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Introduction

F# is a functional programming language from Microsoft. It is the first class language 
shipped in Visual Studio. It has been applied successfully in several areas, such as in 

the areas of financial software and web development. If you are a C# developer and 
want to use functional programming to write concise code with fewer bugs, F# is the 
right tool for you. 

F# for C# Developers introduces, in an organized way, the F# language and several 
applications. It starts from how F# can perform imperative and object-oriented 
programming tasks and then moves on to covering unique F# features, such as type 
providers. By introducing F# design patterns with a large number of samples, this 
book not only delivers a basic introduction but also helps you apply F# in your daily 
programming work.

In addition to covering core F# core features, I also discuss F# HTML5 development, 
F# Azure development, and using general-purpose graphics processing units (GPGPUs) 
with F#. Beyond the explanatory content, each chapter includes examples and 
downloadable sample projects you can explore for yourself.

Who Should Read This Book

I wrote this book to help existing C# developers understand the core concepts of 
F# and help C# developers use F# in their daily work. It is especially useful for C# 
programmers looking to write concise code for algorithm design, web development, 
and cloud development. Although most readers will have no prior experience with 
F#, the book is also useful for those familiar with earlier versions of F# and who are 
interested in learning about the newest features.

You should have at least a minimal understanding of .NET development and 
object-oriented programming concepts to get the most benefit from this book. You 
also should have a basic understanding of data structures and generic algorithms. 
Experience in using C# is required as well. 
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Who Should Not Read This Book

This book is aimed at both experienced .NET C# developers who interested in 
extending their knowledge in functional programming and beginners in F# who want 
to understand F# and apply F# to their daily programming work. If you have no C# 
programming experience, this book might be difficult for you.

Organization of This Book

This book is divided into three sections, each of which focuses on a different aspect. 
Part I, “C# and F#,” introduce how to port your C# knowledge to F#. This section intro-
duces basic data structures and performing object-oriented implementations using F#. 
Part II, “F#’s Unique Features,” introduces unique F# features and explains how to use 
them in your daily programming work. Part III, “Real-World Applications,” introduces 
several real-world applications, including web development, Azure cloud development, 
and GPGPU. 

Finding Your Best Starting Point in This Book
The various sections of F# for C# Developers cover a wide range of technologies. 
Depending on your needs and your existing understanding, you might want to focus on 
specific areas of the book. Use the following table to determine how best to proceed 
through the book.

If you are Follow these steps

New to F# but experienced with C# Focus on Part I to understand the basics and Part II 
for some unique F# features

Familiar with earlier versions of F# Briefly read Parts I and II if you need a refresher on 
the core concepts, but also want to focus on type 
providers.

Most of the book’s chapters include hands-on samples that let you try out the 
concepts just learned. No matter which sections you choose to focus on, be sure to 
download and install the sample applications on your system.
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Conventions and Features in This Book

This book presents information using conventions designed to make the information 
readable and easy to follow:

■■ Boxed elements with labels such as “Note” provide additional information or 
alternative methods for completing a step successfully.

■■ Text that you type (apart from code blocks) appears in bold. A plus sign (+) 
between two key names means that you must press those keys at the same time. 
For example, “Press Alt+Tab” means that you hold down the Alt key while you 
press the Tab key.

System Requirements

You will need the following hardware and software to complete the practice exercises in 
this book:

■■ Windows 7 or Windows 8

■■ Visual Studio 2012, any edition (multiple downloads might be required if you’re 
using Express Edition products)

■■ 1 GB (32 Bit) or 2 GBs (64 Bit) RAM 

■■ 3.5 GBs of available hard disk space

■■ DirectX 9 capable video card running at 1024 x 768 or higher-resolution display

■■ DVD-ROM drive (if installing Visual Studio from DVD)

■■ Internet connection to download software or chapter examples

■■ If you want to run the GPU code, you need an NVIDIA graphics card and you 
need to download CUDA SDK from the NVIDIA web site.

Depending on your Windows configuration, you might require Local Administrator 
rights to install or configure Visual Studio 2012.
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Code Samples

Most of the chapters in this book include exercises that let you interactively try out new 
material learned in the main text. All sample projects, in both their pre-exercise and 
post-exercise formats, can be downloaded from F# sample pack site  
(http://fsharp3sample.codeplex.com/ )

Follow the instructions to download the 670266_FSharp4CSharp_ 
CompanionContent.zip file.

Note  In addition to the code samples, your system should have Visual Studio 
2012.

Installing the Code Samples 
Follow these steps to install the code samples on your computer so that you can use 
them with the exercises in this book:

1.	 Unzip file that you downloaded.

2.	 If prompted, review the displayed end user license agreement. If you accept the 
terms, select the accept option, and then click Next.

Note  If the license agreement doesn’t appear, you can access it 
from the same webpage from which you downloaded the zip file.

Using the Code Samples
The sample code is organized by chapters. You can look at the folder that has the 
chapter name to look at the sample code.

http://fsharp3sample.codeplex.com/
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We want to hear from you
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Foreword

People often ask, “What can F# do that C# cannot?” In this book, you will discover much 
of what F# can do! You will see familiar things such as object programming and design 

patterns. Further, you will also see powerful new things like pattern matching, piping, 
first-class events, object expressions, options, tuples, records, discriminated unions, active 
patterns, agents, computation expressions and, perhaps most distinctively, type providers.

However, we also need to ask the other question: “What can C# do that F# cannot?” 
There is one important part to this answer that I will focus on here: C# can cause 
NullReferenceExceptions. “What?” I hear you ask. “Does F# not have nulls?” Right! Perhaps 
the most important thing the C# programmer needs to know about F# is that F# does not 
use nulls in routine programming. 

Let’s look at some evidence. People using F# at a major UK energy company did a 
study of two similar ETL (Extract, Transform, Load) applications.1 Broadly speaking, the 
applications were in the same zone in terms of functionality or, if anything, the F# appli-
cation implemented more features. The F# project had a very low bug rate, and its code 
was 26 times smaller. The size difference is not only the result of language differences; 
there are also differences in design methodology. The C# project is characterized by the 
inappropriate overuse of elaborate object abstractions often seen in Java projects—for 
example, elaborate and unnecessary class hierarchies. 

Interestingly, the comparison records that the C# project had 3036 explicit null checks, 
where a functionally similar F# project had 27, a reduction of 112 times in the total 
number of null checks. The other statistics in the comparison shown are also compelling, 
particularly the “defects since go live”: the F# code had zero defects since “go live,” and the 
C# code had “too many.” These are not unrelated: nulls cause defects. In my opinion, the 
lack of nulls in routine coding alone makes it worth switching your programming teams to 
F# where possible. 

In this book, you will learn many wonderful things about F#. But don’t lose sight of 
the big picture: F# is about writing accurate, correct, efficient, interoperable code that 
gets deployed on time in enterprise scenarios. It does this partly by removing the most 
pernicious of evils: nulls. If you and your team embrace it, then, all else being equal, your 
life will be simpler, happy, and more productive.

—Don Syme 
F# Community Contributor 

1 http://www.simontylercousins.net/journal/2013/2/22/does-the-language-you-choose-make-a-difference.html
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C H A P T E R  1

C# and F# Data Structures

In this chapter, I’ll compare and contrast various data structures from F# and C# programming 
languages. F# is a powerful multiparadigm language that supports imperative, object-oriented, and 

functional programming. C# is a multiparadigm language with more of a focus on imperative and 
object-oriented programming. A C# program usually consists of statements to change the program’s 
state. An imperative language describes how to finish a task with exact steps. A functional-first 
language, like F#, is more declarative, describing what the program should accomplish.

One example of a programming language adopting functional programming is the C# version 
3.0 introduction of LINQ (Language INtegrated Query). The growing popularity of Scala and Closure 
shows functional programming is growing. In addition, F# is another tool Microsoft ships with 
Microsoft Visual Studio to solve ever-changing programming challenges. Which language you choose 
to use depends on your experience and environment, but keep in mind you do not need to make 
an exclusive selection. I hope this book provides some information that helps you make appropriate 
decisions.

Any programming language is designed to perform some computation and to process data. The 
way that data is organized and stored is referred to as the data structure. This chapter introduces 
basic data structures for F#, explains how they relate to C#, and details how you can apply them to 
create imperative programs. I will follow the tradition in programming books of presenting a Hello-
World-like application to introduce a new language. I will provide simple C# code along with the F# 
imperative equivalent. 

Listing 1-1 shows an imperative approach that simply adds up the odd numbers from 0 to 100. 
C# supports functional programming (such as a LINQ feature), and there is a more concise way to 
implement the same functionality, which I’ll show later in this chapter.
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LISTING 1-1  A C# snippet that adds odd numbers from 0 to 100

Imperative C# implementation

// add all odd numbers from 0 to 100 and print out the result in the console 
int sum = 0; 
for (int i = 0; i<=100; i++) 
{ 
    if (i%2 != 0)  
         sum += i; 
} 
 
Console.WriteLine("the sum of odd numbers from 0 to 100 is {0}", sum);

F# implementation

let mutable sum = 0 
for i = 0 to 100 do 
    if i%2 <> 0 then sum <- sum + i 
printfn "the sum of odd numbers from 0 to 100 is %A" sum

By porting this C# code to the F# equivalent, I’ll cover the follow topics:

■■ The basic data type (such as primitive type literals). See the “Basic Data Types” section.

■■ The if, while, and for syntax. See the “Flow Control” section.

After implementing the same functionality in F#, I’ll cover some F# data structures, such as Seq 
and tuple. Although this particular sample does not require Microsoft Visual Studio 2012, it is highly 
recommended that you install it, which is the minimum requirement for various samples in this 
book. I’ll also introduce F# Interactive and some other useful add-ins to improve your overall F# 
programming experience. 

Note  Because Visual Studio IDE features are not the focus of this book, I encourage you to 
look at the MSDN website (www.msdn.com) or Coding Faster: Getting More Productive with 
Microsoft Visual Studio (Microsoft Press, 2011) to explore the topic by yourself. 

Now it’s time to start our journey!

http://www.msdn.com
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Basic Data Types

F# is a .NET family language; therefore, the basic type definition and reference are similar to C#. 
Table 1-1 lists the C# and F# data types as well as the way to define a variable with each type. F# is a 
strongly typed language. Any errors related to type conversion are reported at compile time. These 
errors can be detected at an early stage of development and checked, which enables them to be fixed 
at compile time.

One big difference between the C# and F# definitions is that the F# examples do not need an 
explicitly defined type. This is because F# is often able to infer a type from the assigned value. To 
most C# developers, this feature is a lot like the var keyword in C#. There are some fundamental 
differences between var and let, but you can think of them as equals for now.

TABLE 1-1  Basic data types

Data Type C# Representation F# Representation

Int int i = 0; let i = 0 or
let i = 0l

Uint uint i = 1U; let i = 1u or
let i = 1ul

Decimal decimal d = 1m; let d = 1m or 
let d = 1M

Short short c = 2; let c = 2s

Long long l = 5L; let l = 5L

unsigned short ushort c = 6; let c = 6us

unsigned long ulong d = 7UL; let d = 7UL

byte byte by = 86; let by = 86y
let by = 0b00000101y
let by = ‘a’B

signed byte sbyte sby = 86; let sby = 86uy
let sby = 0b00000101uy

bool bool b = true; let b = true

double double d = 0.2; 
double d = 0.2d;
double d = 2e-1;
double d = 2;
double d0 = 0;

let d = 0.2 or
let d = 2e-1 or
let d = 2.
let d0 = 0x0000000000000000LF

float float f = 0.3; or
foat f = 0.3f;
float f = 2;
float f0 = 0.0f;

let f = 0.3f or
let f = 0.3F or
let f = 2.f
let f0 = 0x0000000000000000lf

native int IntPtr n = new IntPtr(4); let n = 4n

unsigned native int UIntPtr n = new UIntPtr(4); let n = 4un
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Data Type C# Representation F# Representation

char char c = ‘c’; let c = ‘a’

string string str = “abc”; let str = “abc”

big int BigInteger i = new BigInteger(9); let i = 9I

One particular F# feature I’d like to call out is the syntax for creating an array of bytes to represent 
an ASCII string. Instead of asking you to constantly call into the Encoding.ASCII.GetBytes function, F# 
provides the “B” suffix to define an ASCII string. The string in .NET is Unicode-based. If you are mainly 
programming an ASCII string, you will not like this. In the following code, the representation for 
asciiString is a byte[] type internally:

let asciiString = "abc"B  // F# code 
byte[] asciiBytes = Encoding.ASCII.GetBytes(value);  // C# code

Unlike C#, float in F# is a double-precision floating point number, which is equivalent to a C# 
double. The float type in C# is a single-precision numerical type, which can be defined in F# via the 
float32 type. The .NET 32-bit and 64-bit floating numbers can be positive infinite or a NaN value. F# 
uses shortcut functions to represent these values:

■■ Positive Infinity  infinity is System.Double. PositiveInfinity and infinityf is System.Single. 
PositiveInfinity

■■ NaN  nan is System.Double.NaN and nanf is System.Single.NaN

The F# compiler does not allow any implicit type conversion. For a C# developer, an integer can 
be converted to a float implicitly, and this gives the impression that 29 is the same as 29.0. Because 
implicit conversion is not allowed in F#, the explicit conversion float 29 is needed to convert the 
integer 29 to a float type. The explicit conversion can eliminate the possibility of lose precision when 
the conversion is implicit.

F# 2.0 had two syntaxes for strings: normal strings, and verbatim strings, which are prefixed by the 
at sign (@). F# 3.0 introduces a new feature to define strings using a triple-quoted string. 

Triple-Quoted Strings
F# supports normal strings and verbatim strings. This is equivalent to the options that C# provides. 
Examples of normal and verbatim string definitions are shown in Listing 1-2. The execution result 
shown in the listing is an example of a normal string and verbatim string being bound to specific 
values within the F# Interactive window (which I’ll introduce shortly in the “Using F# Interactive” 
section). The result shows the variable name, type, and value. 

LISTING 1-2  Normal and verbatim strings

let a = "the last character is tab\t" 
let b = @"the last character is tab\t"
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Execution result in the F# Interactive window

val a : string = "the last character is tab	 " 
val b : string = "the last character is tab\t"

Normal and verbatim strings are useful for a variety of tasks. However, scenarios that require 
included characters, such as double quotes, are still difficult to implement because of the need to 
escape these characters. Listing 1-3 shows examples of this.

LISTING 1-3  The escape double quote (“)

// use backslash (\) to escape double quote 
let a = "this is \"good\"." 
 
// use two double quote to escape 
let b = @"this is ""good""."

F# 3.0 introduces a new string format—a triple-quoted string—that alleviates this pain. Every-
thing between the triple quotes (“””) is kept verbatim; however, there is no need to escape characters 
such as double quotes. Triple-quoted strings have a number of use cases. A few examples include 
the creation of XML strings within your program and the passing of parameters into a type provider. 
Listing 1-4 shows an example.

LISTING 1-4  A triple-quoted string

let tripleQuotedString = """this is "good".""" 
 
// quote in the string can be at the beginning of the string 
let a = """"good" dog""" 
 
// quote in the string cannot be at the end of the string 
// let a = """this is "good""""

Note  Quotes in the triple-quoted string cannot end with a double-quote (“), but it can 
begin with one.

Variable Names
How to define a variable name is a much-discussed topic. One design goal for F# is to make variable 
names resemble more normal human language. Almost every developer knows that using a more 
readable variable name is a good practice. With F#, you can use double-backticks to include 
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nonalphabet characters in the variable name and eventually improve the readability of your code. 
Examples are shown in Listing 1-5.

LISTING 1-5  Defining a variable

// variable with a space 
let ``my variable`` = 4 
 
// variable using a keyword 
let ``let`` = 4 
 
// apostrophe (') in a variable name 
let mySon's = "Feb 1, 2010" 
let x' = 3 
 
// include # in the variable name 
let ``F#`` = "this is an F# program."

Flow Control

To write F# applications in an imperative style, you need to know how to define flow-control 
statements. F# supports several types of flow control to accomplish this, including the for loop, while 
loop, and if expression. These statements segment the program into different scopes. C# uses “{“ and 
“}” to segment code into different scopes, while F# does not use those items. Instead, F# uses the 
space indent to identify different program scopes. This section discusses these three statements in 
detail.

Note  Visual Studio can automatically convert the Tab key to a space. If you edit F# code in 
another editor that does not support this conversion, you might have to do it manually.

for Loop
There are two forms of the for loop: for...to/downto and for...in. The for…to/downto expression is used 
to iterate from a start value inclusively to or down to an end value inclusively. It is similar to the for 
statement in C#. 

FOR...IN is used to iterate over the matches of a pattern in an enumerable collection—for example, a 
range expression, sequence, list, array, or other construct that supports enumeration. It is like foreach 
in C#. Looking back at the C# code that began this chapter, you see that you can use two F# options 
(as shown in Listing 1-6) to accomplish the loop of code for each number between 0 and 100. The first 
approach uses FOR...TO, and the second approach uses for…in. 
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LISTING 1-6  A for loop

C# version

for (int i=0; i<=100; i++)

F# versions

// for loop with i from 0 to 100 
for i=0 to 100 do ... 
 
// for iterate the element in list 0 to 100 
for i in [0..100] do ...

for…downto sample

// downto go from 100 to 0 
for i=100 downto 0 do ...

Note  The [0..100] defines a list with elements from 0 to 100. The details about how to 
define a list are discussed later in this book.

Some readers might immediately ask how to make the for…to/downto to increase or decrease by 2. 
for…to/downto does not support this, so you have to use for…in with a sequence or list. And I can 
assure you, you will not use for loop that often when you understand how to use a sequence or list.

while Loops
Another approach that could be used to accomplish the goal of this example is to use a while loop. F# 
and C# approach the while loop in the same way. Listing 1-7 shows an example.

LISTING 1-7  A while loop

C# version

int i = 0; 
while (i<=100) 
{ 
    // your operations 
    i++; 
} 
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F# version

let mutable i = 0 
while i <=100 do 
    <your operations> 
    i <- i + 1

Note  It’s optional to use a semicolon to end a statement. The semicolon is needed only 
when multiple statements are placed on the same line.

The definition for variable i in the previous code snippet has the mutable keyword in the definition. 
The mutable keyword indicates i is a mutable variable, so its content can be modified by using the 
<– operator. This brings up an interesting and crucial concept in F#: a variable without the mutable 
keyword is an immutable variable, and therefore its value cannot be changed. The C# code int i = 0 
is equivalent to the F# code let mutable i = 0. This looks like a small change, but it is a funda-
mental change. In C#, the variable is mutable by default. In F#, the variable is immutable by default. 
One major advantage to using immutable variables is multi-thread programming. The variable value 
cannot be changed and it is very easy and safe to write multi-thread program.

Although F# does not provide do…while loop, it won’t be a problem for an experienced C# 
developer if he is still willing to use the C# imperative programming model after learning about F#. 
Actually, the more you learn about F#, the less important the do…while loop becomes.

if Expressions
At this point, the only part left is the if expression. In the earlier example, you need if to check 
whether the value is an odd number. Note that in F# if is an expression that returns a value. Each  
if/else branch must return the same type value. The else branch is optional as long as the if branch 
does not return any value. The else must be present if the if branch returns a value. It is similar to 
the “?:” operator in C#. Although a value must be returned, that returned value can be an indica-
tor of no value. In this case, F# uses “unit” to represent the result. Unlike C#’s if...else, F# uses elif to 
embed another if expression inside. Listing 1-8 shows an example of this. In Listing 1-9, you can see a 
comparison between the C# and F# code required to check that a value is odd or even.

LISTING 1-8  An if expression

if x>y then "greater" 
elif x<y then "smaller" 
else "equal"
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LISTING 1-9  An if expression

C# version

if (i%2 != 0) ...

F# version 

if i%2 <> 0 then ...

Match
In addition to the if statement, C# and F# have another way to branch the execution of code. C# 
provides a switch statement, and F# provides a match expression. F# developers can use a match 
expression to achieve the same functionality as the switch statement in C#, but the power of match 
expressions does not stop there. I will discuss the additional features that match provides in Chapter 6, 
“Other Unique Features.” An example of a simple implementation of match that is similar in concept 
to a C# switch statement is shown in Listing 1-10.

LISTING 1-10  A match and switch sample

C# switch statement

int i = 1; 
switch (i) 
{ 
    case 1:  
        Console.WriteLine("this is one"); 
        break; 
    case 2: 
        Console.WriteLine("this is two"); 
        break; 
    case 3: 
        Console.WriteLine("this is three"); 
        break; 
    default: 
        Console.WriteLine("this is something else"); 
        break; 
}

F# match statement

let intNumber = 1 
 
match intNumber with 
    | 1 -> printfn "this is one" 
    | 2 -> printfn "this is two" 
    | 3 -> printfn "this is three" 
    | _ -> printfn "this is anything else"
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Console Output
Now you have almost everything to make the functionality work. The last missing piece is to let 
the computer tell you what was achieved by using console output. In the C# code, you use the 
Console.WriteLine method. Because F# is a .NET language, you can use Console.WriteLine from it as 
well. However, F# also provides a function called printfn that provides a more succinct and powerful 
option. Listing 1-11 shows an example of both of these approaches. 

LISTING 1-11  The console output

C# version

Console.WriteLine("the sum of odd numbers from 0 to 100 is {0}", sum);

F# version

// use printfn to output result 
printfn "the sum of odd numbers from 0 to 100 is %A" sum 
 
// use Console.WriteLine to output result 
System.Console.WriteLine("the sum of odd numbers from 0 to 100 is {0}", sum)

F#’s printfn is stricter than C#’s Console.WriteLine. In C#, {<number>} can take anything and you 
do not have to worry about the type of variable. But F# requires that the placeholder have a format 
specification indicator. This F# feature minimizes the chance to make errors. Listing 1-12 demonstrates 
how to use different type-specification indicators to print out the appropriate values. If you really 
miss the C# way of doing this, you can use %A, which can take any type. The way to execute the code 
will be explained later in this chapter.

LISTING 1-12  The printfn function and data types

 
   let int = 42 
   let string = "This is a string" 
   let char = 'c' 
   let bool = true 
   let bytearray = "This is a byte string"B 
 
   let hexint = 0x34 
   let octalint = 0o42 
   let binaryinteger = 0b101010 
   let signedbyte = 68y 
   let unsignedbyte = 102uy 
 
   let smallint = 16s 
   let smalluint = 16us 
   let integer = 345l 
   let usignedint = 345ul 
   let nativeint = 765n 
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   let unsignednativeint = 765un 
   let long = 12345678912345789L 
   let unsignedlong = 12345678912345UL 
   let float32 = 42.8F 
   let float = 42.8 
 
   printfn "int = %d or %A" int int 
   printfn "string = %s or %A" string string 
   printfn "char = %c or %A" char char 
   printfn "bool = %b or %A" bool bool 
   printfn "bytearray = %A" bytearray 
 
   printfn "hex int = %x or %A" hexint hexint 
   printfn "HEX INT = %X or %A" hexint hexint 
   printfn "oct int = %o or %A" octalint octalint 
   printfn "bin int = %d or %A" binaryinteger binaryinteger 
   printfn "signed byte = %A" signedbyte 
   printfn "unsigned byte = %A" unsignedbyte 
 
   printfn "small int = %A" smallint 
   printfn "small uint = %A" smalluint 
   printfn "int = %i or %A" integer integer 
   printfn "uint = %i or %A" usignedint usignedint 
   printfn "native int = %A" nativeint 
 
   printfn "unsigned native int = %A" unsignednativeint 
   printfn "long = %d or %A" long long 
   printfn "unsigned long = %A" unsignedlong 
   printfn "float = %f or %A" float32 float32 
   printfn "double = %f or %A" float float

Execution result

int = 42 or 42 
string = This is a string or "This is a string" 
char = c or 'c' 
bool = true or true 
bytearray = [|84uy; 104uy; 105uy; 115uy; 32uy; 105uy; 115uy; 32uy; 97uy; 32uy; 98uy; 
121uy; 116uy; 101uy; 32uy; 115uy; 116uy; 114uy; 105uy; 110uy; 103uy|] 
hex int = 34 or 52 
HEX INT = 34 or 52 
oct int = 42 or 34 
bin int = 42 or 42 
signed byte = 68y 
unsigned byte = 102uy 
small int = 16s 
small uint = 16us 
int = 345 or 345 
uint = 345 or 345u 
native int = 765n 
unsigned native int = 765un 
long = 12345678912345789 or 12345678912345789L 
unsigned long = 12345678912345UL 
float = 42.800000 or 42.7999992f 
double = 42.800000 or 42.8
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The Console has In, Out, and Error standard streams. F# provides stdin, stdout, stderr, which 
correspond to these three standard streams. For the conversion task, you already have all the building 
blocks. So let’s give it a try in Listing 1-13.

LISTING 1-13  The C# and F# versions of adding odd numbers from 0 to 100

C# version

// add all odd numbers from 0 to 100 and print out the result in the console 
int sum = 0; 
for (int i = 0; i<=100; i++) 
{ 
    if (i%2 != 0)  
         sum += i; 
} 
 
Console.WriteLine("the sum of odd numbers from 0 to 100 is {0}", sum);

F# version

let mutable sum = 0 
for i = 0 to 100 do 
    if i%2 <> 0 then sum <- sum + i 
printfn "the sum of odd numbers from 0 to 100 is %A" sum

Listing 1-14 shows how to use a list and a for…in loop to solve the same problem. Compared to 
Listing 1-13, this version has the following changes:

■■ Uses for...in to iterate through 0 to 100, where [1..100] is an F# list definition

■■ Uses the printf function, which does not output the “\n”

■■ Replaces %A with %d, which tells the compiler that the sum variable must be an integer

LISTING 1-14  Using the F# list in the for loop

let mutable sum = 0 
for i in [0..100] do 
    if i%2 <> 0 then sum <- sum + i 
printf "the sum of odd numbers from 0 to 100 is %d \n" sum
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Run Your Program

You can run your program from Visual Studio in two ways: create an F# project, much like you would 
a C# project, or use the F# Interactive window. F# supports the following project types in Visual 
Studio 2012:

■■ F# Application is a console-application project template.

■■ F# Library is a class-library template.

■■ F# Tutorial is a console application that contains F# samples. I highly recommend going 
through all of these samples.

■■ F# Portable Library is a class library for F# libraries that can be executed on Microsoft 
Silverlight, Windows Phone, and Windows platforms, including Windows 8.

■■ F# Silverlight Library is a Silverlight class-library template.

If you want to execute the sample code shown in this chapter up to this point, the F# application 
project is a good choice.

Note  Microsoft Visual Studio Express 2012 for Web is free. Although its name suggests it 
is for web development and does not support a portable library, you can use it to create a 
console application by using the F# tutorial template.

Creating a Console Application
Figure 1-1 shows the project template list. You can select F# Application and accept the default 
name. This F# console-application template creates a solution with a console-application project that 
includes a default Program.fs file, as you can see in Figure 1-2. To run the simple summing application 
we’ve been referring to throughout this chapter, simply replace the content of Program.fs with the F# 
code from Listing 1-13. The steps are primarily the same for the creation of other project types, so I’ll 
leave this to you to explore. 
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FIGURE 1-1  Creating an F# project

FIGURE 1-2  An F# console application with Program.fs
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Using F# Interactive
For simple programs like the one in Listing 1-13, F# ships with an F# Interactive feature (FSI). You can 
use this to test small F# code snippets. In Visual Studio, the F# Interactive window can be found in 
the View menu. Depending on the development profile you’re using, you can find the F# Interactive 
window under View, Other Windows, or you can access it directly in the View menu, as shown in 
Figure 1-3. An example of the FSI window is shown in Figure 1-4.

FIGURE 1-3  Accessing F# Interactive from the View menu

FIGURE 1-4  An F# Interactive window

The FSI window accepts user input, so you can execute your code directly in it. You can use 
two semicolons (;;) to let FSI know that the statement is finished and can be executed. One major 
limitation for FSI is that the FSI window does not provide Microsoft IntelliSense. If you don’t want to 
create a full project and still want to use IntelliSense, the F# script file is your best option. You can go 
to File, New to create a new script file, as shown in Figure 1-5. 
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FIGURE 1-5  An F# item template

Note  Many item templates are listed in Figure 1-5. I’ll introduce them later. For now, you 
need only an F# source file and an F# script file.

The primary difference between an F# source file and an F# script file is the build action. The F# 
source file is a file with an extension of .fs, which will be compiled. Its action is set to Compile. The F# 
script file has an extension of .fsx, and its build action is set to None, which causes it to go into the 
build process by default. No matter which file type you decide to use, you can always execute the 
code by selecting it and using the context (that is, right-click) menu option Execute In Interactive. If 
you prefer using the keyboard, Alt+Enter is the keyboard shortcut as long as the development profile 
is set to F#. This command sends the selected code to be executed in FSI, as shown in Figure 1-6. 
There is also another menu option labeled Execute Line In Interactive. As its name suggests, this 
option is used to send one line of code to the FSI. The shortcut key for Execute Line In Interactive is 
Alt + ‘.

FIGURE 1-6  Executing code in FSI via the context menu 
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OK, let’s put the code in the Program.fs. After that, you can select the code and send it to FSI. The 
execution result is shown in the FSI window, which then displays the expected result of “the sum of 
odd numbers from 0 to 100 is 2500,” as shown in Figure 1-7. Congratulations! You’ve got your first F# 
program running.

FIGURE 1-7  The execution result in the FSI window 

Tip  FSI provides a #time switch you can use to measure the execution time of your code 
and Gen 0/1/2 collection numbers. An example of the #time switch usage is shown in 
Listing 1-15. Interested users can perform a long run computation and see how this option 
works. Other directives can be found in the “FSI Directives” section later in the chapter.

LISTING 1-15  Switching the timing on and off

 > #time "on";; 
 
--> Timing now on 
 
> #time "off";; 
 
--> Timing now off

After executing the program, FSI’s state is changed causing it to become polluted. If you need a 
clean environment, you can use Reset Interactive Session. If you want to clear only the current output, 
you should select Clear All. The context menu (shown in Figure 1-8) shows all the available options. 
You can bring it up by right-clicking in the FSI window. 
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FIGURE 1-8  The FSI context menu 

The full list and a description of each command provided in the FSI context menu is shown in  
Table 1-2.

TABLE 1-2  FSI commands

FSI Command Description

Cancel Interactive Evaluation Cancels the current FSI execution.

Reset Interactive Session Resets the current FSI execution session.

Cut Cuts the selection in the current editing line to the clipboard. The result from a 
previous execution or banner cannot be cut.

Copy Copies the selection to the clipboard.

Paste Pastes the clipboard text content to the current editing line.

Clear All Clears all content in the FSI window, including the copyright banner.

FSIAnyCPU
The FSIAnyCPU feature was added with Visual Studio 2012. FSI will be executed as a 64-bit process 
as long as the current operating system is a 64-bit system. The FSIAnyCPU feature can be enabled by 
clicking Option, F# Tools, F# Interactive, as shown in Figure 1-9.

FIGURE 1-9  Enabling or disabling FSIAnyCPU
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You can use Process Manager to check whether the FSIAnyCPU process is running, or you can use 
the sizeof operator to check the current IntPtr size. The 32-bit machine’s IntPtr is 32-bit, so the sizeof 
operator returns 4 while the 64-bit machine will return 8. Listing 1-16 shows the execution result from 
my 32-bit laptop.

LISTING 1-16  The sizeof IntPtr operator in FSI

> sizeof<System.IntPtr>;; 
val it : int = 4

FSI Directives
In addition to the #time directive, FSI offers several others:

■■ #help is used to display the help information about available directives.

■■ #I is used to add an assembly search path.

■■ #load is used to load a file, compile it, and run it.

■■ #quit is used to quit the current session. You will be prompted to press Enter to restart. This is 
how to restart a session from the keyboard.

■■ #r is used to reference an assembly.

The FSI is a great tool that can be used to run small F# snippets of your code for test purposes.  
If your code is used to perform file I/O operations, the FSI’s default directory is the temp folder. 
Listing 1-17 shows how to get the current FSI folder and change its default folder.

LISTING 1-17  Changing FSI’s current folder

> System.Environment.CurrentDirectory;; 
val it : string = "C:\Users\User\AppData\Local\Temp" 
 
> System.Environment.CurrentDirectory <- "c:\\MyCode";; 
val it : unit = () 
 
> System.Environment.CurrentDirectory;; 
val it : string = "c:\MyCode"

Note  After you reset the FSI session, the current folder will be set back to the temp folder.
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Compiler Directives
FSI is a nice feature to have when you want to execute small programs. However, it is not a good 
choice for building executable binaries. To build binaries, you need to use Visual Studio. We’ll use it to 
create one of the projects previously mentioned in this chapter. The build and execution process and 
experience is largely the same for both F# and C# applications, though they have different compilers. 
I already presented the FSI directives, and I will now list the F# compiler directives. The following five 
directives are supported by F#:

■■ if is used for conditional compilation. Its syntax is if <symbol>. If the symbol is defined by the 
compiler, the code after the if directive is included in the compilation, as shown in Listing 1-18.

■■ else is used for conditional compilation. If the symbol is not defined, the code after else is 
included in the compilation, as shown in Listing 1-18.

■■ endif is used for conditional compilation, and it marks the end of the conditional compilation. 
This is also shown in Listing 1-18.

■■ line indicates the original source code line and file name.

■■ nowarning is used to disable one or more warnings. F# tends to be more restrictive and gives 
more warnings than C# does. If your organization has a zero-warning policy, you can ignore 
specific warnings by using the nowarning directive. Only a number is needed as a suffix to a 
nowarning directive, and you can put multiple warning numbers in one line, as in the following 
example:

nowarning "1" "2" "3"

LISTING 1-18  A conditional compilation

#if VERSION1 
 
let f1 x y = 
   printfn "x: %d y: %d" x y 
   x + y 
 
#else 
 
let f1 x y = 
   printfn "x: %d y: %d" x y 
   x - y 
 
#endif 
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Note  There is no #define directive. You have to either use a compiler option to define a 
symbol or define that symbol in the project properties. An example is shown in Figure 1-10.

FIGURE 1-10  Defining a compile symbol

The INTERACTIVE compile symbol is a build-in compile symbol. The code wrapped by this symbol 
will be included in the FSI execution but not in the project build process. Listing 1-19 provides an 
example. If you are trying to include code only during the project build, the COMPILED symbol can be 
used, as shown in Listing 1-20.

LISTING 1-19  The INTERACTIVE symbol

#if INTERACTIVE 
 
#r "System.Data" 
#r "System.Data.Linq" 
#r "FSharp.Data.TypeProviders" 
 
#endif

LISTING 1-20  The COMPILED symbol

#if COMPILED 
 
printfn "this is included in the binary" 
 
#endif
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Some Useful Add-ins

Visual Studio is a powerful editor with a rich set of editing features. However, some Visual Studio 
add-ins designed for F# are still recommended as a way to improve your coding experience. 

■■ F# depth colorizer  Because F# uses space indents to scope the code, you can run into some 
seemingly weird errors only because an extra space is needed 10 lines earlier. This exten-
sion can highlight this type of indentation problem. This add-in is used to help align code 
blocks by using different colors. I strongly recommend that you install it if your project gets 
big. You can download it from the Visual Studio gallery at  http://visualstudiogallery.msdn.
microsoft.com/0713522e-27e6-463f-830a-cb8f08e467c4. Figure 1-11 shows an example of the 
F# depth colorizer in use.

FIGURE 1-11  The F# depth colorizer

■■ F# code snippet  The code snippet add-in brings the common code—for example, the class 
definition—to your fingertips. Unlike the C# snippet, the F# snippet also adds any needed 
dynamic-link library (DLL) references into the project. You can download the add-in and 
snippet files from http://visualstudiogallery.msdn.microsoft.com/d19080ad-d44c-46ae-b65c-
55cede5f708b. An example of the extension in use is shown in Figure 1-12. The configuration 
options that the tool provides are shown in Figure 1-13.

FIGURE 1-12  The F# code snippet 
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FIGURE 1-13  Configuring the F# code snippet add-in

■■ Add reference add-in  Visual Studio’s project system provides a nice UI to manage the 
reference DLLs. This add-in sends reference statements to FSI and adds reference scripts to the 
Script folder in the current project. Take a look at Figure 1-14.

FIGURE 1-14  Adding a reference add-in

List, Sequence, and Array Data Structures

We successfully finished our first task: converting a simple C# program to F#. These days, many 
C# developers might choose to use LINQ to solve this problem. As I mentioned in this chapter’s 
introduction, long before C# had this LINQ feature, F# had it as a functional programming feature. 
In this section, you’ll learn how to define and use collection data, including the following items: list, 
sequence, and array. After introducing the list, sequence, and array structures, I’ll show you how to 
use a functional programming style to convert simple C# programs to F#.
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Lists
First, we start with the list structure, which you used once in the C#-to-F# conversion task. An F# list 
is an ordered, immutable series of same-type elements. Listing 1-21 shows different ways to define a 
list.

LISTING 1-21  Defining an F# list

//defines a list with elements from 1 to 10. 
let list0 = [1..10]   
 
//defines a list with element 1, 2, and 3. 
let list1 = [1;2;3]   
 
//defines a list with elements 0, 1, 4, 9, and 16. 
let list2 = [for i=0 to 4 do yield i*i] 
 
//defines an empty list 
let emptyList = [ ]   
let emptyList2 = List.empty

Note  The emptyList element invokes the Empty function, which returns List.Empty, while 
emptyList2 returns List.empty directly.

Unlike C#, F# uses a semicolon to separate the element in an array.

There are two operators that are useful when working with a list:

■■ :: (cons) operator  The :: operator attaches an element to a list. The F# list class has a 
constructor that takes an element and a list. This operator actually invokes this constructor and 
returns a new F# list. Its time complexity is O(1).

let list1With4 = 4::list4

Here, list1With4 is a list defined as = [4;1,2;3].

■■ @ operator  The @ operator concatenates two lists and returns a new instance of F# list It 
time complexity is O(min(M, N)) where M is list0’s length and N is list1’s length.

let list0And1 = list0 @ list1

Here, list0And1 is a list defined as = [1;2;3;4;5;6;7;8;9;10;1;2;3], where 1, 2, and 3 are 
from list1.

Lists support indexing. Unlike C#, if you want to use an indexer in F#, you need to use dot notation. 
This means that you need to put an extra dot between the list variable and the indexer. Listing 1-22 
shows this in action. F# list is a linked list and the time complexity is O(i), where i is index passed in 
the statement.
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LISTING 1-22  An indexer in an F# list

list0[0]  //won't compile 
list0.[0] // correct. Using a dot notation

F# lists support something called structural equality. Structural equality is to check equivalent 
identity. Listing 1-23 shows that the list can be equal if elements in both lists are equal. Comparisons 
between incongruous lists (apples-to-oranges comparisons) are not allowed. As an example, Listing 
1-24 will not compile because the comparison between TextBox and Button doesn’t make sense. Addi-
tionally, comparisons can be performed only if the elements support equality comparisons. Structural 
comparison is to provide an ordering of values.

LISTING 1-23  A list comparison

List comparison code

let l1 : int list = [ 1; 2; 3 ] 
let l2 : int list = [ 2; 3; 1 ] 
 
printfn "l1 = l2? %A" (l1 = l2)  
printfn "l1 < l2? %A" (l1 < l2)

Execution result

l1 = l2? False 
l1 < l2? True

LISTING 1-24  An example of how elements in a list cannot be compared

// the following code compiles 
open System.Windows.Forms  
 
let l1 = [ new TextBox(); new Button(); new CheckBox() ] 
let l2 = [ new Button(); new CheckBox(); new TextBox() ] 
 
// the following code does not compile 
// printfn "%A" (l1 < l2) // not compile

Note  If you want to use the F# list type in a C# project, you need to add a reference to 
Microsoft.FSharp.Core.dll.
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The F# list might suggest it has some relationship with the List<T> type. Actually, the list type is a 
Microsoft.FSharp.Collections.FSharpList<T> type. It does implement the IEnumerable<T> interface, but 
it is not very similar to the List<T> type.

Sequences
According to MSDN documentation, a sequence is a logical series of elements of one type. Sequences 
are particularly useful when you have a large, ordered collection of data but do not necessarily expect 
to use all the elements. Individual sequence elements are computed only as required, so a sequence 
can provide better performance than a list in situations in which not all of the elements are needed. 
Any type that implements the System.IEnumerable interface can be used as a sequence. Defining a 
sequence is similar to defining a list. Listing 1-25 shows a few examples of how to define a sequence.

LISTING 1-25  Defining a sequence in F#

// defines a sequence with elements from 1 to 10. 
let seq0 = seq { 1..10 } 
 
// defines a sequence with elements 0, 1, 4, 9, and 16. 
let seq2 = seq { for i=0 to 4 do yield i*i } 
 
// defines a sequence using for…in 
let seq1 = seq { 
    for i in [1..10] do i * 2 
} 
 
// defines an empty sequence 
let emptySeq = Seq.empty

Note  Be aware that seq { 1; 2; 3 } is not a valid way to define a sequence. 
However, you can use the yield keyword to define a sequence as shown here:  
seq { yield 1; yield 2; yield 3 }.

A sequence is shown as an IEnumerable<T> type when viewed in C#. When you expose a sequence 
to a C# project, you do not need to add Microsoft.FSharp.Core.dll. 

Arrays
The definition from MSDN says that arrays are fixed-size, zero-based, mutable collections of 
consecutive data elements that are all of the same type. Listing 1-26 shows how to define an array.
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LISTING 1-26  Defining an F# array

// defines an array with elements from 1 to 10. 
let array0 = [| 1..10 |] 
 
// defines an array with elements 1, 2, and 3. 
let array1 = [| 1;2;3 |] 
 
// defines an array with elements 0, 1, 4, 9, and 16. 
let array2 = [| for i=0 to 4 do yield i*i |] 
 
// defines an empty array 
let emptyArray = [| |] 
let emptyArray2 = Array.empty

Note  Like the empty case in Seq, both emptyArray and emptyArray2 invoke a function that 
returns Array.empty.

Arrays support indexing. Unlike C#, when you use an indexer in F#, you need to use dot notation. 
Therefore, an extra space is needed between the variable name and indexer. Listing 1-27 shows an 
example of this.

LISTING 1-27  An indexer in an F# array

array0[0]  //won't compile 
array0.[0] // correct. Using a dot notation

Arrays also have the comparison feature, as shown in Listing 1-23. By changing the list syntax to an 
array syntax, you can get the same code to perform the structural equality comparison. Listing 1-28 
shows an example.

LISTING 1-28  An array comparison

let l1 = [| 1; 2; 3 |] 
let l2 = [| 2; 3; 1 |] 
printfn "l1 = l2? %A" (l1 = l2)  
printfn "l1 < l2? %A" (l1 < l2)
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Another interesting feature provided for working with arrays in F# is slicing. You use slicing to take 
a continuous segment of data from an array. The syntax for slicing is straightforward:  
myArray.[lowerBound .. upperBound]. Listing 1-29 shows how to use slicing.

LISTING 1-29  Slicing an F# array

// define an array with elements 1 to 10 
let array0 = [| 1 .. 10 |] 
 
// get slice from element 2 through 6 
array0.[2..6] 
 
// get slice from element 4 to the end 
array0.[4..] 
 
// get the slice from the start to element 6 
array0.[..6]  
 
// get all the elements (copy the whole array) 
array0.[*] 

Arrays are the same in both F# and C#. You do not have to reference to Microsoft.FSharp.Core.dll 
to expose an array from an F# library.

Pipe-Forward Operator
Before presenting the F# code used to rewrite the example from the beginning of this chapter in 
a functional style, I must first explain the pipe-forward operator (|>). If you’re familiar with UNIX’s 
pipeline, you can think of this operator as something similar. It gets the output from one function and 
pipes that output in as input to the next function. For example, if you have the functions g(x) and f(x), 
the f(g(x)) function can be written by using a pipe-forward operator, as shown in Listing 1-30.

LISTING 1-30  An F# pipe-forward operator

x |> g |> f    // equals to f(g(x))

The C# program at the beginning of this chapter focused on how to process each single element 
from 0 to 100 by iterating through the elements. If the element was an odd number, it was added to a 
predefined variable. Do we really have to think like this? 

F# provides a way to think differently. Instead of thinking about how to process each single 
element, you can think about how to process the whole data set as a single element—a collection of 
data. The whole process can instead be thought about like this: after being given data from 0 to 100, I 
get a subset of the given data that contains only odd numbers, sum them up, and print out the result. 
The C# code to implement this logic is shown in Listing 1-31, as is the equivalent F# code. The use of 
the pipe-forward operator allows the F# code to become even more succinct and beautiful than the 
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already beautiful LINQ code. The pipe-forward operator brings the result from Seq.sum to printfn. 
Isn’t that simple?

LISTING 1-31  A functional approach to solve the odd-number summary problem

C# code

var sum = dataFrom0to100 
    .Where(n=>n%2!=0)    //filter out the odd number 
    .Sum()                  //sum up 
 
//output the result 
Console.WriteLine("the sum of the odd number from 0 to 100 is {0}", sum);

F# code

seq { 0..100 }                          //given data from 0 to 100 
|> Seq.filter (fun n -> n%2<>0)     //data subset contains only odd number 
|> Seq.sum                               //sum them up 
|> printfn "the sum of odd number from 0 to 100 is %A"   //print out the result

When the F# code is shown side by side with the C# equivalent, it’s easy to tell that Seq.filter is 
a built-in function used to filter data and Seq.sum is a function used to sum up the elements in a 
provided sequence. Because printfn, which originally needs two parameters, gets its second param-
eter from the pipe-forward operator (|>), it takes only one explicitly provided parameter. Seq module 
functions are discussed in more detail in the “Seq/List/Array Module Functions” section.

From a coding experience and readability perspective, the functional way is much better than the 
imperative way. F#, as a functional-first language, shows this advantage very clearly. It can chain the 
functions together more naturally. 

One headache for LINQ developers is the debugging of LINQ code. This would also be a headache 
for F# if FSI was not present. The FSI lets you execute some code to set up the test environment and 
then send the code that needs to be tested. In the previous example, if you are not sure if the filter 
gives you the right result, you can select the first two lines and send them to the FSI. After finishing 
one test, Reset Interactive Session is a convenient way to reset your environment. Isn’t that nice!

If you’re still digesting the pipe-forward operator, you can think of the parameter on the left 
side of the operator as the suffix to the end of the right part. The two statements shown next in 
Listing 1-32 are basically the same.

LISTING 1-32  Using the pipe-forward operator

mySeq |> Seq.length       // get the length of the sequence 
Seq.length mySeq           // the same as the expression above with |>
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Tip  FSI is not only a good approach for debugging a program and running unit tests, it’s 
also a quick way to check a function’s definition. For example, you can type Seq.filter 
into the FSI window. FSI then shows you the function definition, which saves you the two 
seconds of going to the MSDN documentation.

The Sequence, List, and Array Module Functions
Now you must be wondering where someone can find functions like Seq.filter and Seq.sum. They are 
located inside three modules: Seq, List, and Array module. Module is a special way for organizing F# 
code that will be discussed later in this chapter. For the convenience of later discussion, we denote 
seq, list, and array as collections. The functions listed next are the most commonly used ones. Refer to 
MSDN document  http://msdn.microsoft.com/en-us/library/ee353413 for a complete function list.

length
It is easy to get the length of a list or an array by using the length function. The LINQ Count extension 
method provides the same functionality. An example is shown in Listing 1-33.

LISTING 1-33  The length function

let myList = [1..10] 
let listLength = myList |> List.length  // listLength is 10 
let myArray = [| 1..10 |] 
let arrayLength = myArray |> Array.length //arrayLength is 10 
let mySeq = seq { 1..10 } 
let seqLength = mySeq |> Seq.length //seqLength is 10

Note  Seq does have a length function, but keep in mind that a sequence can be of an 
infinite length. An infinite-length sequence can make many functions not applicable, 
unsafe, or both.

exists and exists2
Seq, list, and array all provide the same functions to check whether an element exists and to see 
whether two collections contain the same element at the same location. The exists function is used to 
check for a single element, and exists2 is used for checking two collections. Listing 1-34 shows how to 
use Seq.exists and Seq.exists2.
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LISTING 1-34  The exists and exists2 functions

let mySeq = seq { 1..10 } 
let mySeq2 = seq { 10..-1..1 } 
 
// check if mySeq contains 3, which will make "fun n -> n = 3" return TRUE 
if mySeq |> Seq.exists (fun n -> n = 3) then printfn "mySeq contains 3" 
 
// more concise version to check if it contains number 3 
if mySeq |> Seq.exists ((=) 3) then printfn "mySeq contains 3" 
 
// check if two sequences contain the same element at the same location 
if Seq.exists2 (fun n1 n2 -> n1 = n2) mySeq mySeq2 then printfn "two sequences contain 
same element"

You might have trouble understanding the ((=) 3) in the code from the previous example. 
Everything in F# is a function, and the equal sign (=) is no exception. If you want to see the equal sign 
definition, you can run the FSI code shown in Listing 1-35. The definition is as follows:

('a -> 'a -> bool)

This definition is a function function that takes an ‘a and returns a function (‘a -> bool). ‘a is 
something not familiar. It is a type and will be determined by type inference which will be introduced 
later in this chapter. When an argument is provided to this function, it returns a new function. Back 
to our sample code of ((=) 3): the code generates a function that takes one argument and checks 
whether the passed-in argument is equal to 3.

LISTING 1-35  An equal function definition

let f = (=);; 
 
val f : ('a -> 'a -> bool) when 'a : equality

You might be wondering, “What about ((>) 3)? Does it equal x > 3 or 3 > x?” Good question! 
Again, let us ask FSI. Listing 1-36 shows the result. The first statement defines the function, and the 
second one passes 4 to the statement. If the parameter 4 is going to the left side of the equation, the 
final result should be 4>3 = TRUE. Because the final result is FALSE, the 4 must be on the right side.

LISTING 1-36  An equal function with a fixed parameter

> let f = (>) 3;;         // define the function (>) 3 
val f : (int -> bool) 
 
> f 4;;                      // pass 4 into the function 
val it : bool = false   // result is FALSE
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Note  Using = or > can make your code shorter. However, overuse can make your code less 
readable.

forall and forall2
The forall function can be used to check whether all of the elements in a collection meet certain 
criteria. The LINQ All extension method provides the same functionality. Listing 1-37 shows an 
example of how to use Seq.forall.

LISTING 1-37  The forall function

let myEvenNumberSeq = { 2..2..10 } 
 
// check if all of the elements in the seq are even  
myEvenNumberSeq |> Seq.forall (fun n -> n % 2 = 0)

Like the exists2, forall2 provides functionality similar to forall, but it provides the functionality 
across two collections. If and only if the user function returns TRUE for the two-element pairs,forall2 
returns TRUE. Listing 1-38 shows this in action.

LISTING 1-38  The forall2 function

let myEvenNumberSeq = { 2..2..10 } 
let myEvenNumberSeq2 = { 12..2..20 } 
 
if Seq.forall2 (fun n n2 -> n+10=n2) myEvenNumberSeq myEvenNumberSeq2 then printfn 
"forall2 // returns TRUE"

find
The find function is more like the First extension method on IEnumerable. It raises 
KeyNotFoundException if no such element exists. See Listing 1-39.

LISTING 1-39  The find function

// use let to define a function 
let isDivisibleBy number elem = elem % number = 0 
 
let result = Seq.find (fun n -> isDivisibleBy 5 n)[ 1 .. 100 ] 
printfn "%d " result    //result is 5



	 CHAPTER 1  C# and F# Data Structures	 35

The findIndex function is designed to allow for a quick lookup of an element’s index. You can find 
sample code in the MSDN documentation (http://msdn.microsoft.com/en-us/library/ee353685).

map
The map function is used to create a new collection based on a given collection by applying a 
specified function to each element in the provided collection. The LINQ Select extension method 
provides the same functionality. See Listing 1-40.

LISTING 1-40  The map function

let mySeq = seq { 1..10 } 
let result = mySeq |> Seq.map (fun n -> n * 2)  // map each element by multiplying by 2 
Seq.forall2 (=) result (seq { 2..2..20 })            // check result

filter
The filter function returns a new collection containing only the elements of the collection for which 
the given predicate returns TRUE. The LINQ Where extension method provides the same functionality. 
See Listing 1-41.

LISTING 1-41  The filter function

let mySeq = { 1..10 } 
let result = mySeq |> Seq.filter (fun n -> n % 2 = 0)   //filter out odd numbers 
printfn "%A" result

fold
The fold function aggregates the collection into a single value. Its definition from MSDN shows that 
fold applies a function to each element of the collection and threads an accumulator argument 
through the computation. The LINQ Aggregate extension methods perform the same functionality. 
Listing 1-42 shows an example that sums all elements in the given sequence.

LISTING 1-42  The fold function

let mySeq = { 1..10 } 
let result = Seq.fold (fun acc n -> acc + n) 0 mySeq 
printfn "the sum of 1..10 is %d" result                    //sum = 55

One application of the fold function is to get the length of a collection. The built-in function length 
supports only 32-bit integers. If the sequence length is a very big number, such as int64 or even 
bigint, the fold function can be used to get the length. The following sample gets the sequence length 
in bigint. See Listing 1-43, which shows the code to accomplish this.
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LISTING 1-43  The fold function to get a bigint length of a sequence

let mySeq = { 1..10 } 
let length = Seq.fold (fun acc n -> acc + 1I) 0I mySeq 
printfn "the bigint length of seq is %A" length

collect
The collect function applies a user-defined function to each element in the collection and joins 
results. One good application of this function is the LINQ SelectMany extension method. The Select-
Many method flattens the hierarchy and returns all the elements in the second-level collection. The 
following sample first generates a list of lists and then combines all the lists. See Listing 1-44. 

LISTING 1-44  The collect function

let generateListTo x = [0..x] 
 
// generates lists [ [0;1]; [0;1;2]; [0;1;2;3] ] 
let listOfLists = [1..3] |> List.map generateListTo 
 
// concatenate the result  
// seq [0; 1; 0; 1; 2; 0; 1; 2; 3]  
let result = listOfLists |> Seq.collect (fun n -> n)

Tip  If you can use the built-in id function, the last line can be rewritten as Seq.collect id.

append
This method takes two collections and returns a new collection where the first collection’s elements 
are followed by the second collection’s elements. The LINQ Concat function provides the same 
functionality. See Listing 1-45.

LISTING 1-45  The append function

// the following concatenates two arrays and generates 
// a new array that contains 1;2;3;4;5;6  
printfn "%A" (Array.append [| 1; 2; 3|] [| 4; 5; 6|])
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Math Operations
In addition to the transformation functions, F# provides a rich set of functions that perform 
mathematical operations on collections:

■■ min and max  The min and max functions are used to find the minimum or maximum value 
in a collection. These functions are just like the LINQ min and max functions. See Listing 1-46.

LISTING 1-46  The min and max functions

let myList = [1..10] 
let min = myList |> List.min    // min is 1 
let max = myList |> List.max     // max is 10

■■ average  The average function is used to get the mean of all elements in a collection. 
Because F# does not have implicit type conversion from integer to float, the following code 
generates an int and does not support DivideByInt operator, which means the operand has to 
be transformed to a data type that supports divide, such as float or float32. See Listing 1-47.

LISTING 1-47  The average function used with integer

let myList = [1..10] 
 
// does not compile because int does not support “DivideByInt” 
let myListAverage = myList |> List.average

You can use map to change the integer element into a float element. Again, the float is also a 
function that converts an integer to a System.Double. See Listing 1-48.

LISTING 1-48  The average function in a float sequence

let myList = [1..10] 
 
// the average is float type 5.5 
let myListAverage = myList  
                           |> List.map float  
                           |> List.average

■■ sum  The sum function returns the sum of elements in a collection. The sum result type 
depends on the input sequence element type. The example in Listing 1-49 showcases this.

LISTING 1-49  The sum function

let mySeq = seq { 1..10 } 
 
// sum is 55 
let result = mySeq |> Seq.sum
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zip and zip3
The zip function combines two sequences into a sequence of pairs. The zip3 function, as its name 
suggests, combines three sequences into triples. The zip sample is shown in Listing 1-50. You can find 
a zip3 sample on MSDN (http://msdn.microsoft.com/en-us/library/ee370585.aspx).

LISTING 1-50  The zip function

let myList = [ 1 .. 3 ] 
let myList2 = [ "a"; "b"; "c" ] 
 
// the zip result is [(1, "a"); (2, "b"); (3, "c")] 
let result = List.zip myList myList2

rev
The rev function reverses the elements in a list or array. The sample code is shown in Listing 1-51.

LISTING 1-51  The rev function

let reverseList = List.rev [ 1 .. 4 ] 
 
// print the reversed list, which is [4;3;2;1] 
printfn "%A" reverseList

Note  Seq does not have a rev function implemented. 

sort
The sort function sorts the given list using Operators.compare. If the original element’s order is 
preserved, this is called a stable sort. The sort function on Seq and List are stable sorts, while  
Array.sort is not a stable sort. See Listing 1-52.

LISTING 1-52  The sort function

let sortedList1 = List.sort [1; 4; 8; -2] 
 
// print out the sorted list, which is [-2; 1; 4; 8] 
printfn "%A" sortedList1
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Convert to Seq/List/Array
Each type of collection has its unique usage. It is common to convert one type to the other type. It 
is easy to tell how to convert to a new type by looking at the functions. The sample code is shown in 
Listing 1-53.

■■ Seq.toList is used to convert a seq to a list.

■■ Seq.toArray is used to convert a seq to an array.

■■ List.toSeq is used to convert a list to a seq.

■■ List.toArray is used to convert a list to an array.

■■ Array.toSeq is used to convert an array to a seq.

■■ Array.toList is used to convert an array to a list.

LISTING 1-53  Some seq, list, and array conversion examples

// define a sequence 
let mySeq = { 1..5 } 
 
// define a list 
let myList = [ 1.. 5 ] 
 
// define an array 
let myArray = [| 1..5 |] 
 
// convert seq to a list 
let myListFromSeq = mySeq |> Seq.toList 
 
// convert seq to an array 
let myArrayFromSeq = mySeq |> Seq.toArray 
 
// convert list to an array 
let myArrayFromList = myList |> List.toArray 
 
// convert list to an seq 
let mySeqFromList = myList |> List.toSeq 
 
// convert array to a list 
let myListFromArray = myArray |> Array.toList 
 
// convert array to a seq 
let mySeqFromArray = myArray |> Array.toSeq
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Convert from Seq/List/Array
Unlike C#, which uses a from prefix, F# uses an of prefix to represent a function that converts from 
one collection type to another. See Listing 1-54 for examples.

■■ Seq.ofList is used to convert from a list to a seq.

■■ Seq.ofArray is used to convert from an array to a seq.

■■ List.ofSeq is used to convert from a seq to a list.

■■ List.ofArray is used to convert from an array to a list.

■■ Array.ofSeq is used to convert from a seq to an array.

■■ Array.ofList is used to convert from a list to an array.

LISTING 1-54  Some seq, list, and array examples of conversion

let mySeq = { 1..5 } 
let myList = [ 1.. 5 ] 
let myArray = [| 1..5 |] 
 
// convert from list to a seq 
let mySeqFromList = myList |> Seq.ofList 
 
// convert from an array to a seq 
let mySeqFromArray = myArray |> Seq.ofArray 
 
// convert from a seq to a list 
let myListFromSeq = mySeq |> List.ofSeq 
 
// convert from an array to a list 
let myListFromArray = myArray |> List.ofArray 
 
// convert from a seq to an array 
let myArrayFromSeq = mySeq |> Array.ofSeq 
 
// convert from a list to an array 
let myArrayFromList = myList |> Array.ofList

Of the three collection-related data structures discussed so far, sequence is likely the most interest-
ing. A function that takes seq<’T> as an input parameter always works with list, array, set, and map in 
F#. Additionally, if you expose seq to a C# project, a reference to Microsoft.FSharp.Core.dll will not be 
required. Last, C#’s LINQ operations will work on sequences. 

Table 1-3 lists all of the functions supported and a description of the performance of each. 
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TABLE 1-3  The collection of functions

Function Array List Seq Map Set Description

append O(m+n) O(min(m,n)) O(1) Concatenates two collections.

add O(lgN) O(lgN) Adds a new element, and returns a 
new collection.

average 
/averageBy

O(n) O(n) O(n) Gets an average of all elements.

blit O(n) Returns a slice of the array.

cache O(n) Caches elements.

cast O(n) Converts an element to a specified 
type.

choose O(n) O(n) O(n) Chooses the element if not return 
None.

collect O(n) O(n) O(n) Applies a function to each element, 
and concatenates the results.

compareWith O(n) Compares element by element 
using a given function.

concat O(n) O(n) O(n) Concatenates two collections.

contains O(logN) Tests whether contains the specified 
element.

containsKey O(logN) Tests whether an element is in the 
domain of the map.

count O(n) Counts the number of elements in 
the set.

countBy O(n) Counts the generated key num-
bers. The key is generated from a 
function.

copy O(n) O(n) Creates a copy of the collection.

create O(n) Creates an array.

delay O(1) Returns a sequence that is 
built from the given delayed 
specification of a sequence.

difference O(m*lgN) Returns a new set with an element 
in set1 but not in set2.

distinct/ 
distinctBy

O(1) Returns a new seq with removing 
duplicated elements.

empty O(1) O(1) O(1) O(1) O(1) Creates an empty collection.

exists O(n) O(n) O(n) O(logN) O(logN) Tests if any element satisfies the 
condition.

exists2 O(min(n,m)) O(min(n,m)) Tests whether any pair of 
corresponding elements of the 
input sequences satisfies the given 
predicate.

fill O(n) Sets the range of element to a 
specified value.
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Function Array List Seq Map Set Description

filter O(n) O(n) O(n) O(n) O(n) Returns a new collection of 
elements satisfying the given 
criteria.

find O(n) O(n) O(n) O(lgN) Returns the first element satisfying 
the given criteria.

findIndex O(n) O(n) O(n) Returns the first element index 
satisfying the given criteria.

findKey O(lgN) Evaluates the function on each 
mapping in the collection, and 
returns the key for the first 
mapping where the function 
returns TRUE.

fold O(n) O(n) O(n) O(n) O(n) Applies a function to each element 
of the collection, threading an 
accumulator argument through the 
computation.

fold2 O(n) O(n) Applies a function to corresponding 
elements of two collections, 
threading an accumulator argu-
ment through the computation.

foldBack O(n) O(n) O(n) O(n) Applies a function to each element 
of the collection, threading an 
accumulator argument through the 
computation.

foldBack2 O(n) O(n) Applies a function to corresponding 
elements of two collections, 
threading an accumulator argument 
through the computation.

forall O(n) O(n) O(n) O(n) O(n) Tests whether all elements meet a 
condition.

forall2 O(n) O(n) O(n) Tests whether all corresponding 
elements of the collection satisfy 
the given predicate pairwise.

get/nth O(1) O(n) O(n) Returns elements by a given index.

head O(1) O(1) Returns the first element.

init O(n) O(n) O(1) Initializes the collection.

initInfinite O(1) Generates a new sequence which, 
when iterated, will return successive 
elements by calling the given 
function.

isProperSubset/ 
isProperSuperset

O(M * log 
N)

Tests whether the first set is a 
proper subset/superset of the 
second set.

isSubset/ 
isSuperset

O(M * log 
N)

Tests whether the first set is a 
subset/superset of the second set.

iter O(n) O(n) O(n) O(n) O(n) Applies a function to elements in 
the collection.

iter2 O(n) O(n) O(n) Applies a function to a collection 
pairwise.
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Function Array List Seq Map Set Description

length O(n) O(n) O(n) Returns the number of elements.

map O(n) O(n) O(1) Applies the function to each 
element.

map2 O(n) O(n) O(1) Applies the function to a collection 
pairwise.

map3 O(n) Creates a new collection whose 
elements are the results of 
applying the given function to the 
corresponding elements of the 
three collections simultaneously.

mapi O(n) O(n) O(n) Builds a new collection from a 
collection with the index passed in.

mapi2 O(n) O(n) Builds a new collection from two 
collections pairwise with an index 
passed in.

max/maxBy 
min/minBy

O(n) O(n) O(n) Finds the max/min element.

maxElement/ 
minElement

O(log N) Finds the max/min element in the 
set.

ofArray O(n) O(1) O(n) O(n) Gets a collection from an array.

ofList O(n) O(1) O(n) O(n) Gets a collection from a list.

ofSeq O(n) O(n) O(n) O(n) Gets a collection from a seq.

pairwise O(n) Returns a sequence of each element 
in the input sequence and its pre-
decessor, with the exception of the 
first element, which is only returned 
as the predecessor of the second 
element.

partition O(n) O(n) O(n) O(n) Splits the collection into two 
collections, containing the elements 
for which the given predicate 
returns true and false, respectively

permutate O(n) O(n) Makes a permutation of the 
collection.

pick O(n) O(n) O(n) O(lg N) Applies the given function to 
successive elements, returning 
the first result where the function 
returns Some.

readonly O(n) Creates a new sequence object that 
delegates to the given sequence 
object.

reduce O(n) O(n) O(n) Applies a function to each element 
of the collection, threading an ac-
cumulator argument through the 
computation.

reduceBack O(n) O(n) Applies a function to each element 
of the collection, threading an 
accumulator argument through the 
computation.
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Function Array List Seq Map Set Description

remove O(lg N) O(lg N) Removes the element.

replicate O(n) Creates a list of a specified length 
with every element set to the given 
value.

rev O(n) O(n) Reverses the collection.

scan O(n) O(n) O(n) Applies a function to each element 
of the collection, threading an 
accumulator argument through the 
computation.

scanBack O(n) O(n) Similar to foldBack, but returns both 
the intermediate and final results.

singleton O(1) O(1) Returns a collection that contains 
only one element.

set O(1) Sets the element value.

skip O(n) Skips n elements.

skipWhile O(n) Skips an element when it meets the 
condition.

sort/sortBy O(N log N) 
Worst is 
O(N 2̂)

O(N lg N) O(N lg N) Sorts the collection.

sortInPlace/  
sortInPlaceBy

O(N log N) 
Worst is 
O(N 2̂)

Sorts the collection by mutating the 
collection in place.

sortWith O(N log N) 
Worst is 
O(N 2̂)

O(N lg N) Sorts the collection by the given 
function.

sub O(n) Gets a sub array.

sum/sumBy O(n) O(n) O(n) Gets the sum of a collection.

tail O(n) Returns collection without the first 
element.

take O(n) Takes n elements from the 
collection. 

takeWhile O(1) Returns a sequence that, when 
iterated, yields elements of the 
underlying sequence while the 
given predicate returns true.

toArray O(n) O(1) O(n) O(n) Returns an array from the 
collection.

toList O(n) O(1) O(n) O(n) Returns a list from the collection.

toSeq O(n) O(n) O(n) O(n) Returns a seq from the collection.

truncate O(1) Truncates the collection.

tryFind O(n) O(n) O(n) O(lg N) Tries to find the element by the 
given function.
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Function Array List Seq Map Set Description

tryFindIndex O(n) O(n) O(n) Tries to find the element index by 
the given function.

tryFindKey O(lg N) Tries to find the key by the given 
function.

tryPick O(n) O(n) O(n) O(lg N) Returns the first result when the 
function returns Some.

unfold O(n) Returns a seq from a given 
computation.

union O(m * lg N) Returns a union of two collections.

unionMany O(n1 * n2…) Returns a union of collections.

unzip/unzip3 O(n) O(n) O(n) Splits the collection into two 
collections.

windowed O(n) Returns a sequence that yields 
sliding windows of containing 
elements drawn from the input 
sequence.

zip / zip3 O(n) O(n) O(n) Makes collections into a pair/triple 
collection.

There are two other primary collection data structures: map and set. Map is an immutable 
dictionary of elements; elements are accessed by key. Set is an immutable set based on binary trees; 
the comparison is the F# structural comparison function. For detailed information on these, refer to 
MSDN at  http://msdn.microsoft.com/en-us/library/ee353686.aspx and http://msdn.microsoft.com/ 
en-us/library/ee353619.aspx.

What Changed
The sequence operation is very much like the LINQ operation, and these operations will be used often 
in the rest of this book. 

The functional style is very different from the imperative style. Imagine presenting the problem of 
adding all odd numbers between 0 and 100 to a person without any formal computer background. 
Most likely, that person would go about solving the problem in the same way that the functional 
approach presented. They would start by finding all of the odd numbers and then adding them up. 
This is simply a more straightforward approach that more closely resembles how people think about 
problems. 

On the other hand, a person with a deeply rooted imperative software background will likely 
lean toward a solution with a sum variable, IF statement, and FOR loop. If you look at the history of 
programming languages—from binary coding to assembly language to modern-day programming 
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languages such as C#—the trend is that the programming language is more and more like a human 
language. The more the programming language resembles the human language, the more program-
mers will adopt it in their daily work and, consequently, make the language successful.

Other F# Types

Our next task is to refactor the F# code. During the refactoring process, more F# types are explored. 
These types are the foundation on which you will build when I introduce F# classes in Chapter 2, 
“Using F# for Object-Oriented Programming.” 

Defining Constants by Using Attributes
C# supports constants through the use of the const keyword. The designers of F# decided not to 
introduce many keywords and thus left them open for use as variable names. Instead, F# uses an attri-
bute to define constant values. In F#, an attribute needs to be put between [< and >]. When I present 
more F# features, you will find F# uses more attributes than keywords when defining a data type. See 
Listing 1-55. In this example, Literal is an attribute that indicates to the F# compiler that myConstant is 
a constant. 

LISTING 1-55  Defining a constant

[<Literal>] 
let MyConstant = 99

F# uses some compiler tricks to replace a variable with the constant value, as you can see in 
Listing 1-56.

LISTING 1-56  Defining a constant for an upper limit

[<Literal>] 
let upperLimit = 100 
 
seq { 0..upperLimit }                //given data from 0 to 100 
|> Seq.filter (fun n -> n%2<>0)      //data subset contains only odd numbers 
|> Seq.sum                                  //sum them up 
|> printfn "the sum of odd number from 0 to 100 is %A"  //print out the result
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Enumerations
The enumeration type provides a way to define a set of named integral constants. Listing 1-57 shows 
how to define an enumeration type. Each field must be a unique value. Listing 1-58 shows how to use 
the enumeration value once it is defined.

LISTING 1-57  An F# enumeration definition

Enumeration definition using integers

type Card =  
    |  Jack = 11 
    |  Queen = 12 
    |  King = 13 
    |  Ace = 14

Enumeration definition using a binary integer format

type OptionEnum =  
    | DefaultOption = 0b0000 
    | Option1 = 0b0001 
    | Option2 = 0b0010 
    | Option3 = 0b0100 
    | Option4 = 0b1000

Note  Each item in the enumeration must have an integral value assigned to it; you cannot 
specify only a starting value.

LISTING 1-58  An access enumeration value

let option1 = OptionEnum.Option1 
let opton1Value = int OptionEnum.Option1    //option1 value is integer 1

Like C#, F# does not allow integral type values to be directly set to an enumeration variable. 
Instead, a conversion with type is needed, as shown in Listing 1-59.

LISTING 1-59  Converting an integer to OptionEnum

let option1 = enum<OptionEnum>(0b0001)
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The bitwise operation can use the optimized algorithm to check the odd number. You can use 
enumeration and a bit operation, as shown in Listing 1-60. F# supports five bitwise operators, which 
are listed in Table 1-4.

LISTING 1-60  Using a bitwise operation

type EvenOddFlagEnum =  
    |  Odd = 0x1 
    |  Even = 0x0 
 
seq { 0..100 }                             //given data from 0 to 100 
|> Seq.filter (fun n -> n &&& (int EvenOddFlagEnum.Odd) <> 0 ) //data subset contains only 
odd numbers 
|> Seq.sum                               //sum them up 
|> printfn "the sum of odd number from 0 to 100 is %A"   //print out the result

TABLE 1-4  F# bitwise operators

Bitwise operation C# operation F# operation Expected result

bitwise AND 0x1 & 0x1 0x1 &&& 0x1 0x1

bitwise OR 0x1 | 0x2 0x1 ||| 0x2 0x3

bitwise XOR 0x1 ^ 0x1 0x1 ^^^ 0x1 0

left shift 0x2 << 1 0x2 <<< 1 0x4

right shift 0x2 >> 1 0x2 >>> 1 0x1

Tuples
A tuple is a grouping of unnamed but ordered items. The items in a tuple can have different types. 
Listing 1-61 demonstrates how to define a tuple.

LISTING 1-61  A tuple definition

// Tuple of two integers: int * int 
( 1, 5 )  
 
// Tuple with three strings: string * string * string 
( "one", "two", "three" ) 
 
// mixed type tuple: string * int * float 
( "one", 1, 2.0 )  
 
// Tuple can contain non-primitive type values 
( a + 1, b + 1) 
 
//tuple which contains tuples: (int * int) * string 
((1,2), "good")
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The tuple introduces an interesting phenomenon. How many parameters are there in the function 
F(1,2,3)? Three is the wrong answer. The function F takes only one parameter, whose type is a tuple, 
and the tuple is of type int*int*int. A function that takes three parameters is defined as F 1 2 3. A tuple 
can be used to group parameters together to make sure that related parameters are always passed 
into a function. For example, if you always need to pass the first name and last name together into a 
function named g, it is better to declare g like this:

// indicate first name and last name be provided together 
g (firstName, lastName)    

That way is better than the following approach:

// indicate first name and last name can be passed separately 
g firstName lastName       

The tuple supports structural equality. This means that the code shown in Listing 1-62 returns true. 
This concise syntax can make your code more readable.

LISTING 1-62  The tuple structural equality

(1,2) = (1,2) 
(1,2) = (1, 1+1) 
(1,2) < (2, 4)

Forming a tuple can be as simple as putting all elements between a pair of parentheses, although 
parentheses are optional if omitting them does not introduce confusion. Retrieving the elements re-
quires two functions: the fst and snd functions are used to retrieve the first and the second elements, 
respectively, from a tuple. See Listing 1-63.

LISTING 1-63  The fst and snd functions in a tuple

// define tuple without parentheses 
let a = 1, 2 
let b = 1, "two" 
 
// get first element in a tuple 
let isOne = fst a 
 
// get second element in a tuple 
let isTwo = snd b
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If the third or fourth element is needed, the functions defined in Listing 1-64 can be used. The 
underscore (_) stands for a placeholder where the value can be ignored. You’ll find the underscore 
used in other places as well. It’s a way to tell the F# compiler that this is something you don’t care 
about.

LISTING 1-64  The third and fourth functions in a tuple

// get the third value of the triple 
let third (_,_,c) = c 
 
// get the fourth value of the quadruple 
let fourth (_,_,_,d) = d 
 
third (1,2,3) // return 3 
fourth (1,2,3,4) //return 4

There is another way to retrieve the embedded elements without using these functions. 
Listing 1-65 shows that the F# compiler can figure out that the element in l is a triple. The variables a, 
b, and c are used to hold the element values in the triple.

LISTING 1-65  Use let and iterating through a triple list and

let tripleVariable = 1, "two", "three" 
let a, b, c = tripleVariable 
 
let l = [(1,2,3); (2,3,4); (3,4,5)] 
for a,b,c in l do 
    printfn "triple is (%d,%d,%d)" a b c

Functions
If you want to refactor the F# code in the conversion task, one possible way is to define a function 
that checks whether a given number is odd. Defining a function is a simple task for an experienced C# 
developer. Most likely, you already figured out how to write an F# function. One thing I want to point 
out is that F# does not have a return keyword. As a result, the value from the last expression is always 
the returned value. The following function defines an operation that increments a given integer by 
one:

let increaseOne x = x + 1

If you run the code in FSI, the result shows that the function takes an integer as input and returns 
an integer as output. The result might look strange, but it’s still understandable:

val increaseOne : int -> int
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Things start to get more interesting when you try to define a sum function that takes two 
parameters. Listing 1-66 shows the code definition and its execution result in FSI. 

LISTING 1-66  Defining a sum function that takes two parameters

// define a sum function that takes two parameters 
let sum x y = x + y 
 
// FSI execution result 
val sum : int -> int -> int

sum is a curried function. You can envision this function as something that takes x as a parameter 
and returns a new function that takes a parameter called y. The beauty of this approach is that it 
enables you to define a new function based on an existing partially applied function. For example, the 
increaseOne function is really a sum function where y is always 1. So you can rewrite the increaseOne 
function as follows:

let increaseOne2 = sum 1

If you give 4 to this increaseOne2 function, the return value will be 5. It’s like passing 4 and 1 into 
the sum function.

increaseOne2 4    // returns 5 
sum 4 1             // pass 4 and 1 into the sum function and yield 5

Note  You might be tempted to invoke this sum function with the following syntax: 
sum(4,1). If you do this, an error message will point out that the expression expects a type 
of int*int. However, (4,1) is an F# type called a tuple. The code sum(4,1) is trying to pass a 
tuple type into sum, which confuses the F# compiler.

Now you can define your own function and refactor the conversion-task F# code, as shown in 
Listing 1-67.

LISTING 1-67  Defining an F# function in the odd-number sum program

// define an enum 
type EvenOddFlagEnum =  
           |  Odd = 0x1 
           |  Even = 0x0 
 
// define a function to check if the given number is odd or not 
let checkOdd n = n &&& (int EvenOddFlagEnum.Odd) <> 0 
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seq { 0..100 }                          //given data from 0 to 100 
|> Seq.filter checkOdd                //data subset contains only odd numbers 
|> Seq.sum                               //sum them up 
|> printfn "the sum of odd number from 0 to 100 is %A"   //print out the result

As the code is getting cleaner, somebody might notice the Seq.filter function takes a function as 
input. Yes, F# treats values and functions the same. If a function takes a function as input or returns 
a function, that function is called a higher-order function. In Listing 1-67, Seq.filter is a higher-order 
function. The Seq.filter function provides the skeleton of a filter algorithm. You can then implement 
your special filter mechanism and pass your function into the skeleton function. Higher-order func-
tions provide an extremely elegant way to reuse code. The higher-order function is a light-weight 
Strategy design pattern.

We have finished our refactoring work. You might already be eager to see the class definition in F#, 
but before I start introducing how F# handles object-oriented concepts such as classes, we need to 
spend a little more time on some basics.

Recursive Functions
The keyword rec is needed when defining a recursive function. Listing 1-68 shows how to use the rec 
keyword to define a function to compute Fibonacci numbers.

LISTING 1-68  Using the rec keyword to define a recursive function

let rec fib n = 
   if n <= 2 then 1 
   else fib (n - 1) + fib (n - 2)

Note  This recursive version does not use a tail call (which is defined later in this section), so 
this version can generate a stack overflow error.

Sometimes a function is mutually recursive because the calls form a circle. Listing 1-69 shows the 
mutually recursive Even and Odd functions. The F# variable and function resolution is from top to 
bottom and from left to right. All the functions and variables must be declared first before they can 
be referenced. In this case, you have to use the and keyword to let the compiler know. 
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LISTING 1-69  A mutually recursive function definition

let rec Even x =               //Even calls Odd 
   if x = 0 then true 
   elif x = 1 then false 
   else Odd (x - 1) 
and Odd x =                      //Odd calls Even 
   if x = 1 then true 
   elif x = 0 then false 
   else Even (x - 1)

In C# code, the stack overflow exception can happen when you use a recursive function. A small 
amount of memory is allocated when doing each recursive function call, and this allocation can lead 
to a stack overflow exception when a large amount of recursion is needed. A tail call is a function 
call whose result is immediately treated as the output of the function. Thanks to the tail call in F#, 
the F# compiler generates a tail-call instruction to eliminate the stack overflow problem when pos-
sible. Figure 1-15 shows the project setting’s Build tab, which is where you can select (or deselect) the 
Generate Tail Calls check box.

FIGURE 1-15  The Generate Tail Calls check box on the project setting’s Build tab

Pipe/Composite Operators
Because functional programming languages see no difference between data and functions, you 
might be wondering if there are any operators specifically for functions. The pipe-forward operator 
was introduced already. The real function operators are forward and backward composite operators. 
See Listing 1-70.
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LISTING 1-70  Composing two functions into a new function using the forward composite operator

let f0 x = x * 2 
let f1 x = x + 7 
 
//composite f and g to get a new function 
// g(x) = x + 11 
// the f0 function is executed first and then f1 
let g = f0 >> f1 
 
// result is 2*2+7 = 11 
let result = g 2

The forward composite operator executes the function from left to right. The backward 
composition operator executes the function in the opposite direction, from right to left. Listing 1-71 
demonstrates these two operators.

LISTING 1-71  Composing two functions into a new function using the backward composite operator

let f0 x = x * 2 
let f1 x = x + 7 
 
// composite f and g to get a new function 
// g(x) = x + 11 
// the f1 function is executed first and then f0 
let g = f0 << f1 
 
// result is (2+7)*2 = 18 
let result = g 2

Similar to the backward composite operator, F# also has a backward pipe operator (<|). The 
backward pipe operator uses left associativity. The code f <| g <| x is parsed as (f <| g) <| x. 
It is not parsed as f <| (g <| x), which is equivalent to x |> g |> f. See Listing 1-72.

LISTING 1-72  Comparing forward and backward pipe operators

Pipe-forward operator

let f x = x * 2 
let g x = x + 5 
 
// forwardPipeResult is 3*2 + 5 = 11 
let forwardPipeResult = 3 |> f |> g
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Pipe-backward operator

let f x = x * 2 
let g x = x + 5 
 
// forwardPipeResult is 2*(3 + 5) = 16 
let forwardPipeResult = f <| (g <| 3)

Note  Pipe operators and composite operators do not affect function execution 
performance. You can choose either of them according to your preference.

If you are curious about how to allow a C# method to hook into the pipe operation, Listing 1-73 
shows an example. The code takes an integer list as input, converts each item into a string, and joins 
them by using “*” as a separator. Because String.Join has many overloaded functions, you have to tell 
the compiler which overload format you prefer. We use FuncConvert.FuncFromTupled to convert the 
.NET function to a curried format, which is easier to work with when using the pipe operator.

LISTING 1-73  Assigning a function and converting function to a curried format

let input = [ 1..10 ] 
 
// assign String.Join to join with the string*string list as function signature 
let join : string*string list -> string = System.String.Join 
 
// convert join to curry format 
let curryFormatJoin = FuncConvert.FuncFromTupled join 
 
input 
|> List.map (fun number -> string(number))  //convert int to string 
|> curryFormatJoin "*"      // join the string list to a string string using "*"

In functional programming, the function is a first-class citizen. Some readers might try to explore 
mathematical operations with functions. The pipeline operator and the composite operator can be 
viewed as the add operation, which combines two functions. Listing 1-74 does not compile because 
you cannot compare two functions. 

LISTING 1-74  A function does not support the equality comparison

     let f1 = fun () -> () 
     let f2 = fun () -> () 
     f1 = f2  //does not compile
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Unit Types
If a C# method does not have a return value, you use void to tell the compiler. In F#, the unit keyword 
is used to accomplish this. There are two ways to tell the compiler that a function returns void:

■■ Specify the return type in the function. See Listing 1-75.

LISTING 1-75  A function with return unit type and input parameter type specified

//define a function return unit 
let f (x) : unit = () 
 
//define a function with int parameter and unit return type 
let f (x:int) : unit = ()

■■ Make the “()” be the last statement. As I mentioned earlier in this chapter, F# functions do not 
use the return keyword. Instead, F# takes the type from the last statement that the function 
returns. So the following function returns unit as well. You can use the ignore operator to 
throw away the computation result, which makes the function return nothing.

// define a function returns unit 
let f x = ()	// f : 'a -> unit 
 
// use ignore to throw away the keyboard input and f2 returns unit 
let f2 () = System.Console.ReadKey() |> ignore

Note  When a function can be passed in as a parameter to another function, the passed-in 
function is of type Microsoft.FSharp.Core.FSharpFunc. The function, which is passed in as a 
parameter, can be called by calling the Microsoft.FSharp.Core.FSharpFunc.Invoke method. 
When this is the case, the Invoke a function returning unit actually returns the  
Microsoft.FSharp.Core.Unit type, which is not void at all. Fortunately, the F# Compiler 
handles this so that you do not have to be aware of the subtle difference when coding.

Type Aliases
Another nice F# feature allows you to give a type an alias. Listing 1-76 shows how to give the built-in 
system type int a different name. This feature is more like typedef in C++. From the execution result, 
you can see that the int type can now be referenced by using I.

LISTING 1-76  A type alias and the FSI execution result

> type I = int 
let f (a:I) = a + 1;; 
 
type I = int 
val f : I -> I
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Type Inferences
At this point, you might still be wondering why you don’t have to specify type information when 
writing the F# code shown in Listing 1-13. You might get the wrong impression that F# is a scripting 
language or a dynamic language, which usually do not emphasize the type. Actually, this is not true; 
F# is a strongly typed language. F# provides the ability to leave off type definitions through a feature 
called type inference, which can identify type information based on how code is used. Listing 1-77 
shows the function f and how its definition is shown in FSI. The type for s can be determined by the 
function call System.String.IsNullOrEmpty, which takes a string and returns a Boolean. This is how F# 
identifies the type information.

LISTING 1-77  A type inference sample

> let f s = System.String.IsNullOrEmpty s;; 
 
val f : string -> bool

Type inference works great, but it will need help sometimes, such as when processing overloaded 
methods, because overloaded methods distinguish themselves from each other by parameter types. 
For the example, in Listing 1-78, the LastIndexOf method can get both char and string as input. You 
did not expect that the compiler could read your mind, did you? Because the variable ch can be either 
the string or char type, you have to specify the type for the variable ch. If you do not tell the compiler 
the parameter type, there is no way for F# to figure out which overloaded method to use. The correct 
code is shown in Listing 1-79.

 LISTING 1-78  The type inference when using overloaded methods

> let f ch = "abc".LastIndexOf(ch);; 
 
  let f ch = "abc".LastIndexOf(ch);; 
  -----------^^^^^^^^^^^^^^^^^^^^^ 
 
stdin(10,12): error FS0041: A unique overload for method 'LastIndexOf' could not be 
determined based on type information prior to this program point. A type annotation may 
be needed. Candidates: System.String.LastIndexOf(value: char) : int, System.String.
LastIndexOf(value: string) : int

LISTING 1-79  The type inference with a type specified

> let f (ch:string) = "abc".LastIndexOf(ch);; 
 
val f : string -> int
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It’s good to understand how type inference process work. It is performed from top to bottom and 
from left to right. It does not start from the program’s main function. So the code in Listing 1-80 does 
not compile. The string type cannot be inferred from the str.Length because there are tons of types in 
.NET that have a Length property.

LISTING 1-80  The type inference from top to bottom

let f str = str.Length  // str type cannot be determined 
 
[<EntryPoint>] 
let main argv =  
    let result = f "abc"  
    0 // return an integer exit code

Note  It’s a best practice to write the code as you go and let the F# compiler figure out the 
type for you. If there is an error, look at the code above the line that the error is pointing 
to. Those errors can often be easily fixed by providing type information. Type inference is 
processed from top to bottom, which could not be the order of how code is executed. The 
program entry point is usually located at the end of the file, but decorating the variable at 
entry point does not help.

IntelliSense uses a different way to provide type information for users. Therefore, 
sometimes IntelliSense shows the type information but the code will not compile. A simple 
code example is shown next. The type for str on the second line is unknown, although 
IntelliSense shows that str is of the System.String type.

let f str =  
    let len = str.Length // str type is unknown 
    str + "aa"

Type inference tends to make code more general. This simplicity not only saves you typing time, it 
also improves the readability by making the code more intuitive and friendly, as I think you can see in 
Listing 1-81.

LISTING 1-81  F# and C# side by side

F# code

let printAll aSeq =  
    for n in aSeq do 
        <your function call>
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C# equivalent

public static void printAll<a>(IEnumerable<a> aSeq) 
{ 
    foreach (a i in aSeq) 
    { 
        <your function call> 
    } 
}

If you’re not convinced yet, Listing 1-82 demonstrates how to use type inference and a tuple 
to create a general swap function. The function can handle any data type. If you try to use C# to 
implement the same function, you’ll find the F# code is more clean and elegant. If you use Visual 
Studio or MonoDevelop, type information can be shown when hovering over the function.

LISTING 1-82   A tuple and swap function

// swap a and b 
let swap(a,b) = (b,a)

Interop and Function Parameters
Some F# users start to use F# as a library authoring tool. The F# library is then referenced and 
invoked from some C# library or application. Because F# is a .NET language, using interop with other 
.NET languages is seamless. Adding a reference to an F# project is exactly same as adding one to a C# 
project. The only thing that needs to be explained here is how to add a reference to FSI: 

1.	 Use #r to reference a DLL.

2.	 Open the namespace.

Listing 1-83 shows how to reference System.Core.dll, open the System.Collections.Generic 
namespace, and use the HashSet<T> type.

LISTING 1-83  Creating a HashSet in an F# script file or in FSI

#r "System.Core.dll" 
open System.Collections.Generic 
let a = HashSet<int>()

Note  F# does not need new to instantiate an object. However, the new keyword is 
recommended when the class type implements the IDisposable interface.
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Compared to C#, there is little difference in the approach for invoking a .NET method in F#. Here’s 
how to use a .NET method to convert a string to an integer:

System.Convert.ToInt32("234")

Passing a tuple to a C# function seems to work well until you have a function that requires an out 
parameter. Tuples do not provide a way to say that a value is ref or out, but a tuple does help to solve 
this problem. If you have a C# function like the following

public int CSharpFunction(int k, out int n)

the function actually returns two values to the invoker. So the solution is to declare a tuple to hold the 
returned values:

let returnValue, nValue = CSharpFunction(1)

This approach works for the method, which is not externally declared. A call to an externally 
declared method requires the & operator. Listing 1-84 shows how to handle an out parameter in an 
extern function.

LISTING 1-84  Using F# to invoke a C# extern function that has an out parameter

C# function definition

[DllImport("MyDLL.dll")] 
public static extern int ASystemFunction(IntPtr inRef, out IntPtr outPtr);

Define and invoke the function in F#

[<System.Runtime.InteropServices.DllImport("something.dll")>] 
extern int ASystemFunction(System.IntPtr inRef, System.IntPtr& outPtr); 
 
let mutable myOutPtr = nativeint 1 
let n = ASystemFunction (nativeint 0, &myOutPtr)

If you want to expose an out parameter to a C# project, you need a special attribute named 
System.Runtime.InteropServices.Out. By decorating a parameter with this attribute in F#, the C# 
invoker can see that the parameter is intended to be an out parameter. See the sample in Listing 1-85. 
The byref keyword is used to declare the variable as being passed in as a reference type.

LISTING 1-85  Using F# to expose an out parameter to C#

let f ([<System.Runtime.InteropServices.Out>]a: int byref) =  a <- 9

I covered the out parameter, so now let’s shift our attention to ref. It’s easy to handle the C# ref 
definition as well. Listing 1-86 shows how to handle ref parameters in F#. There is a ref keyword in 
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the sample code, which I’ll introduce in Chapter 6, “Other Unique Features.” For now, think of it as a 
reference variable.

LISTING 1-86  Using F# to invoke a C# function that has a ref parameter

C# function definition

namespace CSharpProject 
{ 
    public class Chapter1Class 
    { 
        public static int ParameterFunction(int inValue, ref int refValue) 
        { 
            refValue += 3; 
            return inValue + 7; 
        } 
 
        public static void ReturnSample(out int x) 
        { 
            x = 8; 
        }  
    } 
}

F# code invoking the C# function

//declare a mutable variable 
let mutable mutableValue = 2 
 
// declare a reference cell 
let refValue = ref 2 
 
// pass mutable variable into the function 
let refFunctionValue = CSharpProject.Chapter1Class.ParameterFunction(1, &mutableValue) 
 
// pass reference cell into the function 
let refFunctionValue2 = CSharpProject.Chapter1Class.ParameterFunction(1, refValue) 
 
// out parameter 
let mutable x = Unchecked.defaultof<_> 
CSharpProject.Chapter1Class.ReturnSample(&x)

If you want to expose a ref parameter from an F# function to a C# project, removing the Out 
attribute from the function definition will do the trick. The use of the byref keyword indicates that this 
is a reference parameter. The code is shown in Listing 1-87.

LISTING 1-87  Exposing a ref parameter to a C# project

let f (a: int byref) =  a <- 9
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Module, Namespace, and Program Entry Points
Now that the small F# program is clean, you might want to build an executable. Listing 1-1 is a code 
snippet, and you need to use Visual Studio to write, debug, and publish a product. This section will 
cover how to create an F# console application using Visual Studio. Figure 1-16 shows how to create an 
F# console application.

FIGURE 1-16  Creating an F# console application 

The default Program.fs file contains a main function with an EntryPoint attribute; see Figure 1-17. 
Actually, F# does not need an entry function to be defined. For a single file project, the content is 
executed from the first line to the last. 

FIGURE 1-17  The default main function for an F# console application
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If using the EntryPoint attribute is the preferred way, the function must meet the following criteria:

■■ The function must be decorated with the [<EntryPoint>] attribute.

■■ The function must be in the last file in the project.

■■ The function must return an integer as exit code.

■■ The function must take a string array, string[], as input.

Tip  In an F# DLL, modules are initialized by a static constructor. This guarantees the 
initialization occurs before any of the module’s values are referenced. On the other hand, 
in an F# executable, the initialization is performed in the application’s entry point, which is 
defined by the EntryPoint attribute. It is recommended that you explicitly define an entry 
point for an F# executable by using EntryPoint.

When you add the F# item in your console project, it can immediately make your code unable to 
compile. The newly added item is the last item in the project system. This breaks the second require-
ment in the preceding list. You can use the context menu—see Figure 1-18—or Alt+Up/Down Arrow 
keys, if the development profile is set to F#, to move your item up and down the project system.

FIGURE 1-18  The context menu for moving an item up and down

It’s always a good coding practice to divide the code into different units when the project has 
multiple files. F# provides the module or namespace to divide the code into small units. They have 
subtle differences, which I will discuss later in this chapter.

If you delete all content in the Program.fs file and paste the code shown in Listing 1-33, which does 
not have a module definition, the F# compiler will create an anonymous module. Its name is the file 
name with the first letter capitalized. For example, if your code is in file1.fs, the module name will be 
File1. You can also explicitly provide module names at the first line of the file, as shown in Listing 1-88.

LISTING 1-88  Module definition

module MyModule 
 
printfn "Hello World!"
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A module can contain other modules, type definitions, expressions, values, or any combination 
of those, but namespaces cannot be inside a module. The nested module needs to be indented and 
must have an equal sign (=) as a suffix. See Listing 1-89.

LISTING 1-89  Defining a nested module

module Print 
 
// general print function 
let print x = printf "%A" x 
 
// define sub module NumberPrint 
module NumberPrint =  
    // function to print int 
    let printInt = printf "%d" 
 
    // function to print float 
    let printFloat = printf "%f" 
 
// define sub module StringPrint 
module StringPrint =  
    // function to print string 
    let printString = printf "%s" 
 
    // function to print char 
    let printChar = printf "%c" 
 
// define sub module with new type 
module NewTypes =  
    // define a 2D point 
    type Point2D = float32*float32 
 
// invoke print functions 
NumberPrint.printFloat 4.5 
NumberPrint.printInt 2 
StringPrint.printChar 'c' 
StringPrint.printString "abc"

If you want a scope to hold the functions and variables, the namespace and module are the 
same from F#’s point of view. If the F# project is going to be a library opened from a C# project, the 
namespace is a better choice. The module is a static class when it’s viewed from the C# side. By using 
a module name and function name together, you can reference a function defined in a different 
module. If you want to reference a function inside a module, you can use the open keyword to open 
that module or decorate the module with the AutoOpen attribute, which can open the module auto-
matically, essentially causing the function to be placed in the global namespace. See Listing 1-90.
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LISTING 1-90  Opening a module

module Print 
 
// general print function 
let print x = printf "%A" x 
 
// auto open  NumberPrint module 
[<AutoOpen>] 
module NumberPrint =  
    // function to print int 
    let printInt = printf "%d" 
 
    // function to print float 
    let printFloat = printf "%f" 
 
module StringPrint =  
    // function to print string 
    let printString = printf "%s" 
 
    // function to print char 
    let printChar = printf "%c" 
 
// invoke print functions 
printFloat 4.5 
printInt 2 
 
// use module name to reference the function defined in the module 
StringPrint.printChar 'c' 
StringPrint.printString "abc" 
 
// open StringPrint module 
open StringPrint 
 
printChar 'c' 
printString "abc"

Note  The open statement must be located somewhere after the module is defined. 

The RequireQualifiedAccess attribute indicates that a reference to an element in that module 
must specify the module name. Listing 1-91 shows how to decorate the attribute on a module and 
reference a function within.
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LISTING 1-91  Using the RequireQualifiedAccess attribute

[<RequireQualifiedAccessAttribute>] 
module MyModule =  
    let f() = printfn "f inside MyModule" 
 
//reference to f must use MyModule 
MyModule.f()

Modules can be extended by creating a new module with the same name. All the items—such as 
functions, types, expressions, and values—will be accessible as long as the new module is opened. See 
Listing 1-92. To invoke the extended method, you can open the namespace MyCollectionExtensions. 
Listing 1-93 opens the namespace, and the extension method is shown.

LISTING 1-92  Extending a module

Namespace MyCollectionExtensions 
 
open System.Collection.Generic 
 
// extend the array module by adding a lengthBy function 
module Array =  
    let lengthBy filterFunction array =  
        array |> Array.filter fiterFunction |> Array.length

Note  A module inside a namespace also needs an equal sign (=) as a suffix.

LISTING 1-93  Invoking the function in the extended module

open MyCollectionExtensions 
 
let array = [| 1..10 |] 
let evenNumber = array |> Array.lengthBy (fun n -> n % 2 = 0 )

As mentioned previously, if the F# code needs to be referenced from other .NET languages, a 
namespace is the preferred way to organize the code. Namespaces can contain only modules and 
type definitions. You cannot put namespaces, expressions, or values inside of a namespace. See 
Listing 1-94.
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LISTING 1-94  Using a namespace

namespace MySpace 
 
// define a 3D point 
type Point3D = Point of float32 * float32 * float32 
 
// define module inside namespace 
module HelloWorld =  
    let msg = @"Hello world" 
    printfn "%s" msg 
 
// the following line won't compile because a namespace cannot contain value or expression 
// let a = 2 

Note  Namespaces are not supported in FSI because it’s difficult to find out where the 
namespace ends in FSI.

Empty files do not compile in a multifile project. Source code must have either a 
namespace or a module at the beginning if the project contains multiple files.
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C H A P T E R  3

F# and Design Patterns

I constantly hear people say that F# is a cool cutting-edge technology, but they do not know how 
to use it. In previous chapters, I showed how C# developers can pretty much map their existing 

imperative, LINQ, and data-structure knowledge to F#. However, this is not enough know-how to 
design or implement a component or a system. In this chapter, I use well-known design patterns to 
introduce performing system design by using F#. The samples in this chapter use unique F# language 
features to implement well-known design patterns. These samples will help you start to think of F# as 
something other than a niche language.

I do not see a huge difference between computer language and human language. Both languages 
are used to convey human thinking, only the audiences are different. One is the computer, and the 
other is a human. If you want to master a language and use it to write a beautiful article, having 
knowledge of only the basic words of that language would definitely not be enough. Likewise, if 
people really want to use F# fluently in their daily programming work, they need to know more than 
how to write a float type and a FOR loop. 

In this chapter, a number of design patterns are implemented in F#. These implementations should 
help you gain more insight about how our team designed the language and, consequently, how to 
use these features to solve system-design problems. Ultimately, my goal is to help you start to really 
think in F# terms.

There are some design patterns that are easily implemented with more advanced F# language 
features, such as F# object expressions. I am not going to discuss every aspect of these features. More 
detailed information about these special language features will be presented in Chapter 5, “Write 
Your Own Type Provider.” If any aspects of this chapter are not clear, I encourage you to refer to 
Chapter 5, where F# unique features are introduced in detail.

Using Object-Oriented Programming and Design Patterns

Like many well-studied concepts, design pattern has many definitions. In this book, I borrow the 
definition from the Wikipedia page on the topic (http://en.wikipedia.org/wiki/Software_design_pattern). 
My quick definitions of the design patterns in this chapter are also largely based on Wikipedia.
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The design pattern is the reusable solution template for a problem. It can speed 
up the development process by providing tested, proven development paradigms. 
The effective software design requires considering problems that may not become 
obvious until later in the implementation. Reusing design patterns helps to prevent 
subtle issues that can cause major problems, and it also improves code readability 
for coders and architects who are familiar with the patterns. 

From the preceding statements, you can see that design patterns are not necessarily tied to 
specific languages or programming paradigms. Given that the object-oriented programming (OOP) 
paradigm is the most used, most design-pattern implementations and discussions are based on 
languages that target OOP—for example, C#. Some people from the functional programming com-
munity have suggested that design patterns are merely a means to address flaws in OOP languages. 
I will not go into the details of this topic; instead, I will cover how to use F# to implement design 
patterns. 

First, I’ll cover three basic concepts in programming languages that primarily target OOP:

■■ Encapsulation is a construct that facilitates the bundling of data with methods (or other 
functions) that operate on that data.

■■ Inheritance is a way to compartmentalize and reuse code. It creates a subtype based on an 
existing type. 

■■ Polymorphism: subtype polymorphism, which is almost universally called just polymorphism in 
the context of object-oriented programming, is the ability to create a variable, a function, or 
an object that has more than one form.

The typical C# implementations of design patterns often use all three of these concepts. In the 
rest of the chapter, you will see how F# can use both OOP and functional features to implement most 
common design patterns.

Before demonstrating these design patterns, I’d like to remind you that a design pattern can 
have more than one implementation. Each of the implementations in the following examples show 
different F# language features in practice. Additionally, they provide a better way to apply F# in com-
ponent or system design than what would be achieved by simply porting over a C# implementation.

Working with F# and Design Patterns

Let’s start by looking at some of the design patterns that will be discussed in this chapter along with 
the definitions of each. Note that the following definitions are from an OOP perspective, so the 
definitions occasionally still use object-oriented terminology:

■■ The chain of responsibility pattern avoids coupling the sender of a request to its receiver by 
giving more than one object a chance to handle the request. It chains the receiving objects 
and passes the request along the chain until an object handles it.



	 CHAPTER 3  F# and Design Patterns	 129

■■ The decorator pattern attaches additional responsibilities to an object dynamically. Decorators 
provide a flexible alternative to subclassing for extending functionality.

■■ The observer pattern defines a one-to-many dependency between objects so that when one 
object changes state, all its dependents are notified and updated automatically.

■■ The proxy pattern provides a surrogate or placeholder for another object to control access to it.

■■ The strategy pattern defines a family of algorithms, encapsulates each one, and makes them 
interchangeable. This pattern lets the algorithm vary independently from clients that use it.

■■ The state pattern allows an object to alter its behavior when its internal state changes.

■■ The factory pattern lets a class defer instantiation to subclasses.

■■ The adapter pattern and bridge pattern are both used to convert the interface of a class into 
another interface. The adapter pattern lets classes work together that couldn’t otherwise 
because of incompatible interfaces. If we don’t focus on interfaces or classes, we can rephrase 
the definition to a shorter one: These are patterns that provide a way to allow incompatible 
types to interact.

■■ The singleton pattern ensures a class has only one instance and provides a global point of 
access to it.

■■ The command pattern is used to allow an object to store the information needed to execute 
some other functionality at a later time. For example it can help implement a redo-undo 
scenario.

■■ The composite pattern describes a group of objects that are to be treated in the same way 
as a single instance of an object. The intent of a composite is to compose objects into tree 
structures to represent part-whole hierarchies. Implementing the composite pattern lets 
clients treat individual objects and compositions uniformly. The visitor pattern separates the 
algorithm implementation from the data structure. These two patterns can work together. The 
composite pattern forms a tree structure, and the visitor pattern applies a function to the tree 
structure and brings the result back. 

■■ The template pattern is, as its name suggests, a program or algorithm skeleton.

■■ The private data class pattern is used to encapsulate fields and methods that can be used to 
manipulate the class instance.

■■ The builder pattern provides abstract steps of building objects. Using this pattern allows a 
developer to pass different implementations of abstract steps.

■■ The façade pattern allows you to create a higher level interface that can be used to make it 
easier to invoke underlying class libraries.

■■ The memento pattern saves an object’s internal state for later use.
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Working with the Chain of Responsibility Pattern
The chain of responsibility pattern is a design pattern consisting of a source of command objects and 
a series of processing objects. Each processing object contains a set of logic that describes the types 
of command objects it can handle and how to pass off those it cannot handle to the next processing 
object in the chain. The sample in Listing 3-2 shows a physical check process that needs to make sure 
that a person’s age is between 18 and 65, that their weight is no more than 200 kilograms, and that 
they are taller than 120 centimeters.

The type in Listing 3-2 is called a Record. Listing 3-2 uses a Record to store a patient’s medical data. 
It has several named fields that are used to hold the patient’s data. It is very much like a database 
record. Listing 3-1 shows how to define a Record type and create a record object. The sample code 
creates a point record that has its X and Y fields set to (1, 1). 

LISTING 3-1  Defining a record type and creating a Record object

// define a point record 
type Point2D = { 
    X : float 
    Y : float 
} 
 
// create original point record 
let originalPoint = { X = 0.0; Y = 0.0 } 
 
// create (1,1) point record 
let onePoint = { X = 1.0; Y = 1.0 }

The record object implicitly forces data initialization; therefore, initial values are not optional when 
creating a Record type. The invoker must define the patient with some data, and this eliminates any 
possible initialization problems.

LISTING 3-2  Chain of responsibility pattern

// define a record to hold a person's age and weight 
type Record = { 
    Name : string; 
    Age : int 
    Weight: float 
    Height: float 
} 
 
// Chain of responsibility pattern 
let chainOfResponsibility() =  
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    // function to check that the age is between 18 and 65 
    let validAge record =  
        record.Age < 65 && record.Age > 18 
 
    // function to check that the weight is less than 200 
    let validWeight record =  
        record.Weight < 200. 
 
    // function to check that the height is greater than 120 
    let validHeight record =  
        record.Height > 120. 
 
    // function to perform the check according to parameter f 
    let check f (record, result) =  
        if not result then record, false 
        else record, f(record) 
 
    // create chain function 
    let chainOfResponsibility = check validAge >> check validWeight >> check validHeight 
 
    // define two patients' records 
    let john = { Name = "John"; Age = 80; Weight = 180.; Height = 180. } 
    let dan = { Name = "Dan"; Age = 20; Weight = 160.; Height = 190. } 
 
    printfn "John's result = %b" (chainOfResponsibility (john, true) |> snd) 
    printfn "Dan's result = %b" (chainOfResponsibility (dan, true) |> snd)

Execution result from the chain of responsibility sample

John's result = false 
Dan's result = true

Note  You have to execute the chainOfResponsibility function to get the result shown.

In the implementation in Listing 3-2, three functions (responsibilities) are composed into a chain 
and the data is passed along the chain when it is being processed. The parameter passed in contains 
a Boolean variable that decides whether the data can be processed. In Listing 3-2, all the functions are 
in effect AND-ed together. The parameter passed into the first function contains a Boolean value. The 
successive function can be invoked only if the Boolean value is true. 

The other implementation is used for pipelining, as shown in Listing 3-3, rather than function 
composition. The chainTemplate higher-order function takes a process and canContinue function. 
The canContinue function always returns true, and the process function is a simple “increase one” 
function. The execution result is 2.
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LISTING 3-3  Chain of responsibility sample using pipelining

// chain template function 
let chainTemplate processFunction canContinue s =  
    if canContinue s then  
        processFunction s 
    else s 
 
let canContinueF _ = true 
let processF x = x + 1 
 
//combine two functions to get a chainFunction 
let chainFunction = chainTemplate processF canContinueF    
 
// use pipeline to form a chain 
let s = 1 |> chainFunction |> chainFunction 
 
printfn "%A" s

The other chain of responsibility implementation uses the partial pattern feature in F#. I introduced 
the unit of measure to make the code readable. The process goes from the first case and stops when 
the condition is met. The sample code is listed in Listing 3-2. The sample code checks the height and 
weight value for some predefined criteria. The person’s data is checked against NotPassHeight and 
then NotPassWeight if his height passes the validation criteria. The code also demonstrates how to use 
the F# unit-of-measure feature, which avoids possible confusion because of the unit of measure used. 
The parameter for makeCheck is #Person, which means that any object of type Person or derived from 
a Person type can be passed in.

Listing 3-4 uses units-of-measure language constructs within a calculation. Only the number with 
the same unit of measure can be involved in the same calculation. Listing 3-4 shows how to define a 
kilogram (kg) unit and decorate it with a number.

LISTING 3-4  Defining and using a kg unit of measure

// define unit-of-measure kg 
[<Measure>] type kg 
 
// define 1kg and 2kg variables 
let oneKilo = 1<kg> 
let twoKilo = 1<kg> + 1<kg>

The None and Some(person) syntax in the sample code in Listing 3-6 represents a  
Nullable-type-like data structure called an option. You can think of None as NULL. The special 
function let (| NotPassHeight | _ |) is called an active pattern. It takes a person parameter 
and decides whether the person meets certain criteria. If the person meets the criteria, the function 
returns Some(person) and triggers the match statement. Listing 3-5 shows how to use the Some()/
None syntax to check for an odd number. This sample introduced several new concepts. I will come 
back to these concepts in detail in Chapter 5.
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LISTING 3-5  Using active pattern, option, and match to check for an odd number

// define an active pattern function to check for an odd number 
let (| Odd | _ |) x = if x % 2 = 0 then None else Some(x) 
 
// define a function to check for an odd number 
let findOdd x =  
    match x with 
    | Odd x -> printfn "x is odd number" 
    | _ -> printfn "x is not odd number" 
 
// check odd number 
findOdd 3 
findOdd 4

Execution result

x is odd number 
x is not odd number

LISTING 3-6  Chain of responsibility pattern using partial pattern matching

// define two units of measure: cm and kg 
[<Measure>] type cm 
[<Measure>] type kg 
 
// define a person class with its height and weight set to 0cm and 0kg 
type Person() =  
    member val Height = 0.<cm> with get, set 
    member val Weight = 0.<kg> with get, set 
 
// define a higher order function that takes a person record as a parameter 
let makeCheck passingCriterion (person: #Person) =  
    if passingCriterion person then None  //if passing, say nothing, just let it pass 
    else Some(person)   //if not passing, return Some(person)  
 
// define NotPassHeight when the height does not meet 170cm 
let (| NotPassHeight | _ |) person = makeCheck (fun p -> p.Height > 170.<cm>) person 
 
// define the NotPassWeight when weight does not fall into 100kg and 50kg range 
let (| NotPassWeight | _ |) person =  
    makeCheck (fun p -> p.Weight < 100.<kg> && p.Weight > 50.<kg>) person 
 
// check incoming variable x 
let check x =  
    match x with 
    | NotPassHeight x -> printfn "this person is not tall enough" 
    | NotPassWeight x -> printfn "this person is out of weight range" 
    | _ -> printfn "good, this person passes" 
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// create a person with 180cm and 75kg 
let p = Person(Height = 180.<cm>, Weight = 75.<kg>) 
 
// perform the chain check 
check p

Execution result

good, this person passes

Working with the Adapter Pattern
The adapter pattern is a design pattern that translates one interface for a type into an interface that is 
compatible with some other type. An adapter allows classes to work together that normally could not 
because of incompatible types. In Listing 3-8, we use the Generic Invoke(GI) function as an adapter or 
bridge to invoke two methods of incompatible types. By using the GI function, a common interface 
is no longer needed and the function can still be invoked. The GI function is a static type constraint 
function, it requires that type T define a certain member function. For example, in Listing 3-7, it 
requires that the type T has a canConnect function that takes void (unit) and returns a Boolean. (Note 
that F# requires you to declare a function as “inline” when arguments of the function are statically 
resolved type parameters such as those in the following code listing.)

LISTING 3-7  GI function

// define a GI function 
let inline canConnect (x : ^T) = (^T : (member CanConnect : unit->bool) x)

The interesting thing about the design pattern implementation in Listing 3-8 is that Cat and Dog 
do not have any common base class or interface. However, they can still be processed in a unified 
function. This implementation can be used to invoke the legacy code, which does not share any 
common interface or base class. (You should note, by the way, that this is a sloppy way of solving the 
problem and should be considered only when no other option is available.)

Imagine that you have two legacy systems that need to be integrated and that you do not have 
access to the source code. It would be difficult to integrate the systems in other languages, but it’s 
possible and even easy in F# using the generic invoke technique. 
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LISTING 3-8  The adapter pattern (bridge pattern)

//define a cat class 
type Cat() =  
    member this.Walk() = printfn "cat walks" 
 
// define a dog class 
type Dog() =  
    member this.Walk() = printfn "dog walks" 
 
// adapter pattern 
let adapterExample() =  
    let cat = Cat() 
    let dog = Dog() 
 
    // define the GI function to invoke the Walk function 
    let inline walk (x : ^T) = (^T : (member Walk : unit->unit) x) 
 
    // invoke GI and both Cat and Dog 
    walk(cat) 
    walk(dog)

Execution result from adapter pattern sample

cat walks 
dog walks

Note  The implementation in Listing 3-8 can also be viewed as a bridge pattern.

Working with the Command Pattern
The command pattern is a design pattern in which an object is used to represent and encapsulate all 
the information needed to call a method at a later time. Listing 3-10 shows how to use the command 
pattern to implement a redo-undo framework. This is an example of typical usage of the command 
pattern in the OOP world. 

Listing 3-9 defines a result using the ref keyword. The ref keyword defines a reference type that 
points to the value 7. The result is a reference cell. You can think of the ref keyword as a way to define 
a mutable variable. 
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LISTING 3-9  Reference cell

// define a reference cell to value 0 
let a = ref 0 
 
// define a function to increase a's value by 1 
let increaseA() =  
    a := !a + 1 
 
// increase a's value and print out result 
increaseA() 
printfn "a = %A" !a

Execution result

a = 1

Note  F# provides incr and decr to increase or decrease reference cell values by 1. When 
using the incr function, the increaseA function becomes let increaseA() = incr a.

Note  The := operator is used to assign a new value to the content of the reference cell. 
The ! (pronounced bang) operator is used to retrieve the reference cell content.

LISTING 3-10  Command pattern

// define a command record 
type Command = { Redo: unit->unit; Undo: unit->unit } 
 
let commandPatternSample() =  
 
    // define a mutable storage 
    let result = ref 7 
 
    // define the add command 
    let add n = {  
        Redo = (fun _ -> result := !result + n)  
        Undo = (fun _ -> result := !result - n) } 
 
    // define the minus command 
    let minus n = {  
        Redo = (fun _ -> result := !result - n)  
        Undo = (fun _ -> result := !result + n) } 
 
    // define an add 3 command 
    let cmd = add 3 
    printfn "current state = %d" !result 
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    // perform add 3 redo operation 
    cmd.Redo() 
    printfn "after redo: %d" !result 
 
    // perform an undo operation 
    cmd.Undo() 
    printfn "after undo: %d" !result

Execution result from the command pattern sample obtained by invoking the  
commandPatternSample function

current state = 7 
after redo: 10 
after undo: 7

Note  There is no storage structure for command history; however, adding such a storage 
structure is trivial.

Note  According to the MSDN documentation (http://msdn.microsoft.com/en-us/library/
dd233186.aspx), a mutable variable should be used instead of a reference cell whenever 
possible. The preceding code uses a reference cell just for demo purposes. You can convert 
this code to use a mutable variable.

There is another implementation that emphasizes that the command can be treated like data. The 
code defines two types of commands: deposit and withdraw. The Do and Undo functions are used to 
perform the do and undo actions. See Listing 3-12. 

To implement this Do and Undo functionality, it is helpful to understand the F# discriminated 
union (DU) feature. Listing 3-11 demonstrates how to use a DU to check whether or not the given 
time is a working hour. Note how the first DU, DayOfAWeek, looks a lot like an enum, but without the 
default numeric value. In the second example, TWorkingHour, the DU case Hour has a tuple value, 
where the first element of the tuple is a DayOfAWeek and the second element is an integer.

LISTING 3-11  Using DU to check whether the given time is a working hour

// define day of the week 
type DayOfAWeek =  
    | Sunday 
    | Monday 
    | Tuesday 
    | Wednesday 
    | Thursday 
    | Friday 
    | Saturday 
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// define working hour 
type TWorkingHour =  
    | Hour of DayOfAWeek * int 
 
// check that the working hour is Monday to Friday 9:00 to 17:00 
let isWorkingHour day =  
    match day with 
    | Hour(Sunday, _) -> false 
    | Hour(Saturday, _) -> false 
    | Hour(_, time) -> time >= 9 && time <= 17 
 
// check if Sunday is working hour 
let sunday = Hour(Sunday, 9) 
printfn "%A is working hour? %A" sunday (isWorkingHour sunday) 
 
// check if Monday 10:00 is working hour 
let monday = Hour(Monday, 10) 
printfn "%A is working hour? %A" monday (isWorkingHour monday)

Execution result

Hour (Sunday,9) is working hour? false 
Hour (Monday,10) is working hour? true

Now that you understand discriminated unions, you can apply them to the command pattern.

LISTING 3-12  Command pattern implementation II

// define two command types 
type CommandType =  
    | Deposit 
    | Withdraw 
 
// define the command format, which has a command type and an integer 
type TCommand =  
    | Command of CommandType * int 
 
// mutable variable result 
let result = ref 7 
 
// define a deposit function 
let deposit x = result := !result + x 
 
// define a withdraw function 
let withdraw x = result := !result - x 
 
// do function to perform a do action based on command type 
let Do = fun cmd -> 
    match cmd with 
    | Command(CommandType.Deposit, n) -> deposit n 
    | Command(CommandType.Withdraw,n) -> withdraw n 
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// undo function to perform an undo action based on command type 
let Undo = fun cmd -> 
    match cmd with 
    | Command(CommandType.Deposit, n) -> withdraw n 
    | Command(CommandType.Withdraw,n) -> deposit n 
 
// print the current balance 
printfn "current balance %d" !result 
 
// deposit 3 into the account and print the balance 
let depositCmd = Command(Deposit, 3) 
Do depositCmd 
printfn "after deposit: %d" !result 
 
// undo the deposit command and print the balance 
Undo depositCmd 
printfn "after undo: %d" !result

Execution result

current balance 7 
after deposit: 10 
after undo: 7

Working with the Observer Pattern
The observer pattern is a pattern in which a subject object maintains a list of its observer dependents. 
The subject automatically notifies its dependents of any changes by calling one of the dependent’s 
methods. The implementation in Listing 3-13 passes the function into the subject, and the subject 
notifies its changes by calling this function along with some parameters.

LISTING 3-13  Observer pattern

// define a subject 
type Subject() =  
    // define a default notify function 
    let mutable notify = fun _ -> () 
 
    // subscribe to a notification function 
    member this.Subscribe notifyFunction =  
        let wrap f i = f i; i 
        notify <- wrap notifyFunction >> notify 
 
    // reset notification function 
    member this.Reset() = notify <- fun _ -> () 
 
    // notify when something happens 
    member this.SomethingHappen k =  
        notify k 
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// define observer A 
type ObserverA() = 
    member this.NotifyMe i = printfn "notified A %A" i 
 
// define observer B 
type ObserverB() =  
    member this.NotifyMeB i = printfn "notified B %A" i 
 
// observer pattern 
let observer() =  
    // create two observers 
    let a = ObserverA() 
    let b = ObserverB() 
 
    // create a subject 
    let subject = Subject() 
 
    // let observer subscribe to subject 
    subject.Subscribe a.NotifyMe 
    subject.Subscribe b.NotifyMeB 
 
    // something happens to the subject 
    subject.SomethingHappen "good"

Execution result from the observer pattern sample obtained by invoking the observer function

notified B "good" 
notified A "good"

F#’s Observable module can be used to implement this pattern as well. In Listing 3-14, an event is 
defined along with three observers of the event. Compared to the version in Listing 3-13, this version 
is much more lightweight. The myEvent value is bound to an instance of the F# event type. For the 
Observable module to subscribe to the event, you have to publish the event. After the event is pub-
lished, the Observable.add function is used to add the event-handler function to this event. When the 
event is fired by using Trigger, all the event-handler functions will be notified.

LISTING 3-14  Using the Observable module to implement the observer pattern

// define an event 
let myEvent = Event<_>() 
 
// define three observers 
let observerA = fun i -> printfn "observer A noticed something, its value is %A" i 
let observerB = fun i -> printfn "observer B noticed something, its value is %A" i 
let observerC = fun i -> printfn "observer C noticed something, its value is %A" i 
 
// publish the event and add observerA 
myEvent.Publish    
|> Observable.add observerA 
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// publish the event and add observerA 
myEvent.Publish  
|> Observable.add observerB 
 
// publish the event and add observerA 
myEvent.Publish  
|> Observable.add observerC 
 
//fire event with value 1 
myEvent.Trigger 1

Execution result

observer A noticed something, its value is 1 
observer B noticed something, its value is 1 
observer C noticed something, its value is 1

Working with the Decorator Pattern
The decorator pattern can be used to extend (a.k.a. decorate) the functionality of an object at 
run-time. In Listing 3-15, the decorator pattern is used along with the composite operator to add new 
logic to the existing function. As the function is passed dynamically into a structure, the run-time 
behavior can be easily changed. The sample code defines a property that exposes a function. This 
function can then be changed at runtime.

LISTING 3-15  Decorator pattern

// define the Divide class 
type Divide() =  
    // define basic divide function 
    let mutable divide = fun (a,b) -> a / b 
 
    // define a property to expose the function 
    member this.Function 
        with get() = divide 
        and set(v) = divide <- v 
 
    // method to invoke the function 
    member this.Invoke(a,b) = divide (a,b) 
 
// decorator pattern 
let decorate() =  
 
    // create a divide instance 
    let d = Divide() 
 
    // set the check zero function 
    let checkZero (a,b) = if b = 0 then failwith "a/b and b is 0" else (a,b) 
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    // invoke the function without check zero 
    try  
        d.Invoke(1, 0) |> ignore 
    with e -> printfn "without check, the error is = %s" e.Message 
 
    // add the check zero function and then invoke the divide instance 
    d.Function <- checkZero >> d.Function  
    try 
        d.Invoke(1, 0) |> ignore 
    with e -> printfn "after add check, error is = %s" e.Message

Execution result from the decorator pattern sample obtained by invoking the decorate function

without check, the error is = Attempted to divide by zero. 
after add check, error is = a/b and b is 0

Working with the Proxy Pattern
The proxy pattern uses a class that acts as a placeholder or interface for another object or function. 
It’s often used for caching, to control access, or to delay the execution or creation of an object that is 
costly in the form of time or resources. See Listing 3-16. The CoreComputation class hosts two calcula-
tion functions, named Add and Sub. The class also exposes a proxy class from which a user can get 
access to the computation.

LISTING 3-16  Proxy pattern

// define core computation 
type CoreComputation() =  
    member this.Add(x) = x + 1 
    member this.Sub(x) = x - 1 
    member this.GetProxy name =  
        match name with 
        | "Add" -> this.Add, "add" 
        | "Sub" -> this.Sub, "sub" 
        | _ -> failwith "not supported" 
 
// proxy implementation 
let proxy() =  
    let core = CoreComputation() 
 
    // get the proxy for the add function 
    let proxy = core.GetProxy "Add" 
 
    // get the compute from proxy 
    let coreFunction = fst proxy 
 
    // get the core function name 
    let coreFunctionName = snd proxy 
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    // perform the core function calculation 
    printfn "performed calculation %s and get result = %A" coreFunctionName (coreFunction 1)

Execution result from the proxy pattern sample obtained by invoking the proxy function

performed calculation add and get result = 2

Working with the Strategy Pattern
The strategy pattern is a software design pattern whereby algorithms can be selected and used at 
runtime. Listing 3-17 uses a function to hold different strategies. During runtime, the strategy can be 
modified. 

LISTING 3-17  Strategy pattern

// quick sort algorithm 
let quicksort l =  
    printfn "quick sort" 
 
// shell short algorithm 
let shellsort l =  
    printfn "shell short" 
 
// bubble short algorithm 
let bubblesort l =  
    printfn "bubble sort" 
 
// define the strategy class 
type Strategy() =  
    let mutable sortFunction = fun _ -> () 
    member this.SetStrategy f = sortFunction <- f 
    member this.Execute n = sortFunction n 
 
let strategy() =  
    let s = Strategy() 
 
    // set strategy to be quick sort 
    s.SetStrategy quicksort 
    s.Execute [1..6] 
 
    // set strategy to be bubble sort 
    s.SetStrategy bubblesort 
    s.Execute [1..6]

Execution result from the strategy pattern sample obtained by invoking the strategy function

quick sort 
bubble sort
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Note  The sample code does not really implement three sorting algorithms. Instead, the 
code simply outputs the name of the algorithm that would be used.

Listing 3-17 shows how to implement this pattern using the OOP paradigm. However, the strategy 
pattern can be implemented more succinctly with a functional approach. Listing 3-18 shows how to 
use the higher-order function named executeStrategy to implement this pattern using a functional 
paradigm.

LISTING 3-18  Strategy pattern using a higher-order function

// quick sort algorithm 
let quicksort l =  
    printfn "quick sort" 
 
// shell short algorithm 
let shellsort l =  
    printfn "shell short" 
 
// bubble short algorithm 
let bubblesort l =  
    printfn "bubble sort" 
 
let executeStrategy f n = f n  
 
let strategy() =  
    // set strategy to be quick sort 
    let s = executeStrategy quicksort 
    // execute the strategy against a list of integers 
    [1..6] |> s 
 
    // set strategy to be bubble sort 
    let s2 = executeStrategy bubblesort 
    // execute the strategy against a list of integers 
    [1..6] |> s2

Working with the State Pattern
The state pattern is used to represent the ability to vary the behavior of a routine depending on the 
state of an object. This is a clean way for an object to partially change its type at runtime. Listing 3-19 
shows that the interest rate is decided by the internal state: account balance. The higher the balance 
is, the higher the interest is that a customer will receive. In the sample, I also demonstrate how to use 
the unit-of-measure feature.
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LISTING 3-19  State pattern

// define account state 
type AccountState =  
    | Overdrawn 
    | Silver 
    | Gold 
 
// define unit of measure as US dollar 
[<Measure>] type USD 
 
// define an account that takes the unit of measure 
type Account<[<Measure>] 'u>() = 
    // field to hold the account balance 
    let mutable balance = 0.0<_>    
 
    // property for account state 
    member this.State 
        with get() =  
            match balance with 
            | _ when balance <= 0.0<_> -> Overdrawn 
            | _ when balance > 0.0<_> && balance < 10000.0<_> -> Silver 
            | _ -> Gold 
 
    // method to pay the interest 
    member this.PayInterest() =  
        let interest =  
            match this.State with 
                | Overdrawn -> 0. 
                | Silver -> 0.01 
                | Gold -> 0.02 
        interest * balance 
 
    // deposit into the account 
    member this.Deposit x =   
        let a = x 
        balance <- balance + a 
 
    // withdraw from account 
    member this.Withdraw x =  
        balance <- balance - x 
 
// implement the state pattern 
let state() =  
    let account = Account() 
 
    // deposit 10000 USD 
    account.Deposit 10000.<USD> 
 
    // pay interest according to current balance 
    printfn "account state = %A, interest = %A" account.State (account.PayInterest()) 
 
    // deposit another 2000 USD 
    account.Withdraw 2000.<USD> 
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    // pay interest according to current balance 
    printfn "account state = %A, interest = %A" account.State (account.PayInterest())

Execution result from the state pattern sample obtained by invoking the state function

account state = Gold, interest = 200.0 
account state = Silver, interest = 80.0

In F#, one way to implement a state machine is with a MailboxProcessor. The F# MailboxProcessor 
can be viewed as a message queue. It takes an asynchronous workflow as the processing logic. The 
asynchronous workflow will be introduced in the next chapter, and it can be thought of as a simple 
function being executed on a background thread. The Post method is used to insert a message into 
the queue, and the Receive method is used to get the message out of the queue. In Listing 3-20, the 
variable inbox represents the message queue. When the state machine starts, it goes to state0, which 
is represented by the state0() function, and waits for user input. The state machine will transition to 
another state according to the user’s input.

LISTING 3-20  State pattern with F# MailBoxProcessor

open Microsoft.FSharp.Control 
 
type States =  
    | State1 
    | State2 
    | State3 
 
type StateMachine() =  
    let stateMachine = new MailboxProcessor<States>(fun inbox -> 
                let rec state1 () = async { 
                    printfn "current state is State1" 
                    // <your operations> 
 
                    //get another message and perform state transition 
                    let! msg = inbox.Receive() 
                    match msg with 
                        | State1 -> return! (state1()) 
                        | State2 -> return! (state2()) 
                        | State3 -> return! (state3()) 
                    } 
                and state2() = async { 
                    printfn "current state is state2" 
                    // <your operations> 
 
                    //get another message and perform state transition 
                    let! msg = inbox.Receive() 
                    match msg with 
                        | State1 -> return! (state1()) 
                        | State2 -> return! (state2()) 
                        | State3 -> return! (state3()) 
                    } 
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                and state3() = async { 
                    printfn "current state is state3" 
                    // <your operations> 
 
                    //get another message and perform state transition 
                    let! msg = inbox.Receive() 
                    match msg with 
                        | State1 -> return! (state1()) 
                        | State2 -> return! (state2()) 
                        | State3 -> return! (state3()) 
                    }  
                and state0 () =  
                    async { 
 
                        //get initial message and perform state transition 
                        let! msg = inbox.Receive() 
                        match msg with 
                            | State1 -> return! (state1()) 
                            | State2 -> return! (state2()) 
                            | State3 -> return! (state3()) 
                    } 
                state0 ()) 
 
    //start the state machine and set it to state0 
    do  
        stateMachine.Start()         
 
    member this.ChangeState(state) = stateMachine.Post(state) 
 
let stateMachine = StateMachine() 
stateMachine.ChangeState(States.State2) 
stateMachine.ChangeState(States.State1)

Execution result in FSI

current state is state2 
current state is State1

Note  If the preceding code is executed in Microsoft Visual Studio debug mode,  
Thread.Sleep is needed because the main process (thread) needs to give CPU cycles to the 
background execution.

Working with the Factory Pattern
The factory pattern in Listing 3-21 is an object-oriented design pattern used to implement the 
concept of factories. It uses the function keyword as shortcut to the match statement. It can create an 
object without specifying the exact class of object that will be created. Listing 3-22 shows an example 
that uses the object expression to implement the factory pattern. 
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LISTING 3-21  Using the function keyword

// define two types 
type Type =  
  | TypeA  
  | TypeB 
 
// check with function keyword 
let checkWithFunction = function  
    | TypeA -> printfn "type A" 
    | TypeB -> printfn "type B" 
 
// check with match keyword 
let checkWithMatch x =  
    match x with 
    | TypeA -> printfn "type A" 
    | TypeB -> printfn "type B"

In Listing 3-22, the factory inside factoryPattern is actually a function. It is a shortcut for a match 
statement. The checkWithFunction and checkWithMatch functions in Listing 3-21 are equivalent.

LISTING 3-22  Example of the factory pattern

// define the interface 
type IA =  
  abstract Action : unit -> unit 
 
// define two types 
type Type =  
  | TypeA  
  | TypeB 
 
let factoryPattern() =  
    // factory pattern to create the object according to the input object type 
    let factory = function 
      | TypeA -> { new IA with  
                       member this.Action() = printfn "I am type A" } 
      | TypeB -> { new IA with  
                       member this.Action() = printfn "I am type B" } 
 
    // create type A object 
    let obj1 = factory TypeA 
    obj1.Action() 
 
    // create type B object 
    let obj2 = factory TypeB 
    obj2.Action()

Execution result from the factory pattern sample obtained by invoking the factoryPattern function

I am type A 
I am type B
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The factory function returns an object that is not familiar. Actually, the return type is something 
called an object expression, and this lightweight syntax can simplify your code significantly. If the 
object is not involved in inheritance, you can pretty much use an object expression to replace a 
class definition completely. Listing 3-23 shows how to create an instance of interface IA using object 
expression syntax.

LISTING 3-23  Using object expression

// define the interface 
type IA =  
  abstract Action : unit -> unit 
 
let a = { new IA with  
            member this.Action() =  
                printfn "this is from object expression" }

Working with the Singleton Pattern
The singleton pattern is a design pattern used to implement the mathematical concept of a singleton. 
It restricts the instantiation of a class to a single instance. This is useful when exactly one object is 
needed to coordinate actions across the system. One example of a singleton in F# is a value. An F# 
value is immutable by default, and this guarantees there is only one instance. Listing 3-24 shows how 
to make sure that an F# class instance is a singleton. The sample declares a private constructor and 
ensures that the class has only one instance in memory.

LISTING 3-24  An example of the singleton pattern

// define a singleton pattern class 
type A private () = 
    static let instance = A() 
    static member Instance = instance 
    member this.Action() = printfn "action from type A" 
 
// singleton pattern 
let singletonPattern() =  
    let a = A.Instance 
    a.Action()

Working with the Composite Pattern
The composite pattern is a partitioning design pattern. The composite pattern describes a group of 
objects that are to be treated in the same way as a single instance of that object. The typical applica-
tion is a tree structure representation. Listing 3-25 demonstrates a tree structure. The sample focuses 
more on how to access this tree structure and bring back the result. 
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The dynamically generated wrapper object can be treated like a visitor to the tree. The visitor 
accesses the node and brings the result back to the invoker. In the sample code, the CompositeNode 
structure not only defines the tree but also defines three common ways to traverse the tree. It does 
the heavy lifting by encapsulating the tree traversal algorithm. The visitor defines how to process the 
single node and is responsible for bringing the result back to the invoker. In this sample, the visitor 
adds the value in the tree nodes and brings back the sum.

LISTING 3-25  An example of the composite pattern

// define visitor interface 
type IVisitor<'T> = 
    abstract member Do : 'T -> unit 
 
// define a composite node 
type CompositeNode<'T> =  
    | Node of 'T 
    | Tree of 'T * CompositeNode<'T> * CompositeNode<'T> 
    with  
        // define in-order traverse 
        member this.InOrder f =  
            match this with 
            | Tree(n, left, right) ->  
                left.InOrder f 
                f n 
                right.InOrder(f) 
            | Node(n) -> f n 
         
        // define pre-order traverse 
        member this.PreOrder f = 
            match this with 
            | Tree(n, left, right) ->                  
                f n 
                left.PreOrder f 
                right.PreOrder f 
            | Node(n) -> f n 
 
        // define post order traverse 
        member this.PostOrder f = 
            match this with 
            | Tree(n, left, right) ->  
                left.PostOrder f 
                right.PostOrder f 
                f n 
            | Node(n) -> f n 
 
let invoke() =  
    // define a tree structure 
    let tree = Tree(1, Tree(11, Node(12), Node(13)), Node(2)) 
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    // define a visitor, it gets the summary of the node values 
    let wrapper =  
        let result = ref 0 
        ({ new IVisitor<int> with                 
                member this.Do n =  
                    result := !result + n                 
        }, result) 
 
    // pre-order iterates the tree and prints out the result 
    tree.PreOrder (fst wrapper).Do 
    printfn "result = %d" !(snd wrapper)

Execution result from the composite pattern sample obtained by calling the invoke function

result = 39

Working with the Template Pattern
The template pattern is, as its name suggests, a program or algorithm skeleton. It is a behavior-
based pattern. In F#, we have higher-order functions that can serve as a template to generate other 
functions. It is natural to use higher-order functions to implement this pattern. Listing 3-26 defines a 
three-stage database operation function named TemplateF. The actual implementation is provided 
outside of this skeleton function. I do not assume the database connection and query are all the 
same, so three functions are left outside of the class definition, and the user can define and pass in 
their own version of each.

LISTING 3-26  An example of the template pattern

// the template pattern takes three functions and forms a skeleton function named 
TemplateF 
type Template(connF, queryF, disconnF) =      
    member this.Execute(conStr, queryStr) =  
        this.TemplateF conStr queryStr 
    member this.TemplateF =  
            let f conStr queryStr =  
                connF conStr 
                queryF queryStr 
                disconnF () 
            f 
 
// connect to the database 
let connect conStr =  
    printfn "connect to database: %s" conStr 
 
// query the database with the SQL query string 
let query queryStr =  
    printfn "query database %s" queryStr 
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// disconnect from the database 
let disconnect ()  =  
    printfn "disconnect" 
 
let template() =  
    let s = Template(connect, query, disconnect)     
    s.Execute("<connection string>", "select * from tableA") 
 
template()

Execution result from the template pattern sample obtained by invoking the template function

connect to database: <connection string> 
query database select * from tableA 
disconnect

Note  The connect, query, and disconnect functions can be implemented as private 
functions in a class. 

The class definition is convenient for C# projects that need to reference the implementation of this 
design pattern in an F# project. However, the class is not necessary in an F#-only solution. Listing 3-27 
shows how to use higher-order functions to implement the template pattern.

LISTING 3-27  Template pattern with a higher-order function

// connection, query, and disconnect functions 
let connect(conStr ) = printfn "connect using %s" conStr 
let query(queryStr) = printfn "query with %s" queryStr 
let disconnect() = printfn "disconnect" 
 
// template pattern 
let template(connect, query, disconnect) (conStr:string) (queryStr:string)=  
    connect(conStr) 
    query(queryStr) 
    disconnect() 
 
// concrete query 
let queryFunction = template(connect, query, disconnect) 
 
// execute the query 
do queryFunction "<connection string>" "select * from tableA"
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Working with the Private Data Class Pattern
The private data class pattern is a design pattern that encapsulates class properties and associated 
data manipulation. The purpose of the private accessibility is to prevent the modification of these 
values. C# uses the readonly property, which does not have a setter function, to solve this problem. 
F# values are immutable by default, so implementing this readonly type of behavior is supported 
inherently. In the following example, I use an F# record type to implement the pattern by extending 
the record type. The with keyword in the code shown in Listing 3-28 is a way to tell the compiler that 
some property, method, or both will be added to the record type. In the sample code, the circle data 
remains the same once it is created. Some object-oriented implementations even implement another 
class so that there is little chance to modify the values. The immutability of record types eliminates 
the needs of a second class, as well as the need for explicitly defining getter-only properties with a 
keyword.

LISTING 3-28  An example of the private data class pattern

type Circle = {  
    Radius : float;  
    X : float;  
    Y : float } 

with 
    member this.Area = this.Radius**2. * System.Math.PI 
    member this.Diameter = this.Radius * 2. 
let myCircle = {Radius = 10.0; X = 5.0; Y = 4.5} 
printfn "Area: %f Diameter: %f" myCircle.Area myCircle.Diameter

Working with the Builder Pattern
The builder pattern provides abstract steps of building objects. This allows you to pass different 
implementations of specific abstract steps. Listing 3-29 demonstrates the abstract steps of making 
a pizza. The invoker can pass in different implementation steps to the cook function to generate 
different pizzas.

LISTING 3-29  An example of the builder pattern sample

// pizza interface 
type IPizza =  
    abstract Name : string with get 
    abstract MakeDough : unit->unit 
    abstract MakeSauce : unit->unit 
    abstract MakeTopping: unit->unit 
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// pizza module that defines all recipes 
[<AutoOpen>] 
module PizzaModule =  
    let makeNormalDough() = printfn "make normal dough" 
    let makePanBakedDough() = printfn "make pan baked dough" 
    let makeCrossDough() = printfn "make cross dough" 
 
    let makeHotSauce() = printfn "make hot sauce" 
    let makeMildSauce() = printfn "make mild sauce" 
    let makeLightSauce() = printfn "make light sauce" 
 
    let makePepperoniTopping() = printfn "make pepperoni topping" 
    let makeFiveCheeseTopping() = printfn "make five cheese topping" 
    let makeBaconHamTopping() = printfn "make bacon ham topping" 
 
// define a pepperoni pizza recipe 
let pepperoniPizza =  
        {   new IPizza with  
                member this.Name = "Pepperoni Pizza" 
                member this.MakeDough() = makeNormalDough() 
                member this.MakeSauce() = makeHotSauce() 
                member this.MakeTopping() = makePepperoniTopping() } 
 
// cook takes pizza recipe and makes the pizza 
let cook(pizza:IPizza) =  
    printfn "making pizza %s" pizza.Name 
    pizza.MakeDough() 
    pizza.MakeSauce() 
    pizza.MakeTopping() 
 
// cook pepperoni pizza 
cook pepperoniPizza

Execution result from the builder pattern sample

making pizza Pepperoni Pizza 
make normal dough 
make hot sauce 
make pepperoni topping

The pizza interface and object expression give the program a good structure, but it makes things 
unnecessarily complicated. The builder pattern requires the actual processing function or functions 
be passed in, which is a perfect use of higher-order functions. Listing 3-30 uses a higher-order func-
tion to eliminate the interface and object expression.
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LISTING 3-30  Builder pattern implementation using a higher-order function

// pizza module that defines all recipes 
[<AutoOpen>] 
module PizzaModule =  
    let makeNormalDough () = printfn "make normal dough" 
    let makePanBakedDough () = printfn "make pan baked dough" 
    let makeCrossDough() = printfn "make cross dough" 
 
    let makeHotSauce() = printfn "make hot sauce" 
    let makeMildSauce() = printfn "make mild sauce" 
    let makeLightSauce() = printfn "make light sauce" 
 
    let makePepperoniTopping() = printfn "make pepperoni topping" 
    let makeFiveCheeseTopping() = printfn "make five cheese topping" 
    let makeBaconHamTopping() = printfn "make bacon ham topping" 
 
// cook takes the recipe and ingredients and makes the pizza 
 
let cook pizza recipeSteps =  
    printfn "making pizza %s" pizza 
    recipeSteps  
    |> List.iter(fun f -> f()) 
 
[ makeNormalDough; makeMildSauce     
  makePepperoniTopping ] 
|> cook "pepperoni pizza"

Working with the Façade Pattern
The façade pattern provides a higher-level interface that makes invoking an underlying class library 
easier, more readable, or both. Listing 3-31 shows how to perform an employment background check.

LISTING 3-31  An example of the façade pattern

// define Applicant record 
type Applicant = { Name : string } 
 
// library to perform various checks 
[<AutoOpen>] 
module SubOperationModule =  
    let checkCriminalRecord (applicant) =  
        printfn "checking %s criminal record..." applicant.Name 
        true 
 
    let checkPastEmployment (applicant) =  
        printfn "checking %s past employment..." applicant.Name 
        true 
 
    let securityClearance (applicant, securityLevel) =  
        printfn "security clearance for %s ..." applicant.Name 
        true 
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// façade function to perform the background check 
let isBackgroundCheckPassed(applicant, securityLevel) =  
    checkCriminalRecord applicant 
    && checkPastEmployment applicant 
    && securityClearance(applicant, securityLevel) 
 
// create an applicant  
let jenny = { Name = "Jenny" } 
 
// print out background check result 
if isBackgroundCheckPassed(jenny, 2) then printfn "%s passed background check" jenny.Name 
else printfn "%s failed background check" jenny.Name

Execution result from the façade pattern sample

checking Jenny criminal record... 
checking Jenny past employment... 
security clearance for Jenny ... 
Jenny passed background check

Working with the Memento Pattern
The memento pattern saves an object’s internal state so that it can be used later. In Listing 3-32, 
the particle class saves its location information and later restores that information back to the saved 
location. If the state data is relatively small, a list storage can easily turn the memento pattern into a 
redo-undo framework.

LISTING 3-32  An example of the memento pattern

// define location record 
type Location = { X : float; Y : float } 
 
// define a particle class with a location property 
type Particle() =  
    let mutable loc = {X = 0.; Y = 0.} 
    member this.Loc  
        with get() = loc 
        and private set v = loc <- v 
    member this.GetMemento() = this.Loc 
    member this.Restore v = this.Loc <- v 
    member this.MoveXY(newX, newY) = loc <- { X = newX; Y = newY } 
 
 
// create a particle 
let particle = Particle() 
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// save current state 
let currentState = particle.GetMemento() 
printfn "current location is %A" particle.Loc 
 
// move particle to new location 
particle.MoveXY(2., 3.) 
printfn "current location is %A" particle.Loc 
 
// restore particle to previous saved location 
particle.Restore currentState 
printfn "current location is %A" particle.Loc

Writing Design Patterns: Additional Notes

As I mentioned in the beginning of this chapter, design patterns have been criticized since their birth. 
Many functional programmers believe that design patterns are not needed when programming in 
a functional style. Peter Norvig, in his paper “Design Patterns in Dynamic Languages,” claims that 
design patterns are just missing language features and demonstrates that design patterns can be 
simplified or eliminated completely when using a different language. I am not planning to be part of 
these discussions. Design patterns are a way to represent a system or idea. It is really a de facto and 
concise way for many computer professionals to describe system design. If the program is simple and 
small, design patterns are often unnecessary. For these scenarios, the use of basic data and flow-
control structure is enough. However, when a program becomes large and complicated, a tested 
approach is needed to organize thinking and avoid possible design flaws or bugs. If the basic data 
structure is analogous to a word in a sentence, design patterns can be viewed as the idea to organize 
an article.

As a functional-first programming language, F# is adept at creating code with a functional style. 
For example, the pipeline and function composition operators make function operation much easier. 
Instead of being confined to a class, the function can be freely passed and processed like data in F#. 
If the design pattern is mainly about how to pass an action/operation or coordinate the flow of an 
operation, the pipeline and function composition operators can definitely simplify the implementa-
tion. The chain of responsibility pattern is an example. The biggest change from C# is that a function 
in F# is no longer auxiliary to the data; instead, it can be encapsulated, stored, and manipulated in 
a class. The data (field and property) in a class can actually be provided as a function or as method 
parameters and remain auxiliary to the function. Additionally, the presence of a class is optional if the 
class only serves as an operation container. The builder pattern demonstrates a way to eliminate the 
class while still implementing the same functionality.

Functional programming can still have a structure to encapsulate logic into a unit. Functions, which 
can be treated like data, can be encapsulated in a class or inside a closure and, more importantly, the 
application of object expressions provides an even simpler way to organize the code. Listing 3-33 
shows different ways to encapsulate the data.
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LISTING 3-33  Data encapsulation

F# closure

let myFunction () =  
    let constValue = 100 
    let f () = [1..constValue] |> Seq.iter (printfn "%d") 
    f()

Object expression

let obj = 
    let ctor = printfn "constructor code" 
    let field = ref 8 
    { new IA with 
        member this.F() = printfn "%A" (!field) 
      interface System.IDisposable with 
        member this.Dispose() = ()}

Object expressions are great, because the type is created on the fly by the compiler. Instead of 
inventing a permanent boilerplate class to hold the function and data, you can use object expres-
sions to quickly organize functions and data into a unit and get the job done. Imagine an investment 
bank with a bunch of mathematicians who lack a computer background: object expressions can let 
them quickly transform their knowledge into code without worrying about programmers complaining 
about their inability to implement complex inheritance hierarchies. The flattened structure from the 
object expression is a straightforward and suitable approach for quick prototyping and agile develop-
ment. The command pattern is a good sample for demonstrating how to use object expressions to 
simplify the design.

Both functional programming and object-oriented programming have their own way of reusing 
the code. Object-oriented programming uses inheritance, while functional programming uses higher-
order functions. Both approaches have loyal followers, and you might already be convinced that one 
is superior to the other. I say that both approaches have their own advantages under certain circum-
stances. Unfortunately, neither is a silver bullet that can be used to solve all problems. Using the right 
tool for the right job is the key. F#, which supports both OO and functional programming, provides 
both approaches, and this gives the developer the liberty to use the best way to perform the system 
design.

F# provides the alternative to encapsulation (object expressions) and inheritance (higher order 
functions): polymorphism. It can also be implemented by higher-order functions when given differ-
ent parameters. This is yet another example of how F# provides a wide set of tools for developers to 
implement their components and systems.
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In addition, the adapter pattern introduces the GI function, which breaks class encapsulation and 
makes possible communication between objects that do not share a common base class. It is not 
a recommended way to use the original object-oriented design; however, it is a feasible approach 
to wrap legacy code because of inaccessibility to the source code. It is not fair to blame a gun for 
causing crime and not blame the criminal. Likewise, F# provides this approach, but I’ll leave the 
decision to you regarding when and how to use it.

It is totally fine to copy a standard object-oriented approach when doing system design, especially 
when someone is new to a language. If you are motivated to use F# to write design patterns, here 
are some principles that I used to implement the design patterns in this chapter. If the design pattern 
is a behavior design pattern, its main focus is on how to organize the function, so consider using the 
function composition and pipeline operators. If the function needs to be organized into a unit, put 
the function into a module and use object expressions to organize the function. If the design pattern 
is a structural design pattern, I always question why extra structure is needed. If the extra structure 
is a placeholder for functionality, higher-order functions most likely will do the same job. If the extra 
structure is needed to make two unrelated objects work together, the GI function could be a good 
candidate to simplify the design.

F# is a young language and how to properly apply its language feature into the system design 
is still a new topic. Keep in mind that F# provides the OOP way of implementing class encapsula-
tion, inheritance, and polymorphism. This chapter is only a small step to explore how to use F# in 
system design.
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Symbols
|||>, ||>, <|||, and <|| operators, 200–201
:: (con) operator, 26, 312
& (ampersand) operator, 60
<@@ and @@> operators, 220, 367
> (angle bracket), 33–34
@ (at) operator, 26, 396
<| (backward pipe operator), 54
! (bang) operator, 136, 283
** (double star) operator, 76, 293
= (equal sign), 33–34, 66
< function, 331
:> operator, 97–98
:= operator, 136, 283
:? operator, 317
:?> operator, 98
=? operator, 188
?< operator, 192
?= operator, 188
|> (pipe-forward operator), 30–32
% quotation splicing operator, 229
%% quotation splicing operator, 229
_ (underscore), 50, 310

A
A* algorithm, 433–435
‘a type, 33
abs function, 201
abstract classes, 92–95

attributes, 94–95
abstract keyword, 92–93
AbstractClass attribute, 92, 95
accessibility modifiers, 71, 82
acos function, 201
Activator.CreateInstance method, 248, 255
active patterns, 132, 133, 318–322

generating new, 442
multicase-case, 320–321
parameterized, 321–322
partial-case, 320
single-case, 319–320

adapter pattern, 129, 134–135

add reference add-in, 25
Add Reference dialog box, 119
ADO.NET Entity Framework, 171
agents, 340–344

events in, 341–342
exception handling, 342–343

algebra
CUDA Basic Linear Algebra Subroutines library, 551–559
resources for, 601

The Algorithmist website, 385
algorithms. See also portable library

implementing, 392
selecting and using, 143–144

aliases, type, 56
all operator, 197
AllowIntoPattern property, 351–352
AllowNullLiteral attribute, 291
ampersand (&) operator, 60
and keyword, 102–103, 106–107, 303
And/Or pattern, 316
AND pattern, 322
angle bracket (>), 33–34
animations, 464–465
anonymous object types, 284
APM (Asynchronous Programming Model), 332
append function, 36
architectural patterns, 383–384
Array module, 32
array pattern, 311–313
Array.ofList function, 40
Array.ofSeq function, 40
arrays, 28–30

categorizing elements, 402–403
comparing, 29
defined, 28
defining, 29
indexing, 29
length of, 32
longest increasing sequence, 403
median of, 400–402
merging, 398–399
processing with GPU, 593–594
slicing, 30
summing, 398–400

Array.toList function, 39
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Array.toSeq function, 39
as keyword, 86
as pattern, 317
ASCII string representations, 6
AsEnumerable(), 183
asin function, 201
ASP.NET website

creating, 455–458
generated JavaScript code, 457–458

AssemblyInfo, 120
assert keyword, 222
async expression, 344–345
async keyword, 334
Async.Catch function, 334
Async.FromBeginEnd function, 339
Asynchronous Programming Model (APM), 332
asynchronous workflows, 330–340

back-end processes, 336–337
callback processes, 336–337
canceling, 335–339
debugging, 340
exception handling, 334–335
function interface, 331–332
let! and do! operators, 333
primitives, building, 339
quick sort function, 338–339

Async.StartChild function, 337
Async.StartWithContinuation function, 334
at (@) operator, 396
atan function, 201
attributes, 94–95

constant values, defining with, 46
defining, 355–359
properties, adding to, 278–279
restrictions on, 358

auto-implemented properties, 74–75, 84
AutoOpen attribute, 64
average function, 37, 193
Azure. See Windows Azure
Azure Service Bus Queue code snippets, 498–499

B
B suffix, 6
backward composite operator, 54
backward pipe operator (<|), 54
bang (!) operator, 136
base classes

abstract, 304
casting to, 97–98
extending, 286–287
for multi-inheritance type provider, 255–256

base keyword, 91
base types, IntelliSense and, 230–231
binaries, building, 22
binary operators, 114
binary search trees (BSTs), 408–409. See also tree 

structures
building, 412–413

children, checking, 413–414
common elements, finding, 415

binary trees, 405–409. See also tree structures
binary search trees, 408–409, 412–415
building, 411–413
children, checking, 413–414
common ancestors, finding, 417–420
common elements, finding, 415
deleting, 410
diameter, finding, 416–417
traversing, 305, 411

binomial options pricing model (BOPM), 591–592
binomial trees, and binomial options pricing model, 

591–592
bitwise operations, 48
bitwise operators, 48
blob storage service, Azure, 488–494

blob operations, 490
cloud queue and, 489–494
code snippets, 498
worker role code, 490–494

BOPM (binomial options pricing model), 591–592
boxing, 99
breadth-first search (BFS) algorithm, 431
bridge pattern, 129, 134–135
brokered messaging, 517
BSTs (binary search trees), 408–409, 412–415
builder pattern, 129, 153–155
byref keyword, 61

C
C#

auto-implemented property, 74
constraints, 105
converting to F#, 25, 40–46
data types, 5–6
imperative implementation, 4
imperative programming support, 3
interoperating with, 119–120
methods, invoking, 79
object-oriented programming support, 3
passing code to, 288–289
Point2D class definition, 69–70
switch statement, 11

C, converting to .NET types, 567–568
caching

intermediate results, 376
values, 374

canContinue function, 131
casting, type, 96–99
ceil function, 201
chain of responsibility pattern, 128, 130–134
chainOfResponsibility function, 131
chainTemplate function, 131
characters, from number inputs, 439–440
checkWithFunction function, 148–149
checkWithMatch function, 148–149
Choice helper type, 318

Array.toSeq function
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class equality, 302
class keyword, 70–71
class properties, encapsulating, 153
classes, 70–90

abstract, 92–95
accessibility modifiers, 71
attributes, 94–95, 356
casting, 97–98
constructors, 80–85
defining, 70–71
eliminating, 157
extension methods, 110–111
fields, adding, 72–73
implicit and explicit class construction, 92
indexers, creating, 85–86
initialization code, 80
instances, creating, 95–96
methods, defining, 76–79
nullable, 291
partial, 72
properties, defining, 74–75
protected keyword, 71
proxy, 206–208
public keyword, 71
sealed, 92–95
self-identifiers, 86–89
singletons, 149
special/reserved member names, 89–90
static methods, defining, 79–80
vs. records, 302

CLIMutable attribute, 300–302
Close method, 241, 242
Closure, 3
cloud computing, 467

Genetic Algorithms, 509–528
MapReduce, 499–509
Windows Azure, 467–499

cloud data
Excel files, writing to, 211–212
Word documents, writing to, 212–215

cloud queue, 476–484
blob service and, 489–494
for chromosome storage, 524
code snippet, 498
consumer role code, 481–482
deployment settings, 482–483
emulator, 483–484
GA communication, 526
GAs, setting up for, 526
instance number, setting, 482
operations, 479–480
size, controlling, 527
sleep time, changing, 480–481
worker role projects, 473–475, 477

Cloud Service projects, 473–474
code

converting from F# to CUDA, 560
errors, catching, 297
executing, 18
execution time, 19
grouping, 71

initialization, 80
modules, 63
namespaces, 63–65
passing to C#, 288–289
reusing, 158
segmenting into scopes, 8

code quotations, 220, 259, 367–369. See also quotations
code snippets, 226, 279–281

Azure blob storage service, 498
Azure Service Bus Queue code snippets, 498–499
cloud queue, 498
constructors, 280
F# add-in, 24
GA communication with cloud queue, 526
measure builders, 281
parameters, 281
provided methods, 280
provided parameters, 281
provided properties, 280
Service Bus service interface definition, 522
static parameters, 280
type provider skeleton, 281
type providers, 226, 279–281
Windows Azure, 498–499
XML comments, 281

Coding Faster: Getting More Productive with Microsoft 
Visual Studio (Microsoft Press, 2011), 4

collect function, 36
collections

aggregating, 35
appending one to one, 36
combinations, 438–439
converting types, 39–45
filtering, 35
of functions, 41–45
iterating, 8
length, 35–36
mapping, 35
mathematical operations on, 37–38
processing, 392–402

command objects, 130
command pattern, 129, 135–139
comparison operations, 306–308
compile symbols, 23
COMPILED compile symbol, 23
CompiledName attribute, 384–385
compiler directives, 22–23
composite operators, 55
composite pattern, 129, 149–151
CompositeNode structure, 150–151
computation expressions, 344–355

attributes, 349–354
methods, 346–347
restrictions, 345–346
for rounding, 346
sample, 354–355

con operator (::), 312
conditional compilation symbols, 166
connect function, 151–152
connection strings, specifying, 164–166
console applications, creating, 15–16, 62

	 console applications, creating
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console output, 12–14
Console.WriteLine method, 12
constant pattern, 309
constants, defining, 46
constraints, 104–108

chaining, 106–107
functions, 134
NULL, 105–106

constructors, 80–85
accessibility modifiers, 82
code snippet, 280
do bindings, 83, 84
implicit and explicit class construction, 92
invoking, 91
let bindings, 83, 84
multiple, 81–82
new keyword, 80
optional, 80
primary, 80
in records, 300–302
static, 85
then keyword, 84
in type providers, 220, 223–226
XML documents and, 85

consumer role code, 481–482
contains operator, 196–197
continuation passing style (CPS), 448–455

Fibonacci function, converting, 454–455
recursive functions, converting, 451–452
tree traversal, converting, 452–454
vs. recursion vs. tail calls, 449–450

conversion. See also quotations
data, 121–122
implicit and explicit, 97

CoreComputation class, 142–143
cos function, 201
cosh function, 201
count operator, 195–196
CPS (continuation passing style), 448–455
CPUs

filtering functions, moving to GPU, 599–600
host memory, 538
Pascal Triangle, 588–591

CSV type provider, 233–239
cuBLAS (CUDA Basic Linear Algebra Subroutines) library, 

551–559
data structures, 551
dumpbin.exe, 551–556
F# wrapper code, 551–556
invoking, 558–559
overloaded functions, 556–558

CUDA, 530, 531–559
converting to F# code, 560
CUDA Basic Linear Algebra Subroutines library, 

551–559
CUDA Random Number Generation library, 540–550, 

595
CUDA Toolkit, 540–559
cudaLimit enumeration, 535
data, transferring between device and host memory, 

539–540

data structure definition, 532–533
defined, 531
device flag definitions, 536–537
device management functions, 536
device memory-management function, 538–539
device property execution result, 535
driver and runtime APIs, 538, 540
driver information, 537–538
F# code, translating, 572–591
graphics card limitations, 535–536
graphics card properties, 531–532
installation, 531
interop code, 534–535

CUDA Zone, 601
CUDADeviceProp structure, 531
cudaError structure, 531, 538
CUDALibrary.h file, 569, 576
CUDAMemcpyKind type, 538
CUDAPointer, 561
CUDAPointer2, 560
CUDARuntime class, 581–588
cuError structure, 538
cuRAND (CUDA Random Number Generation) library, 

540–550, 595
accept-reject algorithm, 550
CUDAPointer struct, 541–542
CUDARandom class, invoking, 549
CUDARandom class definition, 548–549
RanGenerator structure, 541
x86 and x64 versions, 541–547

CustomOperation attribute, 350–351

D
data binding, enabling, 390–391
Data property, 236, 237
data-rich environments, 163
data sets, processing, 499. See also MapReduce
data structures

attributes, applying, 357–358
defined, 3

data types. See also types
basic, 5–8
sorting, 392–397
triple-quoted strings, 6–7
variable names, 7–8

databases. See also query syntax; SQL databases, Azure
counting data elements, 195
external access, 166
filtering data, 184–185, 204–205
grouping data, 190
joining data, 186–187
records, adding and removing, 173–174
skipping data, 191–192
sorting data, 188–189
updating, 169
Word documents, passing data to, 212–215

db variable, 167, 169
debugging multithreaded operations, 340

console output
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decorator pattern, 129, 141–142
decr function, 136, 283–284
default keyword, 92–93
defaultArg function, 76–77
DefaultValue attribute, 73
define first and reference later principle, 84
delegates, 115–119

combining, 116
defined, 115
defining, 115
invoking, 116

depth-first search (DFS) algorithm, 430–431
derived classes, casting to, 98
design patterns, 127–159

active patterns, 132, 133
adapter pattern, 129, 134–135
behavior patterns, 159
bridge pattern, 129, 134–135
builder pattern, 129, 153–155
chain of responsibility pattern, 128, 130–134
command pattern, 129, 135–139
composite pattern, 129, 149–151
decorator pattern, 129, 141–142
defined, 127–128
facade pattern, 129, 155–156
factory pattern, 129, 147–149
for MapReduce, 506–509
memento pattern, 129, 156–157
object-oriented programming and, 127–128
observer pattern, 129, 139–141
private data class pattern, 129, 153
proxy pattern, 129, 142–143
singleton pattern, 129, 149
state pattern, 129, 144–147
strategy pattern, 129, 143–144
structural patterns, 159
template pattern, 129, 151–152
writing, 157–159

design principles, SOLID, 284
design-time DLLs, 271
__device__ keyword, 573–574
device memory, 538. See also GPUs (graphics processing 

units)
CUDA management function, 538–539
transferring from host memory, 539–540

DFS (depth-first search) algorithm, 430–431
DGML-file type provider, 262–271
DGML files, graph deserialization from, 429
DGMLClass type, 265
DGMLReader, invoking, 429
Dijkstra algorithm, 436–438
Directed Graph Markup Language (DGML), 262
disconnect function, 151–152
discriminated unions (DUs), 137–138, 303–305

binary tree structures, 305
comparing, 306–308
decomposing, 313–314, 417
interfaces, 304
members and properties, 304
recursive feature, 303
reflection on, 361–362

Shape type, 304
Dispose method, 103–104
distinct operator, 195–196
do bindings, 83, 84

self-identifiers in, 86–87
do! (do-bang), 333
Do/Undo functionality, 137–138
dot notation, 26–27
double-backticks, 7–8
double star (**) operator, 76
downcast keyword, 98
dual-choice structures, 318
dumpbin.exe, 556
DUs. See discriminated unions (DUs)

E
echo services, 520–522
elements

all, checking, 34
existence, checking, 32–34
index lookups, 35

elif expressions, 10
else compiler directive, 22
Emit method, 506
Empty function, 26
emptyList element, 26
emptyList2 element, 26
encapsulation, 128, 157

class properties, 153
endif compiler directive, 22
Entity type provider for Azure SQL databases, 497–498
EntryPoint attribute, 62–63
enum conversion, 96–97
enumerations, 8

defining, 47–48
equal function definitions, 33
equal sign (=), 33–34, 66
equality comparisons, 27
erased type providers, 217–218

vs. generated type providers, 273
errors

indentation problems, 24
type conversion, 5
type information and, 58

escape characters, 7
Event type, 117
events, 115–119, 370

converting, 371–372
defined, 116
defining, 117–118
filtering, 371
invoking, 116–117
merging, 371–372
partitioning data, 370–371

evolutionary process. See GAs (Genetic Algorithms)
exactlyOne operator, 197
Excel, retrieving cloud data into, 211–212
Excel-file type provider, 239–244

	 Excel-file type provider
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exception handling
in agents, 342–343
in asynchronous workflows, 334–335

exceptions, 323–326
catching, 323–324
defining, 325–326
exn abbreviation, 323
reflection on, 364–365
throwing, 324–325

exclamation point (!), 283
Execute In Interactive command, 18
Execute Line In Interactive command, 18
ExecuteStoreQuery method, 174
executeStrategy function, 144
executing code, 18

branching, 8–11
execution time, 19

exists function, 32–34, 196–197
exists2 function, 32–34
exn abbreviation, 323
explicit class construction, 92
extension methods, 110–111
extern function, 60

F
F1 function, 244
F2 function, 244
F#

code snippet add-in, 24
converting to CUDA code, 560, 572–591
data types, 5–6
define first and reference later approach, 84
depth colorizer, 24, 299
functional programming support, 3, 602
imperative programming support, 3
interoperating with C# projects, 119–120
NULL value support, 290–292
object-oriented programming support, 3, 69
operators, 114–115
snippets, 226, 279–281
syntax. See syntax
T-SQL knowledge, mapping to, 198–200
Windows 8 verification bug, 387

F# Interactive (FSI), 17–21, 31, 32, 59
F# library. See also portable library

for GPU translations, 529
F# quotations, 559–571. See also quotations
F# types, 46–67
facade pattern, 129, 155–156
factories, 147–149
factory pattern, 129, 147–149
failwith function, 324
failwithf function, 324
FCore numerical library (Statfactory), 601
fields, class

default values, 73
DefaultValue attribute, 73
defining, 72–73

explicit, 72–73
let keyword, 72
val keyword, 72–73

File System type provider, 179
filter function, 35
find function, 34–35, 196–197
fixed-query datasets, 206–208
fixed query schema file, 177
flexible types, 107
float type, 6, 37, 296
float32 type, 6
floor function, 201
flow control, 8–14

console output, 12–14
if expressions, 10–11
for loops, 8–9
match expressions, 11
while loops, 9–10

fold function, 35–36
for loops, 8–9

for...in form, 8–9
for...to/downto form, 8–9

forall function, 34
forall2 function, 34
Force method, 373
Fork/Join pattern, 330
formlets

for input and output, 458–460
as wizards, 460–463

forward composite operator, 54
FSharp.Data.TypeProviders assembly, 165
FSharpX project, 179
FSI (F# Interactive), 17–20, 165

commands, 20
debugging code, 31
default folder, 21
directives, 21
executing code, 18–19
function definitions, checking, 32
references, adding, 59
resetting sessions, 19–20
window, 17

FSIAnyCPU feature, 20–21
fst function, 49
FuncConvert.FuncFromTupled, 55
function keyword, 147, 309–310
function operators, 53–55, 157
functional programming, 3, 31, 45, 602

design patterns and, 157–158
functions, 41–45, 50–53

active pattern, 321–322
CompiledName attribute, 384–385
continuations, 449–450
defining, 50
definitions, checking, 32
encapsulating, 157–158
implementing, 365
initialization, 292
inline, 134
mutually recursive, 53
names, special characters in, 386

exception handling
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functions (continued)
naming convention, 384
nonpartial, 374–375
overriding, 88–89
partial, 374–376
quotations, getting, 560
referencing, 64
statically resolved type parameters, 134
tail calls, 53
templates, 151–152
wrapping, 236

G
garbage collection, 103
GAs (Genetic Algorithms), 509–528

Azure communication, 517–524
chromosomes, 509–511
in the cloud, 524–528
code, 514–516
code, invoking, 517
communication with cloud queue, 526
crossover and mutation, 512–513
diversity, 514
elitism, 513–517
fitness function, 509
loci, 510–511
Monitor role, 527–528
population, 509
population convergence, 514
population initialization, 510–511, 514
query results, 528
recombination, 509, 512–513
Run function, 526
selection, 512
simple GA functionality, 510

General-Purpose Computation on Graphics Hardware, 
601

general-purpose GPU. See GPGPU (general-purpose 
GPU)

generated properties, 278–279
generated type providers, 217, 218, 273–279

fields, 275–277
test code, 277

generated types, accessing, 275
generic constraints, 106–108
generic invoke (GI) function, 13, 159, 326–327

inline function, 326–327
generic types, 104–108

new keyword and, 96
Genetic Algorithms (GAs). See GAs (Genetic Algorithms)
GetDataContext method, 166
GitHub, 179
__global__ keyword, 573–574
global operators, 115
GPGPU (general-purpose GPU), 529–530

defined, 530
F# translations on, 572–591
for real-time math operations, 529

GPUAttribute attribute, 571, 576
GPUExecution class, 581–588
GPUs (graphics processing units), 529–530

array processing, 593–594
data, copying to and from, 539–540
defined, 530
device flag definitions, 536–537
driver information, 537–538
filtering functions, 599–600
functions, loading and executing, 581
hardware limitations, 535–536
OpenCL, 530
Pascal Triangle, 588–591
performance, measuring, 600–601
simulations, 594–601
supported types, checking for, 571
uses, 530

Graph class, 427
graph library, 427–438

A* algorithm, 433–435
breadth-first search algorithm, 431
depth-first search algorithm, 430–431
Dijkstra algorithm, 436–438

graphics processing units. See GPUs (graphics 
processing units)

graphs
defined, 427
deserializing, 429
paths, finding, 432–438

group join operations, 186
group operator, 190
grouping code, 71
groupValBy keyword, 190

H
head operator, 194–195
HelloWorld generated type provider, 274
HelloWorld type provider, 222–226

constructor, 223–226
invoking, 222
ProvidedMethod type, 223–226
ProvidedProperty type, 223–226

#help directive, 21
HideObjectMethods property, 228
higher-order functions, 131, 144, 151–152, 154, 158–159
host memory, 538

transferring to device memory, 539–540
HTML5 pages, creating, 463–465

I
id function, 36
identifier pattern, 313–316
IDisposable interface, 59, 103–104

new keyword and, 95
IEchoChannel interface, 520, 522

	 IEchoChannel interface
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IEchoContract interface, 520, 522
if compiler directive, 22
if expressions, 10–11

else branch, 10
ignore operator, 56
ILoanCalculator interface, 487
images, storing as blobs, 488–489
imperative programming, 3, 45–46
implicit class construction, 92
IMyInterface parameter, 284
“Incomplete pattern matches on this expression” 

warnings, 244
incr function, 136, 283–284
indexed properties, 75
indexers

arrays and, 29
creating, 85–86
Item property, 85–86
lists and, 26–27

inherit keyword, 91
inheritance, 91–92, 128, 158

interfaces and, 102–103
with type providers, 251–259

initialization code, 80
additional, 84

inline function, 326–327
input, invalid, 291
input strings, reading, 290–291
InstanceContextMode field, 527
instances

creating, 95–96
upcasting and downcasting, 97–98

integers, converting to enumeration, 47
IntelliSense, 17, 163

base types and, 230–231
column names, 168
in F# projects, 169
generated types and, 217
type information, 58
with type providers, 167–168

INTERACTIVE compile symbol, 23
interfaces

defining, 99–104
IDisposable, 103–104
implementing, 100–102
inheritance, 102
with properties, 100

interleaving, 330, 331, 425–426
internal keyword, 82
interop function, 59–61
interoperating with C# projects, 119–120
invalidArg function, 325
InvalidCastException function, 98
invalidOp function, 325
InvalidOperationException errors, 84
InvokeCode, 259
IsErased property, 273
IsLikeJoin property, 353
IsMatch static method, 227–229
IState interface, 264

Item property, 75, 85–86
item templates, 18

J
join operator, 186–188

group joins, 186–187
outer joins, 187

JSON serialization, 209
JSON type provider, 179

K
Kadane algorithm, 399
KeyNotFoundException, 34
keywords, 89–90
Khronos Group, 601
KMP string search algorithm, 426–427

L
#l directive, 21
lambda expressions, 115–116
language features, 163
Language Integrated Query (LINQ), 3, 25
LanguagePrimitives.FloatWithMeasure, 296
LanguagePrimitives.Float32WithMeasure, 296
large data sets, processing, 499. See also MapReduce
last operator, 194–195
lazy evaluation, 373–374

on loops, 413
lazy keyword, 373
Lazy.Create, 374
legacy code, invoking, 134–135
length function, 32
let bindings, 83

modifiers and, 84
let keyword, 5, 72
let! (let-bang) operator, 333
libraries

CUDA Basic Linear Algebra Subroutines library, 
551–559

CUDA Random Number Generation library, 540–550, 
595

F# Portable Library template, 386
FCore numerical library (Statfactory), 601
graph library, 427–438
Portable Class Library project, 381
portable library, 382–455
Task Parallel Library, 337

line compiler directive, 22
line intersections, 442–443
linear algebra

CUDA Basic Linear Algebra Subroutines library, 
551–559

resources for, 601

IECHOContract interface
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LINQ (Language INtegrated Query), 3, 25
LINQ-to-SQL type provider, 164–170
LIS (longest increasing sequence), 403
List module, 32
list pattern, 311–313
ListT type, 28
List.ofArray function, 40
List.ofSeq function, 40
lists, 26–28

combinations, 438–439
comparing, 27
concatenating, 26, 396
defining, 26
elements, attaching, 26
heads and tails, 396
indexing, 26–27
length of, 32
merging, 397
operators, 26
shuffling, 440–441
sorting, 38
structural equality, 27

List.toArray function, 39
List.toSeq function, 39
Literal attribute, 46, 166
#load directive, 21
lock function, 329, 330
log function, 201
log10 function, 201
longest increasing sequence (LIS), 403

M
mailbox processor, 146, 265, 340–341, 343–344
main function, 62
MaintainsVariableSpace property, 351
MaintainsVariableSpaceUsingBind property, 352–353
Manage NuGet Packages dialog box, 180
map combinators, 499
map data structure, 45
map function, 35
MapReduce, 499–509

counting, 506–507
data, passing in, 501–502
design patterns, 506–509
Emit method, 506
graph processing, 507–509
map step, 500
parameter and result queues, 503–504
reduce step, 500
simulating, 501
worker role projects, 502–505

match expressions, 11
missing patterns, 311
option type, 313

Match method, 229–230
match statement, 409

active pattern and, 322
shortcut for, 147–149

mathematical operations, 37–38
in real time, 529

matrices
graphs as, 432–433
manipulation, 601

max function, 37, 201
measure builders code snippet, 281
Median pattern, 401–402
member keyword, 74, 299

self-identifiers in, 86
member names, special/reserved, 89–90
members, hiding from base class, 89
memento pattern, 129, 156–157
memoization, 376–378

code template, 377–378
merge function, 397
merge operations

on arrays, 398–399
sorts, 397

message queues, 146
messaging, 517
meta-programming, 246, 259
methods

accessing, 101
defined, 76
defining, 76–79
extension, 110–111
invoking, 247–248
overriding, 93–94
static, 79–80
virtual, 92–93

Microsoft Excel, retrieving cloud data into, 211–212
Microsoft IntelliSense. See IntelliSense
Microsoft Translator, fixed-query datasets, 206–208
Microsoft Visual Studio 2012. See Visual Studio
Microsoft Web Platform Installer 4.5, 470
Microsoft Word, retrieving cloud data into, 212–215
Microsoft.FSharp.Control namespace, 116–117
Microsoft.FSharp.Core.dll, 27, 77–78
min function, 37, 201
min/max operators, 193
Model-View-ViewModel (MVVM) pattern, 383–384
modules, 32, 71

defining, 63
extending, 66
nesting, 64
use keyword and, 104

Monte Carlo simulation, 594–601
multithreaded operations

debugging, 340
immutable variables and, 10

mutable data, defining, 283
mutable fields, 109
mutable keyword, 10, 299
mutable variables, 137
MyCollectionExtensions namespace, 66
MyException type, 325

	 MyException type
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N
namespaces, 63–67
.NET 4+, 337
.NET methods, 60
.NET serialization, 209–211
.NET types, 281

converting to C, 567–568
neural networks, 443–448

defined, 443–444
training, 447–448

new keyword, 59, 80, 95–96
Norvig, Peter, 157
nowarning compiler directive, 22
nth operator, 194–195
NuGet packages, 179
NULL constraints, 105–106
NULL pattern, 313
NULL values, 105, 290–291, 534

options, converting to or from, 292
Nullable.float type, 193
nullArg function, 325
number conversion, 96–97
numerical input, characters from, 439–440
NVCC.exe, 577
NVIDIA CUDA, 530, 531–559

O
object expressions, 149, 158, 159, 284–289

abstract classes, 287
base classes, extending, 286–287
code, organizing, 288–289
multiple interfaces, implementing, 285
property declarations, 286
reference cells in, 286
restrictions, 289
WPF commands in, 287–288

object-oriented programming (OOP), 69–125
classes, 70–90
design patterns and, 127–128
encapsulation, 128
inheritance, 91–92, 128, 158
polymorphism, 128

objects
anonymous, 284
building, 153–155
decorating, 141–142
internal state, saving, 156–157
placeholders and interfaces for, 142–143
state of, 144–145

objExpression type, 284
Observable module, 140, 370–372

partition function, 370
ObservableCollection with list features, 122–125
ObservableList, 122–125
observer pattern, 129, 139–141
OData type provider, 177–178

parameters, 178

Windows Azure Marketplace, connecting with, 
203–206

Office Open XML File format, 239
Office OpenXML SDK, 212
OnRun function, 490
OnStart function, 490
OOP (object-oriented programming), 69–125
Open Data Protocol (OData) type provider, 177–178
open statement, 65
Open XML SDK, 239
OpenCL, 530
OpenCL on NVIDIA, 601
operator characters, names, 114
operators

binary, 114
generated names, 113–114
global, 115
overloading, 111–115
passing to higher-order functions, 332
unary, 114

option data structure, 132, 133
optional constructors, 80
options, 289–292

characteristics of, 289
members, 289
NULL values, converting to or from, 292
NULL vs. None, 290–291

Out attribute, 61
out parameter, 60
outer joins, 187
overloading

operators, 111–115
type inferences and, 57

override keyword, 88
overriding

functions, 88–89
methods, 93–94

P
parallel/asynchronous programming, 330
parameters

for active pattern, 321–322
code snippet, 281
grouping, 49
named features, 76–77
optional, 76–79

partial functions, 374–376
Pascal Triangle, 588–591

BOPM, converting to, 592
processing, 591

pascalTriangle function, 572
pattern grouping, 316
pattern matching, 309–318

And/Or pattern, 316
array pattern, 311–313
Choice helper type, 318
constant pattern, 309
function keyword, 309–310

namespaces
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pattern matching (continued)
identifier pattern, 313–316
list pattern, 311–313
missing patterns, 311
NULL pattern, 313
as pattern, 317
pattern grouping, 316
quick sort algorithm, 396
record pattern, 313–316
tuple pattern, 310–311
type pattern, 317
underscore (_), 310
variable patterns, 317
when guard, 317

patterns. See also design patterns; pattern matching
defined, 309

phone keyboard, 439–440
pi, calculation, 594–601
pipe-backward operator (<|), 54
pipe-forward operator (|>), 30–32
pipe operations, hooking into, 55
pipe operators, 55
pipeline operators, 157
placeholders, format specification indicators, 12
polymorphism, 128, 158–159
Portable Class Library project, 381
portable library

arrays, operations on, 398–402
code change for data binding, 390
collection data structures, 392–402
combination, 438–439
continuation passing style, 448–455
creating, 382–384
data, categorizing, 402–403
data types, sorting, 392–397
default content, 382
graph library, 427–438
line intersections, 442–443
neural networks, 443–448
phone keyboard, 439–440
project properties, 388
properties, 383
reservoir sampling, 441–442
Result property, 390, 391
samples, 385–455
sequences, 403
shuffle algorithm, 440–441
string operations, 423–427
tree structures, 404–423
triangles, 443
for WinRT applications, 386–392

Post method, 146
primary constructors, 80
printf statements, 80
printfn function, 12–13, 330

with lock, 331
private data class pattern, 129, 153
processing objects, 130
programs

running, 15–23
scope, 8

project references, 119
ProjectionParameter, 350
projects

AssemblyInfo, 120
creating, 16
referencing, 119

properties
accessibility levels, 74
attributes, adding, 278–279
auto-implemented, 74–75, 84
defining, 74–75
indexed, 75
initializing values, 75
member keyword, 74

protected keyword, 71
provided methods, 219, 220

code snippet, 280
generating, 253–255

provided parameters code snippet, 281
provided properties, 219

code snippet, 280
provided types, 219

base type, erasing to, 244–245
ProvidedAssembly class, 273
ProvidedMeasureBuilder type, 234
ProvidedMethod type, 223–226
ProvidedProperty type, 223–226
ProvidedTypeDefinition, 226
proxy classes, 206–208
proxy pattern, 129, 142–143
PTX file, 560, 577–581
public keyword, 71
Publish method, 117
Publish Windows Azure Application Wizard, 475–476

Q
queries, fixed-query datasets, 206–208
query function, 151–152, 344–345
query syntax, 180–201

all operator, 197
average operator, 193
contains operator, 196–197
count operator, 195–196
distinct operator, 195–196
exactlyOne operator, 197
exists operator, 196–197
find operator, 196–197
group operator, 190
head operator, 194–195
join operator, 186–188
last operator, 194–195
min/max operators, 193
nth operator, 194–195
nullable values, 189, 193
select operator, 182–184
server-side code, 183
skip operator, 191–192
sortBy operator, 188–189

query syntax
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query syntax (continued)
sum operator, 193
take operator, 191–192
where operator, 184–185
Word documents, generating, 212–215

quick sorts, 396
#quit directive, 21
quotation marks, escaping, 7
quotation splicing operators, 229
quotations, 220, 259, 367–369, 529, 559–571

block and thread relationships, 573
BlockDim, 573
code generation function, 574–577
code structure intermediate functions, 568–569
code translation, 560–561
CUDA data structures, 573
__device__ keyword, 573–574
functions for checking supported types, 571
functions for return type and signature, 569–571
__global__ keyword, 573–574
on GPGPU, 572–591
GPUAttribute attribute, 571, 576
iterating tree structure, 368–369
.NET types to C, 567–568
Pascal Triangle, 588–591
pascalTriangle function, 572
PTX files, 560, 577–581
ReflectedDefinition attribute, 559–560
sample2 function, 572
ThreadIdx identifier, 573
tree traversal, 561–567

R
#r directive, 21
raise function, 324–325
random number generation (RNG), 540–550
random-selection algorithms, 440–442
rank selection, 512
Receive method, 146
record equality, 302
record pattern, 313–316
record-related functions, reflection on, 362–363
record types, 130

properties and methods, adding to, 153
records, 297–302

CLIMutable attribute, 300–302
comparing, 306–308
comparing with data structures, 302
copying, 298
defining and creating, 298
equality comparisons, 300
matching, 313–316
mutable fields, 299
serialization and, 301–302
static members, 299–300
vs. classes, 302

recursive functions, 53
on arrays, 400–401

converting to CPS, 451–455
lists, summing, 449–450
quotations, accessing with, 368–369
rewriting, 448

reduce combinators, 499
ref keyword, 60–61, 135, 283
reference assemblies, resolving, 252–253
reference cells, 136–137, 283–284

definition, 283
in object expressions, 286
sample, 345

reference equality, 302
references

to C# projects, 119
managing, 25

ReflectedDefinition attribute, 368, 559–560
reflection, 246, 248, 355–367

attributes, defining, 355–359
on discriminated unions, 361–362
on exceptions, 364–365
functions, implementing, 365
on record-related functions, 362–363
on tuples, 360–361
type information, 359–360

Registry type provider, 179
regular-expression type provider, 227–233
relayed messaging, 517
remote services and data, accessing, 175–178
RequireQualifiedAccess attribute, 65–66
reraise function, 324–325
reservoir sampling, 441–442
resources, releasing, 103–104
retry computation expression, 348–349
rev function, 38
RNG (random number generation), 540–550
roulette wheel selection, 512
round function, 201
Run function, 526
run-time DLLs, 271–272
running programs, 15–23

compiler directives, 22–23
console applications, 15–16
F# Interactive, 17–20
FSI directives, 21
FSIAnyCPU feature, 20–21

S
sample2 function, 572
Scala, 3
schema data, 251
schematized data, 239
scopes, segmenting code into, 8
script files vs. source files, 18
Sealed attribute, 95, 108
sealed classes, 92–95

attributes, 94–95
segmenting code, 8

query syntax
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select operator, 182–184
multiple select statements, 183–184

selection
rank, 512
roulette wheel, 512

self-identifiers, 86–89
in interface implementation code, 101
in property names, 74
this keyword, 74

semicolons, 10, 17, 26
seq expression, 344–345
Seq module, 32
Seq.fold function, 396
Seq.ofArray function, 40
Seq.ofList function, 40
Seq.toArray function, 39
Seq.toList function, 39
sequences, 28

binary trees, building, 411–413
in C#, 28
defined, 28
defining, 28
length, 32

Seq.windowed function, 330
serialization, 209–211

record types in, 301–302
Service Bus Relay service, 517
Service Bus service

client-side code, 522–524
default key, 519
echo service code, 520–522
interface definition snippets, 522
setting up, 518–519

set data structure, 45
SetFunction, 268
setter function, 74–75
Shape type, 304
shuffle algorithm, 440–441
simulations, GPU for, 594–601
sin function, 201
singleton pattern, 129, 149
singletons, 149
sinh function, 201
sizeof operator, 21
SizeT wrapper, 531
skip operator, 191–192, 205
slicing arrays, 30
snd function, 49
snippets, 226, 279–281. See also code snippets
SOLID (Single responsibility, Open-closed, Liskov 

substitution, Interface segregation, and 
Dependency inversion) design principles, 284

Some()/ None syntax, 132–133
sort function, 38
sortBy operator, 188–189
sortByNullable operator, 189
sortByNullableDescending operator, 189
sorting

data types, 392–397
merge sorts, 397
quick sorts, 396

source files vs. script files, 18
special characters, 89–90

in function names, 386
sprintf function, 88, 89
SQL databases, Azure, 494–498

accessing, 171
connection to, 496
creating, 494–496
Entity type provider, 497–498
tables, creating, 496–497

SQL Entity type provider, 171–174
Azure SQL access, 171–173
databases, updating, 173–174
parameters, 174
private and internal types, 172
queries, executing, 174
query operations, 182
SqlEntityConnection type name, 171

SQL Server type provider, 163
SQL type provider, 164–170

code, 165
parameters, 170
SQL access, 164
SqlDataConnection type name, 171
SQLMetal.exe code generation, 170

SqlConnection type, 169
SqlMetal.exe, 163, 170
sqrt function, 76

converting, 595
stack overflow exceptions, 53, 101
stack overflows, avoiding, 448–455
state data, saving, 156–157
state machines, 146–147

representing graphically, 262–264
state pattern, 129, 144–147
StateMachine class, 265, 268
statements, invoking, 247–248
Statfactory FCore numerical library, 601
static binding, 83
static constructors, 85
static keyword, 79–80

in let bindings, 83
static methods, defining, 79–80
static parameters

code snippet, 280
in type providers, 227–228, 233
types, 281

stderr, 14
stdin, 14
stdout, 14
storedProcedures parameter, 169
strategy pattern, 129, 143–144
StreamReader, 429
streams, standard, 14
string operations, 423–427

interleaving, 425–426
KMP search algorithm, 426–427
palindromes, finding, 423–424
permutations, finding, 424–425
substrings, decomposing into, 423

string operations
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strings
normal and verbatim, 6–7
syntaxes, 6
triple-quoted, 6–7

StructLayout attribute, 109
structs, 302

defined, 108
mutable fields, 109
restrictions on, 108–109

structural comparison, 306
structural equality, 27, 302, 306

tuples and, 49
structural hashing, 306
structure, defining, 108–109
subject objects, 139
subtype polymorphism, 128
suffix trees, 424
sum function, 37, 51, 193
SuppressRelocation property, 273, 277
swap function, 59
symbols, defining, 23
syntax

angle bracket (>), 33–34
equal sign (=), 33–34
semicolon, 10, 17, 26, 298
tilde (~), 111
underscore (_), 310

System.Collections.Generic.Queue, 408
System.Collections.Generic.Stack, 410
System.Object base type, 230, 242
System.Runtime.CompilerServices. Extension attribute, 

110–111
System.Runtime.InteropServices.

DefaultParameterValueAttribute attribute, 78
System.Runtime.InteropServices.Out attribute, 60
System.Text.RegularExpression.Match type, 230

T
T-SQL, mapping to F#, 198–200
tail calls, 53, 449
take operator, 191–192
tan function, 201
tanh function, 201
Task Parallel Library (TPL), 337
template pattern, 129, 151–152
then keyword, 84
thenBy keyword, 188
thenByNullable operator, 189
thenByNullableDescending operator, 189
this keyword, 74, 86–87, 101, 346
ThreadIdx identifier, 573
threads, 328–330

lock function, 329
spawning, 328

tilde (~), 111
#time switch, 19
translateFromNETOperator function, 595

tree structures, 149–151, 404–423
binary search trees, 408–409
binary trees, 405–409
binomial trees, 591–592
boundaries, calculating, 421–423
building, 411–413
children, checking, 413–414
common ancestors, finding, 417–420
common elements, finding, 415
deleting, 410
diameter, finding, 416–417
F# representation, 404
traversals, converting to CPS, 452–453
traversing, 404–407, 411

triangles, 443
Trigger method, 117
triple-quoted strings, 6–7
try...finally statement, 323, 324
try...with statement, 323
tuple pattern, 310–311
tuples, 48–50, 297

comparing, 306–308
defining, 48
fst function, 49
reflection, 360–361
snd function, 49
static methods and, 79–80

type aliases, 56
type casting, 96–99

boxing and unboxing, 99
enum, 96–97
numbers, converting, 96–97
upcasting and downcasting, 97–99

type conversion, implicit and explicit, 6
type extension, 110
type generation, 217
type inferences, 33, 57–59

processing order, 58
type parameter

with constraints, 108
new keyword and, 96

type-provider base class, 244–251
Type Provider Security dialog box, 167
type provider skeleton code snippet, 281
type providers, 163–215, 217–218

class code, 220
constructors, 220
CSV, 233–239
design-time adapter component, 259–262
development environment, 218–221
DGML-file, 262–271
erased, 217–218
Excel-file, 239–244
F1 and F2 functions, 244
File System, 179
functions, wrapping, 236
generated, 217, 218, 273–279
HelloWorld, 222–226
JSON, 179
lazy generation, 217

strings
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type providers (continued)
limitations, 281
LINQ-to-SQL, 164–170
multi-inheritance, 251–259
.NET 1.x types, 281
NuGet packages, 179
OData, 177–178
parameterizing, 227–228
provided types, 217
query syntax, 180–201
referencing, 219
Registry, 179
regular-expression, 227–233
run-time logic and design-time logic, separating, 

271–273
for schematized data, 239
sharing information between members, 244–245
snippets, 226, 279–281
SQL Entity, 171–174
static parameters, 227–228, 233
template for, 218–219
testing, 221
trust, revoking, 167
type generation, 217
verifying operation, 168
Windows Azure Marketplace, connecting to, 

201–215
wrapper, 245–251
writing, 226
WSDL, 175–177
Xaml, 179
XML, 259–262
Xml File, 179

type-specification indicators, 12–13
type system, 314

errors, catching, 297
typedefof function, 359
typeof operator, 359
TypeProviderConfig value, 234
types

base, 230–231
boxing and unboxing, 99
changing, 327
checking, 317
extending, 110
flexible, 107
generic, 104–108
information, retrieving, 359–360, 365–367
mutually recursive, 72
.NET, converting to C, 567–568
supported, checking for, 571
translating, 134
unit-of-measure, 233–239
zero-initialization, 73

U
UK Foreign and Commonwealth Office Travel Advisory 

Service, 201

unary operators, 114
unboxing, 99
Unchecked.defaultof operator, 73
Unchecked.defaultofT operator, 292
underscore (_), 50, 310
union cases, 303
unit keyword, 56
unit-of-measure feature, 132, 144–146
unit-of-measure types, 233–239

creating, 234
unit types, 56
units of measure, 293–297

converting among, 294
in functions, 295
removing, 296
static members, 295

upcast keyword, 97–98
use keyword, 95, 103–104
using function, 103–104

V
val bindings, 109
val keyword, 72–73
values, 149

caching, 374
var keyword, 5
variable names, 7–8, 89–90
variable patterns, 317
variables

defining, 5–6
immutable, 10
mutable, 10, 137

visibility, protected-level, 71
visit function, 405
Visual Studio

add-ins, 24–25
Blank App template, 387, 388
DGML, 262–263
F# Interactive window, 17
F# Portable Library template, 386
FSIAnyCPU feature, 20
item templates, 164
portable library, creating, 382–384
Reference Manager dialog box, 383
requirement for, 4
type-provider template, 218
Watch window, 90
Windows 8 verification bug, 387

W
WCF (Windows Communication Foundation) service, 

485–488
data contract and service contract interfaces, 486
starting, 487–488
worker role projects, 487–488

	 WCF (Windows Communication Foundation) service
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web applications
animations, 464–465
building, 455–465

Web Services Description Language (WSDL), 175
type provider, 175–177
type provider parameters, 176–177

WebSharper, 455–463
ASP.NET website, creating, 455–458
formlets as wizards, 460–463
formlets for input and output, 458–460
HTML5 pages, creating, 463–465

when guard, 317, 318
where operator, 184–185
while loops, 9–10
Windows 8 verification bug, 387
Windows Azure, 467–499

account signup, 468
applications, developing, 473–499
blob storage service, 488–494
cloud queue, 476–484
Cloud Service projects, 473–474
code snippet, 498–499
communication, 517–524
connection string, creating and setting, 477–478
consumer role projects, 477
deploying projects, 475–476
installation process, 471–472
management portal, 469–470
sleep time, changing, 480–481
SQL database, 494–498
Storage Account Connection String dialog box, 478
WCF service, 485–488
worker role projects, 473–475, 477

Windows Azure Marketplace, 201
account setup, 202–203
data, storing locally, 208–215
type providers, connecting with, 201–215

Windows Azure Service Bus, 517–524
Windows Azure Software Development Kit (SDK) for 

.NET, 470
Windows Communication Foundation (WCF) service, 

485–488
Windows Presentation Foundation (WPF) converter, 

121–122
Windows Runtime (WinRT), 381
Windows Store, 381
Windows Store applications, 381–455

code change for data binding, 390
CompiledName attribute, 384–385

main form text block, 389
portable library, creating, 382–384
portable library samples, 385–455

WinRT applications
business logic, 386–387
developing, 386–392

with keyword, 153, 298, 299
worker role projects, 473–474, 477

for blob storage, 490–494
default code, 474–475
for MapReduce, 502–505
project settings, 479
in WCF service projects, 487–488

workflows, asynchronous and parallel, 328–344
WPF commands, 287
WPF converter, 121–122
wrapper type providers, 246–251

sealed class for, 247
wrapping functions, 236
WriteToFile2 function, 595

X
Xaml type provider, 179
XLSX files, 239–241
XML comments code snippet, 281
XML documents, 85
Xml File type provider, 179
XML files

DGML files, 262
validation code, 260

XML serialization, 209–211
XML type provider, 259–262

Y
yield keyword, 28

Z
zero-initialization, 73
zip function, 38
zip3 function, 38

web applications
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