Windows
PowerShell 3.0

Ed Wilson

V/IN\N
AEmR

WL
XL . 3 g &
|. online book+ practice filesgi

Wi n d OWS POWe rS h e | | 3 . O ?db\‘l)vtit::?s::l::i‘:: consultant at Microsoft

and a well-known scripting expert who delivers
popular workshops. He's written several books
on Windows scripting, including Windows
PowerShell Scripting Guide and Windows
PowerShell 2.0 Best Practices.

Your hands-on, step-by-step guide to automating
Windows® administration with Windows
PowerShell 3.0

Teach yourself the fundamentals of Windows PowerShell 3.0 command
line interface and scripting language—one step at a time. Ideal for those
with fundamental programming skills, this tutorial provides practical,
learn-by-doing exercises to help you automate maintenance and
administrative tasks.

Discover how to:
* Manage local and remote systems using built-in cmdlets
e Write scripts to handle recurring operations

e Concurrently accomplish multiple tasks S A o Gy e

» Connect to a remote system and run commands

« Reuse code and simplify script creation Start Here! Start|
« Beginner-level instruction Here!

* Manage users, groups, and computers with Active Directory® « Easy-to-follow explanations and examples

e Track down and fix script errors with the Windows PowerShell debugger « Exercises to build your first projects

 Execute scripts to administer and troubleshoot Microsoft
Exchange Server 2010
Step by Step
« For experienced developers learning a
new topic

\-;?{s on fundamental techniques and tools B

« Hands-on tutorial with practice files plus
eBook

< A
r Step by Step digital content includes:
\

- Downloadable practice files
See http ///go.microsoft.com/F WLink/7Linkid =275531

uI y searchable ebook: See the instruction page at th\e ba
he book \ »

< o

Developer Reference

- Professional developers; intermediate to
advanced

« Expertly covers essential topics and
techniques

- Features extensive, adaptable code examples

Focused Topics

« For programmers who develop
complex or advanced solutions

« Specialized topics; narrow focus; deep
coverage

« Features extensive, adaptable code examples

microsoft.com/mspress
ISBN: 978-0-7356-6339-8

0000 US.A. $54.99
Canada $57.99
[Recommended]
Programming/Windows PowerShell M’cmso#m

o Microsoft

Windows PowerShell™
3.0 Step by Step

Ed Wilson

Copyright © 2013 by Ed Wilson
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-735-66339-8
2345678910 LSI 876543
Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor

its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly or
indirectly by this book.

Acquisitions and Developmental Editor: Michael Bolinger
Production Editor: Kristen Borg

Editorial Production: Zyg Group, LLC

Technical Reviewer: Thomas Lee

Copyeditor: Zyg Group, LLC

Indexer: Zyg Group, LLC

Cover Design: Twist Creative « Seattle

Cover Composition: Zyg Group, LLC

Illustrators: Rebecca Demarest and Robert Romano

[2013-04-19]

To Teresa, who makes each day seem fresh with opportunity
and new with excitement.

Contents at a Glance

Foreword

Introduction

CHAPTER 1 Overview of Windows PowerShell 3.0
CHAPTER 2 Using Windows PowerShell Cmdlets
CHAPTER 3 Understanding and Using PowerShell Providers
CHAPTER 4 Using PowerShell Remoting and Jobs
CHAPTER 5 Using PowerShell Scripts

CHAPTER 6 Working with Functions

CHAPTER 7 Creating Advanced Functions and Modules
CHAPTER 8 Using the Windows PowerShell ISE
CHAPTER 9 Working with Windows PowerShell Profiles
CHAPTER10 Using WMI

CHAPTER11 Querying WMI

CHAPTER 12 Remoting WMI

CHAPTER13 Calling WMI Methods on WMI Classes
CHAPTER 14 Using the CIM Cmdlets

CHAPTER15 Working with Active Directory

CHAPTER16 Working with the AD DS Module

CHAPTER 17 Deploying Active Directory with Windows Server 2012
CHAPTER18 Debugging Scripts

CHAPTER 19 Handling Errors

CHAPTER20 Managing Exchange Server

APPENDIXA Windows PowerShell Core Cmdlets
APPENDIXB ~ Windows PowerShell Module Coverage
APPENDIXC Windows PowerShell Cmdlet Naming
APPENDIX D Windows PowerShell FAQ

APPENDIXE Useful WMI Classes

APPENDIX F Basic Troubleshooting Tips

APPENDIXG General PowerShell Scripting Guidelines

Index

Xix

XXI

23

65
107
131
171
209
251
267
283
307
337
355
367
383
419
447
461
501
539
571
579
583
587
597
621
625

633

Contents

Foreword.

INtroduction

Chapter 1 Overview of Windows PowerShell 3.0

Understanding Windows PowerShell
Usingemdlets. ...
Installing Windows PowerShell,
Deploying Windows PowerShell to down-level
operating SYStemMS

Using command-line utilities i

Security issues with Windows PowerShell
Controlling execution of PowerShell cmdlets..................
Confirming actions.o

Suspending confirmationof cmdlets

Working with Windows PowerShell................
Accessing Windows PowerShell.

Configuring the Windows PowerShell console.
Supplying options foremdlets
Working with the help options. o i L,
Exploring commands: step-by-step exercises

Chapter 1 quickreference........... ..o

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

vii

viii

Contents

Chapter 2

Chapter 3

Using Windows PowerShell Cmdlets 23
Understanding the basicsof cmdlets, 23
Using the Get-Childltem cmdlet. i 24
Obtaining a directory listing 24
Formatting a directory listing using the Format-List cmdlet 26
Using the Format-Wide cmdlet 27
Formatting a directory listing using Format-Table. 29
Formatting output with Out-GridView 31
Leveraging the power of Get-Command 36
Searching for cmdlets using wildcard characters 36
Using the Get-Membercmdlet. i i i, 44
Using the Get-Member cmdlet to examine properties
and methods. 44
Using the New-Objectcmdlet. 50
Creating and Using the wshShell Object 50
Using the Show-Command cmdlet oo ... 52
Windows PowerShell cmdlet naming helpsyoulearn................. 54
Windows PowerShell verb grouping 54
Windows PowerShell verb distribution 55
Creating a Windows PowerShell profile 57
Finding all aliases for a particular object....................... 59
Working with cmdlets: step-by-step exercises 59
Chapter 2 quick reference.o i i 63
Understanding and Using PowerShell Providers 65
Understanding PowerShell providers 65
Understanding the alias provider................... 66
Understanding the certificate provider........................ 68
Understanding the environment provider 76
Understanding the filesystem provider........................ 80
Understanding the function provider 85

Chapter 4

Chapter 5

Using the registry provider to manage the Windows registry 87

The two registry drives 87
Understanding the variable provider 97
Exploring PowerShell providers: step-by-step exercises 101
Chapter 3 quick reference....... ... 106
Using PowerShell Remoting and Jobs 107
Understanding Windows PowerShell remoting 107

Classicremoting. ... 107

WINRM 112
Using Windows PowerShell jobs oo .. 119
Using Windows PowerShell remoting: step-by-step exercises......... 127
Chapter 4 quick reference. 130
Using PowerShell Scripts 131
Why write Windows PowerShell scripts?............ 131
Scripting fundamentals 133

Running Windows PowerShell scripts. 133

Enabling Windows PowerShell scripting support. 134

Transitioning from command line to script.................... 136

Running Windows PowerShell scripts. 138

Understanding variables and constants. 141

Useof constants. ... 146
Using the While statement i 147

Constructing the While statement in PowerShell............... 148

A practical example of using the While statement.............. 150

Using special features of Windows PowerShell................. 150
Using the Do..While statement i .. 151

Using the range operator. ... 152

Operating Over an arrayoooeeeieiieinennnnnnnnnn. 152

Castingto ASCllvalues i 152

Contents

ix

X

Contents

Chapter 6

Using the Do...Until statement 153
Comparing the PowerShell Do...Until statement with VBScript...154

Using the Windows PowerShell Do statement................. 154
The Forstatement. ... i 156
Using the For statement i i 156
Using the Foreach statement......... 158
Exiting the Foreach statementearly.......................... 159
The lf statement 161
Using assignment and comparison operators 163
Evaluating multiple conditions 164
The Switch statement. 164
Using the Switch statement i 165
Controlling matching behavior 167
Creating multiple folders: step-by-step exercises.................... 168
Chapter 5 quick reference.o 170
Working with Functions 171
Understanding functions. 171
Using functions to provide ease of codereuse...................... 178
Including functions in the Windows PowerShell environment......... 180
Using dot-SOUrCingttt 180
Using dot-sourced functions il 182
Adding help for functions............ ... o 184
Using a here-string objectforhelp........................... 184
Using two input parameters. 186
Using a type constraintin a function......................... 190
Using more than two input parameters............................ 192
Use of functions to encapsulate business logic...................... 194
Use of functions to provide ease of modification.................... 196
Understanding filters 201
Creating a function: step-by-step exercises. 205
Chapter 6 quick reference. 208

Chapter 7 Creating Advanced Functions and Modules

The [cmdletbinding] attribute
Easy verbose messages.
Automatic parameterchecks.........
Adding support for the -whatif parameter.............
Adding support for the -confirm parameter............

Specifying the default parameterset..................

The parameter attribute.
The mandatory parameter property...................
The position parameter property
The ParameterSetName parameter property...........
The ValueFromPipeline property......................
The HelpMessage property,

Understanding modules
Locating and loading modules.

Listing available modules

Loadingmodules.........

Installing modules.
Creating a per-user Modules folder...................
Working with the $modulePath variable
Creatingamoduledrive.............................
Checking for module dependencies...................

Using a module fromashare.........................
Creatingamodule i
Creating an advanced function: step-by-step exercises

Chapter 7 quick reference. i

Chapter 8 Using the Windows PowerShell ISE

Running the Windows PowerShell ISE.......................
Navigating the Windows PowerShell ISE.
Working with the script pane...................... ...

Tab expansion and IntelliSense

Contents

xi

xii

Contents

Working with Windows PowerShell ISE snippets 257

Using Windows PowerShell ISE snippets to create code. 257
Creating new Windows PowerShell ISE snippets 259
Removing user-defined Windows PowerShell ISE snippets 261
Using the Commands add-on: step-by-step exercises. 262
Chapter 8 quick reference....... ... 265
Chapter 9 Working with Windows PowerShell Profiles 267
Six Different PowerShell profiles 267
Understanding the six different Windows PowerShell profiles . . .268
Examining the $profile variable................ 268
Determining whether a specific profile exists.................. 270
Creatinganew profile. o 270
Design considerations for profiles............ L. 271
Using one or more profiles. 273

Using the All Users, All Hosts profile 275
Usingyourownfile i 276
Grouping similar functionality intoamodule 277
Where to store the profilemodule........................... 278
Creating a profile: step-by-step exercises. 278
Chapter 9 quick reference. 282
Chapter 10 Using WMI 283
Understanding the WMImodel 284
Working with objects and namespaces 284
Listing WMI providers 289
Working with WMI classes. 289
Querying WML ..o 293
Obtaining service information: step-by-step exercises 298
Chapter 10 quick reference. ... i 305

Chapter 11 Querying WMI

Alternate ways to connect to WMI ...l

Selective data from all instances.......................

Chapter 12 Remoting WMI

Using WMI against remote systems
Supplying alternate credentials for the remote connection
Using Windows PowerShell remoting torun WML.

Using CIM classes to query WMl classes

Working with remoteresults.

Reducing data via Windows PowerShell parameters

Running WMl jobs o

Using Windows PowerShell remoting and WMI:

Step-by-step exercises

Chapter 12 quick reference L.

Chapter 13 Calling WMI Methods on WMI Classes

Using WMI cmdlets to execute instance methods
Using the terminate method directly
Using the Invoke-WmiMethod cmdlet

Using the [wmi] type accelerator
Using WMI to work with static methods.
Executing instance methods: step-by-step exercises...........

Chapter 13 quick reference i

Contents

xiii

Chapter 14 Using the CIM Cmdlets 367

Using the CIM cmdlets to explore WMl classes. 367
Using the -classname parameter........... 367
Finding WMl class methods. 368
Filtering classes by qualifier............, 369

Retrieving WMLl instances 371
Reducing returned properties and instances 372
Cleaning up output from the command 373

Working with associations. 373

Retrieving WMI instances: step-by-step exercises 379

Chapter 14 quick reference o 382

Chapter 15 Working with Active Directory 383

Creating objects in Active Directory i 383
Creatingan OU. i e 383
ADSI providers 385
LDAP names 387

Creating USers . ..ot 393
What is user accountcontrol? 396
Working with users ... 397

Creating multiple organizational units: step-by-step exercises 412

Chapter 15 quick reference. ... i 418

Chapter 16 Working with the AD DS Module 419

Understanding the Active Directory module........................ 419
Installing the Active Directory module 419
Getting started with the Active Directory module 421

Using the Active Directory module.........., 421
Finding the FSMO role holders, 422
Discovering Active Directory oo i 428
Renaming Active Directory sites. ..., 431
Managing USerst 432
Creating @ USert 435
Finding and unlocking Active Directory user accounts. 436

xiv Contents

Finding disabled users.l

Finding unused user accounts.........................
Updating Active Directory objects: step-by-step exercises.

Chapter 16 quick reference.......... ... i,

Chapter 17 Deploying Active Directory with
Windows Server 2012

Using the Active Directory module to deploy a new forest

Adding a new domain controller to an existing domain........
Adding a read-only domain controller.......................
Domain controller prerequisites: step-by-step exercises.

Chapter 17 quick reference.......... ..o ..

Chapter 18 Debugging Scripts

Understanding debugging in Windows PowerShell............
Understanding three different types of errors...........

Using the Set-PSDebug cmdlet
Tracing thescript
Stepping through the script...........................

Enabling strictmode
Using Set-PSDebug -Strict. i ..
Using the Set-StrictMode cmdlet.

Debugging the script. ...
Setting breakpoints............. o
Setting a breakpoint on a line number
Setting a breakpointonavariable
Setting a breakpointonacommand...................
Responding to breakpoints
Listing breakpoints.
Enabling and disabling breakpoints....................
Deleting breakpoints........

Debugging a function: step-by-step exercises

Chapter 18 quick reference...........ol

Contents

Xv

xvi

Contents

Chapter 19 Handling Errors 501

Handling missing parameters.cooiiiiiiiii ... 501
Creating a default value for a parameter...................... 502
Making the parameter mandatory 503

Limiting choices. 504
Using PromptForChoice to limit selections 504
Using Test-Connection to identify computer connectivity 506

Using the -contains operator to examine contents of an array . . .507

Using the -contains operator to test for properties............. 509
Handling missing rights 512
Attemptandfail...... 512
Checking for rights and exiting gracefully. 513
Handling missing WMI providers. 513
Incorrect data types 523
Out-of-bounds errors. 526
Using a boundary-checking function......................... 526
Placing limits on the parameter. 528

Using Try...Catch..Finally 529
Catching multiple errors. ... 532
Using PromptForChoice to limit selections: Step-by-step exercises. 534
Chapter 19 quick reference 537
Chapter 20 Managing Exchange Server 539
Exploring the Exchange 2010 cmdlets ..., 539
Working with remote Exchange servers............. 540
Configuring recipient settings ... i 544
Creating the user and the mailbox 544
Reporting user settings. ... 548
Managing storage settings 550
Examining the mailbox database 550
Managing the mailbox database............................. 551

Managing Exchange logging ... 553

Managing auditingo 557
Parsing the audit XMLfile....... 562
Creating user accounts: step-by-step exercises. 565
Chapter 20 quick reference......... ..o i 570
Appendix A Windows PowerShell Core Cmdlets 571
Appendix B Windows PowerShell Module Coverage 579
Appendix C Windows PowerShell Cmdlet Naming 583
Appendix D Windows PowerShell FAQ 587
Appendix E Useful WMI Classes 597
Appendix F Basic Troubleshooting Tips 621
Appendix G General PowerShell Scripting Guidelines 625
Index 633
About the Author 667

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Contents xvii

Foreword

| ‘'ve always known that automation was a critical IT Pro skill. Automation dramatically
increases both productivity and quality of IT operations; it is a transformational skill
that improves both the companies and the careers of the individuals that master it.
Improving IT Pro automation was my top priority when | joined Microsoft in 1999 as the
Architect for management products and technologies. That led to inventing Windows
PowerShell and the long hard road to making it a centerpiece of the Microsoft manage-
ment story. Along the way, the industry made some dramatic shifts. These shifts make it
even more critical for IT Pros to become experts of automation.

During the development of PowerShell V1, the team developed a very strong partner-
ship with Exchange. We thought Exchange would drive industry adoption of PowerShell.
You can imagine our surprise (and delight) when we discovered that the most active
PowerShell V1 community was VMWare customers. | reached out to the VMWare team
to find out why it was so successful with their customers. They explained to me that their
customers were IT Pros that were barely keeping up with the servers they had. When
they adopted virtualization, they suddenly had 5-10 times the number of servers so it was
either "automate or drown.” Their hair was on fire and PowerShell was a bucket of water.

The move to the cloud is another shift that increases the importance of automa-
tion. The entire DevOps movement is all about making change safe through changes
in culture and automation. When you run cloud scale applications, you can't afford to
have it all depend upon a smart guy with a cup of coffee and a mouse—you need to au-
tomate operations with scripts and workflows. When you read the failure reports of the
biggest cloud outages, you see that the root cause is often manual configuration. When
you have automation and an error occurs, you review the scripts and modify them to
it doesn't happen again. With automation, Nietzsche was right: that which does not kill
you strengthens you. It is no surprise that Azure has supported PowerShell for some
time, but | was delighted to see that Amazon just released 587 cmdlets to manage AWS.

Learning automation with PowerShell is a critical IT Pro skill and there are few
people better qualified to help you do that than Ed Wilson. Ed Wilson is the husband of
The Scripting Wife and the man behind the wildly popular blog The Scripting Guy. It is
no exaggeration to say that Ed and his wife Teresa are two of the most active people in
the PowerShell community. Ed is known for his practical "how to” approach to Pow-
erShell. Having worked with so many customers and people learning PowerShell, Ed
knows what questions you are going to have even before you have them and has taken
the time to lay it all out for you in his new book: Windows PowerShell 3.0 Step by Step.

—Jeffrey Snover, Distinguished Engineer and Lead Architect, Microsoft Windows
Xix

Introduction

indows PowerShell 3.0 is an essential management and automation tool that

brings the simplicity of the command line to next generation operating systems.
Included in Windows 8 and Windows Server 2012, and portable to Windows 7 and
Windows Server 2008 R2, Windows PowerShell 3.0 offers unprecedented power and
flexibility to everyone from power users to enterprise network administrators and
architects.

Who should read this book

This book exists to help IT Pros come up to speed quickly on the exciting Windows
PowerShell 3.0 technology. Windows PowerShell 3.0 Step by Step is specifically aimed at
several audiences, including:

m Windows networking consultants Anyone desiring to standardize and to
automate the installation and configuration of dot-net networking components.

m Windows network administrators Anyone desiring to automate the day-to-
day management of Windows dot-net networks.

m Microsoft Certified Solutions Experts (MCSEs) and Microsoft Certified
Trainers (MCTs) Windows PowerShell is a key component of many Microsoft
courses and certification exams.

= General technical staff Anyone desiring to collect information, configure set-
tings on Windows machines.

m Power users Anyone wishing to obtain maximum power and configurability of
their Windows machines either at home or in an unmanaged desktop workplace
environment.

Assumptions

This book expects that you are familiar with the Windows operating system, and
therefore basic networking terms are not explained in detail. The book does not expect
you to have any background in programming, development, or scripting. All elements
related to these topics, as they arise, are fully explained.

xxi

Who should not read this book

Not every book is aimed at every possible audience. This is not a Windows PowerShell
3.0 reference book, and therefore extremely deep, esoteric topics are not covered.
While some advanced topics are covered, in general the discussion starts with beginner
topics and proceeds through an intermediate depth. If you have never seen a computer,
nor have any idea what a keyboard or a mouse are, then this book definitely is not

for you.

Organization of this book

This book is divided into three sections, each of which focuses on a different aspect or
technology within the Windows PowerShell world. The first section provides a quick
overview of Windows PowerShell and its fundamental role in Windows Management.
It then delves into the details of Windows PowerShell remoting. The second section
covers the basics of Windows PowerShell scripting. The last portion of the book covers
different management technology and discusses specific applications such as Active
Directory and Exchange.

Finding your best starting point in this book

The different sections of Windows PowerShell 3.0 Step by Step cover a wide range of
technologies associated with the data library. Depending on your needs and your exist-
ing understanding of Microsoft data tools, you may wish to focus on specific areas of
the book. Use the following table to determine how best to proceed through the book.

If you are Follow these steps

New to Windows PowerShell Focus on Chapters 1-3 and 5-9, or read through the
entire book in order.

An IT pro who knows the basics of Windows Briefly skim Chapters 1-3 if you need a refresher on

PowerShell and only needs to learn how to the core concepts.
manage network resources Read up on the new technologies in Chapters 4 and
10-14.

Interested in Active Directory and Exchange Read Chapters 15-17 and 20.

Interested in Windows PowerShell Scripting Read Chapters 5-8, 18, and 19.

Most of the book’s chapters include hands-on samples that let you try out the con-
cepts just learned.

xxii Windows PowerShell 3.0 Step by Step

Conventions and features in this book

This book presents information using conventions designed to make the information
readable and easy to follow.

Each chapter concludes with two exercises.

Each exercise consists of a series of tasks, presented as numbered steps (1, 2,
and so on) listing each action you must take to complete the exercise.

Boxed elements with labels such as "Note" provide additional information or
alternative methods for completing a step successfully.

Text that you type (apart from code blocks) appears in bold.

A plus sign (+) between two key names means that you must press those keys at
the same time. For example, “Press Alt+Tab” means that you hold down the Alt
key while you press the Tab key.

A vertical bar between two or more menu items (e.g. File | Close), means that
you should select the first menu or menu item, then the next, and so on.

System requirements

You will need the following hardware and software to complete the practice exercises in
this book:

One of the following: Windows 7, Windows Server 2008 with Service Pack 2,
Windows Server 2008 R2, Windows 8 or Windows Server 2012.

Computer that has a 1.6GHz or faster processor (2GHz recommended)

1 GB (32 Bit) or 2 GB (64 Bit) RAM (Add 512 MB if running in a virtual machine
or SQL Server Express Editions, more for advanced SQL Server editions)

3.5 GB of available hard disk space
5400 RPM hard disk drive

DirectX 9 capable video card running at 1024 X 768 or higher-resolution display

Introduction

xxiii

XXiv

m DVD-ROM drive (if installing Visual Studio from DVD)
m Internet connection to download software or chapter examples

Depending on your Windows configuration, you might require Local Administrator
rights to install or configure Visual Studio 2010 and SQL Server 2008 products.

Code samples

Most of the chapters in this book include exercises that let you interactively try out new
material learned in the main text. All sample projects, in both their pre-exercise and
post-exercise formats, can be downloaded from the following page:

http.//aka.ms/PowerShellSBS_book

Follow the instructions to download the scripts.zip file.

Note In addition to the code samples, your system should have Windows
PowerShell 3.0 installed.

Installing the code samples

Follow these steps to install the code samples on your computer so that you can use
them with the exercises in this book.

1. After you download the scripts.zip file, make sure you unblock it by right-
clicking on the scripts.zip file, and then clicking on the Unblock button on the
property sheet.

2. Unzip the scripts.zip file that you downloaded from the book’s website (name a
specific directory along with directions to create it, if necessary).

Acknowledgments

I'd like to thank the following people: my agent Claudette Moore, because without her
this book would never have come to pass. My editors Devon Musgrave and Michael
Bolinger for turning the book into something resembling English, and my technical

Windows PowerShell 3.0 Step by Step

reviewer Thomas Lee whose attention to detail definitely ensured a much better book.
Lastly | want to acknowledge my wife Teresa (aka the Scripting Wife) who read every
page and made numerous suggestions that will be of great benefit to beginning
scripters.

Errata and book support

We've made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed on our
Microsoft Press site:

http.//www.microsoftpressstore.com/title/ 9780735663398

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in touch

Let's keep the conversation going! We're on Twitter: http://twitter.com/MicrosoftPress

Introduction

XXV

http://www.microsoftpressstore.com/title/ 9780735663398

Overview of
Windows PowerShell 3.0

After completing this chapter, you will be able to:

m Understand basic use and capabilities of Windows PowerShell.
m Install Windows PowerShell.

m Use basic command-line utilities inside Windows PowerShell.
m Use Windows PowerShell help.

®m Run basic Windows PowerShell cmdlets.

m Get help on basic Windows PowerShell cmdlets.

= Configure Windows PowerShell to run scripts.

The release of Microsoft Windows PowerShell 3.0 marks a significant advance for the Windows
network administrator. Combining the power of a full-fledged scripting language with access to
command-line utilities, Windows Management Instrumentation (WMI), and even VBScript, Windows
PowerShell provides the power and ease of use that have been missing from the Windows plat-

form since the beginning of time. As part of the Microsoft Common Engineering Criteria, Windows
PowerShell is quickly becoming the management solution for the Windows platform. IT professionals
using the Windows Server 2012 core installation must come to grips with Windows PowerShell sooner
rather than later.

Understanding Windows PowerShell

Perhaps the biggest obstacle for a Windows network administrator in migrating to Windows
PowerShell 3.0 is understanding what PowerShell actually is. In some respects, it is a replacement

for the venerable CMD (command) shell. In fact, on Windows Server 2012 running in core mode, it is
possible to replace the CMD shell with Windows PowerShell so that when the server boots up, it uses
Windows PowerShell as the interface. As shown here, after Windows PowerShell launches, you can use
cd to change the working directory, and then use dir to produce a directory listing in exactly the same
way you would perform these tasks from the CMD shell.

Windows PowerShell
Copyright (C) 2012 Microsoft Corporation. All rights reserved.

PS C:\Users\administrator> cd c:\
PS C:\> dir

Directory: C:\

Mode LastWriteTime Length Name

d---- 3/22/2012 4:03 AM PerflLogs
d-r-- 3/22/2012 4:24 AM Program Files
d-r-- 3/23/2012 6:02 PM Users

d---- 3/23/2012 4:59 PM Windows

-a--- 3/22/2012 4:33 AM 24 autoexec.bat
-a--- 3/22/2012 4:33 AM 10 config.sys

PS C:\>

You can also combine traditional CMD interpreter commands with some of the newer utilities, such
as fsutil. This is shown here:

PS C:\> md c:\test

Directory: C:\

Mode LastWriteTime Length Name

d---- 4/22/2012 5:01 PM test

PS C:\> fsutil file createnew C:\test\mynewfile.txt 1000
File C:\test\mynewfile.txt is created

PS C:\> cd c:\test

PS C:\test> dir

Directory: C:\test

Mode LastWriteTime Length Name
-a--- 4/22/2012 5:01 PM 1000 mynewfile.txt
PS C:\test>

Windows PowerShell 3 Step by Step

The preceding two examples show Windows PowerShell being used in an interactive man-
ner. Interactivity is one of the primary features of Windows PowerShell, and you can begin to use
Windows PowerShell interactively by opening a Windows PowerShell prompt and typing commands.
You can enter the commands one at a time, or you can group them together like a batch file. | will
discuss this later because you will need more information to understand it.

Using cmdlets

In addition to using Windows console applications and built-in commands, you can also use the
cmdlets (pronounced commandlets) that are built into Windows PowerShell. Cmdlets can be cre-
ated by anyone. The Windows PowerShell team creates the core cmdlets, but many other teams at
Microsoft were involved in creating the hundreds of cmdlets shipping with Windows 8. They are like
executable programs, but they take advantage of the facilities built into Windows PowerShell, and
therefore are easy to write. They are not scripts, which are uncompiled code, because they are built
using the services of a special .NET Framework namespace. Windows PowerShell 3.0 comes with
about 1,000 cmdlets on Windows 8, and as additional features and roles are added, so are additional
cmdlets. These cmdlets are designed to assist the network administrator or consultant to leverage
the power of Windows PowerShell without having to learn a scripting language. One of the strengths
of Windows PowerShell is that cmdlets use a standard naming convention that follows a verb-noun
pattern, such as Get-Help, Get-EventLog, or Get-Process. The cmdlets using the get verb display
information about the item on the right side of the dash. The cmdlets that use the set verb modify
or set information about the item on the right side of the dash. An example of a cmdlet that uses the
set verb is Set-Service, which can be used to change the start mode of a service. All cmdlets use one
of the standard verbs. To find all of the standard verbs, you can use the Get-Verb cmdlet. In Windows
PowerShell 3.0, there are nearly 100 approved verbs.

Installing Windows PowerShell

Windows PowerShell 3.0 comes with Windows 8 Client and Windows Server 2012. You can down-
load the Windows Management Framework 3.0 package containing updated versions of Windows
Remote Management (WinRM), WMI, and Windows PowerShell 3.0 from the Microsoft Download
center. Because Windows 8 and Windows Server 2012 come with Windows PowerShell 3.0, there is no
Windows Management Framework 3.0 package available for download—it is not needed. In order to
install Windows Management Framework 3.0 on Windows 7, Windows Server 2008 R2, and Windows
Server 2008, they all must be running at least Service Pack (SP) 1 and the Microsoft .NET Framework
4.0. There is no package for Windows Vista, Windows Server 2003, or earlier versions of the operating
system. You can run both Windows PowerShell 3.0 and Windows PowerShell 2.0 on the same system,
but this requires both the .NET Framework 3.5 and 4.0.

To prevent frustration during the installation, it makes sense to use a script that checks for the
operating system, service pack level, and .NET Framework 4.0. A sample script that will check for the
prerequisites is Get-PowerShellRequirements.ps1, which follows.

Overview of Windows PowerShell 3.0 3

Get-PowerShellRequirements.psl
Param([string[]]$computer = @($env:computername, "LocalHost"))
foreach ($c in $computer)
{
$0 = Get-WmiObject win32_operatingsystem -cn $c
switch ($o.version)

{
{$o.version -gt 6.2} {"$c is Windows 8 or greater"; break}
{$o.version -gt 6.1}
{
If($o0.ServicePackMajorVersion -gt 0){$sp = $true}
If(Get-WmiObject Win32_Product -cn $c
where { $_.name -match '.NET Framework 4'}) {$net = $true }
If($sp -AND $net) { "$c meets the requirements for PowerShell 3" ; break}
ElseIF (!$sp) {"$c needs a service pack"; break}
ELSEIF (!$net) {"$c needs a .NET Framework upgrade"} ; break}
{$o0.version -1t 6.1} {"$c does not meet standards for PowerShell 3.0"; break}
Default {"Unable to tell if $c meets the standards for PowerShell 3.0"}
}

Deploying Windows PowerShell to down-level
operating systems
After Windows PowerShell is downloaded from http.//www.microsoft.com/downloads, you can deploy

it to your enterprise by using any of the standard methods. Here are few of the methods that you can
use to accomplish Windows PowerShell deployment:

m Create a Microsoft Systems Center Configuration Manager package and advertise it to the
appropriate organizational unit (OU) or collection.

m Create a Group Policy Object (GPO) in Active Directory Domain Services (AD DS) and link it to
the appropriate OU.

m Approve the update in Software Update Services (SUS) when available.

®m Add the Windows Management Framework 3.0 packages to a central file share or webpage
for self service.

If you are not deploying to an entire enterprise, perhaps the easiest way to install Windows
PowerShell is to download the package and step through the wizard.

Note To use a command-line utility in Windows PowerShell, launch Windows PowerShell
by choosing Start | Run | PowerShell. At the PowerShell prompt, type in the command
to run.

4 Windows PowerShell 3 Step by Step

Using command-line utilities

As mentioned earlier, command-line utilities can be used directly within Windows PowerShell. The
advantages of using command-line utilities in Windows PowerShell, as opposed to simply run-

ning them in the CMD interpreter, are the Windows PowerShell pipelining and formatting features.
Additionally, if you have batch files or CMD files that already use existing command-line utilities, you
can easily modify them to run within the Windows PowerShell environment. The following procedure
illustrates adding ipconfig commands to a text file.

Running ipconfig commands

1. Start Windows PowerShell by choosing Start | Run | Windows PowerShell. The PowerShell
prompt will open by default at the root of your Documents folder.

2. Enter the command ipconfig /all. This is shown here:
PS C:\> ipconfig /all

3. Pipe the result of ipconfig /all to a text file. This is illustrated here:
PS C:\> ipconfig /all >ipconfig.txt

4. Open Notepad to view the contents of the text file, as follows:
PS C:\> notepad ipconfig.txt

Typing a single command into Windows PowerShell is useful, but at times you may need more
than one command to provide troubleshooting information or configuration details to assist with
setup issues or performance problems. This is where Windows PowerShell really shines. In the past,
you would have either had to write a batch file or type the commands manually. This is shown in the
TroubleShoot.bat script that follows.

TroubleShoot.bat

ipconfig /all >C:\tshoot.txt

route print >>C:\tshoot.txt

hostname >>C:\tshoot.txt

net statistics workstation >>C:\tshoot.txt

Of course, if you typed the commands manually, then you had to wait for each command to com-
plete before entering the subsequent command. In that case, it was always possible to lose your place
in the command sequence, or to have to wait for the result of each command. Windows PowerShell
eliminates this problem. You can now enter multiple commands on a single line, and then leave the
computer or perform other tasks while the computer produces the output. No batch file needs to be
written to achieve this capability.

Overview of Windows PowerShell 3.0 5

Q Tip Use multiple commands on a single Windows PowerShell line. Type each complete
command, and then use a semicolon to separate each command.

The following exercise describes how to run multiple commands. The commands used in the pro-
cedure are in the RunningMultipleCommands.txt file.

Running multiple commands

1.

Open Windows PowerShell by choosing Start | Run | Windows PowerShell. The PowerShell
prompt will open by default at the root of your Documents And Settings folder.

Enter the ipconfig /all command. Pipe the output to a text file called Tshoot.txt by using the
redirection arrow (>). This is the result:

ipconfig /all >tshoot.txt

On the same line, use a semicolon to separate the ipconfig /all command from the route print
command. Append the output from the command to a text file called Tshoot.txt by using the
redirect-and-append arrow (>>). Here is the command so far:

ipconfig /all >tshoot.txt; route print >>tshoot.txt

On the same line, use a semicolon to separate the route print command from the hostname
command. Append the output from the command to a text file called Tshoot.txt by using the
redirect-and-append arrow. The command up to this point is shown here:

ipconfig /all >tshoot.txt; route print >>tshoot.txt; hostname >>tshoot
. TXt

On the same line, use a semicolon to separate the hostname command from the net statistics
workstation command. Append the output from the command to a text file called Tshoot.txt
by using the redirect-and-append arrow. The completed command looks like the following:

ipconfig /all >tshoot.txt; route print >>tshoot.txt; netdiag /q >>tshoot
.txt; net statistics workstation >>tshoot.txt

Security issues with Windows PowerShell

As with any tool as versatile as Windows PowerShell, there are bound to be some security concerns.
Security, however, was one of the design goals in the development of Windows PowerShell.

When you launch Windows PowerShell, it opens in your Documents folder; this ensures you are in
a directory where you will have permission to perform certain actions and activities. This is far safer
than opening at the root of the drive, or even opening in system root.

6 Windows PowerShell 3 Step by Step

To change to a directory in the Windows PowerShell console, you cannot automatically go up to
the next level; you must explicitly name the destination of the change-directory operation (although
you can use the cd .. command to move up one level).

The running of scripts is disabled by default and can be easily managed through group policy. It
can also be managed on a per-user or per-session basis.

Controlling execution of PowerShell cmdlets

Have you ever opened a CMD interpreter prompt, typed in a command, and pressed Enter so that
you could see what it does? What if that command happened to be Format C:\? Are you sure you
want to format your C drive? This section will cover some arguments that can be supplied to cmdlets
that allow you to control the way they execute. Although not all cmdlets support these arguments,
most of those included with Windows PowerShell do. The three arguments you can use to control
execution are -whatif, -confirm, and suspend. Suspend is not really an argument that is supplied to

a cmdlet, but rather is an action you can take at a confirmation prompt, and is therefore another
method of controlling execution.

Note To use -whatif at a Windows PowerShell prompt, enter the cmdlet. Type the
-whatif parameter after the cmdlet. This only works for cmdlets that change system state.
Therefore, there is no -whatif parameter for cmdlets like Get-Process that only display
information.

Windows PowerShell cmdlets that change system state (such as Set-Service) support a prototype
mode that you can enter by using the -whatif parameter. The developer decides to implement -whatif
when developing the cmdlet; however, the Windows PowerShell team recommends that developers
implement -whatif. The use of the -whatif argument is shown in the following procedure. The com-
mands used in the procedure are in the UsingWhatif.txt file.

Using -whatif to prototype a command

1. Open Windows PowerShell by choosing Start | Run | Windows PowerShell. The PowerShell
prompt will open by default at the root of your Documents And Settings folder.

2. Start an instance of Notepad.exe. Do this by typing notepad and pressing the Enter key. This
is shown here:

notepad

3. Identify the Notepad process you just started by using the Get-Process cmdlet. Type enough
of the process name to identify it, and then use a wildcard asterisk (*) to avoid typing the
entire name of the process, as follows:

Get-Process note*

Overview of Windows PowerShell 3.0 7

8

4.

Examine the output from the Get-Process cmdlet and identify the process ID. The output
on my machine is shown here. Please note that in all likelihood, the process ID used by your
instance of Notepad.exe will be different from the one on my machine.

Handles NPM(K) PM(K) WS(K) vM(M) CPU(s) Id ProcessName

39 2 944 400 29 0.05 1056 notepad

Use -whatif to see what would happen if you used Stop-Process to stop the process ID you
obtained in step 4. This process ID will be found under the Id column in your output. Use the
-id parameter to identify the Notepad.exe process. The command is as follows:

Stop-Process -id 1056 -whatif

Examine the output from the command. It tells you that the command will stop the Notepad
process with the process ID that you used in your command.

What if: Performing operation "Stop-Process" on Target "notepad (1056)"

Confirming actions

As described in the previous section, you can use -whatif to prototype a cmdlet in Windows PowerShell.
This is useful for seeing what a cmdlet would do; however, if you want to be prompted before the
execution of the cmdlet, you can use the -confirm argument. The cmdlets used in the "Confirming the
execution of cmdlets" procedure are listed in the ConfirmingExecutionOfCmdlets.txt file.

Confirming the execution of cmdlets

1.

Open Windows PowerShell, start an instance of Notepad.exe, identify the process, and exam-
ine the output, just as in steps 1 through 4 in the previous exercise.

Use the -confirm argument to force a prompt when using the Stop-Process cmdlet to stop the
Notepad process identified by the Get-Process note* command. This is shown here:

Stop-Process -id 1768 -confirm

The Stop-Process cmdlet, when used with the -confirm argument, displays the following con-
firmation prompt:

Confirm

Are you sure you want to perform this action?

Performing operation "Stop-Process" on Target "notepad (1768)".

[Y] Yes [A] Yes to A11 [N] No [L] No to A11 [S] Suspend [?] Help
(default is "Y"):

Type y and press Enter. The Notepad.exe process ends. The Windows PowerShell prompt
returns to the default, ready for new commands, as shown here:

PS C:\>

Windows PowerShell 3 Step by Step

O

Tip To suspend cmdlet confirmation, at the confirmation prompt from the cmdlet, type s
and press Enter.

Suspending confirmation of cmdlets

The ability to prompt for confirmation of the execution of a cmdlet is extremely useful and at times
may be vital to assisting in maintaining a high level of system uptime. There may be times when you
type in a long command and then remember that you need to check on something else first. For
example, you may be in the middle of stopping a number of processes, but you need to view details
on the processes to ensure you do not stop the wrong one. For such eventualities, you can tell the
confirmation you would like to suspend execution of the command. The commands used for suspend-
ing execution of a cmdlet are in the SuspendConfirmationOfCmdlets.txt file.

Suspending execution of a cmdlet

1.

Open Windows PowerShell, start an instance of Notepad.exe, identify the process, and exam-
ine the output, just as in steps 1 through 4 in the previous exercise. The output on my machine
is shown following. Please note that in all likelihood, the process ID used by your instance of
Notepad.exe will be different from the one on my machine.

Handles NPM(K) PM(K) WS(K) vM(M) CPU(s) Id ProcessName

39 2 944 400 29 0.05 3576 notepad

Use the -confirm argument to force a prompt when using the Stop-Process cmdlet to stop the
Notepad process identified by the Get-Process note* command. This is illustrated here:

Stop-Process -id 3576 -confirm

The Stop-Process cmdlet, when used with the -confirm argument, displays the following con-
firmation prompt:

Confirm

Are you sure you want to perform this action?

Performing operation "Stop-Process" on Target "notepad (3576)".

[Y] Yes [A] Yes to ATT [N] No [L] No to A1l [S] Suspend [?] Help
(default is "Y"):

To suspend execution of the Stop-Process cmdlet, enter s. A triple-arrow prompt will appear,
as follows:

PS C:\>>>

Overview of Windows PowerShell 3.0 9

4. Use the Get-Process cmdlet to obtain a list of all the running processes that begin with the let-
ter n. The syntax is as follows:

Get-Process n*

On my machine, two processes appear. The Notepad process | launched earlier and another
process. This is shown here:

Handles NPM(K) PM(K) WS(K) vM(M) CPU(s) Id ProcessName
39 2 944 400 29 0.05 3576 notepad
75 2 1776 2708 23 0.09 632 nvsvc32

5. Return to the previous confirmation prompt by typing exit.
Once again, the confirmation prompt appears as follows:

Confirm

Are you sure you want to perform this action?

Performing operation "Stop-Process" on Target "notepad (3576)".

[Y] Yes [A] Yes to ATT [N] No [L] No to A1l [S] Suspend [?] Help
(default is "Y"):

6. Typey and press Enter to stop the Notepad process. There is no further confirmation. The
prompt now displays the default Windows PowerShell prompt, as shown here:

PS C:\>

Working with Windows PowerShell

10

This section will go into detail about how to access Windows PowerShell and configure the Windows
PowerShell console.

Accessing Windows PowerShell

After Windows PowerShell is installed on a down-level system, it becomes available for immediate
use. However, using the Windows flag key on the keyboard and pressing R to bring up a run com-
mand prompt—or mousing around and choosing Start | Run | Windows PowerShell all the time—will
become time-consuming and tedious. (This is not quite as big a problem on Windows 8, where you
can just type PowerShell on the Start screen). On Windows 8, | pin both Windows PowerShell and
the PowerShell ISE to both the Start screen and the taskbar. On Windows Server 2012 in core mode,

| replace the CMD prompt with the Windows PowerShell console. For me and the way | work, this is
ideal, so | wrote a script to do it. This script can be called through a log-on script to automatically
deploy the shortcut on the desktop. On Windows 8, the script adds both the Windows PowerShell ISE
and the Windows PowerShell console to both the Start screen and the taskbar. On Windows 7, it adds
both to the taskbar and to the Start menu. The script only works for U.S. English—-language operating

Windows PowerShell 3 Step by Step

systems. To make it work in other languages, change the value of $pinToStart or $pinToTaskBar to the
equivalent values in the target language.

Note Using Windows PowerShell scripts is covered in Chapter 5, “Using PowerShell Scripts.”
See that chapter for information about how the script works and how to actually run
the script.

The script is called PinToStartAndTaskBar.ps1, and is as follows:

PinToStartAndTaskBar.ps1

$pinToStart = "Pin to Start"
$pinToTaskBar = "Pin to Taskbar"
$file = @((Join-Path -Path $PSHOME -childpath "PowerShell.exe"),
(Join-Path -Path $PSHOME -childpath "powershell_ise.exe"))
Foreach($f in $file)
{$path = Split-Path $f
$shel1=New-Object -com "Shell.Application"
$folder=$shell.Namespace($path)
$item = $folder.parsename((Split-Path $f -Teaf))
$verbs = $item.verbs(Q)
foreach($v in $verbs)
{if($v.Name.Replace("&","") -match $pinToStart){$v.DoIt()}}
foreach($v in $verbs)
{if($v.Name.Replace("&","") -match $pinToTaskBar){$v.DoIt()}} }

Configuring the Windows PowerShell console

Many items can be configured for Windows PowerShell. These items can be stored in a Psconsole file.
To export the console configuration file, use the Export-Console cmdlet, as shown here:

PS C:\> Export-Console myconsole

The Psconsole file is saved in the current directory by default and has an extension of .pscl. The
Psconsole file is saved in XML format. A generic console file is shown here:
<?xm1 version="1.0" encoding="utf-8"7>
<PSConsoleFile ConsoleSchemaVersion="1.0">

<PSVersion>3.0</PSVersion>

<PSSnapIns />
</PSConsoleFile>

Controlling PowerShell launch options

1. Launch Windows PowerShell without the banner by using the -nologo argument. This is shown
here:

PowerShell -nologo

Overview of Windows PowerShell 3.0 11

Supplying options for cmdlets

2. Launch a specific version of Windows PowerShell by using the -version argument. (To launch
Windows PowerShell 2.0, you must install the .NET Framework 3.5). This is shown here:

PowerShell -version 2

3. Launch Windows PowerShell using a specific configuration file by specifying the -psconsolefile

argument, as follows:

PowerShell -psconsolefile myconsole.pscl

4. Launch Windows PowerShell, execute a specific command, and then exit by using the
-command argument. The command itself must be prefixed by an ampersand (&) and
enclosed in curly brackets. This is shown here:

Powershell -command "& {Get-Process}"

12

One of the useful features of Windows PowerShell is the standardization of the syntax in working with
cmdlets. This vastly simplifies the learning of the new shell and language. Table 1-1 lists the common
parameters. Keep in mind that some cmdlets cannot implement some of these parameters. However,
if these parameters are used, they will be interpreted in the same manner for all cmdlets, because the
Windows PowerShell engine itself interprets the parameters.

TABLE 1-1 Common parameters

Parameter Meaning

-whatif Tells the cmdlet to not execute, but to tell you what would
happen if the cmdlet were to run.

-confirm Tells the cmdlet to prompt before executing the
command.

-verbose Instructs the cmdlet to provide a higher level of detail
than a cmdlet not using the verbose parameter.

-debug Instructs the cmdlet to provide debugging information.

-ErrorAction Instructs the cmdlet to perform a certain action when an
error occurs. Allowed actions are continue, stop, silently-
Continue, and inquire.

-ErrorVariable Instructs the cmdlet to use a specific variable to hold er-
ror information. This is in addition to the standard $error
variable.

-OutVariable Instructs the cmdlet to use a specific variable to hold the
output information.

-OutBuffer Instructs the cmdlet to hold a certain number of objects

before calling the next cmdlet in the pipeline.

Windows PowerShell 3 Step by Step

Note To get help on any cmdlet, use the Get-Help <cmdletname> cmdlet. For example, use
Get-Help Get-Process to obtain help with using the Get-Process cmdlet.

Working with the help options

One of the first commands to run when opening Windows PowerShell for the first time is the
Update-Help cmdlet. This is because Windows PowerShell does not ship help files with the product.
This does not mean that no help presents itself—it does mean that help beyond simple syntax display
requires an additional download.

A default installation of Windows PowerShell 3.0 contains numerous modules that vary from
installation to installation depending upon the operating system features and roles selected. In fact,
Windows PowerShell 3.0 installed on Windows 7 workstations contains far fewer modules and cmdlets
than are available on a similar Windows 8 workstation. This does not mean all is chaos, however,
because the essential Windows PowerShell cmdlets—the core cmdlets—remain unchanged from
installation to installation. The difference between installations is because additional features and
roles often install additional Windows PowerShell modules and cmdlets.

The modular nature of Windows PowerShell requires additional consideration when updating
help. Simply running Update-Help does not update all of the modules loaded on a particular system.
In fact, some modules may not support updatable help at all—these generate an error when you
attempt to update help. The easiest way to ensure you update all possible help is to use both the
module parameter and the force switched parameter. The command to update help for all installed
modules (that support updatable help) is shown here:

Update-Help -Module * -Force

The result of running the Update-Help cmdlet on a typical Windows 8 client system is shown in
Figure 1-1.

Overview of Windows PowerShell 3.0 13

14

E) Administrator: Windows PowerShell ISE = I:'-
File Edit View Tools Debug Add-ons Help

& - d & B ») (E- @ | B B 0O-
Untitled1pst X | %=
1 ~
~
{ >
PS5 C:'Windows'system32> Update-Help -Module = -Force ~
Update-Help : Failed to update Help for the module(s) 'BitsTransfer,
International, MetConnection, PSDiagnostics' : The Update-Help command failed

because the specified module does not support updatable help. Use Get-Help
-Online or look online for help for the commands in this module.

At Tine:1 char:1

+ Update-Help -Module * -Force

S S SO

+ CategoryInfo : Notspecified: (HelpInfoUri:Uri) [Update-Help], E
xception

+ FullyQualifiedErrorId : HelpInfolriNotFound,Microsoft. PowerShell.Command
=.UpdateHelpCommand

Update-Help : Failed to update Help for the module(s) "ISE, BitLocker,
CimCmdlets, DnsClient, Kds, MMAgent, MsDic, NetAdapter, NetlLbfo, NetQos,
NetSecurity, NetSwitchTeam, NetworkTransition, SecureBoot, SmbShare,

smbWitness, TroubleshootingPack, TrustedPlatformModule, VpnClient,
WindowsDeveloperLicense' with UI culture(s) {en-US} : The value of the
HelpInfolri key in the module manifest must resolve to a container or root URL ..
< " ¥

Ln 56 Col 25 {1 100%

FIGURE 1-1 Errors appear when attempting to update help files that do not support updatable help.

One way to update help and not to receive a screen full of error messages is to run the
Update-Help cmdlet and suppress the errors all together. This technique appears here:

Update-Help -Module * -Force -ea 0

The problem with this approach is that you can never be certain that you have actually received
updated help for everything you wanted to update. A better approach is to hide the errors during the
update process, but also to display errors after the update completes. The advantage to this approach
is the ability to display cleaner errors. The UpdateHelpTrackErrors.psl script illustrates this technique.
The first thing the UpdateHelpTrackErrors.psl script does is to empty the error stack by calling the
clear method. Next, it calls the Update-Help module with both the module parameter and the force
switched parameter. In addition, it uses the ErrorAction parameter (ea is an alias for this parameter)
with a value of 0. A 0 value means that errors will not be displayed when the command runs. The
script concludes by using a For loop to walk through the errors and displays the error exceptions. The
complete UpdateHelpTrackErrors.psl script appears here.

Note For information about writing Windows PowerShell scripts and about using the For
loop, see Chapter 5.

UpdateHelpTrackErrors.psl

$error.Clear()

Update-Help -Module * -Force -ea 0

For ($1 =0 ; $i -1t $error.Count ; $i ++)
{ "“nerror $i" ; S$error[$i].exception }

Windows PowerShell 3 Step by Step

Once the UpdateHelpTrackErrors script runs, a progress bar displays indicating the progress as the

updatable help files update. Once the script completes, any errors appear in order. The script and

associated errors appear in Figure 1-2.

<l Administrator: Windows PowerShell ISE = I:'-
File Edit View Tools Debug Add-cns Help

b e - d & B » |9 P 3 B | = | & |[Bo-

UpdateHelpTrackErrors.ps1 X)

UpdateHelpTrackerrors.psl ~

ed wilson, msft

Powershell 3.0 Step by Step

chapter 1 scripts

help

$error.clear ()

uUpdate-Help -Module * -Force -ea 0

For (% 0 ; %i ferror.Count ; $i 2
{ ""nerror $i" ; ferror[%i].exception } W

< m >

LD 00 SO LN el P

Ps C:'Windows\system32> 5:\psh_sbs_3%chapterlscripts\uUpdateHelpTrackerrors.p ~

error 0 =
Failed to update Help for the module(s) ‘scheduledTasks' with ul culture(s)
{en-us} : unable to retrieve the HelpInfo xML file for UI culture en-us. Mak
sure the HelpInfouri property in the module manifest is valid or check your
network connection and then try the command again.

error 1

Failed to update Help for the module(s) "Appx, DirectAccessClientComponents,
NetworkConnectivitystatus' with UI culture(s) {en-UsS} : For security reasons
DTD is prohibited in this XML document. To enable DTD processing set the
ptdProcessing property on XmlReaderSettings to Parse and pass the settinas v
< m »

Completed Ln9 Col42 i 105%

FIGURE 1-2 Cleaner error output from updatable help generated by the UpdateHelpTrackErrors script.

You can also determine which modules receive updated help by running the Update-Help cmdlet

with the -verbose parameter. Unfortunately, when you do this, the output scrolls by so fast that it is
hard to see what has actually updated. To solve this problem, redirect the verbose output to a text

file. In the command that follows, all modules attempt to update help. The verbose messages redirect

to a text file named updatedhelp.txt in a folder named fso off the root.

Update-Help -module * -force -verbose 4>>c:\fso\updatedhelp.txt

Windows PowerShell has a high level of discoverability; that is, to learn how to use PowerShell, you

can simply use PowerShell. Online help serves an important role in assisting in this discoverability.
The help system in Windows PowerShell can be entered by several methods. To learn about using
Windows PowerShell, use the Get-Help cmdlet as follows:

Get-Help Get-Help

This command prints out help about the Get-Help cmdlet. The output from this cmdlet is illus-
trated here:

Overview of Windows PowerShell 3.0

15

NAME
Get-Help

SYNOPSIS
Displays information about Windows PowerShell commands and concepts.

SYNTAX
Get-Help [[-Name] <String>] [-Category <String>] [-Component <String>] [-Full
[<SwitchParameter>]] [-Functionality <String>] [-Path <String>] [-Role
<String>] [<CommonParameters>]

Get-Help [[-Name] <String>] [-Category <String>] [-Component <String>]
[-Functionality <String>] [-Path <String>] [-Role <String>] -Detailed
[<SwitchParameter>] [<CommonParameters>]

Get-Help [[-Name] <String>] [-Category <String>] [-Component <String>]
[-Functionality <String>] [-Path <String>] [-Role <String>] -Examples
[<SwitchParameter>] [<CommonParameters>]

Get-Help [[-Name] <String>] [-Category <String>] [-Component <String>]
[-Functionality <String>] [-Path <String>] [-Role <String>] -Online
[<SwitchParameter>] [<CommonParameters>]

Get-Help [[-Name] <String>] [-Category <String>] [-Component <String>]
[-Functionality <String>] [-Path <String>] [-Role <String>] -Parameter <String>
[<CommonParameters>]

Get-Help [[-Name] <String>] [-Category <String>] [-Component <String>]
[-Functionality <String>] [-Path <String>] [-Role <String>] -ShowWindow
[<SwitchParameter>] [<CommonParameters>]

DESCRIPTION
The Get-Help cmdlet displays information about Windows PowerShell concepts and
commands, including cmdlets, providers, functions, aliases and scripts.

Get-Help gets the help content that it displays from help files on your

computer. Without the help files, Get-Help displays only basic information

about commands. Some Windows PowerShell modules come with help files. However,
beginning in Windows PowerShell 3.0, the modules that come with Windows

PowerShell do not include help files. To download or update the help files for

a module in Windows PowerShell 3.0, use the Update-Help cmdlet. You can also

view the help topics for Windows PowerShell online in the TechNet Library at http:
//go.microsoft.com/fwlink/?LinkID=107116

To get help for a Windows PowerShell command, type "Get-Help" followed by the
command name. To get a Tist of all help topics on your system, type "Get-Help

Conceptual help topics in Windows PowerShell begin with "about_", such as
"about_Comparison_Operators". To see all "about_" topics, type "Get-Help
about_*". To see a particular topic, type "Get-Help about_<topic-name>", such
as "Get-Help about_Comparison_Operators".

16 Windows PowerShell 3 Step by Step

You can display the entire help topic or use the parameters of the Get-Help
cmdlet to get selected parts of the topic, such as the syntax, parameters, or
examples. You can also use the Online parameter to display an online version of
a help topic for a command in your Internet browser.

If you type "Get-Help" followed by the exact name of a help topic, or by a word
unique to a help topic, Get-Help displays the topic contents. If you enter a
word or word pattern that appears in several help topic titles, Get-Help
displays a Tist of the matching titles. If you enter a word that does not
appear in any help topic titles, Get-Help displays a list of topics that
include that word in their contents.

In addition to "Get-Help", you can also type "help" or "man", which displays
one screen of text at a time, or "<cmdlet-name> -?", which is identical to
Get-Help but works only for cmdlets.

For information about the symbols that Get-Help displays in the command syntax
diagram, see about_Command_Syntax http://go.microsoft.com/fwlink/?LinkID=113215.
For information about parameter attributes, such as Required and Position, see
about_Parameters http://go.microsoft.com/fwlink/?LinkID=113243.

RELATED LINKS
Online Version: http://go.microsoft.com/fwlink/?LinkID=113316
Get-Command
Get-Member
Get-PSDrive
about_Command_Syntax
about_Comment_Based_Help
about_Parameters

REMARKS
To see the examples, type: "Get-Help Get-Help -examples".
For more information, type: "Get-Help Get-Help -detailed".
For technical information, type: "Get-Help Get-Help -full".
For online help, type: "Get-Help Get-Help -online"

The good thing about help with the Windows PowerShell is that it not only displays help about
cmdlets, which you would expect, but it also has three levels of display: normal, detailed, and full.
Additionally, you can obtain help about concepts in Windows PowerShell. This last feature is equiva-
lent to having an online instruction manual. To retrieve a listing of all the conceptual help articles, use
the Get-Help about* command, as follows:

Get-Help about*

Suppose you do not remember the exact name of the cmdlet you wish to use, but you remember
it was a get cmdlet? You can use a wildcard, such as an asterisk (*), to obtain the name of the cmdlet.
This is shown here:

Get-Help get*

This technique of using a wildcard operator can be extended further. If you remember that the
cmdlet was a get cmdlet, and that it started with the letter p, you can use the following syntax to
retrieve the desired cmdlet:

Overview of Windows PowerShell 3.0 17

18

Get-Help get-p*

Suppose, however, that you know the exact name of the cmdlet, but you cannot exactly remember
the syntax. For this scenario, you can use the -examples argument. For example, for the Get-PSDrive
cmdlet, you would use Get-Help with the -examples argument, as follows:

Get-Help Get-PSDrive -examples

To see help displayed one page at a time, you can use the Help function. The Help function passes
your input to the Get-Help cmdlet, and pipelines the resulting information to the more.com utility.
This causes output to display one page at a time in the Windows PowerShell console. This is useful if
you want to avoid scrolling up and down to see the help output.

Note Keep in mind that in the Windows PowerShell ISE, the pager does not work, and
therefore you will see no difference in output between Get-Help and Help. In the ISE, both
Get-Help and Help behave the same way. However, it is likely that if you are using the
Windows PowerShell ISE, you will use Show-Command for your help instead of relying on
Get-Help.

This formatted output is shown in Figure 1-3.

] ADMINISTRATOR: PowerShell 3 I;Ii-

TOPIC Py
about_Operators

SHORT DESCRIPTION 5
Describes the operators that are supported by Windows PowerShell.

LONG DESCRIPTION
An operator is a language element that you can_use in a command or
expression. Windows PowerShell supports sewveral types of operators to
help you manipulate values.

Arithmetic Operators
Use arithmetic operators (+, -, =, /, %) to calculate values in a command
or expression. With these operators, you can add, subtract, multiply, or
divide values, and calculate the remainder (modulus) of a division
operation.

You_can also use arithmetic operators with strings, arrays, and hash
tables. The addition operator concatenates elements. The multiplication
operator returns the specified number of copies of each element.

For more information, see about_Arithmetic_Operators.

Assignment Operators
Use assignment operatars (=, -=, ¥=, f=, %=) to assign one or more
walues to variables, to change the waluss in a wariahle, and to append
walues to wariables. ¥ou can also cast the wariable as any Microsoft _MET
Framework data type, such as string or DateTime, or Process wariahble.

For more information, see about_Assignment_Operators.

Comparison Operators
Use comparison operators (-eq, -ne, -gt, -1t, -le, -ge) to compare walues
and test conditions. For example, you can compare two string walues to
determine whether they are equal.
-- More -—-

FIGURE 1-3 Using Help to display information one page at a time.

Windows PowerShell 3 Step by Step

Getting tired of typing Get-Help all the time? After all, it is eight characters long. The solution is to
create an alias to the Get-Help cmdlet. An alias is a shortcut keystroke combination that will launch a
program or cmdlet when typed. In the “Creating an alias for the Get-Help cmdlet” procedure, you will
assign the Get-Help cmdlet to the G+H key combination.

. Note When creating an alias for a cmdlet, confirm it does not already have an alias by
using Get-Alias. Use New-Alias to assign the cmdlet to a unique keystroke combination.

Creating an alias for the Get-Help cmdlet

1.

Open Windows PowerShell by choosing Start | Run | Windows PowerShell. The PowerShell
prompt will open by default at the root of your Documents folder.

Retrieve an alphabetic listing of all currently defined aliases, and inspect the list for one
assigned to either the Get-Help cmdlet or the keystroke combination G+H. The command to
do this is as follows:

Get-Alias sort

After you have determined that there is no alias for the Get-Help cmdlet and that none is
assigned to the G+H keystroke combination, review the syntax for the New-Alias cmdlet. Use
the -full argument to the Get-Help cmdlet. This is shown here:

Get-Help New-Alias -full

Use the New-Alias cndlet to assign the G+H keystroke combination to the Get-Help cmdlet.
To do this, use the following command:

New-Alias gh Get-Help

Exploring commands: step-by-step exercises

In the following exercises, you'll explore the use of command-line utilities in Windows PowerShell. You
will see that it is as easy to use command-line utilities in Windows PowerShell as in the CMD inter-
preter; however, by using such commands in Windows PowerShell, you gain access to new levels of

functionality.

Overview of Windows PowerShell 3.0 19

20

Using command-line utilities

1.

7.

10.

11

12.

13.

Open Windows PowerShell by choosing Start | Run | Windows PowerShell. The PowerShell
prompt will open by default at the root of your Documents folder.

Change to the C:\root directory by typing cd c:\ inside the PowerShell prompt:
cd c:\

Obtain a listing of all the files in the C:\root directory by using the dir command:
dir

Create a directory off the C:\root directory by using the md command:

md mytest

Obtain a listing of all files and folders off the root that begin with the letter m:
dir m*

Change the working directory to the PowerShell working directory. You can do this by using
the Set-Location command as follows:

Set-Location $pshome

Obtain a listing of memory counters related to the available bytes by using the typeperf com-
mand. This command is shown here:

typeperf "\memory\available bytes"

After a few counters have been displayed in the PowerShell window, press Ctrl+C to break the
listing.

Display the current boot configuration by using the bootcfg command (note that you must run
this command with admin rights):

bootcfg
Change the working directory back to the C:\Mytest directory you created earlier:
Set-Location c:\mytest

Create a file named mytestfile.txt in the C:\Mytest directory. Use the fsutil utility, and make the
file 1,000 bytes in size. To do this, use the following command:

fsutil file createnew mytestfile.txt 1000

Obtain a directory listing of all the files in the C:\Mytest directory by using the Get-Childltem
cmdlet.

Print out the current date by using the Get-Date cmdlet.

Windows PowerShell 3 Step by Step

14. Clear the screen by using the c¢/s command.

15. Print out a listing of all the cmdlets built into Windows PowerShell. To do this, use the Get-
Command cmdlet.

16. Use the Get-Command cmdlet to get the Get-Alias cmdlet. To do this, use the -name argu-
ment while supplying Get-Alias as the value for the argument. This is shown here:

Get-Command -name Get-Alias

This concludes the step-by-step exercise. Exit Windows PowerShell by typing exit and press-
ing Enter.

In the following exercise, you'll use various help options to obtain assistance with various cmdlets.

Obtaining help

1. Open Windows PowerShell by choosing Start | Run | Windows PowerShell. The PowerShell
prompt will open by default at the root of your Documents folder.

2. Use the Get-Help cmdlet to obtain help about the Get-Help cmdlet. Use the command
Get-Help Get-Help as follows:

Get-Help Get-Help
3. To obtain detailed help about the Get-Help cmdlet, use the -detailed argument as follows:
Get-Help Get-Help -detailed

4. To retrieve technical information about the Get-Help cmdlet, use the -full argument. This is
shown here:

Get-Help Get-Help -full

5. If you only want to obtain a listing of examples of command usage, use the -examples argu-
ment as follows:

Get-Help Get-Help -examples

6. Obtain a listing of all the informational help topics by using the Get-Help cmdlet and the
about noun with the asterisk (*) wildcard operator. The code to do this is shown here:

Get-Help about*

7. Obtain a listing of all the help topics related to get cmdlets. To do this, use the Get-Help cmd-
let, and specify the word get followed by the wildcard operator as follows:

Get-Help get*

Overview of Windows PowerShell 3.0 21

8. Obtain a listing of all the help topics related to set cmdlets. To do this, use the Get-Help
cmdlet, followed by the set verb, followed by the asterisk wildcard. This is shown here:

Get-Help set*

This concludes this exercise. Exit Windows PowerShell by typing exit and pressing Enter.

Chapter 1 quick reference

22

To

Use an external command-line utility

Do This

Type the name of the command-line utility while inside
Windows PowerShell.

Use multiple external command-line utilities sequentially

Separate each command-line utility with a semicolon on a
single Windows PowerShell line.

Obtain a list of running processes

Use the Get-Process cmdlet.

Stop a process

Use the Stop-Process cmdlet and specify either the name
or the process ID as an argument.

Model the effect of a cmdlet before actually performing
the requested action

Use the -whatif argument.

Instruct Windows PowerShell to start up, run a cmdlet,
and then exit

Use the PowerShell command while prefixing the cmdlet
with & and enclosing the name of the cmdlet in curly
brackets.

Prompt for confirmation before stopping a process

Use the Stop-Process cmdlet while specifying the -confirm
argument.

Windows PowerShell 3 Step by Step

Using PowerShell
Remoting and Jobs

After completing this chapter, you will be able to:

= Use Windows PowerShell remoting to connect to a remote system.

m Use Windows PowerShell remoting to run commands on a remote system.
m Use Windows PowerShell jobs to run commands in the background.

m Receive the results of background jobs.

m Keep the results from background jobs.

Understanding Windows PowerShell remoting

One of the great improvements in Microsoft Windows PowerShell 3.0 is the change surrounding
remoting. The configuration is easier than it was in Windows PowerShell 2.0, and in most cases,
Windows PowerShell remoting just works. When talking about Windows PowerShell remoting, a

bit of confusion can arise because there are several different ways of running commands against
remote servers. Depending on your particular network configuration and security needs, one or more
methods of remoting may not be appropriate.

Classic remoting

Classic remoting in Windows PowerShell relies on protocols such as DCOM and RPC to make connec-
tions to remote machines. Traditionally, these protocols require opening many ports in the firewall
and starting various services that the different cmdlets utilize. To find the Windows PowerShell
cmdlets that natively support remoting, use the Get-Help cmdlet. Specify a value of computername
for the -parameter parameter of the Get-Help cmdlet. This command produces a nice list of all
cmdlets that have native support for remoting. The command and associated output appear here:

107

PS C:\> get-help * -Parameter computername | sort name | ft name, synopsis -auto -wrap

Name

Add-Computer
Add-Printer
Add-PrinterDriver

Add-PrinterPort
Clear-EventLog

Connect-PSSession
Connect-WSMan

Disconnect-PSSession
Disconnect-WSMan

Enter-PSSession

Get-CimAssociatedInstance

Get-CimClass

Write-EventlLog

Synopsis

Add the local computer to a domain or workgroup.
Adds a printer to the specified computer.
Installs a printer driver on the specified
computer.

Installs a printer port on the specified computer.
Deletes all entries from specified event logs on
the Tocal or remote computers.

Reconnects to disconnected sessions.

Connects to the WinRM service on a remote
computer.

Disconnects from a session.

Disconnects the client from the WinRM service on
a remote computer.

Starts an interactive session with a remote
computer.

Get-CimAssociatedInstance [-InputObject]
<ciminstance> [[-Association] <string>]
[-ResultClassName <string>] [-Namespace <string>]
[-OperationTimeoutSec <uint32>] [-ResourceUri
<uri>] [-ComputerName <string[]>] [-KeyOnly]
[<CommonParameters>]

Get-CimAssociatedInstance [-InputObject]
<ciminstance> [[-Association] <string>]
-CimSession <CimSession[]> [-ResultClassName
<string>] [-Namespace <string>]
[-OperationTimeoutSec <uint32>] [-ResourceUri
<uri>] [-KeyOnly] [<CommonParameters>]

Get-CimClass [[-ClassName] <string>]
[[-Namespace] <string>] [-OperationTimeoutSec
<uint32>] [-ComputerName <string[]>] [-MethodName
<string>] [-PropertyName <string>]
[-QualifierName <string>] [<CommonParameters>]

Get-CimClass [[-ClassName] <string>]
[[-Namespace] <string>] -CimSession
<CimSession[]> [-OperationTimeoutSec <uint32>]
[-MethodName <string>] [-PropertyName <string>]
[-QualifierName <string>] [<CommonParameters>]

Writes an event to an event log.

As you can see, many of the Windows PowerShell cmdlets that have the -computername param-
eter relate to Web Services Management (WSMAN), Common Information Model (CIM), or sessions.
To remove these cmdlets from the list, modify the command a bit to use Where-Object (? Is an alias
for Where-Object). The revised command and associated output appear here:

108 Windows PowerShell 3 Step by Step

PS C:\> Get-Help * -Parameter computername -Category cmdlet | ? modulename -match

'PowerShell.Management' | sort name | ft name, synopsis -AutoSize -Wrap

Name

Add-Computer
Clear-EventLog

Get-EventlLog
Get-HotFix
Get-Process

Get-Service
Get-WmiObject

Invoke-WmiMethod
Limit-EventLog

New-EventLog
Register-WmiEvent
Remove-Computer
Remove-EventLog

Remove-WmiObject

Rename-Computer
Restart-Computer

Set-Service
Set-WmilInstance

Show-EventLog

Stop-Computer
Test-Connection

Synopsis

Add the local computer to a domain or workgroup.

Deletes all entries from specified event logs on the local or
remote computers.

Gets the events in an event log, or a list of the event logs, on
the Tocal or remote computers.

Gets the hotfixes that have been applied to the local and remote
computers.

Gets the processes that are running on the local computer or a
remote computer.

Gets the services on a local or remote computer.

Gets instances of Windows Management Instrumentation (WMI)
classes or information about the available classes.

Calls Windows Management Instrumentation (WMI) methods.

Sets the event log properties that 1limit the size of the event
log and the age of its entries.

Creates a new event log and a new event source on a local or
remote computer.

Subscribes to a Windows Management Instrumentation (WMI) event.
Removes the local computer from its domain.

Deletes an event log or unregisters an event source.

Deletes an instance of an existing Windows Management
Instrumentation (WMI) class.

Renames a computer.

Restarts ("reboots") the operating system on local and remote
computers.

Starts, stops, and suspends a service, and changes its properties.

Creates or updates an instance of an existing Windows Management
Instrumentation (WMI) class.

Displays the event logs of the Tlocal or a remote computer in
Event Viewer.

Stops (shuts down) local and remote computers.

Sends ICMP echo request packets ("pings") to one or more
computers.

<-- output truncated -->

Some of the cmdlets provide the ability to specify credentials. This allows you to use a different

user account to make the connection and to retrieve the data. Figure 4-1 displays the credential dia-
log box that appears when the cmdlet runs.

Using PowerShell Remoting and Jobs

109

110

Windows PowerShell Credential Re... ?

Enter vour credentials,
User name: |ﬁ it aderstadministrator| v| e
Password:

FIGURE 4-1 Cmdlets that support the -credential parameter prompt for credentials when supplied with
a user name.

This technique of using the -computername and -credential parameters in a cmdlet appears here:

PS C:\> Get-WinEvent -LogName application -MaxEvents 1 -ComputerName exl -Credential
nwtraders\administrator

TimeCreated ProviderName Id Message

7/1/2012 11:54:14 AM MSExchange ADAccess 2080 Process MAD.EXE (...

However, as mentioned earlier, use of these cmdlets often requires opening holes in the firewall
or starting specific services. By default, these types of cmdlets fail when run against remote machines
that don't have relaxed access rules. An example of this type of error appears here:

PS C:\> Get-WinEvent -LogName application -MaxEvents 1 -ComputerName dcl -Credential
nwtraders\administrator

Get-WinEvent : The RPC server is unavailable

At line:1 char:1

+ Get-WinEvent -LogName application -MaxEvents 1 -ComputerName dcl -Credential iam

+ CategoryInfo : NotSpecified: (:) [Get-WinEvent], EventLogException
+ FullyQualifiedErrorId : System.Diagnostics.Eventing.Reader.EventLogException,
Microsoft.PowerShell.Commands.GetWinEventCommand

Other cmdlets, such as Get-Service and Get-Process, do not have a -credential parameter, and
therefore the commands associated with cmdlets such as Get-Service or Get-Process impersonate the
logged-on user. Such a command appears here:

PS C:\> Get-Service -ComputerName hyperv -Name bits

Status Name DisplayName
Running bits Background Intelligent Transfer Ser...
PS C:\>

Windows PowerShell 3 Step by Step

Just because the cmdlet does not support alternate credentials does not mean that the cmdlet
must impersonate the logged-on user. Holding down the Shift key and right-clicking the Windows
PowerShell icon from the taskbar brings up an action menu that allows you to run the program as a
different user. This menu appears in Figure 4-2.

Open
Open file location
Pin to Start

@' Run as administrator

: Run as different user
Unpin from Taskbar
Copy as path
Send to »

Cut
Copy

Create shortcut

Delete

Properties

FIGURE 4-2 The menu from the Windows PowerShell console permits running with different security credentials.

The Run As Different User dialog box appears in Figure 4-3.

Windows Security “

Run as different user

Please enter credentials to use for
CAWINDOWS\system32\WindowsPowerShellw1.0\powershell. exe.

| nwtraders'administrator |

& R —

Domain: nwiraders

Connect a smart card

Cancel

FIGURE 4-3 The Run As Different User dialog box permits entering a different user context.

Using the Run As Different User dialog box makes alternative credentials available for Windows
PowerShell cmdlets that do not support the -credential parameter.

Using PowerShell Remoting and Jobs 111

112

WinRM

Windows Server 2012 installs with Windows Remote Management (WinRM) configured and running
to support remote Windows PowerShell commands. WinRM is Microsoft's implementation of the
industry standard WS-Management protocol. As such, WinRM provides a firewall-friendly method of
accessing remote systems in an interoperable manner. It is the remoting mechanism used by the new
CIM cmdlets. As soon as Windows Server 2012 is up and running, you can make a remote connection
and run commands, or open an interactive Windows PowerShell console. Windows 8 Client, on the
other hand, ships with WinRM locked down. Therefore, the first step is to use the Enable-PSRemoting
function to configure Windows PowerShell remoting on the client machine. When running the
Enable-PSRemoting function, the function performs the following steps:

1. Starts or restarts the WinRM service

2. Sets the WinRM service startup type to Automatic

3. Creates a listener to accept requests from any Internet Protocol (IP) address
4. Enables inbound firewall exceptions for WSMAN traffic

5. Sets a target listener named Microsoft.powershell

6. Sets a target listener named Microsoft.powershell.workflow

7. Sets a target listener named Microsoft.powershell32

During each step of this process, the function prompts you to agree to performing the specified
action. If you are familiar with the steps the function performs and you do not make any changes
from the defaults, you can run the command with the -force switched parameter, and it will not
prompt prior to making the changes. The syntax of this command appears here:

EnabTle-PSRemoting -force

The use of the Enable-PSRemoting function in interactive mode appears here, along with all associ-
ated output from the command:

PS C:\> Enable-PSRemoting

WinRM Quick Configuration
Running command "Set-WSManQuickConfig" to enable remote management of this computer
by using the Windows Remote Management (WinRM) service.
This includes:

1. Starting or restarting (if already started) the WinRM service

2. Setting the WinRM service startup type to Automatic

3. Creating a listener to accept requests on any IP address

4. Enabling Windows Firewall inbound rule exceptions for WS-Management traffic
(for http only).

Windows PowerShell 3 Step by Step

Do you want to continue?

[Y] Yes [A] Yes to ATT [N] No [L] No to A1l [S] Suspend [?] Help
(default is "Y"):y

WinRM has been updated to receive requests.

WinRM service type changed successfully.

WinRM service started.

WinRM has been updated for remote management.
Created a WinRM Tistener on HTTP://* to accept WS-Man requests to any IP on this machine.
WinRM firewall exception enabled.

Confirm

Are you sure you want to perform this action?

Performing operation "Set-PSSessionConfiguration" on Target "Name:
microsoft.powershell SDDL:
0:NSG:BAD:P(A;;GA;;;BA) (A;;GA;; ;RM)S:P(AU; FA;GA; ; ;WD) (AU; SA;GXGW; 5 ;WD) . This will
allow selected users to remotely run Windows PowerShell commands on this computer".
[Y] Yes [A] Yes to A11 [N] No [L] No to A11 [S] Suspend [?] Help

(default 1is "Y"):y

Confirm

Are you sure you want to perform this action?

Performing operation "Set-PSSessionConfiguration" on Target "Name:
microsoft.powershell.workflow SDDL:
0:NSG:BAD:P(A;;GA;;;BA) (A;;GA; ; ;RM)S:P(AU; FA;GA; ; ;WD) (AU; SA;GXGW; 5 ;WD) . This will
allow selected users to remotely run Windows PowerShell commands on this computer".
[Y] Yes [A] Yes to A11 [N] No [L] No to A11 [S] Suspend [?] Help

(default 1is "Y"):y

Confirm

Are you sure you want to perform this action?

Performing operation "Set-PSSessionConfiguration" on Target "Name:
microsoft.powershel132 SDDL:
0:NSG:BAD:P(A;;GA;;;BA) (A;;GA; ; ;RM)S:P(AU; FA;GA; ; ;WD) (AU; SA;GXGW; 5 ;WD) . This will
allow selected users to remotely run Windows PowerShell commands on this computer".
[Y] Yes [A] Yes to A11 [N] No [L] No to A11 [S] Suspend [?] Help

(default 1is "Y"):y

PS C:\>

Once Windows PowerShell remoting is configured, use the Test-WSMan cmdlet to ensure that
the WinRM remoting is properly configured and is accepting requests. A properly configured system
replies with the information appearing here:

PS C:\> Test-WSMan -ComputerName w8c504

wsmid : http://schemas.dmtf.org/wbem/wsman/identity/1/wsmanidentity.xsd
ProtocolVersion : http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd
ProductVendor : Microsoft Corporation

ProductVersion : 0S: 0.0.0 SP: 0.0 Stack: 3.0

Using PowerShell Remoting and Jobs 113

This cmdlet works with Windows PowerShell 2.0 remoting as well. The output appearing here is
from a domain controller running Windows 2008 with Windows PowerShell 2.0 installed and WinRM
configured for remote access:

PS C:\> Test-WSMan -ComputerName dcl}

wsmid : http://schemas.dmtf.org/wbem/wsman/identity/1/wsmanidentity.xsd
ProtocolVersion : http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd
ProductVendor : Microsoft Corporation

ProductVersion : 0S: 0.0.0 SP: 0.0 Stack: 2.0

If WInRM is not configured, an error returns from the system. Such an error from a Windows 8
client appears here:

PS C:\> Test-WSMan -ComputerName w8c10

Test-WSMan : <f:WSManFault
xmlns:f="http://schemas.microsoft.com/wbem/wsman/1/wsmanfault" Code="2150859046"
Machine="w8c504.iammred.net"><f:Message>WinRM cannot complete the operation. Verify
that the specified computer name is valid, that the computer is accessible over the
network, and that a firewall exception for the WinRM service is enabled and allows
access from this computer. By default, the WinRM firewall exception for public
profiles Timits access to remote computers within the same local subnet.
</f:Message></f:WSManFault>

At Tine:1 char:1

+ Test-WSMan -ComputerName w8c1l0

+

+ CategoryInfo : InvalidOperation: (w8c1l0:String) [Test-WSMan], Invalid
OperationException
+ FullyQualifiedErrorId : WsManError,Microsoft.WSMan.Management.TestWSManCommand

Keep in mind that configuring WinRM via the Enable-PSRemoting function does not enable the
Remote Management firewall exception, and therefore PING commands will not work by default when
pinging to a Windows 8 client system. This appears here:

PS C:\> ping w8c504

Pinging w8c504.7iammred.net [192.168.0.56] with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.

Ping statistics for 192.168.0.56:
Packets: Sent = 4, Received = 0, Lost = 4 (100% 1oss).

Pings to a Windows 2012 server, do however, work. This appears here:
PS C:\> ping w8s504
Pinging w8s504.7iammred.net [192.168.0.57] with 32 bytes of data:
Reply from 192.168.0.57: bytes=32 time<lms TTL=128
Reply from 192.168.0.57: bytes=32 time<lms TTL=128

Reply from 192.168.0.57: bytes=32 time<lms TTL=128
Reply from 192.168.0.57: bytes=32 time<lms TTL=128

114 Windows PowerShell 3 Step by Step

Ping statistics for 192.168.0.57:

Packets: Sent = 4, Received = 4, Lost = 0 (0% Tloss),
Approximate round trip times in milli-seconds:

Minimum = Oms, Maximum = Oms, Average = Oms

Creating a remote Windows PowerShell session

For simple configuration on a single remote machine, entering a remote Windows PowerShell session
is the answer. To enter a remote Windows PowerShell session, use the Enter-PSSession crndlet. This
creates an interactive remote Windows PowerShell session on a target machine and uses the default
remote endpoint. If you do not supply credentials, the remote session impersonates the currently
logged on user The output appearing here illustrates connecting to a remote computer named dcl.
Once the connection is established, the Windows PowerShell prompt changes to include the name
of the remote system. Set-Location (which has an alias of s/) changes the working directory on the
remote system to C:\. Next, the Get-WmiObject cmdlet retrieves the BIOS information on the remote
system. The exit command exits the remote session, and the Windows PowerShell prompt returns to
the prompt configured previously.

PS C:\> Enter-PSSession -ComputerName dcl
[dc1l]: PS C:\Users\Administrator\Documents> s1 c:\
[dcl]: PS C:\> gwmi win32_bios

SMBIOSBIOSVersion : A0l

Manufacturer : Dell Computer Corporation
Name : Default System BIOS
SerialNumber : 9HQ1S21

Version : DELL -6

[dc1]: PS C:\> exit
PS C:\>

The good thing is that when using the Windows PowerShell transcript tool via Start-Transcript,
the transcript tool captures output from the remote Windows PowerShell session, as well as output
from the local session. Indeed, all commands typed appear in the transcript. The following commands
illustrate beginning a transcript, entering a remote Windows PowerShell session, typing a command,
exiting the session, and stopping the transcript:

PS C:\> Start-Transcript

Transcript started, output file is C:\Users\administrator.IAMMRED\Documents\PowerShell_
transcript.20120701124414. txt

PS C:\> Enter-PSSession -ComputerName dcl

[dcl]: PS C:\Users\Administrator\Documents> gwmi win32_bios

SMBIOSBIOSVersion : AOL

Manufacturer : Dell Computer Corporation
Name : Default System BIOS
SerialNumber : 9HQ1S21

Version : DELL -6

Using PowerShell Remoting and Jobs 115

116

[dc1]: PS C:\Users\Administrator\Documents> exit

PS C:\> Stop-Transcript

Transcript stopped, output file is C:\Users\administrator.IAMMRED\Documents\PowerShell_
transcript.20120701124414. txt

PS C:\>

Figure 4-4 displays a copy of the transcript from the previous session.

£ PowerShell_transcript.20120701124414 - Notepad - | o [T
File Edit Format View Help

|

Windows PowerShell transcript start

Start time: 20120701124414

Username : IAMMRED\administrator

Machine 1 W85584 (Microsoft Windows NT 6.2.8584.8)

Transcript started, output file is C:‘\Users\administrator.IAMMRED%Documents'\PowerShe
11_transcript.28128781124414.txt

PS C:\> Enter-PSSession -Computeriame dcl

[dec1]: PS C:\Users\Administrator\Documents> gwmi win32_bios

SMBIOSBIOSVersion :@ ABl

Manufacturer : Dell Computer Corporation
lame : Default System BIOS
Seriallumber r 9HQ1521

Version : DELL - B

[de1]: PS C:\Users\Administrator\Documents> exit
PS5 C:\» Stop-Transcript

Windows PowerShell transcript end
End time: 201208781124437

FIGURE 4-4 The Windows PowerShell transcript tool records commands and output received from a remote
Windows PowerShell session.

If you anticipate making multiple connections to a remote system, use the New-PSSession cmdlet
to create a remote Windows PowerShell session. New-PSSession permits you to store the remote ses-
sion in a variable and provides you with the ability to enter and to leave the remote session as often
as required—without the additional overhead of creating and destroying remote sessions. In the
commands that follow, a new Windows PowerShell session is created via the New-PSSession cmdlet.
The newly created session is stored in the $dcI variable. Next, the Enter-PSSession cmdlet is used to
enter the remote session by using the stored session. A command retrieves the remote hostname, and
the remote session is exited via the exit command. Next, the session is reentered, and the last process
is retrieved. The session is exited once again. Finally, the Get-PSSession cmdlet retrieves Windows
PowerShell sessions on the system, and all sessions are removed via the Remove-PSSession cmdlet.

Windows PowerShell 3 Step by Step

PS C:\> $dcl = New-PSSession -ComputerName dcl -Credential iammred\administrator
PS C:\> Enter-PSSession $dcl

[dcl]: PS C:\Users\Administrator\Documents> hostname

dcl

[dc1]: PS C:\Users\Administrator\Documents> exit

PS C:\> Enter-PSSession $dcl

[dc1]: PS C:\Users\Administrator\Documents> gps | select -Last 1

Handles NPM(K) PM(K) WS(K) vM(M) CPU(s) Id ProcessName

292 9 39536 50412 158 1.97 2332 wsmprovhost

[dc1]: PS C:\Users\Administrator\Documents> exit
PS C:\> Get-PSSession

Id Name ComputerName State ConfigurationName Availability

8 Session8 dcl Opened Microsoft.PowerShell Available

PS C:\> Get-PSSession | Remove-PSSession
PS C:\>

Running a single Windows PowerShell command

If you have a single command to run, it does not make sense to go through all the trouble of build-
ing and entering an interactive remote Windows PowerShell session. Instead of creating a remote
Windows PowerShell console session, you can run a single command by using the /nvoke-Command
cmdlet. If you have a single command to run, use the cmdlet directly and specify the computer name
as well as any credentials required for the connection. You are still creating a remote session, but you
are also removing the session. Therefore, if you have a lot of commands to run against the remote
machine, a performance problem could arise. But for single commands, this technique works well. The
technique is shown here, where the last process running on the Ex1 remote server appears:

PS C:\> Invoke-Command -ComputerName exl -ScriptBlock {gps | select -Last 1}

Handles NPM(K) PM(K) WS(K) vM(M) CPU(s) Id ProcessName PSComputerNa
me
224 34 47164 51080 532 0.58 10164 wsmprovhost exl

If you have several commands, or if you anticipate making multiple connections, the Invoke-
Command cmdlet accepts a session name or a session object in the same manner as the Enter-
PSSession cmdlet. In the output appearing here, a new PSSession is created to a remote computer
named dcl. The remote session is used to retrieve two different pieces of information. Once the
Windows PowerShell remote session is completed, the session stored in the $dcl variable is explicitly
removed.

Using PowerShell Remoting and Jobs 117

118

PS C:\> $dcl = New-PSSession -ComputerName dcl -Credential iammred\administrator

PS C:\> Invoke-Command -Session $dcl -ScriptBlock {hostname}

dcl

PS C:\> Invoke-Command -Session $dcl -ScriptBlock {Get-EventLog application -Newest 1}

Index Time EntryType Source InstanceID Message PSCompu
terName
17702 Jul 01 12:59 Information ESENT 701 DFSR... dcl

PS C:\> Remove-PSSession $dcl

Using /nvoke-Command, you can run the same command against a large number of remote sys-
tems. The secret behind this power is that the -computername parameter from the Invoke-Command
cmdlet accepts an array of computer names. In the output appearing here, an array of computer
names is stored in the variable $cn. Next, the $cred variable holds the PSCredential object for the
remote connections. Finally, the Invoke-Command cmdlet is used to make connections to all of
the remote machines and to return the BIOS information from the systems. The nice thing about this
technique is that an additional parameter, PSComputerName, is added to the returning object, per-
mitting easy identification of which BIOS is associated with which computer system. The commands
and associated output appear here:

PS C:\> $cn = "dcl","dc3","ex1","sq11l","wsusl","wds1l", "hypervl", "hyperv2", "hyperv3"

PS C:\> $cred = get-credential iammred\administrator
PS C:\> Invoke-Command -cn $cn -cred $cred -ScriptBlock {gwmi win32_bios}

SMBIOSBIOSVersion : BAP6710H.86A.0072.2011.0927.1425

Manufacturer : Intel Corp.

Name : BIOS Date: 09/27/11 14:25:42 Ver: 04.06.04
SerialNumber :

Version : INTEL - 1072009

PSComputerName : hyperv3

SMBIOSBIOSVersion : All

Manufacturer : Dell Inc.

Name : Phoenix ROM BIOS PLUS Version 1.10 All
SerialNumber : BDY91L1

Version : DELL - 15

PSComputerName : hyperv2

SMBIOSBIOSVersion : AQl

Manufacturer : Dell Computer Corporation
Name : Default System BIOS
SerialNumber : 9HQ1S21

Version : DELL -6

PSComputerName : dcl

Windows PowerShell 3 Step by Step

SMBIOSBIOSVersion :
: American Megatrends Inc.

: BIOS Date: 03/19/09 22:51:32 Ver: 09.00.04
1 3692-0963-1044-7503-9631-2546-83

: VRTUAL - 3000919
: wsusl

Manufacturer
Name
SerialNumber
Version
PSComputerName

SMBIOSBIOSVersion :
: American Megatrends Inc.
: Default System BIOS
: To Be Filled By 0.E.M.
: 7583MS - 20091228
: hypervl

Manufacturer
Name
SerialNumber
Version
PSComputerName

SMBIOSBIOSVersion :
: American Megatrends Inc.
: Default System BIOS
: None

: 091709 - 20090917

1 sqll

Manufacturer
Name
SerialNumber
Version
PSComputerName

SMBIOSBIOSVersion :
: American Megatrends Inc.
: Default System BIOS
: None

: 091709 - 20090917

: wdsl

Manufacturer
Name
SerialNumber
Version
PSComputerName

SMBIOSBIOSVersion :
: American Megatrends Inc.

: BIOS Date: 03/19/09 22:51:32 Ver: 09.00.04
1 8994-9999-0865-2542-2186-8044-69

: VRTUAL - 3000919
: dc3

Manufacturer
Name
SerialNumber
Version
PSComputerName

SMBIOSBIOSVersion :
: American Megatrends Inc.

: BIOS Date: 03/19/09 22:51:32 Ver: 09.00.04
1 2301-9053-4386-9162-8072-5664-16

: VRTUAL - 3000919
:oexl

Manufacturer
Name
SerialNumber
Version
PSComputerName

PS C:\>

090004

V1.6

080015

080015

090004

090004

Using Windows PowerShell jobs

Windows PowerShell jobs permit you to run one or more commands in the background. Once you
start the Windows PowerShell job, the Windows PowerShell console returns immediately for further
use. This permits you to accomplish multiple tasks at the same time. You can begin a new Windows

Using PowerShell Remoting and Jobs 119

PowerShell job by using the Start-Job cmdlet. The command to run as a job is placed in a script block,
and the jobs are sequentially named Jobl, Job2, and so on. This is shown here:

PS C:\> Start-Job -ScriptBlock {get-process}

Id Name PSJobTypeName State HasMoreData Location
10 Job10 BackgroundJob Running True Tlocalhost
PS C:\>

The jobs receive job IDs that are also sequentially numbered. The first job created in a Windows
PowerShell console always has a job ID of 1. You can use either the job ID or the job name to obtain
information about the job. This is shown here:

PS C:\> Get-Job -Name jobl0

120

Id Name PSJobTypeName State HasMoreData Location

10 0610 Backgroundlob Completed True Tocalhost
PS C:\> Get-Job -Id 10

Id Name PSJobTypeName State HasMoreData Location

10 0610 Backgroundlob Completed True Tocalhost
PS C:\>

Once you see that the job has completed, you can receive the job. The Receive-Job cmdlet returns
the same information that returns if a job is not used. The Jobl output is shown here (truncated to

save space):

PS C:\> Receive-Job -Name jobl0

Handles NPM(K) PM(K) WS (K)
62 9 1672 6032
132 9 2316 5632
122 7 1716 4232
114 9 14664 15372
556 62 53928 5368
58 8 2960 7068
32 5 1468 3468
784 14 3284 5092
529 27 2928 17260
182 13 8184 11152
135 11 2880 7552

(truncated output)

Windows PowerShell 3 Step by Step

VM(M)

616
70
52
56

145
96
56

CPU(s)

3.17
0.19
0.00

ProcessName
apdproxy
atiecTxx
atiesrxx
audiodg

CcC

conhost
conhost
csrss

csrss
DCPSysMgr
DCPSysMgrSvc

Once a job has been received, that is it—the data is gone, unless you saved it to a variable or
you call the Receive-Job cmdlet with the -keep switched parameter. The following code attempts to
retrieve the information stored from job10, but as appears here, no data returns:

PS C:\> Receive-Job -Name jobl0
PS C:\>

What can be confusing about this is that the job still exists, and the Get-Job cmdlet continues to
retrieve information about the job. This is shown here:

PS C:\> Get-Job -Id 10

Id Name PSJobTypeName State HasMoreData Location

10 Job10 BackgroundJob Completed False Tlocalhost

As a best practice, use the Remove-Job cmdlet to delete remnants of completed jobs when you are
finished using the job object. This will avoid confusion regarding active jobs, completed jobs, and jobs
waiting to be processed. Once a job has been removed, the Get-Job cmdlet returns an error if you
attempt to retrieve information about the job—because it no longer exists. This is illustrated here:

PS C:\> Remove-Job -Name jobl0

PS C:\> Get-Job -Id 10

Get-Job : The command cannot find a job with the job ID 10. Verify the value of the
Id parameter and then try the command again.

At Tine:1 char:1

+ Get-Job -Id 10

+ CategoryInfo : ObjectNotFound: (10:Int32) [Get-Job], PSArgumentException
+ FullyQualifiedErrorId : JobWithSpecifiedSessionNotFound,Microsoft.PowerShell.
Commands . GetJobCommand

When working with the job cmdlets, | like to give the jobs their own name. A job that returns
process objects via the Get-Process cmdlet might be called getProc. A contextual naming scheme
works better than trying to keep track of names such as Jobl and Job2. Do not worry about making
your job names too long, because you can use wildcard characters to simplify the typing requirement.
When you receive a job, make sure you store the returned objects in a variable. This is shown here:

PS C:\> Start-Job -Name getProc -ScriptBlock {get-process}
Id Name PSJobTypeName State HasMoreData Location

12 getProc BackgroundJob Running True Tocalhost

PS C:\> Get-Job -Name get*
Id Name PSJobTypeName State HasMoreData Location

12 getProc BackgroundJob Completed True Tocalhost

Using PowerShell Remoting and Jobs 121

PS C:\> $procObj = Receive-Job -Name get*
PS C:\>

Once you have the returned objects in a variable, you can use the objects with other Windows
PowerShell cmdlets. One thing to keep in mind is that the object is deserialized. This is shown here,
where | use gm as an alias for the Get-Member cmdlet:

PS C:\> $procObj | gm

TypeName: Deserialized.System.Diagnostics.Process

This means that not all the standard members from the System.Diagnostics.Process .NET
Framework object are available. The default methods are shown here (gps is an alias for the
Get-Process cmdlet, gm is an alias for Get-Member, and -m is enough of the -membertype parameter
to distinguish it on the Windows PowerShell console line):

PS C:\> gps | gm -m method

TypeName: System.Diagnostics.Process

Name MemberType Definition

BeginErrorReadLine Method System.Void BeginErrorReadLine()

BeginOutputReadLine Method System.Void BeginOutputReadLine()

CancelErrorRead Method System.Void CancelErrorRead()

CancelOutputRead Method System.Void CancelOutputRead()

Close Method System.Void Close()

CloseMainWindow Method booTl CloseMainWindow()

CreateObjRef Method System.Runtime.Remoting.0ObjRef CreateObjRef(type
requestedType)

Dispose Method System.Void Dispose()

Equals Method bool Equals(System.Object obj)

GetHashCode Method int GetHashCode()

GetLifetimeService Method System.Object GetLifetimeService()

GetType Method type GetType(Q)

InitializeLifetimeService Method System.Object InitializelLifetimeService()

Kill Method System.Void Kil1(Q)

Refresh Method System.Void Refresh()

Start Method bool Start()

ToString Method string ToString(Q)

WaitForExit Method bool WaitForExit(int milliseconds), System.Void
WaitForExit()

WaitForInputldle Method bool WaitForInputIdle(int milliseconds), bool
WaitForInputIdle()

Methods from the deserialized object are shown here, where | use the same command | used
previously:

122 Windows PowerShell 3 Step by Step

PS C:\> $procObj | gm -m method

TypeName: Deserialized.System.Diagnostics.Process

Name MemberType Definition

ToString Method string ToString(), string ToString(string format, System.IFormatProvider
formatProvider)

PS C:\>

A listing of the cmdlets that use the noun job is shown here:
PS C:\> Get-Command -Noun job | select name

Name
Get-Job
Receive-Job
Remove-Job
Resume-Job
Start-Job
Stop-Job
Suspend-Job
Wait-Job

When starting a Windows PowerShell job via the Start-Job cmdlet, you can specify a name to hold
the returned job object. You can also assign the returned job object in a variable by using a straight-
forward value assignment. If you do both, you end up with two copies of the returned job object. This
is shown here:

PS C:\> $rtn = Start-Job -Name net -ScriptBlock {Get-Net6to4Configuration}
PS C:\> Get-Job -Name net

Id Name PSJobTypeName State HasMoreData Location
18 net Backgroundlob Completed True TocaThost
PS C:\> $rtn

Id Name PSJobTypeName State HasMoreData Location
18 net Backgroundlob Completed True TocaThost

Retrieving the job via the Receive-Job cmdlet consumes the data. You cannot come back and
retrieve the returned data again. This code shown here illustrates this concept:

Using PowerShell Remoting and Jobs 123

124

PS C:\> Receive-Job $rtn

Runspaceld : e8ed4ab6-eb88-478c-b2de-5991b5636efl
Caption :

Description : 6to4 Configuration
ElementName

InstancelD : ActiveStore

AutoSharing : 0

PolicyStore : ActiveStore

ReTayName : 6to4.ipv6.microsoft.com.
RelayState : 0

ResolutionInterval : 1440

State : 0

PS C:\> Receive-Job $rtn
PS C:\>

The next example illustrates examining the command and cleaning up the job. When you use
Receive-Job, an error message is displayed. To find additional information about the code that trig-
gered the error, use the job object stored in the $rtn variable or the Get-Net6to4Configuration job.
You may prefer using the job object stored in the $rtn variable, as shown here:

PS C:\> $rtn.Command
Get-Net6to4Configuration

To clean up first, remove the leftover job objects by getting the jobs and removing the jobs. This is
shown here:

PS C:\> Get-Job | Remove-Job
PS C:\> Get-Job
PS C:\>

When you create a new Windows PowerShell job, it runs in the background. There is no indica-
tion as the job runs whether it ends in an error or it's successful. Indeed, you do not have any way
to tell when the job even completes, other than to use the Get-Job cmdlet several times to see when
the job state changes from running to completed. For many jobs, this may be perfectly acceptable. In
fact, it may even be preferable, if you wish to regain control of the Windows PowerShell console as
soon as the job begins executing. On other occasions, you may wish to be notified when the Windows
PowerShell job completes. To accomplish this, you can use the Wait-Job cmdlet. You need to give the
Wait-Job cmdlet either a job name or a job ID. Once you have done this, the Windows PowerShell
console will pause until the job completes. The job, with its completed status, displays on the console.
You can then use the Receive-Job cmdlet to receive the deserialized objects and store them in a vari-
able (cn is a parameter alias for the -computername parameter used in the Get-WmiObject command).
The command appearing here starts a job to receive software products installed on a remote server
named hypervl. It impersonates the currently logged-on user and stores the returned object in a
variable named $rtn.

Windows PowerShell 3 Step by Step

PS C:\> $rtn = Start-Job -ScriptBlock {gwmi win32_product -cn hypervl}

PS C:\> $rtn
Id Name PSJobTypeName State HasMoreData Location
22 Job22 BackgroundJob Running True Tlocalhost

PS C:\> Wait-Job -id 22

Id Name PSJobTypeName State HasMoreData Location

22 Job22 BackgroundJob Completed True Tlocalhost

PS C:\> $prod = Receive-Job -id 22
PS C:\> $prod.Count

In a newly open Windows PowerShell console, the Start-Job cmdlet is used to start a new job. The
returned job object is stored in the $rtn variable. You can pipeline the job object contained in the $rtn
variable to the Stop-Job cmdlet to stop the execution of the job. If you try to use the job object in the
$rtn variable directly to get job information, an error will be generated. This is shown here:

PS C:\> $rtn = Start-Job -ScriptBlock {gwmi win32_product -cn hypervl}

PS C:\> $rtn | Stop-Job

PS C:\> Get-Job $rtn

Get-Job : The command cannot find the job because the job name
System.Management.Automation.PSRemotingJob was not found. Verify the value of the
Name parameter, and then try the command again.

At Tine:1 char:1

+ Get-Job $rtn

+ CategoryInfo : ObjectNotFound: (System.Manageme...n.PSRemotingJob:
String) [Get-Job], PSArgumentException

+ FullyQualifiedErrorId : JobWithSpecifiedNameNotFound,Microsoft.PowerShell.
Commands . GetJobCommand

You can pipeline the job object to the Get-Job cmdlet and see that the job is in a stopped state.
Use the Receive-Job cmdlet to receive the job information and the count property to see how many
software products are included in the variable, as shown here:

PS C:\> $rtn | Get-Job
Id Name PSJobTypeName State HasMoreData Location

2 Job2 BackgroundJob Stopped False Jlocalhost

PS C:\> $products = Receive-Job -Id 2
PS C:\> $products.count
0

Using PowerShell Remoting and Jobs 125

126

In the preceding list you can see that no software packages were enumerated. This is because the
Get-WmiObject command to retrieve information from the Win32_Product class did not have time
to finish.

If you want to keep the data from your job so that you can use it again later, and you do not want
to bother storing it in an intermediate variable, use the -keep parameter. In the command that fol-
lows, the Get-NetAdapter cmdlet is used to return network adapter information.

PS C:\> Start-Job -ScriptBlock {Get-NetAdapter}
Id Name PSJobTypeName State HasMoreData Location

4 Job4 BackgroundJob Running True Tlocalhost

When checking on the status of a background job, and you are monitoring a job you just created,
use the -newest parameter instead of typing a job number, as it is easier to remember. This technique
appears here:

PS C:\> Get-Job -Newest 1
Id Name PSJobTypeName State HasMoreData Location

4 Job4 BackgroundJob Completed True Tlocalhost

Now, to retrieve the information from the job and to keep the information available, use the -keep
switched parameter as illustrated here:

PS C:\> Receive-Job -Id 4 -Keep

ifAlias : Ethernet

InterfaceAlias : Ethernet

ifIndex : 12

ifDesc : Microsoft Hyper-V Network Adapter

ifName : Ethernet_7

DriverVersion 1 6.2.8504.0

LinkLayerAddress : 00-15-5D-00-2D-07

MacAddress : 00-15-5D-00-2D-07

LinkSpeed : 10 Gbps

MediaType : 802.3

PhysicalMediaType : Unspecified

AdminStatus : Up

MediaConnectionState : Connected

DriverInformation : Driver Date 2006-06-21 Version
6.2.8504.0 NDIS 6.30

DriverFileName : netvsc63.sys

NdisVersion : 6.30

ifOperStatus : Up

Runspaceld : 9ce8f8e6-1a09-4103-a508-c60398527

<output truncated>

Windows PowerShell 3 Step by Step

You can continue to work directly with the output in a normal Windows PowerShell fashion, like so:

PS C:\> Receive-Job -Id 4 -Keep | select name

name

Ethernet

PS C:\> Receive-Job -Id 4 -Keep | select transmitlinksp*

TransmitLinkSpeed

10000000000

Using Windows PowerShell remoting: step-by-step exercises

In this exercise, you will practice using Windows PowerShell remoting to run remote commands.
For the purpose of this exercise, you can use your local computer. First, you will open the Windows
PowerShell console, supply alternate credentials, create a Windows PowerShell remote session, and
run various commands. Next, you will create and receive Windows PowerShell jobs.

Supplying alternate credentials for remote Windows PowerShell sessions

Log on to your computer with a user account that does not have administrator rights.

Open the Windows PowerShell console.

Notice the Windows PowerShell console prompt. An example of such a prompt appears here:
PS C:\Users\ed.IAMMRED>

Use a variable named $cred to store the results of using the Get-Credential cmdlet. Specify
administrator credentials to store in the $cred variable. An example of such a command
appears here:

$cred = Get-Credential iammred\administrator

Use the Enter-PSSession cmdlet to open a remote Windows PowerShell console session. Use
the credentials stored in the $cred variable, and use localhost as the name of the remote com-
puter. Such a command appears here:

Enter-PSSession -ComputerName Tlocalhost -Credential $cred

Notice how the Windows PowerShell console prompt changes to include the name of the
remote computer, and also changes the working directory. Such a changed prompt appears
here:

[Tocalhost]: PS C:\Users\administrator\Documents>

Using PowerShell Remoting and Jobs 127

7. Use the whoami command to verify the current context. The results of the command appear
here:

[Tocalhost]: PS C:\Users\administrator\Documents> whoami

jammred\administrator

8. Use the exit command to exit the remote session. Use the whoami command to verify that the
user context has changed.

9. Use WMI to retrieve the BIOS information on the local computer. Use the alternate credentials
stored in the $cred variable. This command appears here:

gwmi -Class win32_bios -cn Tocalhost -Credential $cred

The previous command fails and produces the following error. This error comes from WMI and
states that you are not permitted to use alternate credentials for a local WMI connection.

gwmi : User credentials cannot be used for local connections
At Tline:1 char:1

+ gwmi -Class win32_bios -cn localhost -Credential $cred

+

+ CategoryInfo : InvalidOperation: (:) [Get-WmiObject], ManagementException
+ FullyQualifiedErrorId : GetWMIManagementException,Microsoft.PowerShell.Commands.
GetWmiObjectCommand

10. Put the WMI command into the -scriptblock parameter for Invoke-Command. Specify the local
computer as the value for computername and use the credentials stored in the $cred variable.

The command appears here (using -script as a shortened version of -scriptblock):

Invoke-Command -cn localhost -script {gwmi -Class win32_bios} -cred $cred

11. Press the up arrow key to retrieve the previous command and erase the credential parameter.

The revised command appears here:

Invoke-Command -cn localhost -script {gwmi -Class win32_bios}

When you run the command, it generates the error appearing here because a normal user
does not have remote access by default (if you have admin rights, then the command works):

[Tocalhost] Connecting to remote server localhost failed with the following error
message : Access is denied. For more information, see the about_Remote_Troubleshooting
Help topic.
+ CategoryInfo : OpenError: (localhost:String) [], PSRemotingTransport
Exception

+ FullyQualifiedErrorId : AccessDenied,PSSessionStateBroken

128 Windows PowerShell 3 Step by Step

12. Create an array of computer names. Store the computer names in a variable named $cn. Use

the array appearing here:

$cn = $env:COMPUTERNAME, "localhost","127.0.0.1"

13. Use Invoke-Command to run the WMI command against all three computers at once. The

command appears here:
Invoke-Command -cn $cn -script {gwmi -Class win32_bios}

This concludes this step-by-step exercise.

In the following exercise, you will create and receive Windows PowerShell jobs.

Creating and receiving jobs

Open the Windows PowerShell console as a non-elevated user.

Start a job named Get-Process that uses a -scriptblock parameter that calls the Get-Process
cmdlet (gps is an alias for Get-Process). The command appears here:

Start-Job -Name gps -ScriptBlock {gps}

Examine the output from starting the job. It lists the name, state, and other information about
the job. Sample output appears here:

Id Name PSJobTypeName State HasMoreData Location

9 gaps BackgroundJob Running True Tocalhost

Use the Get-Process cmdlet to determine if the job has completed. The command appears
here:

Get-Job gps

Examine the output from the previous command. The state reports completed when the job
has completed. If data is available, the hasmoredata property reports true. Sample output
appears here:

Id Name PSJobTypeName State HasMoreData Location

9 aps BackgroundJob Completed True Tocalhost
Receive the results from the job. To do this, use the Receive-Job cmdlet as shown here:

Receive-Job gps

Using PowerShell Remoting and Jobs 129

7. Press the up arrow key to retrieve the Get-Job command. Run it. Note that the hasmoredata
property now reports false, as shown here:
Id Name PSJobTypeName State HasMoreData Location
9 aps BackgroundJob Completed False Tlocalhost

8. Create a new job with the same name as the previous job: gps. This time, change the -script-
block parameter value to gsv (the alias for Get-Service). The command appears here:
Start-Job -Name gps -ScriptBlock {gsv}

9. Now use the Get-Job cmdlet to retrieve the job with the name gps. Note that the command
retrieves both jobs, as shown here:
Get-Job -name gps
Id Name PSJobTypeName State HasMoreData Location
9 gps BackgroundJob Completed False Tocalhost
11 gps BackgroundJob Completed True TocaTlhost

10. Use the Receive-Job cmdlet to retrieve the job ID associated with your new job. This time, use
the -keep switch, as shown here:
Receive-Job -Id 11 -keep

11. Use the Get-Job cmdlet to retrieve your job. Note that the hasmoredata property still reports

true because you're using the -keep switch.

This concludes this exercise.

Chapter 4 quick reference

130

To

Work interactively on a remote system

Do this

Use the Enter-PSSession cmdlet to create a remote
session.

Configure Windows PowerShell remoting

Use the Enable-PSRemoting function.

Run a command on a remote system

Use the Invoke-Command cmdlet and specify the com-
mand in a -scriptblock parameter.

Run a command as a job

Use the Start-Job cmdlet to execute the command.

Check on the progress of a job

Use the Get-Job cmdlet and specify either the job ID or
the job name.

Check on the progress of the newest job

Use the Get-Job cmdlet and specify the -newest param-
eter, and supply the number of new jobs to monitor.

Retrieve the results from a job

Use the Receive-Job cmdlet and specify the job ID.

Windows PowerShell 3 Step by Step

Index

Symbols

$$ variable, 142
$acl variable, 362

$args variable, 139, 142, 211, 213

$aryElement variable, 413
$arylLog variable, 554, 556
$aryServer variable, 569
$aryText array, 413
$aryText variable, 413, 416
$aryUsers variable, 566, 567
$ary variable, 151, 154, 158
$bios variable, 354

$caps array, 153

$caption variable, 505
$_character, 75
$choiceRTN variable, 505
$class variable, 525

$clsID variable, 520

$cn variable, 344, 464
$colDrives variable, 62
$colPrinters variable, 62

$computerName variable, 62, 502, 503
$confirmpreference variable, 216

$constASCll variable, 324

$credential variable, 341, 444, 464

$cred variable, 118, 127
$dcl variable, 116

$DebugPreference variable, 465

$ (dollar sign) character, 141
$driveData variable, 187, 189
$drives hash table, 527
$dteDiff variable, 329
$dteEnd variable, 329
$dteMaxAge variable, 568
$dteStart variable, 329

$env:psmodulepath variable, 222

$ErrorActionPreference variable, 391, 392, 524, 525, 623

$error.clear() method, 391

$error variable, 142, 191, 389, 390, 392, 624
$ExecutionContext variable, 142
$false variable, 142

$foreach variable, 142
$FormatEnumerationLimit value, 381
$formatEnumeration variable, 225
$help parameter, 184

$HOME variable, 142

$host variable, 97, 142

$input variable, 142, 202, 594
$intGroupType variable, 394, 395
$intSize variable, 568, 570

$intUsers variable, 415

$i++ operator, 415

$i++ syntax, 149

$item variable, 264

$i variable, 143, 148, 152, 328, 390, 415, 547, 566
$LastExitCode variable, 142

$logon variable, 374

$Match variable, 142
$MaximumHistoryCount variable, 594
$message variable, 505

$modulepath variable, 233

$month parameter, 206
$Mylnvocation variable, 142
$namespace variable, 524, 525
$newAry variable, 567

$noun variable, 507

$null variable, 142

$num variable, 477, 478, 485, 486, 487, 490
$objl variable, 529, 530

$objADSI variable, 384, 413, 415
$objDisk variable, 313

$objEnv variable, 104, 105

$objGroup variable, 395

633

$objOU variable

$objOU variable, 384 $users variable, 443

$objUser variable, 395, 415 $A variable, 142

$objWMiIServices variable, 322, 328 $_variable, 86, 137, 142, 183, 332
$objWMI variable, 631 $? variable, 142

$OFS variable, 142 $VerbosePreference variable, 210, 516, 519, 521
$oldVerbosePreference variable, 516, 521 $verbose variable, 516

$oupath variable, 435 $v variable, 381

$password variable, 546, 566, 568 $wmiClass variable, 320

$path parameter, 206, 207 $wmiFilter variable, 320

$process variable, 138, 264, 345, 364 $wmiNS variable, 322, 327

$profile variable, 268-270, 279 $wmiQuery variable, 322, 328
$providername variable, 518, 521 $wshnetwork.EnumPrinterConnections()
$provider variable, 518 command, 62

$PSCmdlet variable, 219 $wshnetwork variable, 61

$PSHome variable, 142, 267, 272 $xml variable, 563, 565
$PSModulePath variable, 232 $year parameter, 206

$psSession variable, 353 $zip parameter, 190

$PSVersionTable variable, 225 [0] syntax, 230

$query variable, 326 & (@ampersand) character, 12

$rtn variable, 124 * (asterisk) wildcard operator, 7,17, 21, 68, 293, 309,
$scriptRoot variable, 469, 470 442

$servers array, 509, 510 " (backtick) character, 137, 480, 628
$session variable, 345, 352 \ (backward slash), 68

$share variable, 365 I CALL prefix, 470

$ShelllD variable, 142 A character, 291

$StackTrace variable, 142 __CLASS property, 188

$strClass variable, 384, 395, 412, 413, 414, 415 : (colon), 68

$strComputer variable, 320, 322, 327 -computername parameter, 108, 118, 124, 246
$strDatabase variable, 546, 566 {} (curly brackets), missing, 177-178
$strDomain variable, 410, 546, 566 __DERIVATION property, 188

$strFile variable, 323 __DYNASTY property, 188

$strFname variable, 547, 567 = (equal) character, 162, 320

$strLevel variable, 555 = (equal sign), 162, 320

$strLname variable, 547 ! (exclamation mark), 470

$strLogldent variable, 555, 556 -Force parameter, 459

$strLogPath variable, 569 __GENUS property, 188

§$strLog variable, 555 ' (grave accent) character, 143, 319, 321
$strManager variable, 410 > (greater-than) symbol, 320
$strName variable, 142, 143, 408, 412, 415 < (less-than) symbol, 320

$strOUName variable, 384, 413, 414 __NameSpace class, 287

$strOU variable, 410, 546, 566, 567 __NAMESPACE property, 188

$strPath variable, 142 'n escape sequence, 328

$strUserName variable, 142 __PATH property, 188

$strUserPath variable, 142 | (pipe) character, 24, 324, 556

$strUser variable, 410, 415 + (plus symbol), 137, 143

$this variable, 142 -property argument, 77

$true variable, 142 __PROPERTY_COUNT property, 188
$userDomain variable, 62 __provider class, 289

$userName variable, 62 ? (question mark), 291

>> (redirect-and-append arrow), 6

634 Index

> (redirection arrow), 6, 318
__RELPATH property, 188
#requires statement, 234
__SERVER property, 188

I SET keyword, 470

. (shortcut dot), 320

' (single quote) character, 92
__SUPERCLASS property, 188
%windir% variable, 51

A

abstract qualifier, 371
abstract WMI classes, 370
access control lists (ACLs), 90, 362
Access Denied error, 287, 463, 464
Access property, 187
account lockout policy, checking, 430
accounts, user
creating, 395-396
deleting, 411-412
AccountsWithNoRequiredPassword.psl script, 132
ACLs (access control lists), 90, 362
-action parameter, 488
Active Directory
cmdlets for
creating users using, 435-436
discovering information about forest and
domain, 428-431
finding information about domain controller
using, 424-428
committing changes to, 389
finding unused user accounts using, 440-442
installing RSAT for, 420
locked-out users, unlocking, 436-437
managing users using, 432-434
objects in
ADSI providers and, 385-387
binding and, 388
connecting to, 388
error handling, adding, 392
errors, 389-392
LDAP naming convention and, 387-388
organizational units, creating, 383-384,
413-414
overview, 383
objects, updating using Active Directory
module, 443-444

AddOne function

querying, 590
renaming sites, 431-432
users
address information, exposing, 400-401
computer account, 395-396
creating, 435-436
deleting, 411-412
disabled, finding, 438-439
finding and unlocking user accounts, 436-
437
general user information, 398-399
groups, 394-395
managing, 432-434
multiple users, creating, 408-409
multivalued users, creating, 414-417
organizational settings, modifying, 409-411
overview, 393-394
passwords, changing, 444-445
profile settings, modifying, 403-405
properties, modifying, 397-398
telephone settings, modifying, 405-407
unused user accounts, finding, 440-442
user account control, 396-397
Active Directory Domain Services. See AD DS
Active Directory Management Gateway Service
(ADMGS), 419
Active Directory Migration Tool (ADMT), 385
Active Directory module
automatic loading of, 421
connecting to server containing, 421-422
default module locations, 421
finding FSMO role holders, 422-427
importing via Windows PowerShell profile, 436
installing, 419-420
overview, 419
updating Active Directory objects using, 443—
444
verifying, 421
Active Directory Service Interfaces (ADSI), 383,
385-387
ActiveX Data Object (ADO), 153
Add cmdlet, 583
Add-Computer cmdlet, 571
Add-Content cmdlet, 84, 571
Add Criteria button, 33
Add-Member cmdlet, 571
AD_Doc.txt file, 431, 462
AddOne filter, 202
AddOne function, 490

Index

635

Add-Printer cmdlet

Add-Printer cmdlet, 571 ADS_UF_INTERDOMAIN_TRUST_ACCOUNT flag, 397
Add-PrinterDriver cmdlet, 571 ADS_UF_LOCKOUT flag, 397
Add-PrinterPort cmdlet, 571 ADS_UF_MNS_LOGON_ACCOUNT flag, 397
Add-RegistryValue function, 467, 468-469, 470 ADS_UF_NORMAL_ACCOUNT flag, 397
address information, 400-401 ADS_UF_NOT_DELEGATED flag, 397
Address tab, Active Directory Users and ADS_UF_PASSWD_CANT_CHANGE flag, 397
Computers, 401 ADS_UF_PASSWD_NOTREQD flag, 396, 397
AD DS (Active Directory Domain Services) ADS_UF_PASSWORD_EXPIRED flag, 397
AD DS Tool, 385 ADS_UF_SCRIPT flag, 397
deploying ADS_UF_SERVER_TRUST_ACCOUNT flag, 397
domain controller, adding to domain, 453— ADS_UF_SMARTCARD_REQUIRED flag, 397
455 ADS_UF_TEMP_DUPLICATE_ACCOUNT flag, 397
domain controller, adding to new forest, 458— ADS_UF_TRUSTED_FOR_DELEGATION flag, 397
459 ADS_UF_TRUSTED_TO_AUTHENTICATE_FOR_
domain controller prerequisites, DELEGATION flag, 397
installing, 457-458 ADS_UF_USE_DES_KEY_ONLY flag, 397
features, adding, 448 ADS_UF_WORKSTATION_TRUST_ACCOUNT flag, 396,
forests, creating, 452-453 397
infrastructure prerequisites, 447 -alias argument, 567
IP address assignment, 448 aliases, 489, 626-627
read-only domain controller, adding, 455- creating for cmdlets, 19
457 finding all for object, 59
renaming computer, 448 finding for cmdlets, 150-151
restarting computer, 449 provider for, 66-68
role-based prerequisites, 448 setting, 246
script execution policy, setting, 447 AllowMaximum property, 315
verification steps, 449-450 AllowPasswordReplicationAccountName
tools installation, 448 parameter, 456
ADDSDeployment module, 452, 454, 456, 459 AllSigned execution policy, 134
AddTwo function, 490 All Users, All Hosts profile, 275-276
Add-Type cmdlet, 571 AllUsersCurrentHost profile, 269
Add-WindowsFeature cmdlet, 386, 420, 448, 455, alphabetical sorting, 77
458 ampersand (&) character, 12
AD LDS Tool, 385 -a parameter, 212
ADMGS (Active Directory Management Gateway AppLocker module, 580
Service), 419 Appx module, 580
admin environment variable, 78, 79 ArgumentList block, 263
Administrator Audit Logging feature, 557 arguments, for cmdlets, 12
administrator variable, 100 [array] alias, 146, 190
ADMT (Active Directory Migration Tool), 385 Array function, 151
ADO (ActiveX Data Object), 153 array objects, 54
ADSI (Active Directory Service Interfaces), 383, arrays
385-387 using -contains operator to examine contents
ADsPath, 384 of, 507-509
ADS_UF_ACCOUNTDISABLE flag, 397 creating, 589
ADS_UF_DONT_EXPIRE_PASSWD flag, 397 indexing, 377
ADS_UF_DONT_REQUIRE_PREAUTH flag, 397 ASCll values, casting to, 152-153
ADS_UF_ENCRYPTED_TEXT_PASSWORD_ALLOWED -asjob parameter, 350, 353
flag, 397 -asplaintext argument, 545, 566
ADS_UF_HOMEDIR_REQUIRED flag, 397 assignment operators, 163

636 Index

association classes, WMI, 370, 373-378

asterisk (*) wildcard operator, 7, 17, 21, 68, 293, 309,
442

ast-write-time property, 30

Attributes property, 82

audit logging (Exchange Server 2010), 557-561

-autosize argument, 313, 327, 331

-AutoSize parameter, 27

Availability property, 187

Backspace key, 38
backtick () character, 137, 480, 628
backup domain controllers (BDCs), 385
backward slash (\), 68
basename property, 230
BDCs (backup domain controllers), 385
Begin block, 199, 205
BestPractices module, 580
binary SD format, 362
binding, 388
BIOS information, 115, 308-311, 371
bios pattern, 291
BitsTransfer module, 236, 580
BlockSize property, 187
bogus module, 234
[bool] alias, 146, 190
boundary-checking function, 526-527
BranchCache module, 579
breakpoints
deleting, 494
enabling and disabling, 494
ID number, 494
listing, 492-493
purpose of, 483
responding to, 490-492
script location and, 485
setting
on commands, 489-490
on line number, 483-484
on variables, 485-489
overview, 483
vs. stepping functionality, 483
storage location, 492
Break statement, 160, 167
business logic
encapsulating with functions, 194-196
program logic vs., 194

CIM (Common Information Model)

BusinessLogicDemo.psl script, 194
Bypass execution policy, 134
bypass option, 134, 136, 238
[byte] alias, 146, 190

C

canonical aliases, 626-627
Caption property, 187, 315
Case Else expression, 165
casting, 152-153
Catch block, 529. See also Try...Catch...Finally blocks
Categoryinfo property, 389
C attribute, 388
-ccontains operator, 507
cd alias, 67
cd .. command, 7
Certificate drive, 102
certificates
deleting, 74
finding expired, 75
listing, 69-73
provider for, 638
searching, 74-75
viewing properties of, 72-73
Certificates Microsoft Management Console
(MMC), 69
Certmgr.msc file, 73-74
[char] alias, 146, 190
char data type, 153
chdir alias, 67
Check-AllowedValue function, 526
Checkpoint cmdlet, 584
Checkpoint-Computer cmdlet, 571
Chkdsk method, 187
ChoiceDescription class, 505
choices, limiting. See limiting choices
cimclassname property, 380, 381
cimclassqualifiers property, 380
CIM cmdlets
filtering classes by qualifier, 369-371
finding WMI class methods, 368-369
module for, 580
overview, 367
retrieving associated WMI classes, 381-382
using -classname parameter, 367-368
video classes, 380-381
CIM (Common Information Model), 108, 112,
343-344, 579. See also CIM cmdlets

Index

637

CIM_LogicalDevice class

CIM_LogicalDevice class, 362
CIM_UnitaryComputerSystem class, 290
CIMWin32WMI provider, 516
-class argument, 321
Class box, 253
classes
in WMI, 289-293
querying WMI, 293-296
retrieving data from specific instances of, 319-
320
retrieving every property from every instance
of, 314
retrieving specific properties from, 316
-classname parameter, 348, 367-368, 368, 372
-class parameter, 264, 523
__CLASS property, 517
Clear cmdlet, 583
Clear-Content cmdlet, 571
Clear-EventLog cmdlet, 571
Clear-Host cmdlet, 60, 478
Clear-Item cmdlet, 571
Clear-ltemProperty cmdlet, 571
clear method, 392
Clear-Variable cmdlet, 571
ClientLoadableCLSID property, 517
cls command, 21
CLSID property, 517, 519
CMD (command) shell, 1, 76
[cmdletbinding] attribute
adding -confirm support, 215-216
adding -whatif support to function, 214-215
enabling for functions, 210
for functions, checking parameters
automatically, 211-214
overview, 209, 209-210
specifying default parameter set, 216-217
-verbose switch for, 210-211
[CmdletBinding()] attribute, 464, 465
Cmdletinfo object, 540
cmdlets. See also CIM cmdlets
Active Directory
creating users using, 435-436
finding information about domain controller
using, 424-428
finding locked out users using, 436
finding unused user accounts using, 440-442
managing users using, 432-434
defined, 3
descriptions of all, 571-578
displaying graphical command picker of, 52

Index

execution of
confirming, 8
controlling, 7
finding aliases for, 150-151
for working with event logs, 587
most important, 587
names of, 626-627
naming, 3, 54-56, 583-586
verb distribution, 55-56
verb grouping for, 54-55
number of on installation, 587
options for, 12
overview, 3, 23-24
searching for using wildcards, 36-39, 43
suspending execution of, 9
using Get-Command cmdlet for, 36-39, 43
verbs for, 174
with Exchange Server 2010, 539-540
-cmdlets parameter, 559
cn alias, 124, 247
CN attribute, 388
cn parameter, 465
code formatting. See formatting code
code, reusing, 178-179
colon (:), using after PS drive name, 68
column heading buttons, 32
-columns argument, 28
command (CMD) shell, 1
commandlets. See cmdlets
command-line input, 501
command-line parameter, 502-503
command-line utilities
exercises using, 20-21
ipconfig command, 5
multiple, running, 6
overview, 4,5
-command parameter, 489
commands
most powerful, 588
setting breakpoints on, 489-490
whether completed successfully, 592
Commands add-on
overview, 252-256
turning off, 256
using with script pane, 255
command window, prompt for, 76
comments, 179, 627-628
Common Information Model. See CIM
-comobject parameter, 50, 61, 62
Compare cmdlet, 584

Compare-Object cmdlet, 571
comparison operators, 162-163
compatibility aliases, 626
Complete cmdlet, 584
Complete-Transaction cmdlet, 571
Compressed property, 187
computer account, 395-396
computer connectivity, identifying, 506
-computername parameter, 182, 293, 344
Concurrency property, 517
ConfigManagerErrorCode property, 187
ConfigManagerUserConfig property, 187
ConfigurationNamingContext property, 431
ConfigureTransportLogging.psl script, 557
-Confirm:$false command, 434
-confirm argument, 8-10
Confirm cmdlet, 585
confirmimpact property, 216
ConfirmingExecutionOfCmdlets.txt file, 8
-confirm parameter, 12, 438, 629
-confirm switch, 215-216, 437
Connect cmdlet, 584
connectivity. See computer connectivity
Connect-WSMan cmdlet, 571
console, launch options for, 11
ConsoleProfile variable, 280
console window

copying in, 72

quotation marks in, 133
constants, 587, 631

compared with variables, 146

creating, 170

creating in scripts, 146

using, 146-147
-contains operator, 504, 594

using to examine contents of array, 507-509

using to test for properties, 509-511
Continue command, 491
Continue statement, 191
Control Properties dialog box, 285
ConversionFunctions.psl script, 179
ConversionModuleV6 module, 237
Convert cmdlet, 585
ConvertFrom cmdlet, 584
ConvertFrom-Csv cmdlet, 571
ConvertFromDateTime method, 188
ConvertFrom-Json cmdlet, 571
ConvertFrom-StringData cmdlet, 571
Convert-Path cmdlet, 571
ConvertTo cmdlet, 584

DC attribute

ConvertTo-Csv cmdlet, 572
ConvertToDateTime method, 188
ConvertTo-Html cmdlet, 572
ConvertTo-Json cmdlet, 572
ConvertToMeters.psl script, 178
ConvertTo-SecureString cmdlet, 435, 545, 566
ConvertTo-Xml cmdlet, 572
Copy button, Commands add-on, 255
Copy cmdlet, 584
copying from PowerShell window, 72
Copy-Item cmdlet, 230, 279, 572
Copy-IltemProperty cmdlet, 572
Copy-Module function, 229, 231
Copy-Modules.psl script, 229, 231, 237, 241, 244
counting backward, 595
-count parameter, 506
count property, 104, 125, 212, 389
CountryCode attribute, 401
country codes, 401-402
CPU (central processing unit), listing processes using
CPU time criteria, 34

-CreateDnsDelegation parameter, 459
CreateShortCutToPowerShell.vbs script, 141
CreatingFoldersAndFiles.txt file, 80
CreationClassName property, 187
CreationTime property, 82
CreationTimeUtc property, 82
credentials

-credential parameter, 109, 110, 591

for remote connection, 339-342
CRSS process, 216
Ctrl+J shortcut, 257
Ctrl+N shortcut, 254, 258
Ctrl+V shortcut, 255, 258
curly brackets ({ }), missing, 177-178
Current Host profile, 268
current property, 202
CurrentUserCurrentHost property, 269, 270
Current User profile, 268
CurrentUser scope, 134

D

-DatabasePath parameter, 459
data types, incorrect, 523-525
date, obtaining current, 75
DateTime object, 205

[DBG] prefix, 495

DC attribute, 388

Index

639

DDL (dynamic-link library) file

640

DDL (dynamic-link library) file, 66
Debug cmdlet, 585
debugging. See also errors
cmdlets for, list of, 483
functions, 495-496
scripts, using breakpoints
deleting breakpoints, 494
enabling and disabling breakpoints, 494
exercise, 496-498
listing breakpoints, 492-493
responding to breakpoints, 490-492
setting on commands, 489-490
setting on line number, 483-484
setting on variables, 485-489
using Set-PSDebug cmdlet
overview, 467
script-level tracing, 467-471
stepping through script, 471-479
strict mode, enabling
overview, 479
using Set-PSDebug -Strict, 479-480
using Set-StrictMode cmdlet, 481-482
-debug parameter, 12, 465
Debug-Process cmdlet, 572
[decimal] alias, 146, 190
DefaultDisplayPropertySet configuration, 294
DEFAULT IMPERSONATION LEVEL key, 307
DefaultMachineName property, 517
DefaultParameterSetName property, 216, 217
default property, 89, 90
default value, setting for registry keys, 95
definition attribute, 86
-definition parameter, 150
Delete method, 412
DeleteUser.ps1 script, 412
deleting
breakpoints, 494
users, 411-412
DemoAddOneFilter.psl script, 203
DemoAddOneR2Function.psl script, 203
DemoBreakFor.psl script, 160
DemoDoUntil.vbs script, 154
DemoDoWhile.psl script, 151
DemoDoWhile.vbs script, 151
DemokxitFor.psl script, 160
DemokExitFor.vbs script, 160
DemoForEachNext.vbs script, 158
DemoForEach.psl scrip, 158
DemoForLoop.psl script, 156, 157
DemoForLoop.vbs script, 156
DemoForWithoutInitOrRepeat.psl script, 156, 157

Index

demolfElselfElse.psl script, 164
DemolfElse.vbs script, 163
Demolf.psl script, 161
Demolfvbs script, 162
DemoQuitFor.vbs script, 161
DemoSelectCase.vbs script, 164, 166
DemoSwitchArrayBreak.psl script, 167
DemoSwitchArray.psl scrip, 167
DemoSwitchMultiMatch.psl script, 166
DemoTrapSystemException.ps1 script, 191
DemoWhileLessThan.psl script, 148, 149
dependencies, checking for modules, 234-236
deploying
AD DS (Active Directory Domain Services)
domain controller, adding to domain, 453—
455
domain controller, adding to new forest, 458-
459
domain controller prerequisites,
installing, 457-458
features, adding, 448
forest, creating, 452-453
infrastructure prerequisites, 447
IP address assignment, 448
read-only domain controller, adding, 455-
457
renaming computer, 448
restarting computer, 449
role-based prerequisites, 448
script execution policy, setting, 447
verification steps, 449-450
PowerShell to enterprise systems, 4
deprecated qualifier, 370
__DERIVATION property, 517
-Descending parameter, 35
-description parameter, 187, 260, 315, 627
design considerations, analyzing before
development, 94
-detailed argument, 21
DevicelD property, 187
dir alias, 88
DirectAccessClientComponents module, 580
directories
creating, 82-83
listing contents of, 81
listing contents with Get-Childltem cmdlet, 24—
26
formatting with Format-List cmdlet, 26
formatting with Format-Table cmdlet, 29
formatting with Format-Wide cmdlet, 27-29
properties for, 81-82

DirectoryInfo object, 44
DirectoryListWithArguments.psl script, 131-132
DirectoryName property, 82
Directory property, 82
Directory Restore Password prompt, 456
Disable cmdlet, 583
Disable-ComputerRestore cmdlet, 572
Disable-PSBreakpoint cmdlet, 483, 494, 572
Disable-WSManCredSSP cmdlet, 572
Disconnect cmdlet, 584
Disconnect-WSMan cmdlet, 572
-Discover switch, 424
Diskinfo.txt file, 318
disktype property, 146
Dism module, 580
Dismount cmdlet, 585
DisplayCapitalLetters.psl script, 153
displaying commands, using Show-Command
cmdlet, 52

DisplayName property, 302-303, 432
divide-by-zero error, 492
DivideNum function, 490, 491-492, 492
DnsClient module, 580
DNS Manager tool, 453
DNS server, adding to IP configuration, 453
DNSServerSearchOrder property, 196
Documents and Settings\%username% folder, 141
Do keyword, 154
dollar sign ($), 141, 189
domain controller

adding to domain, 453-455

adding to new forest, 458-459

checking, 430

prerequisites, installing, 457-458
-DomainMode parameter, 459
-DomainName parameter, 459
DomainNamingMaster role, 425
-DomainNetbiosName parameter, 459
domain password policy, checking, 429
Do statement, 152, 154
dot-sourced functions, using, 182-184
DotSourceScripts.psl script, 198
dot-sourcing scripts, 178, 179-181, 180-181
dotted notation, 39, 357
[double] alias, 146, 190
Do...Until statement, 155
DoWhileAlwaysRuns.ps1 script, 155
Do..While statement

always runs once, 155

casting and, 152-153

equal sign (=)

in VBScript compared with in PowerShell, 151

range operator, 152
drives

creating for modules, 232-233

creating for registry, 87

for registry, 87-88

using WMI with, 312-314
DriveType property, 187, 312, 314
dynamic-link library (DLL) file, 66
dynamic qualifier, 370, 371
dynamic WMI classes, 370
__DYNASTY property, 517

E

ea alias, 97, 136
-ea parameter, 27
echo command, 76
-edbFilePath parameter, 551
Else clause, 97, 163, 169, 236
Else If clause, 163
empty parentheses, 105
Enable cmdlet, 583
Enable-ComputerRestore cmdlet, 572
Enabled property, 517
Enable-Mailbox cmdlet, 544, 559
Enable-PSBreakpoint cmdlet, 483, 494, 572
Enable-PSRemoting function, 112
Enable-WSManCredSSP cmdlet, 572
-enddate parameter, 559
EndlessDoUntil.ps1 script, 155
End parameter, 201
Enter cmdlet, 585
Enter in Windows PowerShell option, 71
enterprise systems, deploying PowerShell to, 4
Enter-PSSession cmdlet, 115, 116, 127, 428, 444
EnumNetworkDrives method, 61
EnumPrinterConnections method, 61
Environment PS drive, 77
environment variables

creating temporary, 78

deleting, 80

listing, 77-78

provider for, 76

renaming, 79

viewing using WMI, 330-335
-eq operator, 162
-equals argument, 300, 304
equal sign (=), 162, 320

Index

641

error[0] variable

error[0] variable, 389
-erroraction parameter, 136
-ErrorAction parameter, 12
ErrorCleared property, 187
ErrorDescription property, 187
error handling
incorrect data types, 523-525
limiting choices
using -contains operator to examine contents
of array, 507-509
using -contains operator to test for
properties, 509-511
overview, 504
using PromptForChoice, 504-505, 534-535
using Test-Connection to identify computer
connectivity, 506
missing parameters
assigning value in param statement, 502-503
detecting missing value and assigning in
script, 502
making parameter mandatory, 503
overview, 501
missing rights
attempt and fail, 512
checking for rights and exiting gracefully, 513
overview, 512
missing WMI providers, 513-523
out-of-bounds errors
overview, 526
placing limits on parameter, 528
using boundary-checking function, 526-527
using Try...Catch...Finally
Catch block, 529
catching multiple errors, 532-533
exercise, 536-537
Finally block, 529-530
error messages
importance of, 136
using Trap keyword to avoid confusing
messages, 191-192
ErrorMethodology property, 187
ErrorRecord class, 191
ErrorRecord object, 532
errors. See also debugging
command for ignoring, 589
logic, 466
run-time, 462-465
simple typing errors, 479-480
syntax, 461-462
terminating vs. nonterminating, 512

Index

-ErrorVariable parameter, 12
escape character (\), 149, 157
-examples argument, 18, 21
Exception property, 532
Exchange Server 2010, 562-565
audit logging, 557-561
cmdlets with, 539-540
logging settings, 553-557
overview, 553
transport-logging levels, 554-557
mailboxes, creating
multiple mailboxes, 546-547
using Enable-Mailbox cmdlet, 543-544
when creating user, 544-546
message tracking, 568-570
parsing audit XML file, 562-565
remote servers, 540-543
reporting user settings, 548-550
storage settings
mailbox database, 550-552
overview, 550-551
user accounts, creating
exercise, 565-568
when creating mailbox, 544-546
exclamation mark (1), 470
execution policies for scripts
overview, 134
required for using profiles, 268
required for using snippets, 259
retrieving current, 135-136
setting, 135-136
execution policy, restricted, 513
execution, unwanted, preventing using While
statement, 155-156
Exists property, 82
Exit cdlet, 585
exit command, 115, 128
Exit For statement, 159
Exit statement, 160-161
ExpandEnvironmentStrings method, 51
expanding strings, 148, 157
expired certificates
finding, 75
needed for old executables, 75
explorer filter, 34
Export-Alias cmdlet, 572
Export-CliXML cmdlet, 345, 563, 572
Export cmdlet, 583
Export-Console cmdlet, 11
Export-Csv cmdlet, 572

exportedcommands property, 225
Export-FormatData cmdlet, 572
Export-ModuleMember cmdlet, 241, 248
Export-PSSession cmdlet, 572

Extension property, 82, 193

F

FacsimileTelephoneNumber attribute, 406
FeaturelLog.txt file, 450
FileInfo object, 44
-filePath argument, 323
files
creating, 82-83
overwriting contents of, 85
reading from, 84-85
writing to, 84-85
FileSystemObject, 150
FileSystem property, 187
filesystem provider, 80
FilterHasMessage.ps1 script, 204
Filter keyword, 196, 204
-filter parameter, 199, 312, 326-327, 347, 372, 425,
440, 518, 589
quotation marks used with, 318
using to reduce number of returned WMI class
instances, 378
filters
advantages of, 204-205
overview, 201-203
performance and, 203-204
readability of, 204-205
FilterToday.psl script, 205
Finally block, of Try...Catch...Finally, 529-530
Find and Replace feature, 622
FindLargeDocs.psl script, 196
firewall exceptions, 114
-firstname argument, 568
fl alias, 295
folders
creating, 82-83
for user modules, 227-230
multiple
creating using scripts, 168-169
deleting using scripts, 169-170
-force parameter, 81, 82, 94, 112, 134, 269, 279, 434,
440, 545, 552
foreach alias, 143
Foreach alias, 489

Function keyword

ForEach cmdlet, 413, 585
ForEach-Object cmdlet, 137, 159, 183, 287, 292, 381,
382, 489, 550
foreach snippet, 264
Foreach statement
exiting early, 159-160
overview, 158
using from inside PowerShell consule, 159
ForEach statement, 443
-foregroundcolor argument, 328
ForEndlessLoop.psl script, 157
-ForestMode parameter, 459
forests
adding domain controller to, 458-459
creating, 452-453
For keyword, 156
Format cmdlet, 309, 584
Format-Custom cmdlet, 572
Format-IPOutput function, 200
Format-List cdlet, 26, 72, 77, 98, 143, 269, 309, 316,
321, 386, 485, 525, 549, 550, 572
Format-NonlIPOutput function, 200
*format.pslxml files, 371
Format-Table cmdlet, 29, 139, 255, 313, 318, 373,
380, 493, 564, 572
formatting code, 628-629
constants, 631
functions, 629-630
template files, 630
formatting returned data, 189
Format-Wide cmdlet, 572
alias for, 68
formatting output with, 27-29
using, 27-29
For...Next loop, 152
For statement
flexibility of, 156-157
in VBScript compared with in PowerShell, 156
making into infinite loop, 157-158
FreeSpace property, 187, 189
FSMO (Flexible Single Master Operation), 422-427
fsutil utility, 2, 20
ft alias, 295
-full argument, 19, 21
FullName property, 82, 231
FullyQualifiedErrorld property, 389
Function drive, 181
FunctionGetIPDemo.psl script, 198
FunctionInfo object, 540
Function keyword, 172, 174, 177, 186, 193, 205, 279

Index

643

function libraries, creating

function libraries, creating, 178-179
function notation, 481
function provider, 85
functions
adding help for
overview, 184
using here-string object for, 184-186
advantages of using, 197-198
as filters, 201-204
[cmdletbinding] attribute for, 209-210
adding -confirm support, 215-216
adding -whatif support, 214-215
checking parameters automatically, 211-214
specifying default parameter set, 216-217
-verbose switch, 210-211
comments at end of, 179
creating, 172
debugging, 495-496
delimiting script block on, 177
dot-sourced, 182-184
enabling [cmdletbinding] attribute for, 210
encapsulating business logic with, 194-196
flexibility of, 198-199
formatting, 629-630

including in PowerShell using dot-sourcing, 180-

181
including in scripts, 625
in VBScript, 171
listing all, 85-87
naming, 174-175, 628
parameters for
overview, 176
using more than two, 192-193
using two input parameters, 186-187
passing values to, 175
performance of, 203-204
readability of, 198
reusability of, 198
separating data and presentation activities into
different functions, 199-202
signature of, 195
type constraints in, 190-191
using for code reuse, 178-179
using from imported module, 242-244
using Get-Help cmdlet with, 243-245
Functions.psm1 module, 239
fw alias, 68

Index

G

gal alias, 45-46
gc alias, 150
gci alias, 79, 85, 333
gcm alias, 37,238
__GENUS property, 517
-ge operator, 162
Get-Acl cmdlet, 362
Get-ADDefaultDomainPasswordPolicy cmdlet, 429
Get-ADDomain cmdlet, 429
Get-ADDomainController cmdlet, 424, 430
Get-ADForest cmdlet, 428
Get-ADObject cmdlet, 425, 431
Get-ADOrganizationalUnit cmdlet, 435
Get-ADRootDSE cmdlet, 431
Get-ADUser cmdlet, 435, 443, 444
Get-Alias cmdlet, 21, 24, 150, 332, 572
Get-AllowedComputerAndProperty.psl script, 511
Get-AllowedComputer function, 508, 509, 510
Get-Childltem cmdlet, 20, 75, 131, 196, 231, 237,
331,572
alias for, 67
exercises using, 59-60
listing certificates using, 69
listing directory contents with, 24-26
listing registry keys using, 65
Get-Choice function, 505
Get-CimAssociatedInstance cmdlet, 374, 377, 378,
381, 382
Get-CimClass cmdlet, 367-368, 380, 381
Get-CimlInstance cmdlet, 183, 246, 343, 353, 371,
373,381
Get cmdlet, 583
Get-Command cmdlet, 21, 36-39, 43, 56, 172, 238,
242,421, 423, 579
Get-Command -module <modulename>
command, 225
Get-Computerinfo function, 241, 242
Get-ComputerRestorePoint cmdlet, 572
Get-Content cmdlet, 150, 177, 185, 413, 415,
462-463, 508, 563, 572, 627
Get-ControlPanelltem cmdlet, 572
Get_Count method., 105
Get-Credential cmdlet, 127, 339, 444, 456, 541
Get-Culture cmdlet, 572
Get-Date cmdlet, 20, 329, 572
Get-DirectoryListing function, 192, 193
Get-DirectoryListingToday.ps1 script, 193
Get-Discount function, 194

Get-DiskInformation function, 527
Get-DiskSpace.psl script, 189
Get-Doc function, 196
Get-Event cmdlet, 572
Get-EventLog cmdlet, 573, 588
Get-EventLoglLevel cmdlet, 553, 555
Get-EventSubscriber cmdlet, 573
Get-ExchangeServer cmdlet, 542
Get-ExCommand cmdlet, 539, 540, 543
Get-ExecutionPolicy cmdlet, 135, 259, 278
Get-FilesByDate function, 194, 205
Get-FilesByDate.psl script, 207
Get-FilesByDateV2.psl file, 207
GetFolderPath method, 272
Get-FormatData cmdlet, 573
Get-FreeDiskSpace function, 186
Get-FreeDiskSpace.psl script, 186
GetHardDiskDetails.ps1 script, 146
Get-Help cmdlet, 58, 68, 243, 245, 540
creating alias for, 19
examples using, 21
overview, 15-20
Get-History cmdlet, 332
Get-Host cmdlet, 573
Get-HotFix cmdlet, 573
GetInfoByZip method, 190
GetlPDemoSingleFunction.psl script, 197
Get-IPObjectDefaultEnabledFormatNonIPOutput.psl
script, 200
Get-IPObjectDefaultEnabled.psl script, 199
Get-IPObject function, 199, 200
Get-IseSnippet cmdlet, 261
Get-Item cmdlet, 573
Get-ltemProperty cmdlet, 89, 143, 308, 573
Get-Job cmdlet, 121, 351
Get-Location cmdlet, 68, 573
Get-Mailbox cmmdlet, 548
Get-MailboxDatabase cmdlet, 550, 551
Get-MailboxServer cmdlet, 550
Get-MailboxStatistics cmdlet, 558
Get-Member cmdlet, 67, 122, 268, 269, 374, 378,
381, 529, 573
exercises using, 59-60
retrieving information about objects using, 44-
48
Get-Member object, 376
Get-Module cmdlet, 223, 241
Get-MyBios function, 245, 247, 248
Get-MyBios.psl file, 248
Get-MyModule function, 234, 236, 419

gh alias

Get-MyModule.ps1 script, 236

Get-Net6to4Configuration job, 124

Get-NetAdapter cmdlet, 126, 448, 457

Get-NetConnectionProfile function, 225

Get-OperatingSystemVersion function, 174, 228

Get-OperatingSystemVersion.ps1 script, 174

Get-OptimalSize function, 244

Get-PowerShellRequirements.psl script, 3-4

Get-PrintConfiguration cmdlet, 573

Get-Printer cmdlet, 573

Get-PrinterDriver cmdlet, 573

Get-PrinterPort cmdlet, 573

Get-PrinterProperty cmdlet, 573

Get-PrintJob cmdlet, 573

Get-Process cmdlet, 7, 129, 174, 263, 317, 573, 592

Get-Process note* command, 8-9

Get-PSBreakPoint cmdlet, 483, 485, 492, 493, 494,
497,498, 573

Get-PSCallStack cmdlet, 483, 491, 573

Get-PSDrive cmdlet, 18, 77, 87, 520, 573

Get-PSProvider cmdlet, 66, 67, 573

Get-PSSession cmdlet, 116

Get-Random cmdlet, 573

Get-Service cmdlet, 174, 573

Get-TextStatistics function, 174, 176

Get-TextStats function, 180, 183

Get-TraceSource cmdlet, 573

Get-Transaction cmdlet, 573

Get-TypeData cmdlet, 573

GetType method, 523

Get-UlCulture cmdlet, 573

Get-Unique cmdlet, 573

Get-ValidWmiClass function, 523, 524, 525

Get-Variable administrator command, 101

Get-Variable cmdlet, 573

Get-Variable Shellld command, 100

Get-Verb cmdlet, 3, 54, 205, 542

Get-WindowsFeature cmdlet, 385, 386, 420, 448

GetWmiClassesFunction.psl script, 184

Get-Wmilnformation function, 525

Get-WmiNameSpace function, 286-288

Get-WmiObject cmdlet, 68, 115, 124, 139, 174, 189,
196, 199, 253, 255, 264, 286, 291, 308, 311,
312, 314, 316, 317, 318, 322, 326, 338, 350,
355, 358, 364, 373, 428, 502, 509, 511, 514,
525, 573, 621

Get-WmiProvider function, 289, 516, 521

Get-WSManCredSSP cmdlet, 573

Get-WSManlnstance cmdlet, 573

gh alias, 281

Index

645

G+H keystroke combination

G+H keystroke combination, 19 -identity parameter, 425, 434, 438, 439, 443, 548
ghy alias, 332, 334 -id parameter, 494

gi alias, 78, 82 IDs for jobs, 120

globally unique identifier (GUID), 425 If statement, 97, 157, 515

gm alias, 122, 292, 361 assignment operators, 163

gmb alias, 248 compared with VBScript's If..Then...End
GPO (Group Policy Object), 4 statement, 161

gps alias, 31,122,129 comparison operators, 162-163

grave accent character (), 137, 143, 319, 321 ihy alias, 334

greater-than (>) symbol, 320 ImpersonationLevel property, 517

Group cmdlet, 585 Import-Alias cmdlet, 574

Group-Object cmdlet, 172, 573 Import-Clixml cmdlet, 574

group policy, 337-338, 513 Import cmdlet, 583

Group Policy Object (GPO), 4 Import-Csv cmdlet, 574

groups, 394-395 importing modules, 241-242

-groupScope parameter, 433 Import-LocalizedData cmdlet, 574

gsv alias, 32,130 Import-Module cmdlet, 225, 226, 237, 241, 248, 421,
-gt argument, 59, 61, 162 422,443

GUID (globally unique identifier), 425 Import-PSSession cmdlet, 541, 574

gwmi alias, 68, 291, 296, 301, 311, 330, 355 in32_PerfFormattedData_TermService_
gwmi win32_logicaldisk command, 312 TerminalServicesSession class, 618

incorrect data types, 523-525
info attribute, 407

H InitializationReentrancy property, 517
InitializationTimeoutInterval property, 517
InitializeAsAdminFirst property, 517
Initialize cmdlet, 585
initializing variables, 623
inline code vs. functions, 197-198
InLineGetIPDemo.psl script, 196, 197
-inputobject argument, 48, 300, 377, 381
Insert button, 253, 255
Install-ADDSDomainController cmdlet, 454, 456
Install-ADDSForest cdlet, 459
InstallDate property, 187, 315
-installDNS parameter, 454, 459
installed software, finding, 327-330
installing

Active Directory module, 419-420

PowerShell 3.0, 3

RSAT for Active Directory, 420
InstallNewForest.ps1 script, 452
instance methods, executing

Invoke-WmiMethod cmdlet, 358-360

overview, 355-357

hard-coded numbers, avoiding, 631
[hashtable] alias, 146, 190

HasMessage filter, 204

hasmoredata property, 129

-Height parameter, 52

Help command, 13-20, 491

Help function, 18, 249

HelpMessage parameter property, 217, 221
here-string object, 184-186

Hit Variable breakpoint, 486
HKEY_CLASSES_ROOT registry hive, 87, 281, 519
HomeDirectory attribute, 404

HomeDrive attribute, 405

HomePhone attribute, 405

HostingModel property, 517

hostname command, 6

HSG key, 93

Hungarian Notation, 631

Hyperv server, 425

[using terminate method directly, 357-358
[wmi] type accelerator, 360-361

-icontains operator, 507 [int] alias, 146, 190

IdentifyingPropertiesOfDirectories.txt file, 80 integers, 145

IdentifyServiceAccounts.psl script, 323

646 Index

IntelliSense, 256, 462
International module, 580
Internet Protocol (IP) addresses, 112, 196
adding DNS servers, 453
assigning, 448
Invocationinfo property, 390
Invoke-AsWorkflow cmdlet, 574
Invoke cmdlet, 583
Invoke-Command cmdlet, 308, 341, 342, 350
running command on multiple computers
using, 118-120
running single command using, 117-118
Invoke-Expression cmdlet, 574
Invoke-History cmdlet, 281
Invoke-Item cmdlet, 73, 574
Invoke-RestMethod cmdlet, 574
Invoke-WebRequest cmdlet, 68, 574
Invoke-WmiMethod cmdlet, 68, 262, 357, 358-360,
359, 574
Invoke-WSManAction cmdlet, 574
IPAddress property, 196
ipconfig command, 5, 6
IP (Internet Protocol) addresses, 112, 196
adding DNS servers, 453
assigning, 448
IPPhone attribute, 406
IPSubNet property, 196
iSCSI module, 580
IscsiTarget module, 580
ise alias, 271
ISE module, 581
ISEProfile variable, 280
IsGlobalCatalog property, 425
isNullOrEmpty method, 443
IsReadOnly property, 82
IsToday filter, 205
i variable, 151
IwbemObjectSet object, 328
iwmi alias, 68
iwr alias, 68

J

jobs
checking status of, 124-127
IDs for, 120
naming, 121-122
naming return object, 123-124
overview, 119

using -contains operator to test for properties

receiving, 120-121, 123-125

removing, 121

running, 120

using cmdlets with, 122-124
Join cmdlet, 584
Join-Path cmdlet, 230, 287, 574
join static method, String class, 593

K

Kds module, 580

-keep parameter, 121, 126, 130, 351

-key parameter, 468

keys, registry
creating and setting value at once, 95
creating using full path, 94
creating with New-Item cmdlet, 93
listing, 65, 90-91
overwriting, 94
setting default value, 95

L

language parser, 461

LastAccessTime property, 82

LastAccessTimeUtc property, 82

LastErrorCode property, 187

LastWriteTime property, 60, 82, 206

LastWriteTimeUtc property, 82

-latest parameter, 176

| attribute, 401

launch options for console, 11

-LDAPFilter parameter, 435

LDAP (Lightweight Directory Access Protocol), 284,
385, 387-388, 425

length property, 30, 150

Length property, 82

-le operator, 162

less-than (<) symbol, 320

Lightweight Directory Access Protocol (LDAP), 284,
385, 387-388, 425

-like operator, 86, 162

Limit cmdlet, 585

Limit-EventLog cmdlet, 574

limiting choices

using -contains operator to examine contents of
array, 507-509
using -contains operator to test for

properties, 509-511

Index

647

overview

overview, 504 M
using PromptForChoice, 504-505, 534-535
using Test-Connection to identify computer Mailbox2 database, 551
connectivity, 506 mailboxes (Exchange Server 2010)
line number, setting breakpoints, 483-484 creating
-list argument, 290 using Enable-Mailbox cmdlet, 544
-ListAvailable parameter, 223, 226, 235, 241, 278, when creating user, 544
421 database for
List command, 491 examining, 550-551
listing managing, 551-552
certificates, 69-73 ManagementClass object, 291
directory contents, 81 mandatory parameter property, 217-218, 503
directory contents with Get-Childltem cmdlet manifest for modules, 241
formatting with Format-List cmdlet, 26 -match operator, 59, 162, 291
formatting with Format-Table cmdlet, 29 MaximumAllowed property, 315
formatting with Format-Wide cmdlet, 27-29 MaximumComponentLength property, 187
overview, 24-26 MD alias, 365
environment variables, 77-78 MeasureAddOneFilter.ps1 script, 201
filtered process list, 34 MeasureAddOneR2Function.psl script, 204
functions, 85-87 Measure cmdlet, 584
modules, 223-225 Measure-Command cmdlet, 574
providers, 66 Measure-Object cmdlet, 313, 574
registry keys, 65, 90-91 MediaType property, 187
WMI classes, 290-291 -Members parameter, 434
ListProcessesSortResults.psl script, 132 MemberType method, 48
literal strings, 149 -membertype parameter, 46, 47, 81, 122
loading modules, 225-227 message tracking (Exchange Server 2010), 568-570
LocalMachine scope, 134 MessageTrackingLogEnabled argument, 569
Local User Management module, 445 MessageTrackingLogMaxAge argument, 569
locations for modules, 222 MessageTrackingLogMaxDirectorySize
-LockedOut parameter, 436 argument, 570
locked-out users, 436-437 -MessageTrackingLogPath argument, 570
logging service accounts, 323-324 method notation, 481
logging settings (Exchange Server 2010) methods
overview, 553 of WMI classes, 368-369
transport-logging levels retrieving for objects using Get-Member
configuring, 554-557 cmdlet, 44-48
reporting, 554-555 Microsoft Exchange Server 2010. See Exchange
logic errors, 466 Server 2010
logon.vbs script, 404 Microsoft Management Console (MMC), 69, 386
-LogPath parameter, 459 Microsoft.PowerShell.Diagnostics module, 580
[long] alias, 146, 190 Microsoft.PowerShell.Host module, 581
looping Microsoft.PowerShell. Management module, 223,
Do..While statement, 152-154 579
Foreach statement, 159-160 Microsoft.PowerShell.Security module, 580
While statement, 150 Microsoft.PowerShell.Utility module, 223, 579
-It operator, 162 Microsoft Systems Center Configuration Manager

package, 4
Microsoft TechNet article KB310516, 93
Microsoft TechNet article KB322756, 93

648 Index

Microsoft TechNet Script Center, 65, 153
Microsoft WSMan.Management module, 580
missing parameters, handling
assigning value in param statement, 502-503
detecting missing value and assigning in
script, 502
making parameter mandatory, 503
overview, 501
missing rights, handling
attempt and fail, 512
checking for rights and exiting gracefully, 513
overview, 512
missing WMI providers, handling, 513-523
misspelled words, 462, 621
mkdir function, 365
MMAgent module, 580
MMC (Microsoft Management Console), 69, 386
Mobile attribute, 406
-mode parameter, 486, 487
ModifySecondPage.ps1 script, 405
ModifyUserProperties.psl script, 398
module coverage, 579-582
-Module parameter, 242, 421
$modulePath variable, 230-231
modules
checking for dependencies, 234-236
creating
manifest for, 241
overview, 244
using Get-Help cmdlet with, 243-245
using Windows PowerShell ISE, 238-239
creating drive for, 232-233
deploying providers in, 66
directory for, 229
features of, 227
user folders for, 227-230
using functions from imported, 242-244
getting list of, 592
grouping profile functionality into, 277-278
importing, 241-242, 244
installing, 244
listing all available, 223-225
listing loaded, 223
loading, 225-227
locations for, 222
$modulePath variable, 230-231
overview, 222
using with profiles, 274
script execution policy required to install, 232
using from shared location, 237-239

NetLbfo module

Mount cmdlet, 585
Mount-Database function, 552
Move-ADObject cmdlet, 435
Move cmdlet, 584
Move-Item cmdlet, 574
Move-ItemProperty cmdlet, 574
moveNext method, 202
mred alias, 60
MsDtc module, 579
MSIPROV WMI provider, 516
multiple commands, running, 6
multiple folders
creating using scripts, 168-169
deleting using scripts, 169-170
multiple users, creating, 408-409
multivalued users, creating, 414-417
MyDocuments variable, 280
myfile.txt file, 84
Mytestfile.txt file, 20
Mytest folder, 83

N

named parameters, 628
Name input box, 252
-name parameter, 78, 143, 218, 317, 433, 551
Name property, 30, 82, 92, 187, 289, 291, 315, 517
-namespace parameter, 285, 289, 293, 328
__NAMESPACE property, 517
namespaces
explained, 284
exploring, 367
in WMI, 284-288
__namespace WMI class, 517
Name variable, 331
naming
cmdlets, 3, 54-56, 583-586
verb distribution, 55-56
verb grouping for, 54-55
functions, 174-175, 628
jobs, 121-122
return object for job, 123-124
variables, 631
NDS provider, 385
-ne operator, 162
NetAdapter module, 579
NetBIOS name, 458
NetConnection module, 225, 581
NetLbfo module, 580

Index

649

NetQos module

NetQos module, 580 Novell NetWare 3.x servers, 385
NetSecurity module, 579 NumberOfBlocks property, 188
NetSwitchTeam module, 580 numbers

NetTCPIP module, 580 hard-coded, avoiding, 631
NetworkConnectivityStatus module, 580 random, generating, 591

network shares, modules from, 237-239 NWCOMPAT provider, 385
NetworkTransition module, 579 NwTraders.msft domain, 384, 385, 413

New-ADComputer cmdlet, 432
New-ADGroup cmdlet, 433
New-AdminAuditLogSearch cmdlet, 560, 562 o
New-ADOrganizationalUnit cmdlet, 432
New-Alias cmdlet, 19, 248, 574
New-CimSession cmdlet, 343
New cmdlet, 583
-newest parameter, 126
New-Event cmdlet, 574
New-EventLog cmdlet, 574
New-ExchangeSession function, 542
New-IseSnippet cmdlet, 259, 260, 630
New-Item cmdlet, 78, 93, 169, 230, 270, 278, 574
New-ItemProperty cmdlet, 574
New-Line function, 180, 183
NewMailboxAndUser.psl script, 545
New-Mailbox cmdlet, 539, 545
New-MailBoxDatabase cmdlet, 551, 552
-NewName parameter, 79
New-NetIPAddress cmdlet, 453, 458
New-Object cmdlet, 44, 529, 530, 536, 574
exercises, 61
using, 50-51
New-PSDrive cmdlet, 87, 103, 232, 520, 574
New-PSSession cmdlet, 116, 353, 541
New-Service cmdlet, 574
New-TimeSpan cmdlet, 329, 574
New-Variable cmdlet, 100, 168, 324, 574
New-WebServiceProxy cmdlet, 574
New-WSManlnstance cmdlet, 575
New-WSManSessionOption cmdlet, 575
Next keyword, 156
NFS module, 579
-noexit parameter, 138, 140
nonterminating errors, 512
-noprofile parameter, 223
notafter property, 75
Notepad.exe file, 7
-notlike operator, 86, 162
-notmatch operator, 162
-not operator, 81, 228, 235
-noun parameter, 42
Novell Directory Services servers, 385

O attribute, 388
Object Editor, for Win32_Product WMI class, 518
objects

finding aliases for, 59

New-Object cmdlet, 50-51

retrieving information about using Get-Member

cmdlet, 44-48
objFile variable, 147
objFSO variable, 147
objWMIServices variable, 320
-off parameter, 479
ogv alias, 32
On Error Resume Next command, 136
OneStepFurtherWindowsEnvironment.txt file, 335
opening PowerShell, 10, 11
OpenTextFile method, 147
OperationTimeoutinterval property, 517
operators for WMI queries, 321-322
optional modules, 419
-option parameter, 146, 168
options for cmdlets, 12
organizational settings, modifying, 409-411
organizational units (OUs), 4, 383-384, 413, 432
Organization tab, Active Directory Users and
Computers, 409, 411

OSinfo.txt file, 319
OtherFacsimileTelephoneNumber attribute, 407
OtherHomePhone attribute, 407
OtherlPPhone attribute, 407
OtherMobile attribute, 407
OtherPager attribute, 407
OtherTelephone attribute, 399
QU attribute, 388
OUs (organizational units), 4, 383-384, 413, 432
-OutBuffer parameter, 12
Out cmdlet, 583
Out-File cmdlet, 324, 575, 592
Out-GridView cmdlet, 31-34, 309, 565, 575
Out-Null cmdlet, 230, 233, 520

650 Index

Process scope

out-of-bounds errors, handling -passthru parameter, 137
overview, 526 passwords
placing limits on parameter, 528 changing, 444
using boundary-checking function, 526-527 domain password policy, checking, 429
Out-Printer cmdlet, 575 Paste button, Command add-on, 255
output Paste command, 255
formatting with Format-Table cmdlet, 29 -path parameter, 69, 78, 80, 96, 143, 150, 176, 192,
formatting with Format-Wide cmdlet, 27-29 415, 432, 433
formatting with Out-GridView cmdlet, 31-34 Path property, 315, 359, 517
transcript tool and, 115-116 paths
Out-String cmdlet, 575 for module location, 229
-OutVariable parameter, 12 for profiles, 267

pause function, 87
PDCs (primary domain controllers), 385

P performance, of functions, 203-204
PerLocalelnitialization property, 517
permission issues, 462, 463
PerUserlnitialization property, 517
PING commands, 114
PinToStartAndTaskBar.ps1 script, 11
pipe character (|), 24, 75, 324, 556, 622
pipeline, avoiding breaking, 621
PKI module, 580
plus symbol (+), 137, 143
PNPDevicelD property, 188
Pop cmdlet, 585
Pop-Location cmdlet, 93, 96, 575
Popup method, 62
poshlog directory, 448
positional parameters, 96, 175
position message, 136
position parameter property, 218-219
postalCode attribute, 401
postOfficeBox attribute, 401
PowerManagementCapabilities property, 188
PowerManagementSupported property, 188
PowerShell

adding to task bar in Windows 7, 10-11

deploying to enterprise systems, 4

opening, 10, 11

profiles for, 57
PowerShell.exe file, 141
primary domain controllers (PDCs), 385
PrintManagement module, 580
Process block, 200, 203, 205
processes

filtered list of, 34, 35

retrieving list of running processes, 317-318
process ID, 8
Process scope, 134

Pager attribute, 406
parameter attribute
HelpMessage property, 221
mandatory property, 217-218
overview, 217
ParameterSetName property, 219
position property, 218-219
ValueFromPipeline property, 220-221
parameters
missing, handling
assigning value in param statement, 502-503
detecting missing value and assigning in
script, 502
making parameter mandatory, 503
overview, 501
named vs. unnamed, 628
placing limits on, 528
reducing data via, 347-350
ParameterSetName parameter property, 217, 219,
246
Parameters For... parameter box, 254
parameters, function
avoiding use of many, 194
checking automatically, 211-214
using more than two, 192-193
using multiple, 186-187
positional, 96
specifying, 176
specifying default parameter set, 216-217
switched parameters, 193
unhandled, 213-214
param keyword, 465, 502-503
Param statement, 192, 209
Pascal case, 385

Index 651

profileBackup.ps1 file

profileBackup.ps1 file, 279
ProfilePath attribute, 404
profiles
All Users, All Hosts profile, 275-276
using central script for, 276-277
creating, 57, 270-271
deciding how to use, 271-272
determining existence of, 270
grouping functionality into module, 277-278
using modules with, 274
using multiple, 273-275
overview, 267-268
paths for, 267
$profile variable, 268-270
script execution policy required for, 268
usage patterns for, 272
program logic, 194
ProhibitSendQuota property, 549
PromptForChoice method, 504-505, 534-535
prompt, PowerShell, 76
properties
using -contains operator to test for, 509-511
for certificates, 72-73
for directories, 81-82
retrieving every property from every instance of
class, 314
retrieving for objects using Get-Member
cmdlet, 44-48
retrieving specific properties from, 316
__PROPERTY_COUNT property, 518
-property parameter, 26, 256, 296, 313, 325, 326,
347,372,373, 441
-ProtectedFromAccidentalDeletion parameter, 433
__provider class, 517
ProviderName property, 188
provider property, 90
providers
alias, 66—68
certificate, 68
defined, 65
environment provider, 76
filesystem provider, 80
function provider, 85
in WMI, 289
listing, 66
overview, 65-66
registry, 90
variable, 97-98
__provider WMI system class, 517
.psl extension, 133

Index

PSComputerName property, 118, 183, 342
Psconsole file, 11

-psconsolefile argument, 12

.psdl extension, 228

PSDiagnostics module, 580

PSDrives
for registry, 87-88, 520
switching, 68

PsisContainer property, 75, 82
.psml extension, 228, 237, 239
PSModulePath variable, 229, 421
-PSProvider parameter, 103
PSScheduledJob module, 580
PSStatus property, 188, 295
PSWorkflow module, 581
Pure property, 517

Purpose property, 188

Push cmdlet, 585
Push-Location cmdlet, 93, 575
Put method, 393, 395

pwd alias, 68

Q

-QualifierName parameter, 367, 369
querying
Active Directory, 590
WMI

eliminating WMI query argument, 320-321

finding installed software, 327-330

identifying service accounts, 322-323

logging service accounts, 323-324

obtaining BIOS information, 308-311

using operators, 321-322

overview, 293

retrieving data from specific instances of
class, 319-320

retrieving default WMI settings, 308

retrieving every property from every instance
of class, 314

retrieving information about all shares on
local machine, 315

retrieving list of running processes, 317-318

retrieving specific properties from class, 316

shortening syntax, 325-326

specific class, 293-296

specifying maximum number of connections
to server, 316-317

substituting Where clause with variable, 325

viewing Windows environment
variables, 330-335
Win32_Desktop class, 296-298
working with disk drives, 312-314
-query parameter, 314, 348
QuickEdit mode, 72
-quiet parameter, 506
QuotasDisabled property, 188
Quotasincomplete property, 188
QuotasRebuilding property, 188
quotation marks, 189
in console, 133
used with -filter argument, 318

R

random numbers, 591
range operator, 152
-rate parameter, 195
RDN (relative distinguished name), 384, 387
readability
of filters, 204-205
of functions, 198
Read cmdlet, 585
Read-Host cmdlet, 174, 546, 575, 594
ReadingAndWritingForFiles.txt file, 80
Read mode, 485
read-only variables, 587
ReadUserInfoFromReg.ps1 script
cmdlets used, 143
code, 143-144
variables used, 142
ReadWrite mode, 485
rebooting server, 454, 456
-rebootoncompletion parameter, 459
Receive cmdlet, 584
Receive-Job cmdlet, 120, 123, 129, 350, 353, 354
recipient settings, configuring (Exchange Server
2010)
mailbox, creating
multiple mailboxes, 546-547
using Enable-Mailbox cmdlet, 544
when creating user, 544-546
reporting user settings, 548-550
-recurse parameter, 27, 29, 61, 69, 83, 102, 196, 231
recycled variables, 631
redirect-and-append arrow (>>), 6
redirection arrow (>), 6, 318

testing configuration

red squiggly lines, 462
Regedit.exe file, 90
Register cmdlet, 583
Register-EngineEvent cmdlet, 575
Register-ObjectEvent cmdlet, 575
Register-WmiEvent cmdlet, 575
registry
backing up, 93
determining existence of property, 96
drives for, 87-88
keys for
creating and setting value at once, 95
creating using full path, 94
creating with New-Item cmdlet, 93
overwriting, 94
setting default value, 95
listing keys in, 65, 90-91
modifying property value, 95
modifying property value using full path, 96
provider overview, 90
remote access to, 87
retrieving default property value from, 90
retrieving values from, 89-90
searching for software in, 92
taking care when modifying, 93
testing for property before writing, 97
regular expressions, 591
relative distinguished name (RDN), 384, 387
__RelPath property, 358, 359, 360, 518
RemoteDesktop module, 579
Remote Management firewall exception, 114
remote procedure call (RPC), 338
Remote Server Administration Tools (RSAT), 419
remote servers, 540-543
RemoteSigned execution policy, 134
remoting
accessing local registry, 87
cmdlets for, 107-112
configuring, 112-114
creating session, 115-118
-credential parameter support, 110
firewall exceptions, 114
impersonating current user, 115
running command as different user, 110-111
running single command
on multiple computers, 118-120
on single computer, 117-118
saving sessions, 116-117
testing configuration, 113-114

Index

653

Windows PowerShell

Windows PowerShell
discovering information about forest and
domain, 428-431
obtaining FSMO information using, 428
WMI
disadvantages of, 341
remote results, 344-348
supplying alternate credentials for remote
connection, 338-341
using CIM classes to query WMI classes, 343—
344
using group policy to configure WMI, 337-
338
Remove-ADGroupMember cmdlet, 434
Remove cmdlet, 583
Remove-Computer cmdlet, 575
Remove-Event cmdlet, 575
Remove-EventLog cmdlet, 575
Remove-IseSnippet cmdlet, 261
Remove-Iltem cmdlet, 74, 80, 83, 169, 279, 575
Remove-ItemProperty cmdlet, 575
Remove-Job cmdlet, 121
Remove-MailboxDatabase cmdlet, 552
Remove-Printer cmdlet, 575
Remove-PrinterDriver cmdlet, 575
Remove-PrinterPort cmdlet, 575
Remove-PrintJob cmdlet, 575
Remove-PSBreakPoint cmdlet, 483, 494, 497, 498,
575
Remove-PSDrive cmdlet, 103, 521, 575
Remove-PSSession cmdlet, 116
Remove-TypeData cmdlet, 575
RemoveUserFromGroup.psl script, 434
Remove-Variable cmdlet, 101, 575
Remove-WmiObject cmdlet, 68, 365, 575
Remove-WSManlnstance cmdlet, 575
Rename-ADObject cmdlet, 432
Rename cmdlet, 584
Rename-Computer cmdlet, 448, 455, 458, 575
Rename-Item cmdlet, 79, 575
Rename-IltemProperty cmdlet, 575
Rename-Printer cmdlet, 575
renaming environment variables, 79
Repair cmdlet, 585
Repeat command, 491
Replace method, System.String .NET Framework
class, 595
-replicationsourcedc parameter, 454

Index

reporting user settings (Exchange Server
2010), 548-550

ReportTransportLogging.psl script, 555

requires statement, 246

Reset cmdlet, 585

Reset-ComputerMachinePassword cmdlet, 576

Reset method, 187, 362

Resolve cmdlet, 584

Resolve-Path cmdlet, 576

Resolve-ZipCode function, 190

Resolve-ZipCode.psl script, 190

“Resource not available” run-time error, 462

resources, unavailable, 462

Restart cmdlet, 584

Restart-Computer cmdlet, 449, 454, 456, 458, 576

-restart parameter, 448

Restart-PrintJob cmdlet, 576

Restart-Service cmdlet, 576

Restore cmdlet, 585

Restore-Computer cmdlet, 576

Restricted execution policy, 134, 136, 513

resultclassname parameter, 377

Resume cmdlet, 584

Resume-PrintJob cmdlet, 576

Resume-Service cmdlet, 576

RetrieveAndSortServiceState.psl script, 139

ReturnValue, 304

returnvalue property, 363

reusability of functions, 198

rich types, 627

rights, missing. See missing rights, handling

root/cimv2 WMI namespace, 369, 370

route print command, 6

RPC (remote procedure call), 338

rsat-ad-tools feature, 421

RSAT (Remote Server Administration Tools), 419, 420

Run as different user command, 110-111

Run As Different User dialog box, 111

Run button, 252

Run dialog box, 138

Run ISE As Administrator option, 251

run method, 51

RunningMultipleCommands.txt file, 6

Run Script button, 255

run-time errors, 462-465

rwmi alias, 68

S

sal alias, 67
sAMAccountName attribute, 393, 394
Save cmdlet, 584
sbp alias, 67
sc alias, 67
scheduled tasks, 132
ScheduledTasks module, 580
SchemaMaster role, 425
ScreenSaverExecutable property, 297
ScreenSaverSecure property, 297
ScreenSaverTimeout property, 297
Screen* wildcard pattern, 297
script block, 148
-scriptblock parameter, 128
script execution policies
overview, 57,134
required for using profiles, 268
required for using snippets, 259
required to install modules, 232
retrieving current, 135-136
setting, 135-136
script-level tracing
enabling, 467
trace level 1, 468-469
trace level 2, 470-471
script pane
in Windows PowerShell ISE, 254-255
opening new, 254
running commands in, 255
using Commands add-on with, 255
-script parameter, 485, 486, 489
ScriptPath attribute, 404
scripts. See also constants; error handling; variables
advantages of using, 131-133
using arrays to run commands multiple
times, 138
creating multiple folders using, 168-169
debugging using breakpoints
deleting breakpoints, 494
enabling and disabling breakpoints, 494
exercise, 496-498
listing breakpoints, 492-493
responding to breakpoints, 490-492
setting on commands, 489-490
setting on line number, 483-484
setting on variables, 485-489
deleting multiple folders using, 169-170
dot-sourcing, 178, 179-180, 180-181

ServerCore module

enabling support for, 134-135
execution policies for
overview, 134,513
retrieving current, 135-136
setting, 135-136
functions in, 197-198, 625
using to hold profile information, 276-277
need for modification of, 196
overview, 133
using -passthru parameter, 137-138
readability of, 627-628
running, 133
as scheduled tasks, 132
inside PowerShell, 140
outside PowerShell, 140-141
overview, 138-140
sharing, 132
writing, 136-138
SDDL (Security Descriptor Definition Language), 362
SDDLToBinarySD method, 363
SDDLToWin32SD method, 363
Search-ADAccount cmdlet, 436, 437, 438
Search-AdminAuditLog cmdlet, 558
- SearchBase parameter, 440
searching
certificates, 74-75
for cmdlets using wildcards, 36-39, 43
secret commands, 132
SecureBoot module, 580
security
confirming execution of cmdlets, 8
controlling cmdlet execution, 7
overview, 6-7
suspending execution of cmdlets, 9
Security Descriptor Definition Language (SDDL), 362
SecurityDescriptor property, 517
select alias, 293, 296, 340
Select Case statement (VBScript), 164-165
Select cmdlet, 584
Select Columns dialog box, 35
Select-Object cmdlet, 225, 286, 293, 296, 309, 313,
340, 381, 564, 576
Select statement, 316
Select-String cmdlet, 294, 576
Select-Xml cmdlet, 576
Send cmdlet, 584
Send-MailMessage cmdlet, 576
SendTo folder shortcut, 141
-serveraddresses parameter, 453
ServerCore module, 581

Index

655

ServerManager module

ServerManager module, 448, 580
ServerManagerTasks module, 580
-server parameter, 551
__SERVER property, 518

servers, maximum number of connections to, 316-

317
service accounts
identifying, 322-323
logging, 323-324
ServiceAccounts.txt file, 324
ServiceDependencies.psl script, 631
Service Pack (SP) 1, 3
sessions
creating remote, 115-118
saving remote, 116-117
Set-ADAccountPassword cmdlet, 435, 444
Set-AdminAuditLog cmdlet, 558
Set-AdminAuditLogConfig cmdlet, 558
Set-ADOObject cmdlet, 432
Set-ADUser cmdlet, 443
set alias, 67
Set-Alias cmdlet, 67, 576
Set cmdlet, 583
Set-Content cmdlet, 67, 576
Set-Date cmdlet, 576
Set-DNSClientServerAddress cmdlet, 453
Set-EventLoglevel cmdlet, 554
Set-ExecutionPolicy cmdlet, 134, 232, 259, 513
SetInfo() method, 389, 393, 396, 414, 416
Set-ltem cmdlet, 67, 95, 576
Set-ItemProperty cmdlet, 67, 96, 576
Set-Location cmdlet, 93, 331, 576
alias for, 67
switching PS drive using, 68
working with aliases using, 66
Set-MailboxServer cmdlet, 569
SetPowerState method, 187, 362
Set-PrintConfiguration cmdlet, 576
Set-Printer cmmdlet, 576
Set-PrinterProperty cmdlet, 576
Set-Profile function, 279, 280
Set-Propertyltem cmdlet, 95
Set-PSBreakPoint cmndlet, 67, 483, 496, 576
Set-PSDebug cmdlet, 624
overview, 467
script-level tracing using
enabling, 467
trace level 1, 468-469
trace level 2, 470-471
-step parameter, 472-478

Index

stepping through script, 471-479
strict mode, enabling, 479-480
Set-Service cmdlet, 576
Set-StrictMode cmdlet, 481-482
Set-StrictMode -Version 2 command, 481
Set-TraceSource cmdlet, 576
Set-Variable cmdlet, 67, 101, 146, 576
Set-Wmilnstance cmmdlet, 67, 68, 576
Set-WSManlnstance cmdlet, 576
Set-WSManQuickConfig cmdlet, 576
shared folders, 237-239
ShareNoQuery.ps1 script, 321
shares, retrieving information about, 315
Shellld variable, 100
shortcut dot (.), 320
shortcuts, adding to SendTo folder, 141
Show cmdlet, 584
Show-Command cmdlet, 52, 576
Show Commands Add-On option, 256
Show-ControlPanelltem cmdlet, 576
Show-EventLog cmdlet, 576
Show MOF button, 361
si alias, 67
signature of functions, 195
SilentlyContinue parameter, 392
simple typing errors, 479-480
[single] alias, 146, 190
single quote (') character, 92, 320
Single-Threaded Apartment model (STA), 273
SIN method, 363
Size property, 188
sl alias, 67, 70, 115, 331
SmallBios.ps1 script, 309
SmbShare module, 580
SmbWitness module, 581
snap-ins
defined, 66, 222, 234
uninstalling, 66
snippets
creating code with, 257-259
creating user-defined, 259-260
defined, 257
removing user-defined, 261-262
script execution policy required for, 259
software, installed
finding using WMI, 327-330
searching for in registry, 92
Software Update Services (SUS), 4
sort alias, 78, 299
Sort cmdlet, 584

sorting

alphabetical listings, 77

list of processes, 35
Sort-Object cmdlet, 139, 298, 302, 322, 576
space, in path of script, 588
sp alias, 67
special variables, 142
spelling, 621
Split cmdlet, 567, 584
split method, 229, 232
Split-Path cmdlet, 576
SP (Service Pack) 1, 3
squiggly lines, 462
Start cmdlet, 583
-startdate parameter, 560
Start-Job cmdlet, 120, 123, 125
Start-Process cmdlet, 577
Start-Service cmdlet, 300, 577
StartService method, 305
Start-Sleep cmdlet, 577
Start Snippets option, 257
Start-Transaction cmdlet, 577
Start-Transcript cmdlet, 58, 115, 273, 591
STA (Single-Threaded Apartment model), 273
state property, 302
static methods, 361-363, 365-366
st attribute, 401
Statusinfo property, 188
status of jobs, checking, 124-127
Status property, 188, 298, 301, 315
Step-Into command, 491
Step-Out command, 491
Step-Over command, 491
-step parameter, 472-478
Stop cmdlet, 491, 584
Stop-Computer cmdlet, 577
Stop-Job cmdlet, 125
StopNotepadSilentlyContinuePassThru.psl

script, 138

Stop-Process cmdlet, 8-10, 137, 214, 263, 577
Stop-Service cmdlet, 214, 300, 577
Storage module, 579
storage settings (Exchange Server 2010)

mailbox database

examining, 550-551
managing, 551-552

overview, 550-551
streetAddress attribute, 401
Street attribute, 388

System.Environment .NET Framework class

strict mode, enabling
overview, 479
using Set-PSDebug -Strict, 479-480
using Set-StrictMode cmdlet, 481-482
-Strict parameter, 480
[string] alias, 146, 190
String Attribute Editor, ADSI Edit, 388
String class, 232

strings
expanding, 148, 157
literal, 149

subject property, 74
subroutines in VBScript, 171
__SUPERCLASS property, 518
supervariable, 79
SupportsDiskQuotas property, 188
SupportsExplicitShutdown property, 517
SupportsExtendedStatus property, 517
SupportsFileBasedCompression property, 188
SupportsQuotas property, 517
SupportsSendStatus property, 517
SupportsShouldProcess attribute, 214, 215
SupportsShutdown property, 517
SupportsThrottling property, 517
suspend argument, 7
Suspend cmdlet, 584
suspending execution of cmdlets, 9
Suspend-PrintJob cmdlet, 577
Suspend-Service cmdlet, 577
SUS (Software Update Services), 4
sv alias, 67
Switch cmdlet, 584
Switch_DebugRemoteWMISession.psl script, 465
switched parameters, 193
Switch statement
compared with VBScript's Select Case
statement, 164-165
Defining default condition, 165-166
evaluating arrays, 166-167
handling multiple parameters using, 219
matching behavior, controlling, 167
matching with, 166
swmi alias, 67
-syntax argument, 43
syntax errors, 461-462
SystemCreationClassName property, 188
System.Diagnostics.Process .NET Framework
object, 122
System.DirectoryServices.DirectoryEntry object, 384
System.Environment .NET Framework class, 272

Index

657

System.Exception Catch block

System.Exception Catch block, 534 TextFunctions.psl script, 180, 183
System.Exception error, 529, 531 Text parameter, 260
System.lO.DirectoryInfo object, 82 TextStreamObject, 150
System.lO.Filelnfo class, 82, 230 Then keyword, 161
System.Management.Automation.LineBreak .NET thumbprint attribute, 71
Framework class, 483, 485 Title parameter, 260
System.Management.Automation. Today parameter, 193
PSArgumentException object, 532 totalSeconds property, 329
System.Management.ManagementClass class, 523 Trace cmdlet, 584
System.Math class, 363 Trace-Command cmdlet, 577
SystemName property, 188 -trace parameter, 470
SystemSecurity class, 290 tracing, script-level. See script-level tracing
System.String class, 229 Transcript command, 58
System.SystemException class, 191 transcript tool, 115-116
System.Xml.XmIDocument type, 563 transport-logging levels (Exchange Server 2010)
-SysVolpath parameter, 459 configuring, 554-557

reporting, 554-555
Trap statement, 191, 513
T triple-arrow prompt, 9
troubleshooting, 621-624
TroubleshootingPack module, 581
TrustedPlatformModule module, 580
Try...Catch...Finally, error handling using
Catch block, 529
catching multiple errors, 532-533
exercise, 536-537
Finally block, 529-530
overview, 529
Tshoot.txt file, 6
-type argument, 170
type constraints in functions, 190-191
typename property, 378
Type property, 315
Types.pslxml file, 294
typing errors, 479-480

‘t command, 588

tab completion, 24, 51, 104, 140

tab expansion, 256, 358, 367, 381, 462-463

TargetObject property, 390

taskbar, adding shortcuts to, 10-11

Tasks menu, 251

TechNet Script Center Script Repository, 445

TechNet Script Repository, 80

TechNet wiki, 257

Tee cmdlet, 584

Tee-Object cmdlet, 577

telephone settings, modifying, 405-407

Telephones tab, Active Directory Users and
Computers, 405

template files, 630

terminate method, 355, 357-358, 360

terminating errors, 512

testB object, 391 U
Test cmdlet, 583
Test-ComputerPath.psl script, 506 UAC (User Account Control), 512
Test-ComputerSecureChannel cmdlet, 577 UID attribute, 388
Test-Connection cmdlet, 464, 504, 506, 577 unavailable resources, 462
Test-Mandatory function, 218 Unblock cmdlet, 584
Test-ModulePath function, 228, 231 Unblock-File cmdlet, 577
Test-ParameterSet function, 219 UNC (Universal Naming Convention), 237, 404, 462
Test-Path cmdlet, 93, 94, 97, 228, 270, 278, 467, 469, Undefined execution policy, 134

519, 520, 577, 623 UnderstandingTheRegistryProvider.txt file, 90
Test-PipedValueByPropertyName function, 220 UnderstandingTheVariableProvider.txt file, 97
Test-ValueFromRemainingArguments function, 220 Undo cmdlet, 584
Test-WSMan cmdlet, 113, 577 Undo-Transaction cmdlet, 577

658 Index

unfocused variables, 631
unhandled parameters, 213-214
-unique parameter, 381
Universal Naming Convention (UNC), 237, 404
UnloadTimeout property, 517
Unlock-ADAccount cmdlet, 437, 438
unlocking locked-out users, 436-437
unnamed parameters, 628
Unregister cmdlet, 584
Unregister-Event cmdlet, 577
Unrestricted execution policy, 134
unwanted execution, preventing, 155-156
Update cmdlet, 584
Update-FormatData cmdlet, 577
Update-Help cmdlet, 13-15, 98
UpdateHelpTrackErrors.psl script, 14-15
Update-List cmdlet, 577
Update-TypeData cmdlet, 577
UPN (user principal name), 544
url attribute, 399
usage patterns for profiles, 272
UseADCmdletsToCreateOuComputerAndUser.psl
script, 433
use-case scenario, 501
Use cmdlet, 584
UserAccessLogging module, 580
UserAccountControl attribute, 396
User Account Control (UAC), 512
user accounts, creating (Exchange Server 2010)
exercise, 565-568
multiple, 546-547
when creating mailbox, 544-546
User class, 394
user-defined snippets, 260
UserDomain property, 62
UserGroupTest group, 434
UserNames.txt file, 565
UserName variable, 331
user principal name (UPN), 544
users
Active Directory and
computer account, 395-396
deleting users, 411-412
exposing address information, 400-401
general user information, 398-399
groups, 394-395
modifying user profile settings, 403-405
modifying user properties, 397-398
multiple users, creating, 408-409
multivalued users, creating, 414-417

-verbose parameter

organizational settings, modifying, 409-411
overview, 393-394
telephone settings, modifying, 405-407
user account control, 396-397
soliciting input from, 594

Use-Transaction cmdlet, 577

UsingWhatif.txt file, 7-8

uspendConfirmationOfCmdlets.txt file, 9

Vv

ValidateRange parameter attribute, 528
-value argument, 79
ValueFromPipelineByPropertyName property, 217,

220
ValueFromPipeline parameter property, 217,
220-221, 246

ValueFromRemainingArguments property, 217, 220
-value parameter, 324, 468
values
passing to functions, 175
retrieving from registry, 89-90
-variable parameter, 485, 486
variables
constants compared with, 146
creating, 100-101, 170
deleting, 101
grouping, 631
improperly initialized, 479, 481, 488
indicating can only contain integers, 145
initializing properly, 623
naming, 631
nonexistent, 479
provider for, 97-98
putting property selection into, 373
recycled, 631
retrieving, 98-100
scope of, 631
setting breakpoints on, 485-489
special, 142
storing CIM instance in, 374
storing remote session as, 116-117
unfocused, 631
using, 141-146
Windows environment variables, 330-335
VariableValue variable, 331
-verb argument, 39
-verbose parameter, 12, 15, 94, 210-211, 227, 516,
519

Index

659

verbs

660

verbs, 172, 175

distribution of, 55-56

grouping of, 54-55
-version parameter, 482
version property, 174, 517
video classes, WMI, 380-381
<view> configuration, 294
VolumeDirty property, 188
VolumeName property, 188
VolumeSerialNumber property, 188
VpnClient module, 580

w

Wait cmdlet, 584
Wait-Event cmdlet, 577
Wait-Job cmdlet, 68, 124, 451
Wait-Process cmdlet, 577
WbemTest (Windows Management Instrumentation
Tester), 361, 513
Wdac module, 580
Web Services Description Language (WSDL), 190
Web Services Management (WSMAN), 108
-whatif parameter, 12, 261, 629
adding support for to function, 214-215
controlling execution with, 7
using before altering system state, 74
Whea module, 581
whenCreated property, 441
where alias, 68, 70, 82
Where clause, 325
Where cmdlet, 585
Where-Object cmdlet, 59, 67, 70, 108, 204, 261, 299,
493, 559
alias for, 68
compounding, 76
searching for aliases using, 66
WhileDoesNotRun.psl script, 156
While...Not ..Wend loop, 147
WhileReadLine.psl script, 150
WhileReadLineWend.vbs script, 147
While statement
constructing, 148-149
example of, 150
looping with, 150
preventing unwanted execution using, 155-156
While..Wend loop, 147
whoami command, 128
-Width parameter, 52

Index

wildcards

asterisk (*) character, 7, 17, 21, 68, 293, 309, 442

in Commands add-on, 252

in Windows PowerShell 2.0, 226

loading modules using, 226

searching for cmdlets using, 36-39

searching job names, 121
Win32_1394Controller class, 598
Win32_1394ControllerDevice class, 598
Win32_Account class, 614
Win32_AccountSID class, 610
Win32_ACE class, 610
Win32_ActiveRoute class, 607
Win32_AllocatedResource class, 598
Win32_AssociatedBattery class, 601
Win32_AssociatedProcessorMemory class, 598
Win32_AutochkSetting class, 598
Win32_BaseBoard class, 598
Win32_BaseService class, 612
Win32_Battery class, 601
Win32_Bios WMl class, 292, 309, 343, 371, 501, 512,

514, 598
Win32_BootConfiguration class, 608
Win32_Bus class, 598
Win32_CacheMemory class, 598
Win32_CDROMDrive class, 598
Win32_CIMLogicalDeviceCIMDataFile class, 604
Win32_ClassicCOMApplicationClasses class, 603
Win32_ClassicCOMClass class, 603
Win32_ClassicCOMClassSettings class, 603
Win32_ClientApplicationSetting class, 603
Win32_CodecFile class, 607
Win32_CollectionStatistics class, 605
Win32_COMApplication class, 603
Win32_COMApplicationClasses class, 603
Win32_COMApplicationSettings class, 603
Win32_COMClassAutoEmulator class, 603
Win32_COM(Class class, 603
Win32_COMClassEmulator class, 603
Win32_ComponentCategory class, 603
Win32_ComputerShutdownEvent class, 607
Win32_ComputerSystem class, 309, 319, 608
Win32_ComputerSystemEvent class, 607
Win32_ComputerSystemProcessor class, 608
Win32_ComputerSystemProduct class, 608
Win32_ComputerSystemWindows
ProductActivationSetting class, 615

Win32_COMSetting class, 603
Win32_ConnectionShare class, 612
Win32_ControllerHasHub class, 598

Win32_CurrentProbe class, 601
Win32_CurrentTime WMI class, 294
Win32_DCOMApplicationAccessAllowedSetting
class, 603
Win32_DCOMApplication class, 603
Win32_DCOMApplicationLaunchAllowedSetting
class, 604
Win32_DCOMApplicationSetting class, 604
Win32_DependentService class, 608
Win32_Desktop class, 296-298, 604
Win32_DesktopMonitor class, 294, 602
Win32_DeviceBus class, 598
Win32_DeviceChangeEvent class, 607
Win32_DeviceMemoryAddress class, 598
Win32_DeviceSettings class, 598
Win32_DFSNode class, 612
Win32_DFSNodeTarget class, 612
Win32_DFSTarget class, 612
Win32_Directory class, 604
Win32_DirectorySpecification class, 604
Win32_DiskDrive class, 598
Win32_DiskDriveToDiskPartition class, 604
Win32_DiskPartition class, 604
Win32_DiskQuota class, 604
Win32_DisplayConfiguration class, 370, 602
Win32_DisplayControllerConfiguration class, 602
Win32_DMAChannel class, 598
Win32_DriverForDevice class, 601
Win32_DriverVXD class, 604
Win32_Environment class, 330, 604
Win32_Fan class, 597
Win32_FloppyController class, 598
Win32_FloppyDrive class, 598
Win32_Group class, 614
Win32_GroupInDomain class, 614
Win32_GroupUser class, 614
Win32_HeatPipe class, 597
Win32_IDEController class, 599
Win32_IDEControllerDevice class, 599
Win32_ImplementedCategory class, 604
Win32_InfraredDevice class, 599
Win32_IP4PersistedRouteTable class, 607
Win32_IP4RouteTable class, 607
Win32_IP4RouteTableEvent class, 607
Win32_IRQResource class, 599
Win32_Keyboard class, 597
Win32_LoadOrderGroup class, 608
Win32_LoadOrderGroupServiceDependencies
class, 608
Win32_LoadOrderGroupServiceMembers class, 608

Win32_NTDomain class

Win32_LocalTime class, 610
WIN32_loggedonuser WMI class, 341
Win32_LogicalDisk class, 146, 187, 189, 318, 605
Win32_LogicalDiskRootDirectory class, 605
Win32_LogicalDiskToPartition class, 605
WIN32_LogicalDisk WMI class, 312, 314
Win32_LogicalFileAccess class, 611
Win32_LogicalFileAuditing class, 611
Win32_LogicalFileGroup class, 611
Win32_LogicalFileOwner class, 611
Win32_LogicalFileSecuritySetting class, 611
Win32_LogicalMemoryConfiguration class, 606
Win32_LogicalProgramGroup class, 612
Win32_LogicalProgramGroupDirectory class, 612
Win32_LogicalProgramGroupltem class, 613
Win32_LogicalProgramGroupltemDataFile class, 613
Win32_LogicalShareAccess class, 611
Win32_LogicalShareAuditing class, 611
Win32_LogicalShareSecuritySetting class, 611
Win32_LogonSession class, 614
Win32_LogonSessionMappedDisk class, 614
Win32_LogonSession WMI class, 374
Win32_LUIDandAttributes class, 605
Win32_LUID class, 605
Win32_MappedLogicalDisk class, 605
Win32_MemoryArray class, 599
Win32_MemoryArrayLocation class, 599
Win32_MemoryDeviceArray class, 599
Win32_MemoryDevice class, 599
Win32_MemoryDevicelLocation class, 599
Win32_ModulelLoadTrace class, 607
Win32_ModuleTrace class, 607
Win32_MotherboardDevice class, 599
Win32_NamedJobObjectActgInfo class, 606
Win32_NamedJobObject class, 605
Win32_NamedJobObjectLimit class, 606
Win32_NamedJobObjectLimitSetting class, 606
Win32_NamedJobObjectProcess class, 606
Win32_NamedJobObjectSecLimit class, 606
Win32_NamedJobObjectSecLimitSetting class, 606
Win32_NamedJobObjectStatistics class, 606
Win32_NetworkAdapter class, 601
Win32_NetworkAdapterConfiguration class, 196,
601
Win32_NetworkAdapterSetting class, 601
Win32_NetworkClient class, 607
Win32_NetworkConnection class, 607
Win32_NetworkLoginProfile class, 614
Win32_NetworkProtocol class, 607
Win32_NTDomain class, 607

Index

661

Win32_NTEventlogFile class

662

Win32_NTEventlogFile class, 614
Win32_NTLogEvent class, 614
Win32_NTLogEventComputer class, 614
Win32_NTLogEventLog class, 614
Win32_NTLogEventUser class, 614
Win32_OnBoardDevice class, 599
Win32_OperatingSystemAutochkSetting class, 605
Win32_OperatingSystem class, 174, 319, 608
Win32_OperatingSystemQFE class, 608
Win32_OSRecoveryConfiguration class, 609
Win32_PagefFile class, 606
Win32_PageFileElementSetting class, 606
Win32_PageFileSetting class, 606
Win32_PageFileUsage class, 606
Win32_ParallelPort class, 599
Win32_PCMCIAController class, 599
Win32_PerfFormattedData_ASP_ActiveServerPages
class, 615
Win32_PerfFormattedData class, 615
Win32_PerfFormattedData_ContentFilter_
IndexingServiceFilter class, 615
Win32_PerfFormattedData_Contentindex_
IndexingService class, 615
Win32_PerfFormattedData_Inetinfo_
InternetinformationServicesGlobal
class, 615
Win32_PerfFormattedData_ISAPISearch_
HttplndexingService class, 615
Win32_PerfFormattedData_MSDTC_
DistributedTransactionCoordinator
class, 615
Win32_PerfFormattedData_NTFSDRV_
SMTPNTFSStoreDriver class, 615
Win32_PerfFormattedData_PerfDisk_LogicalDisk
class, 615
Win32_PerfFormattedData_PerfDisk_PhysicalDisk
class, 615
Win32_PerfFormattedData_PerfNet_Browser
class, 615
Win32_PerfFormattedData_PerfNet_Redirector
class, 615
Win32_PerfFormattedData_PerfNet_Server
class, 616
Win32_PerfFormattedData_PerfNet_
ServerWorkQueues class, 616
Win32_PerfFormattedData_PerfOS_Cache class, 616
Win32_PerfFormattedData_PerfOS_Memory
class, 616
Win32_PerfFormattedData_PerfOS_Objects
class, 616

Index

Win32_PerfFormattedData_PerfOS_PagingFile
class, 616
Win32_PerfFormattedData_PerfOS_Processor
class, 616
Win32_PerfFormattedData_PerfOS_System
class, 616
Win32_PerfFormattedData_PerfProc_Fulllmage_
Costly class, 616
Win32_PerfFormattedData_PerfProc_Image_Costly
class, 616
Win32_PerfFormattedData_PerfProc_JobObject
class, 616
Win32_PerfFormattedData_PerfProc_
JobObjectDetails class, 616
Win32_PerfFormattedData_PerfProc_
ProcessAddressSpace_Costly class, 616
Win32_PerfFormattedData_PerfProc_Process
class, 616
Win32_PerfFormattedData_PerfProc_Thread
class, 617
Win32_PerfFormattedData_PerfProc_ThreadDetails_
Costly class, 617
Win32_PerfFormattedData_PSched_PSchedFlow

class, 617
Win32_PerfFormattedData_PSched_PSchedPipe
class, 617
Win32_PerfFormattedData_RemoteAccess_RASPort
class, 617
Win32_PerfFormattedData_RemoteAccess_RASTotal
class, 617
Win32_PerfFormattedData_RSVP_ACSRSVPInterfaces
class, 617
Win32_PerfFormattedData_RSVP_ACSRSVPService
class, 617
Win32_PerfFormattedData_SMTPSVC_SMTPServer
class, 617
Win32_PerfFormattedData_Spooler_PrintQueue
class, 617
Win32_PerfFormattedData_TapiSrv_Telephony
class, 617

Win32_PerfFormattedData_Tcpip_ICMP class, 617
Win32_PerfFormattedData_Tcpip_IP class, 617
Win32_PerfFormattedData_Tcpip_NBTConnection
class, 617
Win32_PerfFormattedData_Tcpip_NetworkInterface
class, 617
Win32_PerfFormattedData_Tcpip_TCP class, 617
Win32_PerfFormattedData_Tcpip_UDP class, 618
Win32_PerfFormattedData_TermService_
TerminalServices class, 618

Win32_PerfFormattedData_W3SVC_WebService

class, 618
Win32_PerfRawData_ASP_ActiveServerPages

class, 618
Win32_PerfRawData class, 618
Win32_PerfRawData_ContentFilter_

IndexingServiceFilter class, 618
Win32_PerfRawData_Contentindex_IndexingService

class, 618
Win32_PerfRawData_Inetinfo_

InternetinformationServicesGlobal

class, 618
Win32_PerfRawData_ISAPISearch_

HttpIindexingService class, 618
Win32_PerfRawData_MSDTC _

DistributedTransactionCoordinator

class, 618
Win32_PerfRawData_NTFSDRV_

SMTPNTFSStoreDriver class, 618
Win32_PerfRawData_PerfDisk_LogicalDisk class, 618
Win32_PerfRawData_PerfDisk_PhysicalDisk

class, 618
Win32_PerfRawData_PerfNet_Browser class, 618
Win32_PerfRawData_PerfNet_Redirector class, 618
Win32_PerfRawData_PerfNet_Server class, 619
Win32_PerfRawData_PerfNet_ServerWorkQueues

class, 619
Win32_PerfRawData_PerfOS_Cache class, 619
Win32_PerfRawData_PerfOS_Memory class, 619
Win32_PerfRawData_PerfOS_Objects class, 619
Win32_PerfRawData_PerfOS_PagingFile class, 619
Win32_PerfRawData_PerfOS_Processor class, 619
Win32_PerfRawData_PerfOS_System class, 619
Win32_PerfRawData_PerfProc_Fulllmage_Costly

class, 619
Win32_PerfRawData_PerfProc_Ilmage_Costly

class, 619
Win32_PerfRawData_PerfProc_JobObject class, 619
Win32_PerfRawData_PerfProc_JobObjectDetails

class, 619
Win32_PerfRawData_PerfProc_

ProcessAddressSpace_Costly class, 619
Win32_PerfRawData_PerfProc_Process class, 619
Win32_PerfRawData_PerfProc_Thread class, 619
Win32_PerfRawData_PerfProc_ThreadDetails_Costly

class, 619
Win32_PerfRawData_PSched_PSchedFlow class, 620
Win32_PerfRawData_PSched_PSchedPipe class, 620
Win32_PerfRawData_RemoteAccess_RASPort

class, 620

Win32_Processor class

Win32_PerfRawData_RemoteAccess_RASTotal
class, 620
Win32_PerfRawData_RSVP_ACSRSVPInterfaces
class, 620
Win32_PerfRawData_RSVP_ACSRSVPService
class, 620
Win32_PerfRawData_SMTPSVC_SMTPServer
class, 620
Win32_PerfRawData_Spooler_PrintQueue class, 620
Win32_PerfRawData_TapiSrv_Telephony class, 620
Win32_PerfRawData_Tcpip_ICMP class, 620
Win32_PerfRawData_Tcpip_IP class, 620
Win32_PerfRawData_Tcpip_NBTConnection
class, 620
Win32_PerfRawData_Tcpip_NetworkInterface
class, 620
Win32_PerfRawData_Tcpip_TCP class, 620
Win32_PerfRawData_Tcpip_UDP class, 620
Win32_PerfRawData_TermService_TerminalServices
class, 620
Win32_PerfRawData_TermService_
TerminalServicesSession class, 620
Win32_PerfRawData_W3SVC_WebService class, 620
Win32_PhysicalMedia class, 598
Win32_PhysicalMemoryArray class, 599
Win32_PhysicalMemory class, 599
Win32_PhysicalMemoryLocation class, 599
Win32_PingStatus class, 506, 607
Win32_PNPAllocatedResource class, 599
Win32_PNPDevice class, 599
Win32_PNPEntity class, 382, 599
Win32_PointingDevice class, 597
Win32_PortableBattery class, 601
Win32_PortConnector class, 599
Win32_PortResource class, 600
Win32_POTSModem class, 602
Win32_POTSModemToSerialPort class, 602
Win32_PowerManagementEvent class, 601
Win32_Printer class, 601
Win32_PrinterConfiguration class, 601
Win32_PrinterController class, 601
Win32_PrinterDriver class, 601
Win32_PrinterDriverDIl class, 601
Win32_PrinterSetting class, 602
Win32_PrinterShare class, 612
Win32_PrintJob class, 602
Win32_PrivilegesStatus class, 611
Win32_Process class, 262, 294, 326, 355, 360, 374,
610
Win32_Processor class, 294, 600

Index

663

Win32_ProcessStartTrace class

Win32_ProcessStartTrace class, 607 Win32_SoundDevice class, 600
Win32_ProcessStartup class, 610 Win32_StartupCommand class, 609
Win32_ProcessStopTrace class, 607 Win32_SubDirectory class, 605
Win32_ProcessTrace class, 607 Win32_SystemAccount class, 614
Win32_Product class, 126, 516, 518 Win32_SystemBIOS class, 600
Win32_ProgramGroup class, 613 Win32_SystemBootConfiguration class, 609
Win32_ProgramGroupContents class, 613 Win32_SystemConfigurationChangeEvent class, 608
Win32_ProgramGroupOrltem class, 613 Win32_SystemDesktop class, 609
Win32_ProtocolBinding class, 607 Win32_SystemDevices class, 609
Win32_Proxy class, 615 Win32_SystemDriver class, 604
Win32_QuickFixEngineering class, 609 Win32_SystemDriverPNPEntity class, 600
Win32_QuotaSetting class, 605 Win32_SystemEnclosure class, 600
Win32_Refrigeration class, 597 Win32_SystemLoadOrderGroups class, 609
Win32_Registry class, 610 Win32_SystemLogicalMemoryConfiguration
Win32_ScheduledJob class, 132, 610 class, 606

Win32_SCSIController class, 600 Win32_SystemMemoryResource class, 600
Win32_SCSIControllerDevice class, 600 Win32_SystemNetworkConnections class, 609
Win32_SecurityDescriptor class, 363, 611 Win32_SystemOperatingSystem class, 609
Win32_SecurityDescriptorHelper class, 361, 362 Win32_SystemPartitions class, 605
Win32_SecuritySettingAccess class, 611 Win32_SystemProcesses class, 609
Win32_SecuritySettingAuditing class, 611 Win32_SystemProgramGroups class, 609
Win32_SecuritySetting class, 611 Win32_SystemResources class, 609
Win32_SecuritySettingGroup class, 611 Win32_SystemServices class, 609
Win32_SecuritySettingOfLogicalFile class, 611 Win32_SystemSetting class, 609
Win32_SecuritySettingOfLogicalShare class, 611 Win32_SystemSlot class, 600
Win32_SecuritySettingOfObject class, 611 Win32_SystemSystemDriver class, 610
Win32_SecuritySettingOwner class, 611 Win32_SystemTimeZone class, 610
Win32_SerialPort class, 600 Win32_SystemTrace class, 608
Win32_SerialPortConfiguration class, 600 Win32_SystemUsers class, 610
Win32_SerialPortSetting class, 600 Win32_TapeDrive class, 598
Win32_ServerConnection class, 612 Win32_TCPIPPrinterPort class, 602
Win32_ServerSession class, 612 Win32_TemperatureProbe class, 597
Win32_Service class, 294, 301, 373, 612 Win32_Thread class, 610
Win32_SessionConnection class, 612 Win32_ThreadStartTrace class, 608
Win32_SessionProcess class, 612 Win32_ThreadStopTrace class, 608
Win32_ShadowBy class, 613 Win32_ThreadTrace class, 608
Win32_ShadowContext class, 613 Win32_TimeZone class, 604
Win32_ShadowCopy class, 613 Win32_TokenGroups class, 606
Win32_ShadowDiffVolumeSupport class, 613 Win32_TokenPrivileges class, 606
Win32_ShadowfFor class, 613 Win32_Trustee class, 611
Win32_ShadowOn class, 613 Win32_UninterruptiblePowerSupply class, 601
Win32_ShadowProvider class, 613 Win32_USBController class, 600
Win32_ShadowsStorage class, 613 Win32_USBControllerDevice class, 600
Win32_ShadowVolumeSupport class, 614 Win32_USBHub class, 600

Win32_Share class, 315, 612 Win32_UserAccount class, 132, 376, 614
Win32_ShareToDirectory class, 612 Win32_UserDesktop class, 604
Win32_ShortcutFile class, 605 Win32_UserinDomain class, 614
Win32_SIDandAttributes class, 606 Win32_VideoConfiguration class, 602
Win32_SID class, 611 Win32_VideoController class, 602

Win32_SMBIOSMemory class, 600

664 Index

Win32_VideoSettings class, 602
Win32_VoltageProbe class, 601
Win32_VolumeChangeEvent class, 608
Win32_Volume class, 605, 614
Win32_VolumeQuota class, 605
Win32_VolumeQuotaSetting class, 605
Win32_VolumeUserQuota class, 605, 614
Win32_WindowsProductActivation class, 615
windir variable, 77
Windows 7, taskbar shortcuts in, 10-11
Windows 8
firewall exceptions for, 114
using -force parameter, 81, 82
prompts displayed prior to stopping certain
processes, 216
WinRM in PowerShell Client, 112
WindowsDeveloperLicense module, 581
Windows environment variables, 330-335
WindowsErrorReporting module, 581
Windows flag key, 10
Windows Management Framework 3.0 package, 3
Windows Management Instrumentation. See WMI
Windows Management Instrumentation Tester
(WbemTest), 361
Windows PowerShell. See PowerShell
Windows PowerShell 2.0, 226
Windows PowerShell console, 53
Windows PowerShell ISE
creating modules in, 238-239
IntelliSense in, 256
navigating in, 252-254
running, 251
running commands in, 255
script pane in, 254-255
snippets in
creating code with, 257-259
creating user-defined, 259-260
defined, 257
removing user-defined, 261-262
Tab expansion in, 256
Windows PowerShell remoting
discovering information about forest and
domain, 428-431
obtaining FSMO information using, 428
Windows Remote Management (WinRM), 3
Windows Server 2003, 227
Windows Server 2012, 112
Windows XP, 227
WinNT provider, 385

finding installed software

WinRM (Windows Remote Management), 3
configuring, 112-114
firewall exceptions, 114
overview, 112
testing configuration, 113-114
wjb alias, 68
WMI classes
abstract, 370
association classes, 373-378
description of, 597-620
dynamic, 370
list of, 597-620
properties of, 597-620
retrieving WMI instances
cleaning up output from command, 373
overview, 371-372
reducing returned properties and
instances, 372-373
using CIM cmdlets to explore
filtering classes by qualifier, 369-371
finding WMI class methods, 368-369
overview, 367
retrieving associated WMI classes, 381-382
using -classname parameter, 367-368
WMI video classes, 380-381
[wmiclass] type accelerator, 523, 524
WMI cmdlets
Invoke-WmiMethod cmdlet, 358-360
overview, 355-357
using terminate method directly, 357-358
[wmi] type accelerator, 360-361
WMI Query argument, 320
WMI Tester (WbemTest), 513, 518
[wmi] type accelerator, 189, 360-361
WMI (Windows Management
Instrumentation), 1. See also WMI classes;
WMI cmdlets
classes in, 289-293
connecting to, default values for, 307-308
importance of, 283-284
missing providers, handling, 513-523
model for, 284
namespaces in, 284-288
obtaining operating system version using, 174
obtaining specific data from, 189
providers in, 289
queries from bogus users, 463
querying
eliminating WMI query argument, 320-321
finding installed software, 327-330

Index

665

identifying service accounts

666

identifying service accounts, 322-323

logging service accounts, 323-324

obtaining BIOS information, 308-311

using operators, 321-322

overview, 293

retrieving data from specific instances of
class, 319-320

retrieving default WMI settings, 308

retrieving every property from every instance
of class, 314

retrieving information about all shares on
local machine, 315

retrieving list of running processes, 317-318

retrieving specific properties from class, 316

shortening syntax, 325-326

specific class, 293-296

specifying maximum number of connections
to server, 316-317

substituting Where clause with variable, 325

viewing Windows environment
variables, 330-335

Win32_Desktop class, 296-298

working with disk drives, 312-314

remoting

using CIM classes to query WMI classes, 343—
344

disadvantages of, 341

using group policy to configure WMI, 337-
338

remote results, 344-348

supplying alternate credentials for remote
connection, 338-341

using to work with static methods, 361-363,

Index

365-366

WorkingWithVariables.txt file, 97

-Wrap switch, 255

write alias, 68

Write cmdlet, 583

Write-Debug cmdlet, 174, 463, 464, 464-465, 577
Write-Error cmdlet, 174, 577
Write-EventLog cmdlet, 577

Write-Host cmdlet, 178, 328, 488, 577, 592
Write mode, 485

Write-Output cmdlet, 68, 577

Write-Path function, 176

Write-Progress cmdlet, 577, 629
Write-Verbose cmdlet, 209, 519, 520, 577
Write-Warning cmdlet, 577

Wscript.Echo command, 133

Wscript.Quit statement, 161

WSDL (Web Services Description Language), 190
wshNetwork object, 61

wshShell object, 50-52

WS-Management protocol, 112

WSMAN (Web Services Management), 108

X

[xml] alias, 146, 190

About the Author

ED WILSON is a well-known scripting expert who delivers popu-
lar scripting workshops to Microsoft customers and employees
worldwide. He's written several books on Windows scripting,
including Windows PowerShell™ 2.0 Best Practices, Microsoft®
Windows PowerShell™ Step By Step, and Microsoft® VBScript
Step by Step. Ed is a senior consultant at Microsoft Corporation
and writes Hey, Scripting Guy!, one of the most popular TechNet
blogs.

What do

you think of
this book?

We want to hear from you!

To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Tell us how well this book meets your needs—what works effectively, and what we can
do better. Your feedback will help us continually improve our books and learning
resources for you.

Thank you in advance for your input!

Microsoft
Press

	Contents at a Glance
	Contents
	Foreword
	Introduction
	Chapter 1: Overview of Windows PowerShell 3.0
	Understanding Windows PowerShell
	Using cmdlets
	Installing Windows PowerShell
	Deploying Windows PowerShell to
down-level operating systems

	Using command-line utilities
	Security issues with Windows PowerShell
	Controlling execution of PowerShell cmdlets
	Confirming actions
	Suspending confirmation of cmdlets

	Working with Windows PowerShell
	Accessing Windows PowerShell
	Configuring the Windows PowerShell console

	Supplying options for cmdlets
	Working with the help options
	Exploring commands: step-by-step exercises
	Chapter 1 quick reference

	Chapter 4: Using PowerShell Remoting and Jobs
	Understanding Windows PowerShell remoting
	Classic remoting
	WinRM

	Using Windows PowerShell jobs
	Using Windows PowerShell remoting: step-by-step exercises
	Chapter 4 quick reference

	Index

