


 

PUBLISHED BY 
Microsoft Press 
A Division of Microsoft Corporation 
One Microsoft Way 
Redmond, Washington 98052-6399 

Copyright © 2008 by Jeffrey Richter and Christophe Nasarre 

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form 
or by any means without the written permission of the publisher. 

Library of Congress Control Number: 2007939306 
 
ISBN: 978-0-7356-6377-0 
 
1 2 3 4 5 6 7 8 9 10 QGT 6 5 4 3 2 1 
 
Printed and bound in the United States of America. 
 
Distributed in Canada by H.B. Fenn and Company Ltd. 
 
A CIP catalogue record for this book is available from the British Library. 
 
Microsoft Press books are available through booksellers and distributors worldwide. For further infor-
mation about international editions, contact your local Microsoft Corporation office or contact Microsoft 
Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. 
Send comments to mspinput@microsoft.com. 
 
Microsoft, ActiveX, Developer Studio, Intellisense, Internet Explorer, Microsoft Press, MSDN, MS-
DOS, PowerPoint, SQL Server, SuperFetch, Visual Basic, Visual C++, Visual Studio, Win32, Win32s, 
Windows, Windows Media, Windows NT, Windows Server, and Windows Vista are either registered 
trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. <possible 
third-party trademark info>. Other product and company names mentioned herein may be the trademarks 
of their respective owners. 
 
The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, 
and events depicted herein are fictitious. No association with any real company, organization, product, 
domain name, e-mail address, logo, person, place, or event is intended or should be inferred. 
 
This book expresses the author’s views and opinions. The information contained in this book is provided 
without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its 
resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly 
or indirectly by this book. 
 
Acquisitions Editor: Ben Ryan 
Developmental and Project Editor: Lynn Finnel 
Editorial Production: Publishing.com 
Technical Reviewer: Scott Seely; Technical Review services provided by Content Master, a member 
of CM Group, Ltd. 

Body Part No. X14-25709 



Dedication

To Kristin, words cannot express how I feel about our life together. 

I cherish our family and all our adventures.

I’m filled each day with love for you.

To Aidan, you have been an inspiration to me and have taught me 

to play and have fun. Watching you grow up has been so rewarding 

and enjoyable for me. I feel lucky to be able to 

partake in your life; it has made me a better person.

To My New Baby Boy (shipping Q1 2008), 

you have been wanted for so long it’s hard to believe 

that you’re almost here. You bring completeness and balance 

to our family. I look forward to playing with you, 

learning who you are, and enjoying our time together.

— Jeffrey Richter

To my wife Florence, au moins cette fois c’est écrit: je t’aime Flo.

To my parents who cannot believe that learning English 

with Dungeons & Dragons rules could have been so efficient.

— Christophe Nasarre





Contents at a Glance

Part I Required Reading
1 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
2 Working with Characters and Strings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Kernel Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Part II Getting Work Done
4 Processes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5 Jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6 Thread Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7 Thread Scheduling, Priorities, and Affinities. . . . . . . . . . . . . . . . . . . . . . 173
8 Thread Synchronization in User Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . 207
9 Thread Synchronization with Kernel Objects . . . . . . . . . . . . . . . . . . . . . 241

10 Synchronous and Asynchronous Device I/O. . . . . . . . . . . . . . . . . . . . . . 289
11 The Windows Thread Pool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
12 Fibers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

Part III Memory Management
13 Windows Memory Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
14 Exploring Virtual Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
15 Using Virtual Memory in Your Own Applications . . . . . . . . . . . . . . . . . 419
16 A Thread’s Stack  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
17 Memory-Mapped Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
18 Heaps  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519

Part IV Dynamic-Link Libraries
19 DLL Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
20 DLL Advanced Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
21 Thread-Local Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597
22 DLL Injection and API Hooking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
v



vi Contents at a Glance
Part V Structured Exception Handling
23 Termination Handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659
24 Exception Handlers and Software Exceptions  . . . . . . . . . . . . . . . . . . . . 679
25 Unhandled Exceptions, Vectored Exception Handling, and 

C++ Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705
26 Error Reporting and Application Recovery . . . . . . . . . . . . . . . . . . . . . . . 733

Part VI Appendixes
A The Build Environment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761
B Message Crackers, Child Control Macros, 

and API Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773



Table of Contents
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi
Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

64-Bit Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii
What’s New in the Fifth Edition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiv
Code Samples and System Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvi
Support for This Book  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvi

Questions and Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvi

Part I Required Reading
1 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

Defining Your Own Error Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

The ErrorShow Sample Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Working with Characters and Strings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Character Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

ANSI and Unicode Character and String Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Unicode and ANSI Functions in Windows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Unicode and ANSI Functions in the C Run-Time Library . . . . . . . . . . . . . . . . . . . . . . . 17

Secure String Functions in the C Run-Time Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Introducing the New Secure String Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

How to Get More Control When Performing String Operations . . . . . . . . . . . . 22

Windows String Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Why You Should Use Unicode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

How We Recommend Working with Characters and Strings . . . . . . . . . . . . . . . . . . . . 26

Translating Strings Between Unicode and ANSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Exporting ANSI and Unicode DLL Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
vii

Microsoft is interested in hearing your feedback so we can continually improve our books and learning  
resources for you. To participate in a brief online survey, please visit: 

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!



viii Table of Contents
Determining If Text Is ANSI or Unicode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Kernel Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

What Is a Kernel Object? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Usage Counting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

A Process’ Kernel Object Handle Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Creating a Kernel Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Closing a Kernel Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Sharing Kernel Objects Across Process Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Using Object Handle Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Naming Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Duplicating Object Handles  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Part II Getting Work Done
4 Processes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Writing Your First Windows Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A Process Instance Handle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

The CreateProcess Function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

pszApplicationName and pszCommandLine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Terminating a Process  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

The Primary Thread’s Entry-Point Function Returns . . . . . . . . . . . . . . . . . . . . . 104

The ExitProcess Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

The TerminateProcess Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

When All the Threads in the Process Die  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

When a Process Terminates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Child Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Running Detached Child Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

When Administrator Runs as a Standard User . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Elevating a Process Automatically . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Elevating a Process by Hand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

What Is the Current Privileges Context? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Enumerating the Processes Running in the System  . . . . . . . . . . . . . . . . . . . . . 118



Table of Contents ix
5 Jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Placing Restrictions on a Job’s Processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Placing a Process in a Job  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Terminating All Processes in a Job . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Querying Job Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Job Notifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

The Job Lab Sample Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6 Thread Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

When to Create a Thread. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

When Not to Create a Thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Writing Your First Thread Function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

The CreateThread Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

psa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

cbStackSize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

pfnStartAddr and pvParam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

dwCreateFlags  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

pdwThreadID  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Terminating a Thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

The Thread Function Returns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

The ExitThread Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

The TerminateThread Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

When a Process Terminates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

When a Thread Terminates  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Some Thread Internals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

C/C++ Run-Time Library Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Oops—I Called CreateThread Instead of _beginthreadex by Mistake . . . . . . . 168

C/C++ Run-Time Library Functions That You Should Never Call . . . . . . . . . . 168

Gaining a Sense of One’s Own Identity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Converting a Pseudohandle to a Real Handle . . . . . . . . . . . . . . . . . . . . . . . . . . 170



x Table of Contents
7 Thread Scheduling, Priorities, and Affinities. . . . . . . . . . . . . . . . . . . . . . 173

Suspending and Resuming a Thread. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Suspending and Resuming a Process  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Sleeping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Switching to Another Thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Switching to Another Thread on a Hyper-Threaded CPU . . . . . . . . . . . . . . . . . . . . . 178

A Thread’s Execution Times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Putting the CONTEXT in Context. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Thread Priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

An Abstract View of Priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Programming Priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Dynamically Boosting Thread Priority Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Tweaking the Scheduler for the Foreground Process . . . . . . . . . . . . . . . . . . . . 195

Scheduling I/O Request Priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

The Scheduling Lab Sample Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Affinities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

8 Thread Synchronization in User Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Atomic Access: The Interlocked Family of Functions  . . . . . . . . . . . . . . . . . . . . . . . . . 208

Cache Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Advanced Thread Synchronization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

A Technique to Avoid  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

Critical Sections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Critical Sections: The Fine Print. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Critical Sections and Spinlocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

Critical Sections and Error Handling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Slim Reader-Writer Locks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

Condition Variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

The Queue Sample Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Useful Tips and Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238



Table of Contents xi
9 Thread Synchronization with Kernel Objects . . . . . . . . . . . . . . . . . . . . . 241

Wait Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Successful Wait Side Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

Event Kernel Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

The Handshake Sample Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

Waitable Timer Kernel Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

Having Waitable Timers Queue APC Entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

Timer Loose Ends  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

Semaphore Kernel Objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

Mutex Kernel Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Abandonment Issues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Mutexes vs. Critical Sections  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

The Queue Sample Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

A Handy Thread Synchronization Object Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

Other Thread Synchronization Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Asynchronous Device I/O. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

WaitForInputIdle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

MsgWaitForMultipleObjects(Ex) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

WaitForDebugEvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

SignalObjectAndWait. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

Detecting Deadlocks with the Wait Chain Traversal API . . . . . . . . . . . . . . . . . . 281

10 Synchronous and Asynchronous Device I/O. . . . . . . . . . . . . . . . . . . . . . 289

Opening and Closing Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

A Detailed Look at CreateFile  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

Working with File Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

Getting a File’s Size  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

Positioning a File Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

Setting the End of a File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

Performing Synchronous Device I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

Flushing Data to the Device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

Synchronous I/O Cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303



xii Table of Contents
Basics of Asynchronous Device I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

The OVERLAPPED Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

Asynchronous Device I/O Caveats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Canceling Queued Device I/O Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

Receiving Completed I/O Request Notifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

Signaling a Device Kernel Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

Signaling an Event Kernel Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

Alertable I/O  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

I/O Completion Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

11 The Windows Thread Pool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

Scenario 1: Call a Function Asynchronously . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

Explicitly Controlling a Work Item . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

The Batch Sample Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

Scenario 2: Call a Function at a Timed Interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

The Timed Message Box Sample Application  . . . . . . . . . . . . . . . . . . . . . . . . . . 348

Scenario 3: Call a Function When a Single Kernel Object Becomes Signaled. . . . . 351

Scenario 4: Call a Function When Asynchronous I/O Requests Complete  . . . . . . . 353

Callback Termination Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

Customized Thread Pools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

Gracefully Destroying a Thread Pool: Cleanup Groups. . . . . . . . . . . . . . . . . . . 358

12 Fibers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

Working with Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

The Counter Sample Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

Part III Memory Management
13 Windows Memory Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

A Process’ Virtual Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

How a Virtual Address Space Is Partitioned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

Null-Pointer Assignment Partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

User-Mode Partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

Kernel-Mode Partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375



Table of Contents xiii
Regions in an Address Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

Committing Physical Storage Within a Region  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

Physical Storage and the Paging File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

Physical Storage Not Maintained in the Paging File . . . . . . . . . . . . . . . . . . . . . 379

Protection Attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

Copy-on-Write Access  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

Special Access Protection Attribute Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

Bringing It All Home . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

Inside the Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

The Importance of Data Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

14 Exploring Virtual Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

System Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

The System Information Sample Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

Virtual Memory Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

Memory Management on NUMA Machines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

The Virtual Memory Status Sample Application. . . . . . . . . . . . . . . . . . . . . . . . . 406

Determining the State of an Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

The VMQuery Function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410

The Virtual Memory Map Sample Application . . . . . . . . . . . . . . . . . . . . . . . . . . 415

15 Using Virtual Memory in Your Own Applications . . . . . . . . . . . . . . . . . 419

Reserving a Region in an Address Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

Committing Storage in a Reserved Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

Reserving a Region and Committing Storage Simultaneously  . . . . . . . . . . . . . . . . . 422

When to Commit Physical Storage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

Decommitting Physical Storage and Releasing a Region . . . . . . . . . . . . . . . . . . . . . . 426

When to Decommit Physical Storage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

The Virtual Memory Allocation Sample Application . . . . . . . . . . . . . . . . . . . . . 427

Changing Protection Attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

Resetting the Contents of Physical Storage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

The MemReset Sample Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

Address Windowing Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

The AWE Sample Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442



xiv Table of Contents
16 A Thread’s Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

The C/C++ Run-Time Library’s Stack-Checking Function . . . . . . . . . . . . . . . . . . . . . 456

The Summation Sample Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

17 Memory-Mapped Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

Memory-Mapped Executables and DLLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

Static Data Is Not Shared by Multiple Instances of an Executable 
or a DLL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

Memory-Mapped Data Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476

Method 1: One File, One Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476

Method 2: Two Files, One Buffer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476

Method 3: One File, Two Buffers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476

Method 4: One File, Zero Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

Using Memory-Mapped Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

Step 1: Creating or Opening a File Kernel Object . . . . . . . . . . . . . . . . . . . . . . . 478

Step 2: Creating a File-Mapping Kernel Object . . . . . . . . . . . . . . . . . . . . . . . . . 479

Step 3: Mapping the File’s Data into the Process’ Address Space . . . . . . . . . . 482

Step 4: Unmapping the File’s Data from the Process’ Address Space. . . . . . . 485

Steps 5 and 6: Closing the File-Mapping Object and the File Object  . . . . . . 486

The File Reverse Sample Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

Processing a Big File Using Memory-Mapped Files . . . . . . . . . . . . . . . . . . . . . . . . . . 494

Memory-Mapped Files and Coherence  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

Specifying the Base Address of a Memory-Mapped File . . . . . . . . . . . . . . . . . . . . . . 496

Implementation Details of Memory-Mapped Files . . . . . . . . . . . . . . . . . . . . . . . . . . . 497

Using Memory-Mapped Files to Share Data Among Processes . . . . . . . . . . . . . . . . 498

Memory-Mapped Files Backed by the Paging File . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

The Memory-Mapped File Sharing Sample Application  . . . . . . . . . . . . . . . . . 500

Sparsely Committed Memory-Mapped Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504

The Sparse Memory-Mapped File Sample Application . . . . . . . . . . . . . . . . . . 505



Table of Contents xv
18 Heaps  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519

A Process’ Default Heap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519

Reasons to Create Additional Heaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520

Component Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521

More Efficient Memory Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521

Local Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522

Avoiding Thread Synchronization Overhead  . . . . . . . . . . . . . . . . . . . . . . . . . . . 522

Quick Free. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523

How to Create an Additional Heap  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523

Allocating a Block of Memory from a Heap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

Changing the Size of a Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526

Obtaining the Size of a Block  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

Freeing a Block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

Destroying a Heap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

Using Heaps with C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

Miscellaneous Heap Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531

Part IV Dynamic-Link Libraries
19 DLL Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537

DLLs and a Process’ Address Space  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538

The Overall Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540

Building the DLL Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542

Building the Executable Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547

Running the Executable Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550

20 DLL Advanced Techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553

Explicit DLL Module Loading and Symbol Linking. . . . . . . . . . . . . . . . . . . . . . . . . . . . 553

Explicitly Loading the DLL Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555

Explicitly Unloading the DLL Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558

Explicitly Linking to an Exported Symbol  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561

The DLL’s Entry-Point Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562

The DLL_PROCESS_ATTACH Notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563



xvi Table of Contents
The DLL_PROCESS_DETACH Notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564

The DLL_THREAD_ATTACH Notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566

The DLL_THREAD_DETACH Notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567

Serialized Calls to DllMain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567

DllMain and the C/C++ Run-Time Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570

Delay-Loading a DLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571

The DelayLoadApp Sample Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576

Function Forwarders  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583

Known DLLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584

DLL Redirection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585

Rebasing Modules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586

Binding Modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592

21 Thread-Local Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597

Dynamic TLS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598

Using Dynamic TLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600

Static TLS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602

22 DLL Injection and API Hooking  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605

DLL Injection: An Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605

Injecting a DLL Using the Registry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608

Injecting a DLL Using Windows Hooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609

The Desktop Item Position Saver (DIPS) Utility  . . . . . . . . . . . . . . . . . . . . . . . . . 610

Injecting a DLL Using Remote Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621

The Inject Library Sample Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625

The Image Walk DLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631

Injecting a DLL with a Trojan DLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633

Injecting a DLL as a Debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633

Injecting Code with CreateProcess. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633

API Hooking: An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634

API Hooking by Overwriting Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635

API Hooking by Manipulating a Module’s Import 
Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636

The Last MessageBox Info Sample Application . . . . . . . . . . . . . . . . . . . . . . . . . 639



Table of Contents xvii
Part V Structured Exception Handling
23 Termination Handlers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659

Understanding Termination Handlers by Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . 660

Funcenstein1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660

Funcenstein2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661

Funcenstein3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663

Funcfurter1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663

Pop Quiz Time: FuncaDoodleDoo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665

Funcenstein4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666

Funcarama1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667

Funcarama2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668

Funcarama3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668

Funcarama4: The Final Frontier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669

Notes About the finally Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671

Funcfurter2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672

The SEH Termination Sample Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673

24 Exception Handlers and Software Exceptions  . . . . . . . . . . . . . . . . . . . . 679

Understanding Exception Filters and Exception Handlers 
by Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 680

Funcmeister1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 680

Funcmeister2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681

EXCEPTION_EXECUTE_HANDLER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683

Some Useful Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684

Global Unwinds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 687

Halting Global Unwinds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690

EXCEPTION_CONTINUE_EXECUTION  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691

Use EXCEPTION_CONTINUE_EXECUTION with Caution . . . . . . . . . . . . . . . . . . 692

EXCEPTION_CONTINUE_SEARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693

GetExceptionCode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694

Memory-Related Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695

Exception-Related Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695



xviii Table of Contents
Debugging-Related Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696

Integer-Related Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696

Floating Point–Related Exceptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696

GetExceptionInformation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699

Software Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 702

25 Unhandled Exceptions, Vectored Exception Handling, and 
C++ Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705

Inside the UnhandledExceptionFilter Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707

Action #1: Allowing Write Access to a Resource and
Continuing Execution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708

Action #2: Notifying a Debugger of the Unhandled 
Exception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708

Action #3: Notifying Your Globally Set Filter Function . . . . . . . . . . . . . . . . . . . 708

Action #4: Notifying a Debugger of the Unhandled 
Exception (Again) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708

Action #5: Silently Terminating the Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709

UnhandledExceptionFilter and WER Interactions . . . . . . . . . . . . . . . . . . . . . . . . 710

Just-in-Time Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713

The Spreadsheet Sample Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716

Vectored Exception and Continue Handlers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 726

C++ Exceptions vs. Structured Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727

Exceptions and the Debugger  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729

26 Error Reporting and Application Recovery . . . . . . . . . . . . . . . . . . . . . . . 733

The Windows Error Reporting Console. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733

Programmatic Windows Error Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736

Disabling Report Generation and Sending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737

Customizing All Problem Reports Within a Process . . . . . . . . . . . . . . . . . . . . . . . . . . 738

Creating and Customizing a Problem Report  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740

Creating a Custom Problem Report: WerReportCreate  . . . . . . . . . . . . . . . . . . 742

Setting Report Parameters: WerReportSetParameter  . . . . . . . . . . . . . . . . . . . . 743



Table of Contents xix
Adding a Minidump File to the Report: WerReportAddDump . . . . . . . . . . . . . 744

Adding Arbitrary Files to the Report: WerReportAddFile  . . . . . . . . . . . . . . . . . 745

Modifying Dialog Box Strings: WerReportSetUIOption . . . . . . . . . . . . . . . . . . . 746

Submitting a Problem Report: WerReportSubmit. . . . . . . . . . . . . . . . . . . . . . . . 746

Closing a Problem Report: WerReportCloseHandle . . . . . . . . . . . . . . . . . . . . . . 748

The Customized WER Sample Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 748

Automatic Application Restart and Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754

Automatic Application Restart  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755

Support for Application Recovery  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756

Part VI Appendixes
A The Build Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761

The CmnHdr.h Header File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761

Microsoft Windows Version Build Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761

Unicode Build Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762

Windows Definitions and Warning Level 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762

The pragma message Helper Macro. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763

The chINRANGE Macro. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763

The chBEGINTHREADEX Macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763

DebugBreak Improvement for x86 Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 765

Creating Software Exception Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765

The chMB Macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765

The chASSERT and chVERIFY Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765

The chHANDLE_DLGMSG Macro. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 766

The chSETDLGICONS Macro  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 766

Forcing the Linker to Look for a (w)WinMain Entry-Point Function . . . . . . . . 766

Support XP-Theming of the User Interface with pragma  . . . . . . . . . . . . . . . . 766



xx Table of Contents
B Message Crackers, Child Control Macros, 
and API Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773

Message Crackers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773

Child Control Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776

API Macros. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776

Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779

Microsoft is interested in hearing your feedback so we can continually improve our books and learning  
resources for you. To participate in a brief online survey, please visit: 

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!



Acknowledgments

We could not have written this book without the help and technical assistance of several people. In 
particular, we’d like to thank the following people:

Jeffrey’s Family
Jeffrey would like to thank Kristin (his wife) and Aidan (his son) for their never ending love and 
support.

Christophe’s Family
Christophe would not have been able to write the fifth edition of this book without the love and 
support of Florence (his wife), the never ending curiosity of Celia (his daughter), and the purring 
sneak attacks of Canelle and Nougat (his cats). Now, I don’t have any good excuse to not take care 
of you!

Technical Assistance
For writing a book like this one, personal research is not enough. We were owe great thanks to var-
ious Microsoft employees who helped us. Specifically, we’d like to thank Arun Kishan, who was 
able to either instantly answer weird and complicated questions or find the right person on the 
Windows team to provide more detailed explanations. We would also like to thank Kinshuman 
Kinshumann, Stephan Doll, Wedson Almeida Filho, Eric Li, Jean-Yves Poublan, Sandeep Ranade, 
Alan Chan, Ale Contenti, Kang Su Gatlin, Kai Hsu, Mehmet Iyigun, Ken Jung, Pavel Lebedynskiy, 
Paul Sliwowicz, and Landy Wang. In addition, there are those who listened to questions posted 
on Microsoft internal forums and shared their extensive knowledge, such as Raymond Chen, 
Sunggook Chue, Chris Corio, Larry Osterman, Richard Russell, Mark Russinovich, Mike Sheldon, 
Damien Watkins, and Junfeng Zhang. Last but not least, we would like to warmly thank John 
“Bugslayer” Robbins and Kenny Kerr who were kind enough to provide great feedback on chapters 
of this book. 

Microsoft Press Editorial Team
We would like to thank Ben Ryan (acquisitions editor) for trusting a crazy French guy like 
Christophe, managers Lynn Finnel and Curtis Philips for their patience, Scott Seely for his constant 
search for technical accuracy, Roger LeBlanc for his talent in transforming Christophe’s French-like 
English into something understandable, and Andrea Fox for her meticulous proofreading. In addi-
tion to the Redmond team, Joyanta Sen spent a lot of his personal time supporting us.

Mutual Admiration
Christophe sincerely thanks Jeffrey Richter for trusting him not to spoil the fifth edition of 
Jeff’s book.

Jeffrey also thanks Christophe for his tireless efforts in researching, reorganizing, rewriting, and 
reworking the content in an attempt to reach Jeff’s idea of perfection.
xxi





Introduction
Microsoft Windows is a complex operating system. It offers so many features and does so much 
that it’s impossible for any one person to fully understand the entire system. This complexity also 
makes it difficult for someone to decide where to start concentrating the learning effort. Well, I 
always like to start at the lowest level by gaining a solid understanding of the system’s basic build-
ing blocks. Once you understand the basics, it’s easy to incrementally add any higher-level aspects 
of the system to your knowledge. So this book focuses on Windows’ basic building blocks and the 
fundamental concepts that you must know when architecting and implementing software targeting 
the Windows operating system. In short, this book teaches the reader about various Windows fea-
tures and how to access them via the C and C++ programming languages.

Although this book does not cover some Windows concepts—such as the Component Object 
Model (COM)—COM is built on top of basic building blocks such as processes, threads, memory 
management, DLLs, thread local storage, Unicode, and so on. If you know these basic building 
blocks, understanding COM is just a matter of understanding how the building blocks are used. I 
have great sympathy for people who attempt to jump ahead in learning COM’s architecture. They 
have a long road ahead and are bound to have gaping holes in their knowledge, which is bound to 
negatively affect their code and their software development schedules. 

The Microsoft .NET Framework’s common language runtime (CLR) is another technology not spe-
cifically addressed in this book. (However, it is addressed in my other book: CLR via C#, Jeffrey 
Richter, Microsoft Press, 2006). However, the CLR is implemented as a COM object in a dynamic-
link library (DLL) that loads in a process and uses threads to execute code that manipulates Uni-
code strings that are managed in memory. So again, the basic building blocks presented in this 
book will help developers writing managed code. In addition, by way of the CLR’s Platform Invo-
cation (P/Invoke) technology, you can call into the various Windows’ APIs presented throughout 
this book.

So that’s what this book is all about: the basic Windows building blocks that every Windows devel-
oper (at least in my opinion) should be intimately aware of. As each block is discussed, I also 
describe how the system uses these blocks and how your own applications can best take advantage 
of these blocks. In many chapters, I show you how to create building blocks of your own. These 
building blocks, typically implemented as generic functions or C++ classes, group a set of Windows 
building blocks together to create a whole that is much greater than the sum of its parts.

64-Bit Windows
Microsoft has been shipping 32-bit versions of Windows that support the x86 CPU architecture for 
many years. Today, Microsoft also offers 64-bit versions of Windows that support the x64 and IA-64 
CPU architectures. Machines based on these 64-bit CPU architectures are fast gaining acceptance. 
In fact, in the very near future, it is expected that all desktop and server machines will contain 64-
bit CPUs. Because of this, Microsoft has stated that Windows Server 2008 will be the last 32-bit ver-
sion of Windows ever! For developers, now is the time to focus on making sure your applications 
run correctly on 64-bit Windows. To this end, this book includes solid coverage of what you need 
to know to have your applications run on 64-bit Windows (as well as 32-bit Windows).
xxiii



xxiv Introduction
The biggest advantage your application gets from a 64-bit address space is the ability to easily 
manipulate large amounts of data, because your process is no longer constrained to a 2-GB usable 
address space. Even if your application doesn’t need all this address space, Windows itself takes 
advantage of the significantly larger address space (about 8 terabytes), allowing it to run faster.

Here is a quick look at what you need to know about 64-bit Windows:

■ The 64-bit Windows kernel is a port of the 32-bit Windows kernel. This means that all the 
details and intricacies that you’ve learned about 32-bit Windows still apply in the 64-bit 
world. In fact, Microsoft has modified the 32-bit Windows source code so that it can be com-
piled to produce a 32-bit or a 64-bit system. They have just one source-code base, so new fea-
tures and bug fixes are simultaneously applied to both systems.

■ Because the kernels use the same code and underlying concepts, the Windows API is identi-
cal on both platforms. This means that you do not have to redesign or reimplement your 
application to work on 64-bit Windows. You can simply make slight modifications to your 
source code and then rebuild. 

■ For backward compatibility, 64-bit Windows can execute 32-bit applications. However, your 
application’s performance will improve if the application is built as a true 64-bit application. 

■ Because it is so easy to port 32-bit code, there are already device drivers, tools, and applica-
tions available for 64-bit Windows. Unfortunately, Visual Studio is a native 32-bit application 
and Microsoft seems to be in no hurry to port it to be a native 64-bit application. However, the 
good news is that 32-bit Visual Studio does run quite well on 64-bit Windows; it just has a 
limited address space for its own data structures. And Visual Studio does allow you to debug 
a 64-bit application.

■ There is little new for you to learn. You’ll be happy to know that most data types remain 32 
bits wide. These include ints, DWORDs, LONGs, BOOLs, and so on. In fact, you mostly just need 
to worry about pointers and handles, since they are now 64-bit values.

Because Microsoft offers so much information on how to modify your existing source code to be 
64-bit ready, I will not go into those details in this book. However, I thought about 64-bit Windows 
as I wrote each chapter. Where appropriate, I have included information specific to 64-bit 
Windows. In addition, I have compiled and tested all the sample applications in this book for 64-
bit Windows. So, if you follow the sample applications in this book and do as I’ve done, you should 
have no trouble creating a single source-code base that you can easily compile for 32-bit or 64-bit 
Windows.

What’s New in the Fifth Edition
In the past, this book has been titled Advanced Windows NT, Advanced Windows, and Programming 
Applications for Microsoft Windows. In keeping with tradition, this edition of the book has gotten a 
new title: Windows via C/C++. This new title indicates that the book is for C and C++ programmers 
wanting to understand Windows. This new edition covers more than 170 new functions and 
Windows features that have been introduced in Windows XP, Windows Vista, and Windows 
Server 2008.



Introduction xxv
Some chapters have been completely rewritten—such as Chapter 11, which explains how the new 
thread pool API should be used. Existing chapters have been greatly enhanced to present new fea-
tures. For example, Chapter 4 now includes coverage of User Account Control and Chapter 8 now 
covers new synchronization mechanisms (Interlocked Singly-Linked List, Slim Reader-Writer 
Locks, and condition variables).

I also give much more coverage of how the C/C++ run-time library interacts with the operating sys-
tem—particularly on enhancing security as well as exception handling. Last but not least, two new 
chapters have been added to explain how I/O operations work and to dig into the new Windows 
Error Reporting system that changes the way you must think about application error reporting and 
application recovery. 

In addition to the new organization and greater depth, I added a ton of new content. Here is a par-
tial list of enhancements made for this edition:

New Windows Vista and Windows Server 2008 features Of course, the book would not be a true 
revision unless it covered new features offered in Windows XP, Windows Vista, Windows 
Server 2008, and the C/C++ run-time library. This edition has new information on the secure 
string functions, the kernel object changes (such as namespaces and boundary descriptors), 
thread and process attribute lists, thread and I/O priority scheduling, synchronous I/O can-
cellation, vectored exception handling, and more.

64-bit Windows support The text addresses 64-bit Windows-specific issues; all sample applica-
tions have been built and tested on 64-bit Windows.

Use of C++ The sample applications use C++ and require fewer lines of code, and their logic is 
easier to follow and understand. 

Reusable code Whenever possible, I created the source code to be generic and reusable. This 
should allow you to take individual functions or entire C++ classes and drop them into your 
own applications with little or no modification. The use of C++ made reusability much easier. 

The ProcessInfo utility This particular sample application from the earlier editions has been 
enhanced to show the process owner, command line, and UAC-related details. 

The LockCop utility This sample application is new. It shows which processes are running on the 
system. Once you select a process, this utility lists the threads of the process and, for each, on 
which kind of synchronization mechanism it is blocked—with deadlocks explicitly pointed 
out. 

API hooking I present updated C++ classes that make it trivial to hook APIs in one or all modules 
of a process. My code even traps run-time calls to LoadLibrary and GetProcAddress so 
that your API hooks are enforced. 

Structured exception handling improvements I have rewritten and reorganized much of the 
structured exception handling material. I have more information on unhandled exceptions, 
and I’ve added coverage on customizing Windows Error Reporting to fulfill your needs. 



xxvi Introduction
Code Samples and System Requirements
The sample applications presented throughout this book can be downloaded from the book’s com-
panion content Web page at

http://www.Wintellect.com/Books.aspx 

To build the applications, you’ll need Visual Studio 2005 (or later), the Microsoft Platform SDK for 
Windows Vista and Windows Server 2008 (which comes with some versions of Visual Studio). In 
addition, to run the applications, you’ll need a computer (or virtual machine) with Windows Vista 
(or later) installed.

Support for This Book
Every effort has been made to ensure the accuracy of this book and the companion content. As cor-
rections or changes are collected, they will be added to an Errata document downloadable at the 
following Web site:

http://www.Wintellect.com/Books.aspx

Questions and Comments
If you have comments, questions, or ideas regarding the book or the companion content, or ques-
tions that are not answered by visiting the site just mentioned, please send them to Microsoft Press 
via e-mail to

mspinput@microsoft.com

Or via postal mail to

Microsoft Press
Attn: Windows via C/C++ Editor
One Microsoft Way
Redmond, WA 98052-6399

Please note that Microsoft software product support is not offered through the above addresses.



Chapter 2

Working with Characters and Strings

In this chapter: 

Character Encodings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

ANSI and Unicode Character and String Data Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Unicode and ANSI Functions in Windows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Unicode and ANSI Functions in the C Run-Time Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Secure String Functions in the C Run-Time Library. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Why You Should Use Unicode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

How We Recommend Working with Characters and Strings. . . . . . . . . . . . . . . . . . . . . . . . . . 26

Translating Strings Between Unicode and ANSI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

With Microsoft Windows becoming more and more popular around the world, it is increasingly 
important that we, as developers, target the various international markets. It was once common for 
U.S. versions of software to ship as much as six months prior to the shipping of international ver-
sions. But increasing international support for the operating system is making it easier to produce 
applications for international markets and therefore is reducing the time lag between distribution 
of the U.S. and international versions of our software.

Windows has always offered support to help developers localize their applications. An application 
can get country-specific information from various functions and can examine Control Panel set-
tings to determine the user’s preferences. Windows even supports different fonts for our applica-
tions. Last but not least, in Windows Vista, Unicode 5.0 is now supported. (Read “Extend The 
Global Reach Of Your Applications With Unicode 5.0” at http://msdn.microsoft.com/msdnmag/
issues/07/01/Unicode/default.aspx for a high-level presentation of Unicode 5.0.)

Buffer overrun errors (which are typical when manipulating character strings) have become a vec-
tor for security attacks against applications and even against parts of the operating system. In pre-
vious years, Microsoft put forth a lot of internal and external efforts to raise the security bar in the 
Windows world. The second part of this chapter presents new functions provided by Microsoft in 
the C run-time library. You should use these new functions to protect your code against buffer over-
runs when manipulating strings.

I decided to present this chapter early in the book because I highly recommend that your applica-
tion always use Unicode strings and that you always manipulate these strings via the new secure 
string functions. As you’ll see, issues regarding the secure use of Unicode strings are discussed in 
just about every chapter and in all the sample applications presented in this book. If you have a 
code base that is non-Unicode, you’ll be best served by moving that code base to Unicode, as this 
will improve your application’s execution performance as well as prepare it for localization. It will 
also help when interoperating with COM and the .NET Framework.
11



12 WIndows via C/C++
Character Encodings
The real problem with localization has always been manipulating different character sets. For years, 
most of us have been coding text strings as a series of single-byte characters with a zero at the end. 
This is second nature to us. When we call strlen, it returns the number of characters in a zero-
terminated array of ANSI single-byte characters.

The problem is that some languages and writing systems (Japanese kanji being a classic example) 
have so many symbols in their character sets that a single byte, which offers no more than 256 dif-
ferent symbols at best, is just not enough. So double-byte character sets (DBCSs) were created to 
support these languages and writing systems. In a double-byte character set, each character in a 
string consists of either 1 or 2 bytes. With kanji, for example, if the first character is between 0x81 
and 0x9F or between 0xE0 and 0xFC, you must look at the next byte to determine the full charac-
ter in the string. Working with double-byte character sets is a programmer’s nightmare because 
some characters are 1 byte wide and some are 2 bytes wide. Fortunately, you can forget about DBCS 
and take advantage of the support of Unicode strings supported by Windows functions and the C 
run-time library functions.

Unicode is a standard founded by Apple and Xerox in 1988. In 1991, a consortium was created to 
develop and promote Unicode. The consortium consists of companies such as Apple, Compaq, 
Hewlett-Packard, IBM, Microsoft, Oracle, Silicon Graphics, Sybase, Unisys, and Xerox. (A complete 
and updated list of consortium members is available at http://www.Unicode.org.) This group of 
companies is responsible for maintaining the Unicode standard. The full description of Unicode 
can be found in The Unicode Standard, published by Addison-Wesley. (This book is available 
through http://www.Unicode.org.)

In Windows Vista, each Unicode character is encoded using UTF-16 (where UTF is an acronym for 
Unicode Transformation Format). UTF-16 encodes each character as 2 bytes (or 16 bits). In this 
book, when we talk about Unicode, we are always referring to UTF-16 encoding unless we state 
otherwise. Windows uses UTF-16 because characters from most languages used throughout the 
world can easily be represented via a 16-bit value, allowing programs to easily traverse a string and 
calculate its length. However, 16-bits is not enough to represent all characters from certain lan-
guages. For these languages, UTF-16 supports surrogates, which are a way of using 32 bits (or 4 
bytes) to represent a single character. Because few applications need to represent the characters of 
these languages, UTF-16 is a good compromise between saving space and providing ease of coding. 
Note that the .NET Framework always encodes all characters and strings using UTF-16, so using 
UTF-16 in your Windows application will improve performance and reduce memory consumption 
if you need to pass characters or strings between native and managed code.

There are other UTF standards for representing characters, including the following ones:

UTF-8 UTF-8 encodes some characters as 1 byte, some characters as 2 bytes, some characters as 
3 bytes, and some characters as 4 bytes. Characters with a value below 0x0080 are com-
pressed to 1 byte, which works very well for characters used in the United States. Characters 
between 0x0080 and 0x07FF are converted to 2 bytes, which works well for European and 
Middle Eastern languages. Characters of 0x0800 and above are converted to 3 bytes, which 
works well for East Asian languages. Finally, surrogate pairs are written out as 4 bytes. UTF-8 
is an extremely popular encoding format, but it’s less efficient than UTF-16 if you encode 
many characters with values of 0x0800 or above.



Chapter 2 Working with Characters and Strings 13
UTF-32 UTF-32 encodes every character as 4 bytes. This encoding is useful when you want to 
write a simple algorithm to traverse characters (used in any language) and you don’t want to 
have to deal with characters taking a variable number of bytes. For example, with UTF-32, 
you do not need to think about surrogates because every character is 4 bytes. Obviously, 
UTF-32 is not an efficient encoding format in terms of memory usage. Therefore, it’s rarely 
used for saving or transmitting strings to a file or network. This encoding format is typically 
used inside the program itself.

Currently, Unicode code points1 are defined for the Arabic, Chinese bopomofo, Cyrillic (Russian), 
Greek, Hebrew, Japanese kana, Korean hangul, and Latin (English) alphabets—called scripts—and 
more. Each version of Unicode brings new characters in existing scripts and even new scripts such 
as Phoenician (an ancient Mediterranean alphabet). A large number of punctuation marks, mathe-
matical symbols, technical symbols, arrows, dingbats, diacritics, and other characters are also 
included in the character sets. 

These 65,536 characters are divided into regions. Table 2-1 shows some of the regions and the 
characters that are assigned to them.

ANSI and Unicode Character and String Data Types
I’m sure you’re aware that the C language uses the char data type to represent an 8-bit ANSI char-
acter. By default, when you declare a literal string in your source code, the C compiler turns the 
string’s characters into an array of 8-bit char data types:

// An 8-bit character 

char c = 'A'; 

 

// An array of 99 8-bit characters and an 8-bit terminating zero. 

char szBuffer[100] = "A String";

Microsoft’s C/C++ compiler defines a built-in data type, wchar_t, which represents a 16-bit 
Unicode (UTF-16) character. Because earlier versions of Microsoft’s compiler did not offer this 
built-in data type, the compiler defines this data type only when the /Zc:wchar_t compiler switch 
is specified. By default, when you create a C++ project in Microsoft Visual Studio, this compiler 
switch is specified. We recommend that you always specify this compiler switch, as it is better to 
work with Unicode characters by way of the built-in primitive type understood intrinsically by the 
compiler.

1 A code point is the position of a symbol in a character set.

Table 2-1 Unicode Character Sets and Alphabets

16-Bit Code Characters 16-Bit Code Alphabet/Scripts
0000–007F ASCII 0300–036F Generic diacritical marks
0080–00FF Latin1 characters 0400–04FF Cyrillic
0100–017F European Latin 0530–058F Armenian
0180–01FF Extended Latin 0590–05FF Hebrew
0250–02AF Standard phonetic 0600–06FF Arabic
02B0–02FF Modified letters 0900–097F Devanagari



14 WIndows via C/C++
Note Prior to the built-in compiler support, a C header file defined a wchar_t data type 
as follows:

typedef unsigned short wchar_t;

Here is how you declare a Unicode character and string:

// A 16-bit character 

wchar_t c = L'A'; 

 

// An array up to 99 16-bit characters and a 16-bit terminating zero. 

wchar_t szBuffer[100] = L"A String";

An uppercase L before a literal string informs the compiler that the string should be compiled as a 
Unicode string. When the compiler places the string in the program’s data section, it encodes each 
character using UTF16, interspersing zero bytes between every ASCII character in this simple case. 

The Windows team at Microsoft wants to define its own data types to isolate itself a little bit from 
the C language. And so, the Windows header file, WinNT.h, defines the following data types:

typedef char     CHAR;   // An 8-bit character 

 

typedef wchar_t WCHAR;   // A 16-bit character

Furthermore, the WinNT.h header file defines a bunch of convenience data types for working with 
pointers to characters and pointers to strings:

// Pointer to 8-bit character(s) 

typedef CHAR *PCHAR; 

typedef CHAR *PSTR; 

typedef CONST CHAR *PCSTR 

 

// Pointer to 16-bit character(s) 

typedef WCHAR *PWCHAR; 

typedef WCHAR *PWSTR; 

typedef CONST WCHAR *PCWSTR; 

Note If you take a look at WinNT.h, you’ll find the following definition:

typedef __nullterminated WCHAR *NWPSTR, *LPWSTR, *PWSTR;

The __nullterminated prefix is a header annotation that describes how types are expected 
to be used as function parameters and return values. In the Enterprise version of Visual 
Studio, you can set the Code Analysis option in the project properties. This adds the 
/analyze switch to the command line of the compiler that detects when your code calls 
functions in a way that breaks the semantic defined by the annotations. Notice that only 
Enterprise versions of the compiler support this /analyze switch. To keep the code more 
readable in this book, the header annotations are removed. You should read the “Header 
Annotations” documentation on MSDN at http://msdn2.microsoft.com/En-US/library/
aa383701.aspx for more details about the header annotations language.



Chapter 2 Working with Characters and Strings 15
In your own source code, it doesn’t matter which data type you use, but I’d recommend you try to 
be consistent to improve maintainability in your code. Personally, as a Windows programmer, I 
always use the Windows data types because the data types match up with the MSDN documenta-
tion, making things easier for everyone reading the code. 

It is possible to write your source code so that it can be compiled using ANSI or Unicode characters 
and strings. In the WinNT.h header file, the following types and macros are defined:

#ifdef UNICODE 

 

typedef WCHAR TCHAR, *PTCHAR, PTSTR; 

typedef CONST WCHAR *PCTSTR; 

#define __TEXT(quote) quote         // r_winnt 

 

#define __TEXT(quote) L##quote 

 

#else 

 

typedef CHAR TCHAR, *PTCHAR, PTSTR; 

typedef CONST CHAR *PCTSTR; 

#define __TEXT(quote) quote 

 

#endif 

 

#define   TEXT(quote) __TEXT(quote)

These types and macros (plus a few less commonly used ones that I do not show here) are used to 
create source code that can be compiled using either ANSI or Unicode chacters and strings, for 
example:

// If UNICODE defined, a 16-bit character; else an 8-bit character 

TCHAR c = TEXT('A'); 

 

// If UNICODE defined, an array of 16-bit characters; else 8-bit characters 

TCHAR szBuffer[100] = TEXT("A String");

Unicode and ANSI Functions in Windows
Since Windows NT, all Windows versions are built from the ground up using Unicode. That is, all 
the core functions for creating windows, displaying text, performing string manipulations, and so 
forth require Unicode strings. If you call any Windows function passing it an ANSI string (a string 
of 1-byte characters), the function first converts the string to Unicode and then passes the Unicode 
string to the operating system. If you are expecting ANSI strings back from a function, the system 
converts the Unicode string to an ANSI string before returning to your application. All these con-
versions occur invisibly to you. Of course, there is time and memory overhead involved for the sys-
tem to carry out all these string conversions.

When Windows exposes a function that takes a string as a parameter, two versions of the same 
function are usually provided—for example, a CreateWindowEx that accepts Unicode strings and a 



16 WIndows via C/C++
second CreateWindowEx that accepts ANSI strings. This is true, but the two functions are actually 
prototyped as follows:

HWND WINAPI CreateWindowExW( 
DWORD dwExStyle,  

PCWSTR pClassName, // A Unicode string 

PCWSTR pWindowName, // A Unicode string 

DWORD dwStyle,  

int X,  

int Y, 

int nWidth,  

int nHeight,  

HWND hWndParent,  

HMENU hMenu, 

HINSTANCE hInstance,  

PVOID pParam); 

 

HWND WINAPI CreateWindowExA( 
DWORD dwExStyle,  

PCSTR pClassName, // An ANSI string 

PCSTR pWindowName, // An ANSI string 

DWORD dwStyle,  

int X,  

int Y, 

int nWidth,  

int nHeight,  

HWND hWndParent,  

HMENU hMenu, 

HINSTANCE hInstance,  

PVOID pParam);

CreateWindowExW is the version that accepts Unicode strings. The uppercase W at the end of the 
function name stands for wide. Unicode characters are 16 bits wide, so they are frequently referred 
to as wide characters. The uppercase A at the end of CreateWindowExA indicates that the function 
accepts ANSI character strings.

But usually we just include a call to CreateWindowEx in our code and don’t directly call either 
CreateWindowExW or CreateWindowExA. In WinUser.h, CreateWindowEx is actually a macro 
defined as

#ifdef UNICODE 

#define CreateWindowEx CreateWindowExW 

#else 

#define CreateWindowEx CreateWindowExA 

#endif

Whether or not UNICODE is defined when you compile your source code module determines which 
version of CreateWindowEx is called. When you create a new project with Visual Studio, it defines 
UNICODE by default. So, by default, any calls you make to CreateWindowEx expand the macro to 
call CreateWindowExW—the Unicode version of CreateWindowEx. 

Under Windows Vista, Microsoft’s source code for CreateWindowExA is simply a translation layer 
that allocates memory to convert ANSI strings to Unicode strings; the code then calls Create
WindowExW, passing the converted strings. When CreateWindowExW returns, CreateWindowExA 



Chapter 2 Working with Characters and Strings 17
frees its memory buffers and returns the window handle to you. So, for functions that fill buffers 
with strings, the system must convert from Unicode to non-Unicode equivalents before your appli-
cation can process the string. Because the system must perform all these conversions, your appli-
cation requires more memory and runs slower. You can make your application perform more 
efficiently by developing your application using Unicode from the start. Also, Windows has been 
known to have some bugs in these translation functions, so avoiding them also eliminates some 
potential bugs.

If you’re creating dynamic-link libraries (DLLs) that other software developers will use, consider 
using this technique: supply two exported functions in the DLL—an ANSI version and a Unicode 
version. In the ANSI version, simply allocate memory, perform the necessary string conversions, 
and call the Unicode version of the function. I’ll demonstrate this process later in this chapter in  
“Exporting ANSI and Unicode DLL Functions” on page 29.

Certain functions in the Windows API, such as WinExec and OpenFile, exist solely for backward 
compatibility with 16-bit Windows programs that supported only ANSI strings. These methods 
should be avoided by today’s programs. You should replace any calls to WinExec and OpenFile 
with calls to the CreateProcess and CreateFile functions. Internally, the old functions call the 
new functions anyway. The big problem with the old functions is that they don’t accept Unicode 
strings and they typically offer fewer features. When you call these functions, you must pass ANSI 
strings. On Windows Vista, most non-obsolete functions have both Unicode and ANSI versions. 
However, Microsoft has started to get into the habit of producing some functions offering only Uni-
code versions—for example, ReadDirectoryChangesW and CreateProcessWithLogonW.  

When Microsoft was porting COM from 16-bit Windows to Win32, an executive decision was 
made that all COM interface methods requiring a string would accept only Unicode strings. This 
was a great decision because COM is typically used to allow different components to talk to each 
other and Unicode is the richest way to pass strings around. Using Unicode throughout your appli-
cation makes interacting with COM easier too.

Finally, when the resource compiler compiles all your resources, the output file is a binary repre-
sentation of the resources. String values in your resources (string tables, dialog box templates, 
menus, and so on) are always written as Unicode strings. Under Windows Vista, the system per-
forms internal conversions if your application doesn’t define the UNICODE macro. For example, if 
UNICODE is not defined when you compile your source module, a call to LoadString will actually 
call the LoadStringA function. LoadStringA will then read the Unicode string from your 
resources and convert the string to ANSI. The ANSI representation of the string will be returned 
from the function to your application.

Unicode and ANSI Functions in the C Run-Time Library
Like the Windows functions, the C run-time library offers one set of functions to manipulate ANSI 
characters and strings and another set of functions to manipulate Unicode characters and strings. 
However, unlike Windows, the ANSI functions do the work; they do not translate the strings to 
Unicode and then call the Unicode version of the functions internally. And, of course, the Unicode 
versions do the work themselves too; they do not internally call the ANSI versions. 

An example of a C run-time function that returns the length of an ANSI string is strlen, and an 
example of an equivalent C run-time function that returns the length of a Unicode string is wcslen. 



18 WIndows via C/C++
Both of these functions are prototyped in String.h. To write source code that can be compiled for 
either ANSI or Unicode, you must also include TChar.h, which defines the following macro:

#ifdef _UNICODE 

#define _tcslen     wcslen 

#else 

#define _tcslen     strlen 

#endif

Now, in your code, you should call _tcslen. If _UNICODE is defined, it expands to wcslen; other-
wise, it expands to strlen. By default, when you create a new C++ project in Visual Studio, 
_UNICODE is defined (just like UNICODE is defined). The C run-time library always prefixes identi-
fiers that are not part of the C++ standard with underscores, while the Windows team does not do 
this. So, in your applications you’ll want to make sure that both UNICODE and _UNICODE are 
defined or that neither is defined. Appendix A, “The Build Environment,” will describe the details of 
the CmnHdr.h header file used by all the code samples of this book to avoid this kind of problem.

Secure String Functions in the C Run-Time Library
Any function that modifies a string exposes a potential danger: if the destination string buffer is not 
large enough to contain the resulting string, memory corruption occurs. Here is an example:

// The following puts 4 characters in a  

// 3-character buffer, resulting in memory corruption 

WCHAR szBuffer[3] = L""; 

wcscpy(szBuffer, L"abc"); // The terminating 0 is a character too!

The problem with the strcpy and wcscpy functions (and most other string manipulation func-
tions) is that they do not accept an argument specifying the maximum size of the buffer, and there-
fore, the function doesn’t know that it is corrupting memory. Because the function doesn’t know 
that it is corrupting memory, it can’t report an error back to your code, and therefore, you have no 
way of knowing that memory was corrupted. And, of course, it would be best if the function just 
failed without corrupting any memory at all.

This kind of misbehavior has been heavily exploited by malware in the past. Microsoft is now 
providing a set of new functions that replace the unsafe string manipulation functions (such as 
wcscat, which was shown earlier) provided by the C run-time library that many of us have grown 
to know and love over the years. To write safe code, you should no longer use any of the familiar C 
run-time functions that modify a string. (Functions such as strlen, wcslen, and _tcslen are OK, 
however, because they do not attempt to modify the string passed to them even though they 
assume that the string is 0 terminated, which might not be the case.) Instead, you should take 
advantage of the new secure string functions defined by Microsoft’s StrSafe.h file.

Note Internally, Microsoft has retrofitted its ATL and MFC class libraries to use the new safe 
string functions, and therefore, if you use these libraries, rebuilding your application to the 
new versions is all you have to do to make your application more secure.



Chapter 2 Working with Characters and Strings 19
Because this book is not dedicated to C/C++ programming, for a detailed usage of this library, you 
should take a look at the following sources of information:

■ The MSDN Magazine article “Repel Attacks on Your Code with the Visual Studio 2005 Safe 
C and C++ Libraries” by Martyn Lovell, located at http://msdn.microsoft.com/msdnmag/
issues/05/05/SafeCandC/default.aspx 

■ The Martyn Lovell video presentation on Channel9, located at http://channel9.msdn.com/
Showpost.aspx?postid=186406 

■ The secure strings topic on MSDN Online, located at  http://msdn2.microsoft.com/en-us/
library/ms647466.aspx

■ The list of all C run-time secured replacement functions on MSDN Online, which you can 
find at http://msdn2.microsoft.com/en-us/library/wd3wzwts(VS.80).aspx

However, it is worth discussing a couple of details in this chapter. I’ll start by describing the pat-
terns employed by the new functions. Next, I’ll mention the pitfalls you might encounter if you are 
following the migration path from legacy functions to their corresponding secure versions, like 
using _tcscpy_s instead of _tcscpy. Then I’ll show you in which case it might be more interest-
ing to call the new StringC* functions instead.

Introducing the New Secure String Functions
When you include StrSafe.h, String.h is also included and the existing string manipulation func-
tions of the C run-time library, such as those behind the _tcscpy macro, are flagged with obsolete 
warnings during compilation. Note that the inclusion of StrSafe.h must appear after all other 
include files in your source code. I recommend that you use the compilation warnings to explicitly 
replace all the occurrences of the deprecated functions by their safer substitutes—thinking each 
time about possible buffer overflow and, if it is not possible to recover, how to gracefully terminate 
the application. 

Each existing function, like _tcscpy or _tcscat, has a corresponding new function that starts 
with the same name that ends with the _s (for secure) suffix. All these new functions share com-
mon characteristics that require explanation. Let’s start by examining their prototypes in the fol-
lowing code snippet, which shows the side-by-side definitions of two usual string functions: 

PTSTR   _tcscpy  (PTSTR strDestination, PCTSTR strSource); 

errno_t _tcscpy_s(PTSTR strDestination, size_t numberOfCharacters, 
   PCTSTR strSource);  

 

PTSTR   _tcscat  (PTSTR strDestination, PCTSTR strSource); 

errno_t _tcscat_s(PTSTR strDestination, size_t numberOfcharacters, 
   PCTSTR strSource); 

When a writable buffer is passed as a parameter, its size must also be provided. This value is 
expected in the character count, which is easily computed by using the _countof macro (defined 
in stdlib.h) on your buffer. 

All of the secure (_s) functions validate their arguments as the first thing they do. Checks are per-
formed to make sure that pointers are not NULL, that integers are within a valid range, that enumer-
ation values are valid, and that buffers are large enough to hold the resulting data. If any of these 
checks fail, the functions set the thread-local C run-time variable errno and the function returns 



20 WIndows via C/C++
an errno_t value to indicate success or failure. However, these functions don’t actually return; 
instead, in a debug build, they display a user-unfriendly assertion dialog box similar to that shown 
in Figure 2-1. Then your application is terminated. The release builds directly auto-terminate.

Figure 2-1 Assertion dialog box displayed when an error occurs

The C run time actually allows you to provide a function of your own, which it will call when it 
detects an invalid parameter. Then, in this function, you can log the failure, attach a debugger, or 
do whatever you like. To enable this, you must first define a function that matches the following 
prototype:

void InvalidParameterHandler(PCTSTR expression, PCTSTR function,  

   PCTSTR file, unsigned int line, uintptr_t /*pReserved*/); 

The expression parameter describes the failed expectation in the C run-time implementation 
code, such as (L"Buffer is too small" && 0). As you can see, this is not very user friendly and 
should not be shown to the end user. This comment also applies to the next three parameters 
because function, file, and line describe the function name, the source code file, and the 
source code line number where the error occurred, respectively.

Note All these arguments will have a value of NULL if DEBUG is not defined. So this handler 
is valuable for logging errors only when testing debug builds. In a release build, you could 
replace the assertion dialog box with a more user-friendly message explaining that an unex-
pected error occurred that requires the application to shut down—maybe with specific log-
ging behavior or an application restart. If its memory state is corrupted, your application 
execution should stop. However, it is recommended that you wait for the errno_t check to 
decide whether the error is recoverable or not.

The next step is to register this handler by calling _set_invalid_parameter_handler. However, 
this step is not enough because the assertion dialog box will still appear. You need to call 
_CrtSetReportMode(_CRT_ASSERT, 0); at the beginning of your application, disabling all 
assertion dialog boxes that could be triggered by the C run time.

Now, when you call one of the legacy replacement functions defined in String.h, you are able to 
check the returned errno_t value to understand what happened. Only the value S_OK means that 



Chapter 2 Working with Characters and Strings 21
the call was successful. The other possible return values found in errno.h, such as EINVAL, are for 
invalid arguments such as NULL pointers.

Let’s take an example of a string that is copied into a buffer that is too small for one character: 

TCHAR szBefore[5] = { 

   TEXT('B'), TEXT('B'), TEXT('B'), TEXT('B'), '\0' 

}; 

 

TCHAR szBuffer[10] = { 

   TEXT('-'), TEXT('-'), TEXT('-'), TEXT('-'), TEXT('-'),  

   TEXT('-'), TEXT('-'), TEXT('-'), TEXT('-'), '\0' 

}; 

 

TCHAR szAfter[5] = { 

   TEXT('A'), TEXT('A'), TEXT('A'), TEXT('A'), '\0' 

}; 

 

errno_t result = _tcscpy_s(szBuffer, _countof(szBuffer), 

   TEXT("0123456789"));

Just before the call to _tcscpy_s, each variable has the content shown in Figure 2-2.

Figure 2-2 Variable state before the _tcscpy_s call

Because the "1234567890" string to be copied into szBuffer has exactly the same 10-character 
size as the buffer, there is not enough room to copy the terminating '\0' character. You might 
expect that the value of result is now STRUNCATE and the last character '9' has not been copied, 
but this is not the case. ERANGE is returned, and the state of each variable is shown in Figure 2-3.

Figure 2-3 Variable state after the _tcscpy_s call

There is one side effect that you don’t see unless you take a look at the memory behind szBuffer, 
as shown in Figure 2-4.

Figure 2-4 Content of szBuffer memory after a failed call

The first character of szBuffer has been set to '\0', and all other bytes now contain the value 
0xfd. So the resulting string has been truncated to an empty string and the remaining bytes of the 
buffer have been set to a filler value (0xfd). 



22 WIndows via C/C++
Note If you wonder why the memory after all the variables have been defined is filled up 
with the 0xcc value in Figure 2-4, the answer is in the result of the compiler implementation 
of the run-time checks (/RTCs, /RTCu, or /RTC1) that automatically detect buffer overrun at 
run time. If you compile your code without these /RTCx flags, the memory view will show all 
sz* variables side by side. But remember that your builds should always be compiled with 
these run-time checks to detect any remaining buffer overrun early in the development cycle.

How to Get More Control When Performing String Operations
In addition to the new secure string functions, the C run-time library has some new functions that 
provide more control when performing string manipulations. For example, you can control the 
filler values or how truncation is performed. Naturally, the C run time offers both ANSI (A) ver-
sions of the functions as well as Unicode (W) versions of the functions. Here are the prototypes for 
some of these functions (and many more exist that are not shown here):

HRESULT StringCchCat(PTSTR pszDest, size_t cchDest, PCTSTR pszSrc); 

HRESULT StringCchCatEx(PTSTR pszDest, size_t cchDest, PCTSTR pszSrc, 

   PTSTR *ppszDestEnd, size_t *pcchRemaining, DWORD dwFlags); 

 

HRESULT StringCchCopy(PTSTR pszDest, size_t cchDest, PCTSTR pszSrc);  

HRESULT StringCchCopyEx(PTSTR pszDest, size_t cchDest, PCTSTR pszSrc, 

   PTSTR *ppszDestEnd, size_t *pcchRemaining, DWORD dwFlags); 

 

HRESULT StringCchPrintf(PTSTR pszDest, size_t cchDest,  

   PCTSTR pszFormat, ...); 

HRESULT StringCchPrintfEx(PTSTR pszDest, size_t cchDest, 

   PTSTR *ppszDestEnd, size_t *pcchRemaining, DWORD dwFlags, 

   PCTSTR pszFormat,...);

You’ll notice that all the methods shown have “Cch” in their name. This stands for Count of charac-
ters, and you’ll typically use the _countof macro to get this value. There is also a set of functions 
that have “Cb” in their name, such as StringCbCat(Ex), StringCbCopy(Ex), and StringCb
Printf(Ex). These functions expect that the size argument is in count of bytes instead of count of 
characters. You’ll typically use the sizeof operator to get this value.

All these functions return an HRESULT with one of the values shown in Table 2-2.

Unlike the secure (_s suffixed) functions, when a buffer is too small, these functions do perform 
truncation. You can detect such a situation when STRSAFE_E_INSUFFICIENT_BUFFER is returned. 
As you can see in StrSafe.h, the value of this code is 0x8007007a and is treated as a failure by 

Table 2-2 HRESULT Values for Safe String Functions

HRESULT Value Description
S_OK Success. The destination buffer contains the source string 

and is terminated by '\0'.
STRSAFE_E_INVALID_PARAMETER Failure. The NULL value has been passed as a parameter.
STRSAFE_E_INSUFFICIENT_BUFFER Failure. The given destination buffer was too small to 

contain the entire source string.



Chapter 2 Working with Characters and Strings 23
SUCCEEDED/FAILED macros. However, in that case, the part of the source buffer that could fit into 
the destination writable buffer has been copied and the last available character is set to '\0'. So, in 
the previous example, szBuffer would contain the string "012345678" if StringCchCopy is used 
instead of _tcscpy_s. Notice that the truncation feature might or might not be what you need, 
depending on what you are trying to achieve, and this is why it is treated as a failure (by default). 
For example, in the case of a path that you are building by concatenating different pieces of infor-
mation, a truncated result is unusable. If you are building a message for user feedback, this could 
be acceptable. It’s up to you to decide how to handle a truncated result.

Last but not least, you’ll notice that an extended (Ex) version exists for many of the functions 
shown earlier. These extended versions take three additional parameters, which are described in 
Table 2-3.

Table 2-3 Extended Version Parameters

Parameters and Values Description
size_t* pcchRemaining Pointer to a variable that indicates the number of unused 

characters in the destination buffer. The copied terminating 
'\0' character is not counted. For example, if one character is 
copied into a buffer that is 10 characters wide, 9 is returned even 
though you won’t be able to use more than 8 characters without 
truncation. If pcchRemaining is NULL, the count is not returned. 

LPTSTR* ppszDestEnd If ppszDestEnd is non-NULL, it points to the terminating '\0' 
character at the end of the string contained by the destination 
buffer.

DWORD dwFlags One or more of the following values separated by ‘|’.
STRSAFE_FILL_BEHIND_NULL If the function succeeds, the low byte of dwFlags is used to fill 

the rest of the destination buffer, just after the terminating '\0' 
character. (See the comment about STRSAFE_FILL_BYTE just 
after this table for more details.)

STRSAFE_IGNORE_NULLS Treats NULL string pointers like empty strings (TEXT("")).  
STRSAFE_FILL_ON_FAILURE If the function fails, the low byte of dwFlags is used to fill the 

entire destination buffer except the first '\0' character used to 
set an empty string result. (See the comment about 
STRSAFE_FILL_BYTE just after this table for more details.) In 
the case of a STRSAFE_E_INSUFFICIENT_BUFFER failure, any 
character in the string being returned is replaced by the filler 
byte value.

STRSAFE_NULL_ON_FAILURE If the function fails, the first character of the destination buffer is 
set to '\0' to define an empty string (TEXT("")). In the case of 
a STRSAFE_E_INSUFFICIENT_BUFFER failure, any truncated 
string is overwritten.

STRSAFE_NO_TRUNCATION As in the case of STRSAFE_NULL_ON_FAILURE, if the function 
fails, the destination buffer is set to an empty string (TEXT("")). 
In the case of a STRSAFE_E_INSUFFICIENT_BUFFER failure, 
any truncated string is overwritten.



24 WIndows via C/C++
Note Even if STRSAFE_NO_TRUNCATION is used as a flag, the characters of the source 
string are still copied, up to the last available character of the destination buffer. Then both 
the first and the last characters of the destination buffer are set to '\0'. This is not really 
important except if, for security purposes, you don’t want to keep garbage data.

There is a last detail to mention that is related to the remark that you read at the bottom of page 21. 
In Figure 2-4, the 0xfd value is used to replace all the characters after the '\0', up to the end of the 
destination buffer. With the Ex version of these functions, you can choose whether you want this 
expensive filling operation (especially if the destination buffer is large) to occur and with which 
byte value. If you add STRSAFE_FILL_BEHIND_NULL to dwFlag, the remaining characters are set to 
'\0'. When you replace STRSAFE_FILL_BEHIND_NULL with the STRSAFE_FILL_BYTE macro, the 
given byte value is used to fill up the remaining values of the destination buffer.

Windows String Functions 
Windows also offers various functions for manipulating strings. Many of these functions, such as 
lstrcat and lstrcpy, are now deprecated because they do not detect buffer overrun problems. 
Also, the ShlwApi.h file defines a number of handy string functions that format operating 
system–related numeric values, such as StrFormatKBSize and StrFormatByteSize. See 
http://msdn2.microsoft.com/en-us/library/ms538658.aspx for a description of shell string handling 
functions. 

It is common to want to compare strings for equality or for sorting. The best functions to use for 
this are CompareString(Ex) and CompareStringOrdinal. You use CompareString(Ex) to 
compare strings that will be presented to the user in a linguistically correct manner. Here is the 
prototype of the CompareString function:

int CompareString( 

LCID locale,  

DWORD dwCmdFlags, 

PCTSTR pString1,  

int cch1,  

PCTSTR pString2,  

int cch2);

This function compares two strings. The first parameter to CompareString specifies a locale ID 
(LCID), a 32-bit value that identifies a particular language. CompareString uses this LCID to com-
pare the two strings by checking the meaning of the characters as they apply to a particular lan-
guage. A linguistically correct comparison produces results much more meaningful to an end user. 
However, this type of comparison is slower than doing an ordinal comparison. You can get the 
locale ID of the calling thread by calling the Windows GetThreadLocale function:

LCID GetThreadLocale();



Chapter 2 Working with Characters and Strings 25
The second parameter of CompareString identifies flags that modify the method used by the 
function to compare the two strings. Table 2-4 shows the possible flags.

The remaining four parameters of CompareString specify the two strings and their respective 
lengths in characters (not in bytes). If you pass negative values for the cch1 parameter, the function 
assumes that the pString1 string is zero-terminated and calculates the length of the string. This 
also is true for the cch2 parameter with respect to the pString2 string. If you need more advanced 
linguistic options, you should take a look at the CompareStringEx functions.

To compare strings that are used for programmatic strings (such as pathnames, registry keys/
values, XML elements/attributes, and so on), use CompareStringOrdinal:

int CompareStringOrdinal( 

  PCWSTR pString1,          

  int cchCount1, 

  PCWSTR pString2,          

  int cchCount2, 

  BOOL bIgnoreCase);

This function performs a code-point comparison without regard to the locale, and therefore it is 
fast. And because programmatic strings are not typically shown to an end user, this function makes 
the most sense. Notice that only Unicode strings are expected by this function. 

The CompareString and CompareStringOrdinal functions’ return values are unlike the return 
values you get back from the C run-time library’s *cmp string comparison functions. Compare
String(Ordinal) returns 0 to indicate failure, CSTR_LESS_THAN (defined as 1) to indicate that 
pString1 is less than pString2, CSTR_EQUAL (defined as 2) to indicate that pString1 is equal to 
pString2, and CSTR_GREATER_THAN (defined as 3) to indicate that pString1 is greater than 
pString2. To make things slightly more convenient, if the functions succeed, you can subtract 2 
from the return value to make the result consistent with the result of the C run-time library func-
tions (-1, 0, and +1).

Table 2-4 Flags Used by the CompareString Function

Flag Meaning
NORM_IGNORECASE

LINGUISTIC_IGNORECASE
Ignore case difference.

NORM_IGNOREKANATYPE Do not differentiate between hiragana and katakana 
characters.

NORM_IGNORENONSPACE

LINGUISTIC_IGNOREDIACRITIC
Ignore nonspacing characters.

NORM_IGNORESYMBOLS Ignore symbols.
NORM_IGNOREWIDTH Do not differentiate between a single-byte character and 

the same character as a double-byte character.
SORT_STRINGSORT Treat punctuation the same as symbols.



26 WIndows via C/C++
Why You Should Use Unicode
When developing an application, we highly recommend that you use Unicode characters and 
strings. Here are some of the reasons why:

■ Unicode makes it easy for you to localize your application to world markets. 

■ Unicode allows you to distribute a single binary (.exe or DLL) file that supports all languages.

■ Unicode improves the efficiency of your application because the code performs faster and 
uses less memory. Windows internally does everything with Unicode characters and strings, 
so when you pass an ANSI character or string, Windows must allocate memory and convert 
the ANSI character or string to its Unicode equivalent.

■ Using Unicode ensures that your application can easily call all nondeprecated Windows 
functions, as some Windows functions offer versions that operate only on Unicode charac-
ters and strings.

■ Using Unicode ensures that your code easily integrates with COM (which requires the use of 
Unicode characters and strings).

■ Using Unicode ensures that your code easily integrates with the .NET Framework (which 
also requires the use of Unicode characters and strings).

■ Using Unicode ensures that your code easily manipulates your own resources (where strings 
are always persisted as Unicode).

How We Recommend Working with Characters and Strings
Based on what you’ve read in this chapter, the first part of this section summarizes what you 
should always keep in mind when developing your code. The second part of the section provides 
tips and tricks for better Unicode and ANSI string manipulations. It’s a good idea to start convert-
ing your application to be Unicode-ready even if you don’t plan to use Unicode right away. Here are 
the basic guidelines you should follow:

■ Start thinking of text strings as arrays of characters, not as arrays of chars or arrays of bytes.

■ Use generic data types (such as TCHAR/PTSTR) for text characters and strings.

■ Use explicit data types (such as BYTE and PBYTE) for bytes, byte pointers, and data buffers.

■ Use the TEXT or _T macro for literal characters and strings, but avoid mixing both for the sake 
of consistency and for better readability.

■ Perform global replaces. (For example, replace PSTR with PTSTR.)

■ Modify string arithmetic problems. For example, functions usually expect you to pass a 
buffer’s size in characters, not bytes. This means you should pass _countof(szBuffer) 
instead of sizeof(szBuffer). Also, if you need to allocate a block of memory for a string 
and you have the number of characters in the string, remember that you allocate memory in 
bytes. This means that you must call malloc(nCharacters * sizeof(TCHAR)) and not 
call malloc(nCharacters). Of all the guidelines I’ve just listed, this is the most difficult one 
to remember, and the compiler offers no warnings or errors if you make a mistake. This is a 
good opportunity to define your own macros, such as the following: 

#define chmalloc(nCharacters)  (TCHAR*)malloc(nCharacters * sizeof(TCHAR)).



Chapter 2 Working with Characters and Strings 27
■ Avoid printf family functions, especially by using %s and %S field types to convert ANSI to 
Unicode strings and vice versa. Use MultiByteToWideChar and WideCharToMultiByte 
instead, as shown in “Translating Strings Between Unicode and ANSI” below.

■ Always specify both UNICODE and _UNICODE symbols or neither of them.

In terms of string manipulation functions, here are the basic guidelines that you should follow:

■ Always work with safe string manipulation functions such as those suffixed with _s or pre-
fixed with StringCch. Use the latter for explicit truncation handling, but prefer the former 
otherwise.

■ Don’t use the unsafe C run-time library string manipulation functions. (See the previous 
recommendation.) In a more general way, don’t use or implement any buffer manipulation 
routine that would not take the size of the destination buffer as a parameter. The C run-time 
library provides a replacement for buffer manipulation functions such as memcpy_s, 
memmove_s, wmemcpy_s, or wmemmove_s. All these methods are available when the 
__STDC_WANT_SECURE_LIB__ symbol is defined, which is the case by default in CrtDefs.h. 
So don’t undefine __STDC_WANT_SECURE_LIB__.

■ Take advantage of the /GS (http://msdn2.microsoft.com/en-us/library/aa290051(VS.71).aspx) 
and /RTCs compiler flags to automatically detect buffer overruns.

■ Don’t use Kernel32 methods for string manipulation such as lstrcat and lstrcpy.

■ There are two kinds of strings that we compare in our code. Programmatic strings are file 
names, paths, XML elements and attributes, and registry keys/values. For these, use 
CompareStringOrdinal, as it is very fast and does not take the user’s locale into account. 
This is good because these strings remain the same no matter where your application is run-
ning in the world. User strings are typically strings that appear in the user interface. For 
these, call CompareString(Ex), as it takes the locale into account when comparing strings.

You don’t have a choice: as a professional developer, you can’t write code based on unsafe buffer 
manipulation functions. And this is the reason why all the code in this book relies on these safer 
functions from the C run-time library.

Translating Strings Between Unicode and ANSI
You use the Windows function MultiByteToWideChar to convert multibyte-character strings to 
wide-character strings. MultiByteToWideChar is shown here:

int MultiByteToWideChar( 

UINT uCodePage,  

DWORD dwFlags, 

PCSTR pMultiByteStr,  

int cbMultiByte, 

PWSTR pWideCharStr,  

int cchWideChar);

The uCodePage parameter identifies a code page number that is associated with the multibyte 
string. The dwFlags parameter allows you to specify an additional control that affects characters 
with diacritical marks such as accents. Usually the flags aren’t used, and 0 is passed in the dwFlags 
parameter (For more details about the possible values for this flag, read the MSDN online help at 
http://msdn2.microsoft.com/en-us/library/ms776413.aspx.) The pMultiByteStr parameter 



28 WIndows via C/C++
specifies the string to be converted, and the cbMultiByte parameter indicates the length (in 
bytes) of the string. The function automatically determines the length of the source string if you 
pass –1 for the cbMultiByte parameter.

The Unicode version of the string resulting from the conversion is written to the buffer located in 
memory at the address specified by the pWideCharStr parameter. You must specify the maximum 
size of this buffer (in characters) in the cchWideChar parameter. If you call MultiByteToWide
Char, passing 0 for the cchWideChar parameter, the function doesn’t perform the conversion and 
instead returns the number of wide characters (including the terminating '\0' character) that the 
buffer must provide for the conversion to succeed. Typically, you convert a multibyte-character 
string to its Unicode equivalent by performing the following steps:

1. Call MultiByteToWideChar, passing NULL for the pWideCharStr parameter and 0 for the 
cchWideChar parameter and –1 for the cbMultiByte parameter.

2. Allocate a block of memory large enough to hold the converted Unicode string. This size is 
computed based on the value returned by the previous call to MultiByteToWideChar mul-
tiplied by sizeof(wchar_t).

3. Call MultiByteToWideChar again, this time passing the address of the buffer as the 
pWideCharStr parameter and passing the size computed based on the value returned by the 
first call to MultiByteToWideChar multiplied by sizeof(wchar_t) as the cchWideChar 
parameter.

4. Use the converted string.

5. Free the memory block occupying the Unicode string.

The function WideCharToMultiByte converts a wide-character string to its multibyte-string 
equivalent, as shown here:

int WideCharToMultiByte( 

UINT uCodePage,  

DWORD dwFlags, 

PCWSTR pWideCharStr,  

int cchWideChar, 

PSTR pMultiByteStr,  

int cbMultiByte, 

PCSTR pDefaultChar,  

PBOOL pfUsedDefaultChar);

This function is similar to the MultiByteToWideChar function. Again, the uCodePage parameter 
identifies the code page to be associated with the newly converted string. The dwFlags parameter 
allows you to specify additional control over the conversion. The flags affect characters with diacrit-
ical marks and characters that the system is unable to convert. Usually, you won’t need this degree 
of control over the conversion, and you’ll pass 0 for the dwFlags parameter.

The pWideCharStr parameter specifies the address in memory of the string to be converted, and 
the cchWideChar parameter indicates the length (in characters) of this string. The function deter-
mines the length of the source string if you pass –1 for the cchWideChar parameter.

The multibyte version of the string resulting from the conversion is written to the buffer indicated 
by the pMultiByteStr parameter. You must specify the maximum size of this buffer (in bytes) in 
the cbMultiByte parameter. Passing 0 as the cbMultiByte parameter of the WideCharToMulti
Byte function causes the function to return the size required by the destination buffer. You’ll 



Chapter 2 Working with Characters and Strings 29
typically convert a wide-character string to a multibyte-character string using a sequence of events 
similar to those discussed when converting a multibyte string to a wide-character string, except 
that the return value is directly the number of bytes required for the conversion to succeed.

You’ll notice that the WideCharToMultiByte function accepts two parameters more than the 
MultiByteToWideChar function: pDefaultChar and pfUsedDefaultChar. These parameters 
are used by the WideCharToMultiByte function only if it comes across a wide character that 
doesn’t have a representation in the code page identified by the uCodePage parameter. If the wide 
character cannot be converted, the function uses the character pointed to by the pDefaultChar 
parameter. If this parameter is NULL, which is most common, the function uses a system default 
character. This default character is usually a question mark. This is dangerous for filenames 
because the question mark is a wildcard character.

The pfUsedDefaultChar parameter points to a Boolean variable that the function sets to TRUE if 
at least one character in the wide-character string could not be converted to its multibyte equiva-
lent. The function sets the variable to FALSE if all the characters convert successfully. You can test 
this variable after the function returns to check whether the wide-character string was converted 
successfully. Again, you usually pass NULL for this parameter.

For a more complete description of how to use these functions, please refer to the Platform SDK 
documentation.

Exporting ANSI and Unicode DLL Functions
You could use these two functions to easily create both Unicode and ANSI versions of functions. 
For example, you might have a dynamic-link library containing a function that reverses all the char-
acters in a string. You could write the Unicode version of the function as shown here:

BOOL StringReverseW(PWSTR pWideCharStr, DWORD cchLength) { 

 

// Get a pointer to the last character in the string. 

PWSTR pEndOfStr = pWideCharStr + wcsnlen_s(pWideCharStr , cchLength) - 1; 

wchar_t cCharT; 

// Repeat until we reach the center character in the string. 

while (pWideCharStr < pEndOfStr) { 

// Save a character in a temporary variable. 

cCharT = *pWideCharStr; 

 

// Put the last character in the first character. 

*pWideCharStr = *pEndOfStr; 

 

// Put the temporary character in the last character. 

*pEndOfStr = cCharT; 

 

// Move in one character from the left. 

pWideCharStr++; 

 

// Move in one character from the right. 

pEndOfStr--; 

} 

 

// The string is reversed; return success. 

return(TRUE); 

}



30 WIndows via C/C++
And you could write the ANSI version of the function so that it doesn’t perform the actual work of 
reversing the string at all. Instead, you could write the ANSI version so that it converts the ANSI 
string to Unicode, passes the Unicode string to the StringReverseW function, and then converts 
the reversed string back to ANSI. The function would look like this:

BOOL StringReverseA(PSTR pMultiByteStr, DWORD cchLength) { 

PWSTR pWideCharStr; 

int nLenOfWideCharStr; 

BOOL fOk = FALSE; 

 

// Calculate the number of characters needed to hold 

// the wide-character version of the string. 

nLenOfWideCharStr = MultiByteToWideChar(CP_ACP, 0, 

pMultiByteStr, cchLength, NULL, 0); 

 

// Allocate memory from the process' default heap to 

// accommodate the size of the wide-character string. 

// Don't forget that MultiByteToWideChar returns the  

// number of characters, not the number of bytes, so 

// you must multiply by the size of a wide character. 

pWideCharStr = (PWSTR)HeapAlloc(GetProcessHeap(), 0, 

nLenOfWideCharStr * sizeof(wchar_t)); 

 

if (pWideCharStr == NULL) 

return(fOk); 

 

// Convert the multibyte string to a wide-character string. 

MultiByteToWideChar(CP_ACP, 0, pMultiByteStr, cchLength, 

pWideCharStr, nLenOfWideCharStr); 

 

// Call the wide-character version of this 

// function to do the actual work. 

fOk = StringReverseW(pWideCharStr, cchLength); 

 

if (fOk) { 

// Convert the wide-character string back 

// to a multibyte string. 

WideCharToMultiByte(CP_ACP, 0, pWideCharStr, cchLength, 

pMultiByteStr, (int)strlen(pMultiByteStr), NULL, NULL); 

} 

 

// Free the memory containing the wide-character string. 

HeapFree(GetProcessHeap(), 0, pWideCharStr); 

 

return(fOk); 

}

Finally, in the header file that you distribute with the dynamic-link library, you prototype the two 
functions as follows:



Chapter 2 Working with Characters and Strings 31
BOOL StringReverseW(PWSTR pWideCharStr, DWORD cchLength); 

BOOL StringReverseA(PSTR pMultiByteStr, DWORD cchLength); 

 

#ifdef UNICODE 

#define StringReverse StringReverseW 

#else 

#define StringReverse StringReverseA 

#endif // !UNICODE

Determining If Text Is ANSI or Unicode
The Windows Notepad application allows you to open both Unicode and ANSI files as well as cre-
ate them. In fact, Figure 2-5 shows Notepad’s File Save As dialog box. Notice the different ways that 
you can save a text file.

Figure 2-5 The Windows Vista Notepad File Save As dialog box

For many applications that open text files and process them, such as compilers, it would be conve-
nient if, after opening a file, the application could determine whether the text file contained ANSI 
characters or Unicode characters. The IsTextUnicode function exported by AdvApi32.dll and 
declared in WinBase.h can help make this distinction:

BOOL IsTextUnicode(CONST PVOID pvBuffer, int cb, PINT pResult);

The problem with text files is that there are no hard and fast rules as to their content. This makes 
it extremely difficult to determine whether the file contains ANSI or Unicode characters. IsText
Unicode uses a series of statistical and deterministic methods to guess at the content of the buffer. 
Because this is not an exact science, it is possible that IsTextUnicode will return an incorrect 
result.



32 WIndows via C/C++
The first parameter, pvBuffer, identifies the address of a buffer that you want to test. The data is 
a void pointer because you don’t know whether you have an array of ANSI characters or an array of 
Unicode characters.

The second parameter, cb, specifies the number of bytes that pvBuffer points to. Again, because 
you don’t know what’s in the buffer, cb is a count of bytes rather than a count of characters. Note 
that you do not have to specify the entire length of the buffer. Of course, the more bytes IsText
Unicode can test, the more accurate a response you’re likely to get.

The third parameter, pResult, is the address of an integer that you must initialize before calling 
IsTextUnicode. You initialize this integer to indicate which tests you want IsTextUnicode to 
perform. You can also pass NULL for this parameter, in which case IsTextUnicode will perform 
every test it can. (See the Platform SDK documentation for more details.)

If IsTextUnicode thinks that the buffer contains Unicode text, TRUE is returned; otherwise, 
FALSE is returned. If specific tests were requested in the integer pointed to by the pResult param-
eter, the function sets the bits in the integer before returning to reflect the results of each test.

The FileRev sample application presented in Chapter 17, “Memory-Mapped Files,” demonstrates 
the use of the IsTextUnicode function.



Chapter 10

Synchronous and Asynchronous Device I/O

In this chapter: 

Opening and Closing Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

Working with File Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

Performing Synchronous Device I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

Basics of Asynchronous Device I/O  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

Receiving Completed I/O Request Notifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

I can’t stress enough the importance of this chapter, which covers the Microsoft Windows technol-
ogies that enable you to design high-performance, scalable, responsive, and robust applications. A 
scalable application handles a large number of concurrent operations as efficiently as it handles a 
small number of concurrent operations. For a service application, typically these operations are 
processing client requests that arrive at unpredictable times and require an unpredictable amount 
of processing power. These requests usually arrive from I/O devices such as network adapters; pro-
cessing the requests frequently requires additional I/O devices such as disk files.

In Microsoft Windows applications, threads are the best facility available to help you partition 
work. Each thread is assigned to a processor, which allows a multiprocessor machine to execute 
multiple operations simultaneously, increasing throughput. When a thread issues a synchronous 
device I/O request, the thread is temporarily suspended until the device completes the I/O request. 
This suspension hurts performance because the thread is unable to do useful work, such as initiate 
another client’s request for processing. So, in short, you want to keep your threads doing useful 
work all the time and avoid having them block.

To help keep threads busy, you need to make your threads communicate with one another about 
the operations they will perform. Microsoft has spent years researching and testing in this area and 
has developed a finely tuned mechanism to create this communication. This mechanism, called the 
I/O completion port, can help you create high-performance, scalable applications. By using the I/O 
completion port, you can make your application’s threads achieve phenomenal throughput by 
reading and writing to devices without waiting for the devices to respond.

The I/O completion port was originally designed to handle device I/O, but over the years, 
Microsoft has architected more and more operating system facilities that fit seamlessly into the I/O 
completion port model. One example is the job kernel object, which monitors its processes and 
sends event notifications to an I/O completion port. The Job Lab sample application detailed in 
Chapter 5, “Jobs,” demonstrates how I/O completion ports and job objects work together.

Throughout my many years as a Windows developer, I have found more and more uses for the 
I/O completion port, and I feel that every Windows developer must fully understand how the I/O 
completion port works. Even though I present the I/O completion port in this chapter about 
device I/O, be aware that the I/O completion port doesn’t have to be used with device I/O at 
289



290 Windows via C/C++
all—simply put, it is an awesome interthread communication mechanism with an infinite number 
of uses.

From this fanfare, you can probably tell that I’m a huge fan of the I/O completion port. My hope is 
that by the end of this chapter, you will be too. But instead of jumping right into the details of the 
I/O completion port, I’m going to explain what Windows originally offered developers for device 
I/O. This will give you a much greater appreciation for the I/O completion port. In “I/O Comple-
tion Ports” on page 320 I’ll discuss the I/O completion port.

Opening and Closing Devices
One of the strengths of Windows is the sheer number of devices that it supports. In the context of 
this discussion, I define a device to be anything that allows communication. Table 10-1 lists some 
devices and their most common uses.

This chapter discusses how an application’s threads communicate with these devices without wait-
ing for the devices to respond. Windows tries to hide device differences from the software devel-
oper as much as possible. That is, once you open a device, the Windows functions that allow you 
to read and write data to the device are the same no matter what device you are communicating 
with. Although only a few functions are available for reading and writing data regardless of the 
device, devices are certainly different from one another. For example, it makes sense to set a baud 
rate for a serial port, but a baud rate has no meaning when using a named pipe to communicate 
over a network (or over the local machine). Devices are subtly different from one another, and I will 
not attempt to address all their nuances. However, I will spend some time addressing files because 

Table 10-1 Various Devices and Their Common Uses

Device Most Common Use
File Persistent storage of arbitrary data
Directory Attribute and file compression settings
Logical disk drive Drive formatting
Physical disk drive Partition table access
Serial port Data transmission over a phone line
Parallel port Data transmission to a printer
Mailslot One-to-many transmission of data, usually over a network to a 

machine running Windows
Named pipe One-to-one transmission of data, usually over a network to a machine 

running Windows
Anonymous pipe One-to-one transmission of data on a single machine (never over the 

network)
Socket Datagram or stream transmission of data, usually over a network to 

any machine supporting sockets (The machine need not be running 
Windows.)

Console A text window screen buffer



Chapter 10 Synchronous and Asynchronous Device I/O 291
files are so common. To perform any type of I/O, you must first open the desired device and get a 
handle to it. The way you get the handle to a device depends on the particular device. Table 10-2 
lists various devices and the functions you should call to open them.

Each function in Table 10-2 returns a handle that identifies the device. You can pass the handle to 
various functions to communicate with the device. For example, you call SetCommConfig to set 
the baud rate of a serial port:

BOOL SetCommConfig( 

   HANDLE       hCommDev,  

   LPCOMMCONFIG pCC, 

   DWORD        dwSize);

Table 10-2 Functions for Opening Various Devices

Device Function Used to Open the Device
File CreateFile (pszName is pathname or UNC pathname).
Directory CreateFile  (pszName is directory name or UNC directory name). 

Windows allows you to open a directory if you specify the FILE_
FLAG_BACKUP_SEMANTICS flag in the call to CreateFile. Open-
ing the directory allows you to change the directory’s attributes (to 
normal, hidden, and so on) and its time stamp.

Logical disk drive CreateFile (pszName is "\\.\x:"). Windows allows you to open a 
logical drive if you specify a string in the form of "\\.\x:" where x is 
a drive letter. For example, to open drive A, you specify "\\.\A:". 
Opening a drive allows you to format the drive or determine the 
media size of the drive.

Physical disk drive CreateFile (pszName is "\\.\PHYSICALDRIVEx"). Windows allows 
you to open a physical drive if you specify a string in the form of 
"\\.\PHYSICALDRIVEx" where x is a physical drive number. For 
example, to read or write to physical sectors on the user’s first 
physical hard disk, you specify "\\.\PHYSICALDRIVE0". Opening a 
physical drive allows you to access the hard drive’s partition tables 
directly. Opening the physical drive is potentially dangerous; an 
incorrect write to the drive could make the disk’s contents inacces-
sible by the operating system’s file system.

Serial port CreateFile (pszName is "COMx").
Parallel port CreateFile (pszName is "LPTx").
Mailslot server CreateMailslot (pszName is "\\.\mailslot\mailslotname").
Mailslot client CreateFile (pszName is "\\servername\mailslot\mailslotname").
Named pipe server CreateNamedPipe (pszName is "\\.\pipe\pipename").
Named pipe client CreateFile (pszName is "\\servername\pipe\pipename").
Anonymous pipe CreatePipe client and server.
Socket socket, accept, or AcceptEx.
Console CreateConsoleScreenBuffer or GetStdHandle.



292 Windows via C/C++
And you use SetMailslotInfo to set the time-out value when waiting to read data:

BOOL SetMailslotInfo( 

   HANDLE hMailslot,  

   DWORD  dwReadTimeout);

As you can see, these functions require a handle to a device for their first argument.

When you are finished manipulating a device, you must close it. For most devices, you do this by 
calling the very popular CloseHandle function:

BOOL CloseHandle(HANDLE hObject);

However, if the device is a socket, you must call closesocket instead:

int closesocket(SOCKET s);

Also, if you have a handle to a device, you can find out what type of device it is by calling 
GetFileType:

DWORD GetFileType(HANDLE hDevice);

All you do is pass to the GetFileType function the handle to a device, and the function returns 
one of the values listed in Table 10-3.

A Detailed Look at CreateFile
The CreateFile function, of course, creates and opens disk files, but don’t let the name fool you—
it opens lots of other devices as well:

HANDLE CreateFile( 

   PCTSTR pszName,  

   DWORD  dwDesiredAccess, 

   DWORD  dwShareMode, 

   PSECURITY_ATTRIBUTES psa, 

   DWORD  dwCreationDisposition,  

   DWORD  dwFlagsAndAttributes,  

   HANDLE hFileTemplate);

As you can see, CreateFile requires quite a few parameters, allowing for a great deal of flexibility 
when opening a device. At this point, I’ll discuss all these parameters in detail.

When you call CreateFile, the pszName parameter identifies the device type as well as a specific 
instance of the device.

Table 10-3 Values Returned by the GetFileType Function

Value Description
FILE_TYPE_UNKNOWN The type of the specified file is unknown.
FILE_TYPE_DISK The specified file is a disk file.
FILE_TYPE_CHAR The specified file is a character file, typically an LPT device or a console.
FILE_TYPE_PIPE The specified file is either a named pipe or an anonymous pipe.



Chapter 10 Synchronous and Asynchronous Device I/O 293
The dwDesiredAccess parameter specifies how you want to transmit data to and from the device. 
You can pass these four generic values, which are described in Table 10-4. Certain devices allow for 
additional access control flags. For example, when opening a file, you can specify access flags such 
as FILE_READ_ATTRIBUTES. See the Platform SDK documentation for more information about 
these flags. 

The dwShareMode parameter specifies device-sharing privileges. It controls how the device can be 
opened by additional calls to CreateFile while you still have the device opened yourself (that is, 
you haven’t closed the device yet by calling CloseHandle). Table 10-5 describes the possible val-
ues that can be passed for the dwShareMode parameter.

Table 10-4 Generic Values That Can Be Passed for CreateFile’s dwDesiredAccess Parameter

Value Meaning
0 You do not intend to read or write data to the device. Pass 0 when you 

just want to change the device’s configuration settings—for example, if 
you want to change only a file’s time stamp.

GENERIC_READ Allows read-only access from the device.
GENERIC_WRITE Allows write-only access to the device. For example, this value can be 

used to send data to a printer and by backup software. Note that 
GENERIC_WRITE does not imply GENERIC_READ.

GENERIC_READ | 
GENERIC_WRITE

Allows both read and write access to the device. This value is the most 
common because it allows the free exchange of data.

Table 10-5 Values Related to I/O That Can Be Passed for CreateFile’s dwShareMode Parameter

Value Meaning
0 You require exclusive access to the device. If the device is already 

opened, your call to CreateFile fails. If you successfully open the 
device, future calls to CreateFile fail.

FILE_SHARE_READ You require that the data maintained by the device can’t be changed 
by any other kernel object referring to this device. If the device is 
already opened for write or exclusive access, your call to CreateFile 
fails. If you successfully open the device, future calls to CreateFile 
fail if GENERIC_WRITE access is requested.

FILE_SHARE_WRITE You require that the data maintained by the device can’t be read by any 
other kernel object referring to this device. If the device is already 
opened for read or exclusive access, your call to CreateFile fails. If 
you successfully open the device, future calls to CreateFile fail if 
GENERIC_READ access is requested.

FILE_SHARE_READ | 
FILE_SHARE_WRITE

You don’t care if the data maintained by the device is read or written to 
by any other kernel object referring to this device. If the device is 
already opened for exclusive access, your call to CreateFile fails. If 
you successfully open the device, future calls to CreateFile fail when 
exclusive read, exclusive write, or exclusive read/write access is 
requested.

FILE_SHARE_DELETE You don’t care if the file is logically deleted or moved while you are 
working with the file. Internally, Windows marks a file for deletion and 
deletes it when all open handles to the file are closed. 



294 Windows via C/C++
Note If you are opening a file, you can pass a pathname that is up to MAX_PATH (defined 
as 260 in WinDef.h) characters long. However, you can transcend this limit by calling 
CreateFileW (the Unicode version of CreateFile) and precede the pathname with "\\?\". 
Calling CreateFileW removes the prefix and allows you to pass a path that is almost 32,000 
Unicode characters long. Remember, however, that you must use fully qualified paths when 
using this prefix; the system does not process relative directories such as "." and "..". Also, 
each individual component of the path is still limited to MAX_PATH characters. Don’t be 
surprised to also see the _MAX_PATH constant in various source code because this is what 
C/C++ standard libraries define in stdlib.h as 260. 

The psa parameter points to a SECURITY_ATTRIBUTES structure that allows you to specify security 
information and whether or not you’d like CreateFile’s returned handle to be inheritable. The 
security descriptor inside this structure is used only if you are creating a file on a secure file system 
such as NTFS; the security descriptor is ignored in all other cases. Usually, you just pass NULL for 
the psa parameter, indicating that the file is created with default security and that the returned 
handle is noninheritable.

The dwCreationDisposition parameter is most meaningful when CreateFile is being called to 
open a file as opposed to another type of device. Table 10-6 lists the possible values that you can 
pass for this parameter.

Note When you are calling CreateFile to open a device other than a file, you must pass 
OPEN_EXISTING for the dwCreationDisposition parameter.

CreateFile’s dwFlagsAndAttributes parameter has two purposes: it allows you to set flags that 
fine-tune the communication with the device, and if the device is a file, you also get to set the file’s 
attributes. Most of these communication flags are signals that tell the system how you intend to 
access the device. The system can then optimize its caching algorithms to help your application 
work more efficiently. I’ll describe the communication flags first and then discuss the file 
attributes.

Table 10-6 Values That Can Be Passed for CreateFile’s dwCreationDisposition Parameter

Value Meaning
CREATE_NEW Tells CreateFile to create a new file and to fail if a file with the 

same name already exists.
CREATE_ALWAYS Tells CreateFile to create a new file regardless of whether a file 

with the same name already exists. If a file with the same name 
already exists, CreateFile overwrites the existing file.

OPEN_EXISTING Tells CreateFile to open an existing file or device and to fail if the 
file or device doesn’t exist.

OPEN_ALWAYS Tells CreateFile to open the file if it exists and to create a new file 
if it doesn’t exist.

TRUNCATE_EXISTING Tells CreateFile to open an existing file, truncate its size to 0 
bytes, and fail if the file doesn’t already exist.



Chapter 10 Synchronous and Asynchronous Device I/O 295
CreateFile Cache Flags
This section describes the various CreateFile cache flags, focusing on file system objects. For 
other kernel objects such as mailslots, you should refer to the MSDN documentation to get more 
specific details.

FILE_FLAG_NO_BUFFERING This flag indicates not to use any data buffering when accessing a file. 
To improve performance, the system caches data to and from disk drives. Normally, you do not 
specify this flag, and the cache manager keeps recently accessed portions of the file system in mem-
ory. This way, if you read a couple of bytes from a file and then read a few more bytes, the file’s data 
is most likely loaded in memory and the disk has to be accessed only once instead of twice, greatly 
improving performance. However, this process does mean that portions of the file’s data are in 
memory twice: the cache manager has a buffer, and you called some function (such as ReadFile) 
that copied some of the data from the cache manager’s buffer into your own buffer.

When the cache manager is buffering data, it might also read ahead so that the next bytes you’re 
likely to read are already in memory. Again, speed is improved by reading more bytes than neces-
sary from the file. Memory is potentially wasted if you never attempt to read further in the file. (See 
the FILE_FLAG_SEQUENTIAL_SCAN and FILE_FLAG_RANDOM_ACCESS flags, discussed next, for 
more about reading ahead.)

By specifying the FILE_FLAG_NO_BUFFERING flag, you tell the cache manager that you do not 
want it to buffer any data—you take on this responsibility yourself! Depending on what you’re 
doing, this flag can improve your application’s speed and memory usage. Because the file system’s 
device driver is writing the file’s data directly into the buffers that you supply, you must follow cer-
tain rules:

■ You must always access the file by using offsets that are exact multiples of the disk volume’s 
sector size. (Use the GetDiskFreeSpace function to determine the disk volume’s sector 
size.)

■ You must always read/write a number of bytes that is an exact multiple of the sector size.

■ You must make sure that the buffer in your process’ address space begins on an address that 
is integrally divisible by the sector size.

FILE_FLAG_SEQUENTIAL_SCAN and FILE_FLAG_RANDOM_ACCESS These flags are useful only if 
you allow the system to buffer the file data for you. If you specify the FILE_FLAG_NO_BUFFERING 
flag, both of these flags are ignored.

If you specify the FILE_FLAG_SEQUENTIAL_SCAN flag, the system thinks you are accessing the file 
sequentially. When you read some data from the file, the system actually reads more of the file’s 
data than the amount you requested. This process reduces the number of hits to the hard disk and 
improves the speed of your application. If you perform any direct seeks on the file, the system has 
spent a little extra time and memory caching data that you are not accessing. This is perfectly OK, 
but if you do it often, you’d be better off specifying the FILE_FLAG_RANDOM_ACCESS flag. This flag 
tells the system not to pre-read file data.

To manage a file, the cache manager must maintain some internal data structures for the file—the 
larger the file, the more data structures required. When working with extremely large files, the 
cache manager might not be able to allocate the internal data structures it requires and will fail to 



296 Windows via C/C++
open the file. To access extremely large files, you must open the file using the FILE_FLAG_NO_
BUFFERING flag.

FILE_FLAG_WRITE_THROUGH This is the last cache-related flag. It disables intermediate caching 
of file-write operations to reduce the potential for data loss. When you specify this flag, the system 
writes all file modifications directly to the disk. However, the system still maintains an internal 
cache of the file’s data, and file-read operations use the cached data (if available) instead of reading 
data directly from the disk. When this flag is used to open a file on a network server, the Windows 
file-write functions do not return to the calling thread until the data is written to the server’s disk 
drive.

That’s it for the buffer-related communication flags. Now let’s discuss the remaining communica-
tion flags.

Miscellaneous CreateFile Flags
This section describes the other flags that exist to customize CreateFile behaviors outside of 
caching.

FILE_FLAG_DELETE_ON_CLOSE Use this flag to have the file system delete the file after all handles 
to it are closed. This flag is most frequently used with the FILE_ATTRIBUTE_TEMPORARY attribute. 
When these two flags are used together, your application can create a temporary file, write to it, 
read from it, and close it. When the file is closed, the system automatically deletes the file—what a 
convenience!

FILE_FLAG_BACKUP_SEMANTICS Use this flag in backup and restore software. Before opening or 
creating any files, the system normally performs security checks to be sure that the process trying 
to open or create a file has the requisite access privileges. However, backup and restore software is 
special in that it can override certain file security checks. When you specify the FILE_FLAG_
BACKUP_SEMANTICS flag, the system checks the caller’s access token to see whether the Backup/
Restore File and Directories privileges are enabled. If the appropriate privileges are enabled, the 
system allows the file to be opened. You can also use the FILE_FLAG_BACKUP_SEMANTICS flag to 
open a handle to a directory.

FILE_FLAG_POSIX_SEMANTICS In Windows, filenames are case-preserved, whereas filename 
searches are case-insensitive. However, the POSIX subsystem requires that filename searches be 
case-sensitive. The FILE_FLAG_POSIX_SEMANTICS flag causes CreateFile to use a case-sensitive 
filename search when creating or opening a file. Use the FILE_FLAG_POSIX_SEMANTICS flag with 
extreme caution—if you use it when you create a file, that file might not be accessible to Windows 
applications.

FILE_FLAG_OPEN_REPARSE_POINT In my opinion, this flag should have been called FILE_FLAG_
IGNORE_REPARSE_POINT because it tells the system to ignore the file’s reparse attribute (if it 
exists). Reparse attributes allow a file system filter to modify the behavior of opening, reading, writ-
ing, and closing a file. Usually, the modified behavior is desired, so using the FILE_FLAG_OPEN_
REPARSE_POINT flag is not recommended.

FILE_FLAG_OPEN_NO_RECALL This flag tells the system not to restore a file’s contents from 
offline storage (such as tape) back to online storage (such as a hard disk). When files are not 
accessed for long periods of time, the system can transfer the file’s contents to offline storage, free-
ing up hard disk space. When the system does this, the file on the hard disk is not destroyed; only 
the data in the file is destroyed. When the file is opened, the system automatically restores the data 



Chapter 10 Synchronous and Asynchronous Device I/O 297
from offline storage. The FILE_FLAG_OPEN_NO_RECALL flag instructs the system not to restore the 
data and causes I/O operations to be performed against the offline storage medium.

FILE_FLAG_OVERLAPPED This flag tells the system that you want to access a device asynchro-
nously. You’ll notice that the default way of opening a device is synchronous I/O (not specifying 
FILE_FLAG_OVERLAPPED). Synchronous I/O is what most developers are used to. When you read 
data from a file, your thread is suspended, waiting for the information to be read. Once the infor-
mation has been read, the thread regains control and continues executing.

Because device I/O is slow when compared with most other operations, you might want to con-
sider communicating with some devices asynchronously. Here’s how it works: Basically, you call a 
function to tell the operating system to read or write data, but instead of waiting for the I/O to com-
plete, your call returns immediately, and the operating system completes the I/O on your behalf 
using its own threads. When the operating system has finished performing your requested I/O, 
you can be notified. Asynchronous I/O is the key to creating high-performance, scalable, respon-
sive, and robust applications. Windows offers several methods of asynchronous I/O, all of which 
are discussed in this chapter.

File Attribute Flags
Now it’s time to examine the attribute flags for CreateFile’s dwFlagsAndAttributes parameter, 
described in Table 10-7. These flags are completely ignored by the system unless you are creating a 
brand new file and you pass NULL for CreateFile’s hFileTemplate parameter. Most of the 
attributes should already be familiar to you.

Table 10-7 File Attribute Flags That Can Be Passed for CreateFile’s dwFlagsAndAttributes 
Parameter

Flag Meaning
FILE_ATTRIBUTE_ARCHIVE The file is an archive file. Applications use this flag to 

mark files for backup or removal. When Create
File creates a new file, this flag is automatically set.

FILE_ATTRIBUTE_ENCRYPTED The file is encrypted.
FILE_ATTRIBUTE_HIDDEN The file is hidden. It won’t be included in an ordinary 

directory listing.
FILE_ATTRIBUTE_NORMAL The file has no other attributes set. This attribute is 

valid only when it’s used alone.
FILE_ATTRIBUTE_NOT_CONTENT_INDEXED The file will not be indexed by the content indexing 

service.
FILE_ATTRIBUTE_OFFLINE The file exists, but its data has been moved to offline 

storage. This flag is useful for hierarchical storage 
systems.

FILE_ATTRIBUTE_READONLY The file is read-only. Applications can read the file 
but can’t write to it or delete it.

FILE_ATTRIBUTE_SYSTEM The file is part of the operating system or is used 
exclusively by the operating system.

FILE_ATTRIBUTE_TEMPORARY The file’s data will be used only for a short time. The 
file system tries to keep the file’s data in RAM rather 
than on disk to keep the access time to a minimum.



298 Windows via C/C++
Use FILE_ATTRIBUTE_TEMPORARY if you are creating a temporary file. When CreateFile creates 
a file with the temporary attribute, CreateFile tries to keep the file’s data in memory instead of 
on the disk. This makes accessing the file’s contents much faster. If you keep writing to the file 
and the system can no longer keep the data in RAM, the operating system will be forced to start 
writing the data to the hard disk. You can improve the system’s performance by combining the 
FILE_ATTRIBUTE_TEMPORARY flag with the FILE_FLAG_DELETE_ON_CLOSE flag (discussed ear-
lier). Normally, the system flushes a file’s cached data when the file is closed. However, if the sys-
tem sees that the file is to be deleted when it is closed, the system doesn’t need to flush the file’s 
cached data.

In addition to all these communication and attribute flags, a number of flags allow you to control 
the security quality of service when opening a named-pipe device. Because these flags are specific 
to named pipes only, I will not discuss them here. To learn about them, please read about the 
CreateFile function in the Platform SDK documentation.

CreateFile’s last parameter, hFileTemplate, identifies the handle of an open file or is NULL. 
If hFileTemplate identifies a file handle, CreateFile ignores the attribute flags in the 
dwFlagsAndAttributes parameter completely and uses the attributes associated with the file 
identified by hFileTemplate. The file identified by hFileTemplate must have been opened with 
the GENERIC_READ flag for this to work. If CreateFile is opening an existing file (as opposed to 
creating a new file), the hFileTemplate parameter is ignored.

If CreateFile succeeds in creating or opening a file or device, the handle of the file or device is 
returned. If CreateFile fails, INVALID_HANDLE_VALUE is returned.

Note Most Windows functions that return a handle return NULL when the function fails. 
However, CreateFile returns INVALID_HANDLE_VALUE (defined as –1) instead. I have 
often seen code like this, which is incorrect:

HANDLE hFile = CreateFile(...); 
if (hFile == NULL) { 
   // We'll never get in here  
} else { 
   // File might or might not be created OK 
}

Here’s the correct way to check for an invalid file handle:

HANDLE hFile = CreateFile(...); 
if (hFile == INVALID_HANDLE_VALUE) { 
   // File not created 
} else { 
   // File created OK 
}



Chapter 10 Synchronous and Asynchronous Device I/O 299
Working with File Devices
Because working with files is so common, I want to spend some time addressing issues that apply 
specifically to file devices. This section shows how to position a file’s pointer and change a file’s 
size.

The first issue you must be aware of is that Windows was designed to work with extremely large 
files. Instead of representing a file’s size using 32-bit values, the original Microsoft designers chose 
to use 64-bit values. This means that theoretically a file can reach a size of 16 EB (exabytes).

Dealing with 64-bit values in a 32-bit operating system makes working with files a little unpleasant 
because a lot of Windows functions require you to pass a 64-bit value as two separate 32-bit values. 
But as you’ll see, working with the values is not too difficult and, in normal day-to-day operations, 
you probably won’t need to work with a file greater than 4 GB. This means that the high 32 bits of 
the file’s 64-bit size will frequently be 0 anyway.

Getting a File’s Size
When working with files, quite often you will need to acquire the file’s size. The easiest way to do 
this is by calling GetFileSizeEx:

BOOL GetFileSizeEx( 

   HANDLE         hFile, 

   PLARGE_INTEGER pliFileSize);

The first parameter, hFile, is the handle of an opened file, and the pliFileSize parameter is the 
address of a LARGE_INTEGER union. This union allows a 64-bit signed value to be referenced as two 
32-bit values or as a single 64-bit value, and it can be quite convenient when working with file sizes 
and offsets. Here is (basically) what the union looks like:

typedef union _LARGE_INTEGER { 

   struct { 

      DWORD LowPart;    // Low  32-bit unsigned value 

      LONG HighPart;    // High 32-bit signed value 

   }; 

   LONGLONG QuadPart;   // Full 64-bit signed value 

} LARGE_INTEGER, *PLARGE_INTEGER; 

In addition to LARGE_INTEGER, there is a ULARGE_INTEGER structure representing an unsigned 
64-bit value:

typedef union _ULARGE_INTEGER { 

   struct { 

      DWORD LowPart;     // Low  32-bit unsigned value 

      DWORD HighPart;    // High 32-bit unsigned value 

   }; 

    ULONGLONG QuadPart;   // Full 64-bit unsigned value 

} ULARGE_INTEGER, *PULARGE_INTEGER; 



300 Windows via C/C++
Another very useful function for getting a file’s size is GetCompressedFileSize:

DWORD GetCompressedFileSize( 

   PCTSTR pszFileName, 

   PDWORD pdwFileSizeHigh);

This function returns the file’s physical size, whereas GetFileSizeEx returns the file’s logical size. 
For example, consider a 100-KB file that has been compressed to occupy 85 KB. Calling GetFile
SizeEx returns the logical size of the file—100 KB—whereas GetCompressedFileSize returns the 
actual number of bytes on disk occupied by the file—85 KB.

Unlike GetFileSizeEx, GetCompressedFileSize takes a filename passed as a string instead of 
taking a handle for the first parameter. The GetCompressedFileSize function returns the 64-bit 
size of the file in an unusual way: the low 32 bits of the file’s size are the function’s return value. 
The high 32 bits of the file’s size are placed in the DWORD pointed to by the pdwFileSizeHigh 
parameter. Here the use of the ULARGE_INTEGER structure comes in handy:

ULARGE_INTEGER ulFileSize; 

ulFileSize.LowPart = GetCompressedFileSize(TEXT("SomeFile.dat"), 

   &ulFileSize.HighPart); 

 

// 64-bit file size is now in ulFileSize.QuadPart

Positioning a File Pointer
Calling CreateFile causes the system to create a file kernel object that manages operations on the 
file. Inside this kernel object is a file pointer. This file pointer indicates the 64-bit offset within the 
file where the next synchronous read or write should be performed. Initially, this file pointer is set 
to 0, so if you call ReadFile immediately after a call to CreateFile, you will start reading the file 
from offset 0. If you read 10 bytes of the file into memory, the system updates the pointer associ-
ated with the file handle so that the next call to ReadFile starts reading at the eleventh byte in the 
file at offset 10. For example, look at this code, in which the first 10 bytes from the file are read into 
the buffer, and then the next 10 bytes are read into the buffer:

BYTE pb[10]; 

DWORD dwNumBytes; 

HANDLE hFile = CreateFile(TEXT("MyFile.dat"), ...); // Pointer set to 0 

ReadFile(hFile, pb, 10, &dwNumBytes, NULL);   // Reads bytes  0 - 9 

ReadFile(hFile, pb, 10, &dwNumBytes, NULL);   // Reads bytes 10 - 19

Because each file kernel object has its own file pointer, opening the same file twice gives slightly dif-
ferent results:

BYTE pb[10]; 

DWORD dwNumBytes; 

HANDLE hFile1 = CreateFile(TEXT("MyFile.dat"), ...); // Pointer set to 0 

HANDLE hFile2 = CreateFile(TEXT("MyFile.dat"), ...); // Pointer set to 0 

ReadFile(hFile1, pb, 10, &dwNumBytes, NULL);   // Reads bytes 0 - 9 

ReadFile(hFile2, pb, 10, &dwNumBytes, NULL);   // Reads bytes 0 - 9



Chapter 10 Synchronous and Asynchronous Device I/O 301
In this example, two different kernel objects manage the same file. Because each kernel object has 
its own file pointer, manipulating the file with one file object has no effect on the file pointer main-
tained by the other object, and the first 10 bytes of the file are read twice.

I think one more example will help make all this clear:

BYTE pb[10]; 

DWORD dwNumBytes; 

HANDLE hFile1 = CreateFile(TEXT("MyFile.dat"), ...); // Pointer set to 0 

HANDLE hFile2; 

DuplicateHandle( 

   GetCurrentProcess(), hFile1,  

   GetCurrentProcess(), &hFile2, 

   0, FALSE, DUPLICATE_SAME_ACCESS); 

ReadFile(hFile1, pb, 10, &dwNumBytes, NULL);   // Reads bytes  0 - 9 

ReadFile(hFile2, pb, 10, &dwNumBytes, NULL);   // Reads bytes 10 - 19

In this example, one file kernel object is referenced by two file handles. Regardless of which handle 
is used to manipulate the file, the one file pointer is updated. As in the first example, different bytes 
are read each time.

If you need to access a file randomly, you will need to alter the file pointer associated with the file’s 
kernel object. You do this by calling SetFilePointerEx:

BOOL SetFilePointerEx( 

   HANDLE         hFile, 

   LARGE_INTEGER  liDistanceToMove, 

   PLARGE_INTEGER pliNewFilePointer, 

   DWORD          dwMoveMethod); 

The hFile parameter identifies the file kernel object whose file pointer you want to change. The 
liDistanceToMove parameter tells the system by how many bytes you want to move the pointer. 
The number you specify is added to the current value of the file’s pointer, so a negative number has 
the effect of stepping backward in the file. The last parameter of SetFilePointerEx, 
dwMoveMethod, tells SetFilePointerEx how to interpret the liDistanceToMove parameter. 
Table 10-8 describes the three possible values you can pass via dwMoveMethod to specify the start-
ing point for the move.

Table 10-8 Values That Can Be Passed for SetFilePointerEx’s dwMoveMethod Parameter

Value Meaning
FILE_BEGIN The file object’s file pointer is set to the value specified by the 

liDistanceToMove parameter. Note that liDistanceToMove is 
interpreted as an unsigned 64-bit value.

FILE_CURRENT The file object’s file pointer has the value of liDistanceToMove added 
to it. Note that liDistanceToMove is interpreted as a signed 64-bit 
value, allowing you to seek backward in the file.

FILE_END The file object’s file pointer is set to the logical file size plus the 
liDistanceToMove parameter. Note that liDistanceToMove is inter-
preted as a signed 64-bit value, allowing you to seek backward in the file.



302 Windows via C/C++
After SetFilePointerEx has updated the file object’s file pointer, the new value of the file pointer 
is returned in the LARGE_INTEGER pointed to by the pliNewFilePointer parameter. You can 
pass NULL for pliNewFilePointer if you’re not interested in the new pointer value.

Here are a few facts to note about SetFilePointerEx:

■ Setting a file’s pointer beyond the end of the file’s current size is legal. Doing so does not 
actually increase the size of the file on disk unless you write to the file at this position or call 
SetEndOfFile.

■ When using SetFilePointerEx with a file opened with FILE_FLAG_NO_BUFFERING, the 
file pointer can be positioned only on sector-aligned boundaries. The FileCopy sample appli-
cation later in this chapter demonstrates how to do this properly.

■ Windows does not offer a GetFilePointerEx function, but you can use SetFile
PointerEx to move the pointer by 0 bytes to get the desired effect, as shown in the following 
code snippet:

   LARGE_INTEGER liCurrentPosition = { 0 }; 

   SetFilePointerEx(hFile, liCurrentPosition, &liCurrentPosition, FILE_CURRENT);

Setting the End of a File
Usually, the system takes care of setting the end of a file when the file is closed. However, you might 
sometimes want to force a file to be smaller or larger. On those occasions, call

BOOL SetEndOfFile(HANDLE hFile);

This SetEndOfFile function truncates or extends a file’s size to the size indicated by the file 
object’s file pointer. For example, if you wanted to force a file to be 1024 bytes long, you’d use 
SetEndOfFile this way:

HANDLE hFile = CreateFile(...); 

LARGE_INTEGER liDistanceToMove; 

liDistanceToMove.QuadPart = 1024; 

SetFilePointerEx(hFile, liDistanceToMove, NULL, FILE_BEGIN); 

SetEndOfFile(hFile); 

CloseHandle(hFile);

Using Windows Explorer to examine the properties of this file reveals that the file is exactly 1024 
bytes long.

Performing Synchronous Device I/O
This section discusses the Windows functions that allow you to perform synchronous device I/O. 
Keep in mind that a device can be a file, mailslot, pipe, socket, and so on. No matter which device 
is used, the I/O is performed using the same functions.

Without a doubt, the easiest and most commonly used functions for reading from and writing to 
devices are ReadFile and WriteFile:



Chapter 10 Synchronous and Asynchronous Device I/O 303
BOOL ReadFile( 

   HANDLE      hFile,  

   PVOID       pvBuffer, 

   DWORD       nNumBytesToRead,  

   PDWORD      pdwNumBytes, 

   OVERLAPPED* pOverlapped); 

 

BOOL WriteFile( 

   HANDLE      hFile,  

   CONST VOID  *pvBuffer, 

   DWORD       nNumBytesToWrite,  

   PDWORD      pdwNumBytes, 

   OVERLAPPED* pOverlapped);

The hFile parameter identifies the handle of the device you want to access. When the device is 
opened, you must not specify the FILE_FLAG_OVERLAPPED flag, or the system will think that you 
want to perform asynchronous I/O with the device. The pvBuffer parameter points to the buffer 
to which the device’s data should be read or to the buffer containing the data that should be writ-
ten to the device. The nNumBytesToRead and nNumBytesToWrite parameters tell ReadFile and 
WriteFile how many bytes to read from the device and how many bytes to write to the device, 
respectively.

The pdwNumBytes parameters indicate the address of a DWORD that the functions fill with the num-
ber of bytes successfully transmitted to and from the device. The last parameter, pOverlapped, 
should be NULL when performing synchronous I/O. You’ll examine this parameter in more detail 
shortly when asynchronous I/O is discussed.

Both ReadFile and WriteFile return TRUE if successful. By the way, ReadFile can be called only 
for devices that were opened with the GENERIC_READ flag. Likewise, WriteFile can be called only 
when the device is opened with the GENERIC_WRITE flag.

Flushing Data to the Device
Remember from our look at the CreateFile function that you can pass quite a few flags to alter 
the way in which the system caches file data. Some other devices, such as serial ports, mailslots, 
and pipes, also cache data. If you want to force the system to write cached data to the device, you 
can call FlushFileBuffers:

BOOL FlushFileBuffers(HANDLE hFile);

The FlushFileBuffers function forces all the buffered data associated with a device that is iden-
tified by the hFile parameter to be written. For this to work, the device has to be opened with the 
GENERIC_WRITE flag. If the function is successful, TRUE is returned.

Synchronous I/O Cancellation
Functions that do synchronous I/O are easy to use, but they block any other operations from 
occurring on the thread that issued the I/O until the request is completed. A great example of this 
is a CreateFile operation. When a user performs mouse and keyboard input, window messages 
are inserted into a queue that is associated with the thread that created the window that the input 
is destined for. If that thread is stuck inside a call to CreateFile, waiting for CreateFile to 



304 Windows via C/C++
return, the window messages are not getting processed and all the windows created by the thread 
are frozen. The most common reason why applications hang is because their threads are stuck 
waiting for synchronous I/O operations to complete!

With Windows Vista, Microsoft has added some big features in an effort to alleviate this problem. 
For example, if a console (CUI) application hangs because of synchronous I/O, the user is now 
able to hit Ctrl+C to gain control back and continue using the console; the user no longer has to kill 
the console process. Also, the new Vista file open/save dialog box allows the user to press the Can-
cel button when opening a file is taking an excessively long time (typically, as a result of attempting 
to access a file on a network server).

To build a responsive application, you should try to perform asynchronous I/O operations as 
much as possible. This typically also allows you to use very few threads in your application, thereby 
saving resources (such as thread kernel objects and stacks). Also, it is usually easy to offer your 
users the ability to cancel an operation when you initiate it asynchronously. For example, Internet 
Explorer allows the user to cancel (via a red X button or the Esc key) a Web request if it is taking 
too long and the user is impatient.

Unfortunately, certain Windows APIs, such as CreateFile, offer no way to call the methods asyn-
chronously. Although some of these methods do ultimately time out if they wait too long (such as 
when attempting to access a network server), it would be best if there was an application program-
ming interface (API) that you could call to force the thread to abort waiting and to just cancel the 
synchronous I/O operation. In Windows Vista, the following function allows you to cancel a pend-
ing synchronous I/O request for a given thread:

BOOL CancelSynchronousIo(HANDLE hThread);

The hThread parameter is a handle of the thread that is suspended waiting for the synchronous 
I/O request to complete. This handle must have been created with the THREAD_TERMINATE access. 
If this is not the case, CancelSynchronousIo fails and GetLastError returns ERROR_ACCESS_
DENIED. When you create the thread yourself by using CreateThread or _beginthreadex, the 
returned handle has THREAD_ALL_ACCESS, which includes THREAD_TERMINATE access. However, 
if you are taking advantage of the thread pool or your cancellation code is called by a timer call-
back, you usually have to call OpenThread to get a thread handle corresponding to the current 
thread ID; don’t forget to pass THREAD_TERMINATE as the first parameter.

If the specified thread was suspended waiting for a synchronous I/O operation to complete, 
CancelSynchronousIo wakes the suspended thread and the operation it was trying to perform 
returns failure; calling GetLastError returns ERROR_OPERATION_ABORTED. Also, Cancel
SynchronousIo returns TRUE to its caller. 

Note that the thread calling CancelSynchronousIo doesn’t really know where the thread that 
called the synchronous operation is. The thread could have been pre-empted and it has yet to actu-
ally communicate with the device; it could be suspended, waiting for the device to respond; or the 
device could have just responded, and the thread is in the process of returning from its call. If 
CancelSynchronousIo is called when the specified thread is not actually suspended waiting for 
the device to respond, CancelSynchronousIo returns FALSE and GetLastError returns 
ERROR_NOT_FOUND.

For this reason, you might want to use some additional thread synchronization (as discussed in 
Chapter 8, “Thread Synchronization in User Mode,” and Chapter 9, “Thread Synchronization with 



Chapter 10 Synchronous and Asynchronous Device I/O 305
Kernel Objects”) to know for sure whether you are cancelling a synchronous operation or not. 
However, in practice, this is usually not necessary, as it is typical for a user to initiate the cancella-
tion and this usually happens because the user sees the application is suspended. Also, a user 
could try to initiate cancellation twice (or more) if the first attempt to cancel doesn’t seem to work. 
By the way, Windows calls CancelSynchronousIo internally to allow the user to regain control of 
a command console and the file open/save dialog box.

Caution Cancellation of I/O requests depends on the driver implementing the correspond-
ing system layer. It might happen that such a driver does not support cancellation. In that 
case, CancelSynchronousIo would have returned TRUE anyway because this function has 
found a request to be marked as being cancelled. The real cancellation of the request is left 
as the responsibility of the driver. An example of a driver that was updated to support syn-
chronous cancellation for Windows Vista is the network redirector.

Basics of Asynchronous Device I/O
Compared to most other operations carried out by a computer, device I/O is one of the slowest and 
most unpredictable. The CPU performs arithmetic operations and even paints the screen much 
faster than it reads data from or writes data to a file or across a network. However, using asynchro-
nous device I/O enables you to better use resources and thus create more efficient applications.

Consider a thread that issues an asynchronous I/O request to a device. This I/O request is passed 
to a device driver, which assumes the responsibility of actually performing the I/O. While the 
device driver waits for the device to respond, the application’s thread is not suspended as it waits 
for the I/O request to complete. Instead, this thread continues executing and performs other useful 
tasks.

At some point, the device driver finishes processing the queued I/O request and must notify the 
application that data has been sent, data has been received, or an error has occurred. You’ll learn 
how the device driver notifies you of I/O completions in “Receiving Completed I/O Request Noti-
fications” on page 310. For now, let’s concentrate on how to queue asynchronous I/O requests. 
Queuing asynchronous I/O requests is the essence of designing a high-performance, scalable 
application, and it is what the remainder of this chapter is all about.

To access a device asynchronously, you must first open the device by calling CreateFile, specify-
ing the FILE_FLAG_OVERLAPPED flag in the dwFlagsAndAttributes parameter. This flag notifies 
the system that you intend to access the device asynchronously.

To queue an I/O request for a device driver, you use the ReadFile and WriteFile functions that 
you already learned about in “Performing Synchronous Device I/O” on page 302. For convenience, 
I’ll list the function prototypes again:

BOOL ReadFile( 

   HANDLE      hFile,  

   PVOID       pvBuffer, 

   DWORD       nNumBytesToRead,  

   PDWORD      pdwNumBytes, 

   OVERLAPPED* pOverlapped); 

 



306 Windows via C/C++
BOOL WriteFile( 

   HANDLE      hFile,  

   CONST VOID  *pvBuffer, 

   DWORD       nNumBytesToWrite,  

   PDWORD      pdwNumBytes, 

   OVERLAPPED* pOverlapped);

When either of these functions is called, the function checks to see if the device, identified by the 
hFile parameter, was opened with the FILE_FLAG_OVERLAPPED flag. If this flag is specified, the 
function performs asynchronous device I/O. By the way, when calling either function for asynchro-
nous I/O, you can (and usually do) pass NULL for the pdwNumBytes parameter. After all, you expect 
these functions to return before the I/O request has completed, so examining the number of bytes 
transferred is meaningless at this time.

The OVERLAPPED Structure
When performing asynchronous device I/O, you must pass the address to an initialized OVER
LAPPED structure via the pOverlapped parameter. The word “overlapped” in this context means 
that the time spent performing the I/O request overlaps the time your thread spends performing 
other tasks. Here’s what an OVERLAPPED structure looks like:

typedef struct _OVERLAPPED { 

   DWORD  Internal;     // [out] Error code 

   DWORD  InternalHigh; // [out] Number of bytes transferred 

   DWORD  Offset;       // [in]  Low  32-bit file offset 

   DWORD  OffsetHigh;   // [in]  High 32-bit file offset 

   HANDLE hEvent;       // [in]  Event handle or data 

} OVERLAPPED, *LPOVERLAPPED;

This structure contains five members. Three of these members—Offset, OffsetHigh, and 
hEvent—must be initialized prior to calling ReadFile or WriteFile. The other two members, 
Internal and InternalHigh, are set by the device driver and can be examined when the I/O 
operation completes. Here is a more detailed explanation of these member variables:

Offset and OffsetHigh When a file is being accessed, these members indicate the 64-bit offset in 
the file where you want the I/O operation to begin. Recall that each file kernel object has a file 
pointer associated with it. When issuing a synchronous I/O request, the system knows to 
start accessing the file at the location identified by the file pointer. After the operation is com-
plete, the system updates the file pointer automatically so that the next operation can pick up 
where the last operation left off.

When performing asynchronous I/O, this file pointer is ignored by the system. Imagine what 
would happen if your code placed two asynchronous calls to ReadFile (for the same file ker-
nel object). In this scenario, the system wouldn’t know where to start reading for the second 
call to ReadFile. You probably wouldn’t want to start reading the file at the same location 
used by the first call to ReadFile. You might want to start the second read at the byte in the 
file that followed the last byte that was read by the first call to ReadFile. To avoid the confu-
sion of multiple asynchronous calls to the same object, all asynchronous I/O requests must 
specify the starting file offset in the OVERLAPPED structure.



Chapter 10 Synchronous and Asynchronous Device I/O 307
Note that the Offset and OffsetHigh members are not ignored for nonfile devices—you 
must initialize both members to 0 or the I/O request will fail and GetLastError will return 
ERROR_INVALID_PARAMETER.

hEvent This member is used by one of the four methods available for receiving I/O completion 
notifications. When using the alertable I/O notification method, this member can be used 
for your own purposes. I know many developers who store the address of a C++ object in 
hEvent. (This member will be discussed more in “Signaling an Event Kernel Object” on 
page 312.)

Internal This member holds the processed I/O’s error code. As soon as you issue an asynchro-
nous I/O request, the device driver sets Internal to STATUS_PENDING, indicating that 
no error has occurred because the operation has not started. In fact, the macro 
HasOverlappedIoCompleted, which is defined in WinBase.h, allows you to check whether 
an asynchronous I/O operation has completed. If the request is still pending, FALSE is 
returned; if the I/O request is completed, TRUE is returned. Here is the macro’s definition:

#define HasOverlappedIoCompleted(pOverlapped) \ 

   ((pOverlapped)->Internal != STATUS_PENDING)

InternalHigh When an asynchronous I/O request completes, this member holds the number of 
bytes transferred.

When first designing the OVERLAPPED structure, Microsoft decided not to document the 
Internal and InternalHigh members (which explains their names). As time went on, Microsoft 
realized that the information contained in these members would be useful to developers, so it doc-
umented them. However, Microsoft didn’t change the names of the members because the operat-
ing system source code referenced them frequently, and Microsoft didn’t want to modify the code.

Note When an asynchronous I/O request completes, you receive the address of the 
OVERLAPPED structure that was used when the request was initiated. Having more contex-
tual information passed around with an OVERLAPPED structure is frequently useful—for 
example, if you wanted to store the handle of the device used to initiate the I/O request 
inside the OVERLAPPED structure. The OVERLAPPED structure doesn’t offer a device handle 
member or other potentially useful members for storing context, but you can solve this prob-
lem quite easily.

I frequently create a C++ class that is derived from an OVERLAPPED structure. This C++ class 
can have any additional information in it that I want. When my application receives the 
address of an OVERLAPPED structure, I simply cast the address to a pointer of my C++ class. 
Now I have access to the OVERLAPPED members and any additional context information my 
application needs. The FileCopy sample application at the end of this chapter demonstrates 
this technique. See my CIOReq C++ class in the FileCopy sample application for the details.

Asynchronous Device I/O Caveats
You should be aware of a couple of issues when performing asynchronous I/O. First, the device 
driver doesn’t have to process queued I/O requests in a first-in first-out (FIFO) fashion. For 



308 Windows via C/C++
example, if a thread executes the following code, the device driver will quite possibly write to the 
file and then read from the file:

OVERLAPPED o1 = { 0 }; 

OVERLAPPED o2 = { 0 }; 

BYTE bBuffer[100]; 

ReadFile (hFile, bBuffer, 100, NULL, &o1); 

WriteFile(hFile, bBuffer, 100, NULL, &o2);

A device driver typically executes I/O requests out of order if doing so helps performance. For 
example, to reduce head movement and seek times, a file system driver might scan the queued 
I/O request list looking for requests that are near the same physical location on the hard drive.

The second issue you should be aware of is the proper way to perform error checking. Most 
Windows functions return FALSE to indicate failure or nonzero to indicate success. However, the 
ReadFile and WriteFile functions behave a little differently. An example might help to explain.

When attempting to queue an asynchronous I/O request, the device driver might choose to pro-
cess the request synchronously. This can occur if you’re reading from a file and the system checks 
whether the data you want is already in the system’s cache. If the data is available, your I/O request 
is not queued to the device driver; instead, the system copies the data from the cache to your buffer, 
and the I/O operation is complete. The driver always performs certain operations synchronously, 
such as NTFS file compression, extending the length of a file or appending information to a file. 
For more information about operations that are always performed synchronously, please see 
http://support.microsoft.com/default.aspx?scid=kb%3Ben-us%3B156932.

ReadFile and WriteFile return a nonzero value if the requested I/O was performed synchro-
nously. If the requested I/O is executing asynchronously, or if an error occurred while calling 
ReadFile or WriteFile, FALSE is returned. When FALSE is returned, you must call GetLast
Error to determine specifically what happened. If GetLastError returns ERROR_IO_PENDING, 
the I/O request was successfully queued and will complete later.

If GetLastError returns a value other than ERROR_IO_PENDING, the I/O request could not be 
queued to the device driver. Here are the most common error codes returned from GetLastError 
when an I/O request can’t be queued to the device driver:

ERROR_INVALID_USER_BUFFER or ERROR_NOT_ENOUGH_MEMORY Each device driver main-
tains a fixed-size list (in a nonpaged pool) of outstanding I/O requests. If this list is full, the 
system can’t queue your request, ReadFile and WriteFile return FALSE, and GetLast
Error reports one of these two error codes (depending on the driver).

ERROR_NOT_ENOUGH_QUOTA Certain devices require that your data buffer’s storage be page 
locked so that the data cannot be swapped out of RAM while the I/O is pending. This page-
locked storage requirement is certainly true of file I/O when using the FILE_FLAG_NO_
BUFFERING flag. However, the system restricts the amount of storage that a single process can 
page lock. If ReadFile and WriteFile cannot page lock your buffer’s storage, the functions 
return FALSE and GetLastError reports ERROR_NOT_ENOUGH_QUOTA. You can increase a 
process’ quota by calling SetProcessWorkingSetSize.



Chapter 10 Synchronous and Asynchronous Device I/O 309
How should you handle these errors? Basically, these errors occur because a number of outstand-
ing I/O requests have not yet completed, so you need to allow some pending I/O requests to com-
plete and then reissue the calls to ReadFile and WriteFile.

The third issue you should be aware of is that the data buffer and OVERLAPPED structure used to 
issue the asynchronous I/O request must not be moved or destroyed until the I/O request has 
completed. When queuing an I/O request to a device driver, the driver is passed the address of the 
data buffer and the address of the OVERLAPPED structure. Notice that just the address is passed, not 
the actual block. The reason for this should be quite obvious: memory copies are very expensive 
and waste a lot of CPU time.

When the device driver is ready to process your queued request, it transfers the data referenced by 
the pvBuffer address, and it accesses the file’s offset member and other members contained 
within the OVERLAPPED structure pointed to by the pOverlapped parameter. Specifically, the 
device driver updates the Internal member with the I/O’s error code and the InternalHigh 
member with the number of bytes transferred.

Note It is absolutely essential that these buffers not be moved or destroyed until the I/O 
request has completed; otherwise, memory will be corrupted. Also, you must allocate and 
initialize a unique OVERLAPPED structure for each I/O request.

The preceding note is very important and is one of the most common bugs developers introduce 
when implementing an asynchronous device I/O architecture. Here’s an example of what not to do:

VOID ReadData(HANDLE hFile) { 

   OVERLAPPED o = { 0 }; 

   BYTE b[100]; 

   ReadFile(hFile, b, 100, NULL, &o); 

}

This code looks fairly harmless, and the call to ReadFile is perfect. The only problem is that the 
function returns after queuing the asynchronous I/O request. Returning from the function essen-
tially frees the buffer and the OVERLAPPED structure from the thread’s stack, but the device driver 
is not aware that ReadData returned. The device driver still has two memory addresses that point 
to the thread’s stack. When the I/O completes, the device driver is going to modify memory on the 
thread’s stack, corrupting whatever happens to be occupying that spot in memory at the time. This 
bug is particularly difficult to find because the memory modification occurs asynchronously. 
Sometimes the device driver might perform I/O synchronously, in which case you won’t see the 
bug. Sometimes the I/O might complete right after the function returns, or it might complete over 
an hour later, and who knows what the stack is being used for then.

Canceling Queued Device I/O Requests
Sometimes you might want to cancel a queued device I/O request before the device driver has pro-
cessed it. Windows offers a few ways to do this:

■ You can call CancelIo to cancel all I/O requests queued by the calling thread for the speci-
fied handle (unless the handle has been associated with an I/O completion port):

BOOL CancelIo(HANDLE hFile);



310 Windows via C/C++
■ You can cancel all queued I/O requests, regardless of which thread queued the request, by 
closing the handle to a device itself.

■ When a thread dies, the system automatically cancels all I/O requests issued by the thread, 
except for requests made to handles that have been associated with an I/O completion port.

■ If you need to cancel a single, specific I/O request submitted on a given file handle, you can 
call CancelIoEx:

BOOL CancelIoEx(HANDLE hFile, LPOVERLAPPED pOverlapped);.

With CancelIoEx, you are able to cancel pending I/O requests emitted by a thread different 
from the calling thread. This function marks as canceled all I/O requests that are pending 
on hFile and associated with the given pOverlapped parameter. Because each outstanding 
I/O request should have its own OVERLAPPED structure, each call to CancelIoEx should 
cancel just one outstanding request. However, if the pOverlapped parameter is NULL, 
CancelIoEx cancels all outstanding I/O requests for the specified hFile.

Note Canceled I/O requests complete with an error code of ERROR_OPERATION_
ABORTED.

Receiving Completed I/O Request Notifications
At this point, you know how to queue an asynchronous device I/O request, but I haven’t discussed 
how the device driver notifies you after the I/O request has completed.

Windows offers four different methods (briefly described in Table 10-9) for receiving I/O comple-
tion notifications, and this chapter covers all of them. The methods are shown in order of complex-
ity, from the easiest to understand and implement (signaling a device kernel object) to the hardest 
to understand and implement (I/O completion ports).

Table 10-9 Methods for Receiving I/O Completion Notifications

Technique Summary
Signaling a device kernel object Not useful for performing multiple simultaneous I/O 

requests against a single device. Allows one thread to issue 
an I/O request and another thread to process it.

Signaling an event kernel object Allows multiple simultaneous I/O requests against a single 
device. Allows one thread to issue an I/O request and 
another thread to process it.

Using alertable I/O Allows multiple simultaneous I/O requests against a single 
device. The thread that issued an I/O request must also 
process it.

Using I/O completion ports Allows multiple simultaneous I/O requests against a single 
device. Allows one thread to issue an I/O request and 
another thread to process it. This technique is highly 
scalable and has the most flexibility.



Chapter 10 Synchronous and Asynchronous Device I/O 311
As stated at the beginning of this chapter, the I/O completion port is the hands-down best method 
of the four for receiving I/O completion notifications. By studying all four, you’ll learn why 
Microsoft added the I/O completion port to Windows and how the I/O completion port solves all 
the problems that exist for the other methods.

Signaling a Device Kernel Object
Once a thread issues an asynchronous I/O request, the thread continues executing, doing useful 
work. Eventually, the thread needs to synchronize with the completion of the I/O operation. In 
other words, you’ll hit a point in your thread’s code at which the thread can’t continue to execute 
unless the data from the device is fully loaded into the buffer.

In Windows, a device kernel object can be used for thread synchronization, so the object can either 
be in a signaled or nonsignaled state. The ReadFile and WriteFile functions set the device ker-
nel object to the nonsignaled state just before queuing the I/O request. When the device driver 
completes the request, the driver sets the device kernel object to the signaled state.

A thread can determine whether an asynchronous I/O request has completed by calling either 
WaitForSingleObject or WaitForMultipleObjects. Here is a simple example:

HANDLE hFile = CreateFile(..., FILE_FLAG_OVERLAPPED, ...); 

BYTE bBuffer[100];  

OVERLAPPED o = { 0 }; 

o.Offset = 345;  

 

BOOL bReadDone = ReadFile(hFile, bBuffer, 100, NULL, &o); 

DWORD dwError = GetLastError(); 

 

if (!bReadDone && (dwError == ERROR_IO_PENDING)) { 

   // The I/O is being performed asynchronously; wait for it to complete 

   WaitForSingleObject(hFile, INFINITE); 

   bReadDone = TRUE; 

} 

 

if (bReadDone) { 

   // o.Internal contains the I/O error  

   // o.InternalHigh contains the number of bytes transferred 

   // bBuffer contains the read data 

} else { 

   // An error occurred; see dwError 

}

This code issues an asynchronous I/O request and then immediately waits for the request to finish, 
defeating the purpose of asynchronous I/O! Obviously, you would never actually write code simi-
lar to this, but the code does demonstrate important concepts, which I’ll summarize here:

■ The device must be opened for asynchronous I/O by using the FILE_FLAG_OVERLAPPED 
flag.

■ The OVERLAPPED structure must have its Offset, OffsetHigh, and hEvent members initial-
ized. In the code example, I set them all to 0 except for Offset, which I set to 345 so that 
ReadFile reads data from the file starting at byte 346.

■ ReadFile’s return value is saved in bReadDone, which indicates whether the I/O request 
was performed synchronously.



312 Windows via C/C++
■ If the I/O request was not performed synchronously, I check to see whether an error 
occurred or whether the I/O is being performed asynchronously. Comparing the result of 
GetLastError with ERROR_IO_PENDING gives me this information.

■ To wait for the data, I call WaitForSingleObject, passing the handle of the device kernel 
object. As you saw in Chapter 9, calling this function suspends the thread until the kernel 
object becomes signaled. The device driver signals the object when it completes the I/O. After 
WaitForSingleObject returns, the I/O is complete and I set bReadDone to TRUE.

■ After the read completes, you can examine the data in bBuffer, the error code in the 
OVERLAPPED structure’s Internal member, and the number of bytes transferred in the 
OVERLAPPED structure’s InternalHigh member.

■ If a true error occurred, dwError contains the error code giving more information.

Signaling an Event Kernel Object
The method for receiving I/O completion notifications just described is very simple and straight-
forward, but it turns out not to be all that useful because it does not handle multiple I/O requests 
well. For example, suppose you were trying to carry out multiple asynchronous operations on a 
single file at the same time. Say that you wanted to read 10 bytes from the file and write 10 bytes to 
the file simultaneously. The code might look like this:

HANDLE hFile = CreateFile(..., FILE_FLAG_OVERLAPPED, ...); 

 

BYTE bReadBuffer[10];  

OVERLAPPED oRead = { 0 }; 

oRead.Offset = 0; 

ReadFile(hFile, bReadBuffer, 10, NULL, &oRead); 

 

BYTE bWriteBuffer[10] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };  

OVERLAPPED oWrite = { 0 }; 

oWrite.Offset = 10; 

WriteFile(hFile, bWriteBuffer, _countof(bWriteBuffer), NULL, &oWrite); 

... 

WaitForSingleObject(hFile, INFINITE); 

 

// We don't know what completed: Read? Write? Both?

You can’t synchronize your thread by waiting for the device to become signaled because the object 
becomes signaled as soon as either of the operations completes. If you call WaitForSingle
Object, passing it the device handle, you will be unsure whether the function returned because 
the read operation completed, the write operation completed, or both operations completed. 
Clearly, there needs to be a better way to perform multiple, simultaneous asynchronous I/O 
requests so that you don’t run into this predicament—fortunately, there is.

The last member of the OVERLAPPED structure, hEvent, identifies an event kernel object. You must 
create this event object by calling CreateEvent. When an asynchronous I/O request completes, 
the device driver checks to see whether the hEvent member of the OVERLAPPED structure is NULL. 
If hEvent is not NULL, the driver signals the event by calling SetEvent. The driver also sets the 
device object to the signaled state just as it did before. However, if you are using events to deter-
mine when a device operation has completed, you shouldn’t wait for the device object to become 
signaled—wait for the event instead.



Chapter 10 Synchronous and Asynchronous Device I/O 313
Note To improve performance slightly, you can tell Windows not to signal the file object 
when the operation completes. You do so by calling the SetFileCompletionNotifica
tionModes function:

BOOL SetFileCompletionNotificationModes(HANDLE hFile, UCHAR uFlags);

The hFile parameter identifies a file handle, and the uFlags parameter indicates how 
Windows should modify its normal behavior with respect to completing an I/O operation. 
If you pass the FILE_SKIP_SET_EVENT_ON_HANDLE flag, Windows will not signal the file 
handle when operations on the file complete. Note that the FILE_SKIP_SET_EVENT_
ON_HANDLE flag is very poorly named; a better name would have been something like 
FILE_SKIP_SIGNAL.

If you want to perform multiple asynchronous device I/O requests simultaneously, you must 
create a separate event object for each request, initialize the hEvent member in each request’s 
OVERLAPPED structure, and then call ReadFile or WriteFile. When you reach the point in your 
code at which you need to synchronize with the completion of the I/O request, simply call 
WaitForMultipleObjects, passing in the event handles associated with each outstanding I/O 
request’s OVERLAPPED structures. With this scheme, you can easily and reliably perform multiple 
asynchronous device I/O operations simultaneously and use the same device object. The following 
code demonstrates this approach:

HANDLE hFile = CreateFile(..., FILE_FLAG_OVERLAPPED, ...); 

 

BYTE bReadBuffer[10];  

OVERLAPPED oRead = { 0 }; 

oRead.Offset = 0; 

oRead.hEvent = CreateEvent(...); 

ReadFile(hFile, bReadBuffer, 10, NULL, &oRead); 

 

BYTE bWriteBuffer[10] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };  

OVERLAPPED oWrite = { 0 }; 

oWrite.Offset = 10; 

oWrite.hEvent = CreateEvent(...); 

WriteFile(hFile, bWriteBuffer, _countof(bWriteBuffer), NULL, &oWrite);

...

HANDLE h[2]; 

h[0] = oRead.hEvent; 

h[1] = oWrite.hEvent; 

DWORD dw = WaitForMultipleObjects(2, h, FALSE, INFINITE); 

switch (dw Ð WAIT_OBJECT_0) { 

   case 0:   // Read completed 

      break; 

 

   case 1:   // Write completed 

      break; 

}

This code is somewhat contrived and is not exactly what you’d do in a real-life application, but it 
does illustrate my point. Typically, a real-life application has a loop that waits for I/O requests to 
complete. As each request completes, the thread performs the desired task, queues another asyn-
chronous I/O request, and loops back around, waiting for more I/O requests to complete.



314 Windows via C/C++
GetOverlappedResult
Recall that originally Microsoft was not going to document the OVERLAPPED structure’s Internal 
and InternalHigh members, which meant it needed to provide another way for you to know how 
many bytes were transferred during the I/O processing and get the I/O’s error code. To make this 
information available to you, Microsoft created the GetOverlappedResult function:

BOOL GetOverlappedResult( 

   HANDLE      hFile,  

   OVERLAPPED* pOverlapped, 

   PDWORD      pdwNumBytes,  

   BOOL        bWait);

Microsoft now documents the Internal and InternalHigh members, so the GetOverlapped
Result function is not very useful. However, when I was first learning asynchronous I/O, I 
decided to reverse engineer the function to help solidify concepts in my head. The following code 
shows how GetOverlappedResult is implemented internally:

BOOL GetOverlappedResult( 

   HANDLE hFile,  

   OVERLAPPED* po, 

   PDWORD pdwNumBytes, 

   BOOL bWait) { 

 

  

   if (po->Internal == STATUS_PENDING) { 

      DWORD dwWaitRet = WAIT_TIMEOUT; 

      if (bWait) { 

         // Wait for the I/O to complete 

         dwWaitRet = WaitForSingleObject( 

            (po->hEvent != NULL) ? po->hEvent : hFile, INFINITE); 

      } 

 

      if (dwWaitRet == WAIT_TIMEOUT) { 

         // I/O not complete and we're not supposed to wait 

         SetLastError(ERROR_IO_INCOMPLETE); 

         return(FALSE); 

      } 

 

      if (dwWaitRet != WAIT_OBJECT_0) { 

         // Error calling WaitForSingleObject 

         return(FALSE); 

      } 

   } 

 

   // I/O is complete; return number of bytes transferred 

   *pdwNumBytes = po->InternalHigh; 

 

   if (SUCCEEDED(po->Internal)) { 

      return(TRUE);   // No I/O error 

   } 

 

   // Set last error to I/O error 

   SetLastError(po->Internal); 

   return(FALSE); 

}



Chapter 10 Synchronous and Asynchronous Device I/O 315
Alertable I/O
The third method available to you for receiving I/O completion notifications is called alertable I/O. 
At first, Microsoft touted alertable I/O as the absolute best mechanism for developers who wanted 
to create high-performance, scalable applications. But as developers started using alertable I/O, 
they soon realized that it was not going to live up to the promise.

I have worked with alertable I/O quite a bit, and I’ll be the first to tell you that alertable I/O is hor-
rible and should be avoided. However, to make alertable I/O work, Microsoft added some infra-
structure into the operating system that I have found to be extremely useful and valuable. As you 
read this section, concentrate on the infrastructure that is in place and don’t get bogged down in 
the I/O aspects.

Whenever a thread is created, the system also creates a queue that is associated with the thread. 
This queue is called the asynchronous procedure call (APC) queue. When issuing an I/O request, 
you can tell the device driver to append an entry to the calling thread’s APC queue. To have 
completed I/O notifications queued to your thread’s APC queue, you call the ReadFileEx and 
WriteFileEx functions:

BOOL ReadFileEx( 

   HANDLE      hFile,  

   PVOID       pvBuffer, 

   DWORD       nNumBytesToRead,  

   OVERLAPPED* pOverlapped, 

   LPOVERLAPPED_COMPLETION_ROUTINE pfnCompletionRoutine); 

 

BOOL WriteFileEx( 

   HANDLE      hFile,  

   CONST VOID  *pvBuffer, 

   DWORD       nNumBytesToWrite,  

   OVERLAPPED* pOverlapped, 

   LPOVERLAPPED_COMPLETION_ROUTINE pfnCompletionRoutine);

Like ReadFile and WriteFile, ReadFileEx and WriteFileEx issue I/O requests to a device 
driver, and the functions return immediately. The ReadFileEx and WriteFileEx functions have 
the same parameters as the ReadFile and WriteFile functions, with two exceptions. First, the 
*Ex functions are not passed a pointer to a DWORD that gets filled with the number of bytes trans-
ferred; this information can be retrieved only by the callback function. Second, the *Ex functions 
require that you pass the address of a callback function, called a completion routine. This routine 
must have the following prototype:

VOID WINAPI CompletionRoutine( 

   DWORD       dwError,  

   DWORD       dwNumBytes,  

   OVERLAPPED* po);

When you issue an asynchronous I/O request with ReadFileEx and WriteFileEx, the functions 
pass the address of this function to the device driver. When the device driver has completed the 
I/O request, it appends an entry in the issuing thread’s APC queue. This entry contains the address 
of the completion routine function and the address of the OVERLAPPED structure used to initiate 
the I/O request.



316 Windows via C/C++
Note By the way, when an alertable I/O completes, the device driver does not attempt to 
signal an event object. In fact, the device does not reference the OVERLAPPED structure’s 
hEvent member at all. Therefore, you can use the hEvent member for your own purposes 
if you like.

When the thread is in an alertable state (discussed shortly), the system examines its APC queue 
and, for every entry in the queue, the system calls the completion function, passing it the I/O error 
code, the number of bytes transferred, and the address of the OVERLAPPED structure. Note that the 
error code and number of bytes transferred can also be found in the OVERLAPPED structure’s 
Internal and InternalHigh members. (As I mentioned earlier, Microsoft originally didn’t want 
to document these, so it passed them as parameters to the function.)

I’ll get back to this completion routine function shortly. First let’s look at how the system handles 
the asynchronous I/O requests. The following code queues three different asynchronous 
operations:

hFile = CreateFile(..., FILE_FLAG_OVERLAPPED, ...); 

 

ReadFileEx(hFile, ...);    // Perform first ReadFileEx 

WriteFileEx(hFile, ...);   // Perform first WriteFileEx 

ReadFileEx(hFile, ...);    // Perform second ReadFileEx 

 

SomeFunc();

If the call to SomeFunc takes some time to execute, the system completes the three operations 
before SomeFunc returns. While the thread is executing the SomeFunc function, the device driver 
is appending completed I/O entries to the thread’s APC queue. The APC queue might look some-
thing like this:

first WriteFileEx completed 

second ReadFileEx completed 

first ReadFileEx completed

The APC queue is maintained internally by the system. You’ll also notice from the list that the sys-
tem can execute your queued I/O requests in any order, and that the I/O requests that you issue 
last might be completed first and vice versa. Each entry in your thread’s APC queue contains the 
address of a callback function and a value that is passed to the function.

As I/O requests complete, they are simply queued to your thread’s APC queue—the callback routine 
is not immediately called because your thread might be busy doing something else and cannot 
be interrupted. To process entries in your thread’s APC queue, the thread must put itself in an 
alertable state. This simply means that your thread has reached a position in its execution where it 
can handle being interrupted. Windows offers six functions that can place a thread in an alert-
able state:



Chapter 10 Synchronous and Asynchronous Device I/O 317
DWORD SleepEx( 

   DWORD dwMilliseconds,  

   BOOL  bAlertable); 

 

DWORD WaitForSingleObjectEx( 

   HANDLE hObject,  

   DWORD  dwMilliseconds, 

   BOOL   bAlertable); 

 

DWORD WaitForMultipleObjectsEx( 

   DWORD   cObjects, 

   CONST HANDLE* phObjects,  

   BOOL    bWaitAll,  

   DWORD   dwMilliseconds, 

   BOOL    bAlertable); 

 

BOOL SignalObjectAndWait( 

   HANDLE hObjectToSignal,  

   HANDLE hObjectToWaitOn,  

   DWORD  dwMilliseconds,  

   BOOL   bAlertable); 

 

BOOL GetQueuedCompletionStatusEx( 

   HANDLE hCompPort, 

   LPOVERLAPPED_ENTRY pCompPortEntries, 

   ULONG ulCount, 

   PULONG pulNumEntriesRemoved, 

   DWORD dwMilliseconds, 

   BOOL bAlertable); 

 

DWORD MsgWaitForMultipleObjectsEx( 

   DWORD   nCount,  

   CONST HANDLE* pHandles, 

   DWORD   dwMilliseconds,  

   DWORD   dwWakeMask,  

   DWORD   dwFlags);

The last argument to the first five functions is a Boolean value indicating whether the calling thread 
should place itself in an alertable state. For MsgWaitForMultipleObjectsEx, you must use the 
MWMO_ALERTABLE flag to have the thread enter an alertable state. If you’re familiar with the Sleep, 
WaitForSingleObject, and WaitForMultipleObjects functions, you shouldn’t be surprised 
to learn that, internally, these non-Ex functions call their Ex counterparts, always passing FALSE 
for the bAlertable parameter.

When you call one of the six functions just mentioned and place your thread in an alertable state, 
the system first checks your thread’s APC queue. If at least one entry is in the queue, the system 
does not put your thread to sleep. Instead, the system pulls the entry from the APC queue and your 
thread calls the callback routine, passing the routine the completed I/O request’s error code, num-
ber of bytes transferred, and address of the OVERLAPPED structure. When the callback routine 
returns to the system, the system checks for more entries in the APC queue. If more entries exist, 



318 Windows via C/C++
they are processed. However, if no more entries exist, your call to the alertable function returns. 
Something to keep in mind is that if any entries are in your thread’s APC queue when you call any 
of these functions, your thread never sleeps!

The only time these functions suspend your thread is when no entries are in your thread’s APC 
queue at the time you call the function. While your thread is suspended, the thread will wake up if 
the kernel object (or objects) that you’re waiting on becomes signaled or if an APC entry appears 
in your thread’s queue. Because your thread is in an alertable state, as soon as an APC entry 
appears, the system wakes your thread and empties the queue (by calling the callback routines). 
Then the functions immediately return to the caller—your thread does not go back to sleep waiting 
for kernel objects to become signaled.

The return value from these six functions indicates why they have returned. If they return WAIT_
IO_COMPLETION (or if GetLastError returns WAIT_IO_COMPLETION), you know that the thread 
is continuing to execute because at least one entry was processed from the thread’s APC queue. If 
the methods return for any other reason, the thread woke up because the sleep period expired, the 
specified kernel object or objects became signaled, or a mutex was abandoned.

The Bad and the Good of Alertable I/O
At this point, we’ve discussed the mechanics of performing alertable I/O. Now you need to know 
about the two issues that make alertable I/O a horrible method for doing device I/O:

Callback functions Alertable I/O requires that you create callback functions, which makes imple-
menting your code much more difficult. These callback functions typically don’t have 
enough contextual information about a particular problem to guide you, so you end up plac-
ing a lot of information in global variables. Fortunately, these global variables don’t need to 
be synchronized because the thread calling one of the six alterable functions is the same 
thread executing the callback functions. A single thread can’t be in two places at one time, so 
the variables are safe.

Threading issues The real big problem with alertable I/O is this: The thread issuing the I/O 
request must also handle the completion notification. If a thread issues several requests, that 
thread must respond to each request’s completion notification, even if other threads are sit-
ting completely idle. Because there is no load balancing, the application doesn’t scale well.

Both of these problems are pretty severe, so I strongly discourage the use of alertable I/O for device 
I/O. I’m sure you guessed by now that the I/O completion port mechanism, discussed in the next 
section, solves both of the problems I just described. I promised to tell you some good stuff about 
the alertable I/O infrastructure, so before I move on to the I/O completion port, I’ll do that.

Windows offers a function that allows you to manually queue an entry to a thread’s APC queue:

DWORD QueueUserAPC( 

   PAPCFUNC  pfnAPC,  

   HANDLE    hThread,  

   ULONG_PTR dwData);

The first parameter is a pointer to an APC function that must have the following prototype:

VOID WINAPI APCFunc(ULONG_PTR dwParam);



Chapter 10 Synchronous and Asynchronous Device I/O 319
The second parameter is the handle of the thread for which you want to queue the entry. Note that 
this thread can be any thread in the system. If hThread identifies a thread in a different process’ 
address space, pfnAPC must specify the memory address of a function that is in the address space 
of the target thread’s process. The last parameter to QueueUserAPC, dwData, is a value that simply 
gets passed to the callback function.

Even though QueueUserAPC is prototyped as returning a DWORD, the function actually returns a 
BOOL indicating success or failure. You can use QueueUserAPC to perform extremely efficient inter-
thread communication, even across process boundaries. Unfortunately, however, you can pass 
only a single value.

QueueUserAPC can also be used to force a thread out of a wait state. Suppose you have a thread 
calling WaitForSingleObject, waiting for a kernel object to become signaled. While the thread is 
waiting, the user wants to terminate the application. You know that threads should cleanly destroy 
themselves, but how do you force the thread waiting on the kernel object to wake up and kill itself? 
QueueUserAPC is the answer.

The following code demonstrates how to force a thread out of a wait state so that the thread can 
exit cleanly. The main function spawns a new thread, passing it the handle of some kernel object. 
While the secondary thread is running, the primary thread is also running. The secondary thread 
(executing the ThreadFunc function) calls WaitForSingleObjectEx, which suspends the 
thread, placing it in an alertable state. Now, say that the user tells the primary thread to terminate 
the application. Sure, the primary thread could just exit, and the system would kill the whole pro-
cess. However, this approach is not very clean, and in many scenarios, you’ll just want to kill an 
operation without terminating the whole process.

So the primary thread calls QueueUserAPC, which places an APC entry in the secondary thread’s 
APC queue. Because the secondary thread is in an alertable state, it now wakes and empties its APC 
queue by calling the APCFunc function. This function does absolutely nothing and just returns. 
Because the APC queue is now empty, the thread returns from its call to WaitForSingleObjectEx 
with a return value of WAIT_IO_COMPLETION. The ThreadFunc function checks specifically for 
this return value, knowing that it received an APC entry indicating that the thread should exit.

// The APC callback function has nothing to do 

VOID WINAPI APCFunc(ULONG_PTR dwParam) { 

   // Nothing to do in here 

} 

 

UINT WINAPI ThreadFunc(PVOID pvParam) { 

   HANDLE hEvent = (HANDLE) pvParam;   // Handle is passed to this thread 

 

   // Wait in an alertable state so that we can be forced to exit cleanly 

   DWORD dw = WaitForSingleObjectEx(hEvent, INFINITE, TRUE); 

   if (dw == WAIT_OBJECT_0) { 

      // Object became signaled 

   } 

   if (dw == WAIT_IO_COMPLETION) { 

      // QueueUserAPC forced us out of a wait state 

      return(0);   // Thread dies cleanly 

   }

   ...

   return(0); 

} 

 



320 Windows via C/C++
void main() { 

   HANDLE hEvent = CreateEvent(...); 

   HANDLE hThread = (HANDLE) _beginthreadex(NULL, 0,  

      ThreadFunc, (PVOID) hEvent, 0, NULL); 

   ... 

   // Force the secondary thread to exit cleanly 

   QueueUserAPC(APCFunc, hThread, NULL); 

   WaitForSingleObject(hThread, INFINITE); 

   CloseHandle(hThread); 

   CloseHandle(hEvent); 

}

I know that some of you are thinking that this problem could have been solved by replacing the call 
to WaitForSingleObjectEx with a call to WaitForMultipleObjects and by creating another 
event kernel object to signal the secondary thread to terminate. For my simple example, your 
solution would work. However, if my secondary thread called WaitForMultipleObjects to wait 
until all objects became signaled, QueueUserAPC would be the only way to force the thread out of 
a wait state.

I/O Completion Ports
Windows is designed to be a secure, robust operating system running applications that service lit-
erally thousands of users. Historically, you’ve been able to architect a service application by follow-
ing one of two models:

Serial model A single thread waits for a client to make a request (usually over the network). When 
the request comes in, the thread wakes and handles the client’s request.

Concurrent model A single thread waits for a client request and then creates a new thread to han-
dle the request. While the new thread is handling the client’s request, the original thread 
loops back around and waits for another client request. When the thread that is handling the 
client’s request is completely processed, the thread dies.

The problem with the serial model is that it does not handle multiple, simultaneous requests well. 
If two clients make requests at the same time, only one can be processed at a time; the second 
request must wait for the first request to finish processing. A service that is designed using the 
serial approach cannot take advantage of multiprocessor machines. Obviously, the serial model is 
good only for the simplest of server applications, in which few client requests are made and 
requests can be handled very quickly. A Ping server is a good example of a serial server.

Because of the limitations in the serial model, the concurrent model is extremely popular. In the 
concurrent model, a thread is created to handle each client request. The advantage is that the 
thread waiting for incoming requests has very little work to do. Most of the time, this thread is 
sleeping. When a client request comes in, the thread wakes, creates a new thread to handle the 
request, and then waits for another client request. This means that incoming client requests are 
handled expediently. Also, because each client request gets its own thread, the server application 
scales well and can easily take advantage of multiprocessor machines. So if you are using the con-
current model and upgrade the hardware (add another CPU), the performance of the server appli-
cation improves.

Service applications using the concurrent model were implemented using Windows. The 
Windows team noticed that application performance was not as high as desired. In particular, the 



Chapter 10 Synchronous and Asynchronous Device I/O 321
team noticed that handling many simultaneous client requests meant that many threads were run-
ning in the system concurrently. Because all these threads were runnable (not suspended and wait-
ing for something to happen), Microsoft realized that the Windows kernel spent too much time 
context switching between the running threads, and the threads were not getting as much CPU 
time to do their work. To make Windows an awesome server environment, Microsoft needed to 
address this problem. The result is the I/O completion port kernel object.

Creating an I/O Completion Port
The theory behind the I/O completion port is that the number of threads running concurrently 
must have an upper bound—that is, 500 simultaneous client requests cannot allow 500 runnable 
threads to exist. What, then, is the proper number of concurrent, runnable threads? Well, if you 
think about this question for a moment, you’ll come to the realization that if a machine has two 
CPUs, having more than two runnable threads—one for each processor—really doesn’t make sense. 
As soon as you have more runnable threads than CPUs available, the system has to spend time per-
forming thread context switches, which wastes precious CPU cycles—a potential deficiency of the 
concurrent model.

Another deficiency of the concurrent model is that a new thread is created for each client request. 
Creating a thread is cheap when compared to creating a new process with its own virtual address 
space, but creating threads is far from free. The service application’s performance can be improved 
if a pool of threads is created when the application initializes, and these threads hang around for 
the duration of the application. I/O completion ports were designed to work with a pool of threads.

An I/O completion port is probably the most complex kernel object. To create an I/O completion 
port, you call CreateIoCompletionPort:

HANDLE CreateIoCompletionPort( 

   HANDLE    hFile, 

   HANDLE    hExistingCompletionPort,  

   ULONG_PTR CompletionKey, 

   DWORD     dwNumberOfConcurrentThreads);

This function performs two different tasks: it creates an I/O completion port, and it associates a 
device with an I/O completion port. This function is overly complex, and in my opinion, Microsoft 
should have split it into two separate functions. When I work with I/O completion ports, I 
separate these two capabilities by creating two tiny functions that abstract the call to CreateIo
CompletionPort. The first function I write is called CreateNewCompletionPort, and I imple-
ment it as follows:

HANDLE CreateNewCompletionPort(DWORD dwNumberOfConcurrentThreads) { 

 

   return(CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, 0, 

      dwNumberOfConcurrentThreads)); 

}

This function takes a single argument, dwNumberOfConcurrentThreads, and then calls the 
Windows CreateIoCompletionPort function, passing in hard-coded values for the first three 
parameters and dwNumberOfConcurrentThreads for the last parameter. You see, the first three 
parameters to CreateIoCompletionPort are used only when you are associating a device with a 
completion port. (I’ll talk about this shortly.) To create just a completion port, I pass INVALID_
HANDLE_VALUE, NULL, and 0, respectively, to CreateIoCompletionPort’s first three parameters.



322 Windows via C/C++
The dwNumberOfConcurrentThreads parameter tells the I/O completion port the maximum 
number of threads that should be runnable at the same time. If you pass 0 for the dwNumberOf
ConcurrentThreads parameter, the completion port defaults to allowing as many concurrent 
threads as there are CPUs on the host machine. This is usually exactly what you want so that extra 
context switching is avoided. You might want to increase this value if the processing of a client 
request requires a lengthy computation that rarely blocks, but increasing this value is strongly dis-
couraged. You might experiment with the dwNumberOfConcurrentThreads parameter by trying 
different values and comparing your application’s performance on your target hardware.

You’ll notice that CreateIoCompletionPort is about the only Windows function that creates a 
kernel object but does not have a parameter that allows you to pass the address of a SECURITY_
ATTRIBUTES structure. This is because completion ports are intended for use within a single pro-
cess only. The reason will be clear to you when I explain how to use completion ports.

Associating a Device with an I/O Completion Port
When you create an I/O completion port, the kernel actually creates five different data structures, 
as shown in Figure 10-1. You should refer to this figure as you continue reading.

The first data structure is a device list indicating the device or devices associated with the port. You 
associate a device with the port by calling CreateIoCompletionPort. Again, I created my own 
function, AssociateDeviceWithCompletionPort, which abstracts the call to CreateIoCom
pletionPort:

BOOL AssociateDeviceWithCompletionPort( 

   HANDLE hCompletionPort, HANDLE hDevice, DWORD dwCompletionKey) { 

 

   HANDLE h = CreateIoCompletionPort(hDevice, hCompletionPort, dwCompletionKey, 0); 

   return(h == hCompletionPort); 

}

AssociateDeviceWithCompletionPort appends an entry to an existing completion port’s 
device list. You pass to the function the handle of an existing completion port (returned by a pre-
vious call to CreateNewCompletionPort), the handle of the device (this can be a file, a socket, a 
mailslot, a pipe, and so on), and a completion key (a value that has meaning to you; the operating 
system doesn’t care what you pass here). Each time you associate a device with the port, the system 
appends this information to the completion port’s device list.

Note The CreateIoCompletionPort function is complex, and I recommend that you 
mentally separate the two reasons for calling it. There is one advantage to having the func-
tion be so complex: you can create an I/O completion port and associate a device with it at 
the same time. For example, the following code opens a file and creates a new completion 
port, associating the file with it. All I/O requests to the file complete with a completion key of 
CK_FILE, and the port allows as many as two threads to execute concurrently.

#define CK_FILE   1 
HANDLE hFile = CreateFile(...); 
HANDLE hCompletionPort = CreateIoCompletionPort(hFile,NULL,CK_FILE,2);



Chapter 10 Synchronous and Asynchronous Device I/O 323
Figure 10-1 The internal workings of an I/O completion port

Each record contains

 

Entry is added when
• Released thread calls a function that suspends itself.

Entry is removed when
• Suspended thread wakes up (dwThreadId moves back to Released Thread List).

Paused Thread List

dwThreadId

Each record contains

 

Entry is added when
• Thread calls GetQueuedCompletionStatus.

Entry is removed when
• I/O completion queue is not empty and the number of running threads is less than the               
maximum number of concurrent threads (entry is removed from I/O Completion Queue,            
dwThreadId moves to Released Thread List, and GetQueuedCompletionStatus returns).

Waiting Thread Queue (LIFO)

dwThreadId

Each record contains

 

Entry is added when
• Completion port wakes a thread in the Waiting Thread Queue.
• Paused thread wakes up.

Entry is removed when
• Thread again calls GetQueuedCompletionStatus (dwThreadId moves back to the 
    WaitingThread Queue).
• Thread calls a function that suspends itself (dwThreadId moves to Paused Thread List).

Released Thread List

dwThreadId

I/O Completion Queue (FIFO)

dwBytesTransferred dwCompletionKey pOverlapped dwError

Each record contains

 

Entry is added when
• I/O request completes.
• PostQueuedCompletionStatus is called.

Entry is removed when
• Completion port removes an entry from the Waiting Thread Queue.

Device List

dwCompletionKeyhDevice  

Each record contains

Entry is added when
• CreateIoCompletionPort is called.

Entry is removed when
• Device handle is closed.



324 Windows via C/C++
The second data structure is an I/O completion queue. When an asynchronous I/O request for a 
device completes, the system checks to see whether the device is associated with a completion port 
and, if it is, the system appends the completed I/O request entry to the end of the completion 
port’s I/O completion queue. Each entry in this queue indicates the number of bytes transferred, 
the completion key value that was set when the device was associated with the port, the pointer to 
the I/O request’s OVERLAPPED structure, and an error code. I’ll discuss how entries are removed 
from this queue shortly.

Note Issuing an I/O request to a device and not having an I/O completion entry queued to 
the I/O completion port is possible. This is not usually necessary, but it can come in handy 
occasionally—for example, when you send data over a socket and you don’t care whether 
the data actually makes it or not.

To issue an I/O request without having a completion entry queued, you must load the OVER
LAPPED structure’s hEvent member with a valid event handle and bitwise-OR this value with 
1, like this:

Overlapped.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL); 
Overlapped.hEvent = (HANDLE) ((DWORD_PTR) Overlapped.hEvent | 1); 
ReadFile(..., &Overlapped);

Now you can issue your I/O request, passing the address of this OVERLAPPED structure to 
the desired function (such as ReadFile above).

It would be nice if you didn’t have to create an event just to stop the queuing of the I/O 
completion. I would like to be able to do the following, but it doesn’t work:

Overlapped.hEvent = 1; 
ReadFile(..., &Overlapped);

Also, don’t forget to reset the low-order bit before closing this event handle:

CloseHandle((HANDLE) ((DWORD_PTR) Overlapped.hEvent & ~1));

Architecting Around an I/O Completion Port
When your service application initializes, it should create the I/O completion port by calling a func-
tion such as CreateNewCompletionPort. The application should then create a pool of threads to 
handle client requests. The question you ask now is, “How many threads should be in the pool?” 
This is a tough question to answer, and I will address it in more detail later in “How Many Threads 
in the Pool?” on page 328. For now, a standard rule of thumb is to take the number of CPUs on the 
host machine and multiply it by 2. So on a dual-processor machine, you should create a pool of four 
threads.

All the threads in the pool should execute the same function. Typically, this thread function per-
forms some sort of initialization and then enters a loop that should terminate when the service pro-
cess is instructed to stop. Inside the loop, the thread puts itself to sleep waiting for device I/O 
requests to complete to the completion port. Calling GetQueuedCompletionStatus does this:

BOOL GetQueuedCompletionStatus( 

   HANDLE       hCompletionPort, 

   PDWORD       pdwNumberOfBytesTransferred, 

   PULONG_PTR   pCompletionKey, 

   OVERLAPPED** ppOverlapped, 

   DWORD        dwMilliseconds);



Chapter 10 Synchronous and Asynchronous Device I/O 325
The first parameter, hCompletionPort, indicates which completion port the thread is interested 
in monitoring. Many service applications use a single I/O completion port and have all I/O request 
notifications complete to this one port. Basically, the job of GetQueuedCompletionStatus is to 
put the calling thread to sleep until an entry appears in the specified completion port’s I/O 
completion queue or until the specified time-out occurs (as specified in the dwMilliseconds 
parameter).

The third data structure associated with an I/O completion port is the waiting thread queue. As 
each thread in the thread pool calls GetQueuedCompletionStatus, the ID of the calling thread is 
placed in this waiting thread queue, enabling the I/O completion port kernel object to always 
know which threads are currently waiting to handle completed I/O requests. When an entry 
appears in the port’s I/O completion queue, the completion port wakes one of the threads in the 
waiting thread queue. This thread gets the pieces of information that make up a completed I/O 
entry: the number of bytes transferred, the completion key, and the address of the OVERLAPPED 
structure. This information is returned to the thread via the pdwNumberOfBytesTransferred, 
pCompletionKey, and ppOverlapped parameters passed to GetQueuedCompletionStatus.

Determining the reason that GetQueuedCompletionStatus returned is somewhat difficult. The 
following code demonstrates the proper way to do it:

DWORD dwNumBytes; 

ULONG_PTR CompletionKey; 

OVERLAPPED* pOverlapped; 

 

// hIOCP is initialized somewhere else in the program 

BOOL bOk = GetQueuedCompletionStatus(hIOCP, 

   &dwNumBytes, &CompletionKey, &pOverlapped, 1000); 

DWORD dwError = GetLastError(); 

 

if (bOk) { 

   // Process a successfully completed I/O request 

} else { 

   if (pOverlapped != NULL) { 

      // Process a failed completed I/O request 

      // dwError contains the reason for failure 

    } else { 

      if (dwError == WAIT_TIMEOUT) { 

         // Time-out while waiting for completed I/O entry 

      } else { 

         // Bad call to GetQueuedCompletionStatus 

         // dwError contains the reason for the bad call 

      } 

   } 

}

As you would expect, entries are removed from the I/O completion queue in a first-in first-out fash-
ion. However, as you might not expect, threads that call GetQueuedCompletionStatus are awak-
ened in a last-in first-out (LIFO) fashion. The reason for this is again to improve performance. For 
example, say that four threads are waiting in the waiting thread queue. If a single completed I/O 
entry appears, the last thread to call GetQueuedCompletionStatus wakes up to process the 
entry. When this last thread is finished processing the entry, the thread again calls GetQueued
CompletionStatus to enter the waiting thread queue. Now if another I/O completion entry 
appears, the same thread that processed the first entry is awakened to process the new entry.



326 Windows via C/C++
As long as I/O requests complete so slowly that a single thread can handle them, the system just 
keeps waking the one thread, and the other three threads continue to sleep. By using this LIFO 
algorithm, threads that don’t get scheduled can have their memory resources (such as stack space) 
swapped out to the disk and flushed from a processor’s cache. This means having many threads 
waiting on a completion port isn’t bad. If you do have several threads waiting but few I/O requests 
completing, the extra threads have most of their resources swapped out of the system anyway.

In Windows Vista, if you expect a large number of I/O requests to be constantly submitted, instead 
of multiplying the number of threads to wait on the completion port and incurring the increasing 
cost of the corresponding context switches, you can retrieve the result of several I/O requests at the 
same time by calling the following function:

BOOL GetQueuedCompletionStatusEx( 

  HANDLE hCompletionPort, 

  LPOVERLAPPED_ENTRY pCompletionPortEntries, 

  ULONG ulCount, 

  PULONG pulNumEntriesRemoved, 

  DWORD dwMilliseconds, 

  BOOL bAlertable);

The first parameter, hCompletionPort, indicates which completion port the thread is interested 
in monitoring. The entries present in the specified completion port’s I/O completion queue when 
this function is called are retrieved, and their description is copied into the pCompletionPort
Entries array parameter. The ulCount parameter indicates how many entries can be copied in 
this array, and the long value pointed to by pulNumEntriesRemoved receives the exact number of 
I/O requests that were extracted from the completion queue. 

Each element of the pCompletionPortEntries array is an OVERLAPPED_ENTRY that stores the 
pieces of information that make up a completed I/O entry: the completion key, the address of 
the OVERLAPPED structure, the result code (error) of the I/O request, and the number of bytes 
transferred. 

typedef struct _OVERLAPPED_ENTRY { 

   ULONG_PTR lpCompletionKey; 

   LPOVERLAPPED lpOverlapped; 

   ULONG_PTR Internal; 

   DWORD dwNumberOfBytesTransferred; 

} OVERLAPPED_ENTRY, *LPOVERLAPPED_ENTRY;

The Internal field is opaque and should not be used.

If the last bAlertable parameter is set to FALSE, the function waits for a completed I/O request 
to be queued on the completion port until the specified time-out occurs (as specified in the 
dwMilliseconds parameter). If the bAlertable parameter is set to TRUE and there is no com-
pleted I/O request in the queue, the thread enters an alertable state as explained earlier in this 
chapter.



Chapter 10 Synchronous and Asynchronous Device I/O 327
Note When you issue an asynchronous I/O request to a device that is associated with a 
completion port, Windows queues the result to the completion port. Windows does this even 
if the asynchronous request is performed synchronously in order to give the programmer a 
consistent programming model. However, maintaining this consistent programming model 
hurts performance slightly because the completed request information must be placed in the 
port and a thread must extract it from the port.

To improve performance slightly, you can tell Windows not to queue a synchronously per-
formed asynchronous request to the completion port associated with the device by calling 
the SetFileCompletionNotificationModes function (described in “Signaling an Event 
Kernel Object” on page 312) passing it the FILE_SKIP_COMPLETION_PORT_ON_
SUCCESS flag.

The extremely performance-conscious programmer might also want to consider use of the 
SetFileIoOverlappedRange function. (See the Platform SDK documentation for more 
information.)

How the I/O Completion Port Manages the Thread Pool
Now it’s time to discuss why I/O completion ports are so useful. First, when you create the I/O 
completion port, you specify the number of threads that can run concurrently. As I said, you usu-
ally set this value to the number of CPUs on the host machine. As completed I/O entries are 
queued, the I/O completion port wants to wake up waiting threads. However, the completion port 
wakes up only as many threads as you have specified. So if four I/O requests complete and four 
threads are waiting in a call to GetQueuedCompletionStatus, the I/O completion port will allow 
only two threads to wake up; the other two threads continue to sleep. As each thread processes a 
completed I/O entry, the thread again calls GetQueuedCompletionStatus. The system sees that 
more entries are queued and wakes the same threads to process the remaining entries.

If you’re thinking about this carefully, you should notice that something just doesn’t make a lot of 
sense: if the completion port only ever allows the specified number of threads to wake up concur-
rently, why have more threads waiting in the thread pool? For example, suppose I’m running on a 
machine with two CPUs and I create the I/O completion port, telling it to allow no more than two 
threads to process entries concurrently. But I create four threads (twice the number of CPUs) in the 
thread pool. It seems as though I am creating two additional threads that will never be awakened 
to process anything.

But I/O completion ports are very smart. When a completion port wakes a thread, the completion 
port places the thread’s ID in the fourth data structure associated with the completion port, a 
released thread list. (See Figure 10-1.) This allows the completion port to remember which threads 
it awakened and to monitor the execution of these threads. If a released thread calls any function 
that places the thread in a wait state, the completion port detects this and updates its internal data 
structures by moving the thread’s ID from the released thread list to the paused thread list (the 
fifth and final data structure that is part of an I/O completion port).

The goal of the completion port is to keep as many entries in the released thread list as are specified 
by the concurrent number of threads value used when creating the completion port. If a released 
thread enters a wait state for any reason, the released thread list shrinks and the completion port 
releases another waiting thread. If a paused thread wakes, it leaves the paused thread list and 



328 Windows via C/C++
reenters the released thread list. This means that the released thread list can now have more entries 
in it than are allowed by the maximum concurrency value.

Note Once a thread calls GetQueuedCompletionStatus, the thread is “assigned” to the 
specified completion port. The system assumes that all assigned threads are doing work on 
behalf of the completion port. The completion port wakes threads from the pool only if the 
number of running assigned threads is less than the completion port’s maximum concurrency 
value.

You can break the thread/completion port assignment in one of three ways:

■ Have the thread exit.

■ Have the thread call GetQueuedCompletionStatus, passing the handle of a differ-
ent I/O completion port.

■ Destroy the I/O completion port that the thread is currently assigned to.

Let’s tie all of this together now. Say that we are again running on a machine with two CPUs. We 
create a completion port that allows no more than two threads to wake concurrently, and we create 
four threads that are waiting for completed I/O requests. If three completed I/O requests get 
queued to the port, only two threads are awakened to process the requests, reducing the number 
of runnable threads and saving context-switching time. Now if one of the running threads calls 
Sleep, WaitForSingleObject, WaitForMultipleObjects, SignalObjectAndWait, a synchro-
nous I/O call, or any function that would cause the thread not to be runnable, the I/O completion 
port would detect this and wake a third thread immediately. The goal of the completion port is to 
keep the CPUs saturated with work.

Eventually, the first thread will become runnable again. When this happens, the number of runna-
ble threads will be higher than the number of CPUs in the system. However, the completion port 
again is aware of this and will not allow any additional threads to wake up until the number of 
threads drops below the number of CPUs. The I/O completion port architecture presumes that the 
number of runnable threads will stay above the maximum for only a short time and will die down 
quickly as the threads loop around and again call GetQueuedCompletionStatus. This explains 
why the thread pool should contain more threads than the concurrent thread count set in the com-
pletion port.

How Many Threads in the Pool?
Now is a good time to discuss how many threads should be in the thread pool. Consider two 
issues. First, when the service application initializes, you want to create a minimum set of threads 
so that you don’t have to create and destroy threads on a regular basis. Remember that creating and 
destroying threads wastes CPU time, so you’re better off minimizing this process as much as pos-
sible. Second, you want to set a maximum number of threads because creating too many threads 
wastes system resources. Even if most of these resources can be swapped out of RAM, minimizing 
the use of system resources and not wasting even paging file space is to your advantage, if you can 
manage it.

You will probably want to experiment with different numbers of threads. Most services (including 
Microsoft Internet Information Services) use heuristic algorithms to manage their thread pools. I 



Chapter 10 Synchronous and Asynchronous Device I/O 329
recommend that you do the same. For example, you can create the following variables to manage 
the thread pool:

LONG g_nThreadsMin;    // Minimum number of threads in pool 

LONG g_nThreadsMax;    // Maximum number of threads in pool 

LONG g_nThreadsCrnt;   // Current number of threads in pool 

LONG g_nThreadsBusy;   // Number of busy threads in pool

When your application initializes, you can create the g_nThreadsMin number of threads, all exe-
cuting the same thread pool function. The following pseudocode shows how this thread function 
might look:

DWORD WINAPI ThreadPoolFunc(PVOID pv) { 

 

   // Thread is entering pool 

   InterlockedIncrement(&g_nThreadsCrnt); 

   InterlockedIncrement(&g_nThreadsBusy); 

 

   for (BOOL bStayInPool = TRUE; bStayInPool;) { 

 

      // Thread stops executing and waits for something to do 

      InterlockedDecrement(&m_nThreadsBusy); 

      BOOL bOk = GetQueuedCompletionStatus(...); 

      DWORD dwIOError = GetLastError(); 

 

      // Thread has something to do, so it's busy 

      int nThreadsBusy = InterlockedIncrement(&m_nThreadsBusy); 

 

      // Should we add another thread to the pool? 

      if (nThreadsBusy == m_nThreadsCrnt) {    // All threads are busy 

         if (nThreadsBusy < m_nThreadsMax) {   // The pool isn't full 

            if (GetCPUUsage() < 75) {   // CPU usage is below 75% 

 

               // Add thread to pool 

               CloseHandle(chBEGINTHREADEX(...)); 

            } 

         } 

      } 

 

      if (!bOk && (dwIOError == WAIT_TIMEOUT)) {   // Thread timed out 

         // There isn't much for the server to do, and this thread 

         // can die even if it still has outstanding I/O requests 

         bStayInPool = FALSE; 

      } 

 

      if (bOk || (po != NULL)) { 

         // Thread woke to process something; process it 

         ... 

 

         if (GetCPUUsage() > 90) {       // CPU usage is above 90% 

             if (g_nThreadsCrnt > g_nThreadsMin)) { // Pool above min 

                bStayInPool = FALSE;   // Remove thread from pool 

            } 

         } 

      } 

   } 

 



330 Windows via C/C++
   // Thread is leaving pool 

   InterlockedDecrement(&g_nThreadsBusy); 

   InterlockedDecrement(&g_nThreadsCurrent); 

   return(0); 

}

This pseudocode shows how creative you can get when using an I/O completion port. The Get
CPUUsage function is not part of the Windows API. If you want its behavior, you’ll have to imple-
ment the function yourself. In addition, you must make sure that the thread pool always contains 
at least one thread in it, or clients will never get tended to. Use my pseudocode as a guide, but your 
particular service might perform better if structured differently.

Note Earlier in this chapter, in “Canceling Queued Device I/O Requests” on page 309, I said 
that the system automatically cancels all pending I/O requests issued by a thread when that 
thread terminates. Before Windows Vista, when a thread issued an I/O request against a 
device associated with a completion port, it was mandatory that the thread remain alive until 
the request completed; otherwise, Windows canceled any outstanding requests made by the 
thread. With Windows Vista, this is no longer necessary: threads can now issue requests and 
terminate; the request will still be processed and the result will be queued to the completion 
port.

Many services offer a management tool that allows an administrator to have some control over the 
thread pool’s behavior—for example, to set the minimum and maximum number of threads, the 
CPU time usage thresholds, and also the maximum concurrency value used when creating the I/O 
completion port.

Simulating Completed I/O Requests
I/O completion ports do not have to be used with device I/O at all. This chapter is also about inter-
thread communication techniques, and the I/O completion port kernel object is an awesome 
mechanism to use to help with this. In “Alertable I/O” on page 315, I presented the QueueUserAPC 
function, which allows a thread to post an APC entry to another thread. I/O completion ports have 
an analogous function, PostQueuedCompletionStatus:

BOOL PostQueuedCompletionStatus( 

   HANDLE      hCompletionPort, 

   DWORD       dwNumBytes,  

   ULONG_PTR   CompletionKey,  

   OVERLAPPED* pOverlapped);

This function appends a completed I/O notification to an I/O completion port’s queue. The first 
parameter, hCompletionPort, identifies the completion port that you want to queue the entry for. 
The remaining three parameters—dwNumBytes, CompletionKey, and pOverlapped—indicate the 
values that should be returned by a thread’s call to GetQueuedCompletionStatus. When a 
thread pulls a simulated entry from the I/O completion queue, GetQueuedCompletionStatus 
returns TRUE, indicating a successfully executed I/O request.

The PostQueuedCompletionStatus function is incredibly useful—it gives you a way to communi-
cate with all the threads in your pool. For example, when the user terminates a service application, 
you want all the threads to exit cleanly. But if the threads are waiting on the completion port and 



Chapter 10 Synchronous and Asynchronous Device I/O 331
no I/O requests are coming in, the threads can’t wake up. By calling PostQueuedCompletion
Status once for each thread in the pool, each thread can wake up, examine the values returned 
from GetQueuedCompletionStatus, see that the application is terminating, and clean up and 
exit appropriately.

You must be careful when using a thread termination technique like the one I just described. My 
example works because the threads in the pool are dying and not calling GetQueuedCompletion
Status again. However, if you want to notify each of the pool’s threads of something and have 
them loop back around to call GetQueuedCompletionStatus again, you will have a problem 
because the threads wake up in a LIFO order. So you will have to employ some additional thread 
synchronization in your application to ensure that each pool thread gets the opportunity to see its 
simulated I/O entry. Without this additional thread synchronization, one thread might see the 
same notification several times.

Note In Windows Vista, when you call CloseHandle passing the handle of a completion 
port, all threads waiting in a call to GetQueuedCompletionStatus wake up and FALSE is 
returned to them. A call to GetLastError will return ERROR_INVALID_HANDLE; the 
threads can use this to know that it is time to die gracefully.

The FileCopy Sample Application
The FileCopy sample application (10-FileCopy.exe), shown at the end of this chapter, demon-
strates the use of I/O completion ports. The source code and resource files for the application are 
in the 10-FileCopy directory on the companion content Web page. The program simply copies a 
file specified by the user to a new file called FileCopy.cpy. When the user executes FileCopy, the 
dialog box shown in Figure 10-2 appears.

Figure 10-2 The dialog box for the FileCopy sample application

The user clicks the Pathname button to select the file to be copied, and the Pathname and File Size 
fields are updated. When the user clicks the Copy button, the program calls the FileCopy func-
tion, which does all the hard work. Let’s concentrate our discussion on the FileCopy function.

When preparing to copy, FileCopy opens the source file and retrieves its size, in bytes. I want the 
file copy to execute as blindingly fast as possible, so the file is opened using the FILE_FLAG_NO_
BUFFERING flag. Opening the file with the FILE_FLAG_NO_BUFFERING flag allows me to access the 
file directly, bypassing the additional memory copy overhead incurred when allowing the system’s 
cache to “help” access the file. Of course, accessing the file directly means slightly more work for 
me: I must always access the file using offsets that are multiples of the disk volume’s sector size, 
and I must read and write data that is a multiple of the sector’s size as well. I chose to transfer the 
file’s data in BUFFSIZE (64 KB) chunks, which is guaranteed to be a multiple of the sector size. 
This is why I round up the source file’s size to a multiple of BUFFSIZE. You’ll also notice that the 
source file is opened with the FILE_FLAG_OVERLAPPED flag so that I/O requests against the file are 
performed asynchronously.



332 Windows via C/C++
The destination file is opened similarly: both the FILE_FLAG_NO_BUFFERING and FILE_FLAG_
OVERLAPPED flags are specified. I also pass the handle of the source file as CreateFile’s hFile
Template parameter when creating the destination file, causing the destination file to have the 
same attributes as the source.

Note Once both files are open, the destination file size is immediately set to its maximum 
size by calling SetFilePointerEx and SetEndOfFile. Adjusting the destination file’s size 
now is extremely important because NTFS maintains a high-water marker that indicates the 
highest point at which the file was written. If you read past this marker, the system knows to 
return zeros. If you write past the marker, the file’s data from the old high-water marker to 
the write offset is filled with zeros, your data is written to the file, and the file’s high-water 
marker is updated. This behavior satisfies C2 security requirements pertaining to not present-
ing prior data. When you write to the end of a file on an NTFS partition, causing the high-
water marker to move, NTFS must perform the I/O request synchronously even if asynchro-
nous I/O was desired. If the FileCopy function didn’t set the size of the destination file, 
none of the overlapped I/O requests would be performed asynchronously.

Now that the files are opened and ready to be processed, FileCopy creates an I/O completion 
port. To make working with I/O completion ports easier, I created a small C++ class, CIOCP, that is 
a very simple wrapper around the I/O completion port functions. This class can be found in the 
IOCP.h file discussed in Appendix A, “The Build Environment.” FileCopy creates an I/O comple-
tion port by creating an instance (named iocp) of my CIOCP class.

The source file and destination file are associated with the completion port by calling the CIOCP’s 
AssociateDevice member function. When associated with the completion port, each device is 
assigned a completion key. When an I/O request completes against the source file, the completion 
key is CK_READ, indicating that a read operation must have completed. Likewise, when an I/O 
request completes against the destination file, the completion key is CK_WRITE, indicating that a 
write operation must have completed.

Now we’re ready to initialize a set of I/O requests (OVERLAPPED structures) and their memory buff-
ers. The FileCopy function keeps four (MAX_PENDING_IO_REQS) I/O requests outstanding at any 
one time. For applications of your own, you might prefer to allow the number of I/O requests to 
dynamically grow or shrink as necessary. In the FileCopy program, the CIOReq class encapsulates 
a single I/O request. As you can see, this C++ class is derived from an OVERLAPPED structure but 
contains some additional context information. FileCopy allocates an array of CIOReq objects and 
calls the AllocBuffer method to associate a BUFFSIZE-sized data buffer with each I/O request 
object. The data buffer is allocated using the VirtualAlloc function. Using VirtualAlloc 
ensures that the block begins on an even allocation-granularity boundary, which satisfies the 
requirement of the FILE_FLAG_NO_BUFFERING flag: the buffer must begin on an address that is 
evenly divisible by the volume’s sector size.

To issue the initial read requests against the source file, I perform a little trick: I post four CK_WRITE 
I/O completion notifications to the I/O completion port. When the main loop runs, the thread 
waits on the port and wakes immediately, thinking that a write operation has completed. This 
causes the thread to issue a read request against the source file, which really starts the file copy.



Chapter 10 Synchronous and Asynchronous Device I/O 333
The main loop terminates when there are no outstanding I/O requests. As long as I/O requests are 
outstanding, the interior of the loop waits on the completion port by calling CIOCP’s GetStatus 
method (which calls GetQueuedCompletionStatus internally). This call puts the thread to sleep 
until an I/O request completes to the completion port. When GetQueuedCompletionStatus 
returns, the returned completion key, CompletionKey, is checked. If CompletionKey is CK_READ, 
an I/O request against the source file is completed. I then call the CIOReq’s Write method to issue 
a write I/O request against the destination file. If CompletionKey is CK_WRITE, an I/O request 
against the destination file is completed. If I haven’t read beyond the end of the source file, I call 
CIOReq’s Read method to continue reading the source file.

When there are no more outstanding I/O requests, the loop terminates and cleans up by closing 
the source and destination file handles. Before FileCopy returns, it must do one more task: it must 
fix the size of the destination file so that it is the same size as the source file. To do this, I reopen the 
destination file without specifying the FILE_FLAG_NO_BUFFERING flag. Because I am not using 
this flag, file operations do not have to be performed on sector boundaries. This allows me to 
shrink the size of the destination file to the same size as the source file.

/****************************************************************************** 

Module:  FileCopy.cpp 

Notices: Copyright (c) 2008 Jeffrey Richter & Christophe Nasarre 

******************************************************************************/ 

 

 

#include "stdafx.h" 

#include "Resource.h" 

 

 

/////////////////////////////////////////////////////////////////////////////// 

 

 

// Each I/O request needs an OVERLAPPED structure and a data buffer 

class CIOReq : public OVERLAPPED { 

public: 

   CIOReq() { 

      Internal = InternalHigh = 0;    

      Offset = OffsetHigh = 0;    

      hEvent = NULL; 

      m_nBuffSize = 0; 

      m_pvData = NULL; 

   } 

 

   ~CIOReq() { 

      if (m_pvData != NULL) 

         VirtualFree(m_pvData, 0, MEM_RELEASE); 

   } 

 

   BOOL AllocBuffer(SIZE_T nBuffSize) { 

      m_nBuffSize = nBuffSize; 

      m_pvData = VirtualAlloc(NULL, m_nBuffSize, MEM_COMMIT, PAGE_READWRITE); 

      return(m_pvData != NULL); 

   } 

 



334 Windows via C/C++
   BOOL Read(HANDLE hDevice, PLARGE_INTEGER pliOffset = NULL) { 

      if (pliOffset != NULL) { 

         Offset     = pliOffset->LowPart; 

         OffsetHigh = pliOffset->HighPart; 

      } 

      return(::ReadFile(hDevice, m_pvData, m_nBuffSize, NULL, this)); 

   } 

 

   BOOL Write(HANDLE hDevice, PLARGE_INTEGER pliOffset = NULL) { 

      if (pliOffset != NULL) { 

         Offset     = pliOffset->LowPart; 

         OffsetHigh = pliOffset->HighPart; 

      } 

      return(::WriteFile(hDevice, m_pvData, m_nBuffSize, NULL, this)); 

   } 

 

private: 

   SIZE_T m_nBuffSize; 

   PVOID  m_pvData; 

}; 

 

 

/////////////////////////////////////////////////////////////////////////////// 

 

 

#define BUFFSIZE              (64 * 1024) // The size of an I/O buffer 

#define MAX_PENDING_IO_REQS   4           // The maximum # of I/Os 

 

 

// The completion key values indicate the type of completed I/O. 

#define CK_READ  1 

#define CK_WRITE 2 

 

 

/////////////////////////////////////////////////////////////////////////////// 

 

 

BOOL FileCopy(PCTSTR pszFileSrc, PCTSTR pszFileDst) { 

 

   BOOL fOk = FALSE;    // Assume file copy fails 

   LARGE_INTEGER liFileSizeSrc = { 0 }, liFileSizeDst; 

 

   try { 

      { 

      // Open the source file without buffering & get its size 

      CEnsureCloseFile hFileSrc = CreateFile(pszFileSrc, GENERIC_READ,  

         FILE_SHARE_READ, NULL, OPEN_EXISTING,  

         FILE_FLAG_NO_BUFFERING | FILE_FLAG_OVERLAPPED, NULL); 

      if (hFileSrc.IsInvalid()) goto leave; 

 

      // Get the file's size 

      GetFileSizeEx(hFileSrc, &liFileSizeSrc); 

 



Chapter 10 Synchronous and Asynchronous Device I/O 335
      // Nonbuffered I/O requires sector-sized transfers. 

      // I'll use buffer-size transfers since it's easier to calculate. 

      liFileSizeDst.QuadPart = chROUNDUP(liFileSizeSrc.QuadPart, BUFFSIZE); 

 

      // Open the destination file without buffering & set its size 

      CEnsureCloseFile hFileDst = CreateFile(pszFileDst, GENERIC_WRITE,  

         0, NULL, CREATE_ALWAYS,  

         FILE_FLAG_NO_BUFFERING | FILE_FLAG_OVERLAPPED, hFileSrc); 

      if (hFileDst.IsInvalid()) goto leave; 

 

      // File systems extend files synchronously. Extend the destination file  

      // now so that I/Os execute asynchronously improving performance. 

      SetFilePointerEx(hFileDst, liFileSizeDst, NULL, FILE_BEGIN); 

      SetEndOfFile(hFileDst); 

 

      // Create an I/O completion port and associate the files with it. 

      CIOCP iocp(0); 

      iocp.AssociateDevice(hFileSrc, CK_READ);  // Read from source file 

      iocp.AssociateDevice(hFileDst, CK_WRITE); // Write to destination file 

 

      // Initialize record-keeping variables 

      CIOReq ior[MAX_PENDING_IO_REQS]; 

      LARGE_INTEGER liNextReadOffset = { 0 }; 

      int nReadsInProgress  = 0; 

      int nWritesInProgress = 0; 

 

      // Prime the file copy engine by simulating that writes have completed. 

      // This causes read operations to be issued. 

      for (int nIOReq = 0; nIOReq < _countof(ior); nIOReq++) { 

 

         // Each I/O request requires a data buffer for transfers 

         chVERIFY(ior[nIOReq].AllocBuffer(BUFFSIZE)); 

         nWritesInProgress++; 

         iocp.PostStatus(CK_WRITE, 0, &ior[nIOReq]); 

      } 

 

      // Loop while outstanding I/O requests still exist 

      while ((nReadsInProgress > 0) || (nWritesInProgress > 0)) { 

 

         // Suspend the thread until an I/O completes 

         ULONG_PTR CompletionKey; 

         DWORD dwNumBytes; 

         CIOReq* pior; 

         iocp.GetStatus(&CompletionKey, &dwNumBytes, (OVERLAPPED**) &pior, INFINITE); 

 

         switch (CompletionKey) { 

         case CK_READ:  // Read completed, write to destination 

            nReadsInProgress--; 

            pior->Write(hFileDst);  // Write to same offset read from source 

            nWritesInProgress++; 

            break; 

 



336 Windows via C/C++
         case CK_WRITE: // Write completed, read from source 

            nWritesInProgress--; 

            if (liNextReadOffset.QuadPart < liFileSizeDst.QuadPart) { 

               // Not EOF, read the next block of data from the source file. 

               pior->Read(hFileSrc, &liNextReadOffset); 

               nReadsInProgress++; 

               liNextReadOffset.QuadPart += BUFFSIZE; // Advance source offset 

            } 

            break; 

         } 

      } 

      fOk = TRUE; 

      } 

   leave:; 

   } 

   catch (...) { 

   } 

 

   if (fOk) { 

      // The destination file size is a multiple of the page size. Open the 

      // file WITH buffering to shrink its size to the source file's size. 

      CEnsureCloseFile hFileDst = CreateFile(pszFileDst, GENERIC_WRITE,  

         0, NULL, OPEN_EXISTING, 0, NULL); 

      if (hFileDst.IsValid()) { 

          

         SetFilePointerEx(hFileDst, liFileSizeSrc, NULL, FILE_BEGIN); 

         SetEndOfFile(hFileDst); 

      } 

   } 

 

   return(fOk); 

} 

 

 

/////////////////////////////////////////////////////////////////////////////// 

 

 

BOOL Dlg_OnInitDialog(HWND hWnd, HWND hWndFocus, LPARAM lParam) { 

 

   chSETDLGICONS(hWnd, IDI_FILECOPY); 

 

   // Disable Copy button since no file is selected yet. 

   EnableWindow(GetDlgItem(hWnd, IDOK), FALSE); 

   return(TRUE); 

} 

 

 

/////////////////////////////////////////////////////////////////////////////// 

 

 

void Dlg_OnCommand(HWND hWnd, int id, HWND hWndCtl, UINT codeNotify) { 

    

   TCHAR szPathname[_MAX_PATH]; 

 



Chapter 10 Synchronous and Asynchronous Device I/O 337
   switch (id) { 

   case IDCANCEL: 

      EndDialog(hWnd, id); 

      break; 

 

   case IDOK: 

      // Copy the source file to the destination file. 

      Static_GetText(GetDlgItem(hWnd, IDC_SRCFILE),  

         szPathname, sizeof(szPathname)); 

      SetCursor(LoadCursor(NULL, IDC_WAIT)); 

      chMB(FileCopy(szPathname, TEXT("FileCopy.cpy"))  

         ? "File Copy Successful" : "File Copy Failed"); 

      break; 

 

   case IDC_PATHNAME: 

      OPENFILENAME ofn = { OPENFILENAME_SIZE_VERSION_400 }; 

      ofn.hwndOwner = hWnd; 

      ofn.lpstrFilter = TEXT("*.*\0"); 

      lstrcpy(szPathname, TEXT("*.*")); 

      ofn.lpstrFile = szPathname; 

      ofn.nMaxFile = _countof(szPathname); 

      ofn.lpstrTitle = TEXT("Select file to copy"); 

      ofn.Flags = OFN_EXPLORER | OFN_FILEMUSTEXIST; 

      BOOL fOk = GetOpenFileName(&ofn); 

      if (fOk) { 

         // Show user the source file's size 

         Static_SetText(GetDlgItem(hWnd, IDC_SRCFILE), szPathname); 

         CEnsureCloseFile hFile = CreateFile(szPathname, 0, 0, NULL,  

            OPEN_EXISTING, 0, NULL); 

         if (hFile.IsValid()) { 

            LARGE_INTEGER liFileSize; 

            GetFileSizeEx(hFile, &liFileSize); 

            // NOTE: Only shows bottom 32 bits of size 

            SetDlgItemInt(hWnd, IDC_SRCFILESIZE, liFileSize.LowPart, FALSE); 

         } 

      } 

      EnableWindow(GetDlgItem(hWnd, IDOK), fOk); 

      break; 

   } 

} 

 

 

/////////////////////////////////////////////////////////////////////////////// 

 

 

INT_PTR WINAPI Dlg_Proc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { 

 

   switch (uMsg) { 

   chHANDLE_DLGMSG(hWnd, WM_INITDIALOG, Dlg_OnInitDialog); 

   chHANDLE_DLGMSG(hWnd, WM_COMMAND,    Dlg_OnCommand); 

   } 

   return(FALSE); 

} 

 

 



338 Windows via C/C++
/////////////////////////////////////////////////////////////////////////////// 

 

 

int WINAPI _tWinMain(HINSTANCE hInstExe, HINSTANCE, PTSTR pszCmdLine, int) { 

 

   DialogBox(hInstExe, MAKEINTRESOURCE(IDD_FILECOPY), NULL, Dlg_Proc); 

   return(0); 

} 

 

 

//////////////////////////////// End of File //////////////////////////////////



Index

Symbols
"." or ".." characters in pszDLLPathName, 557
% (percent signs), 82
\\?\, pathname providing with, 294
=::=::\ string, 77

Numbers
0 priority, for zero page thread, 190
0 wait, of mutexes, 268
0xfd value, 24
16-bit applications, porting to Win32 easily, 612
16-bit Windows

applications running in, 94
backward compatibility with, 17
first function designed for, 85

32-bit applications, 397, 398
32-bit error code number, translating, 4
32-bit error code set, returning, 4
32-bit processes

address space for, 371
running under 64-bit operating system, 94

32-bit Windows kernel, 372
64-bit applications

accessing full user-mode partition, 375
running on 64-bit Windows, 398

64-bit processes, address space for, 371
64-bit values, 299
64-bit Windows

8-TB user-mode partition, 375
fully supporting AWE, 442
getting 2-GB user-mode partition, 374
kernel getting room, 373

64-bit Windows kernel, 372
64-KB boundary, 376

A
abandoned mutexes, 267
AbnormalTermination intrinsic function, 671, 672
abort function, 705
ABOVE_NORMAL_PRIORITY_CLASS, 95, 191
above normal priority class, 189
above normal thread priority, 190, 193
absolute time, 347
abstract layer, 188
AC (alignment check) flag, 391
AcceptEx, 291
access control entry (ACE), 122
access flags, 293
access masks, 62
AccessChk tool, 123
ACE (access control entry), 122
AcquireSRWLockExclusive function, 224, 234
AcquireSRWLockShared function, 225, 236

active processes, switching, 607
ActiveProcesses member, 138
ActiveProcessLimit member, 131
AddElement function, 231
addFileType parameter, 745
address space

determining state of, 408–417
fragmentation, 526
modules in, 539
in a process, 67
regions, 375
regions reserving, 376, 419
reserved for thread’s stack, 451
separate for each process, 605
total number of bytes private in, 407

Address Space Layout Randomization (ASLR), 417
address space map

for a process, 383–387
showing regions and blocks, 388–390

address space sandbox, running applications in, 375
address window, 439, 440
Address Windowing Extensions. See AWE
AddSIDToBoundaryDescriptor function, 59
AddText helper function, 238
AddVectoredContinueHandler function, 727
AddVectoredExceptionHandler function, 726
administrative tasks, executing, 116
Administrator account

checking if application is running, 117
debugging process, 116
users logging on to Windows with, 110

Administrator SID, checking for, 118
Advanced Local Procedure Call (ALPC)

blocked, 714
blocking thread execution, 710
tracked by WCT, 281

AdvAP132.dll, 537
AeDebug registry subkey, 713, 715
affinities, 203–206

of processes, 83
affinity masks, 204
Affinity member, 131
affinity restriction, changing, 130
alertable I/O, 315–320

bad and good of, 318
using, 310

alertable state
calling thread in an, 260
placing thread in, 319
thread entering, 326
thread in, 316
thread waiting in, 714

_aligned_malloc function, 210
779



780 alignment check
alignment check, 391
alignment errors, 258
Alignment Fixups/sec counter, 393
allocate declaration, 471
Allocated Ranges edit control, 506
AllocateUserPhysicalPages function, 441
allocation granularity, 376, 483
allocation granularity boundary

regions beginning on, 375
regions reserved on, 420

AllocationBase member, 409
AllocationProtect member, 409
AllocConsole function, 94
ALPC. See Advanced Local Procedure Call (ALPC)
/analyze switch, 14
anonymous pipe, 290, 291
ANSI functions, 15–17, 520
ANSI strings, 15, 16
ANSI versions

of DLLs, 17
of entry-point functions, 150
of functions, 22

APC (asynchronous procedure call) queue, 315, 
316, 318

APC entries, waitable timers queuing, 260–261
APCFunc function, 319
API hooking

example, 634
manipulating module’s import section, 636–639
overwriting code, 635

API macros in WindowsX.h, 776
AppCompat.txt file, 736
Append Method, 270
application code, reading or writing to kernel mode 

partition, 375
“Application has stopped working” dialog box, 664
Application Instances sample application 

(17-AppInst.exe), 472–474
application recovery, support for, 756–757
application restart, flags restricting, 755
ApplicationRecoveryFinished function, 756
ApplicationRecoveryInProgress function, 756
applications

allocating, 439
converting to Unicode-ready, 26
determining version of Windows, 85
developing using Unicode, 17
directory forcing loader to always check, 585
DLLs extending features of, 537
forcing keystrokes into, 278
improving load time, 551
loading DLL and linking to symbol, 553–554
localizing, 11
mapping code and data into, 465
monitoring kernel objects used by, 41
paging file increasing RAM, 378
running, 374, 375, 540, 571
shutting down, 253
subclassing windows created in other processes, 607
theming not supporting by default, 766

tuning, 408
types of, 68, 69
users starting, 99
windows locating on screen, 97
writing, 68–104

AppName.local file, 585
aRAMPages parameter, 442
arbitrary wait, of mutexes, 268
archive file, indicating, 297
__argc variable, 73, 76
__argv variable, 73, 76
ASCII Unicode character set, 13
asInvoker value, 114
Ask Me To Check If Problem Occurs option, 712
ASLR (Address Space Layout Randomization), 417
assertion dialog boxes, 20
AssignProcessToJobObject function, 136
AssociateDevice member function, 332
AssociateDeviceWithCompletionPort function, 322
asynchronous device I/O, 277

basics of, 305–310
caveats, 307–309

asynchronous I/O operations, 304
asynchronous I/O requests

issuing, 327
queuing, 305
system handling, 316

asynchronous procedure call entries. See APC entries
asynchronous session, opening, 284
ATL class library, 18
atomic access

of sophisticated data structures, 215
for threads, 208–213

atomic manipulation, 217
atomic test and set operation, 212
atomically-manipulated object set, 238
attribute(s)

associated with sections, 467
changing for sections, 471
passing with lpAttributeList, 99

attribute flags, 297
attribute keys, in STARTUPINFOEX, 100
attribute list, 100–102
Attribute parameter, 101
Auto value, 715
AutoExclusionList key, 715
automatic application restart, 755–757
auto-reset event(s)

automatically reset to nonsignaled state, 249, 253
calling PulseEvent, 251
demonstrating use of, 252
signaling, 247
using instead of manual-reset event, 250

auto-reset timer, signaling, 257
AvailPageFile, 407
AvailPhys, 406
AvailVirtual, 407
AWE (Address Windowing Extensions), 439, 441
AWE application (15-AWE.exe), 442



C/C++ run-time 781
B
background colors, used by child’s console window, 97
background process, 195
background processing state (BPS), 365
Backup/Restore File and Directories privileges, 296
bAlertable flag, 279
bAllUser parameter, 737
base address

for executable file’s image, 74
for memory-mapped files, 496–497
of region, 386
returning executable or DLL’s file image, 74

/BASE option, 464
base priority level, 194
/BASE:address linker switch, 74
BaseAddress member, 409
__based keyword, 497
based pointers, 497
BaseThreadStart function, 706
basic limit restriction, 129
basic limits, superset of, 132
basic UI restrictions, 129
batch, detecting end of, 346
Batch application (11-Batch.exe), 342–346
bCancelPendingCallbacks parameter

of WaitForThreadpoolIoCallbacks function, 355
of WaitForThreadpoolWorkCallbacks, 342

BCD (boot configuration data), 206
configuring, 374
current value of parameters, 374
programmatic configuration of, 206

BCDEdit.exe, 374
_beginthread function, 168
_beginthreadex function, 151, 160

calling CreateThread, 162, 168
compared to _beginthread, 168
overriding, 451
problems with, 764
source code for, 161
using, 763

BELOW_NORMAL_PRIORITY_CLASS, 95, 191
below normal priority class, 189
below normal thread priority, 190, 193
bFirstInTheList parameter

of AddVectoredContinueHandler, 727
of AddVectoredExceptionHandler, 726

bGrant parameter, 134
binary (.exe or DLL) file, supporting all languages, 26
Bind.exe utility, 593, 594
BindImageEx function, 593
binding modules, 592–595
bInheritHandle member, 44
bInheritHandle parameter

of DuplicateHandle, 62
of Open* functions, 51

bInheritHandles parameter, 44, 91–92
bInitialOwned parameter, 265

bInitialOwner parameter, 266
bit 29, of error code, 7
bit flags, 133
bitmask, indicating CPUs for threads, 203
bitwise mask, of Label ACE, 124
BlkSize member, 411
block of memory

allocating from heap, 525
allocating properly aligned, 210
guarding, 265

blocks
defining, 387
displaying inside regions, 388
number contained within region, 411
within reserved region, 387

Blue Screen of Death, 713
bManualReset parameter

of CreateEvent, 248
of CreateWaitableTimer, 257

BOOL return type, 3
boot configuration data. See BCD
boundary descriptor

associating SID with, 59
creating, 54
protecting namespace name itself, 53

BPS_CONTINUE state, 366
BPS_DONE state, 366
BPS_STARTOVER state, 366
bReadDone, 311
breakpoint, forcing, 765
bResume parameter, 259
bRgnIsAStack member, 411
.bss section, 467, 470
buffer manipulation functions, 27
buffer overrun errors, 11
buffer overruns, automatically detecting, 27
BUFFSIZE, 331
build environment, for sample applications in this 

book, 761–767
build number, of current system, 87
Button_SetElevationRequiredState macro, 118
bWaitAll parameter, 245, 246

C
C/C++ compiler

defining built-in data type, 13
for IA-64, 393

C/C++ language
comma (,) operator, 700
never calling CreateThread, 151
programs, error checking in, 372
resources not destroyed by ExitThread, 154

C/C++ programming, 19
C/C++ run-time

global variables, 73
library functions, 160, 168
startup code, 105



782 C/C++ run time, global variables
C/C++ run-time, continued
startup functions, 69, 71
startup routine, 90

C/C++ run time, global variables, 71
C/C++ run-time libraries

DllMain function, 570
initializing, 69, 570
multithreaded version, 167
not originally designed for multithreaded 

applications, 160
present in single address space, 539
shipping with Microsoft Visual Studio, 159
stack-checking function, 456–457
startup assistance from, 570
startup code, 146
supplied in DLL, 167
using TLS, 597

C/C++ source code module, 541
C compiler, mangling C functions, 546
C header file, 14
C language, char data type, 13
C run-time function, 17
C run-time library

invented around 1970, 160
with multithreaded applications, 160
prefixing identifiers with underscores, 18
secure string functions in, 18–25
string manipulation functions, 19
Unicode and ANSI functions in, 17

C run-time memory allocation functions, 71
C run-time startup code, 105
C++

heaps with, 528–531
with message crackers, 773

C++ applications, using C++ exceptions, 727
C++ classes

avoiding exporting, 542
creating, 443

C++ compilers. See also Microsoft Visual C++ compiler
C4532 warning, 690
equivalent structured exception handling, 728
mangling function and variable names, 544
running from command shell, 93

C++ exception handling
compared to structured exception handling, 660
only when writing C++ code, 727

C++ exceptions, vs. structured exceptions, 727
C++ object address, storing in hEvent, 307
C++ objects, destroying, 104, 106, 154
C++ throw statement, 728
C++ try block, compiler generating SEH _try block 

for, 728
C2 security requirements, 332
C4532 warning, 690
CACHE_DESCRIPTOR structure, 214
Cache field, 214
cache flags, in CreateFile, 295–297
cache lines, 214–215

cache manager, buffering data, 295
CAddrWindow class, 443
CAddrWindowStorage class, 443
call tree, 453
callback environment, initializing, 357
callback functions

defining, 346
registering to WER, 756
required by alertable I/O, 318

callback instance, functions applying to, 356
callback method, 355
callback routine, 260
callback termination functions, 355
CallbackMayRunLong function, 356
calling thread

checking signaled state of kernel objects, 244
as forever blocked, 244
placing in wait state, 221
putting to sleep, 325
transitioning from user mode to kernel mode, 241

_callthreadstartex function, 164, 165
CancelIo function, 309
CancelIoEx function, 310
CancelSynchronousIo function, 304–305
CancelThreadpoolIo function, 354
CancelWaitableTimer function, 259
CAPIHook C++ class, 640
case sensitivity, of reserved keywords, 53
casting, 773
catch C++ keyword, 660
catch handlers, 726
Cb (count of bytes), 22
cb member, 575
cb parameter, 32
cb value, 97
cbMultiByte parameter, 28
cbReserved2 value, 98
cbSize parameter, 101
cbStackSize parameter, 151
Cch, in method names, 22
cch1 parameter (CompareString), 25
cch2 parameter (CompareString), 25
cchValue parameter, 81
cchWideChar parameter, 28
ccPath parameter, 560
CD-ROMs, image files copying to RAM, 380
CellData matrix, 505
CELLDATA structure, 504

committing storage for single, 425
implementing, 424

changed data, preserving, 486
ChangeDisplaySettings function, 133
char data types, 13
character encodings, 12–13
character sets, 12
characters, 26
chBEGINTHREADEX macro, 161, 763, 765
_chdir C run-time function, 85



compatibility rules, reorganized by operating system 783
CheckInstances function, 54, 59
CheckTokenMembership function, 118
chHANDLE_DLGMSG macro, 766
child control macros, 776
child process(es), 108–110

current directories, inheriting parent’s current, 85
environment variables, inheriting, 81
error mode flags, inheriting, 392
getting copy of parent’s environment block, 81
handle table, example, 45
kernel object access, documenting expectation of, 45
kernel object, handle value of, 46
parent console, inheriting, 46
parent termination, continuing to execute, 125
primary thread, controlling code executed by, 634
priority class, changing, 191
process affinity, inheriting, 203
root directory, current directories defaulting to, 85
running detached, 110
spawning, 43–45, 108

chINRANGE macro, 763
chmalloc, 27
chMB macro, 765
chMSG macro, 763
chSETDLGICONS macro, 766
chSize parameter, 82
chVERIFY macro, 765
CIOCP class, 332
CIOReq C++ class, in FileCopy sample application, 307
CK_FILE completion key, 322
CK_WRITE completion key, 332
CK_WRITE I/O completion notifications, 332
class, allocating instance of, 528
cleanup

groups, 358, 360
guaranteed without using try-finally, 686
localizing code in one place, 669
of mutexes vs. critical sections, 268

client machines, communicating with many 
servers, 261

client session, namespace in Terminal Services, 51
client thread(s)

created by Queue, 229
as WriterThread, 232–234

Client Threads list box, 269
client/server threads, stopping, 236
Clipboard, preventing processes from reading, 133
CloseHandle function, 39, 103

calling twice, 487
clearing out entry in process’ handle table, 40
closing devices, 292, 354
closing job object handle, 128
committed storage, reclaiming, 500
decrementing parent thread object’s usage count, 171
destroying all kernel objects, 253
event kernel object is no longer required, 249
forgetting to call, 40
passing handle of completion port, 331

process’ statistical data, no longer interested in, 108
protected handle, thread attempting to close, 47

ClosePrivateNamespace function, 60
closesocket, 292
CloseThreadpool function, 357, 360
CloseThreadpoolCleanupGroup function, 360
CloseThreadpoolCleanupGroupMembers function, 

359
CloseThreadpoolIo function, 355
CloseThreadpoolTimer function, 347, 348
CloseThreadpoolWait function, 353
CloseThreadpoolWork, 342
CloseThreadWaitChainSession, 284
CMD.EXE command prompt, 68
CMMFSparse object, 508
CmnHdr.h header file, 761–767
*cmp string comparison functions, 25
code

injecting with CreateProcess, 633
maintaining with termination handlers, 672
running within catch or finally blocks, 664

Code Analysis option, 14
code page

associated with newly converted string, 28
number associated with multibyte string, 27

code points. See Unicode code points
code policies, possible, 124
code section, 466
code-point comparison, 25
coherence, memory-mapped files and, 495
COM

easily integrating with, 26
initialization and calls, 281
interface methods, 17
object DLLs, 585

ComCtl32.dll, 537
ComDig32.dll, 537
comma (,) operator, in exception filter, 700
command console, regaining control of, 305
command line

parsing into separate tokens, 76
of process, 76, 121

command shell, 192
command-line buffer, copying, 76
CommandLineToArgvW function, 76, 77
commit argument, with /STACK switch, 151
committed pages, disabling caching of, 382
committing physical storage, 376, 424
communication flags, in CreateFile, 295–298
communication protocol

building complete two-way, 639
related to uploading problem reports, 745

CompareString function, 24
CompareString(Ex) function, 24, 27
CompareStringOrdinal function, 24, 25, 27
comparison, linguistically correct, 24
compatibility rules, reorganized by operating 

system, 114



784 compiler
compiler
differences among implementations, 659
guaranteeing finally block execution, 662
vendors following Microsoft’s suggested syntax, 659

completion key value set, 141
completion notification, calling thread responding 

to, 318
completion port. See I/O completion port(s)
completion routine, 315
CompletionKey parameter

as CK_READ, 333
of PostQueuedCompletionStatus, 330

CompletionRoutine function, 315
component protection, creating heaps for, 521
components, of a process, 67
computers, supporting suspend and resume, 259
concurrent model, 320
CONDITION_VARIABLE_LOCKMODE_SHARED, 227
condition variables, 227–240

in conjunction with lock, 228
signaling, 237

Configuration Properties section, 761
consent dialog box, customizing, 746
consent parameter, 746
Consent setting, 739
console application, forcing full-screen mode, 98
console, use of, 290, 291
console window, 94

buffer identifying, 98
specifying width and height of child’s, 97

console-based applications. See CUI-based process
constant string, copying to temporary buffer, 90
ConstructBlkInfoLine, 417
constructors for C++ class objects, 71
ConstructRgnInfoLine, 417
ConsumeElement function, 234
container applications, 715
content indexing service, 297
contention, 223, 226
context(s)

of thread, 157
types of, 185

CONTEXT_CONTROL section, 185
CONTEXT_DEBUG_REGISTERS section, 185
CONTEXT_EXTENDED_REGISTERS section, 185
CONTEXT_FLOATING_POINT section, 185
CONTEXT_FULL identifier, 186
CONTEXT_INTEGER section, 185
CONTEXT_SEGMENTS section, 185
CONTEXT structure, 183–187, 699

changing members in, 186
ContextFlags member, 185
as CPU-specific, 183
defined in WinNT.h header file, 157
pointing to, 702
role in thread scheduling, 183
saving, 699
sections, 185

stack pointer register, 157
for x86 CPU, 183

context structure, of every thread, 173
context switch, 173, 607
ContextFlags member, 185, 186
ContextRecord member, 702
continue handler function

registering, 727
removing from internal list, 727
returning EXCEPTION_CONTINUE_EXECUTION, 

727
returning EXCEPTION_CONTINUE_SEARCH, 727

ContinueDebugEvent, 176
control window messages, 611
convenience data types, 14
ConvertStringSecurityDescriptorToSecurityDescriptor 

function, 59
ConvertThreadToFiber function, 362, 365
ConvertThreadToFiberEx function, 362
cookie, storing stack state as, 457
copy-on-write mechanism, 382

of memory management system, 466
pages backing system’s paging file, 588
turning off, 468

copy-on-write protection, 382
core components, isolating from malware, 52
core functions, requiring Unicode strings, 15
corruption, of internal heap structure, 524
count of bytes. See Cb
Count of characters. See Cch
Counter application (12-Counter.exe), 365–367
_countof macro

defined in stdlib.h, 19
getting Cch value, 22

_countof (szBuffer), instead of sizeof (szBuffer), 26
counts, functions returning, 3
CPU(s). See also x86 CPUs

aligned data, accessing properly, 391
cache coherency, communicating to maintain, 225
cache line, changing bytes in, 214
cache line, determining size of, 214
exceptions, raising, 679
indicating active, 396
limiting number system will use, 206
load balancing threads over multiple, 68
number in machine, 396
process address spaces for different, 377
registers for each thread, 157
specifying subset of, 131
tasks, giving varied to perform, 146
threads, controlling running on, 203
threads, selecting, 206

CPU architectures, 373
CPU cache lines. See cache lines
CPU time

accounting information, 130
exceeding allotted, 142
scheduling for threads, 67



current resource count, in semaphore kernel object 785
CPU-dependent code, writing, 186
CPU-specific code, writing, 633
CQueue C++ class, 229

constructor, 270
thread-safe, 269

CrashDmp.sys, 713
CREATE_ALWAYS value, 294
CREATE_BREAKAWAY_FROM_JOB flag, 95, 136
CREATE_DEFAULT_ERROR_MODE flag, 84, 94
CREATE_EVENT_INITIAL_SET flag, 248
CREATE_EVENT_MANUAL_RESET flag, 248
CREATE_FORCEDOS flag, 94
CREATE_MUTEX_INITIAL_OWNER, 265
CREATE_NEW_CONSOLE flag, 94
CREATE_NEW_PROCESS_GROUP flag, 94
CREATE_NEW value, 294
CREATE_NO_WINDOW flag, 94
CREATE_SEPARATE_WOW_VDM flag, 94
CREATE_SHARED_WOW_VDM flag, 94
CREATE_SUSPENDED flag, 174

checking for, 175
correct use of, 153
of CreateProcess fdwCreate, 93
passing to CreateThread, 157, 193
when calling CreateProcess, 136

CREATE_UNICODE_ENVIRONMENT flag, 94
Create* functions, 51
CreateBoundaryDescriptor function, 59
CreateConsoleScreenBuffer function, 291
CreateDesktop function, 133
CreateEvent function, 5, 248, 312
CreateEventEx function, 248
CreateFiber function, 362
CreateFiberEx function, 363
CreateFile function, 291–294, 478

cache flags, 295–297
checking return value of, 500
FileReverse calling, 488
not calling methods asynchronously, 304
returning INVALID_HANDLE_VALUE, 39
specifying exclusive access to file, 496

CreateFileMapping function, 479, 488, 500
creating file mapping, 34
passing INVALID_HANDLE_VALUE, 499

CreateFileMappingNuma function, 485
CreateFileW function, 294
CreateIcon function, 37
CreateIoCompletionPort function, 321, 322
CreateMailslot function, 291
CreateMutex function, 49, 265
CreateNamedPipe function, 291
CreateNewCompletionPort function, 321
CreatePipe function, 291
CreatePrivateNamespace function, 59, 60
CreateProcess function, 44, 89–104, 136, 464

checking for CREATE_SUSPENDED flag, 175
initializing suspend count, 175
invoking debugger process, 714

more control over cursor, 99
spawning WerFault.exe, 710

CreateProcessWithLogonW function, 17
CreateRemoteThread function, 621, 623, 625
CreateSemaphore function, 263
CreateSemaphoreEx function, 49
CreateThread function, 150–153, 157

called by _beginthreadex, 162
checking for CREATE_SUSPENDED flag, 175
compared to CreateRemoteThread, 621
creating new thread with normal priority, 193
initializing suspend count, 175
instead of _beginthreadex, 168
never needing to call, 340
prototype for, 764
thread stack storage initially committed, 451

CreateThreadpool function, 356
CreateThreadpoolCleanupGroup function, 359
CreateThreadpoolIo function, 354
CreateThreadpoolTimer function, 262, 346, 348
CreateThreadpoolWait function, 352
CreateThreadpoolWork function, 341
CreateToolhelp32Snapshot function, 177
CreateWaitableTimer function, 256
CreateWellKnownSid function, 118
CreateWindow function, 97
CreateWindowEx function, 15
CreateWindowExW function, 16
creation time, returned by GetThreadTimes, 179
critical sections, 217–224, 238

changing spin count for, 223
compared to mutexes, 265, 267
compared to SRWLock, 225
ensuring access to data structures, 218
minimizing time spent inside, 239
reading volatile long value, 226
spinlocks incorporated on, 222
tracked by WCT, 281
using interlocked functions, 219

CRITICAL_SECTION structure, 218, 220
critical-error-handler message box, not displaying, 83
CriticalSectionTimeout data value, 221
.CRT section, 470
_CrtDumpMemoryLeaks function, 72
crtexe.c file, 71
_CrtSetReportMode, 20
CSparseStream C++ class, 508
CSystemInfo class, 443
CToolhelp C++ class, 120
Ctrl+Break, 94
Ctrl+C, 94, 304
CUI applications, 68–69
CUI subsystem, selecting, 71
CUI-based process, output to new console window, 93
current drives and directories, of process, 84
current priority level, of thread, 194
current resource count, in semaphore kernel object, 

262–263



786 Currently Running Fiber field
Currently Running Fiber field, 365
CurrentVersion\Windows\ key, 608
custom prefix, for named objects, 53
custom problem report, generating, 748
customized report description, in WER console, 742
Customized WER sample application 

(26-CustomizedWER.exe), 748–751
CustomUnhandledExceptionFilter function, 749, 750
CVMArray templated C++ class, 718
CWCT C++ class, 282
__CxxUnhandledExceptionFilter, 705, 706, 708

D
data

accessing via single CPU, 215
aligning, 391–393
communicating among processes, 463
flushing to devices, 303
passing from one thread to another, 599
protecting from threads accesses, 230
sharing using memory-mapped files, 109, 498

data blocks, 738, 739
data buffer, not moving or destroying, 309
Data Execution Prevention. See DEP
data files

accessing, 463
mapping to address space, 380, 476

data misalignment exceptions, 392
.data section, 467, 470
data structure, example of poorly designed, 214
deadlock(s)

avoiding, 238
dangers faced when synchronizing content, 237
detecting, 281–287
example, 569
issues when stopping threads, 236–238
prevented with WaitForMultipleObjects, 247
typical, 282

DEBUG builds, 72
debug event, 279
Debug menu option, in Task Manager, 715
DEBUG_ONLY_THIS_PROCESS flag, 93
DEBUG_PROCESS flag, 93
.debug section, 470
DebugActiveProcess function, 714
DebugActiveProcessStop function, 633
DebugApplications, adding as new subkey, 715
DebugBreak function, 765
debugger

calling SetEvent, 715
connecting to any process, 715
dynamically attaching, 713
exceptions and, 729–732
injecting DLL as, 633
notifying of unhandled exception, 708
positioning at exact location, 735
starting from command shell, 128

debugging
built into Windows operating system, 279

elevated/filtered processes, 116
going across process boundaries, 605
just-in-time, 713–715
monitoring thread’s last error code, 5
one instance of application, 467
unpredictability of first-in/first-out, 247

debugging-related exceptions, 696
DebugSetProcessKillOnExit function, 633
declaration, of mutexes vs. critical sections, 268
__declspec(align(#)) directive, 214
__declspec(dllexport) modifier, 544

in executable’s source code files, 544
in header file, 548

__declspec(dllimport) keyword, 548
__declspec(thread) prefix, 602
decommitting physical storage, 377, 426
.def file, 547
default debugger, WER locating and launching, 713
default heap, 519, 520
DefaultConsent DWORD value, 710
DefaultSeparate VDM value, 94
#define directives, creating set of macros, 773
DefWindowProc function, 775
Delay Import section, 573
/DELAY linker switch, 572
Delay Loaded DLLs option, setting, 572
delay-load DLLs, 571–582

unloading, 575
delay-load hook function, 577
/DELAYLOAD linker switch, 572, 573
DelayLoadApp application, 576–582
DelayLoadDllExceptionFilter function, 574
_delayLoadHelper2 function, 573, 574
DelayLoadInfo structure, 574
/Delay:nobind switch, 575
/Delay:unload linker switch, 575
delete operator, 528
delete operator function, 530
DeleteBoundaryDescriptor function, 59, 60
DeleteCriticalSection function, 220, 223
DeleteFiber function, 364, 366
DeleteProcThreadAttributeList method, 102
Denial of Service (DoS) attacks, 53
DEP (Data Execution Prevention)

detecting code from a nonexecutable memory 
page, 701

enabled, 381
dependency loop, 563
DependencyWalker utility, 576
deprecated functions, replacing, 19
desktop(s)

naming to start application, 97
preventing processes from creating or switching, 133

Desktop Item Position Saver utility, 610–616
destination buffer, 23
destination file, size of, 332, 333
DestroyThreadpoolEnvironment, 358, 360
destructors, 72
detached process, 110



dumpType parameter 787
DETACHED_PROCESS flag, 93
Detours hooking API, 641
device(s), 290

associating with I/O completion ports, 322–324
communicating with asynchronously, 297
flushing data to, 303
opening and closing, 290–298

device driver
executing I/O requests out of order, 308
running in kernel mode, 190

device I/O
canceling queued requests, 309
as slow and unpredictable, 305

device kernel objects, signaling, 310, 311–312
device objects

in nonsignaled state, 277
as synchronizable kernel objects, 277

device-sharing privileges, 293
dialog boxes, message crackers with, 766
DialogBox, calling, 252
.didata section, 470, 573
DIPS.exe application, 610–616
directories, 290

obtaining and setting current, 84
opening, 291
tracking for multiple drives, 84

DisableThreadLibraryCalls function, 569, 570
DisassociateCurrentThreadFromCallback 

function, 356
disk defragmenting software, 147
disk image, 486
disk space, looking like memory, 377
display resolution, 611
DliHook function, 576
DLLs (dynamic-link libraries)

building, 540
calling LoadLibrary to load, 464
containing functions called by .exe, 464
as cornerstone of Microsoft, 537
created and implicitly linked by applications, 540
creating, 17, 546
delay-loading, 571–582
entry-point function, 562–571
explicitly loaded, 564
exporting variables, functions, or C++ classes, 542
in full 4-TB user-mode partition, 375
functions for specialized tasks, 537
injecting as debugger, 633
injecting using registry, 608–609
injecting using remote threads, 621–633
injecting using Windows hooks, 609–616
injecting with Trojan DLL, 633
in large 2+ GB user-mode partition, 374
loading at preferred base addresses, 464
loading from floppy disk, 380
loading from high-memory addresses, 590
making difficult for hackers to find, 417
mapping into processes using User32.dll, 608
preventing processes from dying, 564

preventing threads from dying, 567
process address space and, 538–539, 564
reasons for using, 537
receiving no notification with TerminateThread, 155
reserving region of address space for, 464
serving special purposes, 538
spreading out loading, 571
telling to perform per-thread cleanup, 567
unmapping, 564, 610
uploading when callback function returns, 355
usage count, 559
using DllMain functions to initialize, 563

.dll extension, 584
DLL functions, 29–30
DLL image file, producing, 541
DLL injection, 605–607
DLL modules

allocating and freeing memory, 539
building, 541–546
explicitly loading, 555
explicitly unloading, 558
loading in user-mode partition, 373
rebasing, 586–592

DLL_PROCESS_ATTACH notification, 563, 608
DLL_PROCESS_DETACH notification, 564–566
DLL redirection, 585–586
/DLL switch, 538
DLL_THREAD_ATTACH notification, 566
DLL_THREAD_DETACH notification, 168, 567
DllMain function

calling DLL’s, 564
C/C++ run-time library and, 570
implementing, 562
mapping file image without calling, 555
serialized calls to, 567–570

DllMain function name, case sensitivity of, 562
_DllMainCRTStartup function

calling destructors, 570
calling DllMain function, 570
handling DLL_PROCESS_ATTACH notification, 570
inside C/C++ run time’s library file, 570

DLL’s file image, mapping, 538, 555
dlp member, of DelayLoadInfo, 574
DOMAIN_ALIAS_RID_ADMINS parameter, 59
DONT_RESOLVE_DLL_REFERENCES flag, 555, 556
DontShowUI value, 710
_dospawn, 98
double-byte character sets (DBCSs), 12
drive-letter environment variables, 85
driver, 305
dt command, in WinDbg, 121
due times, 262
dump files, naming of, 735
DumpBin utility

running on executable file, 468
using preferred base addresses, 586
viewing DLL’s export section, 545
viewing module’s import section, 549–550

dumpType parameter, 745



788 DUPLICATE_CLOSE_SOURCE flag
DUPLICATE_CLOSE_SOURCE flag, 61
DUPLICATE_SAME_ACCESS flag, 61, 62
DuplicateHandle function, 60, 60–63, 64, 170
dw1ConditionMask parameter, 88
dwActiveProcessorMask member, 396
dwAllocationGranularity member, 396
dwBlkProtection member, 411
dwBlkStorage member, 411
dwBuildNumber member, 87
dwBytes parameter (HeapAlloc), 525
dwBytes parameter (HeapReAlloc), 527
dwConditionMask parameter, 88
dwCount parameter, 245
dwCreateFlags parameter, 153
dwCreationDisposition parameter, 294
dwData parameter, 319
dwDesiredAccess parameter

accepted by kernel object creation functions, 49
of CreateEventEx, 248
of CreateFile, 293, 478
of CreateMutexEx, 265
of CreateSemaphore, 263
of DuplicateHandle, 61
DuplicateHandle ignoring, 62
of MapViewOfFile, 482
of Open* functions, 50

dwExceptionCode parameter, 703
dwExceptionFlags parameter, 703
dwExitCode parameter

of ExitThread, 154
of TerminateThread, 155

dwFileFlags parameter, 745
dwFileOffsetHigh parameter, 483
dwFileOffsetLow parameter, 483
dwFillAttribute value, 97
dwFlags in STARTUPINFO, 97, 98
dwFlags parameter, 23

of CreateEventEx, 248
of CreateMutexEx, 265
of CreateSemaphore, 263
of GetThreadWaitChain, 285
of LoadLibraryEx, 555
with MultiByteToWideChar function, 27
in OpenThreadWaitChainSession, 284
of RegisterApplicationRestart, 755
as reserved, 101
of SetHandleInformation, 47
of UpdateProcThread, 101
of WerRegisterFile, 739
of WerReportAddDump, 745
of WerReportSubmit, 747
of WideCharToMultiByte function, 28

dwFlagsAndAttributes parameter, 294
dwIdealProcessor parameter, 205
dwInitialSize parameter, 525
dwl1ConditionMask parameter, 87
dwLastError member, 574
dwMajorVersion member, 87

dwMask parameter, 46
dwMaximumSize parameter, 525
dwMaximumSizeHigh parameter, 481
dwMaximumSizeLow parameter, 481
dwMilliseconds parameter, 243

of GetQueuedCompletionStatus, 325
of SignalObjectAndWait, 279
of Sleep* functions, 177, 227
of WaitForMultipleObjects, 245

dwMinorVersion member, 87
dwMoveMethod parameter, 301
dwNumberOfBytesToFlush parameter, 486
dwNumberOfBytesToMap parameter, 483
dwNumberOfProcessors member, 396
dwNumBytes parameter, 330
dwOptions parameter, 61
DWORD, fields of, 703
DWORD return type, 3
dwOSVersionInfoSize member, 87
dwPageSize member, 396
dwParamID parameter, 743
dwPingInterval, 756
dwPlatformId member, 87
dwPreferredNumaNode parameter

of CreateFileMappingNuma, 485
of MapViewOfFileExNuma, 485
of VirtualAllocExNuma, 421

dwProcessAffinityMask parameter, 203
dwProcessorType member, 396
dwRgnBlocks member, 411
dwRgnGuardBlks member, 411
dwRgnProtection member, 411
dwRgnStorage member, 411
dwShareMode parameter

of CreateFile, 293, 478
specifying exclusive access, 496

dwSize parameter, 435
of ReadProcessMemory, 624
of WerRegisterMemoryBlock, 738
of WriteProcessMemory, 624

dwSpinCount parameter, 223
of InitializeCriticalSectionAndSpinCount, 222
of SetCriticalSectionSpinCount, 223

dwStackCommitSize parameter, 363
dwStackReserveSize parameter, 363
dwStackSize parameter, 362
dwThreadAffinityMask parameter, 204
dwTlsIndex parameter, 599
dwTypeBitMask parameter, 88
dwTypeMask parameter, 87, 88
dwX value, 97
dwXCountChars value, 97
dwXSize value, 97
dwY value, 97
dwYCountChars value, 97
dwYSize value, 97
dynamic boosts, 194
dynamic priority range, 194



exception codes 789
dynamic TLS, 598–602
/dynamicbase linker switch, 417
dynamic-link libraries. See DLLs

E
E_INVALIDARG, 744
.edata section, 470
efficiency, for applications with Unicode, 26
EFLAGS register, 391
element, adding on top of stack, 213
ELEMENT structure

of CQueue class, 269
inside CQueue class, 230

elevated account, credentials of, 112
elevated privileges, child process getting, 116
empty stack, 213
emulation layer, for 32-bit applications, 397
EnableAutomaticJITDebug function, 750
encrypted file, 297
end of file marker, 509
end user. See user(s)
endless recursion, 151
_endthread function, 168
_endthreadex function, 166

compared to _endthread, 169
using, 154

EnterCriticalSection function, 218, 219–220, 223
/ENTRY switch, 570
-entry:command-line option, 69
entry-point function

calling, 71, 146
for every thread, 149
implementing, 562
for Windows application, 69

EnumProcesses function, 119
env parameter, 72, 79
_environ global variable, 73
environment block, 77

containing ANSI strings by default, 94
spaces significant in, 80

environment strings, obtaining from registry keys, 80
environment variables, 77–83

accessing, 72
multiple for process, 84

Environment Variables dialog box, 80
ERANGE, returning, 21
$err,hr, in Watch window, 5, 6
errno

C run-time global variable, 160
defining in standard C headers, 166
internal C/C++ run-time library function, 167
macro, 167
setting, 19

errno_t value, 19, 20
error(s)

checking with ReadFile and WriteFile, 308
returning via exceptions, 703
trapping and handling, 683

ERROR_ALREADY_EXISTS, 5
ERROR_CANCELLED, 116
error code(s)

32-bit number with fields, 7
composition of, 697
returned from GetLastError, 308
setting thread’s last, 7
Windows functions returning with, 3

ERROR_ELEVATION_REQUIRED, 116
error handling, 659

critical sections and, 223
performed by Windows functions, 3
simplified by termination handlers, 672
using exceptions for, 702

ERROR_INVALID_HANDLE, 39, 331
ERROR_INVALID_USER_BUFFER, 308
ERROR_IO_PENDING, 308
Error Lookup utility in Visual Studio, 6, 9
ERROR_MOD_NOT_FOUND, 557
error mode, 83, 94
ERROR_NOT_ENOUGH_MEMORY, 308
ERROR_NOT_ENOUGH_QUOTA, 308
ERROR_NOT_OWNER, 267
ERROR_OLD_WIN_VERSION, 88
ERROR_OPERATION_ABORTED, 310
error reporting, enabling, 738
ERROR_SUCCESS, 5
ERROR_USER_MAPPED_FILE, 489
ErrorShow sample application, 6, 7–9
European Latin Unicode character set, 13
event(s)

allowing threads to synchronize execution, 43
changing to nonsignaled state, 249
changing to signaled state, 249
initializing signaled or nonsignaled, 248
as most primitive of all kernel objects, 247
signaled and immediately nonsignaled, 251
signaling that operation has completed, 247

event handle, creating with reduced access, 248
event kernel objects, 247–253

creating, 248
identifying, 312
signaling, 310, 312–313
synchronizing threads, 249
types of, 247
used by critical sections, 223

EVENT_MODIFY_STATE, 248
__except filter, 728
__except keyword, 679
exception(s), 679, 695–696

debugger and, 696, 729–732
handling, 684
raised by HeapAlloc, 525
system processing, 682

EXCEPTION_ACCESS_VIOLATION, 695, 698, 701
EXCEPTION_ARRAY_BOUNDS_EXCEEDED, 695
EXCEPTION_BREAKPOINT, 696
exception codes, 697, 703



790 EXCEPTION_CONTINUE_EXECUTION
EXCEPTION_CONTINUE_EXECUTION, 681, 
691–693, 706, 707

EXCEPTION_CONTINUE_SEARCH, 681, 693–694, 
706, 707

filter returning, 574
FilterFunc function returning, 458

EXCEPTION_DATATYPE_MISALIGNMENT, 695
raised by other processors, 258
transforming misalignment fault into, 391

EXCEPTION_EXECUTE_HANDLER, 681, 683–690, 
706, 707

FilterFunc function returning, 458
returning, 691
triggering global unwind, 709

exception filters
committing more storage to thread’s stack, 692
debuggee’s thread searching for, 730
executed directly by operating system, 680
GetExceptionInformation calling only in, 699
identifiers, 681
producing, 701
return values of top-level, 706
thread searching for, 731
understanding by example, 680–682
writing your own unhandled, 738

EXCEPTION_FLT_DENORMAL_OPERAND, 696
EXCEPTION_FLT_DIVIDE_BY_ZERO, 696
EXCEPTION_FLT_INEXACT_RESULT, 696
EXCEPTION_FLT_INVALID_OPERATION, 696
EXCEPTION_FLT_OVERFLOW, 696
EXCEPTION_FLT_STACK_CHECK, 696
EXCEPTION_FLT_UNDERFLOW, 696
EXCEPTION_GUARD_PAGE, 695
exception handlers

added into internal list of functions, 726
executed directly by operating system, 680
registering in special table in image file, 381
syntax for, 679
understanding by example, 680–682

exception handling, 662
EXCEPTION_ILLEGAL_INSTRUCTION, 695
EXCEPTION_IN_PAGE_ERROR, 695
exception information, accessing, 699
EXCEPTION_INT_DIVIDE_BY_ZERO, 696
EXCEPTION_INT_OVERFLOW, 696
EXCEPTION_INVALID_DISPOSITION, 695
EXCEPTION_INVALID_HANDLE, 223, 696
EXCEPTION_MAXIMUM_PARAMETERS, 704
EXCEPTION_NESTED_CALL, 707
EXCEPTION_NONCONTINUABLE_EXCEPTION, 

695, 704
EXCEPTION_NONCONTINUABLE flag, 703

always used for C++ exceptions, 728
used by HeapAlloc, 704

EXCEPTION_POINTERS structure, 699
EXCEPTION_PRIV_INSTRUCTION, 695
EXCEPTION_RECORD structure, 699

pointing to, 700, 704
saving, 699

walking linked list, 704
EXCEPTION_SINGLE_STEP, 696
EXCEPTION_STACK_OVERFLOW, 454, 695
ExceptionAddress member, 701
ExceptionCode member, 700
ExceptionFlags member, 700
ExceptionInformation member, 701, 704, 708, 735
ExceptionRecord member

of EXCEPTION_POINTERS structure, 700, 704
of EXCEPTION_RECORD structure, 700

exception-related exceptions, 695
Exceptions dialog box, 729, 731
excluded application, 737, 738
exclusive access

to ensuring queue, 270
opening binary file for, 556
specifying to file, 496

.exe file
building, 540
CreateProcess searching for, 90
executing startup code, 465
loading and executing DLL files, 463
loading from floppy disk, 380
locating, 464
multiple mappings, 467
passing instance of, 73
reserving region of address space for, 464

.exe module. See executable module
executable and DLL modules, rebasing and 

binding, 551
executable code, storing in heap, 524
executable file. See .exe file
executable image file, 541
executable module

building, 541, 547–550
loading in user-mode partition, 373
mapped into new process’ address space, 542
running, 550–552
with several DLL modules, 539

executable source code files, 548
EXECUTE attribute, 468
execution

content, containing user-defined value, 364
context, of fiber, 362
picking up with first instruction following except 

block, 684
resuming after failed CPU instruction, 683
times of threads, 179–183

exit code, setting, 154
exit function, 72
exit time, returned by GetThreadTimes, 179
ExitProcess function, 104, 105–106, 155

causing process or thread to die, 105
explicit calls to as common problem, 106
getting address of real, 638
hooking, 634
to terminate process, 564
trapping all calls to, 638



file kernel object, creating or opening 791
ExitThread function, 153, 154, 166, 364, 558
avoiding, 166
causing process or thread to die, 105
explicit calls to as common problem, 106
to kill thread, 567
kills thread, 154

ExitWindowsEx function, 133
ExpandEnvironmentStrings function, 82
explicit data types, 26
explicit DLL module loading and symbol linking, 

553–561
explicitly loaded DLLs, 564
Explorer.exe’s address space, injecting DLL into, 610
export section, in DLL file, 545–546
exported symbol, explicitly linking, 561
EXPORTS section, 547
-exports switch (DumpBin), 545
expression parameter, 20
extended basic limit restriction, 129
extended (Ex) version functions, 23
Extended Latin Unicode character set, 13
extended limits, on job, 132
EXTENDED_STARTUPINFO_PRESENT flag, 95
extended versions of kernel object creation 

functions, 49
extern "C" modifier

in C++ code, 544
using to mix C and C++ programming, 546

extern keyword, importing symbol, 548
external manifest, 114

F
/F option, 451
facility codes, 698
Facility field, in error code, 7
failure, indicating for function, 7
Fast User Switching, 52
faulting process, all threads suspended, 715
fdwAllocationType parameter, 420
fdwCreate parameter

of CreateProcess, 93–95, 191
specifying priority class, 95

fdwFlags parameter
of HeapAlloc, 525
of HeapFree, 528
of HeapReAlloc, 527
of HeapSize, 527

fdwOptions parameter, 523
fdwPriority parameter, 191
fdwProtect parameter

of CreateFileMapping, 479
of VirtualAlloc, 420

fdwReason parameter, 562
fiber(s), 361–367
FIBER_FLAG_FLOAT_SWITCH, 362
Fiber Local Storage. See FLS functions
FiberFunc function, 366
fields in error code, 7

FIFO algorithm, 247
file(s), 290

adding to problem reports, 738, 745
contents broken into sections, 466
copying other media in background, 148
direct access, 331
extremely large, 296
getting size of, 299
locating in Windows Vista, 146
mapping into two address spaces, 499
memory-mapping, 487
opening, 291
pointer, setting beyond end of file’s current size, 302
reversing contents of, 488
setting end of, 302
types added to problem reports, 745
unmapping data, 485–486
unregistering, 739

FILE_ATTRIBUTE_ARCHIVE flag, 297
FILE_ATTRIBUTE_ENCRYPTED flag, 297
FILE_ATTRIBUTE_HIDDEN flag, 297
FILE_ATTRIBUTE_NORMAL flag, 297
FILE_ATTRIBUTE_NOT_CONTENT_INDEXED 

flag, 297
FILE_ATTRIBUTE_OFFLINE flag, 297
FILE_ATTRIBUTE_READONLY flag, 297
FILE_ATTRIBUTE_SYSTEM flag, 297
FILE_ATTRIBUTE_TEMPORARY, 296, 297
file attribute flags, 297–298
FILE_BEGIN value, 301
file caching, 477
FILE_CURRENT value, 301
file data, mapping, 482–485
file desired access rights, 478
file devices, 299–302
FILE_END value, 301
FILE_FLAG_BACKUP_SEMANTICS flag (CreateFile), 

291, 296, 298
FILE_FLAG_DELETE_ON_CLOSE flag, 296
FILE_FLAG_NO_BUFFERING flag, 295

accessing extremely large files, 296
FileCopy opening using, 331

FILE_FLAG_OPEN_NO_RECALL flag, 296
FILE_FLAG_OPEN_REPARSE_POINT flag, 296
FILE_FLAG_OVERLAPPED flag (CreateFile), 297, 305

not specifying, 303
opening device for asynchronous I/O, 311
source file opened with, 331

FILE_FLAG_POSIX_SEMANTICS flag, 296
FILE_FLAG_RANDOM_ACCESS flag, 295
FILE_FLAG_SEQUENTIAL_SCAN flag, 295
FILE_FLAG_WRITE_THROUGH flag, 296, 486
file handle, checking for invalid, 298
file image

accessing pages in, 467
locating, 555
used as physical storage, 379

file kernel object, creating or opening, 477, 478–479



792 FILE_MAP_ALL_ACCESS access right
FILE_MAP_ALL_ACCESS access right, 483
FILE_MAP_COPY flag, 483, 486
FILE_MAP_EXECUTE access right, 483
FILE_MAP_READ access right, 483
FILE_MAP_READ parameter, 36
FILE_MAP_WRITE access right, 483
file objects, closing, 486–487
file pointers, 300–302, 489
file resources, required for processes, 146
File Reverse application (17-FileRev.exe), 487–490
File Save As dialog box, in Notepad, 31
FILE_SHARE_DELETE value, 293
FILE_SHARE_READ | FILE_SHARE_WRITE value, 

293
FILE_SHARE_READ value, 293, 478
FILE_SHARE_WRITE value, 293, 478
FILE_SKIP_COMPLETION_PORT_ON_SUCCESS 

flag, 327
FILE_SKIP_SET_EVENT_ON_HANDLE flag, 313
FILE_TYPE_CHAR value, 292
FILE_TYPE_DISK value, 292
FILE_TYPE_PIPE value, 292
FILE_TYPE_UNKNOWN value, 292
FileCopy function, 331, 332
FileCopy sample application (10-FileCopy.exe), 331
file-mapping kernel object, 477, 479–482
file-mapping objects

backed by a single data file, 495
creating, 488
multiple processes sharing, 499
naming, 482
sharing blocks of data between processes, 43

FileRev, cleaning up, 489
FileReverse function, 488
FILETIME structure, 258
filler value (0xfd), 21
filtered process, debugging, 116
filtered token, 110
FilterFunc function, 458
fImpLoad parameter (DllMain), 562
finally block(s)

allowing to always execute, 748
ensuring execution, 664
executing code in, 689
forcing to be executed, 671
localizing cleanup code in, 669
not guaranteed to execute for any exception, 664
premature exit in try block, 662
putting return statement inside, 690
situations precluding execution of, 665

__finally keyword, 660
FindWindow, 607
first in, first out algorithm, 247
first-chance notification, 729, 731
fixed module, 120
/FIXED switch

of linker, 464
passing to linker, 589

FLAG_DISABLE_THREAD_SUSPENSION, 736
flags

for SetErrorMode, 83
stored in process’ handle table, 44
used by CompareString, 25

Flags parameter (Sleep functions), 227
flat address space, 465
flNewProtect, 435
floating point-related exceptions, 696
floating-point operations, performed by fiber, 362
flow of control, from try block into finally block, 663
FLS functions, 364
FlsAlloc function, 364
FlsFree function, 364
FlsGetValue function, 364
FlsSetValue function, 364
FlushFileBuffers function, 303
FlushViewOfFile function, 486
ForceClose method, of g_mmf object, 508
ForceQueue value, 712
foreground process, 195
foreign node, using RAM from, 405
FORMAT_MESSAGE_ALLOCATE_BUFFER flag, 9
FORMAT_MESSAGE_FROM_SYSTEM flag, 9
FORMAT_MESSAGE_IGNORE_INSERTS flag, 9
FormatMessage function, 6, 9
FORWARD_WM_* macro, 775
forwarded functions, 583
frame-based mechanism, SEH as, 726
free address space, 375
FREE flag, locating, 599
Free memory region type, 386
free regions, no storage committed within, 387
FreeEnvironmentStrings function, 79, 95
freeing, memory blocks, 527
FreeLibrary function, 558

called by thread, 564
called by _FUnloadDelayLoadedDLL2, 575
decrementing library’s per-process usage count, 559
to free DLL containing static TLS variables, 603
from inside DllMain, 563
steps performed when called by thread, 565, 566
thread pool calling, 355

FreeLibraryAndExitThread function, 558, 559, 564
FreeLibrary-WhenCallbackReturns function, 355
FreeUserPhysicalPages function, 442
fuErrorMode parameter, 83
fuExitCode parameter, 105, 106
full pathname, passed to LoadLibraryEx, 557
full thread stack region, 453
FuncaDoodleDoo example code, 665
Funcarama1 example code, 667
Funcarama2 example code, 668
Funcarama3 example code, 668
Funcarama4 example code, 669
Funcenstein1 example code, 660
Funcenstein2 example code, 661–662
Funcenstein3 example code, 663



GetProcessAffinityMask function 793
Funcenstein4 example code, 666
Funcfurter1 example code, 663
Funcfurter2 example code, 672
Funcmeister1 coding example, 680
Funcmeister2 coding example, 681
function forwarders, 583, 633
function names, exporting without mangling, 547
functions

allowing one process to manipulate another, 621
for backward compatibility with 16-bit Windows, 17
for C run time to call for invalid parameter, 20
calling asynchronously, 340–346
calling at timed intervals, 346–351
calling when single kernel object becomes signaled, 

351–353
creating kernel objects, 37, 38
easily calling nondeprecated, 26
hooking, 640
manipulating kernel objects, 34
for opening devices, 291–292
placing thread in alertable state, 317
with problems in multithreaded environments, 160
protecting code against buffer overruns, 11
from psapi.h, 144
reading environment variables, 85
requiring default heap, 520
returning INVALID_HANDLE_VALUE, 39
succeeding for several reasons, 5
used full stack space for, 459
validating parameters, 3

_FUnloadDelayLoadedDLL2 function, 575, 577

G
g_fResourceInUse spinlock variable, 217
g_fShutdown, 234
g_mmf object, 508
g_x variable, 587
garbage collection function, 427, 428
garbage data, 24
GarbageCollect function, 428
GD132.dll, 537
general protection (GP) fault errors, 83
GenerateWerReport function, 741, 751
generic data types, 26
GENERIC_READ access right, 478
GENERIC_READ flag, 303
GENERIC_READ value, 293
GENERIC_WRITE access right, 293, 478
GENERIC_WRITE flag, 303
GENERIC_WRITE value, 293
GET_MODULE_HANDLE_EX_FLAG_FROM_

ADDRESS parameter, 74
Get*CycleTime functions, 182
GetCommandLine function, 73, 76
GetCompressedFileSize function, 300
GetCPUFrequencyInMHz function, 182
GetCPUUsage function, 330
GetCurrentDirectory function, 84
GetCurrentFiber function, 364, 365

GetCurrentProcess function, 63, 169, 744
GetCurrentProcessId function, 104, 170, 625
GetCurrentThread function, 169
GetCurrentThreadId function, 104, 170
GetDiskFreeSpace function, 295
GetDlgItem function, 776
GetEnvironmentStrings function, 95

retrieving complete environment block, 77
using instead of _environ, 73

GetEnvironmentVariable function
calling by child process, 46
determining existence and value of, 81
using instead of _wenviron, 73

GetExceptionCode intrinsic function, 695–697
GetExceptionInformation intrinsic function, 699–702
GetExitCodeProcess function, 108, 109
GetExitCodeThread function, 156, 458
GetFiberData function, 364
GetFileSize function, 488
GetFileSizeEx function, 299
GetFileType function, 292
GetFreeSlot private function, 230
GetFullPathName function, 85
GetHandleInformation function, 47
GetLargePageMinimum function, 423
GetLastError function, 4, 88

for additional information, 5
calling immediately after call to Create* function, 50
calling right away, 5
returning 2 (ERROR_FILE_NOT_FOUND), 50
returning 6 (ERROR_INVALID_HANDLE), 50
returning ERROR_ACCESS_DENIED, 54
returning ERROR_ALREADY_EXISTS, 51
returning ERROR_INVALID_HANDLE, 39, 40

GetLogicalProcessorInformation function, 214, 397
GetMappedFileName function, 387
GetMessage, 613
GetMessage loop, 149
GetModuleFileName function, 73, 560
GetModuleFileNameEx, 144
GetModuleHandle function, 74, 75, 559
GetModuleHandleEx function, 74
GetModulePreferredBaseAddr function, 120
GetMsgProc function, 610
GetMsgProc parameter (SetWindowsHookEx), 609
GetNativeSystemInfo function, 398
GetNewElement functions, 232
GetNextSlot helper function, 232
GetNextSlot private helper function, 231
GetNumaAvailableMemoryNode function, 405
GetNumaHighestNodeNumber function, 406
GetNumaNodeProcessorMask function, 406
GetNumaProcessorNode function, 405
GetOverlappedResult function, 314
GetPriorityClass function, 192
GetProcAddress function, 561

exact memory location of LoadLibraryW, 623
hooking, 639

GetProcessAffinityMask function, 204



794 GetProcessElevation helper function
GetProcessElevation helper function, 117
GetProcessHeaps function, 531
GetProcessId function, 104
GetProcessIdOfThread function, 104
GetProcessImageFileName function, 144
GetProcessIntegrityLevel function, 123
GetProcessIoCounters function, 138
GetProcessMemoryInfo function, 407
GetProcessPriorityBoost function, 195
GetProcessTimes function, 138, 169, 180
_getptd_noexit function, 166
GetQueuedCompletionStatus function, 141, 324
GetQueuedCompletionStatusEx function, 317, 326
GetQueueStatus, 367
GetStartupInfo function, 102
GetStatus method, of CIOCP, 333
GetStdHandle, opening console, 291
GetSystemDirectory function, 550
GetSystemInfo function, 203, 395–396, 466
GetThreadContext function, 185, 187
GetThreadId function, 104
GetThreadLocale function, 24
GetThreadPriority function, 193
GetThreadPriorityBoost function, 195
GetThreadTimes function, 169, 179
GetThreadWaitChain function, 285
GetTickCount64 function, 179, 181
Getting System Version page, 86
GetTokenInformation function, 118, 123
GetVersion function, 85
GetVersionEx function, 73, 86
/GF compiler switch, 90
/Gf compiler switch, 90
Global, as reserved keyword, 53
global atom table, giving job, 133
global data variable, 688
global namespace, 51–52
Global\ prefix, 52
global replaces, performing, 26
global task count, 345, 346
global unwinds, 671, 687–690
global variables

in 08-Queue.exe application, 232
altering, 466
available to programs, 73
avoiding, 597
as better choice, 599
in DLL, 538
reflecting number of instances running, 467

globally set filter function, notifying, 708
GlobalMemoryStatus function, 404

to get total amount of RAM, 437
listing results of call, 406

GlobalMemoryStatusEx function, 404, 441
GP fault errors, handling, 83
grandchild process, spawning, 45
granularity. See also allocation granularity; page 

granularity
of reserved region, 396

graphical applications, allowing fine-tuning, 81
Graphical Device Interface (GDI) objects, 37
growable heap, 525
/GS compiler switch

in Microsoft Visual C++, 457
security features provided by, 570
taking advantage of, 27

gt_ prefix, for global TLS variables, 602
guard page, 451, 454
GUI-based applications, 68, 69, 608
GUID, 51

H
handle(s)

closing to child process and thread, 103
counting in Windows Task Manager, 41
getting to device, 291
identifying kernel object, 34
measuring as undocumented, 39
obtaining default heap, 520
setting for existing heaps, 531

HANDLE_FLAG_INHERIT flag, 46
HANDLE_FLAG_PROTECT_FROM_CLOSE flag, 47
HANDLE_MSG macro

defined in WindowsX.h, 774
not using, 766

HANDLE return type, 3
handle table

flags stored in, 44
for kernel objects, 37
undocumented, 37

handle values
passing as command-line argument, 46
as process-relative, 35

HANDLE_WM_* macros, 775
HANDLE_WM_COMMAND macro, 775
Handles column, in Select Process Page Columns dialog 

box, 41
Handshake (09-Handshake.exe) application, 252
hard affinities, 203, 205
hardware exceptions, 679
HasOverlappedIoCompleted macro, 307
hAutoResetEvent1 object, 246
hAutoResetEvent2 object, 246
hCompletionPort parameter

of GetQueuedCompletionStatus, 325
of GetQueuedCompletionStatusEx function, 326
of PostQueuedCompletionStatus, 330

header annotation, 14
“Header Annotations” documentation on MSDN, 14
header file

coding, 542
creating, 541
establishing, 542
including DLL’s, 548
including in each DLL’s source code files, 543

/headers switch (DumpBin), 468, 586
heap(s), 419, 519

advantage of, 519



hProcess parameter 795
allocating blocks of memory, 525–526
coalescing free blocks within, 532
creating additional, 523–531
destroying, 528–531
disadvantage of, 519
inheritance of, 531
reasons to create additional, 520–523
related functions, 531–533
rules for committing and decommitting storage, 519
serializing access to itself, 523
using multiple, 531
using with C++, 528–531
validating integrity of, 532

HEAP_CREATE_ENABLE_EXECUTE flag, 523, 524
heap dump, custom, 745
heap functions, 703
HEAP_GENERATE_EXCEPTIONS flag, 523, 524, 

525, 527
passing to heap functions, 703
specifying, 525

/HEAP linker switch, 519
heap manager, raising exeption, 524
HEAP_NO_SERIALIZE flag, 523, 525, 526, 527, 528

absence of, 524
avoiding, 523
safe use of, 524

HEAP_REALLOC_IN_PLACE_ONLY flag, 527
HEAP_ZERO_MEMORY flag, 525, 527
HeapAlloc function

actions of, 523
causing to raise software exception, 525
exceptions raised by, 525

HeapCompact function, 532
HeapCreate function, 523
HeapDestroy function, 528
HeapEnableTerminationOnCorruption parameter, 524
HeapFree function, 527

called by delete operator function, 530
calling to free memory, 77

HeapLock function, 532
HeapReAlloc function, 526
HeapSetInformation function, 524
HeapSize function, 527
HeapUnlock function, 532
HeapValidate function, 532
HeapWalk function, 532
hEvent member, of OVERLAPPED structure, 307
hEventMoreWorkToBeDone event, 280
hFile parameter, 301

of CancelIoEx, 310
of CreateFileMapping, 479
of GetFileSizeEx, 299
of LoadLibraryEx, 555
of ReadFile and WriteFile, 303
SetFileCompletionNotificationModes function, 313

hFileMappingObject parameter, 482
hFileTemplate parameter, 298, 332
hHeap parameter

of HeapAlloc, 525

of HeapReAlloc, 527
of HeapSize, 527

hidden file, indicating, 297
high 32 bits, 481
High level of trust, 122
HIGH_PRIORITY_CLASS, 95, 191
high priority class, 189
high priority level, 191
higher-priority threads, 187
highest memory address, 396
highest thread priority, 190, 193
highestAvailable value, 114
high-resolution performance functions, 181
high-water marker, maintained by NTFS, 332
HINSTANCE type, 74
hInstanceExe parameter, 73
hInstDll parameter

containing instance handle of DLL, 562
of GetProcAddress, 561
of SetWindowsHookEx, 609

hInstModule parameter, 560
hint value, of symbol, 550
hJob parameter

of AssignProcessToJobObject function, 136
of UserHandleGrantAccess function, 134

HKEY_PERFORMANCE_DATA root key, 118
hmodCur member, of DelayLoadInfo, 574
HMODULE type, parameter of, 74
HMODULE value, 555, 558
hObject parameter

of SetHandleInformation, 46
of SetThreadpoolWait function, 352
of WaitForSingleObject function, 109, 243

hObjectToSignal parameter, 279
hObjectToWaitOn parameter, 279
hook functions, 576, 635
Hook_MessageBoxA function, 640
hooks

injecting DLL using, 609–616
owned by thread, 155

host machine, 395
host system, version numbers, 87
hPrevInstance parameter, 75
hProcess parameter

of AllocateUserPhysicalPages, 441
of AssignProcessToJobObject function, 136
of CreateRemoteThread, 621
of GetExitCodeProcess, 108
of GetProcessMemoryInfo, 407
of ReadProcessMemory, 624
in SetPriority, 191
of SetProcessAffinityMask function, 203
of TerminateProcess, 106
of VirtualAllocExNuma, 421
of WaitForInputIdle, 278
of WerGetFlags, 737
of WerReportAddDump, 744
WriteProcessMemory, 624



796 hReport parameter
hReport parameter
of WerReportAddDump, 744
of WerReportAddFile, 745
of WerReportSetParameter, 743
of WerReportSetUIOption, 746
of WerReportSubmit, 746

HRESULT, values for safe string functions, 22
hSourceHandle parameter, 61
hSourceProcessHandle parameter, 61
hStdError value, 98
hStdInput value, 98
hStdOutput value, 98
hTargetProcessHandle parameter, 61
hThread parameter, 204

of CancelSynchronousIo, 304
of GetExitCodeThread, 156
of QueueUserAPC function, 319
of SetThreadIdealProcessor function, 205
of SetThreadPriority function, 193
of TerminateThread, 155
of WerReportAddDump, 744

hTimer parameter, 257
hUserObj parameter, 134
hWctSession parameter, 285
hyper-threading, 178

I
IA-64, 8-KB page size, 376
IA-64 CPU, 391
IAT (Import Address Table), updating, 638
icacls.exe Vista console mode tool, 123
icons

manually repositioning on desktop, 611
setting for dialog boxes, 766

ID(s)
of current process, 104
getting set of those currently in job, 139
reused immediately by system, 103
of running thread, 104
used mostly by utility applications, 103

.idata section, 470
ideal CPU, setting for thread, 205
IDLE_PRIORITY_CLASS, 95, 191
idle priority class, 188, 189
idle thread priority, 190, 193
#ifdefs, putting into code, 702
IMAGE_FILE_RELOCS_STRIPPED flag, 589
image files, executing from floppies, 380
Image memory region type, 386
image of .exe file, 379
image regions, displaying pathnames of files, 387
IMAGE_THUNK_DATA structures, 638
Image Walk DLL, 631–633
__ImageBase pseudo-variable, 74
ImageDirectoryEntryToData, 637
implicit linking, 540
Import Address Table (IAT), updating, 638

import section
of each DLL checked during loading, 551
embedded in executable module, 548–550
in executable module, 541
manipulating by API hooking, 636–639
parsed by executable module, 542
virtual addresses of all imported symbols, 593

-imports switch (DumpBin), 549
Increase Scheduling Priority privilege, 189
IncreaseUserVA parameter, 374
Indexed Locations, searching, 147
indexing, by Windows Indexing Services, 146
INFINITE

passed to WaitForSingleObject, 244
passing for dwMilliseconds, 177

infinite loop, generating, 692
infinite wait, of mutexes vs. critical sections, 268
information, storing on per-fiber basis, 364
inheritable handle, 44, 92
inheritance, 81. See also child process(es); kernel object 

handles; object handle inheritance
heaps, 531
kernel object handle, 91

inheritance flag, 46
Inherit.cpp program, 91, 92
initial state, of mutex, 266
initialization

of mutexes vs. critical sections, 268
value, passing to thread function, 152

InitializeCriticalSection function, 220, 223
InitializeCriticalSection parameter, 222
InitializeCriticalSectionAndSpinCount function, 

222, 223
InitializeProcThreadAttributeList function, 101
InitializeSListHead function, 213
InitializeSRWLock function, 224
InitializeThreadpoolEnvironment function, 358
Inject Library sample application, 625–626
injecting DLL into process’ address space, 607–634
InjectLib, 626
INNER_ELEMENT structure, 230
instance handle, 75
instruction pointer register, 157
integer-related exceptions, 696
integrity level

assigning to securable resources, 122
setting for file system resource, 123

intercepted Windows messages, 124
interlocked family of functions, 209
interlocked functions, executing extremely quickly, 210
interlocked helper functions, 213
Interlocked Singly Linked List, 213
interlocked (user-mode) functions, 277
InterlockedCompareExchange function, 212
InterlockedCompareExchange64 function, 213
InterlockedCompareExchangePointer function, 212
InterlockedDecrement function, 213, 346



JOB_OBJECT_LIMIT_SCHEDULING_CLASS flag 797
InterlockedExchange function, 211
InterlockedExchange64 function, 211
InterlockedExchangeAdd function, 209, 210, 213
InterlockedExchangeAdd64 function, 209
InterlockedExchangePointer function, 211
InterlockedFlushSList function, 213
InterlockedIncrement function, 213, 345

atomically incrementing value by, 210
incrementing volatile long value, 226

InterlockedPopEntrySList function, 213
InterlockedPushEntrySList function, 213
Internal member

origin of, 307
of OVERLAPPED structure, 307, 312, 326

InternalHigh member
origin of, 307
of OVERLAPPED structure, 307, 312

international markets, targeting, 11
Internet Explorer, user canceling Web request, 304
interprocess communication, with DuplicateHandle, 62
interthread communication techniques, 330
intrinsic function, 671
INUSE flag, 600
invalid file handle, checking for, 298
invalid handle, 39, 40
INVALID_HANDLE_VALUE

CreateFile returning, 482
functions returning, 3
returned by CreateFile, 479
returned if CreateFile fails, 298
returning for, 479

invalid memory
attempting to access, 674
occurring inside finally block, 704

invalid parameter, C run time detecting, 20
I/O accounting information, querying, 138
I/O completion notifications, receiving, 310
I/O completion port(s), 289, 320–333

architecting around, 324–327
associating device with, 321, 322–324
creating, 143, 321–322
designed to work with pool of threads, 321
internal workings of, 323
as interthread communication mechanism, 289
keeping CPUs saturated with work, 328
kernel object, creating, 141
managing thread pool, 327–328
mechanism used by most applications, 262
threads assigned to specified, 328
threads monitoring, 141
for use within single process only, 322
using, 310
waking threads in waiting thread queue, 325
waking up waiting threads, 327

I/O completion queue, 324
IO_COUNTERS structure, 138
I/O notification, 330

I/O request(s)
cancel pending, 310
issuing to device driver, 315
issuing without completion entry, 324
outstanding at any one time, 332
passing to device driver, 305
priorities, 196
queuing for device driver, 305
receiving completed notifications, 310–333
simulating completed, 330

I/O-bound task, using separate thread for, 148
IOCP.h file, CIOCP class found in, 332
IoInfo member, 132
IsDebuggerPresent function, 708
IsModuleLoaded function, 577
isolated applications, taking advantage of, 586
IsOS function, 398
IsProcessInJob function, 127, 136
IsProcessorFeaturePresent function, 396
IsTextUnicode function, 31, 488
IsThreadAFiber function, 364, 367
IsThreadpoolTimerSet function, 347
IsUserAnAdmin function, 118
IsWow64Process function, 94, 398

J
JAC-compliant applications, 115
Japanese kanji, 12
JIT debugging. See just-in-time debugging
job(s)

notifications, 140–142
placing processes in, 136
placing restrictions on, 129–135
terminating all processes in, 136

job event notifications, 142
job kernel object, 125

creating, 128
fitting into I/O completion port model, 289

Job Lab application (05-JobLab.exe), 143–144
correct use of, 153
demonstrating I/O completion ports and job objects 

working together, 289
JOB_OBJECT_LIMIT_ACTIVE_PROCESS flag, 131
JOB_OBJECT_LIMIT_AFFINITY flag

in LimitFlags member, 131
setting, 130

JOB_OBJECT_LIMIT_BREAKAWAY_OK flag, 136
JOB_OBJECT_LIMIT_BREAKAWAY_OK limit flag, 136
JOB_OBJECT_LIMIT_DIE_ON_UNHANDLED_

EXCEPTION limit flag, 132
JOB_OBJECT_LIMIT_JOB_MEMORY flag, 132
JOB_OBJECT_LIMIT_JOB_TIME flag, 130, 131
JOB_OBJECT_LIMIT_PRESERVE_JOB_TIME flag, 

130, 137
JOB_OBJECT_LIMIT_PRIORITY_CLASS flag, 130, 131
JOB_OBJECT_LIMIT_PROCESS_MEMORY flag, 132
JOB_OBJECT_LIMIT_SCHEDULING_CLASS flag, 131



798 JOB_OBJECT_LIMIT_SILENT_BREAKAWAY_OK flag
JOB_OBJECT_LIMIT_SILENT_BREAKAWAY_OK 
flag, 136

JOB_OBJECT_LIMIT_WORKINGSET flag, 131
JOB_OBJECT_MSG_ABNORMAL_EXIT_PROCESS 

notification, 142
JOB_OBJECT_MSG_ACTIVE_PROCESS_LIMIT 

notification, 142
JOB_OBJECT_MSG_ACTIVE_PROCESS_ZERO 

notification, 142
JOB_OBJECT_MSG_END_OF_JOB_TIME notification, 

142
JOB_OBJECT_MSG_END_OF_PROCESS_TIME 

notification, 142
JOB_OBJECT_MSG_EXIT_PROCESS notification, 142
JOB_OBJECT_MSG_JOB_MEMORY_LIMIT 

notification, 142
JOB_OBJECT_MSG_NEW_PROCESS notification, 142
JOB_OBJECT_MSG_PROCESS_MEMORY_LIMIT 

notification, 142
JOB_OBJECT_TERMINATE_AT_END_OF_JOB 

notification, 142
JOB_OBJECT_UILIMIT_DESKTOP flag, 133
JOB_OBJECT_UILIMIT_DISPLAYSETTINGS flag, 133
JOB_OBJECT_UILIMIT_EXITWINDOWS flag, 133
JOB_OBJECT_UILIMIT_GLOBALATOMS flag, 133
JOB_OBJECT_UILIMIT_HANDLES flag, 133, 134
JOB_OBJECT_UILIMIT_READCLIPBOARD flag, 133
JOB_OBJECT_UILIMIT_SYSTEMPARAMETERS flag, 

133
JOB_OBJECT_UILIMIT_WRITECLIPBOARD flag, 133
job object, creating, 143
job statistics, querying, 137–144
Job tab, of Process Explorer box, 139
Job.h file, 144
jobless process, 143
JobMemoryLimit member, 132
JOBOBJECT_BASIC_ACCOUNTING_INFORMATION 

structure, 137
JOBOBJECT_BASIC_AND_IO_ACCOUNTING_

INFORMATION structure, 138
JOBOBJECT_BASIC_LIMIT_INFORMATION 

structure, 129, 132
allocating, 129
members of, 131
SchedulingClass member, 130

JOBOBJECT_BASIC_PROCESS_ID_LIST structure, 
139

JOBOBJECT_BASIC_UI_RESTRICTIONS structure, 
129, 132

JOBOBJECT_EXTENDED_LIMIT_INFORMATION 
structure, 129, 132

JOBOBJECT_SECURITY_LIMIT_INFORMATION 
structure, 129, 135

JobObjectBasicAccountingInformation parameter, 137
JobObjectBasicAndIoAccountingInformation 

parameter, 138
JobToken member, 135
JUMP instructions, as CPU-dependent, 635
just-in-time debugging, 713–715, 750

K
kanji, 12
kernel address space, 374
kernel interprocess communication (IPC) mechanism, 

281
kernel mode, 185
kernel object(s)

applications leaking, 40
binding to thread pool wait object, 352
closing, 39–43, 107, 486
containing flag (wave-in-the-air), 242
creating, 38–39
creation functions, 49
gaining access to existing, 36
getting up-to-date list of, 42
handle table for, 37
identifying, 279
kernel address space, content stored in, 45
keyed event type of, 224
managing thread, 145
manipulating, 34
monitoring number used by any application, 41
multiple namespaces for in Terminal Services, 51
naming, 48–60
outliving process, 35
owned by kernel, 35
performance of, 241
in process, 67
process boundaries, sharing across, 43–64
security descriptor, protecting, 35
sharing by name, 50
sharing names, 50
in signaled or nonsignaled state, 242
signaling and waiting for single atomic operation, 

279
thread synchronization, behaving with respect to, 

276–277
threads, using to synchronize, 241
types of, 33
usage count, incrementing, 45

kernel object data structures, 34
kernel object handle inheritance, 91
kernel object handles

controlling which child processes to inherit, 46
inherited by child process, 100
as process-relative, 43

kernel time, 179
Kernel32 methods, 27
Kernel32.dll, 537, 571
kernel-mode CPU time, 137
kernel-mode partition, 373, 375
KEY_ALL_ACCESS, 37
KEY_QUERY_VALUE, 36
keyboard buffer, identifying, 98
keyed event type, of kernel objects, 224
keystrokes, forcing into application, 278
key/value pair, adding to attribute list, 101
known DLLs, 584–585



LONG return type 799
L
L, before literal string, 14
language identifier, in error code, 9
large blocks, allocating, 526
LARGE_INTEGER structure, 258
LARGE_INTEGER union, 299
large pages of RAM, 480
large user-mode address space, 374
/LARGEADDRESSAWARE linker switch, 374, 375
large-page support, in Windows, 422
Last MessageBox Info sample application, 639–655
last-chance notification, 729, 730
last-in first-out (LIFO), threads awakened, 325
Latin1 characters Unicode character set, 13
LB_GETCOUNT message, 776
LB_GETTEXT message, 612
LCID (locale ID), 24
lComparand parameter, 212
__leave keyword, 662

added to Microsoft’s C/C++ compiler, 669
using in try block, 670

LeaveCriticalSection function, 218, 222
forgetting calls to, 219
thread pool calling, 355

LeaveCriticalSection-WhenCallbackReturns function, 
355

legacy replacement functions, 20
level attribute, in <trustInfo>, 114
levels of trust, 122
.lib file

passing to linker, 548
producing, 541, 545

/Lib switch, 573
LibCMtD.lib, 159
LibCMt.lib, 159
liDistanceToMove parameter, 301
LIFO order, threads waking up in, 331
LimitFlags member, 130, 131
LineSize field, 214
LINGUISTIC_IGNORECASE flag, 25
LINGUISTIC_IGNOREDIACRITIC flag, 25
lInitialCount parameter, 263
linked lists

implementing spreadsheets, 424
memory-mapped files and, 496

linker
creating executable module, 548
forcing to look for entry point function, 766

linker defined pseudo-variable, 72
linker switches

embedding inside your source code, 472
set up by Visual Studio, 69

list boxes, appending strings into, 238
ListBox_AddString, 237
ListBox_SetCurSel, 237
ListView control, 612
lMaximumCount parameter, 263
LOAD_IGNORE_AUTHZ_LEVEL flag, 558

LOAD_LIBRARY_AS_DATAFILE_EXCLUSIVE flag, 
556

LOAD_LIBRARY_AS_DATAFILE flag, 556
LOAD_LIBRARY_AS_IMAGE_RESOURCE flag, 556
LOAD_WITH_ALTERED_SEARCH_PATH flag, 

556–558
loader

creating virtual address space, 542, 550
fixing up all references to imported symbols, 551
mapping executable module, 550
search order, 550
searching disk drives for DLL, 550

LoadIcon function, 73
LoadLibrary function, 555

any program can call, 472
calling for DLLs, 464
calling to load desired DLL, 621
incrementing per-process usage count, 559
linking to DLL containing static TLS variables, 603
mixing with LoadLibraryEx, 560
steps performed when called by thread, 565
thread calling, 622

LoadLibrary macro, 622
LoadLibraryA function, 622
LoadLibraryEx function, 555, 564

avoiding calls to from inside DllMain, 563
incrementing per-process usage count, 559
mixing with LoadLibrary, 560

LoadLibraryW function, 622
LoadStringA function, 17
local access, creating heaps for, 522
Local, as reserved keyword, 53
.local file, 585
Local\ prefix, 52
Local Procedure Call, 281
local unwind, 662, 671
locale ID, 24
LocalFileTimeToFileTime function, 258
localization

DLLs facilitating, 537
made easier by Unicode, 26

localizing applications, 11
lock(s)

creating, 570
not holding for long time, 239
tips and techniques, 238–240

Lock Pages in Memory user right, 423
LockCop application, 09-LockCop.exe, 281–287
LockCop tool, 287
LockObject view, 287
logical disk drive

opening, 291
use of, 290

logical resources
accessing multiple simultaneously, 238
each with lock, 238

logical size, returning file’s, 300
LONG return type, 3



800 long value, constructing
long value, constructing, 773
LONGLONG variable, 405
Lovell, Martyn, 19
low 32 bits, 481
Low integrity level processes, 124
Low level of trust, 122
low priority level, thread with, 191
lower-priority thread, 427
lowest thread priority, 190, 193
low-fragmentation heap algorithm, 526
low-priority services, executing long-running, 196
low-priority thread, 196
lParam parameter, 774
lpAttributeList field, 99
lpDesktop value, 97
lPeriod parameter, 257, 258
lpFile field, 115
lpMaximumApplicationAddress member, 396
lpMinimumApplicationAddress member, 396
lpParameters field, 116
lpReserved value, 97
lpReserved2 value, 98
lPreviousCount variable, 270
lpSecurityDescriptor, 36
lpTitle value, 97
lpVerb field, 115
lReleaseCount parameter, 264
lstrcat, not using, 27
lstrcpy, not using, 27

M
macros, in WindowsX.h, 773
mailslot, 43, 290
mailslot client, opening, 291
mailslot server, opening, 291
main function, changing to WinMain, 70
mainCRTStartup function, 69, 70
mainfestdependency switch, 766
maintability, in code, 15
MAKELONG macro, from WinDef.h, 773
MAKESOFTWAREEXCEPTION macro, 765
malloc, 26, 167
malware

creating same boundary descriptor, 54
exploiting unsafe string manipulation, 18
inheriting high privileges of Administrator, 110
isolating core components from, 52
writing code into areas of memory, 381

Mandatory Integrity Control, 122
.manifest suffix, 114
manual-reset events

calling PulseEvent, 251
creating auto-reset event, 248
no successful wait side effect for, 249
signaling, 247

manual-reset timer, signaling, 257
Mapped memory region type, 386
MapUserPhysicalPages function, 441

MapViewOfFile function, 482–484
requirements for file offset parameters, 495
requiring process to call, 497
reserving different address space regions, 498

MapViewOfFileEx function, 496, 497
MapViewOfFileExNuma function, 485
master list, of error codes, 6–7
MAX_PATH characters long, 48, 294
MAX_PATH constant, defined in WinDef.h, 84
_MAX_PATH constant, in various source code, 294
MaxArchiveCount, 740
maximum number of threads, setting, 328
MAXIMUM_PROCESSORS value, 205
maximum resource count, in semaphore kernel object, 

262
MAXIMUM_SUSPEND_COUNT times, 175
MAXIMUM_WAIT_OBJECTS value, 245
MaxQueueCount for WER store, 740
Medium level of trust, 122
meeting-planner type of application, 259
MEM_COMMIT flag, 422
MEM_COMMIT identifier, 421
MEM_DECOMMIT identifier, 426
MEM_LARGE_PAGE flag, 423
MEM_PHYSICAL flag, 440
MEM_RELEASE, 426
MEM_RESERVE flag, 440
MEM_RESERVE identifier, 420
MEM_RESET flag, 436, 437
MEM_TOP_DOWN flag, 420
memcpy intrinsic function, 671
memory

allocating for fiber’s execution context, 362
copying pages of to paging file, 378
corruption from string manipulation, 18
determining state of regional address space, 429
DLLs conserving, 537
localizing accessses to, 522
reserving and committing all at once, 423

memory address, choosing for reserved region, 420
memory alignment faults, 83
memory architecture, of Windows, 371–393
MEMORY_BASIC_INFORMATION structure, 409, 410
memory block(s)

changing size of, 526
freeing, 527
in kernel object, 34
obtaining size of, 527
schedulable thread with exclusive access to, 250

memory linkage, avoiding, 166
Memory Load, in VMStat, 406
memory management

copy-on-write. See copy-on-write mechanism
more efficient with heaps, 521
on NUMA machines, 405–408

memory pages, protection attributes for, 381
memory regions, types of, 386
Memory.hdmp file, 735, 736



MWMO_ALERTABLE flag 801
memory-mapped file desired access rights, 483
memory-mapped files, 379, 419, 476–477

backed by paging file, 499
cleaning up, 477
coherence and, 495
creating, 479
growable, 509
implementation details of, 497
processing big file using, 494–495
purposes of, 463
reversing contents of ANSI or Unicode text file, 487
sharing data among processes, 498
sharing data in, 109
sharing data with other processes, 496
sparsely committed, 504–515
specifying base address of, 496–497
using, 477–490

Memory-Mapped File Sharing application 
(17-MMFShare.exe), 500–501

memory-mapping, file, 487
memory-related exceptions, 695
MEMORYSTATUS structure, 404
MEMORYSTATUSEX structure, 405
MemReset.cpp listing, 437
message crackers, 773–775

cracking apart parameters, 774
using with dialog boxes, 766
in WindowsX.h file, 773

message ID, for error, 5
message queue, of a thread, 613
message text, describing error, 5
MessageBox function, hooking all calls to, 639
MessageBoxA, hooking of, 640
MessageBoxW, hooking of, 640
messages, sending to child controls, 776
MFC class library, 18
microdump, custom, 745
Microsoft C compiler. See C compiler
Microsoft Spy++. See Spy++
Microsoft Visual C++ compiler. See also C++ compilers

building DLL, 570
C++ exception handling, 728
syntax, 659

Microsoft Visual C++, supporting C++ exception 
handling, 660

Microsoft Visual Studio. See Visual Studio
Microsoft Windows. See Windows operating system
minidump file

adding to problem report, 744
custom, 745

MiniDump.mdmp file, 736
minidumps, information about, 735
minimum memory address, 396
misaligned data accesses, 392
misaligned data, code accessing, 391
MMF Sparse application (17-MMFSparse.exe), 505–515
Modified letters Unicode character set, 13

modules
binding, 592–595
determining preferred base addresses, 120
import section, strings written in ANSI, 638

Modules! menu item, in ProcessInfo, 120
Monitor class, 228
mouse cursor, control over, 98
MoveMemory function, 486
MSDN Web site, Getting System Version page, 86
MS-DOS application, forcing system to run, 94
MsgBoxTimeout function, 348
MsgWaitForMultipleObjects function, 262, 279
MsgWaitForMultipleObjectsEx function, 279, 317
MSIL code, 159
msPeriod, 347
MSVCMRt.lib, 159
MSVCR80.dll library, 159
MSVCRtD.lib, 159
MSVCRt.lib, 159
MSVCURt.lib, 159
msWindowLength parameter, 347
multibyte-character string, converting, 28
MultiByteToWideChar function, 27, 28
Multimedia Class Scheduler service, 174
multiple paging files, 380
multiple processes, sharing data with each other, 463
multiple threads

accessing shared resource, 207
communicating with each other easily, 150
scheduling, 174
using judiciously, 149

multiprocessor environment, 214
multithreaded applications, debugging, 281
multithreaded environment

_tcstok_s function in, 597
working asynchronously, 207

multithreading, allowing simplification, 148
multithreading operating system, benefits of, 148
mutex kernel objects, 265–271

checks and changes performed atomically, 266
creating, 265
rules for, 265

mutex object, creating, 44
mutexes

abandoned, 267
compared to critical sections, 267
ensuring exclusive access, 265
as slower than critical sections, 265
special exception to normal kernel object rules, 266
thread ownership concept for, 267
threads in different processes synchronizing 

execution, 43
tracked by WCT, 281
violating normal rules, 265
as worst performing, 226

MWMO_ALERTABLE flag, 317



802 name uniqueness, ensuring
N
name uniqueness, ensuring, 51
named kernel objects, functions creating, 48
named objects

forcing to go into global namespace, 52
preventing multiple instances of applications, 51

named pipe client, 291
named pipes, 43, 290
named pipe server, 291
namespaces

closing with existing objects, 60
private, 53–60

nanoseconds, measuring, 258
nCmdShow, 99
nested exceptions, 700, 707
.NET framework

easily integrating with, 26
encoding all characters and strings, 12

NetMsg.dll module, 9
network drives, 380
network share, passed to LoadLibraryEx, 557
new operator, calling in C++, 528
new operator function, 530
nMainRetVal, 72
nNumberOfArguments parameter, 704
nNumBytesToRead parameter, 303
nNumBytesToWrite parameter, 303
non-constant string, 89
none-gleton application, 53
nonfiltered security token, 111
nonfiltered token, grabbing, 118
non-real-time priority class, thread in, 190
nonreentrant function, 153
nonsignaled state, 241

changing event to, 249
object set to, 157

Non-Uniform Memory Access. See NUMA
non-Visual C++ tools, creating DLLs for use with, 546
No-Read-Up, 124
NORM_IGNORECASE flag, 25
NORM_IGNOREKANATYPE flag, 25
NORM_IGNORENONSPACE flag, 25
NORM_IGNORESYMBOLS flag, 25
NORM_IGNOREWIDTH flag, 25
NORMAL_PRIORITY_CLASS, 95, 191
normal priority class, 189
normal thread priority, 190, 193
Notepad

command line, 91
opening both Unicode and ANSI files, 31
property page for shortcut running, 99, 100
spawning instance of, 489

notifications
about jobs, 140–142
more advanced, 141

nPriority parameter, 193
NTFS

creating file on, 294

support for sparse files, 505
NtQueryInformationProcess, 122
NULL return value, 3
NULL-pointer assignment partition, 372
__nullterminated prefix, 14
NUMA machines

applications running on, 485
forcing virtual memory to particular node, 421
memory management on, 405–408

NUMA (Non-Uniform Memory Access), 203
Number Of Processors check box, 206
number pool, for system IDs, 103
NumberParameters member, 701, 704

O
.obj module, producing, 541
object handle inheritance, 43–47
object handles, duplicating, 60–64
object inheritance. See object handle inheritance
object names, creating unique, 51
objects

creating separate heaps for, 521
managing linked list of, 218
process termination cleaning up, 40

ObjectStatus field, 287
ObjectType field, 286
offline storage, 296, 297
Offset member, 306
OffsetHigh member, 306
OLE applications, 188
one-file one-buffer method, 476
one-file two-buffer method, 476
one-file zero-buffer method, 477
_onexit function, 72
OPEN_ALWAYS value, 294
Open command, 278
OPEN_EXISTING value, 294
Open* functions, 50
OpenEvent function, 249
OpenFile function, 17
OpenFileMapping function, 36, 501
OpenJobObject function, 128
OpenMutex function, 266
OpenPrivateNamespace function, 60
OpenSemaphore function, 263
OpenThread function, 177
OpenThreadWaitChainSession function, 284
OpenWaitableTimer function, 256
operating system

file, indicating, 297
freeing memory, 104, 154
locating free page of memory in RAM, 378
products, identifying, 87
scheduling threads, 67, 68
upgrades, effects on bound modules, 595

operations
always performed synchronously, 308
performing at certain times, 256



pdwSystemAffinityMask parameter 803
order of execution, in SEH, 689
ordinal number, specifying, 561
ordinal values, 546
OS_WOW6432, passing as parameter, 398
_osver global variable, 73
OSVERSIONINFO structure, 86
OSVERSIONINFOEX structure, 86, 87
OVERLAPPED_ENTRY, 326
OVERLAPPED structure, 306–307

allocating and initializing unique, 309
C++ class derived from, 307
members initialized, 311
members of, 306
not moving or destroying, 309

OverlappedCompletionRoutine callback function, 354
over-the-shoulder logon, 112
overwriting code, hooking by, 635
overwriting, protecting against accidental, 455

P
page(s), 376

altering rights of, 435
committing physical storage in, 376
swapping in and out of memory, 378
writable, 382

page commit information, tracking, 425
PAGE_EXECUTE_* protections, 381
PAGE_EXECUTE_READ protection attribute, 381, 480
PAGE_EXECUTE_READWRITE protection attribute, 

381, 382, 480
PAGE_EXECUTE_WRITECOPY protection attribute, 

381, 382
PAGE_EXECUTE protection attribute, 381
page faults, 137, 378
page frame number, 441
page granularity, 425, 426
PAGE_GUARD protection attribute, 383, 390, 411
PAGE_NOACCESS protection attribute, 381, 435
PAGE_NOCACHE protection attribute flag, 382, 390
PAGE_NOCACHE section attribute, 479
PAGE_READONLY protection attribute, 381, 480
PAGE_READWRITE protection attribute, 381, 421, 

422, 480
assigned to region and committed storage, 422
assigning, 382
page protection for stack’s region, 451
passing to VirtualAlloc, 440
passing with CreateFileMapping, 482

page size
address space reserved as multiple of, 376
showing CPU’s, 396

PAGE_WRITECOMBINE protection attribute flag, 
383, 390

PAGE_WRITECOPY protection attribute, 381, 480
changing to PAGE_READWRITE, 484
conserving RAM usage and paging file space, 382

page-locked storage requirement, 308
page-sized threshold, controlling, 457

paging file(s)
backing memory-mapped files, 499
on disk, 377
maximum number of bytes, 407
no storage required from, 594
physical storage not maintained, 379–380
size of system’s, 378
using multiple, 380

parallel port
opening, 291
use of, 290

parameter not referenced warning, 76
parent process

adding environment variable, 46
debugging child process, 93
determining, 104
forgetting to close handle to child process, 108
handle table, copying, 45
obtaining its current directories, 85
passing handle value as command-line argument, 46
preventing child process from inheriting error 

mode, 83
setting child process’ current drive and directory, 95
spawning child process, 44, 278
waiting for child to complete initialization, 46

parent-child relationship, of processes, 43
parent’s thread, 278
pArguments parameter, 704
ParseThread method

executing for each thread of, 286
as heart of wait chain traversal, 284

ParseThreads function, 282, 284
partition tables, 291
partitions, 372–375
pathname, with CreateFile, 294
pAttributeList parameter, 101
PAUSE assembly language instruction, 178
paused thread list, moving thread’s ID to, 327
pbIsCycle parameter, 285
pcchRemaining parameter, 23
pCompletionKey parameter, 141
pCompletionPortEntries array parameter, 326
pConditionVariable parameter, 227
pContext parameter, 285
pde parameter, 279
pDefaultChar parameter, 29
pDueTime parameter, 257, 258
pDumpCustomOptions parameter, 745
pdwExitCode parameter

of GetExitCodeProcess, 108
of GetExitCodeThread, 156

pdwFlags parameter, 47
pdwNumBytes parameters, 303
pdwNumBytesRead parameter, 624
pdwNumBytesWritten parameter, 624
pdwProcessAffinityMask parameter, 204
pdwReturnSize parameter, 135
pdwSystemAffinityMask parameter, 204



804 pdwThreadID parameter
pdwThreadID parameter, 153
PE file, mapping, 387
PE header, 451
PeakJobMemoryUsed member, 132
PeakProcessMemoryUsed member, 132
PeakWorkingSetSize field, 408
PEB (process environment block), 121, 376
pei parameter, 745
Pentium floating-point bug, 204
percent signs (%), 82
performance counters, 139
Performance Data database, 118
Performance Data Helper function library (PDH.dll), 

139
Performance Data Helper set of functions, 118
performance, of mutexes vs. critical sections, 268
Performance Options dialog box, 195
periodic timer, setting, 351
PerJobUserTimeLimit member, 131
PerProcessUserTimeLimit member, 131
persistent mechanism for communication, 104
pExceptionParam parameter, 744
pflOldProtect parameter, 435
pfnAPC parameter, 319
pfnCallback parameter, 340
pfnCur member, 574
PfnDliHook type, 576
pfnHandler parameter, 726
pfnRecoveryCallback parameter, 756
pfnStartAddr parameter

of CreateRemoteThread, 621
of CreateThread, 152, 157

pfnStatusRoutine parameter, 593
pfnTimerCallback parameter, 346
pfnWorkHandler parameter, 341
pftDueTime parameter, 347
pftTimeout parameter, 352
pfUsedDefaultChar parameter, 29
_pgmptr global variable, 73
pHandler parameter

of RemoveVectoredContinueHandler, 727
of RemoveVectoredExceptionHandler, 727

phObjects parameter, 245
phTargetHandle parameter, 61
physical disk drive, 290, 291
physical memory, allocating, 406, 441
physical size, returning file’s, 300
physical storage

address, translating virtual address to, 379
assigning or mapping, 372
committing, 421, 424, 499, 505
contents, resetting, 435
data stored in paging file on disk drive, 378
decommitting, 426
methods for determining whether to commit, 425
paging file, not maintained in, 379–380
process, currently in use by, 407
region, reserving and committing, 437

region, within, 376
thread’s stack, freeing for, 459
type of, 390, 409, 411

pidd member, of DelayLoadInfo, 575
Ping server, 320
pInstance parameter, 355
platform

DLLs resolving differences, 538
supported by current system, 87

plDestination parameter, 212
pliFileSize parameter, 299
pMultiByteStr parameter

of MultiByteToWideChar function, 28
of WideCharToMultiByte function, 28

pNodeCount parameter, 285
pNodeInfoArray parameter, 285
pNumArgs parameter, 77
pNumBytesTransferred parameter, 141
pointer variables, 393
pointers, using to reference memory, 605
POLICY_NEW_PROCESS_MIN security token, 124
POLICY_NO_WRITE_UP security token, 124
polling, 216
pool of threads, 321
Portable Executable file format, 546
POSIX subsystem, 91, 296
PostMessage, 124
PostQueuedCompletionStatus function, 262, 330, 340
PostThreadMessage, 613
pOverlapped parameter

of CancelIoEx, 310
of GetQueuedCompletionStatus function, 141
of PostQueuedCompletionStatus, 330
of ReadFile and WriteFile, 303

ppfn member, 575
ppiProcInfo parameter, 92, 102
pPreviousValue parameter, 101
ppszDestEnd parameter, 23
#pragma data_seg line, 470
pragma directive

taking advantage of function forwarders, 583
tricking by using macros, 763

pragma, forcing linker to look for entry-point function, 
766

pragma message Helper macro, 763
#pragma warning directive, 762
preemptive multithreaded environment, 208
preemptive multithreading operating system, 174
preemptive multithreading system, Windows as, 152
preferred base address

drawbacks when module cannot load at, 588
of every executable and DLL module, 586
importance of, 589
starting on allocation-granularity boundary, 590

pReportInformation parameter, 743
Preserve Job Time When Applying Limits check box, 

143
pResult parameter, 32



process kernel objects 805
pReturnSize parameter, 101
primary thread, 67

closing its handle to new thread, 458
creating, 146
creating process’, 563
entry-point function returning, 104
examining summation thread’s exit code, 458
safely calling any of C/C++ run-time functions, 167
waiting for server thread to die, 253

primary thread object, 109
printf family functions, avoiding, 27
priorities

abstract view, 188–191
programming, 191–198
of threads, 187

priority 0, for thread, 188
priority boosting, 194
priority classes

assigning for applications, 188
for processes, 191
processes attempting to alter, 192
set by fdwCreate, 95
specifying for all processes, 131
supported by Windows, 188

priority inversion, avoiding, 196
priority levels, 189
priority number, for every thread, 187
PriorityClass member, 131
private address space, 464
Private memory region type, 386
private namespace, 53–60

creating, 59
as directory to create kernel objects, 60
name only visible within process, 60

PRIVATE_NAMESPACE_FLAG_DESTROY, 60
private regions, identifying data in, 387
PrivateUsage field, 408
privileges elevation, 113
PrivilegesToDelete member, 135
problem reports

closing, 748
creating and customizing, 740–751
customizing within process, 738–739
default parameters for, 744
enumerating application’s, 740
submission customization, 747
submitting, 746–747
types of file added to, 739

PROC_THREAD_ATTRIBUTE_HANDLE_LIST, 100, 
101

PROC_THREAD_ATTRIBUTE_PARENT_PROCESS, 
100, 101

process(es)
address space, 482
affinity mask, 204
allocating memory in, 623
associated with jobs, 127
attempting to commit storage over job’s limit, 142

command line in, 76
communicating with process outside of job, 134
container of, 125
converting pseudohandle to real, 172
creating child, 109
creating with CreateProcess, 89
creating with suspended primary thread, 93
customizing problem reports within, 738–739
default heap, 519
defined, 67
each getting its own partition, 373
elevating automatically, 113
elevating by hand, 115–116
enumerating running, 118
environment block associated with, 77
error mode, 83
hooking other, 605
as inert, 145
minimum and maximum, 131
no leaks after termination, 107
obtaining handle to existing mutex, 266
obtaining information about job, 135
parent-child relationship, 43
placing in job, 136
priority classes, 191
private address space for each, 605
reading from and writing to another, 624
resources required by, 146
seeing integrity level of, 123
setting its own priority class to idle, 192
sharing named kernel objects, 49
silently terminating, 709
specifying maximum concurrent, 131
suspending and resuming, 176–177
terminating, 104–108, 155
terminating all in job, 136
total number of in job, 138
tracked by WCT, 281
tracking current drive and directory, 84
transferring data between different, 109
using flat address spaces, 465
virtual address space, 371

process boundaries
breaking through, 605
elevating privileges on, 111
mutexes vs. critical sections, 268

process environment block. See PEB
Process Explorer tool

detecting new kernel objects in, 42
finding keyed event, 224
from Sysinternals, 41–43, 123, 139

PROCESS_HEAP_ENTRY structure, 533
process IDs, 103, 625
PROCESS_INFORMATION structure, 102, 103
process instance handle, 73–75
process kernel objects

becoming signaled, 109
creating, 61, 89, 91, 464



806 PROCESS_MEMORY_COUNTERS_EX structure
process kernel objects, continued
decrementing usage count, 105
living at least as long as process, 107
never changing back to nonsignaled, 242
registering wait on, 353
rules Microsoft defined for, 242
status as signaled, 107
unique ID assigned to, 103
usage count decremented, 107

PROCESS_MEMORY_COUNTERS_EX structure, 407
PROCESS_MODE_BACKGROUND_END, 196
process priority class, 191
PROCESS_QUERY_INFORMATION access right, 407
process’ time usage, thread querying its, 169
PROCESS_VM_READ access right, 407
Process32First function, 119
Process32Next function, 119
PROCESSENTRY32 structure, 104
ProcessIdToSessionId function, 52
ProcessInfo application (04-ProcessInfo.exe), 119
ProcessInfo.exe tool, 592
processing time, saved by SignalObjectAndWait, 280
ProcessMemoryLimit member, 132
processor

affinity, 83, 205
architecture, 396
frequency, 182

process-relative handles, 39, 43
ProgMan window, 612
Program Compatibility Assistant, 128
programmatic strings, comparing, 27
programmatic Windows error reporting, 736–738
programming priorities, 191–198
programming problem, solved by Handshake, 252
programs

methods of implementing, 476
readability improved by termination handlers, 672

project management, DLLs simplifying, 537
project properties dialog box, 159
project type, selecting wrong, 70
properties, displaying for thread, 173
property page, for shortcut running Notepad, 100
Protect member, 409
protected handle, thread closing during debugging, 47
protected processes, 122
protection attribute flags, 382

associated with block, 390
not using when reserved regions, 421

protection attributes
assigning, 421, 422
associated with regions, 420
changing, 434
listing of, 421
locating hard-to-find bugs, 435
for pages of physical storage, 381–383
for region, 387
specifying, 479

psa parameter
of CreateFile, 294

of CreateFileMapping, 479
of CreateSemaphore, 263
of CreateThread, 151

PSAPI functions, 387
psaProcess parameter, 91–92
psaThread parameter, 91–92
PSECURITY_ATTRIBUTES parameter, 37
pseudocode

_beginthreadex source code, 161
showing what stack-checking function does, 456

pseudohandle
closing, 60
converting to real handle, 170–172
converting to real process handle, 172
as handle to current thread, 170
passing to Windows function, 169
returning, 59

psiStartInfo parameter, 96–102
pSize, 101
pSubmitResult parameter, 747
pszApplicationName parameter, 89–91
pszCmdLine parameter

in CommandLineToArgvW, 77
not writing into, 76
of WinMain, 76
of (w)WinMain, 91

pszCommandLine parameter, 89–91
pszCurDir parameter, 95
pszDLLPathName parameter, 556–558
pszDst parameter, 82
pszFileName parameter, 478
pszModule parameter, 74
pszName parameter

of CreateFile, 292
of CreateFileMapping, 482
of CreateSemaphore, 263
in functions naming kernel objects, 48
of GetEnvironmentVariable, 81
of Open* functions, 50
of OpenEvent, 249
of SetEnvironmentVariable, 83

pszPathName parameter, 560
pszSrc parameter, 82
pszSymbolName parameter, 561
pszValue parameter

of GetEnvironmentVariable, 81
of SetEnvironmentVariable, 83

pTimer parameter
of SetThreadpoolTimer function, 347
of TimerCallback, 346

PTP_CALLBACK_ENVIRON parameter
passing, 356
of TrySubmitThreadPoolCallback, 340

PTP_CALLBACK_ENVIRON structure, 359
PTP_CALLBACK_INSTANCE data type, 355
PTP_POOL value, 356, 358
PTP_WORK object, 342
pulNumEntriesRemoved parameter, 326
pulRAMPages parameter, 441



recursion counter 807
PulseEvent function, 251, 280, 353
Put PID In Job, in Job Lab sample, 143
pvAddress parameter, 435

of VirtualAlloc, 419
of VirtualFree, 426
of WerRegisterMemoryBlock, 738

pvAddressRemote parameter, 624
pvAddressWindow parameter, 442
pvBaseAddress parameter

of MapViewOfFileEx, 496
of UnmapViewOfFile, 485

pvBlkBaseAddress member, 411
pvBoundaryDescriptor, 59
pvBuffer parameter

of IsTextUnicode, 32
of ReadFile and WriteFile, 303

pvBufferLocal parameter, 624
pvContext parameter, 346

of CreateThreadpoolWork function, 341
of TrySubmitThreadPoolCallback, 340

pvEnvironment parameter, 95
pvFiberExecutionContext parameter

of DeleteFiber, 364
of SwitchToFiber, 363

pvMem parameter
of HeapReAlloc, 527
of HeapValidate, 532

PVOID return type, 3
pvParam parameter

of CreateThread, 152, 157, 171
passed to CreateThread, 158

pvParameter parameter, 756
pvRgnBaseAddress member, 411
pvTlsValue parameter, 599
pWaitItem parameter, 352
pWideCharStr parameter

with MultiByteToWideChar function, 28
of WideCharToMultiByte function, 28

pWork parameter, 341
pwzCommandLine parameter, 755
pwzEventType parameter, 742
pwzExeName parameter, 737
pwzFilename parameter

of WerRegisterFile, 739
of WerReportAddFile, 745

pwzName parameter, 743
pwzValue parameter

of WerReportSetParameter, 743
of WerReportSetUIOption, 746

Q
quantums, 67, 68
QueryDepthSList function, 213
QueryInformationJobObject

calling at any time, 138
retrieving completion key and completion port 

handle, 141
QueryInformationJobObject function, 135, 137
QueryPerformanceCounter function, 181

QueryPerformanceFrequency function, 181
QueryProcessCycleTime function, 181, 183
QueryThreadCycleTime function, 181
question mark default character, 29
queue

associated with thread, 315
controlling with mutex and semaphore, 268

Queue (08-Queue.exe) application, 228
Queue (09-Queue.exe) application, 268–271
queue data structure, 269
queue implementation, 229–232
queued device I/O requests, 309
QueueUserAPC function, 318, 319
quick free, with heaps, 523

R
RaiseException function, 703–704, 728
RAM. See also memory

adding to improve performance, 408
allocating, never swapped, 439
finding free page of memory in, 382
forcing heavy demand on, 437
performance boost from adding, 378
portions saved to paging file, 378
swapping to system’s paging file, 435

RAM blocks
accessing via address windows, 440
assigning to address windows, 439, 443
freeing, 442
unassigning current, 442

.rdata section, 470
__rdtsc intrinsic function, 181
READ attribute, 468
ReadDirectoryChangesW function, 17
reader threads, waking up all, 228
readers, distinguishing from writers, 224
reader-writer lock, 238
ReadFile function, 302, 306
ReadFileEx function, 315
read-only data, separating from read-write data, 214
read-only files

as good candidates for memory-mapped files, 496
indicating, 297

read-only handle, 64
ReadProcessMemory function, 624
ReadTimeStampCounter macro, 181
real-time operating system, 174
real-time priority, 197
REALTIME_PRIORITY_CLASS, 95, 191
real-time priority class, 189, 190
real-time range, 194
Rebase.exe utility, 590
ReBaseImage function, 591–592
rebasing

implementing, 591–592
modules, 586–592

recalculation fiber, 366
recalculation thread, 366
recursion counter, 265



808 Refresh function
Refresh function, 416
regFileType parameter, 739
regions

in address space, 375, 379
committing physical storage within, 376
displaying blocks inside, 388
number of blocks within, 387
number of bytes reserved for, 387
protection attributes for, 387
reserving, 419, 420
reserving and committing storage to, 422

RegionSize member, 409
register on host CPU, 183
RegisterApplicationRecoverCallback function, 756
RegisterApplicationRestart function, 755
registered event, signaling using PulseEvent, 353
RegisterWaitChainCOMCallback function, 283
registry

injecting DLL using, 608–609
keys, continuing environment strings, 80
registry functions modifying entries, 81
settings for WER store, 740

RegNotifyChangeKeyValue function, 357
RegOpenKeyEx function, 36
RegQueryValueEx registry function, 118
relative thread priorities, 189, 190, 193. See also thread 

priority boosting
relative virtual address, 545, 556
release build

replacing assertion dialog box, 20
setting /GS compiler switch, 457

release, of mutexes vs. critical sections, 268
released thread list, 327
ReleaseMutex function, 266, 267

called by Append, 270
system calling, 570
thread pool calling, 355

ReleaseMutex-WhenCallbackReturns function, 355
ReleaseSemaphore function, 264, 270

allowing or disallowing, 49
in finally block, 664
putting call into termination handler, 662
thread pool calling, 355

ReleaseSemaphore-WhenCallbackReturns function, 
355

ReleaseSRWLockExclusive function, 224, 234
ReleaseSRWLockShared function, 225, 236
releasing region, 376, 426
Reliability and Performance Monitor, 139
.reloc section, 470
relocating, executable (or DLL) module, 588
relocations, creating image without, 589
remote process, terminating, 187
remote threads, injecting DLL using, 621–633
Remove method, 270
RemoveVectoredContinueHandler function, 727
RemoveVectoredExceptionHandler function, 727
REP NOP instruction, 178

reparse attribute, 296
replaceable strings, 82
ReplaceIATEntryInAllMods function, 638
ReplaceIATEntryInOneMod function, 637, 638
report generation and sending, disabling for WER, 737
report parameters, setting, 743
ReportFault function, 748
repType parameter, 743
repUITypeID parameter, 746
requests

server threads consuming, 234–236
submitting to thread pools, 340

requireAdministrator value, 114
reserve argument, 151
reserved keywords

Global, 53
Local, 53
Session, 53

reserved region
committing storage in, 421
releasing, 426

reserved space, for thread’s stack, 151
reserving, region of address space, 375
ResetEvent, 249
_resetskoflow function, 454, 459
resetting, of physical storage, 435
resource(s)

counting, 262
easily manipulating, 26
leaking, 40

resource compiler, output file, 17
resource handles, initializing, 670
resource leaks

avoiding, 103
eliminating potential, 487

resource locks, entering in exactly same order, 239
resource policies, 124
resource sharing, DLLs facilitating, 537
resource-only DLLs, loading, 589
restart aware applications, 754
Restart Manager API, 755
RestrictedSids member, 135
restrictions

placing on job’s processes, 129–135
querying job’s, 135
on server clients, 125
types of, 129

ResumeThread function, 93, 175, 193
resumptive exception handling, 729
return code of 6 (ERROR_INVALID_HANDLE), 49
return statements

avoiding putting into try block, 669
in finally block, 690

return value
data types for Windows functions, 3
indicating error, 4

reversed file, forcing to end, 489
RgnSize member, 411



SEH (structured execution handling) 809
RobustHowManyToken function, 685
RobustMemDup function, 686
root directory, as current directory, 84
.rsrc section, 470
RT_MANIFEST, 114
/RTC switches, 457
/RTCs compiler switch, 27
/RTCsu compiler switch, 457
/RTCx flags, 22
RTL_SRWLOCK, 224
RTL_USER_PROCESS_PARAMETERS structure, 121
RtlUserThreadStart function

calling C/C++ run-time library’s startup code, 158
calling ExitProcess, 158
calling ExitThread, 158
exported by NTDLL.dll module, 157–158
prototyped as returning VOID, 158
thread’s instruction pointer set to, 157

rule of thumb, for creating threads, 324
Run As Administrator command, 111
run time, detecting stack corruptions, 457
runnable threads, in concurrent model, 320
running processes, enumerating, 118
running thread, operating system memory hidden 

from, 371
run-time checks, 22
run-time library, 159
Russinovich, Mark, 113
RVA (relative virtual address), 545, 556

S
_s (secure) suffix, 19
SACL, 122
safe string functions

always working with, 27
of C run time, 79
HRESULT values, 22

Safer. See WinSafer
/SAFESEH linker switch, 381
sample applications in this book, build environment, 

761–767
sandbox

running applications in, 375
setting up, 129

scalable application, 289
schedulable threads

with exclusive access to memory block, 250
system scheduling only, 174

scheduler
not fully documenting, 188
tweaking for foreground process, 195

scheduling algorithm
applications not designing to require specific 

knowledge of, 193
effect on types of applications run, 188
as subject to change, 188

Scheduling Lab application (07-SchedLab.exe), 197
SchedulingClass member, 130, 131, 132

scripts, 13
search algorithm, for finding DLL files, 556
Search window, invoking, 147
searching features, in Microsoft Windows Vista, 146
SEC_COMMIT flag, 504
SEC_COMMIT section attribute, 480
SEC_IMAGE section attribute, 480
SEC_LARGE_PAGES section attribute, 480
SEC_NOCACHE section attribute, 479
SEC_RESERVE flag

specifying in CreateFileMapping, 504
with VirtualAlloc, 505

SEC_RESERVE section attribute, 480
secondary threads, entry-point function for, 149
section(s)

attributes associated, 467
creating, 470
in every .exe or DLL file image, 467

section attributes, 479
section names

beginning with period, 467
and purposes, 470

/SECTION switch, 471
secure (_s) functions, 19
secure string functions

in C run-time library, 18–25
introducing, 19–22
manipulating Unicode strings via, 11

secure use of Unicode strings, 11
security access flags, 37
security access information, 36
SECURITY_ATTRIBUTES structure, 44

containing bInheritHandle field set to TRUE, 100
example, 36
for file-mapping kernel object, 479
functions creating kernel objects with pointer to, 35
initializing, 36
passed in CreatePrivateNamespace, 59
pointer, 151
pointing to, 294
for psaProcess and psaThread parameters, 91

SECURITY_BUILTIN_DOMAIN_RID parameter, 59
security confirmation dialog boxes, 111
security descriptor, protecting kernel objects, 35
security, for kernel objects, 35–37
security identifier (SID), 54, 59
security limit restriction, 129
security restrictions, 135
SecurityLimitFlags member, 135
segment registers, identifying, 185
SEH frame

in BaseThreadStart, 707
handling exceptions, 158
placing around thread function, 165

SEH (structured execution handling)
available in any programming language, 727
burden falling on compiler, 659
consisting of two main capabilities, 660



810 SEH termination handler, adding
SEH (structured execution handling), continued
developers avoiding, 702
frame around thread function, 158
illustrating most confusing aspects of, 688
order of execution, 689
using, 425, 716
in Windows, 381
as Windows-specific, 703

SEH termination handler, adding, 668
SEHTerm application (23-SEHTerm.exe), 673–676
Select Columns dialog box, 41
Select Process Page Columns dialog box, 40
SEM_FAILCRITICALERRORS flag, 83
SEM_NOALIGNMENTFAULTEXCEPT flag

of SetErrorMode, 83
setting, 392

SEM_NOGPFAULTERRORBOX flag, 83, 132
SEM_NOOPENFILERRORBOX flag, 83
semaphore(s)

successfully waiting on, 270
synchronizing execution, 43

semaphore kernel objects, 262–264
creating, 263
process-relative handles to, 263
rules for, 263
tracking number of elements in queue, 270

SEMAPHORE_MODIFY_STATE, 49
SendMessage, 124, 281
sensitive user data, 745
serial model, 320
serial port

opening, 291
use of, 290

serialized calls, to DllMain, 567–570
server applications, requiring more and more memory, 

439
server clients, restrictions on, 125
server threads

calling GetNewElement, 231
calling Remove method, 270
consuming requests by, 234–236
created by Queue, 229

Server Threads list box, 269
ServerThread function, 252
service applications

models for architecting, 320
using concurrent model, 320
using single I/O completion port, 325

service pack
major version number of, 87
minor version number of, 87

Session 0 isolation, 52
Session, as reserved keyword, 53
Set Affinity menu item, 206
_set_abort_behavior function, 705
_set_invalid_parameter_handler, 20
SetCommConfig, 291
SetCriticalSectionSpinCount function, 223

SetCurrentDirectory function, 85
SetDllDirectory function, 557
SetEndOfFile function, 302, 332, 489, 509
SetEnvironmentVariable function, 83, 85
SetErrorMode function, 83, 392
SetEvent function, 249, 312

called by debugger, 715
making waiting threads schedulable, 251
primary thread calling, 250
thread pool calling, 355

SetEvent-WhenCallbackReturns function, 355
SetFileCompletionNotificationModes function, 313, 

327
SetFileInformationByHandle function, 196
SetFilePointer function, 509
SetFilePointerEx function, 301–302, 332
SetHandleInformation function, 46
SetInformationJobObject function, 129, 141

failing, 135
resetting job object, 140

/setintegritylevel command-line switch, 123
SetLastError function, 7
SetMailslotInfo function, 292
SetPriorityClass function, 192

to alter priority, 192
child process calling, 191
passing PROCESS_MODE_BACKGROUND_END, 

196
process calling, 131

SetProcessAffinityMask function, 203
SetProcessPriorityBoost function, 194
SetProcessWorkingSetSize function, 308
SetSize member, 131
SetThreadAffinityMask function, 204
SetThreadContext function, 186, 187
SetThreadIdealProcessor function, 205
SetThreadpoolCallbackCleanupGroup function, 359
SetThreadpoolCallbackLibrary function, 358
SetThreadpoolCallbackPool function, 358
SetThreadpoolCallbackRunsLong function, 358
SetThreadpoolThreadMaximum function, 357
SetThreadpoolThreadMinimum function, 357
SetThreadpoolTimer function, 346, 347, 348
SetThreadpoolWait function, 352, 353
SetThreadPriority function, 193, 196
SetThreadPriorityBoost function, 194
SetThreadStackGuarantee function, 454
SetUnhandledExceptionFilter function, 705, 706
setup program, beginning with one floppy, 380
SetWaitableTimer function, 257–259
SetWindowLongPtr function, 605, 610
SetWindowsHookEx function, 609
SHARED attribute, 468
shared objects, protecting against hijacking, 53
shared sections, Microsoft discouraging, 472
ShellExecuteEx function, 115, 116
SHELLEXECUTEINFO structure, 115
SHGetStockIconInfo, 118



StartThreadpoolIo 811
shield icon, 113, 118
ShlwApi.h file, 24
ShowWindow function, 97, 99
SID (security identifier), 54, 59
side effect, applying, 246
side-by-side assemblies, 586
SidsToDisable member, 135
signal function, 165, 167, 168
signaled object, 109
signaled process kernel object, 242
signaled state, 241, 249
SignalObjectAndWait function, 279, 317
single-CPU machines, avoiding spinlocks on, 211
single-tasking synchronization, 108
Singleton application, 03-Singleton.exe, 53
Singleton.cpp module, 54
size argument (_aligned_malloc), 210
size parameter, for C+ new operator, 529
SIZE_T variable, 101
sizeof operator, 22
sizeof(wchar_t), 28
Sleep, 177, 211
Sleep field, 197
SleepConditionVariableCS function, 227
SleepConditionVariableSRW function, 227

releasing g_srwLock passed as parameter, 234
thread blocking on, 236

SleepEx function, 317
slim reader-writer locks. See SRWLock
SNDMSG macro, 776
socket, 290, 291
soft affinity, 203
software exceptions, 679, 702–704

creating codes for, 765
generating your own, 704
trapping, 703

Software Restriction Policies. See WinSafer
SORT_STRINGSORT flag, 25
source code

assuming pointers to be 32-bit values, 374
compiling, 15
examining samples to demonstrate SEH, 660
modules, 538
of simple program calling GetSystemInfo, 398

space-delimited tokens, 685
spaces, in environment block, 80
sparse file feature, of NTFS, 505
Sparse Memory-Mapped file sample application. See 

MMF Sparse application
Spawn CMD, in Job button, 143
special access protection attribute flags, 382
spin count, setting, 222
spin loops, executing, 178
spinlocks

assuming protected resource access, 212
critical sections and, 222
implementing, 211
as useful on multiprocessor machines, 212

using with critical sections, 223
wasting CPU time, 211

Spreadsheet sample application, 716–722
spreadsheets

performing recalculations in background, 148
sharing, 504

Spy++
filtered behavior with, 124
running inside job, 133

SRWLock (slim reader-writer lock), 224–227
acquired exclusive mode, 234
acquiring, 232
acquiring in shared mode, 236
features missing in, 225
performance, 227
performance and scalability boost using, 225
reading volatile long value, 226
synchronization mechanism not tracked, 281

SRWLOCK structure, 224, 225
st_ prefix, for static TLS variables, 602
stack

created by CreateFiber, 362
detecting corruption at run time, 457
emptying, 213
limit, setting, 151
overflows, recovering gracefully from, 454
owned by each thread, 151
removing top element of, 213
returning number of elements stored in, 213
space required for function, 456
storage, increasing, 452

/STACK option, 451
stack pointer register

of thread, 451
in thread’s context, 157

stack region
bottommost page always reserved, 455
for thread, 451, 452

/STACK switch, 151
stack underflow, 455
stack-based variables, 597
StackCheck, 457
stack-checking function, 456–457
Standard phonetic Unicode character set, 13
Standard User, 116
START command, 192
start glass cursor, 99
STARTF_FORCEOFFFEEDBACK flag, 98
STARTF_FORCEONFEEDBACK flag, 98, 99
STARTF_RUNFULLSCREEN flag, 98
STARTF_USECOUNTCHARS flag, 98
STARTF_USEFILLATTRIBUTE flag, 98
STARTF_USEPOSITION flag, 98
STARTF_USESHOWWINDOW flag, 97, 98
STARTF_USESIZE flag, 98
STARTF_USESTDHANDLES flag, 98
StartRestrictedProcess function, 125–128, 129, 141
StartThreadpoolIo, 354



812 STARTUPINFO structure
STARTUPINFO structure
members of, 97–98
obtaining copy of, 102
psiStartInfo pointing to, 96
zeroing contents of, 96

STARTUPINFOEX structure
members of, 97–98
passing to psiStartInfo parameter, 95
psiStartInfo pointing to, 96
role of, 99
zeroing contents of, 96

STARTUPINFOEX variable, 102
starvation, 187
starved thread, 221
starving thread

dynamically boosting priority of, 195
SwitchToThread scheduling, 178

State member, 409
static data

not shared, 465–467
sharing, 467–474

static TLS, 602
static variables

declaring, 153
in DLL, 538
with heaps in C++, 529

STATUS_ACCESS_VIOLATION exception, 525
STATUS_NO_MEMORY exception, 223, 525
STATUS_NO_MEMORY software exception, 703, 704
STATUS_PENDING, 307
__STDC_WANT_SECURE_LIB__symbol, 27
__stdcall (WINAPI) calling convention, 546
STILL_ACTIVE exit code, 107, 156, 157
STILL_ACTIVE identifier, 156
StopProcessing function, 237
storage, committing, 421, 692
strcpy function, 18, 684
string(s)

comparing, 24
compiling as Unicode string, 14
controlling elimination of duplicate, 90
kinds of, 27
translating between Unicode and ANSI, 27–29
working with, 26

string arithmetic problems, 26
string conversions, 15
string functions, 24–25
string manipulation functions, 27
string manipulations, 22–24
string pointers, 79
StringCbCopyN, 79
StringCchCopy, 22
StringCchCopyN, 79
String.h

calling functions defined in, 20
included with StrSafe.h, 19

StringReverseA function, 30
StringReverseW function, 29, 30
string-termination zero, 76
strlen function, 12, 17

_strrev C run-time function, 488
STRSAFE_E_INSUFFICIENT_BUFFER, 22, 23
STRSAFE_FILL_BEHIND_NULL, 23, 24
STRSAFE_FILL_BYTE macro, 24
STRSAFE_FILL_ON_FAILURE, 23
STRSAFE_IGNORE_NULLS, 23
STRSAFE_NO_TRUNCATION, 23, 24
STRSAFE_NULL_ON_FAILURE, 23
StrSafe.h file, 18, 19
strtok C/C++ run-time function, 685
structure, making volatile, 217
structured exception handling. See SEH (structured 

exception handling)
structured exceptions, vs. C++ exceptions, 727
_stscanf_s, 46
subclass procedure, 606, 607
subclassing, 605
SubmitThreadpoolWork function, 341
/SUBSYSTEM linker switch, 70
/SUBSYSTEM:CONSOLE, 5.0 switch, 589
/SUBSYSTEM:CONSOLE linker switch, 69, 70
/SUBSYSTEM:WINDOWS, 5.0 switch, 589
/SUBSYSTEM:WINDOWS linker switch, 69, 70
successful wait side effects, 246–247, 249
suites, available on system, 87
Sum function, 457, 458
Summation (16-Summation.exe) sample application, 

457
SumThreadFunc, 458
SuperFetch, 197
surrogates, 12, 13
Suspend button, 198
suspend count of thread, 175
suspend mode, 259
“Suspend Process” feature, 176
suspended state, 175
suspended thread, 174
SuspendProcess function, 176
SuspendThread function, 175, 185
SW_SHOWDEFAULT, 99
SW_SHOWMINNOACTIVE, 99
SW_SHOWNORMAL, 99
/SWAPRUN:CD switch, 380
/SWAPRUN:NET switch, 380
switch statements, 773, 774
SwitchDesktop function, 133
SwitchToFiber function, 363, 366
SwitchToThread function, 178
synchronizable kernel objects, 277
synchronization kernel object mutex, 226
synchronization mechanism performance, 225
synchronization primitives, 167
synchronization, single-tasking, 108
synchronous device I/O, 302–305
synchronously performed asynchronous request, 327
SysInfo.cpp listing, 398
Sysinternals

Process Explorer tool, 41–43
WinObj tool from, 33



thread(s) 813
system
creating and initializing threads, 156
making sections of code execute, 689
setting process’ exit code, 105
walking up chain of try blocks, 694

system DLLs, loaded at random address, 122
System Idle Process, 103
SYSTEM_INFO structure

dwPageSize field of, 397
members of, 396
passing to GetSystemInfo, 395

System level of trust, 122
SYSTEM_LOGICAL_PROCESSOR_INFORMATION 

structures, 214
SYSTEM_MANDATORY_LABEL_NO_READ_UP 

resource policy, 124
SYSTEM_MANDATORY_LABEL_NO_WRITE_UP 

resource policy, 124
System Properties dialog box, 195
system values, retrieving, 395
System Variables list, 81
system version, determining, 85–88
SystemParametersInfo function, 133
system’s affinity mask, 204
SYSTEMTIME structure, initializing, 258
szBuffer, 21
szCSDVersion member, 87
szDll member, 574

T
_T macro, 26
Task Manager

allowing user to alter process’ CPU affinity, 206
determining if objects leak, 40
obtaining process’ ID, 625
process ID of, 113
Processes tab, 192

TChar.h, macro defined by, 18
_tcslen, 18
_tcspy_s, 21
_tcstok_s function, 597
TEBs (thread environment blocks), 376
temporary file, 298
Terminal Services, 51–53
Terminate Processes button, in Job Lab sample, 143
TerminateJobObject function, 137
TerminateProcess function, 104, 106, 155

as asynchronous, 107
calling from WerFault.exe, 710
using only as last resort, 564

TerminateThread function, 153, 154
killing any thread, 155
threads calling, 567

terminating
processes, 107–108, 155
threads, 153–156

termination handlers, 660
reasons for using, 672

simplifying programming problems, 667
understanding by example, 660–676

test runs, WER dialog boxes breaking and stopping, 
712

test-and-set operation, performing atomically, 264
text

determining if ANSI or Unicode, 31
used by child’s console window, 97

text files
line termination, 488
no hard and fast rules as to content, 31

TEXT macro, for literal characters and strings, 26
.text section, 467, 470
text strings

as arrays of characters, 26
coding, 12

.textbss section, 470
th32ParentProcessID member, 104
thead synchronization overhead, 522
theme support, enabling, 766
ThisPeriodTotalKernelTime member, 137
ThisPeriodTotalUserTime member, 137
thrashing, 378
thread(s)

accessing data in paging file, 378
accessing data in process’ address space, 378
accessing data in RAM, 378
accessing data via single, 215
accessing memory from its process, 371
all in process dying, 107
appropriate use of, 146–149
assigning to CPUs, 148
attempting to access storage in guard page, 452
attempting to release mutex, 267
attempting to write to shared blocks, 382
calling CreateProcess, 89
calling wait function, 264
communicating with all in a pool, 330
communicating with devices, 290
components of, 145
contending for critical section, 223
creating and destroying, 328
creating and initializing, 156
creating in other processes, 621
deadlock issues when stopping, 236–238
determining number in pool, 324
ensuring mutual exclusive access, 265
executing code in processes, 67
execution times, 179–183
experiment with different numbers of, 328
forcing out of wait state, 319
forcing to specific CPU, 205
gaining access to shared resource, 266
guaranteeing to run, 174
helping partition work, 289
higher-priority preempting lower, 187
incrementing semaphore’s current count, 264
issuing asynchronous I/O request to device, 305



814 thread affinities
thread(s), continued
jumping from user-mode to kernel-mode code, 280
keeping busy, 289
managing creation and destruction of, 339
maximum number runnable at same time, 322
need to communicate with each other, 207
not allowing to waste CPU time, 215
with nothing to do, 174
notified only once of stack overflow exception, 459
notifying of task completion, 207
other processes gaining access from, 248
ownership tracked by mutexes, 267
pool, how many in, 328
priorities, 187
process kernel object, referring to, 169
relative time quantum difference in job, 131
releasing mutex, 266
requiring less overhead than processes, 146
running independently, 3
sharing kernel object handles, 145
sharing kernel objects in different processes, 43
sharing single address space, 145
solving some problems while creating new ones, 149
stack storage guaranteed for, 151
staying on single processor, 203
suspend count, 175
suspending and resuming, 175
suspending themselves, 278
switching to another, 178
synchronizing using event kernel objects, 249
synchronizing with kernel objects, 241
synchronous I/O operations, waiting to complete, 

304
terminating, 153–156
thread kernel object, referring to, 169
thread times, querying, 169
tracked by WCT, 281
transitioning from user mode to kernel mode, 222
turning into fiber, 362
wait state, putting themselves into, 242
waiting for its own messages, 278
waiting for wait item, 353
when not to create, 148
when to create, 146–148

thread affinities, 205
thread environment blocks (TEBs), 376
thread functions, 158

naming, 150
return value from, 165
returning exit code, 150
returning upon termination, 154
using function parameters and local variables, 150
writing, 149–153

thread IDs, 103
identifying threads currently owning mutex, 265
storing, 153

thread internal, 156–158
thread kernel objects, 150

creating, 91, 157

decrementing usage count of, 154
freeing, 102
grabbing current set of CPU registers, 185
never returning to nonsignaled state, 242
rules Microsoft defined for, 242
selecting schedulable, 173
signaled state, 156
system creating, 89
unique identifiers assigned to, 103
usage count decremented, 156
usage count for, 149

Thread Local Storage. See TLS (Thread Local Storage)
THREAD_MODE_BACKGROUND_BEGIN, 196
THREAD_MODE_BACKGROUND_END, 196
thread pool(s)

continuously refusing threads, 340
creating and destroying, 357
creating new, 356
customized, 356–358
destroying, 357
gracefully destroying, 358–360
how many threads in, 328
internal algorithm of, 340
I/O completion port managing, 327–328
overhead of using, 339
re-architected in Windows Vista, 339

thread pool APIs, 339
thread pooling functions, 339
thread pool I/O object, 354
thread pool wait object, 352
thread priorities, 190. See also relative thread priorities
thread priority boosting

disabling for threads executing spinlocks, 211
dynamically boosting, 194

thread stacks
address space for, 451
building, 157
maintaining, 145
setting amount of address space for, 151
system allocating memory for, 150

thread synchronization
advanced, 215–217
aspects of, 207
kernel objects and, 276–277
using device kernel object for, 311
using HeapLock and HeapUnlock, 532

THREAD_TERMINATE, 304
thread/completion port assignment, breaking, 328
threading issues, of alertable I/O, 318
ThreadObject view, 287
_threadstartex function, 162, 164
throw C++ keyword, 660
thunks, to imported functions, 622
TID parameter, 285
_tiddata block

association with new thread, 165
for each thread, 162
ExitThread preventing from being freed, 166
freeing, 168



__unaligned keyword 815
_tiddata structure
associated with thread, 164
in C++ source code in Mtdll.h file, 162–164
library function requiring, 168

time quantum, 130
time slices. See quantums
Time Stamp Counter (TSC), 181
time values, 179
time-based notification, 346
time-critical thread priority, 190, 193
timed intervals, calling functions at, 346–351
Timed Message Box Application 

(11-TimedMsgBox.exe), 348–351
TimeoutCallback function, 346
timer(s)

building one-shot, 351
grouping several together, 347
one-shot signaling itself, 259
pausing, 347
setting to go off, 259

timer APC routine, 260
timer kernel object, waitable, 346
TimerAPCRoutine function, 260, 261
TimerCallback function, 347
times, applying to all threads in process, 180
TLS_MINIMUM_AVAILABLE, 598, 599
TLS_OUT_OF_INDEXES, 599
.tls section, 470, 602
TLS (Thread Local Storage), 3, 165, 597

adding to application, 600
dynamic, 598–602
slots, 601
static, 602

TlsAlloc function, 599, 600
reserving index, 599
setting returned index for all threads, 601

TlsFree function, 600
TlsGetValue function, 166, 168, 599, 600
TlsSetValue operating system function, 165, 168, 599, 

600
_tmain function, 72, 146, 158
_tmain (Main) function, 69
_tmain (Wmain) function, 69
TOKEN_ELEVATION_TYPE enumeration, 118
TOKEN_MANDATORY_POLICY_OFF, 124
TOKEN_MANDATORY_POLICY_VALID_MASK, 124
TokenElevationType parameter, 118
TokenElevationTypeDefault value, 118
TokenElevationTypeFull value, 118
TokenElevationTypeLimited value, 118
TokenLinkedToken, 118
TokenMandatoryPolicy, 123
ToolHelp functions

added to Windows since Windows 2000, 119
allowing process to query its parent process, 104
enumerating all modules, 638
enumerating list of threads in system, 177
enumerating process’ heaps, 531

utility, using to produce, 119
ToolHelp32, 282
TotalKernelTime member, 137
TotalPageFaultCount member, 137
TotalPageFile, 407
TotalPhys, 406
TotalProcesses member, 138
TotalTerminatedProcesses member, 138
TotalUserTime member, 137
TotalVirtual, 407
TP_CALLBACK_ENVIRON structure, 358, 359
TP_TIMER object, 347
tracking resources to be freed, 670
TriggerException function, 748
Trojan DLL, injecting DLL with, 633
TRUNCATE_EXISTING value, 294
truncation, 22
trust, levels of, 122
<trustInfo> section, in RT_MANIFEST, 114
try block

avoiding code causing premature exits from, 662
avoiding statements causing premature exit of, 666
compiler not having to catch premature exits from, 

666
followed by either finally block or except block, 679
returning prematurely from, 666
statements discouraged in, 680

__try keyword, 660
_try/_except construct, 637
TryEnterCriticalSection function, 221
try-except blocks

coding examples, 680
exception filter of, 749

try-finally blocks
explicitly protecting, 664
nesting inside try-except blocks, 679

TrySubmitThreadpoolCallback, 340
_tWinMain function, 69, 146, 158

with _UNICODE defined, 71
entry-point function for sample applications, 766
without _UNICODE, 72

two-file two-buffer method, 476
Type member, 409

U
UAC. See User Account Control feature
uCodePage parameter

of MultiByteToWideChar function, 27
of WideCharToMultiByte function, 28

uFlags parameter, 313
UI restriction, 134
UIPI (User Interface Privilege Isolation), 124
UIRestrictionsClass member, 133
ULARGE_INTEGER structure, 299, 300
ulCount parameter, 326
ullAvailExtendedVirtual member, 405
ulRAMPages parameter, 442
__unaligned keyword, 393



816 UNALIGNED macro
UNALIGNED macro, 393
unaligned references, handling silently, 258
UNALIGNED64 macro, 393
unallocated address space, 375
unelevated process, 113
unhandled exception, 705

occurring in excluded application, 737
occurring in kernel, 713

unhandled exception dialog box, turning off, 132
unhandled exception filter, 705
unhandled exception reports

comparing with database of known failures, 733
saved on user’s machine, 733

UnhandledExceptionFilter function, 705, 707
as default filter, 706
EXCEPTION_CONTINUE_SEARCH returned by, 

710
execution steps inside, 707–713
retrieving output of, 750
WER interactions and, 710–713

UnhookWindowsHookEx function, 610
Unicode

builds, enforcing consistency with, 762
character sets and alphabets, 13
consortium, 12
converting to non-Unicode equivalents, 16
full description of, 12
reasons for using, 26
standard, 12
supported in Windows Vista, 11

UNICODE and _UNICODE symbols
defined in CmnHdr.h, 762
specifying both, 27

Unicode character and string, declaring, 14
Unicode code points, 13
Unicode functions

in C run-time library, 17
in Windows, 15–17

Unicode strings
always using, 11
converting to ANSI, 15
separating into separate tokens, 76

UNICODE symbol, 16, 27, 762
_UNICODE symbol, 18, 27, 762
Unicode Transformation Format. See UTF
Unicode versions

of entry point functions, 150
of functions, 17, 22

unique identifier, assigned to objects, 103
unique systemwide ID, 170
UNIX

porting code to Windows, 361
threading architecture library of, 361

unmapping, from process’ address space, 485–486
UnmapViewOfFile function, 485, 486
unnamed (anonymous) kernel object, 48
unnamed kernel objects, 53
unpageable memory, 423

UNREFERENCED_PARAMETER macro, 76
UnregisterApplicationRestart function, 755
unresolved external symbol error, 70
unsuccessful calls, object states never altered for, 246
Update Speed, changing to Paused, 42
UpdateProcThreadAttribute function, 101
upper bound, for number of threads, 321
usage count

incrementing kernel object’s, 45
of kernel objects, 35
of semaphore object, 263

user(s)
changing priority class of process, 192
choosing to optimize performance for programs, 195
running Run As Administrator command, 111
starting applications, 99

User Account Control (UAC) feature, 110
forcing applications to run in restricted context, 37
security confirmation dialog boxes, 111
taking advantage of, 110
usurping WinSafer, 558

User CPU Limit, 144
user data, sensitive, 739
user interface components. See window (objects)
User Interface Privilege Isolation (UIPI), 124
user interface thread, 149
user mode time, 131
User object handles, 155
User objects

differentiating from kernel objects, 37
owned by thread, 155
preventing processes in job from using, 133

user rights, granting, 423
user strings, 27
user time, 179
User timers, 262
User32.dll library, 537, 608
UserHandleGrantAccess function, 134
user-interface-related events, 262
user-mode code, fibers implemented in, 361
user-mode context, as stable, 185
user-mode CPU time, used by job processes, 137
user-mode partition, 373–375
user-mode thread synchronization, limitations of, 241
USERPROFILE environment variable, 82
UTF (Unicode Transformation Format), 12, 13
utility applications, using IDs, 103
Utimers, 262

V
variables

avoiding exporting, 542
creating to manage thread pool, 328
in default data section, 470
in multithreaded environments, 160
sharing, 467, 471, 472
storing handles for kernel objects, 40
in their own section, 471



Wait functions 817
VcppException (ERROR_SEVERITY_ERROR, 
ERROR_MOD_NOT_FOUND), 574

VcppException (ERROR_SEVERITY_ERROR, 
ERROR_PROC_NOT_FOUND), 574

VDM (Virtual DOS Machine), 94
vectored exception handling (VEH), 726
VEH exception handler function, 727
VEH list, calling functions before any SEH filter, 726
VER_BUILDNUMBER flag, 87
VER_MAJORVERSION flag, 87
VER_MINORVERSION flag, 87
VER_PLATFORM_WIN32_NT, 87
VER_PLATFORM_WIN32_WINDOWS, 87
VER_PLATFORM_WIN32s, 87
VER_PLATFORMID flag, 87
VER_PRODUCT_TYPE information, comparing, 88
VER_SERVICEPACKMAJOR flag, 87
VER_SERVICEPACKMINOR flag, 87
VER_SET_CONDITION macro, 87
VER_SUITENAME flag, 87, 88
VerifyVersionInfo function, 86–88
Version.txt file, 736
very large memory (VLM) portion, 405
view

mapping for large file, 494
mapping into address space, 483

View Problem History link, 734, 741
virtual address, translating to physical storage address, 

379
virtual address space, 372

bytes reserved in, 407
creating for process, 146
partitions of, 372–375
for process, 371

Virtual DOS Machine (VDM), 94
virtual memory, 419

address for DLL’s g_x variable, 587
functions, using instead of heaps, 519
loading code and data for application into, 465
making available, 377
retrieving dynamic information about state of, 404

virtual memory allocation sample application. See 
VMAlloc.cpp listing

virtual memory map, 383–387
Virtual Memory section, Change button, 380
virtual memory techniques

advantages of, 424
combining with structured exception handling, 692
committing physical storage, 425

VirtualAlloc function, 375, 376, 378, 419, 422
to commit physical storage, 421, 437, 505
passing PAGE_WRITECOPY or 

PAGE_EXECUTE_WRITECOPY, 382
to reserve region, 428
rounding up when resetting storage, 436
using to allocate large blocks, 526

VirtualAllocEx function, 623
VirtualAllocExNuma function, 421

VirtualFree function, 376, 377, 426
decommitting storage, 427, 505

VirtualFreeEx function, 624
VirtualMemoryStatus function. See 

GlobalMemoryStatus function
VirtualProtect function, 435
VirtualQuery function, 408, 429

determining if physical storage has been committed, 
425

filling MEMORY_BASIC_INFORMATION structure, 
631

limitations of, 410
VirtualQueryEx function, 409
Visual Studio

creating application project, 69
debugger, 729
defining UNICODE by default, 16
Error Lookup utility, 6
linker, default base address, 74
shipping with C/C++ run-time libraries, 159
wizards, 72

Visual Studio IDE, 148
Visual Studio Project Properties dialog box, 589
VLM portion, of virtual address space, 405
VMAlloc.cpp listing, 427–429
VMMap application (14-VMMap.exe), 415–417

memory map of, 383
performing tests, 429
running, 119
using SEH to commit storage, 692

VMMap menu item, in ProcessInfo, 119
VMQuery function, 410–412, 416
VMQUERY structure, 410
VMQuery.cpp file, 411–412
VMStat application (14-VMStat.exe), 406–408
VOID return type, 3
volatile type qualifier, 216
vsjitdebugger.exe, 714, 715
_vstprintf_s function, 238

W
WAIT_ABANDONED_0 value, of WaitResult, 353
WAIT_ABANDONED, returned by wait function, 267
wait chain

defined, 282
node object types, 286
session, opening, 283
traversal of, 282

Wait Chain Traversal (WCT)
cancelling, 284
ParseThread method and, 284
set of functions, 281
synchronization mechanisms tracked by, 281

WAIT_FAILED return value, 244
wait function, 266

checking semaphore’s current resource count, 264
returning special value of WAIT_ABANDONED, 267

Wait functions, 243



818 WAIT_IO_COMPLETION return value
WAIT_IO_COMPLETION return value, 318
wait item, 353
WAIT_OBJECT_0 value, 244, 353
wait state

forcing thread out of, 319
LeaveCriticalSection never placing thread in, 222
never allowing calling thread to enter, 221
placing thread in, 215, 221
threads placing themselves into, 243

WAIT_TIMEOUT value, 244, 353
waitable timer objects, creating, 257
waitable timers, 256

comparing with User timers, 262
creating, 256, 346
queuing APC entries, 260–261

WAITCHAIN_NODE_INFO structure
defined in wct.h header file, 286
filling array of, 285
WCT filling up, 287

WaitForDebugEvent function, 176, 279
WaitForInputIdle function, 278
WaitForMultipleObjects function, 244, 311, 313

calling with array, 237
not supported, 287
performing operations atomically, 246
Remove method calling, 270
return value of, 245
successful call altering state of object, 246
using one thread per 64 kernel objects, 352
working atomically, 247

WaitForMultipleObjectsEx function, 317
WaitForSingleObject function, 107, 109, 140, 155, 243, 

244, 253, 311, 312, 458, 568
not calling inside any DLL’s DllMain function, 570
return value of, 244
successful call altering state of object, 246
threads calling, 250

WaitForSingleObjectEx function
placing thread in alertable state, 317
suspending thread, 319
waiting on timer twice, 261

WaitForThreadpoolIoCallbacks function, 355
WaitForThreadpoolTimerCallbacks function, 347, 351
WaitForThreadpoolWaitCallbacks function, 353
WaitForThreadpoolWork function, 353
WaitForThreadpoolWorkCallbacks function, 341
waiting thread queue, 325
WaitResult parameter, 352
WaitResult values, possible, 353
WakeAllConditionVariable function, 227, 234, 237
WakeConditionVariable function, 227

with &g_cvReadyToProduce, 236
call to, 234

__wargv variable, 73, 76
warning level 4, sample applications using, 762
Watch window, 5
wchart_t data type, 13
wcslen function, 17

wcspy function, 18
WCT. See Wait Chain Traversal (WCT)
WCT_ASYNC_OPEN_FLAG value, 284
WCT_OBJECT_STATUS enumeration, 287
WCT_OBJECT_TYPE enumeration, 286
WCT_OUT_OF_PROC_COM_FLAG, 285
WCT_OUT_OF_PROC_CS_FLAG, 285
WCT_OUT_OF_PROC_FLAG, 285
WctAlpcType node object type, 286
WctComActivationType node object type, 286
WctComType node object type, 286
WctCriticalSelectionType node object type, 286
WctMutexType node object type, 286
WCTP_GETINFO_ALL_FLAGS, 285
WctProcessWaitType node object type, 286
WctSendMessageType node object type, 286
WctThreadType node object type, 286
WctThreadWaitType node object type, 286
WctUnknownType node object type, 286
Web browsers, communicating in background, 148
_wenviron global variable, 73
WER API, 733
WER code, running inside faulting process, 664
WER console, 733–736

listing problems, 712
opening, 710, 712
problem report displayed in, 735
showing each application crash, 734
View Problem History link, 741

WER_DUMP_NOHEAP_ONQUEUE flag, 745
WER_E_NOT_FOUND, 737
WER_FAULT_REPORTING_FLAG_QUEUE_UPLOAD 

flag, 737
WER_FAULT_REPORTING_FLAG_QUEUE flag, 737
WER_MAX_REGISTERED_ENTRIES, 739
WER problem report, manually generating, 751
WER_REPORT_INFORMATION structure, 743
WER_SUBMIT_OUTOFPROCESS_ASYNC flag, 747
WER_SUBMIT_RESULT variable, 747
WER (Windows Error Reporting), 710–713

creating, customizing, and submitting problem 
report to, 740

default parameters for noncustomized report, 744
details of files generated by, 736
generating problem reports silently, 712
notifying to not restart application, 755
restarting applications automatically, 754
shifting control to, 454
telling not to suspend other threads, 736

Wer* functions, accepting only Unicode strings, 742
WerAddExcludedApplication function, 737
WerConsentApproved value, 746
WerConsentDenied value, 746
WerConsentNotAsked value, 746
WerFault.exe application, 710, 713
WerGetFlags function, 737
WerRegisterFile function, 738, 739
WerRegisterMemoryBlock function, 738



WM_COMMAND message 819
WerRemoveExcludedApplication function, 738
WerReport* functions, 751
WerReportAddDump function, 740, 744
WerReportAddFile function, 740, 745
WerReportCloseHandle function, 740, 748
WerReportCreate function, 740, 742
WerReportSetParameter function, 740, 743
WerReportSetUIOption function, 740, 746
WerReportSubmit function, 740, 746–747
WerSetFlags function, 736
WerSvc, exception set to, 710
WerUnregisterFile function, 739
WerUnregisterMemoryBlock function, 739
WH_GETMESSAGE hook

installing, 609
unhooking, 613

while loop, spinning, 211
wide characters, 16, 622
wide-character string, converting, 28
WideCharToMultiByte function, 27, 28, 29
Win32 Console Application, 70
Win32 Exceptions, 729
_WIN32_WINNT symbol, 761
WinDbg, 121
window (objects)

owned by thread, 155
sharing same thread, 149
subclassing, 605

window procedures, writing with message crackers, 
773

window title, for console window, 97
WindowDump utility, 124
Windows operating system

data types, 15
designed to work with extremely large files, 299
devices supported by, 290
features available only to DLLs, 538
internal data structures for managing TLS, 598
memory architecture, 371–393
as preemptive multithreading system, 152
scheduling concurrent threads, 68
string functions, 24–25
Unicode and ANSI functions in, 15–17

Windows 32-bit On Windows 64-bit, 397
Windows 98, 94
Windows API

backward compatibility with 16-bit Windows, 17
exposing abstract layer over system’s scheduler, 188

Windows application programming interface (API), 
537

Windows applications. See applications
Windows Error Reporting. See WER (Windows Error 

Reporting)
Windows Explorer

process associated to dedicated job, 128
separate thread for each folder’s window, 149

Windows functions. See functions
Windows header file (WinNT.h), 15

CONTEXT structure, 157
defining data types, 14

Windows heap functions, 703
Windows hooks. See hooks
Windows Indexing Services, 146
Windows Integrity Mechanism, 122
Windows Management Instrumentation (WMI), 

programmatic configuration of BCD, 206
Windows Notepad application. See Notepad
Windows problems, getting in WER console, 713
Windows Quality Online Services Web site, 733
Windows Reliability and Performance Monitor, 392
Windows system directory

never touching, 585
placing DLLs in, 608

Windows Task Manager. See Task Manager
Windows Vista

cancelling pending synchronous I/O, 304
CPU time charged for thread, 181
dialog boxes when exception is passed, 709
dialog box for unhandled exception, 674
error reporting in separate process, 664
extended mechanisms available in, 174
functions with both Unicode and ANSI versions, 17
I/O requests, expecting large number of, 326
mapping of priority classes and relative thread 

priorities, 190
Notepad File Save As dialog box, 31
raising security bar for end user, 110
soft affinity assigning threads to processors, 203
source code for CreateWindowExA, 16
starting applications in new session, 52
synchronous I/O, features added to improve, 304
testing whether host system is, 88
thread pool re-architected, 339
threads issuing requests and terminating, 330
unhandled exception, major rearchitecture of, 675
UNICODE macro, if application doesn’t define, 17

Windows XP
exception passed to UnhandledExceptionFilter, 709
message for unhandled exception, 674

WindowsX.h file, 775
WinError.h header file, 4, 5
WinExec function, replacing with CreateProcess, 17
WinMain function

changing main to, 70
pszCmdLine parameter, 76

WinMainCRTStartup function, 69, 70
_winmajor global variable, 73
_winminor global variable, 73
WinNT.h header file. See Windows header file 

(WinNT.h)
WinObj tool, 33
WinSafer, 558
Wintellect Applications Suite product section, 741
_winver global variable, 73
WINVER symbol, 761
WM_COMMAND message

macro for, 775
processing, 774
wParam containing two different values, 774



820 WM_INITDIALOG message-handling code
WM_INITDIALOG message-handling code, 118
WM_SETTINGCHANGE message, 81
WM_TIMER messages, 262
wmainCRTStartup function, 69, 70
word processor applications, background operations, 

148
work item(s)

adding to thread pool’s queue, 340
creating, 341
explicitly controlling, 340–342
freeing, 342
functions implementing batch processing, 342
refusing to execute multiple actions, 341

worker threads, compute-bound or I/O-bound, 149
working set, 407

knowing process’, 408
minimizing, 408
of process, 131

WorkingSetSize field, 408
WOW64, 397
wParam parameter, for messages, 774
_wpgmptr global variable, 73
wProcessorArchitecture member, 396
wProcessorLevel member, 396
wProcessorRevision member, 396
wProductType member, 87
wReserved member

of OSVERSIONINFOEX structure, 87
of SYSTEM_INFO, 396

writable buffer, passing as parameter, 19
writable pages, 382
write access, 708
WRITE attribute, 468
Write method, of CIOReq, 333
WriteFile function, 302, 306
WriteFileEx function, 315

WriteProcessMemory function, 624
writers, distinguishing from readers, 224
wServicePackMajor member, 87
wServicePackMinor member, 87
wShowWindow member, 99
wShowWindow value, 97
wSuiteMask member, 87
(w)WinMain function, writing, 75
wWinMainCRTStartup function, 69, 70

X
x64 system, 4-KB page size, 376
x86 compiler, 393
x86 CPUs. See also CPU(s)

dealing with unaligned data references silently, 258
handling data alignment, 391
interlocked functions asserting hardware signal, 210
page size of, 387
performing, 392

x86 system, 4-KB page size, 376
x86 Windows, larger user-mode partition in, 373–374
_XcpFilter function, 708
.xdata section, 470
XML manifest, 114

Y
YieldProcessor macro, 178

Z
/Zc:wchar_t compiler switch, 13
zero page thread, 188, 190
ZeroMemory, 437
zero-terminated string

passing address of, 48
passing address of in pszName, 50

/ZI switch, 90



Jeffrey Richter
Jeffrey Richter is a co-founder of Wintellect (http://www.Wintellect.com/), a training, debug-
ging, and consulting company dedicated to helping companies produce better software faster. 
Jeff has written many books, including CLR via C# (Microsoft Press, 2005). Jeff is also a con-
tributing editor for MSDN Magazine, where he has written several feature articles and is a col-
umnist. Jeff also speaks at various trade conferences worldwide, including VSLive!, and 
Microsoft’s TechEd and PDC. Jeff has consulted for many companies, including AT&T, 
DreamWorks, General Electric, Hewlett-Packard, IBM, and Intel. For Microsoft, Jeff’s code has 
shipped in many products including TerraServer, Visual Studio, the .NET Framework, Office, 
and various versions of Windows. On the personal front, Jeff holds both airplane and helicop-
ter pilot licenses, though he never gets to fly as often as he’d like. He is also a member of the 
International Brotherhood of Magicians and enjoys showing friends sleight-of-hand card 
tricks from time to time. Jeff’s other hobbies include music, drumming, model railroading, 
boating, traveling, and the theater. He and his family live in Kirkland, Washington.

Christophe Nasarre
Christophe Nasarre works as a software architect and development lead for Business Objects, 
a multinational software company that is focused on helping organizations gain better insight 
into their business, improving decision-making and enterprise performance through business 
intelligence solutions. He has worked as a technical editor on numerous Addison-Wesley, 


	Cover
	Table of Contents
	Chapter 2
	Chapter 10
	Index



