m Microsoft

Microsoft
Visual C++/CLI

Julian Templeman



o Microsoft

Microsoft Visual C++/CLI
Step by Step

Julian Templeman



Copyright © 2013 by Julian Templeman
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-7517-9
123456789LSI876543
Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation,

nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions and Developmental Editor: Russell Jones
Production Editor: Kara Ebrahim

Technical Reviewer: Luca Regnicoli

Copyeditor: Octal Publishing, Inc.

Indexer: BIM Indexing and Proofreading Services
Cover Design: Twist Creative « Seattle

Cover Composition: Ellie Volckhausen

lllustrator: Rebecca Demarest


http://www.microsoft.com/learning/booksurvey
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

I would like to dedicate this book to my wife, Jane, without
whose steadfast love and support none of this would be possible.

—JULIAN TEMPLEMAN






Contents at a Glance

Introduction XXi
CHAPTER 1 Hello C++! 3
CHAPTER 2 Introducing object-oriented programming 13
CHAPTER 3 Variables and operators 23
CHAPTER 4 Using functions 37
CHAPTER 5 Decision and loop statements 57
CHAPTER 6 More about classes and objects 77
CHAPTER 7 Controlling object lifetimes 103
CHAPTER 8 Inheritance 121
CHAPTER 9 Value types 143
CHAPTER 10 Operator overloading 159
CHAPTER 11 Exception handling 175
CHAPTER 12 Arrays and collections 197
CHAPTER 13 Properties 229
CHAPTER 14 Delegates and events 245
CHAPTER 15 The .NET Framework class library 263
CHAPTER 16 Working with files 281
CHAPTER 17 Reading and writing XML 305
CHAPTER 18 Using ADO.NET 333
CHAPTER19  Writing a service by using Windows

Communication Foundation 351
CHAPTER 20 Introducing Windows Store apps 369
CHAPTER 21 More about Windows Store apps 397



vi

PART IV

ADVANCED TOPICS

CHAPTER 22
CHAPTER 23
CHAPTER 24

Contents at a Glance

Working with unmanaged code
Attributes and reflection
Living with COM

Index

437
453
475

487



Contents

Introduction ... ... . . XXi
Chapter 1 Hello C++! 3
What is C++/CLI?. oo 3
Your first C++/CLl application. . ... 4
The mainfunction ... ... . 4

C++ keywords and identifiers ................. .. ... 5
Creating an executable application—theory.......................... 6
Editing the application sourcefiles................ ... ... ... ... 6
Compiling the sourcefiles ........... ... i 6
Running and testing the application ........................... 7
Creating an executable application—practice. . ....................... 7
Creating a project . ... 8
Editing the C++ sourcecode . ... ..., 9
Building the executable ...... .. ... ... 9
Executing the application.............. . ... i 11
CONCIUSION .« .ottt 11
Quickreference. ... ... ..o 11
Chapter 2 Introducing object-oriented programming 13
What is object-oriented programming?............. ... ..o 13
Features of object-oriented programming languages. ................ 14
Encapsulation ... 14
Inheritance .. ... 15
Polymorphism. ... 15
Classes and objects. . ... 16

vii



viii

Contents

Benefits to the developmentlifecycle ................. ... ... . ... 16

Asimple example . ... 17
Quick reference. . ... ..o 22
Chapter 3 Variables and operators 23
Whatisavariable? ... ... . 23
The fundamental data types. ....... ... ... o i i 23
Declaring avariable ........ .. ... 25
Variable naming . ........... . 25
Declaring multiple variables .. ....... ... .. 26
Assigning values to variables . ........ ... 26
Handles and pointers. .. ... 27
ATy S . 28
Constants . ... 28
Typedefs . .. 29
The .NET Framework String class .. ... ... 29
Operators and eXpressions ... ...ttt 30
Assignment operators. ..... ... 30
Arithmetic operators. .......... . 30
Relational and logical operators........... ... ... .. i 31
Bitwise operators . ... 32

The ternary operator. ... ..ot 33

TYPE Casting . .o oot 33
Operator precedence and associativity . ....................... 34
Quick reference. ... 35
Chapter 4 Using functions 37
Declaring function prototypes. ... 38
Declaring a simple function prototype ........................ 38
Declaring parameters in a function prototype.................. 39
Declaring the return type in a function prototype .............. 39
Declaring default values for function parameters............... 40



Chapter 5

Chapter 6

Defining function bodies .............. . ... i 41

Calling functions. .. ... 45
Stepping through the application by using debugger ........... 47
Understanding local and global scope ........................ 51
Quick referencCe. . ... oo 55
Decision and loop statements 57
Making decisions by using the if statement.......................... 57
Performing one-way tests ......... .. ... ... i 57
Performing two-way tests ..............c i 61
Performing multiway tests......... ... .. ... .ol 62
Performing nested tests . ... 64
Making decisions by using the switch Statement..................... 65
Defining simple switch statements............................ 65
Using fall-through in a switch statement....................... 67
Performing loops . ... ..o 68
Using While l00psS . . ... 68
USiNg for loops . ..o 70
Using do-while [00psS. . ... 71
Performing unconditional jumps ............. .. ... ... ... 73
Quick reference. . ... .o 75
More about classes and objects 77
Organizing classes into header files and source files.................. 78
Declaring aclassinaheaderfile........... ... ... ... ... ... 79
Implementing a class in a sourcefile ................. ... .. ... 81
Creating Objects . ...t 83
Initializing objects by using constructors. ............... ... ... ...... 84
Defining constructors . ... 84
Member initialization lists. . . ............. o 86
Defining class-wide members. . ........... 87
Defining class-wide data members. ................. ... ... 88
Defining class-wide member functions . ....................... 90
Class CONSEIUCLOrS .ottt 92

Contents

ix



X

Contents

Chapter 7

Chapter 8

Using constants in classes . ...t 93

Using class-wide constants. . ..., 93
Using instance constants . ... 94
Defining object relationships ............ .. . 95
Defining the LoyaltyScheme Class. .................. ... ..... 95
Implementing the LoyaltyScheme class........................ 96
Creating and using LoyaltyScheme objects..................... 97
Testing the application .............. i i 100
Quick reference. . ... 101
Controlling object lifetimes 103
The .NET approach to object lifetimes . ......................... ... 103
Destruction and finalization ........... ... ... . ... L. 105
Destructors .. ... 105
Finalizers . . ... 106
Implementing the destructor and finalizer foraclass........... 107
Objects and stack semantics ..................o ... 110
Copy CONSEIUCTOrS . ..ot 113
Relating objects with stack semantics ........................ 116
Quick reference. ... 119
Inheritance 121
What isinheritance?. ... 121
Inheritance terminology . ... 122
Inheritance and codereuse ............. . il 122
Designing an inheritance hierarchy........... ... ... ... .. ..., 123
A word on substitutability ........ ... 123
Definingabaseclass ....... ... i 124
Definingaderived class. ............o i 126
Creating derived class objects ........ .. ... 129
Concrete and abstract classes. ...............oo i i 130
Overriding member functions ................. ... .. 131



Protected aCCess . . ..ot 136

Defining sealed classes. ......... ..o 137
Abstractandsealed........ ... ... 137
Defining and using interfaces. .......... ... . . i 138
Quick reference. . ... 139
Chapter 9 Value types 143
Reference types and valuetypes.......... ... L. 143
The need forvalue types ..., 144
Properties of value types ... i 145
SErUCEUIES . . o 146
Creating and using a simple struct........... ... ... ........ 146
Investigating the structure.............. ... i 147

The differences between structures and classes ............... 149
Implementing constructors for a structure.................... 149

Using one structure withinanother .......................... 150
CopYiNg StrUCTUIES. . ..ottt 152
Enumerations. .. ... 153
Creating and using an enumeration.......................... 153
Using enumerations in applications . ......................... 155

Using memory efficiently . ............... ... 156
Quick reference. . ... 156
Chapter 10 Operator overloading 159
What is operator overloading?........... ... i 159
What types need overloaded operators? ..................... 160
What canyouoverload?............. .. 160

Rules of overloading ... i 161
Overloading operators in managed types. ................cooou..n. 161
Overloading arithmetic operators. .. ............... ..o ... 161
Using static operator overloads. ........... ... ... . ... 163

Contents xi



xii

Contents

What functions canyou overload?........................... 166

Implementing logical operators ........... ... ... o . 167
Implementing increment and decrement . .................... 171
Operators and reference types .. ... .. 172
Guidelines for providing overloaded operators................ 173
Quick reference. . ... 174
Chapter 11 Exception handling 175
What are exceptions? . ... 175
How do exceptionswork?. . ... ... 177
Exceptiontypes ... ... . i 178
Throwing exceptions ......... ...t 178
Handling exceptions. ... ... . i 180
Using the try and catch construct. . ..., 180
Customizing exception handling............................. 182
Using the exception hierarchy . ....... ... ... .. ... ..., 183

Using exceptions with constructors .......................... 184
Nesting and rethrowing exceptions.. ..., 185

The finally block. ... . ... o 188

The catch(..)block .. ... ... .. . . . . . . . . 189
Creating your own exception types. . ...........ooiiiiiineeennn. 189
Using safe_cast for dynamiccasting ..., 191
Using exceptions across languages . . ..., 192
Quick reference. .. ... 195
Chapter 12 Arrays and collections 197
Native CH+ arrays . . ..ot 197
Passing arrays to functions. .............. ... i 200
Initializing arrays . ... 202
Multidimensional arrays . ... 202
Dynamic allocation and arrays. . ..., 203
GENEIIC LY PES. - oottt 205
Managed arrays. . .. ... 207



The NET array class .. ...t e 212

Basic operations onarrays . ...t 213

More advanced array operations ... 215

Using enumerators. . ... ...ttt 218
Other .NET collection classes . ... 219
The List<T> class. ... ..oo 219

The SortedList<K,\V> class. .. ... ... 222
Genericsand templates. ... 224
The STL/CLR library .. ... 224
Quick reference. . ... 227
Chapter 13 Properties 229
What are properties? ... 229
The two kinds of properties............... ... .. 230
Implementing scalar properties. ... 231
Errorsin properties ... ... . 232
Auto-implemented properties. .. ... 233
Read-only and write-only properties......................... 233
Properties, inheritance, and interfaces. . ...................... 235
Implementing indexed properties. .............. ... ... L. 236
The Bank example ...... ... ... i 236
Creating Account class properties............ .. ............. 239
Adding accounts to the Bank class ..., 240
Implementing the Add and Remove methods ................. 240
Implementing an indexed property to retrieve accounts. .. ... .. 241
Quick reference. . ... 244
Chapter 14 Delegates and events 245
What are delegates?. . ... 245
What is the purpose of delegates?. ................ ... ..., 246
Defining delegates. ... 247
Implementing delegates. . ........ ... 247

Contents  Xxiii



Xiv

Contents

Implementing an event sourceclass. . ................ ... ... 254
Implementing an eventreceiver.............. ..o i, 256
Hooking itall together ....... .. ... i i i 258
Quick reference. . ... 262
Chapter 15 The .NET Framework class library 263
What is the .NET Framework?. ... ... ... .. i, 263
The Common Language Runtime............................ 264

The Microsoft Intermediate Language. ....................... 264

The Common Type System. ........ ..., 264

The Common Language Specification........................ 265

The .NET Framework class library .. .......... ... ... ... 265
Assemblies. ... 266
Metadata. ... 266

The .NET Framework namespaces..............c..oooiiiiiiiiio... 268
Using namespaces in C++ applications . ...................... 270

The System namespace. ...........oouuiiiiiiinieniaa.. 270

The Collections N@MESPACES. . . ..ottt 272

The Collections interfaces. ........... .o .. 273

The Diagnostics NamesSPace . .. ... vvvuvue e 274

The IO namespace . ..ot 274

The Windows namespaces .. ..., 275

The Net Nnamespaces . .. ....couitii i 275

The ServiceModel namespaces ...........c.c.uiiiiinnnnnn... 275

The Xml namespaces. .. ...t 276

The Data NamespPaces. . .. ..ottt e 276

The Web namespaces . ...........ooouuiiiiiiiniieninan.. 277
Quick reference. . ... 278



Chapter 16 Working with files 281

The System::/O NamMeSPACE .. ..ot 282
Implementing text I/O by using readers and writers................. 283
Using TextWriter. .. ... 283

The FileStream class. . ... 286

Using TextReader .............ouuiiii e 287
Working with files and directories. ........... ... ... . L. 290
Getting information about files and directories................ 290
Binary 1/O . .o 298
The BinaryWriter Class. . ..., 298

The BinaryReader class ........... ... iiiiiiiiianninn.. 299
Quick reference. . ... 303
Chapter 17 Reading and writing XML 305
XML and NET ..o 305
The .NET XML Namespaces. . ... ...vvvtteeniiiieeeannn. 306

The XML processing classes. ... .. 306
Parsing XML by using XmlReader. . ................................ 307
Parsing XML with validation............... ... ... ... ..... 315
Writing XML by using XmiTextWriter ............... ... . ... . .... 318
Using XmIDocument. . ...... ... ... .. i 322
Whatisthe W3CDOM? .. ... e 323

The XmIDocument class ............ ... .o .. 323

The XmINode class. ... 325
Quick reference. . ... 332
Chapter 18 Using ADO.NET 333
What is ADO.NET? ... 334
ADO.NET data providers. .. ...t 334
ADO.NET Namespaces. . . .. cvvu ittt 335
ADO.NET assemblies. ... 336

Contents XV



Creating a connected application .............. ... . 336

Connectingtoadatabase ............ ... o L. 337
Creating and executingacommand. ......................... 340
Executing a command that modifiesdata..................... 341
Executing queries and processing theresults.................. 342
Creating a disconnected application............................... 344
Disconnected operation using a DataSet........................... 345
Quick reference. . ... 350

Chapter 19 Writing a service by using Windows Communication

Foundation 351
What is Windows Communication Foundation?..................... 351
Distributed systems. ... 352
SEIVICES ottt e 352
CoNNECTIVITY .« . 353

The ABCs of WCF. .. ... e 353
Endpoints. ... ... 353
AdAress ... 354
Binding. .. ..o 355
CoNtract. . ..o 356
Message exchange patterns. . ... 357
Behaviors. .. ... 358
Creating @ SErViCe . . ...ttt 359
Writing a serviceclient ........ .. 361
Adding metadata to the service ........... ... L 363
Accessing a service by Using @ proxy . ..., 365
Quick reference. . ... 368
Chapter 20 Introducing Windows Store apps 369
A (brief) history of writing Windows user interface applications. ... ... 369
The WIn32 APl ..o 369
Microsoft Foundation Classes . ............ ... .o, 370
Windows FOrms . ... 370

xvi Contents



Windows 8 and Windows Store. ..., 371
Which Ul library to choose? . ... 372
Introducing Windows Store apps. . ... .ot 372
Main features of Windows Store apps .. ........cooviiin. .. 373
Writing a Windows Store app. ... .o 374
Creating your first Windows Storeapp ........covviiino. .. 375
Examining the project........ .. . i 379
Introducing XAML. ... oo 380
What is XAML? ..o 380
XAML SYNtax. .. ooo e 381
XAML controls .. ..o 382
Layout controls. . ... 384
Eventhandling ......... o i 389
C++/CXand Windows RT ... i 389
WiINdows RT. ..o 390
Metadata. ... 390
CHH/CXSYNEAX © e 391
COMMON NAMESPACES. . o v vttt ettt et ettt 393
Quick reference. . ... 395
Chapter 21 More about Windows Store apps 397
Building the basic calculator.......... ... ... o 397
Laying out the number buttons ............................. 398
Handling numberinput .......... ... 401
Adding arithmetic operations .. ... 403
Performing calculations ........... ... .. i 407
Testing the calculator ......... ... .. 410
Improving the graphics. .......... ... 412
Handling different numberbases............................ 416
Usingappbars ... 425
Addingsharing. ... 428
Where Next? ... o 433
Quick reference. . ... 433

Contents

Xvii



Chapter 22 Working with unmanaged code 437

Managed vs. unmanaged code ....... ... i 437
Mixed Classes ... ...t 437

The GCHandle type . ... 438
Pinning and boXing. ... ... 440
Interior pointers . ... ... ... 441
Pinning pointers. ... ... 441
Boxing and unboxing ........... . 442
BOXING oo 443
UNbOoXiNG . . ..o 443
Using P/Invoke to call functions in the Win32 APl .................. 444
The DllimportAttribute class. . .......... .. .. 447
Passing structures . ... 449
Quick reference. . ... 452
Chapter 23 Attributes and reflection 453
Metadata and attributes . ........ . ... 453
Using ILDASM . . . oo 454
Using predefined attributes .............. ... ... L 457
The Assemblylnfo.cpp file......... ..o i 457
Using the predefined attribute classes. ....................... 458
Defining your own attributes . ............. ... .. 461
Attribute class properties. ... i 463
Design criteria for attribute classes. . ......................... 463
Writing a custom attribute. ........ ... oo 463
Using reflection to obtain attributedata.................... ... ... 467
The Type class . ... 467
Accessing standard attributes . ........ ... oL 469
Accessing custom attributedata. ....... ... 470
Quick reference. ... 472

xviii Contents



Chapter 24 Living with COM 475

COM components and the COM Interop. ..., 476
Using COM components from .NETcode .......................... 476
How do RCWs work? . ... 476
Creatingand using RCWs. .. ... 477
Handling COM €I1Ors .. ...ttt e 480
Late binding to COM objects. . .......... ... 481
Using .NET components as COM components ...................... 483
What must .NET types implement to be used as COM objects?. .483
Quick reference. . ... 485
Index 487

Contents  Xix







Introduction

C ++ is a powerful, industrial-strength programming language used in tens of thou-
sands of applications around the world, and this book will show you how to get
started using C++ on Windows.

Of all the languages supported by Microsoft, C++ gives you access to the widest
range of technologies on the Windows platform, from writing games, through low-level
system software, to line-of-business applications. This book is going to introduce you to
several of the areas in which C++ is used in Windows development.

For over a decade .NET has become established as the way to write desktop appli-
cations for Windows, and it provides a wealth of technologies to support developers.
C++/CLI is the variant of C++ that runs in the .NET environment, and you can use it,
along with other languages such as C#, to create rich desktop applications.

More recently, Windows 8 has introduced many new features to the Windows oper-
ating system, but perhaps the most exciting is the debut of Windows Store applications.
These graphical applications are designed to run on touch screen and mobile devices,
and provide a completely new way to construct user interfaces on Windows. C++ is one
of the main languages supported for Windows Store development, and this book will
give you an introduction to these applications and how to develop them in C++/CX,
another variant of C++ introduced specifically for this purpose.

Who should read this book

This book exists to help programmers learn how to write applications using C++ on the
Windows platform. It will be useful to those who want an introduction to writing .NET
applications using C++, as well as to those who want to see how to write Windows Store
applications.

If you are specifically interested in Windows Store applications, you may wish to look
at Build Windows 8 Apps with Microsoft Visual C++ Step by Step by Luca Regnicoli, Paolo
Pialorsi, and Roberto Brunetti, published by Microsoft Press.

xxi



xxii

Assumptions

This book expects that you have some experience of programming in a high-level

language, so that you are familiar with concepts such as functions and arrays. It is quite
sufficient to have experience in a procedural language such as Visual Basic, and | do not
assume that you have any experience of object-oriented programming in general, or of
C++ in particular (although any knowledge of a “curly bracket” language will be useful).

Who should not read this book

This book is not suitable for complete beginners to programming. For readers who are
completely new to programming and want to learn C++, | recommend starting with

a book such as Programming: Principles and Practice Using C++ by Bjarne Stroustrup,
published by Addison-Wesley.

This book is also not suitable for those who want to learn standard C++ or older-
style Win32 development, because it concentrates on two Microsoft variants (C++/CLI
and C++/CX) and does not cover topics such as the CLR or MFC in any detail.

Organization of this book

This book is divided into four sections.

m  Partl, "Getting Started,” introduces the main parts of the C++ language, getting
you used to coding in C++ and building applications in Visual Studio 2012.

m  Partll, "Microsoft .NET Programming Basics,” continues by introducing those
parts of C++ that are specific to Microsoft's C++/CLI language.

m  Partlll, “Using the .NET Framework,” covers the main features in the .NET
Framework libraries used for writing .NET applications. This part includes
discussion of working with files, XML and databases, and creating graphical
applications.

m  Part IV, "Advanced Topics,” covers some more advanced material, including
details for working with legacy code.

Introduction



Finding your best starting point in this book

The various sections of this book cover a wide range of technologies associated with
C++ on the Windows platform. Depending on your needs and your existing under-
standing of C++, you may wish to focus on specific areas of the book. Use the following
table to determine how best to proceed through the book.

If you are

New to C++

Follow these steps

Read Part | carefully before continuing to the rest
of the book.

Familiar with OO programming but not with C++

Read Part | carefully, but you can omit Chapter 2.

Familiar with C++

Review Part |, looking for the differences be-
tween standard C++ and C++/CLI.

Familiar with .NET, but not Windows Store
applications.

Read Chapters 20 and 21.

Most of the book’s chapters include exercises that let you try out the concepts you
have just learned. Solutions to these exercises can be downloaded using the companion
code link from this book’s web page. See the “Code samples” section for
details on how to download the companion code.

Conventions and features in this book

This book presents information using conventions designed to make the information

readable and easy to follow.

m  Each exercise consists of a series of tasks, presented as numbered steps (1, 2,
and so on) listing each action you must take to complete the exercise.

m  Boxed elements with labels such as “Note” provide additional information or
alternative methods for completing a step successfully.

m  Text that you type (apart from code blocks) appears in bold.

® A plussign (+) between two key names means that you must press those keys at
the same time. For example, "Press Alt+Tab” means that you hold down the Alt

key while you press the Tab key.

m A vertical bar between two or more menu items (e.g., File | Close) means that
you should select the first menu or menu item, then the next, and so on.

Introduction

xxiii



System requirements

You will need the following hardware and software to complete the practice exercises in
this book:

m  One of Windows 7, Windows 8, Windows Server 2008 with Service Pack 2, or
Windows Server 2008 R2. Note that if you want to build and run the Windows
Store applications featured in Chapters 20 and 21, you will need Windows 8.

m  Visual Studio 2012, any edition

m A computer that has a 1.6 GHz or faster processor (2 GHz is recommended)

m 1 GB (32 Bit) or 2 GB (64 Bit) RAM

m 3.5 GB of available hard disk space

m 5400 RPM hard disk drive

m  DirectX 9 capable video card running at 1024 x 768 or higher-resolution display
m  DVD-ROM drive (if installing Visual Studio from DVD)

m Internet connection to download software or chapter examples

Depending on your Windows configuration, you might require Local Administrator
rights to install or configure Visual Studio 2012.

Code samples

Most of the chapters in this book include exercises that let you interactively try out new
material learned in the main text. All sample projects, in both their pre-exercise and
post-exercise formats, can be downloaded from the following page:

http://aka.ms/VCCLISbS/files

XXiv Introduction


http://aka.ms/VCCLISbS/files

Acknowledgments

Producing a book involves a number of people, and I'd like to thank the following in
particular.

I'd like to thank all at Microsoft Press and O'Reilly for their help and support, es-
pecially Devon Musgrave at Microsoft for inviting me to start this project, and Russell
Jones at O'Reilly for providing so much help with writing and editorial matters, and
especially his guidance in using the (not always good-tempered) Word templates.

The technical quality of the book has been greatly improved by Luca Regnicoli, who
as tech reviewer pointed out numerous errors and omissions. | especially value his input
on the Windows Store chapters.

Kara Ebrahim at O'Reilly, along with Dianne Russell and Bob Russell at Octal Publish-
ing, provided excellent editorial support and made sure everything got done on time.

And lastly, I'd like to thank my family, who have put up with all the extra work in-
volved in writing a book, and are probably hoping that this is last one for a while!

Errata and book support

We've made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed on our
Microsoft Press site:

http://aka.ms/VCCLISbS/errata

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

Introduction


http://aka.ms/VCCLISbS/errata
mailto:mspinput%40microsoft.com?subject=
mailto:mspinput%40microsoft.com?subject=

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in touch

Let's keep the conversation going! We're on Twitter: http.//twitter.com/MicrosoftPress

xXxvi Introduction


http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress

Hello C++!

After completing this chapter, you will be able to

m  Recognize C++ functions.
m  Recognize C++ keywords and identifiers.
m  Create a C++ application.

Welcome to the exciting world of programming Microsoft .NET with Microsoft Visual C++. This
chapter introduces the C++/CLI language and shows you how to perform simple input/out-
put (I/0).

What is C++/CLI?

C++/CLl is a version of the C++ programming language designed to run on the .NET Framework.

It has been available since Microsoft Visual Studio 2005 and is the subject of an international stan-
dard. You can find details of the ECMA standard at http.//www.ecma-international.org/publications/
standards/Ecma-372.htm.

To achieve this, some changes had to be made to standard C++. There are some things that you
can do in standard C++ that are not permitted in C++/CLI (for example, you cannot inherit from
multiple base classes) and there have been some changes to the language geared to support .NET
features (such as interfaces and properties) and to work with the .NET Runtime.

Why would you choose to use C++/CLI to write .NET code instead of another .NET language such
as C#? Apart from personal preference, there are two very good reasons to choose C++/CLI. The first
is for interoperability; C++/CLI makes it simple to incorporate standard C++ code into .NET projects.
The second is that we have a .NET version of the C++ Standard Template Library (STL), and so people
used to coding against the STL will find it possible to work in the same way in .NET.

Even if neither of these reasons applies to you, C++/CLl is still a perfectly good way to learn about
.NET programming because it exposes all of the features that you need to write .NET programs and
explore the .NET platform.


http://www.ecma-international.org/publications/standards/Ecma-372.htm
http://www.ecma-international.org/publications/standards/Ecma-372.htm

Your first C++/CLI application

It's time to get our hands dirty with a simple C++/CLI application. Of course, no programming book
would be complete without including the customary "Hello World" application, so let’s start with that.

using namespace System;

int main(Q)

{
Console: :WriteLine("Hello, World!");

return 0;

}
This short application illustrates some fundamental C++/CLI concepts:

m  The first line (which begins with using) informs the compiler that you're using the .NET System
library. Many different libraries could be used in a single project; the using statement specifies
to the compiler which library you want to use.

m  The rest of the application is an example of a C++ function. All blocks of code in C++ are
called functions—there’s no such thing as a procedure or a subroutine. Each C++ function
contains the header (the first line of this application) and the function body (all of the text
between the braces, { and }). The header shows the return type of the function (in this case
int, short for integer), the name of the function (main), and the list of parameters inside round
brackets. Note that you still need to include the round brackets even if you don't have any-
thing to pass to the function.

m  All statements in C++ are terminated with a semicolon.

Of the six lines of code in the example application, only two contain C++ statements: the Console
line and the return line. The Console line outputs characters to the console, and the argument to the
function consists of the string that you want to output. The return line exits from the function—in
this case, the application, because there is only one function—and returns zero, which is the standard
value to return when execution is successful.

The main function

Why is the only function in the previous example called main? The simple answer is that the code
won't compile if it isn't! However, it might be more useful to explain how the language works.

A normal C++ application contains many functions (and also many classes, as is discussed in
Chapter 2, “Introducing object-oriented programming”). How does the compiler know which function
should be called first? Obviously, you can't allow the compiler to just randomly choose a function. The
rule is that the compiler always generates code that looks for a function named main. If you omit the
main function, the compiler reports an error and doesn't create a finished executable application.

4 Microsoft Visual C++/CLI Step by Step



Free-format languages

C++ falls under the category of a free-format language, which means that the compiler ignores
all spaces, carriage returns, new-line characters, tabs, form feeds, and so on. Collectively, these
characters are referred to as white space. The only time the compiler recognizes white space is

if it occurs within a string.

Free-format languages give the programmer great scope for using tab or space indenting
as a way of organizing application layout. Statements inside a block of code—such as a for
loop or an if statement—are typically indented (often by four space characters). This indenta-
tion helps the programmer’s eye more easily pick out the contents of the block.

The free-format nature of C++ gives rise to one of the most common (and least useful) argu-
ments in the C++ community: how do you indent the braces? Should they be indented with the
code, or should they be left hanging at the beginning of the if or for statement? There is no right
or wrong answer to this question (although some hardened C++ developers might disagree), but
a consistent use of either style helps to make your application more readable to humans. As far
as the compiler is concerned, your entire application could be written on one line.

So, the compiler will expect a function named main. Is that all there is to it? Well, not quite. There
are some additional items, such as the return type and parameters being correct, but in the case of
main, some of the C++ rules are relaxed. In particular, main can take parameters that represent the
command-line arguments, but you can omit them if you don't want to use the command line.

C++ keywords and identifiers

A C++ keyword (also called a reserved word) is a word that means something to the compiler. The
keywords used in the example application are using, namespace, and return. You're not allowed to use
these keywords as variable or function names; the compiler will report an error if you do. You'll find
that Visual Studio helps you identify keywords by displaying them in a special color.

An identifier is any name that the programmer uses to represent variables and functions. An identi-
fier must start with a letter and must contain only letters, numbers, or underscores. The following are
legal C++ identifiers:

m My variable
m  AReallyLongName

The following are not legal C++ identifiers:

Invalid identifier Reason for being invalid

0800Number Must not start with a number

You+Me Must contain only letters, numbers, and underscores (the plus sign is the culprit here)
return Must not be a reserved word

Hello C++! 5



Outside of these restrictions, any identifier will work. However, some choices are not recommend-
ed, such as the following:

Identifier Reason it's not recommended

main Could be confused with the function main.

INT Too close to the reserved word int.

B4ugotxtme Just too cryptic!

_identifierl Underscores at the beginning of names are allowed, but they are not recommended because
compilers often use leading underscores when creating internal variable names, and they are
also used for variables in system code. To avoid potential naming conflicts, you should not use
leading underscores.

Creating an executable application—theory

Several stages are required to build an executable application; Microsoft Visual Studio 2012 helps you
accomplish this by automating them. To examine and understand these stages, however, let's look at
them briefly. You'll see these stages again later in the chapter when we build our first application.

Editing the application source files

Before you can create an application, you must write something. Visual Studio 2012 provides an
integrated C++ editor, complete with color syntax highlighting and Microsoft IntelliSense to show
function parameter information and provide word completion.

Compiling the source files

The C++/CLI compiler is the tool for converting text source files into something that can be executed
by a computer processor. The compiler takes your source files (which usually have a .cpp extension)
and builds them into either a stand-alone executable file (with a .exe extension) or a library file to be
used in other projects (with a .dll extension).

Standard C++ and C

If you have ever worked with standard C++ or C, you might be familiar with the idea of compil-
ing to object files and then linking with libraries to build the final executable file—which is
commonly referred to simply as an executable. Although you can compile to the equivalent of
an object file (called a module in the .NET world) and then link those together by using a tool
called the assembly linker, Visual Studio takes you straight from source to executable without
you seeing the intermediate step.

6 Microsoft Visual C++/CLI Step by Step



Running and testing the application
After you have successfully built the application, you need to run it and test it.

For many development environments, running and testing is often the most difficult part of the
application development cycle. However, Visual Studio 2012 has yet another ace up its sleeve: the

integrated debugger. The debugger has a rich set of features with which you can easily perform run-
time debugging, such as setting breakpoints and variable watches.

Creating an executable application—practice

Go ahead and start Visual Studio 2012. An invitingly blank window appears on your screen.

B¢ Start Page - Microsoft Visual Studio Quick Launch (Ctrl+Q) P - 0O X
FILE EDIT VIEW DEBUG TEAM SQL TOOLS TEST ANALYZE WINDOW  HELP
(LR - p Attach... ~ A
Solution Explorer ARl start Page & X - &
S
* Py
GET STARTED z
H
Syme =
al 2012 Welcome =
s
&
2
What's New Getting Started Manage y
the cloud
What's new in Visual Studio Getting started with Visual Learn how t¢
Studio project and .
What's new in .NET Framework Studie

Getting started with Blend
B See what's n
Leam more about Visual Studie 1 account.
Recent
Discover extensions, add-ons
and samples

What is an MSDN subscription?

Solut... | Class.. Prop.. | Tea..

This window is the powerful Visual Studio integrated development environment (IDE). It contains
all the tools you'll need to create full-featured, easy-to-use applications.

Note This book was written by using the Release Candidate (RC) version of Visual Studio
2012. As a result, screen shots and other details might differ from the version you're using

when you read this.

Hello C++!



8

Creating a project

The first task is to create a new project for the "Hello, World” program.

1. In Visual Studio, on the File menu, point to New, and then click Project. (Alternatively, you can

press Ctrl+Shift+N.)

Note | am using the Professional version of Visual Studio 2012. If you are using oth-
er versions, the way in which you create a project might be different. For example, in
the Express version, you will find New Project on the File menu.

The New Project dialog box opens.

New Project _
I Recent | .MET Framework 4.5 |'| Sort by: | Default |'| if° i Searchnstalled Templ: P -
4 |nstalled ++ .
%! Class Library Visual C++ = TEriEs
4 Templates - A project for creating a console
. ++ application
4 Visual C++ E CLR Console Application Visual C++ b
Windows Metro style
it
ATL R_] CLR Empty Project Visual C++
CLR
General
MFC
Test
Win32
LightSwitch
Other Languages
Other Project Types
Samples
b Online
Marne: HeIIoWorId|
Location: Ch\Projectsh, ‘ '| | Browse... |
Solution name: HelloWerld Create directory for selution
[7] &dd to source control

2. In the navigation pane on the left, under Templates, click Visual C++, and then click CLR. In the
center pane, click CLR Console Application and then, toward the bottom of the dialog box, in
the Name box, type HelloWorld.

Note Depending on how Visual Studio has been set up, you might find Visual C++
under the Other Languages node.

3. Click the Location list and select a location for your new project or click Browse and navigate

to an appropriate directory.

Microsoft Visual C++/CLI Step by Step



4. Click OK to create the project.

The wizard correctly initializes all the compiler settings for a console project.

Editing the C++ source code

The wizard creates a project for you with all the files needed for a simple console application. It also
opens the main source file in the editor that contains just the code we want.

p HelloWorld - Microsoft Visual Studio Quick Launch (Ctrl+ ) p - & x
FLE EDIT VIEW PROECT BULD DEBUG TEAM SOL TOOLS TEST ANALYZE WINDOW HELP
g 3 - W P Local Windows Debugger ~ Auto - Debug - Win32 - AE n .
Solution Explorer MEE] Heloworld.cpp = X

@ ®-2@® "~ (Globalscope -

>k« 14

sanadorg xoqioo)  saiojdeg AAIaS

Search Solution Explorer (Ctrl O - // HelloWorld.cpp : main project file.

51 Solution 'HelloWorld' (1 projec
4 [ HelloWorld
b &2 External Dependencies

#include "stdafx.h"

4 & Header Files using namespace System;

B resource.h

B stdafch =int main(array<System::String > “args) =
4 &) Resource Files {

app.ico Console::Writeline(L"Hello World™);

O appre return @;
4 &) SourceFiles )

+4 Assemblylnfo.cpp
b+ HelloWorld.cpp

++ stdabcpp
B ReadMent
v
100% ~ < >
A e ———— e e v X
Show output from:  Build - E m
v
< n > < >
Solut... | Class.. Prop.. Tea.  Output ErrorList

Creating project 'HelloWorld'... project creation

Notice that the keywords automatically appear in blue (provided that you spell them correctly).

There are a few things in the automatically generated source code that we don't need, so let's
remove them. This will give you some practice in using the editor as well as making the code easier to
understand. The application is not going to receive any command-line arguments when you run it, so
remove everything between the opening and closing parentheses following main—in this example,
array<System::String > “args. In addition, the “L" before the “Hello World” string isn't necessary
either (for reasons that I'll explain later), so you can remove that, as well.

Building the executable

The next step is to build the executable. The term build in Visual Studio 2012 refers to compiling and
linking the application. Visual Studio compiles any source files that have changed since the last build
and—if no compile errors were generated—performs a link.

To build the executable, on the Build menu, click Build Solution or press F7.

Hello C++! 9



Note The shortcut keys might differ depending on the version of Visual Studio you are us-
ing. For example, in the Ultimate edition, the shortcut is F6.

An Output window opens near the bottom of the Visual Studio window, showing the build prog-
ress. If no errors are encountered, the message Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped will
appear in the Output window. If this window is closed, you can open it by selecting Output from the
View menu.

If any problems occur, the Error List window will contain a list of errors and warnings.

ﬂ HelloWorld - Microsoft Visual Studio Quick Launch [Ctrl+Q) P = @ X

FILE EDIT VIEW PROJECT BULD DEBUG TEAM SOL TOOLS TEST ANALYZE WINDOW  HELP

ol < I - - = | P Local Windows Debugger ~ Auto ~ Debug ~ Win32 A n Z

Solution Explorer v & X HelloWorld.cpp # X -
@D e-2@im "  (GlebalScope) - & main) =

Search Solution Explorer (Ctrl O = // HelloWorld.cpp : main project file. f

%] Solution 'HelloWorld' (1 projec
4[] HelloWorld
b External Dependencies

#include "stdafx.h"

sanadolg ¥oqioo] 3101 241G

4 &5 HeaderFiles using namespace System;
B resourceh
B stdafch 2int main()
4 & Resource Files {
Bl appico Console: :Writeline("Hello World")
O apprc return 0;
4 & SourceFiles ) RS

++ Assemblylnfo.cpp
b ++ HelloWorld.cpp

+a stdafecpp
B ReadMetct
v
100% ~ < >
Y- 0 Warnings | @ 0 s Search Error List P-
Description File e
[%)1 error C2143: syntax error : missing ' before 'return’ HelloWorld.cpp
B12 InteliSense: expected a HelloWorld.cpp 0
< >
Slut... | Class.. Prop.. Tea..  Output Error List

Build failed

You can double-click the error line in the Error List window to place the cursor at the line in the
source file where the compiler encountered the error. Fix the error (you might have misspelled a key-
word or forgotten a semicolon) and rebuild the project. If the Error List pane is closed, you can open
it by selecting Error List from the View menu.

How should you treat warnings?

Always treat warnings as errors—in other words, get rid of them. Warnings are there for a
reason; they're telling you that your code is not correct.

10 Microsoft Visual C++/CLI Step by Step



Executing the application

After you've eliminated all errors and you've successfully built the project, you can finally execute the
application. On the Debug menu, click Start Without Debugging to run the application. You can also
press Ctrl+F5 to execute the application.

You'll see the output of your application, with the message “Press any key to continue” at the bot-
tom of the output. This line is added by the IDE so that the console window doesn’t simply disappear
when the application has finished running.

Conclusion

Although the example in this chapter isn't the most exciting application ever written, it demonstrates
some key C++ development points. It introduces the Visual Studio 2012 IDE and the ability to compile
and link a application, and it serves as an introduction to the C++/CLI language.

Now, there's no turning back. Every new C++/CLI and Visual Studio 2012 feature that you learn
about will fire your imagination to learn more and be increasingly productive. Software development
is an exciting world.

Finally, don't forget to have some fun. Go back and try a few variations on the example application,
click a few menus, and take some time to become familiar with the environment.

Quick reference

To Do this

Create a new project in Visual Studio 2012. Click File | New | Project, or press Ctrl+Shift+N. In the Express
version, on the File menu, click New Project.

Add a file to a project. Click File | New | File, or press Ctrl+N.

Build a Visual Studio 2012 project. Click Build | Build Solution, or press Ctrl+Shift+B.

Execute a program from within Visual Studio 2012. Click Debug | Start Without Debugging, or press Ctrl+F5.

Hello C++! 11






Decision and loop statements

After completing this chapter, you will be able to:

m  Make decisions by using the if statement.

= Make multiway decisions by using the switch statement.

m  Perform loops by using the while, for, and do-while statements.

m  Perform unconditional jumps in a loop by using the break and continue statements.

[l high-level languages provide keywords with which you can make decisions and perform loops.

C++ is no exception. C++ provides the if statement and the switch statement for making deci-
sions, and it provides the while, for, and do-while statements for performing loops. In addition, C++
provides the break statement to exit a loop immediately and the continue statement to return to the
start of the loop for the next iteration.

In this chapter, you will see how to use these statements to control the flow of execution through a
C++/CLI application.

Making decisions by using the if statement

The most common way to make a decision in C++/CLlI is to use the if statement. You can use the if
statement to perform a one-way test, a two-way test, a multiway test, or a nested test. Let's consider
a simple one-way test first.

Performing one-way tests

The following example shows how to define a one-way test in C++/CLI:

if (number < 0)
Console::WriteLine("The number 1is negative");
Console::WriteLine("The end");

The if keyword is followed by a conditional expression, which must be enclosed in parentheses. If
the conditional expression evaluates to true, the next statement is executed, which in this example
will display the message “The number is negative”. Notice that the message "The end” will always be
displayed, regardless of the outcome of the test, because it is outside the body of the if statement.

57



58

Note There is no semicolon after the closing parenthesis in the if test. It is a common C++
programming error to put one in by mistake, as shown here:

if (number < 0); // Note the spurious semicolon
This statement is equivalent to the following statement, which is probably not what you
intended:

if (number < 0)
; // Null if-body - do nothing if number < 0

If you want to include more than one statement in the if body, enclose the if body in braces
1), as follows:

if (number < 0)

{
Console: :Write("The number ");
Console: :Write(number);
Console::WriteLine(" is negative™);
}

Console::WriteLine("The end");

Many developers reckon that it is good practice to enclose the if body in braces, even if it
only consists of a single statement. This means that the code will still be correct if you (or
another developer) add more statements to the if body in the future.

In this exercise, you will create a new application to perform one-way tests. As this chapter pro-

gresses, you will extend the application to use more complex decision-making constructs and to
perform loops. For now, the application asks the user to enter a date and then it performs simple
validation and displays the date in a user-friendly format on the console.

1. Start Visual Studio 2012 and create a new CLR Console Application project. Name the applica-
tion CalendarAssistant.

2. At the top of the source code file, immediately below the using namespace System; line, add
the following function prototypes (you will implement all these functions during this chapter):

int GetYear();

int GetMonth();

int GetDay(int year, int month);

void DisplayDate(int year, int month, int day);

3. Atthe end of the file, after the end of the main function, implement the GetYear function as
follows:

int GetYear()

{
Console::Write("Year? ");
String Ainput = Console::ReadLine();
int year = Convert::ToInt32(input);
return year;

}

Microsoft Visual C++/CLI Step by Step



4.

7.

Implement the GetMonth function as follows:

int GetMonth()

{
Console: :Write("Month? ");
String Ainput = Console::ReadLine();
int month = Convert::ToInt32(input);
return month;

}

This is a simplified implementation; later in this chapter, you will enhance the function to en-
sure that the user enters a valid month.

Implement the GetDay function as follows:

int GetDay(int year, int month)

{
Console::Write("Day? ");
String Ainput = Console::ReadLine();
int day = Convert::ToInt32(input);
return day;

}

Later, you will enhance this function to ensure that the user enters a valid day for the given
year and month.

Implement the DisplayDate function as shown in the following code to display the date as
three numbers:

void DisplayDate(int year, int month, int day)
{
Console::WriteLine("\nThis is the date you entered:");
Console::Write(year);
Console::Write("-");
Console: :Write(month);
Console::Write("-");
Console: :Write(day);
Console::WriteLine();

}

Later in this chapter you will enhance this function to display the date in a more user-friendly
format.

Add the following code inside the main method, immediately before the return 0; Line:

Console: :WriteLine("Welcome to your calendar assistant™);
Console::WriteLine("\nPlease enter a date");

int year = GetYear();

int month = GetMonth();

int day = GetDay(year, month);

Decision and loop statements 59



60

// Simplified test for now - assume there are 31 days in
// every month :-)
if (month >= 1 && month <= 12 && day >= 1 && day <= 31)
{

DispTlayDate(year, month, day);
}
Console::WriteLine("\nThe end\n");

This code asks the user to enter a year, month, and day. If the date passes a simplified valida-
tion test, the date is displayed on the console. If the date is invalid, it is not displayed at all.

Note This if statement combines several tests by using the logical AND operator &&.
As you learned in Chapter 3, “Variables and operators,” logical tests are performed
from left to right. Testing stops as soon as the final outcome has been established.
For example, if the month is 0, there is no point performing the other tests—the
date is definitely invalid. This is known as short-circuit evaluation.

Build the application and fix any compiler errors that you might have.

Run the application. Type in valid numbers for the year, month, and day (for example, 2012, 7,
and 22).

The application displays the messages shown in the following screen shot:

=X Ch\Windows\system32\cmd.exe

llelcome to your calendar assistant

[Please enter a date

Press any key to continue . . .

Observe that the application displays the date because it is valid. The message “The End” also
appears at the end of the program.

10. Run the application again, but this time, type an invalid date (for example, 2012, 2, and 33).

The application displays the messages shown in the following screen shot:

Microsoft Visual C++/CLI Step by Step



o C\Windows\system32\cmd.exe

lelcome to your calendar assistant

m|>

[Please enter a date
@

[Press any key to continue . . .

Notice that because the date you typed was invalid, the application doesn't display it. Instead,
it just displays “The End.” You can make the application more user-friendly by displaying an
error message if the date is invalid. To do so, you need to use a two-way test.

Performing two-way tests

The following code shows how to define a two-way test for the Calendar Assistant application:

if (month >= 1 && month <= 12 && day >= 1 && day <= 31)

{
DisplayDate(year, month, day);
}
else
{
Console: :WriteLine("Invalid date");
}

Console::WriteLine("\nThe end\n");
The else body defines what action to perform if the test condition fails.

In this exercise, you will enhance your Calendar Assistant application to display an error message if
an invalid date is entered.

1. Continue working with the project from the previous exercise.

2. Modify the main function, replacing the simple if with an if-else statement to test for valid or
invalid dates.

if (month >= 1 & month <= 12 && day >= 1 && day <= 31)

{
DispTlayDate(year, month, day);
}
else
{
Console::WriteLine("Invalid date™);
}

Console: :WriteLine("\nThe end\n");

Decision and loop statements 61



62

3. Build and run the application. Type an invalid date such as 2001, 0, and 31.

The application now displays an error message, as demonstrated in the following screen shot:

EX CA\Windows\system32\cmd.exe

Helcome to your calendar assistant

m|>

[Please enter a date

[Prezs any key to continue . . .

Performing multiway tests

You can arrange if-else statements in a cascading fashion to perform multiway decision making.

The following code shows how to use a multiway test to determine the maximum number of days
(maxDay) in a month:

int maxDay;
if (month == 4 || month == 6 || month == 9 || month == 11)

{

maxDay = 30;
}
else if (month == 2)
{

maxDay = 28;
}
else
{

maxDay = 31;
}

This code specifies that if the month is April, June, September, or November, set maxDay to 30. If
the month is February, maxDay is set to 28. (We'll ignore leap years for now!) If the month is anything
else, set maxDay to 31.

Note There is a space between the keywords else and if because they are distinct key-
words. This is unlike Microsoft Visual Basic .NET, which uses the single keyword Elself.

In this exercise, you will enhance your Calendar Assistant application to display the maximum num-
ber of days in the user's chosen month.

Microsoft Visual C++/CLI Step by Step



1. Continue working with the project from the previous exercise.

2. Replace the GetDay function with the following code so that it uses an if-else-if statement to
determine the maximum allowable number of days.

int GetDay(int year, int month)

{
int maxDay;
if (month == 4 || month == 6 || month == 9 || month == 11)
{
maxDay = 30;
}
else if (month == 2)
{
maxDay = 28;
}
else
{
maxDay = 31;
}
Console::Write("Day [1 to ");
Console: :Write(maxDay);
Console::Write("]? ");
String Ainput = Console::ReadLine();
int day = Convert::ToInt32(input);
return day;
}

3. Build and run the application. Type the year 2012 and the month 1.

The application prompts you to enter a day between 1 and 31, as illustrated in the following
screen shot:

=X CAWindows\system32\cmd.exe -

llelcome to your calendar assistant

[Please enter a date

Day [1 to 3117

4. Type avalid day and close the console window when the date is displayed.

Decision and loop statements 63



64

5. Run the application again. Type the year 2012 and the month 2.

The application prompts you to enter a day between 1 and 28, as shown here:

=X C\Windows\system32\cmd.exe =

elcome to your calendar assistant

[Please enter a date
2

onth? 2
[Day [1 to 2817

6. Type avalid day and close the console window when the date is displayed. (Don't worry about
the date validation in main: You will remove it later and replace it with more comprehensive
validation in the GetMonth and GetDay functions.)

Performing nested tests

It is possible to nest tests within one another. This makes it possible for you to perform more complex
logical operations. The following code shows how to use nested tests to accommodate leap years cor-
rectly in the Calendar Assistant application:

int maxDay;
if (month == 4 || month == 6 || month == 9 || month == 11)

{
maxDay = 30;
}
else if (month == 2)
{
bool isLeapYear = (year % 4 == 0 & year % 100 != 0) || (year % 400 == 0);
if (isLeapYear)
{
maxDay = 29;
}
else
{
maxDay = 28;
}
}
else
{
maxDay = 31;
}

If the month is February, you define a bool variable to determine if the year is a leap year. A year
is a leap year if it is evenly divisible by 4 but not evenly divisible by 100 (except years that are evenly
divisible by 400, which are leap years). The following table shows some examples of leap years and
non-leap years.

Microsoft Visual C++/CLI Step by Step



Year Leap year?
1996 Yes
1997 No
1900 No
2000 Yes

You then use a nested if statement to test the bool variable isLeapYear so that you can assign an ap-
propriate value to maxDay.

Note There is no explicit test in the nested if statement. The condition if (isLeapYear) is
equivalent to if (isLeapYear != false).

In this exercise, you will enhance your Calendar Assistant application to deal correctly with leap
years.

1. Continue working with the project from the previous exercise.

2. Modify the GetDay function, replacing the if...else if...else statements to match the block of
code just described to test for leap years.

3. Build and run the application. Type the year 1996 and the month 2. The application prompts
you to enter a day between 1 and 29. Type a valid day and then when the date is displayed,
close the console window.

4. Run the application again. Type the year 1997 and the month 2. Verify that the application
prompts you to enter a day between 1 and 28.

5. Run the application several more times using the test data from the previous table.

Making decisions by using the switch Statement

Now that you have seen how the if statement works, let's take a look at the switch statement. Using
the switch statement, you can test a single variable and execute one of several branches depending
on the variable’'s value.

Defining simple switch statements

The example that follows shows the syntax for the switch statement. The switch statement tests the
numberOfSides in a shape and displays a message to describe that shape.

Decision and loop statements 65



O

66

int numberOfSides; // Number of sides in a shape

switch (numberOfSides)

{

case 3: Console::Write("Triangle™); break;
case 4: Console::Write("Quadrilateral™); break;
case 5: Console::Write("Pentagon™); break;
case 6: Console::Write("Hexagon™); break;
case 7: Console::Write("Septagon™); break;
case 8: Console::Write("Octagon"); break;
case 9: Console::Write("Nonagon™); break;
case 10: Console::Write("Decagon"); break;
default: Console::Write("Polygon"); break;

The switch keyword is followed by an expression in parentheses. This expression must evaluate to

an integer, a character, or an enumeration value. The body of the switch consists of a series of case
branches, each of which comprises the keyword case, a value, and a colon.

The value identifying a case branch must be a constant of integer type. This means that integer

numbers, enumeration values, and characters are allowed. For example, 5 and a are valid, but abc is
not because it is a string literal.

Note Each case label specifies a single literal value. You can't specify multiple values, you
can't define a range of values, and the values must be known at compile time. This means
that you can't, for instance, say case foo, where foo is a variable whose value will only be
known when the application executes.

Each case branch can contain any number of statements. At the end of each branch, use a break

statement to exit the switch statement.

Note There is normally no need to use braces around the code in a case branch. The break
statement marks the end of each case branch. However, you do need to use braces if you
need to declare a variable within the branch code.

You can define an optional default branch in the switch statement. The default branch will be ex-

ecuted if the expression doesn't match any of the case labels.

Tip It's good practice to define a default branch even if you don't have any specific pro-
cessing to perform. Including the default branch shows that you haven't just forgotten it.
Also, the default branch can help you trap unexpected values and display a suitable warn-
ing to the user.

In this exercise, you will enhance your Calendar Assistant application to display the month as a

string such as January or February.

Microsoft Visual C++/CLI Step by Step



1. Continue working with the project from the previous exercise.

2. Modify the DisplayDate function. Rather than display the month as an integer, replace the
Console::Write(month) statement with a switch statement that displays the month as a string.

switch (month)

{

3

case
case
case
case
case
case
case
case
case
case
case
case
defa

W o0 NV WN R

e
R o

Console::Write("January"); break;
Console::Write("February"); break;
Console: :Write("March"); break;
Console::Write("April"); break;
Console::Write("May"); break;
Console: :Write("June"); break;
Console::Write("July"); break;
Console::Write("August"); break;

Console: :Write("September"); break;

: Console::Write("October™); break;
: Console::Write("November"); break;
12:
ult:

Console: :Write("December"); break;
Console: :Write("Unknown™); break;

3. Build the application.

4. Run the application several times, typing a different month each time. Verify that the applica-
tion displays the correct month name each time.

Using fall-through in a switch statement

If you omit the break statement at the end of a case branch, flow of control continues on to the next
statement. This process is called fall-through. This can be useful to avoid duplication of code, but be
careful not to do it accidentally.

The following example illustrates why fall-through might be useful. This example tests a lowercase
letter to see if it is a vowel or a consonant:

char Towercaseletter; // Single lowercase letter, for example

switch (lowercaseletter)

{
case 'a
case 'e
case 'i
case 'o
case 'u
default:

}

There is no break statement in the first four case labels. As a result, the flow of control passes on

Console: :Write("Vowel"); break;

Console: :Write("Consonant"); break;

v

a

to the next executable statement to display the message Vowel. The default branch deals with all the
other letters and displays the message Consonant.

Decision and loop statements

67



In this exercise, you will enhance your Calendar Assistant application to display the season for the

user's date.

1. Continue working with the project from the previous exercise.

2. Modify the DisplayDate function. After displaying the year, month, and day, add the following
code after the line Console::Write(day) to display the season:

switch (month)

{
case
case
case

case

12:
1:

2: Console:

3:

case 4

case

case
case
case

case
case
case

}

3. Build the application.

5: Console:

6:
7:

8: Console:

9:
10:

11: Console:

:WriteLine(" [Winter]"); break;

:WriteLine(" [Spring]"); break;

:WriteLine(" [Summer]"); break;

:WriteLine(" [Fal1]"); break;

4. Run the application several times, typing a different month each time. Verify that the applica-
tion displays the correct season name each time.

Performing loops

For the rest of this chapter, you'll see how to perform loops in C++/CLI. You'll also see how to perform
unconditional jumps in a loop by using the break and continue statements.

C++ has three main loop constructs: the while loop, the for loop, and the do-while loop.

Note There is actually a fourth loop type, the for-each loop, but I'll leave discussing that
until we get to arrays.

Let's look at the while loop first.

Using while loops

A while loop continues executing its body for as long as the condition in parentheses evaluates to
true. The following example shows how to write a simple while loop in C++/CLI:

68 Microsoft Visual C++/CLI Step by Step



int count = 1;

while (count <= 5)

{
Console: :WriteLine(count * count);
count++;

}
Console::WriteLine("The end");

You must follow the while keyword with a conditional expression enclosed in parentheses. As long
as the conditional expression evaluates to true, the while body executes. After the loop body has been
executed, control returns to the while statement and the conditional expression is tested again. This
sequence continues until the test evaluates to false.

You must, of course, remember to include some kind of update statement in the loop so that it will
terminate eventually. In this example count++ is incrementing the loop counter. If you don't provide
an update statement, the loop will iterate forever, which probably isn't what you want.

The preceding example displays the following output:

=X CAWindows\system32\cmd.exe = | B 28

[Press any key to continue . . .

In this exercise, you will enhance your Calendar Assistant application so that the user can type five
dates.

1. Continue working with the project from the previous exercise.

2. Modify the code in the main function by replacing the entire body of the function with the
following code:

Console: :WriteLine("Welcome to your calendar assistant™);

int count = 1; // Declare and initialize the loop counter
while (count <= 5) // Test the Toop counter
{

Console::Write("\nPlease enter a date ");
Console: :WriteLine(count);

int year = GetYear();

int month = GetMonth();

int day = GetDay(year, month);
DisplayDate(year, month, day);

count++; // Increment the Toop counter

Decision and loop statements 69



3. Build and run the application. The application prompts you to enter the first date. After you
have typed this date, the application prompts you to enter the second date. This process con-
tinues until you have typed five dates, at which point the application closes, as depicted in the
following screen shot:

X CA\Windows\system32\cmd.exe =

his iz the date you entered:
2A12-April-2
[Spring]

[Please enter a date
ear? 2012

onth? 5

Day [1 to 3117 12

his is the date you entered:
2012-May-12

[Spring]

[Please enter a date
ear? 2012

onth? 8

Day [1 to 3117 21

his iz the date you entered:
2812 —fugust—21

to continue . . .

Using for loops

The for loop is an alternative to the while loop. It provides more control over the way in which the
loop executes.

The following example shows how to write a simple for loop in C++/CLI. This example has exactly
the same effect as the while loop.

for (int count = 1; count <= 5; count++)

{

Console: :WriteLine(count * count);

}

Console::WriteLine("The end");

The parentheses after the for keyword contain three expressions separated by semicolons. The first
expression performs loop initialization, such as initializing the loop counter. This initialization expres-
sion is executed once only, at the start of the loop.

Note You can declare loop variables in the first expression of the for statement. The pre-
ceding example illustrates this technique. The count variable is local to the for statement
and goes out of scope when the loop terminates.

The second expression statement defines a test. If the test evaluates to true, the loop body is
executed, but if it is false, the loop finishes and control passes to the statement that follows the clos-
ing parenthesis. After the loop body has been executed, the final expression in the for statement is
executed; this expression performs loop update operations, such as incrementing the loop counter.

70 Microsoft Visual C++/CLI Step by Step



Note The for statement is very flexible. You can omit any of the three expressions in the
for construct as long as you retain the semicolon separators. You can even omit all three
expressions, as in for(;,; ), which represents an infinite loop

The preceding example displays the output shown in the following screen shot.

o CAWindows\system32\cmd.exe =

[Press any key to continue . . .

In this exercise, you will modify your Calendar Assistant application so that it uses a for loop rather
than a while loop to obtain five dates from the user.

1. Continue working with the project from the previous exercise.

2. Modify the code in the main function to use a for loop rather than a while loop, as shown
here:

Console::WriteLine("Welcome to your calendar assistant™);

for (int count = 1; count <= 5; count++)

{
Console::Write("\nPlease enter date ");
Console: :WriteLine(count);

int year = GetYear();

int month = GetMonth();

int day = GetDay(year, month);

DisplayDate(year, month, day);
}

Notice that there is no count++ statement after displaying the date. This is because the for
statement takes care of incrementing the loop counter.

3. Build and run the application. The application asks you to enter five dates, as before.

Using do-while loops

The third loop construct you'll look at here is the do-while loop (remember, there’s still the for-each
loop, which you will meet later). The do-while loop is fundamentally different from the while and for
loops because the test comes at the end of the loop body, which means that the loop body is always
executed at least once.

Decision and loop statements 71



72

The following example shows how to write a simple do-while loop in C++/CLI. This example gener-
ates random numbers between 1 and 6, inclusive, to simulate a die. It then counts how many throws
are needed to get a 6.

Random Ar = gcnew Random();

int randomNumber;

int throws = 0;

do

{
randomNumber = r->Next(1l, 7);
Console: :WriteLine(randomNumber) ;
throws++;

}

while (randomNumber != 6);
Console::Write("You took ");
Console: :Write(throws);

Console::WriteLine(" tries to get a 6");

The loop starts with the do keyword, followed by the loop body, followed by the while keyword
and the test condition. A semicolon is required after the closing parenthesis of the test condition.

The preceding example displays the output shown in the following screen shot:

X CA\Windows\system32\cmd.exe L= =

ou took 6 throws to get a 6!
[Preszs any key to continue . . .

In this exercise, you will modify your Calendar Assistant application so that it performs input vali-
dation, which is a typical use of the do-while loop.

1. Continue working with the project from the previous exercise.
2. Modify the GetMonth function as follows, which forces the user to type a valid month:

int GetMonth()

{

int month = 0;

do

{
Console: :Write("Month [1 to 12]? ");
String Ainput = Console::ReadLine();
month = Convert::ToInt32(input);

}

Microsoft Visual C++/CLI Step by Step



while (month < 1 || month > 12);
return month;

}
3. Modify the GetDay function as follows, which forces the user to type a valid day:

int GetDay(int year, int month)
{

int day = 0;

int maxDay;

// Calculate maxDay, as before (code not shown here) .. .. ..

do

{
Console::Write("Day [1 to ");
Console: :Write(maxDay) ;
Console::Write("]? ");
String Ainput = Console::ReadLine();
day = Convert::ToInt32(input);

}

while (day < 1 || day > maxDay);

return day;

}
4. Build and run the application.

5. Try to type an invalid month. The application keeps asking you to enter another month until
you type a value between 1 and 12, inclusive.

6. Try to type an invalid day. The application keeps asking you to enter another day until you
type a valid number (which depends on your chosen year and month).

Performing unconditional jumps

C++/CLI provides two keywords—break and continue—with which you can jump unconditionally
within a loop. The break statement causes you to exit the loop immediately. The continue statement
abandons the current iteration and goes back to the top of the loop ready for the next iteration.

Note The break and continue statements can make it difficult to understand the logical
flow through a loop. Use break and continue sparingly to avoid complicating your code
unnecessarily.

In this exercise, you will modify the main loop in your Calendar Assistant application. You will give
the user the chance to break from the loop prematurely, skip the current date and continue on to the
next one, or display the current date as normal.

1. Continue working with the project from the previous exercise.

Decision and loop statements 73



74

2.

Modify the main function as follows, which gives the user the option to break or continue if
desired:

Console::WriteLine("Welcome to your calendar assistant");
for (int count = 1; count <= 5; count++)

{
Console::Write("\nPlease enter date ");
Console: :WriteLine(count);
int year = GetYear(Q);
int month = GetMonth();
int day = GetDay(year, month);
Console::Write("Press B (break), C (continue), or ");
Console::Write("anything else to display date ");
String Ainput = Console::ReadLine();
if (input->Equals("B"))
{
break;
}
else if (input->Equals("C™))
{
continue;
}
DisplayDate(year, month, day);
}

Note The Equals method is used here to check that two strings contain the same
content. You will see another (and more idiomatic) way to do this using the ==
operator when we discuss operator overloading.

Build and run the application.

After you type the first date, you are asked whether you want to break or continue. Press X (or
any other key except B or C) and then press Enter to display the date as normal.

Type the second date, and then press C followed by Enter, which causes the continue state-
ment to be executed.

The continue statement abandons the current iteration without displaying your date. Instead,
you are asked to type the third date.

Type the third date and then press B, which causes the break statement to be executed. The
break statement terminates the entire loop.

Microsoft Visual C++/CLI Step by Step



Quick reference

To

Perform a one-way test.

Do this

Use the if keyword followed by a test enclosed in paren-
theses. You must enclose the if body in braces if it con-
tains more than one statement. For example:

if (n < 0)

{
Console::Write("The number ");
Console::Write(n);
Console::WriteLine(" is negative");

}

Perform a two-way test.

Use an if-else construct. For example:

if (n<0)
{

}

else
{

}

Console::Write("Negative);

Console::Write("Not negative™);

Perform a multiway test.

Use an if-else-if construct. For example:

if (n < 0)
{

Console::Write("Negative™);

}
else if (n == 0)

{
Console::Write("Zero");
}
else
{
Console::Write("Positive");
}

Test a single expression against a finite set of constant
values.

Use the switch keyword followed by an integral expres-
sion enclosed in parentheses. Define case branches for
each value you want to test against, and define a default
branch for all other values. Use the break statement to
close a branch. For example:

int dayNumber; // 0=Sun, 1=Mon, etc.

;witch (dayNumber)

{

case 0:

case 6:
Console: :Write("Weekend");
break;

default:
Console: :Write("Weekday");
break;

}

Perform iteration by using the while loop.

Use the while keyword followed by a test enclosed in
parentheses. For example:

int n = 10;
while (n >= 0)
{

Console::WriteLine(n);
n--;

Decision and loop statements

75



76

To

Perform iteration by using the for loop.

Do this

Use the for keyword followed by a pair of parentheses.
Within the parentheses, define an initialization expres-
sion, followed by a test expression, followed by an update
expression. Use semicolons to separate these expressions.
For example:

for (int n = 10; n >= 0; n--)
{

3

Console::WriteLine(n);

Perform iteration by using the do-while loop.

Use the do keyword, followed by the loop body, followed
by the while keyword and the test condition. Terminate
the loop with a semicolon. For example:

int n;

do

{
StringA input = Console::ReadLine();
n = Convert::ToInt32(input);

} while (n > 100);

Terminate a loop prematurely.

Use the break statement inside any loop. For example:

for (int n = 0; n < 1000; n++)

{

int square = n * n;

if (square > 3500)

{

break;

}

Console: :WriteLine(square);
}

Abandon a loop iteration and continue with the next
iteration.

Use the continue statement inside any loop. For example:

for (int n = 0; n < 1000; n++)

{

int square = n * n;

if (square % 2 == 0)

{

continue;

}

Console: :WriteLine(square);
}

Microsoft Visual C++/CLI Step by Step



Index

Symbols

+ (addition operator), 30

& (ampersand character), 175
& (AND operator), 296

&& (AND operator), 31

= (assignment operator), 26
* (asterisk) symbol, 438

A (caret) symbol, 391

~ (complement operator), 32
%d descriptor, 422

/ (division operator), 30

. (dot operator), 20

i (double-colon syntax), 79

= (equal sign), 236, 254
#include directive, 439
#include statements, 107
__int8 type, 24

__intl6 type, 24

__int32 type, 24

__int64 type, 24

<< (left-shift operator), 32
<= (less-than-or-equal-to) condition, 199
% (modulus operator), 30

* (multiplication operator), 30
I (NOT operator), 31

-= operator, 252, 254

-> operator, 83

+ operator, 252

+= operator, 251, 254

-> (pointer operator), 28
#pragma once directive, 125
#pragma once line, 240

>> (right-shift operator), 32

:: (scope resolution operator), 269
[1 (square brackets), 267

- (subtraction operator), 30

<> syntax, 207
%x descriptor, 422

A

Abs function, 169
Abstract attribute, 469
abstract classes
and sealed classes, 137
overview, 130-131
Account class, 14
in bank example, 238-240
AddAccount method, 240
Add function, 221
addition operator (+), 30
Add method
in bank example, 240-241
Add New Item dialog box, 107
Add New Reference button, 461
add_OnFirstEvent method, 256
addresses, WCF, 355
Add Service dialog box, 364
AddServiceEndpoint, 363
ADO.NET
assemblies, 336
connected application, creating
connecting to database, 337-341
creating and executing command, 340-341
executing command that modifies data, 341-342
executing queries and processing results, 342-
343
overview, 336-337
data providers, 334-335
disconnected application, creating, 344-345
disconnected operation using DataSet, 345-350
namespaces, 335

487



Age property

overview, 334-336
quick reference, 350, 368
Age property, 232
aggregate initializer, 202
algorithms, 226
All Apps charm, 378
ampersand character (&), 175
AND operator (&), 296
AND operator (&&), 31
Animal class, 16
AnsiClass attribute, 469
API (application programming interface),
Windows, 265
AppBarButton style, 427
app bars
AppBar control, 383
in calculator example, 425-428
AppendAllLines method, 292
AppendAllText method, 292
AppendChild method, 324, 326
AppendText method, 292, 293
App.g.cpp, 380
App.g.h, 380
application programming interface (API),
Windows, 265
Application Ul tab, 412
ArgumentException, 222, 232, 239
ArithmeticButtons_Click method, 404, 406
ArithmeticException, 184
arithmetic operators, 30-31
overloading, 161-162
arity, 161
array keyword, 207
Array::Reverse method, 217
arrays
managed arrays
and reference types, 208-210
initializing, 208
multidimensional, 211
overview, 207-208
using for each loop with, 210-211
native
dynamic allocation of, 203-205
initializing, 202
multidimensional, 202-203
overview, 197-199
passing to functions, 200-202
overview, 28
System::Array class
basic operations using, 213-215

Index

copying elements, 215
overview, 212
searching, 216-217
sorting, 217-218
using enumerators with, 218-219
Array:Sort method, 217
AsReadOnly method, 212
assemblies
ADO.NET, 336
.NET, 266
AssemblyCompanyAttribute, 267, 268
AssemblyInfo.cpp file
predefined attributes, 457-458
assembly linker, 6
assembly manifest, 266
Assembly property, 468
AssemblyQualifiedName property, 468
Assets folder, 379
assigning variables, 26-27
assignment conversions, 26
assignment operator (=), 26, 30
asterisk (*) symbol, 438
attached properties, 386-387
AttributeCount property, 307, 315
Attribute node type, 309
attributes
and metadata
overview, 453-454
using ILDASM, 454-457
defining custom
creating, 463-467
design criteria for attribute classes, 463-464
overview, 461-463
properties for, 463-464
predefined attributes
AssemblyInfo.cpp file, 457-458
classes for, 458-461
overview, 457
using reflection to obtain
accessing custom attribute data, 470-472
accessing standard attributes, 469
overview, 467-468
Type class, 467-469
Attributes property, 291, 323, 326, 468
AttributeTargets enumeration, 464
AttributeUsage attribute, 462, 464
AttributeUsageAttribute class, 458, 462
AutoClass attribute, 469
auto_gcroot type, 440
auto-implemented properties, 233



automatic layout, 449
Average function, 53

backing variable, 233
Balance property, 241

BankAccount class, 123, 124, 130, 132, 136

bank example
adding Account class, 238-239
Bank class
adding accounts to, 240-243
implementing, 236-238
overview, 236
base addresses, 355
BaseButtons_Click method, 418
base classes, 126-129
BaseStream property, 298, 302, 318
BaseType property, 468
base variable, 419
BasicHttpBinding, 355, 358
behavior of Windows Store apps, 373
behaviors, WCF, 358-359
Berkeley Sockets protocol, 275
BestFitMapping field, 447
binary 1/0
BinaryReader class, 299-304
BinaryWriter class, 298
overview, 298
binary operator, 162
BinaryReader class, 274, 282, 299-303
BinarySearch method, 212
BinaryWriter class, 274, 282, 298
binding, WCF, 355
bitwise operators, 32-33
blocking, 283
Boolean type, 271
Boolean value type, 145
bool type, 24
Border control, 383
BorderThickness property, 399
BottomAppBar element, 428
boxing 443
unboxing, 443-444
boxing process, 171
break keyword, 73
breakpoints, 47
BufferedStream class, 282
buffer overrun, 200

CCWs (COM Callable Wrappers)

Button control, 383
Button element, 376
Byte type, 271

Byte value type, 144

C

Cached File Updater contract, Windows 8, 429
calculator example
adding tile, 412-415
app bars, 425-428
arithmetic buttons, 403-404
getting number from button, 404-405, 407-408
handling different number bases
adding buttons for, 417-418
changing base, 418-421
converting string in display, 421-425
handling number input, 401-402
laying out number buttons, 398-401
overview, 397-398
performing calculations, 408-409
remembering operations, 406
sharing in
contracts and charms, 428-429
DataPackage class, 430
handling requests, 431-432
implementing, 429-430
overview, 428
testing, 410-412
Calendar Assistant application, 61
CallingConvention field, 447, 448
calling functions, 45-47
CallMe method, 261
CanDebit method, 123,133,134
Canvas control, 388
Capacity property, 220
caret (A) symbol, 391
casting process, 26
cast operator, overview, 33-34
catch block, 347
handling exceptions using, 180-182, 189
C++/CLI
defined, 3
Hello World example, 4
identifiers in, overview, 5-6
keywords in, overview, 5-6
main function in, overview, 4-5
CCWs (COM Callable Wrappers), 483

Index

489



CDATA node type

CDATA node type, 309
charms
in calculator example, 428-429
in Windows Store apps, 374
CharSet field, 447, 448
Char type, 24, 271
Char value type, 145
CheckBox control, 384
CheckCharacters property, 310
CheckingAccount class, 15
ChildNodes property, 323, 326
Circle class, 236
Class attribute, 469
classes
abstract classes, 130-131
base classes, 126-129
class-wide members
data members, 88-89
member functions, 90-91
overview, 87-88
static constructors, 92-93
concrete classes, 130-131
constants in
class-wide constants, 93-94
instance constants, 94-95
overview, 93
constructors
defining, 84-86
member initialization lists, 86-87
creating objects, 83-84
for custom attributes, 463-464
derived classes, 129-130
and finalizers, 106
in header files, 79-80
in source files, 81-82
in object-oriented programming, 16
object relationships
creating LoyaltyScheme class, 95-96
creating LoyaltyScheme objects, 97-100
implementing LoyaltyScheme class, 96-97
overview, 95-96
testing example application, 100
organizing, 78-79
overriding member functions, 131-136
for predefined attributes, 458-461
protected access, 136-137
sealed classes
and abstract classes, 137
overview, 137

Index

vs. structures, 149-150
in Windows RT, 391-392
class keyword, 20
class library, .NET, 265
class members, 77
class-wide constants, 93-94
class-wide members
data members, 88-89
member functions, 90-91
overview, 87-88
static constructors, 92-93
ClearButton_Click method, 402
Clear method, 212
clearOnNextKey variable, 409
Clone method, 212, 324, 326
CloneNode method, 324, 326
Close method, 283, 287, 298, 299, 308, 318
CLR (Common Language Runtime), 20, 263-264,
336, 437, 454
CLS (Common Language Specification), 160, 265,
298
CLSCompliantAttribute class, 458
CLS-compliant operators, overloading, 166-167
code-behind files, 379, 382
code reuse, and inheritance, 122
collections
List<T> class, overview, 219-221
overview, 219
SortedList<K,V> class, overview, 222-223
Collections interfaces, 273-274
Collections namespaces, 272-273
ColumnDefinition element, 386
Column property, 387
Combine method, 250
ComboBox control, 384
COM Callable Wrappers (CCWs), 483
COM (Component Object Model), 276
overview, 475-476
using from .NET code
and RCWs, 476-477
creating RCWs, 477-480
handling errors, 480-481
late binding to COM objects, 481-482
overview, 476
using .NET components as COM
components, 483-485
CommandText property, 340
Comment node type, 309



Common Language Runtime (CLR), 20, 263-264,
336, 437, 454
Common Language Specification (CLS), 160, 298
Compare method, 222
CompareTo method, 218, 222
compiling source files, 9-10
complement operator (~), 32
Component Object Model (COM), 276. See COM
concrete classes, 130-131
ConditionalAttribute class, 458
ConfigurationManager class, 339
ConformancelLevel property, 310
connected application, ADO.NET
connecting to database, 337-341
creating and executing command, 340-341
executing command that modifies data, 341-342
executing queries and processing results, 342—
343
overview, 336-337
Connection property, 340
ConnectionStringSettings object, 339
connectionStrings section, 338
connectivity, WCF, 353
Console line, 4
Console::ReadLine function, 44
Console::Write function, 44
constants
in classes
class-wide constants, 93-94
instance constants, 94-95
overview, 93
overview, 28-29
const_cast<> operator, 33
constructors
defining, 84-86
handling exceptions for, 184-185
member initialization lists, 86—-87
for structures, 150
ContainsKey method, 223
Contains method, 241
ContainsValue method, 223
Content attribute, 376
content controls, 382
continue keyword, 73
contracts
in calculator example, 428-429
WCF, 356-358
in Windows Store apps, 374
controls, in XAML, 382-383
Control templates, 381

data contracts

conversion operator, 164
ConverterClass, 479
converting constructors, 164
ConvertOutputString function, 423
ConvertTextTolnt function, 407, 421
Convert:Tolnt32 function, 44
copy constructors, overview, 113-116
Copy method, 212, 215, 292
CopyTo method, 212, 293
Count property, 220
count variable, 289
CreateAttribute method, 324
CreateCDataSection method, 324
CreateComment method, 324
CreateDefaultAttribute method, 324
CreateDirectory method, 290
CreateDocumentType method, 324
CreateElement method, 324
CreateEntityReference method, 324
Create method, 291-293, 306, 308
CreateNavigator method, 324, 326
CreateNode method, 324
CreateProcessinglnstruction method, 324
CreateSubdirectory method, 291
CreateText method, 292, 293
CreateTextNode method, 324
CreateWhitespace method, 324
CreateXmlDeclaration method, 324
CreationTime property, 291, 293
CreditCardAccount class, 78
CTS (Common Type System), 264
Cube function, 249
CurrentAccount class, 123, 126-127, 129-130
CurrentAccount.cpp project, 128
CurrentAccount header file, 129
Current property, 210, 218
custom attributes

creating, 463-467

design criteria for attribute classes, 463-464

obtaining data using reflection, 470-472

overview, 461-463

properties for, 463-464

D

data adapter, 344
DataColumn class, 344
DataContract class, 357
data contracts, 356

Index

491



data hiding

492

data hiding, 14
data members, class-wide, 88-89
Data namespaces, 276-277
DataPackage class, in calculator example, 430
data providers, ADO.NET, 334-335
DataRow class, 344
DataSet class, disconnected operation using,
344-350
DataTransferManager, 431
data types, for variables, 23-24
Date structure, 150, 152
DateTime class, 234
DbConnection class, 336
DbDataAdapter class, 344
DbProviderFactory class, 346
DCOM (Distributed Component Object Model), 352
DebuggableAttribute class, 458
DebuggerHiddenAttribute class, 458
DebuggerStepThroughAttribute class, 458
debugging, stepping through application, 47-51
Debug toolbar, 49
declarative Ul layout, 381
declaring variables
multiple, 26
overview, 25
decrement operators, overloading, 171-172
DefaultAttribute, 395
default branch, 66
default values, for function prototypes, 40
delegate keyword, 247, 250
delegates
defining, 247
implementing
calling non-static member functions by using
delegates, 249
calling static member functions by using
delegates, 248-249
delegates that return result, 252-253
overview, 247
using multicast delegates, 249-252
overview, 245-246
purpose of, 246-247
DeleteCommand, 345
delete method
for arrays, 204
overview, 109
Delete method, 290, 291, 292, 293
Depth property, 307
deque type, STL/CLR, 226
derived classes, 129-130

Index

destructors

overview, 105-106

using, 109-110
Diagnostics namespace, 274
Dialog class, 265
Dictionary<K,V> class, 219
directories, getting information about, 290-297
Directory class, 274, 282
Directorylnfo class, 274, 282, 290-291
DirectoryName property, 293
Directory property, 293
DisplayDate function, 59
Dispose method, 283, 287, 298-299, 308
Distributed Component Object Model (DCOM), 352
distributed systems, WCF, 352
DivideByZeroException, 183
division operator (/), 30
DLL (Dynamic-Link Library), 192, 365-368, 444
Dllimport attribute, 446
DllimportAttribute class, 447-448
DOB member, 151-152
Documentation attribute, 466
DocumentationAttribute class, 464, 472
DocumentElement property, 323
DocumentFragment node type, 309
Document node type, 309
Document Object Model (DOM), 307
DocumentType node type, 309
DocumentType property, 323
do keyword, 72
DOM (Document Object Model), 307
dot operator (), 20
double-colon syntax (), 79
Double type, 24, 271
Double value type, 144
do-while loops, overview, 71-73
DtdProcessing property, 310
duplex operation, 358
dynamic allocation, of arrays, 203-205
dynamic_cast, 170, 444
dynamic_cast<> operator, 33
dynamic invocation, 467
Dynamic-Link Library (DLL, 192, 444

for each loop
using with arrays, 210-211
EarnPointsOnAmount function, 97



EF (Entity Framework), 276
E_INVALIDARG error, 480
Element node type, 309
elements in arrays, copying, 215
EnableBinaryButtons method, 420
EnableDecimalButtons method, 420
EnableHexButtons method, 420
encapsulation, in object-oriented programming,
14-15
Encoding property, 307
EndElement node type, 309
EndEntity node type, 309
EndPointAddress class, 362
endpoints, WCF, 353-354
EntityClient data provider, 334
Entity Framework (EF), 276
Entity node type, 309
EntityReference node type, 309
EntryPoint field, 447-448
EnumerateDirectories method, 290-291
EnumerateFiles method, 290-291
EnumerateFileSystemEntries method, 290-291
enumerations
creating, 153-154
memory usage, 156
using in programs, 156
enumerators, using with arrays, 218-219
EOF property, 307
E_POINTER eror, 480
EqualsButton_Click method, 407, 425
Equals function, overloading, 169-171
equal sign (=), 236
Equals method, 74, 471
errNo field, 190
error handling, using COM components from
.NET, 480-481
Error List window, 10
errors, in properties, 232
EventArgs object, 260
event handling, in XAML, 389
event keyword, 255
events
event receiver, 256-258
event source class, 254-256
overview, 253-254
quick reference, 262
standard, 259-261
System::EventHandler delegate and, 259-261
EvtRcv class, 257
EvtSrc class, 255

ExactSpelling field, 448
exceptions
and safe_cast keyword, 191-192
creating, 189-191
Exception class properties, 182-183
handling
catch block, 189
Exception class properties, 182-183
exception hierarchy, 184
finally block, 188
try/catch blocks, 180-182
with constructors, 184-185
in mixed-language programming, 192-195
nesting, 185-188
overview, 175-178
rethrowing, 185-188
throwing, 178-180
types of, 178
executable programs
compiling source files, 6, 9-10
creating project, 8-9
running program, 7, 11
source files for, 9
ExecuteNonQuery method, 337, 341
ExecuteReader method, 337, 342
ExecuteScalar method, 337, 340
Exists method, 212, 288, 290, 292
Exists property, 291, 293
explicit layout, 449
eXtensible Markup Language. See XML
Extensible Stylesheet Language Transformations
(XSLT), 306
Extensible Stylesheet Language (XSL), 276
Extension property, 291

F

fall-through, using in switch statement, 67-68

fault contracts, 356

FieldOffsetAttribute class, 449

FIFO (first in, first out), 226

FileAccess enumeration, 286

FileAttributes class, 296

File class, 274, 282, 288

FileInfo class, 274, 282

FileMode enumeration, 286

File Picker contract, Windows 8, 429

files. See also binary I/O; See also text /O
getting information about, 290-297
quick reference, 303-304

Index

files

493



FileShare enumeration

FileShare enumeration, 286 FromBinary function, 422
FileStream class, 274, 282, 286-287 FullName property, 291, 293, 468
file structure, for Windows Store apps, 379-380 fully qualified name, 269
FileSystemInfo class, 274, 282 func function, 180
FileSystemWatcher class, 274, 282 function header, 41
FillBuffer method, 299 Function keyword, 38
finalAmount variable, 50 functions
finalizers calling, 45-47

overview, 106 function bodies

using, 108-109 defining, 41-42
finally block, 347 overview, 41

handling exceptions using, 188 parameters in, 42-43
FindAll method, 212 return type, 43-45
FindLast method, 212 function prototypes
Find method, 212 declaring, 38-39
FirstChild property, 323, 326 default values for, 40
FirstEventHandler delegate, 255 defined, 38
first in, first out (FIFO), 226 parameters in, 39
FlagsAttribute, 395 return type, 39-40
FlagsAttribute class, 458 global scope, 51-53
FlipView control, 384 local scope, 51-53
floating-point types, 272 non-static member functions, calling by using
floating-point values, 169 delegates, 249
float type, 24 overloading, 53-55
flow control statements overriding, 131-136

if statement passing arrays to, 200-202

multiway tests, 62-64 static member functions, calling by using
nested tests, 64-65 delegates, 248-249

one-way tests, 57-61
overview, 57
two-way tests, 61-62 G

loop statements GAC (Global Assembly Cache), 484
do-while loops, 71-73
for| 70-71 garbage collector, 103-104
or ‘oops, 68 GCHandle:Alloc method, 438
overwz\./:i i in 73-74 GCHandle type, and unmanaged code, 438-441
unconartiona’ Jumps in, /5= gcnew operator, 27, 28, 110, 143, 147, 208
while loops, 68-70 .
itch statement gcroot variable, 440
SWIteR 519 GDI32.dll, 445
overview, 65-67 .
ing fall-th hin 67-68 generations, 104
using tal-through in, generic keyword, 206, 392

FlushAsync method, 283 T
' in Windows RT, 392
Flush method, 283, 298, 318 generics, in Windows RT, 39
generic types

FontSize property, 399 and templates
for-each loop, 68 overvpiew 224

EorEaCh mZthOd' 212 403 STL/CLR library, 224-227
oreground property, overview, 205-206

for loops, overview, 70-71 Geometry.cpp file, 117

Eorma:;nember, 1t54 318 320 GetAccountNumber function, 82
ormatting property, ! GetAttribute method, 308

forms, 370 GetAttributes method, 292, 296

494 Index



GetConstructor method, 468
GetConstructors method, 468
GetCreationTime method, 290, 292
GetCurrentDirectory method, 290
GetCustomAttribute method, 470
GetCustomAttributes method, 470, 471
get_date function, 229

GetDay function, 59

GetDirectories function, 297
GetDirectories method, 290, 291
GetDirectoryRoot method, 290
GetElementByld method, 324
GetElementsByTagName method, 324
GetEnumerator method, 212, 218, 324, 326
GetEvent method, 468

GetEvents method, 468

GetField method, 468

GetFields method, 468

GetFiles method, 290, 291
GetFileSystemEntries method, 290
GetFileSystemInfos method, 291

get function, 161

GetHashCode method, 171, 471
GetlInterestRate function, 87
GetInterfaceMap method, 468
GetInterface method, 468
Getlnterfaces method, 468
GetlnvocationList function, 253
GetlLastAccessTime method, 290, 292
GetLastWriteTime method, 290, 292
GetlLength method, 212, 214
GetlLogicalDrives method, 290
GetLowerBound method, 212, 214
GetMember method, 468
GetMembers method, 468

get method, 234

GetMethod method, 468
GetMethods method, 468

GetMonth function, 59
GetNamespaceOfPrefix method, 326
GetNumberOfAccounts function, 90
GetParent method, 290
GetPrefixOfNamespace method, 326
GetProperties method, 469
GetProperty method, 469
GetSystemPowerStatus function, 449, 450
getter, 231

GetTypeFromCLSID method, 481
GetType method, 469, 470, 471
GetUpperBound method, 213, 214

IDE (integrated development environment)

getVal function, 162, 164

getValue function, 440

GetValue method, 213

GetYear function, 58

Global Assembly Cache (GAC), 484
global scope, overview, 51-53
global variables, 52

green and blue stacks, 372-373
Grid control, 375-376

GridView control, 384

H

handles

to objects, 118-119

overview, 27-28
handling exceptions

catch block, 189

with constructors, 184-185

Exception class properties, 182-183

exception hierarchy, 184

finally block, 188

try/catch blocks, 180-182
hardware, and Windows Store apps, 374
HasAttributes property, 307
HasChildNodes property, 323, 326
hashcode, 171
HashSet<T> class, 219, 273
HasSecurity attribute, 469
HasValue property, 307
header files, classes in, 79-80
Hello World example, 4
hierarchy

for exceptions, 184

for inheritance, 123-124
HttpGetEnabled property, 364
HttpRequest class, 277
HttpResponse class, 277
HTTP transport, 354

IChannel handle, 362

ICollection<T> interface, 273

IComparable interface, 218

IComparer<T> interface, 273
|ConnectionPointContainer interface, 477
IConnectionPoint interface, 477

IDE (integrated development environment), 11

Index

495



identifiers, overview

identifiers, overview, 5-6 designing hierarchy for, 123-124
IDictionary<K,V> interface, 273 interfaces, 138-139
IDispatchEx interface, 477 in object-oriented programming, 15
IDispatch interface, 477 overriding member functions, 131-136
IEnumerable<T> interface, 273 overview, 121-122
IEnumerator interface, 210 properties and, 235
[Enumerator<T> interface, 273 protected access, 136-137
IEnumVARIANT interface, 477 sealed classes
IErrorinfo interface, 477 and abstract classes, 137
if statement overview, 137
multiway tests, 62-64 substitutability, 123-124
nested tests, 64-65 terminology, 122
one-way tests, 57-61 InitializeComponent method, 406
overview, 57 Initialize method, 213
two-way tests, 61-62 inline functions, 19
IgnoreComments property, 310 InnerText property, 323, 326
IgnoreProcessinglnstructions property, 310 InnerXml property, 323, 326
IgnoreWhitespace property, 310 input/output. See |/O
ILDASM, 454-457 input variable, 44
ILDASM tool, 264 InsertAfter method, 324, 326
IL Disassembler tool, 264 InsertBefore method, 324, 326
IL (Intermediate Language), 375 InsertCommand, 345
IList<T> interface, 273 Insert function, 221
IMathService contract, 361 instance constants, 94-95
IMetadataExchange contract, 363 instance members, 77
Import attribute, 469 Intl6 type, 271
ImportNode method, 324 Int16 value type, 144
#include directive, 439 Int32 type, 271
include guard, 360 Int64 type, 271
#include statements, 79, 96 Int64 value type, 144
increment operators, overloading, 171-172 integrated development environment (IDE), 11
Indentation property, 318 Interface attribute, 469
IndentChar property, 318 interfaces, properties in, 235
indexed properties interior pointers, 441
bank example Intermediate Language (IL), 375
creating Account class properties, 239-240 inter-process communication (IPC), 353
implementing to retrieve accounts, 241-244 IntPtr type, 271
defined, 230 IntPtr value type, 145
overview, 236 IntPtr::Zero argument, 447
indexing, 207 introspection, 467
IndexOfKey method, 223 int type, 18,24
IndexOf method, 213, 216 IntVal class, 161, 163
IndexOfValue method, 223 InvalidCastException, 191
inheritance InvalidOperationException, 219
abstract classes, 130-131 invocation list, 250
and code reuse, 122 InvokeMember method, 469, 482
base classes, 126-129 Invoke method, 248
concrete classes, 130-131 IOException class, 274, 282

derived classes, 129-130

496 Index



1/0 (input/output)
binary 1/0, 298
BinaryReader class, 299-303
BinaryWriter class, 298
text 1/0
FileStream class, 286-287
overview, 283
TextReader, 287-290
TextWriter, 283-285
10 namespace, 274
IPC (inter-process communication), 353
IPC transport, 354
IProvideClassInfo interface, 477
IReadOnlyCollection<T> interface, 273
IsAbstract property, 468
IsArray property, 468
IsByRef property, 468
IsClass property, 468
IsEmptyElement property, 307
|1Set<T> interface, 273
IsFixedSize property, 212
Isinterface property, 468
IsNotPublic property, 468
IsPublic property, 468
IsReadOnly property, 212, 323, 326
IsStartElement method, 308
IsSynchronized property, 212
IsValueType property, 468
Item property, 307, 323, 326
items controls, 382
iterator, 225, 226
lUnknown interface, 477

J

JIT (Just-In-Time) compiler, 264
Just-In-Time (JIT) compiler, 264

K

Kernel32.dll, 445
KeyRoutedEventArgs, 389
KeyValuePair class, 223
keywords, overview, 5-6

L

LastAccessTime property, 291, 293
LastChild property, 323, 326

LoyaltyScheme class example

LastindexOf method, 213, 216
last in, first out (LIFO), 226
LastWriteTime property, 291, 293
late binding, to COM objects, 481-482
layout
in calculator example, 398-401
in XAML, 384-388
left-shift operator (<<), 32
Length property, 212, 213, 293
less-than-or-equal-to (<=) condition, 199
lifetimes, of objects, 103-105
LIFO (last in, first out), 226
LimitReached event, 260
LineNumberOffset property, 310
LinePositionOffset property, 310
LinkedList<T> class, 219, 273
Ling class, 276
ListBox control, 384
ListBoxItems control, 381
List class, 240, 241
List<T> class, 273
overview, 219-221
list type, STL/CLR, 226
ListView control, 384
literal constant, 28
literal keyword, 93
Live tiles, 415
Load method, 325
LoadXml method, 325
LocalName property, 307, 323, 326
local scope, overview, 51-53
location element, 331
LogAttribute class, 462
logical operators
overloading, 167-169
overview, 31-32
LongLength property, 212
long long type, 24
long type, 24
LookupNamespace method, 308
LookupPrefix method, 318
loop statements
do-while loops, 71-73
for loops, 70-71
overview, 68
unconditional jumps in, 73-74
while loops, 68-70
LoyaltyScheme class example
creating, 95-96
creating objects, 97-100

Index

497



main function

498

implementing class, 96-97
testing application, 100-101

M

main function, 41, 248
overview, 4-5
main method, 108
MainPage class, 406
MainPage.g.cpp, 380
MainPage.g.h, 380
MakePurchase function, 80, 98
MakeRepayment function, 80
managed arrays
and reference types, 208-209
initializing, 208
multidimensional, 211
overview, 207
using for each loop with, 210-211
managed code
vs. unmanaged code
GCHandle type, 438-441
mixed classes, 437-438
overview, 437
Map type, 394
map type, STL/CLR, 226
MapView type, 394
Margin property, 376
markup extensions, 382
MarshalAsAttribute class, 458
marshaling, 356
Math::Abs function, 169
MathServiceClient class, 368
MaxCharactersinDocument property, 310
MaximumRowsOrColums attribute, 387
MBCS (Multi-Byte Character Set), 405
MClass object, 440
mc variable, 440
member functions, class-wide, 90-91
member initialization lists, in constructors, 86—87
MemoryStream class, 274, 282
memory usage, for enumerations, 156
MEPs (message exchange patterns), 357-358
MessageBox function, 445, 446
Message property, Exception class, 182
metadata
adding to WCF services, 363-365
and attributes
overview, 453-454
using ILDASM, 454-457

Index

.NET, 266-268

in Windows RT, 390
MEX (Metadata Exchange) addresses, 355
MFC (Microsoft Foundation Classes), 370, 405
Microsoft Intermediate Language (MSIL), 229, 375
Microsoft Intermediate Language (MSIL) file, 81
Microsoft-specific data types, 24
mixed classes, and unmanaged code, 437-438
mixed-language programming, exceptions in,

192-195
mm class, 115
Module property, 468
modulus operator (%), 30
Move method, 290, 292
MoveNext method, 210
MoveToAttribute method, 308
MoveToContentAsync method, 308
MoveToContent method, 308
MoveToElement method, 308, 315
MoveToFirstAttribute method, 308
MoveTo method, 291, 293
MoveToNextAttribute method, 308, 315
MSIL (Microsoft Intermediate Language), 229, 264,
375

MSIL (Microsoft Intermediate Language) file, 81
MSMQ transport, 354
Multi-Byte Character Set (MBCS), 405
multicast delegates, 249-252
multidimensional arrays

managed arrays, 211

native arrays, 202-203
multimap type, STL/CLR, 226
multiplication operator (*), 30
multiset type, STL/CLR, 226

N

named parameters, 463
named pipes, 353
Name property, 291, 293, 307, 323, 326
Namespace property, 468
namespaces
ADO.NET, 335
NET
Collections interfaces, 273-274
Collections namespaces, 272-273
Data namespaces, 276-277
Diagnostics namespace, 274
10 namespace, 274
Net namespaces, 275



overview, 268-269
ServiceModel namespaces, 275
System namespace, 270-273
using in C++ applications, 270-271
Web namespaces, 277-278
Windows namespaces, 275
Xml namespaces, 276
Namespaces property, 318
NamespaceURI property, 307, 323
naming, of variables, 25-26
NaN (not a number), 272
native arrays
dynamic allocation of, 203-205
initializing, 202
multidimensional, 202-203
overview, 197-199
passing to functions, 200-202
negative infinity, 272
nesting
exceptions, 185-188
if statements, 64-65
NET
using COM components from
and RCWs, 476-477
creating RCWs, 477-480
handling errors, 480-481
late binding to COM objects, 481-482
overview, 476
using .NET components as COM
components, 483-485
.NET Framework
assemblies, 266
class library, 265
CLR (Common Language Runtime), 263-264
CLS (Common Language Specification), 265
CTS (Common Type System), 264
metadata, 266-268
MSIL (Microsoft Intermediate Language), 264
namespaces
Collections interfaces, 273-274
Collections namespaces, 272-273
Data namespaces, 276-277
Diagnostics namespace, 274
10 namespace, 274
Net namespaces, 275
overview, 268-269
ServiceModel namespaces, 275
System namespace, 270-273
using in C++ applications, 270-271
Web namespaces, 277-278

object-oriented programming

Windows namespaces, 275
Xml namespaces, 276
overview, 263
quick reference, 278
XML and
NET XML namespaces, 306
overview, 305-306
XML processing classes, 306-307
NetMsmqgBinding, 355, 358
NetNamedPipeBinding, 355, 358
Net namespaces, 275
NetTcpBinding, 355, 358
new operator, 203
NextSibling property, 323, 326
NodeChanged event, 325
NodeChanging event, 325
Nodelnserted event, 325
Nodelnserting event, 325
nodelist, 329
NodeRemoved event, 325
NodeRemoving event, 325
NodeType property, 308-309, 324, 326
None node type, 309
NonSerializedAttribute class, 458
non-static member functions, calling by using
delegates, 249
Normalize method, 326
normal pointers, 246
not a number (NaN), 272
Notation node type, 309
NotifyDelegate, 250
NOT operator (!), 31
NotPublic attribute, 469
nullptr keyword, 184
nullptr value, 98
number bases
in calculator example
adding buttons for, 417-418
changing base, 418-421
converting string in display, 421-425
NumericOp function, 247

(0

Object Linking and Embedding (OLE), 370
object-oriented programming
advantages of, 16-17
classes in, 16
defined, 13-14

Index

499



objects

500

encapsulation in, 14-15
example of, 17-22
inheritance in, 15
objects in, 16
polymorphism in, 15-16
objects
and stack semantics
creating objects with, 111-113
overview, 116-118
copy constructors, 113-116
creating, 83-84
destructors
overview, 105-106
using, 109-110
finalizers
overview, 106
using, 108-109
handles to, 118-119
lifetimes of, 103-105
in object-oriented programming, 16
relationships for
creating LoyaltyScheme class, 95-96
creating LoyaltyScheme objects, 97-100
implementing LoyaltyScheme class, 96-97
overview, 95-96
testing example application, 100-101
traditional C++ creation and destruction, 110-
111
obj pointer, 444
Observer class, 261
Obsolete attribute, 460
ObsoleteAttribute class, 458
ODBC data provider, 334
OleDb data provider, 334
OLE (Object Linking and Embedding), 370
one-way messaging, 358
OnNavigatedFrom function, 432
OnNavigatedTo function, 421, 432
op_Addition operator, 166
op_AddressOf operator, 166
op_BitwiseAnd operator, 166
op_BitwiseOr operator, 166
op_Comma operator, 166
op_Decrement operator, 166
op_Division operator, 166
Open method, 292-293
OpenRead method, 292-293
OpenText method, 292-293
OpenWrite method, 292-293
op_Equality operator, 166

Index

operation contracts, 356
operator overloading

and reference types, 172-173

arithmetic operators, 161-162

best practices, 173-174

CLS-compliant operators, 166-167

decrement operators, 171-172

increment operators, 171-172

logical operators

Equals function, 169-170
overview, 167-169

overview, 159

restrictions on, 160

rules for, 161

static operator overloads, 163-166

types needing, 160
operators

arithmetic operators, 30-31

assignment operators, 30

bitwise operators, 32-33

cast operator, 33-34

defined, 30

logical operators, 31-32

precedence of, 34

relational operators, 31-32

ternary operator, 32-33
op_ExclusiveOr operator, 166
op_GreaterThan operator, 167
op_GreaterThanOrEqual operator, 167
op_Increment operator, 167
op_lnequality operator, 167
op_LeftShift operator, 167
op_LessThan operator, 167
op_LessThanOrEqual operator, 167
op_LogicalAnd operator, 167
op_LogicalNot operator, 166
op_LogicalOr operator, 167
op_Modulus operator, 167
op_Multiply operator, 167
op_OnesComplement operator, 166
op_PointerDereference operator, 166
op_RightShift operator, 167
op_Subtraction operator, 167
op_UnaryNegation operator, 166
op_UnaryPlus operator, 166
OracleClient data provider, 334
Orientation property, 384
OR operator, 31-32
OuterXml property, 324, 326
overloaded [ ] operator, 230



overloading functions, 53-55
overriding member functions, 131-136
OwnerDocument property, 324, 326

P

Package.appxmanifest file, 379, 412
Page class, 377
Page element, 375
ParamArrayAttribute class, 458
parameters
in function bodies, 42-43
in function prototypes, 39
names for, 39
ParentNode property, 324, 326
Parent property, 291
parsing XML using, XmIReaderSettings class,
310-314
partial classes, 391
partial keyword, 392
passing structured data, 449-452
Path class, 274, 282
PeekChar method, 299
Peek method, 287
pf function pointer, 246
pinning pointers, 441-442
P/Invoke (Platform Invoke)
calling functions in Win32 API
DllimportAttribute class, 447-448
overview, 444-447
passing structured data, 449-452
Platform::Collections namespace, 394
Platform Invoke (P/Invoke). See P/Invoke
Platform::Metadata namespace, 394
Platform namespaces, in Windows RT, 394
Play To contract, Windows 8, 429
PNG (Portable Network Graphics) files, 379, 414
pointer operator (->), 28
pointers
interior pointers, 441
overview, 27-28
pinning pointers, 441-442
polymorphism
in object-oriented programming, 15-16
pop_back function, 225
Portable Network Graphics (PNG) files, 379, 414
positional parameters, 463
positive infinity, 272
post-decrement, 171

ProviderName property

postfix increment operator expression, 31
post-increment, 171
#pragma once directive, 125
precedence, of operators, 34
precompiled headers, 379
pre-decrement, 171
predefined attributes
AssemblyInfo.cpp file, 457-458
classes for, 458-461
obtaining attribute data using, 469
overview, 457
prefix increment operator expression, 31
Prefix property, 308, 324, 326
pre-increment, 171
PrependChild method, 326
PreserveSig field, 448
PreserveWhitespace property, 324
PreviousSibling property, 323, 326
printArea function, 236
PrintStatement function, 78
private auto ansi, 456
private class, 136
private keyword, 19
ProcessChildNodes function, 330
processFile function, 297
Processinglnstruction node type, 309
projections, 390
Project Properties dialog box, 338
projects, creating, 8-9
properties
for custom attributes, 463-464
for Exception class, 182-183
indexed
bank example, 236-244
overview, 236
overview, 229-230
quick reference, 244
scalar properties
auto-implemented properties, 233
errors in properties, 232
inheritance and, 235
in interfaces, 235-236
overview, 231-232
read-only and write-only properties, 233-235
of value types, 145
Properties property, 430
Properties tab, 402
property keyword, 231
protected access, 136-137
ProviderName property, 339

Index

501



proxy, accessing WCF services using

proxy, accessing WCF services using, 365-368 Read method, 287, 299, 308

Public attribute, 469 ReadNode method, 325

public class, 136 read-only properties, 233-234, 239
public keyword, 18 ReadOuterXml method, 308
push_back function, 225 ReadSByte method, 299

ReadSingle method, 299

ReadStartElement method, 309
Q ReadState property, 308
ReadString method, 299, 309
ReadToDescendant method, 309
ReadToEndAsync method, 287
ReadToEnd method, 287
ReadToFollowing method, 309

Queue<T> class, 219, 273
queue type, STL/CLR, 226
QuoteChar property, 318

R ReadToNextSibling method, 309
ReadUInt16 method, 299

RaiseOne function, 259 ReadUInt32 method, 299
raise_OnFirstEvent method, 256 ReadUInt64 method, 299
RaiseTwo function, 259 RedeemPoints function, 97
Rank property, 212, 213 refactoring, 407
rateFraction variable, 50 reference counted objects, 391
RC (Release Candidate) version, 7 Reference Manager dialog box, 193
RCWs (Runtime Callable Wrappers) reference types, 20

creating, 477-480 and managed arrays, 208-209

overview, 476-477 and operator overloading, 172-173
Read7BitEncodedInt method, 299 ref keyword, 184
ReadAsync method, 287, 308 reflection
ReadAttributeValue method, 308 obtaining attribute data using
ReadBlockAsync method, 287 accessing custom attribute data, 470-472
ReadBlock method, 287 accessing standard attributes, 469
ReadBoolean method, 299 overview, 467-468
ReadByte method, 299 Type class, 467-469
ReadBytes method, 299 ref new keyword, 391
ReadChar method, 299 Refresh method, 293
ReadChars method, 299 reinterpret_cast<> operator, 34
ReadContentAsAsync method, 308 relational operators, overview, 31-32
ReadContentAsint method, 308 relationships, object
ReadContentAs method, 308 LoyaltyScheme class example
ReadContentAsString method, 308 creating, 95-96
ReadDecimal method, 299 creating objects, 97-100
ReadDouble method, 299 implementing class, 96-97
ReadElementContentAsint method, 308 testing application, 100-101
ReadElementContentAs method, 308 overview, 95-96
ReadElementString method, 308 Release Candidate (RC) version, 7
ReadEndElement method, 309 remembering operations, in calculator example, 406
Read function, 313 Remote Method Invocation (RMI), 352
ReadInnerXml method, 308 remoting, 264
ReadInt16 method, 299 RemoveAccount function, 241
ReadInt32 method, 299 RemoveAll method, 325, 326
ReadInt64 method, 299 RemoveBylndex method, 223
ReadLine method, 287, 289 RemoveChild method, 325-326

502 Index



Remove function, 221
RemoveHandler function, 259
Remove method
in bank example, 240-241
manipulating invocation lists using, 250
remove_OnFirstEvent method, 256
RemoveRange function, 221
ReplaceChild method, 325, 327
Replace method, 292, 293
reserved words, 5
Reset function, 409
Reset method, 210
Resize method, 213
resource dictionaries, 381
restrictions, on operator overloading, 160
rethrowing exceptions, 185-188
return keyword, 4, 41
return type
for function bodies, 43-45
for function prototypes, 39-40
Reverse method, 213
rightOperand variable, 408
right-shift operator (>>), 32
RMI (Remote Method Invocation), 352
Root property, 291
RoutedEventArgs class, 389
RowDefinition element, 386
running programs, 7, 11
Runtime Callable Wrappers (RCWs). See RCWs
RuntimeWrappedException, 192

S

safe_cast, 444
safe_cast keyword, and exceptions, 191-192
safe_cast<> operator, 33
Save method, 325
SavingsAccount class, 15,123, 126-127, 130
SavingsAccount.cpp project, 129
SavingsAccount header file, 129
SAX (Simple API for XML) API, 307
SayHello method, 456
SByte type, 271
SByte value type, 144
scalar properties
auto-implemented, 233
defined, 230
errors in, 232
inheritance and, 235

SetHtmIFormat method

in interfaces, 235
read-only and write-only, 233-234
Schema class, 276
Schemalnfo property, 308
Schemas property, 310, 324
scope
global scope, 51-53
local scope, 51-53
scope resolution operator (::), 269
ScrollViewerl control, 384
Sealed attribute, 469
sealed classes
and abstract classes, 137
overview, 137
Search contract, Windows 8, 428
searching, arrays, 216-217
SecondEventHandler delegate, 257
security permissions, 266
Seek method, 298, 302
SeekOrigin enumeration, 302
seek pointer, 302
SEH (Structured Exception Handling), 178
SelectCommand, 345
SelectCommand property, 347
Selected Components pane, 193
SelectNodes method, 325, 327
SelectSingleNode method, 325, 327
sequential layout, 449
Serializable attribute, 469
SerializableAttribute class, 458
Serialization class, 276
ServiceContract attribute, 356
service contracts, 356
ServiceModel namespaces, 275
services
WCF, 352
accessing by using proxy, 365-368
adding metadata to, 363-365
overview, 359-362
writing service client, 361-362
SetAttributes method, 292
SetBitmap method, 430
SetCreationTime method, 290, 292
SetCreditLimit function, 80
SetCurrentDirectory method, 291
SetCursorToArrow line, 112
SetData method, 430
SetDataProvider method, 430
set_date function, 229
SetHtmlIFormat method, 430

Index

503



SetinterestRate function

SetInterestRate function, 87
SetLastAccessTime method, 291-292
SetlastError field, 448
SetLastWriteTime method, 291-292
SetName function, 20
SetRtf method, 430
SetStorageltems method, 431
setter, 231
SetText method, 431
Settings contract, Windows 8, 429
Settings property, 308, 318
set type, STL/CLR, 226
SetUri method, 431
SetValue method, 213, 214
Shape class, 235
Share contract, Windows 8, 429
sharing
in calculator example
contracts and charms, 428-429
DataPackage class, 430
handling requests, 431-432
implementing, 429-430
overview, 428
short-circuit evaluation, 32, 60
short type, 24
SignificantWhitespace node type, 309
Simple API for XML (SAX) API, 307

Simple Mail Transfer Protocol (SMTP), 277
Simple Object Access Protocol (SOAP), 277, 306

simplex messaging, 358
single-byte string type, 405
Single type, 271

Single value type, 144
sizeof operator, 201
SkipAsync method, 309
Skip method, 309

SMTP (Simple Mail Transfer Protocol), 277
SOAP (Simple Object Access Protocol), 277, 306

SortedList<K,V> class, 273
overview, 219, 222-223

SortedSet<T> class, 273

sorting, arrays, 217-218

Sort method, 213

Source property, Exception class, 182

SqlClient data provider, 334

SqlServerCe data provider, 334

square brackets [ ], 267

square function, 248

StackPanel control, 384

504 Index

stack semantics, and objects
creating objects with, 111-113
overview, 116-118
Stack<T> class, 219, 273
StackTrace property, Exception class, 182
stack type, STL/CLR, 226
StandardStyles.xaml file, 380, 426
Start Without Debugging option, 47, 401
static_cast<double> operator, 33
static_cast<> operator, 33
static constructors, class-wide, 92-93
static keyword, 90
static member functions, calling by using
delegates, 248-249
static operator overloads, overloading, 163-166
stdafx.h file, 107
stepping through application, 47-51
STL/CLR library
concepts behind, 225-227
overview, 224-225
Stop Debugging option, Debug menu, 165
Stream class, 274, 282, 284, 302
StreamReader class, 274, 282
streams, 302
StreamWriter class, 274, 282, 283
String class, 18, 44
overview, 29-30
String” parameter, 442
StringReader class, 274, 282
strings, in Windows RT, 392-393
StringWriter class, 274, 282
struct keyword, 146
StructLayoutAttribute class, 449, 458
structured data, passing, 449-452
Structured Exception Handling (SEH), 178
structures
constructors for, 150
copying, 152-153
creating, 146-148
overview, 146
using within another, 150-152
vs. classes, 149-150
styles, 381
Sub keyword, 38
substitutability, 123-124
subtraction operator (-), 30
Supports method, 327
switch statement, 313
overview, 65-67
using fall-through in, 67-68



swscanf_s function, 404, 409
symbolic constant, 28
Synchronized method, 283, 287
SyncRoot property, 212
syntax, for XAML, 381-382
System::ApplicationException class, 179
System::ArgumentException class, 179
System::ArithmeticException class, 179
System::Array class

basic operations using, 213-214

copying elements, 215

overview, 212

searching, 216-217

sorting, 217-218

using enumerators with, 218-219
System::Collection namespace, 218
System::Collections::Generic namespace, 219
System::Configuration assembly, 345
System::Data:Common namespace, 335
System::Data::EntityClient namespace, 276, 335
System::Data::Ling namespace, 335
System::Data namespace, 335
System::Data::Odbc namespace, 276, 335
System::Data::OleDb namespace, 276, 335
System::Data::OracleClient namespace, 276, 335
System::Data::Services namespace, 335
System::Data::Spatial namespace, 335
System::Data::SqlClient namespace, 276, 335
System::Data::SqlTypes namespace, 335
System::Delegate class, 247
System::Diagnostics namespace, 458
System::DivideByZeroException error, 177
System::Enum class, 153
System::EventHandler delegate, events and, 259-261
System::Exception class, 177, 179
System::GC::Collect static method, 105
System::IndexOutOfRangeException class, 179
System::InvalidCastException class, 179
System::10O namespace, 281-282
System::MemberAccessException class, 179
System::MulticastDelegate class, 247, 249
System namespace

basic types, 271

floating-point types, 272

overview, 270-271
System::NotSupportedException class, 179
System::NullReferenceException class, 179
System::Object class, 169
System::OutOfMemoryException class, 179
SYSTEM_POWER_STATUS structure, 449

ThrowOnUnmappableCharacter field

System::Reflection namespace, 470
System::Runtime::InteropServices namespace, 437
System::Runtime::Serialization namespace, 303
System::ServiceModel::AddressAccessDenied
Exception, 361
System::ServiceModel assembly, 362
<system.ServiceModel> element, 367
System::String class, 209
System::SystemException class, 179
System::TypeLoadException class, 179
System::ValueType class, 145, 171
System::Web::Mail namespace, 277
System:Web namespace, 277
System::Web::Security namespace, 277
System::Web::Services namespace, 277
System:Web::Ul::HtmIControls namespace, 278
System:Web::Ul namespace, 277
System:Xml:Ling namespace, 306
System::Xml namespace, 306
System::Xml::Schema namespace, 306, 316
System::Xml::Serialization namespace, 306
System:Xml:XPath namespace, 306
System:Xml::Xsl namespace, 306

T

TCP/IP transport, 354
TempConverterLib component, 478
TempConverter project, 478
templates, and generic types
overview, 224
STL/CLR library
concepts behind, 225-227
overview, 224-225
ternary operator, overview, 32-33
TestAtts class, 466, 471
testing, calculator example, 410-412
Test method, 193
text 1/0
FileStream class, 286-287
overview, 283
TextReader, 287-290
TextWriter, 283-286
Text node type, 309
TextReader class, 274, 282, 287-290
TextWriter class, 274, 283-285
throwing exceptions, 178-180
throw keyword, 177
ThrowOnUnmappableCharacter field, 448

Index

505



tiles, Start Page, calculator example

tiles, Start Page, calculator example, 412-415 passing structured data, 449-452
ToBinary function, 423 vs. managed code

Tooltip control, 384 GCHandle type, 438-440
ToString function, 134 mixed classes, 437-438

ToString method, 291, 293, 469, 471 overview, 437

tracking handles, 27 UpdateCommand, 345

tracking reference, 114 User32.dll, 445

triggers, 381 user interface (Ul) framework, 275
TrimToSize function, 222 #using directive, 270

TrimToSize method, 221
TrueForAll method, 213
try block, 347 V
try/catch blocks, handling exceptions using, 180-182
TryGetValue method, 223

type casting, operator for, 33-34

Type class, obtaining attribute data using, 467-469
typedefs, overview, 29

TypedEventHandler, 432

type-safe, 121

ValHandler class, 317
Validate method, 325
ValidationFlags property, 310
ValidationType property, 310
value keyword, 20, 146, 161
Value property, 308, 324, 326
ValueType property, 308

value types
U and reference types
overview, 143-144

UClass object, 440 enumerations
UIntl6 type, 271 creating, 153-154
UIntl6 value type, 144 memory usage, 156
UInt32 type, 271 using in programs, 156
UInt32 value type, 144 properties of, 145
UInt64 type, 271 purpose of, 144-145
UInt64 value type, 144 structures
UIntPtr type, 271 constructors for, 150
Ul (user interface) copying, 152-153

libraries for Windows applications, 372 creating, 146-148

model for Windows Store apps, 374 overview, 146
Ul (user interface) framework, 275 using within another, 150-152
UlInPtr value type, 145 vs. classes, 149-150
UML (Unified Modeling Language), 123 variables
unboxing, 443-444 arrays, 28
unconditional jumps, in loop statements, 73-74 assigning values to, 26-27
UnderlyingSystemType property, 468 constants, 28-29
UnicodeClass attribute, 469 data types for, 23-24
Unified Modeling Language (UML), 123 declaring
unmanaged code, 264 multiple, 26

boxing, 443 overview, 25

interior pointers, 441 defined, 23

pinning pointers, 441-442 handles, 27-28

unboxing, 443-444 naming of, 25-26

using P/Invoke to call functions in Win32 API pointers, 27-28

DllimportAttribute class, 447-448 String class, 29-30
overview, 444-447 typedefs, 29

506 Index



VariableSizedWrapGrid control, 387
Vectorlterator class, 394

Vector type, 394

vector type, STL/CLR, 226
VectorViewlterator class, 394
VectorView type, 394

Vehicle class, 122

versioning, 266
VirtualizingStackPanel control, 385
void keyword, 38

w

W3C DOM, 322
WCF (Windows Communication Foundation)
addresses, 355
behaviors, 358-359
binding, 355
connectivity, 353
contracts, 356-358
defined, 275
distributed systems, 352
endpoints, 353-354
MEPs (message exchange patterns), 357-358
overview, 351
services, 352
accessing by using proxy, 365-368
adding metadata to, 363-365
overview, 359-362
writing service client, 361-362
wchar_t* pointer, 405
wchar_t type, 24
wcstol (Wide Character String To Long) function, 422
Web namespaces, 277-278
web service, 277
Web Service Definition Language (WSDL), 355
Web Service Description Language (WSDL), 306
WeekDay class, 154
while loops, overview, 68-70
white space, 5
Whitespace node type, 309
Wide Character String To Long (wcstol)
function, 422
wide string type, 405
Win32 API, 369-370
calling functions using P/Invoke
DllimportAttribute class, 447-448
overview, 444-447
passing structured data, 449-452

Windows Store apps

Windows::ApplicationModel.DataTransfer
namespace, 430
Windows::ApplicationModel namespaces, 393
Windows applications
Microsoft Foundation Classes, 370
Win32 API, 369-370
Windows Forms, 370-371
Windows Presentation Foundation, 371
Windows Communication Foundation (WCF), 275
Windows::Data namespaces, 393
Windows::Devices namespaces, 393
Windows Forms, 370-371
Windows::Foundation::Collections namespaces, 393
Windows::Foundation namespaces, 393
Windows::Globalization namespaces, 393
Windows:Graphics namespaces, 393
Windows::Management namespaces, 393
Windows::Media namespaces, 393
WindowsMessageBox function, 448
Windows namespaces, 275
Windows::Networking namespaces, 393
Windows Presentation Foundation, 371
Windows Presentation Foundation (WPF), 275
Windows RT (WinRT). See WinRT
Windows Runtime Library (WRL), 390
Windows::Security namespaces, 393
Windows::Storage namespaces, 393
Windows Store apps
and Windows applications
Microsoft Foundation Classes, 370
Win32 API, 369-370
Windows Forms, 370-371
Windows Presentation Foundation, 371
calculator example
adding tile, 412-415
app bars, 425-428
arithmetic buttons, 403-404
getting number from button, 404-405,
407-408
handling different number bases, 416-425
handling number input, 401-402
laying out number buttons, 398-401
overview, 397-398
performing calculations, 408-409
remembering operations, 406
sharing in, 428-432
testing, 410-412
choosing Ul library, 372
creating, 375-379
file structure for, 379-380

Index

507



Windows::System namespaces

main features WriteElementString method, 319
app behavior, 373 WriteEndAttribute method, 319
contracts and charms, 374 WriteEndDocument method, 319
hardware usage, 374 WriteEndElement method, 319
overview, 373 WriteEntityRef method, 319
Ul model, 374 WriteFullEndElement method, 319
WinRT APls, 374 WriteLineAsync method, 283

overview, 372-373 WriteLine method, 283

Windows RT WriteLine statement, 108, 111, 162
classes, 391-392 Write method, 283, 298
generics, 392 WriteName method, 319
metadata, 390 WriteNode method, 319
overview, 389-390 write-only properties, 233-234
Platform namespaces, 394-395 WriteProcessinglnstruction method, 319
strings, 392-393 WriteQualifiedName method, 319
Windows namespaces, 393 WriteRaw method, 319

XAML WriteStartAttribute method, 319
controls, 382-383 WriteStartDocument method, 319
defined, 380-381 WriteStartElement method, 319
event handling, 389 Write statement, 108
layout controls, 384-388 WriteState property, 318
syntax, 381-382 WriteString method, 319

Windows::System namespaces, 394 WriteTo method, 325, 327
Windows::Ul namespaces, 394 WriteValue method, 319
Windows:Ul:XAML namespaces, 394 WriteWhitespace method, 319
Windows:Web namespaces, 394 WriteXml method, 348

WinRT (Windows RT) WRL (Windows Runtime Library), 390

APIs, 374 WSDL (Web Service Definition Language), 355

classes, 391-392 WSDL (Web Service Description Language), 306

generics, 392 WSDualHttpBinding, 355, 358

metadata, 390 WSHttpBinding, 355, 358, 360, 362

overview, 389-390
Platform namespaces, 394
strings, 392-393 X
Windows namespaces, 393
WPF (Windows Presentation Foundation), 275
Write7BitEncodedInt method, 298
WriteAllLines method, 292
WriteAllText method, 292
WriteAsync method, 283
WriteAttributes method, 318
WriteAttributeString method, 318
WriteBase64 method, 318
WriteBinHex method, 318
WriteCData method, 319
WriteCharEntity method, 319
WriteChars method, 319
WriteComment method, 319
WriteContentTo method, 325, 327
WriteDocType method, 319

XAML (Extensible Application Markup Language)
controls, 382-383
defined, 380-381
event handling, 389
layout controls, 384-388
project files, 379
syntax, 381-382
XamlTypelnfo.g.h, 380
Xml class, 276
XmlDeclaration node type, 309
XmlDocument class, 322
XML (eXtensible Markup Language)
NET and
NET XML namespaces, 306
overview, 305-306
XML processing classes, 306-307

508 Index



ZIndex property

parsing using XmIReader
creating XmlIReaders, 309-310
handling attributes, 314-315
overview, 307-309
verifying well-formed XML, 314
with validation, 315-317
XmlReaderSettings class, 310-314
quick reference, 332
writing using XmlITextWriter, 318-322
XmlIDocument class
overview, 322
W3C DOM and, 322
XmlINode class, 325-332
XmiLang property, 308, 318
Xml namespaces, 276
XmiINode class, 325-332
XmINodeType enumeration, 309
XmlReader class
parsing XML using
creating XmlIReaders, 309-310
handling attributes, 314-315
overview, 307-309
verifying well-formed XML, 314
with validation, 315-317
XmlReaderSettings class, 310-314
XmilResolver property, 310
XmilSpace property, 318
XmlTextReader class, 307
XmlTextWriter class
creating object, 348
writing XML using, 318-322
XmlValidatingReader class, 307
XmlWriter class, 138
x:Name attribute, 381
XPath class, 276
Xsl class, 276
XSL (Extensible Stylesheet Language) processor, 276
XSLT (Extensible Stylesheet Language
Transformations), 306

y4

ZIndex property, 388

Index 509







About the author

JULIAN TEMPLEMAN is a professional consultant, trainer, and writer. He
has been writing code for nearly 40 years, has been using and teaching C++
for nearly 20 of those, and has been involved with .NET since its first alpha
release in 1998. He is the author or coauthor of 10 programming books, in-
cluding COM Programming with Microsoft .NET. He currently runs a training
and consultancy company in London with his wife, specializing in C++, Java
and .NET programming, and software development methods.




	Cover
	Contents
	Chapter 1
	Chapter 5
	Index
	Author Bio



