

Build Windows 8
Apps with HTML5 and
JavaScript

Dino Esposito
Francesco Esposito

Copyright © 2013 by Dino Esposito
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-7594-0

1 2 3 4 5 6 7 8 9 LSI 8 7 6 5 4 3

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions and Developmental Editor: Russell Jones

Production Editor: Christopher Hearse

Editorial Production: S4Carlisle Publishing Services

Technical Reviewer: Russ Mullen

Indexer: Angela Howard

Cover Design: Jake Rae

Cover Composition: Karen Montgomery

Illustrator: S4Carlisle Publishing Services

To Michela and Silvia, who are stronger and smarter than they
think.

—Dino

To Grandma Concetta, for providing free calories through
amazing quantities of unbeatable homemade prosciutto.

—Francesco

Contents at a glance

Introduction	 xiii

Chapter 1	 Using Visual Studio 2012 Express edition for Windows 8	 1

Chapter 2	 Making sense of HTML5	 23

Chapter 3	 Making sense of CSS	 47

Chapter 4	 Making sense of JavaScript	 73

Chapter 5	 First steps with Windows 8 development	 97

Chapter 6	 The user interface of Windows Store applications	 121

Chapter 7	 Navigating through multimedia content	 147

Chapter 8	 States of a Windows 8 application	 177

Chapter 9	 Integrating with the Windows 8 environment	 201

Chapter 10	 Adding persistent data to applications	 235

Chapter 11	 Working with remote data	 265

Chapter 12	 Accessing devices and sensors	 291

Chapter 13	 Adding Live tiles	 319

Chapter 14	 Publishing an application	 335

Index	 351

		 vii

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Contents

Introduction. xiii

Chapter 1	 Using Visual Studio 2012 Express edition
for Windows 8	 1

Getting ready for development. 2

The software you need. 2

Configuring Visual Studio 2012. 5

Start playing with Windows 8 apps . 9

The “Hello Windows 8” application . 10

Adding a bit more action. 16

Summary. .21

Chapter 2	 Making sense of HTML5	 23
Elements of a webpage . 24

Building the page layout with HTML5. 24

Miscellany of other new elements. .32

Collecting data . 34

Adjusting input fields . 35

Form submission . 38

Multimedia elements. 41

The audio element. 41

The video element. 42

Summary. .45

viii	 Contents

Chapter 3	 Making sense of CSS	 47
Styling a webpage . 47

Adding CSS information to pages. 48

Selecting elements to style . 51

Basic style commands . 55

Setting colors . 55

Controlling text. .58

HTML display modes. 60

Spacing and the boxing model. 63

Advanced CSS scenarios . 66

CSS pseudo-classes . 66

Media Queries . 70

Summary. .71

Chapter 4	 Making sense of JavaScript	 73
Language basics. 74

The JavaScript type system. 74

Dealing with variables. 77

Dealing with objects. 79

Dealing with functions . 81

Organizing your own JavaScript code. 89

Linking JavaScript code to pages . 89

Practices and habits. 92

Summary. .94

Chapter 5	 First steps with Windows 8 development	 97
The Windows 8 Runtime (WinRT) . 98

Windows Store apps and other apps. 98

An overview of the WinRT API. 100

The Windows Store app user interface . 102

Aspects of the Windows 8 UI. 102

Inspiring principles of the Windows 8 UI. 104

	 Contents	 ix

Components for the presentation layer. 107

Data binding. 112

Understanding the application’s lifecycle . 116

States of a Windows Store application . 116

Background tasks. 119

Summary. .120

Chapter 6	 The user interface of Windows Store applications	 121
Foundation of Windows Store applications. 121

Defining the layout of the application . 122

Application attributes. 129

Getting serious with the TodoList application. 132

Building an interactive form. 133

Putting data into the form. 138

Summary. .146

Chapter 7	 Navigating through multimedia content	 147
Foundation of page navigation. 147

The navigation model of Windows Store applications. 147

Inside the Navigation App template. 149

Building a gallery of pictures . 152

Introducing the FlipView component. 152

Navigating to a detail page. 156

Zooming the image in and out. 161

Building a video clip gallery. 165

Introducing the SemanticZoom component. 165

Dealing with video. 172

Summary. 174

Chapter 8	 States of a Windows 8 application	 177
States of a Windows Store application . 177

Full-screen view states. 178

x	 Contents

Snapping applications. 179

Making the application reactive. 182

Towards an adaptive layout . 188

General principles of snapped and filled views 188

Fluid layouts . 189

Summary. .200

Chapter 9	 Integrating with the Windows 8 environment	 201
Contracts and common tasks. 202

Aspects of Windows 8 contracts. 202

Contracts and extensions. 204

Consuming the File picker contract. 206

Choosing a file to save data. 207

Choosing a file to load data. 214

The Share contract. 216

Publishing an application’s data. 216

Adding share source capabilities to TodoList. 217

Providing a Settings page. 224

Populating the Settings charm . 224

Creating a functional Settings page. 227

Summary. .233

Chapter 10	 Adding persistent data to applications	 235
Persisting application objects. 235

Making Task objects persistent. 236

Choosing a serialization format. 240

Creating Task objects from files . 243

Using the application’s private storage. 247

Storage options in Windows 8 . 248

Creating tasks in the isolated storage . 251

Summary. .264

	 Contents	 xi

Chapter 11	 Working with remote data	 265
Working with RSS data. 265

Getting remote data. 266

Parsing and displaying downloaded data. 272

Drilling down into data. 276

Working with JSON data. 278

Laying out a Flickr viewer. 279

Enhancing the application . 285

Summary. .290

Chapter 12	 Accessing devices and sensors	 291
Working with the webcam . 291

Capturing the webcam stream . 292

Processing captured items. 297

Working with the printer. 301

The Print contract. 301

Printing context-specific content . 305

Working with the GPS system. 309

Detecting latitude and longitude. 309

Making use of geolocation data. 312

Summary. .318

Chapter 13	 Adding Live tiles	 319
What’s a Live tile anyway?. 319

Tiles in action. 320

Creating Live tiles for a basic application . 323

Adding Live tiles to an existing application .326

Bringing back the TodoList application .326

Implementation of Live tiles. 328

Summary. .333

xii	 Contents

Chapter 14	 Publishing an application	 335
Getting a developer account . 336

Registering as a developer of free applications. 336

Registering as a developer of paid applications. 339

Steps required to publish an application . 340

Choosing a name for the application. 340

Packaging an application .342

Sideloaded applications. 349

Summary. .349

Index	 351

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

		 xiii

Introduction

For years, programming has been the nearly exclusive domain of people that others
typically thought of as super-experts, gurus, or geniuses. The advent of mobile

programming, however, changed things a bit because the idea of programming for
these devices regained its appeal for youngsters. Today, a teenager appearing suddenly
in the spotlight due to his or her ability to build a cool Android or iPhone app is not
uncommon. There are a few reasons why this is happening, and why it’s happening
now.

One reason is certainly that today’s teenagers are the first generation of digital
natives. You’re far more likely to find a few programmers among this group than among
the members of previous generations. Another reason is that mobile apps are much
easier to write than any other type of modern software. Mobile apps are small pieces of
code built around a smart idea. It’s one thing to build a mobile app, and quite another
to plan and maintain a multitiered enterprise system.

Being mobile added a new dimension to software development. In this context,
Windows Phone is not simply yet another mobile platform to code for; It is by far the
simplest (and even most pleasant) platform to code for, regardless of background. This
makes coding for Windows Phone an excellent way to get started with programming.
This is particularly true for the smart kids who constantly hunger after new technology
and seek emotional gratification in that technology. I’ve seen this happen with my
14-year-old son, Francesco—who is the effective coauthor of this book.

Microsoft Windows 8 takes the “programming with pleasure” approach one step
further. With Windows 8, you can not only build mobile apps for tablets, but also
build standalone applications for yourself, either for fun or to help automate some of
the repetitive tasks of everyday life. Windows 8, with its overall simplicity, brings back
a dimension of craftsmanship in applications that went missing as the complexity of
software architectures and websites increased over the past decade or so. On one hand,
Windows 8 is a powerful client front end for rich and sophisticated middleware; on the
other, it is simple enough for nearly everybody to program via HTML5 and JavaScript.

This book is intended as a quick (but juicy) beginner’s guide for getting started
crafting Windows 8 applications, and how to publish and sell them through the
Windows Store. The key point of this book is to make it clear that if you have a good
idea and are a quick learner, you can create a Windows 8 app regardless of your age
or programming background. You’ll see how to write functional applications for the
new Microsoft operating system and have them run on desktop computers, as well as

xiv   Introduction

tablets. As evidence, consider that Francesco is a teenager—and he wrote most of the
examples and a few chapters of this book.

After completing the book, you won’t be a super-expert, but you’ll surely know
enough to start writing your own apps, at least for fun.

Who should read this book

This book is a beginner’s guide to Windows 8 programming using web technologies,
such as HTML5 and JavaScript. But the scope of the word “beginner” needs some
further explanation. One definition of a beginner, in a programming sense, is a person
who has never learned any serious programming. While this book does target such
beginners, it does require some minimal background knowledge about HTML5,
JavaScript, and some familiarity with basic concepts of logic and formalism, such as
IF, WHILE, and assignments. Another definition of a beginner, however, would include
people who have never learned Windows programming, or people who perhaps wrote
COBOL for decades—or even perhaps a person who built and maintained a Visual Basic
6 application for the past 15 years. While this book can also be useful for those more
experienced “beginners,” people with serious programming experience are not the
target audience for this book.

This book attempts to provide a smooth approach to key topics of Windows 8
programming. If you are primarily interested in Windows 8 and are new to Windows
Phone, Microsoft Silverlight, or even single-page applications, then you should
definitely consider getting this book.

Who should not read this book

This book won’t make you a top-notch Windows 8 developer. If you have some
solid experience with Windows 8, with Windows Phone or Silverlight, or with other
programming languages, then you might want to try another, more advanced book
instead, or just rely on online MSDN documentation or StackOverflow links. You should
be a true Windows 8 beginner to enjoy this book.

	 Introduction   xv

Organization of this book

This book is divided into three sections. Chapters 1-5 cover the basics of acquiring and
using Microsoft Visual Studio 2012 Express and also provide a summary of what you
need to know about HTML, CSS, and JavaScript. Chapters 6-11 deal with programming
Windows 8 apps and cover the foundation of Windows 8 programming while providing
step-by-step exercises that help you understand and deal with the user interface of
Windows 8 apps, graphics, video, data storage, and Internet calls. Finally, Chapters 12-14
focus on advanced Windows 8 programming, with an emphasis on working with device
sensors and accessories (such as printers, GPS, webcams, and so forth), interacting with
the system (Live tiles), and publishing your completed application.

Finding your best starting point in this book
Overall, the scenarios for using this book are quite simple. We recommend you read it
cover to cover, because it is designed to guide you through the key topics you need to
know to program Windows 8 with HTML5 and JavaScript. However, if you already have
a solid grasp of the technologies used in this book—Visual Studio 2012 Express, HTML5,
CSS, and JavaScript—you may be able to skip Chapters 1-4 without compromising your
understanding of the rest of the book.

Conventions and features in this book

This book presents information using conventions designed to make the information
readable and easy to follow.

■■ Each exercise consists of a series of tasks, presented as numbered steps (1, 2,
and so on) listing each action you must take to complete the exercise.

■■ Boxed elements with labels such as “Note” provide additional information or
alternative methods for completing a step successfully.

■■ Text that you type (apart from code blocks) appears in bold.

■■ A plus sign (+) between two key names means that you must press those keys at
the same time. For example, “Press Alt+Tab” means that you hold down the Alt
key while you press the Tab key.

■■ A vertical bar between two or more menu items (such as, File | Close), means
that you should select the first menu or menu item, then the next, and so on.

xvi   Introduction

System requirements

You will need the following hardware and software to set up yourself on the various
mobile platforms and compile the sample code:

■■ A PC equipped with Windows 8 and Visual Studio 2012 Express for Windows 8.

Code samples

Most of the chapters in this book are built around exercises that are reflected in
the sample code for the chapter. All sample projects in their finalized form can be
downloaded from the following page:

http://aka.ms/SH_W8AppsHTML5JS/files

Follow the instructions to download the starthere-buildapps-winjs-sources.zip file.

Installing the code samples
Follow these steps to install the code samples on your computer so that you can use
them with the exercises in this book.

1.	 Unzip the starthere-buildapps-winjs-sources.zip file that you downloaded from
the book’s website (name a specific directory along with directions to create it,
if necessary).

2.	 If prompted, review the displayed end user license agreement. If you accept the
terms, select the accept option, and then click Next.

Note  If the license agreement doesn’t appear, you can access it from the
same webpage from which you downloaded the starthere-buildapps-winjs-
sources.zip file.

	 Introduction   xvii

Errata and book support

We’ve made every effort to ensure the accuracy of this book and its companion
content. Any errors that have been reported since this book was published are listed on
our Microsoft Press site:

http://aka.ms/SH_W8AppsHTML5JS/errata

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

mailto:mspinput@microsoft.com
mailto:mspinput@microsoft.com
http://www.microsoft.com/learning/booksurvey

		 xix

Acknowledgements

Dino:

I’ll be honest: Russell Jones, my editor at O’Reilly Media, convinced me to try this
project. If the book is in your hands, both some of the good and some of the bad are
on him! When Russell first mentioned this book, when it was still just an idea, I first
declined, making the point that I have never written a book for beginners.

But then my son, Francesco (proud and efficient coauthor), made me look at the
subject from a different perspective. It was one of those powerful forms of lateral
thinking that only young people can sometimes contribute. Francesco said something
like, “Dad, I don’t think you only admit experts to your software design or ASP.NET
MVC classes. If I were a true expert, I’d probably rarely take a class; if I need a class it is
because I want someone to show me the way slowly and effectively. If I decide to invest
money on a class it is because I feel somehow that I’m a beginner. Why should this be
different for a book?”

That message hit home; I found that to be a valuable bit of wisdom; even coming
from a 14-year-old boy.

So with that change of heart, I embarked enthusiastically on this project and asked
Francesco to cooperate, because he was perfect for testing the material—essentially
eating the dog food we were cooking up! Francesco did a truly fantastic job. At one
point, I was on a plane about to leave and talking on the phone, giving suggestions on
how to improve the gallery of photos and the downloading of JSON data from Flickr.
From the outside, that phone call was nothing more than a classic business phone
call—the last-minute kind you make just moments before the plane leaves the gate. But
I was talking to my son! And, more importantly, he had diligently accomplished all the
tasks by the time I got back. Thank you, Francesco!

Francesco:

I love technology and love the Microsoft software platform and tooling. In the
beginning, for me, writing the book was primarily a way to get my hands on a Surface
device. In the end, though, I spent most of the time working with the simulator and a
secondary laptop.

Dad told me that exploring a technology near its birth is usually quite difficult,
because you can’t always rely on documentation or good examples being available.
Frankly, to me that just sounded like one of those excuses that parents trot out when
they’re unable to do something themselves. Not knowing it might be hard, I just rolled

xx   Acknowledgements

up my sleeves and worked out some examples. And in doing so, I also was able to
contribute a list of points for Dad to expand on. I’m not sure this project would have
been as pleasant for Dad without my help.

Working on the book was mostly fun, but I do recognize that this book is an
important achievement for me. I know I’ll feel better if I can share this moment with
some people who make my life happier: my mom, my sister, Michela, my friends
Francesco and Mattia, and all my waterpolo teammates at UISP Monterotondo. I love
you all!

PS: Michela, do you remember that Christmas of 2009 when I was really giving you a
hard time and in order to “save” you, Dad decided to initiate (or actually initialize?) me
to programming?

		 1

Chapter 1

Using Visual Studio
2012 Express edition for
Windows 8

Differences of habit and language are nothing at all if our aims are identical.
— J. K. Rowling, Harry Potter and the Goblet of Fire

Microsoft Windows 8 marks the debut of a significantly revised runtime platform—the Windows
RunTime (WinRT) platform. Like the .NET platform, WinRT supports several programming

languages. You will find a pleasant surprise (and an old acquaintance) side by side with the popular
.NET languages (such as, C#, Visual Basic, C++, F#)—the JavaScript language.

Note  You may not even recall that a decade ago, when Microsoft first shipped the .NET
Framework, developers were also given a chance to write applications using an adapted
version of JavaScript called JScript .NET. It was not exactly a success; indeed, today you
won’t even find JScript .NET supported in Visual Studio—the premiere development
environment for .NET code. Ten years ago, JavaScript was probably close to the bottom of
its popularity. JScript .NET was a dialect of the standard JavaScript, and using JScript .NET
didn’t mean you could use HTML and CSS to shape up the user interface of the resulting
application. This is different in Windows 8.

Building Windows 8 applications with JavaScript means that you define the layout of the user
interface with HTML and add style and graphics using CSS. As for the application’s logic, you use
the standard JavaScript language enriched by any JavaScript libraries you wish (such as the common
jQuery library), while you access WinRT system classes using an ad hoc Microsoft-created JavaScript
wrapper—the WinJs library.

2   Start Here! Build Windows 8 Apps with HTML5 and JavaScript

If you already know a bit of JavaScript development, building Windows 8 applications will not be
a huge, new type of adventure. If you are not already a JavaScript developer, the JavaScript route
probably represents the shortest path for learning to build Windows 8 applications.

This chapter sets up the preliminary aspects of such a learning path and discusses what you
need to install—specifically Windows 8 and Microsoft Visual Studio—and how to configure the
environment. In the next chapters you’ll first see a summary of HTML (in particular, the latest version
of HTML, known as HTML5), CSS, and JavaScript, and then attack the task of building Windows 8
applications with topics more specifically related to Windows 8 programming.

Important  If you are already familiar with HTML5, CSS, and JavaScript, you might want to
start directly with Chapter 5. If not, at the very minimum I recommend you look carefully
at Chapters 2, 3, and 4. Better yet, I suggest you look into specific books for HTML5 and
JavaScript, as the chapters you find here represent about 10 percent of the content you
would find in a dedicated book. You might want to explore other books in this Microsoft
Press series that address these topics directly: Start Here! Learn HTML5 by Faithe Wempen
(Microsoft Press, 2012) and Start Here! Learn JavaScript by Steve Suehring (Microsoft Press,
2012).

Getting ready for development

So you want to start building applications for Windows 8 using HTML, CSS, and JavaScript. First, you
need to make sure that some software is properly installed on your development machine. The following
section discusses the details.

The software you need
As obvious as it may sound, you need to have Windows 8 installed to develop, test, and run Windows
8 applications. The easiest way to develop and test applications for Windows 8 is by using the current
version of Visual Studio—Visual Studio 2012.

There are various editions of both Windows 8 and Visual Studio 2012, but for the purposes of this
book, you’ll need at least the minimal versions of each product: Windows 8 Basic edition and the free
Visual Studio 2012 Express edition for Windows 8 applications.

	 Chapter 1  Using Visual Studio 2012 Express edition for Windows 8    3

Installing Windows 8
Having a machine equipped with Windows 8 is a fundamental prerequisite to working through the
information and exercises in this book. Windows 8 comes in a few flavors, as detailed in Table 1-1.

TABLE 1-1  Windows 8 editions

Version Description

Windows 8 The Basic edition of Windows 8 is available for both the x86 and x86-64
architecture. It provides a new Start screen and redesigned user interface, live
tiles, Internet Explorer 10, and more.

Windows 8 Pro This edition offers additional features such as booting from VHD and support for
virtualization via Hyper-V.

Windows 8 Enterprise This edition adds IT-related capabilities such AppLocker and Windows-To-Go
(booting and running from a USB drive). This version also supports installation of
internally developed applications from locations other than the Windows Store.

Windows 8 RT Only available pre-installed on ARM-based tablets, it also natively includes
touch-optimized versions of main Office 2013 applications.

If you don’t have your copy of Windows 8 already, you can get a free 90-day trial version from the
following location: http://msdn.microsoft.com/en-us/evalcenter/jj554510.aspx. Note that this link gets
you a non-upgradeable copy of Windows 8 Enterprise. Before you embark on the download, consider
that because it is a few gigabytes in size, it may not be quick!

Installing Visual Studio Express
Once you have Windows 8 installed, you can proceed to download Visual Studio 2012 Express edition.
(Note that in the rest of the chapter—and the entire book—we’ll be using the term Visual Studio or
Visual Studio 2012 often just to mean the Visual Studio 2012 Express edition.) As shown in Table 1-2,
Visual Studio is available in different flavors.

TABLE 1-2  Visual Studio 2012 editions

Version Description

Ultimate The feature-complete version of Visual Studio 2012, offering the top-quality
support for every feature.

Premium Lacks some extensions in the area of modeling, debugging, and testing.

Professional Lacks even more functionalities in the area of modeling, debugging, and testing
but still offers a great environment to write and test code.

Express Free but basic version of Visual Studio 2012 optimized for specific development
scenarios. In particular, it is available for building web applications or Windows 8
applications.

You can read more about and compare Visual Studio features at the following page:
http://www.microsoft.com/visualstudio/11/en-us/products/compare.

To start downloading Visual Studio Express for Windows 8, go to the Dev Center for Windows 8
applications at http://msdn.microsoft.com/en-us/windows/apps (see Figure 1-1).

4   Start Here! Build Windows 8 Apps with HTML5 and JavaScript

FIGURE 1-1  The home page of the Dev Center for Windows 8 applications.

After clicking the link to download the tools and Software Development Kit (SDK), you will be sent
to another page where you can finally start the download process, as shown in Figure 1-2.

FIGURE 1-2  Downloading the tools for Windows 8 application programming.

Note that you can choose to save the setup program to your local disk or you can run it directly.
If you plan to reuse the program on different machines, it could be useful to save it to a known
location first.

	 Chapter 1  Using Visual Studio 2012 Express edition for Windows 8    5

At various times during the setup, you’ll be prompted to accept or modify options. For the
purposes of this book, you can simply accept all the default options. The default setup installs the
newest .NET Framework 4.5, the Windows 8 SDK, plus a bunch of other tools and project templates.
At the end of the installation, if everything worked just fine, you should expect to see the screen
reproduced in Figure 1-3. In the unfortunate case in which the software doesn’t install correctly, you
will get a message with some helpful directions. Please follow them carefully.

FIGURE 1-3  Visual Studio 2012 is ready to launch.

Now you’re ready for some real fun: launching and configuring Visual Studio for your first
Windows 8 application!

Configuring Visual Studio 2012
After completing the setup, Visual Studio 2012 Express requires a couple of more steps before it is
ready to run.

Getting a product key
Upon launching for the first time, Visual Studio 2012 requires that you activate your copy. This
happens through a screen like the one shown in Figure 1-4.

6   Start Here! Build Windows 8 Apps with HTML5 and JavaScript

FIGURE 1-4  Product key required for Visual Studio 2012 Express.

Clicking the “Register online” link takes you to a page where you can insert your name, email
address, and company details (see Figure 1-5).

FIGURE 1-5  Registration required for Visual Studio 2012 Express.

	 Chapter 1  Using Visual Studio 2012 Express edition for Windows 8    7

You then submit the form. You’ll receive an email containing the product key to unlock the current
version of Visual Studio (see Figure 1-6).

FIGURE 1-6  Product key retrieval for Visual Studio 2012 Express.

It usually takes only a few seconds to receive an email from Microsoft to your specified address.
The email contains the product key as text; copy it to the clipboard and switch back to Visual Studio.
In the same window you saw in Figure 1-4, paste the product key you just received.

Creating a developer account
To write and test Windows 8 applications, you need a developer license from Microsoft. The license is
free and entitles you to be a registered Microsoft developer. Getting such a license requires only that
you sign in using your Windows Live ID, as shown in Figure 1-7. (If you don’t have a Windows Live ID,
the dialog box that prompts you to enter it provides a quick “Sign Up” link.)

8   Start Here! Build Windows 8 Apps with HTML5 and JavaScript

FIGURE 1-7  Creating your developer account.

A developer license successfully installed on a machine enables you to freely create and run
Windows 8 applications outside the official Windows Store.

Note  A Windows 8 machine can install only certified applications, either downloaded
from the Windows Store (in much the same way in which it works for Windows Phone
applications), or created by registered developers on a “signed” machine, so you’ll need the
developer license to complete the examples in this book.

You won’t receive any further warning from the system until the developer license expires or you
remove it from the machine. If your license expires, you can renew it directly from the Visual Studio
environment. To renew a license, users of Visual Studio Express click the Store menu and then select
Acquire Developer License, as shown in Figure 1-8.

	 Chapter 1  Using Visual Studio 2012 Express edition for Windows 8    9

FIGURE 1-8  Renewing your developer license.

You can get as many developer licenses as you need, provided that you have a Windows Live ID
account.

Windows Store account
Getting a developer license for Windows 8 is only the first mandatory step in developing and testing
Windows 8 applications. Armed solely with a developer account, you can’t publish a Windows 8
application to the Windows Store for others to download and install.

There’s no direct relationship between developer accounts and Windows Store accounts. Each
plays a specific role and you can get one without having the other. However, if you own a Windows
Store account and then qualify for a developer license, then the default expiration of your developer
license is automatically set to a longer time.

The point to remember here is that before you can publish your Windows 8 application to the
Windows Store, you need to get a Windows Store account. You’ll see how to obtain a Windows Store
account later, in Chapter 14.

Important  As a developer and user of a Windows 8 system, keep in mind that your
machine can only run Windows 8 applications that have been downloaded from the
Windows Store or custom applications for which a developer license has been installed
on the machine. Another scenario enables you to host custom applications—when those
applications have been “sideloaded” onto the machine by your organization, which in turn
holds an enterprise store account.

Start playing with Windows 8 apps
With a developer license installed on your Windows 8 machine, you’re now ready to play with
Windows 8 applications. When you are about to create a brand new project, you must first choose a
project template and a programming language. After you do that, Visual Studio provides some help

10   Start Here! Build Windows 8 Apps with HTML5 and JavaScript

by generating some vanilla code appropriate to that template and language that you can customize
and extend.

For the purposes of this book, your programming language of choice is JavaScript. It’s worth
remembering, though, that you could use other languages, such as C#, Visual Basic, and even C++.

The “Hello Windows 8” application
Without further ado, launch Visual Studio and discover what it takes to create a new project.
It couldn’t be simpler, actually; from the start page, you just click the New Project link, as shown in
Figure 1-9.

FIGURE 1-9  Creating a new project.

Choosing a project template
Visual Studio offers a few predefined templates for your new project, but choosing the project
template only appears to be an easy task. It requires that you have a reasonably clear idea of the final
result you want to achieve. The template you truly want to use depends on the interaction model you
have in mind, the graphics, and the content you need to work on. Figure 1-10 shows the New Project
window you will see after electing to create a new project.

	 Chapter 1  Using Visual Studio 2012 Express edition for Windows 8    11

FIGURE 1-10  Choosing a project template.

Templates are grouped by programming language. In the Express edition of Visual Studio
considered here, you can create just one type of application—a Windows 8 application for the
Windows Store. If you acquire a more advanced edition of Visual Studio, you should expect to see
more options available, including web, console, and desktop applications.

So how do you decide which template to use?

Templates have the primary purpose of saving you some work, at least for common application
layouts. You are not forced to pick up a specific template, however. If none of the predefined
templates seems to be right for you or, more likely, if you don’t know exactly which one to pick, then
you just select the template for a blank application. Table 1-3 provides more information on the
predefined templates for JavaScript.

TABLE 1-3  Predefined project templates for Windows Store applications

Template Description

Blank App The application consists of a single and nearly empty page: no visual controls, no
widgets, and no layout defined.

Grid App A master-detail application made of three pages. The master page groups items
in a grid. Additional pages provide details on groups and individual items.

Split App A two-page master-detail application in which the master page shows selectable
items and the details page lists related items alongside.

Fixed Layout App A single-page application whose layout scales using a fixed aspect ratio.

Navigation App A multipage application with predefined controls to navigate between pages.

For the purposes of this book, the easiest is starting with a brand new blank application. You’ll
experiment with other types of templates in the upcoming chapters.

12   Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Creating the sample project
Before you give Visual Studio the green light to create files, you might want to spend some time
thinking about the location of the project. In Figure 1-10, you see Location; that’s the place where you
enter the disk path to the files being created for the project.

It is always preferable to save your sample applications in a well-organized structure. For the
sample code of this book, you’ll use a root directory named Win8 containing ChXX directories for
each chapter, where XX is a two-digit chapter number.

By default, Visual Studio saves your project files right under the Documents folder and creates a
new directory for each solution. You can change the default location of a project by simply editing
the path in the Location every time. Alternatively, you can set a new default path for every project by
selecting Options from the Tools menu and then picking up the General node under the Projects and
Solutions element (see Figure 1-11).

FIGURE 1-11  Changing the default project location.

For the “Hello Windows 8” application, you’ll create a new blank application project named
HelloWin8 in the Win8/Ch01 folder, as shown in Figure 1-12.

	 Chapter 1  Using Visual Studio 2012 Express edition for Windows 8    13

FIGURE 1-12  Creating the HelloWin8 project.

Click OK and you’re officially a Windows 8 developer.

Note  Visual Studio 2012 comes with a dark theme for windows and controls by default. For
the sake of print, we changed it to the light theme which makes for screenshots that render
better in print. Anyway, to change the Visual Studio theme, open the Tools | Options menu,
and then select Environment from the window shown in Figure 1-11.

Tweaking the sample project
Right after creation, the HelloWin8 project looks like the image shown in Figure 1-13. It references the
Windows Library for JavaScript (under the References folder) and is centered on a HTML page named
default.html. This page defines the entire user interface of the application and links a Cascading Style
Sheet (CSS) file (css/default.css) for graphics and a JavaScript file for the logic that loads up the page
content and provides any expected behavior (js/default.js). Just the default.js file is opened in Visual
Studio by default.

14   Start Here! Build Windows 8 Apps with HTML5 and JavaScript

FIGURE 1-13  The HelloWin8 project.

It turns out that a Windows 8 application written using JavaScript looks like a self-contained web
application made of HTML pages properly styled using CSS and powered by JavaScript logic. If you
are familiar with the web paradigm and client-side web development, then you only need to make
sense of the Windows 8-specific application programming interface (API) exposed to you via a few
JavaScript files to link.

Before compiling the project to see what happens, let’s make some minimal change: Close
the default.js file and open up the default.html file, which is responsible for the home page of the
application (see Figure 1-14). To open a file that is part of the current project, you locate the file by
name in the Solution Explorer panel and then double-click it. In general, if you need to open a file
that is not included in the project for your reference, then you might want to use the Open item on
the File menu.

FIGURE 1-14  Opening default.html.

	 Chapter 1  Using Visual Studio 2012 Express edition for Windows 8    15

The body of the sample HTML page is all here:

<body>

 <p>Content goes here</p>

</body>

Let’s just replace the placeholder text with some custom text. For example:

<body>

 <p> Hello, Windows 8!<p>

</body>

In HTML, the <body> element indicates the entire content of a page. The <p> element, instead,
defines a paragraph of text. The net effect of the change is making the page display the text “Hello,
Windows 8.”

The next step is building the application and admiring it in action live.

Admiring the app in action
To build the application, you hit F5 or click Build | Start Debugging. Debugging is the action of finding
and fixing errors in computer programs. However, the sequence Build+Debugging more generally
refers to giving the application a try. You launch the application and interact with it to see if it
behaves as you expect.

For an even quicker start, you can click the Play button in the toolbar, as shown in Figure 1-15.

FIGURE 1-15  Starting the debug of the application.

Note that Local Machine is only the default choice where you can choose to run the application.
By selecting it, you open up a menu with various options. Running the application on the local
machine means switching from the Windows classic desktop mode (where you execute Visual Studio)
to the specific UI of Windows 8. If you don’t like doing that, you can run applications in a simulator.
Using the simulator is helpful for testing the application using various screen orientations and
resolutions. Finally, you can even run the application on a remote machine, provided that you have
sufficient rights to access that machine.

16   Start Here! Build Windows 8 Apps with HTML5 and JavaScript

The Debug option in Figure 1-15 refers to the way in which the compiler produces the code.
In debug mode, the binaries include additional information that allows you to set breakpoints on
specific lines of code and proceed step by step. A breakpoint is a line of code where execution will
pause. You typically use breakpoints to stop execution at a given point and investigate the state of
the application and its internal data. You can have multiple breakpoints in the program. The Release
mode is required for finished applications ready for distribution. In the book, you’ll be using the
Debug mode predominantly.

Figure 1-16 shows the application in action on the local machine.

FIGURE 1-16  The HelloWin8 app in action.

If you run the application in the simulator, then the application runs in a separate window you
can control at will. When you run it on the local machine, then the app runs full screen and it is not
immediately apparent what you need to do to get back to Visual Studio to terminate the app. Here’s
how to exit the application: move the mouse towards the left border until you see a window icon to
click to return to the desktop mode. To terminate the app, you then click the Stop button that has
replaced the Play button in the Visual Studio user interface.

You’re done. But it was way too simple, wasn’t it? So let’s make the sample application more
colorful and add a bit of action too.

Adding a bit more action
Create a new project and name it HelloWin8-Step2. First, you’ll make it more colorful by simply
adding more HTML elements and style information. Next, you will transform it into a simple but fully
functional application that generates a random number.

Adding style to the page
Open up the default.html page and edit its body tag. The body should now include title and subtitle
separated with a line. You use a couple of HTML5 elements for this. Note that in the next chapter
you’ll learn a lot more about HTML5. Here’s the modified body of the page:

	 Chapter 1  Using Visual Studio 2012 Express edition for Windows 8    17

<body>

 <header>

 Start Here! Build Windows 8 Applications with HTML5 and

JavaScript

 <hr />

 </header>

 <footer>

 <hr />

 Dino Esposito | Francesco Esposito

 </footer>

</body>

Now let’s proceed with colors and fonts. The style of the page is defined in the default.css file from
the CSS folder. By editing a CSS file, you can change nearly everything in a HTML page that has to do
with appearance and layout. You’ll find a summary of what’s important to know about CSS in Chapter 3,
“Making sense of CSS.”

In the default.css file, you initially find something like below:

body {

}

This code describes the style to be applied to the tag body of any page that links the CSS file. You
can edit the CSS file manually or you can create CSS styles using a builder tool available in Visual
Studio. To use the tool, right-click a CSS element (that is, body) and select Build Style, as shown in
Figure 1-17.

FIGURE 1-17  Editing the style of the page.

18   Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Here’s a modified style for the page body that changes the background color and adds a bit of
space around the content:

body {

 background-color: #1649AD;

 padding: 10px;

}

You can also customize the header and footer elements slightly to define the color of the text, font
size, and a vertical offset, as shown below:

header {

 font-size: x-large;

 color: #ffffff;

 padding-bottom: 50px;

}

footer {

 font-size: large;

 color: #eeee00;

 padding-top: 50px;

}

Now run the application and be proud of it! (See Figure 1-18.)

FIGURE 1-18  The application running with a modified style.

Generating a random number
So far the application has no behavior at all and is limited to displaying some static text. Let’s make
it a bit less obvious and add any necessary structure and logic to make it generate and display a
random number.

	 Chapter 1  Using Visual Studio 2012 Express edition for Windows 8    19

First off, add the following markup to the body of the page in default.html. The markup consists of
two DIV blocks containing the placeholder for generated number and the button to click to get a new
number. You insert the following markup between the header and footer elements:

<div>

 <label id="numberLabel">?</label>

</div>

<div>

 <input id="numberButton" type="button" value="Get number" />

</div>

Next, open the default.js file and add the following JavaScript functions at the bottom of the file:

function numberButtonClick() {

 var number = generateNumber();

 document.getElementById("number").innerHTML = number;

}

function generateNumber() {

 var number = 1 + Math.floor(Math.random() * 1000);

 return number;

}

The first function is the handler for the click event on the button. The second function just
generates and returns a random number between 1 and 1000. The final step consists of binding the
click handler to the actual button in the HTML markup. There are a number of ways to do this, the
simplest of which is shown below:

<input id="numberButton" type="button" value="Get number"

 onclick="numberButtonClick()" />

A more elegant way—and the recommended way of doing it in Windows 8 programming—
consists of making the binding dynamically as the page is loaded. So open the default.js file and
modify the code of the app.onactivated function, as shown below:

app.onactivated = function (args) {

 if (args.detail.kind === activation.ActivationKind.launch) {

 if (args.detail.previousExecutionState !==

 activation.ApplicationExecutionState.terminated) {

 // TODO: This application has been newly launched. Initialize

 // your application here.

 document.getElementById("numberButton").addEventListener(

 "click", numberButtonClick)

 } else {

 // TODO: This application has been reactivated from suspension.

 // Restore application state here.

20   Start Here! Build Windows 8 Apps with HTML5 and JavaScript

 }

 args.setPromise(WinJS.UI.processAll());

 }

};

In the end, you just add one line to run when the application has been newly launched. The line
just registers a handler for any click event raised by the specified button.

You can give the final touch to the application with a second pass on CSS to adjust the rendering
of the label and button. Add the following to the default.css file:

#numberButton {

 font-size: x-large;

}

#numberLabel {

 font-size: xx-large;

 color: #eeee00;

 font-weight: bold;

}

The leading pound (#) symbol indicates that the style applies to any HTML element whose ID
matches the name—for example, the style defined as #numberButton applies to all elements with an
ID of numberButton. Figure 1-19 shows the modified application in action.

FIGURE 1-19  A Windows 8 application to get random numbers.

Although this is still a fairly simple application, it should be enough to get you started and to give
you the overall feeling of how you approach Windows 8 programming with HTML5 and JavaScript.
You’ll start building more sophisticated applications in Chapter 5, “First steps with Windows 8
development.”

	 Chapter 1  Using Visual Studio 2012 Express edition for Windows 8    21

Summary

This chapter provided a step-by-step guide to getting ready for Windows 8 programming. You
started with the operating system and tools necessary for writing code, then installed and configured
Visual Studio 2012 Express edition for Windows 8, and finally played a bit with the simplest type of
application.

Before digging into more Windows 8 development, it is necessary to ensure that everybody
reading this book is aligned to a minimum level of knowledge of web technologies such as HTML5,
CSS, and JavaScript. Therefore, the next three chapters provide a summary of what you need to know
about HTML5, CSS, and JavaScript to successfully work through the later chapters. If you feel you
already know enough, then feel free to jump directly to Chapter 5. If the later chapters prove too
difficult, I recommend you review Chapters 2–4 and/or brush up your knowledge with other resources
on HTML5, JavaScript, and CSS.

		 23

Chapter 2

Making sense of HTML5

Broadly speaking, the short words are the best, and the old words best of all.
—Winston Churchill

HTML5 is the latest version of the HTML language—the popular text-based language used
to define the content of webpages. HTML appeared on the scene in the early 1990s. In the

beginning it was merely a markup language apt at describing simple documents. A markup language
is a language based on a set of markers that wrap text and give it a special meaning.

Initially, the set of HTML markup elements, called “tags” or (better) “elements,” was fairly limited.
It contained elements to define references to other documents and headings, to link to images
and paragraphs, and apply basic text styling such as bold or italic. Over the years, however, the
role of HTML grew beyond imagination, progressing from being a simple language that described
documents to a language used to define the user interface of web applications. That trend continues
today with HTML5.

The latest version of HTML5 removes some of the older elements and makes it easier to keep
elements that provide style information in one place, and elements that provide text and define the
layout of the text, in another place. As you’ll see in more detail in the next chapter, style information
can be defined through a special distinct file known as a Cascading Style Sheet (CSS). In addition,
HTML5 adds some new elements suitable for including multimedia content and drawing, and several
new frameworks for manipulating the content of the page programmatically.

With HTML5 alone, you still won’t be able to go too far toward building a complete application.
However, the union of HTML5, CSS, and JavaScript functions as a close approximation to a full
programming language.

■■ You use HTML5 to define the layout of the user interface and to insert text and multimedia.

■■ You use CSS to add colors, style, and shiny finishes.

■■ Finally, you use JavaScript to add behavior by gluing together pieces of native frameworks
such as Document Object Model (DOM), local storage, geolocation and, for example, all the
specific services of Windows 8 exposed via the Windows 8 JavaScript library (WinJs). The DOM,

24   Start Here! Build Windows 8 Apps with HTML5 and JavaScript

in particular, is the collection of programmable objects that expose the structure of the current
document to coders.

In the rest of this chapter, you’ll briefly explore the basics of the HTML5 markup elements,
including input forms and multimedia. Neither this chapter nor the rest of the book covers every
aspect of the basics of HTML. If you need a refresher on the fundamentals of HTML, you can refer to
the book Start Here! Learn HTML5, by Faithe Wempen (Microsoft Press, 2012).

Important  This chapter and the next two provide an overview of HTML, CSS, and
JavaScript. In these chapters, you’ll get acquainted with new key elements of HTML5 and
CSS3 and receive an end-to-end coverage of common programming techniques you use
in JavaScript. The content of these chapters is not specific to Windows 8 apps; it is instead
meant to be preliminary to upcoming chapters where you’ll be using ad hoc elements
from the WinJs library in a basic HTML skeleton, using custom CSS for graphics and custom
JavaScript for behavior.

Elements of a webpage

HTML5 comes about a decade after its most recent predecessor (HTML4). Looking at what’s new in
HTML5, one could reasonably say that all these years have not passed in vain. HTML5 provides a set
of new elements that offer several native functionalities that developers and designers used to have
to code via artifacts and ingenious combinations of existing elements. Here’s a quick look at what’s
relevant to creating a webpage with HTML5.

Building the page layout with HTML5
In the beginning of the web, most pages were designed as a text documents—meaning that their
content developed vertically on a single logical column. Over the years, page layout became more
and more sophisticated. Today, two-column and three-column layouts are much more common.
In two- and three-column layouts, you also often find headers and footers surrounding the logical
columns. Figure 2-1 shows the difference between the layouts at a glance.

	 Chapter 2  Making sense of HTML5    25

FIGURE 2-1  Different HTML page layouts.

Developers have been smart enough to build such complex layouts using basic HTML block
elements such as DIV.

Note  In HTML, a block element is an element whose content is rendered between two line
breaks—one before and one after the content. Therefore, the content displays as a stand-
alone “block” of content. One popular block element is H1, which renders some text as a
first-level heading. The DIV element is another popular block element aimed at creating
blocks out of any valid HTML content. Block elements are opposed to inline elements,
namely elements whose content flows with the rest of the page with no line breaks applied.

Important  Note that in this book, as well as in other books and articles, truly common
HTML elements, such as <div> and <h1> often appear in text written without the brackets.
However, the use of the angle brackets is mandatory if you are using those elements within
HTML itself.

In HTML5, the multicolumn layout is recognized as a common layout and therefore gets full
support via several new ad hoc markup elements.

Preparing the sample application
The examples you’ll be working with in this chapter are plain HTML pages showcasing some of
the features available in HTML5 as supported in Internet Explorer 10. You won’t be creating an ad
hoc Windows 8 application for each feature, but for this early example—to refresh what you saw
in Chapter 1, “Using Visual Studio 2012 Express edition for Windows 8”—go ahead and create a
container Windows 8 page that ties together all the links to the various standalone HTML5 pages.

26   Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Open up Visual Studio and create a new blank application. Name it Html5-Demos. When done,
add the following code to the body of default.html so that it serves as the main menu for navigating
into all of the sample HTML5 pages you’ll write throughout the chapter.

<body>

 <header>

 Start Here! Build Windows 8 Applications with HTML5 and

JavaScript

 <hr />

 HTML5 samples

 </header>

 <div id="links">

 MULTI

 <!-- Add here more links to HTML pages as we proceed in the chapter. -->

 </div>

 <footer>

 <hr />

 Dino Esposito | Francesco Esposito

 </footer>

</body>

Figure 2-2 shows the aspect of the resulting application. By clicking the links (such as, the MULTI
link in the figure below) you force the operating system to open the webpage into Internet Explorer
10—the native browser in Windows 8.

FIGURE 2-2  The home page of the sample application for this chapter.

From now on, you’ll be creating plain HTML5 pages and adding an anchor tag <a> to the body of
default.html.

	 Chapter 2  Making sense of HTML5    27

From generic blocks to semantic elements
A large share of websites out there have a common layout that includes header and footer, as well as
a navigation bar on the left of the page. More often than not, these results are achieved by using DIV
elements styled to align to the left or the right.

Let’s add a new HTML page to the project: right-click the project node in Solution Explorer and
choose Add | New Item from the subsequent flyout menu. What you get next is the window shown in
Figure 2-3. From that window, you then choose a new HTML page and save it as multi.html.

FIGURE 2-3  Creating a new HTML page in Visual Studio.

Next, from within Visual Studio double-click the newly created HTML page and replace the content
with the following markup.

<!DOCTYPE html>

<html>

 <head>

 <title>MULTI-COLUMN LAYOUT</title>

 </head>

 <body>

 Back

 <hr />

 <div id="page">

 <div id="header">

 Header of the page

 <hr />

 </div>

 <div id="navigation-bar">

28   Start Here! Build Windows 8 Apps with HTML5 and JavaScript

 Home

 Find us

 Job opportunities

 </div>

 <div id="container">

 <div id="left-sidebar">

 Left sidebar

 Article #1

 Article #2

 Article #3

 </div>

 <div id="content">

 This is the main content of the page

 </div>

 <div id="right-sidebar">

 Right sidebar

 </div>

 </div>

 <div id="footer">

 <hr />

 Footer of the page

 </div>

 </div>

 </body>

</html>

The id attribute of the DIV elements are given self-explanatory names that help with understand-
ing their intended role. Therefore, the HTML page includes header, navigation bar, footer, and a
three-column layout in between the element named container. Figure 2-4 shows how multi.html
renders on Internet Explorer.

	 Chapter 2  Making sense of HTML5    29

FIGURE 2-4  The multi.html page as it is rendered by Internet Explorer 10.

The preceding markup alone, however, doesn’t produce the expected results and the page doesn’t
really show any multicolumn layout. For that, you need to add ad hoc graphic styles to individual DIV
elements to make them float and anchor to the left or right edge. You add graphic style to an HTML
page using CSS markup, placed in a CSS file. The next chapter provides a quick summary of CSS. The
real point of this demo is a little different.

As you can see, each DIV element is made distinguishable from others only by the name of the id
attribute. Yet, each DIV element plays a clear role that makes it fairly different from others—header is
different from footer, and both are different from left or right sidebars.

Header and footer elements
HTML5 brings a selection of new block elements with specific names and clear behavior. The set of
new elements was determined by looking at the most common layouts used by page authors. For
example, in HTML5 header and footer are new plain block elements you use to indicate a header and
footer. Similar elements exist for most of the semantic elements in the previous listing. Here’s how you
can rewrite the page multi.html using only HTML5-specific elements. Name this page multi5.html.
The listing below shows the content of the body tag for the new page.

<header>

 Header of the page

 <hr />

</header>

<nav>

 Home

 Find us

 Job opportunities

</nav>

<article>

 <aside>

 Left sidebar

30   Start Here! Build Windows 8 Apps with HTML5 and JavaScript

 Article #1

 Article #2

 Article #3

 </aside>

 <article>

 <h1>Article #1</h1>

 <hr />

 <section> Introduction </section>

 <section> First section </section>

 <section> Second section </section>

 </article>

 <aside>

 Right sidebar

 </aside>

</article>

<footer>

 <hr />

 Footer of the page

</footer>

You can insert header and footer using specific elements with a very simple syntax, as below:

<header> Markup </header>

<footer> Markup </footer>

It is interesting to notice that you can have multiple header and footer elements in a HTML5 page.
The most common use is to give the page a header and footer. However, you should consider these
elements as blocks meant to represent heading content of a page or a section of a page and footers.

Section and article elements
HTML5 defines two similar-looking elements to represent the content of a page. The <section>
element is slightly more generic, as it is meant to delimit a logical section of a HTML page. A logical
section can be the content of a tab in a page designed as a collection of tabs.

At the same time, a logical section can also be a portion of the main content being displayed in
the page. In this case, the section element is likely embedded in an <article> element.

<article>

 <h1>Article #1</h1>

 <hr />

 <section> Introduction </section>

 <section> First section </section>

 <section> Second section </section>

</article>

	 Chapter 2  Making sense of HTML5    31

Note  Elements such as <section>, <article>, <header>, and <footer> are semantic elements,
in the sense that browsers treat them as block elements. If you look at final results, there’s
nearly no difference between semantic elements and plain DIV elements. The most
significant difference is in the expressivity of the resulting markup. By using <section>,
<article>, <header>, and <footer> elements, the resulting markup is much easier to read,
understand, and maintain over time.

The aside element
A lot of HTML pages display part of their content on columns that lie side by side horizontally. The
<aside> element has been introduced in HTML5 to quickly identify some content that is related to the
content being displayed all around. The syntax of the <aside> element is straightforward:

<aside> Markup </aside>

A very common scenario where you might want to take advantage of the<aside> element is to
define a sidebar in an article element and, more in general, to create multicolumn layouts for the
content of the page or sections of the page.

The nav element
The <nav> element indicates a special section of the page content—the section that contains major
navigation links. It should be noted that not all links you can have in a HTML page must be defined
within a <nav> element. The <nav> element is reserved only for the most relevant links, such as
those you would place on the main page navigation menu.

The syntax of the <nav> element is fairly intuitive. It consists of a list of <a> anchor elements listed
within the <nav> element:

<nav>

 Home

 Find us

 Job opportunities

</nav>

The <nav> element plays an important role in HTML5 because it indicates the boundaries of the
section of the page that contains navigation links. This allows special page readers—such as browsers
for disabled users—to better understand the structure of the page and optionally skip some content.

Important  All semantic elements in HTML5 are important in light of accessibility, and just
for this reason, they should be considered for use in any webpage that has chances to be
read by disabled users.

32   Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Miscellany of other new elements
Semantic block elements represent the largest family of new elements in HTML5. As mentioned,
semantic elements are important not so much for the effect they produce in the page but because
they increase the readability of the page significantly for developers, software, and especially
browsers for disabled users.

Semantic block elements alone do not produce significant changes in the way in which HTML5-
compliant browsers render the page. For example, to color and position a sidebar (that is, the <aside>
element) where you like you still need to resort to CSS settings. However, using semantic elements
reduces the noise of having too many generic DIV block elements whose role and scope is not
immediately clear.

In addition to semantic elements, HTML5 provides a few new elements with an embedded
behavior that couldn’t be obtained in earlier versions of HTML without resorting to a combination of
CSS, markup, and JavaScript. Let’s see a few examples.

The details element
Many times you have small pieces of content in a page that you want to show or hide on demand.
A good example is the title of some news and its actual content. Sometimes you want to display only
the title but want to leave users free from clicking to expand the content and hide it to gain more
space.

Before HTML5, you had to code all of this manually using a bit of HTML, CSS, and JavaScript code.
In HTML5, the entire logic is left to the browser and all you have to do is type the following in an
HTML page.

<details open>

 <summary>This is the title</summary>

 <div>

 This is the text of the news and was initially kept hidden from view

 </div>

 </details>

The <details> element is interpreted by the browser and used to implement a collapsible panel.
The open attribute indicates whether you want the content to be displayed initially or not. The
<summary> child element indicates the text for the clickable placeholder, whereas the remaining
content is hidden or shown on demand. Note that all parts of the <details> element can be further
styled at will using CSS.

Important  Although the Visual Studio editor recognizes the <details> element and even
offers IntelliSense for it, the element is not supported by Internet Explorer 10. Other
HTML5-compliant browsers, however, do support it—specifically the latest versions of
Chrome and Opera.

	 Chapter 2  Making sense of HTML5    33

The mark element
HTML5 also adds the <mark> element as a way to highlight small portions of text as if you were using
a highlighter on a paper sheet. Using the <mark> element is easy; all you do is wrap some text in the
<mark> element, as shown below:

The <mark>DETAILS</mark> element is not supported by Internet Explorer 10.

The entire text is rendered with default settings except the text enclosed in the <mark> element.
Most HTML5 browsers have default graphical settings for marked text. Most commonly, these settings
entail a yellow background. Needless to say, graphical effects of the <mark> element can be changed
at will via CSS.

Figure 2-5 shows how the previous text looks using Internet Explorer 10.

FIGURE 2-5  The mark element in action.

The dataList element
For a long time, HTML developers asked loudly for the ability to offer a list of predefined options
for a text field. The use-case is easy to figure out. Imagine a user required to type the name of a city
in a text field. As a page author, you want to leave the user free of entering any text; at the same
time, though, you want to provide a few predefined options that can be selected and entered with a
single click. Up until HTML5, this feature had to be coded via JavaScript, as HTML provided only two
options natively: free text with no auto-completion or a fixed list of options with no chance of typing
anything. The new <datalist> element fills the gap. Copy the following text to the body of a new
HTML page named datalist.html.

<input list="cities" />

<datalist id="cities">

 <option value="Rome">

 <option value="New York">

 <option value="London">

 <option value="Paris">

</datalist>

In the example, the <datalist> element is bound to a particular input field—the input field named
cities. It is interesting to notice that the binding takes place through a new attribute defined on the

34   Start Here! Build Windows 8 Apps with HTML5 and JavaScript

<input> element: the list attribute. The attribute gets the name of a <datalist> element to be used as
the source of the input options.

When the input field gets the input focus, then the content of the <datalist> element is used to
autocomplete what the user is typing. Figure 2-6 shows the element in action on Internet Explorer.

FIGURE 2-6  The datalist element in action.

Elements removed from older HTML versions
HTML5 adds some new elements, but also removes a few elements whose presence would only
increase redundancy once combined with the new capabilities of CSS and new elements in HTML5.

The list of elements no longer supported most notably includes frame and font elements. It should
be noted, though, that the <iframe> element remains available.

In addition, a few style elements such as <center>, <u>, and <big> are removed. The reason is that
this functionality can be achieved easily through CSS. Probably due to the much larger use that page
authors made over the years, HTML5 still supports elements such as (for bold text) and <i> (for
italic text) that are logically equivalent to the now unsupported <u> and <big> elements.

Collecting data

HTML was originally devised to be a language for creating hypertext documents. Over the years, the
language has been enriched with layout capabilities and basic features to collect data. Writing input
forms to collect data from users proved to be a nontrivial task. One thing is to collect plain text; it is
quite another to collect a date, a number, or an email address.

For too many years, HTML has only offered input text fields completely unable to distinguish
numbers, dates, and email addresses from plain text. Subsequently, page developers were responsible
for preventing users from typing unwanted characters and for client validation of the entered text.

With HTML5, a lot of this work has been pushed to the browser side. This means that by simply
using a slightly more sophisticated set of elements developers can achieve the same level of form
validation in a faster and safer way.

	 Chapter 2  Making sense of HTML5    35

Adjusting input fields
In HTML5, you still create an input form by using the same markup elements you used from earlier
versions of the language. In other words, the following markup will still give you the opportunity to
upload any typed content to the given server.

<form action="http://www.yourserver.com/upload">

 Your name

 <input type="text" value="" />

 <input type="submit" value="Save" />

</form>

The <input> element is the element that inserts a graphical element (such as, an input box or a
drop-down list) to collect some input data. You also use the <input> element to add a push button to
start the submission process to the server. In HTML5, the <input> element comes with more options
for the type of input boxes. For example, you can have date pickers, sliders, and search boxes offered
by the browser. At the same time, the browser provides free form validation for most common
scenarios, such as when a field is required and can’t be left empty by the user.

New input types
If you look at the HTML5 syntax of the <input> element, the major difference with past versions is the
list of values now allowed for the type attribute. Table 2-1 lists some of the new input types supported
in HTML5.

TABLE 2-1  HTML5 specific values for the type attribute

Value Description

Color Meant to let the browser display any UI that allows entry of a color.
Note: This input type is not supported on Internet Explorer 10.

date Meant to let the browser display any UI that allows entry of a date.

email Meant to let the browser display any UI that allows entry of an email address.

number Meant to let the browser display any UI that allows entry of a numeric input.

range Meant to let the browser display any UI that allows entry of a numeric input.

search Meant to let the browser display any UI that allows entry of a text to be searched
for.

tel Meant to let the browser display any UI that allows entry of a telephone number.

time Meant to let the browser display any UI that allows entry of a time.

url Meant to let the browser display any UI that allows entry of a URL.

Note that the list in Table 2-1 is incomplete and limited to input types that you can really find
supported today on some web browsers. Other input types (for example, week) are part of the
current HTML5 draft but are not implemented anywhere. You might want to refer to
http://www.w3schools.com/html5 for more details.

36   Start Here! Build Windows 8 Apps with HTML5 and JavaScript

What you can really expect from browsers
What you have read in Table 2-1 represents the HTML5 standard that browsers are expected
to comply with by the time the standard is officially approved and promulgated. At this time,
Opera and Chrome are likely the browsers that offer the best support for the current draft
of HTML5. In general, the support for HTML5 you can currently get from all browsers is not
uniform.

The point is that HTML5 is not yet an approved standard and won’t be definitive for a few
more years. At the same time, companies are eager to use HTML5 goodies in real websites
and applications. Websites and applications, however, require compliant browsers. As you can
imagine, this situation determines a sort of catch-me game between browser vendors. Each
new release of browsers improves support for the HTML5 standard or makes it more adherent
to the actual standard, removing possible features resulting from misinterpretation of older
drafts.

HTML5 is not going to be something unambiguously defined for a few more years. Internet
Explorer 10—the browser you find integrated in Windows 8—improves significantly the sup-
port for HTML5 over Internet Explorer 9. Note that in Windows 8 you find two flavors of the
Internet Explorer browser—the classic version, which builds on top of Internet Explorer 9, and
the version with the native Windows 8 look-and-feel. This version, in particular, lacks the ability
to run plug-ins (specifically, Flash and Silverlight) and organize favorites in folders.

Making input fields auto-focusable

HTML5 provides the definitive solution to a couple of common problems that developers faced for
years and solved using a bit of JavaScript code. The first of these problems relates to giving the input
focus to an input field.

Using JavaScript, you can tell the browser to assign the input focus to a particular input field upon
display of the page. In HTML5, you can use a new attribute for the <input> element—the autofocus
attribute. Try placing the following code in the body of a new HTML page named autofocus.html.

<form>

 <input type="text" value="Dino" />

 <input type="text" autofocus />

 <input type="submit" value="Save" />

</form>

Save the page and display it in Internet Explorer. As Figure 2-7 shows, the cursor that indicates
input focus is on the second field.

	 Chapter 2  Making sense of HTML5    37

FIGURE 2-7  The autofocus attribute in action.

Giving hints to users
Looking at Figure 2-7, it is quite hard to figure out which content goes in which field. Probably in a
real-world page, one would use labels and a more sophisticated layout to make it easier for users
to understand the expected content for each field. This is just the second problem I referred to a
moment ago.

Recently, developers got into the groove of displaying a short text message in an input text field
to instruct users. Before HTML5, this could only be accomplished by using a bit of JavaScript code. In
HTML5, the new placeholder attribute makes it a lot easier and even more natural.

Create a new HTML page and save it as placeholder.html. Now edit the content of the body, as
shown below:

<form>

 <input type="text" placeholder="First name" />

 <input type="text" placeholder="Last name" />

 <input type="submit" value="Save" />

</form>

As Figure 2-8 shows, both empty fields now provide a hint to users about the expected content.

FIGURE 2-8  The placeholder attribute in action.

38   Start Here! Build Windows 8 Apps with HTML5 and JavaScript

Form submission
Sometimes developers have no other option besides writing the same boilerplate code over and over
again, no matter how annoying it is. A good example of boilerplate code that it would be great to
stop writing is validation of input forms in HTML pages. Any data collected from an HTML input form
should be carefully validated on the server before being used for some business tasks. However, some
basic validation tasks can be easily delegated to the browser and commanded by the developers
using markup instead of JavaScript code.

HTML5 helps reduce the amount of boilerplate code requested to build effective input forms. I’ve
already mentioned the newest attributes of the HTML5 <input> element; the next step is to take a
look at other attributes you can leverage to control the whole process of form submission, including
ways to ensure that the user has not left required fields blank, and that the user input matches
expected patterns. For example, if you ask for a phone number, the user shouldn’t be allowed to enter
something that couldn’t possibly be a valid phone number.

Detecting required fields
By adding the required attribute to a <input> element, you tell the browser that the input field cannot
be blank when the form that contains the input element is submitted. You use the required attribute
only if the field is not considered optional.

Consider the following content of an HTML page named required.html:

<body>

<form>

 <input type="text" placeholder="Your PIN" required />

 <input type="submit" value="Enter" />

</form>

</body>

When the user pushes the submit button and the text field is empty, the browser automatically
denies the post and displays an error message. The specific content, form, and shape of the error
message may change according to the browser; the overall behavior, though, is similar on all HTML5-
compliant browsers. Figure 2-9 shows how Internet Explorer 10 deals with required fields left empty.

FIGURE 2-9  The required attribute in action.

	 Chapter 2  Making sense of HTML5    39

HTML5 browsers allow you to customize the error message by using the oninvalid attribute, as
shown below:

<form>

 <input type="text" placeholder="Your PIN" required

 oninvalid="this.setCustomValidity('PIN is mandatory')" />

 <input type="submit" value="Enter" />

</form>

Note  In general, you use the oninvalid attribute to specify any JavaScript code that should
run when the content of an input field is invalid, either when that field value was required
and left blank or when its content failed validation.

Validating against regular expressions
Table 2-1 lists popular new types of input fields supported by HTML5-compliant browsers. If your
page is expected to collect a date, then you can use an input date field; likewise, you can use a
numeric input field if you need to collect a number and so forth. But what if you intend to collect
data formatted in a specific way that none of the predefined input types can guarantee? For example,
what if you need users to enter a string with two letters followed by exactly six digits?

In HTML5, you can use the pattern attribute, as shown in the example below:

<form>

 <input type="text"

 placeholder="Your PIN"

 title="2 letters + 6 digits"

 pattern="[a-zA-Z]{2}\d{6}" />

 <input type="submit" value="Enter" />

</form>

When you use the pattern attribute, Internet Explorer 10 requires that you also indicate the title
attribute—usually used to add a tooltip to most HTML elements. The text of the title attribute is
combined with a default static message to produce some feedback to the user when the content of
the field is invalid.

Figure 2-10 shows how Internet Explorer 10 deals with patterns when the submitted content is
invalid.

40   Start Here! Build Windows 8 Apps with HTML5 and JavaScript

FIGURE 2-10  The pattern attribute in action.

The value of the pattern attribute has to be a regular expression. Regular expressions can get
very complex; in fact, they’re a topic worthy of a complete book, but learning the basics of regular
expression use isn’t too difficult. For more information on regular expressions, you can check out
http://www.regular-expressions.info.

Forms and input validation
Each HTML form should contain a submit button; when the submit button is pushed the browser
collects the content of the input fields and prepares to post it to the specified URL. Up until HTML5,
the browser was not responsible for validating the content of the form. Developers, though, could
hook up validation to the process using a bit of JavaScript code.

Validating a form entails checking that each input field in the form contains valid content.
Although the HTML5 standard doesn’t mandate browsers to validate the content of a form, this is
indeed what happens by default with most browsers. HTML5 browsers give you a chance to disable
validation on the entire form, but not on individual fields. You can disable form validation by using
the novalidate attribute, as shown below in the file novalidate.htm:

<form novalidate>

 <input type="text" placeholder="Your PIN"

 title="2 letters + 6 digits"

 pattern="[a-zA-Z]{2}\d{6}" />

 <input type="submit" value="Enter" />

</form>

In this case, the content of the form is submitted to the server regardless of the data held by input
fields.

If the form contains multiple submit buttons, you can enable or disable validation on a per-button
basis so that validation occurs if users, say, click the first button but not the second. To disable
validation when the form is submitted via a particular submit button, you add the formnovalidate
attribute as follows:

<input type="submit" value="..." formnovalidate />

	 Chapter 2  Making sense of HTML5    41

Note  The formnovalidate attribute overrides the form’s novalidate attribute if both are set.

Multimedia elements

HTML5 offers two new markup elements that developers can use to play audio and video files from
within webpages without resorting to external plug-ins such as Flash and Silverlight. The entire
infrastructure to play audio and video (including graphical feedback to users) now is provided natively
by the browser.

The audio element
To embed audio content into HTML documents, you use the <audio> element. The syntax is trivial, as
the example below shows:

<audio src="/hello.mp3">

 <p>Your browser does not support the audio element.</p>

</audio>

Optionally, you can incorporate some markup in the body of the <audio> element to be used in
case the browser can’t deal successfully with the <audio> element. Next, you’ll explore a bit more
about how to embed audio in HTML5 pages.

Using the <audio> element
The <audio> element supports a variety of attributes, as listed in Table 2-2. Of these, the most impor-
tant is src, which you use to point to the location of the actual audio stream.

TABLE 2-2  Attributes of the <audio> element

Attribute Description

autoplay Indicates that the audio will start playing as soon as the content is available to the
browser.

controls Instructs the browser to display audio controls, such as the play and pause buttons.

loop Indicates that the audio will automatically restart after it is finished.

preload
Note that the preload attribute is
ignored if the autoplay attribute
is also present.

Instructs the browser on how to load the audio content when the page loads.
Allowed values are none, meaning that no content should be preloaded; auto,
meaning that the entire content should be downloaded when the page loads;
and metadata, meaning that only content metadata should be preloaded on
page display.

src Indicates the URL of the audio file, whether local or remote.

42   Start Here! Build Windows 8 Apps with HTML5 and JavaScript

So far, I have referred to audio content in a rather generic way, without mentioning specific
audio formats such as MP3 or WAV. This is a major problem with HTML5-compliant browsers:
Not all browsers support the same set of audio formats by default (without resorting to external
components).

The problem of codecs
An audio file is a sequence of bytes that codec software decodes for playing. An audio file, therefore,
can be encoded in a variety of formats, each requiring an ad hoc codec—MP3, WAV, OGG, and
more. More often than not, a codec is a piece of software that implements patented algorithms, so
embedding a codec directly in the browser may pose copyright issues.

The current HTML5 standard doesn’t make an official ruling about codecs, so deciding on the
format to support will remain up to the browser vendors for now.

From a developer’s perspective, this is not great news. Different browsers support different audio
formats, leaving developers with the problem of working out the most effective way to play audio
from the same page on different browsers.

Supported codecs
The simplest way of approaching the problem of multiple codecs is to provide multiple files so the
browser can choose the most appropriate for its capabilities. In other words, instead of linking the
<audio> element to just one audio file and codec, you link it to multiple sources. You no longer use
the src attribute; instead, you resort to a set of <source> elements inside the <audio> element. Here’s
an example of playing an audio file using <source> elements:

<audio controls autoplay>

 <source src="hello.ogg" type="audio/ogg" />

 <source src="hello.mp3" type="audio/mp3" />

 <p>Your browser does not support the audio element.</p>

</audio>

The <source> elements link to different audio files. The browser will use the first format it knows
how to support. While simple to implement, this approach is not free of issues—in the sense that
it requires you to have each audio file available converted into multiple formats and stored on the
server in multiple copies.

A basic guideline is that the OGG format is not subject to software patents. OGG will work in
Firefox, Opera, and Chrome. To target Safari and Internet Explorer, you need to use MP3 encoding
instead.

The video element
To embed video content into HTML documents, you use the <video> element. The syntax is just as
trivial as what you have seen for the <audio> element:

	 Chapter 2  Making sense of HTML5    43

<video src="/hello.mp4">

 <p>Your browser does not support the video element.</p>

</video>

Similarly, you can optionally incorporate some markup in the body of the <video> element to be
used in case the browser can’t deal with video successfully.

Using the <video> element
Table 2-3 presents the list of attributes you can use to customize the aspect and behavior of the
<video> element in HTML5-compliant browsers.

TABLE 2-3  Attributes of the <video> element

Attribute Description

autoplay Indicates that the video will start playing as soon as the content is available to the
browser.

controls Instructs the browser to display video controls such as the play and pause
buttons.

height Indicates the desired height of the video player in the HTML document.

loop Indicates that the video will automatically restart after it is finished.

muted Indicates that the video sound should be muted off.

poster Instructs the browser to display a specified image while the video content is
downloading, or until the user chooses to play the video.

preload
Note that the preload attribute is
ignored if the autoplay attribute
is also present.

Instructs the browser on how to load the video content when the page loads.
Allowed values are none, meaning that no content should be preloaded; auto,
meaning that the entire content should be downloaded when the page loads;
and metadata, meaning that only content metadata should be preloaded on
page display.

src Indicates the URL of the video file to play, whether local or remote.

width Indicates the desired width of the video player in the HTML document.

It is highly recommended that you always set both width and height in a <video> element. This
helps the browser to reserve enough space while rendering the page. In addition, you should always
set width and height to the real size of the video clip you plan to incorporate. If you downsize the
video player, you force the browser to do even more work. Keep in mind that downsizing a video
won’t save the user any download time. If you have a video that is too large for the page, you should
resize it with an ad hoc program first, and then link it using its new size.

Figure 2-11 shows how Internet Explorer 10 renders a video element.

44   Start Here! Build Windows 8 Apps with HTML5 and JavaScript

FIGURE 2-11  The video element in action.

Supported codecs
When it comes to codecs, video suffers from the same issues that audio does. Therefore, it requires
the same workaround.

You should not use the src attribute unless you are well aware of the concrete risk that the video
may not be playable on some browsers. To gain the widest support from HTML5-compliant browsers,
you should use the <source> element. Here’s the rewritten content of the sample video.html file:

<video controls width="320" height="240">

 <source src="/sample.ogg" type="video/ogg" />

 <source src="/sample.mp4" type="video/mp4" />

 <p>Your browser does not support the video element.</p>

</video>

Just as for audio, the <source> elements link to different video clips and the browser will use the
first format it knows how to support. As a guideline, you should plan to have an MP4-encoded video
for Internet Explorer and Safari, and OGG for all other browsers.

	 Chapter 2  Making sense of HTML5    45

Summary

HTML has been around for a couple of decades, but it only recently underwent significant syntax
changes. The new HTML5 specification clears out some obsolete elements and adds new markup
elements for specific (and common) tasks. New elements have stronger semantics that make it
obvious what they are for—such as header, footer, menu, section, and more.

These new elements, however, live side by side with older and, semantically speaking, more
generic elements such as DIV. The result is that sometimes you have two or more ways to achieve
the same rendering—using direct HTML5 elements or a combination of more generic elements.
If you plan to target HTML5 browsers, using new elements keeps your markup easier to read and
understand—in a word, simpler.

The purpose of this book is to build Windows 8 applications, as opposed to classic websites, which
makes the differences between older HTML and HTML5 unimportant: this book uses HTML5 all
the way through. However, if your goal is to build a website for the general public, then integrating
HTML5 in the markup of the pages is much more difficult. For web applications, you will need to deal
with browser differences and ensure that the behavior is uniform across major browsers.

	 351

active pseudo-class, anchors,  67–68
alpha channel for color transparency,  56
anchor pseudo-classes,  67–68
anchors. See <a> element, HTML
AND keyword, media queries,  71
anonymous functions, JavaScript,  81, 88–89
App bar,  103, 108, 109–112
AppBar object,  110
AppBar widget,  107
application objects, persisting,  235–247

appending data to files,  240
deleting files,  240
reading files,  243–247
serialization formats for,  240–243, 245–247
writing files,  237–240

Application.PageControlNavigator object,  150
applications. See also Windows 8 applications

prior to Windows 8, standard mode for,  98–99
types of,  11

application settings, persisting,  228–230, 248–249
ApplicationViewState object,  178
app object

onactivated event,  115, 117, 119, 134
oncheckpoint event,  118
onready event,  165
onsettings event,  224

Array object, JavaScript,  75
arrays, binding list for,  167–168
<article> element, HTML,  30–31
<aside> element, HTML,  31
asynchronous functions,  101–102
attribute pseudo-classes,  68–69
<audio> element, HTML,  41–42
audio files

choosing device to play to,  205
embedding in HTML,  41

Index

Symbols
: (colon)

preceding pseudo-classes,  67
in style attribute,  48
in style command,  51

, (comma), in compound selectors,  69
{ } (curly brackets)

enclosing object literal,  80
in <style> element,  49

. (dot)
in compound selectors,  69
preceding CSS classes,  53

() (parentheses), enclosing immediate functions or
objects,  82

+ (plus sign), in compound selectors,  69
(pound symbol)

preceding element IDs,  20, 52
preceding hexadecimal RGB values,  55

> (right angle bracket), in compound selectors,  69
; (semi-colon)

in style attribute,  48
in style command,  51

[] (square brackets), enclosing attribute pseudo-
class,  68

A
<a> element, HTML,  26

in <nav> element,  31
pseudo-classes for,  67–68

about page, for Settings,  225–227
accessibility, semantic elements for,  31, 32
Account picture provider,  205
action attribute, <form> element,  35
activated event, app object,  115, 117, 119, 134

autofocus attribute, <input> element

352   Index

format for,  42
playing,  41

autofocus attribute, <input> element,  36–37
autoplay attribute

<audio> element,  41
<video> element,  43

AutoPlay event,  205
AutoPlay provider,  205

B
background-attachment property,  58
background-color property,  57
background gradients,  170
background-image property,  57–58
background-repeat property,  57–58
Background task provider,  205
background tasks,  119
BadgeLogo.png file,  123
<big> element, HTML,  34
binding

data to UI,  112–116
for arrays,  167–168
for TodoList project example,  134–135,

138–146
two-way binding,  144–146
for Video project example,  167–170

handlers to events,  19, 137–138
binding list,  167–168
Bing SDK,  312–318
bitmap images

as background of HTML elements,  57
for shared data,  217

Blank App template,  11
block elements,  25, 31, 60
<body> element, HTML,  15
books and publications

Start Here! Learn HTML5 (Microsoft Press),  2
Start Here! Learn HTML (Microsoft Press),  24
Start Here! Learn JavaScript (Microsoft Press),  2

border property,  63, 64
boxing model,  63–66
browsers, HTML5 support in,  36
building application,  141
built-in objects, JavaScript,  75
<button> element, HTML,  137

C
Cache updater contract,  205
callback functions, JavaScript,  85–88
CameraCaptureUI object,  294, 295
Camera settings provider,  205
Cascading Style Sheet. See CSS
<center> element, HTML,  34
certificate, for application,  124
certification of application,  346–349
Chakra runtime environment,  74
Charms bar,  103, 108

accessing,  202
contracts used in,  202–203
list of available printers in, enabling,  301–302

checked pseudo-class, <input> element,  68
checkpoint event, app object,  118
class attribute, HTML,  53
classes, CSS,  51, 53
clipboard, alternative to. See Share contracts
cloud,  107
codecs

audio files,  42
video files,  44

code, readability of,  121
colon (:)

preceding pseudo-classes,  67
in style attribute,  48
in style command,  51

color property,  56
colors,  55–58

background color,  57–58
defining,  55–56
foreground color,  56
gradients,  57, 170
transparency of,  56

comma (,), in compound selectors,  69
compound selectors,  69
constructor functions, JavaScript,  83–85
Contact provider,  205
contract-based callback functions, JavaScript,  87–88
contracts,  106, 201–206. See also extensions

Cache updater contract,  205
Charms bar elements using,  202–203
consuming services using,  204
File picker contract,  204, 206–216

file extensions allowed for,  211

	 developer account

	 Index   353

file name for,  211–213
folder selections only,  216
multiple selections for,  215
open option for,  210, 214–216, 244
save option for,  210–213, 237–238
starting location for,  210–211
suggested file name for,  211
unsnapping required for,  209–210

list of,  204–205
Play to contract,  205
Print contract,  301–305
publishing services using,  204
Search contract,  203, 205
Settings contract,  203, 205, 224–233

about page for,  225–227
persisting application settings,  228–230
privacy page for,  225
Save button not recommended,  233
settings page for,  227–233

Share contracts,  203, 204, 216–224
application targets for,  224
conditinal sharing,  223
data format for,  217
HTML format for,  221–222
if application doesn't support,  218
plain text format for,  219–220
programmatic sharing,  223
Share source contract,  204
Share target contract,  204

controls attribute
<audio> element,  41
<video> element,  43

CSS (Cascading Style Sheet),  47–48
boxing model,  63–66
classes defined in,  51, 53
colors, setting,  55–58
compound selectors,  69
default file for, in project,  13–14, 17
editing,  17–18
element IDs, referencing,  20, 52
embedded styles,  49–50, 52
external CSS files,  50–51
floating elements,  61–63
for global settings,  128
hierarchy of styles applied,  53–54
history of,  48
inline-block elements,  62–63

inline styling,  48–49
media attribute,  70–71, 306–307
media queries,  70–71, 194–195
for page-specific settings,  128
pseudo-classes,  66–69
role of, in application,  23
selectors (elements to style),  51–55, 69
style commands,  51
tag name, referencing,  53
text fonts, setting,  58–60
for UI theme,  124
version of,  48

Css folder,  123
curly brackets ({ })

enclosing object literal,  80
in <style> element,  49

custom objects, JavaScript,  83–85

D
database, persisting data to,  235, 251
data binding,  112–116

for arrays,  167–168
for TodoList project example,  134–135, 138–146
two-way binding,  144–146
for Video project example,  167–170

data collection. See forms
<datalist> element, HTML,  33–34
DataPackage object,  217
datarequested event,  223
DataTransferManager object,  217, 218
data-win-bind attribute, element,  114
data-win-control attribute, <div> element,  127, 135
Date object, JavaScript,  75
DatePicker widget,  107, 135
debugging,  141–143
debug mode, running applications in,  16–17
decodeUri function, JavaScript,  76
default.css file,  127–128
default.html file,  124–125
default.js file,  134
design of user interface. See UI (user interface)
desktop mode, Windows 8,  177
<details> element, HTML,  32
developer account,  336–340

cost of,  339

device-centric design

354   Index

creating,  7–9, 336–339
for free applications,  336–339
for paid applications,  339–340
personal or business,  337–338
renewing,  8

device-centric design,  104
devices

choosing, for playing files,  205
connecting, AutoPlay event for,  205
GPS device,  309–318

latitude and longitude, detecting,  309–312
mapping location data,  312–318
user permission for,  311

printer,  301–309
CSS media attribute for,  306–307
Print contract,  301–305
printing specific content,  305–309
templates for,  307–309
user interface for,  304–305

synchronizing settings across,  249
webcam,  291–301

capability for, setting in manifest file,  293–
294

capturing photos from,  294–297
configuring,  294
displaying photos from,  298
saving photos from,  298–301
user permission for,  296

Devices functions,  101
DirectX functions,  101
disabled pseudo-class, <input> element,  68
disabled users. See accessibility
display modes,  60–63
display property,  60–61, 62–63
<div> element, HTML,  19, 25

data-win-control attribute,  127, 135
id attribute,  27–28

document object
getElementById method,  111, 112
querySelectorAll method,  112
querySelector method,  112

DOM (Document Object Model),  23, 112
dot (.)

in compound selectors,  69
preceding CSS classes,  53

E
ECMA-262 standard,  74

element IDs,  20, 28, 52
embedded styles,  49–50, 52
enabled pseudo-class, <input> element,  68
encodeUri function, JavaScript,  76
Enterprise Sideloading,  349
equality operators, JavaScript,  76
errors,  141–142. See also debugging
escape function, JavaScript,  76
eval function, JavaScript,  76
event handlers, JavaScript,  19, 89, 90, 137–138
events

binding to handlers,  19, 89, 90, 137–138
datarequested event,  223
onactivated event, app object,  115, 117, 119, 134
oncheckpoint event, app object,  118
onready event, app object,  165
onresize event, window object,  184, 188, 195
onsettings event, app object,  224

example projects
FlickrPhotoViewer project,  279–290

displaying photos,  284–285, 289–290
downloading JSON data for,  282–283
Flickr URL parameters,  281
invalid JSON data, handling,  285–289

Gallery project,  149–164
detail page for photos,  156–159
FlipView widget for,  152–156
Navigation App template for,  149–151
persisting information with,  160–161
photo template,  155–156
zooming images,  161–164

HelloWin8 project,  12–16
HelloWin8-Step2 project,  16–20
Html5-Demos project,  26–34
InstantPhoto project,  292–301

configuring webcam,  294
displaying photos from webcam,  298
saving photos from webcam,  298–301
webcam capability, setting,  293–294

LatLong project,  309–318
address information, determining,  316–318
latitude and longitude, detecting,  309–312
mapping location data,  312–318

RssReader project,  266–278
displaying data,  275–278
manifest file,  271–272
parsing data,  272–275
reading remote data,  266–272

SnapMe project,  182–195
TilesDemo project

	 forms

	 Index   355

creating Live tiles,  323–324
notification object for,  324–326

TodoList project,  122–146
about page for,  225–227
building application,  141
CSS files for,  127–129
debugging,  141–143
deleting tasks,  262–264
editing tasks,  260–262
file picker for,  206–213
files and folders for,  122–124
form for,  133–146
header and footer for,  125–127
Live tiles for,  326–333
logos for,  130–132
manifest file,  129–130
persisting data,  236–247, 251–264
saving tasks,  259–260
settings page for,  227–233
sharing data from,  216–224
splash screen for,  132
WinJS references in,  124–125

Video project,  165–174
adapting to view states,  196–200
binding data,  167–170
playing videos,  172–174
SemanticZoom widget for,  165–172

exceptions,  142. See also debugging
Extensible Application Markup Language. See XAML
extensions,  205–206

F
file access,  102
File activation provider,  205
file formats

audio files,  42
handling, File activation provider for,  205
images,  153, 294
serialization formats,  240–243
for shared data,  217
video files,  44, 174

FileIO object,  237, 240
FileOpenPicker object,  210
File picker contract,  204, 206–216. See also Cache

updater contract
file extensions allowed for,  211
file name for,  211–213
folder selections only,  216

multiple selections for,  215
open option for,  210, 214–216, 244
save option for,  210–213, 237–238
starting location for,  210–211
suggested file name for,  211
unsnapping required for,  209–210

FileSavePicker object,  210
filled view state,  180–182
first-child pseudo-class,  69
Fixed Layout App template,  11
flexible boxes,  190–193
FlickrPhotoViewer project example,  279–290

displaying photos,  284–285, 289–290
downloading JSON data for,  282–283
Flickr URL parameters,  281
invalid JSON data, handling,  285–289

FlipView widget,  107, 152–156
float property,  61–62
fluid layouts,  189–200

CSS media queries for,  194–195
flexible boxes for,  190–193

Flyout widget,  107
focus pseudo-class, <input> element,  68
FolderPicker object,  216
 element, HTML,  34
font-family property,  58–59
font-size property,  58–59
fonts, setting,  58–60
font-style property,  59–60
font-weight property,  59–60
<footer> element, HTML,  29–30, 125–127
foreground color,  56
<form> element, HTML,  137

action attribute,  35
novalidate attribute,  40

formnovalidate attribute, <input> element,  40–41
forms,  34–41

input fields
adding,  35
focus on, assigning,  36–37
hints for,  37
list of values for,  33–34
types of,  35

input validation
disabling,  40–41
error message for invalid fields,  39
regular expressions for,  39–40
required fields,  38–39
submit button for,  40–41

for TodoList project example,  133–146

<frame> element, HTML

356   Index

<frame> element, HTML,  34
full-screen view states,  178–179

landscape mode,  178
portrait mode,  178–179
rotation, detection of,  179

functions, JavaScript,  81–89
anonymous functions,  81, 88–89
callback functions,  85–88
calling,  81
constructor functions,  83–85
defining,  81
extending objects using,  83
immediate functions,  82–83
importing, with contracts,  106–107
named functions,  81–82
parameters for,  81–82

functions, WinRT API,  101–102

G
Gallery project example,  149–164

detail page for photos,  156–159
FlipView widget for,  152–156
Navigation App template for,  149–151
persisting information with,  160–161
photo template,  155–156
zooming images,  161–164

generateNumber() function example,  19
getElementById method, document object,  111, 112
global namespace, JavaScript,  78
global object, JavaScript,  75–76
global variables, JavaScript,  78, 92–93
GPS device,  309–318

latitude and longitude, detecting,  309–312
mapping location data,  312–318
user permission for,  311

gradients,  57, 170
Grid App template,  11, 122

H
<h1> element, HTML,  25
handlers, binding to events,  19, 137–138
<header> element, HTML,  29–30, 125–127
height attribute, <video> element,  43
height property

for HTML elements,  65–66
for media queries,  71

HelloWin8 project example,  12–16

HelloWin8-Step2 project example,  16–20
highlighting text. See <mark> element, HTML
hoisting, in JavaScript,  79
home.css file,  149
home folder,  149
home.html file,  149
home.js file,  149
home screen for application,  124, 124–125, 129
hover pseudo-class, anchors,  67–68
HTML5,  23–24. See also specific elements

block elements,  25, 31, 60
browser support for,  36
default file for, in project,  13–14
display modes,  60–63
editing,  14–15, 16–17
element IDs

defining,  28, 52
referencing in CSS,  20, 52

inline elements,  25, 60–61
input forms,  34–41
linking JavaScript to,  89–92
multimedia,  41–44
page layout,  24–31
removed (unsupported) elements,  34
resources for,  2
role of, in application,  23
semantic elements,  31, 32

Html5-Demos project example,  26–34
HtmlControl widget,  108
HTML format, for shared data,  217, 221–222
HTTP requests

errors in, handling,  268–269
timeouts for,  270
WinJS.xhr object for,  266–270

hyperlinks
<a> element for,  26

in <nav> element,  31
pseudo-classes for,  67–68

for navigation,  148
Hypertext Markup Language. See HTML5

I
icons, compared to Live tiles,  319
id attribute, <div> element,  27–28
<iframe> element, HTML,  173–174
images. See also webcam

as background of HTML elements,  57
displaying, choosing device for,  205

	 latitude and longitude, detecting

	 Index   357

file formats for,  153, 294
gallery of. See Gallery project example
logos for application,  123, 130–132
Paint.NET tool,  130–131
splash screen,  123, 132
for user account,  205
zooming,  161–164

Images folder,  123
immediate functions, JavaScript,  82–83
immediate objects, JavaScript,  82–83
Infinity value, JavaScript,  75
inline-block elements,  62–63
inline elements,  25, 60–61
inline styling,  48–49
innerHtml property,  113
innerText property,  113, 115
<input> element, HTML,  35–37

autofocus attribute,  36–37
formnovalidate attribute,  40–41
list attribute,  33–34
onclick attribute,  90
oninvalid attribute,  39
pattern attribute,  39–40
placeholder attribute,  37
pseudo-classes for,  68
required attribute,  38–39
type attribute,  35, 136, 162

input fields
adding,  35
focus on, assigning,  36–37
hints for,  37
list of values for,  33–34
types of,  35

input forms. See forms
input validation,  38–41

disabling,  40–41
error message for invalid fields,  39
regular expressions for,  39–40
required fields,  38–39
submit button for,  40–41

InstantPhoto project example,  292–301
configuring webcam,  294
displaying photos from webcam,  298
saving photos from webcam,  298–301
webcam capability, setting,  293–294

Internet Client capability,  271
Internet data. See remote data
isFinite function, JavaScript,  76
isNaN function, JavaScript,  76
ISO/IEC 16262:2011 standard,  74

isolated storage
in TodoList project,  251–264
types of,  250–251

J
JavaScript,  73–74

built-in objects,  75
Chakra runtime environment for,  74
default file for, in project,  13–14
equality operators,  76
event handlers,  89, 90
functions,  81–89
global namespace,  78
global object,  75–76
hoisting,  79
as interpreted language,  74
linking to HTML pages,  89–92
maintaining state,  93
null values,  76
objects,  79–80
primitive types,  74–75
resources for,  2
role of, in application,  23
standards for,  74
undefined values,  76
variables,  77–79, 92–93

jQuery library,  91–92
JScript .NET,  1
Js folder,  124
JSLint tool,  78
JSON data,  242–243, 278–290

deserializing,  245–247
displaying,  284–285
downloading,  282–283
invalid, handling,  285–289

JSONLint website,  286–288

K
kernel, operating system,  100
Knockout library,  116

L
landscape mode,  178
last-child pseudo-class,  69
latitude and longitude, detecting,  309–312

LatLong project example

358   Index

LatLong project example,  309–318
address information, determining,  316–318
latitude and longitude, detecting,  309–312
mapping location data,  312–318

lifecycle of applications,  116–119
<link> element, HTML,  51
links

<a> element for,  26
in <nav> element,  31
pseudo-classes for,  67–68

for navigation,  148
liquid layouts. See fluid layouts
list attribute, <input> element,  33–34
ListView widget,  108
Live tiles,  103, 319–322

adding to applications,  326–333
background agents for,  333
compared to icons,  319
creating,  323–326
moving,  320–321
notification object for,  324–326, 333
resizing,  322
templates for,  324–325, 328–329
unpinning applications from,  322

local disk, storing application data to,  249–250. See
also File picker contract

local isolated storage,  250
localization,  94
local machine, running applications on,  15, 16
localSettings object,  228–230, 248–249
local variables, JavaScript,  77
location (path) for projects,  12
Lock screen, background task information on,  119
Logo.png file,  123
logos for application,  123, 130–132
longitude and latitude, detecting,  309–312
loop attribute

<audio> element,  41
<video> element,  43

M
manifest file,  124, 129–130

enabling Internet capability,  271–272
enabling Pictures Library access,  298–299
enabling webcam capability,  293–294

margin property,  63, 64–65
<mark> element, HTML,  33
master-detail view. See SemanticZoom widget

Math object, JavaScript,  75
max-height property

for HTML elements,  66
for media queries,  71

max-width property
for HTML elements,  66
for media queries,  71

media attribute,  70–71, 306–307
Media functions,  101
media queries, CSS,  70–71, 194–195
Menu widget,  108
Microsoft Bing SDK,  312–318
min-height property

for HTML elements,  66
for media queries,  71

min-width property
for HTML elements,  66
for media queries,  71

MP3 files,  42
MP4 files,  44
-ms-flex-XXX attributes,  191
multimedia,  41–44

audio,  41–42
video,  42–44

muted attribute, <video> element,  43

N
named functions, JavaScript,  81–82
NaN value, JavaScript,  75
<nav> element, HTML,  31
navigation

home screen for,  148–149, 150–151
hyperlinks for,  148
model for,  147–149
Navigation App template for,  11, 122, 149–151
page fragments for,  148–149, 151
persisting information with,  160–161

Navigation App template,  11, 122, 149–151
navigator.js file,  150
.NET Framework,  5

compared to WinJS library,  102
history of,  1
version of,  5

Networking functions,  101
new constructor, JavaScript,  80, 84
New Project link,  10
notification object,  324–326, 333
NOT keyword, media queries,  71

	 Print settings provider

	 Index   359

novalidate attribute, <form> element,  40
null values, JavaScript,  76
numberButtonClick() function example,  19
Number object, JavaScript,  75
number type, JavaScript,  75

O
object literals, JavaScript,  80
objects

application, persisting,  235–247
appending data to files,  240
deleting files,  240
reading files,  243–247
serialization formats for,  240–243, 245–247
writing files,  237–240

JavaScript,  79–80
adding members to,  79–80, 83
built-in objects,  74–75
creating new instances of,  80
custom objects, creating,  83–85
global object,  75–76
immediate objects,  82–83
prototype for,  80, 83
wrapper objects,  74, 78

OGG files,  42, 44
onactivated event, app object,  115, 117, 119, 134
oncheckpoint event, app object,  118
onclick attribute, <input> element,  90
on-demand elements in UI,  108
oninvalid attribute, <input> element,  39
onready event, app object,  165
onresize event, window object,  184, 188, 195
onsettings event, app object,  224
operating system kernel,  100
orientation property, media queries,  71

P
<p> element, HTML,  15
Package.appxmanifest file,  124, 129–130
packaging applications,  342–349
padding property,  63, 64
PageControlNavigator object,  150
PageControl widget,  108
page layout, HTML5 elements for,  24–31
pages folder,  149
Paint.NET tool,  130–131
parameters for functions,  81–82

parentheses (()), enclosing immediate functions or
objects,  82

parseFloat function, JavaScript,  76
parseInt function, JavaScript,  76
path (location) for projects,  12
pattern attribute, <input> element,  39–40
pattern matching. See regular expressions
period (.)

in compound selectors,  69
preceding CSS classes,  53

persisting data
application objects,  235–247

appending data to files,  240
deleting files,  240
reading files,  243–247
serialization formats for,  240–243, 245–247
writing files,  237–240

application settings,  228–230, 248–249
to database,  235, 251
to isolated storage

in TodoList project,  251–264
types of,  250–251

to local disk,  249–250. See also File picker
contract

to localSettings object,  248
to removable storage devices,  250

Pictures Library,  298–299
placeholder attribute, <input> element,  37
Play to contract,  205
plus sign (+), in compound selectors,  69
portrait mode,  178–179
poster attribute, <video> element,  43
pound symbol (#)

preceding element IDs,  20, 52
preceding hexadecimal RGB values,  55

preload attribute
<audio> element,  41
<video> element,  43

Presentation functions,  101
primitive types, JavaScript,  74–75
Print contract,  301–305
printer,  301–309

CSS media attribute for,  306–307
Print contract for,  301–305
printing specific content,  305–309
templates for,  307–309
user interface for,  304–305

PrintManager object,  303
Print settings provider,  205

privacy page, for Settings

360   Index

privacy page, for Settings,  225
product key, Visual Studio 2012,  5–7
programming languages,  10, 99. See also JavaScript
projects. See also example projects

building applications from,  15–16
creating,  10–16
CSS for. See CSS (Cascading Style Sheet)
files and folders in,  122–124

creating,  125
with Navigation App template,  149–150
opening,  14

HTML for. See HTML5
JavaScript for. See JavaScript
location (path) for,  12
templates for

choosing,  10–11
predefined, list of,  11

Promise object,  118
error handling with,  268–269
timeouts with,  270
WinJS.xhr object returning,  268

proportional design. See fluid layouts
prototype common property, JavaScript,  80
pseudo-classes, CSS,  66–69
publishing applications,  335, 340–349

cost of,  335, 339
developer account for,  336–340
naming application for,  340–342
packaging application for,  342–349
for sideloaded applications,  349
submitting for certification,  346–349

Q
querySelectorAll method, document object,  112
querySelector method, document object,  112

R
random numbers, generating,  18–19
readability of code,  121
ready event, app object,  165
redundancy in UI, zero,  106
References folder,  123
RegExp object, JavaScript,  75
regular expressions, for input validation,  39–40
Release mode,  342–343
remote data

JSON data,  278–290

RSS data,  265–278
WinJS.xhr object for,  266–270

remote machine, running applications on,  15
removable storage devices,  250
required attribute, <input> element,  38–39
resize event, window object,  184, 188, 195
resources. See books and publications; website

resources
responsiveness of UI,  105
rgba function,  56
RGB colors,  55
rgb function,  55
right angle bracket (>), in compound selectors,  69
roaming isolated storage,  251, 259–264
roamingSettings object,  249
rotation of device, detecting,  179
RSS data,  265–278

displaying RSS data,  275–278
downloading,  266–272
parsing data,  272–275

RssReader project example,  266–278
displaying RSS data,  275–278
manifest file,  271–272
parsing data,  272–275
reading remote data,  266–272

RTF format, for shared data,  217
run time errors,  141. See also debugging

S
Save picker contract. See File picker contract
<script> element, HTML,  90–91
Search contract,  203, 205
<section> element, HTML,  30–31
<select> element, HTML,  136
selectors,  51–55, 69
semantic elements,  31, 32
SemanticZoom widget,  108, 165–172
semi-colon (;)

in style attribute,  48
in style command,  51

serialization formats,  240–243
services,  204. See also contracts
Settings contract,  203, 205, 224–233

about page for,  225–227
persisting application settings,  228–230
privacy page for,  225
Save button not recommended,  233
settings page for,  227–233

	 TodoList project example

	 Index   361

settings event, app object,  224
Settings panel,  203, 224

adding items to,  224–227
dismissing,  226
running code before and after,  232

Share contracts,  203, 204, 216–224
application targets for,  224
conditinal sharing,  223
data format for,  217
HTML format for,  221–222
if application doesn't support,  218
plain text format for,  219–220
programmatic sharing,  223
Share source contract,  204
Share target contract,  204

sideloaded applications,  9, 349
simulator, running applications in,  15, 16
SmallLogo.png file,  123
SnapMe project example,  182–195
snapped view state,  179–182, 188–189
Solution Explorer panel,  14
<source> element, HTML,  42
 element, HTML

data-win-bind attribute,  114
innerText property,  115

splash screen,  123, 132
SplashScreen.png file,  123
Split App template,  11, 122
SQLite database,  251
square brackets ([]), enclosing attribute pseudo-

class,  68
src attribute

<audio> element,  41
<script> element,  91
<video> element,  43

stack, Windows 8,  100–101
standard desktop mode, Windows 8,  177
standard mode, Windows 8,  98–99
Start Here! Learn HTML5 (Microsoft Press),  2
Start Here! Learn HTML (Microsoft Press),  24
Start Here! Learn JavaScript (Microsoft Press),  2
start page. See home screen for application
state (application), maintaining,  93

between pages,  160–161
between view states,  182–183

states (lifecycle) of applications,  116–119, 161
states (view) of application,  177–178

adapting content to,  187–200
behavior of application not affected by,  181, 188
detecting changes in,  184–187

filled view state,  180–182
full-screen view states,  178–179

landscape mode,  178
portrait mode,  178–179
rotation, detection of,  179

maintaining application state between,  182–183
snapped view state,  179–182, 188–189

restrictions on,  180
unsnapping programmatically,  188–189

stopFloating element,  62
StorageFile object,  212, 300
Storage functions,  101
StoreLogo.png file,  123
String object, JavaScript,  75
string type, JavaScript,  75
style attribute, HTML,  48–49
<style> element, HTML,  49–50
style sheets. See CSS (Cascading Style Sheet)
submit button, for forms submission,  40–41
<summary> element, HTML,  32
suspended state,  118–119

Background task provider for,  205
devices having,  161

syntax errors,  141. See also debugging

T
tags, HTML. See HTML5
templates

choosing,  10–11, 121–122
predefined, list of,  11

temporary isolated storage,  251
<textarea> element, HTML,  135
text fonts, setting,  58–60
text format, for shared data,  217, 219–220
theme for application UI,  124
theme for Visual Studio,  13
TileNotification object,  324–326
TilesDemo project example

creating Live tiles,  323–324
notification object for,  324–326

TimePicker widget,  108
TodoList project example,  122–146

about page for,  225–227
building application,  141
CSS files for,  127–129
debugging,  141–143
deleting tasks,  262–264
editing tasks,  260–262

ToggleSwitch widget

362   Index

file picker for,  206–213
files and folders for,  122–124
form for,  133–146
header and footer for,  125–127
Live tiles for,  326–333
logos for,  130–132
manifest file,  129–130
persisting data,  236–247, 251–264
saving tasks,  259–260
settings page for,  227–233
sharing data from,  216–224
splash screen for,  132
WinJS references in,  124–125

ToggleSwitch widget,  108
Tools menu, Options

default path, setting,  12
theme, setting,  13

Tooltip widget,  108, 137, 138
touch input,  103, 105
transparency for colors,  56
type attribute, <input> element,  35, 136, 162
typeof operator, JavaScript,  76, 80
types, JavaScript,  74–75

U
<u> element, HTML,  34
ui-dark.css file,  124
ui-light.css file,  124
UI (user interface),  102–107

App bar,  103, 109–112
binding data to,  112–116
Charms bar,  103
cloud use by,  107
dark or light theme for,  124
design principles for,  104–107
device-centric,  104
importing functions for,  106
Live tiles,  103
on-demand elements in,  108
platform influencing,  106
redundancy in, zero,  106
responsiveness of,  105
touch-enabled,  103, 105
visual widgets,  107–108

undefined values, JavaScript,  76
unescape function, JavaScript,  76
URI format, for shared data,  217
URL, accessing with WinJS.xhr object,  266–270

user account, image for,  205
user interface. See UI (user interface); See Windows

8 UI

V
variables, JavaScript,  77–79

global variables,  78, 92–93
hoisting,  79
local variables,  77

var keyword, JavaScript,  77, 78, 79
<video> element, HTML,  42–44
Video project example,  165–174

adapting to view states,  196–200
binding data,  167–170
playing videos,  172–174
SemanticZoom widget for,  165–172

videos
choosing device to play to,  205
formats for,  44, 174
playing,  172–174

ViewBox widget,  108
view states,  177–178

adapting content to,  187–200
behavior of application not affected by,  181, 188
detecting changes in,  184–187
filled view state,  180–182
full-screen view states,  178–179

landscape mode,  178
portrait mode,  178–179
rotation, detection of,  179

maintaining application state between,  182–183
snapped view state,  179–182, 188–189

restrictions on,  180
unsnapping programmatically,  188–189

visited pseudo-class, anchors,  67–68
Visual Studio 2012

configuring,  5–9
developer account for,  7–9, 336–339
editions of,  2, 3
installing,  3–5
product key for,  5–7
programming language for,  10
projects in. See projects
theme for, setting,  13
Windows Store account for,  9

	 Windows 8 UI

	 Index   363

W
W3C (World Wide Web Consortium),  48
WAV files,  42
web browsers. See browsers
webcam,  291–301

capability for, setting in manifest file,  293–294
capturing photos from,  294–297
configuring,  294
displaying photos from,  298
saving photos from,  298–301
user permission for,  296

website resources
Bing SDK,  313
CSS predefined colors,  55
flexible boxes,  190
jQuery library,  91
JSLint tool,  78
JSONLint,  286
SQLite database,  251
Visual Studio Express download,  3
Visual Studio features,  3
Windows 8 download,  3

WideLogo.png file,  123
widgets, WinJs library,  107–108
width attribute, <video> element,  43
width property,  65–66
width property, media queries,  71
window.print method,  309
Windows 8

editions of,  2, 3
installing,  2–3
stack,  100–101
standard desktop mode,  98–99, 177

Windows 8 applications,  98–99
background tasks for,  119
building,  15–16, 141
certificate for,  124
debugging,  141–143
exiting,  16
fonts for, changing,  58
home screen for,  124, 124–125, 129
income and taxes from,  340
installing

methods of,  336
requirements for,  8, 9

launching,  117–118, 165
lifecycle of,  116–119
localization for,  94
logos for,  123, 130–132

maintaining state,  93
naming,  340–342
packaging,  124, 342–349
platforms for,  344–345
programming languages for,  10, 99
projects for. See projects
publishing,  335, 340–349

cost of,  335, 339
developer account for,  336–340
naming application for,  340–342
packaging application for,  342–349
for sideloaded applications,  349
submitting for certification,  346–349

resuming,  119
running

in debug mode,  16–17
on local machine,  15, 16
on remote machine,  15
in simulator,  15, 16

splash screen for,  123, 132
states of,  116–119, 161
storing data in,  102
suspending,  118
tools required for,  1–5, 23–24
unpinning from Start screen,  322
user interface for. See Windows 8 UI
view states of,  177–178

adapting content to,  187–200
behavior of application not affected by,  188
detecting changes in,  184–187
filled view state,  180–182
full-screen view states,  178–179
maintaining application state between,  182–

183
snapped view state,  179–182, 188–189

Windows 8 SDK,  5
Windows 8 UI,  102–107

App bar,  103, 109–112
binding data to,  112–116
Charms bar,  103
cloud use by,  107
dark or light theme for,  124
design principles for,  104–107
device-centric,  104
importing functions for,  106
Live tiles,  103
on-demand elements in,  108
platform influencing,  106
redundancy in, zero,  106
responsiveness of,  105

Windows App Certification Kit

364   Index

touch-enabled,  103, 105
visual widgets,  107–108

Windows App Certification Kit,  346–347
Windows clipboard, alternative to. See Share

contracts
Windows Live ID,  7
Windows Runtime environment. See WinRT

environment
Windows Store account,  9
Windows Store applications. See Windows 8

applications
WinJS.Application object,  160
WinJS.Binding.List object,  167
WinJs library,  1, 23, 74

compared to .NET Framework,  102
references to, in default.html file,  124
visual widgets,  107–108

WinJS logger,  112
WinJS.Navigation object,  159
WinJS.UI.AppBarCommand object,  110
WinJS.UI.AppBar object,  110
WinJS.UI.FlipView widget,  152–156
WinJS.UI.SemanticZoom widget,  165–172

WinJS.UI.Tooltip object,  137
WinJS.xhr object,  266–270

downloading JSON data,  282–283
downloading RSS data,  266–272
errors in, handling,  268–269
manifest file settings for,  271
parameters for,  267–268
Promise object returned by,  268
timeouts with,  270

WinRT (Windows Runtime) environment,  1, 97–102
API for,  100–102
stack,  100–101
system classes, WinJs library for,  1

World Wide Web Consortium. See W3C
wrapper objects, JavaScript

for global namespace,  78
for primitive types,  74

X
XAML (Extensible Application Markup

Language),  99, 100
XHR, WinJS.xhr object,  266–267
Xxx_TemporaryKey.pfx file,  124

Y
YouTube videos, playing,  173–174

Z
zooming images,  161–164

About the authors

Dino Esposito, a long-time trainer and top-notch consultant, is the author
of many popular books for Microsoft Press that have helped the professional
growth of thousands of .NET developers and architects. Dino is the CTO
of a fast-growing company that provides software and mobile services to
professional sports, and currently is also a technical evangelist for JetBrains,
where he focuses on Android and Kotlin development, and is a member of
the team that manages WURFL—the database of mobile devices used by
organizations such as Google and Facebook. Follow Dino on Twitter at
@despos and on http://software2cents.wordpress.com.

Even though he’s still a teenager (he’s only 15), Francesco Esposito has
accumulated significant experience with mobile application development for a
variety of platforms, including iOS with Objective C and MonoTouch, Android
via Java, Windows Phone, and even BlackBerry. He wrote most of the code for
IBI12—the official multi-platform app for the Rome ATP Masters 1000 tennis
tournament.

When not writing apps, hanging out with friends, or practicing water polo,
he likes going to school, where his secret goal is to achieve the highest marks
ever so he can get a scholarship to Harvard or just buy his own Surface tablet.

SurvPage_Corp_02.indd 1 5/19/2011 4:18:12 PM

What do
you think of
this book?
We want to hear from you!
To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Tell us how well this book meets your needs—what works effectively, and what we can
do better. Your feedback will help us continually improve our books and learning
resources for you.

Thank you in advance for your input!

	Contents at a Glance
	Introduction
	Contents
	Chapter 1: Using Visual Studio 2012 Express edition for Windows 8
	Getting ready for development
	The software you need
	Configuring Visual Studio 2012
	Start playing with Windows 8 apps
	The “Hello Windows 8” application
	Adding a bit more action

	Summary

	Chapter 2: Making sense of HTML5
	Elements of a webpage
	Building the page layout with HTML5
	Miscellany of other new elements

	Collecting data
	Adjusting input fields
	Form submission

	Multimedia elements
	The audio element
	The video element

	Summary

	Index

