

Architecting Mobile
Solutions for the
Enterprise

Dino Esposito

Copyright © 2012 by Dino Esposito
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-6302-2

1 2 3 4 5 6 7 8 9 LSI 7 6 5 4 3 2

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions and Developmental Editor: Russell Jones

Production Editor: Kristen Borg

Production Services: S4Carlisle Publishing Services

Technical Reviewer: Marco Bellinaso

Copyeditor: Sue McClung

Indexer: Margaret Troutman

Cover Design: Twist Creative • Seattle

Cover Composition: Karen Montgomery

Illustrator: S4Carlisle Publishing Services

http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

To Silvia, because you’re stronger than you think.
To Michela, because you’re just the daughter I always dreamt of.
To Francesco, because you’re a terrific, quick learner.

—Dino

Contents at a Glance

Introduction	 xiii

Part I	 Going Mobile

Chapter 1	 Pillars of a Mobile Strategy	 3

Chapter 2	 Mobile Sites vs. Native Applications 	 25

Part II	 Mobile Sites

Chapter 3	 Mobile Architecture	 43

Chapter 4	 Building Mobile Websites 	 63

Chapter 5	 HTML5 and jQuery Mobile 	 105

Chapter 6	 Developing Responsive Mobile Sites 	 137

Part III	 Mobile Applications

Chapter 7	 Patterns of Mobile Application Development 	 173

Chapter 8	 Developing for iOS	 207

Chapter 9	 Developing for Android	 267

Chapter 10	 Developing for Windows Phone	 323

Chapter 11	 Developing with PhoneGap	 381

Index	 417

vii

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Contents

Introduction	 xiii

Part I	 Going Mobile

Chapter 1	 Pillars of a Mobile Strategy	 3
What Does “Going Mobile” Mean? . 4

Toward a Mobile Strategy	 4

Defining a Mobile Strategy 	 7

Development and Costs	 10

Outlining a B2C Strategy. 13

Focus on Your Audience	 13

Delivery Models	 16

Outlining a B2B Strategy. 19

Serve Your (Limited) Audience 	 19

Mobile Enterprise Application Platforms	 21

Summary. 23

Chapter 2	 Mobile Sites vs. Native Applications 	 25
Not a Pointless Matter. 26

A False Dilemma—but True Differences	 26

Reasons for the Perceived Dilemma	 31

Aspects of Mobile Sites. 33

What’s Good About Mobile Sites	 33

What’s Bad About Mobile Sites	 34

viii Contents

Aspects of Native Applications . 37

What’s Good About Native Applications 	 37

What’s Bad About Native Applications	 38

Summary. 40

Part II	 Mobile Sites

Chapter 3	 Mobile Architecture	 43
Focusing on Mobile Use-Cases . 44

Stereotypes to Refresh 	 44

Analysis First	 46

Mobile-Specific Development Issues. 51

Toward a Mobile Application Layer	 51

Server-Side Device Detection	 57

Summary. 61

Chapter 4	 Building Mobile Websites 	 63
From Web to Mobile . 64

Application Structure 	 64

Amount of JavaScript	 67

Application Device Profiles	 69

Optimizing the Payload	 71

The Offline Scenario	 75

Development Aspects of a Mobile Site. 76

Reaching the Mobile Site	 76

Design of the Mobile Views	 82

Testing the Mobile Site	 88

The Device-Detector Site . 90

Routing to Mobile Views	 91

Detecting Device Capabilities	 93

Putting the Site Up	 98

Summary. 104

ixContents

Chapter 5	 HTML5 and jQuery Mobile 	 105
jQuery Mobile Fast Facts. 106

Generalities of jQuery Mobile 	 106

Building Mobile Pages with jQuery Mobile	 109

Working with Pages	 117

HTML5 Fast Facts . 121

Semantic Markup	 122

Web Forms and Data Entry	 126

Programmer-Friendly Features	 130

Using HTML5 Today	 134

Summary. 136

Chapter 6	 Developing Responsive Mobile Sites 	 137
A Developer’s Perspective of Device Detection . 138

The Client-Side Route 	 138

The Server-Side Route	 142

Inside WURFL. 144

Structure of the Repository	 144

Top 20 WURFL Capabilities	 148

Using WURFL from ASP.NET	 153

Implementing a Multiserving Approach. 158

Key Aspects of Mobile Views	 159

Creating Device Profiles	 160

Device Profiles in Action	 161

Summary. 169

Part III	 Mobile Applications

Chapter 7	 Patterns of Mobile Application Development 	 173
Mobile Applications Are Different. 174

Critical Aspects of Mobile Software 	 174

New Patterns and Practices	 176

x Contents

Patterns for Interaction. 179

The Back-and-Save Pattern	 179

The Guess-Don’t-Ask Pattern	 182

The A-la-Carte-Menu Pattern	 185

The Sink-or-Async Pattern	 186

The Logon-and-Forget Pattern	 189

Patterns for Presentation. 191

The Babel-Tower Pattern	 191

The Do-as-Romans-Do Pattern	 195

The List-and-Scroll Pattern	 196

Behavioral Patterns . 199

The Predictive Fetch Pattern	 199

The Memento-Mori Pattern	 200

The As-Soon-As-Possible Pattern 	 202

Summary. 205

Chapter 8	 Developing for iOS	 207
Getting Ready for iOS Development. 208

A Brand New Platform for (So Many) Developers	 208

Choosing the Development Strategy	 212

Programming with Objective-C. 215

A Quick Look at Objective-C	 215

The HelloWorld Program	 224

Examining a Sample Application 	 231

Other Programming Topics	 243

Programming with MonoTouch. 246

The .NET Framework on iOS	 247

Examining a Sample Application	 251

Deploying iOS Applications . 259

Testing the Application 	 259

Distributing the Application 	 263

Summary. 265

xiContents

Chapter 9	 Developing for Android	 267
Getting Ready for Android Development . 268

Development Tools and Challenges	 268

Choosing the Development Strategy	 270

The Android Jungle	 275

Programming with the Android SDK. 278

Anatomy of an Application 	 278

Defining the User Interface 	 285

Examining a Sample Application 	 294

Other Programming Topics 	 308

Testing the Application 	 318

Distributing the Application 	 320

Summary. 321

Chapter 10	 Developing for Windows Phone	 323
Getting Ready for Windows Phone Development. 324

Development Tools and Challenges	 324

Choosing the Development Strategy	 326

Programming with the Silverlight Framework. 329

Anatomy of an Application 	 329

Defining the User Interface 	 337

The MVVM Pattern	 348

Examining a Sample Application 	 353

Other Programming Topics 	 366

Deploying Windows Phone Applications . 375

Testing the Application 	 375

Distributing the Application	 378

Summary. 379

Chapter 11	 Developing with PhoneGap	 381
The Myth of Cross-Platform Development . 382

The Virtual Machine Approach 	 383

The Shell Approach	 386

xii Contents

Building an HTML5 Solution. 392

JavaScript Ad Hoc Patterns	 392

The Sample Application 	 398

Integrating with PhoneGap. 405

Supported Platforms	 405

Building a PhoneGap Project	 406

Final Considerations	 412

Summary. 414

Index	 417

		 xiii

Introduction

As far back as 1999, some smart guys predicted that mobile would become the
primary focus of development in only a few years. Although it has taken a bit more

time than expected, the era of mobile software has arrived at last. Why did it take so
long? The answer is surprisingly simple: mobile software needed a critical mass of users
to develop before it could take off. The process of accumulating mobile users probably
started with the release of the first iPhone back in 2007, but today, it has reached a
large enough mass to trigger all sorts of chain reactions.

Back in 1990 (yes, you read that right), Bill Gates gave a keynote talk at Comdex
titled “Information at Your Fingertips.” Let’s be honest—for 20 years, we pretended
we really had information (that we needed) at our fingertips, but at most, we had that
information only at hand—which makes a huge difference. Now is the time, though,
that we can cover the short distance from hand to fingertips. With mobile devices
everywhere, and especially with a revolutionary version of Windows on the horizon,
I believe we’re truly entering a new era of development—a paradigm shift.

Paradigm shifts just happen—and mobile represents a big one. Mobile enables new
business scenarios and new ways of doing the same business. Mobile affects nearly
everybody—users, professionals, and clearly developers. Writing mobile applications
is a challenge that the vast majority of developers will face in the near future. Overall,
mobile applications are simpler than desktop or web applications—but that’s true only
if you count just the number of functions. The hardest part of mobile development is to
identify the right set of use-cases and the right user experience and interaction model.
It turns out that the typical mobile application user is much less forgiving than the
average user of web or desktop applications. As developers, we forced users to play by
the rules of software for decades. In contrast, mobile developers will be forced to play
by the rules of user experience and conform to user expectations. This is how software
always should have been; but it’s definitely not how software has been built for at least
the past 20 years. Moreover, before too many more years pass, mobile may well be the
only software that we will be called upon to write.

The term mobile refers to a variety of platforms, each with its own set of capabilities and
features, and each of which requires significantly different skills: different operating systems,
different programming languages, different application programming interfaces (APIs), and
even different computers. A mobile application is more sophisticated and more complex
than web applications with regard to resource management, data entry, sensors, data
storage, and life cycle. Furthermore, each operating system has its own set of development
guidelines and a proprietary deployment model.

xiv   Introduction

This book is intended as a quick-but-juicy guide to issues that you may face while
developing a mobile project for one or multiple platforms. The book starts by analyzing
the various types of mobile solutions, which include websites, websites optimized
for mobile devices, and native mobile applications, and then identifies a few design
patterns common to all mobile applications and technologies available on the various
platforms. Predictive fetch, back-and-save, and guess-don’t-ask are just a few of the
patterns being discussed and implemented. The book puts considerable emphasis
on mobile sites and frameworks, and on techniques to detect browser capabilities
accurately. For example, the book offers a chapter on Wireless Universal Resource FiLe
(WURFL)—the framework being used by Facebook for mobile device detection—and
compares that to the detection capabilities in plain ASP.NET.

Furthermore, the book offers an overview of mobile development for the three
major platforms—iOS, Android, and Windows Phone. In particular, this book builds
the same application for all three platforms, discussing tools, frameworks, practices,
and illustrating architectural and structural differences along the way. Finally, the book
covers PhoneGap and HTML5-based development for mobile devices.

After reading this book, you probably won’t be a super-expert in any of those
platforms, but you’ll know enough to start producing code on any of the most popular
devices. You’ll also know enough to advise your customers and help them define
effective mobile strategies for their business.

Who Should Read This Book

As companies start going mobile, they need a strategy long before they need a mobile
site or an iPhone app. But when companies have developed the strategy and start look-
ing into implementing it, they face the rough issue of not having or finding architects
and developers that know the mobile world from a variety of angles. Today, they can
easily find great iPhone or Android developers, but they can hardly find a consultant
that can suggest, based on strong evidence, whether a mobile site is preferable for
them.

This book is aimed at providing an architect summary of what you need to know
to design and implement mobile solutions. Today, a mobile solution often means
arranging the same application for several different platforms (iPhone, Android,
Blackberry, and Windows Phone), and doing that using a very specific set of design
patterns with little in common with desktop or web apps. Last but not least, the effort
must be done in the context of the customer’s needs, expectations, and existing
business.

	 Introduction   xv

Not a Mobile Developer? Not a Developer!
For a company with a consolidated business, mobile is a way to expand its horizon. The new
expansion stage of mobile is reaching out to companies and enterprises and prospecting
new ways of doing business. This is a paradigm shift with a deep impact that will give rise to
new professional jobs, much as the web itself did more than a decade ago.

That’s why I maintain that in only a couple of years, every developer will be either a
mobile developer or no developer at all. Being a mobile developer surely includes knowing
iOS, Windows Phone, HTML5, and Android, and perhaps BlackBerry, possibly Bada, and
even developing for smart TVs—and, of course, for the mobile web. More than anything
else, though, developers must acquire a “mobile mindset.” You can always figure out fairly
easily how to play a video on iOS, or how to make an Android device vibrate. But what isn’t
as easy to acquire is the intrinsic nature of mobile applications and the patterns behind
them, and which aspects to focus on for optimization.

Mobile is different. Overall, it’s simpler, but it’s also much less forgiving than other
types of applications.

Therefore, this book is for everybody who needs to acquire some mobile
development insight. The book’s contents won’t become obsolete in just a few months
because I made a serious attempt to reach and report from the heart of the mobile
experience. This book discusses technology, but it is not based on any particular
technology; therefore, it’s an introductory text for any form of mobile development.

Who Should Not Read This Book

This book won’t make you a top-notch iPhone or Android developer; it’s intended to
help everybody (including those of you who are already top-notch iPhone or Android
developers) understand the entire mobile world. The goal is to get readers prepared
for architecting effective mobile solutions after a mobile plan has been finalized and
accepted. If you’re looking for detailed, step-by-step examples of how to play an
animation, make the phone vibrate, or making an Internet call on all possible platforms,
you won’t usually find them here. But I hope that you will find enough to help you get
started with every aspect of mobile development.

xvi   Introduction

Organization of This Book

This book is divided into three sections. Part I, “Going Mobile,” is about the possible
strategies to approach the mobile world. Part II, “Mobile Sites,” covers the architecture
and implementation of mobile sites and also touches on HTML5 and jQuery Mobile.
Part III, “Mobile Applications,” is about the three major mobile platforms of today—
iOS, Android, and Windows Phone—and also covers PhoneGap as a way of unifying
development in a single codebase.

Finding Your Best Starting Point in This Book
The different sections of Architecting Mobile Solutions for the Enterprise cover a wide
range of technologies associated with mobile development. Depending on your needs
and your existing understanding of mobile, you may wish to focus on specific areas of
the book. Use the following table to determine how best to proceed through the book.

If you are Follow these steps

New to mobile and spent your entire
career doing other software-related
work

Read the chapters as they are laid out in the book.

A web developer looking into how
to build mobile sites

Focus primarily on Part II.

A chief technology officer (CTO) or
chief architect

Focus on Part I first, and then move to Part II and/or Part III,
depending on whether mobile sites or mobile apps are more
likely to be relevant in your context. But read the entire book
anyway.

Familiar with mobile app
development in one (or more)
platforms

You might want to start with the chapters that cover topics
that you are familiar with. These chapters are essential guides,
so it is likely that you won’t learn anything new there. But
if you find that you miss some of the points discussed, then
you’ve got something already from the book. Next, I suggest
you focus on Chapter 7, “Patterns of Mobile Application
Development,” and Chapter 11, “Developing with PhoneGap.”

Note  This table simply attempts to provide some guidance on how to learn
best from this book. In any case, I heartily recommend that you read all the
chapters thoroughly.

	 Introduction   xvii

Conventions and Features in This Book

This book presents information using conventions designed to make the information
readable and easy to follow.

■■ Boxed elements with labels such as “Note” provide additional information or
alternative methods for completing a step successfully.

■■ Text that you type (apart from code blocks) appears in bold.

■■ A plus sign (+) between two key names means that you must press those keys at
the same time. For example, “Press Alt+Tab” means that you hold down the Alt
key while you press the Tab key.

System Requirements

You will need the following hardware and software to set yourself up for development on
the various mobile platforms and compile the sample code that accompanies this book:

■■ For iOS, you need a Mac computer with Xcode and the latest iOS software
development kit (SDK). If you plan to use MonoTouch, then you also need to get
at least a trial version of the product from http://www.xamarin.com. Note that
to deploy applications on a iOS device, you also need to be a registered Apple
developer enrolled in one of the Apple pay programs.

■■ For Android, you can use a Windows PC, preferably equipped with Windows 7.
Note, however, that you can do Android development from a Mac or Linux PC
as well. You can use Eclipse or the IntelliJ IDEA as your integrated development
environment (IDE). You will need the Java SDK and the Android SDK installed.
You don’t need to be a registered developer to compile and deploy Android
applications on a device.

■■ For Windows Phone, you need Microsoft Visual Studio Express for Windows
Phone, as well as a Windows PC.

Code Samples

This book comes with a few examples organized as follows:

■■ Two ASP.NET websites configured to use WURFL

xviii   Introduction

■■ The Guess application for iOS

■■ The Guess application for Android

■■ The Guess application for Windows Phone

■■ The HTML5 Guess application for PhoneGap

The sample code contains files that you can incorporate in your own projects using
the tools that you prefer.

Many of the chapters in this book include examples that let you try out new material
discussed in the main text. You can download all the sample projects from the following
page:

http://www.microsoftpressstore.com/title/9780735663022

Follow the instructions to download the Amse.zip file.

Note  In addition to the code samples, your system should have Visual Studio
2010 and Microsoft SQL Server 2008 installed. The instructions that follow
use SQL Server Management Studio 2008 to set up the sample database used
with the practice examples. If available, install the latest service packs for each
product.

Installing the Code Samples
Follow these steps to install the code samples on your computer so that you can use
them with the exercises in this book:

1.	 Unzip the Amse.zip file that you downloaded from the book’s website (name a
specific directory, along with directions to create it, if necessary).

2.	 If prompted, review the displayed End User License Agreement (EULA). If you
accept the terms, select the Accept option, and then click Next.

Note  If the license agreement doesn’t appear, you can access it from
the same webpage from which you downloaded the Amse.zip file.

http://www.microsoftpressstore.com/title/9780735663022

	 Introduction   xix

Acknowledgments

It took me several months of deep dive to make sense of the many facets of mobile: the
customer’s angle, the developer’s perspective, the architect’s vision, and the myriads of
devices, operating systems, SDKs, and products. Many friends helped me out along the way.

First and foremost, I want to thank Marco Bellinaso of Mopapp, who first introduced
me to the world of mobile apps and then served as an invaluable technical editor for
this book. Marco also tried to make me a fan of Objective-C, but I’m afraid his efforts
failed in that regard.

Devon Musgrave of Microsoft Press and Russell Jones of O’Reilly believed in this
book and made it happen, along with Kristen Borg and the other members of the
editing team.

I was surprised to see how many friends asked to review chapters and enthusiastically
shared their feedback. I could see an underlying passion and pleasure in their work and
I’m not sure my monumental THANK YOU here is enough. In particular, I wish to thank
Luca Passani of ScientiaMobile. I met Luca at a web conference in London in 1999, where
he tried to sell me mobile as a hot business even back then. It took a bit more time, but his
vision was definitely right. I really enjoyed the feedback about mobile site development and
HTML5 that I got from Jon Arne Saeteras of MobileTech and Daniele Bochicchio of 5DLabs.
IT and Microsoft Regional Director for Italy. The chapters on mobile apps and PhoneGap
benefited from the feedback of many people, including Davide Zordan, Ugo Lattanzi, Leon
Zandman, Catalin Georghiu, and Davide Senatore. All these people shared their real-world
experience with me concerning Windows Phone and PhoneGap.

Near-final thanks go to my team at Crionet and E-tennis.net. As I write these
notes, we are finalizing the mobile apps for the worldwide audience of tennis fans
following the Rome ATP Masters 1000 tournament. It’s the first tournament to offer
a comprehensive mobile, web, and social experience and the first one to offer mobile
apps on a full range of platforms, including not just iOS and Android, but also Windows
Phone and BlackBerry. Working with you guys is a privilege.

What else? Well, just a final note. Take note of this name: Francesco Esposito. I’m
sure you’ll hear this name in the future. He’s 14 and he’s already an all-round mobile
developer. My use of the word developer is no accident, because that’s what he is,
irrespective of schooling and age. In his way of coding, learning, thinking, and speaking,
I see crystal-clear talent. Being his dad, well, I feel proud.

xx   Introduction

Errata & Book Support

We’ve made every effort to ensure the accuracy of this book and its companion
content. Any errors that have been reported since this book was published are listed on
our Microsoft Press site:

http://www.microsoftpressstore.com/title/ 9780735663022

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

We Want to Hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in Touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

http://twitter.com/MicrosoftPress
http://www.microsoftpressstore.com/title/ 9780735663022

		 1

Part I

Going Mobile

chapter 1	 Pillars of a Mobile Strategy . 3

chapter 2	 Mobile Sites vs. Native Applications 25

		 3

C hapter 1

Pillars of a Mobile Strategy

In preparing for battle, I have always found that plans are useless, but planning is
indispensable.

—Dwight D. Eisenhower

In this chapter:

■■ What Does “Going Mobile” Mean?

■■ Outlining a B2C Strategy

■■ Outlining a B2B Strategy

■■ Summary

The modern era of mobile technology began with the release of the first Apple iPhone in the
summer of 2007.

The mobile conquest of the world has been a “soon-to-be” matter for quite some time in the past
decade. I still remember the first-ever mobile-related conference being held in Amsterdam in the
summer of 2000—the Wrox Wireless Developer Conference. I was a speaker there, and the implicit
message for attendees was “Mobile development is here—hurry up.”

There was no hurry, actually.

Only a couple of years later, Microsoft released ASP.NET with its own set of mobile controls for
optimized mobile websites. Later, mobile frameworks such as Microsoft .NET Compact Framework
and Java Micro Edition (J2ME) appeared; meanwhile, richer native operating systems such as Symbian
also appeared. However, the mobile conquest of the world never happened—and perhaps hadn’t
even begun—which begs the question: Why not?

The main reason is that the technology never reached a critical mass of users, and without that,
developers and software houses had no good reason to address the mobile space. But when the
Apple iPhone appeared, everything changed. Although the iPhone was not an entirely new idea, it
was an extremely well-done implementation. And, more importantly, a lot of people (on the order of
millions) liked it. That immediately created a breeding ground for new applications and gave mobile
technology a new form and immediacy.

4   Part I  Going Mobile

The lesson to learn from this is that software is the effect (not the cause) of the mobile
phenomenon. People buy devices long before they have much compatible software to run on them.
Therefore, a compelling device, bought by a critical mass of users, creates a compelling market for
specific software over time.

Today, there are a few popular mobile operating systems and a growing number of users willing
to pay to get nice applications to run on them. The popularity and convenience of mobile devices
drives companies to create their own mobile applications that can reach their customers while they’re
traveling. Mobile sites are still an excellent way to do that, but whether companies build mobile sites
or mobile applications targeted to a particular platform (today, that would include iPhone, Android,
BlackBerry, and Windows Phone), companies need to be part of the mobile revolution in much the
same way they became part of the web revolution a decade ago.

What Does “Going Mobile” Mean?

This book is aimed at architects and developers who are willing (or need) to implement mobile
solutions for customers. A solution, however, is not necessarily and not simply a mobile application.
Today, and even more in the near future, a mobile solution will be created as a combination of a classic
website for desktop browsers, a website specifically designed for classes of mobile devices (known as
an “m-site”) and one or more applications for specific mobile operating systems.

The definition of a mobile solution is not carved in stone, for two excellent reasons. First, the
mobile industry never sleeps; it churns out requirements and opportunities at an impressive pace, so
any current definition of a mobile solution may change to incorporate new aspects in a matter of just
one or two years. Second, a mobile solution applies to a particular business scenario. The business
scenario ultimately determines the details of the solution and technologies, patterns, and platforms
that architects and developers will deal with. As an example, you may need to add some Facebook
applets or multiplatform desktop applications if the business has social networking implications.
Similarly, you might restrict the range of mobile platforms to just one if you’re building a vertical
enterprise-class solution for a single customer.

As I see things, going mobile is a far more serious task than simply writing an iPhone application.
Companies investing in mobile need a strategy long before they need a mobile site or a set of mobile
applications. This means companies must establish goals as well as review processes for achieving
those goals—simply put, they must have a strategy.

To paraphrase the quote from Dwight Eisenhower at the beginning of this chapter, in mobile
development, plans are useless, but planning is indispensable.

Toward a Mobile Strategy
So the first step for a company “going mobile” is to define a strategic plan. The strategic plan is
more conceptual than it is an operational plan with comprehensive implementation details. The
strategic plan is visionary; it identifies the future direction of the business. Outlining a mobile strategy
essentially consists of reviewing the current business processes with regard to a few mobile axioms.

	 Chapter 1  Pillars of a Mobile Strategy    5

Three Mobile Axioms
Gone are the days in which a website optimized for a bunch of desktop browsers was the only way
for a company to deliver an application. Today, there’s a growing demand for applications that users
can reach from a variety of platforms and browsers. In the past, software architects once reached for
the Holy Grail of multiplatform development—and we failed to grasp it. Now, as users increasingly
demand multiplatform applications, failure is simply not an option.

Mobile axioms are statements about mobile applications that are self-evident and assumed to be
true. You should have these concepts clear in your mind before you start planning your strategy:

■■ Provide your services through multiple channels.

■■ Look for new opportunities and new ways to provide your services.

■■ Aim at making your customers’ lives easier.

Like the web a decade ago, mobile is about new ways of doing both a selection of old tasks and
entirely new actions. Mobile is highly attractive to users because they can get the services they
need in a variety of ways and using a variety of devices. As a company, “going mobile” means being
committed to making your customers’ lives easier through ad hoc and personal services.

The fundamental point, however, is that this challenge is not limited to just a few segments of the
industry; it’s a global challenge.

Multiple Channels
As you can guess, going mobile likely involves significant investments on your side to restructure
existing processes, implement new ones, and fix—or at least extend—a portion of your back end
software.

Delivering services to a variety of channels is challenging. Mobile channels (tablets, devices, or
mobile sites) are more personal and typically involve smaller amounts of information. Your existing
back end must be able to serve these new requests effectively while preserving both scalability and
performance, and while still ensuring at least the same level of security.

A good example of an application delivered through multiple channels is Facebook; other
examples are airline booking and home banking services.

New Ways to Provide Services
Mobile is both about bringing existing services to people’s fingertips and about creating brand-new
services. A mobile device is a personal device, so everything that shows up there is potentially “at
your fingertips.” The real estate of a mobile device is considerably smaller than a laptop, but most
applications and websites are padded with extra information (including menus and layout) that is not
necessarily required. The advantage of a mobile solution in this context is that it can provide exactly
what’s needed whenever the user needs it—instantly.

6   Part I  Going Mobile

A mobile user is typically traveling around. Your application may query the user’s current location
and use that information to offer new, unique, and tailor-made services. Location-aware services are
really at the heart of the extra power of mobile applications. This is not so much because a desktop
site is unable to detect the user’s location, but because a site can use the location details in much
more compelling and useful ways when the user is out of the office. This is definitely an area to
explore if your business is in any way related to location.

As an example, an application that provides information about transportation can use your
location data to restrict search or sort results automatically, winnowing out nonessential data for
other locations. The same concept applies to mass retail applications, which might notify users of
special offers when they are close to a shop, or provide them with free coupons in a nearby shop that
they can reach within a few minutes.

Simplify Customers’ Lives
I see more and more companies from a variety of industry segments strongly committed to making
their customers’ lives easier and better. I believe that is a key challenge for attracting new customers
and keeping existing ones. On the other hand, by not going mobile, you risk alienating customers
from your brand.

As mentioned earlier, mobile applications are more personal than desktop applications. They’re
often relatively simpler in terms of logic and complexity, and they often consume smaller amounts of
information. That’s precisely what makes a customer’s life simpler—the application is more focused;
ideally, it can handle more related information aggregated from multiple remote sources. Basically, an
effective mobile application should be able to give users what they need at any particular moment.

Architecting the system around these new needs is the effort that companies should invest in.
It’s not simply a matter of software architecture, though. Architects may be able to tell the best
way of realizing an idea, but they can hardly identify what makes your users happier. In general,
an appropriate analysis and prioritization of use-cases selects the range of features that—once
implemented—put more information at the user’s fingertips and make life easier.

Mobility and the Industry
According to a Gartner report presented in the spring of 2010, mobility occupies a relevant position
in the list of top priorities for chief information officers (CIOs) of various industry sectors through
2013. According to this report, transportation and retail are the industry sectors that are paying the
most attention to mobility.

In these sectors, there’s a strong sentiment that it is an “either now or never” matter; there’s less
and less space left for companies that hesitate or just skip going mobile. The mobile space is open for
business (for now) and companies need to establish their presence as soon as possible. If they don’t,
others will fill the gap and become your toughest competitors.

Also, according to Gartner, beyond transportation and retail, other sectors interested in mobility
are healthcare, utilities, education, and—guess what—software publishers. Media and financial
services are also there, lower on the list.

	 Chapter 1  Pillars of a Mobile Strategy    7

The trend that Gartner excerpts from CIOs’ priorities may be different from country to country;
however, past history shows that a general trend is always a trend that applies worldwide (though at a
different pace in various locations).

I can contribute my direct experience in Italy, where most leading mass retail companies are
only now experiencing what many experts call the first stage of mobility—merely establishing a
static presence. Typically, this process is initiated via nearly functionless mobile sites that go hand
in hand with existing primary desktop sites. The next step usually involves adding a bit of context
through proactive alerts, and advertising based on location, identity, or perhaps barcode recognition.
Finally, the third level of mobility awareness concentrates on providing all-round services at users’
fingertips.

Defining a Mobile Strategy
Each business has its own mission, expressed as purposes and activities. A mobile strategy revisits and
extends these purposes and activities in light of new devices and a new lifestyle. The mobile axioms
should just inspire a realistic vision for the mobile business.

If this scares you, don’t worry: it’s nothing new—in fact, you’ve been there already, a decade ago.
Although different in features and results, the mobile revolution follows the same pattern that the
web revolution did. Early adopters content themselves with just being there and show customers
they’re online. Then, executives start developing a new vision of the business and architects actually
build it. It’s not a waterfall-like process; actually, it has a lot of inherent agility and looks like an
intertwined process. In the end, every company ends up with what the management envisioned in
their future—good and bad.

What Do You Want to Achieve?
Personally, I think that for most companies, embarking on mobile projects is not a choice related
to gaining an immediate profit. Of course, that mostly depends on the type and size of company.
If your business is selling ringtones, then naturally you expect profits from your mobile software right
away. However, if your business is selling news, you might want to use mobile channels to make your
readers’ lives easier, so long as you can add such services at a reasonable cost to you. With the all-free
model becoming less affordable every day, going mobile and attracting readers with mobile device
capabilities is an immediate expense that hopefully will help achieve better results in the medium
term or in the long run.

With a strategy defined in terms of expectations and requirements (covering growth, profitability,
and markets), you can look at your overall mobile technology strategy. All in all, there are two
(not mutually exclusive) possible expectations: reaching the largest possible audience and improving
the experiences of existing customers by building a rich, jaw-dropping application. Implementing
each scenario may require a different set of concrete technologies, languages, and platforms. And
each scenario may have different costs.

8   Part I  Going Mobile

Reach Out to Users
You reach mobile users by making your application available on the devices they use. This apparently
obvious, no-brainer statement hides all the complexity (and costs) of mobile development. Take a
closer look at this statement, though, and you’ll find two huge questions whose actual implementation
determines the actual level of complexity (and costs) of reaching out to users:

■■ Which devices are your customers using?

■■ How do you make your application available on all of them?

Before you can answer those questions, you need to think about this: What’s a mobile device, anyway?

According to one widely accepted definition, a mobile device is one that you might have with
you at any time, can be used more or less instantly, is a personal item, and can be used to connect
to a network. A laptop, for example, seems to match most of these requirements—except that you
are hardly likely to take it with you when you go out for a walk or buy groceries—and laptops don’t
usually start instantly. Cell phones mostly fall into the category of mobile devices (many cell phones
have at least some browsing capabilities). Finally, smartphones and tablets match all the definitional
requirements.

Note  Recently, I used the preceding words, more or less, to introduce mobile development
challenges to a developer audience. One of the attendees winked and playfully replied: “So,
you mean that my Windows Mobile phone is not a mobile device? It takes ages to boot up.”

A mobile strategy also depends on the level of control you can exercise over the devices your
users have. For example, if in your context, user means “employee,” then the company can decide
to support just one mobile platform and focus development on that. If you think that user means
“consumer,” however, then reaching out to a large audience usually means developing multiple similar
applications for various devices. The same applies to scenarios where user means “employee,” but the
company is giving its employees the option to use the device of their choice.

Deciding how to approach the technology is a delicate and critical point of a mobile strategy that
I’ll address in more detail in the section “Outlining a B2C Strategy,” later in this chapter.

Offer Rich Applications
If you know that a significant share of your users connect to your site using a particular mobile device,
or if the content you’re offering can best be consumed on specific popular devices, then your mobile
strategy should include the development of an ad hoc application optimized for that device. You
don’t have to target each possible family of devices; instead, you can establish priorities and add new
applications progressively.

Suppose that you own a radio station. You want to increase your audience so you can sell more ad
slots. Most radio listeners are faithful, so despite the switch to mobile, they may well still be listening
to their favorite radio station while out and about. They might be listening via radio-equipped MP3

	 Chapter 1  Pillars of a Mobile Strategy    9

players, original equipment manufacturer (OEM)–applications using the embedded radio system
of a mobile phone, or Internet-based free radio programs. In all cases, users can listen, but they
can’t interact and increase your site traffic. But if you can develop a specific mobile application and
let listeners interact with your back-end systems via the web, consume streamed live music, access
podcasts, traffic reports, news, submit feedback, blog, and more, you can gain interactivity and
increase user participation.

Should you address all the major mobile platforms at the same time? That mostly depends on both
your budget and management’s expectations. One common pattern is to build an iPhone application
first, and then follow that up with an Android or iPad application. At a radio station, to continue with
the example, a tablet device such as the iPad may add little extra value compared to an iPhone. So
the second step in your strategy probably would be to develop an Android application, letting iPhone
and iPad users share the same application.

I’ll return to this point in a moment and address it more specifically in the next chapter, but keep
in mind that mobile applications don’t necessarily mean iPhone or Android applications. A mobile site
can be as functionally rich, and it is usually more cost-effective.

B2C and B2B
The full spectrum of mobile applications falls into one of these two categories:

■■ Business-to-Consumer (B2C)

■■ Business-to-Business (B2B)

A third label is worth mentioning, though: Consumer-to-Consumer (C2C). Although not terribly
relevant at the current stage of the industry, C2C provided the spark for the whole mobile revolution.
The mobile revolution we’re experiencing these days would probably have remained on hold for
another 10 years without a lot of (initially) independent developers who enthusiastically embraced
iPhone and Android programming and built clever applications (regardless of their usefulness). Some
of these developers capitalized on the success and exposure of a single application to build a business
and help the mobile revolution thrive.

Going B2C or B2B poses different challenges and drives different implementation choices. For
example, in a B2C scenario, a key decision is about how to make the application available and get
consumers to notice it—whether it’s a free or paid application. In some cases, the question is a
no-brainer (the app pretty much has to be free). In other cases, a more sophisticated model that
offers a free (but perhaps feature or time-limited) version of the application is offered to entice users
to purchase the full-feature paid version. In still others, consumers can select either an ad-supported
version or an ad-free paid version.

In contrast, in a B2B scenario, you have a fixed number of users to reach. Here, your focus is on
enabling users to return what you expect quickly, effectively, and securely. Security and middleware,
in fact, are usually far more important in B2B scenarios.

10   Part I  Going Mobile

Development and Costs
Developing mobile applications is neither cheap nor quick. Many companies find this surprising when
they approach mobile projects. But mobile development is only apparently similar to web or Windows
development; the two have different programming frameworks and often different (and uncommon)
programming languages. Furthermore, mobile suffers from the lack of a consolidated set of patterns.
Another reason that raises costs for mobile is the need to produce different user interfaces (often
both layout and images) for different devices. This has never been a requirement for web or desktop
applications. All these factors currently make mobile development significantly more expensive and
time-consuming than web development, although time will help alleviate some of these issues.

It is commonly believed that outsourcing development is preferable to having in-house
development, largely because in-house development means that you first need to invest in training.
It’s one thing to train a team of developers on ASP.NET and then have them build three sites in a row.
But it’s quite another to train a team on three different mobile platforms and then have them build
the same application three times from scratch—once for each relevant platform you plan to address.

Outsourcing allows you to eliminate in-house training costs and speed up development. In return
for this, however, you must pay more for the outside expertise. It’s worth exploring some of the
reasons that make mobile development more expensive than many executives think at first.

Targeting Multiple Platforms
The mobile ecosystem is populated by several different platforms, each of which has its own
more-or-less unique set of features and capabilities. The most popular platforms today are iPhone,
iPad, Android, Windows Phone, and BlackBerry. The list of platforms, however, doesn’t end here.
Other platforms that you are likely to encounter or need to consider are Symbian, Windows Mobile,
Meego, Bada, QT, and webOS. And when you begin to look at using tablet devices, the range of
platforms that you may need to take into account grows even more, because there are tablet-specific
variations of the aforementioned platforms, including Android Honeycomb, BlackBerry PlayBook, and
the upcoming Windows 8.

Each platform has its own operating system, its own programming application programming
interface (API), and its own set of programming guidelines. Often, each mobile platform requires
applications be written in a specific programming language, such as Java, Objective-C, C#, or C++.

So does this mean that you must port or develop your application from scratch for each of these
platforms?

Frankly, very few applications (e.g., content providers) need to address all these platforms. More
typically, applications target a subset of no more than three or four of them. If it is crucial for your
business to reach the largest possible audience, even those running on low-end devices, then you
might want to look at HTML—specifically HTML5—to build a website optimized for mobile devices
(i.e., an m-site). As you’ll see in more detail in the next chapter, m-sites are often the first option that
you should consider when targeting multiple platforms is a true business necessity. M-sites, however,
are not free of device issues either. In the end, building a mobile site can be considerably more
complicated than building a website.

	 Chapter 1  Pillars of a Mobile Strategy    11

Addressing the Device Fragmentation Issue
If you felt frustrated by desktop browser fragmentation—too many different browsers to optimize
webpages for—you have never explored the mobile jungle. Each device—and by device I don’t simply
mean smartphones—has its own browser, and each browser has its own user agent string, which
changes for each version and operating system update. And, of course, the actual set of capabilities
can change for each device as well. The screen size is probably the most important capability to take
into account because of real estate and pixel density.

The dimension of the device fragmentation problem is far larger with mobile browsers than with
desktop browsers. When it comes to mobile site development, you have thousands of different
device models to take into account, not just a few dozen smartphones, often with a pre-fixed set of
capabilities. How can you approach such a task?

Writing a set of pages (if not the entire site) on a per-device basis is simply not feasible. The
one-size-fits-all approach is viable, but it comes at the cost of leaving a lot of older devices behind
and giving up on advanced features that smartphones have. This is typically not good enough for
companies whose success depends on online content, such as social networks, or media and news
companies. The alternative is multiserving, which basically consists of three points:

■■ Group devices in classes based on their capabilities

■■ Build a version of the site for each class of devices that you intend to support

■■ Define a strategy to serve the right site for each connecting device

That’s easy to say, but how can you determine the capabilities of a given device? How can you
know the size of the screen, the operating system, the quality of video codecs, whether the device
supports graphic processors or certain HTML features (e.g., file upload and CSS gradients), the
availability and accuracy of location services, and even much more specific capabilities, such as image
inlining (the ability to display images from page-embedded Base64-encoded strings)?

For some of these capabilities, such as screen size, you can ask the browser itself. In fact, forums
are full of questions about how to determine effectively the “real” size of a screen on a particular
device and model. For other capabilities, such as image inlining, there’s just no way to make such a
query. You just must know it.

About 10 years ago, Luca Passani had the vision of starting a community-driven project aimed at
collecting reliable information about the effective behavior of mobile devices. He created the WURFL
project, short for “Wireless Universal Resource File.” Today, WURFL is a centralized database that stores
detailed information (more than 500 different capabilities) about more than 15,000 mobile devices and
mobile browsers. Today, WURFL is managed by ScientiaMobile (http://www.scientiamobile.com) and made
available through both commercial and open-source licenses.

Multiserving takes mobile development to a new level of complexity, but this is where WURFL
shows its value: WURFL makes multiserving manageable. Multiserving is inherently expensive, but us-
ing WURFL can make it considerably less expensive.

12   Part I  Going Mobile

I’ll return to the topic of mobile site development in Chapter 4, “Building Mobile Websites,” and
cover WURFL features in detail in Chapter 6, “Developing Responsive Mobile Sites.”

Note  WURFL is the device detection engine that powers a number of very large and
popular mobile sites: Facebook, Google, AdMob, and a long list of mobile network
operators and virtual network operators.

Looking for Best Practices
If you are building a desktop website, you can rely on a number of tutorials, widgets, articles, books,
and posts that give you guidance. The same isn’t true for mobile software.

The importance and complexity of mobile site development is not yet perceived in its entirety.
Too many developers (and, worse, architects) succumb to the siren call that m-sites are simply
standard websites with different Cascading Style Sheets (CSS) and layout.

Turning to native mobile applications, all you can find are official API references, long and staid
official guidelines in the form of white papers, and a ton of useful tips and tricks scattered in a variety
of question/answer sites (such as StackOverflow). This is largely because mobile applications are
relatively new and the entire space is fragmented; very few developers who program for iPhones
know (or are interested in) Android or Windows Phone development. Furthermore, the stereotypical
iPhone/Android developer considers mobile sites old-fashioned.

The bottom line is that when you are facing mobile development for business (for example, say
your boss told you that you have to build an application in just a few weeks), you have no good place
to look for common practices. Even when you can figure out most common practices, it’s tough to
know whether those common practices are also best practices.

The Marketplace Tax
Finally, development of mobile applications is subject to appstores. Apple made this model popular
with i-tools (such as the iPhone, iPod Touch, and iPad); Microsoft took the same route with Windows
Phone (and seems to be inclined to forge ahead with it in Windows 8); Google (for Android) and RIM
for BlackBerry left their appstores optional for developers.

The role of appstores is crystal clear: they are there to protect users who buy or download
applications from an appstore to their devices. The appstore owner guarantees the quality of
published applications. For developers, getting approval from the appstore owner requires more
effort to ensure the quality of the final product—which is not a bad thing for consumers. For
companies, the appstore model means that there’s an extra distribution cost, which I like to call the
“marketplace tax.” Companies have to pay to gain the right to distribute even free applications, and
for paid applications, they typically have to provide about 30 percent of the app’s revenue to the
appstores.

	 Chapter 1  Pillars of a Mobile Strategy    13

Outlining a B2C Strategy

A B2C strategy is built around two pillars: reaching out to users and making them happy. Both pillars
are quite generic and can be implemented in various scenarios with slight variations.

You may need to reach the largest audience possible, including holders of low-end devices devoid of
flat connectivity rates. Likewise, you may need to focus on holders (and potential holders) of smartphones.
You may need to push a mobile application with certain characteristics to keep existing users and make
them glad that they chose your brand. Alternatively, you may need a mobile application to attract and
engage new users by offering new services or new ways of consuming existing services.

Needless to say, a B2C approach is particularly suitable for companies that already operate their
core business in B2C mode. It comes as no surprise that, according to the Gartner report mentioned
earlier, the industry sectors most interested in mobile are transportation, retail, healthcare, software
publishers, financial services, media, and in general, content providers.

Focus on Your Audience
Any business that aims at being successful should focus on its potential audience and make
projections about the composition of this audience in terms of age and other social and personal
aspects. With this consolidated information in hand, you can make better plans. In this regard,
a mobile strategy is merely a specific form of business strategy.

A mobile audience is made up of people who own a mobile device and are (or may be) interested
in the services you provide. Figure 1-1 depicts these two sets of users and shows how mobile
applications fit in with your existing customer base.

Mobile usersYour
existing

customers

Figure 1-1  Mobile applications as the point of contact between existing customers and mobile users.

Note  With regard to Figure 1-1, it should be noted that the overlap between “mobile
users” and “existing customers” is moving and may change from month to month. When
looking at the figure, don’t take the size of overlap as truly representative of all businesses.
The fact that the overlap is not null is perhaps the really important thing to remember.

14   Part I  Going Mobile

Not all of your existing customers will become users of your new mobile infrastructure, but some
generic mobile users will join the universe of your customers because of the mobile framework.
This also should be read the other way around: If you don’t go mobile, you may lose a share of your
existing customers who are also mobile users.

A Quick Look at Global Numbers
It may sound obvious, but I’m going to say this anyway: the world is full of mobile devices. For the
most part, these are low-end devices with a basic HTML browser, a quarter VGA (QVGA) screen
(240 x 320 pixels), perhaps a camera, an MP3 player, and a few games and utilities.

According to the 2010 statistics of the International Telecommunication Union (ITU)—the agency
of the United Nations (UN) responsible for information and communication technologies—there
are 78 mobile devices per 100 inhabitants distributed all over the world, and a peak of 114 per 100
inhabitants in developed countries (see http://www.itu.int/ITU-D/ict/statistics).

Whichever way you look at it, the data shows that there are a few billion mobile devices of
any type out there. How many of these are devices (and users) that you want to reach with your
application? Probably as many as possible if you’re Facebook or Google; a small fraction is enough
otherwise.

The same ITU source reveals that there are about 30 Internet connections per 100 inhabitants all
over the world, and 70 per 100 in developed countries. Although the two numbers are not directly
related, this statistic gives a better approximation of the size of a potential mobile audience. However,
according to eMarketer (http://www.emarketer.com), in 2011 the smartphone penetration in the world
expressed as a percentage of all mobile devices is around 11 percent. That figure is expected to grow
to about 50 percent over the next three years.

The data is more interesting when you look at these numbers for selected areas and countries. For
example, the smartphone share grows to 37 percent in North America and 32 percent in Western Europe.
It’s around 10 percent in Asia and stays below 5 percent in Africa and Latin America. Amazingly, the
country with the highest penetration is Italy, with 47 percent currently (expected to grow to 67 percent by
2014). And this in a country—my country—that still has wide areas of digital divide, and where one family
out of three doesn’t even have a home broadband connection.

The next section presents a few more numbers to help you understand the big picture of mobile
connectivity.

A Deeper Look at Numbers
If you take global numbers literally, then by focusing on an iPhone application and disregarding mobile
sites entirely, you cut off 90 percent of the potential worldwide audience—and even more than that if you
consider that not all iPhone devices may be capable of running your application because of versioning
issues. From this perspective, a mobile site seems to be a very reasonable choice.

	 Chapter 1  Pillars of a Mobile Strategy    15

Note  That iPhone users are approximately 10 percent of the total smartphone-using
population is an estimate that seems to find many direct and indirect confirmations from
a variety of sources. Considering only the U.S. market, iPhone users represent about
one-third of the smartphone segment, which is reported to range around 30 percent of the
total audience for mobile devices. Statistics, however, depend on a number of factors and
often represent little more than an opinion!

Regardless of your final choice, blindly looking at global numbers is not necessarily the correct
approach.

Suppose that after running a few customer surveys and having analyzed your website logs, you know
that 50 percent of your real customer base use iPhones and connect from Italy. Given those figures, should
you really focus your effort only on a mobile site? Probably not. A desktop site that looks decent on most
devices, that looks good on iPhones, and features a native iPhone application is the best combination.
Note that the costs of implementing the iPhone application dwarf anything else.

On the other hand, if your business is selling ringtones or news, then you need to reach out to the
widest possible audience, regardless of the devices they’re using. A solution that reaches this objective with
the lowest cost is your Holy Grail. Today, this means developing a solution based on HTML and JavaScript.

Facebook Was Not Built in One Day
In mobile, as well as in any business, time to market is critical. In laying out your strategy, consider
applying an agile schema that lets you release applications piecemeal. Figure 1-2 presents the
canonical Scrum process adapted to mobile projects.

Solution
backlog

Sprint
backlog

Sprint Working
Increment of the
solution

Figure 1-2  A Scrum-like model for mobile solutions.

The entire set of features and applications (“product backlog,” according to the Scrum dictionary,
and labeled “Solution backlog” in the figure) is partitioned into multiple sprints or iterations. At
the end of each sprint, you release a working segment of the entire application (such as an iPhone
application) and then are ready to reiterate the same process for another sprint (for example, an
equivalent Android application).

16   Part I  Going Mobile

More often than not, sprints for mobile solutions also include the following:

■■ Arranging a website that’s usable by both mobile applications and sites. This means exposing
the core functions of the website as easily callable, Representational State Transfer (REST)–
based, HTTP endpoints. For example, if you’re building the website using the ASP.NET
Model-View-Controller (MVC), this may mean exposing an ad hoc controller that can serve
requests based on the use-cases that you implement in mobile clients.

■■ Developing a set of pages (scripts, styles, graphics, and presentation logic) for a class of mobile
devices. You may want to start with high-end devices and proceed downward to enable more
and more lower-end devices to access some fraction of the full site functionality.

■■ Optimizing the behavior of these pages with more accurate device-detection capabilities.

■■ Developing native applications for most popular mobile platforms.

■■ At each level, you can propagate valuable user feedback through the entire stack of
applications you’ve built thus far.

To paraphrase a popular saying, “Rome was not built in one day.” I’d say that Facebook was
not always the huge platform we know today, either—after all, it’s been around only a few years.
A mobile solution, therefore, will look increasingly like a small platform of integrated services; it
requires hard work and overcoming many challenges to complete.

Delivery Models
A B2C application is (ideally) distributed worldwide. The costs of spreading the word about its
availability (not advertising…) are entirely up to you. A website is immediately available from any
place in the world, but again, the costs of spreading the word about it must be borne entirely by your
organization.

In the mobile world, appstores rule over the publication and distribution of platform-specific
applications. You publish your application to the appstore, giving it instant exposure to users of
a particular platform. Each device ships with an applet so that users can access the platform’s
appstore—where your application gets published. Users can then access your application, read
release notes, check requirements (such as that your application requires Internet access, phone calls,
text services, local storage, and so on), see some screenshots, test-drive a trial version (if available and
supported)—and what then?

What do you expect the return from investing in a mobile application to be? More generally, how
do you expect to recover the costs of developing a mobile site and/or a few native applications?
That’s another part of overall strategy that management has devised.

Note  Here, I’m talking about “spreading the word” and “publishing,” which you get for
free for the minimal costs of being a registered developer with the platform of choice.
Advertising your application in and out of the appstore is another story entirely.

	 Chapter 1  Pillars of a Mobile Strategy    17

The Free/Paid Dilemma
Mobile applications are typically very cheap when they’re not entirely free. The cost of the average
iPhone application is around $2—even less for games. The average iPhone user is expected to
download (and pay for, if that’s required) about 80 applications in the course of a year.

Paid applications generate direct income subject to the marketplace tax (and, of course,
government taxes). Free applications are generally built for marketing and branding purposes, or as
an additional form of customer service.

After reading analysis and projections, expert opinions, and analytics, I formed the idea that
mobile applications should be free; they need to generate revenue in some other way. However, if
you’re an individual or a small company and happen to have a stand-alone (not bound to a strategic
business plan) mobile application, why give it away for free? If it’s a well-done application that fills a
hole in people’s mobile lives, you can likely recover your investment, and perhaps even more.

A third option is advertising-supported applications, which are free for users but generate revenue
for the author through dynamically inserted ads. Switching to a paid or ad-based model is an
important step. If you first release the application for free, you get a lot more downloads, which are
good for feedback. It also helps you understand how well received your application is and whether it
really fills a hole.

If you look into the most popular appstores such as the Apple App Store, Android Market,
Windows Marketplace, and BlackBerry App World, you will find that there are almost always more
paid applications than free applications. For example, in the Android market, free applications
outnumber paid applications by about a 60/40 ratio.

The free/paid dilemma is not really a dilemma with a binary, black-or-white answer. There are a
few other models that mix free and paid content according to different recipes.

The Freemium Model
The Freemium model is based on the idea that you provide the full application free and then offer
users the chance to buy a few extra services. From a realistic business perspective, however, the
Freemium model means that the vast majority of your users will consume your application for free;
only a minority will pay for any extra services.

So how can this model be worthwhile (financially speaking) for mobile applications? First and
foremost, you need a lot of users, preferably on the order of millions, and at minimum on the order of
tens of thousands. Maintaining all these users probably has a cost as well. For example, if you need to
maintain a website to provide data to the mobile application, then you have a growing cost directly
related to the number of users. Even if your application can run as a self-contained device application,
you still may have some costs per user because you have to support users and reply to their emails.

An excellent example of a mobile application for which the Freemium model is perfect is Evernote
(http://www.evernote.com). These mobile applications work entirely on the devices they target; all they
need is storage space. According to http://blog.evernote.com/2011/01/04/evernote-2010-a-year-in-stats,
Evernote has more than 6 million users. Of those, only 3 percent pay an extra subscription fee.

18   Part I  Going Mobile

Another example is Searcheeze (http://www.searcheeze.com), a new startup that offers
collaborative search. Users, both groups and individually, can run and publish a search on a given
topic. This search—realized by humans, not search engines—may be left free or published to an
internal marketplace. Becoming a Searcheeze user is free unless you want to buy extra services, such
as installing a private engine on your company’s servers.

The Premium-with-Free-Sample Model
The premium-with-free-sample model is fairly new in the media industry, but it’s already the model
toward which most content providers and newspapers are moving. Basically, it consists in making a
significant portion of the content available for a small fee but leaving a fraction of the content free for
everybody to access.

The New York Times pioneered this model. It currently gives you a number of free articles per
month, after which you have to pay a fee to access more content. In contrast, the Boston Globe locked
three-quarters of its digital content and offers free access only to the remaining part. Repubblica.it,
Italy’s largest news site and second-best-selling newspaper, also uses this latter model. In addition,
Repubblica.it charges for access to its mobile site. In contrast, the desktop site is free, but you need a
smartphone to read it effectively.

It’s worth noting that the Boston Globe mobile solution is based on a HTML5-powered mobile site,
which maximizes the audience without incurring the costs of developing ad hoc mobile applications
and, importantly, without paying the typical 30 percent marketplace tax to an appstore owner.
Appstores, in fact, may impose ad hoc policies for in-app payment. During the summer of 2011,
Amazon quickly modified the Kindle iPhone and iPad applications to comply with new Apple policies
for subscription-based applications. At nearly the same time, the Financial Times application—a best-
selling program—was pulled from the store because it was patently in violation of the store rules.
As a result, the Financial Times now encourages customers to use its new HTML5-based mobile site,
which—guess what—has been optimized for iPhone browsers and looks nearly the same as a native
application.

The Quid-Pro-Quo Model
As an Italian, I would have used another Latin phrase to express the same concept: do-ut-des.
According to Wikipedia, the English usage of quid pro quo in fact matches the Italian usage of
do-ut-des perfectly, meaning “I give so that I can receive.”

This model is probably the one I feel most comfortable with. In my personal vision of the world,
a mobile application exists as a complimentary feature, a favor that the publisher does for me.
I reciprocate the favor by buying some of the publisher’s other content or services.

The free applications are entirely free; there are no strings attached. To use them fully, however,
you need to buy or consume some other services that the publisher relies on for income. Applications
you use in an airport, during a tennis tournament, or at a conference are all examples that fall in this
category. You get some services via the application in exchange for the simple fact that you’re there
(in airports or at conferences): you don’t pay directly for these services (mostly information and news),

	 Chapter 1  Pillars of a Mobile Strategy    19

but you pay in some other way. For example, you probably paid to attend the conference or bought a
ticket through that airport.

Here’s another example of an application that I had the pleasure of knowing from an insider’s
perspective: I ported it from iPhone and Android to Windows Phone. The application is called Postino; you
can find out more about it at http://www.postinoapp.com. Postino was originally built for the iPhone and
then ported to a number of other platforms, one step at a time, as the result of a classic B2C strategy.

Postino lets you snap a picture as you travel and promptly creates a (virtual) postcard that you can send
to a friend. The postcard contains a message, a signature that you draw on the screen with your finger, and
an address. If the address is an email address, everything is free. If the address is a physical address, then
you must buy a virtual stamp and upload the card to a server, which will print and send a real postcard.

An application built around a simple but good idea can be free, generate income in an indirect
way, and still represent a success story for the developer (or the company), which may generate more
business.

Outlining a B2B Strategy

I certainly don’t have the expertise and experience to embark on a comprehensive discussion about
the differences between B2C and B2B. As far as mobile strategies are concerned, there’s only one
important difference: B2B often gives you the chance to choose one specific platform and vendor and
stick to that. From a software company perspective, B2B means that you’re helping another business
set up a mobile infrastructure that will be used to serve a limited and largely controlled audience,
such as the network of agents that operate in a given region.

For the purpose of this book, the difference between B2C and B2B is the same as the difference
between a public Internet site and an intranet site.

Serve Your (Limited) Audience
Let’s review the main traits of a strategy aimed at serving the needs of just one business. The mobile
interface is not open to the public; it’s consumed by special customers, such as employees, agents,
and consultants. Although you don’t have to capture a large audience, you instead have a relatively
small audience that you must serve in the best possible way. Forcing them to use one particular
device or site is part of the deal.

B2B and the BlackBerry Case
What made BlackBerry so successful and BlackBerry devices so widely used? Sure, it offers email,
tasks, and calendaring; it may even support web browsing and a camera. You can do some instant
messaging and run a few utilities from an appstore that is one-tenth the size of Apple’s. But compared
to, say, an iPhone, a BlackBerry device looks like a child’s toy.

So why was it so successful (at least before the iPhone arrived)?

20   Part I  Going Mobile

The answer lies in the enterprise-class features that it offers. In particular, a BlackBerry device can
connect to an in-house enterprise server—the BlackBerry Enterprise Server (BES)—and receive email
updates, news, and task alerts in real time. How is that different from today’s Microsoft Exchange
Server connectivity in Windows Phone? It’s not, really; both are basically the same—but BlackBerry
was available somewhat earlier, and companies liked its features. As a BES administrator, you can
apply policies and prevent a class of users from using the camera or instant messaging; you can force
them to use only certain applications or to navigate only certain sites. Moreover, you can install your
applications directly to your BlackBerry devices; you don’t need to distribute them publicly to an
appstore first.

In a nutshell, BlackBerry was a platform created to help members of an organization collaborate
with ease and effectiveness.

Pick One Mobile Vendor
In a B2B scenario, a customer calls the software company and discusses requirements. The advisor has
to figure out just one solution that provides the requested services in a mobile way. Most of the time,
there are no constraints on existing devices and hardly any constraints to address on the platforms.

If you need a better mobile infrastructure to make employees collaborate, you probably have
no reason to build an iPhone application. In addition to the costs of development, you also need to
account for the costs of providing an iPhone to all your employees. I can think of a few companies
who just did that—but I consider them the exception rather than the rule.

So in a B2B scenario, you should select just one vendor and platform and stick to that. From the
customers’ perspective, costs are clearly lower, and development time is traceable. Which vendor you
settle on depends on a number of factors, including the existing base of devices, deployment needs,
special security or middleware constraints, existing skills, and, of course, overall cost and personal
preferences.

I’ll return to this in a moment, but I think it’s important to call attention to that point, because
in a B2B scenario, the mobile vendor is not simply—and not necessarily—the vendor of a mobile
operating system and API. In some cases, the candidate vendor doesn’t even have its own mobile
operating system. Instead, it offers its middleware with a bunch of platform-specific presentation
layers for users to consume data and applications. According to Gartner’s Magic Quadrant for 2010,
Sybase is an excellent player in a B2B scenario—and Sybase doesn’t have an operating system;
instead, it provides a strong and powerful middleware for mobile clients.

Private Applications
When a company’s goal is to build mobile solutions for its workforce, any applications that it develops
should be private. A private mobile application is a mobile application that can be installed directly
on one or more devices, with no intervening appstore. Consider, for example, an iPhone application
written to serve the needs of a particular customer of yours—such as an application for sales agents.

That application is likely built to reflect the use-cases and business processes of that customer.
It may have integrated some strong authentication policy. You don’t want it to go to the marketplace,

	 Chapter 1  Pillars of a Mobile Strategy    21

and you don’t want others to even look at it, let alone try it or buy it. You want it to work like
Windows—you create an application, prepare an installer, run the installer on the machines you want,
and that’s it—you’re done.

Private mobile applications are possible, but the process is not identical across the various
platforms. In this regard, Android and BlackBerry are open: you can install just any application on just
any device. For BlackBerry, this freedom of installing applications can be controlled and restricted by
BES administrators. In Android, the only controller is the owner of the device.

Apple has a special enterprise program that, at the cost of $299/year, allows you to distribute
applications freely within the members of your organization, whether through an intranet webpage, a
network share, or email channels. Windows Mobile—the predecessor of Windows Phone—is as open
as Android; Windows Phone still lacks an enterprise program. Currently, the recommended approach
for simulating a private, company-wide marketplace is to make the application public and free and
implement logic that unlocks the application only for users who have a specific Personal Identification
Number (PIN).

Mobile Enterprise Application Platforms
In a B2B scenario, you typically choose a mobile vendor by analyzing its mobile enterprise application
platform (MEAP). A MEAP indicates the entire stack of mobile technologies, products, and services
that a mobile vendor (e.g., Sybase) offers.

MEAP vs. Stand-Alone Applications
When building a mobile solution, you could proceed by building a few stand-alone front-end
applications that are based on an existing middleware or an ad-hoc back end and storage layer. But in
doing so, you will likely end up using tools, services, and technologies from different vendors for the
various phases of development.

MEAP is beneficial because by choosing a particular vendor, a company can often build a single
back end and front end and deploy them to a variety of devices. The mobile device functions as
a terminal that simply mirrors the content generated by the back end. A MEAP-based solution
relies on proprietary middleware that you can customize and extend by writing applets using a few
programming languages. The middleware serves data to the mobile client and controls both the user
interface and local in-device logic.

With a MEAP in place, a company can expand its horizons with less effort—no need to invest
in writing a new iPhone application; just deploy the same MEAP-specific application to the iPhone
presentation layer. No changes are required to the underlying business logic, and the list of mobile
front ends can be extended whenever the MEAP adds support for a new mobile platform.

In other words, a MEAP is an all-round business partner that specializes in mobile solutions. In this
context, the classic iPhone or Android mobile application is just the tip of the iceberg—the real meat
and potatoes are what lies under the surface.

22   Part I  Going Mobile

Gartner’s Rule of Three
To explain the importance of MEAPs and, at the same time, give companies an easy way to check their
affinity with a MEAP solution, Gartner developed the Rule of Three.

According to Gartner, a company should consider a MEAP seriously when the implementation of
its mobile strategy requires three or more mobile applications for three or more mobile operating
systems to be integrated with three or more back ends. It goes without saying that building a mobile
platform from scratch with these requirements is a huge effort that probably requires a monstrous
budget. In this context, a MEAP can introduce significant savings and—more importantly—keep the
company at the forefront of the technology, ready to release new products in a fraction of the time
that non-MEAP-using competitors might require.

MEAP and Gartner’s Magic Quadrant
How do you evaluate a MEAP? And more importantly, which vendors are actually MEAPs? Each year,
Gartner applies its proprietary Magic Quadrant methodology to competing players in a given area—in
this case, MEAP. The result is a diagram like the one shown in Figure 1-3.

Completeness of vision

Challengers Leaders

VisionariesNiche Players

Ab
ili

ty
 to

 e
xe

cu
te

Figure 1-3  Gartner’s Magic Quadrant.

The rank the research returns for each evaluated player determines the coordinates in the diagram
and, subsequently, the quadrant into which that player falls. In the paper published in 2011, the
Leaders quadrant contains companies such as Sybase, Antenna Software, Syclo, RhoMobile, and Pyxis
Software.

	 Chapter 1  Pillars of a Mobile Strategy    23

It is worth noting that, according to Gartner, the MEAP market is steadily heading for a $2 billion
volume in sales. So where are the other big companies commonly associated with mobile solutions?
To be a MEAP player, a vendor must have a comprehensive set of products and services to develop
and test applications and offer security, (cloud) storage, notification, reporting, and synchronization.
Microsoft, Apple, and RIM appear in Gartner’s Magic Quadrant but are not considered leaders in this
segment.

Summary

No company can afford to ignore the mobile revolution taking place. Not all companies should
proceed at the same pace or immediacy, but going mobile is a growing need and will soon be a
necessity. The expression “going mobile” refers to the process of defining a strategic plan that sets
business objectives that can be reached by restructuring internal processes, adopting innovative
technologies, and developing ad hoc new applications to reach users who are traveling or to let one’s
workforce operate efficiently while away from the office.

This chapter outlined the main aspects of a mobile strategy both in a B2C and a B2B scenario.
The next chapter takes a closer look at the two main ways of providing a mobile experience to users,
whether customers or employees: mobile websites and platform-specific native applications.

		 63

C hapter 4

Building Mobile Websites

Intelligence is the ability to adapt to change.
—Stephen Hawking

In this chapter:

■■ From Web to Mobile

■■ Development Aspects of a Mobile Site

■■ The Device-Detector Site

■■ Summary

A mobile site, much like a native mobile application, is most likely to be consumed by users on the
move: people who are standing up, in a hurry, busy, or waiting in line. Under these conditions,

users are probably willing to connect to a site using a tiny device because they really believe that they
derive some benefit from the site. The site, therefore, must be direct, concise, and accurate.

It is essential that a mobile site should load quickly and allow users to reach all main functionalities
in just a few clicks or taps. The user interface should be extremely clear, but also clean and flawless
to show the options available at any time, yet still making the act of choosing an option easy. After
becoming familiar with the site, users often end up working with it semi-automatically, so even the
position of a single button can have an impact on the quality of feedback that you receive. Note that
the mobile Human-Computer Interaction (HCI) research field, although new, is very active, and a lot
of studies exist about the dos and don’ts of interaction between mobile users and mobile devices and
software. Luca Chittaro has a paper that effectively summarizes what mobile HCI means to developers
and architects. You can read it here: http://goo.gl/lSG3s.

The previous chapter emphasized the importance of accurately selecting the use-cases to
implement. The number of use-cases, however, should be kept small so that the site doesn’t end
up as a shrink-wrapped version of the full site. A pragmatic (and then not necessarily exact) rule is
that a mobile site rarely needs more than 20 percent of the features available in the full site. I’d even
go further by saying that sometimes, not even the 20 percent of features you take from a parent
website should not necessarily be reimplemented “as is.” You might want to restructure some of these
use-cases and even add new ad hoc use-cases for related scenarios.

A mobile site is a brand-new project that can inherit some code and services from an existing
site—more often than not, it inherits large shares of the business logic. This chapter covers a number

64   Part II  Mobile Sites

of issues and open points that you will want to solve before embarking on building a mobile site.
After addressing all these points, building the mobile site is reduced to the work of writing a relatively
simple and small website.

From Web to Mobile

You rarely build a mobile site without also having a full site in place. Most of the time, you build a
mobile site to serve mobile users better. In some cases, you start building both full and mobile sites
at the same time. Currently, it’s quite unlikely that you build a mobile site as a stand-alone project.
Whatever the case may be, however, this section aims at isolating the issues that differentiate a
mobile site from a full website.

If you’re building a mobile site as a spin-off of an existing website, then the chances are good that
you will be able to reuse large portions of the existing application’s back-end code. Those include
the data access layer, the domain layer, and possibly a bunch of other distinct components (such as
services and workflows) that you may already have in place, which will provide bits and pieces of
business logic. If you can replicate some views without too much modification, you may even end
up being able to reuse webpages and ASP.NET Model-View-Controller (MVC) controllers—more
generally, parts of your presentation and application layers.

As you move towards the presentation layer, though, the chances of reuse diminish. How would
you deal with scripts, images, style sheets, and markup? For images and style sheets, there’s probably
an easy answer—you just have to reduce their size. For scripts and markup, the answer is less obvious
and likely is influenced by context.

Application Structure
Before the community of web developers (re)discovered AJAX a few years ago, websites were always built
as a navigable collection of distinct pages. Jumping from one page to the next required links and forms.
The browser handled each request, which resulted in a full replacement of the current page.

AJAX changed the course of things by using the services of a small browser-hosted component—the
XmlHttpRequest (XHR) object—through which your script code can play the role of the browser and
conduct server requests autonomously. The net effect is that webpages can contain ad hoc script code
that use XHR to download data or partial pages. After being downloaded, the content is processed by
some other script code and used to update the currently displayed page. AJAX can be used for some
specific (perhaps even critical) features, or it can be used extensively throughout the site. When that
happens, the site architecture is usually referred to as the Single-Page Interface (SPI) model.

The Single-Page Interface Model
In brief, the SPI model refers to a web application that behaves more or less like a desktop
application—it has a primary user interface (UI) layout that is adjusted and reconfigured via AJAX
calls. The page downloads everything it needs from the source site via script-controlled actions.

	 Chapter 4  Building Mobile Websites     65

The SPI model has been recently formulated as a manifesto. You can read about it here:
http://itsnat.sourceforge.net/php/spim/spi_manifesto_en.php.

As an early AJAX adopter myself, I’ve always been a fan of the SPI model, but I’ve also always seen
it as a vector rather than a concrete pattern to implement. As a result, I have not fully implemented
the SPI model in a production site yet, primarily due to lack of confidence, proper facilities, and tools.
Moreover, I always found it difficult to sell a 100-percent JavaScript site to a customer—at least, that
was true up until two or three years ago. Today, the situation is different. The SPI manifesto dates
back to the summer of 2011.

With that said, I’m not completely sure that a SPI model is appropriate for just any mobile site.
An SPI model requires a lot of JavaScript, partly written by you and for the most part imported from
external libraries. You likely need quite a few of these libraries to provide for generic UI manipulation,
templates, and data binding. Some of these libraries are based on jQuery and jQuery Mobile. These
two libraries alone total some 200 KB (uncompressed) of script and style sheets.

Important  In a production site, you typically apply minification and GZIP compression to
script and other resources, thus reducing significantly the size of the download. Minification
is the process of removing unnecessary characters from source code without breaking
any functionality. Applied to script files, minification also adds a (thin) layer of obfuscation
to your code, making it much harder for humans to read. GZIP is, instead, a popular
compression format. Once properly minified and gzipped for a production site, the jQuery
library is 31 KB and a bit less for jQuery Mobile.

In addition to script, SPI requires helpers for data binding and UI refresh, which adds a few more
tens of kilobytes. Popular libraries in this segment include JsRender, JsViews, Knockout, and Upshot.

In summary, the size of the JavaScript assets that a client will need to download can consume a
few hundred kilobytes, which can become a problem. Once downloaded, of course, the browsers
will cache the scripts; they don’t download the code over and over again. But the browser needs to
do a lot of work to render SPI pages—work that goes far beyond simply requesting and rendering
markups. The more advanced the device browser is, the more the SPI model becomes affordable
(from a resource standpoint) for mobile sites.

Personally, I wouldn’t adopt the SPI model without first performing deep analysis of the context.
The main challenges with an SPI implementation can be summarized as follows:

■■ In case of intermittent connectivity, it’s difficult to figure out whether the problem is with the
application or the network. This may be frustrating. Not that this same problem doesn’t exist
for other models (i.e., the full-page refresh model), but at least tiny, non-SPI pages download
well, even with limited bandwidth. Moreover, with no connectivity at all, you immediately
grasp the nature of the problem—when nothing shows up, the problem is not the application.

■■ Many sites require users to log on before they will serve content. If the users’ session expires,
the full-page refresh model redirects them to the logon page at the first successive access. The

66   Part II  Mobile Sites

problem is both manifest and easily resolved. With an SPI site, although user authentication
is also AJAX-based, it may take hours before you figure out the root cause of the misbehavior
you’re observing. In SPI, user authentication requires due attention and effective client and
server-side implementation to work smoothly.

So let’s explore some other available options.

Note  ASP.NET MVC 4 ships with a new project template that promotes the use of the SPI
model. The template uses Knockout and Upshot.

Full Page Refresh
At the extreme opposite of SPI lies the classic Full Page Refresh (FPR) model. FPR is how the web
worked for years: the browser makes a request for a new page, the web server returns the new page,
and the browser replaces the current page with the new rendered content. This process occurs
repeatedly for each user action.

AJAX (on which SPI is heavily based) made the classic FPR web experience much less compelling,
and it also made it more natural for users to expect that only fragments of the current page would be
updated as the result of a given action. In a desktop scenario, the FPR model is cumbersome, so more
and more large sites are progressively adding AJAX-based capabilities.

However, the significant impact that FPR has had on desktop sites (which have large displays and
numerous auxiliary resources for downloading, caching, and refreshing content), is less so on mobile
sites because mobile pages are considerably smaller and lighter to begin with. Still, loading several
small pages may still be less engaging than updating bits and pieces of the currently displayed page.
Updating the current page may still be slow over a slow connection, but at least it doesn’t have a
dramatic impact on the user experience.

Partial Page Refresh
Some middle ground between SPI and FPR can be found in the partial rendering that both ASP.NET
Web Forms and ASP.NET MVC support. In terms of traffic, partial page refresh (PPR) falls between
the two extremes—it is not as efficient as SPI, but it’s not as poor a user experience as FPR. The idea
is that the browser places a request as usual, but that request is captured at the script level—via
embedded script—and silently transformed into an AJAX request.

On the server side, the web server handles requests as if they were regular full page requests,
but the response is packaged as an HTML fragment. The data being transferred is a mix of data and
markup—just the delta between the markup of the current page and the requested new page.

The benefit of the PPR model is that it offers many of the benefits of AJAX without the cost
of having to learn new programming features. In ASP.NET Web Forms, PPR happens relatively
automatically through the UpdatePanel control; in ASP.NET MVC, it occurs through the
Ajax.BeginForm HTML helper.

	 Chapter 4  Building Mobile Websites     67

In a nutshell, using PPR means that an FPR approach won’t require special skills on the
development side. In contrast, an SPI model may represent a complete paradigm shift for many
developers. PPR represents some middle ground.

Context Is King
Which of the previous options is preferable? There’s no obvious and clear answer. If you’re
determined to find just one answer, then the best approach depends strictly on the context and the
knowledge that you have about the devices that are going to access your site. If smartphone traffic
is predominant, you definitely can opt for SPI. But if you’re interested in reaching the widest possible
audience, then you probably should opt for FPR.

The point, though, is that there’s probably no ideal solution that works in all cases. Mobile devices
are so different that you really should consider partitioning your audience into a few distinct classes
of devices and arrange a different solution for each. That could mean serving plain HTML pages to
older browsers while implementing a nicer SPI solution for smartphones.

Note  In general, you always should consider AJAX seriously because it reduces the amount
of network traffic. Extensive use of AJAX, however, actually may raise the number of
Hypertext Transfer Protocol (HTTP) requests. In a mobile scenario, an HTTP request is more
expensive than in a desktop scenario because connections are slower, limited in number
(reduced parallelism in download), and also sometimes processed in a more convoluted
way, especially if the connection doesn’t happen over a WiFi network.

Amount of JavaScript
The amount of JavaScript that you might want to use for the pages of your mobile site is another
huge point. Processing JavaScript is crucial to minimize web traffic; on the other hand, it also affects
performance. Like it or not, mobile devices (even high-end smartphones) are not as powerful as
laptops. Among other things, this means that a mobile device may not be able to tolerate effectively
the same amount of JavaScript that you could employ in a full-fledged website. In this context, “not
able to tolerate” just means consuming more battery power even if the perceived page performance
is acceptable.

More Info  The consumption of battery power tends to increase with the number of
HTTP requests. Subsequently, a JavaScript-intensive page is critical from the resource
management perspective. Here’s a reference and some numbers: http://goo.gl/EKcyj. Other
excellent resources for making sense of the amount of JavaScript and its performance are
Steve Souders’s blog (http://stevesouders.com) and http://goo.gl/jyhV.

68   Part II  Mobile Sites

The jQuery Family of Libraries
Today, the jQuery library is a must for nearly any website. I’m personally dreaming of the day when
jQuery will be native to browsers and be integrated into every browser’s JavaScript engine. Until that
day comes (if ever), jQuery must be linked and downloaded if you plan to use it.

Note that jQuery is required even if you plan to use only jQuery Mobile, which offers a variety of
ready-made components for scaffolding a mobile site. Plug-ins for jQuery Mobile can put a “skin”
on your mobile site so that it looks like a native application with animations, navigation effects, and
snazzy presentation.

All in all, once minified and gzipped, all this JavaScript is likely affordable for use with high-end
mobile browsers, even though JavaScript-based effects may emulate some native effects closely
but are never the same in terms of performance. With that said, you’ll need to be able to limit the
quantity of JavaScript in your pages if you want to enlarge your mobile horizons to non-smartphone
devices.

So except for smartphones, consider dropping jQuery and derived libraries entirely. On these non–
high-end devices, the chances of encountering quirks, bugs, unsupported features, and unexpected
behavior is quite high; therefore, why take the risk? By simplifying your page structure, you still should
be able to include some JavaScript-based dynamic behavior that relies only on Document Object
Model (DOM) support and basic language tools. A good rule of thumb is that (with the notable
exception of smartphones and tablets) any quantity of JavaScript beyond 10 KB can begin to degrade
load time and performance.

Note  Whether you use jQuery or not, unobtrusive JavaScript always should be your guiding
star. Unobtrusive JavaScript means having a place at the start of the code where you attach
handlers to elements so that degradation in the case of unsupported features is easier to
handle.

JavaScript Microframeworks
For a desktop site, nobody really minds having a few hundreds of kilobytes in script code. Gmail, for
example, fully loaded, usually exceeds the range of kilobytes for loaded JavaScript code. The idea
of loading a full-fledged, monolithic JavaScript framework in a mobile site is often unaffordable,
especially if you want to target more than just the top iPhone and top Android devices. Still, it’s useful
to be able to use the services of existing code and ready-made frameworks. JavaScript microframeworks
come to the rescue.

Microframeworks are small, highly focused libraries whose overall size is often only a few kilobytes;
sometimes even 1 KB or so. There’s no magic and no special tricks—microframeworks are so small not
only because they are minified and gzipped, but also because they take on just one or two tasks.

You probably will want to pick up a library for asynchronous (async) loading: one for optimized
DOM traversing, one for touch gestures, and perhaps a few more. You can find an interesting list of
such microframeworks at http://microjs.com; their average size is around 1 KB.

	 Chapter 4  Building Mobile Websites     69

One microframework for general-purpose JavaScript programming in the context of mobile
sites is XUI (see http://xuijs.com). XUI is not specific to a single task as are some of the libraries listed
on microjs.com; instead, it’s specifically designed for mobile scenarios, so you can consider it a
competitor to other larger mobile frameworks such as jQuery Mobile and Sencha Touch. Unlike these
larger frameworks, XUI doesn’t force you into a given programming paradigm or page structure.
It focuses on a few tasks (e.g., DOM/CSS management) and totals only 5 KB gzipped. XUI is a good
alternative to jQuery libraries for mobile sites and offers a powerful alternative to jQuery libraries for
lower-end devices that support JavaScript, DOM, and Cascading Style Sheets (CSS).

Chapter 5, “HTML5 and jQuery Mobile,” will cover the whole topic of jQuery Mobile. Sencha Touch
is a JavaScript framework, originally created to add touch capabilities to mobile pages, but which is
now a full-fledged framework for developing mobile web applications that look and feel native on
most mobile platforms such as iOS and Android. You can find out more about SenchaTouch at
http://www.sencha.com.

More Info  A good resource for microframeworks, and for comparing their pros and cons
against larger script frameworks such as jQuery, is Addy Osmani’s work at http://goo.gl/jnE9t.

Application Device Profiles
Device fragmentation is huge in the mobile space. If the differences between browsers in desktop site
development scare you, then be aware that the mobile space is much worse.

On rare occasions, you can get by with just one set of pages for a mobile site. Ideally, you need
pages that can adjust intelligently to the characteristics of the requesting browsers. Sometimes you
just end up having multiple versions of the same page—one for each device (or class of device) that
you intend to support. Alternatively, sometimes you may have one common page template that you
fill up with device-specific content. But at the end of the day, these are implementation details.

The crucial point is that you need to split your expected mobile audience into a few classes. Then,
for each page or view, you provide class-specific markup. This is the essence of multiserving, as briefly
described in Chapter 3, “Mobile Architecture.” Chapter 6, “Developing Responsive Mobile Sites,” will
illustrate multiserving with an example.

Note  In most developed markets today, it is possible to cover most devices with good
semantic markup of some kind and then progressively enhance the presentation and
interaction using CSS and JavaScript. In this regard, the concept of device classes applies to
CSS as well: however, if you want to present different content to different classes of devices,
then you need to use multiserving because the markup will change between classes.

70   Part II  Mobile Sites

Practical Rules to Class Profiles
In the mobile space, neither the team building a given site nor the team producing a general-purpose
library can afford optimizing pages on a per-device basis—the number of potential devices to take
into account is just too large (in the order of several thousand). Hence, a common practice has
become to classify all the devices you’re interested in into a few classes. How many classes do you
need to have, and how do you define a class?

A device class typically gathers all devices that match a given set of capabilities. You define the
classes based on the business cases and scenarios. A basic (but still arbitrary) classification may consist
in splitting the whole range of requesting devices into three categories: smartphones, tablets, and all
other browsers. You provide a rich web experience to smartphones, serve the full site to tablets, and
offer plain HTML to all others.

How would you define a smartphone? Everyone would agree that an iPhone is a smartphone
while, say, a Nokia 7110 is not. [The Nokia 7110, released in the fall of 1999, was the first device
equipped with a Wireless Access Protocol (WAP) browser.] In contrast, the Nokia 6600 certainly was
a smartphone when it came out in 2004, but nobody would consider it a high-end phone today.
But there are no hard and fast rules. You should know that not only the device classes, but also the
rules that determine which class a given device belongs to, are highly variable and strictly specific
to a business scenario. At the same time, this lack of fixed rules and practices makes it possible
for everybody to define classes in a way that best fits a given business. All you need is a reliable
infrastructure that first identifies the device and then tells you about its real capabilities. I’ll return to
that infrastructure in a moment.

As a purely intellectual exercise, here are some requirements that identify a modern smartphone in
2012. Note that these are likely to change, even in the near future.

■■ Operating system (minimum version): all versions of iOS, Android 2.2, Windows Phone 7,
RIM OS 6, Samsung Bada 2.0, Symbian Anna, and Nokia Meego

■■ Input mode: touchscreen

■■ Screen size: 320 × 480 pixels

Admittedly, this definition is rather arbitrary, and it may sound too restrictive for some while being
way too relaxed for others. Above all, this definition will become progressively less pertinent as more
powerful devices hit the market.

A tablet has two main characteristics—it is a mobile device (not a desktop browser), and it has a
larger screen than a smartphone. You can probably set the lower boundary to 640 pixels today.

It is important to note that grouping all the remaining devices into a single class may be a tough
decision. Whether you really want to serve plain static HTML to all of them or further split the
remaining devices into two or more classes is up to you.

How can you discover the capabilities of the browser for each device? How can you be sure that
the requesting browser is really a mobile device? If it’s sufficient for your needs to just check the
screen size and screen resolution, then you might decide to go with CSS media queries for high-end

	 Chapter 4  Building Mobile Websites     71

browsers, and use script code that simulates that on older browsers. Although this approach
may work in some cases, it’s not a route that will take you far. Instead, relying on a commercial
device description repository (DDR) is probably the best way to go. Chapter 6 discusses a few DDR
frameworks, focusing in particular on WURFL.

Dealing with Older Browsers
When I talk to executives planning the mobile strategy of their companies, I often get the impression
that when they say “mobile,” they just mean the iPhone and iPad. While it can’t be denied that
iPhones and other smartphones are actually responsible for most of the mobile traffic to sites, the
mobile universe contains many other types of cell phones and devices as well. Unfortunately, not
all of them have the same characteristics, but they are so numerous that you must find a common
denominator approach.

In the process that you use to identify the device profiles to support, you must define the bottom
of the stack at some point. Devices that fall into this sort of catchall group typically are served plain
HTML or, at least, the simplest markup that your mobile site can serve.

What’s the best way to handle this?

When you end up having a catchall device profile, it also means that there’s some rich library
you’re relying on for higher-end devices. The jQuery Mobile library is an excellent example. Such
mobile libraries sometimes offer to scale down the otherwise rich markup they produce on older
browsers automatically.

That’s apparently a fantastic deal for you: you write the mobile markup once, and it gets downgraded
automatically for less powerful browsers. Unfortunately, my current experience has not been particularly
positive on this point. Although most libraries do fulfill their promises of downgrading the markup, the
quality of the HTML that they produce when that happens is often below your desired standards. You
probably want to take care of the HTML being served to older devices yourself rather than blindly relying
on the kind of hard-coded markup served by some libraries.

The bottom line is that while jQuery Mobile (and other libraries) can truly downgrade HTML based
on the requesting browsers, you’ll achieve a better final effect if you manually fix up the output.
Currently, I’m inclined to use jQuery Mobile—but only to serve smartphones and tablets.

Note  Chapter 5 will cover jQuery Mobile in more detail, including more about its
browser-graded support matrix. That feature is orthogonal to performing your own device
capability detection, but overall, I prefer to skip the automatic downgrading, at least with
the current version of most libraries.

Optimizing the Payload
Minimizing the number of HTTP requests to websites is always a good thing, and it should be a
central aspect of any strategy aimed at improving the performance of a site.

72   Part II  Mobile Sites

If you have ever tried to use a mobile device to connect to a very basic site with a few plain HTML
pages, a bit of CSS, and one or two images over a 3G data connection, you have experienced a delay,
or latency. This latency is relevant if the device is not one of the latest smartphones with a powerful
processor. In the mobile space, minimizing the total amount of data transferred and the number of
requests is not simply a matter of optimization; it is a crucial development point.

Over the years, a number of recommended practices have been worked out to help developers
build fast websites. Yahoo! has been quite active in this field, publishing a very valuable document
that you can read here: http://developer.yahoo.com/performance/rules.html. The rules in that
document are written for a generic website, but for the most part, they can be applied equally well to
both desktop and mobile sites. Here’s a summary of the key suggestions:

■■ Take care of the page structure and find the right place for scripts and style sheets.

■■ Reduce the number of HTTP requests.

■■ Reduce the size of resources.

■■ Maximize the use of the browser cache.

Let’s briefly go through the optimization aspects that are most relevant to mobile sites next.

The Page Structure
A mobile browser may load pages significantly slower than a laptop browser. This means that not
just raw performance but also perceived performance is important. Little tricks, such as placing style
sheets at the top of the page in the <head> section help, because doing that means that the body of
the page will be ready to render as it is downloaded. The overall download time doesn’t change, but
at least users see some results a bit sooner.

Similarly, placing scripts at the bottom of the page is helpful because it reduces the impact that
synchronously downloading scripts may have on page rendering. When browsers encounter a <script>
tag, they stop page rendering and proceed to download the script synchronously. Page rendering
resumes only after the script files have been downloaded, parsed, and executed. When all the scripts are
at the bottom of the page, browsers don’t need to interrupt the page rendering process to load scripts;
therefore, browsers are free to concentrate on displaying an early view of the page.

Reduce the Number of Requests
Too many HTTP requests are the primary cause of latency in websites. This statement is even truer
for mobile sites. Executing an HTTP request is an expensive operation, especially when that entails
connecting to a radio cell. In this case, to preserve battery power, the device sometimes cuts off the
connection right after receiving the HTTP response, meaning that to execute another request, a new
handshake is required, which consumes both time and resources.

For this reason, it is doubly sinful to let links to duplicate resources go unnoticed. Linking a script
twice doesn’t affect the rendering of the page, but while the performance hit is negligible on a
laptop, it becomes a serious performance hit in a mobile scenario.

	 Chapter 4  Building Mobile Websites     73

The same can be said for redirects. Each redirect requires two HTTP requests. Avoiding redirects
from a site is one way to reduce the number of requests that devices visiting that site have to place.
Most ASP.NET MVC books [including my book Programming ASP.NET MVC, 2nd ed. (Microsoft Press,
2011)] recommend that the Post-Redirect-Get pattern is appropriate for input forms because it saves
applications from unwanted F5 refreshes. In a mobile space, that also introduces extra requests; make
sure that you make a sound decision about your projects on this point. If you can afford to use AJAX,
that would probably be an ideal compromise.

Compacting Resources
When your goal is to reduce the number of HTTP requests, there’s little better than merging two
or more files. Image sprites, for example, illustrate just this point. A sprite is an image that results
from the concatenation of two or more images. That way, the browser can make a single request,
downloading and caching multiple images at one time.

Image sprites are not always ideal. Using sprites works great with very small images, such as button
icons that are widely used across the pages, but sprites may not be as ideal for the relatively large
images used by distinct pages. Downloading a 50 KB image may not be easy over a 3G connection
and with an older browser, so if the image is part of a sprite and the sprite size is 100 KB or more,
downloading it would take even more resources—probably enough to make the user experience
unpalatable.

Sometimes, to save an HTTP request, you can decide to encode a small image (one on the order of
just a few kilobytes) as a Base64 string and embed it directly in the page. The data Uniform Resource
Identifier (URI) scheme just serves this purpose.

The data URI scheme defines a standard for embedding data within the page instead of linking it
as an external resource. The scheme is defined in RFC 2397; you can read about this RFC on Wikipedia
at http://en.wikipedia.org/wiki/Request_for_Comments. The net effect of applying the data URI scheme
is that the content of the src attribute of the element matches the following template:

data:[<content-type>][;base64],<bytes of the image>

First, you place the data keyword followed by the Multipurpose Internet Mail Extensions
(MIME) type of the image. Next, you place the Base64 keyword followed by the Base64-encoded
representation of the binary image. If you were embedding an image manually, here’s the markup
you would need:

The Base64 image encoding (also known as image inlining) saves a few HTTP requests and
improves both the real performance and perceived performance of the page. It is not a feature to use
for just any image and page!

74   Part II  Mobile Sites

Note  Most modern device browsers support image inlining, with the sole notable
exception of the Windows Internet Explorer browser embedded in the versions of Windows
Phone prior to version 7.5. However, few older browsers support this feature, whose
importance decreases as the capabilities and processing power of the browser increase.

Improve Your Control over the Browser Cache
If the primary objective of a mobile site is to minimize the number of requests, browser caching is
the primary tool that you have to manage. Moving auxiliary resources (i.e., style sheets and scripts)
to external files often helps. Initially, the number of HTTP requests is higher, but after the first access
auxiliary resources are cached, no more requested expiration occurs.

External resources are really beneficial if such resources are widely referenced from a variety of
pages. In home pages and rarely visited pages, inlining of resources (where possible) may be a better
option. In addition, you can drive the browser behavior about caching by using e-tags and Expires
headers on your critical resources.

Note  In addition to optimizing the cache and minimizing HTTP requests, you might
want to employ all possible techniques that reduce the amount of data to download. This
certainly includes fixes to application logic to return the smallest possible amount of data
and markup, but it also includes actions on the infrastructure, such as enabling compression
at the web server level and minifying scripts and style sheets. Finally, note that you should
always return data as JavaScript Object Notation (JSON) strings rather than XML strings.
(JSON was once named the “fat-free alternative” to XML.)

The browser cache also applies to AJAX responses. The use of AJAX makes the request go
unobtrusively for the user, who remains in total control of a still responsive page. However, it doesn’t
mean that the request will end in a matter of milliseconds. Sometimes caching the AJAX response
helps to make most responses really instantaneous. This pattern, however, doesn’t work for all types
of requests. If you place a request to read the current balance of an account, you don’t want it to
be cached. If you use an AJAX request to auto-complete a text field, you want to cache as much as
possible. This is to say that control over the AJAX cache must exist, and in real-world scenarios, it must
be applied on a per-URL basis. Most libraries, though, offer an all-or-nothing control, which is hardly
the right thing for a mobile site.

Important  As the Back button is the most popular button in a browser, you need to
remember this point: you don’t want the page to reload when you hit that button. To avoid
reloading, it is not always enough to set the right cache headers. The size of the elements
also matters. The following link provides some numbers. It is a post from a couple years
ago, but it is still worth reading: http://www.stevesouders.com/blog/2010/07/12/mobile-
cache-file-sizes.

	 Chapter 4  Building Mobile Websites     75

The Offline Scenario
A mobile site represents an excellent shortcut to implementing a mobile strategy because it brings
products and content to a variety of devices without writing a different application for each mobile
platform that you intend to support. At the same time, a mobile site requires constant connectivity to
work well. This aspect of mobile sites is going to be more and more of a showstopper for sites, and it
highlights the key difference between mobile sites and native applications. It’s not coincidental that
offline applications have been given a role in using HTML5.

Offline Sites with HTML5
An offline experience without an HTML5-enabled browser is quite hard to achieve; while it’s not
impossible, it does require a strong commitment. In other words, it’s not a feature that you would
want to offer as a free add-on to a customer!

When most people talk about offline sites, they mostly mean online sites that perhaps occasionally
experience long downtime periods. The key to surviving such lack of connectivity is caching—in particular,
to take advantage of the browser’s ability to cache resources that a user may navigate to later, during a
downtime window. These resources include not only auxiliary files, but also AJAX responses.

HTML5 lets you create a manifest file and link to it from the <html> tag of the home page. In this
manifest code, you list the files you want to keep cached, which resources are a fallback for other
(possibly missing) resources, and which resources are available only while online:

<!DOCTYPE html>
<html manifest="/offline.appcache">
 ...
</html>

The browser’s ability to cache a subset of the full site on the client isn’t a great thing, per se. It
requires more than that to be truly effective. That means is that there is little value for users in just
navigating through a few static pages. While that’s considerably better than getting a 404 error
message from the browser, it’s not really a decisive change.

Persisting Application Data
Persisting application data locally is another aspect of websites strictly related to surviving an offline status
interval. In an HTML5-enabled browser (again, most browsers in today’s smartphones are HTML5-ready),
you use the local storage application programming interface (API) to write name/value pairs in an
application-restricted area managed by the local browser. In the near future, the flat name/value format
may become even more sophisticated and evolve into a table-based and indexed format.

Persistence is also related to synchronization. The ability to persist data locally fully enables
occasionally connected application scenarios. At the same time, in an occasionally connected
scenario, you might want to offer a read-only view of the data or enable updates. When this happens,
you have either the problem of queuing operations or the problem of editing a local cache of data to
be synced with the server when the connection is re-established.

76   Part II  Mobile Sites

Overall, if you want to build a full-fledged, occasionally connected scenario, you’d better endow
yourself with a solid sync framework and/or consider using the OData protocol and facilities for your
data exchange.

Development Aspects of a Mobile Site

Based on the discussion in Chapter 3, the most important task when planning a mobile site planning
is selecting use-cases. This doesn’t mean, however, that use-case selection is unimportant when
developing full sites or other types of applications. It’s just that a mobile application and site are
structurally built around a few (and well-chosen) use-cases.

Even when you’re simply picking up a use-case from the root site, the way in which you implement
it for a mobile audience may require significant changes—possibly a different user interface and
perhaps even a different workflow.

At this point, let’s assume that you have a well-defined (and hopefully well-chosen) set of use-cases;
and let’s also suppose that you have everything required for the back end already in place. You are now
ready to start producing markup. But, first and foremost, how do you reach the mobile site?

Reaching the Mobile Site
A mobile site can be a stand-alone site located at its own unique URL, or it can result from the
application logic serving appropriate content to desktop and mobile browsers. In the former case,
you just create a new ASP.NET project, design your pages for the mobile devices that you intend to
support, give your images and style sheet the size and properties they need, and go. In the latter
case, you have a single project where you just handle the desktop full-web case as a special case of a
mobile site. Let’s investigate the two options.

One Site, One Experience
Maybe partly influenced by the One Web vision, I initially approached mobile development with the
idea of offering my users just one endpoint and host name. The plan was to hard-code the server with
the ability to detect device capabilities and serve the most appropriate content. So my first mobile
project was a mere extension of an existing site: I just released a new version of the desktop site with
the additional ability to detect mobile browsers and serve ad hoc markup. I had just one
ASP.NET project with two distinct sets of pages/views for desktop and mobile.

Honestly, this didn’t take much effort to design and implement. It took only a little extra
engineering to set up a page/view router to distinguish between and serve both mobile and desktop
requests. However, testing the site was painful. The only reliable source of information was to use a
real mobile device; switching the user agent string on desktop browsers just didn’t work effectively.
We’ll return to these test issues later in this chapter, and also demonstrate this one-site, one-
experience approach while presenting a demonstration of device capability detection.

	 Chapter 4  Building Mobile Websites     77

The noteworthy point is that when you have just one site that can handle both mobile and desktop
browsers, you actually have one set of pages for full browsers and then multiple sets of pages for
each class of mobile devices that you support. Really, the desktop becomes the special case!

What about different use-cases? This isn’t a big issue. You always have a home page in both mobile and
desktop environments, so your mobile home page will just offer a different set of links and start a different
type of navigation. You only need some logic that, when a new browser session starts, the home page
request for http://www.yoursite.com produces the output of default.aspx, default.mobile.aspx, or perhaps
default.iphone.aspx.

Two Sites, One Experience
Mostly for ease of development and testing, I soon switched to a different model: two sites, one
experience. The mobile site is a neatly separated entity and has its own URL. You have a stand-alone
mobile site reachable as a /mobile virtual directory of the main site or as a subdomain, such as
http://m.yoursite.com. Sometimes, the site takes its own extension, such as http.//www.yoursite.mobi. Any
option that you choose here is equally good, in my opinion, and mostly depends on other aspects of
the mobile strategy. In any case, it is always a good advice to provide users (at least on smartphones
and tablets) with a link to browse the full site.

Because the mobile site is isolated from the principal site, you can test it much more easily—
and you can use desktop browsers or mobile generic emulators (such as Opera Mobile Emulator)
to perform quick tests aimed primarily at evaluating the user interface and experience. Obviously,
it’s crucial to test on real devices, but for quick tests on markup, colors, position, and flow, using a
desktop program makes the process seamless.

Because you now have two distinct sites, you need an automatic mechanism to switch users to the
right site based on the capabilities of the requesting device.

Routing Users to the Right Site
It’s a mistake to assume a one-to-one correspondence between desktop and mobile pages. This
may happen but should not be considered a common occurrence. Note that by saying “page
correspondence,” I simply mean that both applications can serve the same URL; I’m not saying
anything about what each page actually will serve.

All in all, we can safely consider only the host name of any requested URL. If the host name belongs to
the desktop site and the requesting browser is detected to be a desktop browser, then everything works
as expected. Otherwise, the user should be displayed a landing page, where she will be informed that she’s
trying to access a desktop site with a mobile device. The user is given a chance to save her preference for
future similar situations. The preference is stored to a cookie and checked next.

If the request refers to a URL in the mobile site and the user seems to have a desktop browser,
consider showing another landing page rather than simply letting the request occur as usual. Finally,
if a request is placed from a mobile device to the mobile site, it will be served as expected; namely,
by looking into the device capabilities and figuring the most appropriate view. Figure 4-1 presents a
diagram of the algorithm.

78   Part II  Mobile Sites

Laptop

Request for a page
in the desktop site

Request for a page
in the mobile site

Serve requested
page

Show landing page
for mobile users

Show landing page
for desktop users

Detect device
capabilities and
serve appropriate
content

Device Laptop Device

Figure 4-1  The desktop/mobile view switcher algorithm.

How would you implement this algorithm?

In ASP.NET, the natural tool to implement this routing algorithm is an HTTP module that is active
on both sites and capturing the BeginRequest event. The module will use plain redirection or, if
possible, URL rewriting to change the target page as appropriate.

Here’s some code that implements the aforementioned algorithm in the desktop site:

public class MobileRouter : IHttpModule
{
 private const String FullSiteModeCookie = "FullSiteMode";
 public void Dispose()
 {
 }
 public void Init(HttpApplication context)
 {
 context.BeginRequest += OnBeginRequest;
 }

 private static void OnBeginRequest(Object sender, EventArgs e)
 {
 var app = sender as HttpApplication;
 if (app == null)
 throw new ArgumentNullException("sender");

 var isMobileDevice = IsRequestingBrowserMobile(app);

 // Mobile on desktop site, but FULL-SITE flag on the query string
 if (isMobileDevice && HasFullSiteFlag(app))
 {
 app.Response.AppendCookie(new HttpCookie(FullSiteModeCookie));
 return;
 }

 // Mobile on desktop site, but FULL-SITE cookie
 if (isMobileDevice && HasFullSiteCookie(app))
 return;

 // Mobile on desktop site => landing page
 if (isMobileDevice)

	 Chapter 4  Building Mobile Websites     79

 ToMobileLandingPage(app);
 }

 #region Helpers
 private static Boolean IsRequestingBrowserMobile(HttpApplication app)
 {
 return app.Context.Request.IsMobileDevice();
 }

 private static Boolean HasFullSiteFlag(HttpApplication app)
 {
 var fullSiteFlag = app.Context.Request.QueryString["m"];
 if (!String.IsNullOrEmpty(fullSiteFlag))
 return String.Equals(fullSiteFlag, "f";
 return false;
 }

 private static Boolean HasFullSiteCookie(HttpApplication app)
 {
 var cookie = app.Context.Request.Cookies[FullSiteModeCookie];
 return cookie != null;
 }

 private static void ToMobileLandingPage(HttpApplication app)
 {
 var landingPage = ConfigurationManager.AppSettings["MobileLandingPage"];
 if (!String.IsNullOrEmpty(landingPage))
 app.Context.Response.Redirect(landingPage);
 }
 #endregion
}

Once installed in the desktop site, the HTTP module captures every request and checks the
requesting browser. If the browser runs within a mobile device, the module redirects to the specified
landing page. The landing page will be a mobile optimized page that basically offers a couple of
links: one to the home of the desktop site and one to the home of the mobile site. Figure 4-2 shows a
sample landing page viewed with an Android 2.2 device.

If the user insists on viewing the full site, then you can’t simply redirect to the plain home page. For
its nature, the HTTP module will intercept the new request and redirect again to the mobile landing
page. From the landing page, you can simply add a specific query string parameter that the HTTP
module will detect on the successive request. Here’s the actual link that results in Figure 4-2:

Full site

You are responsible for defining the query string syntax; in this case, m stands for mode and f for
full. The task is not finished yet, though. At this point, users navigate to the home page of the site.
What about any other requests? Those requests, in fact, will be intercepted by the HTTP module.
By adding a cookie, you can provide additional information to the HTTP module about requests
deliberately sent to the desktop site from a mobile device.

80   Part II  Mobile Sites

Figure 4-2  The landing page of the EasyCourt demo site.

How can the user switch back to the mobile site? Ideally, any desktop site with a sister mobile site
should offer a clearly visible link to switch to the mobile version (and vice versa when the full site is viewed
on a mobile device). If not, the user won’t be offered a chance to choose the full or mobile site until the
cookie expires or is cleared. To clear cookies, users deal with the Settings page of the mobile browser.

Adding Mobile Support to an Existing Site
Where do you place the landing page? Is it on the desktop or on the mobile site? In general, it doesn’t
matter; however, if you put it on the mobile site, then you really can enable a scenario in which you
deploy a mobile site with all the required routing logic without touching codebase of the existing
desktop site.

In the demo site of EasyCourt, a commercial booking system for tennis courts, which I introduced
in Chapter 3, I just edited the Web.config file of the desktop site and deployed a library with the HTTP
module in the Bin folder. No changes were made to the source code. Here’s the configuration script
to add a router HTTP module to the desktop site:

<system.webServer>
 <modules>
 <add name=”MobileRouter” type=”...” />

	 Chapter 4  Building Mobile Websites     81

 </modules>
 ...
</system.webServer>

The Welcome page was defined on the mobile site. Note that the Welcome page always should be
visible, and it never should need authentication. Depending on how you deploy the mobile site—a
distinct root site/application or a child application/directory—you may need to tweak the Web.config
file of the mobile site to disable the HTTP module. If the mobile site is a distinct application, then it
needs its own Web.config file that has been fully configured with the HTTP module. If the mobile site
is, instead, hosted as a child directory in the desktop site, then it inherits the configuration settings of
the parent site (the desktop site), including the HTTP module. To speed up requests, you might want
to disable the HTTP module in the mobile site.

 Here’s the configuration script that you need in the mobile site’s Web.config file. The script clears
the list of HTTP modules required by the mobile site:

<system.webServer>
 <modules>
 <clear />
 </modules>
 ...
</system.webServer>

In addition, you need to instruct the parent application/site explicitly to stop the default
inheritance chain of settings. Here’s what you need:

<location path="." inheritInChildApplications="false">
<system.webServer>
 <modules>
 <add name="MobileRouter" type="..." />
 </modules>
 ...
</system.webServer>
</location>

Also, notice that when the mobile site is a child application/directory, then it inherits a bunch
of settings (for the section where inheritance is not disabled) that don’t need to be repeated (for
example, connection strings and membership providers).

Note  This example is based on the default Internet Information Services (IIS) 7.5
configuration—integrated pipeline mode. If you’re using the classic pipeline mode, then
instead of system.webServer/modules, you should operate on the system.web/httpModules
section.

82   Part II  Mobile Sites

Design of the Mobile Views
Mobile websites normally show a subset of the content offered by a desktop site. For example, if you
have a three-column layout in a desktop site, you probably want to remove (or move to additional pages)
content displayed in two of the three columns. Reducing the amount of information improves the load
time of the site and makes better use of the available space. “Shrink-and-fit” is a popular slogan.

An ideal layout for pages of a mobile site is based on a single column. The font size is large enough
to allow easy reading without zoom. The search bar (if any) ideally will go at the top, and navigation
links are commonly placed at the bottom. You might want to place a link to the desktop version of
the site somewhere on the mobile site.

Scrolling is accepted, especially vertical scrolling, but endless lists are annoying. Let’s briefly review
some common scenarios now.

Input Elements
On a typical mobile site, most of the functionality is read-only. This fact seems to suggest that you are
not going to have that many chances to write input forms, and perhaps even that input forms are not
an aspect of development you want to invest much time in.

This is just wrong.

Exactly because most of the functionality is read-only and a mobile device is tiny and not as
powerful as a laptop, providing specific and restricted parameters is key. To type query parameters, or
to specify settings, input forms are a common presence on mobile pages anyway. Some typical web
and Windows controls need fixes, though, especially in light of the touch capabilities of many devices.

Typing text on mobile devices is hard and should be minimized. As we’ll see in later chapters, this
is easier to achieve with native applications, where you can control the input scope of soft keyboards
and attempt to display an optimized subset of keys to the user. In mobile sites, all is left to the
browser, although developers can use forms of auto-completion via AJAX.

If the browser understands HTML5, then you can just use the most appropriate type attribute on the
<input> element and let the browser do the rest. To be honest, what you get may differ quite a bit, even
on smartphones. For example, numbers and ranges are well supported on both iPhone and Android at
present, but the date type produces just the plain text box on Android. In iOS5, however, the browser
recognizes your intentions and displays the compelling iPhone date picker element (see Figure 4-3).

On the other hand, iOS still lacks the ability to upload files from the browser, which is a feature
available in Android mobile browsers.

In general, data entry should be redesigned and even rethought case by case. For example, when
it comes to booking a tennis court in EasyCourt, the site offers a drop-down list with ready-made
dates, as shown in Figure 4-4. It should be noted, however, that this particular screen is not
mobile-specific but simply represents the plain transposition of a desktop page. You always should
wonder if there may be an innovative way of letting users enter their choices. Don’t stop at the classic,
desktop-oriented way of building input forms. Mobile is different and user-centered.

	 Chapter 4  Building Mobile Websites     83

Figure 4-3  Entering dates in iOS5.

Figure 4-4  Setting parameters for a query on available courts.

84   Part II  Mobile Sites

And finally, here’s a quick tip related to passwords. Strong passwords typically require mixing
lowercase and uppercase letters and numbers and symbols, but that’s too much work in a mobile
website. If possible, consider using numeric personal identification numbers (PINs).

Radio Buttons and Check Boxes
A common presence in many input forms, radio buttons and check boxes have just one problem in
mobile forms: they tend to be too small and hard to select with a touch. It is recommended that you
style these elements accordingly using padding and the companion label element. Don’t place such
elements too close to other elements, including other possibly related buttons.

Note  On iOS, the tappable region is 44 points, which corresponds to a square of 7 mm.
This should be considered if you are creating a mobile site without using a framework such
as jQuery Mobile, which shields you from many details.

It is worth noting that jQuery Mobile completely rewrites the canonical markup for such input
elements, as follows:

<input type="checkbox" name="rememberme" id="rememberme" data-theme="d" />
<label for="rememberme">Keep me logged</label>

The output produced by the preceding markup is shown in Figure 4-5.

Figure 4-5  A check box that looks like a button and is really easy to tap.

	 Chapter 4  Building Mobile Websites     85

In particular, jQuery Mobile surrounds the base HTML markup with padded DIVs to make it easier
for the user to tap. Compare the experience of tapping this with a regular check box that may even
need zooming to be read and selected (see Figure 4-6).

Figure 4-6  A regular HTML check box, but zoomed.

When the user’s choice is a yes/no or on/off choice, it is common in mobile to use flip-switch
artifacts that are larger and more comfortable to use and easier to see. Although differently styled,
flip-switches are available in iOS, Android, and Windows Phone.

Scrollable and Drop-Down Lists
Radio buttons are a valid solution if you need only one selection out of just a few options. When the
number of options gets closer to 10, or more, you might want to consider a combo box or a plain
scrollable list.

One of the original Windows controls, the combo box provides the same experience on desktop
applications and websites. The same points previously discussed for radio buttons and check boxes
apply to combo boxes too—they’re usually too small to be touch-enabled effectively. You can play
with style sheets and use a larger font, but you manage to improve the result only a little bit—it
remains far from ideal. Figure 4-7 compares native and adjusted combo boxes.

86   Part II  Mobile Sites

Figure 4-7  Native and adjusted combo boxes.

Figure 4-7 shows the results that you get when you use jQuery Mobile. The bottom line, though,
is that you hardly want to use plain <select> elements on a mobile page without some graphical
adjustments for size and touchability. On the other hand, <select> elements are more important than
ever in mobile pages because they can save users from typing free text.

Scrolling vertically is quite a natural gesture in a mobile scenario. However, the more you can group
related items, the better the final experience for the user is. Once again, focus is king. Figure 4-8 shows a
couple of mobile views featuring grouped items and collapsible elements that effectively save valuable
screen real estate while providing optional information to users. Grids are effectively rendered on mobile
only rarely; smartly built vertical lists are a much more common and preferable choice.

Figure 4-8  Collapsible and grouped elements.

	 Chapter 4  Building Mobile Websites     87

In Figure 4-8, a collapsible element is the block that shows messages. As the icon suggests, it is
an area of the screen that can be collapsed. Other blocks are tables with one or multiple sections (to
use a terminology popular to iOS and Android developers). Some of the items serve as dividers of the
sections and are styled differently, communicating the idea of grouped items.

If the list of items is particularly long, you might want to introduce some pagination. Essentially,
pagination works by first loading a fixed number of items and then displaying a link at the end to get
more. Alternatively, more items can be loaded automatically when the user reaches the bottom of the
list. It is up to you to ensure that the DOM doesn’t end up containing too many items after a few click
requests for more items. If this happens, you might want to remove older items and move them to
another page that the user can request if needed.

Note  If you want, you can play live with EasyCourt at http://www.easycourt.net/contosoen.
By reaching the site with a laptop and a mobile device, you can experience the different
levels of usability. The desktop site didn’t undergo any change to support mobile devices
except for the configuration file. For this reason, the desktop site currently doesn’t include
a link to the mobile site. This means that if you switch to the full site from a mobile one,
you can’t change back until you remove cookies for the site manually using the browser’s
Settings page.

Free Text and Auto-Completion
No matter your efforts to save free text typing, sometimes users are just requested to enter a name
or a comment. There’s not much you can do to reduce the hassle of typing on a mobile soft keyboard
if you can’t figure out ways to allow the browser to offer a close-enough input scope. With native
applications, it’s slightly better, but text typing remains a very sore point for mobile developers.

Auto-completion does help, but it costs you quite a bit of script code, which in turn increases the
payload for the page. Auto-completion must be coded through a plug-in—the jQuery UI auto-complete
plug-in works well with mobile pages. A plug-in that downloads data from an external source is the most
viable option when the potential number of options is in the order of hundreds. For a smaller number
of items, you can also consider the jQuery Mobile filter bar. The base markup is the following:

 ...
 ...
 ...

Additional attributes will give the final markup a strong auto-completion flavor, as in Figure 4-9.
Auto-completion also is sometimes a way to avoid long lists of hundreds of items that are very boring
to scroll through.

88   Part II  Mobile Sites

Figure 4-9  A jQuery Mobile filter bar selecting list items with “n.”

Testing the Mobile Site
Testing a mobile site is not an easy task. You may use a mobile emulator (possibly more than one to
better simulate the various scenarios), but emulators are not enough. Testing on real devices is what
really matters and gives you the real perception of the application performance and user experience.

However, before you deploy to a few test devices (at least one per device class), you might want
to check user interface and logic on a more comfortable desktop machine. Emulators and user-agent
switchers can do some of the work for you.

Desktop Emulators
An emulator is a desktop application typically running on Windows that aims to mimic the behavior
and functions of a specific browser. In mobile development, emulators are time-saving tools for
first-pass software testing.

Device/OS emulators are more specific than browser emulators. Device/OS emulators (i.e., the Windows
Phone emulator) are created by device manufacturers and are generally really close to the device.

Browser emulators are generally written by third-party companies and serve mostly for verifying
the look and feel of the site at a given size and resolution. You should not consider a browser
emulator for verifying the rendering of pages that have been optimized for certain classes of devices.

In general, emulators are a first-aid device, and they can be used to test the behavior of the
application on types of devices that you have no access to.

User Agent Switching
Most desktop browsers come with tools to switch the user agent (UA) string. By changing the default
UA string to that of a mobile device, you allow the browser to present the website with the credentials
of a particular mobile browser. Subsequently, the website will serve the mobile content that it has in
store. UA switchers are a special case of browser emulators.

	 Chapter 4  Building Mobile Websites     89

The Firefox browser was the first to offer such a powerful add-on. Today, you find the same tool
for Google Chrome and Internet Explorer 9, as shown in Figure 4-10.

Figure 4-10  The User Agent Switcher tool in Internet Explorer 9.

Opera Mobile Emulator is another interesting tool through which you can experience your site
as if you are visiting it through a number of specified devices. Compared to the User Agent Switcher
Tool, the Opera Mobile Emulator is more flexible; more important, it is a single tool that can serve
multiple scenarios. In Figure 4-11, you see the emulator configured to give the site being tested the
appearance of running on a tablet.

Figure 4-11  Selecting an emulator.

With all this said, it is worth making this point even clearer: you should test your mobile site on a
variety of mobile devices. In particular, don’t trust too much the apparent magic of UA switchers.

90   Part II  Mobile Sites

Let me illustrate a specific scenario. The UA switcher forces the browser to send a particular UA string
and, subsequently, your server-side code recognizes the requesting browser as mobile. This is the only
certain fact.

At this point, your server-side code may inject some JavaScript that checks the browser’s capabili-
ties and adapts the markup. Your JavaScript code, however, will be querying the desktop browser, not
the mobile browser! Furthermore, a generic emulator like the Opera Browser Emulator may not be
able to imitate the real browser perfectly, which makes the test experience significantly less valuable.

The bottom line is that you should use switchers for quick testing, then move to device emulators,
and finally test on a selection of actual sample devices—the only source of truth.

Note  If you want to test your mobile views on specific devices (well, mostly smartphones),
all you need to do is get a hold of the same emulators that you use for testing native
applications and then use the browsers that they offer.

In addition to buying or renting as many devices as you can, you can use a device-testing service
such as Keynote Device Anywhere (http://www.deviceanywhere.com). Another tool that is great for
remote debugging is Weinre (http://phonegap.github.com/weinre).

The Device-Detector Site

As an example of a mobile site that serves device-specific content, let’s consider what it takes to build
a device-detector website with ASP.NET MVC. Figure 4-12 shows the desktop version of the site that
is being made mobile. It has a three-column layout and a variety of links. This site doesn’t do any
particularly fancy things: it is limited to displaying the UA string and a few other browser capabilities.

Figure 4-12  The desktop version of the Device-Detector sample site.

	 Chapter 4  Building Mobile Websites     91

A mobile version of this site will remove a lot of bells and whistles and mostly focus on the primary
use-case: providing details about the current browser.

You should expect to see a single-column template with some graphics at the top (header) and
bottom (footer). In addition, a couple of links in the main content area just connect users to the page
with device details and contact (see Figure 4-13).

Header

> Menu item #1

> Menu item #2

Caps Value

FooterFooter

Header

Figure 4-13  The mobile layout for the Device-Detector sample site.

In the early days of software development, about 20 years ago, it was natural to design the main
screen of applications (mainframe and desktop) through a main menu that accepted user selections
via mouse clicks or keystrokes. Nearly all applications were designed around a main menu that
collected the various use-cases of the application.

The advent of pop-up and floating menus marked the end of this approach, which clearly was
limited to moderately complex applications. With mobile sites (and to some extent, also with native
applications), this old-fashioned model is revamped due to the relative simplicity of the logic and the
need to be direct and focused.

Routing to Mobile Views
For a site that serves mobile content, an accurate detection of the device is key. In addition,
a (possibly) automated mechanism to route requests to the right view would be welcome. Up to
ASP.NET MVC 3, you have no tools to allow you to select the view and no convention-over-
configuration (CoC) approach.

In ASP.NET MVC 4, instead, an enhanced infrastructure lets you give mobile views conventional
names that are resolved automatically by the system. For example, in ASP.NET MVC 4, a view named index.
mobile.cshtml will be used to serve requests for the Index action when coming from a generic mobile
device. ASP.NET MVC 4 is expected to give you even more control over the presentation layout, as it also
supports syntax like index.iphone.cshtml for a specific class of mobile devices.

92   Part II  Mobile Sites

More Info  For more information about MVC 4, refer to http://www.asp.net/mobile. In addi-
tion, you might want to look at my Programming ASP.NET MVC book for a deep coverage
of ASP.NET MVC 3.

Configuring a Mobile-Aware View Engine
The source code that comes with this book provides a sample view engine that works well with
ASP.NET MVC3—the AmseViewEngine class. The engine builds on top of the built-in Razor view
engine and allows you to invoke both desktop and mobile views. If the browser is detected as a
mobile browser, the engine will attempt to resolve any view named Xxx as a view named Xxx.mobile.
If the mobile browser belongs to a specific class, then it is mapped instead to an Xxx.profile view,
where profile indicates the name of the class.

You register the mobile-aware view engine in global.asax, as shown in this code:

public static void RegisterViewEngines(ViewEngineCollection viewEngines)
{
 viewEngines.Clear();
 viewEngines.Add(new AmseViewEngine(new AspnetMobileViewResolver()));
}

protected void Application_Start()
{
 ...
 RegisterViewEngines(ViewEngines.Engines);
}

The constructor of the view engine receives a user-defined class that knows the strategy to transform
the originally requested view to see if it exists in the site. In particular, the AspnetMobileViewResolver class
checks for xxx.mobile instead of xxx if it detects that the requesting browser is mobile.

View engines are a specific feature of ASP.NET MVC. In ASP.NET Web Forms, you can achieve the
same result by registering an HTTP module that intercepts incoming page requests, detects whether
the requesting browser is a mobile browser, and redirects to a corresponding mobile page, if any.

Note  The AmseViewEngine can be extended in a fairly easy manner to look for mobile
views in a distinct folder, such as Mobile. All you need to do is change the default value of
the ViewLocationFormats and PartialViewLocationFormats properties to point them to your
new Mobile folder. You set the properties in the view engine constructor.

Routing to Mobile Resources
Just as any other type of view, a mobile view may rely on a bunch of external resources, such as
images, style sheets, and script files. Because you control the markup of the mobile view, you can
simply place all the references you need there. For example, you can link the jQuery Mobile library

	 Chapter 4  Building Mobile Websites     93

only from the mobile layout; likewise, you might want to use smaller images for a mobile view or,
better yet, you might want to embed images in the same view as Base64-encoded strings.

It is crucial to note, however, that mobile views may have their own set of resources. Most of the
time, you don’t need to differentiate mobile resources on a per-device-class basis.

Detecting Device Capabilities
So now there is a mechanism that can redirect automatically to a view that has been specifically
designed for mobile browsers. But which part of the ASP.NET run time determines whether the
requesting browser is a mobile browser? And, more important, which algorithm is used?

As you may understand, this is the central point of mobile site development—you may not need
detailed information in all cases about what a given device can or cannot do, but you always need to
know—with extreme accuracy—at least whether the requesting browser is mobile or not.

ASP.NET Native Detection Engine
ASP.NET has its own detection API centered on the following code:

HttpContext.Request.Browser.IsMobileDevice

The IsMobileDevice property returns a Boolean value and indicates whether the current request
comes from a mobile device.

Without beating around the bush, this code is not really reliable. For example, it fails on a number
of popular devices, such as the HTC Desire and Samsung Galaxy S smartphones (both equipped
with Android); it also fails on a wide range of simpler devices, such as the Samsung GT S3370 Corby.
Curiously, the native ASP.NET detection API succeeds with the BlackBerry, iPhone and iPod devices,
and with Windows Phone devices. Why is this so?

The value returned by the IsMobileDevice property results from a partly accurate analysis of the
UA string that ASP.NET performs under the hood. Essentially, ASP.NET uses the UA string as a key to
match the requesting browser to one of the predefined device profiles. A device profile is a text file
with a .browser extension located on the server under the Windows folder at the following path:

// This is the path if you have the .NET Framework 4 installed on the server
\Microsoft.NET\Framework\v4.0.30319\Config\Browsers

Figure 4-14 offers a preview of the typical content of this folder.

94   Part II  Mobile Sites

Figure 4-14  The content of the Browsers folder.

Files in this folder contain some basic information about a few families of browsers. Each family
contains a regular expression used to match the UA string. If a match is found, then the dictionary
of browser capabilities exposed to the application is filled with the values of the properties that are
known to apply to that family of devices.

This solution was devised years ago when the problem was detecting just a few desktop browsers.
Matching the UA string of a mobile device—and its nearly infinite variations—and identifying the
right value for a given property require a much richer and articulated database. The content of
browser files can be extended and new files can be created, but it doesn’t change the basic fact that
something stronger is needed.

The bottom line is that if you simply rely on the IsMobileDevice property, you seriously risk offering
a desktop site to many mobile devices. Worse yet, this especially happens with older devices that will
display just a basic site, to the frustration of users. What else can you do?

A Better Way of Detecting Mobile Devices
Detecting device capabilities is a difficult problem in mobile (not just ASP.NET mobile) because of
the wide fragmentation of devices. In my opinion, the device fragmentation problem has just one
exact solution that I’ll discuss thoroughly in Chapter 6. This solution is using a DDR like the Wireless
Universal Resource File (WURFL).

Most DDRs are not free for every use; and free versions of most DDRs just reduce severely the
number of capabilities that they return. The bottom line is that you should be ready to spend money
when it comes to DDRs; your money will be well spent.

	 Chapter 4  Building Mobile Websites     95

Anyway, I’d like to illustrate quickly a couple of totally free (but possibly only approximate)
solutions that you might want to consider before you go to Chapter 6 and pick up your favorite
DDR framework. I’ll leave it up to you whether any of these options may work for you in the real-life
battlefield.

The first option entails writing your own wrapper around the Browser.IsMobileDevice property. You
can create it as your own class, or perhaps as an extension method to the Request object. Regardless
of these implementation details, what really matters is the logic that you use to write the code. Here’s
a sample detection function written as an extension method for the native ASP.NET Request object:

public static class RequestExtensions
{
 public static Boolean IsMobileDevice(this HttpRequestBase request)
 {
 var response = request.Browser.IsMobileDevice;
 if (response)
 return true;

 // If response is false, there are still good chances to have a mobile device.
 // Let's check the user-agent string for common substrings.
 var userAgent = request.UserAgent.ToLower();
 response = userAgent.Contains(ºopera mini") ||
 userAgent.Contains("mobile") ||
 userAgent.Contains("samsung") ||
 userAgent.Contains("nokia") ||
 userAgent.Contains("htc") ||
 userAgent.Contains("android") ||
 userAgent.Contains("windows phone") ||
 userAgent.Contains("midp") ||
 userAgent.Contains("cldc");
 return response;
 }
}

If the IsMobileDevice native property returns true, then you can be sure that the requesting
browser is really a mobile browser. The problem is with false negatives. The simplest thing you can do
is check the UA string looking for common substrings associated with mobile agents. The preceding
example includes some manufacturer names and operating system names. The MIDP string refers to
the Mobile Information Device Profile (MIDP), a specification that is part of the Java Platform Micro
Edition (Java ME) framework. MIDP works on top of the Connected Limited Device Configuration
(CLDC), which is instead a lower-level specification. In the end, both MIDP and CLDC are strings that
appear often in UA strings sent by mobile devices.

Finally, you may have noticed that this list contains no reference to popular devices such as iPhone
(and iPod/iPad) and BlackBerry. This is because ASP.NET 4 comes with .browser files for detecting
both platforms (see Figure 4-14). As a result, the basic IsMobileDevice property works on iOS and
BlackBerry devices.

A more powerful approach is based on a repository of mobile profiles that Microsoft built for
internal purposes and made public through a CodePlex project: http://mdbf.codeplex.com. It’s called
the Mobile Device Browser File (MDBF). If you visit the website, however, you find out that it is a

96   Part II  Mobile Sites

dead project now. This means that the database for this project won’t be maintained and extended
any longer, although you still can download and use it. With the wave of new devices being released
every month, this is clearly a problem.

To use the MDBF repository, all you need to do is copy the file in the App_Browsers/Devices
folder of your website. The content of the file will be read by the ASP.NET infrastructure and used to
populate the dictionary of browser capabilities.

You can extend the MDBF repository—an 18 MB XML file—to keep it up to date. Likewise, you
can update .browser files and add new ones. Both options, however, are not compelling because they
require a lot of maintenance work and research. And this is probably the reason why approximate and
exact solutions exist, and exact solutions are not free.

DDR Options
The quintessential DDR is, without a doubt, WURFL, by ScientiaMobile (http://www.scientiamobile.com).
WURFL was created in 2002—four years before the DDR acronym was first coined on a World Wide Web
Consortium (W3C) mailing list. An open-source community-based initiative, WURFL is comprised of an
API and a data repository. The API maps incoming HTTP requests to a known device definition and then
retrieves known capabilities for that device from the repository. The repository is updated independent of
the API so that companies just refresh the repository periodically without the need to change or rebuild
the application. The WURFL API is available for a variety of platforms and languages, including ASP.NET,
Java, C++, Ruby, and PHP. See http://wurfl.sourceforge.net.

In the summer of 2011, the WURFL owners have moved the project to a different licensing model,
which is stricter in many ways. While the API is technically still open-source, the Affero GPL v3 license
now requires that users completely open-source the proprietary code linked to the WURFl API on
their servers. This requirement is typically not compatible with the requirements of commercial
entities. Therefore, to avoid open-source provisions, companies can buy a commercial license for
WURFL API and data from ScientiaMobile. Note that the WURFL repository is distributed with a
proprietary license that prevents you from copying the WURFL data and using it with third-party APIs.

Another interesting DDR specifically aimed at the ASP.NET platform is 51Degrees. See
http://51degrees.codeplex.com. 51Degrees relied originally on WURFL as the source for device
information, but the change in the licensing model of WURFL forced to adopt a different and
proprietary repository. Recently, 51Degrees has been relaunched with a new vocabulary (i.e., set of
property names) and new data. 51Degrees is a purely commercial initiative, but it offers a free version
as a teaser for the platform. The free version is limited to a DDR with just four properties: isMobile,
ScreenPixelWidth, ScreenPixelHeight, and LayoutEngine, which is simply the browser engine.

Other players in the DDR world are DetectRight (http://www.detectright.com) and DeviceAtlas
(http://www.deviceatlas.com). MobileAware (http://www.mobileaware.com) and NetBiscuits
(http://www.netbiscuits.com) are also names worth mentioning, although they do not offer pluggable
DDRs as part of their main business model. In other words, the DDR is just one component of a more
elaborate product.

	 Chapter 4  Building Mobile Websites     97

Note  Search engines may point you to a few other device detection initiatives, mostly
created as an aspect of WURFL and, for this exact reason, subject to legal dispute. Accuracy
and level of service, however, don’t currently compare to any of the DDRs discussed here.

CSS Media Queries
Lateral thinking is about solving problems using an innovative approach and unconventional
reasoning. The lateral thinking about device detection seems to be CSS Media Queries and responsive
(or adaptive) web design. Is detecting devices hard? Don’t do that, then; just take a bunch of basic
properties (e.g., screen size) and let the page adapt and reflow accordingly.

The magic potion that enables responsive web design is CSS Media Queries. Introduced with CSS 3,
media queries simplify the design of sites that might be consumed through devices of different screen
sizes ranging from 24 inches on a desktop monitor to 3 inches on most smartphones. Media queries
are not specifically a technology for mobile development, but the flexibility of this feature makes it
really compelling to use to serve different devices with a single codebase.

The idea, in fact, is that you just create one site with a single set of functions and then apply
different CSS styles to it by loading a different style sheet for different media. The great improvement
brought by CSS 3 is that a medium (such as a screen) now can be restricted to all devices that match
given rules. Here’s an example of media queries:

<link type="text/css"
 rel="stylesheet"
 href="downlevel.css"
 media="only screen and (max-device-width: 320px)">

Placed in a HTML page (or view), this markup links the Downlevel.css file only if the page is viewed
through a browser with a width of 320 pixels or less. Note that there’s no explicit check on the type of
browser, whether mobile or desktop: all that matters is the real width of the screen. (Needless to say, with
a screen width of 320 pixels, it can only be a mobile phone or handheld device.) The only keyword should
be added for the sole purpose of hiding the statement from browsers that don’t support media queries.
These browsers, in fact, don’t understand the media type and go right ahead. The full documentation
about media queries can be found at http://www.w3.org/TR/css3-mediaqueries.

What’s the problem with media queries?

It is a common idea these days that by simply adding media queries to a site, you make it ready for
mobile clients. CSS media queries help making the page content more mobile-friendly, but they don’t
affect other critical areas, such as the number of HTTP requests per page, whether DOM manipulation
and AJAX are supported, or if a touchscreen is available.

Media queries can check out only a limited number of browser properties—namely, those listed
in the W3C standard: device width and height, orientation, aspect ratio, color depth, and resolution
to name the most frequently used ones. Most properties support the min- and max- prefix to help
you write more precise queries. Being a CSS feature, media queries only can hide elements that are

98   Part II  Mobile Sites

too big or low-prioritiy to display on a small screen. You still pay the costs of downloading or keeping
these elements in memory. You can use some JavaScript in the pages to download or configure
images programmatically. In this way, heavy elements can be managed in a more optimized manner.

In addition, media queries require a browser that supports CSS3. So they work on most smartphones,
but not, for example, on Windows Phone 7.0. An all-browser solution for media queries is available
through a jQuery plug-in that you can get at http://www.protofunc.com/scripts/jquery/mediaqueries.
However, there’s no guarantee that the mobile browser where you may be using this plug-in can really run
jQuery.

Browser Capabilities
Detecting whether the requesting browser runs on a mobile device is only the first step toward
delivering an adequate experience to any mobile users. Once you have identified a device correctly as
a mobile device, you should try to detect the capabilities of the device. For example, you might want
to know the version of the operating system, its real screen width and height, whether it supports
AJAX, if it can perform some DOM manipulation, and if CSS is supported. In addition, you might want
to optimize the user interface in case the device has a touchscreen or is really a tablet.

Finally, have you ever tried to visit a site with an older phone? If you have, then you know what I
mean. First, the phone will likely have no support for WiFI, so it will connect over the mobile network.
The slow connection will take a lot of time to see how many different connections are made to
download images, scripts, and auxiliary files. You might always want to merge CSS and minify scripts,
but what about images? Sprites are a possible solution, but they require CSS support from the device.
Inline images (namely, images embedded in the page as Base64 strings) are another route to explore.

You need to know these and possibly more details about the specific device. Some properties can
be tested programmatically with a bit of JavaScript. The following code, for example, shows how to
check programmatically whether AJAX is supported:

var xhr = window.ActiveXObject ? new ActiveXObject("Microsoft.XMLHTTP") : new XMLHttpRequest();
if (xhr === null)
 alert("No support for Ajax");

Many other properties can’t just be tested programmatically. For instance, how would you detect
programmatically if a device understands inline images, has a touchscreen, or is a tablet? For these
and other types of capabilities, you need a repository of information that is updated weekly, if not
more frequently. If delivering a great user experience on a variety of mobile devices is your goal, then
you need the appropriate tool. And you probably need to pay for it.

Putting the Site Up
At the end of the day, a mobile site is just a website that has been designed according to a different
set of guidelines. Once you know whether the device is mobile and what its capabilities are, you can
proceed safely with the actual design of the site—layout, style, and markup.

	 Chapter 4  Building Mobile Websites     99

Adjusting the Layout
In a mobile site, you might want to use mostly a single-column layout and move navigation and
search functions to the top and bottom of the page. Finally, you might want to leave the user free
to scroll vertically to locate what is relevant but doesn’t fit on the physical page. Beyond these basic
rules, the design of a mobile site is all about finding the most friendly and creative way of presenting
your content. Here’s the layout file for the mobile version of our site.

Note that the listing uses the ASP.NET MVC Razor syntax to describe the view. The Razor syntax
mixes plain HTML with executable expressions. Executable expressions are prefixed with the
@ symbol. In particular, in the following example, the ViewBag expression refers to a collection
through which the page passes values to the view. A good step-by-step tutorial to Razor can be
found at http://goo.gl/9eTEm.

<html>
 <head>
 <meta name="viewport"
 content="width=device-width, initial-scale=1.0, maximum-scale=1.0,
 user-scalable=no" />
 <title>@ViewBag.Title</title>
 <link href="@Url.Content("~/Content/Styles/Site.css", mobile:true)"
 rel="stylesheet"
 type="text/css" />
 </head>
 <body>
 <div id="header">
 <img src="@Url.Content("~/Content/Images/logo.png", mobile:true)"
 class="image" alt="" />
 </div>
 <div id="content">
 <h2>Know Thy Devices</h2>
 <p>
 Find out details of the devices that visit your site.
 This demo also shows a sample mobile template.
 </p>
 </div>
 <div class="actual-body">
 @RenderBody()
 </div>
 <div id="footer">
 <p>Architecting Mobile Solutions for the Enterprise</p>
 </div>
 </body>
</html>

Note that this file is named Layout.mobile.cshtml and is resolved in _Viewstart.cshtml, using an
enhanced version of the native UrlHelper object in ASP.NET MVC:

@using Mobi.Framework.ViewEngines;
@{
 Layout = Url.Content("~/Views/Shared/_Layout.cshtml", mobile:true);
}

100   Part II  Mobile Sites

As mentioned, the layout file implements a single-column view and points to external resources
using our custom Url.Content method as a resource switcher.

Let’s find out more about the viewport <meta> tag.

Most mobile browsers can be assumed to have a rendering area that’s much larger than the
physical width of the device. This virtual rendering area is called the viewport. The real size of the
internal viewport is browser-specific. However, for most smartphones, it is around 900 pixels. Having
such a large viewport allows browsers to host nearly any webpage, leaving users free to pan and
zoom to view content, as in the following illustration:

Browser area

Viewport

This behavior may perhaps be desirable (or at least not too disturbing) when you have a
high-resolution smartphone; but what if your users host the site within a 240 × 320 device? It’s like
looking through a keyhole. To gain control over mobile browsers’ viewports, you add an explicit
viewport <meta> tag and instruct the browser about it as follows:

<meta name="viewport"
 content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no" />

In this example, you tell the browser to define a viewport that is the same width as the actual
device. Furthermore, you specify that the page isn’t initially zoomed and can’t be zoomed in by users.
Setting the width property to the device width is fairly common, but you can indicate an explicit
number of pixels. Figure 4-15 shows how the same page looks on an older device with and without
the viewport tag.

Adjusting the Style
A mobile site deserves its own CSS file where you define a bunch of new styles required by the
specific user interface. In addition, the CSS file will probably need to override some of the styles
shared with the desktop site (if any).

For example, you might want to remove background images and replace them with solid colors.
Background images are a great example to show how CSS media queries can hardly be the perfect fit
when you need to provide multiple views for devices other than smartphones. With media queries,
you only have the device width to distinguish devices. However, when it comes to devices less than
300 pixels wide, you can still find different capabilities. Some relatively powerful devices fall in this
category that have touchscreen and good HTML capabilities. For these devices (e.g., Samsung Corby),

	 Chapter 4  Building Mobile Websites     101

you can still use background images, but you cannot for any devices smaller than 300 pixels. This is
to say that you can do a lot with CSS styles, but not everything. Beyond a threshold, you just need to
upgrade to another solution as WURFL. (See Chapter 6 for more information.)

Figure 4-15  Effects of the viewport tag.

In a mobile style file, it is important to use the padding property appropriately to ensure that
clickable elements (in touch-enabled devices) are large enough to accommodate a relatively
inaccurate pointing device like the human finger.

Adjusting the HTML View
The sample site, Device Detector, while not realistic in terms of functionality, is an excellent starting
point for understanding the role of browser capabilities. Figure 4-16 compares the desktop and
mobile versions of Device Detector.

Figure 4-16  Desktop and mobile site face to face.

102   Part II  Mobile Sites

The mobile site requires an extra step to get to the real data: you must click the Details link. The
Index view is therefore different in our ASP.NET MVC application. The Index.mobile.cshtml view simply
renders a static markup with a couple of links. It is interesting to see where the Details link points. It
points to a Details action method on a new controller—the DeviceController—that is used only by the
mobile subsystem:

public class DeviceController : Controller
{
 public ActionResult Details()
 {
 ViewBag.UserAgent = Request.UserAgent;
 ViewBag.IsMobile = Request.Browser.IsMobileDevice;
 ViewBag.SupportTables = Request.Browser.Tables;
 ViewBag.MobileDeviceInfo = String.Format("{0}, {1}",
 Request.Browser.MobileDeviceModel,
 Request.Browser.MobileDeviceManufacturer);
 ViewBag.PreferredImageMime = Request.Browser.PreferredImageMime;
 ViewBag.ScreenSize = String.Format("{0} x {1}",
 Request.Browser.ScreenPixelsWidth,
 Request.Browser.ScreenPixelsHeight);
 ViewBag.SupportAjax = Request.Browser.SupportsXmlHttp;
 ViewBag.DomVersion = Request.Browser.W3CDomVersion;

 // Point to the device.cshtml view
 return View();
 }
}

The method would return the view generated from the Details.cshtml template. However, because
this method is invoked only from the mobile site, the actual view file will be Details.mobile.cshtml.
However, the view engine being used here can pick up Details if it can’t find Details.mobile.

The Details method collects some data about the requesting browser and composes them into the
view. As you can see in this example, the information about browser capabilities is what ASP.NET makes
available natively. I actually took the screenshots of this chapter from a site where I installed the MDBF
repository—now largely outdated, but far better than the default ASP.NET browser configuration.

In particular, you can consume some of the capabilities being passed down to the view to fork your
rendering code, as shown here:

@if (ViewBag.SupportTables)
{
 <table id="deviceTableInfo" cellpadding="4" cellspacing="2">
 ...
 </table>
}
else
{

 ...
 ...

}

	 Chapter 4  Building Mobile Websites     103

Figure 4-17 shows a screenshot of the site captured from an iPod device.

Figure 4-17 The Device Detector site displayed on an iPod device.

Figure 4-18, instead, shows the same site on a low-level device, but it is still touch-based and has
some decent HTML capabilities (JavaScript and CSS support).

Figure 4-18 The Device Detector site displayed on an Samsung Corby device.

104   Part II  Mobile Sites

Figures 4-17 and 4-18 don’t show noticeable differences in the rendered markups. However, if
you view it live, you see that the device of Figure 4-18—an older device—takes a while to render the
page for at least a couple of reasons. First, it doesn’t have much processing power, so any operation
(JavaScript or just downloading) is slower. Second, it doesn’t have WiFi support; so any download can
occur only via 3G. The rendering experience is somewhat painful because it first displays the skeleton
of the HTML; next, it downloads the CSS and applies colors; and finally, it gets the picture and inserts
that into the layout. Tweaking HTML for older browsers is an operation that you might want to
optimize on a per-page basis—if it is worth the cost.

Summary

This chapter tried to turn into practical advice and bits and pieces of code some of the most common
practices employed today to build mobile websites. The number of mobile devices is huge, but, on
the other hand, you don’t have to target all of them. Mobile development is about understanding
what you and your customers want and need. This is a crucial point and results in an ideal selection
of use-cases. Appropriate and well-described use-cases are essential for any application, but it is a
bit more important for mobile applications and sites. For mobile sites, in particular, I estimate that it
represents the largest share of the work.

Selection of use-cases helps to keep the whole application up-close-and-personal, establishing a
relationship between code and user that is much stricter than with any other type of application.

Beyond this point, building a mobile site is a matter of optimization: minimizing requests,
minimizing content being downloaded, and minimizing the user’s activity. But it's also a matter of
optimizing the design to find a good compromise between UI widgets and touch capabilities. The
user interface is critical: common widgets like drop-down lists and check boxes, while valid to express
the behavior of a view, may require a different rendering and graphical structure.

Finally, a mobile site may largely reuse code in the back end of the sister desktop site. Coding the
back end is probably the simplest aspect of mobile site development. The next chapter covers in more
detail two technologies that have been mentioned only briefly up to now: jQuery Mobile and HTML5.

	 417

onCreateOptionsMenu and
onPrepareOptionsMenu methods,  291

actual_device_root attribute, <device> elements in
WURFL XML data file,  145

adapter objects in Android,  306
ad hoc distribution provisioning profile, creating,  262
ad hoc user interfaces,  47
Adobe AIR,  274

compilation of applications for mobile
platforms,  385

Adobe Creative Suite 5.5,  215
Adobe PhoneGap framework. See PhoneGap framework
agile schema for piecemeal release of applications,  15
AGPL v3 licenses,  144
Ahead-of-Time (AOT) compiler,  247
AIR. See Adobe AIR
AJAX,  64

benefits and disadvantages of using,  67
browser caching of responses,  74
browsers' support of,  107
capabilities in WURFL,  152
checking for browser support of,  98
and cross-domain issues,  403
Full Page Refresh (FPR) model and,  66
group of capabilities in WURFL,  145
page links and transitions in jQuery Mobile,  117
Predictive Fetch pattern,  199
requirement for use to download data for local

output or data cache,  57
use in jQuery Mobile to download and display

pages,  111
Ajax.BeginForm HTML helper,  66
A-la-Carte-Menu pattern,  185

examples of,  186
AlertDialog class,  301
alert function, JavaScript,  411
alloc and init methods, NSObject class,  219

Index

Symbols
3G connections,  178
51Degrees,  96
@catch directive in Objective-C,  222
@finally directive in Objective-C,  222
- (minus sign)

denoting instance methods in Objective-C,  217
@OutputCache directive,  56
+ (plus sign)

denoting static methods in Objective-C,  217
@property directive,  216
@synthesize directive in Objective-C,  218, 233
@throw directive in Objective-C,  222

A
A4 and A5 processors for Apple devices,  247
accent color, background for tiles and icons in Windows

Phone,  337
accordion widget, creating with jQuery Mobile,  117
actions, adding in iOS,  237, 239, 251
ActionScript,  274, 385
ActivatedEventArgs class,  337
Activated global event,  336
ActiveX components, Ajax capabilities via,  152
activities in Android,  281

completing user interface,  285
displaying alert messages during activity,  301
editing source code of root activity in PhoneGap

project,  409
Game application (example),  295
life cycle of an activity,  283

Activity class,  282
getSystemService method,  310

Android

418   Index

Android,  10
background services,  335

service detecting network changes,  203
building PhoneGap application for,  408
context menus based on application state,  196
date type on,  82
detecting changes in visual controls and saving

automatically,  180
developing for,  267–322

Android jungle,  275–278
choosing development strategy,  270–275
defining user interface,  285–294
development tools and challenges,  268–270
examining sample application,  294–308
other programming topics,  308–318
programming languages and equipment,  39
programming with Android SDK,  278–321
testing the application,  318–320

encrypting or hiding sensitive data,  191
Facebook for Android, Logon-and-Forget

pattern,  190
full website viewed on (example),  48
grocery list application with voice-based

input,  183
Guess (sample) PhoneGap application running

on,  402
horizontally scrolling toolbar from Astro,  199
HTC Desire device, detecting capabilities with

WURFL,  158
keyboard layout in browser application,  184
ListView widget,  197
Menu and Search buttons,  195
MonoDroid framework wrapping Android

SDK,  213, 251
open to any applications,  21
PhoneGap applications on,  388
receiver in action,  204
Settings screen for browser application,  180
SharedPreferences,  177
storing credentials,  191
system requirements for development,  xvii
wide spectrum of devices, problems for

PhoneGap apps,  401
animation

creating animated message box for Windows
Phone app,  359

transitions in iOS,  245
Anywhere from Sybase, syncing up mobile and

remote data,  177
API levels in Android,  276

APIs (application programming interfaces)
abstract API of virtual machine pattern,  383
mobile platforms,  10

App_Browsers/Devices folder, MDBF file in,  96
Appcelerator, Titanium Mobile,  274
AppDelegate class (in MonoTouch),  249
app-delegate object

Guess application (example),  231
HelloWorld program (example),  226

App Hub developer account,  376
app ID for iOS applications,  261
Apple

appstore for i-tools,  12
enterprise program for mobile applications,  21

Apple development program, joining,  259
Apple iPhone,  3
application bar in Windows Phone,  344–346
application behavior. See behavior of mobile

applications
application components (Android),  281
ApplicationConfigurer class,  156
application device profiles,  69

practical rules for categorizing in classes,  70
applicationDidEnterBackground message,  227
application:didFinishLaunchingWithOptions

message,  226
application icon, creating for Windows Phone

app,  337
application layer,  52

content and functions of,  53
defining for mobile clients,  53

options for,  55
application resources in Android,  284
ApplicationSettings object,  366
application startup

in Android,  281
Windows Phone app programmed in

Starlight,  333
application state, JavaScript application in PhoneGap

HTML5 solution,  396–398
applicationWillResignActive message,  227
App Store (Apple)

and delivery models for mobile applications,  18
distribution of iOS applications,  263
submitting finished applications to,  210

appstores,  12
B2C strategy and,  16
benefit for users of native applications,  37
benefits of, lacking for mobile sites,  36
mobile sites and,  18

	 background services in mobile applications

	 Index   419

App.xaml file,  333, 354
creating global application resource in,  347
defining static resource,  342

ARC (Automatic Reference Counting),  212
support by Objective-C,  224

ARM assembly code,  247
ARM processor,  319
<article> elements in HTML5,  123
<aside> elements in HTML5,  124
ASP.NET

@OutputCache directive,  56
DDR-based ASP.NET routing system,  163
DDR-based view engine,  164
native detection engine,  93
pointing to WURFL repository and patch

files,  147
Request.Browser object, retrieving device

information,  143
using WURFL from,  153–159

from UA to virtual device,  156
introduction to WURFL API,  153
querying for device capabilities,  157

web API,  54
ASP.NET MVC,  164

automatic, convention-based routing of pages
to mobile devices,  168

building device-detector site on,  90
defining web-base application layer,  54
Razor syntax describing site view,  99
structure of jQuery Mobile layout file,  106
support of partial page refresh,  66

ASP.NET Web Forms
DDR-based routing system,  164
support of partial page refresh,  66

Assemblyinfo.cs file,  331
As-Soon-As-Possible pattern,  202–205

detecting network changes,  203
implementing,  202

async and await keywords (C# 5.0),  188
asynchronous operations,  186–189
AsyncTask class,  311
AtomPub feeds,  55
attributes, indicating in Objective-C property

declarations,  216
audience

focus on, in B2C strategy,  13
for a mobile site,  36
serving B2B audience,  19

<audio> element in HTML5,  133

authentication
Logon-and-Forget pattern,  190
problems with, in SPI sites,  65

auto-completion
context-sensitive, in a text box,  297
on mobile sites,  87

auto-releasing in iOS memory management,  223
AutoSave pattern. See Back-and-Save pattern
auxiliary resources, moving to external files,  74
AVD Manager,  269

B
B2B (business-to-business) applications,  9

outlining strategy for,  19–23
mobile enterprise application platforms

(MEAPs),  21
picking one mobile vendor,  20
private applications,  20
serving your audience,  19

B2C (business-to-consumer) applications,  9
outlining strategy for,  13–19

delivery models,  16–19
focus on your audience,  13
global statistics, quick look at,  14

Babel-Tower pattern,  191–194
formulating,  192
further considerations for mobile

translations,  194
implementation of,  193
internationalization versus localization,  192

Back-and-Save pattern,  111, 179
considerations in mobile data entry,  182
implementation of,  180

in Postino for iPhone and Windows
Phone,  181

Back button
avoiding page reloads when pressed,  74
navigating through activities stack in

Android,  282
support for, in PhoneGap applications,  412

background
defining with graphical shapes for Android

layout,  289
styling in XAML for Windows Phone app,  342

background applications,  176, 200
background services in mobile applications,  335

notifying of network changes in Android,  203

Bada

420   Index

Bada,  10
using PhoneGap to develop for,  414

Base64 image encoding,  73
Base Class Library (BCL),  247
battery power consumption, reducing with use of

more JavaScript,  67
behavior of mobile applications,  175

behavioral patterns,  199–204
As-Soon-As-Possible pattern,  202–205
Memento-Mori pattern,  200–202
Predictive Fetch pattern,  199

JavaScript, in PhoneGap HTML5 solution,  398
BES (BlackBerry Enterprise Server),  20
best practices for mobile development, finding,  12
beta applications

for iOS, sharing with testers,  262
publishing for Windows Phone,  376

beta testing
enabling for iOS application,  261
over-the-air beta testing for iOS

applications,  263
Binding keyword,  353
BlackBerry,  10

appstore, optional for developers,  12
compiling applications with Flash Builder,  275
developing for, programming language and

equipment,  39
IsMobileDevice property, using on,  95
open platform,  21
PersistentStore object,  177
success in B2B market,  19
using PhoneGap to develop for,  414

Black-or-White implementation, As-Soon-As-
Possible pattern,  203

booking tennis courts (EasyCourt example site),
conversion to mobile site,  47–49

Boston Globe,  33
delivery model,  18
example of RWD in action on website,  139

broadcast receivers in Android apps,  281, 312
registering,  313

browser caching
control over, in HTML5,  131
improving control over,  74
offline site availability via,  75

browser emulators,  88
.browser file extension,  93

browsers
adjusting HTML5 pages for older browsers,  125
dealing with older browsers,  71
detecting browser language using

JavaScript,  395
detecting capabilities of,  98
determining on server and matching to

capabilities,  57
determining which mobile browsers to support

and how,  57
differences between desktop and mobile,  140
discovering capabilities of, for mobile

devices,  70
fallback in case of older browsers,  167
global namespace, JavaScript and,  393
HTML5 and,  135
HTML5-compliant,  105, 273
HTML5 input fields support,  129
jQuery Mobile graded support matrix,  107
local storage,  130
mobile browsers' support for HTML5,  122, 136
mobile device fragmentation issue,  11
mobile site development and,  137
optimization of content for,  29
support for image inlining,  74
supporting HTML5 local storage,  56
testing PhoneGap HTML5 application in desktop

browsers,  401
User Agent Switcher tools,  88
validation of input on forms,  128
varied capabilities of, mobile sites and,  35
video codecs supported,  134
video formats,  133
Windows Phone,  328

brushes, painting background of XAML
elements,  342

BufferedReader class,  311
Bundle object,  282

application state saved to,  288
bundles,  228
business layer,  52
business objectives and native application versus

mobile site strategy,  31
business-to-business applications. See B2B

applications
business-to-consumer applications. See B2C

applications

	 combo boxes on mobile sites

	 Index   421

C
C#

adding new methods to existing class via
extension methods,  221

async and await keywords (C# 5.0),  188
basics for building coroutines,  188
Java versus, for Android development,  273
cross-platform mobile development with,  39
interfaces,  220
named parameters for methods,  219
primary language for Window Phone

development,  324
using with MonoDroid for Android

development,  272
using with MonoTouch in iOS development,  213,

246
C++

development for iPhone using,  212
use in development for Symbian,  39

C2C (consumer-to-consumer) applications,  9
caching

browser caching for offline use of mobile
sites,  75

browser caching in HTML5,  131
improving control over browser cache,  74
local caching of data for mobile browsers,  35
local output,  56
WURFL manager object,  153

camera intent in Android apps,  316
cameras

capturing picture and sending via email in
Android,  315

starting camera application in Windows
Phone,  374

canvas support capability,  153
Capabilities section of manifest file, Windows Phone

app,  333
carriers, Android and,  275, 276
categories in Objective-C,  221
cell phones

detecting,  149
display of website content,  28

cells, creating in table-based view,  242
certificates

distribution certificate for iOS,  261
getting development certificate for iOS,  259

certification and publishing of iOS apps,  210
chaining async network operations,  187
Change-Password use-case,  49

check boxes on mobile sites,  84
child application/directory of desktop site, mobile

site as,  81
Chittaro, Luca,  63
choosers, Windows Phone,  374
ciphering or encryption, using for critical data,  191
C language

development for iPhone using,  212
Objective-C and,  215

class attribute, using to apply different themes,  109
classes

defining in Objective-C,  212, 216
implementing in Objective-C,  218
implementing protocols in Objective-C,  220
namespaces and naming conventions in

Objective-C,  218
ready-made, performing common tasks in iOS

and other mobile systems,  244
CLDC (Connected Limited Device Configuration),  95
clear/undo on demand,  180
client-side route to device detection,  138–142

benefits of RWD,  138
disadvantages of RWD,  140
technical aspects of RWD,  139
why jQuery-like approach isn't always

effective,  142
client-side web applications

transforming to native applications,  214
writing,  273

Closing event,  336
cloud, sharing persistent data among

applications,  177
Cocoa classes, NS prefix for class names,  218
Cocoa Touch frameworks,  209

dealloc method for objects,  223
.NET facade on top of (MonoTouch

framework),  213
ownership rules and reference counting,  223

codebase composed of HTML, CSS, and JavaScript
for PhoneGap apps,  390

codecs for video,  133
popular codecs,  134

CodePlex project,  95
code samples for this book,  xvii
collapsible panels

creating with HTML5,  124
creating with jQuery Mobile,  116

colors, not using as constants in XAML files and
code,  342

combo boxes on mobile sites,  85

common tasks

422   Index

common tasks
performing in Android,  315–319
performing in iOS,  244
performing in Windows Phone,  374

Compact HTML markup,  146
compacting resources,  73
compilers, Mono and AOT compilers in Mono

framework,  247
compression

enabled at web server level,  74
ZIP and GZ formats, support by WURFL API,  156

connection type changes, monitoring in
Android,  314

connectivity
checking for network,  204
listening to changes with broadcast receiver in

Android,  312
mobile network connectivity, different types and

qualities,  371
of mobile applications,  178
of mobile devices,  175

CONNECTIVITY_CHANGE message,  313
ConnectivityManager class,  309, 315

getNetworkInfo and getActiveNetworkInfo
methods,  310

constants
colors as, avoiding in XAML files and code,  342
defining in Objective-C,  233

consumer-to-consumer (C2C) applications,  9
container elements in XAML,  339
Content Delivery Network (CDN), using for mobile

sites,  35
content provider components in Android apps,  281,

282
Context object,  310
context-sensitive auto-completion in a text box,  297
context-sensitive menus, display during Android

Guess game,  300
control bar for audio and video playback,  133
controlled input,  120
controls attribute, <video> element in HTML5,  134
controls, hiding controls not being used,  186
convention-over-configuration (CoC) naming

convention,  279, 330
converters (XAML),  363
CoolStorage,  370
Cordova,  382. See also PhoneGap
coroutines,  188
CORS (Cross-Origin Resource Sharing), W3C

draft,  404

CouchBase Mobile (mobile NoSQL),  178
CouchDB database,  178
CPU power in mobile devices,  175
createChooser method, choosing medium to share

picture through,  317
cross-compiling,  384
cross-domain issues

Ajax and,  403
and HTML pages hosted in PhoneGap

application,  404
necessity for testing cross-domain calls using

real mobile device,  405
security issues with linking of URLs,  392

Cross-Origin Resource Sharing (CORS), W3C
draft,  404

cross-platform development
myth of,  382–392

shell approach,  386–392
virtual machine approach,  383–386

cross-platform mobile development,  381. See
also PhoneGap framework

C# language and,  39
cross-platform options for Android

development,  274
cross-platform, web-based nature of mobile sites,  34
CRUD operations in applications,  52

OData service, CRUD API,  55
.csproj file, editing in to add supported cultures in

Windows Phone,  347
CSS (Cascading Style Sheets)

browser capability of rendering gradient as
specified in CSS3,  153

browsers' support of,  107
classes,  125
commands to apply different themes,  109
in HMTL pages, readying for PhoneGap,  407
in PhoneGap applications' codebase,  390
media queries,  97

browser support for, in jQuery Mobile,  107
disadvantages and limitations of,  141
use in RWS for dynamic image substitu-

tion,  139
predefined file for JQuery library,  106
rendering capabilities to compress markup and

decrease data traffic,  159
skinning a site differently for platforms using ad

hoc CSS files,  161
style for mobile device-detection site,  100

	 Developer Enterprise Program license

	 Index   423

styling for <details> element in HTML5,  124
styling screen in PhoneGap HTML5

application,  400
using in Responsive Web Design,  60
using to implement One Web,  60
using to write client-side web applications,  214
using with HTML5,  123

D
Dalvik virtual machine,  272
data access layer,  52
data access practices, defining for mobile web

API,  54
data-ajax attribute, using with links,  119
data-* attributes in HTML5,  109
databases

local databases for mobile applications,  177
NoSQL,  178
storing relational data in Microsoft SQL Server

database from Windows Phone,  370
synchronizing remote and local databases,  177

data binding
in Android,  306
list box in Windows Phone application,  362–365
using XAML infrastructure in MVVM

pattern,  349, 352
data context of a view, resetting to refresh UI in

Windows Phone,  366
DataContext property, XAML elements,  353
data entry

considerations in mobile data entry,  182
new input types in HTML5,  126
redesign for mobile sites,  82

data-fullsrc attribute, elements,  140
<datalist> element in HTML5,  129
data-native-menu attribute,  121
data-rel attribute,  119
data-role attribute,  109
data storage

local storage in HTML5,  397
permanent, in Android,  308
permanent, in Windows Phone,  366–370
tools for,  177

data-transition attribute,  119
data types, conversion with XAML converters,  363
data URI scheme,  73
date pickers,  120

dates
on smartphones,  82
treatment by different mobile browsers,  127

DDRs (device description repositories),  57, 94, 96.
See also WURFL

ASP.NET routing system based on,  163
ASP.NET view engine based on,  164
capabilities in multiserving, versus jQuery

Mobile,  167
and crowd sourcing,  143
most effective strategy for finding browser

capabilities,  142
RWD plus server side components (RESS),  168
use when targeting Android from mobile

site,  402
Deactivated event,  336
dealloc method,  223
debugging PhoneGap apps for mobile platforms,

difficulty of,  413
decoding (deserialization),  233
DefaultHttpClient class,  311

Execute method,  311
delivery models,  16–19

freemium model,  17
free/paid dilemma,  17
premium-with-free-sample model,  18
quid-pro-quo model,  18

deployment
hassle-free deployment of mobile site

updates,  34
iOS applications,  259–265
Windows Phone applications,  375–379

Deployment.Parts element,  331
design patterns

MVC (Model-View-Controller) pattern,  230, 348
MVP (Model-View-Presenter) pattern,  348
MVVM (Model-View-ViewModel) pattern,  349–

353
Presentation Model,  350

desktop emulators, using to test mobile sites,  88
desktop/mobile view switcher algorithm,  78
desktop websites

adding mobile support to,  80
from web to mobile, practical example,  47–49

<details> elements in HTML5,  124
using to implement collapsible panel,  124

detailTextLabel property,  242
DetectRight,  96
Developer Enterprise Program license,  264

developing for Android

424   Index

developing for Android,  267–322
Android jungle,  275–278

API levels,  276
different screen sizes,  277
firmware, carriers, and manufacturers,  275

choosing development strategy,  270–275
other options,  274
using Java and Android SDK,  271
using MonoDroid and C#,  272
using PhoneGap framework,  273

defining user interface,  285–294
development tools and challenges,  268–270

becoming an Android developer,  268
configuring the environment,  269
picking up your favorite IDE,  269

distributing the application,  320
examining sample application,  294–308
other programming topics,  308–318

accessing the network,  309
broadcasters,  312–315
common tasks,  315–319
permanent data storage,  308
placing HTTP calls,  310

programming with Android SDK,  278–321
anatomy of an application,  278–285

testing the application,  318–320
enabling devices,  319
selecting test device,  320

developing for iOS,  207–266
becoming an official developer,  210
choosing development strategy,  212–215

other options,  214
using MonoTouch and C#,  213
using Objective-C,  212
using PhoneGap framework,  214

deploying iOS applications,  259–265
preparing for

getting a Mac computer,  208
getting familiar with the IDE,  209
joining developer program,  209

programming with MonoTouch,  246–258
programming with Objective-C,  215–246

HelloWorld program (example),  224–230
other programming topics,  243–246
quick look at Objective-C,  215–224

developing for Windows Phone,  323–380
choosing development strategy,  326–329

HTML-based applications,  327
Silverlight-based applications,  326

the way ahead,  328
XNA applications,  327

deploying applications,  375–379
testing the application,  375–378

distributing applications,  378–380
getting ready for development,  324–329, 325

becoming Windows Phone developer,  324
development tools and challenges,  324
Visual Studio environment,  324

programming with Silverlight,  329–375
anatomy of an application,  329–337
application frame,  335
application life cycle,  335
application startup,  333
defining user interface,  337–348
examining sample application,  353–366
manifest file,  331–337
MVVM pattern,  348–353
permanent data storage,  366–370

developing with PhoneGap,  388–416
building HTML5 solution,  392–405

Guess application (example),  398–405
JavaScript ad hoc patterns,  392–398

handmade hybrid applications,  390–392
HTML-and CSS-based UI with JavaScript

controlling behavior,  389
integrating with PhoneGap,  405–414

building a PhoneGap project,  406–411
final considerations,  412–414
supported platforms,  405

writing plug-ins for PhoneGap,  389
development aspects of mobile sites,  76

design of mobile views,  82–88
free text and auto-completion,  87
input elements,  82–84
radio buttons and check boxes,  84
scrollable and drop-down lists,  85

reaching the site,  76–81
adding mobile support to existing site,  80
one site, one experience,  76
routing users to right site,  77–80
two sites, one experience,  77

testing the site,  88
development certificate for iOS,  259

distribution certificate versus,  261
development issues, mobile-specific,  51–61

server-side device detection,  57–62
toward a mobile application layer,  51–57

	 dynamic layouts, creation in Responsive Web Design

	 Index   425

development of mobile applications,  10
addressing device fragmentation problem,  11
costs, in-house versus outsourcing,  10
looking for best practices,  12
marketplace tax,  12
targeting multiple platforms,  10

development provisioning profile, getting,  261
DeviceAtlas,  96
DeviceController on mobile site,  102
device description repositories. See DDRs
device detection

developer's perspective of,  138–144
client-side route,  138–142

server-side,  57–62
just one web,  59
multiserving,  58
rationale behind,  57

device-detector site, building,  90–104
detecting device capabilities,  93–98

browser capabilities,  98
DDR options,  96
using ASP.NET native detection engine,  93
using CSS media queries,  97
using MDBF repository of mobile profiles,  95
writing wrapper for IsMobileDevice prop-

erty,  95
layout of mobile version,  91
putting the site up,  98

adjusting HTML view,  101–104
adjusting layout,  99
adjusting style,  100

routing to mobile views,  91–93
<device> elements, WURFL XML data file,  144
device fragmentation issue,  11

leading to varied browser capabilities,  35
mobile sites and,  34

device (manufacturer and product name), finding in
WURFL,  149

DeviceNetworkInformation class, Windows Phone
7.5,  204

Device object,  156
GetCapability method,  157

device/OS emulators,  88
device profiles,  58, 93

creating,  160
rules for device profile,  161

DDR-based ASP.NET routing system,  163
DDR-based ASP.NET view engine,  164
RWD plus server side components (RESS),  168
smartphone profile,  161

device segmentation, managing in device
profiles,  160

device-testing services,  90
dialog boxes

closing programmatically with JavaScript
code,  120

creating with jQuery Mobile,  119
displaying for winner of Android Guess

app,  302–304
excerpt from the YouWonDialog custom

class,  303
IDialogListener object,  303

pop-up dialog box displaying summary of game
in Windows Phone,  360

DialogManager class,  361
didFinishLaunchingWithOptions message,  232
distributing applications

Android application,  320
iOS application,  263–266

App Store,  263
in-house deployment,  264

Windows Phone applications,  378–380
distribution certificates,  261
distribution provisioning profile,  261

creating ad hoc provisioning profile,  262
valid for the App Store,  264

<div> element with particular data-role attribute,
treated as plain page,  399

Do-As-Romans-Do pattern,  195–196
implementation of,  195

doctype, HTML5-compatible, on jQuery Mobile
pages,  110

domain layer,  52
reuse for mobile site,  53

domain model in domain layer,  52
DOM (Document Object Model),  68

browsers' support of,  107
dormant applications in Windows Phone,  336
dots-per-inch (DPI) issues,  160
downloads of data, reducing amount of,  74
dp unit for distances,  277
drill-down capabilities in HTML5,  124
drop-down lists

choice between native interface of browser or
jQuery Mobile UI,  121

on mobile sites,  86
using with forms in jQuery Mobile,  120

dynamic layouts, creation in Responsive Web
Design,  60

EasyCourt website (example), conversion to mobile site

426   Index

E
EasyCourt website (example), conversion to mobile

site,  47–49
Eclipse IDE,  269

downloading and installing,  269
testing and debugging features,  318
using for PhoneGap Android project,  408

email dialog box, displaying in iOS,  244
email type, <input> elements,  126
emulators

Android,  318
testing HTL5 markup,  401
using to test mobile site,  88

encoding/decoding,  233
encryption, using for critical data,  191
endpoints, mobile-specific, identifying,  53

collection of endpoints for mobile view
callbacks,  53

enterprise-class features, BlackBerry,  20
entry point into Android applications,  281
event handlers, adding via actions in iOS,  237
events

handling actions as, in MonoTouch,  251
handling on UI widgets in Android,  284

Evernote, freemium delivery model,  17
exception handling in Objective-C,  221
executable expressions in ASP.NET MVC Razor

syntax,  99
explicit app IDs for iOS applications,  261
Expression Blend,  324

defining UI of Windows Phone applications,  341
Ext.Application object,  390
Extensible Application Markup Language. See XAML
external resources, benefits for mobile sites,  74
Ext.Panel object,  390

F
Facebook,  16

Android application, Logon-and-Forget
pattern,  190

Factor Master for Windows Phone, horizontal
scrolling in,  198

fall_back attribute, <device> elements,  145
fallback in case of older browsers,  167
feeds, AtomPub or JSON,  55
51Degrees,  96
<figure> elements in HTML5,  124
file formats for video,  133

file:// protocol pages, placing Ajax calls from,  405
filter bar, jQuery Mobile,  87
Financial Times,  33

iOS application,  18
findViewById method,  284
Firefox 10, WURFL patch file adding support for,  147
firmware

Android,  275
modifications of,  276

in mobile context,  276
Firtman, Maximiliano,  136
Flash Builder,  385–387

compiling applications for BlackBerry,  275
PhoneGap versus,  390
using for iOS and Android development,  274

Flash, device capabilities in WURFL,  151
Flashlite, device capabilities in WURFL,  151
fluid layout for mobile pages, creating with jQuery

Mobile,  116
folders

in Java projects,  278
naming in Android,  279

 elements, no longer supported in
HTML5,  126

fonts, resizing with RWD,  139
<footer> elements in HTML5,  123
footers

creating in HTML5,  123
creating with jQuery Mobile,  112

foreground applications,  200
<form> elements, nonvalidate attribute,  128
forms

Back-and-Save pattern applied to input,  180
creating in jQuery Mobile,  120
using Guess-Don't-Ask pattern for input,  183
web forms and data entry in HTML5,  126–130

new input types,  126–128
predefined entries,  129
validation of input,  128

FPR. See Full Page Refresh model
<frame> elements, no longer supported in

HTML5,  126
frameworks

for cross-platform mobile development,  39
mixed applications written with,  38

freemium model,  17
free/paid dilemma,  17
Full Page Refresh (FPR) model,  66

deciding whether to use,  67
functions listed on home page of full site

(example),  48

	 home page for a logged-on user in full site, functions offered by (example)

	 Index   427

G
Game activity in Android app,  298

menu with options,  300
games

omission from native application category,  27
XNA framework for,  327

garbage collection, Objective-C and,  212
garbage collector for applications,  176
Gartner’s Magic Quadrant

for 2010,  20
MEAP and,  22

General Packet Radio Service (GPRS),  371
geolocation

browser support of,  153
functionality in HTML5,  132
Geolocation API, w3c specification,  133

GetDeviceForRequest method,  156
getIntExtra and getStringExtra methods,  299
GET method (HTTP), calling in Android,  310
getter/setter method, properties in

Objective-C,  218, 233
getView method, adapter object in Android,  306
Global.asax file, adding WURFL support to,  154
global object containing all functions and object

declarations in JavaScript programs,  393
Google

Android operating system. See Android
appstores for mobile devices,  12

Google Analytics for Mobile,  200
Google Chrome

DETAILS element in,  124
validation of input,  129

Google Maps object, passing latitude and longitude
to,  132

Google Play,  321
distributing Android applications through,  268

GPRS (General Packet Radio Service),  371
GPS (global positioning satellite) services, access to,

native applications vs. mobile sites,  27
gradients

CSS gradient capability,  153
rendered as CSS instructions instead of using

background images,  159
graphical shapes in Android applications,  289
graphics processing unit (GPU),  175
Grayscale implementation, As-Soon-As-Possible

pattern,  203
grocery list application with voice-based input

(Android),  183

groups of browser and device capabilities in
WURFL,  145

Guess application (example),  231–243
app-delegate object,  231
building in Android,  294–308
creating with Silverlight for Windows

Phone,  353–366
Guess web application packaged as native

Android app,  410
Home view,  234
PhoneGap Guess for iOS,  408
PhoneGap Guess for Windows Phone,  411
PhoneGap HTML5 solution,  398–405
Player class,  232
Play view,  235–239
Scores view,  239–243

Guess-Don't-Ask pattern,  182–185
implementation of,  183
remembering if you can't guess,  185

GUIs (graphical user interfaces),  195
GZIP compression for script and other resources,  65

H
hardware

mobile sites not having access to capabilities
of,  34

native applications' integration with,  37
HCI (Human Computer Interaction) research,  63
<header> elements in HTML5,  123
headers and footers

creating footer with jQuery Mobile,  112
creating header with jQuery Mobile,  111
custom header template in jQuery Mobile,  113
markup in HTML5,  122

“Hello, World” program
in Android,  282
creating in Xcode,  224–230

hidden optional content in HTML5,  124
hiding rather than disabling controls not being

used,  186
highlighting in HTML5,  126
hints, displaying in text boxes,  128
history, management in PhoneGap applications,  412
History page using local caching (example),  56
Hn element, caption for dialog box,  120
home page for a logged-on user in full site,

functions offered by (example),  48

Home view

428   Index

Home view
Android Guess application (example),  295
Guess application (example) in Windows

Phone,  354
horizontal scrolling in mobile applications,  175, 198
HTML

applications based on, in Windows Phone
development,  327

dealing with, in older browsers,  71
in handmade hybrid PhoneGap

applications,  391
HTML/viewport markup,  151
mixed user interface with native and HTML

views,  386
native applications with UI based entirely on

HTML,  387
static HTML pages,  214
tiny HTML page for mobile sites, myth of,  45

HTML5,  10, 105, 121–136
browser local storage,  75
browsers and,  135
building HTML5 solution with PhoneGap,  392–

405
JavaScript application behavior,  398
JavaScript application state,  396–398
JavaScript localization layer,  395
JavaScript presentation layer,  392–394
sample application,  398–405

central role in mobile development,  122
data-* attributes versus microformats,  109
as development framework with CSS and

JavaScript,  135
doctype compatible with, on jQuery Mobile

pages,  110
fast facts about,  121
HTML5-powered mobile sites,  18
hype in,  134
input fields introduced in,  120
local storage,  56
mobile browsers' support for,  136
mobile site solution based on,  33
offline sites with,  75
programmer-friendly features,  130–134

audio and video,  133
geolocation,  132
local storage,  130
offline applications,  131

semantic markup,  122–136
adjusting pages for older browsers,  125

elements removed in HTML5,  126
headers and footers,  122
native collapsible element,  124
new elements,  124

using for PhoneGap user interface,  273
using to write client-side web applications,  214
web forms and data entry,  126–130

new input types,  126–128
predefined entries,  129
validation,  128

WURFL, HTML5-related capabilities,  152
HTML view, adjusting for mobile device-detector

site,  101–104
HTTP

placing HTTP calls from Windows Phone,  372–
374

placing HTTP calls in Android,  310
requests

increasing with extensive use of AJAX,  67
minimizing number to websites,  71
reducing number for better site perfor-

mance,  72
HttpContext.Request,  156
HttpContext.Request.Browser.IsMobileDevice,  93
HttpDelete class,  311
HTTP endpoints connecting website to

middleware,  53
HttpGet class,  311
HttpPost class,  311
HttpRequestBase object,  156
HttpRequest object,  156
HttpWebRequest class,  372
Human-Computer Interaction (HCI) research,  63
hybrid native applications, PhoneGap and,  414

I
iCloud platform,  177
icons

adding to list elements in jQuery Mobile,  114
creating for Windows Phone app UI,  337
Windows Phone application,  330

id attribute, ListView object in Android,  304
identifiers in Android,  284
IDEs (integrated development environments)

downloading and installing Eclipse,  269
Eclipse-based IDE in Titanium Mobile,  384
Eclipse or IntelliJ IDEA for Android

development,  269

	 interruptible nature of mobile devices

	 Index   429

getting familiar with Xcode IDE,  209
IntelliJ IDEA,  270
MonoDevelop IDE,  248, 272
Titanium,  384

IDevice WURFL type,  162
IDialogListener object,  303
IIS (Internet Information Services) 7.5, integrated

pipeline mode,  81
images

dynamic substitution of images in RWD,  139
employing tricks to download smaller ones,  141
inlining,  73

browser support for,  150
resizing,  159
splash screen image preceding video

playback,  134
 element

custom data-fullsrc attribute used to reference
full-size image,  140

src attribute,  73
implementing classes in Objective-C,  218
index.cshtml view,  155
index.mobile.cshtml view,  155, 168
Index view in mobile device-detection site,  102
industry sectors, mobility and,  6
in-house deployment of iOS applications,  264
in-house development,  10
InitializeComponent method,  334
InitializePhoneApplication method,  334
inlining images,  73, 150
InMemoryConfigurer,  156
INotifyPropertyChanged interface,  353
input

Back-and-Save pattern applied to form
input,  180

challenge to developers from HTML5 input
fields,  129

predefined entries in HTML5 forms,  129
using Guess-Don't-Ask pattern for form

input,  183
validation in HTML5,  128

<input> element, type attribute,  82
new values in HTML5,  126–128

input elements on mobile sites,  82–84
input forms, creating with jQuery Mobile,  120
InputScope property, Windows Phone,  356
inputType attribute,  297

Inspector editor pane,  236
Sent Events area,  237

instance methods in Objective-C,  213, 217
integrated development environments. See IDEs
integration with hardware and software services

full integration of native applications,  37
native applications vs. mobile sites,  27

IntelliJ IDEA,  269, 270
Community Edition,  278
sample Android project in,  279
testing and debugging features,  318
using for PhoneGap Android project,  408
wizard to sign Android executable,  321

Intent class, putExtra method,  316
intent filter in Android applications,  281
interaction model for mobile applications,  174

interaction between users and system in mobile
site,  46

patterns for interaction,  179
A-la-Carte-Menu pattern,  185
Back-and-Save pattern,  179–182
Guess-Don't-Ask pattern,  182–185
Logon-and-Forget pattern,  189–191
Sink-or-Async pattern,  186–189

Interface Builder,  234
creating UI components in,  239
defining views in iOS,  235–239

interfaces
for classes in Objective-C,  220
in Java and C#,  220

Interface Segregation principle, applied to mobile
pages,  58

internationalization
features of internationalized applications,  193
versus localization,  192

International Telecommunication Union (ITU),
statistics on mobile devices,  14

Internet
programmatic acces to in Android,  309
use of, for mobile projects in PhoneGap,  404

Internet Explorer
detecting browser language,  395
and support for image inlining,  74
User Agent Switcher tool in IE9,  89

Internet Information Services (IIS) 7.5, integrated
pipeline mode,  81

interpreted environments,  384
interruptible nature of mobile devices,  175

iOS

430   Index

iOS
background services,  335
building lists,  197
building PhoneGap application for,  407
developing applications with PhoneGap,  413
developing for,  207–266

choosing development strategy,  212–215
deploying iOS applications,  259–265
equipment and programming languages,  39
getting ready for development,  208–210
iPhone vs. iPod Touch vs. iPad,  211
programming with MonoTouch,  246–258
programming with Objective-C,  215–246

distinguishing from Android and Windows
Phone in WURFL,  149

IsMobileDevice property, using on devices,  95
Keychain repository,  191
PhoneGap applications on,  388
referencing localized text strings,  193
SCNetworkReachabilityRef interface,  204
Settings bundle facility,  177
sharing persistent data between

applications,  177
system requirements for development,  xvii
tappable region and input elements,  84

iOS Provisioning Portal
connecting to and registering development

device,  260
creating ad hoc distribution provisioning

profile,  262
creating provisioning profile manually,  261

iOS simulator, testing applications with,  259
iPad,  10, 211
iPhone,  3, 10, 211

date picker element,  82
effect of typing in tel input field,  126
first release, beginning modern era of mobile

technology,  25
going mobile with iPhone application,  32
percentage of smartphone users using,  15
Postino application,  180

iPod Touch,  211
IsApplicationInstancePreserved property,  337
IsInternetAvailable method,  312
IsMobileDevice property,  93

writing wrapper for,  95
IsolatedStorageSettings class,  366
isolated storage, using to store credentials,  191
Italy, penetration of mobile devices,  14

J
jailbreaking,  38
Java

versus C# for Android development,  273
interfaces,  220
language of Android development,  268
naming convention for applications,  280
package name for Android applications,  279
PhoneGap JAR file, linking to Android

project,  408
Spring Mobile,  143
typical project, dissecting,  278
using with Android SDK,  271
virtual machine,  383

Java Development Kit (JDK), installing,  269
Java Micro Edition (Java ME),  271
Java Platform Micro Edition (Java ME) framework,  95
Java Runtime Engine (JRE),  269
JavaScript

ad hoc patterns in PhoneGap HTML5
solution,  392–398
application behavior,  398
application state,  396–398
localization layer,  395
presentation layer,  392–394

amount to use for pages of mobile site,  67
browsers' support for,  107
checking browser capabilities,  98
code and libraries for SPI model,  65
frameworks used with PhoneGap,  389
goal of unobtrusive JavaScript,  68
libraries' tendency to offer an iOS-oriented user

interface natively,  413
linking file to PhoneGap Android project,  408
microframeworks,  68
PhoneGap framework,  30
PhoneGap library,  273
Titanium Mobile API,  384
using to write client-side web applications,  214
using with Titanium Mobile framework for native

applications,  214
WURFL, capabilities related to JavaScript support

in device browsers,  151
JavaScript Object Notation. See JSON
JDK (Java Development Kit), installing,  269
JIT (Just-in-Time) compilation,  247

	 Lib folder

	 Index   431

jQuery,  65
benefits of using,  106
family of libraries,  68
media query plug-in,  98
placing JSONP call with,  404
why jQuery-like approach to mobile isn't always

effective,  142
jQuery Mobile,  65, 68, 105–121, 142

building mobile pages with,  109–117
collapsible panels,  116
default page template,  112
definition of a page,  110
fluid layout,  116
headers and footers,  111
lists,  113

capabilities of,  167
changes to HTML pages readying for

PhoneGap,  406
controlling navigation in PhoneGap HTML5

solution,  399
data-* attributes,  109
dealing with mobile browsers,  60
excellent polyfills for HTML5 features,  125
fast facts about,  106
filter bar,  87
graded support matrix for browsers,  107
levels of browser support in,  61
main purpose of,  106
markup for input elements,  84
scaling down rich markup on older browsers,  71
setup of the library,  106
themes and styles,  108
transformations,  400
working with pages,  117–121

dialog boxes,  119
input forms,  120
page links and transitions,  117

jQuery UI auto-complete plug-in,  87
JRE (Java Runtime Engine),  269
JSON (JavaScript Object Notation)

exposing data as,  54
returning data as, instead of XML strings,  74
saving data for local storage in HTML5

application,  397
JSON.stringify utility,  397
JSON with Padding (JSONP),  403
JsRender library,  65
JsViews library,  65
Just-in-Time (JIT) compilation,  247

K
keyboards

checking effect on UI in Windows Phone,  357
choosing layout to speed data entry,  184
considerations in mobile development,  46, 174
numeric-only keyboard in Android,  294
picking most convenient layout for Windows

Phone Guess app,  356
Keynote Device Anywhere,  90
Knockout library,  65

L
languages

detecting browser language using
JavaScript,  395

indicating supported languages in Windows
Phone app,  347

setting neutral language of Windows Phone
app,  331

latitude and longitude, getting and passing to
Google Maps object,  132

LAUNCHER category, support by Android entry
point,  281

launchers, Windows Phone,  374
Launching application event,  336
layered applications,  51–57

typical layered architecture of modern web
applications,  52

layout
adjusting for mobile device-detection site,  99
defining custom layout in Windows Phone

app,  339–348
defining in Android user interface,  285
dynamic layouts, creation in Responsive Web

Design,  60
fluid layout for mobile pages with jQuery

Mobile,  116
layout files in Android,  284
pivot and panorama layouts in Windows Phone

apps,  338
use of liquid layouts encouraged by RWD,  139
XML schema used by Android layouts,  287

layout_marginLeft and layout_toRightOf,  297
Leaders quadrant (Gartner's Magic Quadrant),  22
Lib folder,  278

libraries

432   Index

libraries
capabilities of, in mobile site development,  106
JQuery family of,  68
for SPI model,  65

life cycle of applications,  176
diagram for Windows Phone application,  336
Windows Phone application in Silverlight,  335

Likness, Jeremy,  188
LinearLayout,  287
links

direct links for mobile sites,  47
page links in jQuery Mobile,  117

LINQ syntax, using to sort list of objects,  365
LINQ to SQL, using in Windows Phone 7.5,  370
liquid layouts,  139
ListActivity class,  304
List-and-Scroll pattern,  196–199

formulating,  197
horizontal scrolling,  198
implementation of,  197

list boxes, Scores view in Windows Phone Guess app
(example),  362–365

ListBox object,  362
listeners, event listeners in Android UI widgets,  284
lists

building in mobile application, automation
of,  197

creating for mobile pages with jQuery
Mobile,  113

populating in Android Guess game
(example),  306

sample list activity displaying scroes in Android
game,  305

scrollable and drop-down lists on mobile
sites,  85

ListView object, Android Guess game
(example),  304–308

listview role,  114
local caching for mobile browsers,  35
local databases for mobile applications,  177
localization,  191

internationalization versus,  192
JavaScript layer in PhoneGap HTML5

solution,  395
localizing text of Android application,  293
text localization in Windows Phone,  346–349

local output caching,  56
local storage

in HTML5,  56, 130
native applications versus mobile sites,  28

persisting application data,  75
Web Data Storage specification,  131

localStorage object,  397
localStorage property, window objects,  130
location-aware prompts,  47
logical page, differences in device-specific versions

of same page,  159
logic and markup, testing in PhoneGap HTML5

application,  401
Logon-and-Forget pattern

formulating,  189
implementation of,  190
security considerations,  191

logout function in a mobile site,  48, 49
Lunny, Andrew,  405

M
Mac computers

getting for iOS development,  208
Titanium Studio IDE running on a Mac,  384

Mac OS X,  208
Cocoa API,  209

Magic Quadrant methodology,  22
MAIN action, support by Android entry point,  281
makeKeyAndVisible message,  227
manifest files

for Android applications,  279–281
example of,  280
Guess application (example),  295

for browser caching,  131
linked from <html> tag of home page in

HTML5,  75
for Windows Phone applications,  331–337

example of typical file,  332
manufacturers, Android and,  275
map/reduce operations, NoSQL queries expressed

as,  177
Marcotte, Ethan,  139
<mark> element in HTML5,  126
Marketplace Beta,  376
marketplace tax on mobile application

development,  12
markup

fine-tuning markup served to browser,  150
and logic, testing in PhoneGap HTML5

application,  401
WURFL, the preferred_markup capability,  151

markup languages, types in use for mobile web,  151

	 mobile strategy, defining

	 Index   433

Master/Detail project template,  229
matching visual components to object

references,  235
MDBF (Mobile Device Browser File),  95, 102, 153
MEAPs (mobile enterprise application platforms),  21

versus stand-alone applications,  21
media queries (CSS),  97, 100

disadvantages and limitations of,  141
dynamic substitution of images in RWD based

on media queries,  139
use in Responsive Web Design,  60
using to implement One Web,  60

Meego,  10
Memento-Mori pattern,  200–202

formulating,  201
implementation of,  202

memory consumption by mobile applications,  175
memory management in Objective-C,  212, 222–224
menus

adding Options menu to Android app,  290–293
A-la-Carte-Menu pattern,  185
application bar in Windows Phone pages,  345
context-sensitive menus displayed in Android

Guess game,  300
messages

displaying alerts during Android app
activities,  301

sending to objects in Objective-C,  219
<meta> tag, viewport,  100
methods

adding to an existing class,  221
declarations in Objective-C,  217
defining body of in Objective-C,  218
invoking in Objective-C,  213

Metro interface,  329
MFMailComposeViewController class,  244
MFMessageComposeViewController,  245
microformats versus HTML5 data-* attributes,  109
microframeworks (JavaScript),  68
Microsoft, developer program for Windows

Phone,  324
Microsoft Expression Blend,  324
Microsoft .NET Framework 4.5, new ASP.NET web

API,  54
Microsoft’s Patterns-and-Practices group, Project

Liike,  59
Microsoft SQL Server Compact Edition (SQL CE),  177

storing Windows Phone data in,  370
middleware for mobile clients,  20
MIDP (Mobile Information Device Profile),  95

MIME types,  151
minification and compression of resources,  74

scripts and GZIP compression,  65
mobile applications

HTML5 capabilities for,  135
real challenge for,  326

mobile architecture,  43–62
focusing on mobile use-cases,  44–51

analysis first,  46–51
stereotypes and myths,  44–46

mobile-specific development issues,  51–61
server-side device detection,  57–62
toward a mobile application layer,  51–57

MobileAware,  96
mobile, definition of term,  xiii
mobile development

era of primary focus of development,  xiii
insight into,  xv
main goals of,  142
patterns of. See patterns of mobile application

development
role of HTML5 in,  135

Mobile Device Browser File (MDBF),  95, 153
mobile devices, statistics on numbers and users

of,  14
mobile enterprise application platforms. See MEAPs
mobile generic emulators,  77
Mobile HTML5 website,  400
“mobile mindset” for developers,  xv
mobile NoSQL solutions,  177
mobile platforms. See platforms for mobile

applications
mobile profiles, MDBF (Mobile Device Browser File)

repository,  95
mobile solutions

axioms about mobile applications,  5
defining a mobile strategy,  4, 7
meaning of "going mobile",  4
mobility and the industry,  6
multiple channels,  5
new ways to provide services,  5
simplifying customers' lives,  6
types of,  xiv

mobile-specific development issues.
See development issues, mobile-specific

mobile strategy, defining,  4, 7
B2B strategy,  19–23
B2C and B2B,  9
B2C strategy,  13–19
deciding what to achieve,  7

mobile strategy, defining

434   Index

mobile strategy, defining,  continued
development and costs,  10–13
and dilemma over native applications or mobile

sites,  31
offering rich applications,  8
reaching out to users,  8

mobile websites (m-sites),  10
building,  63–104

adapting existing site to mobile,  64
amount of JavaScript to use for pages,  67
application device profiles,  69
application structure,  64
compacting resources,  73
dealing with older browsers,  71
deciding whether to use SPI, FPR, or PPR,  67
design of mobile views,  82–88
development aspects,  76
device-detector site,  90–104
Full Page Refresh (FPR) model,  66
improving control over browser cache,  74
offline scenario,  75
optimizing payload,  71
page structure,  72
Partial Page Refresh (PPR) model,  66
reaching the mobile site,  76–81
reducing number of HTTP requests,  72
Single-Page Interface (SPI) model,  64

building pages with jQuery Mobile,  109–117
developing responsive sites,  137–170

developer's perspective of device detec-
tion,  138–144

implementing multiserving approach,  158–
168

major issue of site development,  137
WURFL,  144–158

development of, best practices,  12
similarities and differences from websites,  43
versus native applications,  25–40

applications as natural targets for native ap-
plications,  40

bad aspects of mobile sites,  34
bad aspects of native applications,  38
false dilemma but true differences,  26
focusing on right question,  26
good aspects of mobile sites,  33
good aspects of native applications,  37
main traits of mobile sites,  28–30
main traits of native applications,  27
offline or online availability,  31
reasons for perceived dilemma,  31–33

Model-View-Controller pattern. See MVC pattern
Model-View-Presenter (MVP) pattern,  348
Model-View-ViewModel pattern. See MVVM pattern
MODE_PRIVATE visibility for file,  309
Modernizr library,  30, 125
MODE_WORLD_READABLE visibility for file,  309
MODE_WORLD_WRITEABLE visibility for file,  309
Mono Class Library (MCL),  247
MonoDevelop IDE,  248, 272
MonoDroid framework,  213, 251

using with C# for Android development,  272
Mono framework,  246

making .NET Framework available on alternate
platforms,  247

MonoTouch framework
less value in using for Android,  273
programming with,  246–258

analysis of simple project,  248
from Mono to MonoTouch,  247
pillars of MonoTouch applications,  248
reusing existing .NET code,  251

using with C# in iOS development,  213
Mono virtual machine,  272
MP4 codec,  134
multiplatform applications,  5

targeting multiple platforms,  10
multiserving,  11, 58

implementing multiserving approach,  158–168
creating device profiles,  160
device profiles in action,  161–169
key aspects of mobile views,  159

One Web versus,  59
multitasking on mobile devices,  176

support in Windows Phone 7.5,  335
MVC (Model-View-Controller) pattern,  230, 348
MVP (Model-View-Presenter) pattern,  348
MVVM (Model-View-ViewModel) pattern,  330,

349–353
design of view-model class,  350–352

mXML,  274, 385

N
named parameters for methods,  219
namespaces

JavaScript global variables and global system
namespace,  393

and naming conventions in Objective-C,  218
naming conventions in Objective-C,  218

	 object messaging in Objective-C

	 Index   435

native applications
development of, finding best practices,  12
development patterns,  179
mobile sites versus,  25–40

applications as natural targets for native ap-
plications,  40

bad aspects of mobile sites,  34
bad aspects of native applications,  38
false dilemma but true differences,  26
good aspects of mobile sites,  33
good aspects of native app;ications,  37
main traits of mobile sites,  28–30
main traits of native applications,  27
offline or online availability,  31
reasons for perceived dilemma,  31–33

transforming client-side web applications
to,  214

web-based API, necessity for,  53
natural user interfaces (NUIs),  195
Navigated event,  335
navigation

and Back button support in PhoneGap
applications,  412

and controllers in iOS,  245
navigation service in Windows Phone,  356
PhoneGap HTML5 sample application,  398
problems with PhoneGap applications,  391
web-based, for mobile sites,  36

navigation bars
creating in HTML5,  123
creating in jQuery Mobile,  114
<nav> element in HTML5,  124

navigation controller,  232
nested lists, creating with jQuery Mobile,  114
.NET Framework

API for WURFL,  153
on iOS,  247–251

from Mono to MonoTouch,  247
reusing existing .NET code,  251

Silverlight spin-off,  325
using subset to target Android devices,  272
Windows Phone development and,  323

NetBiscuits,  96
network changes, detecting,  203
network-dependent operations, design and

implementation for mobile applications,  178
NetworkInfo object,  310
networking operations, Windows Phone,  372
NetworkInterface class, Windows Phone,  204
network latency, mobile sites and,  35

networks
accessing in Android,  309
accessing in Windows Phone,  371

NetworkStateReceiver class, onReceive method,  313
neutral language, setting for Windows Phone

app,  331
New York Times, premium-with-free-sample

model,  18
nil values,  219

setting released object to nil,  223
Nokia 7110,  70
nonvalidate attribute, <form> elements,  128
NoSQL, defined,  178
NoSQL solutions, mobile,  177
NSCoding protocol,  232
NSException class, creating exception types

from,  222
NSLocalizedString,  193
NSObject class,  232

alloc and init methods,  219
NuGet package, adding WURFL to ASP.NET

project,  153
NUIs (natural user interfaces),  195
numbered lists, creating with jQuery Mobile,  114
numeric-only keyboard in Android,  294

O
Objective-C,  212

programming with,  215–246
categories,  221
defining a class,  216
examining sample application,  231–243
exception handling,  221
formal parameters and parameter names,  219
HelloWorld program,  224–230
implementing a class,  218
memory management,  222–224
namespaces and naming conventions,  218
object messaging,  219
other programming topics,  243–246
protocols,  220
quick look at the language,  215

reason it became development language for
iOS,  272

using for iOS development,  212
Object Linking and Embedding Data Base (OLE

DB),  55
object messaging in Objective-C,  219

object references, matching visual components to

436   Index

object references, matching visual components
to,  235, 239

Object/Relational Mapper (O/RM),  370
object serialization,  202

class serialization in iOS,  233
OData protocol,  54, 55, 76
OData services,  55
ODBC (Open Database Connectivity),  55
offline applications,  131
offline availability

mobile sites
persisting application data,  75
using HTML5,  75

native applications versus mobile sites,  31
OGG/Theora codec,  134
OLE DB (Object Linking and Embedding Data

Base),  55
OnBackKeyPress event,  355
onCreate method, Activity class,  282
onCreateOptionsMenu method, Activity class,  291
One Web,  59

implementing using CSS styles and media
queries,  60

OnNavigatedFrom event,  336
OnNavigatedTo event,  336, 362
onPrepareOptionsMenu method, Activity class,  291
onReceive method

broadcast receivers in Android,  312
NetworkStateReceiver class,  313

onResume method,  313
onSaveInstanceState method, activity class in

Android,  287
OpenID or OAuth authentication protocols,  190
Opera

DATALIST element in action,  130
VIDEO element in action,  134

Opera Mobile Emulator,  77, 89
operating systems

abiding by look-and-feel and capabilities of host
system,  195

and firmware in mobile context,  276
foreground, background, and paused

applications,  200
Mac OS X and iOS,  208
versus middleware for mobile clients,  20
mobile devices, mobile applications for,  173
multitasking on mobile devices,  176
smartphones,  70
support for mobile applications in multiple

languages,  193

optimization, CSS
optimizing content rendered,  159
use in Responsive Web Design,  60

Options menu, adding to Android app,  290–293
orientation

change of, switching Android layout for,  287
setting for Android layout,  287

outlets, creating in iOS,  236, 239, 251
output, caching locally,  56
outsourcing development,  10

P
packagers for iOS and Android applications,  215
padding property, using in mobile style file,  101
pages

defining in jQuery Mobile,  110
structure for faster mobile sites,  72

page transitions, problems with PhoneGap
applications,  391

pagination,  197
in lists on mobile sites,  87

panning text,  198
panorama layout,  338
paradigm shift in development,  xiii
Partial Page Refresh (PPR) model,  66

deciding whether to use,  67
Passani, Luca,  11, 143
passwords

Change-Password use-case, mobile site
implementation,  49

difficulty of using strong passwords on mobile
sites,  84

limitations on strong passwords on mobile
devices,  176

patch files, WURFL,  147, 156
website for more information and examples,  148

patterns of mobile application development,  173–
206

behavioral patterns,  199–204
As-Soon-As-Possible pattern,  202–205
Memento-Mori pattern,  200–202
Predictive Fetch pattern,  199

critical aspects of mobile software,  174–176
behavior of the application,  175
interaction model,  174
presentation model,  175
security concerns for mobile software,  176

	 premium-with-free-sample model

	 Index   437

interaction patterns,  179
A-la-Carte-Menu pattern,  185
Back-and-Save pattern,  179–182
Guess-Don't-Ask pattern,  182–185
Sink-or-Async pattern,  186–189

new patterns and practices,  176–179
application life cycle,  176
connectivity,  178
tools for data storage,  177

presentation patterns,  191–199
Babel-Tower pattern,  191–194
Do-As-Romans-Do pattern,  195–196
List-and-Scroll pattern,  196–199

pattern type attribute, <input> elements in
HTML5,  128

paused applications,  200, 201
payments for mobile site use,  36
performance

improving for mobile sites,  71
compacting resources,  73
control over browser cache,  74
page structure,  72
recommended practices,  72
reducing number of HTTP requests,  72

PhoneGap apps for mobile platforms,  413
permanent data storage

in Android,  308
in Windows Phone,  366–370

permissions
adding to Android manifest file,  281
and camera intent in Android,  316

persistence of data by mobile applications,  177
persisting application data locally,  75
personal identification numbers (PINs),  176

using instead of passwords on mobile sites,  84
PhoneApplicationFrame class,  335
PhoneApplicationPage class,  335
PhoneGap framework,  30

developing with,  388–416
building HTML5 solution,  392–405
handmade hybrid applications,  390–392
HTML-and CSS-based UI with JavaScript con-

trolling behavior,  389
integrating with PhoneGap,  405–414
writing plug-ins for PhoneGap,  389

using for Android development,  273
using for iOS development,  214
using in Windows Phone development,  327

phones. See also smartphones
device profiles for,  58

photographs, capturing and sending via email in
Android,  315–318

piecemeal release of applications,  15
pivot layout,  338

creating for Guess application in Windows
Phone,  354

defining in XAML custom UI,  340
pixels

and dots-per-inch (DPI) issues,  160
pixel density,  277

placeholder type attribute, <input> elements in
HTML5,  128

platforms for mobile applications
equipment for development of applications,  39
isolation by mobile operating system,  38
supported by PhoneGap,  406
targeting multiple platforms,  10

Platt, David,  182
playback of audio and video,  133
Player class,  232
Play view

in Android Guess application (example),  298–
304

Guess application (example) in iOS,  235–239
Guess application (example) in Windows

Phone,  357–362
PLIST files,  228
plug-ins, creating for PhoneGap,  389
Plugins.xml file, PhoneGap project in Android,  408
poster attribute, <video> element in HTML5,  134
Postino application,  19, 180

Back-and-Save pattern in,  181
for Windows Phone

number of stamps currently available,  200
remembering last entries on iPhone,  185
website for information on,  182

POST method (HTTP), calling in Android,  311
Post-Redirect-Get pattern, increase of HTTP requests

from,  73
PPR. See Partial Page Refresh model
Predictive Fetch pattern,  199

example of,  201
PreferenceActivity class (Android),  180
preferences API in Android,  309
prefixes, adding to class names in Objective-C,  218
premium-with-free-sample model,  18

presentation

438   Index

presentation
model for mobile applications,  175
patterns for,  191–199

Babel-Tower pattern,  191–194
Do-As-Romans-Do pattern,  195–196
List-and-Scroll pattern,  196–199

presentation layer,  52
JavaScript, in PhoneGap applications,  392–394
main cost of mobile development in,  381

Presentation Model,  350
presenter

in MVP pattern,  349
in MVVM pattern,  349

previews, pictures taken by Android camera,  316
private applications,  20
processing power in mobile devices,  175
processors used by Apple devices,  247
programmer-friendly features in HTML5,  130–134

audio and video,  133
geolocation,  132
local storage,  130
offline applications,  131

programming languages for mobile platforms,  10
Project Liike,  59
projects

building PhoneGap project for any given
platform,  406–411

creating Windows Phone project with PhoneGap
1.5,  411

necessity of creating platform-specific projects
in PhoneGap,  390

properties
defining in Objective-C with @property

directive,  216
getter/setter method for in Objective-C,  218,

233
reading value of in Objective-C,  220

protocols in Objective-C,  220
provisioning profiles

associated with iOS development device,  260
distribution provisioning profile,  261
getting,  261

publishing applications
Android application to Google Play,  321
iOS applications to Apple App Store,  264, 265

pushViewController message,  245
putExtra method, Intent class,  316

Q
QT,  10
quarter VGA (QVGA) screen,  14
queries, NoSQL,  177
query string parameters, using to identify tab in

Windows Phone app,  362
quid-pro-quo model,  18

R
radio buttons

in Android application,  297
on mobile sites,  84

Razor syntax, ASP.NET MVC,  99
reaching out to users,  8
readers, obtaining for stream content in

Android,  311
read-only memory (ROM),  275
redirects, avoiding for better site performance,  73
reference-counting in Objective-C,  222

ARC support in iOS 5,  224
references to UI widgets, getting in Android,  284
registerReceiver method,  313
RegisterRoutes method,  155
RegisterViewEngines method,  155
registration

iOS development device,  260
iOS test device,  210
Windows Phone testing device,  375

relational databases, NoSQL versus,  178
RelativeLayout container,  287, 296
“relativity of numbers”,  36
rel attribute, using with links,  119
release of applications, piecemeal,  15
releasing objects,  223
reloading, avoiding when user hits Back button,  74
“Remember you will die.” (Memento mori),  200
remembering last entries and preferences,  185
Representational State Transfer (REST) service

returning text,  194
Repubblica.it,  18
Request.Browser object,  143
Res folder,  278
resizing images,  159
resource editor in Visual Studio,  346
resource files, using,  193

	 segmented buttons

	 Index   439

resources
application resources in Android,  284
browser caching of, controlling in HTML5,  131
compacting,  73
creating global application resource in App.xaml

file,  347
exposing to XAML elements,  347
making static in XAML,  342
references to global resources for Windows

Phone app,  333
Responsive Web Design. See RWD
Responsive Web Design (Marcotte),  139
RESS (REsponsive design plus Server Side

components),  168
.resx (resource) file, adding in Windows Phone

app,  346
retain message in Objective-C,  223
RFC 2397 (data URI scheme),  73
rich applications,  8
R.id class (Android SDK),  284
RIM. See also BlackBerry

appstores for BlackBerry applications,  12
role played by an element in context of a page,  109
ROM (read-only memory),  275
root site/application, mobile site deployed as,  81
RootVisual property,  335
router HTTP module, adding to desktop site,  80
RWD (Responsive Web Design),  60, 138

benefits of,  138
disadvantages of,  140
plus server side components (RESS),  168
technical aspects of,  139
technical downsides of implementation,  141
website for further information,  140

S
Safari browsers

on iPhone, tel input field on,  127
placing Ajax calls from a file:// loaded page,  405

Same Origin Policy (SOP),  403
save-as-you-go approach,  180
Save Confirmation dialog box as problem with

current software,  182
saving data

Back-and-Save and AutoSave patterns,  179
ScientiaMobile,  96

WURFL project,  11
SCL CE (Microsoft SQL Server Compact Edition),  177

Scores view
Guess application (example) in iOS,  239–243
Guess application (example) in Windows

Phone,  362–366
in Android Guess application (example),  304–

308
screens

determining size for mobile devices,  11
different screen sizes in Android,  277
information about main screen in Windows

Phone app,  332
on mobile devices, limitations of,  45
PhoneGap HTML5 solution, sample

application,  398
styling,  400

quarter VGA (QVGA) screen,  14
size information in WURFL,  149

<script> elements, not subject to cross-domain
restrictions,  403

scripts
minifying,  74
placement at bottom of web page,  72

scrollable lists on mobile sites,  85
scrolling

horizontal scrolling in mobile applications,  175,
198

List-and-Scroll pattern,  196–199
Scrum process adapted to mobile projects,  15
SDKs (software development kits)

Android SDK wrapped by MonoDroid
framework,  213

installing Android SDK,  269
iOS SDK,  209
programming with Android SDK,  278–321

anatomy of an application,  278–285
using Java and Android SDK,  271
Windows Phone SDK

support for creating trial versions of an ap-
plication,  379

Searcheeze, freemium delivery model,  18
<section> elements in HTML5

<article> elements in,  124
child <div> element in each of new HTML5

block elements,  125
security considerations

linking cross-domain URLs,  392
Logon-and-Forget pattern,  191
for mobile devices and sites,  48
for mobile software,  176

segmented buttons,  297

<select> elements

440   Index

<select> elements
with data-native-menu attribute set to true or

false in jQuery Mobile,  121
on mobile sites,  86

selectors in Objective-C,  220
semantic markup in HTML5,  122–126

adjusting HTML5 pages for older browsers,  125
elements removed from HTML5,  126
headers and footers,  122
native collapsible element,  124

Sencha Touch framework,  69, 390
SEO (search engine optimization)

benefit of mobile sites for,  30
minimized, with native applications,  39

serialization,  202
class serialization in iOS,  233

server-side device detection,  57–62
just one web,  59
multiserving,  58
rationale behind,  57

server-side route to mobile development,  142–144
server-side solution, mobile sites and,  33
service component in Android apps,  281
service layer,  52
sessionStorage object,  131
setContentView method,  283, 304
setListAdapter method, ListActivity class,  306
Settings page, Windows phone applications,  342
shapes, defining in Android applications,  289
SharedPreferences object,  308

data types supported,  309
sharing data between mobile applications,  177
shell approach to cross-platform development,  382,

386–392
PhoneGap framework,  388
structure of the application,  387

Short Message Service (SMS) messages, handling in
iOS,  245

signing Android applications,  321
Silverlight,  324

applications based on, in Windows Phone
development,  326

defined,  325
programming with,  329–375

anatomy of an application,  329–337
application frame,  335
application life cycle,  335
application startup,  333
defining user interface,  337–348

dissecting the project,  330
examining sample application,  353–366
manifest file,  331–337
MVVM pattern,  348–353

SIM, detecting whether device can mount,  149
Single-Page Interface (SPI) model,  64, 398

challenges in implementation of,  65
deciding whether to use,  67

Sink-or-Async pattern,  186–189
chaining async network operations,  187
formulating,  187
implementation of,  187

skin factor, PhoneGap applications and,  412
SkyDrive for Windows Phone,  177
Sleight (Node.js application complementing

PhoneGap),  405
sliders,  120
smartphones

defining,  70
device profile for,  161
display of website content,  28
large share of mobile traffic,  141
mobile browsers on, effect of email, url, and tel

input types,  126
and need for mobile sites,  45
RWD for mobile site development,  140
testing mobile sites on,  90

smart TVs,  149
ad hoc group in WURFL,  150
development for,  xv

software modules (mobile views), creating,  58
SOP (Same Origin Policy),  403
Souders, Steve,  67

blog, information on browser cache and file
sizes,  74

speed
native applications versus mobile sites,  28
perceived speed of mobile sites,  28

SPI model. See Single-Page Interface model
splash screen

creating for Windows Phone app,  337
disabling in Windows Phone,  338

SplashScreenImage.jpg file,  338
Spring Mobile,  143
sprites,  73
sp unit for font sizes,  277
SQL CE (Microsoft SQL Server Compact Edition),  370
SQLite,  177

storing Android data in tables,  308
using to store data from Windows Phone,  370

	 touch

	 Index   441

SQL Server Compact Edition database, storing data
from Windows Phone,  370

src attribute, element, in data URI scheme,  73
Src folder,  278
stand-alone front-end applications versus MEAPs,  21
startActivityForResult method,  316
startActivity method,  315
State dictionary, Windows Phone application,  335
static HTML pages,  214
static methods in Objective-C,  213, 217
Sterling object-oriented database,  370
streams, using for data storage in Windows

Phone,  367
strings returned for WURFL capabilities,  157
styles

adjusting style for mobile device-detection
site,  100

in Android applications,  288
CSS styles in jQuery Mobile themes,  108
implementing One Web using CSS styles,  60
style elements removed from HTML5,  126
using for Windows Phone user interface,  341

style sheets. See also CSS
minifying,  74
placement to enhance performance of page,  72

<summary> element in HTML5,  124
swiping,  175
Sybase,  20
Symbian,  10

equipment and programming language for
development,  39

using PhoneGap to develop for,  414
Sync Framework for databases,  177
synchronizing local and remote databases,  177
synchronous operations

subject to network latency,  186
writing ad hoc code to extract data from

response stream,  311
SystemConfiguration framework (iOS),  204
system requirements for mobile development,  xvii

T
TableLayout,  287
table-specific view-controller,  229

HomeViewController (Guess application
example),  234

ScoresViewController class (Guess application
example),  240

tablets
defining class of,  70
detecting,  149
distinguishing from smartphones,  163
HTML5 capabilities for applications,  135
platforms,  10

telephony APIs, access to,  27
tel type, <input> elements,  126
test device, registering an iOS device as,  210
TestFlight service,  263
testing

Android application,  318–320
selecting test device,  320

effective testing of PhoneGap HTML5
application,  413

iOS applications,  259
logic and markup in PhoneGap HTML5

application,  401
mobile sites,  88
Windows Phone applications,  375–378

text boxes,  120
context-sensitive auto-completion in Android

app,  297
displaying hints in,  128

text/cache-manifest MIME type,  131
textLabel property, UITableViewCell class,  242
ThemeRoller tool of jQuery Mobile,  109
themes

in Android applications,  288
dark and light themes in Windows Phone

apps,  342–344
detecting and adjusting visual settings for in

Windows Phone,  343
predefined, in jQuery Mobile,  108
using to style dialog boxes in jQuery Mobile,  120

tiles in Windows Phone app UI,  337
timer, using to save at given interval,  180
Titanium framework,  384

PhoneGap versus,  390
Titanium Mobile framework,  214, 274, 384
Titanium Studio IDE,  384

Tiyla.com, implementation of Babel-Tower
pattern,  194

toggle-switch controls, using with forms in jQuery
Mobile,  120

toolbars, scrolling horizontally,  199
touch

Cocoa Touch frameworks,  209
information about capabilities in WURFL,  149
Sencha Touch framework,  69

touch-sensitive screens

442   Index

touch-sensitive screens,  175
Tower of Babel,  192
transitions

in dialog boxes, creating in jQuery Mobile,  119
page

in jQuery Mobile,  112
problems with PhoneGap applications,  391

translated text for mobile applications,  193
further considerations,  194

try, catch, throw, and finally statements in
Objective-C,  221

type attribute for HTML5 <input> elements,  82
new values,  126–128

typing text on mobile devices,  82, 174
free text and auto-completion,  87
minimizing with Back-and-Save pattern,  179

U
UA (user agent) strings

MIDP and CLDC strings in,  95
switching,  88
from UA to virtual device in WURFL,  156
use by ASP.NET detection API,  93
using to get browser information,  143

UI. See user interface
UIApplicationDelegate protocol,  226
UINavigationController class,  245

backToHome method,  246
UISegmentedControl component in iOS,  234
UITabBarController class,  246
UITableViewCell class,  242
UITableViewController class,  230, 234

creating new cells on demand,  242
UI widgets, getting references to in Android,  284
UL and OL elements, variations creating numbered

and nested lists,  114
unique identifier (UDID) for iOS development

device,  260, 261
UpdatePanel control,  66
Upshot library,  65
URIs (Uniform Resource Identifiers)

data URI scheme,  73
using for camera output files,  316

UrlHelper object in ASP.NET MVC,  99
URLs

desktop versus mobile sites,  29
linking of cross-domain URLs, security issues

with,  392

url type, <input> elements,  126
use-cases for mobile sites,  44–51

analysis first,  46
from web to mobile, practical example,  47–49
inventing new use-cases,  51
restructuring existing use-cases,  50
selection of use-cases,  46

selection in mobile site planning,  76
stereotypes and myths about,  44

A tiny HTML page will do the trick,  45
One site fits all,  46
People don't like mobile sites: Why bother?,  44
You don't need mobile sites at all,  45

“User Experience Design Guidelines for Windows
Phone” paper,  346

user agent strings. See UA (user agent) strings
user agent switching. See UA (user agent) strings
user experience

benefits of native applications,  38
native applications versus mobile sites,  27

user interface (UI)
ad hoc, for mobile site as subset of larger site or

application,  47
defining for Android application,  285–294
defining for Windows Phone app in

Silverlight,  337–348
application bar,  344–346
custom layout,  339–348
dark and light themes,  342–344
icons and splash screen,  337
localization of text,  346–349
pivot and panorama layouts,  338
style and designer tools,  340–342

design and implementation for mobile
applications,  178

GUIs and NUIs,  195
HTML- and CSS-based UI in PhoneGap

applications,  389
making PhoneGap app look like native app,  412
Metro interface for Windows Phone,  329
mixed user interface with native and HTML

views,  386
native applications with UI based entirely on

HTML,  387
PhoneGap HTML5 solution (Guess sample

app),  400
tweaking in PhoneGap apps to reflect native

UI,  390
writing code dealing with components and

events,  239

	 Why Software Sucks (Platt)

	 Index   443

V
validation of input in HTML5,  128
vendor and platform, selecting for B2B

applications,  20
vertical solutions, vendors of, including iOS

packager,  215
video

new features in HTML5,  133
PhoneGap plug-in for playing video on

Android,  389
view-controller object,  228

creation in MonoTouch,  250
HomeViewController object,  232
look at table-specific view-controller,  229
MFMessageComposeViewController,  245
PlayViewController (Guess application

example),  237
ResultViewController class (Guess appliction

example),  238
ScoresViewController class (Guess application

example),  240
ViewHolder class,  307
view-model class, design of,  350–352
viewport meta tag,  100, 151

support for,  150
viewport, setting,  160
ViewResolverBase class,  165
views

activities components in Android,  282
DDR-based ASP.NET view engine,  164
folders in Silverlight Windows Phone

project,  330
forking views rendered by mobile browsers

automatically,  155
getView method of Android adapter object,  306
in iOS,  227

Home view (Guess application example),  234
Play view (Guess application example),  235–

239
preparing in MonoTouch,  250
Scores view (Guess application exam-

ple),  239–243
key aspects of mobile views,  159

virtual machine approach to cross-platform
development,  382, 383–386

structure of the application,  383
Titanium Mobile,  384

virtual machine (Java),  272, 383
Google's Dalvik virtual machine,  272
Mono virtual machine,  272

visibility of shared preferences file in Android,  309
Visual Basic, use in Windows Phone

development,  324
Visual Studio,  289

adding WURFL API to project via NuGet,  153
building PhoneGap application for Windows

Phone,  410
Data Import Wizard,  370
getting Windows Phone-specific tooling as

extension to,  324
programming environment,  324
resource editor,  346
using extension with MonoDroid,  272

voice-based input,  183

W
W3C (World Wide Web Consortium)

Cross-Origin Resource Sharing (CORS) draft,  404
Geolocation API,  153
HTML5 and,  134

web applications
client-side, transforming to native

applications,  214
mobile applications versus,  xiii
writing client-side web application,  273

web-based API,  53
web-based navigation,  36
WebClient class,  372
Web.config file of mobile site, tweaking to disable

HTTP module,  81
Web Data Storage specification,  131
web forms. See forms
WebKit, features provided by,  30
WebM codec,  134
webOS,  10
web services,  55
websites. See also mobile websites

recommended principles for building fast
sites,  72

similarities and differences from mobile sites,  43
web views hosted via PhoneGap, no cross-domain

restrictions,  392
Weinre, remote debugging with,  90
white-listing feature (PhoneGap),  405
Why Software Sucks (Platt),  182

WiFi connectivity

444   Index

WiFi connectivity
browser support of,  152
WiFi connection versus 3G connection,  178

wildcard app IDs for iOS applications,  261
window object, localStorage property

(browsers),  130
Windows 8,  10

support for ARM architecture,  247
Windows Communication Foundation (WCF) service,

using to define web-based application layer,  54
Windows Live IDs,  376
Windows Mobile,  10

open platform,  21
windowSoftInputMode attribute, use on activities in

Android app,  295
Windows Phone,  10

Application Settings,  177
appstore for applications,  12
building PhoneGap application for,  410
chaining async network operations,  187
detecting network changes,  204
developing for,  323–380

choosing development strategy,  326–329
deploying applications,  375–379
getting ready for development,  324–329
programming languages and equipment,  39
programming with Silverlight frame-

work,  329–375
emulator,  88
keyboard for entering description text,  184
keyboard layout in browser application,  184
lack of enterprise program,  21
ListBox control,  197
Microsoft Exchange Server connectivity,  20
Postino application,  180

number of stamps currently available,  200
sharing persistent data between

applications,  177
storing credentials,  191
system requirements for development,  xvii
use of PhoneGap to develop for,  414
XAML schema used by applications,  287

Windows Phone Developer Registration tool,  376
Windows Phone Marketplace,  323, 324, 376

API for better integration with the
application,  378

distributing applications via,  378
submitting applications to,  378

Windows Phone SDK, support for creating trial
versions of an application,  379

Windows Presentation Foundation (WPF), XAML
schema used by applications,  287

Windows systems, installing Android SDK,  269
wireless devices. detecting,  149
Wireless Universal Resource File. See WURFL
WMAppManifest.xml file,  332
word auto-completion,  179
World Wide Web Consortium. See W3C
Wroblewski, Luke,  168
Wurfl class,  155
WURFL manager object,  156
WURFL (Wireless Universal Resource File),  11, 94,

96, 143
AGPL v3 open source license,  144
download site,  144
linking mobile site to,  33
Peek site,  166
structure of the repository,  144–148

groups of capabilities,  145
overall XML schema,  144
patch files,  147

top 20 capabilities,  148–153
HTML5-related capabilities,  152
identifying current device,  148
serving browser-specific content,  150
understanding JavaScript capabilities,  151

use to create custom rules and custom display
modes,  168

using from ASP.NET,  153–159
from UA to virtual device,  156
introduction to WURFL API,  153
loading WURFL data,  155
querying for device capabilities,  157

view resolver,  165

X
Xamarin, MonoTouch framework,  246
XAML (Extensible Application Markup Language)

App.xaml file for Windows Phone app,  333
container elements in user interface,  339
converters,  363
defining animation as XAML storyboard

resource,  359
defining application bar for Windows Phone

page,  344

	 zooming, ability to zoom in and click links on mobile sites

	 Index   445

MVVM (Model-View-ViewModel) pattern,  349–
353

schema used by WPF and Windows Phone
applications,  287

style and designer tools,  340–342
Expression Blend,  341

Xcode,  209
Automatic Reference Counting (ARC) in version

4.2,  212
creating basic application (HelloWorld),  224–230

app-delegate object,  226
application setup,  224–226
dissecting the project,  227
view-controller object,  228

defining a class in,  217
Interface Builder,  235
MonoTouch and,  213
PhoneGap projects in,  407

XHTML MP,  151

XIB files,  227
bindings of UI elements and events,  238

XML
AndroidManifest.xml files,  279
CSPROJ file in Windows Phone,  347
returning data as JSON strings instead of

XML,  74
schema of WURFL data file,  144
schema used by Android layouts,  287

XmlHttpRequest (XHR) object,  64
Ajax implemented via browser's native

object,  152
XNA framework,  326

using in Windows Phone development,  327
XUI micro framework,  69

Z
zooming, ability to zoom in and click links on mobile

sites,  29

About the Author

A longtime trainer and top-notch architect, Dino Esposito is the
author of many popular books for Microsoft Press that have
helped the professional growth of thousands of .NET developers.
His latest books are Programming ASP.NET 4 and Programming
ASP.NET MVC3, which have been translated into a variety of
languages. Every month, at least five different magazines and
websites throughout the world publish Dino’s articles, which cover
topics ranging from web development to software design
practices, and from mobile development to ASP.NET Model-View-

Controller (MVC) and social network development.

An ASP.NET Most Valuable Professional (MVP), Dino is available for onsite consulting
and training on web and mobile development and software practices. When traveling,
Dino is often the guest star of user-group meetings in Europe. If you run a user group,
feel free to get in touch.

In the rest of his everyday working life, Dino is the CTO of Crionet (http://www.crionet.
com), a fast-growing company providing software and mobile services to professional
sports, especially tennis. Dino led a team that created a range of mobile apps for Android,
iOS, Windows Phone, and BlackBerry, such as the official app for the Rome ATP Masters
1000 tournament. Dino also contributed to the popular (and multiplatform) Postino app
(http://www.postinoapp.com) for sharing real postcards from mobile pictures, and writes for
the Mopapp technical blog (http://www.mopapp.com).

Dino speaks regularly at industry conferences all over the world, including Microsoft
TechEd, DevConnections, and premiere European events such as DevWeek, Software
Architect, and BASTA. He is fairly active on social media; you can follow Dino on
Twitter as @despos, and read his mobile blog at http://www.mopapp.com/blog. The
blog focuses on a wide range of mobile-related topics, including native app planning
and development, sales monitoring, patterns and strategies for the various platforms,
mobile site development, responsive Web design, smart TV programming, HTML5, and
appstore interactions.

Finally, Dino makes every reasonable effort to become a better domain expert in
tennis. This means watching tennis live and on TV, and planning new applications—but
especially playing tennis on dusty clay courts at CT Monterotondo, in Monterotondo,
Italy.

What do
you think of
this book?
We want to hear from you!
To participate in a brief online survey, please visit:

Tell us how well this book meets your needs—what works effectively, and what we can
do better. Your feedback will help us continually improve our books and learning
resources for you.

Thank you in advance for your input!

microsoft.com/learning/booksurvey

SurvPage_Corp_02.indd 1 5/19/2011 4:18:12 PM

	Introduction
	Pillars of a Mobile Strategy
	What Does “Going Mobile” Mean?
	Toward a Mobile Strategy
	Defining a Mobile Strategy
	Development and Costs

	Outlining a B2C Strategy
	Focus on Your Audience
	Delivery Models

	Outlining a B2B Strategy
	Serve Your (Limited) Audience
	Mobile Enterprise Application Platforms

	Summary

	Building Mobile Websites
	From Web to Mobile
	Application Structure
	Amount of JavaScript
	Application Device Profiles
	Optimizing the Payload
	The Offline Scenario

	Development Aspects of a Mobile Site
	Reaching the Mobile Site
	Design of the Mobile Views
	Testing the Mobile Site

	The Device-Detector Site
	Routing to Mobile Views
	Detecting Device Capabilities
	Putting the Site Up

	Summary

	Index

