Andrew Couch
Microsoft® Most Valuable Professional (MVP)—
Microsoft Access

Microsoft®

Includes VA .
YOUR BOOK + SAMPLE
FILES—ONLINE!

See back

Intermediate/Advanced

Conquer Microsoft: Access® VBA
Programming—from the inside out!

About the Author

Andrew Couch, Microsoft
MVP for Access, has been
programming with VBA since

You're beyond the basics, so dive right in and customize, automate,
and extend Access—using Visual Basic® for Applications (VBA). This

supremely organized reference is packed with hundreds of timesaving : N oy y—
solutions, troubleshooting tips, and workarounds. It's all muscle and no and Microsoft Office. He
fluff. Discover how the experts use VBA to exploit the power of Access— uses VBA on a daily basis

in commercial applications.
An experienced instructor,
Andrew has also taught VBA
Enhance your application with VBA built-in functions and SQL code programming courses.

and challenge yourself to new levels of mastery!

Use the Access Object Model to work with data in forms and reports
Manipulate data using SQL, queries, and recordsets with Data Access
Objects (DAO)

Create classes for handling form and control events

Connect your Access database to different sources of data
Effectively plan how to upsize an existing Access database to
Microsoft SQL Server®

Dynamically update Microsoft Excele spreadsheets from your
database

Migrate your Access database directly to the cloud using SQL Azure™

Your book + sample files—online!
{::‘ ® Fully searchable online edition of the book—with
um unlimited access on the web. See inside back;

A . free online account required.

* Download sample database files—ready to put to work,
with examples for Access 2003 and later.
See http.//go.microsoft.com/FWLink/?Linkid=223727

microsoft.com/mspress

Canada $57.99

[Recommended]

ISBN: 978-0-7356-5987-2 3 ® Microsoft®
“ m “ || 90000 US.A. $49.99 ~(0) Ice
“HHHHH‘ | |

Mi t Office/ -
Micoosort fceees Microsoft

9 17807351659872

Microsoft

Microsoft® Access® 2010
VBA Programming

Inside Out

Andrew Couch

Copyright © 2011 by Andrew Couch

All rights reserved. No part of the contents of this book may be reproduced or transmitted in
any form or by any means without the written permission of the publisher.

ISBN: 978-0-7356-5987-2
2345678910 LSI 765432
Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need
support related to this book, email Microsoft Press Book Support at mspinput@microsoft.com.
Please tell us what you think of this book at http.//www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/
IntellectualProperty/Trademarks/EN-US.aspx are trademarks of the Microsoft group of
companies. All other marks are property of their respective owners.

The example companies, organizations, products, domain names, email addresses, logos,
people, places, and events depicted herein are fictitious. No association with any real company,
organization, product, domain name, email address, logo, person, place, or event is intended
or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book
is provided without any express, statutory, or implied warranties. Neither the authors,
Microsoft Corporation, nor its resellers, or distributors will be held liable for any

damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions and Developmental Editor: Kenyon Brown
Production Editor: Teresa Elsey

Editorial Production: Octal Publishing, Inc.

Technical Reviewer: Alan Cossey

Indexer: Denise Getz

Cover Design: Twist Creative « Seattle

Cover Composition: Karen Montgomery

lllustrator: Robert Romano

[2012-10-12]

pour Pamela, ma raison d'étre

Part 1: VBA Environment
and Language

Chapter 1
Using the VBA Editor and Debugging Code. .. 3
Chapter 2
Understanding the VBA Language Structure 39
Chapter 3

Understanding the VBA Language Features. . 89

Part 2: Access Object Model
and Data Access Objects (DAO)

Chapter 4

Applying the Access Object Model. 127
Chapter 5

Understanding the Data Access

ObjectModel 161

Part 3: Working with Forms
and Reports

Chapter 6
Using Formsand Events 231
Chapter 7
Using Form Controls and Events........... 273
Chapter 8
Creating Reportsand Events 323

Contents at a Glance

Part 4: Advanced
Programming with VBA Classes

Chapter 9

Adding Functionality with Classes 339
Chapter 10

Using Classes and Events 359
Chapter 11

Using Classesand Forms. 381

Part 5: External Data and
Office Integration

Chapter 12
Linking Access Tables 395
Chapter 13
Integrating Microsoft Office.............. 437

Part 6: SQL Server and SQL Azure

Chapter 14
UsingSQL Serverccoinnn... 483
Chapter 15
Upsizing Access to SQL Server............. 543
Chapter 16
Using SQLAzure............coiiiiunn. .. 589

Part 7: Application Design

Chapter 17
Building Applications 631

Chapter 18
Using ADO and ADOX.c.o...... 659

Table of Contents

INtrOdUCHION oo Xix

Part 1: VBA Environment and Language

Chapter 1:

Using the VBA Editor and DebuggingCode 3
Debugging Code on a FOrm e 4
Entering the VBA Editor. 5
The Application and VBA Code WindOWS. 6
Creating Modules and Procedures. 8
Creatinga Module 10
Creating a Procedureo 11
Executing a Subroutine 13
Executing a Function o 15
Viewing and Searching Code 16
SRt WINAOW . ..o 17
Searching Code 19
Debugging CodeinaModule. i 20
Debug Commandson 23
Breakpointing Code.o 23
Set Next Command.t 25
Breakpoint Step and Run Commands. ... 26
Displaying Variables in the Locals Window 29
Tracing Procedures with the Call Stack.......... i i i, 30
Watching Variables and Expressions......... ..., 31
Adding Conditional Watch Expressionsc.cooiiiiiiiii... 32
Working with the Immediate Window i i 33
Changing Code On-the-Fly. e 34
Using the Object Browser and Help System o i, 35
Configuring the Help System o 35
Working with the Object Browser i i, 36
UMY oot e e e e e e e 37

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

vii

viii Table of Contents

Chapter 2:

Chapter 3:

Understanding the VBA Language Structure....................... 39
VBA Language Settings 40
COMMENES . 40
Setting Option EXplicit e 41
Selecting Option Compare. e 43
Compiling Code. . ..t 44
Conditional Compilation e 45
References e 46
Working with Constants and Variables 49
Improving Code Quality with Constants. 49
The Enum Keyword. 51
Variables and Database Field Types. i i 52
Handling NULL Values, IsNull and Nz i, 53
Using Static Variables. 55
Using Global Variables.o 56
Variable Scope and Lifetime 57
Working With Arrays. 59
Type StruCtUres 65
Functions and Procedures 66
Managing Code with Subroutines....... i i i 67
Defining ByRef and ByValue Parametersc.c.ouieiiiiiiineennnnnn. 70
Private and Public Procedures i 72
Optional and Named Parameterst 73
The ParamArray Qualifier 75
Organizing Code in Modules and Class Modules 76
Control Statements and Program Flow 77
IF... Then... Else... Statements. it e 77
HF Statements o 78
Choose StatemeNntso e 79
Select Case StatemeNts. 80
TypeOf Statementso 80
Forand FOor EGCh LOOPSo oottt e e e 81
Do While and Do Until LOOPSo o oo e e 82
Exit Statements 84
The With Statement 85
GOTo and GOSUD 86
Line Continuation 86
Splitting SQL Over Multiple Lines e 86
UMY .« o e e e 87
Understanding the VBA Language Features 89
Using BUilt-In FUNCLIONS e e 90
Date and Time FUNCLIONS. 90
String FUNCLIONS. e 92
Domain FUNCLIONSot 95
Constructing Where Clauses.t 97

SQL and Embedded QUOTES.o it 98

Table of Contents ix

Using VBA Functions in QUeries.ttt 101
The Eval FUNCHION . .. e 102
Shell and Sendkeys 102
The DoEvents Commandon ettt 103
Objects and Collections 103
Object Variables 105
Is Nothing, ISEmpty, ISObject i e 106
Creating Maintainable Code i 108
Naming Access Document Objects. ... 108
Naming Database Fields i 109
Naming Unbound Controls. 110
Naming Variablesin Code. i e 110
Indenting Code 113
Other Variable Naming Conventions., 113
VBA and Macros. . ..o oo 114
ACCESS BaSIC . . oottt 114
Converting Macros to VBA 115
Error Handling 115
On Error Resume NexXt 116
Err Object . .o 117
ON Error GOTO. . ..o oot e e 118
Developing a General Purpose ErrorHandler 118
OpenArgs and Dialog FOrms. 121
ErrRQiISe. 122
SUMMATY .« .o e 123

Part 2: Access Object Model and Data Access Objects (DAO)

Chapter 4:

Applying the Access Object Model.............. 127
The Application Object Methods and Properties. 128
The Run Method 128
The RunCommand Method. 129
Simplifying Filtering by Using BuildCriteria 130
The ColumnHistory and Append Only Memo Fields. 130
Examining TempVars. 132
Invoking the Expression Builder. o i 133
The CurrentProject and CurrentData Objects. 134
Retrieving Version Information. o i 135
Changing Form Datasheet View Properties. 136
Object Dependencies.o 137
The DoCmd ObjJect 138
Controlling the Environment. 138
Controlling Size and Position 139
Application Navigation 140
Data EXChange.t 142
Manipulating the Forms and Reports Collections 143

Using the Expression Builder. i 144

X Table of Contents

Chapter 5:

Referencing Controls ona Subform....... i i 145
Creating Access ObjectsinCode 149
Using the Screen Object 150
Changing the Mouse Pointer Shape i i 150
Working with the ActiveForm and ActiveControl. 151
Enhancing the User Interface. ... e 152
Setting and Getting OptioNns.t 152
Locking DOWN ACCESS. . o .ttt ettt e e e e e 154
Monitoring Progress with SysCmd. i i 155
Custom Progress Bars. 156
Selecting Files with the Office FileDialog i .. 157
UMY .« o e e 160
Understanding the Data Access Object Model 161
The DAO Modelo 162
DAO, ADO, and References. 163
Working with Databases. 164
The DBEngine Object 165
The Workspace Object 165
TranSaCtiONS . . o oottt 166
The Errors Collection 171
The Database Object 173
CurrentDB, DBEngine, and CodeDB i, 175
The TableDefs Collection and Indexes. 179
Managing Datasheet Properties i 184
Relationshipso 186
Manipulating Data with Recordsets o i 188
SEANCNING . .\ 188
Bookmarks 191
Field Syntax 191
Filter and Sort Properties. i 193
Adding, Editing, and Updating Records, 193
Multiple-Values Lookup Fields 194
Attachment Fieldso 197
The OLE Object Data TYPe. . ..o vve e e e e e e 206
Calculated Fieldso 210
Cloning and Copying Recordsetsouiuiii i, 212
Reading Records into an Array.ouiiiii e 215
Working with Queries iNn Code 215
Temporary QUeryDefs 216
QueryDefs and ReCOrdsets.uuu e 218
Creating QUEryDEfs.o 218
QueryDef Parameters.o 220
Investigating and Documenting Objects. oo 222
Containers and Documents.t 222
Object Properties 224

Sample Applicationso 224

Table of Contents xi

Documenting a Database by Usingthe DAO.ottt 224
Finding Objects in a Database by Using the DAO. 225
UMY ettt e 227

Part 3: Working with Forms and Reports

Chapter 6:

Chapter 7:

Using Formsand Eventsottt iiiiiinnnn.. 231
Displaying Records oo 233
Bound and Unbound Forms i 233
Modal and Pop-Up FOrms.t 234
Openand Load EVeNnts i 235
Filtering by Using Controls.o 236
Filtering by Using the Filter Property ... i 243
Filtering by Using Another Form 245
The ApplyFilter EVENt 247
Unload and Close EVENTSt 248
Working with the RecordsetClone. i 248
Refresh, Repaint, Recalc, and Requery Commandsoooueee.... 250
Calling Procedures Across FOrms. ... 251
Interacting with Recordsona Form..... 253
The Current Bvent 253
Deactivate and Activate EVENtS. 255
Setting the Timer Interval Property of the TimerEvent........................ 255
The Mouse EVENTS 260
Editingand UndoonaRecord i 262
BeforeUpdate and AfterUpdate Events 262
Locking and Unlocking Controls 264
Beforelnsert and AfterInsert EVeNnts it 265
The Delete EVENto et 267
KeyPreview and Key Events 268
The Error EVENt . ..o 269
SaVvViNg ReCOrds ot 270
UMM Y . oottt ettt et e 271
Using Form Controlsand Events..................cciiiinn.... 273
CoNtrol BVeNtS ... o 274
The Click and DbIClick Events. e 275
The BeforeUpdate EVent.t e 276
The AfterUpdate EVENt.o e 276
The GotFocus and LostFocus Events.o i 277
COMDO BOXES . . . oottt 278
Synchronizing Data in Controls i 278
Combo BOX ROWSoUrce TYPe. . ..o oo et 280
Combo BoX COlUMNS . ..ot 282
Value List Editing.o 284

Table/Query Editingo 285

xii Table of Contents

Chapter 8:

LISt BOXES. . . 286
Multiple Selections 286
Multiple Selections with Two List Boxesco i, 290
Using the List Box asa Subform 292

The TreeView Control 295
Adding the TreeView Control 296
Populatingthe Tree 298
Adding Graphicso 301
Expanding and Collapsing Nodes ... 303
Drag-and-Drop 303
Deleting a Node with Recursion. i 307
Adding NOESo ot 309

The Tab Control 311
Refreshing Between Tabs and Controls.co i, 311
The OnChange Evento i e 314
Dynamically Loading Tabs. 314

UMY .« o 321

Creating Reportsand Events iiiiii.... 323

Report Event Sequences. 324
Creating Drill-Down Reports and Current Event............... 326
Creating a Boxed Grid with the Print Event 327
Layout Control and the Format Event............ 330

Report Layout Control 331
Driving Reports froma Form 331
Reducing Joins with a Combo BoX. ... 333
Programming a Report Groupingouiiin e 333
Packing Address Information with a ParamArray 334
Control of Printers. 335

Part 4: Advanced Programming with VBA Classes

Chapter 9:

Adding Functionality with Classes. 339
Improving the Dynamic Tab Control ... i 340
Creatinga Class Module 341
The Let and Get Object Properties. 342
Creating an Object with New and Set......... i, 343
Collection of ObJECES ...ttt 345
Creating Collection Classes.ttt e 346
Using Classes with the DynamicTab i i 351
Simplifying the Application with Classes o .. 352
Creating a Hierarchy of Classes. e 354
CreatingaBase Class 354
Derived Classeso 355

SUMIMIAIY .« e 357

Chapter 10:

Chapter 11:

Table of Contents xiii

Using Classesand Eventsccoiiiiiiniinnennnnnnenn. 359
WIthEVeNnts ProCESSING.ttt et e e et e e e e e e 360
Handling Form Events o i 360
Handling Control Events i 362
Asynchronous Event Processing and RaiseEventccouuuiinnnn. 363
Abstract and Implementation Classesottt 370
Abstract Classes.o i 370
Implementation Classes.t 372
Implementing an Abstract Class. 373
Hybrid Abstract and Non-Abstract Classes 376
Friend Methodso 378
SUMMAIY .« .t e e e 379
Using Classesand FOorms.ot iinninninnnnnnnn. 381
Opening Multiple Instances of a Form. i e 381
Classes and Binding FOrms. e 383
Binding a Form to a Data Access Object Recordset. 383
Binding a Form to an Active Data Object Recordset. 384
ActiveX Controls and Events 386
Adding a Slider Control 386
The UpDown or Spin Control e 388
SUMIMAIY oo e e e e 391

Part 5: External Data and Office Integration

Chapter 12:

Linking Access Tables. i 395
LinKing ACCESS t0 ACCESS. . o oottt et e e e e e 396
Using the Database Splitter. ... i 397
Linked Table Managert 398
Automating Relinking 398
Linking to Excel and Text Files. i e 406
Linking t0 EXCelot 406
Linking to Text Files 407
Linking t0 SQL Server . ..o 407
Setting up the Sample Databaseo i, 407
Creating @ DSN o 410
Connecting to SQL Server Tables. ... 416
Refreshing SQL Server Linked Tables. 417
Connectingtoa Viewin SQLServer i 418
Refreshing SQL Server VIews e 419
Linking t0 SQL AZUIE. . . .o oo 420
SQLAZUrE DSN ..o 420
Connecting to SQL AZUIe oottt 424
Linking to SharePoint Lists.o 426
Relinking SharePoint Lists i 428
Linking Access Web Databases 430
Relinking to an Access Web Database. 432

SUMIMAIY oo e e e e 435

xiv Table of Contents

Chapter 13: Integrating Microsoft Office o iiiiiiii.. 437
Working with Objects and Object Models i, 438
Early vs. Late Binding and CreateObject vs. New.ccciiiin... 438
The GetObject Keyword. 440
Opening Existing Files 442
Connecting Access to Word.o 443
Generating Documents from a Placeholder Document. 444
Opening a Placeholder Document. 446
Merging Data with Bookmarks. 447
Connecting Access to Excel 451
Writing Datato a Spreadsheet....... i 452
Reading Data from a Spreadsheet.......... il 459
Reporting with Excel Linked t0 ACCESSoouii 460
Using MS Query and Data SoUrcesoouuinit i 468
Connecting Access to OULIOOKo 471
Extracting Information from Outlook i 472
Creating Objects in Outlook. e 475
Writing to Access from Outlook. 477
SUMIMIAIY .« .t e 480
Part 6: SQL Server and SQL Azure
Chapter 14: UsSing SQL S@IVerottt et e iee e, 483
Introducing SQL SEIVEr. . .. 484
Programs Vs. SEIVICES 484
Client-Server Performanceo i i 485
SQL Server VEISIONS . ..ottt ettt e e et e e e 486
SQL Express and SQL Server Products.coouiii i 487
Database File Locations.ooi 489
Log Files and Recovery Models 490
INSTANCES. . oo 491
WiINAOWS SEIVICES . . ottt 492
System Databases. 493
System Tables. 494
Getting Started with the SQL Server Management Studio. 495
Running the Demo Database Script i 495
Creatinga New Database 496
Creating Tables and Relationships i 496
Database Diagrams.t 496
Tables, Relationships, and Script Files oo i, 499
Changing the DesignofaTable......... i i, 500
Using the Identity Property. 504
Working With Views. 505
Graphical Interface 505
Views and Script Files. 506

CROSSTAB QUETIES . . .ottt e 509

Chapter 15:

Table of Contents XV

Working with Stored Procedures e 511
Introducing T-SQLo 517
Defining Variables. 517
Using CAST and CONVERTo 518
Built-In FUNCHIONSo 519
System Variables 520
Controlling Program FIOWot 521
Error Handlingo 523
Working With Triggers.t e 526
Working with Transactions. 530
Transaction Isolation Levels. 532
Nesting Transactions oo 533
User-Defined FUNCHIONSo 534
Getting Started with SQL Server Security ... 536
Surface Area Configuration. ... 536
SQL Server Authentication i 538
Windows Authentication.......... 541
UMY ettt ettt et 542
Upsizing Accessto SQL Server.coviiiiiiniiiniinennenn. 543
Planning for Upsizingo 543
Text Data Types and UNICODE.o e 544
Dateand Time Datattt e 544
Boolean Data 546
Integer NUMbErs. ... o 547
Real Numbers, Decimals, and Floating-Point Numbers. 547
Hyperlinks. . ..o 547
IMAGE, VARBINARY(Max), and OLEDGtG.cciiiiiiiiiiiiiiann. 547
Memo Data 547
CUITBNCY .« ettt e e e 548
Attachments and Multi-Value Data............ ... o i i, 548
Required Fields 549
Cycles and Multiple Cascade Pathso i, 549
Mismatched Fields in Relationships. 550
Replicated Databases and Random Autonumbers............................ 551
Unique Index and Ignore Nulls. 553
Timestamps and Row Versioning............ .o, 554
Schemas and SYNONYMS. 556
The Upsizing Wizard and the SQL Server Migration Assistant 558
The Upsizing Wizard. e 558
Upsizing to Use an Access Data Project 561
SO A L 564
Developing with Access and SQL Server......... i, 574
The dbSeeChanges Constant.oouiii it 574
Pass-Through QUeriest e 575

Stored Procedures and Temporary Tables i 578

xvi Table of Contents

Handling Complex QUETIES.ottt e 579
Performance and Execution Plans i 582

SQL Server Profiler 586
SUMIMAIY .« .« e 588
Chapter 16: USINg SQL AZUrE.ottt e e et 589
Introducing SQL AZUIe . . .ot 590
Creating Databases. 590
Firewall Settingso 591
Using Management Studio 592
Developing with the Browser Interface. i, 595
Migrating SQL Databases. 596
Creatinga Setof Tables. ... i 597
Transferring Data with the SQL Server Import and Export Wizard 599
Backing up and Copying a Database.......... i i 603

The Data Sync Feature 604
The Data Sync AgeNnt oot 605

Sync Groups and SYNC LOgS.ttt 610
Changing Data and Database Structure..........., 612
Conflict ResolutioninData 613
Changes to Table Structure. 613
Planning and Managing Security 615
Building Multi-Tenanted Applications 617
User Tables and Viewso 617
Application Tablesand Views i 619
Managing SECUTItYo e 623

SQL Server Migration Assistant and Accessto Azure ... 624
SUMIMIATY .« oo e e e e e 628

Part 7: Application Design

Chapter 17: Building Applications 631
Developing Applications. o 631
Application Navigation 632
Ribbon Design. 639
32-Bit and 64-Bit Environments. e 649
Working with the Windows Registry. ... 650
Using the Windows APl 651
Completing an Application 653
Splash SCreens e 653
Progress Bars 653

Error Handlingo 654
Locking Down an Application. 654
Deploying Applications. 655
Protecting Your Design with ACCDE Files.ot 655
Runtime Deployment. 655

Single and Multiple Application Fileso i 655

Chapter 18:

Table of Contents xvii

DSNs and Relinking Applications. i 656
Depending on References. i 656
Updating Applications. 656
UMM .« ettt 657
Using ADO and ADOX.ttt e i e 659
ActiveX Data Objects.ttt e 660
CUTSOTS et e et e e e e e 661
Asynchronous Operations.ttt 662
Forms and ADO Recordsets.o 662
Working With SQL Server 663
ConNNECHioN StriNGS . . oo oot 663
Connecting to SQL Server. i 664
Command ObJeCtttt 666
Stored Procedures.o 666
Multiple Active Result Sets and Performancet 668
MARS and Connections.ttt 669
ADOX . ot 672
SUMMAIY .« .ttt 673

Introduction

Microsoft Visual Basic for Applications (VBA) is an exceptional programming language and
environment. The language has grown out of a need to have a programming language that
would allow more business-focused individuals to write programs, but equally support the
programming features that developers look for in a product. The environment is as impor-
tant as the language because of its unique features, allowing code to be quickly modified
while being debugged.

The Access Basic language in early product versions evolved into the VBA language, which
provided a cross-product language for the Microsoft Office products. This all coincided
with the revolution of an event-driven approach to programming, which was very impor-
tant, because the emphasis on being a programmer shifted from writing thousands of
lines of code to writing snippets of code in response to events. This also led to a change
of emphasis from writing large libraries of code to understanding how to manipulate the
object models in the environment—a focus which has progressed with .NET, albeit using
namespaces instead of object models.

Even with the introduction of object-oriented programming, VBA has kept pace with the
expectations of modern programming. The two products that have shaped VBA the most
are Microsoft Excel and Microsoft Access; Excel introduced VBA and originally gained VBA
programming features in advance of these becoming available within Access.

A significant strength of VBA is that it is universal to the Microsoft Office suite of programs;
all the techniques we describe in this book can be applied to varying degrees within the
other Office products. A major turning point for these products was the ability through
OLE Automation to be able to drive one product from another, and to cut and paste code
between the different environments with a minimum amount of change to the code. This
was a revolutionary feature introduced with the programming language of Access Basic,
conforming to the new VBA standard established in Excel. VBA suddenly provided the long-
awaited platform for the simple integration of the Office products and building solutions
that could easily exploit the strengths of each component product in the Office suite. The
combination of Access and VBA offers an extremely productive environment within which
to construct applications.

VBA has often been criticized for its simplicity as a language when compared to languages
such as C++ and C#. Quite to the contrary, the big advantage of VBA is that this simplicity
leads to more easily maintainable and reliable code, particularly when developed by people
with a more business-focused orientation to programming. Looking toward the future, the
emphasis in modern programming has moved from the language syntax to the intricacies
of understanding the objects that the language manipulates, so the emphasis on the spe-
cific syntax of languages is starting to blur.

XiX

XX

Introduction

In the .NET world, the conflict between using VB.NET, which originates from VBA, and C#
continues, because even though the objects being manipulated are now common, there
are subtle differences between the languages, which means that developers moving from
VBA to C# can often feel that they are being led out of their comfort zone, especially when
they need to continue to use VBA for other applications.

Access has often been criticized for creating poor performance applications where a proto-
type turns into a business critical system, propagating a support nightmare for information
technology departments, and leading to applications that eat up network bandwidth. It has
also been stated that the product is never used for mission-critical applications. The truth

is that both Access and Excel are pivotal to many organizations, but the people answering
that mission-critical question are often not willing to admit to this because it is perceived as
vulnerability. The problem with using Access and Excel is that Rapid Application Develop-
ment (RAD) can often come to mean final application without recourse to a more struc-
tured oversight of what is being developed, and as data volumes and user communities
grow, so too the inevitable flaws in not having designed a scalable solution are exposed.

This book details how Access and VBA are not a problem, although their success is often
their downfall in the hands of those lacking some direction on how to effectively develop
applications. The big problem with Access is that the underlying database engine is
extremely efficient and can compensate for a design that normally would not scale. So if
you convert your Access database data to be located in Microsoft SQL Server, Microsoft
SQL Azure, or Microsoft SharePoint, you might find that the existing application design
techniques for searching and displaying data need to be revised. Our advice is to take into
account the mantra of Client-Server design, which is to minimize the amount of data being
transferred in any operation.

In this book, we would like to make our contribution toward creating a better informed
community of developers, and show how to better develop applications with VBA.

Who This Book Is For

This book is aimed at two types of reader. First, we want to enable the reader who has
worked with Access and developed applications to move to the next level of development.
We want to help that reader to more fully develop applications with a deeper understand-
ing of what it means to program with VBA.

Our second target audience is the more experienced VBA programmer, who needs the
assistance of a good instructional text to move up a gear and explore the more advanced
aspects of VBA programming. As well, we have devoted a significant number of our pages
to supporting you in developing with both SQL Server and cloud computing.

Introduction xxi

Assumptions About You

We make a basic assumption in this book that you are experienced either in working with
Access or that you have a strong programming background, which means that you can
learn VBA programming in Access very quickly. We will spend no time explaining how

to create a table, form, or report, and if you cannot do this, you need to first learn these
actions in more detail. We recommend our companion text Microsoft® Access® 2010 Inside
Out by Jeff Conrad and John Viescas.

If you have some VBA Programming experience, you can skim over Chapters 1-3. If your
experience level is not such that you are comfortable skipping chapters, Chapters 1-3 will,
we hope, give you a key appreciation of the power of the VBA development environment.

How This Book Is Organized

This book allows you to either start at the beginning and work through each chapter or to
dip into specific chapters or topics to investigate a particular feature of VBA. To enable dip-
ping into the book, each part is designed to be self-contained.

Part 1, “"VBA Environment and Language”

In Chapters 1, 2, and 3, we provide a foundation that demonstrates how to program with

VBA. We start by showing you how to debug, write, and modify code (gaining confidence
with the VBA environment is the first step to efficiently developing applications within it).

Then we move on to an in-depth exposition of the VBA language, which can act both as a
reference for coding syntax and a solid introduction to the language.

Part 2, "Access Object Model and Data Access Objects (DAO)”

Chapters 4 and 5 dig deep into programming with the objects that make up Access, includ-
ing the DAO programming language, which is the bread and butter programming tech-
nique for any Access VBA developer.

Part 3, "Working with Forms and Reports”

Chapters 6, 7, and 8 illustrate how to apply VBA when working with forms, controls, and
reports. This develops your core techniques in understanding how to apply VBA for build-
ing the key interface components in applications.

Part 4, "Advanced Programming with VBA Classes”

Chapters 9, 10, and 11 are for some developers more esoteric than the rest of this book, but
they illustrate how you can exploit VBA to embrace the most advanced concepts of modern

xxii

Introduction

computing by using object-oriented programming. There are a lot of cunning tricks and
techniques in these chapters that are worth reading about, and many of the ideas in these
chapters will take you forward in also handling development with .NET.

Part 5, "External Data and Office Integration”

In Chapters 12 and 13, we address the issue of how to link Access to external data and write
VBA to communicate both with other Office applications and external data sources such as
SQL Server and SharePoint.

Part 6, “SQL Server and SQL Azure”

Chapters 14, 15, and 16 provide a comprehensive description of how to extend the reach
of Access applications by moving the back-end data into SQL Server, and then onto SQL
Azure. Chapter 14 is dedicated to equipping developers with a solid understanding of how
to develop code with SQL Server, during which we explain both how to use the SQL Server
Management Studio and write programs using Transact SQL (T-SQL).

Chapter 15 moves on to look at converting Access Databases to SQL Server by using both
the Upsizing Wizard and the SQL Server Migration Assistant (SSMA). Chapter 16 discusses
how to move your databases into the cloud either by using the SQL Server Import and
Export Wizard feature in the SQL Server Management Studio from a local SQL Server, or
SSMA from an Access Database. We discuss how you can exploit the unique features of
Office in directly constructing links to Azure, building multi-tenanted solutions and using
the soon to be released new Data Sync features in SQL Azure.

Part 7, "Application Design”

The last part of this book, Chapters 17 and 18, shows you a number of ideas for helping
you to create applications, including a discussion of how to design the user interface, build-
ing ribbons, utilizing the Windows API, and working with ADO and ADOX. In Chapter 17,
we will step through the process of building applications. This chapter ties together all the
lessons you learn throughout the book, making references back to other sections.

Features and Conventions Used in This Book xxiii

Features and Conventions Used in This Book

This book uses special text and design conventions to make it easier for you to find the
information you need.

Text Conventions

Convention Meaning

Boldface type This indicates user input that you are instructed to type; for example,
“Click the Save As command, name the file NewFile_01, and then
click OK."

Ctrl+F Keystroke combinations are presented as Ctrl+G, which means to
hold down the Ctrl key and press the letter G on the keyboard, at the
same time.

Object names When we need to draw your attention to a specific technical term,

program elements, or an object in the sample database, it will be
presented in italic; for example, “Open the form frmSample and right-
click the ListBox control.”

Design Conventions

| NSl DE OUT EZiasdsi;a;tement illustrates an example of an “Inside Out”

These are the book’s signature tips. In these tips, you get the straight scoop on what’s
going on with the software—inside information about why a feature works the way it
does. You'll also find handy workarounds to deal with software problems.

Note

Notes offer additional information related to the task being discussed.

xxiv About the Companion Content

About the Companion Content

You'll see references to the sample files and bonus content throughout the book. A com-
plete list of the key database files follows (we have not listed all the smaller support files for
each chapter).

We have also included in the bonus content (which is located within the file sets for Chap-
ters 5, 7, and 18) additional application files that contain more code examples and provide
useful utilities to add to your program libraries.

To access and download the companion content, visit: http.//www.microsoftpressstore.com/

title/9780735659872.

Chapter or topic Content
Chapter 1 e VBAEnvironment.accdb
Chapter 2 e VBAExamples.accdb
Chapter 3 o VBAFeaturesExamples.accdb
Chapter 4 ® AccessObjectModel.accdb
Chapter 5 e DAOExamples.accdb

e CountrylLibrary.accdb

e Find_IT.accdb

e DocDAO.accdb
Chapter 6 e FormExamples.accdb
Chapter 7 e Controls.accdb

e TreeBuilderaccdb
Chapter 8 ® Reports.accdb
Chapter 9 e BuildingClasses.accdb

e BuildingClassesAfterExportimport.accdb
Chapter 10 e ClassesAndEvents.accdb
Chapter 11 o C(ClassesAndForms.accdb
Chapter 12 e Employees_be.accdb

Sample_fe.accdb

o WebDatabase.accdb

http://www.microsoftpressstore.com/title/9780735659872
http://www.microsoftpressstore.com/title/9780735659872

About the Companion Content

XXV

Chapter or topic Content
Chapter 13 e ExcelAnalysis.accdb
e OfficeApplications.accdb
e OutlookContacts.accdb
e WordQuote.accdb
Chapter 14 ® SQLServerkExamples.accdb
® SQL Server Script files
Chapter 15 e Northwind_ProblemsAndFixes.accdb
e SQLServerCodeExamples.accdb
e SQL Server Script files
Chapter 16 e Northwind_ForAzure.accdb
® SQLAzureCodeExamples.accdb
® SQL Azure Script files
Chapter 17 e ApplicationDevelopment.accdb
e ApplicationDevelopment64Bit.accdb
e ApplicationDevelopment_2007.accdb
Chapter 18 e ADOExamples.accdb
e DocADOX.accdb
® SQL Server Script files
Bonus Content e Chapter 5: Find_IT.accdb, DocDAO.accdb
e Chapter 7: TreeBuilder.accdb
o Chapter 18: DocADOX.accdb

Your Companion eBook

The eBook edition of this book allows you to:

o Search the full text

e Print

e Copy and paste

To download your eBook, please see the instruction page at the back of this book.

XXVi

About the Companion Content

Access Versions

All of the examples in the book are designed to run with Access 2010 32-bit.

If you are using Access 2010 64-bit, you should also be able to use the examples with the
following revisions: in Chapter 17, use ApplicationDevelopment64Bit.accdb. The Bonus
material databases have versions called Find_IT64Bit.accdb, DocADOX64Bit.accdb, and
DocDAO64bit.accdb. The file TreeView.accdb has no equivalent 64-bit version, as this con-
trol is not supported in the 64-bit environment.

The majority of the code examples in this book will work on older versions of Access, and
we have provided a set of .mdb files for this in Access 2002-2003 file format. However, the
older the version that you use, the less likely will be the compatibility. There are several top-
ics in Chapters 4, 5, 13, and 17 which were either not present in earlier versions of Access or
have undergone a significant amount of change.

In some chapters, we have inevitably had to construct examples that rely on a hardwired
path; in these situations you might find it easier either to construct your own example, as
described in a chapter, or move the files to a path that matches the completed example.
Where possible, we have provided assistance and advice in the sample databases to over-
come any path problems.

Acknowledgments xxvii

Acknowledgments

A good technical book needs an author who is well informed and passionate, and | hope
| can live up to that expectation. But it also needs contributions from a team of people to
turn the idea into a reality.

First, my thanks to Kenyon Brown at O'Reilly Media; without his asking me to propose to
write this book, it would have never have been started. Your diligence throughout the
entire process has been splendid.

Next, | offer immense gratitude to Alan Cossey, who acted as technical reviewer on this
book; having acted as a technical reviewer myself, | can greatly appreciate all of his time
and recommendations made during the review process.

I would also like to thank Bob Russell at Octal Publishing, Inc., for acting as my copy editor;
Bob has not only ensured that the flow of the book has a professional polish, but also
caused me to reflect on the meaning of many parts of the text.

I would like to thank my good friend Jeff Conrad at Microsoft. Jeff is a great advocate for
Access and helped wonderfully in answering and passing along many of my comments and
questions to the Microsoft teams.

Numerous thanks also to those members of UK Access User Group for helping in testing my
solutions to difficult technical issues. You can’t beat a good community of developers!

My thanks also to Dianne Russell at Octal Publishing, Inc., for managing the copy edit-
ing and composition, and Betsy Waliszewski, senior marketing manager, for promotional
activities.

Finally, | would like to thank my wife, Pamela, for her patience, and my son, Michael, for his
assistance at various stages in helping with chapter layouts.

Andrew Couch
July 2011

xxviii Support and Feedback

Support and Feedback

The following sections provide information on errata, book support, feedback, and
contact information.

Errata & Support

We've made every effort to ensure the accuracy of this book and its companion content.
Any errors that have been reported since this book was published are listed on our Micro-
soft Press site:

http.//www.microsoftpressstore.com/title/ 9780735659872
If you find an error that is not already listed, you can report it to us through the same page.

If you need additional support, email Microsoft Press Book Support at mspinput@microsoft.
com.

Please note that product support for Microsoft software is not offered through the

addresses above.

We Want to Hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valu-
able asset. Please tell us what you think of this book at

http.//www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in advance
for your input!

Stay in Touch

Let's keep the conversation going! We're on Twitter: http.//twitter.com/MicrosoftPress.

http://www.microsoftpressstore.com/title/ 9780735659872

PART 1

VBA Environment and
Language

CHAPTER 1
Using the VBA Editor and Debugging Code. . .3

CHAPTER 2
Understanding the VBA Language Structure 39

CHAPTER 3
Understanding the VBA Language Features . .89

CHAPTER 1

Using the VBA Editor and
Debugging Code

Debugging CodeonaForm................c.c.oouu.. 4 BreakpointingCode.............. ... oo 23
Creating Modules and Procedures. 8 Using the Object Browser and Help System........... 35
Debugging CodeinaModule 20

tool for writing program code. It is an environment in which you can test, debug, and

develop your programs. Understanding the unique way in which the editor allows
you to make modifications to application code while the execution of the code is paused
will help you to learn how to quickly develop your applications and master the techniques
for debugging code.

T he Microsoft Visual Basic for Applications (VBA) Editor is more than a simple editing

In addition to changing code on-the-fly as it executes, you can switch across to the Micro-
soft Access 2010 application window while your code is paused, create a query, run the
query, copy the SQL to the clipboard, and then swap back to the programming environ-
ment to paste the SQL into your code. It is this impressive flexibility during the develop-
ment cycle that makes developing applications with VBA a productive and exhilarating
experience.

In this chapter, you will work with examples of program code written in the VBA language.
The VBA language itself is systematically explained in Chapter 2, “Understanding the VBA
Language Structure,” and in Chapter 3, “Understanding the VBA language Features.” So,
before reading this chapter (or while you're reading it) you might want to either skim read
those chapters or simply refer to specific topics as they arise in this chapter. We have also
included some examples of Data Access Object (DAO) programming code. In this chapter,
we will be providing only limited explanations of the DAO development environment, just
to place it into the context of building real applications. For more detailed information
about it, see Chapter 5, “Understanding the Data Access Object Model.”

To successfully work with VBA, you need an understanding of the language, the program-
ming environment, and the objects that are manipulated by the code. Getting started
means dipping into different topics as you begin to build sufficient knowledge to effec-
tively use VBA.

4 Chapter 1 Using the VBA Editor and Debugging Code

By the end of this chapter, you will understand:

e The different ways that you can run and debug sections of program code.
e How to modify program code while it is paused and then resume execution.
e How to work with the different windows in the programming environment.
® Where code is stored in a VBA application.
e How procedures are created.

Note

As you read through this chapter, we encourage you to also use the companion content
sample database, VBAEnvironment.accdb, which can be downloaded from the book’s

catalog page.

Debugging Code on a Form

To begin, open the sample database, VBAEnvironment.accdb, which opens the startup
form, frmVBAStartsHere, shown in Figure 1-1.

E Lets get started 22

Understanding VBA starts here.

Look at the table of Contacts

Break apart the contact name into
first name and surname

Figure 1-1 The startup form, frmVBAStartsHere.

The sample database contains program code with errors intentionally integrated into it.
The frmVBAStartsHere form is designed to show how the code will break into Debug mode
when it encounters an error. As you work through this chapter, you will fix these errors.

Debugging Code on a Form

Click the button labeled Look At The Table Of Contacts. A pop-up window appears, as
shown in Figure 1-2.

Micrasaft Visual Basic

Run-time error ‘2102

The Form name ‘fromContacts' is misspelled or refers to a form that
doesn't exist,

Continue [End] [Debug] [Help]

Figure 1-2 In this Access pop-up window, you can either end the code
execution or click Debug to investigate the error.

If you click the End button, the program code stops executing. But as you want to debug
the code, click the Debug button.

Entering the VBA Editor

When entering debugging mode, the program stops in the VBA editor and highlights the
line of code at which it failed in yellow, as shown in Figure 1-3.

@ Microsoft Visual Basic for Applications - VBAEnvironm ent [break] - [Form_frmVBAStarsHere (Code)] E@
dﬁ Eile Edit View Insert Debug Run Tools Add-Ins Window Help Type a question for help v - & X
2 T =) (TR I " @ L1nocals =
Project - VBAEnvironment ﬂ emdLook v Click -
=N 1 Option Compare Database f
= &} VBAEnvironment (VBAEnvironment) Option Bxplicit
=5 Microsoft Access Class Chjects
Form_frmContacts Private Sub cmdBreakaApart Click()
Form_frmVBAStartsHere ProcessNames
-5 Modules End sub 3
o Module1
% modutlives Private Sub cmdLook Click()
| boCmd.OpenE‘om "fromContacts"
End sSub
Properties ﬂ -
+ [=]= « [»
Alphabetic | Categorized Immediate ﬂ

Figure 1-3 Choosing Debug opens the VBA Editor and highlights the program code line that
generated the error.

In this example, the problem is a simple spelling error. The database contains a form called
frmContacts, not fromContacts. Access displays an error message that fully describes the
problem. It also provides you with the opportunity to edit the text to correct the misspell-
ing, as shown in Figure 1-4.

5

Chapter 1 Using the VBA Editor and Debugging Code

2 Microsoft Visual Basic for Applications - VBAEnvironment [break] - [Form_frmVBAStartsHere (Code)] EI\EI
i% Eile Edit View Insert Debug Run Tools Add-Ins Window Help Type a question for help v - 8 X
‘BlarAd 4 2 A4 9 » 0@ W OB AW @ noca2 =
Project - VBAEnvironment ﬂ emdLook v Click -
= = |3 = Option Compare Database f
- vBAEnvironment (VBAEnvironment) Option Explicit
)53 Microsoft Access Class Objects
: Form_frmContacts Private Sub cmdBreakApart Click()
Form_frmvBAStartsHere ProcesoMames
=5 Modules End Sub =
¥ Module1
4 modtiities Private Sub cmdLook Click ()
= DoCmd . OpenForm "frhContacts"
End Sub
Properties _ﬂ v
= el EIERIT »
Alphabetic | Catogor zed Immediate |

Figure 1-4 Code stopped at the error line. Notice in the Project Explorer pane on the left that
the entry form _frmVBAStartsHere is highlighted. This tells you that you are viewing the form's
code module.

DoCmd.OpenForm is a command that allows the program code to open the specified form.
DoCmd is a shorthand way of saying, "do the macro command.” After correcting the mis-
spelling, you can either press the F5 key or click the Continue button on the toolbar to
allow the program to continue execution. Figure 1-5 demonstrates the results after con-
tinuing to execute the code, which now opens the frmContacts form.

5 frmContacts

o = =
Contacts List =
ContactlD CompanylD Contact Name Contact Title FirstName Surname
> 1 1| Maria Anders Sales Representative
2 2||Ana Trujillo Owner
Close
-
| Record: 1 <T1oFa1 | v n v [Ko Filter | Search

Figure 1-5 After correcting the programming error, you can see the result of executing
DoCmd.OpenForm, which opens the requested Access form.

The Application and VBA Code Windows

Notice that in your Windows task bar there are two windows open: one window containing
your Access application interface, and in the second window, the VBA Editor. When work-

ing with application code you can normally switch between the Editor and the application
windows, as shown in Figure 1-6.

Debugging Code on a Form 7

[VBA Environment

7@ Microsoft Visual Basic for Applications - VBAEnvironment [break] - [modUtilities (Code)] X ‘

Figure 1-6 With the VBA editor open, you have two windows for Access, and you can switch
between the application window and the VBA Editor window.

If you choose to close the forms you will be prompted to save the changes that you have
made to the code on the form, as shown in Figure 1-7.

VBA Environment @

4 l} Do wou want ka save changes to the design of Form 'frmYBAStartsHere'?

[ies] [No I [Cancel I

Figure 1-7 The prompt to save changes to the frmVBAStartsHere form.

CAUTION

It is very easy to click the wrong button and lose your design changes. Ensuring that
you click the Save button after making any changes to code means that you always
know that your changes have been saved. If your program code closes objects as part
of its execution, separate dialog boxes for saving changes can pop up, and you can eas-
ily forget to save a change. In the unlikely event that the Access application crashes and
you have not been saving your design changes, any unsaved changes will be lost.

|NS| DE OUT g?‘:?oaiﬁ::ir:;g:r or report is located in the class module

The last example illustrates how program code can be located in a form’s class module.
Code is written behind a form (“Code Behind a Form” or CBF) to respond to events
when the user interacts with the form and the form’s controls, Figure 1-8 shows the
relationship between controls on a form and the procedures in the form’s class module.

Form/Report \\ Form/Report

Class Module

control procedure

Figure 1-8 Code written in a form or report class module is normally related to events on
the form or report, and not normally shared in any other part of the application.

8 Chapter 1 Using the VBA Editor and Debugging Code

The term class module relates to VBA classes discussed later in the book, the form's

module is called a class module because it can handle events from the controls and

form sections; this is a feature that you can construct within your own module classes.

When code is written behind a form'’s event, it is a subroutine, but it is also possible

to have functions and subroutines on a form that are not directly associated with any
single control. This normally occurs when you have a need for an operation to be per-
formed by several controls. In this case, the code will be marked in the General section
of the form’s class module.

You have now learned that:

When a code problem occurs, you can click Debug to display the code and fix the
problem.

VBA programs can be edited when the code is paused and then instructed to con-
tinue execution after you have fixed any errors.

Regularly saving your changes after altering code is good practice.

Program code can be stored in the class module of a form or report.

Creating Modules and Procedures

In the last section, you saw that when the program code goes into Debug mode, the Editor
window is displayed. However, you can access the editing environment by using several dif-
ferent methods, as described in the following list:

Press Alt+F11 (this applies to all Microsoft Office products).

Press Ctrl+G. This displays the Immediate window in the Editor and automatically
opens the Editor window, if it is not already open.

On the ribbon, on the Create tab, click Module. This creates a new module and enters
the Editor.

In a form or report, on the ribbon, on the Design tab, click the View Code icon.
Click any of the modules shown in the Navigation window.

Right-click a Form/Report’s sections or controls, and then select Build Event, where
there is code written behind an event.

Creating Modules and Procedures 9

If you are not already in the Editor, then open the sample database and press Alt+F11 to go
there.

The VBA Editor comprises a number of windows. If you accidently close one, or need to
show a window that is not already displayed, click View on the menubar to open the win-
dow, as shown in Figure 1-9.

ﬁ Microsoft Visual Basic for Applications - VBAEnvironm
% File Edit | Miew Insert Debug Bun Tools

& v [B Code F7
Project- VBAEny = Object Shift+F7
E & 3 Definition Shift+F2
[= & vBAEnviror LastPositon Ctil+Shift+F2
&3 Merosoft & QObjectBrowser F2

B Form,

: B rorm] & Immediate Window Ctrl+G
=3 Modul .
ﬁ«:&;;;i\ B Locals Window
- mod k5 Watch Window
T Call Stack Ctrl+l
Properties & ProjectExplorer Cul+R
& Properties Window F4

Alphabetic | Cateqo

Toolbars »
Microsoft Access Alt+F11

Figure 1-9 From the View menu, you can open different types of Editor windows. Note the Proj-
ect window in the background with its expandable folders. This is a map of all the code modules
in the application. Double-click any form or report to open the document’s code module.

The Project pane normally contains two folders. The first folder, Microsoft Access Class
Objects, contains your forms and reports (only objects with an associated code module are
shown). Clicking one of these objects displays the existing code module. The term Class
refers to the special nature of a Form/Report module; it handles the events for the object.
These are sometimes simply called Form/Report modules. The separate Modules folder
below the Form/Report modules contains general purpose program code that can be used
in various parts of your application; these are sometimes called general or global modules
(this folder is only shown after you have created a module).

Below the Project pane is the Properties pane for the project. You can use this window to
change the name of the project or of a module (see Figure 1-10). The VBA project name
property should be changed if you use the operating system to copy a database to cre-
ate a new file, as the file copy operation does not change the VBA project name inside the
database.

10 Chapter 1 Using the VBA Editor and Debugging Code

ﬁ Microsoft Visual Basic for Applications -
% Eile Edit View Insert Debug R

(B E~-H 4 2BA 9
Project - VBAEnvironment ﬂ
|

E--@ YBAEnvironment (YBAEnvironment)
= @ Microsoft Access Class Objects
‘ Form_frmContacts
: Form_frmvBAStartsHere
=29 Modules
-+ Modulal

-+ modUtilities
Properties - VBAEnvironment ﬂ
VBAEnvironment Project -

Alphabetic | Categorized

[T veservronment |

Figure 1-10 The Project pane displays all forms and reports that have code modules. You can
use the Modules tab for writing code that is not tied to a particular form or report.

Creating a Module

You can use the Project window to create a new module. There are several different ways to
add a new module; the method shown in Figure 1-11 involves right-clicking the Modules
tab, and then selecting Insert | Module from the shortcut menu that appears. This method
is used when you want to concentrate on setting up new modules when you are in the
middle of writing and debugging code.

ﬁ Microsoft Visual Basic for Applications - VEBAEnvironment [break] - [Form_frm VB
% File Edit View [nsert Debug Run Tools Add-Ins Window Help

N = TR - -)
Project - VBAEnvironment ﬂ {General)
B E |3 Option Compare Database

option Explicit

-8 YBAEnvironment (YBAEnvironment)
=] {9 Microsoft Access Class Objects
- Farm_frmContacts

VBAEnvironment Properties
Properties

Figure 1-11 Creating a new module or class module from the Project pane.

Insert P | & Module

ImportFile & Class Module
Alphabetic |cg Export File

Dockable

Hide

Creating Modules and Procedures 11

When you create a new module, it is automatically assigned a default name (for example
Modulel). When you click the save button, you will be prompted to give the module a
permanent, more meaningful name. Figure 1-12 shows the new module before it has been
saved with an alternative name. You might also notice that when you save the new module,
it contains two special Option keyword lines of text. This is explained in detail in Chapter 2,
but for the moment, you can ignore this.

ﬁ IMicrosoft Visual Basic for Applications - VBAEnvironm ent [break] - [Maodulel {Code)]

d% File Ecit View Insert Debug Bun Tools Add-Ins Window Help

‘@ s rd 4 % 4 9 Pou oo R FE 2 @ s
Project - VBAEnvironm ent ﬂ (General) -
E = |3 Option Compare Database
B-Eﬁ YBAEnvironment (VBAEnvironment) Option Explicit

(=3 Micrasoft Access Class Objects
! Form_frmContacts
Form_frmiBAStartsHere
=25 Modules

& Madule1

& modutilities

Properties - Modulel ﬂ
Module1 Module -
Alphabetic | Cateqorized

=] Module1 ”

Figure 1-12 After creating a new module, it will be displayed using a default name such as
Modulel, Module2, Module3, and so on.

When you click the save option on the toolbar or close the database, you are prompted to
replace the default module name with something more meaningful.

Creating a Procedure

Modules contain procedures, and the procedures contain program code. Use the Insert
menu to open the Add Procedure dialog box (see Figure 1-13), in which you can add a
new Sub (subroutine), Function, or Property (class modules only). There is also an option to
prefix the procedure with the keyword Static, which makes variables hold their value when
repeatedly executing the procedure (static variables are described in Chapter 2).

12 Chapter 1 Using the VBA Editor and Debugging Code

Add Procedure @
Type ————
Cancel

@ Sub

' Function

_! Property

Scope

@) Public

! Private
[all Lacal variables as Statics

Figure 1-13 The Add Procedure dialog box.

There is another, quicker mechanism for creating a new procedure: click any empty area,
type the keyword Sub {name} or Function {name} (be sure you are not inside an existing
sub or function), and then press the Enter key. The VBA environment adds an End Sub key-
word automatically to complete the procedure block, as shown in Figure 1-14).

{General)

Option Compare Datahase
Option Explicit

Sub TestExample

(General)

Option Compare Datshase
Option Explicit

Sub TestExample ()

End Zub

Figure 1-14 Creating a new procedure by using the Sub keyword. The window in the back-
ground shows the keyword and the procedure name typed in; the foreground window shows the

result after pressing return.

Type the word MsgBox, enter a space, and then type a double quotation mark. As you do
this, IntelliSense assists you as you type in each part of the syntax for the MsgBox proce-
dure, as shown in Figure 1-15.

Creating Modules and Procedures 13

{General) ~ TestExample

Option Cowpare Datsbase
Option Explicit

Sub TestExample |
MagBox ™
End MsgBox(Prompt, [Buttons AsWhMsgBoxStyle = vbOKONN], [Tiie], [HelpFig), [Contexd) As ViMsgBoxResult

(General) -

COption Compare Database
COption Explicit

Sub TestExample|
MsgBox "Test Message"™, vhInformation, "Example™
End Zub

Figure 1-15 The built-in pop-up MsgBox procedure has three parts: the text to display; a con-
stant that is used to indicate what buttons and images to display; and finally, the title for the
window.

Executing a Subroutine

The subroutine code you created can be executed two ways. The first way is to click the
green Continue button on the toolbar menu or press the F5 key (you need to have the cur-
sor positioned inside the procedure on any part of the code). This should then display the
message box.

The second way is to type the name of the subroutine into the Immediate window, and
then press Return, as demonstrated in Figure 1-16.

Immediate

TestExample

Figure 1-16 You can type a subroutine name into the Immediate
window, and then press the Return key to execute it.

The second type of procedure in VBA is called a function. The key difference between a
function and a subroutine is that functions are always expected to return a value. Functions
are fully explained in Chapter 2.

To create a function, you can type Function {name}, similar to the way you entered your
subroutine (you should try this).

14 Chapter 1 Using the VBA Editor and Debugging Code

INSIDE QUT &rfam s function o a subroutine, o o mee”

VBA allows you to quickly change a subroutine into a function, and vice versa. After
you change the first line of the procedure, the VBA Editor automatically changes the
End Sub statement to an End Function (and all other Exit Sub statements to Exit Func-
tion statements), thereby converting the subroutine into a function. This is very useful
if you have larger blocks of code (spotting all the changes to make would be difficult)
and leads to improved productivity when developing code. Figure 1-17 shows the orig-
inal subroutine in the first window (background). In the second (middle) window, you
can see the word Sub has been edited to Function. Finally, as shown in the foreground
window, when you click off the line of code, the VBA Editor automatically changes the
code End Sub to End Function.

{General} » TestExample

Option Compare Datshase
Option Explicit

Sub TestExawple()
MsgBox "Test Message™, vhInformstion, "Example™
End Zub

(General) -

COption Compare Database
COption Explicit

Function TESt,ExamplE(]l
NsgBox "Test Message", vhInformation, "Example"®
End 3Zub

{General) -

Option Compare Datsbase
Option Explicit

Function TestExample ()
MsgBox "Test Message™, vhInformwation, "Example™
End Function

Figure 1-17 As soon as you click off where you replaced the keyword Sub with Function,
VBA changes the End Sub to End Function.

Because a function returns information, you are going to modify the program code to
match Figure 1-18 so that it returns a value.

The MsgBox statement can be written in two different ways: the first is to write it when you
want to display a message with an OK button (where it looks like a Sub [see Figure 1-17]);
the second way is illustrated in Figure 1-18, where you want to gather input from a user (it
behaves like a function).

Creating Modules and Procedures 15

{General) + TestExample

Oprion Compare Datsbase
Option Explicic

Funcrion TestExsmple(]

If MsgEox("Test Message™, vhbY¥esNo, "Example™] = vh¥es Then
TestExample = "Yes button was pressed”

Else
TestExample = "No button was pressed”

End If

End Function

Figure 1-18 The MsgBox function prompts the user with two buttons (Yes and No), and then
tests to see which button the user pressed.

After you have typed in a call to either a built-in procedure or your own procedure, you can
right-click the shortcut menu to display information on the parameters for the procedure
or get assistance with selecting constant values (see Figure 1-19). The MsgBox function has
alternative constants for the second parameter (vbYesNo) shown in Figure 1-18, which con-
trol the buttons and graphics displayed in a message box. To change a constant value in the
MsgBox routine, hover the mouse over the existing value, right-click to display the shortcut
menu, and then select List Constants. This simplifies entering a new constant value.

Function TestExample ()

If MsgBox ("Test Message™, vi™ e “~fes Then
TestExamwple = "Tes buttd ut
Else Capy
TestExample = "No buttor bate
End If -
End Function _j List Praperties, Methods

b List Canstants
e Quick Info
g Parameter Info

W,

Az Complete Word

Toggle 4
=t Object Browser

Add Watch...

Definition

Last Pasition

. Hide

Figure 1-19 Accessing the shortcut menu to display information about the parameters for the
procedure. Other options on this menu include providing quick information on the function.

Executing a Function

To run a function, you can press the F5 key, but this will not display the returned value. (In
Chapter 2, you will see that functions can be used to assign a returned value to a variable.)
You can also call the function from the Immediate window by using the “?” (question mark)
symbol adjacent to the function name to display the returned value, as shown in Figure
1-20. Notice that when you execute a function you need to add parentheses "()" after the

16

Chapter 1 Using the VBA Editor and Debugging Code

function name; a function needs to show that it accepts parameters even when it has no
parameters.

Immediate

?TestExample ()
Tes button was pressed

Figure 1-20 Executing a function from the Immediate window. Use the ?
(question mark) character to return a value from the function.

In this section, you have seen how program code can be written in a module that is not
connected to a form or report. These code units are called standard modules, or sometimes
general modules or global modules. Figure 1-21 illustrates how a standard module is an
object that is independent of any form or report. Compare this to Figure 1-8, which showed
a class module of a form or report that is attached to the Form/Report. Code written in
these procedures can link to other procedures in the same or different modules. The code
will normally not be specific to a single form. Form-specific code is better written inside a
form’s class module

I \

Module

procedure

\ J

Figure 1-21 A schematic view of a module, which can contain one or more procedures.
The procedures can be a combination of functions and subroutines.

You should now understand that program code can be written either in the class module
of a form or report (when the code is specific to the Form/Report), or it can be written in a
standard module (when it is not specific to a Form/Report).

Viewing and Searching Code

Module code can be viewed either showing the code for a single procedure (Procedure
view) or the entire module (Full Module view), using the scrollbars to browse through its
contents, as shown in Figure 1-22.

Creating Modules and Procedures 17

' equaly have used a fixed number like 255
modUicilices Getlurname = Mid(scrMixedNames, 1
End If
End Funcrtion

Sub modUcilicies DebugAssercExample()
' Exzmple showing Debug. Asserc
Dim lngCount AS Long
For lngCount = 1 To 10
Debuy.FPrinc lngCount
Debuy. Assert lngCount <> 5
Hext
End Sub

4 T

Procedure View T—Ful\ Module View

Figure 1-22 Using the buttons in the lower-left corner of the code window, you can display
either a single procedure or a scrollable list of all the procedures in the module.

Split Window

The module code window can also be switched to a Split view (see Figure 1-23). This gives
you the ability to compare code in two different procedures, one above the other.

Tools Add-Ins | Window = Help

Jl%gﬁ_}v Split

{General) Tile Harizontally
N Tile Yertically
Functiol ’
'if thy Lascade
!)
can & Arrange Icons

Figure 1-23 Use the Window menu to enable the Split view option.

Drag the splitter bar in the center of the screen up or down to change the proportion of
the screen that is used to display each procedure. The scrollbars and the PgUp/PgDown
buttons can be used independently in each window to browse through the procedures in
the module. Figure 1-24 illustrates the split window view.

18

Chapter 1 Using the VBA Editor and Debugging Code

{General) ~ Processlames -

»

Sub ProcessNames |

' This routine goes through &ll the records in the table

' thlCompanyContact and takes the ContactMName and splits it i
' two new fields FirstNamwe and Surname

Stop

Dim db Az Datsbase

Dim rst As Recordset

Zet db = CurrentDb

Dim strCombinedMName As String

Dim i As Long

| m

Function modltilites GetSurname (str¥ixediame As String) -
' if the nsme we have & Space we assume that we

' man extract a first name like Fred Bloggs

' Otherwise we assume we have a first name only like fred

Dim lngPosSpace As Long

IngPosSpace = InStr(l, str¥ixedMNames, "™ ')
If lngPosSpace <> 0 Then

== « [m] [

Figure 1-24 Viewing two procedures at the same time in Split view mode.

Dragging the splitter bar to the very top of the screen and releasing it will remove the split

view. Similarly, by moving the mouse to the top right, just above the vertical scroll bars, the
mouse pointer will change shape and you can drag down the splitter bar (this can be a little
tricky to do and you will find the Window menu easier to use for this).

Use the drop-down menu located on the upper-right portion of the window to select any
procedure within a module (see Figure 1-25). This applies to each of the windows when
using the split view, as well.

{General) ~ Processllames -

{Declarations)
modUtilites_GetFirstlame
Sub ProcessNames () modUti . GetSurname

! This routine goes through all the reqpagitilties_DebugAssertExample |
' thlCompanyContact and takes the ContiprocessHames

' two new fields FirstMName and Surnsame

Stop

Dim db i4s Database

Figure 1-25 Use the drop-down menu to quickly display any function or subroutine in a mod-
ule. For standard modules the drop-down on the top left only has one available choice called
General; for class modules there will be other values shown in the drop-down.

4 N\
Note

If you click the drop-down menu in the upper-left portion of the window, you will see
only the General option. However, if you are displaying a form or report class module,
as shown in Figure 1-26, you will see a list of the form sections and controls, and the
drop-down menu at the upper-right will now display the events for the object selected
in the lefthand list.

Creating Modules and Procedures 19

cmidBreakApart

Private Sub cmdBreaklpart Click()
ProcessNames
End Sub

Figure 1-26 In a Form/Report class module, the drop-down menu on the left lists the controls
and sections in the document. The drop-down menu on the right shows all possible events for
the selected section or control. Events that have code associated with them are displayed in a
bold font.

If you have multiple code windows open, you can use the Windows menu to change
between the open windows. You also have the option to tile (horizontally or vertically) or
cascade the open windows, as shown in Figure 1-27.

Window = Help
Split
Tile Horizantally
Tile Vertically
Lascade
Arrange [cans
~ 1 Form_frmVBAStartsHere (Cade)

2VBAEnvironment - madUtilities {Code)

Figure 1-27 The Window menu in the Editor allows multiple, open module windows to be
viewed in Tile mode or Cascade mode.

Searching Code

If you need to find a procedure or a piece of code, press Ctrl+F to open the Find dialog
box and locate the code in the current procedure, module, project, or block of selected text
(use the mouse to select and highlight the text before pressing Ctrl+F), as demonstrated in
Figure 1-28.

Find (=3
Find What: oLkl etFirsthame

Search o 'ﬁ ‘
" Current Procedure Diccon) A e S
* Current Module [Find \Whale \Ward Only

Replace...
" Current Project I Makch Case

(" Selected Text ™ Use Pattern Matching Help

Figure 1-28 Use the Find dialog box to search and replace code fragments
within a procedure, module, project, or selected text.

20

Chapter 1 Using the VBA Editor and Debugging Code

To view the definition of a variable or procedure (see Figure 1-29), position your cursor on
it, right-click to open the shortcut menu, and then click Definition. Alternatively, again with
your cursor on the procedure or variable, press Shift+F2 to go to the definition. If the code
is in a different module, the appropriate module will be opened automatically.

Do While Not rat.EOQF
strCombinedlame = rat!ContactName
rst.Edit
rst!FirstName = mUdUtilitEs_GEtFirthamE(rst!CUntactNamE]

Figure 1-29 Viewing the definition of a procedure or variable.
Additionally, referring still to Figure 1-29, if you click the text modUtilites_GetFirstName in

the subroutine ProcessNames, and then press Shift+F2, the body of the code for the proce-
dure is displayed.

Debugging Code in a Module

To demonstrate how code is debugged, we will use a routine that splits a person’s name
from a combined field in the frmContacts form into separate first name and surname. Fig-
ure 1-30 shows the Contact Name in the first record split into the FirstName and Surname
fields.

5 frmContacts o B =

Contacts List

i »

ContactlD CompanylD Contact Name Contact Title FirstName Surname
:! 1 1 |Maria Anders Sales Representative Maria Anders
3

2 2| Ana Trujillo Owner
Close

| Record: 1 «[2ora1 | v mowi [RioE Search

Figure 1-30 Using VBA code, the contact’s full name, which is contained in the Contact Name
field, is split into corresponding FirstName and Surname fields.

Return now to the opening frmVBAStartsHere form, and then press the button labeled
Break Apart The Contact Name Into First Name And Surname, as shown in Figure 1-31.

Break apart the contact name into
first name and surname
Figure 1-31 Click the Break Apart The Contact Name Into First Name And Surname button on

the frmVBAStartsHere form to trace through and debug the application code for splitting apart
the Contact Name field.

The code will pause at a Stop statement, as depicted in Figure 1-32.

Debugging Code in a Module 21

@ Microsoft Visual Basic for Applications - VBAEnvironment [break] - [modUtilities (Code)] =
d% File Edit View Insert Debug Run Tools Add-Ins Window Help Type a question for help
R = R - pou @ B ¥ oA W @ 1n1gcoll -]
Project - VBAEnvironment ﬁ (General) w ProcessNames
a = -] " Module Revisions
= &% VBAEnvironment (VBAEnvironment) " Module Description : BExamples to help unders
=5 Microsoft Access Class Objects
! Form_frmContacts T RRKAARAEARRA R AR R A AR R AR R A AR R AR AR AR A RAFARARARAS
Form_frmyBaStartsHere
=5 Modules Sub ProcessNames ()
4 Modulo " This routine goes through all the records in tf
<% modutilities

" tblCompanyContact and takes the ContactName anc
" oLwo pew [ields FirsLName and Sucname

o Stop

Dim db Az Databasc

Dim rst As Recordset

Set db = CurrentDh

Dim strCombinedMame As String

Figure 1-32 Hardcoded (permanent) breakpoints using the Stop keyword are a useful reminder
when developing code that it is incomplete, but they should not be included in any final
application.

Notice in Figure 1-32 that the code has stopped in the modUtilities module, and not in the
form’s class module.

Figure 1-33 presents the code behind the button. This code calls the procedure Process-
Names in the module modUftilities.

Figure 1-33 The code behind the button is written in the Click() event. This code calls
the ProcessNames routine, which is has been written in a module.

|cm(IBreakA|)art ﬂ |Clicl<

Private Sub cmdBreaklipart Click()
ProcessNames
End Zub

In Chapter 2, you will learn about naming conventions. The convention adopted in this
book is to add a prefix to procedures in modules so that we can easily see in which mod-
ule a procedure is defined. In the preceding example, if you had called the modUtilities_
ProcessNames procedure rather than ProcessNames, it would be easier to see how the code
on the form linked to the code in the module (in this case, we have not followed the con-
vention to illustrate the point).

There is another feature in the VBA Editor that can help display how the modules have
been linked together. Selecting the Call Stack from the View menu displays the path from
the forms class module to the procedure in the utilities module. Figure 1-34 illustrates that
this procedure was called from a form (indicated by the "Form_" prefix) with the name frm-
VBAStartsHere, from the control called cmdBreakApart on the Click event for the control.

22 Chapter 1 Using the VBA Editor and Debugging Code

Call Stack ==
Project. Module, Function
Shiow

WEBAEnrionment . modUkliti
WBAEnrionment. Form_frm

artsHere.cmdBreakapart_Click. ICloiI

Figure 1-34 The Call Stack is a visual aid that helps to establish where you are in the code. In this
example, reading from top to bottom, you are in the code unit modUtilites_ProcessNames, which
was called from the code unit cmdBreakApart_Click, which is in the form frmVBAStartsHere.

|N Sl DE OUT g:eraet;r;?tcode in a module and linking the code to the form

In earlier sections, you looked at how program code can be written in a form’s class
module, and then you saw how more general purpose code can be written in a stand-
alone module that is not connected to a form or report. The code on the form or
report can be linked to the code in a standalone module. This is shown diagrammati-
cally in Figure 1-35.

Form/Report "\ Form/Report

Class Module

control — procedure

Module

procedure

Figure 1-35 Code in a form or report class module can call code in a module. The module
can contain code that is used in several parts of the application.

As an alternative to placing the code ProcessNames in a module, you can instead either
write the code behind the OnClick event in the form or add the code as a subroutine to
the form’s class module. Which of these alternatives you choose depends on whether
the code can be used in different parts of the form or in more than one form or report
in the application. Because the ProcessNames routine can be called from a maintenance
form or as part of a process for importing data, we have placed the code in a general
purpose utilities module.

Breakpointing Code 23

Debug Commands

Debugging code involves several operations. These operations are:

e Stopping or breakpointing the code so that it pauses at the correct point for
investigation.

e Examining and monitoring variables.
e Modifying and repeating the code execution.

Debug.Print is a command that displays values of program variables or expressions in the
Immediate window when developing code:

Debug.Print strCombinedName, rst!FirstName, rst!Surname

There is another debug command called Debug.Assert, which can be used to halt the exe-
cution of program code when a specific condition is False. For example, the following code
halts execution when IngCount = 5 (note that the Debug.Assert stops when the condition is
false):

Sub modUtiTlities_DebugAssertExample()
' Example showing Debug.Assert
Dim TngCount As Long
For 1ngCount = 1 To 10
Debug.Print TngCount
Debug.Assert TngCount <> 5
Next
End Sub

Breakpointing Code

The Stop and Debug.Assert statements are hardcoded breakpoints, but you can also have
soft breakpoints that you can use when you interact with a block of code and need to find
out why the code is failing or behaving in a particular way.

There are three ways to enter a breakpoint. First, you need to locate the line in which you
want to insert the breakpoint, and then do one the following:

® Press the F9 Key.
e On the Debug tab, click Toggle Breakpoint.
e Click in the margin next to the line of code (this is the easiest method).

Figure 1-36 shows the code paused at the Stop statement and a soft breakpoint highlighted
farther down the page.

24

Chapter 1 Using the VBA Editor and Debugging Code

(General) « Processlames

Sub ProcessNames ()

' This routine goes through all the records in the table

' thlCompanyZontact and takes the ContactMame and splits it into
' two new fields FirstMName and 3urnsme

o Stop

Dim db iz Database

Dim rst As Recordset

Fet db = CurrentDb

Dim strCombinedName As String

Iim i1 is Long

Set rst = db.CpenRecordset ("thlCompanylontact”, dhlpenDynaset)
Do Thile Not rst.EOQF
striombinediame = rst!ContactName
rst.Edit
rst!FirstName = modUtilites GetFirstName (rst!ContactName)
rst!Surname = modUtilites GetSurname (rst!ContactName)

DIebug.Print strCombinedMName, rst!FirstMName, rst!3urname
rst.Update

[] rst. BoveNex

Loop

End 3ub

Figure 1-36 The code discontinues execution at the Stop statement. Note the highlighted break-
point farther down the page

Unlike Stop statements, which need eventually to be removed from the code, breakpoints
are not remembered after you close the database. You can use the Debug menu to clear all
breakpoints in the application, or you can press Ctrl+Shift+F9.

With the breakpoint set, you want the code to execute until it reaches it. Use the Continue
button (see Figure 1-37) or press F5 to instruct the code to continue execution until it
either completes, or reaches a breakpoint.

Continue
(Break
|— |o—Reset

ﬁ Microsoft Visual Basic for Applications - VHAErRviropment [break] - [modUtilities (Code)

% File Edit View Insert Debug Rur]l Tpols] Add-Ins Window Help

‘B avd - SO - P @ =AW ¢ @ Lnis

Project - VBAEnvironment ﬂ Continue (F5) -

Figure 1-37 Three of the buttons on the Run menu are also displayed on the menu bar—
Continue (F5), Break (Ctrl+Break), and Reset (which halts code execution).

Press F5 to continue the code execution to reach the breakpoint shown in Figure 1-38.

Breakpointing Code 25

Set ret = db.CpenBecordset ("thlCompanylontact®, dblpenDynaset)
Do Thile Not rst.EOQF
strionbinedlame = rst!ContactName
rat.Edit
rat !Firstlame = modUtilites GetFirstName (rst!ContactName)
rat!Surname = modUtilites GetSurname (rst!ContactMName)

Debug.Print strCombinedMName, rst!FirstMName, rst!Surnamme
rat.Tpdate

& -rst. . HoveNext
Loop

Figure 1-38 Code continues to execute until it either reaches the next breakpoint
or completes execution.

The ProcessNames routine is an example of programming with a RecordSet object, which is
discussed in Chapter 5, “Understanding the Data Access Object Model." The program code
loops through each record in the table and changes the Firstname and Surname fields.

If you switch to the Access application window and open the table tb/ICompanyContact,
you can investigate whether your code has worked. And as it turns out, it has not worked
as desired; Figure 1-39 shows that the entire contact name has been copied into the First-
Name field. The name was not split apart, as intended.

=3 thiCompanyContact o @3 =
ContactiD - CompanylD - Contact Name - Contact Title - FirstName - Surname . -
1 1 Maria Anders sales Kepresentative Maria Anders
2 2 Ana Trujillo Owner b
‘ Record: W 10fa1 LI § te Search 4 »

Figure 1-39 With the code paused at a breakpoint, you can switch to the application window
and open other Access objects (in this case a table) to see the changes made to the data. Here,
you can see that the code has not split apart the Contact Name.

Set Next Command

If you move the cursor over the first line in the loop and then right-click, you can use the
Set Next statement to make the code go back and repeat the operation. This is typical of
how code is debugged. After identifying an error, you can move back to an earlier point in
the code to investigate it.

To change the current execution point to a different line of program code, place the cursor
on the line that begins with strCombinedName =, right-click to display the shortcut menu,
and then click Set Next Statement, as shown in Figure 1-40.

26

Chapter 1 Using the VBA Editor and Debugging Code

Click this first line and then right-click
to display the shortcut menu

Do While Not| rac.EOF

STrComh ihedilme = sas i Cans s W,

rst.Edic

rst!Firsciam EstName (st ! Contactiame)
rst!Surname ame (rst ! Contactiame|

Debuy. Frint FirstWName, rst!Surname

-

Toggle

EYT R
rst.Update i Object Brawser

¢/ st BoveNexc

Add Watch...
Loop
End Sub #E RunTo Cursor
o Set Mext Statement
Function modlUcil 5 MixedName ALs String)
Shaow Mext S
' if the neme we » ohowMextStatement | oo oo
' zan extract & Definition B loggs
' Otherwize we & name only like fred

Dim lngPosSpace . Hide

Figure 1-40 Changing the current execution point to a different line by using Set Next
Statement.

After you click Set Next Statement, the yellow highlighted line changes, as shown in Figure
1-41. Notice also that you can display the values of the variable by hovering the mouse
over it. (This is not restricted to variables in the highlighted line of code; you can hover the
mouse over variables on other lines to view their values, too.)

Do While Not rstc.EOF

(=] strCombinedName = rst!ContactHName

rst.Edic rst!ContactMame = "Maria Anders”

rst!FirstName = modUCITITES_GetFirstName (rst!ContactName)
rst!3urname = modUtilites_GetSurname (rst!ContactName)

Debug.Print strCombinedMName, rst!FirstMName, rst!3urname

rst.Update

L) rst. BoveNex

Loop

Figure 1-41 Hovering the mouse over any variables in the program code will
display the variable values.

As an alternative to using Set Next Statement to change the execution point, you can also
grab the yellow arrow on the side margin and drag it to a different line of code.

Breakpoint Step and Run Commands

You now know that this code has a fault, but rather than using the Continue (F5) execution
method that you just saw in the previous section, you can single step through the code to
locate the problem by using the Debug menu or hotkeys, as shown in Figure 1-42.

Breakpointing Code 27

Debug | BEun Tools Add-Ins Window
5 StepInto F3
(= Step Over Shift+F3
Sz Step Out Ctrl +Shift+F3
= Run To Cursor Ctrl+F8
Add Watch...
&4 Ouick Watch... Shift+F9
dlj Toggle Breakpoint Fa

Clear All Breakpaints Ctrl+Shift +F9
or Set Mewt Statement Crl+F9

& Show Mext Statement
Figure 1-42 Using the Step commands on the Debug menu, you can
trace through the execution of your code.

You can do this in several ways. One way is to keep clicking the Debug menu options, but it
is much faster to use the following function key combinations to step through the code:

e F8 Follows the code execution to the next step.

o Shift+F8 Moves over a procedure call and executes everything in the procedure,
but does not show you the detailed execution steps.

e Ctrl+Shift+F8 Indicates that you have examined the procedure in enough detail
and want to complete the execution of this current procedure, but stops once you
have returned to the calling code.

e Ctrl+F8 or right-clicking and selecting Run To Cursor Process all the lines until
you reach the current position of the cursor.

e Locate a line, right click, and then select Set Next Statement.

It is important to remember that when you press either Shift+F8 or Ctrl+Shift+F8, both
operations cause any code to execute. If you do not want the code to execute, then locate
the next line that you do want to execute, and then use Set Next Statement to change the

execution point.

For the purposes of this example, keep pressing the F8 key until you arrive at the point
shown in Figure 1-43.

Figure 1-43 shows the unmodified code and the mouse hovering over the variable. The dis-
played value for the variable leads you to spot the logical error.

28 Chapter 1 Using the VBA Editor and Debugging Code

Function modUtilites GetFirstMName (striixedName As 3tring)
' if the name we have & Space We assume that we

' oan extract a first nawe like Fred Eloggs

' Otherwise we assume we have @ first name only like fred
Dim lngPosSpace As Long

lngPosSpace = InStr(l, strMixedN=zme, "™ ™)
If lngPos3pace <> [strilixedMName = "Maria Anders” l
' z0 no space IOUNG Snd We SSSlne Che entire name
' is the first name
o modUcilites GetFirstName = strMixedName
Elze
' 30 what we need is all the characters up to the space
modUtilites GetFirstNamwe = Left (strMixedNames, lngFosipace - 1)
End If

End Function

Figure 1-43 Pressing F8 repeatedly brings you to this point in the code. Notice the displayed
value for the variable.

The bug in this code occurs because of a space in a name. The position of the space could
be represented by a value of TngPosSpace 6, yet the code states that when TngPosSpace
<> 0, we have found the entire name. So the logical test is the wrong way around. The fol-
lowing line needs to be changed from:

If IngPosSpace <> 0 Then

to:

If TngPosSpace = 0 Then

The problem with the code in Figure 1-43 is that it has branched into the wrong part of the
processing. You would have expected the code to branch into the statements after the Else
keyword. The mistake here is in testing for <> when you should be testing for =. You need
to now fix the code.

To fix the code, edit the <> to an = sign, as shown in Figure 1-44. Then right-click the line
containing the /F statement and select Set Next Statement (this means that we can repeat
the last action). Figure 1-44 shows the modified code and the result of selecting Set Next
Statement to change the execution point back to the line containing the coding error.

Breakpointing Code 29

Funccion modUtilites GetFirstName (strMixedName Ls String)
' if the name we have a Space ve assume that we

' ean extract a first name like Fred Bloggs

' Otherwise we assume we have a first neme only like fred
Dim lngPosSpace As Long

IngPosSpace = InStr (1, strNixedName, " ™)
| If IngPosSpace = O Then
' 30 no space found and | t ame
' is the first neme
mndlltilites GerFirsriName
Else & Paste
' So what we need is all

Togale the space
UL LLEves_GeuF Lot - logPusSpace — 1)
End If & Object Browser

N Add Watch,
End Function -

#= RunTo Cursor
Function wodUtilires GetSurname (s o
' if the name ve have a space ve .
! can extract = first name like § 5 Show Nes Statement
' Otherwise we assuwe we have a 1
Dim lngPosSpace As Long

Set Mest Staternent

Definition

1 Hide

Figure 1-44 After changing the <> operator to =, right-click the mouse over the line where you
changed the code and select Set Next Statement to go back and repeat executing the step from
the code line that has now been corrected.

As before, press F8 to follow the code execution (you will also need to fix a similar coding
error in the procedure modUltilites_GetSurname). Figure 1-45 shows how the code execu-
tion point has branched to the correct point to extract the first name.

Function modUtilites GetFirstName (strMixecdNsme As String)
' if the namwe we hawve & Space we ssswune that we

! ocan extract & first nawe like Fred Blogogs

' Otherwise we assume we have @ first namwe only like fred
Dim lngPosSpace As Long

1ngPosSpace = InStr(l, strMixedMare, ™)
If lngPosSpace = 0 Then
' 50 no space found and we sssune the entire nsmme
' iz the first namwe
modltilites GetFirstNamwe = strMixediame
Else
' Zo what we need is all the characters up to the space
=3 modlUtilites GetFirstName = Left (strMixedName, lngPosSpace - 1)
End If

End Function

Figure 1-45 This time, pressing F8 to step through the code takes the program to
the correct processing statements.

There are a number of ways to see the result of evaluating an expression. The easiest
method is to hover the mouse pointer over the expression, but you can also paste a code
fragment into the Immediate window and see the result before executing the line of code
(this is useful when you want to see the values for different parts of a complex expression).

Displaying Variables in the Locals Window

The Locals window gives you an instant view of the values in your program variables. This is
particularly useful for complex variables that have many components, such as a Recordset.
Figure 1-46 displays the local variables in your procedure.

30 Chapter 1 Using the VBA Editor and Debugging Code

' %30 what we need iz all the characters up to the space
modltilites GetFirstName = Lefr (strMixecName, lngPosSpace - 1)

End If

4 | [

YBAEnrionment.modUtilities, modUtilikes _GetFirstMame

Expression | alue Type
modLtiities mactiltiesmoc tilties

strMizechame "Mariz Anclsrs" String

IngPosSpace Long

Figure 1-46 You can use the Locals window to both display and change values in variables.

In either the Locals window or the Immediate window, you can directly edit the values in
variables, as shown by the highlighted value in Figure 1-47.

' Zo what we need is =@ll the characters up to the space
modltilices GetFirstName = Left (strMixedMName, lngPosSpace - 1)

End If
4| 1
Immediate ﬂ Lacals
lngFos3pace = & = WBAEnrionment rodUtlities, modUtilies _GetFirsthame

Expression | vaiue Type

modUtilities modUtiltiesinod_tilties
strhixedhame “Maria Ancers” String
modltiltes_GetFirsthame "Maria" “ariantiString
IngFosSpace 3 Long

Figure 1-47 Variables can also be assigned values in the Immediate Window.

Tracing Procedures with the Call Stack

The Call Stack shows you where you are once your code has moved through several layers
of execution (see Figure 1-48). You can also use it to move to any of the procedures shown
by just clicking on the procedure itself in the Call Stack dialog box and then pressing the

Show button.

Call Stack)|
Project. Module, Function
Show

YEAEnrionment . rmodUE modutilites _GetF
WBAEnrionment modUklities, Processhames
WBAEnrionment . Form_frmyBAStartsHere .cmdBreakApart_Click

Figure 1-48 You can use the Call Stack to help find where you are in
your code, or you can use it to move directly to a procedure.

Breakpointing Code 31

In Figure 1-48, the top line in the Call Stack dialog box shows the current routine that is
executing. Below that is the succession of routines that were called to take the execution
to its current point. Double-click any routine in the call stack to display that routine’s code
(note that the execution point remains unchanged if you do this).

Watching Variables and Expressions

The Watches window is particularly useful for monitoring values as you iterate in a loop.
With the Watches window displayed, you can right-click and add an expression or variable
to be monitored. Figure 1-49 shows the shortcut menu to add a Watch variable.

Watches
Expression Wallg

Cut
Copy
Paste
Edit Watch
Add Watch...
Delete Watch
Callapse Parent
B Continue
@ Heset

Definition

<

Dackable

. Hide

Figure 1-49 The Watches window is particularly useful when debugging repeating loops in code.

| NSl DE OUT Investigating values in variables with complex structures

Normally, Watch variables are simple values, but if you add a more complex type of
object (in this case a field from a Recordset), you get a lot more information. Figure 1-50
shows the result of adding a Recordset's field value to the Watches window. This kind
of variable is discussed in Chapter 5, and at this point, we only want to illustrate how
more complex objects can be examined by using the Watches window.

32 Chapter 1 Using the VBA Editor and Debugging Code

{General} + Processllames

Do While Not rst.EQF

strConbinedlawe = rst!ContactlName

rst.Edit

rst!FirstNawe = wodUtilites GetFirstNawe (rst!ContactNawe)
rst!Surnawe = wodlUtilites GetSurnawe (rst!ContactNawe)

Debug.Print strConbinediamwe, rst!FirstMamwe, rst!Surnsome

Watches

Expression Walue Type

me

I AlovwZerolength True

- Appendonly False Add Watch @
[~ Aftrioutes # Expression;

— CollatingOrcer 1033 -
| collectionindex 4 rstFirstilame|
— ComplexType arwvalidc| conbext

— Datallpdatable True e [ProcessNames v] [T]
|- Defaultyvalue =

|- Expression Module: [deUti"tiES ']

|~ Fielisize =Invalicd 1 .)

|- Foreigrmame J— Project: YBAEnrionmenkt

[~ lsComplex Falze "

L Hame Firsthan| e Tyee

|- OrdinalPosttion 4 @) Wakch Expression

— Originalyalue =Cperati] () Break When Yalue Is True

[+ Properties g

o () Break When Value Changes

— Reguired Falze

— Size a0

Figure 1-50 A Recordset variable is an object variable; rather than holding a single value,
it has a more complex structure, shown here being added to the Watches window.

Figure 1-51 demonstrates how more complex variables can be directly edited in the
Watches window. You might find this easier than changing values in the Immediate

window.
Watches
Expression ‘alue
G retFirsthame i "
Allowe ZeroLendth True

Figure 1-51 The values for watched variables can be directly edited.

The ability to drill up and down into more complex structures is also a feature shared
by the Locals window.

Adding Conditional Watch Expressions

Rather than use Debug.Assert or modify your code with a Stop statement, you can add
expressions to conditionally pause the execution of your code when an expression is True or
when a value changes. Figure 1-52 shows the inclusion of a Watch variable that will cause
the code to break execution when a specific condition holds.

{General)

Dim lngCount As Long
For lngCount = 1 To 10
Debuy.Print lngCount

Sub wodUtilities_DebuglssertExample ()
' Example showing Debug.issert

Debuy.Assert lngCount <> 5

Conkexk

Procedure: |modUtlI|t|es_DebugAssertExampIe v|

Help

Next
End Sub
E% Fl T
Watches
Expression Walue
Add Watch (23m]
Expression:
i
IngCount=2 JE—
Cancel

Modue: |medUtiities

Project: YEAENrionment
Watch Type
‘Wakch Expression
@) Break When Yalue Is True

Break When Yalue Changes

Figure 1-52 Adding a Watch expression to break the execution of the code.

One last word regarding the Watches window: be aware that the settings are not perma-

nent. They are cleared once you exit the application.

Working with the Immediate Window

The Immediate window is a scratch pad for performing calculations as well as a powerful
tool to display and modify properties of tables, queries, and forms as they are executing.
Figure 1-53 presents some examples that you should try typing into the Immediate win-

Breakpointing Code

33

dow. Type a question mark beside the item that you want to calculate, and then press Enter.

The Immediate window will continuously scroll as more information is displayed and there
is no option to clear the window (to clear the window, you highlight all text in the window

and press the Delete key).

34 Chapter 1 Using the VBA Editor and Debugging Code

Immediate

?forms.count

1

Pforms (0) Name

IrmVEAStartsHere

?forms (0) .Caption

Lets get started

?currentdb. TableDefs.Count
17

?currentdb. TakbleDefs ("thlCompanyContact”) .Recordcount
91

Figure 1-53 The Immediate window is a combination scratch pad and a tool to display and
modify properties of tables, queries, and forms.

Changing Code On-the-Fly

Throughout this chapter, you have seen how to change your program code while it is exe-
cuting, and you might wonder if there are limitations on doing this? The answer is yes, but
it doesn't often get in the way of your development.

In the example shown in Figure 1-54, we have defined a new variable while the code is
executing.

Sul Processhamwes ()

' This routine goes through sll the records in the table

' thlCompanyContact and takes the ContactMame and splits it into
' two new fields FirstWamwe and Surnamwe

or| Stop

Dim db As Datshase

Dim rst As Recordset

det db = CurrentDb

Dim strCombinedilame As String

Figure 1-54 The new variable ‘i has been added while code is executing.

If you try deleting (or changing) variables while the code is executing, you will be presented
with a warning that this will cause the code to stop executing (you might decide to add a
comment after the variable to remind yourself to delete it later when the code is no longer

executing).

For example, if we now decide that we have made a mistake and want to change the name
of our new variable in Figure 1-54 from ‘i’ to something different, then you will see the
warning shown in Figure 1-55. This means that you either must ignore your change (select
Cancel and fix it later) or stop code execution.

Using the Object Browser and Help System 35

Jub ProcessNames () Micrasoft Visual Basic for Applications @
' This routine goess through all the

' thlCompanyContact and takes the
' two new fields FirstNawe and Sur
o Stop

Dim db As Database

Dim rst As Recordset

det db = CurrentDb

Dim strCombinedName As String [

l i This action will reset vour praject, proceed anyway?

ok | [canced | [Hep |

Figure 1-55 A warning appears if you attempt to delete variables while the code is executing.

Using the Object Browser and Help System

In this section, you will look at how you can configure the behavior of the Help system and
the use of the Object Browser as an alternative method for locating help on objects.

Configuring the Help System

VBA has an excellent Help system. To use it, simply click a word that you do not under-
stand, and then press F1. However, it's best to have the Help system set to work with Show
Content Only From This Computer; otherwise, many of the help topics might not easily
locate help for a particular keyword, function, or method. Figure 1-56 shows this setting
being changed at the bottom of the figure.

Table of Contents X | 2cosss 2010 Devsloper Refirence - Miciosoft Dt Ao cts (D40 Peference - [atabase Objisct -
(@Database Object
(@ Datobass Cbject Menbers Arress Developer Reference =
o Database Dbject

@Properties Z|| E showal
dphethods 4 Database object represents an open database,

@ Databases Object Remarks

g Document Objcct ou use the Database object and ks methods and properties to manipulats an open database. In any

" type of database, you can:

& Documents Objec

@pEror Cbiect + Use the Execute method to rUn an acCion qusry,

Set the Cennect property to estabish @ connection to an ODEC data source.,

) et the QueryTimeout property to limit the langth of time to wait for a query to execute

&pField Cbject against an ODBC daka sourca,

~#F\EHZ Object = Use the RecordsAffected property to determine how many records were changed by an
action query.

Use the OpenRecardset methad to execute a select query and create a Recordset object.,

Use the ¥ersion property to determing which version of & datebase cnge created the

database.

@pErrors Object

@ Fiekds Object

&@plndex Object
d@pParameter Object it
« m * || with a Microsoft Access database engine database, you can alsa Use other methods, properties, and -

Developer Reference | | @ offline
Connection Status:

Show content from O am

' Show cantent only from this computer

@ Explain these optians

Figure 1-56 With the Help screen open, setting the Help system to Show Content Only From
This Computer can offer better identification of keywords.

Access comes with an extensive Help system, and by highlighting a keyword in code (for
example CurrentDb) and pressing F1, you can display help on the statement or object, as
shown in Figure 1-57.

36

Chapter 1 Using the VBA Editor and Debugging Code

@) Access Help o B 0=
D@4 GAle A
| - P Search -
Table of Contents X | Zccess 2010 Devebper Reference - Access Object Modsl Reference - 2 pphcation Objact - Methods -
-~
e Access Developer Reference 1
@ bigticd Application.CurrentDb Method 3
(@) CodeDb Method = | B Showal
@ Cournistory Method = The CurrentDb usthud retur s s wbiel veriabls of Lyps Dalabase al represei s Us dalabess
currently open in the Microsoft Access window.
(@) CompactRepair Method
Syntax
QCumeALLumJw el ~
expressionCurrentDb

(@ CreateAccessPraject Methed

exprasion #, varisble that represents an Application ohjsct.
@) Createaddiionalnata Method

Return Value

(@ CreateControl Method Database

@) CresteFom Mathod Remarks

(@ CreateGrouplevel Methad I Note

@) CreateReport Method In Microsaft fccess the CurrentDb msthod establishes a hidden reference ta the Microsaft Office.

@ CreateReportControl Method 12.0 Actess Conectivity Engine object library in a Microsoft Access database.

(@) CurrentDb Method = | Inorder ko manipulats the structure of your database and its data From Visual Basic, youmust use Data =
T F—— ' « i v
Developer Reference | | @ offline

Figure 1-57 Press F1 when you have the cursor on a VBA keyword to locate the keyword in the
VBA Help system.

Working with the Object Browser

As you move into more advanced programming (as well as progress through this book),
you will see that when you work with objects outside of the Office suite, getting help by
pressing F1 will not always display the help information for the object. In this case, you can
use the Object Browser (Figure 1-58) either by using the toolbar or pressing the F2 key.
Later in this book, we add references to other libraries (for example Microsoft Excel). Help is
then also available on these external libraries through the object browser.

243

© LniLcoll

Ohbject Brawser (F2)

Figure 1-58 You can use the object browser to locate objects and
help on your project code and the built-in features in Access.

The object browser can be used for code units designed in your application, external refer-
enced programming units, and Office components including Access (Figure 1-59) where we
have searched for the text Currentdb.

Summary 37

<All Libraries> - 4 7
CurrentDB -
Search Results
Lihrary Class emher
WP Access ® Application =& CurrentDb
Classes Memhers of ‘Application’
=% CreateAdditionalData -
B Attachment =% CreateControl
1 AutoCorrect =% CreateForm
21 BoundObjectFrame =% CreateGrouplLevel
2] CheckBiox =% CreateReport
2] CodeData =& CreateReportContral
21 CodeProject 5 CurrentData
=R CollatingOrderEnurr = |- DS e]5) =
Function CurremtDb(} As Database
Member of Access Application

Figure 1-59 When you have located an item in the object browser, press F1 to display the help
file that describes the object.

Summary

The VBA Editor and debugging environment in Access offers many useful features to assist
you and enhance your productivity in developing applications. Among these features are:

e VBA allows you to significantly modify program code while it is executing. The fea-
tures for stepping backwards and forwards through the code while it is paused per-
mits you to very quickly isolate logic errors in your code and rectify them. There are
minor restrictions on the changes that you can make to the code without the need to
restart the code.

e The ability to have both code executing and being able to redesign associated
objects such as queries and forms (other than the form that is currently executing
the code) is another useful productivity feature.

o The Immediate window is one of the most productive features of the VBA environ-
ment. With it, you can test and modify properties of the executing form while the
form is executing code.

e The search features that allow you to locate code either by pressing Shift+F2 on an
executing procedure or Ctrl+F for general searching. Again, these tools offer unique
productivity.

We end this chapter with some general comments on developing within the VBA environment.

38

Chapter 1 Using the VBA Editor and Debugging Code

Mixed Versions of Access

Since Access 2007, you might experience problems if you are developing with multiple ver-
sions of the Office products on a single computer. This is because different versions of the
product require different core libraries to be loaded when switching between the versions.
Although it is possible to develop with multiple versions on a single computer, it is not rec-
ommended, and we would suggest that for all versions prior to Access 2007, you can use a
single computer, but for versions including and after Access 2007, you should consider hav-
ing separate virtual or physical computers. There is a switch over feature to support differ-
ent versions on a single computer, but you might find that either it takes an unacceptable
amount of time to switch or you easily become vulnerable to any issues if library references
are not correctly switched over.

Expression Builder

The Expression Builder is an indispensible tool when building applications to find the cor-
rect syntax when referring to controls on a form. Unfortunately, the VBA environment does
not have an Expression Builder option. The easiest way to get around this problem is to go
into the Query design tool, create a dummy query, and then go to the Criteria and right-
click, selecting Build, which will bring up the Expression Builder (Chapter 4, “Applying the
Access Object Model,” discusses this in more detail).

Object Browser

When using 32-bit Microsoft ActiveX controls in a 64-bit operating system, the controls
might appear to work well, but there appear to be problems that cause Access to crash
when using the Object Browser to display the associated help information.

Debugging Modal Forms

When a user is interacting with a modal form, he or she cannot interact with other objects
on the desktop. Debugging code on modal forms is more challenging because you cannot
easily interact with other Access objects, such as checking data values in a table or query.
The best advice here is to remove the modal property when debugging the form and then
set it back to modal once you have resolved any problems in your code.

CHAPTER 9

Adding Functionality with Classes

Improving the Dynamic Tab Control................ 340 Creating a Hierarchy of Classes 354

ou have seen in earlier chapters how Microsoft VBA program code is either con-
tained in a module or held in a form’s class module. In this chapter, you look at how
VBA also allows you to construct your own class modules.

It is often overlooked that VBA supports Object-Oriented Programming (OOP), so in this
chapter, we introduce you to OOP concepts by having you construct your own classes.
Many Microsoft Access developers take a look at classes and then give up because they
have difficulty seeing the benefit and justification for using classes. It's true that much of
what can be achieved with a simple class can also be achieved by using libraries of code,
and that to build classes you often need to put in more effort during the initial develop-
ment, but there are benefits in using classes that will be explored in this chapter as well as
in Chapter 10, “"Using Classes and Events,” and Chapter 11, "Using Classes and Forms.”

This chapter focuses on two examples of classes, and uses each example to introduce the
techniques for creating your own classes.

The first example involves applying classes to solve a problem of designing a dynamic Tab
control that saw in Chapter 7, "Using Form Controls and Events.” This example will demon-
strate how classes can be used to improve the design of a general purpose tool that can be
re-used in your applications.

The second example looks at how to build classes to handle data for a specific business
problem.

After reading this chapter, you will:
e Understand how to create class modules.
e Know how to use Let, Get, Set, and New with classes.
® Be able to create collection classes.
o Be able to create base and derived classes.

® Be able to create a hierarchy of classes.

339

340 Chapter 9 Adding Functionality with Classes

Note

As you read through this chapter, we encourage you to also use the companion content
sample databases, BuildingClasses.accdb and BuildingClassesAfterExportimport.accdb,
which can be downloaded from the book’s catalog page.

The object-oriented view to developing software became popular in the 1980s, and in
addition to OOP, many terms such as Object-Oriented Design (OOD) and Object-Oriented
Analysis (OOA) became increasingly popular.

You have already seen many examples of working with objects in Access. These objects
have properties that describe the object, and methods that cause an object to perform an
operation. Access maintains collections of like objects; for example, the Forms collection,
which contains Form objects that open on the desktop, and the TableDefs collection in the
Data Access Object (DAO) model, which contains all the TableDef objects. These are exam-
ples of working with objects, but not examples of OOP.

OOP Programming (which is supported in VBA) means taking these ideas of working with
objects and extending this concept to guide how program code is written.

Classes can be applied in several different ways in Access to:
e Improve the quality of code (OOP can help you develop more maintainable code).

e Extend form/report behavior (OOP allows you to take control of the underlying
behavior of Access objects and wrap or extend the behavior).

e Integrate External Components (some external components do not expose all their
functionality and OOP features can help with this).

Improving the Dynamic Tab Control

In Chapter 7, you saw how to design a dynamic Tab control form that can load and unload
pages by using an array of Types, where each item in the array corresponds to a form that
is loaded into a subform control. The type structure for that is as follows:

Improving the Dynamic Tab Control 341

Private Type PageInfo
strPageName As String
strPageSubForm As String
strRelatedPage As String
b1CanBelLoaded As Boolean

End Type

Dim AvailablePages() As PageInfo

As an alternative to using a Type, you will define these pages as objects with properties that
correspond to each part of the Type structure, and then you will build a collection to hold
these objects, which replaces the array that held the types.

We need the following properties for our object:
® PageName
® SubFormPageName
® RelatedPageName
® CanBeUnloaded

You might have noticed that we have renamed the CanBeloaded property in the preceding
list to CanBeUnloaded. This is because an object-oriented perspective helps you to think in
terms of how an object's state can be changed, so this is a more appropriate term to use.
With the object’s basic properties determined, you can now proceed to create the object
class.

Creating a Class Module

To begin, in the Project pane, you create a new class module, as shown in Figure 9-1.

B @ BuildingClasses (BuildingClasses) || |
& & S
L) dsTe

BuildingClasses Properties...
Insert b | &% Module |
Import File... & Class Module

.3; Print...
+ Dockable

. Hide
—

Figure 9-1 Use the Project pane to create a new class module.

342

Chapter 9 Adding Functionality with Classes

With this file created, you then save it using an appropriate class name; for this example,
use clsTabPage. Because you are now working in a class module, you do not need to explic-
itly define that you are creating a class (as you would need to do in Microsoft .NET). Next,
you define the object’s internal variables at the top of the class module code, as illustrated
in the following:

Option Compare Database
Option Explicit

' These could be declared as either Dim or Private
' as within a class their scope is restricted

Dim p_PageName As String

Dim p_SubFormPageName As String

Dim p_RelatedPageName As String

Dim p_CanBeUnloaded As Boolean

Note that these variables include the prefix “p_" to indicate that they are private variables
to each class object (other popular prefixes include “m” or “m_"). The next step is to provide
the user with a way of reading and writing these variable values.

The Let and Get Object Properties

After you define the object’s internal variables or attributes for your class, you need to cre-
ate a mechanism to read or write these values. To do this, you define properties. On the
Insert menu, click Procedure to open the Add Procedure dialog box, as shown in Figure 9-2.

Add Procedure @
Marme: |PageMame
Type
bl Cancel
(" Sub

(" Function

i® Property

Scope
(® Public

(" Private

[allLocal variables as Statics

Figure 9-2 Use the Add Procedure dialog box to create a new private or public property.

Ensure that you are not clicked inside any other property when you insert a new property;
otherwise, it will fail to add the property correctly to the class. The code that is created
needs appropriate data types to be specified for the return type of the property and the
parameter type passed to the property.

Improving the Dynamic Tab Control 343

As shown in the code that follows, you use the Get statement to read an object property
from the internal private variable, and the Let statement to assign a value to the internal
private variable. An object can have a number of internal variables, but you might only
need to make a few of these available to the user. The idea is to keep the object’s exter-
nal interface very simple, exposing only the minimum number of essential features that a
user will need. It is up to you to decide for which properties you want both a Let and Get,
depending on whether the property is to be read-only (Get but no Let) or write-only (Let
but no Get):

Public Property Get PageName() As String
PageName = p_PageName

End Property

Public Property Let PageName(ByVal PageName As String)
p_PageName = PageName

End Property

Public Property Get RelatedPageName() As String
RelatedPageName = p_RelatedPageName

End Property

Public Property Let RelatedPageName(ByVal RelatedPageName As String)
p_ReTlatedPageName = RelatedPageName

End Property

Public Property Get CanBeUnloaded() As Boolean
CanBeUnloaded = p_CanBeUnloaded

End Property

Public Property Let CanBeUnloaded(ByVal CanBeUnloaded As Boolean)
p_CanBeUnTloaded = CanBeUnloaded

End Property

Public Property Get SubFormPageName() As String
SubFormPageName = p_SubFormPageName

End Property

Public Property Let SubFormPageName(ByVal SubFormPageName As String)
p_SubFormPageName = SubFormPageName
End Property

Creating an Object with New and Set

To test your new class, you create a module (not a class module) to verify that you can
create an object. If you insert a breakpoint and trace through the code execution, you will
learn a great deal, as you can trace through the codes execution into the class module
code.

You can define the object variable and then later create an object with the New keyword, or
as is also shown demonstrated in the following code, with the aTab2 object, you can both
define and create the object at the same time. It is largely a matter of personal preference
as to which method you choose to use.

344 Chapter 9 Adding Functionality with Classes

Once you have finished with the object, set the object variable to Nothing; this destroys the
object. The object would be destroyed anyhow when the code stops execution, but explic-
itly tidying up your objects is good practice and becomes more important when you work
with more complex objects:

Sub modTabs_TestObject()
' test creating an object
Dim aTab As clsTabPage
Set aTab = New clsTabPage
aTab.PageName = "ProductList"
aTab.RelatedPageName = "Product Details"
aTab.SubFormPageName = "frmTabsDynamicProductList"
aTab.CanBeUnloaded = False

Debug.Print aTab.PageName
Set aTab = Nothing

Dim aTab2 As New clsTabPage
aTab2.PageName = "Product Details"
Debug.Print aTab2.PageName
Set aTab2 = Nothing

End Sub

| N Sl DE O UT Initialization and Termination Events

When you are in a class module, you can select Class from the upper-left drop-down
menu, which normally shows (General). Select Initialize or Terminate from the drop-
down list that appears, and then generate the following procedures (in this example
the type name ObjectType is not a real type but could for example be replaced with a
real object type such as a DAO.RecordSet object):
Private Sub Class_Initialize()

Set p_Object = New ObjectType
End Sub
Private Sub Class_Terminate()

Set p_Object = Nothing
End Sub

Because class objects can contain other class objects or built-in class objects such as

a Recordset, you might need to use the New keyword in Initialize to create an object
that is assigned to a private variable, and then set the objects to Nothing to close the
objects in the Terminate procedure. Externally, when your class object is created, the
Initialize procedure is executed, and when it is set to Nothing or the variable goes out
of scope, the Terminate procedure is executed.

Improving the Dynamic Tab Control 345

Collection of Objects

A VBA collection is a set of objects that you can use in a similar manner as the built-in col-
lections, such as the Forms collection that you worked with in earlier chapters.

The example that follows defines a collection that is used to hold our Tab page objects:

Sub modTabs_Collection()
' test creating an object
Dim TabPages As New Collection
Dim aTab As clsTabPage
Set aTab = New clsTabPage
aTab.PageName = "ProductList"
aTab.RelatedPageName "Product Details"
aTab.SubFormPageName = "frmTabsDynamicProductList"
aTab.CanBeUnloaded = False
TabPages.Add aTab, aTab.PageName
Set aTab = Nothing

Set aTab = New clsTabPage

aTab.PageName = "Product Details"
aTab.RelatedPageName = ""

aTab.SubFormPageName = "frmTabsDynamicProductDetails"
aTab.CanBeUnToaded = True

TabPages.Add aTab, aTab.PageName

Set aTab = Nothing

For Each aTab In TabPages
Debug.Print aTab.PageName, aTab.SubFormPageName, _
aTab.RelatedPageName, aTab.CanBeUnToaded
Next
Debug.Print TabPages.Count

Stop
Set aTab = TabPages("ProductList")
Debug.Print aTab.PageName
Debug.Print TabPages("Product Details").PageName
' note 1 based collection unlike built in collections
Debug.Print TabPages(1).PageName
Set TabPages = Nothing
Set aTab = Nothing
End Sub

Notice how the aTab variable is used several times to create objects, and how setting it to
Nothing does not destroy the object. This is because once you have created an object, you
add it to the collection, which is then responsible for managing the object (when the col-

lection is set to Nothing, it will destroy the objects it contains.

When you add an object to a collection, you must also specify a collection key value (which
must be unique). Doing this means that rather than referring to a collection object as

346 Chapter 9 Adding Functionality with Classes

TabPages(1), you can use the key and refer to this as TabPages(“Product List"). The Collection
object’s Add method also allows you to specify an optional Before or After argument for
positioning an object relative to other objects in the collection. The collections first element
is 1 and not 0 (which is what the built-in Access collections use).

Be aware that when you refer to an object by using TabPages(1).PageName, you cannot
take advantage of IntelliSense assistance. This is because this type of collection can hold
different types of objects, so the environment cannot know exactly which properties would
apply to an object.

| N Sl DE OUT VBA collection classes

The built-in VBA collection classes that you have been working with are different
from an Access collection. The first difference is that the Access collections, such as
TableDefs, can only hold one type of object; a VBA collection can hold different types
of objects (this explains why the IntelliSense is limited). The second difference is that
VBA collection classes are 1-based, whereas the Access collections are 0-based.

In the next section, you will be creating your own collection classes that wrap around
the VBA collection class. These collections will start to look more like an Access
collection.

Once you have added an object to a collection and specified the key value, you will find
that you cannot subsequently display the key value—it is hidden. If your procedures
need to be able to refer to the key, you might find it useful to add your own property to
the object class, which saves and holds the key value in each object. Looking in the class
cIsTabPage, you see the following (it is not essential to do this in the class):

Dim p_Key As String

Public Property Get Key() As String
Key = p_Key

End Property

Public Property Let PageName(ByVal PageName As String)
p_PageName = PageName
p_Key = PageName

End Property

Creating Collection Classes

A VBA Collection object supports a limited number of operations—Add, Count, and
Remove. You will likely want to be able to add more operations to your collection. To do
that, you need to define your own collection class, called c/sTabPageCollection.

Improving the Dynamic Tab Control 347

Defining a collection class follows the same steps as defining a normal class to create the
class module. Your collection class will contain a VBA collection, so you define an inter-

nal variable called p_TabPages. As we previously described, classes can have two specially
named methods for initializing and terminating the class. The simple c/sTabPage didn't
need any special operations, but the new class needs to create a VBA collection, and then
remove all the objects from the collection when it is terminated, as illustrated in the follow-
ing code:

Private p_TabPages As Collection

Private Sub Class_Initialize()
Set p_TabPages = New Collection
End Sub

Private Sub Class_Terminate()
Dim aClassPage As clsTabPage
For Each aClassPage In p_TabPages
p_TabPages.Remove CStr(aClassPage.PageName)
Next
Set p_TabPages = Nothing
End Sub

You also want to have the standard operations for counting, adding, and removing items
from the class, so you need to add these methods to our collection (you also add an /tem
method, which is another standard feature of a class):

Public Property Get Count() As Long
Count = p_TabPages.Count
End Property

Public Sub Add(aClassPage As clsTabPage)
p_TabPages.Add aClassPage, aClassPage.PageName
End Sub

Public Sub Remove(PageName As Variant)
p_TabPages.Remove CStr(PageName)
End Sub

Public Function Item(PageName As Variant) As clsTabPage
Set Item = p_TabPages(PageName)
End Function

Once you start defining your own collection class, you will find that a number of the
expected built-in collection class features no longer work. For example, you cannot use a
For Each loop, or index the collection by using the friendly key name (you will see how to

348 Chapter 9 Adding Functionality with Classes

get around this). The following procedure can be used to test the class; the program lines
that are commented out have been included to show what will not work in our collection
class:

Sub modTabs_clsTabPageCollection()
' test creating an object
Dim TabPages As New clsTabPageCollection
Dim aTab As clsTabPage
Dim TngCount As Long
Set aTab = New clsTabPage
aTab.PageName = "ProductList"
aTab.RelatedPageName = "Product Details"
aTab.SubFormPageName = "frmTabsDynamicProductList"
aTab.CanBeUnloaded = False
TabPages.Add aTab
Set aTab = Nothing

Set aTab = New clsTabPage

aTab.PageName = "Product Details"
aTab.RelatedPageName = ""
aTab.SubFormPageName = "frmTabsDynamicProductDetails"

aTab.CanBeUnloaded = True
TabPages.Add aTab
Set aTab = Nothing

! For Each aTab In TabPages
! Debug.Print aTab.PageName, aTab.SubFormPageName, _
! aTab.RelatedPageName, aTab.CanBeUnloaded
! Next
For TngCount = 1 To TabPages.Count
Set aTab = TabPages.Item(1ngCount)
Debug.Print aTab.PageName, aTab.SubFormPageName, _
aTab.RelatedPageName, aTab.CanBeUnloaded

Next
Set aTab = Nothing
! Set aTab = TabPages("ProductList")

' following will work
Set aTab = TabPages.Item(1l)
Debug.Print TabPages.Item(1l).PageName
Debug.Print aTab.PageName
Set aTab = Nothing
Set TabPages = Nothing

End Sub

There are two techniques available to get around the problem of not being able to refer to
the collection class by using the key names. The first technique involves adding an Allltems
function to the collection class, and the second method involves exporting, editing, and re-
importing the class.

Improving the Dynamic Tab Control 349

| NSl DE OUT Adding Allltems to a collection class

When you use the Allltems method, you need to add the following property to the
class (you can give this property an alternative name):

Public Function Al1Items() As Collection
Set AllItems = p_TabPages
End Function

In the sample testing file, modTabs_clsTabPageCollection2, you can see how to use this
feature. The important code is as follows:

works with allitems
For Each aTab In TabPages.Al1Items
Debug.Print aTab.PageName, aTab.SubFormPageName, _
aTab.RelatedPageName, aTab.CanBeUnTloaded
Next
Set aTab = TabPages.Al1Items("ProductList™)
Debug.Print aTab.PageName
Debug.Print TabPages.Al1Items("ProductList").PageName

This is a satisfactory solution as long as you are prepared to insert the .Allltems refer-
ence when using the collection with the object’s key.

Exporting and Re-importing the Class

The reason that you cannot refer to collections by using standard syntax is because VBA
classes do not allow special attributes to be set on a class, and these are required to sup-
port standard syntax.

If you right-click the collection class module in the project window, export it to a text file,
and then open the text file in notepad, you will see the following header information in the
class:

VERSION 1.0 CLASS
BEGIN

MultiUse = -1 'True
END
Attribute VB_Name = "clsTabPageCollection"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = False
Attribute VB_Exposed = False
Option Compare Database
Option Explicit
' class clsTabPagesCollection
Private p_TabPages As Collection

350 Chapter 9 Adding Functionality with Classes

These attributes are not exposed in the VBA environment. There is a special attribute value,
which when set to 0, sets the member as the default member for the object. You want the
Item method to be the default member and you need to change the method adding the
following attribute definition (this will enable references such as TabPages("ProductList") to
work). Also, to support enumeration in a For ... Each loop, you need to add the NewEnum
method, as shown in the following:

PubTic Function Item(ByVal Index As Variant) As clsTabPage
Attribute Item.VB_UserMemId = 0

Set Item = p_TabPages(Index)
End Function

Pub1lic Function NewEnum() As IUnknown
Attribute NewEnum.VB_UserMemId = -4

Set NewEnum = p_TabPages.[_NewEnum]
End Function

After saving these changes, import the class back into your project, as shown in Figure 9-3.

=R Class Modules I | px

BuildingClasses Properties...
Insert 3

Import File...

Figure 9-3 Re-importing a class back into Access.

If you look in the VBA Editor, you will not be able to see the new attribute you just added in
the /tem method because it remains hidden.

This then means that the following references will work (note that in the sample database
BuildingClassesAfterExportimport.accdb, the following code will work, because we have
performed this rather complex operation; in the sample database BuildingClasses.accdb,
this code has been commented out because it will not work):

For Each aTab In TabPages
Debug.Print aTab.PageName, aTab.SubFormPageName, _
aTab.RelatedPageName, aTab.CanBeUnTloaded
Next
Set aTab = TabPages("ProductList")
Debug.Print TabPages("ProductList").PageName
Debug.Print aTab.PageName

This process needs to be repeated for each collection class in your project.

Improving the Dynamic Tab Control 351

Using Classes with the Dynamic Tab

You are now able to modify the code in the frmTabsDynamic form to make use of your new
classes.

At the top of the module, where you had defined an array of types, declare your collection
class as shown here:

Option Compare Database

Option Explicit

Dim TabPages As clsTabPageCollection
Dim IngTabPages As Long

The form’s Open and Close events then create and dispose of the collection, as shown in
the following:

Private Sub Form_Close()
Set TabPages = Nothing
End Sub

Private Sub Form_Open(Cancel As Integer)
Set TabPages = New clsTabPageCollection
LoadTabs

End Sub

In the following code, in the LoadTabs procedure, you create and load your class objects
into the collection:

Do While Not rst.EOF

Set aTabPage = New clsTabPage

aTabPage.PageName = rst!PageName

aTabPage.SubFormPageName = rst!SubFormName

aTabPage.CanBeUnloaded = rst!CanUnloadPage

aTabPage.RelatedPageName = Nz(rst!RelatedPage)

TabPages.Add aTabPage

Set aTabPage = Nothing

If rst!DefaultVisible And TngPageVisibleCount + 1 < IngTabPages Then
LoadThePage aTabPage, TngPageVisibleCount
TngPageVisibleCount = TngPageVisibleCount + 1

End If

TngArray = TngArray + 1
rst.MoveNext
Loop

There are some other minor references in the code that used the array of types that now
need to be changed to use the new collection and objects.

352

Chapter 9 Adding Functionality with Classes

Simplifying the Application with Classes

In the preceding sections, you have been able to change your dynamic tab to use classes,
but it has not as yet resulted in any simplification of the applications code. In fact, you now
have more code to maintain than when you started. But you now have a framework in
which you can start to work that will lead to simplification and improved maintenance of
your code.

In examining the frmTabsDynamic form, you can see that it has a general routine LoadTabs
that involves reading information and placing the information into your collection. This
operation could be placed inside the collection. So we can start to enhance our collection
(cIsTabPageCollection2) by adding the data loading function. But the process of loading the
information also involves setting values in controls on the form. This means you also want
to allow the collection to reference the controls on the form.

To begin, add new private members to the class:

' class clsTabPagesCollection
Private p_TabPages As Collection
Private p_TabControl As TabControl
Private p_Controls As Controls

You must change the termination routine to clear the new variables and provide properties
for setting the new variables, as follows:

Private Sub Class_Terminate()
Dim aClassPage As clsTabPage
For Each aClassPage In p_TabPages

p_TabPages.Remove CStr(aClassPage.PageName)

Next
Set p_TabPages = Nothing
Set p_TabControl = Nothing

End Sub

Public Property Let TabControl(ByRef TabCtl As TabControl)
Set p_TabControl = TabCt]l

End Property

Public Property Let Controls(ByRef Ctrls As Controls)
Set p_Controls = Ctrls

End Property

You can then move the appropriate routines programmed into the form into the collection
class.

Note

The full code for this can be seen in the sample file.

Improving the Dynamic Tab Control 353

The result of this is an impressive reduction in the code on the form, which now shrinks to
the following (see frmTabsDynamic2):

Option Compare Database

Option Explicit

Dim TabPages As clsTabPageCollection2

Private Sub Form_Close()
Set TabPages = Nothing

End Sub

Private Sub Form_Open(Cancel As Integer)
Set TabPages = New clsTabPageCollection2
TabPages.TabControl = Me.TabCt10
TabPages.Controls = Me.Controls
TabPages.LoadFromTable Me.Name, "tblTabPages"

End Sub

Private Sub TabCt10_Db1Click(Cancel As Integer)
TabPages.TabPageDoubleClick CLng(Me.TabCt10)

End Sub

Although the total amount of code remains unchanged, much of the code has moved out
of the form and into the classes. There are a couple of advantages to creating classes to
perform these operations:

® The code on the form is significantly simplified; it will be easy to add it to other forms
or in other applications.

® The new classes are easy and intuitive to work with, so using them in the future
should improve your applications, and you can add more features to these classes.

Some might argue that rather than using classes, which involves constructing a framework,
you could more simply have built a re-useable library. This line of argument nearly always
holds; thus, the decision to use classes becomes a question of whether it seems more intui-
tive and natural than using a traditional code module.

| NSl DE OUT Classes and associated terminology

Another term for creating an object is instantiating the class object. This means using
the New keyword to create the class object.

The term Encapsulation is often used to convey the idea of tucking away all the func-
tionality inside the class, such that the class only exposes as small a public interface as
required to fulfill its purpose. With a class, you are wrapping up all the messy code and
placing that inside a box so that you don’t need to deal with it on a regular basis.

354 Chapter 9 Adding Functionality with Classes

Creating a Hierarchy of Classes

In this example, you look at creating a hierarchy of classes, which demonstrates the ability
of classes to be used as building blocks for improving the design in managing data objects.
The example involves a business problem for which the classes need to perform complex
calculations (although you will stick to simple calculations in the example).

Suppose that you have analyzed an insurance company'’s business, the result of which
revealed that the company sells a large number of different insurance products, but you
noticed that there are common features in the products. Often, one type of policy only dif-
fers from another in a small number of ways. The task is to build an Access application that
assists with generating the policy documents and performing appropriate calculations for
the different policies.

Creating a Base Class

The first task is to identify common features to all policies as well as the most standard cal-
culations that a policy would require to perform. This involves creating a class, which will
serve as the base class. In the following code, this is called c/sPolicy.

From the project window in the VBA Editor, create a class module, and then save the mod-
ule with the name clsPolicy, as demonstrated in the following code:

Option Compare Database
Option Explicit

' cIsPolicy is the base class which has common features
' required in other classes

Dim p_MonthlyPremium As Currency

Public Property Get MonthlyPremium() As Currency
MonthTyPremium = p_MonthlyPremium
End Property

Public Property Let MonthlyPremium(ByVal MonthlyPremium As Currency)
p_MonthlyPremium = MonthlyPremium
End Property

Public Function CalculateAnnualPolicyValue() As Currency
CalculateAnnualPolicyValue = p_MonthlyPremium * 12
End Function

Creating a Hierarchy of Classes 355

This class can then be tested by using the following code:

Sub modInsurance_Policy()
' create a Policy from clsPolicy
Dim Policy As New clsPolicy
Policy.MonthlyPremium = 10
' Expect 120
Debug.Print Policy.CalculateAnnualPolicyValue()
Set Policy = Nothing

End Sub

Derived Classes

With the basic insurance policy class created, you can now create several other classes that
will all use some of the base class features. This involves creating a class, which will serve

as the derived class, and in the following code is called c/sHomePolicy, being derived from
the base class clsPolicy. The term derived is used because the class is in some way related or
derived from the base class:

Option Compare Database
Option Explicit

' clsHomePolicy uses clsPolicy
Dim p_Policy As clsPolicy

Private Sub Class_Initialize()
Set p_Policy = New clsPolicy

End Sub

Private Sub Class_Terminate()
Set p_Policy = Nothing

End Sub

Public Property Get MonthlyPremium() As Currency
MonthlyPremium = p_Policy.MonthTyPremium
End Property

Public Property Let MonthlyPremium(ByVal MonthlyPremium As Currency)
p_Policy.MonthlyPremium = MonthlyPremium
End Property

Public Function CalculateAnnualPolicyValue() As Currency
CalculateAnnualPolicyValue = p_Policy.CalculateAnnualPolicyValue() + 50
End Function

The first derived class, c[sHomePolicy, contains a base class object, c/sPolicy, so you need to
have initialization and termination events to create and dispose of the base class object.

The clsHomePolicy is only loosely tied to clsPolicy, which means that you need to add all the
required properties and methods into the new class. But if you look at the CalculateAnnual
PolicyValue method, you will see how it can take advantage of the calculation in the base
class.

356 Chapter 9 Adding Functionality with Classes

|NS| DE OUT Inheritance and polymorphism in classes

Note that we are using the term derived here in a very loose manner. Many OOP lan-
guages incorporate the concept of inheritance, which means truly deriving classes, and
they use the term polymorphism for how derived classes can implement variations on
methods available through base classes.

VBA does not support direct inheritance or explicit polymorphism, but you can use the
approach described here to create structures that offer some of these characteristics.

Another OOP term is multiple inheritance, which means inheriting from more than
one base class; by embedding other classes using this technique, we can also form
structures that behave in some respects like those having multiple inheritance. The
techniques used here to produce a hierarchy can also be described by the term wrap-
per, where we wrap around one class for the purpose of extending or changing its
functionality.

As is illustrated in the code that follows, you can now define two additional classes, one
called clsSpecialHomePolicy, which is derived from clsHomePolicy, and the other, called cls-
CarPolicy, is derived from clsPolicy (you can view the code in the sample database):

Option Compare Database
Option Explicit
' cIsSpecialHomePolicy
Dim p_Policy As clsHomePolicy

Private Sub Class_Initialize()
Set p_Policy = New clsHomePolicy
End Sub
Private Sub Class_Terminate()
Set p_Policy = Nothing
End Sub

Public Property Get MonthlyPremium() As Currency
MonthTyPremium = p_Policy.MonthlyPremium
End Property

Public Property Let MonthlyPremium(ByVal MonthlyPremium As Currency)
p_Policy.MonthlyPremium = MonthlyPremium
End Property

Public Function CalculateAnnualPolicyValue() As Currency
CalculateAnnualPolicyValue = p_Policy.CalculateAnnualPolicyValue() + 100
End Function

Summary 357

These classes can be tested with the following code:

Sub modInsurance_Policy()
' create a Policy from clsPolicy
Dim Policy As New clsPolicy
Policy.MonthlyPremium = 10
' Expect 120
Debug.Print Policy.CalculateAnnualPolicyValue()
Set Policy = Nothing
' create a HomePolicy
Dim HomePolicy As New clsHomePolicy
HomePolicy.MonthlyPremium = 10
' Expect 120+50 = 170
Debug.Print HomePolicy.CalculateAnnualPolicyValue()
Set HomePolicy = Nothing
' create a SpecialHomePolicy
Dim SpecialHomePolicy As New clsSpecialHomePolicy
SpecialHomePolicy.MonthlyPremium = 10
' Expect 120+50+100 = 270
Debug.Print SpecialHomePolicy.CalculateAnnualPolicyValue()
Set SpecialHomePolicy = Nothing
' create a CarPolicy
Dim CarPolicy As New clsCarPolicy
CarPolicy.MonthlyPremium = 10
' Expect 120+80 = 200
Debug.Print CarPolicy.CalculateAnnualPolicyValue()
Set CarPolicy = Nothing
End Sub

Summary

In this chapter, you learned about classes via two examples. In the first example, you saw
how a general purpose framework for working with form Tab controls can dynamically load
subforms and be re-written using classes. The final result was simplified application code
with the complexity hidden within the class.

The second example introduced techniques for building a hierarchy of classes by using a
base class and several derived classes. This provides a more structured and maintainable
solution when using classes.

Index

Symbols

"&" (ampersand) character, using, 86, 92

/Decompile command line switch, 45

@@IDENTITY, SCOPE_IDENTITY() and IDENT_CURRENT in
T-SQL, 520

(star) character, 97

i

uon

(underbar) character, using, 86

A

abstract and implementation classes
abstract classes, 370
hybrid abstract and non-abstract classes, 376-378
implementing an abstract class, 373-376
implements classes, 372
libraries, benefits of constructing, 370
object types, establishing with TypeOf, 375
ACCDE files, protecting designs with, 655
Access 2010
Access Basic, 114
Access Connectivity Engine (ACE), 659
earlier versions of, 38
locking down, 154
Access collections vs. VBA collection classes, 346
Access Web Databases, linking
Access database to an Access Web Database, 431
process of, 430
relinking, 432-434
Activate and Deactivate events, 255
ActiveForm and ActiveControl, working with, 151
ActiveX controls
Slider control, adding, 386-388
TreeView control, 295-300
UpDown or Spin control, 388-390

ActiveX Data Objects. See ADO (ActiveX Data Objects)
address information, packing, 334
ADO (ActiveX Data Objects)
ADO asynchronous execution class, 365-367
ADOX, understanding, 672
Asynchronous operations, 662
client-server performance, 485
connections
Connection and ActiveConnection, 385
DAO management of, 671
as the key object in ADO, 660
cursors (Recordsets)
differences with DAO, 661
forms, binding to, 384-386
vs. Data Access Object (DAO) model, 161, 659
forms and ADO Recordsets, 662
libraries to add, 660
program vs. services, 484
references and, 163
sample databases, 660
SQL Server, working with. See also SQL Server
command objects, 666
connecting to, 664
connection strings, 663
connection time, 665
MARS and connections, 669-671
MARS and performance, 668
stored procedures, 666
ADOX, understanding, 672
ADP (Access Data Project)
ADO and, 659
query conversion, 563
strengths and weaknesses, 564
understanding, 561-563

675

676 AfterDelConfirm event

AfterDelConfirm event, 268
Afterinsert and Beforelnsert events, 265-267
AfterUpdate event, 276
Allltems method, 349
"&" (ampersand) character, using, 86
Append Only memo fields, 130-132
application development
application navigation
combo and list boxes, 637
custom interfaces for users, 637
DoCmd object, 140
forms, opening multiple copies of, 637
interface design decisions, 632
locking down an application, 654

Maximize, Popup, Modal, and MoveSize Proper-
ties, 638

the Navigation Control, 634
push buttons on a form, 632
the ribbon, 636
Switchboard Manager, 633
Tab controls, 636
the TreeView control, 635
completing an application
error handling, 654
IntelliSense, using in a standard module, 654
locking down Access, 154
progress bars, 653
splash screens, 653
deploying applications
ACCDE files, protecting your design with, 655
DSNs and relinking applications, 656
references, depending on, 656
Runtime deployment, 655
single and multiple application files, 655
ribbon design
Backstage view, 647
custom ribbon, loading, 649
default ribbon, setting, 644
elements of a ribbon, 641
for forms and reports, 648
the GetEnabled callback, 642
images for, 644

Office 2007 and the file menu, 647
the OnAction callback, 642
the OnLoad callback, 642

tab visibility and focus, dynamically changing, 646—
648

tips, 639
the USysRibbons table, 640
sample databases, 631
32-bit and 64-bit environments, 649
updating applications, 656
Windows API, using, 651-653
Windows Registry, working with, 650
ApplyFilter event, 247
arrays
determining the dimensions of, 64
dynamic arrays, 61
multi-dimensional arrays, 62-64
option base, 65
reading records into, 215
type structures, 65
working with, 59-61
ASC function, 93,94
asynchronous event processing and RaiseEvent
ADO asynchronous execution class, 365-367
BatchProcessing SQL Server form, 368-370
stored procedures, 364
WithEvent processing, 363
asynchronous operations in ADO, 662
attachments
copying between tables and records, 204-206
data types, limitations, 197
fields in Recordsets, 197-200
importing, using LoadFromFile method, 203
planning for upsizing to SQL Server, 548
authentication. See security
Azure. See SQL Azure

B

backing up SQL Azure databases, 603

Backstage view, in application development, 647
base class, creating, 354

BatchProcessing SQL Server form, 368-370

BeforeDelConfirm event, 268
Beforelnsert and Afterlnsert events, 265-267
BeforeUpdate event, 262, 276
binary transfer, using with OLE data, 207-209
bookmarks

merging data with, 447-451

in Recordsets, 191

synchronizing, 249

Boolean data, planning for upsizing to SQL Server, 546

bound forms, 233, 243

boxed grids, creating with the Print event, 327-329

breakpointing code
breakpoint Step and Run commands, 26-29
changing code on-the-fly, 34
conditional Watch Expressions, adding, 32
Immediate window, working with, 33
methods for, 23-25
procedures, tracing with Call Stack, 30
Set Next command, 25
variables, displaying in the locals window, 29
Watching variables and expressions, 31
broken references, 48
BuildCriteria, using to simplify filtering, 130
BuildingClasses.accdb, sample database, 340

BuildingClassesAfterExportimport.accdb, sample

database, 340
built-in functions
ASC function, 94
date and time functions, 90-92
format function, 94
Mid string function, 95
string functions, 92

ByRef and ByValue parameters, defining, 70-72

C

calculated fields in Recordsets, 210
callbacks
GetEnabled callback, 642
OnAction Callback, 642
OnlLoad callback, 642

calling procedures across forms, 251-253

classes

Call Stack
displaying module linking with, 21
tracing procedures with, 30
camel notation, 109
Case statements in SQL Server, 581
CAST and CONVERT, using in T-SQL, 518
Choose statements, 79
Chr function, 93
ClassAndForms.accdb sample database, 381
classes
abstract and implementation classes
abstract classes, 370
hybrid abstract and non-abstract classes, 376-378
implementing an abstract class, 373-376
implements classes, 372
libraries, benefits of constructing, 370
object types, establishing with TypeOf, 375
advantages of, 339, 340
asynchronous event processing and RaiseEvent
ADO asynchronous execution class, 365-367
BatchProcessing SQL Server form, 368-370
stored procedures, 364
WithEvent processing, 363
binding forms and
binding to an Active Data Object Recordset, 384
binding to a Data Access Object Recordset, 383
class modules
creating, 341
locating form or report code in, 7
Err.Raise and, 122
friend methods, 378
hierarchy of, creating
base class, creating, 354
derived classes, 355
inheritance and polymorphism in classes, 356
producing and consuming events, 364
sample database, 359
tabs, dynamically loading
class module, creating, 341
collection of objects, 345
improving, 340
Initialization and Termination events, 344

677

678 classes (cont.)

classes (cont.)
tabs, dynamically loading (cont.)
Let and Get object properties, 342
New and Set, creating an object with, 343
simplifying the application code with classes, 352
terminology of, 353
VBA collection classes
vs. Access collections, 346
adding Allltems to, 349
creating, 346-348
exporting and re-importing the class, 349
using with the Dynamic Tab, 351
WithEvents processing
control events, handling, 362
form events, handling, 360-362
Click and DblClick events, 275
client-side cursors, 661
cloning and copying Recordsets, 212-215
Close events, 248
cloud computing. See SQL Azure
Cloud to Cloud (CTP1) synchronization service, 604
COALESCE function, 623
code. See also debugging
calling directly from a control's event, 152
calling public code on a form, 252
changing on-the-fly, 33
compiling in VBA, 44
control events, writing code behind, 274
line continuation in VBA, 86
quality of, improving with constants, 49-51
simplifying with classes, 352
CodeDB, 175, 176-179
code, maintainable
Access document objects, naming, 108
database fields, naming, 109
indenting code, 113
naming conventions, 113
unbound controls, naming, 110
using the Me object to reference controls, 113
variables in code, naming, 110-112
CodePlex website, 495

collections
Containers collections, 222
Errors collection, 171-173
objects and, 104, 345
TableDefs collection and indexes, 179-182
columns
adding, in T-SQL, 503
adding, with a default in T-SQL, 503
column data type, changing in T-SQL, 503
ColumnHistory memo fields, 130-132
column name, changing in T-SQL, 503
column visibility, controlling, 255
combo box columns, 282
combo boxes
combo box columns, 282
data, synchronizing in controls, 278-280
defaults and the drop-down list, 279
and list boxes, in application development, 637
multi-value fields, 283
reducing joins with, 333
RowSource Type, 280-282
Table/Query editing, 285
Value List editing, 284
comments, adding in VBA, 40
compiler directives
conditional compilation, 45
early and late binding, 438-440
32-bit or 64-bit, 650
conditional statements and program flow
Choose statements, 79
Do While and Do Until loops, 82-84
Exit statements, 84
For and ForEach loops, 81
GoTo and GoSub statements, 86
If..Then...Else... statements, 77
IIF statements, 78
line continuation, 86
Select Case statements, 80
TypeOf statements, 80
the With statement, 85
conditional Watch Expressions, adding, 32

conflict resolution, in SQL Azure data, 613
constants and variables. See also variables
arrays
determining the dimensions of, 64
dynamic arrays, 61
multi-dimensional arrays, 62-64
option base, 65
type structures, 65
working with, 59-61
code quality, improving with constants, 49-51
Enum keyword, 51
global variables, 56
NULL values, IsNull and Nz, 53-55
scope rules, 58
static variables, 55
type structures, 65
variables and database field types, 52
variable scope and lifetime, 57-59
consuming events, 364
contacts in Outlook, adding, 476
Containers and Documents
Container usage, table of, 223
investigating and documenting in DAO, 222-224
controls
ActiveX controls
dialog box, 297
referring to methods and properties in, 304
slider control, adding, 386-388
UpDown or Spin control, 388—-390
combo boxes
combo box columns, 282
data, synchronizing in controls, 278-280
defaults and the drop-down list, 279
multi-value fields, 283
RowSource Type, 280-282
Table/Query editing, 285
Value List editing, 284
control events
AfterUpdate event, 276
BeforeUpdate event, 276
bound or unbound, 233

currency, in upsizing to SQL Server

calling code directly from, 152
Click and DblClick events, 275
GotFocus and LostFocus events, 277
handling, 362
writing code behind, 274
Control Wizard, 274
defaults for, 274
dynamically loading tabs, improving, 340
list boxes
multiple selections, 286-290
two list boxes, multiple selections with, 290-292
using as a subform, 292-295
sample databases, 273
tab controls
dynamically loading tabs, 314-320, 340-355
OnChange event, 314
referring to controls in, 314
refreshing between tabs and controls, 311-313
Tag property, 316
TreeView control
ActiveX controls, 304
adding, 296-298
in application development, 635
drag and drop, 303-307
graphics, adding, 301-304
nodes, adding, 309
nodes, expanding and collapsing, 303
nodes with recursion, deleting, 307-309
parent/child-related data, loading, 300
populating the tree, 298-301
recursive VBA code, writing and debugging, 308
sample database example, 295
using for filtering, 236-242
CONVERT, using in T-SQL, 518
copying SQL Azure databases, 603
CountryLibrary.accdb database, 176
CreateObject vs. New, 438-440
CROSSTAB queries in SQL Server, 509-511
CTP1 synchronization service, 604
CTP2 synchronization service, 604

currency, in upsizing to SQL Server, 548

679

680 CurrentDB

CurrentDB, 175 Recordsets
Current event, 326 adding, editing, and updating records, 193
CurrentProject and CurrentData objects Attachment fields, 197-200
dependency checking and embedded macros, 138 attachments, copying, 204-206
Form Datasheet View properties, changing, 136 Bookmarks, 191
object dependencies, 137 calculated fields, 210
version information, retrieving, 135 cloning and copying, 212-215
cursors. See also Recordsets Delete, 202
DAO, differences with, 661 field syntax, 191
location, type, and lock type, 662 Filter and Sort properties, 193
custom interfaces for users, in application forms, binding to, 383
development, 637 information, displaying, 200
custom ribbon, loading, 649 LoadFromFile method, 203
cycles and multiple cascade paths, converting for SQL Multiple-Values lookup fields, 194-197
Server, 549 .
OLE Object data type, 206-209
D reading records into an array, 215
DAO (Data Access Object) model SaveToFile method, 202
vs. ActiveX Data Objects (ADO), 161, 659 searching, 188
connections, management of, 671 types of, 188
databases, working with references and, 163
CodeDB, 176-179 sample databases
CurrentDB, DBEngine, and CodeDB, 175 DAOExamples.accdb, 162
DAO and ADO libraries and, 164 DocDAO.accdb, 224
Database Object, 173 Find_IT.accdb, 225-227
Data Definition Language (DDL), 183 understanding, 162
datasheet properties, managing, 184-186 VBA libraries, techniques when writing, 177
DBEngine Object, 165 data
Errors collection, 171-173 data exchange, using DoCmd object, 142
relationships, creating, 186 data files, single and multiple application, 655
TableDefs collection and indexes, 179-182 data types
transactions, 166-170 converting for SQL Server, 547
Workspace Object, 165 mapping in SSMA, 567
objects, investigating and documenting naming conventions for, 112
Containers and Documents, 222-224 text data types and UNICODE, 544
object properties, 224 external, linking to, 430-434
queries extracting from Outlook, 472-475
QueryDef parameters, 220-222 merging with bookmarks, 447-451
QueryDefs and Recordsets, 218 minimizing, for display in forms, 485
QueryDefs, creating, 218-220 multi-value data, planning for upsizing to SQL Server, 548
temporary QueryDefs, 216-218 parent/child-related data, loading, 300

working with, 215 synchronizing in controls, 278-280

Data Access Object model. See DAO (Data Access Object)
model

databases. See also sample databases; upsizing databases
Access Web Databases, linking
Access database to an Access Web Database, 431
process of, 430
relinking, 432-434
changing structure of, in SQL Azure, 612
database splitting, 396, 397
database systems, moving data between, 91
DFirst and DLast functions in, 100
fields, naming conventions for, 109
in SQL Server. See also SQL Server
database diagrams, 496-498
demo database script, running, 493
file locations, 488
system databases, 493
SQL Azure databases. See also SQL Azure
backing up and copying, 603
creating, 590
SQL databases, migrating using SQL Azure
sequence of steps, 596
set of tables, creating, 597-599

SQL Import/Export features when transferring to SQL
Azure, 602

SQL Server Import and Export Wizard and UNICODE
data types, 598

SSMA (SQL Server Migration Assistant), 598

transferring data with the SQL Server Import and
Export Wizard, 599-603

variables and database field types, 52
working with in DAO
CodeDB, 176-179
CurrentDB, DBEngine, and CodeDB, 175
DAO and ADO libraries and, 164
Database Object, 173
Data Definition Language (DDL), 183
datasheet properties, managing, 184-186
DBEngine Object, 165
Errors collection, 171-173
relationships, creating, 186
sample databases, 223-226

debugging

TableDefs collection and indexes, 179-182
transactions, 166-170
Workspace Object, 165
Data Definition Language (DDL), 183
Data Link, setting advanced properties, 464
datasheet properties, managing, 184-186
Datasheet view, 261
Data Source Name (DSN). See DSN
Data Sources, using, 468-471
Data Sync Agent in SQL Azure
conflict resolution in data, 613
data and database structure, changing, 612
database synchronization and triggers, 613
loading and installing, 605-609
Sync Groups and Sync Logs, 610-612
synchronization services, 604
table structure, changes to, 613
Data Type Mapping, changing in SQL Azure, 627
dates

681

Date and Time data, converting for SQL Server, 544-546

date and time functions, 90-92
date values, rules for in Where clauses, 97
default, in data storage systems, 91
DBEngine object, 165, 175
DbliClick event, 275
dbo prefixes, renaming, 417
dbSeeChanges constant in SQL Server, 574
DDL,creating relationships with, 187
Deactivate and Activate events, interacting with, 255
debugging
breakpointing code
breakpoint Step and Run commands, 26-29
changing code on-the-fly, 34
conditional Watch Expressions, adding, 32
Immediate window, working with, 33
methods for, 23-25
procedures, tracing with Call Stack, 30
Set Next command, 25
variables, displaying in the locals window, 29
watching variables and expressions, 31

Debug Assert command, 23

682 debugging (cont.)

debugging (cont.)
forms
application and VBA code windows, 6-8
database sample, 4
VBA editor, entering, 5
modal forms, 38
modules and procedures

debug commands, 23

debugging code in modules, demonstration of, 20-22

editing environment, accessing, 8-10
functions, executing, 15
modules, creating, 10
procedures, creating, 11
searching code, 19
split window, 17-19
subroutines, executing, 13-15
viewing and searching code, 16
Object Browser and Help system
Help system, configuring, 35
Object Browser, working with, 36
VBA code, recursive, 308
decimals
converting for SQL Server, 547
precision of, in DAO, 183
default ribbon, setting, 644
deleting
Delete events, 267
DELETE query in SQL Server, 513
Recordsets, 202
demo database script, running, 495
dependency checking, and embedded macros, 138
deploying applications
ACCDE files, protecting your design with, 655
DSNs and relinking applications, 656
references, depending on, 656
Runtime deployment, 655
single and multiple application files, 655
derived classes, 355
developing applications. See application development
developing with SQL Server
Case statements, 581
complex queries, handling, 579-582

dbSeeChanges constant, 574

efficient SQL, tips for, 585

the MSysConf table, 587

Pass-Through queries, 575-578

performance and execution plans, 582-585
SQL Server Profiler, 586

stored procedures and temporary tables, 578

stored procedures, using advanced features in, 578

DFirst and DLast functions, 100

Dialog forms, OpenArgs and, 121

diary entries, adding, 476
DisplayAttachmentinfo subroutine, 200

displaying records

bound and unbound forms, 233

modal and pop-up forms, 234

opening and loading forms, 235

Refresh, Repaint, Recalc, and Requery commands, 250

DISTINCT and DISTINCTROW, 234
DocADOX.accdb sample database, 660
DocDAO.accdb sample database, 224
DoCmd object

in application development, 140
application navigation, 140
data exchange, 142
environment, controlling, 138

size and position, controlling, 139

DoCmd.OpenForm command, 6
DoEvents command, 103

domain functions

description of, 95

Where clauses, constructing, 97

Do While and Do Until loops, 82-84

drag and drop in TreeView control, 303-307
drill-down reports, creating, 326

driver limitations with VARCHAR(MAX), 548
DSN (Data Source Name)

creating, 410-413

Machine DSNs, 410

and relinking applications, 656
in SQL Azure, 420-423

dynamic arrays, 61
Dynamic Tab, and using classes, 351
Dynaset, 189

E
Early Binding vs. Late Binding, 438-440
Editing and Undo on records

Beforelnsert and Afterinsert events, 265-267

BeforeUpdate and AfterUpdate events, 262

Delete events, 267

Error event, 269

KeyPreview and Key events, 268

Locking and Unlocking controls, 264

in Recordsets, 193

saving records, 270
edits, multiple using transactions, 170
ellipse button, 274
email

creating, in Outlook, 475

writing to Access, from Outlook, 477-479
embedded macros, dependency checking and, 138
embedded quotes, SQL and, 98-101
Employees_be.accdb sample database, 396
Encapsulation, 353
Enum keyword, 51
Err object, 117,172
Error event, 269
error handling

in application development, 654

in T-SQL, 523-525

in VBA

Err object, 117
Err.Raise, 122

general purpose error handler, developing, 118-121

how errors occur, 115
On Error GoTo, 118
On Error Resume Next, 116
OpenArgs and Dialog forms, 121
subclassing form events, 362
error messages, 172
Errors collection in DAO, 171-173
Err.Raise, 122
Eval function, 102
events
AfterDelConfirm event, 268
ApplyFilter event, 247

Exit statements

BeforeDelConfirm event, 268
Beforelnsert and Afterinsert events, 265-267
BeforeUpdate and AfterUpdate events, 262
Close events, 248
control events
AfterUpdate event, 276
BeforeUpdate event, 276
bound or unbound, 233
calling code directly from, 152
Click and DblClick events, 275
GotFocus and LostFocus events, 277
writing code behind, 274
Current event, 251
Deactivate and Activate events, 255
Delete events, 267
Error events, 269
Initialization and Termination events, 344
KeyPreview and Key events, 268
Mouse events, 260
OnChange event, 314
Open event, 235
producing and consuming events, 364

report event sequences

boxed grids, creating with the Print event, 327-329

drawing graphics and, 328

drill-down reports and current events, creating, 326

typical, 324-326
Timer event, 255-260
Unload and Close events, 248
ExcelAnalysis.accdb sample database, 437
Excel, Microsoft
connecting Access to
Data Link advanced properties, setting, 464
key objects in, 451
linking to external data, planning for, 466
MS Query and Data Sources, using, 468-471
QueryTables and ListObjects, 470
reporting with, 460-468
spreadsheets, reading data from, 459
spreadsheets, writing data to, 452-459
files, linking to, 406

Exit statements, 84

683

684 exporting

exporting

migrating SQL databases, 598, 602
VBA collection classes, 349

expressions

conditional Watch Expressions, adding, 32
Expression Builder

invoking, 133

locating, 38

focus events, 277

For and ForEach loops, 81

foreign keys, partially completed, 550

Format event, layout control and, 330

Format function, 94

Format string function, 93

Form Datasheet View properties, changing, 136

forms

working with, 144
Watches window, 31
external data, linking to, 430-434
extracting information from Outlook, 472-475

F
fields
calculated fields in Recordsets, 210
field syntax in Recordsets, 191, 192
mismatched, converting for SQL Server, 550
Multiple-Values lookup fields, 194-197
multi-value fields connected to a combo box, 283
naming conventions for, 109
required fields, converting for SQL Server, 549
files, opening, 442
filtering
forms
ApplyFilter event, 247
calling procedures across forms, 251-253
RecordsetClone, 248
Unload and Close events, 248
using another form, 245-247
using controls, 245-251
using filter property, 243-245
simplifying by using BuildCriteria, 130
using controls, 236-242
FilterOnLoad property, 235
Filter property, 193, 243-245
Find and FindNext methods, 189
Find operations, 474
firewall settings in SQL Azure, 591
floating point numbers, converting for SQL Server, 547

flow, program. See conditional statements and program
flow

and ADO Recordsets, 662
BatchProcessing form, 368-370
binding forms and
binding to an Active Data Object Recordset, 384
binding to a Data Access Object Recordset, 383
bound or unbound, 233
calling public code on, 252
closing, 248
Continuous forms, controlling column visibility in, 255
control events and
AfterUpdate event, 276
BeforeUpdate event, 276
Click and DblClick events, 275
GotFocus and LostFocus events, 277
writing code behind, 274
debugging code
application and code windows, 6—8
the class module, locating code in, 7
database sample, 4
modal forms, 38
VBA editor, entering, 5
Dialog forms, OpenArgs and, 121
driving reports from, 331-333
Editing and Undo on records
Beforelnsert and Afterinsert events, 265-267
BeforeUpdate and AfterUpdate events, 262
Delete events, 267
Error event, 269
KeyPreview and Key events, 268
Locking and Unlocking controls, 264
saving records, 270
filtering
ApplyFilter event, 247

calling procedures across forms, 251-253

RecordsetClone, 248
Unload and Close events, 248
using another form, 245-247
using controls, 236-242
using filter property, 243-245
form events
handling, 360-362
subclassing, 362
frmCustomers form, 232
linking code to, in modules, 22
minimizing data display in, 485
opening
multiple copies of, 637
multiple instances of a form, 381-383
using DoCmd.OpenForm command, 6
using a Where clause, 246
properties and
FilterOnLoad, 235
OrderByOnLoad, 235
push buttons, in application development, 632
records, displaying
bound and unbound forms, 233
modal and pop-up forms, 234

opening and loading forms, 235

Refresh, Repaint, Recalc, and Requery commands, 250

records on forms, interacting with
Current event, 251
Deactivate and Activate events, 255
Mouse events, 260

Timer Interval property of the Timer event, set-
ting, 255-260

ribbon design for, 648
sample databases, 231
size and position, controlling
DoCmd object, 139
tabs, dynamically loading
class module, creating, 341
collection of objects, 345
Initialization and Termination events, 344
Let and Get object properties, 342
New and Set, creating an object with, 343
options for, 314

functions

pages, loading, 315-318

pages, unloading, 320

related pages, dynamically loading, 319
simplifying the application code with classes, 352

Forms and Reports collections

Access Objects, creating in code, 149
controls on a Subform, referencing, 145-148
Expression Builder, working with, 144

VBA class module, syntax for, 147

working with, 143

friend methods, 378
Full Recovery Model, in SQL Server, 491

functions

built-in functions
ASC function, 94
date and time functions, 90-92
format function, 94
Mid string function, 95
string functions, 92
in T-SQL, 519
changing to subroutines, and vice versa, 14
COALESCE function, 623
DFirst and DLast functions, 100
domain functions
description of, 95
Where clauses, constructing, 97
the Eval function, 102
executing, 15
Left, Right, Mid string functions, 93
Len string function, 93
MsgBox function, 14
and procedures
ByRef and ByValue parameters, defining, 70-72
calling, variations on standard rules for, 66
modules and class modules, organizing code in, 76
ParamArray qualifier, 75
parameters, Optional and Named, 73
procedures, private and public, 72

subroutines and functions, default referencing of
parameters in, 71

subroutines, managing code with, 67-70
in VBA, 13

685

686 functions (cont.)

functions (cont.) migrating SQL databases, 598, 602
returning variant or string data, 93 VBA collection classes, 349
Shell and Sendkeys, 102 indenting code, 113
table-valued functions, 535 indexes, TableDefs collection and, 179-182
User-Defined Functions (UDFs) in SQL Server, 534-536 INFORMATION_SCHEMA views, in SQL Server, 494
VBA, using in Queries, 101 inheritance in classes, 356

Initialization event, 344

INSERT and INSERT INTO queries in SQL Server, 515-517
inserted OLE documents, 209

installing SSMA, 564

instances in SQL Server, 491

G

GetEnabled callback, 642
GetObject keyword, 440-442
Get object properties, 342
global variables, 56 Instnwnd.sql sample database, 396
GotFocus and LostFocus events, 277
GoTo and GoSub statements, 86
graphical interface

of SQL Azure, 595

Instnwndtesting.sql sample database, 396
InStr, InStrReverse string functions, 93
integer numbers, converting for SQL Server, 547

interfaces for users, in application development, 632, 637,

of SQL Server, 505 638
graphics IsBroken, references, 48
adding to TreeView control, 301-304 IsNothing, IsEmpty, and IsObject, 106
drawing, and report event sequences, 328 isolation levels of transactions, in SQL Server, 532

grids, creating with the Print event, 327-329

GUI (graphical user interface), changing table designs J
with, 500-502 JET (Joint Engine Technology), 659

Join string function, 93

H

Help system, configuring, 35 K

hybrid abstract and non-abstract classes, 376-378 KeyPreview and Key events, 268
hyperlinks, converting for SQL Server, 547 keys, partially completed foreign, 550
| L

@@IDENTITY, SCOPE_IDENTITY() and IDENT_CURRENT in language settings in VBA

T-SQL, 520
Identity property, using in SQL Server tables, 504
If..Then...Else... statements, 77
Ignore NULLs, in SQL Server, 553
IIF statements, 78

comments, adding, 40

compiling code, 44

conditional compilation, 45
/Decompile command line switch, 45

Option Compare, selecting, 43
images for ribbon design, 644

IMAGE, VARBINARY (Max), and OLE Data, converting for
SQL Server, 547

Immediate window, working with, 33

options, setting explicitly, 41

references, 46-49

Visual Basic for Applications Extensibility, 48
Late Binding vs. Early Binding, 438-440

implementation classes, 372. See also abstract and
layout control

implementation classes

importing report grouping, programming, 333

data from SQL Azure, 603 using the Format event, 330

layout control of reports
driving reports from a form, 331-333
during printing, 330
joins, reducing with a combo box, 333
ParamArray, packing address information with, 334
printers, control of, 335
Left, Right, Mid string functions, 93
Len string function, 93
Let object properties, 342
libraries
ADO libraries to add, 660
benefits of constructing, 370
DAO and ADO libraries and, 164
VBA libraries, techniques when writing, 177
Linked Table Manager, 398
linked TableName, 406
linking
Access to Access
database splitter, using, 397
Linked Table Manager, 398
linked table name and SourceTableName, 406
relinking, automating, 398-406
relinking tables, essential details for, 400
splitting databases, 396
temporary tables and SQL Server, 397
Access Web Databases
Access database to an Access Web Database, 431
process of, 430
relinking, 432-434
to Excel files
Data Link advanced properties, setting, 464
key objects in, 451
linking to external data, planning for, 466
MS Query and Data Sources, using, 468-471
QueryTables and ListObjects, 470
reporting with, 460-468
spreadsheets, reading data from, 459
spreadsheets, writing data to, 452-459
and text files, 406
external data links, planning for, 466

locking down an application

to SharePoint lists

getting started, 426-428

relinking SharePoint lists, 428
to SQL Azure

connecting to SQL Azure, 424-426

DSN, 420-423

security stored procedures, support for, 421
to SQL Server

DSN (Data Source Name), creating, 410-415

getting started, 407

sample database, setting up, 407-409

script files, 409

Server driver, choosing, 412

Server instances, 408

Windows vs. SQL Server authentication, 414
to SQL Server tables

getting started, 416

linked tables, refreshing, 417

687

linked tables, renaming to remove the dbo_prefix, 417

updateability and Views, 419
views in SQL Server, connecting to, 418
views in SQL Server, refreshing, 419
to Text Files, 407
list boxes
in application development, 637

key properties when working with multiple selections
in, 287

multiple selections, 286-290
selected choices, working with, 289
two list boxes, multiple selections with, 290-292
using as a subform, 292-295
ListObjects, 470
lists
drop-down list, displaying, 279
SharePoint lists, 426-428
loading
LoadFromFile method, 203
and opening forms, 235
Locals window, displaying variables in, 29
Locking and Unlocking controls, 264
locking down an application, 654

688 Log filesin SQL Server

Log files in SQL Server, 490

loops
Do While and Do Until loops, 82-84
For and ForEach loops, 81

LostFocus event, 277

M
Machine DSNs, 410
macros
and VBA, evolution of, 114
converting to VBA, 115
embedded, dependency checking and, 138
Mail Merge, 451
Maintenance Plan, for SQL Express, 488
Management Studio, using, 592-594
MARS (Multiple Active Result Sets)
and connections in SQL Server, 669-671
and performance, 668
master database, in SQL Server, 493
Maximize property, 638
MDI. See Multiple Document Interface (MDI)
Memo data, converting for SQL Server, 547
Me object, to reference controls, 113
Microsoft Excel. See Excel, Microsoft
Microsoft Outlook. See Outlook, Microsoft
Microsoft SQL Azure. See SQL Azure
Microsoft Word. See Word, Microsoft
Mid string function, 95
migrating SQL databases using SQL Azure
sequence of steps, 596
set of tables, creating, 597-599

SQL Import/Export features when transferring to SQL

Azure, 602

SQL Server Import and Export Wizard and UNICODE data

types, 598
SSMA (SQL Server Migration Assistant), 598

transferring data with the SQL Server Import and Export

Wizard, 599-603
Migration Wizard, 565-567
missing references, 48
modal forms

debugging, 38
and pop-up forms, 234

Modal property, 638
model database, in SQL Server, 493
modules
class module, creating, 341
naming conventions for, 109
standard modules, using Intellisense in, 654
modules and procedures
the class module, locating code in, 7
code types for, 76
debug commands, 23
debugging code
debug commands, 23
debugging code in modules, demonstration of, 20-22
editing environment, accessing, 8-10
functions, executing, 15
in modules, 10, 20-22
procedures, creating, 11
searching code, 19
split window, 17-19
subroutines, executing, 13-15
viewing and searching code, 16
editing environment, accessing, 8-10
functions, executing, 15
modules and class modules, organizing code in, 76
modules, creating
how to, 10
linking code to forms and reports, 22
naming conventions, 21
scope rules and, 58
searching code, 19
split window, 17-19
subroutines, executing, 13-15
viewing and searching code, 16
Mouse events, interacting with, 260
MousePointer shape, changing, 150
msdb database, in SQL Server, 493
MsgBox function, 14
MS Query, 468-471
MSysASO system table, relinking, 434
MSysConf table in SQL Server, 587

multi-dimensional arrays, 62-64

Multiple Active Result Sets. See MARS (Multiple Active
Result Sets)

multiple cascade paths, converting for SQL Server, 549
Multiple Document Interface (MDI), 638
Multiple-Values lookup fields, 194-197
multi-tenanted applications in SQL

application tables and views, 619-622

optional parameters, creating, 623

overview, 617

security, managing, 623

user tables and views, 617-619
multi-user interaction, simulating with transactions, 531

Multi-value data, and upsizing to SQL Server, 548

Named and Optional parameters, 73
naming conventions
Access document objects, 108
database fields, 109
the Me object to reference controls, 113
for procedures in modules, 21
unbound controls, 110
variables in code, 110-112
navigation experience of users, 140
navigation, in application development
combo and list boxes, 637
custom interfaces for users, 637
DoCmd object, 140
forms, opening multiple copies of, 637
interface design decisions, 632
locking down an application, 654
the Navigation Control, 634
push buttons on a form, 632
the ribbon, 636
Switchboard Manager, 633
Tab controls, 636
the TreeView control, 635
nesting transactions in SQL Server, 533
New keyword, 105, 343
nodes
adding to trees, 309
expanding and collapsing, 303
with recursion, deleting, 307-309

objects and collections 689

non-abstract classes, hybrid, 376-378
NorthwindAzure.accdb sample database, 396
NULL values
and IsNull and Nz, 53-55
managing, with multiple controls for filtering, 242
in SQL Server, 553
string expressions and, 92
numbers
converting integers for SQL Server, 547

real numbers, decimals, and floating point numbers,
converting for SQL Server, 547

o

Object Browser, working with, 36, 38
objects
the class object, instantiating, 353
command objects in ADO, 666
creating
in Outlook, 475-477
using New and Set keywords, 343
Database Object in DAO, 173
DBEngine object, 165
Excel, key objects in, 451
investigating and documenting in DAO
Containers and Documents, 222-224
object properties, 224
Let and Get object properties, 342
object models and

Early vs. Late Binding and CreateObject vs. New, 438-
440

existing files, opening, 442
GetObject keyword, 440-442
object types, establishing with TypeOf, 375
Recordsets vs. Recordset2 objects, 188
Word object model, key objects in, 443
Workspace object, 165
objects and collections
CurrentProject and CurrentData objects
dependency checking and embedded macros, 138
Form Datasheet View properties, changing, 136
object dependencies, 137
properties and collections of, 134
version information, retrieving, 135

690 objects and collections (cont.)

objects and collections (cont.) OLE Object data type

description of, 103 advantages of, 206

the DoCmd object binary transfer, using, 207-209
application navigation, 140 documents, inserted, 209
data exchange, 142 importing and exporting OLE objects, 206
the environment, controlling, 138 OnAction Callback, 642
size and position, controlling, 139 OnChange event, 314

Forms and Reports collections On Error GoTo mechanism, 118
Access Objects, creating in code, 149 On Error Resume Next technique, 116
controls on a Subform, referencing, 145-148 OnlLoad callback, 642
Expression Builder, working with, 144 On-premise to Cloud (CTP2) synchronization service, 604
VBA class module, syntax for, 147 OOP (Object-Oriented Programming)
working with, 143 objects, working with, 340

IsNothing, IsEmpty, and IsObject, 106 supported in VBA, 339

object methods and properties Open Args, and dialog forms, 112
ColumnHistory and Append Only memo fields, 130- opening

132 Excel, 454-456

the Expression Builder, invoking, 133 existing files, 442

filtering, simplifying by using BuildCriteria, 130
the Run method, 128
the RunCommand Method, 129

TempVars, examining, 132

and loading forms, 235
Open event, 235
placeholder documents, 446

Optional and Named parameters, 73

object variables, 105 Option Compare, selecting, 43

Screen Object Option Explicit, selecting, 41

ActiveForm and ActiveControl, working with, 151 OrderByOnLoad property, 235

control's events, calling code directly from, 152 Orders_be.accdb sample database, 396

MousePointer shape, changing, 150 OutlookContacts.accdb sample database, 437

user interface, enhancing Outlook Microsoft

locking down Access, 154 connecting Access to

Office FileDialog, selecting files with, 157-159 creating objects in, 475-477

progress bars, custom, 156 extracting information from, 472-475

Setting and Getting options, 152-154 Outlook object model, 471

SysCmd, monitoring progress with, 155 Restrict and Find operations, 474

ODBC drivers, 663 writing to Access from Outlook, 477-479

OfficeApplications.accdb sample database, 437

Office FileDialog, selecting files with, 157-159 P

Office, Microsoft. See also specific Office applications ParamArray
code to launch Office applications, 438 packing address information with, 334
Office 2007 and the file menu, 647 qualifier, 75

Offline Devices (CTP2) synchronization service, 604 parameters

OLE Data, converting for SQL Server, 547 creating, in a QueryDef, 221

OLEDB providers, 663 creating optional, using the COALESCE function, 623

default values for optional parameters, specifying, 75
Optional and Named, 73
parent/child-related data, 300
Pass-Through queries in SQL Server, 575-578
performance, Multiple Active Result Sets and, 668
periodic execution of a Timer event, 256
placeholder documents
generating documents from, 444-446
opening, 446
polymorphism in classes, 356
popup and modal forms, 234
Popup property, 638
Print event, creating boxed grids with, 327-329
printing
printer controls and settings, 335
reports, layout control during, 330
private and public procedures, 72
procedures
calling, across forms, 251-253
calling, variations on standard rules for, 66
changing types, 14
creating, 11
debug commands, 23
editing environment, accessing, 8-10
functions, executing, 15
in modules, naming conventions, 21
modules and class modules, organizing code in, 76
scope rules, 58
stored procedures
in ADO, 666
in SQL Server, 364, 578
subroutines, executing, 13-15
tracing, with Call Stack, 30
viewing and searching code, 16
producing and consuming events, 364

program flow. See conditional statements and program
flow

progress bars

custom, creating, 156

in application development, 653
properties

Filter and Sort, 193

records, displaying 691

Identity property, in SQL Server, 504
Let and Get object properties, 342
Managing Datasheet properties, 184-186
Maximize, Popup, Modal, and MoveSize Properties, 638
for multiple-selection list boxes, 287
Tag property, 316
push buttons on a form, 632

Q

queries
complex queries, handling in SQL Server, 579-582
CROSSTAB queries in SQL Server, 509-511
DELETE query in SQL Server, 513
MS Query, using, 468-471
naming conventions for, 109
Pass-Through queries in SQL Server, 575-578
pasting links to, from Access into Word, 444
query conversion, 572-574
QueryDefs
creating, 218-220
parameters, 220-222
and Recordsets, 218
temporary, 216-218
QueryTables, 470
in SQL Server
DELETE query, 513
INSERT and INSERT INTO queries, 515-517
UPDATE query, 514
using VBA functions in, 100
working with, 215
quotation marks, embedded, 98-101

R
RaiseEvent, 363-368
random autonumbers, converting for SQL Server, 551-553

real numbers, decimals, and floating point numbers,
converting for SQL Server, 547

Recalc, Requery, Refresh, and Repaint commands, 250
records, displaying

bound and unbound forms, 233

modal and pop-up forms, 234

opening and loading forms, 235

Refresh, Repaint, Recalc, and Requery commands, 250

692 records, editing and undoing

records, editing and undoing references
Beforelnsert and AfterInsert events, 265-267 in application development, 656
BeforeUpdate and AfterUpdate events, 262 core libraries and, 46-49
controls, locking and unlocking, 264 refreshing between tabs and controls, 311-313
deleting events, 267 Refresh, Repaint, Recalc, and Requery commands, 250
multiple records, selecting for editing, 294 relationships
saving records, 270 creating, in DAO, 186
RecordsetClone creating, using DDL, 187
synchronizing bookmarks with, 249 relinking applications, DSNs and, 656
working with, 248 relinking databases
Recordsets. See also cursors Access to Access, automating, 398-406
adding, editing, and updating records, 193 USysApplicationLog and MSysASO, 434
ADO, forms and, 662 Web Databases, 432-434
Attachment fields, 197-200 Repaint, Recalc, Requery and Refresh commands, 250
attachments, copying, 204-206 Replace string function, 93
Bookmarks, 191 replicated databases and random autonumbers,
calculated fields, 210 converting for SQL Server, 551-553
cloning and copying, 212-215 reports
Delete, 202 with Excel linked to Access, 460-468
field syntax, 191 layout control
Filter and Sort properties, 193 driving reports from a form, 331-333
information, displaying, 200 during printing, 330
LoadFromFile method, 203 joins, reducing with a combo box, 333
Multiple-Values lookup fields, 194-197 ParamArray, packing address information with, 334
OLE Object data type, 206-209 printers, control of, 335
reading records into an array, 215 report grouping, programming, 333
vs. Recordset2 objects, 188 using the Format event, 330
SaveToFile method, 202 linking code to, in modules, 22
searching, 188 opening, 323
types of, 188 report event sequences
records on forms, interacting with boxed grids, creating with the Print event, 327-329
Current event, 251 drawing graphics and, 328
Deactivate and Activate events, 255 drill-down reports and current events, creating, 326
Mouse events, 260 typical, 324-326
Timer Interval property of the Timer event, Reports.accdb, sample database, 323
setting, 255-260 ribbon design, in application development, 648
Record Source, updateability of, 234 sample reports, 323
Recovery Models in SQL Server, 490 side-by-side details, using multiple copies, 327
recursion size and position, controlling, 139
deleting and node with, 307-309 Reports collections
in VBA code, writing and debugging, 308 Access Objects, creating in code, 149

controls on a Subform, referencing, 145-148

SDI. See Single Document Interface (SDI) 693

Expression Builder, working with, 144 Employees_be.accdb, 396
VBA class module, syntax for, 147 FormExamples.accdb, 231
working with, 143 for Microsoft Office applications, 437
Requery, Refresh, Repaint, and Recalc commands, 250 Instnwnd.sql, 396
Restrict operations, 474 Instnwndtesting.sql, 396
Retail & Remote Offices (CTP2) synchronization NorthwindAzure.accdb, 396
service, 604 opening, 4
ribbon design Orders_be.accdb, 396
in application development, Backstage view, 647 Reports.accdb, 323
custom ribbon, loading, 649 Sample_fe.accdb, 396
default ribbon, setting, 644 setting up in SQL Server, 407-409
elements of a ribbon, 641 for SQL Azure, 420
for forms and reports, 648 for SQL Server, 495
the GetEnabled callback, 642 SQLServerExamples.accdb, 484
images for, 644 for upsizing databases from Access to SQL Server, 543
Office 2007 and the File menu, 647 VBAEnvironment.accdb, 4
the OnAction callback, 642 VBAExamples.accdb, 40
the OnLoad callback, 642 VBAFeaturesExamples.accdb, 89
tab visibility and focus, dynamically changing, 646-648 WebDatabase.accdb. 396
tips, 639

sample reports, 323
the USysRibbons table, 640 SaveToFile method. 202
RowSource Type combo box, 280-282

saving
Row Versioning in SQL Server, 554-556 records, 270
rules, scope, 58 Save button, 7
RunCommand Method, 129 Schemas
Run method, 128 in SQL Server tables, 417
Runtime deployment, 655 and synonyms in SQL Server, 556
S using in SSMA, 567-570

scope

sample databases
AccessObjectModel.accdb, 128
ADOExamples.accdb, 660
for application development, 631
BuildingClasses.accdb, 340
BuildingClassesAfterExportimport.accdb, 340
ClassAndForms.accdb, 381
ClassesAndEvents.accdb, 359
Controls.accdb, 273
DAOExamples.accdb, 162
demo database script, 495
DocADOX.accdb, 660
DocDAO.accdb, 224

constants and, 51
scope rules, 58
SCOPE_IDENTITY() in T-SQL, 520
Screen Object
ActiveForm and ActiveControl, working with, 151
control’s events, calling code directly from, 152
MousePointer shape, changing, 150
script files
in SQL Server, 506-509
in SQL Server tables, 499
SDI. See Single Document Interface (SDI)

694 searching

searching
code
for debugging modules and procedures, 16
in modules and procedures, 19
Recordsets, 188
security
planning and managing
firewall settings, working with SQL Azure, 591
in multi-tenanted applications, 623
security models in SQL Server, 615-617
in SQL Server
authentication, 538-540
surface area configuration, 536-538
Windows authentication, 541
Windows vs. SQL Server, 414

in SQL Azure, support for security stored procedures, 421

using Schemas and database roles to manage, 557

Select Case statements, 80
selections, multiple
key properties, 287
list boxes and, 286-290
with two list boxes, 290-292
SendKeys action, 102, 270
Set keyword, 343
Set Next command, 25
Setting and Getting options, 152-154
SharePoint lists, linking to, 426-428
Shell command, 102
Single Document Interface (SDI), 638
64-bit environments
ActiveX on, 386
in application development, 649
using the Windows API, 651-653
Slider control, adding, 386-388
Sort property, 193
SourceTableName, 406
Space and String string functions, 93
Spin control, 388-390
splash screens, in application development, 653
Split string function, 93
splitting databases
Database Splitter, using, 397
reasons for, 396

split window view, 17-19
spreadsheets
reading data from, 459
writing data to
opening Excel, 454-456
when to use, 452-454
writing the data, 456-458
SQL. See also queries
Data Definition Language (DDL), 183
executing, different methods for, 217
splitting over multiple lines in VBA, 86
SQL Azure
browser interface, developing with, 595
connecting to, 424-426
databases
backing up and copying, 603
creating, 590
sample databases, 420
Data Sync Agent
conflict resolution in data, 613
data and database structure, changing, 612
database synchronization and triggers, 613
loading and installing, 605-609
Sync Groups and Sync Logs, 610-612
table structure, changes to, 613
Data Type Mapping, changing, 627
DSN, 420-423
firewall settings, 591
graphical interface, 595
importing data from, 603
introduction to, 589, 590
Management Studio, using, 420, 592-594
migrating SQL databases
sequence of steps, 596
set of tables, creating, 597-599

SQL Import/Export features when transferring to SQL

Azure, 602

SQL Server Import and Export Wizard and UNICODE

data types, 598
SSMA (SQL Server Migration Assistant), 624

transferring data with the SQL Server Import and

Export Wizard, 599-603

multi-tenanted applications, building
application tables and views, 619-622
optional parameters, creating, 623
overview, 617
security, managing, 623
user tables and views, 617-619
security, planning and managing
firewall settings, 591
for multi-tenanted applications, 623
security models, 615-617
security stored procedures, support for, 421

SQL Server Migration Assistant and Access to
Azure, 624-627

SQL Express and SQL Server products, 487-489
SQL Server. See also upsizing databases
ADO, working with
command objects, 666
connecting to SQL Server, 664
connection strings, 663
connection time, 665
MARS and connections, 669-671
MARS and performance, 668
stored procedures, 666
BatchProcessing SQL Server form, 368-370
database file locations, 489
description of, 485
developing with
Case statements, 581
complex queries, handling, 579-582
dbSeeChanges constant, 574
efficient SQL, tips for, 585
the MSysConf table, 587
Pass-Through queries, 575-578
performance and execution plans, 582-585
SQL Server Profiler, 586
stored procedures and temporary tables, 578
stored procedures, using advanced features in, 578
getting started with
demo database script, running, 495
new database, creating, 496
understanding components of, 495
INFORMATION_SCHEMA views, 494

SQL Server. See also upsizing databases

instances, 491
introduction to, 484
limitations of, 483
linking to
DSN (Data Source Name), creating, 410-415
getting started, 407
sample database, setting up, 407-409
script files, 409
Server driver, choosing, 412
Server instances, 408
Windows vs. SQL Server authentication, 414
Log files and Recovery Models, 490
performance, improving, 486
sample database, 484
security
authentication, 538-540
surface area configuration, 536-538
Windows authentication, 541
SQL Express and SQL Server products, 487-489
SQL Server 2008 R2 Management Tools, 592
SQL Server Management Studio, using, 592-594
SQL Server Migration Assistant (SSMA), 624
statements, executing on the fly, 518
stored procedures
DELETE query, 513
INSERT and INSERT INTO queries, 515-517
system stored procedures, 508
UPDATE query, 514
working with, 511-513
system databases, 493
system tables, 494
tables and relationships, creating
database diagrams, 496-498
Identity property, using, 504
script files and batches of T-SQL commands, 499
table design, changing, 500-504
tables, relationships, and script files, 499

T-SQL script files, using to record and apply chang-

es, 502
tables, linking to
getting started, 416
linked tables, refreshing, 417

695

696 SQL server (cont.)

SQL server (cont.)

tables, linking to (cont.)
linked tables, renaming to remove the dbo_prefix, 417
updateability and Views, 419
views in SQL Server, connecting to, 418
views in SQL Server, refreshing, 419
tables, Schemas in, 417
temporary tables and, 397
transactions
nesting transactions, 533
transaction isolation levels, 532
working with, 530-533
triggers, working with, 526-529
T-SQL (Transact SQL)
CAST and CONVERT, using, 518
error handling, 523-525
functions, built-in, 519

@@IDENTITY, SCOPE_IDENTITY() and IDENT_CUR-
RENT, 520

program flow, controlling, 521-523
system variables, 520
variables, defining, 517
User-Defined Functions (UDFs), 534-536
versions of, 486
views, working with
CROSSTAB queries, 509-511
graphical interface, 505
INFORMATION_SCHEMA views, 494
and script files, 506-509
updateability of, in Access, 506

Windows services, 492

SQL Server Profiler, 586
SSMA (SQL Server Migration Assistant)

Access to Azure, 624
installing, 564

mapping data types, 567
Migration Wizard, 565-567
Schemas, using, 567-570

strengths and weaknesses, 574

standard modules, 654

"*" (star) character, 97
statements
in SQL Server, executing on the fly, 518
in T-SQL, controlling program flow, 523
static variables, 55
Step and Run commands, breakpoint, 25-28
stored procedures
asynchronous event processing and, 364
in SQL Server
DELETE query, 513
INSERT and INSERT INTO query, 515-517
system stored procedures, 508
and temporary tables, 578
UPDATE query, 514
using advanced features from Access, 578
StrComp string function, 93
string functions, 92
subclassing. See WithEvents Processing
subforms
placing on the tab page, 311
referencing controls on, 145-148
using the list box as, 292-295
subroutines
changing to functions, and vice versa, 14
DisplayAttachmentinfo, 200
executing, debugging modules and procedures, 13-15
and functions, default referencing of parameters in, 71
managing code with, 67-70
surface area configuration in SQL Server, 536-538
Switchboard Manager, 633

Sync Groups and Sync Logs in Data Sync Agent in
SQL, 610-612

synchronization services in SQL Azure. See Data Sync
Agent in SQL Azure

synonyms in SQL Server, 556

SysCmd, monitoring progress with, 155
system databases in SQL Server, 493

system stored procedures in SQL Server, 508
system tables in SQL Server, 494

TreeView control 697

T temporary tables, in SQL Server, 397, 578

tab controls transactions, using to perform inserts, 169

dynamically loading tabs truncating, 514
user tables, in SQL Server databases, 617
the USysRibbons table, 640

table-valued functions, 535

class module, creating, 341
collection of objects, 345

improving, 340

Initialization and Termination events, 344 tabs

Let and Get object properties, 342 Agents tab, 605

New and Set, creating an object with, 343 Dynamic Tab, VBA collection classes and, 351
options for, 314 Tab controls, 636

pages, loading, 315-318 tab visibility and focus, dynamically changing, 646-648

pages, unloading, 320 Tag property, 316
tasks in Outlook, adding, 476
simplifying the application code with classes, 352 tempdb database, in SQL Server, 493

OnChange event, 314 temporary tables, 397
temporary tables, in SQL Server, 516, 578

related pages, dynamically loading, 319

referring to controls in, 314

refreshing between tabs and controls, 311-313 TempVars, examining, 132
TableDefs collection, 179-182 Termination event, 344
Table/Query editing, 285 Text Files, linking to, 407
tables 32-bit and 64-bit environments, in application

| 4
DISTINCT and DISTINCTROW, using, 234 development, 649

Linked Table Manager, 398
linked table name and SourceTableName, 406
MSysConf table in SQL Server, 587

naming conventions for, 109

time and date functions, 90-92
Time data, converting for SQL Server, 544-546
Timer Interval property

considerations in using, 255

monitoring, 258-260

relinking tables, essential details for, 400 o)
periodic execution, 256

SQL Server tables
database diagrams, 496-498
Identity property, using, 504
linked tables, refreshing, 417
linked tables, renaming to remove the dbo_prefix, 417
script files and batches of T-SQL commands, 499
system tables, 494
table design, changing using the GUI, 500-504
tables, relationships, and script files, 499

Timestamps and Row Versioning, 554-556
transactions
multiple edits and, 170
simulating multi-user interaction with, 531
in SQL Server
nesting transactions, 533
transaction isolation levels, 532
working with, 530-533
working with in DAO, 166-170

temporary tables, 516
TreeBuilders.accdb sample database, 273

T-SQL script files, using to record and apply chang-

es, 502 TreeView control
table conversion, comparing methods for, 571 ActiveX controls, 304
table name, changing in T-SQL, 503 adding, 296-298

table structure, changes to, 613 in application development, 635

698 TreeView control (cont.)

TreeView control (cont.)
drag and drop, 303-307
graphics, adding, 301-304
nodes, adding, 309
nodes, expanding and collapsing, 303
nodes with recursion, deleting, 307-309
parent/child-related data, loading, 300
populating the tree, 298-301
recursive VBA code, writing and debugging, 308
sample database example, 295

triggers

multiple rows in trigger code, allowing for changes
in, 553

in SQL Server, 526-529
Trim, LTrim, and RTrim string functions, 93
T-SQL (Transact SQL)

CAST and CONVERT, using, 518

error handling, 523-525

functions, built-in, 519

@@IDENTITY, SCOPE_IDENTITY() and
IDENT_CURRENT, 520

script files and batches of commands, 499
script files, using to record and apply changes, 502
statements, controlling program flow with, 523
system variables, 520
understanding, 511-513
variables, defining, 517

TypeOf statements, 80, 375

Type structures, for working with arrays, 65, 340

U

UCase and UCase$ functions, 93

unbound controls, naming conventions for, 110
unbound forms, 233, 243

"o

(underbar) character, using, 86

UNICODE data types
SQL Server Import and Export Wizard and, 598
text data types and, 544

Unique Index and Ignore NULLs, in SQL Server, 553

Unload and Close events, 248

updateability
of a Record Source, 234
support for, 419
of views, in SQL Server, 506
UPDATE query in SQL Server, 514
updating applications, in development, 656
UpDown or Spin control, 388-390
Upper, Lower, StrConv string functions, 93
upsizing databases
planning for
attachments and Multi-Value data, 548
Boolean data, 546
currency, 548
cycles and multiple cascade paths, 549
Date and Time data, 544-546
hyperlinks, 547
IMAGE, VARBINARY (Max), and OLE Data, 547
integer numbers, 547
Memo data, 547
mismatched fields in relationships, 550

multiple rows in trigger code, allowing for changes
in, 553

partially completed foreign keys, 550

real numbers, decimals, and floating point num-
bers, 547

replicated databases and random autonumbers, 551-
553

Required fields, 549
Schemas and synonyms, 556

security, using Schemas and database roles to man-
age, 557

text data types and UNICODE, 544
Timestamps and Row Versioning, 554-556
Unique Index and Ignore NULLs, 553

query conversion, comparing in the Upsizing Wizard and
SSMA, 572-574

SSMA
installing, 564
mapping data types, 567
Migration Wizard, 565-567
Schemas, using, 567-570

strengths and weaknesses, 574

VBA language structure 699

table conversion, comparing in the Upsizing Wizard and Watches window, 31
SSMA, 571 VBA class module
Upsizing Wizard Object-Oriented Programming (OOP), support for, 339
strengths and weaknesses of, 561 syntax when using, 147
using, 558-561 VBA collection classes
to use an Access Data Project (ADP) vs. Access collections, 346
ADP strengths and weaknesses, 564 adding Allltems to, 349
query conversion, 563 creating, 346-348
understanding, 561-563 exporting and re-importing the class, 349
Upsizing Wizard using with the Dynamic Tab, 351
strengths and weaknesses of, 561 VBA editor
using, 558-561 entering, 6
User-Defined Functions (UDFs) in SQL Server, 534-536 features of, 37
user interface Project pane, 9
in application development, 632, 638 Properties pane, 9
custom, in application development, 637 sample database, 4
enhancing windows, opening and closing, 9
locking down Access, 154 VBA language structure
Office FileDialog, selecting files with, 157-159 constants and variables, working with
progress bars, custom, 156 arrays, 59-65
Setting and Getting options, 152-154 code quality, improving with constants, 49-51
SQL Azure, making a connection to, 424 Enum keyword, 51
SysCmd, monitoring progress with, 155 global variables, 56
single and multiple application files, 655 NULL values, IsNull and Nz, 53-55
USysApplicationLog and MSysASO system tables, scope rules, 58
relinking, 434

static variables, 55

USysRibbons table, 640
type structures, 65

Vv variables and database field types, 52
validation, controlling behavior during, 276 variable scope and lifetime, 57-59
Value List editing, 284 control statements and program flow
VARBINARY (Max) Data, converting for SQL Server, 547 Choose statements, 79
variables. See also constants and variables Do While and Do Until loops, 82-84
Bookmarks, 191 Exit statements, 84
complex variables, investigating values in, 31 For and ForEach loops, 81
displaying in the locals window, 29 GoTo and GoSub statements, 86
Global variables, using, 56 If..Then...Else... statements, 77
naming conventions for, 110-112, 113 IIF statements, 78
object variables, 105 line continuation, 86
scope and lifetime, 57-59 Select Case statements, 80
static variables, using, 55 SQL, splitting over multiple lines, 86
system variables in T-SQL, 520 TypeOf statements, 80

variables, defining in T-SQL, 517 the With statement, 85

700 VBA language structure (cont.)

VBA language structure (cont.) |1}
functions and procedures Watches window, 32
ByRef and ByValue parameters, defining, 70-72 WebDatabase.accdb sample database, 396
calling, variations on standard rules for, 66 Web Databases, linking
modules and class modules, organizing code in, 76 Access database to an Access Web Database, 431

ParamArray qualifier, 75 process of, 430

parameters, Optional and Named, 73 relinking, 432-434
procedures, private and public, 72 Where clauses

referencing from a control’s event property, 244 constructing, 97
subroutines and functions, default referencing of opening forms with, 246

parameters in, 71 X
windows

subroutines, managing code with, 67-70

understanding in VBA code, 66

language settings

application and VBA code windows, 6-8
Immediate window, working with, 33

) Locals window, displaying variables in, 29
comments, adding, 40 - .
split window, debugging modules and procedures
compiling code, 44 in, 17-19

conditional compilation, 45 Watches window, 32

\Decompile command line switch, 45 Windows API, using in application development, 651-653

Option Compare, selecting, 43 Windows, Microsoft

Option Explicit, setting, 41 authentication, 414
references, 46-49 authentication in SQL Server, 541
Visual Basic for Applications Extensibility, 48 SQL Server services, 492

sample database, 40, 89

VBA code, recursive, 308
VBA libraries, 177 control events, handling, 362
vbCR, vbCRLF, vbLF, vbTab string functions, 93 form events, handling, 360-362
vbObjectError constant, 123

Windows Registry, working with, 650
WithEvents statements

processing, 363
version information With statements, 85

retrieving, 135 Word, Microsoft

for SQL Server, 486 connecting Access to

views, in SQL Server data, merging with bookmarks, 447-451

connecting to, 418 documents, generating from a placeholder docu-

CROSSTAB queries, 509-511 ment, 444-446

databases, 617 Mail Merge, 451

graphical interface, 505 placeholder documents, opening, 446
INFORMATION_SCHEMA views, 494 Word object model, key objects in, 443
refreshing, 419 WordQuote.accdb sample database, 437
and script files, 506-509 Workspace object, working with in DAO, 165

updateability of, in Access, 506
updateable Views, 419
Visual Basic for Applications Extensibility, 48

About the Author

Andrew Couch has been working with Microsoft Access since 1992, developing, training,
and consulting on Client-Server design projects. With his wealth of experience in Access
and SQL products, he has been able to mentor software houses, blue chip companies, and
independent developers. Alongside running his own consultancy, Andrew has been heavily
involved in the developer community and jointly founded the UK Access User Group more
than 13 years ago. He has also earned Access MVP status for the last 5 years.

Andrew’s passion lies with VBA programming and extending the reach of VBA program-
mers into cloud computing and the .NET environment. He hopes that this book serves as
an example of his dedication to this exceptional piece of technology and its application.

In addition to consulting and regularly speaking at community events, Andrew has devel-
oped the Migration Upsizing SQL Tool (MUST), which is a tool that allows users to easily
convert Access Databases to SQL Server by using an Access-based application. Due to the
success of MUST, which is used by over 150 companies, SQL Translation capabilities and
WebForm code generators for .NET were added to the product range. More recently the
MUST technologies have been extended further to deliver automated services for convert-
ing Access database to a web legal format for publishing to SharePoint.

	Copyright
	Dedication
	Contents at a Glance
	Table of Contents
	Introduction
	Features and Conventions Used in This Book
	About the Companion Content
	Acknowledgments
	Support and Feedback
	Chapter 1. Using the VBA Editor and Debugging Code
	Debugging Code on a Form
	Entering the VBA Editor
	The Application and VBA Code Windows

	Creating Modules and Procedures
	Creating a Module
	Creating a Procedure
	Executing a Subroutine
	Executing a Function
	Viewing and Searching Code
	Split Window
	Searching Code

	Debugging Code in a Module
	Debug Commands

	Breakpointing Code
	Set Next Command
	Breakpoint Step and Run Commands
	Displaying Variables in the Locals Window
	Tracing Procedures with the Call Stack
	Watching Variables and Expressions
	Adding Conditional Watch Expressions
	Working with the Immediate Window
	Changing Code On-the-Fly

	Using the Object Browser and Help System
	Configuring the Help System
	Working with the Object Browser

	Summary

	Chapter 9. Adding Functionality with Classes
	Improving the Dynamic Tab Control
	Creating a Class Module
	The Let and Get Object Properties
	Creating an Object with New and Set
	Collection of Objects
	Creating Collection Classes
	Using Classes with the Dynamic Tab
	Simplifying the Application with Classes

	Creating a Hierarchy of Classes
	Creating a Base Class
	Derived Classes

	Summary

	Index

