

Building Web
Applications with SVG

David Dailey
Jon Frost
Domenico Strazzullo

Copyright © 2012 by Jon Frost, David Dailey, Domenico Strazzullo
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-6012-0

1 2 3 4 5 6 7 8 9 LSI 7 6 5 4 3 2

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions and Developmental Editor: Russell Jones

Production Editor: Holly Bauer

Editorial Production: Zyg Group, LLC

Technical Reviewer: Domenico Strazzullo

Copyeditor: Zyg Group, LLC

Proofreader: Zyg Group, LLC

Indexer: Zyg Group, LLC

Cover Design: Twist Creative • Seattle

Cover Composition: Karen Montgomery

Interior Composition: Zyg Group, LLC

Illustrator: Rebecca Demarest

I would like to dedicate this book to my wife, Caron: my friend
and companion on so many adventures.

—DaviD Dailey

I would like to dedicate this book to my mentors in the local
community, who consistently demonstrate their authentic pas-
sion for improving our town by regularly organizing events that
coordinate efforts to revitalize our world, and who manage it all
with an inspiring degree of heartfelt warmth and charm: Eduardo
Crespi of Centro Latino, Mark Haim and Ruth Schaefer of Peace-
Works and Sustainability, and Proffessor Miguel Ugarte.

—Jon Frost

I dedicate this book to the community of SVG adepts and
evangelists who have given so much time and effort.

—Domenico strazzullo

Contents at a Glance

Introduction xiii

ChApter 1 SVG Basics 1

ChApter 2 Creating and editing SVG Graphics 31

ChApter 3 Adding text, Style, and transforms 59

ChApter 4 Motion and Interactivity 89

ChApter 5 SVG Filters 145

ChApter 6 SVG tools and resources 191

ChApter 7 Building a Web Application: Case Studies 215

Index 255

 vii

Contents

Introduction . xiii

Chapter 1 SVG Basics 1
The What, Why, and Where of SVG . 1

The What . 2

The Why . 3

The Where . 4

Getting Started: A Simple Overview . 5

Viewing SVG . 5

Writing SVG . 5

Thirteen Examples That Show the Capabilities of SVG 6

Example 1: Dynamic Random Landscape Drawn with
JavaScript and SVG . 6

Example 2: Equidistant Positioning Points along a Bézier Curve . . . 8

Example 3: Simple Animation (Just 38 Lines of Markup
and No Script) . 9

Example 4: Use of Gradients and Patterns .10

Example 5: Intersecting Clip Paths .11

Example 6: Animated Text Crawling Along a Bézier Curve13

Example 7: Animated Reflected Gradients with Transparency13

Example 8: Clock with Impressionist Tinge .14

Example 9: Using a Filter to Create Pond Ripples over an Image . .16

Example 10: Using <replicate> to Simulate Digital
Elevation Maps . 17

Example 11: Non-Affine Cobblestones . 17

Example 12: Triangular Tiling .18

Example 13: A Web Application for Drawing Graphs (Networks) . .19

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. to participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

viii Contents

Diving In: A Step-by-Step Approach to Building a Simple
SVG Document .21

Intermission and Analysis .22

Screen Coordinates .23

Summary. .29

Chapter 2 Creating and Editing SVG Graphics 31
Creating Basic Vector Shapes .32

Lines .32

Brief Review of SVG Presentation Attributes .33

Rectangles .34

Circles .34

Ellipses .35

Polylines and Polygons .35

Creativity with Basic Shapes .36

Paths in SVG .38

<path> Subcommands: M and L .39

Fill Properties: nonzero and evenodd .40

An Example of Building Complex Shapes .40

Quadratic Bézier Curves: The Q Subcommand42

Bézier Curve Example .43

Creating Smooth Curves: The S and T Subcommands 46

Elliptical Arc Example .47

Relative vs. Absolute Path Coordinates .49

Accessing and Reusing Graphics .50

Referencing Vector and Bitmap Images .50

The Group Element .50

The <use> Element . 51

Creating Patterns .52

Case Study: Designing a Reusable Pattern .52

Adding Basic Shapes .52

Summary. .58

 Contents ix

Chapter 3 Adding Text, Style, and Transforms 59
Adding and Positioning Text .60

The <text> Element .60

The <tspan> Element .63

Making Adjustments with dx and dy .64

Text and Shapes on a Path: <textPath> and <mpath>64

The <tref> Element .65

Working with Colors in SVG .66

Named Color Values .66

HSL .66

RGB .66

Creating Gradients in SVG .67

Applying Gradients to a Path .67

Clipping and Masking with SVG .73

Details of Transforms .77

The translate Command .77

The scale Command .78

Skewing: The skewX and skewY Commands .79

The rotate Command .79

The matrix Command .80

Adding Style Using CSS .80

Using Media Queries to Enhance Usability .82

Additional Capabilities of CSS3 .83

Vector Graphics, Symbol, and Button Libraries .83

Accessibility .83

Semantic Elements and Features .84

Case Study: A Simple SVG Web Interface .85

Summary .88

Chapter 4 Motion and Interactivity 89
Declarative Animation with SVG. .89

Getting Started .91

Motion Along a Path .95

x Contents

Multivalued Interpolation .96

Interacting with Animation .98

Scripting SVG .101

Getting Started with JavaScript and SVG .102

Using Script to Find an Object and Change Its Attributes103

Adding New Content to an SVG Document109

Cloning Nodes .111

Evaluating Nodes (getAttribute) .113

SVG DOM .115

Measurements .122

Messages Between SMIL and Script .132

Passing Messages Between HTML and SVG135

Summary. .143

Chapter 5 SVG Filters 145
The Basic <filter> Element .146

The Basic Primitives .146

<feGaussianBlur> .147

<feColorMatrix>. .149

<feComponentTransfer> .153

<feMorphology> .157

<feConvolveMatrix> .158

Utility Filters .160

Simple Utility Filters .160

<feFlood> and <feOffset> .161

<feImage> and <feTile> .162

<feTurbulence> .163

numOctaves .164

Lighting Effects .175

Ways of Combining Filters .177

<feMergeNode> .177

<feBlend> .180

<feComposite>. .181

<feDisplacementMap> .184

 Contents xi

Summary. .190

Chapter 6 SVG Tools and Resources 191
Libraries .192

SVG Native JavaScript Libraries .193

D3: Data-Driven Documents .193

Pergola .198

Raphaël .199

Polymaps .200

carto:net .200

Legacy HTML Libraries .200

jQuery .200

Dojo .201

Sencha .201

Drawing Tools and Utilities .201

Adobe Illustrator .201

Inkscape .204

Scour .205

SVG-Edit .206

Other Useful Tools .206

Mugeda .206

Pilat .206

SVG Editor .206

SVG Drawing Tool .207

Grapher .207

SCION .207

Extension Tools .207

Batik .207

SmilScript and FakeSmile .208

<replicate> .209

Integrated Development Environments .210

Oxygen .210

Adobe Dreamweaver .210

HTML-Kit .211

xii Contents

Other Useful Information .211

Other Tools That Support SVG .211

Miscellaneous .212

Wikimedia and Wikipedia .212

The Open Clip Art Library .212

The OpenStreetMap Project .213

Summary. .213

Chapter 7 Building a Web Application: Case Studies 215
About Pergola .216

D3 Review .218

Polymaps .218

Interactive Multiple Documents Application .218

Encapsulating the Stream Example .219

Adding Interactivity to the D3 Stream Window222

The Transitions Menu .223

The Transition Tool Button .224

Encapsulating the Force Example .228

Improving the Application Design .233

Running in an HTML and SVG Context .234

Mapping Application .235

The Menus .237

Adding Map Features .242

GeoJSON .242

Adding Tools .246

The Complete Code .247

Summary. .254

Index 255

 xiii

Introduction

Scalable Vector Graphics, known as SVG, is the World Wide Web Consortium stan-
dard for graphical interactivity on the web and mobile platforms. SVG is a mature

standard, first released more than a decade ago and has been under improvement by
the W3C ever since. SVG is now available natively in all modern web browsers, as well
as more than one billion mobile devices. SVG provides ways to create interactive graph-
ics that can be rescaled without loss of clarity. Like HTML and HTML5, SVG coexists
happily with technologies that are already familiar to web programmers, such as CSS,
JavaScript, the Document Object Model, AJAX and, indeed, with HTML itself.

This book provides a comprehensive introduction to the language and how to use
it for interaction and animation. The text also provides exposure to several important
JavaScript packages and libraries, including D3, jQuery, and Pergola. While the book
does not provide exhaustive coverage of every feature of the SVG language, it does
offer essential guidance in using the key SVG components.

In addition to its coverage of basic SVG features, the book discusses a wide range
of software tools for creating SVG and for embellishing it with scripted functionality.
You’ll also find solid introductions to complex topics such as SVG animation and filters.
In many places, the book includes step by step examples and references numerous
examples and downloadable sample projects that you can explore for yourself.

SVG Testimonials
Many people have been involved in the creation of SVG. As part of the Introduction
to this book, we asked a handful of people who were closely involved in SVG’s evolu-
tion to expound a little on what they think about SVG’s past and future. Here are their
statements.

Jon Ferraiolo
The W3C launched the Scalable Vector Graphics Working Group in 1998 to provide
the vector graphics counterpart to HTML. The SVG WG chose to adopt all of the same
general approaches as HTML (markup, DOM, scripting, styling) but replaced HTML’s
<div>, <p> and elements with vector graphics element such as <rect>, <circle>
and <path>. With various events in 2001 (SVG 1.0 Specification approval, Adobe SVG
Viewer version 3 (ASV3) and bundling of ASV with Adobe Acrobat Reader 5), SVG
was ubiquitous on desktop browsers, with the result that temporarily SVG took off

xiv Introduction

like gangbusters, with tens of thousands of developers using SVG for various sorts of
interactive graphics applications (flow charts, business graphics, and mapping). But
SVG adoption dropped once Adobe abandoned ASV. Subsequently, the open source
browser teams added SVG support (first Mozilla, then WebKit). With the open source
project “SVGWeb” supporting older versions of SVG in IE6–8 and Microsoft’s announce-
ment of SVG support in IE9, SVG has once again regained ubiquity, and developers are
now (re)discovering the power and coolness of DOM-based scriptable graphics.

The future for SVG looks quite exciting, particularly when using SVG as a component
of HTML5. The W3C, in collaboration with the browser teams and the community, is
generalizing many of SVG 1.0’s best features (e.g., clipping, animation, filter effects) into
CSS so these features will also be available to HTML, and cleaning up SVG to make it
easier to use (e.g., removing SVG’s XML requirement). There is active discussion about
going to the next level with vector and raster graphics effects, particularly ones that
are able to leverage CPUs. Given the automatic update features of the modern browser,
developers will be able to take advantage of cool new features almost as soon as they
are defined.

Background: Jon Ferraiolo was one of SVG’s principal architects. He was the primary
author of the PGML submission that served as the starting point for SVG and was the
sole editor of the W3C’s original SVG specification (SVG 1.0). While employed at Adobe
Systems, Inc., he was the architect for several SVG-related projects at Adobe, including
the Adobe SVG Viewer and Adobe Illustrator’s SVG support. He is now a Distinguished
Engineer at IBM.

Alex Danilo
In the early days of the web, browsers were rapidly changing and competition was
fierce. When the W3C sent out a call for vector graphics proposals for the web, a col-
lective cheer from thousands of graphics people could be heard. At last, to be free of
those ancient bitmaps and bring the web into beautiful resolution and independent
glory. This was the birth of SVG.

As we know, Rome wasn’t built in a day, and over the years SVG was massaged and
honed to perfection by an army of enthusiastic graphics aficionados. The result is a gem
that’s polished and can glisten with vibrant color when viewed in the right light.

SVG enables vivid interactive experiences that adapt to any display size, a way to
bridge images with meaningful semantics, a powerful synergy with HTML and the DOM
and just looks so good!

 Introduction xv

Background: Alex Danilo joined the W3C SVG Working Group at the start of 2002
and is now the representative of his company Abbra. Abbra’s implementations both
for mobile devices and web have always been at the cutting edge of the development
of the SVG specification. Alex has very often produced the first proof of concept of
new proposals for SVG. His current focus is development of a rich-media capable SVG
engine for cross-platform application areas especially in resource constrained devices.

Cameron McCormack
It has been 10 years since the W3C Recommendation for SVG 1.0 was published, and
having been involved in the SVG community for most of that time period, I can say with
first-hand knowledge that SVG’s fortunes have definitely been mixed. This is not an in-
dictment on the technology itself, which is solid, but a historical problem of implemen-
tation availability.

In the early 2000s, there was a good deal of interest in SVG, as evidenced probably
most clearly by the activity on the SVG Developers Yahoo Group mailing list, a forum
that is still running today. Authors were creating visually rich, graphical, dynamic web
applications with SVG before it became popular (or possible) to do so with other open
web technologies. That this was possible at the time was, in my view, nearly entirely due
to Adobe’s investment in SVG and their development of the Adobe SVG Viewer plug-in.
It did not matter that browsers’ support for SVG was not up to scratch or did not exist
at all—through the use of the Adobe plug-in, SVG was available to everyone. (Techni-
cally not everyone, of course, as the plug-in was limited to particular operating systems
and architectures, but for most authors this was good enough.)

The last release of the Adobe plug-in, a preview of version 6, was made available in
2003. The preview release was somewhat unstable, but demonstrated attractive new
features, including a componentization model for SVG content whose fundamental
ideas even today garner interest despite a number of false starts in standardization
groups. However, for a long time after this release not a word was heard out of Adobe
on their plans for development. This caused growing consternation within the SVG
developer community, as progress of native browser implementations had been slow
to catch up to the features and performance of the plug-in. Interest in SVG began
to wane, and Adobe’s acquisition of Macromedia and the Flash platform only served
further to fuel the notion that SVG was dead. The years following were the Dark Ages of
SVG.

Although native browser implementations did improve during this time, there was
still a perpetual sense by developers at large that SVG wasn’t ready for prime time.
What was probably the biggest impediment to authors publishing SVG content was

xvi Introduction

the lack of implementation in Internet Explorer. With the arrival of one particular
version of IE or Windows, I don’t remember which, the unmaintained Adobe plug-in
stopped working altogether. This was a blow to developers, as Microsoft had no plans
to implement SVG at all, unlike the other major browser vendors who all were com-
mitted to supporting it.

In 2008, a major development occurred: the addition of SVG (and MathML) to the
HTML5 specification, which allowed authors to write HTML documents with inline
vector graphics without having to use mixed-namespace XML documents. This was a
welcome simplification, but importantly it helped to sell SVG as being a first class part
of the web platform.

By 2009—the same year that Adobe finally announced what everyone knew
already, that their plug-in was no longer being maintained—sentiment had finally
managed to shift away from the notion of SVG being a neat technology unsuitable
for publishing on the web due to Microsoft’s intransigence. This was helped by the re-
lease of SVG Web, a Flash-based SVG renderer developed by a team at Google. Once
again, authors had a way to target SVG content to Internet Explorer, as most Windows
computers already had Flash installed. Not only did SVG Web provide a way to render
SVG in IE, it did so with reasonably complete coverage of the SVG specification and
with great performance.

But perhaps the most welcome news to the SVG community came in 2010 when
Microsoft announced a preview release of Internet Explorer 9, the first version of IE to
support SVG. Finally it would be possible to publish SVG content using open web tech-
nologies and have all desktop browsers consume it without the need for any plug-ins or
workarounds. Hooray!

Today, SVG is in its strongest position yet. Browser implementations continue to
improve by leaps and bounds. Standards groups continue to draw SVG and CSS ever
closer, allowing the use of SVG features such as filters, patterns, and gradients in HTML
documents. The SVG Working Group itself is busy working on the next major revision of
the SVG specification itself to address issues and add features that have been requested
by the persevering SVG community over the years. JavaScript toolkit writers are choos-
ing SVG as their graphical output technology.

And the developer community is reinvigorated. SVG is very much alive!

Background: Cameron McCormack has been involved in SVG since 2003 and has
served as coeditor of the SVG specification and cochair of the SVG Working Group from
2007 to the present. As a graduate student at Monash University in Australia, Cameron
also spearheaded the implementation of SVG in Batik—sometimes called the most

 Introduction xvii

extensive implementation of SVG yet. He has since gone on to work at Mozilla Corpora-
tion, where his work with SVG and other web standards continues.

Jeff Schiller
I became involved with Scalable Vector Graphics (SVG) around the time that Firefox
was planning to ship its first partial implementation of SVG Full in Firefox 1.5. At
that time, native support was mostly a curiosity given that there was a very mature
browser plug-in (Adobe SVG Viewer) and sound alternatives to rich vector graphics in
web applications (Macromedia’s Flash). But what intrigued me about native SVG sup-
port was the integration with HTML: a DOM, an event model, scripting in JavaScript,
styling with CSS. This would allow graphical web applications to take advantage of the
AJAX bubble that was happening at the time: rich, dynamic applications that worked
cross-browser without a plug-in.

More SVG Full implementations began showing up, first in Opera which set the
standard for Full support, then in WebKit and finally in Internet Explorer, making it
ubiquitous across the web and mobile. As native SVG support began showing up in the
wild, HTML5 really started to take shape in the minds of browser vendors and I’ve been
delighted to follow both SVG and HTML as their paths became aligned. I believe the
arrival of graphics in the browsers (SVG and HTML Canvas) were essential in making the
web platform compelling for application developers: a powerful markup vocabulary, a
document model, a simple authoring syntax, and continuously improving support in
all major browsers. Refinement of both the implementations and the specification have
made SVG a really effective weapon in the web developer’s arsenal and I’m constantly
amazed at what people are doing with it.

Background: Jeff Schiller’s name is a familiar one in the SVG community. In addi-
tion to being the originator of and contributor to the popular and useful tools SVG-
Edit and Scour, he has also for many years maintained the web’s most definitive site
for cross-browser comparison of the completeness of the implementation of SVG. He
also spearheaded and chaired the W3C’s SVG Interest Group, and has made numerous
contributions to the evolution of the standard itself. Jeff began his work with SVG while
working at Motorola and is now a Google employee.

Doug Schepers
The fundamental idea of SVG is beautiful: take the best from popular vector programs
like Illustrator, and the structure, dynamic adaptability, and hyperlinking of web formats
like HTML and CSS, and then add in animation and raster effects like filters to make it
fun, funky, and functional.

xviii Introduction

Now that it’s supported in every modern browser, with tons of applications that output
SVG, the W3C SVG Working Group is turning its eye toward SVG 2. What’s in the cards?
Certainly more seamless integration with HTML5 and the assorted APIs that go into
making awesome web apps (though most of them already work with SVG), and a general
tidying up of the language to make common tasks easier for developers and implement-
ers, and a massive improvement to the DOM API to increase speed and usability. We’re
also working closely with the CSS Working Group on shared features, like filters for HTML,
and we plan to adopt some new CSS features, including complex text wrapping into and
around shapes, a long-standing SVG request.

And while it may sound a bit boring, we have a plan to work on smaller, more modu-
lar specs; what this means to developers and designers is more features more quickly.
Look for things like parameters (highly adaptable images) and features for mapping
(like non-scaling strokes and declarative level-of-detail) to come out as modules. And
we are always looking for use cases and requirements that solve real-world problems
for developers.

Background: Doug Schepers has been involved in SVG as a developer since
the very early days, starting in 2001. He was deeply involved in raising the public’s
awareness of SVG. In 2007 he was hired by W3C itself to serve on the Working Group.
Doug’s footprints can be seen all over the SVG specification from its earlier days
through the present.

Who Should Read This Book
This book is designed as both a basic introduction and a more advanced treatment that
delves deeply into some of the advanced aspects of SVG. It should be equally accessible
to a professional web programmer, an undergraduate student with a few semesters of
computing coursework, a scientist who wants to make large datasets more interactive,
or a graphical designer with a strong technical side. In short, if you are familiar with the
basics of web development and computer graphics and have an interest in developing
websites that are richly graphical and interactive, then this is the right book for you.

Assumptions
This book assumes some familiarity with HTML and web graphics. Prior experience with
programming is not a requirement, though prior programming experience will clearly
help you understand some of the chapters (such as Chapter 4 and Chapter 7) that
involve programming. Familiarity with the basics of coordinate geometry and fluency
with high school algebra will likely also aid in comprehension—though that would be

 Introduction xix

true with any treatment of graphics involving the x-y plane—so the foray into math-
ematics you’ll find here should prove to be a gentle one.

With a heavy focus on database concepts, this book assumes that you have a basic
understanding of relational database systems such as Microsoft SQL Server, and have
had brief exposure to one of the many flavors of the query language known as SQL. To
go beyond this book and expand your knowledge of SQL and Microsoft’s SQL Server
database platform, other Microsoft Press books such as Programming SQL Server 2012
offer both complete introductions and comprehensive information on T-SQL and
SQL Server.

Who Should Not Read This Book
A graphical artist who finds notation distasteful will probably not find either SVG or this
book to his or her liking. SVG is a declarative language based on XML; accordingly, it
has a rigorous syntax that is not forgiving of grammar errors. If you’re interested in a
purely point-and-click environment, or simply want to create a graphical user interface
containing drawings and illustrations, then a package such as Inkscape or Illustrator
may prove to be a better direction for your creative expression.

Web authors who primarily develop web pages with a package such as Microsoft
Expression Studio or Adobe Dreamweaver rather than coding HTML by hand may be
interested in some of the new software tools being developed for integrating SVG and
HTML. However, while this book discusses some of these tools briefly, the book is not
intended as a tutorial in the use of design packages.

Organization of This Book
This book is organized in seven chapters. Chapter 1, “SVG Basics,” orients the reader
to SVG itself, showing how to get started, the contexts in which SVG can be created
and viewed, and a diverse sampling of examples that may whet the reader’s appetite.
Chapter 2, “Creating and Editing SVG Graphics,” and Chapter 3, “Adding Text, Style,
and Transforms,” get into the dynamics of the core of SVG: the basic shapes, patterns,
gradients, clips, masks, and images. Chapter 4, “Motion and Interactivity,” introduces
the two fundamental aspects of SVG interactivity: animation and scripting. Chapter 5,
“SVG Filters,” discusses filters, one of the most complex and powerful parts of the
graphical language. Chapter 6, “SVG Tools and Resources,” and Chapter 7, “Building
Web Applications: Case Studies” introduce and provide examples of the broad range
of tools and libraries that support SVG development.

xx Introduction

Conventions and Features in This Book
This book presents information using conventions designed to make the information
readable and easy to follow.

■■ This book has numerous examples in which the reader may examine the illustra-
tion itself and the code used to create the example.

■■ On occasion, the code shown is an excerpt showing only the parts needed for
understanding the narrative text. In such cases, a link is provided to a work-
ing example on the web, so that the reader may examine a complete working
example.

■■ In cases of very lengthy source code, the example has been annotated in a table
so that blocks of code and explanatory comments may be seen side by side.

About the Companion Content
Most of the chapters in this book include exercises that let you interactively try out new
material learned in the main text. The working examples can be seen on the web at:

http://www.microsoftpressstore.com/title/9780735660120

or

http://cs.sru.edu/~svg

The examples are organized by chapter number as well as linked from the above
addresses.

Installing the Code Samples
There’s no need to “install” the code samples for this book—you simply need a browser
that can display SVG.

System Requirements
You will need the following hardware and software to be able to follow along with the
step-by-step examples in this book:

http://cs.sru.edu/~svg
http://www.microsoftpressstore.com/title/9780735660120

 Introduction xxi

■■ A modern web browser: Microsoft Internet Explorer 9 or 10, Firefox 6 or higher,
Opera 8 or higher, or Safari or Chrome (any version).

■■ For mobile users: either Opera Mobile, the Android Ice Cream Sandwich OS, or
the iPhone will suffice, though in truth, there are dozens of SVG-enabled brows-
ers too numerous (and quickly evolving) to mention.

■■ A simple text editor (such as NotePad) or a syntax-completion environment
(such as http://notepad-plus-plus.org/ or http://www.htmlkit.com/) for editing
your own examples.

■■ If you wish to share your content on the web: a web server that serves the
proper mime type for .svg files, namely as “image/svg+xml”.

■■ Internet connection to view examples that accompany the book.

Acknowledgments
Jon Frost initially came up with the idea for this book; his motivation brought it
about and saw it through to completion. David Dailey was instrumental in bringing
the vision of the book to light through his insight and wisdom and brought a healthy
down-to-earth style to the writing process. Jon and David were fortunate to be joined
by Domenico Strazzullo, originally brought in as a technical reviewer. His contribu-
tions were so energetic and thorough that we just had to have him write a chapter—
and who better to do that than the author of Pergola himself?

David: I’d also like to thank my family for their patience and understanding during
the writing process and my academic department and university for their generous
support with my SVG-related endeavors. Also to the creators of SVG and the SVG Open
folks: thanks for the language and for the fun.

Jon: I am grateful for my supportive family, my super-supportive and playful wife,
my super-playful and loving dog, and my good friends from cultures around the world
who continue to teach me the vital necessity of sharing and caring.

Domenico: I’d like to thank Microsoft Press and the editors at O'Reilly for giving us
this terrific opportunity to expose SVG to the greatest number of developers, and help
it reach a long deserved status.

xxii Introduction

Errata & Book Support
We’ve made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed on our
Microsoft Press site:

http://www.microsoftpressstore.com/title/ 9780735660120

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

We Want to Hear from You
At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in Touch
Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

http://www.microsoft.com/learning/booksurvey
http://www.microsoftpressstore.com/title/ 9780735660120

 1

C H A P T E R 1

SVG Basics

I decided that if I could paint that flower in a huge scale, you could not ignore its
beauty.

Georgia O’Keefe

In this chapter:

the What, Why, and Where of SVG . 1

Getting Started: A Simple Overview . 5

thirteen examples that Show the Capabilities of SVG 6

Diving In: A Step-by-Step Approach to Building
a Simple SVG Document. 21

Scalable Vector Graphics (SVG) is a graphical standard maintained and endorsed by the World Wide
Web Consortium (W3C), the same group that created and continues to maintain HTML, CSS, XML,
and other technologies that constitute the World Wide Web.

The What, Why, and Where of SVG

SVG is much more than its name suggests. It is true that SVG is a language that allows for the creation
of two-dimensional vector elements, which are simply mathematical representations of graphical
objects, and that these vectors are infinitely scalable and can be transformed within the bounds of
the 2D coordinate system. However, SVG is unique in that it is an open standard defined by the W3C
(http://w3c.org/svg/), and like other W3C languages such as HTML and XML, it has its own Document
Object Model (DOM) that brings with it many benefits, and it’s interoperable with other open stan-
dard languages such as JavaScript, CSS, and HTML.

SVG has been in the works over the past decade and has matured a great deal during that time,
with collaboration from interested parties around the world. The great appeal of SVG is that, like
HTML, it’s easy to read and edit, while allowing for complex interactivity and animations through

2 Building Web Applications with SVG

scripting and Synchronized Multimedia Integration Language (SMIL), which is another W3C standard.
Browsers have matured over the last few years, and all the major ones now natively support much of
the SVG specification, so you no longer need to fuss with proprietary SVG plug-ins. All of these capa-
bilities allow for a much greater degree of creativity, with complex interactivity mixing with animation
and real-time data, all within the context of SVG-enhanced web applications. This is ideal for modern
designers and developers, as demonstrated throughout this book.

the What
SVG is based on vectors rather than pixels. While a pixel-based approach (used by programs such as
Adobe Photoshop) places pigment or color at xy-coordinates for each pixel in a bitmap, a vector-
based approach (used by programs such as Adobe Illustrator) composes a picture out of shapes, each
described by a relatively simple formula and filled with a texture (a term used broadly here to refer to
a mixture of colors, gradients, and patterns).

SVG is scalable. As you may already know, if you zoom in on pixel-based art, you will eventually
reach a maximum resolution. Even with the 10-megapixel cameras that are now commonplace (or the
100-megapixel cameras that can be had for a small fortune), increasing the zoom factor much be-
yond screen resolution will cause pixelation. Scalability is a tremendous advantage for the emergence
of the mobile web, as well as for very-large-display devices (as for outdoor advertising).

The following image shows the difference between what happens when you zoom into a vector
graphic (left) and a bitmap (right).

 CHAPTER 1 SVG Basics 3

the Why
Some of the advantages of SVG are now discussed, with brief explanations:

■■ Client-side graphics Because SVG uses client-side graphics, its impact on your web server
is light. In addition to being scalable, SVG is dynamic and interactive. A user can interactively
explore the data underlying a picture in novel ways.

■■ Open source (XML) Anyone can view the source code that underlies the graphic. It’s read-
able by humans and looks a lot like HTML.

■■ Accessibility Because the SVG source code is written in XML, it is also readable by screen
readers and search engines. While a picture might be worth a thousand words, a megapixel
image is not worth much at all to someone who can’t see it. The ability of SVG to bring geom-
etry to those who cannot see it extends its reach into many domains that pixel-based imagery
just cannot go.

■■ Open standard Because it was created by the W3C (the same organization that brought us
HTML and the web itself), SVG is nonproprietary and vendor neutral.

■■ Familiar technologies SVG uses technologies already familiar to web programmers: DOM,
JavaScript, CSS, and AJAX. Rather than having to learn entire realms of technology, program-
ming languages, and terminology to deal with the complex and technical area of com-
puter graphics, designers, programmers, and web professionals can leverage skills learned
elsewhere.

■■ Web applications SVG is suitable for incorporation with HTML5, web-based applications,
and rich Internet applications (RIAs). The last 10 years have seen a great elevation of the status
of the phrase web-based application. Not so many years ago, people in the web community
used to respond with sarcasm or disbelief when someone talked about wanting to create a
web-based application that lived primarily in the browser. A cursory inspection of the his-
tory of HTML5 reveals that the creation of web applications was one of the primary intentions
behind the development of this emerging specification. The incorporation of inline SVG into
the HTML5 specification is a great advantage for web developers.

■■ SMIL SMIL is a W3C declarative language supporting multimedia and animation for
nonprogrammers. SMIL is partially incorporated into the SVG specification. Those who have
had more than a cursory exposure to programming animation in JavaScript may find them-
selves enamored of the ease with which certain complex animations can be authored using
SVG animation (or SMIL), as well as the ability to update many objects on the screen almost
concurrently. While SVG also supports scripted animation through JavaScript, SMIL brings
convenience, parsimony, and elegance to the table.

■■ The adoption of SVG As of 2010, SVG is supported natively by the most current versions
of the five major web browsers. Additionally, it can be found in the chip sets aboard several
hundred million mobile phones, with major support being offered from Nokia, Ikivo, Sony

4 Building Web Applications with SVG

Ericsson, Opera Mobile, Samsung, iPhone, and several others. This will be discussed further
in the next section.

■■ Other technologies SVG has overlap with Flash, Vector Markup Language (VML), and
Silverlight—but it has the advantages of being nonproprietary, standardized, cross platform,
and interoperable with other XML languages and W3C standards.

the Where
Vector graphics are everywhere. The art world, for example, is replete with examples of the use of
vector graphics. As Professor Jerrold Maddox wrote in “SVG and Art: Expanding the possibilities, dif-
ferent times and different places,” “Image making based on vector-like forms is the way most of the
art of the world is and has been made” (http://www.personal.psu.edu/jxm22/svgopen/). He continues,
“The Song [dynasty] in China and Renaissance Europe are only times and places where tonal art ever
took off—and photography made it seem like the only way to do it” (personal correspondence, 2011).
Accordingly, from a global and historical perspective, we might see images that are not vector based
as more the anomaly than the rule.

SVG, nowadays, is also pretty much everywhere. As of this writing, an estimated 1.5 billion devices
in the world are SVG enabled (from http://en.wikipedia.org/wiki/Usage_share_of_web_browsers and
http://marketshare.hitslink.com/browser-market-share.aspx?spider=1&qprid=2).

If we add to this the two mobile manufacturers whose devices are SVG enabled (Ikivo with 350 mil-
lion users [http://www.ikivo.com/04about.html] and Apple, whose iPhone boasts another 100 million
[http://mashable.com/2011/03/02/100-million-iphones/]) and Abbra’s estimate that “Today over 700
million mobile phones have been shipped with in-built support for SVG version 1.1—more than twice
as many as the nearest competing technology—FlashLite” (http://abbra.com/products.html), then our
estimate rises to close to two billion devices that are SVG ready!

Adobe provided the first support for SVG in the browser (via a plug-in known as ASV 3) as early
as 2000, though support in other applications (such as CORELDraw and Microsoft Visio) came
earlier (http://www.w3.org/G6raphics/SVG/History). SVG has had considerable support in draw-
ing programs, including Illustrator, CORELDraw, and Inkscape, for many years now, and it’s also
supported in a variety of Internet Protocol Television (IPTV) applications and in the popular KDE
desktop environment for Linux.

In the browser market, Konqueror was the first browser to support SVG natively, in 2004 (http://
en.wikipedia.org/wiki/Scalable_Vector_Graphics#Native_support). As of early 2005, the Opera browser
had fairly extensive SVG support, and Firefox developed support for basic SVG shortly thereafter in
version 2. By mid-2007, Safari had implemented basic support as well. Google debuted its Chrome
browser in 2008, and in 2009 Microsoft announced that Internet Explorer would finally have native
support, rounding out SVG support for all the major browsers.

Beyond browsers, there are several dozen software applications that read or export SVG content
(see the list at http://en.wikipedia.org/wiki/Scalable_Vector_Graphics).

 CHAPTER 1 SVG Basics 5

Getting Started: A Simple Overview

You’ll see a more detailed step-by-step example at the end of this chapter, but it is important that you
gain some idea of what’s involved in viewing and creating SVG at the outset.

Viewing SVG
Start up any modern browser and point it at the website related to this book, http://cs.sru.edu/~svg
.com. Internet Explorer, Firefox, Chrome, Safari, and Opera all support viewing SVG on the web, so you
can use any of those. The most important exception is this: if you are using Internet Explorer, you will
either need to upgrade to Internet Explorer 9 (which requires Microsoft Windows Vista or later), or
you will need to download the free SVG plug-in (ASV version 3.03) from Adobe, at http://www.adobe
.com/svg/viewer/install/mainframed.html. For all the other browsers listed, using the latest version will
always prove helpful, because all of these browsers are making steady and frequent progress on their
implementations of the SVG specification.

SVG is a big specification—one that’s not trivial to implement. SVG 1.1 is generally the version
against which browsers are compared. As of this writing, no browser implements all of SVG 1.1,
despite the specification having reached recommendation status (meaning that it is officially a W3C
standard) in 2003 (http://www.w3.org/Graphics/SVG/History). Improvements to browser support tend
to appear on a monthly basis, so it is best to make sure that you’re using the latest release of what-
ever browsers you use.

As another example of the importance of using current browser versions, Firefox 3.6 does
not support SMIL animation, while Firefox 4.0 does. You’ll see more about the idiosyncrasies of
browser support in the discussions of the relevant topics, but note that the parts of SVG that per-
tain to animation, filters, and fonts are most likely to show browser differences.

Writing SVG
There are many different paths that one can follow to develop SVG. This book will show you several of
those in more detail in Chapter 6, “SVG Tools and Resources.” In the meantime, we recommend using
any simple text editor—for example, Notepad for Windows or TextEdit (properly configured for Mac;
see http://support.apple.com/kb/HT2523)—or any of the plethora of editing tools in Linux or UNIX
(nano, pico, emacs, vi, ed, kate, vim, kwrite, gEdit, etc.).

First, enter this very simple SVG file into your text editor, and save the file with the name
myfirstfile.svg (you can save the file to your local hard drive or a remote server, so long as you know
how to get to it from your web browser):

<svg xmlns="http://www.w3.org/2000/svg">
<circle r="50"/>
</svg>

http://cs.sru.edu/~svg.com
http://cs.sru.edu/~svg.com
http://www.adobe.com/svg/viewer/install/mainframed.html
http://www.adobe.com/svg/viewer/install/mainframed.html
http://support.apple.com/kb/HT2523

6 Building Web Applications with SVG

The file is also visible at http://cs.sru.edu/~ddailey/svg/simplest.svg should you have any problems
seeing the file you’ve created.

You’ll see information about more advanced editing environments at the end of this chapter, and
you’ll of course see many more examples of SVG code throughout the rest of the book.

Thirteen Examples That Show the Capabilities of SVG

To fully appreciate the power of SVG, complete with its interactivity and animation capabilities, I
encourage you to take a look at the tutorial page on this book’s website (http://cs.sru.edu/~svg), which
contains links to interesting examples, and also to explore and read the examples illustrated and
briefly discussed below.

Note We haven’t yet defined the terms for the effects described below, but we’ll make
them clear later on. At this point, we simply want to ensure that you have some idea of
what SVG can accomplish before you begin working with it. How else to know the lay of
the land?

example 1: Dynamic random Landscape Drawn with
JavaScript and SVG
The scenery here, inspired by one author’s frequent drives from his homeland in New Mexico to his
graduate school in Colorado, shows the effect of motion parallax on the various mountain ranges
leading from the foothills to the Continental Divide. As the vantage point moves continually north-
ward toward the badlands of Wyoming, a slightly impressionistic hot-air balloon follows. Its vertical
position, speed, and wind deformation change somewhat randomly as we move. The various lay-
ers of mountains recede behind us to the left, with the taller peaks remaining visible longer. Owing
to the use of random elements, no two landscapes will ever be the same (ignoring the infinitesimal
probability of extreme coincidence). The example can be seen at (http://srufaculty.sru.edu/david
.dailey/svg/balloon.svg).

http://cs.sru.edu/~svg
http://srufaculty.sru.edu/david.dailey/svg/balloon.svg
http://srufaculty.sru.edu/david.dailey/svg/balloon.svg

 CHAPTER 1 SVG Basics 7

Here’s how it’s done:

■■ The sky The sky consists of two rectangles. One, the background, is simply filled with
a linear gradient consisting of colors that move from brighter shades of sky blue to gray,
from bottom to top. The second rectangle provides a snow globe effect. The foreground
and smog, due to the overpopulation of communities along the front range, are simulated
through the color transitions in the foothills and the overlay of gray stemming from the
background and foreground.

■■ The snow globe effect This is produced using a radial gradient of varying transparency in
the foreground. With SVG gradients, you vary not only the colors as they change gradually
from one to another, but also their relative opacity.

■■ The balloon The balloon is entirely handled through JavaScript. A series of almost parallel
Bézier curves is created with start points and endpoints that coincide. The control points differ
and change over time. The entire group (a <g> element in SVG) then has its horizontal and
vertical positions varied through a timed loop that refreshes the screen every 10 milliseconds.

■■ The drawing of the mountains There are four layers of mountains, each filled with a linear
gradient that changes from yellow-brownish in the plains and foothills to the blue-white
of the snowcapped peaks of the Continental Divide. The hint of green in the second range
behind the foothills is meant to suggest the presence of the forests there. The heights of the
peaks are randomly determined, with an array of random xy-coordinates being first generated
and then sorted by their x-values. Then they are divided into triplets so that the peaks can be
connected by a series of curves, each having the previous endpoint and the next separated by
points in a cubic Bézier curve.

8 Building Web Applications with SVG

■■ The movement of the mountains The foreground layers are simply shifted leftward more
quickly than the layers in the back. Each array has its first element removed so that another
random element can be added onto the end of the array without the array becoming arbi-
trarily large. Any memory of what has happened is systematically purged.

example 2: equidistant positioning points along a Bézier Curve
The mathematics of Bézier curves, while quite accessible to a mathematician, are not trivial. Bézier
curves were, after all, not discovered until 1959 (see http://en.wikipedia.org/wiki/B%C3%A9zier_curve),
130 years after Évariste Galois resolved the theory of roots of polynomials and laid the foundation for
much of the algebra of the 19th and 20th centuries. Fortunately, SVG (following the lead of Adobe
Illustrator 88) gives direct and intuitive access to these wonderfully expressive curves in terms of
the ability to draw, measure, subdivide, orient, and animate them. In this example (visible at http://
srufaculty.sru.edu/david.dailey/svg/curve.svg), the curve is drawn with a simple set of markup com-
mands, and each time the user clicks the curve or near it, JavaScript is used to measure the curve
and divide it into an increasingly larger number of parts, with the option of animating the process
ultimately being offered to the user.

Here’s how it’s done:

■■ Drawing the curve The markup used is quite simple:

<path d="M 10 150 C 200 80 350 300 450 100" id="B"
 stroke="black" fill="none" stroke-width="4"/>

Note The drawing of SVG paths is one of the most powerful and expressive aspects
of the language; it’s covered in Chapter 2.

■■ Measuring and subdividing the curve The JavaScript language binding of SVG allows you
to interrogate properties of things that have been drawn either through markup or dynami-
cally, and to manipulate them using methods. In this case, we are using two function calls:
L = B.getTotalLength(); and P = B.getPointAtLength(L * i / n);. The first measures the path, B,
and returns a numeric value; the second returns a point (an object with both x and y values)
a given fraction of the distance along B. Script is then used to create new ellipses of different
colors at those fractional mileposts.

 CHAPTER 1 SVG Basics 9

example 3: Simple Animation (Just 38 Lines of Markup
and No Script)
This example, visible at http://srufaculty.sru.edu/david.dailey/svg/ovaling.svg, has been cited by others
for the richness it achieves even with such simplicity. The example uses SMIL animation to simultane-
ously vary 4 different attributes of 26 different objects. At the SVG Open 2010 conference in Paris,
one of Microsoft’s demonstrations showed that this particular example could be animated using one
of several SMIL emulators for SVG, although as of this writing, most browsers can run the animation
without additional assistance. Creating such a rich animation with other technologies, such as the
HTML5 <canvas> tag or Java Applets, would take much more code, thought, experimentation, and
time to develop.

Here’s how it’s done:

■■ Drawing one petal of the flower An ellipse is drawn with a given centroid and differing
radii in the x and y directions. It is made slightly more transparent than opaque (the opacity
is set to 0.4). It is then filled with a gradient (in this case, a linear gradient moving from red to
blue and then through green to yellow).

■■ Replicating the petal SVG allows considerable reuse of code. In this case, the initial petal is
reused four times through a series of <use> elements, each of which applies a different rota-
tion to the petal. This creates a petal cluster, which itself is then grouped and reused 5 more
times, for a total of 25 petals being drawn with only 9 lines of markup.

10 Building Web Applications with SVG

■■ Animating the illustration The initial petal of the flower (which is later replicated) has
three separate animations applied to it. The first gradually changes its orientation from 0 to
360 degrees over a period of 7 seconds. The next 2 animations vary the x value of the centroid
and the radius in the y direction over, respectively, 8 seconds and 3 seconds. Because 3, 7, and
8 are relatively prime, the entire animation will repeat every 168 seconds (3 × 7 × 8 = 168).
Because the animation is applied to a petal that is then reused 24 times, each of the 25 petals
inherits the same animation, with the rotation and repositioning being applied relative to each
differing initial position. One more circle at the center of the composition has its own color
animated to add a pleasant bit of chromatic variety.

example 4: Use of Gradients and patterns
This example, visible at http://srufaculty.sru.edu/david.dailey/svg/grid2.svg, consists of just 19 lines of
markup (not counting its animations) and no JavaScript. It demonstrates that some rather intriguing
results can be concocted by juxtaposing some quite simple SVG elements.

After you have grown accustomed to SVG, animations of this sort will be remarkably easy to create
and experiment with on your own.

 CHAPTER 1 SVG Basics 11

Here’s how it’s done:

■■ Creating the repeating pattern In this case, the pattern consists of two circles (one filled with
an off-center radial gradient and the other with a flat color and a different-colored stroke).

■■ Restricting the pattern to a shape The pattern is then applied to an ellipse (which of
course is animated).

example 5: Intersecting Clip paths
The example at http://srufaculty.sru.edu/david.dailey/svg/newstuff/clipPath4.svg demonstrates
four things:

■■ SVG allows bitmapped images (.png, .jpg, and .gif) to be imported and used in conjunc-
tion with other graphical primitives. As you will see later, this is done through the <image>
element.

■■ Images and other shapes can be clipped to the confines defined by a given shape (in this case,
a five-pointed star) using the <clipPath> element.

■■ There is more than one way of making clip paths intersect. Here, the lavender rectangle inter-
sects the five-pointed stars in two rather different ways.

■■ Like almost all things in SVG, clip paths can be animated. The example uses SMIL animation to
rotate the stars, revealing different parts of the underlying faces.

This particular example, first constructed in 2006, has served as a mini-benchmark test for brows-
ers. Originally, it only worked properly in Internet Explorer with ASV. Over time, Opera came to
handle the multiple clip paths and the animation, and each of the other browsers has been gradually
phasing in correct handling of intersected clip paths as well.

12 Building Web Applications with SVG

Here’s how it’s done:

■■ Clipping an image by a shape The leftmost image is defined by an <image> element. Its
attribute clip-path=“url(#CPST)” references the element <clipPath id=”CPST”>, which itself
contains a star-shaped <path> element.

■■ Clipping a clip path This is done in either of two ways in this example: First, the <image>
element to which a clip path has been applied is reused with a <use> element. The <use>
element then has another clip path applied to it (which happens to consist of the lavender
rectangle). The two clip paths intersect as would be expected. The other approach is to build
a <clipPath> that has its own clip-path attribute defined. This works in Internet Explorer 9,
Opera, and Internet Explorer with ASV, as you would expect, and is the same regardless of
whether the secondary clip path is applied to the parent <clipPath> or the elements within it.
The other browsers show a variety of idiosyncratic responses to this approach.

 CHAPTER 1 SVG Basics 13

example 6: Animated text Crawling Along a Bézier Curve
To anyone who enjoyed the excitement of new applications being unveiled in the Macintosh envi-
ronment of the mid-to-late 1980s, Adobe Illustrator’s ability to allow the layout of text to follow an
arbitrary curve, using a simple graphical user interface (GUI), fell in the category of “utterly cool.” The
example at http://srufaculty.sru.edu/david.dailey/svg/newstuff/textpath1.svg demonstrates that SVG
can do this—and go one step further: it can animate the text moving along that curve!

Here’s how it’s done:

■■ Laying text along a path While this will be discussed with examples later in the book, it
works rather like this: First, running text (a sequence of characters) is placed in an SVG <text>
element. Also in the <text> goes a <textPath> element that has a simple URI reference to the
ID of the <path> element.

■■ Animation of text following a path One attribute of <textPath> is startOffset. Its value
determines an offset for the initial position of the text. That is, a value of zero means that the
text will begin at the start of the path; higher values mean that the text will begin closer to the
endpoint. The effect is accomplished by simply animating that value with an SVG <animate>
element.

Example 7: Animated Reflected Gradients with Transparency
Some of the effects offered by SVG seem to be more interesting than useful. This is often true of
things like pure mathematics, until one’s imagination discovers (or invents) their utility. The radial gra-
dients available in SVG have the ability to repeat bands of color, using the values of reflect or repeat.

When seen in motion at http://srufaculty.sru.edu/david.dailey/svg/newstuff/gradient11c.svg, this
example is quite impressive. It’s best rendered by Chrome and ASV.

14 Building Web Applications with SVG

Here’s how it’s done:

■■ The two swirly gradients SVG has two primary sorts of gradients: linear and radial. The
radial gradient allows for a special type called a reflected gradient. In this case, two identi-
cal ellipses are located one atop the other. Both have alternating bands of opacity and
transparency coinciding with their alternating colors, which allows us to see through to the
background.

■■ The animation The center and focal points of the reflected gradients are then independent-
ly animated using SMIL animation.

example 8: Clock with Impressionist tinge
There are lots of SVG clocks on the Web. Displaying time is a medium of expression ripe with op-
portunity, it seems. This particular one is probably not the most artful, elegant, appealing, fanciful,
decorative, or marketable version available, but its ability to do what it does with only 79 lines of code
(about half JavaScript and half SVG) may help to illustrate the ease and brevity with which you can
achieve rich effects. You can find an animated version of this (for browsers that support SMIL anima-
tion) at http://srufaculty.sru.edu/david.dailey/svg/ballclock.svg.

 CHAPTER 1 SVG Basics 15

Here’s how it’s done:

■■ The animation All animation is handled declaratively (using SMIL). That is, there are no
JavaScript statements involving setTimeout() or setInterval() (used for conventional web
animation). A generic animation that handles the rotation of the clock’s hands is declared in
markup and then cloned through JavaScript, with its properties being modified in a simple
loop that handles the details of how fast each hand should move. Likewise, the gears are each
cloned from one protogear, with the dash patterns around their edges and their rotations
being assigned different speeds.

■■ The markup The markup is kept minimal by using script to replicate many copies of similar
things. SVG does not yet have a <replicate> element that might allow some of this script to
be handled declaratively. In the meantime, we can use markup and script for what each does
best—SVG allows the pleasant intermingling of both. The JavaScript is also used to assign
colors, sizes, and speeds to the various gears, and to determine the actual time of day so the
clock’s hands may be initialized.

■■ The clock face The hour marks are also done declaratively by setting the dash-array attri-
bute of the stroke around the clock face. The appearance of a slight curvature to the clock
face is provided through a radial gradient.

16 Building Web Applications with SVG

example 9: Using a Filter to Create pond ripples over an Image
This example shows some of the more advanced aspects of scripted animated gradients used in con-
junction with filters to distort an image. The animated version shows ripples (customizable by the user
using HTML input elements) moving across an image—much as ripples would disrupt the reflection of
an image in a pond.

Here’s how it’s done:

■■ Creating concentric circles The circles are created with script. A gradient can have differ-
ent color bands, called stops, defined within it. In this case, a series of concentric stops (orange
and green) is created through script and added to a gradient, which is then applied to an
ellipse under the image of a face.

■■ Animating concentric circles The radius (or offset) of each stop is then modified gradually
through subtle changes in a setTimeout loop defined in JavaScript. Interestingly, the script for
this example resides in the HTML rather than within the SVG, and the SVG DOM is accessed
from there.

■■ Distorting the image Once the above two things have been done, the rest is rather easy.
A filter is created that brings in both the concentric circles and the face as layers, and then dis-
tortion is applied through a filter effect known as <feDisplacementMap>, using the red chan-
nel of the gradient to determine the degree of distortion associated with the image. Because
green doesn’t contain red but orange does, <feDisplacementMap> provides the differential
distortion in concentric bands.

 CHAPTER 1 SVG Basics 17

example 10: Using <replicate> to Simulate Digital
elevation Maps
SVG is still evolving. Version 2 of the specification is presently under deliberation by the W3C’s Working
Group. While the language currently has only two types of gradients (linear and radial), several propos-
als exist for increasing that number. One, the proposal to allow declarative markup to create many ob-
jects that are tweened from one another—like animation, only spatial rather than temporal—is to use
<replicate>. While <replicate> would handle a wide variety of issues (such as this rotatable 3D portrayal
of a geographic landform), other proposals are considerably less broad in scope.

Here’s how it’s done:

■■ Interpolating between paths In this example, which you can find at http://srufaculty.sru
.edu/david.dailey/svg/dem/DEM_1.svg, many concentric polygons (with varying numbers of
points in their definition) are defined through interpolation and then cloned.

■■ Simulating 3D rotation Script then manipulates the data to enable rotation in three
dimensions.

Example 11: Non-Affine Cobblestones
Here’s another example showing the use of <replicate> (see http://srufaculty.sru.edu/david.dailey/svg/
replicate/repRectsGrad2g.svg). This example replicates interpolated polygons in two directions. While
<replicate> is not (yet) supported by the SVG specification, it is supported through an open source
JavaScript initiative that allows SVG-like declarative markup to be interspersed with actual SVG to cre-
ate a wide range of effects.

http://srufaculty.sru.edu/david.dailey/svg/dem/DEM_1.svg
http://srufaculty.sru.edu/david.dailey/svg/dem/DEM_1.svg
http://srufaculty.sru.edu/david.dailey/svg/replicate/repRectsGrad2g.svg
http://srufaculty.sru.edu/david.dailey/svg/replicate/repRectsGrad2g.svg

18 Building Web Applications with SVG

Here’s how it’s done:

■■ The basic shape First, a quadrilateral is drawn with SVG using a <path> element.

■■ Replicating from left to right It is then replicated by placing a <replicate> element inside
the <path>. The <replicate> element instructs the quadrilateral’s shape and position to be
gradually duplicated from left to right. Additionally, the gradient applied to the quadrilateral
is retrieved, and one of its defining color bands (or stops) is gradually changed from red to
green, and finally to purple (with the color values of that gradient being modified as well).

■■ Replicating vertically The results of the first replication are viewed as part of a group that
is then replicated upward, with its scale being modified as it is cloned.

example 12: triangular tiling
While SVG has a <pattern> element, which allows the creation of repeated rectangular tiles, if you
wish to use nonrectangular tilings or to individually modify the elements from one part of a pat-
tern to another, then script may be the way to go. The juxtaposition of opacity, rotation, gradients,
and triangles is something easily done in SVG. The rotation of the inner triangles creates a bivalent
appearance of either clover leaves or honeycombs, depending on orientation. You can see this ex-
ample at http://srufaculty.sru.edu/david.dailey/svg/triBraids4.svg.

 CHAPTER 1 SVG Basics 19

Here’s how it’s done:

■■ The basic shapes We begin with two triangles, having different orientations and gradient
fills. Some opacity in the gradients is used to allow the background to be seen.

■■ Duplication using script In this case, script is used to build a triangular tiling through
cloning of the initial triangles. The center of each triangle is then filled with another triangular
shape filled with random colors (from a very select range of possibilities).

■■ Finishing effects An underlying gradient is applied and slowly animated to give an almost
subliminal sense of “atmosphere.” For browsers that support SMIL animation, some of these
effects, including rotation, are animated.

example 13: A Web Application for Drawing Graphs (Networks)
This particular application has been built and rebuilt by its authors in many different languages (cT,
HyperTalk, Java, VML, and now SVG with JavaScript) over the past 25 years. It has proven invaluable
for the teaching of discrete mathematics to undergraduate students. Basically, using a few thousand
lines of JavaScript, it builds a click-and-drag GUI interface to allow the creation, editing, replication,
storage, and retrieval of finite graphs. Like many emerging web applications, the SVG here is sort of
secondary, with JavaScript and event handling consuming the predominant effort. SVG can be used
to play a crucial role in the increasingly important realm of web applications.

20 Building Web Applications with SVG

Here’s how it’s done:

■■ Drawing One advantage of using SVG—instead of comparatively lightweight graphical
technologies, such as <canvas> in HTML—for building web applications is that objects in
SVG are in the DOM. This means that events can be easily attached to objects and SVG event
handling, much like those in the nongraphical parts of HTML. Thus, mouse coordinates (as well
as the targets of events) can easily be interrogated to allow the creation and repositioning of
objects, in the classical sense of a GUI.

■■ Connecting Again, because SVG objects are in the DOM, it is easy to build JavaScript refer-
ents to those objects so that arrays of objects and their properties may be maintained along
with connections back to their visible instantiations. It is easy to connect and disconnect nodes
of graphs, precisely because they are objects, both in JavaScript and SVG.

■■ Interface The example shown here uses JavaScript to build a menuing system along with
dialog boxes, and the ability to export and import the user’s drawings. However, much of this
functionality can also be provided through higher-level tools, such as D3, and Pergola (dis-
cussed in later chapters).

 CHAPTER 1 SVG Basics 21

Diving In: A Step-by-Step Approach to Building a
Simple SVG Document

The following exercises are presented at a deliberately slow pace. Once you get the hang of how SVG
works (in some general way), the pace will quicken a good deal.

A first file

We already introduced a very simple example of an SVG file in this chapter, in the “Writing SVG” sec-
tion. Let us recommence at that point:

1. Open a trusty text editor (something that allows you to see and save plain text—typically plain
ASCII or UTF-8 in .txt format).

2. Create a file containing the following lines of code, and save it as first.svg:

<svg xmlns="http://www.w3.org/2000/svg">
 <circle r="50"/>
</svg>

3. Open the same file in a web browser. You can leave your text editor open because you may
wish to later revise the file to add new things. For your browser, you may use a current version
of Chrome, Firefox, Internet Explorer (see notes on this from the “Viewing SVG” section earlier
in the chapter), Opera, or Safari.

You should see something that looks like the image below, which shows screen shots of
Firefox, Chrome, Opera, Internet Explorer, and Safari (from left to right, top to bottom).

22 Building Web Applications with SVG

4. If you wish to serve this file from your own server, then make sure that the server is serving its
mime type as Content-Type: “image/svg+xml”. You may have to contact your systems admin-
istrator to make sure the server is properly configured. If problems arise, please refer to the
document SVG MIME Type, at http://planetsvg.com/tools/mime.php.

Intermission and Analysis
Next, we’ll discuss the code from the preceding exercise so you can see what it does.

<svg xmlns="http://www.w3.org/2000/svg">
 <circle r="50"/>
</svg>

SVG As XML
The first and last lines show that SVG, as an XML dialect, is a markup language. Each element—in the
simplest case, a single word between the angle brackets—must have a beginning (the <svg> in this
case) and an end (the </svg> in this example). You can end the tag like this:

<svg></svg>

Or you can end it like this:

 <circle ... />

This second example is called a self-terminating tag, because the slash (/) occurs at the end of the
tag itself. Note that the second line in this example is indented as a convention for making the code
more readable—the indentation isn’t required.

Attributes
All SVG elements have a collection of attributes that are divided into two categories: regular at-
tributes and presentation attributes (http://www.w3.org/TR/SVG/attindex.html). The first category
includes, for example, geometrical attributes, such as x, cx, and width. The second category includes,
for example, paint attributes, such as fill, stroke-width, display, and opacity.

The <circle> element, for example, has an attribute r (meaning radius). The fact that the r attribute
has a value of 50 means (in the simplest and standard case) that the circle’s radius will be 50 pixels.

the SVG Namespace
The <svg> element has the attribute/value pair xmlns=”http://www.w3.org/2000/svg” (meaning that
the XML namespace used to interpret the document will be one specified by the W3C).

 CHAPTER 1 SVG Basics 23

The xmlns attribute (which appears not to have been a part of the language originally, because the
Adobe and Opera viewers are unique in not requiring it) is necessary for most browsers to be able to
display the code as SVG.

Essentially, the xmlns attribute merely tells the browser that it will be speaking a new dialect of
XML. This is because most browsers of the 20th century assumed that the only language they would
need to know was HTML. Writing <svg> isn’t sufficient to let the browser know this, because the XML
specification requires a namespace. It is rather unfortunate, from the perspective of teachers and
learners, that the computer languages we learn are filled with mysteries that have no apparent pur-
pose until one becomes a guru. However, you can think of the code xmlns=”http://www.w3.org/2000/
svg” within the <svg> element as just that: a mysterious incantation probably placed in the language
to make sure that casual learners know to be on their guard. It turns out that it is not all that impor-
tant to understand.

Screen Coordinates
Before beginning the second exercise, in which you’ll begin experimenting with SVG, consider the
drawing space itself—the browser window. Each point within the drawing space (also known as the
Cartesian plane) is identified by a pair of coordinates (x and y). The upper-left corner of the screen
is the point (0,0) and—depending on screen resolution and the current size of the window—the
lower-right corner could have coordinates such as (800,640), (951,651), or (1440,900). The number of
pixels determines the resolution of the screen. The resolution on mobile devices varies considerably;
240×320 pixels is a popular size for smaller and older devices.

24 Building Web Applications with SVG

Modifying your code and experimenting

In this exercise, you’ll experiment with the circle you drew in the previous exercise by changing its
location, size, and color, rebuilding it so that only its outer boundary remains black.

1. Move the circle to the center of the screen. You do this by setting the x and y coordinates of
the center of the circle (cx and cy, respectively) to 50 percent, which is measured relative to the
width and height of the browser window.

 <svg xmlns="http://www.w3.org/2000/svg">

 <circle r="50" cx="50%" cy="50%"/>

</svg>

2. Increase the radius and set it as a fixed proportion of the browser’s width.

Note A geometric attribute, such as cx, cy, or r in this case, can be set as either a
proportional value (relative to window size) or an absolute value (pixels, by default).

<svg xmlns="http://www.w3.org/2000/svg">
 <circle r="25%" cx="50%" cy="50%"/>
</svg>

3. Change its color. You can do this by setting the fill attribute to a named color, or in a variety of
other ways (e.g., using CSS or HTML hexadecimal values, RGB values, or HSB values).

<svg xmlns="http://www.w3.org/2000/svg">

 <circle r="25%" cx="50%" cy="50%" fill="darkorange"/>

</svg>

 CHAPTER 1 SVG Basics 25

4. Change the code so that just the outside of the circle is colored. This actually involves three
tasks: setting the fill of the circle to none so that its interior is transparent, setting its stroke
to some color (e.g., darkorange), and defining a width for the stroke. The code below also
adjusts the color from the named color darkorange to #e60, which is a bit lower on the
red channel and a good bit lower on the green channel than the darkorange hexadecimal
equivalent, #FF8C00.

<svg xmlns="http://www.w3.org/2000/svg">
 <circle r="25%" cx="50%" cy="50%" fill="none" stroke="#e60" stroke-width="25"/>

</svg>

5. Make the inside transparent. You can accomplish this by putting another opaque circle behind
it and scooting it a bit to the left. Note that the first object defined appears behind objects
that appear later in the document tree. In this case, we’ve also added another namespace
identifier (which is not strictly needed here, but will become necessary for elements that use
the SVG linking facilities to link to external documents or code fragments defined elsewhere
within the same document). It’s here so you can become accustomed to seeing it, because it’s
part of the standard declaration of a typical SVG document.

26 Building Web Applications with SVG

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink" >
 <circle cx="30%" cy="50%" r="25%"
 fill="lightgreen" stroke="#e60" stroke-width="25"/>
 <circle cx="50%" cy="50%" r="25%"
 fill="none" stroke="#e60" stroke-width="25"/>
</svg>

Accomplishing a given effect

In this exercise, we will present a picture and ask you to analyze and then try to draw it.

1. Observe the following SVG drawing, referred to as “the objective”:

2. Identify the type of objects that seem to be used in the drawing.

 CHAPTER 1 SVG Basics 27

tip Until we introduce the full range of graphical primitives, we will restrict
the drawing to circles, ellipses, and rectangles, all of which are somewhat self-
explanatory once you see the syntax.

In this case, it appears that there are three objects: a circle (that very much resembles our
earlier one), an oval (called an ellipse in SVG), and a rectangle.

3. Identify the order in which the objects are drawn. The front-most object appears to be the
ellipse, and its yellowish fill pattern appears slightly transparent, because you can see through
it to the objects behind it. From back to front (which coincides with the order in which the
objects will be drawn), there appears to be a circle, then a rectangle, and finally an ellipse. It’s
important to note that the topmost object (the ellipse) is transparent in its interior but not its
boundary.

4. Determine whether the objects seem to be drawn using relative values (percentages) or abso-
lute values (pixels) for their geometric attributes.

You may find it useful to view the drawing on the web, where you can see how the draw-
ing is affected by resizing the browser. You can find the drawing here: http://granite.sru
.edu/~ddailey/svg/lesson3.svg.

In this case, it makes sense to begin with the assumption that the geometry has been drawn
relative to the window size for three reasons: because the circle seems to be the same as in the
second exercise (which used relative values for its geometry), because the rectangle’s top line
seems to coincide with the center of the circle, and because the ellipse appears to share the
same center as the circle.

5. Start off with the same file you created at the end of the previous exercise, because it appears
that the two files share the same circle, and the objective illustration would involve placing
that circle beneath the other objects—which means earlier in the markup code.

<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink" >

 <title>Collage involving <rect> , <circle> and <ellipse> </title>

 <circle cx="50%" cy="50%" r="25%" fill="none" stroke="#e60" stroke-width="25"/>

</svg>

The preceding code contains one additional line: a <title> element. As an image format, SVG
has great potential to address issues of accessibility for visually impaired people, so it is best
to get in the habit of adding a title to all your documents. You’ll see more about accessibility
later in this book, because it is an important topic, particularly for SVG.

6. Add a light-blue rectangle on top of the circle and adjust its size, position, color, stroke, and
stroke width:

http://granite.sru.edu/~ddailey/svg/lesson3.svg
http://granite.sru.edu/~ddailey/svg/lesson3.svg

28 Building Web Applications with SVG

<svg xmlns="http://www.w3.org/2000/svg"

xmlns:xlink="http://www.w3.org/1999/xlink" >

 <title>Collage involving <rect> , <circle> and <ellipse> </title>

 <circle cx="50%" cy="50%" r="25%" fill="none"

 stroke="#e60" stroke-width="25"/>

 <rect x="10%" width="80%" y="50%" height="10%"

 fill="#8ff" stroke="black" stroke-width="6" />

</svg>

The <rect> element, like the <circle>, can have fill, stroke, stroke-width, and other attributes.
The x and y attributes specify the rectangle’s upper-left corner, and height and width specify
its size. Because you want the top of the rectangle to coincide with the center of the window,
you can set x to “50%”. You also want it centered on the screen horizontally, so the distance of
its rightmost extent (specified by x + width) to the right edge of the window should equal x.
By experimenting a bit with different values of x and the corresponding value of width (deter-
mined by the centering constraint), you can visually estimate the values above (or similar val-
ues). Note that 100% – (80% + 10%) = 10%, which means that the rectangle will be centered
horizontally, even though it is not centered vertically. The values for stroke-width and fill can
likewise be estimated through experimentation.

7. Put an oval atop everything and fill it with a transparent shade of yellow, while keeping its
stroke opaque:

<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink" >

 <title>Collage involving <rect> , <circle> and <ellipse> </title>

 <circle cx="50%" cy="50%" r="25%" fill="none" stroke="#e60" stroke-width="25"/>

 <rect x="10%" width="80%" y="50%" height="10%" fill="#8ff"

 stroke="black" stroke-width="6" />

 <ellipse cx="50%" cy="50%" rx="10%" ry="40%" fill="yellow" fill-opacity=".45"

 stroke="purple" stroke-width="15" />

</svg>

An ellipse, like a circle, has a center defined by cx and cy. However, owing to the difference
in its vertical and horizontal extents, it has two radii: ry and rx, respectively. Because this oval
is taller than it is wide, you can approximate the values above fairly closely by testing a few
values and seeing what happens. Alternatively, you could actually measure the drawing on the
screen to duplicate the effect more precisely.

http://support.apple.com/kb/HT2523

 CHAPTER 1 SVG Basics 29

The preceding code introduces a new attribute: opacity. All the typical drawn objects (such as
rect, circle, polygon, ellipse, and path) all have an opacity attribute. When opacity is set to “1.0”,
an object’s stroke and fill are completely opaque. When opacity is set to “0.0”, the object is
completely invisible. If you don’t specify opacity, the browser assumes that opacity is 1. If you
wish to specify different levels of opacity for an object’s stroke and fill, you can do so using
the attributes stroke-opacity and fill-opacity.

The code you end up with for this exercise should closely match the code of the example at http://
granite.sru.edu/~ddailey/svg/lesson3.svg.

Summary

With this chapter, we hope to have given you a sense of how useful, elegant, and important SVG is
for building informative and appealing graphics. You can accomplish a broad range of effects with
this technology, ranging from practical to artistic, while making your graphics both dynamic and
interactive. SVG is a powerful technology, and yet it allows you to easily begin the process of experi-
menting and learning. We feel it is a valuable technology that is just beginning its ascent to wide-
spread deployment.

 31

C H A P T E R 2

Creating and editing SVG Graphics

Order becomes beauty
beyond infinite planes
and the undeciphered dense text
a mosaic flower, fiery,
chaos tamed in fullness,
spring.

Orides Fontela

In this chapter:

Creating Basic Vector Shapes . 32

paths in SVG . 38

An example of Building Complex Shapes 40

Accessing and reusing Graphics . 50

Creating patterns . 52

Case Study: Designing a reusable pattern 52

By the end of this chapter, you will have explored the core concepts and practiced the basic skills to
begin tapping into your visual creativity. One great thing about programming graphics is that you can
usually visualize your work almost immediately. To demonstrate this, you’ll walk through a process
that uses all of the basic shape elements of SVG. As a teaser, here’s a look at one of the graphics that
you will build in this chapter.

32 Building Web Applications with SVG

This graphic incorporates all of the basic shapes, the simple Bézier curve, more complex cubic
Bézier curves, and bitmap images. It also demonstrates the logical grouping and reusing of related
graphics, and finally, how to pull everything together into a reusable tiling pattern, which is also
known as tessellation of the plane.

Note Although mathematical functions underlie the creation of SVG, and getting the most
out of SVG requires a decent grasp of mathematical concepts, those of us who have limited
mathematical talents can still harness the power and creative potential of SVG.

Creating Basic Vector Shapes

To get started, we’ll go over the six basic shape elements: <line>, <rect>, <circle>, <ellipse>,
<polyline>, and <polygon>.

Lines
To create a visible line in SVG, simply set the x2 and y2 values of the <line> element. You can set the
line’s color and other properties as well using the stroke-related attributes.

 CHAPTER 2 Creating and Editing SVG Graphics 33

<line x2="300" y2="100" stroke="green" stroke-width="10" stroke-linecap="round" />

Note By default, most SVG shape properties have initial or default values. For example, the
initial value of most positioning properties is zero, which is why you do not have to specify
the x1 and y1 values for the <line> element. Also, the default fill color for shapes is black,
so the shape <circle r="50" /> or <polygon points="850,75 850,325 742,262 742,137" /> will
appear black even though the fill has not been specified.

Brief review of SVG presentation Attributes
Besides the command attributes that define a shape’s position, radius, width, and height, SVG also has
many attributes that define a shape’s style. You are probably already familiar with attributes such as
display, visibility, font, and letter-spacing. SVG also has many SVG-specific styling properties (as in the
example above, which shows how the stroke attribute allows you to define the color of the line).

SVG presentation attributes can help you quickly set the paint and geometrical values of SVG ele-
ments; apply gradients, filters, and clipping; and control the interactive behavior. Chapter 3, "Adding
Text, Style, and Transforms" covers presentation attributes in more depth, but Table 2-1 provides a
quick reference for common properties that you will be using in this chapter.

TABLE 2-1 Common SVG Presentation Attributes

Attribute Values

stroke This specifies the color of the stroke. The valid color values are the same as in CSS3 and HTML5:
named color (e.g., "blue"), hexadecimal (e.g., "#f34a12"), RGB (e.g., "rgb(255,255,255)"), HSL
(e.g., "rgb(100%,50%,90%)"),%), and so on. More detail about SVG colors can be found here:
http://www.w3.org/TR/SVG/color.html.

stroke-width This specifies the width of the stroke for a shape or text using either a percentage or a length value.
When using a length value, we recommend specifying the type of unit (px, cm, etc.) to prevent
cross-browser issues. It is worth pointing out that the units specified in the outermost <svg> tag
are inherited by all descendants, and that the default value is px. You can find more details about
possible length values here: http://www.w3.org/TR/SVG/types.html#DataTypeLength. Note that
the stroke is centered on the edge of a shape, so if stroke-width is set to a large enough value, the
shape’s fill may not even display.

stroke-opacity This is a number between 1.0 and 0.0. A value of 1 makes the stroke entirely opaque and 0 makes
it invisible.

stroke-dasharray This is a list of user coordinate values (px) that determines the length or pattern of the invisible
spacing to be drawn between segments along the stroke of text or a shape.

34 Building Web Applications with SVG

Attribute Values

stroke-linecap This defines the shape at both ends of a line. The options are butt (the default), round, and square.

stroke-linejoin This determines the shape to be used at the corners of paths or basic shapes. The options are miter
(the default), round, and bevel.

fill This specifies the color of the shape or text.

fill-opacity This is similar to the stroke opacity. Note that if the opacity is between 0 and 1, and the stroke
value is set to a different color or opacity than the fill color, then the inner portion of the stroke will
be a different color than the outer portion of the stroke, which can create some nice effects.

fill-rule This determines which portions of a shape will be filled. The options are nonzero (the default) and
evenodd. Note that this is usually straightforward, but for more interesting or complex shapes, the
result of fill-rule can be less obvious, as explained in the “Fill Properties: nonzero and evenodd”
section.

rectangles
The rectangle element (<rect>) requires width and height attributes, but you can also specify x and
y attributes, which specify the position in relation to the top-left corner of the SVG canvas. If they
are not specified, they default to (0,0). Optional rx and ry attributes are also available, which apply a
uniform rounding to all the corners. If only rx is specified, ry is equal to rx.

<rect x="50" y="50" width="300" height="170" rx="90" ry="50"
 stroke="darkseagreen" stroke-width="10"
 fill="lightgray" fill-opacity="0.6" />

Circles
As mentioned in Chapter 1, “Stepping into SVG,” the SVG <circle> element only requires a value for
the radius. In the following image, the cx and cy values are set to (100,50).

 CHAPTER 2 Creating and Editing SVG Graphics 35

<circle cx="150" cy="150" r="100"
 stroke="darkseagreen" stroke-width="10" fill="grey" fill-opacity="0.6"/>

ellipses
The <ellipse> element provides the additional attribute ry so that both the x and y radius values can
be set as shown below:

<ellipse cx="110" cy="55" rx="70" ry="35"
 stroke="darkseagreen" stroke-width="0.8"
 fill="lightgray" fill-opacity="0.6" />

polylines and polygons
There are just two additional basic shapes: the polyline and the polygon. They are very similar to each
other in that they both simply require the points attribute, which contains a list of x,y value pairs. Both
of these shapes allow for drawing a series of straight lines, as if a pen were set down and used to draw
on paper.

36 Building Web Applications with SVG

The primary difference between the <polyline> and <polygon> shape elements in SVG is that the
polyline path will not be closed by default—that is, the two endpoints will not be connected unless
you specify that they should be. If you wish a polyline shape to be closed, you need to specifically
draw an endpoint that meets back up with the starting point. The polygon, on the other hand, will
automatically close the shape from the last specified point, as shown in this example:

// open
<polyline points="200,60 240,230 310,230 350,60"
 fill="lightcyan" fill-opacity="0.7" stroke="darkviolet"
 stroke-width="25" stroke-linecap="round" stroke-opacity="0.2" />

// closed
<polygon points="100,50 115,120 150,150 115,180 100,250 85,180 50,150 85,120"
 fill="darkorange" fill-opacity="0.5" stroke="papayawhip"
 stroke-width="20" stroke-opacity="0.7" stroke-linejoin="miter"/>

Note how the stroke-linejoin and stroke-linecap attributes affect the shape.

Note All of these basic shapes have been purposely designed by the W3C community for
ease of use, and each type of shape element carries an inherent semantic meaning as well.
As discussed in the previous chapter, there are many benefits of semantic languages, and
the well-defined shape elements of SVG have inherent benefits for projects such as map-
ping, CAD, and graphic design.

Creativity with Basic Shapes
The beauty of the SVG language is that with just this basic knowledge, you are already able to start
building some complex vector graphics that will render in all the major browsers. As an example, this
next image demonstrates some of the fancy things that you can already do with a little creativity and
knowledge of SVG shape properties.

 CHAPTER 2 Creating and Editing SVG Graphics 37

This next example shows how the <line> element can be styled, with surprising results. All of the
shapes on the left of the figure were created with a single <line> element, and all of the shapes on
the right were created with just two <line> elements.

Even more interesting, the following minimalistic example demonstrates how to create fancy circu-
lar shapes using just one or two <circle> elements.

This third example uses only one or two <polygon> elements—again with interesting results:

38 Building Web Applications with SVG

I encourage you to open the code samples (see the Introduction for instructions on downloading
the code samples) that come with this book to better understand how these interesting shapes were
created. This will provide you with valuable insights into the workings of presentation attributes such
as stroke, opacity, dash array, and others.

In addition to the basic shape elements, SVG provides the much more expressive <path> element,
which allows you to create any type of two-dimensional shape.

Paths in SVG

The <path> element is the most flexible drawing primitive in SVG. It contains subcommands that
allow it to mimic all of the other basic shapes. As such, it is a bit trickier to learn.

Like other drawing primitives such as <rect> and <ellipse>, <path> can take attributes such as fill,
stroke, and dash array. On the other hand, <path> uses a special syntax to describe the way it actu-
ally visits points on a plane. It borrows some of its origin (at least ideologically) from turtle graphics
(http://en.wikipedia.org/wiki/Turtle_graphics), which are used in the Logo programming language to
help introduce younger children to the basics of computer programming.

The SVG <path> element is very expressive due to the range of powerful path commands that it
uses. As with the HTML5 <canvas> element, paths can be used to draw pen-up and pen-down move-
ments, quadratic and cubic Bézier curves, and elliptical arcs, all within a single path. That is, you move
the pen (or drawing point) from position to position, raise it and lower it, and make strokes of varying
types. These instructions within the <path> syntax are called subcommands of the path object. In
SVG, you’ll find them in the data attribute (d) of the <path>.

 CHAPTER 2 Creating and Editing SVG Graphics 39

Paths typically begin with the M subcommand, which instructs the drawing to begin at a specific
(x,y) point, such as (100,100), like so:

d = "M 100,100 ..."

From there, you continue adding points—that is, (x,y) pairs—describing segments to be joined
along the path. The following section shows how this works.

<path> Subcommands: M and L
Start by specifying where the drawing will begin. As the first command for the d attribute, you insert a
notation such as M x y, where x and y are numbers. You can think of M x y as meaning “Move the pen
to the coordinates (x,y).” From there, you have the option of drawing a line (L), a quadratic curve (Q),
a cubic curve (C), or an arc (A). For example, d="M 50 50 L 150 150" would draw a diagonal line from
the point (50,50) to the point (150,150).

<path stroke="black"
 d="M 50 50 L 150 150"/>
<path d="M 150 50
 L 250 150 350 100"/>

You should note several things about this example:

■■ The second path does not specify a stroke; by default, the figure is filled with black. If you
specify fill="none", the figure will be invisible unless you specify a stroke.

■■ You can, for the sake of legibility, use commas between pairs of coordinates, in which case the
space after the comma is optional.

■■ You can omit the command letter on subsequent commands if the same command is used
multiple times in a row, as shown in the second path, where the L command is followed by
two pairs of values. Note also that if a MoveTo command (M or m) is directly followed by mul-
tiple pairs of coordinates, the subsequent pairs are treated as implicit LineTo commands.

40 Building Web Applications with SVG

Fill properties: nonzero and evenodd
Since a path is filled with black by default, it is natural to wonder what happens when a path crosses
itself. As mentioned in Table 2-1, the default fill-rule value is nonzero, which means that by default, the
union of the regions traversed by the path is filled unless you specify otherwise. You can find more
information on this in the “Fill Properties” section of the SVG specification, at http://www.w3.org/TR/
SVG/painting.html#FillProperties.

Here is an example to show the difference between the fill-rule values nonzero and evenodd.

<path d="M 70,290 L 150,150 200,250 40,250 100,150 170,290"/>
<path d="M 70,290 L 150,150 200,250 40,250 100,150 170,290"
 fill-rule="evenodd" transform="translate(250,0)"/>

This example demonstrates the default fill technique, as well as the evenodd fill rule on a shape that
intersects itself in more than one place.

Note To demonstrate how the fill-rule attribute rule works in this example, we moved the
second path shape, which has fill-rule="evenodd" applied to it, 250 units along the x-axis
through the use of the translate method of the transform attribute. You will learn more
about the transform capabilities in Chapter 3.

An Example of Building Complex Shapes

This section shows how you can use the pen-down command M to make more complex shapes with
<path>.

http://www.w3.org/TR/SVG/painting.html#FillProperties
http://www.w3.org/TR/SVG/painting.html#FillProperties

 CHAPTER 2 Creating and Editing SVG Graphics 41

The following code creates two paths, with one apparently drawn inside the other (in the sense
that the coordinates of one are contained inside the polygon defined by the other):

<path d="M 100,350 300,100 500,350" fill="none" stroke="black" stroke-width="20"/>
<path d="M 250,320 250,220 350,220 350,320" fill="none" stroke="black" stroke-width="20"/>

The figure contains two paths: one with three points, the other with four. Note how the triangle
encompasses the rectangle.

Next, we add the simple z subcommand (shown below in bold) at the end of each of the strings,
which closes the path by drawing a final line back to the path’s starting point. After we do that, the
paths will be closed rather than left open between endpoints.

<path d="M 100,350 300,100 500,350 z" fill="none" stroke="black" stroke-width="20"/>
<path d="M 250,320 250,220 350,220 350,320 z" fill="none" stroke="black" stroke-width="20"/>

The new rendered SVG image looks like this:

Alternatively, you could create the preceding image using only a single path object (see
http://www.w3techcourses.com/svg_images/onepath.svg), as follows:

<path d="M 100,350 300,100 500,350 z
 M 250,320 250,220 350,220 350,320 z"
 fill="none" stroke="black" stroke-width="20"/>

42 Building Web Applications with SVG

This method can save a bit on markup, but is a little harder. However, there are some additional
benefits to this approach that are worth considering. By combining the two shapes above into one
compound path, you can define the fill rule of that path as evenodd. The net effect of this is that the
shape’s fill color will not be applied to the interior region (although it would be applied to regions
inside the interior region). Try this combined code:

<path d="M 100,350 300,100 500,350 z
M 250,320 250,220 350,220 350,320 z"
 fill="#ff8" stroke="black" stroke-width="15" fill-rule="evenodd"/>

You can see the advantage in the next graphic. The rectangles that underlie the triangle are visible
through the rectangular hole in the shape. This effect would be difficult to produce if the two parts
of this compound path were separate paths, because to be visible, the rectangle would have to be on
top of the triangle—but in that case, nothing inside it other than the triangle itself would be visible.

We have just demonstrated how to create a complex vector graphic shape using a single SVG path
element that contains a yellow triangle with a rectangular hole showing pink and green rectangles
underneath. The next section discusses creating shapes using Bézier curves.

Quadratic Bézier Curves: the Q Subcommand
I became aware of Bézier curves in the mid-1980s when I discovered that Adobe Illustrator had the
ability to draw amazing curves quickly. You can find good treatment of the subject on Wikipedia, at
http://en.wikipedia.org/wiki/B%C3%A9zier_curve#Quadratic_curves.

Here’s basically how a quadratic Bézier curve works in SVG. You define an initial point (e.g.,
100,200) using a pen-down command. From there, you set a course heading toward the next point;
however, instead of actually moving to the next point, you just aim in that direction. So, for example,
while "M 100 200 L 200 400" will make you actually arrive at the point (200,400), "M 100 200 Q 200
400…" will merely point you in that direction. Ultimately, you also need a final destination, which is the
final coordinate pair required for a quadratic Bézier curve. In the example that follows, the command
"M 100,200 L 200,400 300,200" draws a red path between (and reaching each of) the three points

 CHAPTER 2 Creating and Editing SVG Graphics 43

indicated. But simply replacing the L with a Q (i.e., "M 100,200 Q 200,400 300,200") produces a curve
that passes through both endpoints and is a tangent to the associated lines of the allied line path at
the endpoints of the segments.

Bézier Curve example
This example clearly shows how the quadratic Bézier curve is created.

<path d="M 100 200 Q 200,400 300,200" fill="none" stroke="blue" />
<path d="M 100 200 L 200,400 300,200" fill="none" stroke="red"/>

While an infinite number of curves are tangent to both the line "M 100 200 L 200 300" at (100,200)
and "M 200 400 L 300 200" at (300,200), only one quadratic shares these properties, even if you allow
for rotations (in the sense of parametric equations) of the quadratic. That is, those three points in the

44 Building Web Applications with SVG

plane uniquely define a specific curve. Likewise, any three noncollinear points in the plane determine
one quadratic Bézier curve.

Revisiting the earlier example, which modified the fill rule to produce an empty space in the mid-
dle of the curve, you can draw the same curve with quadratic splines instead of lines to see the effect.

Here’s an example of a graphic that uses a quadratic spline:

<path fill-rule="evenodd"
 d="M 70 140 L 150,0 200,100 L 40,100 100,0 L 170,140 70 140"/>

<path fill="red" fill-rule="evenodd"
 d="M 70 140 Q 150,0 200,100 Q 40,100 100,0 Q 170,140 70 140"/>

Note how the above example

<path id="H" fill="#bbb" fill-rule="evenodd"
 d="M 70 140 L 150,0 200,100 L 40,100 100,0 L 170,140 70 140"/>

can have its Ls modified to Qs:

<path id="X" fill="#b42" fill-rule="evenodd"
 d="M 70 140 Q 150,0 200,100 Q 40,100 100,0 Q 170,140 70 140"/>

That produces a shape similar to the following (we’ve changed the colors and added in identifiers
to the paths for easy reference in the text here):

 CHAPTER 2 Creating and Editing SVG Graphics 45

The figure shows two paths produced from the preceding code. Both paths have the same points,
but one is linear (id="H") and the other is quadratic (id="X").

Observe that the angles of the reddish shape (X) at which the curves actually meet are sharp rather
than rounded. Let’s look more closely. If you’re familiar with trefoil knots (see http://en.wikipedia.org/
wiki/Trefoil_knot), then that is the sort of shape we’ll be aiming toward.

First, observe that if the desired shape were to pass through any of the six points of the linear path
H, then in order for the parts of the curve that meet there to be smooth, and for any of them to be
tangent to lines of H, the new curve would have to extend beyond the bounds of X. You could extend
the lines of X into a larger equilateral triangle and then work on building your trefoil knot. You could
do this with cubic Bézier curves by defining a curve that passes through the same three endpoints
(http://www.w3techcourses.com/svg_images/lineOutCub.svg) that it already does, but that is guided
by the control points consisting of the three points of the circumscribed triangle (shown in the next
figure as the light green line).

<path fill="#c53" fill-rule="evenodd" opacity=".5"
 d="M 70 140 C 17.5 ,140 150,0 200,100 C 220, 140 40,100 100,0 C 127,-47 170,140 70 140"/>

As a final example, the following demonstrates how to stitch Bézier curves together smoothly. For
this to happen, the slopes of the lines at either side of a segment’s endpoint must be the same.

http://en.wikipedia.org/wiki/Trefoil_knot
http://en.wikipedia.org/wiki/Trefoil_knot

46 Building Web Applications with SVG

Notice that the brown and blue paths share the same beginning points and endpoints, initial
and final control points, and midpoints (150,200). They differ only in terms of the control points
surrounding the midpoint. The blue path aims toward (100,100) and then changes direction toward
(200,300), passing through the midpoint on its way and tangent to the line, as shown. Because the
three relevant points, (100,100), (150,200), and (200,300), are collinear, the slopes of both segments
are the same at the point where they meet, implying that the curve is smooth (continuously dif-
ferentiable) at that point.

Creating Smooth Curves: the S and t Subcommands
These shortcut commands help with creating smooth curves, and they require fewer data points than
constructing cubic and quadratic Bézier curves without these shortcut commands. This is because
one of the Bézier curve points is used simply as a reference point, which is then reflected to create a
smooth curve.

You use the S command to draw a smooth cubic Bézier spline segment from the current point to
a new point (x,y). The previous segment must also be a smooth cubic Bézier spline, and that second
control point is then reused via reflection relative to the current point as the segment’s first control
point. The second control must be explicitly specified.

You use the T command to draw a smooth quadratic Bézier spline segment from the current point
to a new point (x,y). The previous segment must also be a smooth quadratic Bézier spline, and that
control point is then reused via reflection relative to the current point.

 CHAPTER 2 Creating and Editing SVG Graphics 47

The following image demonstrates the automatic reflection process for both these commands:

As you have seen, the <path> element can express both simple and complex shapes using the L, H,
V, Q, and C commands. The geometric calculations involved are quite complex, which is why vector-
drawing programs such as Inkscape, Illustrator, SVG-Edit, and Visio are very helpful in the SVG design
process.

elliptical Arc example
One other often-used path command is the elliptical arc command (A), which allows you to quickly
draw subsets of ellipses or intersecting ellipses. The arc subcommand of the <path> element has the
following syntax: A rx ry XAR large-arc-flag sweep-flag x y.

The arc begins at the current point (which is determined by the last coordinate specified) and ends
at (x,y), as demonstrated below:

You now have the choice of four elliptical arc segments: two small ones and two large ones. These
arc segments can have a positive angular orientation (clockwise) or a negative orientation. The large-
arc-flag (fl) controls the angular orientation of the larger arc segment via fl = 0 : small, fl = 1 : large. The
sweep-flag (fs) controls the angular orientation analogously, via fs = 0 : positive, and fs = 1 : negative.

48 Building Web Applications with SVG

Note For the special case where the endpoint coordinates (x,y) are equal to the current
point’s coordinates, the arc will not get rendered. Because this behavior is not intuitive
when large-arc-flag is set to 1, this might be changed in the SVG 2.0 specification.

Using this elliptical arc information, here’s the code to create a simple spiral:

<svg width="600" height="400" viewBox="0 0 400 300">
<path stroke="darkslategray" stroke-width="6" fill="none"
 stroke-linecap="round"
 d="M50,100
 A100,50 0 0 1 250,100
 A80,40 0 0 1 90,100
 A60,30 0 0 1 210,100
 A40,20 0 0 1 130,100
 A20,10 0 0 1 170,100" />
</svg>

That code produces the following spiral:

Table 2-2 provides a quick reference for the path commands and properties.

TABLE 2-2 Path Commands

Commands Parameters Instruction

M, m x, y Move to a new point (x,y).

L, l x, y Draw a line from the current point to a new point (x,y).

H, h x Draw a horizontal line from the current point to a new point (x,current-point-y).

V, v y Draw a vertical line from the current point to a new point (current-point-x,y).

A, a rx, ry,
x-axis-rotation,
large-arc-flag,
sweep-flag, x, y

Draw an elliptical arc from the current point to a new point (x,y). The arc belongs to
an ellipse that has radii rx and ry and a rotation with respect to the positive x-axis of
x-axis-rotation (in degrees). If large-arc-flag is 0 (zero), then the small arc (less than
180 degrees) is drawn. A value of 1 results in the large arc (greater than 180 degrees)
being drawn. If sweep-flag is 0, then the arc is drawn in a negative angular direc-
tion (counterclockwise); if it is 1, then the arc is drawn in a positive angular direction
(clockwise).

 CHAPTER 2 Creating and Editing SVG Graphics 49

Commands Parameters Instruction

Q, q x1, y1
x, y

Draw a quadratic Bézier curve from the current point to a new point (x,y) using
(x1,y1) as the control point.

T, t x, y Draw a smooth quadratic Bézier curve segment from the current point to a new
point (x,y). The control point is computed automatically as the reflection of the con-
trol point on the previous command relative to the current point. If there is no previ-
ous command or if the previous command was not a Q, q, T, or t, the control point is
coincident with the current point.

C, c x1, y1
x2, y2
x, y

Draw a cubic Bézier curve from the current point to a new point (x,y) using (x1,y1)
and (x2,y2) as control points.

S, s x2, y2
x, y

Draw a smooth cubic Bézier curve segment from the current point to a new point
(x,y). The first control point is computed automatically as the reflection of the control
point on the previous command relative to the current point. If there is no previous
command or if the previous command was not a C, c, S, or s, the first control point is
coincident with the current point. (x2,y2) is the second control point.

relative vs. Absolute path Coordinates
This next example uses a mixture of MoveTo (M), Vertical (V), LineTo (L), Bézier (Q), HorizontalTo (H),
and ClosePath (Z) commands to generate a fairly elegant shape, as shown on the left of the follow-
ing image. The example on the right requires less spatial brain power to generate the same shape
because it uses relative versions of commands (i.e., lowercase commands). The coordinates of the new
point are relative to the position of the previous point (40,80).

Note The data of the path’s d attribute actually follows a specific set of rules, called the
Backus-Naur Form (BNF). You can find more detailed information on these rules at http://
www.w3.org/TR/SVG/paths.html#PathDataBNF.

50 Building Web Applications with SVG

Accessing and Reusing Graphics

From buttons, icons, and window UIs, to building graphs and gaming graphics, there are many logical
use cases for accessing and reusing raster and vector graphics in SVG.

Linking to both internal and external image data is worth a quick mention here because it is a
common method for accessing and reusing SVG.

referencing Vector and Bitmap Images
The SVG language provides the <image> element, which can reference other SVG images, as well as
PNG and JPEG bitmap images. The syntax for the <image> element is similar to the <rect> element in
that it has x, y, width, and height attributes.

The <image> element has the additional attribute xlink:href, which allows you to specify the loca-
tion of the referenced image. Similar to HTML’s href attribute, the xlink:href attribute allows the refer-
enced image to be stored either locally or on the Internet. The code for referencing a bitmap image is
as follows:

<image xlink:href="GrandMothersParty-121YO.png" x="340" y="0" width="140"
 height="160" opacity="0.5"/>

Referencing other SVG images is just as easy and becomes very useful in many application scenarios,
such as reusing the same vector symbol on a page or dynamically loading vector images on demand.

the Group element
The SVG group element, <g>, is great for logically grouping sets of related graphical objects. This group
capability makes it easy to add styles, transformations, interactivity, and even animations to entire
groups of objects. The following code groups a circle and a bitmap image together into a group named
iris, which is then grouped together with an ellipse shape into another group named eye.

<!-- Group containing the eye. -->
<g id="eye">
 <!-- Draw the ellipse. -->
 <ellipse fill="#a1d9ad" fill-opacity="0.7" fill-rule="nonzero"
 stroke="#32287d" stroke-width="1" stroke-opacity="0.5" />

 <!-- Group containing the eye's iris. -->
 <g id="iris"
 cx="50" cy="50" rx="20" ry="14" />

 <!-- Draw the circle. -->
 <circle fill="black" fill-opacity="1" fill-rule="nonzero"
 stroke="#32287d" stroke-width="1" stroke-linecap="butt"
 stroke-linejoin="bevel" stroke-miterlimit="4"
 id="path3395" cx="50" cy="50" r="10" />

 CHAPTER 2 Creating and Editing SVG Graphics 51

 <!-- Reference the bitmap image (PNG) -->
 <image id="bitmapCentralBall"
 width="5.5%" height="5.5%"
 x="39px" y="42px"
 xlink:href="iris-small.png"
 alt="NASA Photo of Jupiter" />
 </g>
</g>

With some creativity, you could then add some scripted interactivity such that the iris group could
follow the mouse, while the eye group could blink randomly or at set intervals.

You’ll see another great use for <g> during the discussion of transformations and interactivity in
SVG in Chapter 4, “Motion and Interactivity.” You can associate items together in a group and then
define transformations to move, scale, or rotate all the items together so that their spatial relations to
one another are maintained. Through the use of interactivity in SVG, you can assign, for example, an
onclick event to an entire group so that all elements within the group respond to the event.

the <use> element
The <use> element lets you reuse existing elements and thus write less code. Like the <image>
element, <use> takes x, y, height, and width attributes, and it references other content using the
xlink:href attribute.

As an example, you can reuse the following rectangle

 <!-- Draw the upper-right rectangle. -->
 <rect fill="#ada1d9" fill-opacity="1" fill-rule="nonzero"
 stroke="#32287d" stroke-width="10" stroke-linecap="butt"
 stroke-linejoin="bevel" stroke-miterlimit="4" stroke-opacity="0.4"
 id="rectangle" width="20" height="20" x="90" y="-10" />

by referencing it with the <use> element:

 <!-- Reuse the first rectangle element and move it to a different position. -->
 <use x="" y="" xlink:href="#rectangle" />

52 Building Web Applications with SVG

Creating Patterns

The SVG language helps you create and reuse patterns with ease. Patterns are extremely useful—in
fact, the grid background found in many of this book’s examples is just a simple pattern that consists
of a single 10-by-10-pixel rectangle. The <defs> element can be used to store content that will not be
directly displayed. This stored hidden content can then be referenced and displayed by other SVG ele-
ments, which makes it ideal for things such as patterns that contain reusable graphics.

To create a basic pattern in SVG, first place a rectangle within a <pattern> element, and then put
everything inside of a <defs> element.

<defs>
 <pattern id="Pattern01" width="10" height="10" patternUnits="userSpaceOnUse">
 <rect width="10" height="10" fill="#FFFFFF" stroke="#000000" stroke-width="0.1"/>
 </pattern>
</defs>

Now, to use this pattern anywhere in your SVG graphic, simply set your element’s fill attribute
value to the id of the pattern, like this: url(#Pattern01).

<rect id="Background" x="0" y="0" width="100%" height="100%"
 fill="url(#Pattern01)" stroke-width="0.5" stroke="#000000" />

Case Study: Designing a Reusable Pattern

The example in this section gives you a closer look at how to write SVG code that generates a pattern
composed of both vector and bitmap graphics.

Adding Basic Shapes
Building upon your knowledge up to this point, you’ll walk through each step of the design and cre-
ation process.

1. Create and save a file named tile.svg that contains the following lines of code:

<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"
 version="1.1"

 width="800" height="600"

 viewBox="0 0 400 300" preserveAspectRatio="none">

 <g id="layer1"></g>

</svg>

2. With this framework in place, you can start adding some basic shapes. The next example
shows a simple pattern design. Tile patterns are known mathematically as tessellations of
the plane.

 CHAPTER 2 Creating and Editing SVG Graphics 53

To create this pattern in SVG code, first create the following line:

<line stroke="#000000" stroke-width="1" stroke-linecap="round"

 stroke-linejoin="round" stroke-miterlimit="4" stroke-opacity="0.4"

 stroke-dasharray="1, 6" stroke-dashoffset="0"

 x1="90" y1="10" x2="10" y2="90"

 id="patternLine1" />

Now, as mentioned earlier, you can reuse the line. By changing the x and y values you can
effectively rotate the line by 90 degrees. Also, to mix the pattern up a bit, you can override
stroke-opacity and other style attributes that would otherwise be inherited from the refer-
enced element:

<use stroke-opacity="1"

 transform="rotate(90, 50, 50)"

 xlink:href="#patternLine1"

 id="patternLine2" />

3. Next, draw the rest of the elements that you want to include in your pattern—for example:

<ellipse fill="#a1d9ad" fill-opacity="0.7" fill-rule="nonzero"

 stroke="#32287d" stroke-width="1" stroke-opacity="0.5"

 id="path3389" cx="50" cy="50" rx="30" ry="20" />

<!-- Draw the upper-right rectangle. -->

<rect fill="#ada1d9" fill-opacity="1" fill-rule="nonzero"

 stroke="#32287d" stroke-width="10" stroke-linecap="butt"

 stroke-linejoin="bevel" stroke-miterlimit="4" stroke-opacity="0.4"

 id="patternRect-upperRight"

 width="20" height="20" x="90" y="-10" />

<!-- Reuse the first rectangle element and rotate it 90 degrees each time. -->

54 Building Web Applications with SVG

<use transform="rotate(90, 50, 50)"

 xlink:href="#patternRect-upperRight"

 id="patternRect-lowerRight" />

<use transform="rotate(180, 50, 50)"

 xlink:href="#patternRect-upperRight"

 id="patternRect-lowerLeft" />

<use transform="rotate(270, 50, 50)"

 xlink:href="#patternRect-upperRight"

 id="patternRect-upperLeft" />

<!-- Draw the circle. -->

<circle fill="#d9d2a1" fill-opacity="1" fill-rule="nonzero"

 stroke="#32287d" stroke-width="1" stroke-linecap="butt"

 stroke-linejoin="bevel" stroke-miterlimit="4"

 id="path3395" cx="50" cy="50" r="10" />

<!-- Draw the path using "relative"coordinates via lowercase path commands.

 Note that we can easily switch to using the Polyline element by changing

 the "d" attribute to "points". -->

<path fill="none" stroke="#000000" strGoke-width="1px" stroke-linecap="butt"

 stroke-linejoin="miter" stroke-opacity="1"

 d="m 0,50 10,0 0,20 20,20 0,0 0,0 20,0 0,10"

 id="patternPath-lowerLeft" />

<!-- Reuse the first path, rotate it 90 more degrees for each of the four corners. -->

<use transform="rotate(90, 50, 50)"

 xlink:href="#patternPath-lowerLeft"

 id="patternPath-upperLeft" />

<use transform="rotate(180, 50, 50)"

 xlink:href="#patternPath-lowerLeft"

 id="patternPath-upperRight" />

<use transform="rotate(270, 50, 50)"

 xlink:href="#patternPath-lowerLeft"

 id="patternPath-lowerRight" />

These SVG elements form the basis for the pattern that you will create in the next step. You
may have noticed the use of the transform attribute. You can see how the referenced rec-
tangle and path shapes were moved into a different position via a rotate command. The next
chapter will cover the usefulness of transformations in greater detail.

4. To create a more interesting pattern design, rather than using simple MoveTo (M) path
commands, simply alter the <path> element’s values to use a relatively positioned smooth
quadratic Bézier curve using the s command, and an absolutely positioned cubic Bézier curve
using C. So, the path’s data becomes the following:

d="M 0,50 s 10,0 0,20 C 20,20 0,0 0,0"

5. Add a reference to a bitmap image of the planet Jupiter and position the image at the center.
Also, move the graphics to the origin of the coordinate system, which equals the x,y value of
(0,0), to complete your initial tile design. Now the tile looks like this:

 CHAPTER 2 Creating and Editing SVG Graphics 55

6. Finally, add the <pattern> element inside of a <defs> element and move the tile design
graphics inside of the <pattern>.

<defs>
 <pattern id="gridPatternWithTessellation"
 x="20" y="20" width="100" height="100
 patternUnits="userSpaceOnUse">
 <!--Insert the tile elements here. -->
 </pattern>
</defs>

56 Building Web Applications with SVG

Below the <defs>, you then simply create a rectangle, path, or any other SVG shape and set its
fill value to be the pattern, as shown at the end of the full code listing below.

<svg
 xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 id="chapter2-ShapesPatternsGroupsUse"
 version="1.1"
 width="800" height="600"
 viewBox="0 0 400 300" preserveAspectRatio="none"
>
 <defs>
 <!-- Begin Example -->
 <pattern id="gridPatternWithTessellation" x="20" y="20" width="100" height="100"
 patternUnits="userSpaceOnUse">
 <!-- Draw the lines. -->
 <line stroke="black" stroke-width="1" stroke-linecap="round" stroke-
linejoin="round"
 stroke-miterlimit="4" stroke-opacity="0.4" stroke-dasharray="1, 6"
 stroke-dashoffset="0"
 x1="90" y1="10" x2="10" y2="90"
 id="patternLine1" />
 <!-- Reuse the first line, rotate it 90 degrees, and update the style attributes.
-->
 <!-- For appendix or wiki - note that currently most browsers do not support
styling
 of Use elements using either CSS or SVG attributes -->
 <use stroke-opacity="1"
 transform="rotate(90, 50, 50)"
 xlink:href="#patternLine1"
 id="patternLine2" />
 <!-- Draw the upper-right rectangle. -->
 <rect fill="#ada1d9" fill-opacity="1" fill-rule="nonzero" stroke="#32287d"
 stroke-width="10" stroke-linecap="butt" stroke-linejoin="bevel"
 stroke-miterlimit="4" stroke-opacity="0.4"
 id="patternRect-upperRight"
 width="20"
 height="20"
 x="90"
 y="-10" />
 <!-- Reuse the first rectangle element and rotate it 90 degrees each time. -->
 <use transform="rotate(90, 50, 50)"
 xlink:href="#patternRect-upperRight"
 id="patternRect-lowerRight" />
 <use transform="rotate(180, 50, 50)"
 xlink:href="#patternRect-upperRight"
 id="patternRect-lowerLeft" />
 <use transform="rotate(270, 50, 50)"
 xlink:href="#patternRect-upperRight"
 id="patternRect-upperLeft" />
 <!-- Group containing the eye. -->
 <g id="eye">
 <!-- Draw the ellipse. -->
 <ellipse fill="#a1d9ad" fill-opacity="0.7" fill-rule="nonzero"
 stroke="#32287d" stroke-width="1" stroke-opacity="0.5"

 CHAPTER 2 Creating and Editing SVG Graphics 57

 cx="50" cy="50" rx="22" ry="14" />
 <!-- Group containing the eye's iris. -->
 <g id="iris">
 id="path3389"
 cx="50" cy="50" rx="20" ry="14" />

 <!-- Draw the circle. -->
 <circle fill="black" fill-opacity="1" fill-rule="nonzero" stroke="#32287d"
 stroke-width="1" stroke-linecap="butt" stroke-linejoin="bevel"
 stroke-miterlimit="4"
 id="path3395"
 cx="50" cy="50" r="10" />
 <!-- Reference the bitmap image (PNG) -->
 <image id="bitmapCentralBall"
 width="5.5%" height="5.5%"
 x="39px" y="42px"
 xlink:href="iris-small.png"
 alt="NASA Photo of Jupiter" />
 </g>
 </g>
 <!-- Draw the path using "relative" coordinates via lowercase path commands.
 Note that we can easily switch to using the Polyline element by changing
 the "d"
 attribute to "points". -->
 <path fill="none" stroke="black" stroke-width="1px" stroke-linecap="butt"
 stroke-linejoin="miter" stroke-opacity="1"
 d="M 0,50 s 10,0 0,20 C 20,20 0,0 0,0"
 id="patternPath-lowerLeft" />
 <!-- Other interesting paths
 MoveTo Polyline-like d="m 0,50 10,0 0,20 20,20 0,0 0,0 20,0 0,10"
 Quadratic d="M 0,50 Q 10,0 0,20 S 20,20 0,0"
 Smooth Quadratic d="M 0,50 S 10,0 0,20 Q 20,20 0,0"
 Cubic d="M 0,50 C 10,0 0,20 20,20 S 0,0 0,0"
 Smooth Quadratic & Cubic d="M 0,50 s 10,0 0,20 C 20,20 0,0 0,0" -->

 -->
 <!-- Reuse the first path, rotate it 90 more degrees for each of the
 four corners. -->
 <use
 transform="rotate(90, 50, 50)"
 xlink:href="#patternPath-lowerLeft"
 id="patternPath-upperLeft" />
 <use
 transform="rotate(180, 50, 50)"
 xlink:href="#patternPath-lowerLeft"
 id="patternPath-upperRight" />
 <use
 transform="rotate(270, 50, 50)"
 xlink:href="#patternPath-lowerLeft"
 id="patternPath-lowerRight" />
 </pattern>
 </g>
 <pattern id="gridPattern" width="10" height="10" patternUnits="userSpaceOnUse">
 <path d="M10 0 L0 0 L0 10" fill='none' stroke='gray' stroke-width='0.25'/>
 </pattern>
 </defs>
 <g id="layer1">

58 Building Web Applications with SVG

 <!-- background grid -->
 <rect id="grid" width="100%" height="100%" x="0" y="0"
 stroke='gray' stroke-width='0.25' fill='url(#gridPattern)'/>
 <!-- grid illustrations -->
 <use xlink:href="#coords"/>
 <text x="3" y="9" font-size='8'>(0,0)</text>
 <!-- Begin Example -->
 <rect id="gridWithTessellation" width="300" height="300" x="20" y="20"
 fill='url(#gridPatternWithTessellation)' />
 </g>
 <rect id="gridWithTessellation"
 x="20" y="20" width="300" height="300"

 fill='url(#gridPatternWithTessellation)' />

</svg>

With just these lines of code, you have created an interesting work of art and a useful tiling pattern
that has all the benefits of SVG. To meet the needs of your company, group, or imagination, you only
need to edit the base tile to create an entirely different design for your application.

Because there is a bitmap image within the pattern, if end users zoom in they will see a slightly
pixelated graphic surrounded by the smoother, unpixelated vector graphics. You should consider
bitmap pixelation when your project requires high-fidelity printouts.

Note There are several programs that assist with creating tiles for patterns. Inkscape, for
example, has some excellent built-in pattern creation features, and there is a powerful pat-
tern creation program on the LearnSVG.com website as well, which was originally devel-
oped by Michel Hirtzler (see http://pilat.free.fr/tiling_loc/tile.svg).

Summary

At this point, you should be off to a great start exploring the expressive language of SVG. This chapter
showed you the basics of working with SVG in a very condensed form, including creating basic vector
shapes and paths, building more complex shapes, and creating and working with patterns. In the next
chapter, we will delve into animations and scripting, as well as gradient rotation, scaling, and other
transformations.

 255

simple example, 9–10
text along Bézier curve, 13

Apache Batik project, 207–208
appendChild() method, 128
arcs, elliptical, 47–48, 48
arithmetic operator, 182, 184
ASV plugin. See Adobe SVG Viewer (ASV) plugin
attributeName attribute, 91
attributes

categories, 22
changing via scripting, 103–108
defining style of shapes, 33
setting, 146

averaging images, 181–184

B
Backus-Naur Form (BNF), 49
baseFrequency parameter, 164, 174
Batik project, 207–208
begin attribute, 134
beginElement() method, 132–134
bevel value, 34
Bézier curves, 64

creating shapes using, 42–46
cubic, 45, 46, 49
defining paths, 126
equidistant positioning points along, 8–9
example graphic, 32
oscillation, 128
quadratic, 42–46, 49
smooth, 46–47, 49
SVG-Edit tool, 206
text along, 13, 64–65

Bézier (Q) command, 42, 49
bingWin object, 239, 242, 245

Index

Symbols
3D drawing and animation, 17, 209

A
absolute path coordinates, 49
absolute value, 24
accessibility, 3, 27, 83–84
a command, 48
A command, 48
addEventListener() method, 140
add() function, 111, 114, 139
Adobe Dreamweaver IDE, 210
Adobe Illustrator application, 4

creating rectangle, 201–203
SVG support, 201

Adobe SVG Viewer (ASV) plugin, 4, 146, 192, 208
downloading, 5
history of, xv–xvi

<animateColor> element, 94
<animate> element, 107, 133, 152

begin="G.click" attribute, 98
controlling width and height, 91
text following path, 13
with color names, 94

animate() function, 107
<animateMotion> element, 96

begin="0;indefinite" attribute, 134
fill="freeze" attribute, 134

<animateTransform> element, 93, 94, 112, 114
animation. See also declarative animation; scripting;
SMIL (Synchronized Multimedia Integration Language)

clip paths, 11
clock, 14–15
concentric circles, 16
reflected gradients with transparency, 13–14

bitmaps

256 Index

bitmaps
example graphic, 32
importing, 11
overlaying with text, 62
referencing, 50
zooming, 2

Bloom Filter, 196–197
blurring images, 147–149, 152–153, 159

horizontally, 148–149
vertically, 148–149, 159

BNF (Backus-Naur Form), 49
Bostock, Mike, 193
bounding boxes, 126–128
browsers

Chrome
animation support, 90
rollovers, 106
SVG support, 4

declarative animation support, 90
filter support, 146
Firefox, 106

D3 library examples, 193
declarative animation support, 90
measuring unrendered objects, 124
SMIL animation support, 208
SVG support, 4

Internet Explorer
appending path elements, 228
filter support, 146
putting SVG in HTML, 137
SVG support, 4
Test Drive website, 84

Konqueror, 4
Opera, 106

animation support, 90
SVG support, 4

Safari, 111
animation support, 90
rollovers, 106
SVG support, 4

SMIL animation support, 208

C
Cartesian plane, 23
cartography tools

carto:net, 200
OpenStreetMap project, 213
Pilat, 206
Polymaps, 200

Cascading Style Sheets. See CSS (Cascading Style
Sheets)
c command, 49
C command, 49, 54
centering text and graphics, 130–131
chaining filters. See filter chaining
checkerboard pattern, 184–185
Chrome browser

animation support, 90
rollovers, 106
SVG support, 4

<circle> element, 22, 34–35, 37
circles

concentric, 16
radii, 34–35

class attribute, 81–82
client-side graphics, 3
<clipPath> element, 11, 12
clip paths

animating, 11
clipping, 12
example, 75–77
inserting ellipses into, 75
inserting gradients into, 74
intersecting, 11–13
overview, 73
vs. masks, 77

clipping, 11, 73–75. See also clip paths
clock example, 14–15
clock.js script, 218, 233
cloneNode() method, 109, 112, 114
cloning nodes, 111–112
ClosePath (Z) command, 41, 49
cobblestones example, 17–18
color bands

cobblestones example, 18
in linear gradient, 69
ripple example, 16

colors. See also color bands; gradients
attribute for, 34
changing

gradually, 94
via scripting, 104, 118–122
with <feColorMatrix> filter, 149–153
with fill attribute, 24–25

default, 33
HSL (hue, saturation, and lightness), 66
inverting, 155–156
mapping to graph data, 196–197
names, 66

 drawing tools

 Index 257

quantization of (posterization), 67, 153–155
random, 111
RGB (red, green, blue), 66
rotating, 150–151, 152
strokes, 33
text, 62
used in masks, 77

combining
filters. See filter chaining
layers, 180–181

concentric circles, 16
convolution filter, 158–159
coordinates, 23

relative vs. absolute, 49
"coordinates" property, 242
CorelDRAW application, 4, 201
Creative Commons Public Domain license, 83
cropping, simulating with gradients, 73–75
Cruz, Jon, 204
CSS (Cascading Style Sheets), 80–82

CSS3
media queries, 82
new features, 83

cubic Bézier curves, 45, 46, 49
curves, ellipses following, 95–96. See also Bézier
curves
cx attribute, 24, 28, 34, 95
cy attribute, 24, 28, 34, 95, 114

D
d3.js (Data-Driven Documents), 193–195, 218

colors, 196–197
creating HTML tables, 194–195
interactive multiple documents application,
218–234
ordinal scales, 196
quantitative scales, 195
stream.js interactivity, 222–223

Dailey, David, xxi, 209
Danilo, Alex, xiv–xv
darken mode, <feBlend> element, 180–181
dash-array attribute, 105
dash arrays, 93
dash-offset attribute, 93
Data-Driven Documents. See d3.js (Data-Driven
Documents)
d attribute, 228

debugging, 192
declarative animation

duration, 91
motion along path, 95–96
multivalued interpolation, 96–98
oscillation and rotation, 91–95
overview, 89–91
repetition, 91
<replicate> element, 209–210
user interaction, 98–100
with user interaction, 98–100

default values, 33
<defs> element, 118

defining paths, 65, 126
<pattern> element inside of, 55
stored content, 52

deleting
content, 117–118
objects, 129

desaturating images, 149
desynchronization, 93
dictionaries, retrieving definitions from, 141
diffuse lighting effect, 175–177
digital elevation maps, 17
dilation of transparency, 157
discrete attribute, 153, 155
distortion, 16
<!doctype html> statement, 137
document.documentElement, 109
documentElement property, 138
Document Object Model. See DOM (Document
Object Model)
Dojo library, 201
DOM (Document Object Model), 20, 81

and getElementsByTagNameNS() method,
115–116
finding objects within, 103–105
nodes, 104
removing content, 117–118
shadowing, 221

DOM inspector, 192
DOMNodeInserted event, 227
DOMNodeRemoved event, 227
drawing tools

Adobe Illustrator, 4
crawling text, 13
creating rectangle, 201–203
SVG support, 201

CorelDRAW, 4, 201

258 Index

drawing tools (continued)

Inkscape, 4, 58, 83, 204–205
Mugeda, 206
Pilat, 206
Scour, 205
SVG Drawing Tool, 207
SVG-Edit, 206
SVG Editor, 206
SVG support, 4
Xara X, 201

Dreamweaver IDE, 210
drop shadows, 162
dur attribute, 91
dx attribute, 64
dy attribute, 64
dynamic random landscape example, 6–8

E
editors for SVG, 5
Elder, Eric, 207
elements

reusing, 51
semantic, 84

elevation maps, 17
<ellipse> element, 35
ellipses

animated
motion along path, 95–96
rotation and oscillation, 91–95

following curve, 95–96
inserting into clip paths, 75
intersecting, 47–48
radii, 28, 35
restricting bitmap to elliptical region, 73–75
subsets, 47–48

elliptical arcs, 47–48, 48
<embed> element, 136, 137
end tags, 22
equidistant positioning points along Bézier
curve, 8–9
erosion of transparency, 157
evenodd value, 34, 40, 77
event (evt) parameter, 105
evt.currentTarget object, 112
evt.target object, 112
Ext.draw module, Sencha library, 201
extension tools

Apache Batik project, 207–208
FakeSmile project, 209

<replicate> element, 209–210
SmilScript project, 208

ext.js. See Sencha library

F
FakeSmile project, 209
<feBlend> element, 180–181
<feColorMatrix> element, 149–151

converting bright pixels to transparent, 157
filter chaining, 152–153
hueRotate parameter, 150
using with <feComponentTransfer>, 155, 156
using with <feTurbulence>, 169–170, 173

<feComponentTransfer> element, 153–157,
169–170, 172
<feComposite> element, 181–184
<feConvolveMatrix> element, 158–159
<feDiffuseLighting> element, 175–177
<feDisplacementMap> element, 16, 184–185

warping, spherical, 188–190
warping with simple gradient, 186–187
warping with turbulence, 187

<feFlood> element, 161
<feGaussianBlur> element

stdDeviation parameter, 147–148
using with <feComponentTransfer>, 156
varying granularity, 157

<feImage> element, 160, 162–163
using with <feDisplacementMap>, 189
using with <feMergeNode>, 179

<feMergeNode> element, 162, 177–179
<feMorphology> element, 157
<feImage> element, 189
<feOffset> element, 148, 160, 161–162, 189

using with <feDisplacementMap>, 189
Ferraiolo, Jon, xiii–xiv
<feSpecularLighting> element, 175–176
<feTile> element, 160, 162–163
<feTurbulence> element, 163–164

adjusting chroma, 169–174
baseFrequency parameter, 164
numOctaves parameter, 164
removing transparency channel, 166–167
seed parameter, 165–166
two layers of turbulence, 167–169
type parameter, 165
using with <feComposite>, 183
warping, 185, 187
woodlike texture, 173–175

 gradients

 Index 259

fill attribute, 24, 34
CSS overriding, 82
"freeze" value, 99
gradients applied to, 68
<text> element, 61

fill.darken(f) method, 230
fill="freeze" attribute, 134
fill-opacity attribute, 29, 34
fill-rule attribute, 34, 40
filter chaining, 177

<feBlend> element, 180–181
<feColorMatrix> element, 152–153
<feComposite> element, 181–184
<feDisplacementMap> element, 184–190
<feFlood> element, 161
<feMerge> element, 177–179
<feOffset> element, 161–162

<filter> element, 146
filters

browser support for, 146
combining, 177

<feBlend> element, 180–181
<feComposite> element, 181–184
<feDisplacementMap> element, 184–190
<feMerge> element, 177–179

<filter> element, 146
filter primitives

<feColorMatrix> element, 149–152, 157
<feComponentTransfer> element, 153–157
<feConvolveMatrix> element, 158–159
<feGaussianBlur> element, 147–148, 157
<feMorphology> element, 157

for ripples, 16
lighting effects, 175–176
restricting size of, 148
utility filters. See also <feTurbulence> element

<feFlood> element, 161
<feImage> element, 160, 162–163
<feOffset> element, 160, 161–162, 189
<feTile> element, 160, 162–163

Firefox browser
D3 library examples, 193
declarative animation support, 90
history of SVG support, 4
measuring unrendered objects, 124
number of attributes left in DOM, 106
SMIL animation support, 208

fl (large-arc-flag), 47, 48
font family, 61
force.js script, 218

forceWin.contents function, 222
forceWin object, 221, 228
<foreignObject> element, 136
fractalNoise value, 165
"freeze" value, fill attribute, 99
Frost, Jon, xxi
functions, JavaScript

activating from mouse click, 102–103
purpose of, 103

G
gamma attribute, 155
<g> element, 50–51, 103, 112
GEMï, 217
GeoJSON, 242–245
geometrical attributes, 22, 192
geometry object, 242–245
getAttributeNS() method, 113–115
getBBox() method, 122, 125
getElementById() method, 104
getElementsByTagNameNS() function, 115
getPointAtLength() method, 128–130
getSVGDocument() method, 137–141
getTotalLength() method, 128–130
global variables, protecting, 127
Google Chrome browser. See Chrome browser
Go Places menu, mapping application case
study, 239–240
GPS, Pilat tool, 206
gradients

applying to paths, 67–69
cobblestone example, 18–19
defined, 67
example, 10–11
file sizes, 67
linear, 67–69, 86
opacity, 70–75

simulating cropping or clipping, 73–75
weaving example, 73

proposal for new, 17
putting into clip paths, 74
radial, 14, 67–69

restricting rectangular bitmap to elliptical
region, 73–75

reflected, 13–14
simulating cropping or clipping, 73–74
stops, 16, 18
warping with simple, 186–190

Grapher project

260 Index

Grapher project, 207
graphics. See images
graphs

drawing, 19–20
Raphaël library, 199–200

grayscale, converting images to, 149
Grid menu, mapping application, 240–241
group (<g>) element, 50–51, 103, 112
grouping images, 50–51

H
Harrington, Bryce, 213
h command, 48
H (HorizontalTo) command, 48
Hirtzler, Michel, 58, 206
histograms, remapping, 153
horizontal blurring, 148–149
horizontal lines, 48
horizontal streaking, 164
HSL (hue, saturation, and lightness), 66
HTML

form element replication, 209
legacy libraries, 192

Dojo, 201
jQuery, 200
Sencha, 201

messages between SVG and, 135–142
porting work to, 234–235

HTML5
addition of SVG, xvi, 3
borrowing ideas from SVG, 145
improving usability via media queries, 82
insertion of SVG in, 141–142
semantic elements, 84

HTML-Kit software, 211
hueRotate parameter, 150, 152–153
hue, saturation, and lightness (HSL), 66

I
IAN Symbol Library, 83
id attribute, 104
identity attribute, 155
IDEs (integrated development environments)

Adobe Dreamweaver, 210
HTML-Kit, 211
Oxygen, 210

<iframe> element, 136

IGN cartography, 206
Illustrator application. See Adobe Illustrator
application
<image> element

attributes
clip-path, 12
xlink:href, 50

reusing, 12
syntax, 50

images
averaging, 181–184
bitmaps

example graphic, 32
importing, 11
overlaying with text, 62
referencing, 50
zooming, 2

blurring, 147–149, 152
centering, 130–131
changing colors, 149–154
clipping, 11
combining two layers, 180–181
converting from RGB to partial
transparency, 178–179
converting to grayscale, 149
converting to partial transparency, 178–179
desaturating, 149
drop shadows, 162
grouping, 50–51
intersecting, 181–184
inverting colors, 155–156
oversaturating, 152
photographic negative effect, 156
pinpointing map locations with, 242–245
posterization, 153–155
referencing, 50
reusing, 51
reusing within patterns, 149
ripples over, 16
rotating colors, 152
rotating color values, 150–151
sharpening, 158–159
thinning and thickening, 157
tiling, 163
warping

spherically, 188–190
with simple gradients, 186–187
with turbulence, 187

 element, 135
importing images, 11

 logo, SVG

 Index 261

InkML, 209
Inkscape application, 4, 58, 204–205

Open Clipart Library, 83
using with Scour, 205

in operator, 183
interactive multiple documents application, 218–219

design improvement, 233–234
forceWin object encapsulation, 228–233
interactivity, 222–223
porting to HTML, 234–235
stream encapsulation, 219–222
Transitions menu, 223–224
Transition Tool button, 224–227

Internet Explorer browser, 111
appending path elements, 228
clip paths, 11, 12
filter support, 146
history of SVG support, 4
putting SVG in HTML, 137
SMIL animation support, 208
Test Drive website, 84

Internet Protocol Television (IPTV) applications, 4
interpolation

between paths, 17
multivalued, 96–98

intersecting
clip paths, 11–13
images, 181–184

inverting colors, 155–156
IPTV (Internet Protocol Television) applications, 4

J
James, George, 213
JavaScript. See also scripting

animating concentric circles, 16
clock example, 15
drawing graphs, 19–20
dynamic random landscape example, 6–8
functions

activating from mouse click, 102–103
purpose of, 103

in <script> tag, 102
messages between SMIL and, 132–135
use with Bézier curves, 8–9

jQuery library, 200
jQuery.svg.js plug-in, 200
JSVGCanvas Java component, Batik, 208

K
KDE desktop environment, 4
Konqueror browser, 4

L
landscape example, 6–8
large-arc-flag (fl), 47, 48
lastOne.parentNode group, 121
lastOne variable, 119, 121
Layers menu, mapping application, 238–239
layout, adjusting, 82
l command, 48
legacy HTML libraries, 201
length value, 33
lens effect, 188–190
letters, reusing, 65
Leunen, David, 209
Levels menu, mapping application, 240
libraries

legacy HTML, 192
Dojo, 201
jQuery, 200
Sencha, 201

native SVG, 192
carto:net, 200
D3, 193–198
Pergola, 198–199
Polymaps, 200
Raphaël, 199–200

licensing, 83
lighten mode, <feBlend> element, 180–181
lighting effects filters, 175–176
lightness, 66
linear attribute, 153, 155
linear gradients, 67–69, 86
linear scales, 195
<line> element, 37–38
lines, 32–33

horizontal, 48
shapes at end of, 34
vertical, 48

L (LineTo) command, 39, 48
logarithmic scales, 195
logo, SVG, 85, 86

Maddox, Jerrold

262 Index

M
Maddox, Jerrold, 4
mapmaker() method, 236
mapping application case study, 235–237

complete code, 247–252
custom features, 242
GeoJSON, 242–245
menus, 237–241

Go Places menu, 239–240
Grid menu, 240–241
Layers menu, 238–239
Levels menu, 240
Unit menu, 241
Views menu, 237–238

tools, 246–247
maps, elevation, 17
mapZoom() function, 240
masks, 75–77
mathematical functions, 32
matrix command, 80
McCormack, Cameron, xv–xvi, 207–208
m command, 48
media queries, 82, 86
metadata elements, 84
microdata elements, 84
Microsoft Internet Explorer. See Internet Explorer
browser
mime type, 22
Minksy, Marvin, 67
miter value, 34
M (MoveTo) command, 39

complex shapes, 40–42
parameters and instruction, 48

mobile phones, SVG on, 4, 90
monochromatic points, 67
mousedown event, 112, 114
mouseover event, 106
MoveTo command. See M command
Mozilla Firefox browser. See Firefox browser
<mpath> element, 64–65
Mugeda drawing tool, 206
multiply mode, <feBlend> element, 180–181
multivalued interpolation, 96–98

N
namespace, 22–23
naming variables, 222
NaN value, 192

native libraries
carto:net, 200
D3

colors, 196–197
creating HTML tables, 194–195
ordinal scales, 196
quantitative scales, 195

Pergola, 198–199
Polymaps, 200
Raphaël, 199–200

negative image effect, 156
networks, drawing, 19–20
Neumann, Andreas, 200
nodes, 104

changing text within, 107–108
cloning, 111–112
evaluating, 113–115
setting references to, 127

nonzero value, 34, 40
normal mode, <feBlend> element, 181
“not a number” error, 114
numOctaves attribute, 164

O
<object> element, 136–138, 211
OCAL (Open Clipart Library), 83, 212
offset attribute, 69
onend attribute, 132–134
onmousedown attribute, 114
onmouseout event, 106
OOD (object-oriented development) model, 215,
220, 228
opacity. See also stop-opacity attribute

contributed to by RGB values, 151
fill-opacity attribute, 29, 34
gradients, 70–75

simulating cropping or clipping, 73–75
weaving example, 73

stroke-opacity attribute, 29, 33
in CSS, 81
overriding, 53

transform commands used with, 79–80
Open Clipart Library (OCAL), 83, 212
Open Layers library, 206
OpenStreetMap project, 213
Opera browser, 106

animation support, 90
clip paths, 11, 12

 quantize scales

 Index 263

filter support, 146
SVG support, 4

ordinal scales, D3, 196–198
oscillation, 91–95
overlaying bitmaps with text, 62
oversaturating images, 152
Oxygen IDE, 210

P
packing, 124–126
paint attributes, 22
paragraphs, reusing, 65
parentNode property, 115
parseInt() method, 121
<path> element, 38–40

C command, 54
cobblestone example, 18
s command, 54
subcommands, 39

paths, 38–39. See also clip paths
applying gradients to, 67–69
clip

animating, 11
clipping, 12
example, 75–77
inserting ellipses into, 75
inserting gradients into, 74
intersecting, 11–13
overview, 73
vs. masks, 77

compound, 42
crossing itself, 40
fill properties, 40
interpolating between, 17
motion along, 95–96, 98–100
relative vs. absolute coordinates, 49
text on, 13–14, 64–65

<pattern> element, 18, 52, 55, 151
patterns

creating, 52
example, 10–11
reusable, 52–58
tile, 52, 163
using images within, 149

PDF format, converting to from SVG, 208
pedigree visualization, 197–198
pen movements, 38–39, 42
Pergola, 198–199, 216–217

defining windows, 219–221
DOM shadowing, 221
interactive multiple documents application,
218–234
mapping application, 235–252
tool buttons, 224

pergola.createHTMLElement() function, 234
pergola.createSVGElement() function, 234
pergola.symbol() utility function, 243
pergola.use(object) utility function, 216
Perlin turbulence function, 163
Peto, Chris, 206
Phillips, Jon, 213
photographic negative effect, 156
Pilat application, 206
pixel-based approach, 2
pointer-events attribute, 100, 128
points attribute, 35
polygons, 35–36

random in polynomial time, 207
transitioning between, 97

polylines, 35–36
Polymaps application, 218, 235
Polymaps library, 200
pond ripples, 16
positioning

ellipses along curve, 95–96
points along Bézier curve, 8–9
text

attributes for, 61
on paths, 13, 64–65

via scripting, 122–127
with translate command, 77

posterization (color quantization), 67, 153–155
power scales, 195
presentation attributes, 22, 33
preserveAspectRatio attribute, 131
properties, naming, 222
proportional value, 24
Protovis library, 193

Q
Q (Bézier) command, 42, 49
q command, 49
quadratic Bézier curves, 42–46, 49
quadratic splines, 44
quantile scales, 195
quantitative scales, D3, 195
quantize scales, 195

radial gradients

264 Index

R
radial gradients

example, 67–69
reflected, 14
restricting rectangular bitmap to elliptical
region, 73–75

radii, 34
radio button behavior, 247
random landscape example, 6–8
Raphaël library, 199–200
r attribute, 22, 24
rectangles, 34

creating with Adobe Illustrator, 201–203
creating with Inkscape, 204–205
restricting to elliptical region, 73–75

<rect> element, 104, 111, 112
attributes, 28
measuring screen, 126

Rect node, 104
recursive call mechanism, 129
referencing images, 50
reflected gradients, 13–14
regular attributes, 22
relative path coordinates, 49
removeAttributeNS() method, 118
removing content, 117–118
repeatCount attribute, 91, 98
<replicate> element, 209–210

cobblestones example, 17–18
simulating digital elevation maps, 17

restricting extent of filters, 148
reusing

elements, 51
images within patterns, 149
patterns, 52–58
text, 65

RGB (red, green, blue), 66, 151, 153–155, 178–179
ripples, 16
Root.removeChild() function, 118
rotate="auto" attribute, 95
rotate command, 54, 79
rotation, 91–95

illusion of, 184
of color values, 150–151, 152
simulating 3D, 17

round value, 34
rx attribute, 34, 93
ry attribute, 34, 35, 93

S
Safari browser, 111

animation support, 90
rollovers, 106
SVG support, 4

saturation, 66
scalability of SVG, 2
Scalable Vector Graphics. See SVG (Scalable Vector
Graphics)
Scalable Vector Graphics Working Group (SVG
WG), xiii, xvi, 84
scale command, 78
Schepers, Doug, xvii–xviii, 208
Schiller, Jeff, xvii
SCION (Statechart-to-ECMAScript Compiler), 207
s command, 49, 54
S command, 46, 49
Scour drawing tool, 205
screen coordinates. See coordinates
screen mode, <feBlend> element, 180–181
scripting. See also DOM (Document Object Model)

adding content to document, 109–111
cloning nodes, 111–112
evaluating nodes, 113–115
finding object and changing attributes, 103–108
JavaScript

animating concentric circles, 16
clock example, 15
drawing graphs, 19–20
dynamic random landscape example, 6–8
functions, 102–103
messages between SMIL and, 132–135
in <script> tag, 102
use with Bézier curves, 8–9

messages between HTML and SVG, 135–142
messages between SMIL and JavaScript, 132–135
points on curves, 128–129
positioning using, 122–127
simple example, 102

<script> tag, 102
seed attribute, 165–166
self-terminating tag, 22
semantic elements, 84
Semantic Notepad, 84
Sencha library, 201
setAttribute() method, 104, 111
setAttributeNS() method, 104
<set> element, 99, 106, 111
setTimeout loop, 16

 SVG WG (Scalable Vector Graphics Working Group)

 Index 265

setTimeout() method, 107
Seurat, Georges, 67
shadowing the DOM, 221
shapes, 36–38. See also paths

circles
concentric, 16
radii, 34–35

color, 34
complex, 40–42
ellipses

animated, 91–96
following curve, 95–96
inserting into clip paths, 75–76
intersecting, 47–48
radii, 28, 35
restricting bitmap to elliptical region, 73–75
subsets, 47–48

lines, 32–33
horizontal, 48
shapes at end of, 34
vertical, 48

polygons, 35–36, 207
polylines, 35–36
rectangles, 34

creating with Adobe Illustrator, 201–203
creating with Inkscape, 204–205
restricting to elliptical region, 73–75

spirals, 48
sharpening images, 158–159
skewX command, 79
skewY command, 79
SmilScript project, 208
SMIL (Synchronized Multimedia Integration
Language). See also declarative animation

Bézier curve oscillation, 128–130
clock example, 15
messages between JavaScript and, 132–135
overview of, 3
use of term, 90

smooth Bézier curves, 46–47, 49
Sodipodi, 213
specular lighting effect, 175–176
spherical transforms, 188–189
spherical warping, 188–190
spirals, 48
splines, quadratic, 44
Squiggle viewer, Batik, 208
startOffset attribute, 13, 65
Statechart-to-ECMAScript Compiler (SCION), 207
stdDeviation parameter, 147–148, 157

stitching Bézier curves, 45–46
stop-color attribute, 69
<stop> element, 69
stop-opacity attribute, 70–75

simulating cropping or clipping, 73–75
weaving example, 73

stops
cobblestones example, 18
in linear gradient, 69
ripples example, 16

Strazzullo, Domenico, xxi, 198
stream.js script, 218, 219–223
streamWin object, 220–223, 227, 233
streamWin.transition() method, 230
stroke attribute, 33
stroke-dasharray attribute, 33, 93
stroke-linecap attribute, 34, 36
stroke-linejoin attribute, 34, 36
stroke-opacity attribute, 29

in CSS, 81
overriding, 53
values, 33

strokes
color, 33
width, 33, 128

stroke-width attribute, 33
SVG Drawing Tool, 207
SVG-Edit drawing tool, 206
SVG Editor program, 206
<svg> element

viewBox attribute, 130–131
xmlns=”http://www.w3.org/2000/svg” attribute/
value, 22–23

SVG Interest Group, 84, 85
SVG logo, 85, 86
SVG namespace, 22–23
SVG (Scalable Vector Graphics)

advantages of, 3–4
browser support, 4
messages between HTML and, 135–142
scalability of, 2
vector-based approach of, 2
viewing, 5
wide use of, 4–5
writing, 5–6

SVG Viewer (ASV) plugin. See Adobe SVG Viewer
(ASV) plugin
SVG Web, xvi
SVG WG (Scalable Vector Graphics Working
Group), xiii, xvi, 84

sweep-flag (fs)

266 Index

sweep-flag (fs), 47, 48
synchronization, 93
Synchronized Multimedia Integration
Language. See SMIL (Synchronized Multimedia
Integration Language)

T
table attribute, 153, 155, 156
tags

beginning and end, 22
self-terminating, 22

t command, 49
T command, 46, 49
text

along Bézier curves, 64–65
artistic effects, 62–63
color, 34, 62
drop shadows, 162
overlaying on bitmaps, 62
positioning

attributes for, 61
on paths, 13, 64–65
with <tspan> element, 63
with dx and dy attributes, 64

properties, 64
reusing, 65

text editors, 5
<text> element, 60–63, 112

attributes, 61, 64
running text, 13

text node, 115
<textPath> element, 13, 64–65
3D drawing and animation, 17, 209
tiles, 18–19, 52
tiling images, 163
time display example, 14–15
<title> element, 27
transform attribute, 54
transforms

matrix command, 80
rotate command, 79
scale command, 78
skewX command, 79
skewY command, 79
spherical, 188–189
translate command, 77
used with other style effect, 79–80

transition() function, 222, 227

translate command, 77, 78
transparency, 25. See also opacity

converting RGB image to, 178–179
dilating, 157
erosion, 157

<tref> element, 65
triangular tiling, 18–19
<tspan> element, 117

dx and dy attributes, 64
purpose of, 63

T.textContent code, 108
turbulence. See <feTurbulence> element
turtle graphics, 38
tutorial page on book’s website, 6
type parameter, 165
"type" property, 242

U
underlayer group, 111
Unit menu, mapping application, 241
usability, enhancing using media queries, 82
<use> element

attributes, 51
filter applied to, 149
in simple animation example, 9
purpose of, 51
reusing <image> element, 12–13

utility filters
<feFlood> element, 161
<feImage> element, 160, 162–163
<feOffset> element, 160, 161–162, 189
<feTile> element, 160, 162–163
<feTurbulence> element, 163–164, 187

baseFrequency parameter, 164
numOctaves parameter, 164
seed parameter, 165–166

V
values, absolute and proportional, 24
values attribute, 91
v command, 48
vector-based approach, 2
vector images, referencing, 50
vertical blurring, 148–149, 159
vertical lines, 48
Vertical (V) command, 48
viewBox attribute, 130–131

 zooming

 Index 267

Views menu, mapping application, 237–238
visibility attribute, 101
VML (Vector Markup Language), 199
V (Vertical) command, 48

W
Wang, Lucas, 206
warping

spherical, 188–190
with simple gradients, 186–187
with turbulence, 187

weaving example, 73
web application case studies, 215–216

D3, 218
interactive multiple documents application,
218–219

design improvement, 233–234
forceWin object encapsulation, 228–233
interactivity, 222–223
porting to HTML, 234–235
stream encapsulation, 219–222
Transitions menu, 223–224
Transition Tool button, 224–227

mapping application, 235–237
complete code, 247–252
GeoJSON, 242–245
map features, 242
menus, 237–241
tools, 246–247

Pergola, 216–217
Polymaps, 218

WebKit, 208
width of strokes, 33
Wikimedia Commons, 83, 212
Wikipedia, 83, 212
Window class, 219, 221, 224
Winter, André, 200
woodlike texture, 173–174
word wrapping, 64
worm.js script, 218, 231–233
wrapping words, 64
writing SVG, 5–6

X
x1 attribute, 33
x2 attribute, 32
Xara X drawing tool, 201
x attribute

<rect element>, 28, 34
<text> element, 61
<tspan> element, 63

xlink:href attribute, 50, 51
XML, 210
XMLHttpRequest security restrictions, 193
xmlns attribute, 23
XSLT, 210

Y
y1 attribute, 33
y2 attribute, 32
y attribute

<rect element>, 28, 34
<text> element, 61

Z
Z (ClosePath) command, 41, 49
z command, 95
zooming, 2, 239–240

About the Authors

DAVID DAILEY was born and raised in Albuquerque, NM, receiving his bach-
elor's degree from the University of New Mexico and his doctorate from the
University of Colorado. Having taught mathematics, psychology, and comput-
er science at the Universities of Wyoming, Tulsa, and Alaska, he later moved
east with appointments at Vassar, Williams, and Bay Path College, before
settling in at Slippery Rock University in Pennsylvania where he is Professor of
Computer Science teaching mainly in areas of web programming. He is mar-
ried, has four children, and enjoys creating art, food, music, and games.

JON FROST is a seasoned developer who has worked with SVG for more
than a decade. The SVG applications he has developed include interactive
web applications and dynamic reports. He dreamt up and collaborated on the
books Learn SVG: The Web Graphics Standard and Building Web Applications
with SVG.

DOMENICO STRAZZULLO , founder and editor-in-chief of SVG magazine, is
the author of both the Pergola JavaScript library for SVG and the open-source
GEMï web operating system.

	Introduction
	Chapter 1: SVG Basics
	The What, Why, and Where of SVG
	The What
	The Why
	The Where

	Getting Started: A Simple Overview
	Viewing SVG
	Writing SVG

	Thirteen Examples That Show the Capabilities of SVG
	Example 1: Dynamic Random Landscape Drawn with JavaScript and SVG
	Example 2: Equidistant Positioning Points along a Bézier Curve
	Example 3: Simple Animation (Just 38 Lines of Markup
and No Script)
	Example 4: Use of Gradients and Patterns
	Example 5: Intersecting Clip Paths
	Example 6: Animated Text Crawling Along a Bézier Curve
	Example 7: Animated Reflected Gradients with Transparency
	Example 8: Clock with Impressionist Tinge
	Example 9: Using a Filter to Create Pond Ripples over an Image
	Example 10: Using <replicate> to Simulate Digital Elevation Maps
	Example 11: Non-Affine Cobblestones
	Example 12: Triangular Tiling
	Example 13: A Web Application for Drawing Graphs (Networks)

	Diving In: A Step-by-Step Approach to Building a Simple SVG Document
	Intermission and Analysis
	Screen Coordinates

	Summary

	Chapter 2: Creating and Editing SVG Graphics
	Creating Basic Vector Shapes
	Lines
	Brief Review of SVG Presentation Attributes
	Rectangles
	Circles
	Ellipses
	Polylines and Polygons
	Creativity with Basic Shapes

	Paths in SVG
	<path> Subcommands: M and L
	Fill Properties: nonzero and evenodd

	An Example of Building Complex Shapes
	Quadratic Bézier Curves: The Q Subcommand
	Bézier Curve Example
	Creating Smooth Curves: The S and T Subcommands
	Elliptical Arc Example
	Relative vs. Absolute Path Coordinates

	Accessing and Reusing Graphics
	Referencing Vector and Bitmap Images
	The Group Element
	The <use> Element

	Creating Patterns
	Case Study: Designing a Reusable Pattern
	Adding Basic Shapes

	Summary

	Index

