifically formatted data, you can use regular expressions to validate the
incoming data and prevent the possible crashing of the website or at least errors being
presented to users.

Although regular expressions provide a great deal of power in evaluating strings for pat-
terns and ensuring that the data is in the desired format, JavaScript also provides built-in
functions to evaluate the type of data received.

	216	 CHAPTER 3	 Access and secure data

Validating data with built-in functions
JavaScript provides built-in functions to evaluate data type. Some functions are provided
directly within JavaScript; others are provided by the jQuery library.

The isNaN function provides a way to evaluate whether the value passed into it isn’t a
number. If the value isn’t a number, the function returns true; if it is a number, it returns false.
If the expected form of data being evaluated is numeric, this function provides a defensive
way to determine this and handle it appropriately:

if (isNan(value)) {
 //handle the non number value
}
else {
 //proceed with the number value
}

The opposite of the isNaN function is the isFinite function. The isFinite function is used in
the same way but returns true if the value is a finite number and false if it’s not.

Being able to validate data is very important as previously outlined. Equally important to
validating the data explicitly is ensuring that data-entry fields prevent users from injecting
script. Code injection is a widely discussed topic in website security. The next section discusses
preventing code injection.

Preventing code injection
Code injection is a technique that attackers use to inject JavaScript code into your webpage.
These attacks usually take advantage of dynamically created content to have additional
script run so that malicious users can try to gain some sort of control over the website. Their
intentions can be many, but among those intentions might be to trick other site users into
providing sensitive information. Depending on the content of the page, different measures
need to be considered.

Protecting against user input
A web application accepting user input opens up a potential attack surface for malicious
users. The size of the attack surface depends on what’s done with the entered data. If the
website takes data and doesn’t do anything with it outside the scope of the current webpage,
such as send it to another server or store it in a database, the effects are limited to the cur-
rent page and browser session. Little can be accomplished except to disrupt the design of the
website for this particular user. However, if the captured data includes an account creation
form or survey, for example, a malicious user has much more potential to do harm—especial-
ly when that information is later rendered to the webpage dynamically. This inherently allows
anyone to add script to the site, which can open up the site to behavior such as phishing. As a
webpage developer, you need to ensure that all user input is scrubbed of script elements. For
example, don’t allow < > text to be entered into the form. Without those characters, a script
block can’t be added.

	 Objective 3.2: Validate user input by using JavaScript	 CHAPTER 3	 217

Using the eval function
The eval function is used to run JavaScript dynamically. It takes a string as a parameter and
runs it as a JavaScript function. Never use the eval function against any data provided by an
external source over which you don’t have 100 percent control.

Using iFrames
iFrames open up a new opportunity to attackers. Search engines provide a plethora of results
dealing with exploits regarding the use of iFrames. The sandbox attribute should always
be used to restrict what data can be placed into an iFrame. The sandbox attribute has four
possible values, as listed in Table 3-2.

TABLE 3-2  Available sandbox attribute values

Value Description

“” An empty string applies all restrictions. This is the most secure.

allow-same-origin iFrame content is treated as being from the same origin as the containing
HTML document.

allow-top-navigation iFrame content can load content from the containing HTML document.

allow-forms iFrame can submit forms.

allow-scripts iFrame can run script.

Thought experiment
Encoding input data

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

The primary way in which malicious users seek out vulnerabilities in your webpages
is through the use of code injections. These are used to find weaknesses in the code
where malicious users could trick legitimate users into redirecting to a malicious
site or—worse—steal private data. What additional strategies can you design into
your webpages to help prevent these types of attacks?

Objective summary
■■ Regular expressions are strings of special characters that an interpreter understands

and uses to validate text format.

■■ Regular expressions are objects in JavaScript that provide methods for testing input
data.

	218	 CHAPTER 3	 Access and secure data

■■ isNaN is a built-in function to determine whether a value isn’t a number, whereas
isFinite validates whether the value is a finite number.

■■ Code injection is a technique that attackers use to inject malicious code into your
application.

■■ iFrames and dynamic JavaScript are dangerous if not used properly in a webpage.

Objective review
1.	 Which of the following regular expression characters denote the end of the string?

A.	 $

B.	 %

C.	 ^

D.	 &

2.	 Which of the following sandbox attributes allows the iFrame to load content from the
containing HTML document?

A.	 allow-script-execution

B.	 allow-same-origin

C.	 allow-forms

D.	 allow-top-navigation

E.	 allow-top-document

3.	 Which function should never be used to run JavaScript?

A.	 execute

B.	 JSDynamic

C.	 eval

D.	 evaluate

Objective 3.3: Consume data

This objective covers how to consume data in an HTML5 web application. The ability to
consume data from external sources is more popular than ever. Website mash-ups and social
integration are major catalysts for this.

This objective covers how to:
■■ Consume JSON and XML data by using web services

■■ Use the XMLHTTPRequest object

	 Objective 3.3: Consume data	 CHAPTER 3	 219

Consuming JSON and XML data by using web services
The two data formats commonly used in data transmission are JSON and XML. JSON is
unstructured data, whereas XML is structured. JSON uses a special syntax that allows the
definition of name value pairs in a lightweight string format. XML, as a relative of HTML, is
more structured than JSON with named tags and opening and closing tags. Tags can have
attributes. The following are examples of what a person object might look like in both for-
mats where the person object has a first name, last name, hair color, and eye color:

■■ JSON:

{firstName: "Rick", lastName: "Delorme", hairColor: "brown", eyeColor: "brown" }

■■ XML (Elements):

<Person>
 <firstName>Rick</firstName>
 <lastName>Delorme</lastName>
 <hairColor>Brown</hairColor>
 <eyeColor>Brown</eyeColor>
</Person>

■■ XML (attributes):

<Person firstname="Rick" lastName="Delorme" hairColor="Brown" eyeColor="Brown"/>

When publishing data services such as Web Services or a REST API, you can control how
you publish the data. When consuming third-party resources, you won’t have control over
how they’ve published the data.

Using the XMLHttpRequest object
JavaScript provides built-in support for receiving HTML data via the XMLHttpRequest ob-
ject. The object makes a call to a web service, REST API, or other data provider services. The
advantage of doing this via JavaScript on the client side is to be able to reload portions of the
page from an external source without having to post the entire page back to the server.

XMLHttpRequest makes an HTTP request and expects to receive back data in XML format.
Both synchronous and asynchronous calls are supported. Table 3-3, Table 3-4, and Table 3-5
list the available events, methods, and properties of the XMLHttpRequest object.

TABLE 3-3  Available events of the XMLHttpRequest object

Events Description

Onreadystatechange Sets an event handler for when the state of the request has changed. Used
for asynchronous calls.

Ontimeout Sets an event handler for when the request can’t be completed.

	220	 CHAPTER 3	 Access and secure data

TABLE 3-4  Available methods of the XMLHttpRequest object

Method Description

Abort Cancels the current request

getAllResponseHeaders Gives a complete list of response headers

getResponseHeader Returns the specific response header

Send Makes the HTTP request and receives the response

setRequestHeader Adds a custom HTTP header to the request

Open Sets properties for the request such as the URL, a user name, and a password

TABLE 3-5  Available properties of the XMLHttpRequest object

Property Description

readyState Gets the current state of the object

Response Gets the response returned from the server

responseBody Gets the response body as an array of bytes

responseText Gets the response body as a string

responseType Gets the data type associated with the response, such as blob, text, array-
buffer, or document

responseXML Gets the response body as an XML DOM object

Status Gets the HTTP status code of the request

statusText Gets the friendly HTTP text that corresponds with the status

Timeout Sets the timeout threshold on the request

withCredentials Specifies whether the request should include user credentials

In its simplest form, a request to the server using the XMLHttpRequest object looks like
this:

<script>
 $("document").ready(function () {
 $("#btnGetXMLData").click(function () {
 var xReq = new XMLHttpRequest();
 xReq.open("GET", "myXMLData.xml", false);
 xReq.send(null);
 $("#results").text(xReq.response);
 });
 });
</script>

	 Objective 3.3: Consume data	 CHAPTER 3	 221

This script assumes a button on the HTML form and a div to show the results. A new
XMLHttpRequest object is created. The open method is called to specify the request type, URI,
and whether to make the call asynchronous. Table 3-6 lists all the parameters to the open
method.

TABLE 3-6  Parameters for the XMLHttpRequest open method

Parameter Description

Method The HTTP method being used for the request: GET, POST, etc.

URL The URL to make the request to.

async A Boolean value to indicate whether the call should be made asynchronously. If true, an
event handler needs to be set for the onreadystatechanged.

User name A user name if the destination requires credentials.

Password A password if the destination requires credentials.

EXAM TIP

The open method doesn’t make any server requests. If the user name and password is
specified, it doesn’t send this information to the server in the open method. When the
send method is called, the user name and password aren’t passed to the server either. The
credentials are passed to the server only in response to a 401 security response from the
server.

The XMLHttpRequest object provides some mechanisms for handling errors. The most
common error to account for is a timeout error. By default, the value of the timeout is zero,
which is infinite. A timeout value should always be specified. The code is updated as follows:

var xReq = new XMLHttpRequest();
xReq.open("GET", "myXMLData.xml", false);
xReq.timeout = 2000;
xReq.ontimeout = function () {
 $("#results").text("Request Timed out");
}
xReq.send(null);
$("#results").text(xReq.response);

This results in not allowing the call to take any more than two seconds. The timeout is
expressed in milliseconds. After the timeout period, the ontimeout event handler is called to
allow for this condition to be handled appropriately in the webpage.

An additional consideration for this code is whether to make the call synchronously or
asynchronously. Ideally, you should ensure that the call to the service to get the data won’t
interfere with users and won’t block them, unless of course they need to wait on the reply
before taking any further action. Synchronous calls, as the examples so far have shown,

	222	 CHAPTER 3	 Access and secure data

block the user interface while the request is being made. To prevent this, the call should be
asynchronous, as shown here:

var XMLHTTPReadyState_COMPLETE = 4;

var xReq = new XMLHttpRequest();
xReq.open("GET", "myXMLData.xml", true);
xReq.timeout = 2000;
xReq.ontimeout = function () {
 $("#results").text("Request Timed out");
}
xReq.onreadystatechange = function (e) {
 if (xReq.readyState == XMLHTTPReadyState_COMPLETE) {
 if (xReq.status = "200") {
 $("#results").text(xReq.response);
 } else {
 $("#results").text(xReq.statusText);
 }
 }
}
xReq.send(null);

The onreadystate event is assigned a function to run when the state of the
XMLHttpRequest object is changed. When the request is complete, the readyState changes
to complete (readyState == 4). At this point, the HTTP return status can be evaluated for a
success value such as 200, and then the processing of the XML data can occur.

The same code that has been used so far to retrieve XML data can also be used to make a
request for JSON data. The following update to the code shows this:

var XMLHTTPReadyState_COMPLETE = 4;

var xReq = new XMLHttpRequest();
xReq.open("GET", "myJSONData.json", true);
xReq.timeout = 2000;
xReq.ontimeout = function () {
 $("#results").text("Request Timed out");
}
xReq.onreadystatechange = function (e) {
 if (xReq.readyState == XMLHTTPReadyState_COMPLETE) {
 if (xReq.status = "200") {
 $("#results").text(xReq.response);
 } else {
 $("#results").text(xReq.statusText);
 }
 }
}
xReq.send(null);

The only difference to this code is the name of the URL being passed. In this case, the
endpoint is a data source that returns JSON-formatted data instead of XML. The JSON is
displayed to the screen in the same way that the XML is displayed.

	 Objective 3.3: Consume data	 CHAPTER 3	 223

When the data is received via the XMLHttpRequest object, the data will need to be
deserialized into a more user-friendly format. You also might want to submit data to the
server in response to user actions. The next objective examines these concepts.

Thought experiment
Creating a webpage with a stock ticker

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You are tasked with building a webpage for your client that involves a stock ticker.
You need to provide real-time stock quotes to your page users in a scroll across the
top of the page. Explain how you would build a web application that will do this
dynamically without posting back the whole webpage.

Objective summary
■■ JSON and XML are the most common formats used for data exchange.

■■ JSON consists of name/value pairs.

■■ XML is a structured element-based document.

■■ JavaScript provides built-in support for receiving data via the XMLHttpRequest object.

Objective review
1.	 Which of the following is a valid JSON string?

A.	 {firstName, Rick, lastname, Delorme, hairColor, brown, eyeColor, brown}

B.	 {firstName: Rick; lastname: Delorme; hairColor: brown; eyeColor: brown}

C.	 {firstName: “Rick”; lastname: “Delorme”; hairColor: “brown”; eyeColor: “brown”}

D.	 {firstName: “Rick”, lastname: “Delorme”, hairColor: “brown”, eyeColor: “brown”}

2.	 With the XMLHttpRequest object, which of the following properties provides the
response in a human readable format?

A.	 Response

B.	 responseBody

C.	 responseText

D.	 responseXML

	224	 CHAPTER 3	 Access and secure data

3.	 At which stage during an XMLHttpRequest are user credentials sent to the server?

A.	 When the connection is opened

B.	 When the request is sent

C.	 When the ready state is complete

D.	 When the server sends a security response requesting the credentials

Objective 3.4: Serialize, deserialize, and transmit data

Data can be received and sent in many forms. In the preceding objective, JSON and XML were
examined specifically. The notion of presenting JSON or XML data directly to users isn’t ideal.
Users would appreciate receiving the data in a more usable or readable and meaningful way.
For this, you need to have the data converted from an XML string or JSON string into some-
thing else. The concept of converting the data from one form to another is called serialization
or deserialization.

With serialization, the data is put into a format for transmission. With deserialization, the
transmitted data is converted into something that can be worked with, such as a custom
object. In addition to working with string data, applications can work with binary data. An
application might capture drawings or pictures on a canvas and send that data back to the
server. The data needs to be serialized into a binary stream to achieve this.

This objective reviews the serialization, deserialization, and transmission of binary
and text data. The ability to submit data via the HTML Form and sending data with the
XMLHttpRequest object is also reviewed.

This objective covers how to:
■■ Send data by using XMLHttpRequest

■■ Serialize and deserialize JSON data

■■ Serialize and deserialize binary data

Sending data by using XMLHttpRequest
Sending data to the server is similar to receiving data. The code examples in the preceding
objective used the XMLHttpRequest object to receive data. The XMLHttpRequest object itself
is agnostic to sending or receiving. It can accomplish both tasks based on how the object is
set up. To send data, the send method must have data passed into it, and that data can be

	 Objective 3.4: Serialize, deserialize, and transmit data	 CHAPTER 3	 225

transmitted to the endpoint specified in the URL of the open method. The following code
sends the XML data to the server:

var xmlData = "<Person firstname='Rick' lastName='Delorme' hairColor='Brown'
eyeColor='Brown' /> ";
var xReq = new XMLHttpRequest();
xReq.open("POST", "/ReceiveXMLData.aspx", false);
xReq.responseType
xReq.send(xmlData);

When data is transmitted to the server, it needs to be serialized into a format that the
URL endpoint can understand. If the endpoint is expecting XML, the data must be XML; if it’s
expecting binary data, the data must be in a binary format.

Serializing and deserializing JSON data
The browser provides native support for working with JSON and XML. The JSON object
is available for converting a JSON string to and from an object (serialize/deserialize). The
following code shows how this is accomplished:

var person = {
 FirstName: "Rick",
 HairColor: "Brown"
 };
 var jsonPerson = JSON.stringify(person);

The person object has been serialized into a JSON string that can be sent to an endpoint
URL for processing. To return the person back to a person object from a JSON string, the
object can be deserialized by using the parse method:

var req = new XMLHttpRequest();

req.open("GET", "MyJsonData.json", false);
req.send(null);
var jsonPerson = JSON.parse(req.responseText);

When this code runs, the person object is reconstructed from the JSON string.

Serializing and deserializing binary data
Capturing dynamic image data follows a similar pattern as with the other techniques
reviewed. The key difference is now the responsetype property must be set to blob. The
following code demonstrates retrieving a binary image object and deserializing it into the
webpage:

var xReq = new XMLHttpRequest();
xReq.open("GET", "orange.jpg", false);
xReq.responseType = 'blob';
xReq.send(null);
var blob = xReq.response;
document.getElementById("result").src = URL.createObjectURL(blob);

	226	 CHAPTER 3	 Access and secure data

The XMLHttpRequest object’s responseType property has been set to blob. Then
by using the response property to extract the binary data, the BLOB is passed to the
URL.createObjectURL method. The createObjectURL method gives the img element a URL
linking to the BLOB, and the image is displayed in the browser. For the inverse, the data can
also be submitted to the server as soon as it’s serialized into a BLOB:

var xReq = new XMLHttpRequest();
xReq.open("POST", "saveImage.aspx", false);
xReq.responseType = 'blob';
xReq.send(data);

Using the Form.Submit method
The form element of an HTML page is the area of the form that contains elements that are
typically input controls to gather information from users. The form element contains an action
attribute that tells the form where to submit its data. Submitting the data in this way submits the
entire HTML page back to the server for processing. However, another available mechanism is to
hook up to the form’s submit event and handle the submission through JavaScript. This is useful
for submitting the form’s data through an AJAX request so that users don’t have to leave the cur-
rent page while the request is being processed. The form element at its simplest is as follows:

<form id="signupForm" action="processSignUp.aspx">
</form>

The form in this case will post its data to the processSignUp server page for processing,
which in turn should redirect users back to a confirmation page of some sort. The other
option for handling the form’s submission is to wire up the event in JavaScript:

$("document").ready(function () {
 $("form").submit(function () {
 });
 });

Iterating over all the form elements, capturing the data out of them, and constructing a
query string for use with an AJAX call would be possible inside the click event. The following
code reviews this concept:

$("form").submit(function () {

 var fName = $("#firstName").val();
 var lName = $("#lastName").val();
 var qString = "Last Name=" + lName + "&First Name=" + fName;

 $.ajax({
 url: 'processSignUp.aspx',
 type: "POST",
 data: qString,
 success: function (r) {
 }
 });
 return false;
});

	 Objective 3.4: Serialize, deserialize, and transmit data	 CHAPTER 3	 227

The data from each field in the form is extracted and concatenated into a query string
to submit to the server from the AJAX call. Although this method is functional, it has some
drawbacks. First, a form with many elements will cause this code to get long. As new elements
are added, the code will need to be updated. There is another option in the form of a jQuery
method called serialize().

Using the jQuery.serialize method
jQuery provides a seamless way to encode data from an HTML form by traversing the form
that’s passed into it and looking for input boxes to construct and return a query string. Then
the query string can be posted to the server for processing. The preceding code is rewritten
like this:

$("form").submit(function () {
 var qString = $(this).serialize();
 alert(qString);
 $.ajax({
 url: 'processSignUp.aspx',
 type: "POST",
 data: qString,
 success: function (r) {
 }
 });
 return false;
});

In this case, the jQuery.serialize method handles the extraction of the data from all the
input elements and creates the query string. The advantage of using this method— beyond
saving a lot of code—is that the query string is also encoded.

EXAM TIP

The serialize method requires that all elements have the name attribute specified. The preced-
ing code works with the HTML modified as such:

<form id=”signupForm”>
 First Name:
 <input type=”text” id=”firstName” name=”firstName”/>

 Last Name:
 <input type=”text” id=”lastName” name=”lastName”/>

 <button type=”submit”>Submit</button>
</form>

The serialize method acts on any results from the selector that’s passed into the $() seg-
ment of the jQuery. However, the serialize method has some limitations that you should know
about. Only successful controls are serialized—meaning, only controls that are in a valid state.
For input controls such as check boxes and radio buttons, only the ones that are in a selected
state are considered. For radio buttons, because the name attribute must be the same for

	228	 CHAPTER 3	 Access and secure data

them all to be considered in a radio button group, you would specify the value attribute to
differentiate them in the query string:

<input type="radio" name="gender" value="m"/>Male
<input type="radio" name="gender" value="f"/>Female

The jQuery.serialize method makes the code involved to generate a query string of the
parameters from a form much simpler to create and less error prone.

Thought experiment
Saving a form

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

In Objective 3.1, a customer survey was built. Extending this concept, how can you
use the XMLHttpRequest object to post the data captured in the form to the server?
Before submitting the form, how can you process server-side validation in real
time? Add validation to the form so that you can compare an email address entered
against a database of email addresses to ensure that it hasn’t been used before.

Objective summary
■■ Browsers provide native support via the JSON object to work with serializing and

deserializing JSON strings.

■■ The JSON.parse method deserializes a JSON string into an object, and the
JSON.stringify method serializes an object into a JSON string.

■■ By setting the XMLHttpRequest responseType property to the value ‘blob’, you can
retrieve binary data.

■■ By default, the form submit action sends the entire page to the server (based on the
action attribute) for processing.

■■ Handling the submit event allows you to customize how the form data is posted to the
server.

■■ The jQuery.serialize method provides a convenient shortcut to convert specified input
controls into a query string.

	 Objective 3.4: Serialize, deserialize, and transmit data	 CHAPTER 3	 229

Objective review
1.	 Which of the following code lines is the correct way create an object from a JSON

string stored in a variable called jsonString?

A.	 var o = JSON.split(jsonString);

B.	 var o = JSON.stringify(jsonString);

C.	 var o = JSON.parse(jsonString);

D.	 var 0 = JSON.join(jsonString);

2.	 Which of the following code lines allows an XMLHttpRequest to return binary data?

A.	 request.responseType = ‘binary’;

B.	 request.responseType = ‘image/jpg’;

C.	 response.type = ‘blob’;

D.	 request.responseType = ‘blob’;

3.	 How do you control what’s sent to the server when submitting a form?

A.	 Add a submit button to the form.

B.	 Handle the submit event of the form.

C.	 Specify the action attribute of the form element.

D.	 Ensure that all elements on the form have a name.

	230	 CHAPTER 3	 Access and secure data

Answers

This section contains the solutions to the thought experiments and answers to the objective
review questions in this chapter.

Objective 3.1: Thought experiment
You’ve already seen how to get access to the DOM and modify elements through JavaScript.
By using these techniques, you can get a reference to the input controls on the form and,
based on user input in certain elements, this can trigger modification to the validation rules
(for example, change the regular expression validation dynamically). You can get regional
context about a user from the Geolocation API. From this you can derive what part of the
world the user is in and apply the exact validation on the input controls.

Objective 3.1: Review
1.	 Correct answer: C

A.	 Incorrect: A radio button is suited for allowing a single selection.

B.	 Incorrect: A text area is suited for a multi-line text box.

C.	 Correct: Check boxes allow multiple selections.

D.	 Incorrect: A radio button doesn’t allow more than one selection.

2.	 Correct answer: D

A.	 Incorrect: A text box allows data entry but is plainly visible.

B.	 Incorrect: A text area allows data entry but is plainly visible.

C.	 Incorrect: url is a type of text box with special validation rules.

D.	 Correct: A password input type hides the characters being entered.

3.	 Correct answer: B

A.	 Incorrect: A button is generic and must have an event handler to perform custom
logic.

B.	 Correct: The submit button invokes the forms submit action.

C.	 Incorrect: The reset button clears all input fields on the form.

D.	 Incorrect: A radio button is used for a selection list.

	 Answers	 CHAPTER 3	 231

4.	 Correct answer: C

A.	 Incorrect: You can do this with a custom event, but that’s more work than
necessary.

B.	 Incorrect: The goal is to validate the data before submitting the form.

C.	 Correct: The required attribute ensures that a field contains a value before being
submitted.

D.	 Incorrect: A label would be informative but doesn’t guarantee that all the required
fields are populated before submitting.

Objective 3.2: Thought experiment
The safest approach to restricting input data is to restrict the characters that a user can enter
into a specific field. If a field is designed to accept only numeric data, ensure that the valida-
tion on that input control will allow only numeric data. The same is true for dates, text, and
any other input that a user can freely type into. Regular expressions simplify this type of
validation by verifying that only the expected characters are entered. If a text box is expect-
ing a person’s name, don’t allow HTML characters such as the < or > symbols to be input into
the field. Also, restrict the field length so that it matches the type of the data expected. A field
expecting the age of a person doesn’t need to be 500 characters; you can probably get away
with allowing only 3 characters.

Objective 3.2: Review
1.	 Correct answer: A

A.	 Correct: The $ sign denotes the end of the string.

B.	 Incorrect: The % sign doesn’t denote the end of the string.

C.	 Incorrect: The ^ character denotes the start of the string.

D.	 Incorrect: The & character doesn’t denote the end of the string.

2.	 Correct answer: D

A.	 Incorrect: Allows scripts to run

B.	 Incorrect: Only allows content from the same origin

C.	 Incorrect: Allows forms

D.	 Correct: Allows content from the containing HTML document

E.	 Incorrect: Not a valid option

	232	 CHAPTER 3	 Access and secure data

3.	 Correct answer: D

A.	 Incorrect: Credentials aren’t passed with the open method.

B.	 Incorrect: Credentials aren’t passed with the request method.

C.	 Incorrect: Ready state is a property that indicates the current state of the
connection.

D.	 Correct: Credentials are passed only if the server requests them with a return
code 401.

Objective 3.3: Thought experiment
The task assigned here to build a scroll across the top of the page is seen in many websites
today. A stock price ticker is a typical application of this. This solution would potentially incor-
porate different technologies. At its core, you can implement the XMLHttpRequest object to
make a call to an API that provides stock data. When the data is retrieved, you can display in
the browser. Because the solution calls for not posting the entire page, you would need to use
dynamic DOM manipulation to display the results and have them scroll across the top of the
page. Because the quotes must be updated regularly, you would likely include the use of a
timer to poll for the results at a regular interval.

Objective 3.3: Review
1.	 Correct answer: D

A.	 Incorrect: A JSON string isn’t just a comma-separated list.

B.	 Incorrect: A JSON string isn’t a list delimited by semi-colons.

C.	 Incorrect: A JSON string isn’t a list delimited by semi-colons.

D.	 Correct: A JSON string is a series of name/value pairs where the name of the
property is followed by a colon and a quoted string. Multiple name value pairs are
comma separated.

2.	 Correct answer: C

A.	 Incorrect: Response doesn’t provide any direct information.

B.	 Incorrect: responseBody provides the result in binary format.

C.	 Correct: responseText provides the result as text that’s human readable.

D.	 Incorrect: responseXML isn’t a valid property.

	 Answers	 CHAPTER 3	 233

3.	 Correct answer: D

A.	 Incorrect: Credentials aren’t passed with the open method.

B.	 Incorrect: Credentials aren’t passed with the request method.

C.	 Incorrect: Ready state is a property that indicates the current state of the
connection.

D.	 Correct: Credentials are passed only if the server requests them with a return
code 401.

Objective 3.4: Thought experiment
In this application, you now need to know when users finish entering information into a field.
You can use the onblur event for this. By hooking up onblur to the email field, you can use the
XMLHttpRequest object to send a request to the server to validate that the address is unique
and hasn’t been used before. The results of the data evaluation on the server are passed back
in the response and can be used to highlight to users that the data isn’t unique. This provides
a much better user experience in that users don’t need to wait until they fill out the entire
form to have all the fields validated. Did you remember to encode the data before submitting
it to the server to prevent an injection attack?

Objective 3.4: Review
1.	 Correct answer: C

A.	 Incorrect: This isn’t a valid method on the JSON object.

B.	 Incorrect: This method is used to serialize an object into a JSON string.

C.	 Correct: This method is used to deserialize a JSON string into an object.

D.	 Incorrect: This isn’t a valid method on the JSON object.

2.	 Correct answer: D

A.	 Incorrect: ‘binary’ isn’t a valid option for the responseType.

B.	 Incorrect: ‘image/jpg’ isn’t a valid option for the responseType.

C.	 Incorrect: type isn’t a valid property name on the response object.

D.	 Correct: The response object’s responseType property must be set to ‘blob’.

	234	 CHAPTER 3	 Access and secure data

3.	 Correct answer: B

A.	 Incorrect: A submit button submits the entire form to the server by default.

B.	 Correct: Handling the submit event on the form allows you to intercept the form
before submitting and perform custom actions with it.

C.	 Incorrect: The action attribute indicates what server-side page the form should
submit.

D.	 Incorrect: All elements on the form should have a name to use jQuery to serialize
them. However, this has no effect on form submission.

321

allow-same-origin value (sandbox attribute),  217
allow-top-navigation value (sandbox attribute),  217
altering the DOM,  28–34
altKey property, keyboard events,  141
animated UI (CSS3), creating,  288–298

2-D and 3-D transformations,  291–292
adjusting UI based on media queries,  292–297
CSS transitions,  289–290
hiding/disabling controls,  297–298

anonymous functions
callbacks,  167–169
event handling,  134–135

APIs (Application Program Interfaces), 72-84
AppCache API,  77–80
Geolocation API,  81–84
WebSocket, bidirectional communication,  157–161
Web Storage,  72–77
Web Worker,  172–177

AppCache API,  77–80
appearance

styling HTML box properties,  244–249
altering size,  244–245
bordering,  245–247
padding and margin,  247–249

styling HTML text properties
bold,  237
color,  236–237
italic,  238

appendChild method,  29
Application Programming Interfaces.  See APIs
applying styles

elements,  60–68
changing location of element,  61–63
showing/hiding elements,  67–68
transforms,  63–67

HTML box properties,  244–263
appearance attributes,  244–249
element position,  258–263
graphic effects,  249–258

Index

Symbols
2-D transformations, creating an animated UI,  291–292
3-D transformations, creating an animated UI,  291–292
@font-face keyword,  238

A
Abort method,  220
absolute positioning,  61, 259–262
accessing data

consuming data,  218–223
serializing, deserializing, and transmitting

data,  224–228
binary data,  225–228
JSON data,  225
XMLHttpRequest object,  224–225

validating user input, HTML5 elements,  190–209
content attributes,  206–209
input controls,  190–206

validating user input, JavaScript,  211–217
built-in functions,  216
preventing code injection,  216–217
regular expressions,  211–215

addColorStop method,  51
addEventListener method,  133–134, 146
adding HTML5 elements,  22–34

altering the DOM,  28–34
DOM (Document Object Model),  22–23
selecting items in the DOM,  23–28

advanced arrays,  122–125
:after pseudo-element,  304
AFunction method,  89
AJAX, creating dynamic webpages,  161–165
AJAX call, parameters,  164–165
alignment, applying to text,  240
allow-forms value (sandbox attribute),  217

322

arc method

bordering, styling HTML apps,  245–247
border-spacing property,  246
border-style property,  245
border-width property,  246
both value, wrap-flow property,  277
Bottom property, positioning elements,  61
box properties, styling HTML apps,  244–263

appearance attributes,  244–249
altering size,  244–245
bordering,  245–247
padding and margin,  247–249

element position,  258–263
graphic effects,  249–258

background images,  250–251
clipping,  257–258
gradients,  251–252
shadow effects,  252–257
transparency/opacity,  249–250

box-shadow property,  252
break keyword,  115, 129
bubbled events,  136–138
built-in functions, validating user input,  216
button input element, validating user input,  203–206

C
cache parameter, AJAX calls,  164
CACHE section, AppCache API manifest file,  78
callbacks,  156–170

anonymous functions,  167–169
bidirectional communication with WebSocket

API,  157–161
dynamic webpages, jQuery and AJAX,  161–165
this pointer,  169–170
wiring events with jQuery,  165–167

canceling events,  135–136
<canvas> element,  39–58

drawing curves,  43–47
drawing images,  52–53
drawing lines,  41–43
drawing text,  53–55
fill method,  49–52
path methods,  47–48
rect method,  48–49

CanvasGradient objects, filling,  50–52
caret, regular expressions,  212
cascading style sheets. 

See CSS3 (cascading style sheets)
case statements,  115

HTML text properties,  235–242
alignment,  240
bold,  237
color,  236–237
fonts,  238–239
hyphenation,  241–242
italic,  238
spacing,  241

arc method,  43
arrays,  117–120

advanced,  122–125
concat method,  118–119
indexOf and lastIndexOf methods,  119
join method,  119
length property,  118–119
reverse method,  119–120
slice method,  120
sort method,  120
special types,  121–122
splice method,  120

<article> element,  8–9
<aside> element,  11–12
assignment event handling,  133–134
attribute selectors (CSS3),  301
<audio> element,  38–39
autoplay attribute, <video> element,  35
auto value

hyphen property,  241
wrap-flow property,  277

B
background-image property,  250–251
background images, styling HTML apps,  250–251
:before pseudo-element,  304
beginPath method,  41, 47
behavioral program flow,  111
Bezier curves,  46–47
bezierCurveTo method,  43
BFunctionWithParam method,  89
bidirectional communication, WebSocket API,  157–161
binary data, serializing and deserializing,  225–228
blank <canvas> element,  40
blur events,  140
blur parameter

box-shadow property,  252–253
text-shadow property,  256

bold, applying to text,  237
border-color property,  245

323

creating

configuring timeouts and intervals, web worker
process,  180

CONNECTING value, readyState property,  161
consuming data,  218–223

JSON and XML,  219
XMLHttpRequest object,  219–223

content attributes, validating user input,  206–209
pattern specification,  207–208
placeholder attribute,  208
read-only controls,  206–207
required controls,  208–209
spell checker,  207

content elements
<article>,  8–9
<section>,  9–10

content layout,  266–287
flexible box model,  266–273
grid alignment,  280–285
multi-column layout,  273–276
position, floating, and exclusions,  276–279
regions, grouping, and nesting,  286–287

control2X parameter, bezierCurveTo method,  46
control2Y parameter, bezierCurveTo method,  46
controls, input.  See input controls
controls attribute, <video> element,  35
controlX parameter,  45, bezierCurveTo method,  46
controlY parameter,  45, bezierCurveTo method,  46
coordinate system, <canvas> element,  40
coords property,  83
core structure, HTML5 page,  3–4
counterclockwise parameter, drawing arcs,  44
counter increment, for loops,  126
counter variable, for loops,  126
createPattern method,  52
createRadialGradient method,  51
creating

animated UI (CSS3),  288–298
2-D and 3-D transformations,  291–292
adjusting UI based on media queries,  292–297
CSS transitions,  289–290
hiding/disabling controls,  297–298

custom events,  146
document structure,  2–19

HTML5 semantic markup,  2–15
layout containers,  15–16
optimizing for screen readers,  17–19
optimizing for search engines,  16–17

dynamic webpages, jQuery and AJAX,  161–165
objects and methods,  93–100

custom objects,  95–98

catch block (try...catch...finally constructs),  150
center value, text-align property,  240
change events,  139–140
changing location of elements,  61–63
checkbox input type, validating user input,  200–201
:checked pseudo-class,  302
checking for null values, exception handling,  154
checking value, app cache status property),  79
childNodes property,  31
clear method,  73
clear value, wrap-flow property,  277
click events,  141
clientX property, mouse events,  142
clientY property, mouse events,  142
clipping, styling HTML apps,  257–258
clip property,  257–258
CLOSED value, readyState property),  161
close method, WebSocket objects,  161
closePath method,  47
CLOSING value, readyState property,  161
code, writing code to interact with UI controls,  22–58

adding/modifying HTML elements,  22–34
implementing graphics with <canvas>

element,  39–58
implementing media controls,  34–39
SVG (Scalable Vector Graphics),  55–58

code injection, preventing,  216–217
collapse value, visibility property,  68
color, applying to text,  236–237
color input element,  193
color parameter

box-shadow property,  252
text-shadow property,  256

color property,  236
color stop...n paramater, linear-gradient function,  252
column-count property, multi-columns,  274
column-gap property, multi-columns,  274
column-rule-color property, multi-columns,  274
column-rule property, multi-columns,  274
column-rule-style property, multi-columns,  274
column-rule-width property, multi-columns,  274
column-span property, multi-columns,  274
Columns property, multi-columns,  274
column-width property, multi-columns,  274
combining transformations,  67
concat method, arrays,  118–119
conditional operators,  112
conditional program flow,  111
configuration options, background images,  250

324

CSS3 (cascading style sheets)

dynamic,  189
static,  189

date input element,  193
datetime input element,  193
dblclick events,  142
declarative event handling,  132
declaring

bubbled events,  136–138
variables,  87

default audio controls,  39
default media controls,  36
deserializing data,  224–228

binary data,  225–228
JSON data,  225

determinate progress tasks,  13
direction parameter, linear-gradient function,  252
:disabled pseudo-class,  303
disabling controls, CSS3,  297–298
dispatchEvent method,  146
display property,  67, 297
<div> element,  15–16,  266–267
document.createElement method,  29
Document Object Model (DOM)

adding/modifying HTML5 elements,  22–23
altering,  28–34
selecting items,  23–28

documents, creating structure,  2–19
HTML5 semantic markup,  2–15
layout containers,  15–16
optimizing for search engines,  16–17
screen readers,  17–19

DOM (Document Object Model)
adding/modifying HTML5 elements,  22–23
altering,  28–34
events,  139–146

change events,  139–140
drag-and-drop functionality,  143–146
focus events,  140–141
keyboard events,  140–141
mouse events,  141–143

selecting items,  23–28
do...while loops,  128–129
downloading value (app cache status property),  79
drag-and-drop functionality, DOM events,  143–146
dragend events,  143
dragenter events,  143
drag events,  143
dragleave events,  143
dragover events,  143
dragstart events,  143

inheritance,  99–100
native objects,  94

web worker process,  172–180
configuring timeouts and intervals,  180
using web workers,  178–179
Web Worker API,  172–177
web worker limitations,  179–180

CSS3 (cascading style sheets)
creating an animated UI,  288–298

2-D and 3-D transformations,  291–292
adjusting UI based on media queries,  292–297
CSS transitions,  289–290
hiding/disabling controls,  297–298

finding elements using CSS selectors and
jQuery,  300–304

flexible content layout,  266–287
flexible box model,  266–273
grid alignment,  280–285
multi-column layout,  273–276
position, floating, and exclusions,  276–279
regions, grouping, and nesting,  286–287

structuring CSS files using CSS selectors,  305–308
styling HTML

box properties,  244–263
text properties,  235–242

CSS files, structuring with CSS selectors,  305–308
CSS selectors

finding elements,  300–304
structuring CSS files,  305–308

CSS transitions, animating objects,  289–290
ctrlKey property, keyboard events,  141
cubic-bezier value, transition-timing property,  290
currentTime method, <video> element,  38
curves, drawing with <canvas> element,  43–47
customEventHandler function,  146
CustomEvent object constructor,  146
custom events,  146
custom image elements, <video> element,  37
custom objects, creating and implementing,  95–98

D
data

access and security
consuming data,  218–223
serializing, deserializing, and transmitting

data,  224–228
validating user input, HTML5 elements,  190–209
validating user input, JavaScript,  211–217

325

events

radio input type,  201–202
range input type,  202–203
read-only controls,  206–207
required controls,  208–209
spell checker,  207
text and textarea input types,  193–195
url input type,  195–197

writing code to interact with UI controls,  22–58
adding/modifying HTML elements,  22–34
implementing graphics with <canvas>

element,  39–58
implementing media controls,  34–39
SVG (Scalable Vector Graphics,  55–58

element selectors (CSS3),  300–301
else keyword,  113
email input type, validating user input,  198–199
:enabled pseudo-class,  303
enableHighAccuracy property (PositionOptions

object),  81
endAngle parameter, drawing arcs,  44
end value, wrap-flow property,  277
endX parameter, bezierCurveTo method,  45-46
endY parameter,  bezierCurveTo method,  45-46
equality operators,  113
error handling, XMLHttpRequest object,  221
error method,  83
eval function, preventing code injection,  217
evaluating expressions,  112–116

if statements,  113–115
switch statements,  115–116
ternary operators,  116

evenNumberCheck method,  123, 124
event bubbling,  138
event listeners,  131
event objects,  131–132
events

oncached,  80
onchecking,  80
ondownloading,  80
onerror,  80
onnoupdate,  80
onobsolete,  80
onprogress,  80
onreadystatechange,  219
ontimeout,  219
onupdateready,  80
raising and handling,  130–147

addEventListener and removeEventListener
methods,  133–134

anonymous functions,  134–135

drawImage method,  52
drawing, <canvas> element

curves,  43–47
images,  52–53
lines,  41–43
text,  53–55

drop events,  143
dynamic data,  189
dynamic webpages, creating with jQuery and

AJAX,  161–165

E
ease-in-out value, transition-timing property,  290
ease-in value, transition-timing property,  290
ease-out value, transition-timing property,  290
ease value, transition-timing property,  290
elements

adding/modifying,  22–34
altering the DOM,  28–34
DOM (Document Object Model),  22–23
selecting items in the DOM,  23–28

applying styles,  60–68
changing location of element,  61–63
showing/hiding elements,  67–68
transforms,  63–67

<article>,  8–9
<aside>,  11–12
<div>,  15–16,  266–267
<figcaption>,  12–13
<figure>,  12–13
Finding, CSS selectors and jQuery,  300–304
<header> and <footer>,  5
<hgroup>,  7
<mark>,  14
<nav>,  6
position, styling HTML apps,  258–263
<progress>,  13–14
<section>,  9–10
<table>,  15–16
validating user input,  190–209

button element,  205–206
button input type,  203–205
checkbox input type,  200–201
content attributes,  206–209
email input type,  198–199
password input control,  197–198
pattern specification,  207–208
placeholder attribute,  208

326

every method

flow-from property,  286
flow-into property,  286
focus events,  140–141
focusin events,  140
focusout events,  140
font-family property,  238
font object

applying bold to text,  237
applying italic to text,  238

fonts, applying styles to,  238–239
font-size property,  239
font typeface property,  238
font-weight CSS property,  237
<footer> element,  5
forEach method,  124
for...in loops,  127
for loops,  126–127
Form.Submit method, serializing and deserializing

binary data,  226–227

G
Geolocation API,  81–84
getAllResponseHeaders method,  220
getCurrentPosition method, Geolocation API,  81–83
getElementById method,  23, 25, 30, 60
getElementsByClassName method,  23, 26
getElementsByTagName method,  23, 26
getItem method,  73
getResponseHeader method,  220
global namespace, avoiding use when establishing

object scope,  90–91
global scope variables,  87
gradients

filling CanvasGradient objects,  50–52
styling HTML apps,  251–252

graphic effects, styling HTML apps,  249–258
background images,  250–251
clipping,  257–258
gradients,  251–252
implementing <canvas> element,  39–58

drawing curves,  43–47
drawing images,  52–53
drawing lines,  41–43
drawing text,  53–55
fill method,  49–52
path methods,  47–48
rect method,  48–49

shadow effects,  252–257

assignment event handling,  133–134
bubbled events,  136–138
canceling events,  135–136
custom events,  146
declarative event handling,  132
DOM events,  139–146
event objects,  131–132

wiring with jQuery,  165–167
every method,  122–123
exception handling,  111, 149–154

checking for null values,  154
try...catch...finally constructs,  149–154

exclusions, flexible content layout,  276–279
expression element, for loops,  126
expressions

evaluating,  112–116
if statements,  113–115
switch statements,  115–116
ternary operators,  116

regular, validating user input,  211–215

F
FALLBACK section, AppCache API manifest file,  78
<figcaption> element,  12–13
<figure> element,  12–13
fill method, <canvas> element,  49–52
fillRect method,  49
fillStyle property,  50
filter method,  124
finally block (try...catch...finally constructs),  151
:first-child pseudo-element,  303
firstChild property,  31
:first-letter pseudo-element,  303
:first-line pseudo-element,  304
fixed positioning,  258–259
flex-direction style, flexible box,  267
flexible box model, content layout,  266–273
flexible content layout,  266–287

flexible box model,  266–273
grid alignment,  280–285
multi-column layout,  273–276
position, floating, and exclusions,  276–279
regions, grouping, and nesting,  286–287

flex-pack style, flexible box,  267
flex-wrap property,  272–273
float

flexible content layout,  276–279
property,  262–263

327

HTML5 semantic markup

inheritance,  99–100
native objects,  94

creating structure,  2–19
HTML5 semantic markup,  2–15
layout containers,  15–16
optimizing for search engines,  16–17
screen readers,  17–19

establishing scope of objects and variables,  86–91
avoiding use of global namespace,  90–91
leveraging the this keyword,  91
lifetime,  87–90

HTML5 APIs,  72–84
AppCache API,  77–80
Geolocation API,  81–84
Web Storage,  72–77

HTML5 elements.  See also HTML5 semantic markup
adding/modifying,  22–34

altering the DOM,  28–34
DOM (Document Object Model),  22–23
selecting items in the DOM,  23–28

applying styles,  60–68
changing location of element,  61–63
showing/hiding elements,  67–68
transforms,  63–67

<table>,  15–16
validating user input,  190–209

button element,  205–206
button input type,  203–205
checkbox input type,  200–201
content attributes,  206–209
email input type,  198–199
password input control,  197–198
pattern specification,  207–208
placeholder attribute,  208
radio input type,  201–202
range input type,  202–203
read-only controls,  206–207
required controls,  208–209
spell checker,  207
text and textarea input types,  193–195
url input type,  195–197

writing code to interact with UI controls,  22–58
adding/modifying HTML elements,  22–34
implementing graphics with <canvas>

element,  39–58
implementing media controls,  34–39
SVG (Scalable Vector Graphics,  55–58

HTML5 semantic markup,  2–15.  See also HTML5
elements

<article> element,  8–9

transparency/opacity,  249–250
grid alignment, content layout,  280–285
grid-column-span property,  285
grid-columns property,  282
grid-row-span property,  285
grid-rows property,  282
grouping content,  286–287

H
handling

errors, XMLHttpRequest object,  221
events,  130–147

addEventListener and removeEventListener
methods,  133–134

anonymous functions,  134–135
assignment event handling,  133–134
bubbled events,  136–138
canceling events,  135–136
custom events,  146
declarative event handling,  132
DOM events,  139–146
event objects,  131–132

exceptions,  111, 149–154
checking for null values,  154
try...catch...finally constructs,  149–154

hasChildNodes property,  31
<header> element,  5
height attribute, <video> element,  35
height parameter, rect method,  48
hexadecimal value, color property,  236
<hgroup> element,  7
hidden value, visibility property,  68
hiding

controls, CSS3,  297–298
elements,  67–68

hooking up events,  131
:hover pseudo-class,  302
h-shadow parameter

box-shadow property,  252
text-shadow property,  256

HTML5 APIs,  72–84
AppCache API,  77–80
Geolocation API,  81–84
Web Storage,  72–77

HTML5 documents
creating and implementing objects and

methods,  93–100
custom objects,  95–98

328

HTML applications, styling

arrays,  117–120
callbacks,  156–170
evaluating expressions,  112–116
exception handling,  149–154
iterative control flow,  125–129
raising and handling events,  130–147
special types of arrays,  121–122
web worker process,  172–180

!important keyword, overriding inheritance,  307–308
increment, for loops,  126
indeterminate progress tasks,  14
indexed positions, arrays,  117
indexOf method,  119
inheritance,  99–100, 307–308
inherit value, visibility property,  68
inline display,  68
input controls, validating user input,  190–206

button element,  205–206
button input type,  203–205
checkbox input type,  200–201
email input type,  198–199
password input control,  197–198
radio input type,  201–202
range input type,  202–203
text and textarea input types,  193–195
url input type,  195–197

insertBefore method,  30
inset parameter, box-shadow property,  252, 255
intervals, web worker process,  180
isFinite function, validating data,  216
isNaN function, validating data,  216
italic, applying to text,  238
iterative flow control,  125–129

do...while loops,  128–129
for...in loops,  127
for loops,  126–127
short circuiting loops,  129
while loops,  127–128

iterative program flow,  111

J
JavaScript

validating user input,  211–217
built-in functions,  216
preventing code injection,  216–217
regular expressions,  211–215

writing code to interact with UI controls,  22–58
adding/modifying HTML elements,  22–34

<aside> element,  11–12
core structure of an HTML5 page,  3–4
<div> element,  15–16
<figcaption> and <figure> elements,  12–13
<header> and <footer> elements,  5
<hgroup> element,  7
<mark> element,  14
<nav> element,  6
<progress> element,  13–14
<section> element,  9–10

HTML applications, styling
box properties,  244–263

appearance attributes,  244–249
element position,  258–263
graphic effects,  249–258

text properties,  235–242
alignment,  240
bold,  237
color,  236–237
fonts,  238–239
hyphenation,  241–242
italic,  238
spacing,  241

hyphenation, applying to text,  241–242
hyphen property,  241

I
identity operators,  113
idle value, app cache staus property,  79
if keyword,  113
iFrames, preventing code injection,  217
if statements,  113–115
images, drawing with <canvas> element,  52–53
implementation

document structure and objects
applying styling to HTML5 elements,  60–68
creating and implementing objects and

methods,  93–100
creating document structure,  2–19
establishing scope of objects and

variables,  86–91
HTML5 APIs,  72–84

graphics, <canvas> element,  39–58
media controls,  34–39

<audio> element,  38–39
<video> element,  35–38

program flow,  112–129
advanced arrays,  122–125

329

map method

layout containers, creating document structure,  15–16
layout, content,  266–287

flexible box model,  266–273
grid alignment,  280–285
multi-column layout,  273–276
position, floating, and exclusions,  276–279
regions, grouping, and nesting,  286–287

left property, positioning elements,  61
left value, text-align property,  240
length property

arrays,  118–119
storage objects,  73

leveraging, this keyword,  91
lifetime, variables and variable scope,  87–90
limitations, web workers,  179–180
linear-gradient function,  251–252
linear gradients,  51
linear value, transition-timing property,  290
lineCap property,  43
lines, drawing with <canvas> element,  41–43
lineTo method,  41
lineWidth property,  42
:link pseudo-class,  302
LoadFromStorage method,  74
local scope variables,  87
localStorage object,  72
local Web storage,  72
location services, Geolocation API,  81–84
logical operators,  112
loop attribute, <video> element,  35
loops

do...while,  128–129
for,  126–127
for...in,  127
short circuiting,  129
while,  127–128

M
manifest file, AppCache API,  77–79
manipulation, document structure and objects

applying styling to HTML5 elements,  60–68
creating and implementing objects and

methods,  93–100
creating document structure,  2–19
establishing scope of objects and variables,  86–91
HTML5 APIs,  72–84

manual value, hyphen property,  241
map method,  125

implementing graphics with <canvas>
element,  39–58

implementing media controls,  34–39
SVG (Scalable Vector Graphics,  55–58

JavaScript alert method,  25
JavaScript messaging framework, Web Worker API

and,  176
JavaScript Object Notification (JSON) strings,  76
join method,  119
jQuery,  28

creating dynamic webpages,  161–165
finding elements,  300–304
wiring events,  165–167

jQuery.serialize method, serializing and deserializing
binary data,  227–228

JSON data
consuming data,  219
serializing and deserializing,  225

JSON (JavaScript Object Notification) strings,  76
justify value, text-align property,  240

K
keyboard events,  140–141
keyCode property, keyboard events,  141
keydown events,  140
key method,  73
keypress events,  140
keyup events,  140
keywords

break,  115, 129
else,  113
@font-face,  238
if,  113
!important, overriding inheritance,  307–308
leveraging this keyword,  91
new,  117
optional default,  115
self,  177
switch,  115
throw,  153
var, declaring variables,  87

L
lastChild property,  31
lastIndexOf method,  119

330

margins, styling HTML apps

getItem,  73
getResponseHeader,  220
indexOf,  119
insertBefore,  30
JavaScript alert,  25
join,  119
jQuery.serialize, serializing and deserializing binary

data,  227–228
key,  73
lastIndexOf,  119
lineTo,  41
LoadFromStorage,  74
map,  125
moveTo,  41, 45
multiplyNumbers,  154
MyCallBack,  156
object.create,  99
onerror, Worker objects,  177
onmessage, Worker objects,  176
Open,  220
path, <canvas> element,  47–48
pause(),  38
play(),  38
pop,  121
postMessage

passing parameters,  179
Worker objects,  176

push,  121
quadradicCurveTo,  43
quadraticArc,  45
quadraticCurveTo,  45
querySelector,  23,  27–28
querySelectorAll,  23, 27–28
rect, <canvas> element,  48–49
reduce,  125
reduceRight,  125
removeChild,  32
removeEventListener,  133–134
removeItem,  73
removeNode,  32
replaceChild,  33
replaceNode,  33
reverse,  119–120
rotate, applying transforms to elements,  64–65
scale, applying transforms to elements,  66
Send,  220
setInterval,  180
setItem,  73
setRequestHeader,  220

margins, styling HTML apps,  247–249
<mark> element,  14
matrix 3-D transformation,  291
max attribute, <progress> element,  13
maximumAge property (PositionOptions object),  82
maximum value, wrap-flow property,  277
media controls,  34–39

<audio> element,  38–39
<video> element,  35–38

media queries, adjusting UI animation,  292–297
message property, exception objects,  150
methods

Abort,  220
addColorStop,  51
addEventListener,  133–134, 146
AFunction,  89
appendChild,  29
arc,  43
beginPath,  41, 47
bezierCurveTo,  43
BFunctionWithParam,  89
clear,  73
closePath,  47
close, WebSocket objects,  161
concat,  118–119
createPattern,  52
createRadialGradient,  51
creating and implementing,  93–100

custom objects,  95–98
inheritance,  99–100
native objects,  94

currentTime,  38
dispatchEvent,  146
document.createElement,  29
drawImage,  52
error,  83
evenNumberCheck,  123, 124
every,  122–123
fill, <canvas> element,  49–52
fillRect,  49
filter,  124
forEach,  124
Form.Submit, serializing and deserializing binary

data,  226–227
getAllResponseHeaders,  220
getCurrentPosition (Geolocation API),  81–83
getElementById,  23, 25, 30, 60
getElementsByClassName,  23, 26
getElementsByTagName,  23, 26

331

overriding inheritance, !important keyword

new keyword,  117
none value, hyphen property,  241
null values, exception handling,  154
number input element,  193
number property, exception objects,  150

O
object.create method,  99
object inheritance,  99–100
objects

creating and implementing,  93–100
custom objects,  95–98
inheritance,  99–100
native objects,  94

scope,  86–91
avoiding use of global namespace,  90–91
leveraging the this keyword,  91
lifetime,  87–90

Obsolete value, app cache status property,  79
offsetX property, mouse events,  142
offsetY property, mouse events,  142
oncached event,  80
onchecking event,  80
ondownloading event,  80
onerror event,  80
onerror method, Worker objects,  177
onmessage event handlers,  160
onmessage method, Worker objects,  176
onnoupdate event,  80
onobsolete event,  80
onprogress event,  80
onreadystatechange event,  219
ontimeout event,  219
onupdateready event,  80
opacity property,  249–250
opacity, styling HTML apps,  249–250
Open method,  220
OPEN value, readyState property,  161
operators

conditional,  112
equality,  113
identity,  113
logical,  112
ternary,  116

optional default keyword,  115
OR logical operator,  114
overriding inheritance, !important keyword,  307–308

setTimeout,  180
shift,  121–122
skew, applying transforms to elements,  66
slice,  120
some,  123
sort,  120
splice,  120
stroke,  41
strokeText,  53
success,  83
swapCache,  79
terminate, Worker objects,  176
translate, applying transforms to elements,  65
translateX,  65
translateY,  65
unshift,  121–122
update,  79
volume,  38
watchPosition (Geolocation API),  83–84
WillCallBackWhenDone,  156
WorkWithCanvas,  153

modifying HTML5 elements,  22–34
altering the DOM,  28–34
DOM (Document Object Model),  22–23
selecting items in the DOM,  23–28

month input element,  193
mousedown events,  142
mouseenter events,  142
mouse events,  141–143
mouseleave events,  142
mousemove events,  142
mouseover events,  142
mouseup events,  142
moveTo method,  41, 45
multi-column layout, content,  273–276
multi-dimensional arrays,  117
multiplyNumbers method,  154
MyCallBack function,  156

N
named flow,  286
name property, exception objects,  150
native objects, creating and implementing,  94
<nav> element,  6
nesting conditional statements,  114
nesting content,  286–287
NETWORK section, AppCache API manifest file,  78

332

padding, styling HTML apps

iterative flow control,  125–129
raising and handling events,  130–147

addEventListener and removeEventListener
methods,  133–134

anonymous functions,  134–135
assignment event handling,  133–134
bubbled events,  136–138
canceling events,  135–136
custom events,  146
declarative event handling,  132
DOM events,  139–146
event objects,  131–132

special types of arrays,  121–122
web worker process,  172–180

configuring timeouts and intervals,  180
using web workers,  178–179
Web Worker API,  172–177
web worker limitations,  179–180

<progress> element,  13–14
properties

background-image,  250–251
border-color,  245
border-spacing,  246
border-style,  245
border-width,  246
Bottom,  61
box-shadow,  252
clip,  257–258
color,  236
coords,  83
display,  67, 297
DOM elements,  31
exception objects,  150
fillStyle,  50
flex-wrap,  272–273
float,  262–263
flow-from,  286
flow-into,  286
font-family,  238
font-size,  239
font typeface,  238
font-weight,  237
grid-columns,  282
grid-column-span,  285
grid-rows,  282
grid-row-span,  285
hyphen,  241
keyboard events,  141
Left,  61
length

P
padding, styling HTML apps,  247–249
parameters

AJAX call,  164–165
bezierCurveTo method,  46
box-shadow property,  252
drawing arcs,  44
linear-gradient function,  251–252
postMessage method,  179
quadraticCurveTo method,  45–46
rect method,  48
text-shadow property,  256–257
WebSocket constructors,  159
XMLHttpRequest open method,  221

passing parameters, postMessage method,  179
password input control, validating user input,  197–198
path methods, <canvas> element,  47–48
pattern attribute, validating user input,  207–208
pause() method, <video> element,  38
placeholder attribute, validating user input,  208
play() method, <video> object,  38
polyline,  42
pop method,  121
positionError object,  83
PositionOptions object, properties available,  81
position property,  258–259
poster attribute, <video> element,  35
postMessage method, passing parameters,  179
preventing code injection,  216–217
program flow,  112–129

advanced arrays,  122–125
arrays,  117–120
behavioral,  111
callbacks,  156–170

anonymous functions,  167–169
bidirectional communication with WebSocket

API,  157–161
dynamic webpages, jQuery and AJAX,  161–165
this pointer,  169–170
wiring events with jQuery,  165–167

conditional,  111
evaluating expressions,  112–116

if statements,  113–115
switch statements,  115–116
ternary operators,  116

exception handling,  149–154
checking for null values,  154
try...catch...finally constructs,  149–154

iterative,  111

333

scale 3-D transformation

raising an error (throwing an exception),  153
raising events,  130–147

addEventListener and removeEventListener
methods,  133–134

anonymous functions,  134–135
assignment event handling,  133–134
bubbled events,  136–138
canceling events,  135–136
custom events,  146
declarative event handling,  132
DOM events,  139–146
event objects,  131–132

range input type, validating user input,  202–203
readonly attribute, validating user input,  206–207
readyState property,  160–161, 220
rect method, <canvas> element,  48–49
reduce method,  125
reduceRight method,  125
referencing elements, CSS files,  306–307
regions, content layout,  286–287
regular expressions, validating user input,  211–215
relative positioning,  61, 259–261
removeChild method,  32
removeEventListener method,  133–134
removeItem method,  73
removeNode method,  32
replaceChild method,  33
replaceNode method,  33
:required pseudo-class,  302
required controls, validating user input,  208–209
reset input element,  193, 204
responseBody property (XMLHttpRequest object),  220
Response property (XMLHttpRequest object),  220
responseText property (XMLHttpRequest object),  220
responseType property (XMLHttpRequest object),  220
responseXML property (XMLHttpRequest object),  220
reverse method,  119–120
RGB function, color property,  236
Right property, positioning elements,  61
right value, text-align property,  240
rotate 3-D transformation,  291
rotate method, applying transforms to elements,  64–65
row-reverse, flexbox content,  269

S
sandbox attribute values,  217
Scalable Vector Graphics (SVG),  55–58
scale 3-D transformation,  291

arrays,  118–119
storage objects,  73

lineCap,  43
lineWidth,  42
mouse events,  142
multi-column,  274
opacity,  249–250
position,  258–259
PositionOptions object,  81
readyState,  160–161
Right,  61
success, AJAX calls,  164
text-align,  240
textAlign,  54
text-indent,  240
text-shadow,  252, 256–257
timestamp,  83
Top,  61
transform,  63
transition-delay,  290
transition-duration,  290
transition-property,  290
transition-timing,  290
<video> element,  35, 38
visibility,  68, 297
visibility CSS,  68
window.navigator,  81
wrap-flow,  276–279
wrap-margin,  278
XMLHttpRequest object,  220
z-index,  261

pseudo-classes, finding elements,  301–304
pseudo-elements, finding elements,  301–304
push method,  121

Q
quadraticArc method,  45
quadraticCurveTo method,  43, 45
querySelectorAll method,  23, 27–28
querySelector method,  23, 27–28
queues (arrays),  121

R
radial gradients,  51
radio input type, validating user input,  201–202
radius parameter, drawing arcs,  44

334

scale method, applying transforms to elements

short circuiting loops,  129
showing elements,  67–68
size, styling HTML box properties,  244–245
sizing arrays,  117
skew method, applying transforms to elements,  66
slice method,  120
some method,  123
sort method,  120
spacing, applying to text,  241
special arrays,  121–122
special characters, regular expressions,  212–213
spellcheck attribute, validating user input,  207
splice method,  120
spread parameter, box-shadow property,  252-254
src attribute, <video> element,  35
stacked case statements,  116
stacks (arrays),  121
startAngle parameter, drawing arcs,  44
start value, wrap-flow property,  277
statements

if,  113–115
switch,  115–116

static data,  189
static layout,  258
status property

AppCace API,  79
XMLHttpRequest object,  220

statusText property (XMLHttpRequest object),  220
stroke method,  41
strokeText method,  53
structure, creating document structure,  2–19

HTML5 semantic markup,  2–15
layout containers,  15–16
optimizing for search engines,  16–17
screen readers,  17–19

structuring CSS files, CSS selectors,  305–308
style selectors (CSS3),  300–301
styles, flexible boxes,  267
styling HTML, 60-68

box properties,  244–263
appearance attributes,  244–249
element position,  258–263
graphic effects,  249–258

text properties,  235–242
alignment,  240
bold,  237
color,  236–237
fonts,  238–239
hyphenation,  241–242
italic,  238

scale method, applying transforms to elements,  66
scope, objects and variables,  86–91

avoiding use of global namespace,  90–91
leveraging the this keyword,  91
lifetime,  87–90

screen readers, creating document structure,  17–19
screenX property, mouse events,  142
screenY property, mouse events,  142
search engine optimization (SEO),  16–17
search engines, creating document structure,  16–17
<section> element,  9–10
secure data

consuming data,  218–223
serializing, deserializing, and transmitting

data,  224–228
binary data,  225–228
JSON data,  225
XMLHttpRequest object,  224–225

validating user input, HTML5 elements,  190–209
content attributes,  206–209
input controls,  190–206

validating user input, JavaScript,  211–217
built-in functions,  216
preventing code injection,  216–217
regular expressions,  211–215

selectors (CSS3), finding elements,  300–304
choosing the correct selector to reference an

element,  301
defining element, style, and attribute

selectors,  300–301
selector syntax, jQuery,  165
self keyword,  177
Send function, WebSocket API,  160
Send method,  220
SEO (search engine optimization),  16–17
serializing data,  224–228

binary data,  225–228
JSON data,  225

sessionStorage object,  72
session Web storage,  72
setInterval method,  180
setItem method,  73
setRequestHeader method,  220
setTimeout method,  180
shadow effects, styling HTML apps,  252–257
shapes

fill method,  49–52
rect method,  48–49

shiftKey property, keyboard events,  141
shift method,  121–122

335

user input, validating

transitions (CSS), animating objects,  289–290
transition-timing-property,  290
translate 3-D transformation,  291
translate method, applying transforms to elements,  65
translateX method,  65
translateY method,  65
transmitting data,  224–228
transparency, styling HTML apps,  249–250
try block (try...catch...finally constructs),  150
try…catch block (try...catch...finally constructs),  150
try...catch...finally constructs, exception

handling,  149–154
two-dimensional arrays,  118

U
UI controls, writing code to interact with,  22–58

adding/modifying HTML elements,  22–34
implementing graphics with <canvas> element,  39–

58
implementing media controls,  34–39
SVG (Scalable Vector Graphics,  55–58

Uncached value, app cache status property,  79
unshift method,  121–122
update method,  79
UpdateReady value, app cache status property,  79
url input type, validating user input,  195–197
user input, validating

HTML5 elements,  190–209
button element,  205–206
button input type,  203–205
checkbox input type,  200–201
content attributes,  206–209
email input type,  198–199
password input control,  197–198
pattern specification,  207–208
placeholder attribute,  208
radio input type,  201–202
range input type,  202–203
read-only controls,  206–207
required controls,  208–209
spell checker,  207
text and textarea input types,  193–195
url input type,  195–197

JavaScript,  211–217
built-in functions,  216
preventing code injection,  216–217
regular expressions,  211–215

spacing,  241
submit input element,  193, 204
subworkers, web worker process,  180
success method,  83
success property, AJAX calls,  164
SVG (Scalable Vector Graphics),  55–58
swapCache method,  79
switch keyword,  115
switch statements,  115–116

T
<table> element,  15–16
tel input element,  193
terminate method, Worker objects,  176
ternary operators,  116
text-align property,  54, 240
textarea input control, validating user input,  193–195
text, drawing with <canvas> element,  53–55
text drop shadows.  See shadow effect
text-indent property,  240
text input control, validating user input,  193–195
text-shadow property,  252, 256–257
text, styling HTML properties,  235–242

alignment,  240
bold,  237
color,  236–237
fonts,  238–239
hyphenation,  241–242
italic,  238
spacing,  241

this keyword, leveraging,  91
this pointer,  169–170
throwing an exception (raising an error),  153
throw keyword,  153
time input element,  193
timeout property

PositionOptions object,  81
XMLHttpRequest object,  220

timeouts, web worker process,  180
timestamp property,  83
top property, positioning elements,  61
transformations, creating an animated UI,  291–292
transform property,  63
transforms, applying to HTML5 elements,  63–67
transition-delay property,  290
transition-duration property,  290
transition-property property,  290

336

validating user input

Web Storage API,  72–77
Web Worker API,  172–177
web worker process, creating,  172–180

configuring timeouts and intervals,  180
using web workers,  178–179
Web Worker API,  172–177
web worker limitations,  179–180

web workers,  178–179
week input element,  193
while loops,  127–128
width parameter

rect method,  48
<video> element,  35

WillCallBackWhenDone function,  156
window.navigator property,  81
wiring events, jQuery,  165–167
withCredentials property (XMLHttpRequest

object),  220
Worker objects,  176
WorkWithCanvas method,  153
wrap-flow property,  276–279
wrap-margin property,  278
writing code, interaction with UI controls,  22–58

adding/modifying HTML elements,  22–34
implementing graphics with <canvas>

element,  39–58
implementing media controls,  34–39
SVG (Scalable Vector Graphics,  55–58

X
XML data, consuming data,  219
XMLHttpRequest object

consuming data,  219–223
properties,  220
transmitting data,  224–225

x, y parameter, rect method,  48

Z
z-index property,  261

V
validating user input

HTML5 elements,  190–209
button element,  205–206
button input type,  203–205
checkbox input type,  200–201
content attributes,  206–209
email input type,  198–199
password input control,  197–198
pattern specification,  207–208
placeholder attribute,  208
radio input type,  201–202
range input type,  202–203
read-only controls,  206–207
required controls,  208–209
spell checker,  207
text and textarea input types,  193–195
url input type,  195–197

JavaScript,  211–217
built-in functions,  216
preventing code injection,  216–217
regular expressions,  211–215

value attribute, <progress> element,  13
values

hyphen property,  241
status property (AppCace API),  79
text-align property,  240
visibility property,  68

variables, scope,  86–91
avoiding use of global namespace,  90–91
leveraging the this keyword,  91
lifetime,  87–90

var keyword, declaring variables,  87
<video> element,  35–38
visibility property,  68, 297
visible value, visibility property,  68
:visited pseudo-class,  302
volume method, <video> element,  38
v-shadow parameter

box-shadow property,  252
text-shadow property,  256

W
watchPosition method, Geolocation API,  83–84
web services, consuming JSON and XML data,  219
WebSocket API, bidirectional communication,  157–161
WebSocket constructors, parameters,  159

	Contents
	Introduction
	Microsoft certifications
	Free ebooks from Microsoft Press
	Errata, updates, & book support
	We want to hear from you
	Stay in touch
	Preparing for the exam

	Chapter 3 Access and secure data
	Objective 3.1: Validate user input by using HTML5 elements
	Choosing input controls
	Implementing content attributes
	Objective summary
	Objective review

	Objective 3.2: Validate user input by using JavaScript
	Evaluating regular expressions
	Evaluating regular expressions in JavaScript
	Validating data with built-in functions
	Preventing code injection
	Objective summary
	Objective review

	Objective 3.3: Consume data
	Consuming JSON and XML data by using web services
	Using the XMLHttpRequest object
	Objective summary
	Objective review

	Objective 3.4: Serialize, deserialize, and transmit data
	Sending data by using XMLHttpRequest
	Serializing and deserializing JSON data
	Serializing and deserializing binary data
	Objective summary
	Objective review

	Answers

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

