
 Gaps and Islands 193

 SELECT MIN(ts) AS starttime, max(ts) AS endtime
 FROM C3
 GROUP BY grpnum;
GO

And here’s the query that applies the function to each user:

SELECT U.username, A.starttime, A.endtime
FROM dbo.Users AS U
 CROSS APPLY dbo.UserIntervals(U.username) AS A;

This code generates the plan shown in Figure 5-21 and runs for 13 seconds on my laptop.

FIgURE 5-21 Plan for a solution using APPLY and a window aggregate.

gaps and Islands

Gaps and Islands are classic problems in SQL that manifest themselves in practice in many forms.
The basic concept is that you have some sort of sequence of numbers or date and time values where
there’s supposed to be a fixed interval between the entries, but some entries could be missing. Then
the gaps problem involves identifying all ranges of missing values in the sequence, and the islands
problem involves identifying all ranges of existing values. To demonstrate techniques to identify gaps
and islands, I’ll use a table called T1 with a numeric sequence in a column called col1 with an inter-
val of 1 integer, and a table called T2 with a date and time sequence in a column called col1 with an
interval of 1 day. Here’s code to create T1 and T2 and fill them with some sample data:

SET NOCOUNT ON;
USE TSQL2012;

-- dbo.T1 (numeric sequence with unique values, interval: 1)
IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1

194 CHAPTER 5 T-SQL Solutions Using Window Functions

(
 col1 INT NOT NULL
 CONSTRAINT PK_T1 PRIMARY KEY
);
GO

INSERT INTO dbo.T1(col1)
 VALUES(2),(3),(7),(8),(9),(11),(15),(16),(17),(28);

-- dbo.T2 (temporal sequence with unique values, interval: 1 day)
IF OBJECT_ID('dbo.T2', 'U') IS NOT NULL DROP TABLE dbo.T2;

CREATE TABLE dbo.T2
(
 col1 DATE NOT NULL
 CONSTRAINT PK_T2 PRIMARY KEY
);
GO

INSERT INTO dbo.T2(col1) VALUES
 ('20120202'),
 ('20120203'),
 ('20120207'),
 ('20120208'),
 ('20120209'),
 ('20120211'),
 ('20120215'),
 ('20120216'),
 ('20120217'),
 ('20120228');

Gaps
As mentioned, the gaps problem involves identifying the ranges of missing values in the sequence.
Using our sample data, here are the desired results for the numeric sequence in T1:

rangestart rangeend
----------- -----------
4 6
10 10
12 14
18 27

And here are the desired results for the temporal sequence in T2:

rangestart rangeend
---------- ----------
2012-02-04 2012-02-06
2012-02-10 2012-02-10
2012-02-12 2012-02-14
2012-02-18 2012-02-27

In versions of SQL Server prior to SQL Server 2012, the techniques to handle gaps were quite
expensive and sometimes complicated. But with the introduction of the LAG and LEAD functions, you
can now handle this need simply and efficiently. Using the LEAD function, you can return for each

 Gaps and Islands 195

current col1 value (call it cur) the next value in the sequence (call it nxt). Then you can filter only pairs
where the difference between the two is greater than the interval. Then add one interval to cur and
subtract one interval from nxt to produce the actual gap information. Here’s the complete solution
with the numeric sequence followed by its execution plan (in Figure 5-22):

WITH C AS
(
 SELECT col1 AS cur, LEAD(col1) OVER(ORDER BY col1) AS nxt
 FROM dbo.T1
)
SELECT cur + 1 AS rangestart, nxt - 1 AS rangeend
FROM C
WHERE nxt - cur > 1;

FIgURE 5-22 Plan for a solution to the gaps problem.

Observe how efficient the plan is, performing only one ordered scan of the index defined on col1.
To apply the same technique to the temporal sequence, you simply use the DATEDIFF function to
compute the difference between cur and nxt, and you use DATEADD to add or subtract an interval,
like so:

WITH C AS
(
 SELECT col1 AS cur, LEAD(col1) OVER(ORDER BY col1) AS nxt
 FROM dbo.T2
)
SELECT DATEADD(day, 1, cur) AS rangestart, DATEADD(day, -1, nxt) rangeend
FROM C
WHERE DATEDIFF(day, cur, nxt) > 1;

Islands
The islands problem involves identifying ranges of existing values. Here’s the desired output against
the numeric sequence:

start_range end_range
----------- -----------
2 3
7 9
11 11
15 17
28 28

196 CHAPTER 5 T-SQL Solutions Using Window Functions

And here’s the desired output against the temporal sequence:

start_range end_range
----------- ----------
2012-02-02 2012-02-03
2012-02-07 2012-02-09
2012-02-11 2012-02-11
2012-02-15 2012-02-17
2012-02-28 2012-02-28

One of the most efficient solutions to the islands problem involves using ranking calculations. You
use the DENSE_RANK function to create a sequence of integers in col1 ordering, and you calculate the
difference between col1 and the dense rank (drnk), like so:

SELECT col1,
 DENSE_RANK() OVER(ORDER BY col1) AS drnk,
 col1 - DENSE_RANK() OVER(ORDER BY col1) AS diff
FROM dbo.T1;

col1 drnk diff
----- ----- -----
2 1 1
3 2 1
7 3 4
8 4 4
9 5 4
11 6 5
15 7 8
16 8 8
17 9 8
28 10 18

Observe that within an island the difference is the same, and that difference is unique for each
island. That’s because within an island, both col1 and drnk keep advancing by the same interval. As
soon as you jump to the next island, col1 increases by more than one interval, whereas drnk keeps
increasing by one. Therefore, the difference in each island is greater than the previous island’s differ-
ence. Because this difference is the same within an island and unique for each island, you can use it as
a group identifier. So what’s left is just to group the rows by this difference and return the minimum
and maximum col1 values in each group, like so:

WITH C AS
(
 SELECT col1, col1 - DENSE_RANK() OVER(ORDER BY col1) AS grp
 FROM dbo.T1
)
SELECT MIN(col1) AS start_range, MAX(col1) AS end_range
FROM C
GROUP BY grp;

The plan for this solution is shown in Figure 5-23.

 Gaps and Islands 197

FIgURE 5-23 Plan for a solution to the islands problem.

The plan is very efficient because the computation of the dense rank value can rely on the order-
ing of the index on col1.

You might be wondering why we use the DENSE_RANK function and not ROW_NUMBER. This has
to do with needing support for cases where the sequence values are not guaranteed to be unique.
Using the ROW_NUMBER function, the technique works only when the sequence values are unique
(which happens to be the case in our sample data), but it fails when duplicates are allowed. Using the
DENSE_RANK function, the technique works both with unique and nonunique values; hence, I prefer
to always use DENSE_RANK.

The technique can even work with temporal intervals, but it might not immediately be apparent.
Remember that the technique involves producing a group identifier—namely, a value that is the same
for all members of the same island and different than the values produced for other islands. With the
temporal sequence, the col1 values and dense rank values use different intervals—one uses an inter-
val of 1 integer, and the other uses an interval of 1 day. To make the technique work, simply subtract
from the col1 value as many of the temporal interval as the dense rank value. You need to use the
DATEADD function to achieve this. Then you will get a date and time value as a result that is the same
for all members of the same island and different than the values produced for other islands. Here’s
the complete solution code:

WITH C AS
(
 SELECT col1, DATEADD(day, -1 * DENSE_RANK() OVER(ORDER BY col1), col1) AS grp
 FROM dbo.T2
)
SELECT MIN(col1) AS start_range, MAX(col1) AS end_range
FROM C
GROUP BY grp;

As you can see, instead of directly subtracting the result of the dense rank function from col1, you
use DATEADD to subtract the dense rank multiplied by one day from col1.

There are querying problems where you need to use the islands technique, including availability
reports, periods of activity, and others. You can even use the islands technique to handle a classic
problem involving packing date intervals. Consider the following table that holds information about
date intervals.

198 CHAPTER 5 T-SQL Solutions Using Window Functions

IF OBJECT_ID('dbo.Intervals', 'U') IS NOT NULL DROP TABLE dbo.Intervals;

CREATE TABLE dbo.Intervals
(
 id INT NOT NULL,
 startdate DATE NOT NULL,
 enddate DATE NOT NULL
);

INSERT INTO dbo.Intervals(id, startdate, enddate) VALUES
 (1, '20120212', '20120220'),
 (2, '20120214', '20120312'),
 (3, '20120124', '20120201');

These date intervals could represent periods of activity, periods of validity, and many other types
of date periods. Given some input period (the @from and @to parameters), your task is to pack the
intervals within that period. In other words, you’re supposed to merge intervals that overlap or are
adjacent. Here’s the desired result for the given sample data, assuming the input period is from Janu-
ary 1, 2012 to December 31, 2012:

rangestart rangeend
---------- ----------
2012-01-24 2012-02-01
2012-02-12 2012-03-12

The solution uses the GetNums function covered earlier in this chapter to generate a sequence of
the dates that fall within the input period. The code defines a CTE called Dates representing this set of
dates. The code then joins the CTE Dates (aliased as D) with the table Intervals (aliased as I), match-
ing each date with the intervals that contain it using the following join predicate: D.dt BETWEEN
I.startdate AND I.enddate. The code then uses the technique shown previously to compute a group
identifier (call it grp) that identifies islands. The code defines a CTE called Groups that is based on this
query. Finally, the outer query groups the rows by grp and returns the minimum and maximum dates
within each island as the boundaries of the packed intervals. Here’s the complete solution code:

DECLARE
 @from AS DATE = '20120101',
 @to AS DATE = '20121231';

WITH Dates AS
(
 SELECT DATEADD(day, n-1, @from) AS dt
 FROM dbo.GetNums(1, DATEDIFF(day, @from, @to) + 1) AS Nums
),
Groups AS
(
 SELECT D.dt,
 DATEADD(day, -1 * DENSE_RANK() OVER(ORDER BY D.dt), D.dt) AS grp
 FROM dbo.Intervals AS I
 JOIN Dates AS D
 ON D.dt BETWEEN I.startdate AND I.enddate
)
SELECT MIN(dt) AS rangestart, MAX(dt) AS rangeend
FROM Groups
GROUP BY grp;

 Gaps and Islands 199

Note that this solution doesn’t perform well when the intervals span long periods of time. That’s
understandable given that the solution unpacks each period to the individual dates involved.

There are versions of the islands problem that are more complicated than the fundamental
one. For example, say you are supposed to ignore gaps of up to a certain size—for example, in our
numeric sequence, say you are supposed to ignore gaps of up to 2. Then the desired output would be
the following:

rangestart rangeend
----------- -----------
2 3
7 11
15 17
28 28

Observe that the values 7, 8, 9, and 11 are all part of one island starting with 7 and ending with 11.
The gap between 9 and 11 is ignored because it isn’t greater than 2.

You can use the LAG and LEAD functions to handle this task. You first define a CTE called C1 based
on a query against T1 computing the following two attributes: isstart and isend. The isstart attribute
is a flag whose value is 1 when the sequence value is the first in the island and 0 when it isn’t. A value
is not the first value in the island if the difference between col1 and the previous value (obtained
using the LAG function) is less than or equal to 2; otherwise, it is the first value in the island. Similarly,
a value is not the last value in the island if the difference between the next value (obtained using the
LEAD function) and col1 is less than or equal to 2; otherwise, it is the last value in the island.

Next, the code defines a CTE called C2 that filters only rows where the sequence value is either a
start or an end of an island. Using the LEAD function, the code matches to each island start value the
island end value. This is achieved by using the expression 1-isend as the offset for the LEAD function.
This means that if the current row representing the start of an island also happens to represent its
end, the offset will be 0; otherwise, it will be 1. Finally the outer query simply filters from C2 only the
rows where isstart is 1. Here’s the complete solution code:

WITH C1 AS
(
 SELECT col1,
 CASE WHEN col1 - LAG(col1) OVER(ORDER BY col1) <= 2 THEN 0 ELSE 1 END AS isstart,
 CASE WHEN LEAD(col1) OVER(ORDER BY col1) - col1 <= 2 THEN 0 ELSE 1 END AS isend
 FROM dbo.T1
),
C2 AS
(
 SELECT col1 AS rangestart, LEAD(col1, 1-isend) OVER(ORDER BY col1) AS rangeend, isstart
 FROM C1
 WHERE isstart = 1 OR isend = 1
)
SELECT rangestart, rangeend
FROM C2
WHERE isstart = 1;

The execution plan for this query is shown in Figure 5-24.

200 CHAPTER 5 T-SQL Solutions Using Window Functions

FIgURE 5-24 Plan for a solution to the islands problem ignoring gaps up to 2.

For the next version of the islands problem, use the sample data generated by the following code:

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1
(
 id INT NOT NULL PRIMARY KEY,
 val VARCHAR(10) NOT NULL
);
GO

INSERT INTO dbo.T1(id, val) VALUES
 (2, 'a'),
 (3, 'a'),
 (5, 'a'),
 (7, 'b'),
 (11, 'b'),
 (13, 'a'),
 (17, 'a'),
 (19, 'a'),
 (23, 'c'),
 (29, 'c'),
 (31, 'a'),
 (37, 'a'),
 (41, 'a'),
 (43, 'a'),
 (47, 'c'),
 (53, 'c'),
 (59, 'c');

This version of the islands problem involves identifying ranges of IDs where the value in the val
attribute remains the same. Observe that there can be multiple islands associated with the same value
in val. Here’s the desired output for the given sample data:

 Gaps and Islands 201

mn mx val
----------- ----------- ----------
2 5 a
7 11 b
13 19 a
23 29 c
31 43 a
47 59 c

The first step in the solution is to compute the difference between a row number based on id
ordering and a row number based on val, id ordering (call it grp):

SELECT id, val,
 ROW_NUMBER() OVER(ORDER BY id)
 - ROW_NUMBER() OVER(ORDER BY val, id) AS grp
FROM dbo.T1;

id val grp
----------- ---------- --------------------
2 a 0
3 a 0
5 a 0
13 a 2
17 a 2
19 a 2
31 a 4
37 a 4
41 a 4
43 a 4
7 b -7
11 b -7
23 c -4
29 c -4
47 c 0
53 c 0
59 c 0

Observe that for each distinct value in the val attribute, grp is unique for each island. That’s
because the row numbers based on id ordering have gaps between the different islands, and row
numbers based on val, id ordering don’t. So for the same value in val, as you move from one island to
the next, the difference becomes greater, while within an island it remains constant. To complete the
solution, define a CTE based on the previous query and then, in the outer query, group the rows by
val, grp, and return the minimum and maximum IDs for each val, like so:

WITH C AS
(
 SELECT id, val,
 ROW_NUMBER() OVER(ORDER BY id)
 - ROW_NUMBER() OVER(ORDER BY val, id) AS grp
 FROM dbo.T1
)
SELECT MIN(id) AS mn, MAX(id) AS mx, val
FROM C
GROUP BY val, grp
ORDER BY mn;

202 CHAPTER 5 T-SQL Solutions Using Window Functions

Median

In Chapters 2 and 3, I discussed how to compute percentiles. I mentioned that the 50th percentile—
commonly known as the median—represents, loosely speaking, the value in the population that 50
percent of the values are less than. I provided solutions to calculating any percentile in both SQL
Server 2012 and in previous versions of SQL Server. Here, I’ll just remind you of the solution in SQL
Server 2012 using the PERCENTILE_CONT function (CONT for the continuous distribution model) and
then show interesting solutions specific to the median calculation used prior to SQL Server 2012.

For sample data, I’ll use the Stats.Scores table, which holds student test scores. Suppose your task
was to compute, for each test, the median score assuming continuous distribution model. If there’s
an odd number of student test scores for a given test, you’re supposed to return the middle score. If
there’s an even number, you’re supposed to return the average of the two middle scores. Here’s the
desired output for the given sample data:

testid median
---------- -------
Test ABC 75
Test XYZ 77.5

As already mentioned in the book, the function PERCENTILE_CONT introduced in SQL Server 2012
is used to compute percentiles assuming a continuous distribution model. However, this function
wasn’t implemented as a grouped ordered set function; rather, it was implemented as a window
function. This means that you can use it to return a percentile along with all detail rows, but to return
it only once per group, you need to add some filtering logic. For example, you can compute a row
number with the same window-partitioning specification as that of the PERCENTILE_CONT function
and arbitrary ordering, and then filter only the rows where the row number is equal to 1. Here’s the
complete solution code computing the median score per test:

WITH C AS
(
 SELECT testid,
 ROW_NUMBER() OVER(PARTITION BY testid ORDER BY (SELECT NULL)) AS rownum,
 PERCENTILE_CONT(0.5) WITHIN GROUP(ORDER BY score) OVER(PARTITION BY testid) AS median
 FROM Stats.Scores
)
SELECT testid, median
FROM C
WHERE rownum = 1;

It’s a little bit awkward, but it works.

Prior to SQL Server 2012, you had to be more creative, but you could still use window functions to
achieve the task. One solution was to compute, for each row, a position within the test based on score
ordering (call it pos) and the count of scores in the respective test (call it cnt). To compute pos, you use
the ROW_NUMBER function, and to compute cnt, you use the COUNT window aggregate function.
Then you filter only the rows that are supposed to participate in the median calculation—namely, the
rows where pos is either equal to (cnt + 1) / 2 or (cnt + 2) / 2. Note that the expressions use integer
division, so any fraction is truncated. When there is an odd number of elements, both expressions

 Median 203

return the same middle point. For example, when there are 9 elements in the group, both expressions
return 5. When there is an even number of elements, the expressions return the two middle points.
For example, when there are 10 elements in the group, the expressions return 5 and 6. After you filter
the right rows, what’s left is to group the rows by the test ID and return for each test the average
score. Here’s the complete solution query:

WITH C AS
(
 SELECT testid, score,
 ROW_NUMBER() OVER(PARTITION BY testid ORDER BY score) AS pos,
 COUNT(*) OVER(PARTITION BY testid) AS cnt
 FROM Stats.Scores
)
SELECT testid, AVG(1. * score) AS median
FROM C
WHERE pos IN((cnt + 1) / 2, (cnt + 2) / 2)
GROUP BY testid;

Another interesting solution available prior to SQL Server 2012 involves computing two row num-
bers—one in ascending score, studentid ordering (studentid added for determinism), and another in
descending ordering. Here’s the code to compute the two row numbers followed by its output:

SELECT testid, score,
 ROW_NUMBER() OVER(PARTITION BY testid ORDER BY score, studentid) AS rna,
 ROW_NUMBER() OVER(PARTITION BY testid ORDER BY score DESC, studentid DESC) AS rnd
FROM Stats.Scores;

testid score rna rnd
---------- ----- ---- ----
Test ABC 95 9 1
Test ABC 95 8 2
Test ABC 80 7 3
Test ABC 80 6 4
Test ABC 75 5 5
Test ABC 65 4 6
Test ABC 55 3 7
Test ABC 55 2 8
Test ABC 50 1 9
Test XYZ 95 10 1
Test XYZ 95 9 2
Test XYZ 95 8 3
Test XYZ 80 7 4
Test XYZ 80 6 5
Test XYZ 75 5 6
Test XYZ 65 4 7
Test XYZ 55 3 8
Test XYZ 55 2 9
Test XYZ 50 1 10

Can you generalize a rule that identifies the rows that need to participate in the median
calculation?

Observe that when there’s an odd number of elements, the median is where the two row num-
bers are the same. When there’s an even number of elements, the median elements are where the

204 CHAPTER 5 T-SQL Solutions Using Window Functions

absolute difference between the two row numbers is equal to 1. To merge the two rules, the median
elements are in the rows where the absolute difference between the two row numbers is less than or
equal to 1. Here’s the complete solution code that relies on this rule:

WITH C AS
(
 SELECT testid, score,
 ROW_NUMBER() OVER(PARTITION BY testid ORDER BY score, studentid) AS rna,
 ROW_NUMBER() OVER(PARTITION BY testid ORDER BY score DESC, studentid DESC) AS rnd
 FROM Stats.Scores
)
SELECT testid, AVG(1. * score) AS median
FROM C
WHERE ABS(rna - rnd) <= 1
GROUP BY testid;

Conditional Aggregate

Our next task involves computing a running total that always returns a non-negative value. That is, if
the running total is negative at a point, return zero instead. Then, when you move to the next item in
the sequence, you proceed from 0. For sample data, use the following code, which creates and popu-
lates a table called T1:

USE TSQL2012;

IF OBJECT_ID('dbo.T1') IS NOT NULL DROP TABLE dbo.T1;
GO

CREATE TABLE dbo.T1
(
 ordcol INT NOT NULL PRIMARY KEY,
 datacol INT NOT NULL
);

INSERT INTO dbo.T1 VALUES
 (1, 10),
 (4, -15),
 (5, 5),
 (6, -10),
 (8, -15),
 (10, 20),
 (17, 10),
 (18, -10),
 (20, -30),
 (31, 20);

According to the description of the task, here’s the desired output for the given sample data, com-
puting a non-negative sum of datacol based on ordcol ordering:

 Conditional Aggregate 205

ordcol datacol nonnegativesum
----------- ----------- --------------
1 10 10
4 -15 0
5 5 5
6 -10 0
8 -15 0
10 20 20
17 10 30
18 -10 20
20 -30 0
31 20 20

I’ll present an elegant solution devised by Gordon Linoff that uses window functions. Here’s the
complete solution code, followed by its output (adding the intermediate computations partsum and
adjust to help explain the solution):

WITH C1 AS
(
 SELECT ordcol, datacol,
 SUM(datacol) OVER (ORDER BY ordcol
 ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS partsum
 FROM dbo.T1
),
C2 AS
(
 SELECT *,
 MIN(partsum) OVER (ORDER BY ordcol
 ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) as adjust
 FROM C1
)
SELECT *,
 partsum - CASE WHEN adjust < 0 THEN adjust ELSE 0 END
 AS nonnegativesum
FROM C2;

ordcol datacol partsum adjust nonnegativesum
----------- ----------- ----------- ----------- --------------
1 10 10 10 10
4 -15 -5 -5 0
5 5 0 -5 5
6 -10 -10 -10 0
8 -15 -25 -25 0
10 20 -5 -25 20
17 10 5 -25 30
18 -10 -5 -25 20
20 -30 -35 -35 0
31 20 -15 -35 20

The code defining the CTE C1 creates an attribute called partsum that computes a plain running
total of datacol based on ordcol ordering and calls it. This partsum attribute can be negative because
the values in datacol can be negative. Then the code defining the CTE C2 queries C1, creating an
attribute called adjust that computes the minimum partsum value up to the current point. Finally,
the outer query checks whether partsum needs to be adjusted to compute the non-negative sum.

206 CHAPTER 5 T-SQL Solutions Using Window Functions

If adjust (the minimum partsum so far) isn’t negative, there’s nothing to adjust. If it is negative, adjust
needs to be subtracted from partsum.

It can take a few rounds of going over this output to see that the logic works, but it does!

Sorting Hierarchies

Suppose that you need to present information from some hierarchy in a sorted fashion. You’re sup-
posed to present a parent before its child elements. Also, you need to be able to control the order
among siblings. For sample data, use the following code, which creates and populates a table called
dbo.Employees (not to be confused with the existing HR.Employees table that has different data):

USE TSQL2012;

IF OBJECT_ID('dbo.Employees') IS NOT NULL DROP TABLE dbo.Employees;
GO
CREATE TABLE dbo.Employees
(
 empid INT NOT NULL PRIMARY KEY,
 mgrid INT NULL REFERENCES dbo.Employees,
 empname VARCHAR(25) NOT NULL,
 salary MONEY NOT NULL,
 CHECK (empid <> mgrid)
);

INSERT INTO dbo.Employees(empid, mgrid, empname, salary) VALUES
 (1, NULL, 'David' , $10000.00),
 (2, 1, 'Eitan' , $7000.00),
 (3, 1, 'Ina' , $7500.00),
 (4, 2, 'Seraph' , $5000.00),
 (5, 2, 'Jiru' , $5500.00),
 (6, 2, 'Steve' , $4500.00),
 (7, 3, 'Aaron' , $5000.00),
 (8, 5, 'Lilach' , $3500.00),
 (9, 7, 'Rita' , $3000.00),
 (10, 5, 'Sean' , $3000.00),
 (11, 7, 'Gabriel', $3000.00),
 (12, 9, 'Emilia' , $2000.00),
 (13, 9, 'Michael', $2000.00),
 (14, 9, 'Didi' , $1500.00);

CREATE UNIQUE INDEX idx_unc_mgrid_empid ON dbo.Employees(mgrid, empid);

Suppose you need to present employees in hierarchical order—always presenting the manager
before subordinates—and sort siblings by empname. To achieve this task, you can use two main tools:
the ROW_NUMBER function and a recursive CTE. You define a regular CTE called EmpsRN first, where
you compute an attribute called n representing a row number partitioned by mgrid and ordered by
empname, empid (empid added for determinism if needed):

 Sorting Hierarchies 207

WITH EmpsRN AS
(
 SELECT *,
 ROW_NUMBER() OVER(PARTITION BY mgrid ORDER BY empname, empid) AS n
 FROM dbo.Employees
)
SELECT * FROM EmpsRN;

empid mgrid empname salary n
------ ------ -------- --------- ---
1 NULL David 10000.00 1
2 1 Eitan 7000.00 1
3 1 Ina 7500.00 2
5 2 Jiru 5500.00 1
4 2 Seraph 5000.00 2
6 2 Steve 4500.00 3
7 3 Aaron 5000.00 1
8 5 Lilach 3500.00 1
10 5 Sean 3000.00 2
11 7 Gabriel 3000.00 1
9 7 Rita 3000.00 2
14 9 Didi 1500.00 1
12 9 Emilia 2000.00 2
13 9 Michael 2000.00 3

Next, you define a recursive CTE called EmpsPath, where you iterate through the employees one
level at a time, starting with the root (CEO), then to direct subordinates, then to subordinates of
subordinates, and so on. You construct a binary path for each employee that starts as an empty path
for the root, and in each level of subordinates, you concatenate the manager’s path with the binary
form of n (the row number). Note that to minimize the size of the path you need only enough bytes
to cover the maximum number of direct subordinates a single manager can have. For example, for up
to 255 direct subordinates, a single byte is sufficient; for up to 32,767 direct subordinates, two bytes
are sufficient; and so on. Let’s assume that we need two bytes in our case. You can also compute the
level of the employee in the tree (the distance from the root) by assigning the level 0 to the root, and
for a subordinate, you add 1 to the manager’s level. Here’s the code that computes both the sort path
and the level:

WITH EmpsRN AS
(
 SELECT *,
 ROW_NUMBER() OVER(PARTITION BY mgrid ORDER BY empname, empid) AS n
 FROM dbo.Employees
),
EmpsPath
AS
(
 SELECT empid, empname, salary, 0 AS lvl,
 CAST(0x AS VARBINARY(MAX)) AS sortpath
 FROM dbo.Employees
 WHERE mgrid IS NULL

 UNION ALL

208 CHAPTER 5 T-SQL Solutions Using Window Functions

 SELECT C.empid, C.empname, C.salary, P.lvl + 1, P.sortpath + CAST(n AS BINARY(2))
 FROM EmpsPath AS P
 JOIN EmpsRN AS C
 ON C.mgrid = P.empid
)
SELECT *
FROM EmpsPath;

empid empname salary lvl sortpath
------ -------- --------- ---- -------------------
1 David 10000.00 0 0x
2 Eitan 7000.00 1 0x0001
3 Ina 7500.00 1 0x0002
7 Aaron 5000.00 2 0x00020001
11 Gabriel 3000.00 3 0x000200010001
9 Rita 3000.00 3 0x000200010002
14 Didi 1500.00 4 0x0002000100020001
12 Emilia 2000.00 4 0x0002000100020002
13 Michael 2000.00 4 0x0002000100020003
5 Jiru 5500.00 2 0x00010001
4 Seraph 5000.00 2 0x00010002
6 Steve 4500.00 2 0x00010003
8 Lilach 3500.00 3 0x000100010001
10 Sean 3000.00 3 0x000100010002

What’s left to do to guarantee that the employees are presented in the desired order is to order
the rows by sortpath. You can also achieve indentation in the output based on the employee’s level in
the hierarchy by replicating a string lvl times. Here’s the complete solution code:

WITH EmpsRN AS
(
 SELECT *,
 ROW_NUMBER() OVER(PARTITION BY mgrid ORDER BY empname, empid) AS n
 FROM dbo.Employees
),
EmpsPath
AS
(
 SELECT empid, empname, salary, 0 AS lvl,
 CAST(0x AS VARBINARY(MAX)) AS sortpath
 FROM dbo.Employees
 WHERE mgrid IS NULL

 UNION ALL

 SELECT C.empid, C.empname, C.salary, P.lvl + 1, P.sortpath + CAST(n AS BINARY(2))
 FROM EmpsPath AS P
 JOIN EmpsRN AS C
 ON C.mgrid = P.empid
)
SELECT empid, salary, REPLICATE(' | ', lvl) + empname AS empname
FROM EmpsPath
ORDER BY sortpath;

 Sorting Hierarchies 209

Observe in the output of this solution that a manager always appears before his subordinates and
that siblings are sorted by empname:

empid salary empname
----------- --------------------- --------------------
1 10000.00 David
2 7000.00 | Eitan
5 5500.00 | | Jiru
8 3500.00 | | | Lilach
10 3000.00 | | | Sean
4 5000.00 | | Seraph
6 4500.00 | | Steve
3 7500.00 | Ina
7 5000.00 | | Aaron
11 3000.00 | | | Gabriel
9 3000.00 | | | Rita
14 1500.00 | | | | Didi
12 2000.00 | | | | Emilia
13 2000.00 | | | | Michael

If you need siblings to be sorted differently—say, by salary—simply change the ROW_NUMBER
function’s window ordering clause accordingly:

WITH EmpsRN AS
(
 SELECT *,
 ROW_NUMBER() OVER(PARTITION BY mgrid ORDER BY salary, empid) AS n
 FROM dbo.Employees
),
EmpsPath
AS
(
 SELECT empid, empname, salary, 0 AS lvl,
 CAST(0x AS VARBINARY(MAX)) AS sortpath
 FROM dbo.Employees
 WHERE mgrid IS NULL

 UNION ALL

 SELECT C.empid, C.empname, C.salary, P.lvl + 1, P.sortpath + CAST(n AS BINARY(2))
 FROM EmpsPath AS P
 JOIN EmpsRN AS C
 ON C.mgrid = P.empid
)
SELECT empid, salary, REPLICATE(' | ', lvl) + empname AS empname
FROM EmpsPath
ORDER BY sortpath;

210 CHAPTER 5 T-SQL Solutions Using Window Functions

Here’s the output of this query:

empid salary empname
----------- --------------------- --------------------
1 10000.00 David
2 7000.00 | Eitan
6 4500.00 | | Steve
4 5000.00 | | Seraph
5 5500.00 | | Jiru
10 3000.00 | | | Sean
8 3500.00 | | | Lilach
3 7500.00 | Ina
7 5000.00 | | Aaron
9 3000.00 | | | Rita
14 1500.00 | | | | Didi
12 2000.00 | | | | Emilia
13 2000.00 | | | | Michael
11 3000.00 | | | Gabriel

Summary

I can’t keep myself from admiring the beautiful design of window functions. They’re engineered to
overcome a number of shortcomings of more traditional SQL constructs, and they lend themselves to
good optimization. You saw in this book that there are so many querying tasks that can be handled
both elegantly and efficiently with window functions. I hope you will think of what you saw as just the
start and find interesting and creative ways of your own to use them.

Standard SQL sees the great value in window functions and therefore keeps adding more and
more functions and functionality. Microsoft made an important investment in adding some of the
missing support for window functions in SQL Server 2012, and I think that for many implementations,
this will make a big difference. I hope very much that Microsoft will follow the standard and keep
adding more support with each new version of SQL Server.

 211

B
backward scans, indexes and, 105–108

C
calculating running totals. See Running Totals solution

(T-SQL)
Cantor, Georg, 7
carry-along-sort technique, 153, 157
CASE expression

distinct aggregates and, 52
FILTER clause workaround, 50
hypothetical set functions and, 84
Running Totals T-SQL solution, 168
usage example, 78–79

CHECKSUM_AGG function, 122, 124
CLR (Common Language Runtime)

Running Totals T-SQL solution, 164–166, 171
SQL Server support, 34
user-defined aggregates, 81

COALESCE function, 99, 150
Codd, E. F., 6
columnstore indexes, 108
Common Language Runtime (CLR)

Running Totals T-SQL solution, 164–166, 171
SQL Server support, 34
user-defined aggregates, 81

common table expressions (CTEs)
distinct aggregates and, 52
filtering and, 15, 28–30
Gaps and Islands T-SQL solution, 199–201
grouped aggregates and, 55
Max Concurrent Intervals T-SQL solution, 178–180
Median T-SQL solution, 205
Mode T-SQL solution, 155–157
ordered set functions and, 97

Index

Symbols
+ (concatenation operator), 150

A
aggregate functions. See also COUNT function; MAX

function; MIN function; SUM function
described, 3–4, 13, 33–34
distinct, 51–53
DISTINCT clause and, 85
expanding all frame rows, 122
filtering, 49–51
framing and, 22, 36–49, 119–128
general form, 37
nested, 53–57
optimizing, 116–128
ordered set functions and, 81
ordering and, 22, 36–49, 119–128
partitioning and, 13–14, 34–36
SQL Server support, 4
SQL standard support, 3
without framing, 116–118
without ordering, 116–118

aggregation element (pivoting technique), 148
all-at-once concept, 26
Amdahl’s Law, 114
APPLY operator

Packing Intervals T-SQL solution, 192
parallel APPLY technique, 112–115, 121–122, 127
Top-N-per-Group T-SQL solution, 152

autogenerating numbers, 62
auxiliary table of numbers, virtual, 133–136
AVG function

computing cumulative values, 126
expanding all frame rows, 122
usage example, 41

common table expressions

212 Index

common table expressions, continued
Packing Intervals T-SQL solution, 184–188
Pivoting T-SQL solution, 148–149
Removing Duplicates T-SQL solution, 147
Running Totals T-SQL solution, 166
Sequences of Keys T-SQL solution, 139
Sorting Hierarchies T-SQL solution, 206–210
Top-N-Per-Group T-SQL solution, 154
usage example, 78–79
Virtual Auxiliary Table of Numbers T-SQL

solution, 134
Compute Scalar iterator

computing cumulative values, 127
distribution functions and, 129–131
expanding all frame rows, 123

concatenating strings
carry-along-sort technique and, 153
concatenation operator (+), 150
CONCAT function, 150
ordered set functions and, 81, 98–99

CONCAT function, 150
Conditional Aggregate solution (T-SQL), 204–206
constants

ordering based on, 109
OVER clause and, 62

CONVERT function, 153
COUNT function

about, 3
calculating percentile rank, 70
computing cumulative values, 126–127
expanding all frame rows, 122
grouped aggregates and, 56
Median T-SQL solution, 202
Mode T-SQL solution, 156
ROW_NUMBER function and, 59–60
usage example, 84, 86

COUNT_BIG function
computing cumulative values, 126
expanding all frame rows, 122

CROSS APPLY operator
about, 88
Packing Intervals T-SQL solution, 190

cross joining tables, 133–136
CTEs (common table expressions)

distinct aggregates and, 52
filtering and, 15, 28–30
Gaps and Islands T-SQL solution, 199–201
grouped aggregates and, 55

Max Concurrent Intervals T-SQL solution, 178–
180

Median T-SQL solution, 205
Mode T-SQL solution, 155–157
ordered set functions and, 97
Packing Intervals T-SQL solution, 184–188
Pivoting T-SQL solution, 148–149
Removing Duplicates T-SQL solution, 147
Running Totals T-SQL solution, 166
Sequences of Keys T-SQL solution, 139
Sorting Hierarchies T-SQL solution, 206–210
Top-N-Per-Group T-SQL solution, 154
usage example, 78–79
Virtual Auxiliary Table of Numbers T-SQL

solution, 134
CUME_DIST function

about, 4, 68–69
hypothetical-set-function form of, 82, 86–87, 89
optimizing, 129

cumulative values, computing, 126–128
CURRENT ROW option

RANGE clause, 43–47, 77
ROWS clause, 37–38

cursor/iterative programming
Max Concurrent Intervals T-SQL solution, 175–

177
Running Totals T-SQL solution, 158, 162–164
set-based versus, 6–10

D
data-quality issues solution, 138–139
data warehouses, populating time dimension in, 137
DATEADD function, 195, 197
date and time values

Gaps and Islands T-SQL solution, 193–201
Sequences of Date and Time Values T-SQL

solution, 137–138
DATEDIFF function

Gaps and Islands T-SQL solution, 195
Sequences of Date and Time Values T-SQL

solution, 137
Dauben, Joseph W., 7
DBCC OPTIMIZER_WHATIF command, 113
degree of parallelism (DOP), 113–114
DELETE clause, 147
DENSE_RANK function

about, 4, 57, 66–67
determinism and, 67

 grouping element (pivoting technique)

 Index 213

Gaps and Islands T-SQL solution, 196–197
hypothetical-set-function form of, 82, 84–85,

87–89
optimizing, 111–112

determinism
DENSE_RANK function and, 67
RANK function and, 67
ROW_NUMBER function and, 60–64

Discard Results After Execution query option, 136
DISTINCT option

aggregate functions and, 51, 85
usage example, 27, 91

distribution functions. See also CUME_DIST function;
PERCENTILE_CONT function; PERCENTILE_
DISC function; PERCENT_RANK function

about, 4, 68
inverse distribution, 68, 71–73, 90–94, 129–132
optimization of, 128–132
ordering and, 68
partitioning and, 68
rank distribution, 68–71, 82–90, 128–129
SQL Server support, 4, 68
SQL standard support, 3

DOP (degree of parallelism), 113–114
duplicate data, removing, 145–148

E
equality filters, 105
EXCLUDE CURRENT ROW option, 47
EXCLUDE GROUP option, 47
EXCLUDE NO OTHERS option, 47
EXCLUDE TIES option, 47
Extended Event, 126

F
fast-track case, 119–122
FILTER clause, 49–51
filtering

CTEs and, 15, 28–30
equality filters, 105
FILTER clause and, 49–51
Max Concurrent Intervals T-SQL solution, 174–

175
OFFSET/FETCH option, 134–136, 144–145,

151–153
Packing Intervals T-SQL solution, 187

Paging T-SQL solution, 143–145
QUALIFY clause and, 30
Running Totals T-SQL solution, 160–162
Top-N-per-Group T-SQL solution, 151–154
TOP option, 134–136, 148, 151–153
WHERE clause and, 117

Filter iterator, 117
FIRST_VALUE function

about, 4, 76–79
expanding all frame rows, 122, 124
framing element and, 22
ordered-set-function form of, 94–96

Flanaghan, Ben, 179
FLOOR function, 188
forward scans, indexes and, 105
FOR XML PATH('') option, 99
frame rows, expanding, 122–126
framing

about, 22–23
aggregate functions and, 22, 36–49, 119–128
offset functions and, 22, 119–128
ordering and, 36
RANGE option, 22, 37, 43–47
ROWS option, 22, 37–43

FROM clause
processing order, 54
usage example, 27–28

g
gaps

Gaps and Islands T-SQL solution, 193–201
Sequences of Keys T-SQL solution, 138–142

GetNums function
creating, 102–103
Gaps and Islands T-SQL solution, 198
Sequences of Date and Time Values T-SQL

solution, 137
Virtual Auxiliary Table of Numbers T-SQL

solution, 136
GROUP BY clause

nested aggregates, 53
processing order, 54

grouped queries
drawbacks of, 11–12
grouped aggregates and, 54
ordered set functions and, 81

grouping element (pivoting technique), 148

Hash partitioning

214 Index

H
Hash partitioning, 114
HAVING clause, 54
hypothetical set functions

CUME_DIST, 82, 86–87, 89
DENSE_RANK, 82, 84–85, 87–89
general solution for, 87–90
as ordered set functions, 82–90
PERCENT_RANK, 82, 85–87, 89
RANK, 82–84, 87–89

I
identifying islands problem, 15–19, 195–201
INCLUDE clause, 104
indexed sequential access method (ISAM), 7
indexes

backward scans, 105–108
columnstore indexes, 108
indexing guidelines, 103
Max Concurrent Intervals T-SQL solution, 171–

180
Mode T-SQL solution, 154–158
Packing Intervals T-SQL solution, 183–184,

188–189
Paging T-SQL solution, 143–145
POC indexes, 104–105, 151–152, 161
Running Totals T-SQL solution, 161, 168
Top-N-per-Group T-SQL solution, 151–152, 158

Index Scan iterator
backward scans, 107
Max Concurrent Intervals T-SQL solution, 174
ROW_NUMBER function optimization and, 110

Index Seek iterator, 174–175
inverse distribution functions (percentiles).

See also PERCENTILE_COUNT function;
PERCENTILE_DISC function

about, 68, 71–73
Median T-SQL solution, 202–204
optimization of, 129–132
as ordered set functions, 81, 90–94

ISAM (indexed sequential access method), 7
islands

Gaps and Islands T-SQL solution, 193–201
identifying islands problem, 15–19, 195–201

iterative/cursor programming
Max Concurrent Intervals T-SQL solution, 175–

177
Running Totals T-SQL solution, 158, 162–164
set-based versus, 6–10

J
joins

cross, 133–136
Max Concurrent Intervals T-SQL solution, 174
ON clause, 161
Running Totals T-SQL solution, 161–162, 170

K
keys

Sequences of Keys T-SQL solution, 138–142
surrogate, 141

Kyte, Tom, 51

L
LAG function

about, 4, 74–76
converting to LAST_VALUE function, 122
expanding all frame rows, 124
Gaps and Islands T-SQL solution, 194, 199
NULL return value, 75

LAST_VALUE function
about, 4, 76–79
expanding all frame rows, 122, 124
framing element and, 22
ordered-set-function form of, 94–96

LEAD function
about, 4, 74–76
converting to LAST_VALUE function, 122
expanding all frame rows, 124
Gaps and Islands T-SQL solution, 194–195, 199
NULL return value, 75

Linoff, Gordon, 205
logical query processing

about, 23–25
clause ordering and, 57

 ORDER BY clause

 Index 215

M
Machanic, Adam, 92, 112
Max Concurrent Intervals solution (T-SQL)

about, 171–173
cursor-based solution, 175–177
performance benchmark, 180
solutions based on window functions, 178–180
traditional set-based solution, 173–175

MAX function
about, 3
expanding all frame rows, 122, 124
usage example, 39, 96–97, 117

Median solution (T-SQL), 202–204
Merge Join iterator, 176, 178
Microsoft SQL Server

hypothetical set functions and, 84–86
logical query processing and, 23
optimization and, 5, 14
ordered set functions and, 81
ordering element support, 21
parallelism considerations, 112–113
StreamInsight feature, 51
TOP option, 134–136, 148, 151–153
WINDOW clause and, 31–32

Microsoft SQL Server 2005
aggregate functions support, 4
ranking functions support, 4, 57
window functions support, 1

Microsoft SQL Server 2012
aggregate functions support, 4
DISTINCT option and, 51
distribution functions support, 4, 68
FILTER clause and, 49
hypothetical set functions and, 84, 87
indexing support, 108
logical query processing and, 23–24
NEXT VALUE FOR function and, 62
OFFSET/FETCH option, 134–136, 144–145,

151–153
offset functions support, 4, 74, 76, 78, 94
RANGE option, 45
rank distribution functions and, 70
window frame-exclusion option, 22, 47
window functions support, 1

MIN function
about, 3
expanding all frame rows, 122, 124
usage example, 96–97

Mode solution (T-SQL), 154–158

n
nested aggregates, 53–57
nested iterations, 166–167
Nested Loops join, 174, 190
Nested Loops join iterator, 115, 118
NEXT VALUE FOR function, 62
NOT EXISTS predicate, 89
NTH_VALUE function

about, 4, 76–79
framing element and, 22
ordered-set-function form of, 94, 96

NTILE function
about, 4, 57, 63–66
optimizing, 110–111

O
OFFSET/FETCH option

Paging T-SQL solution, 144–145
Top-N-per-Group T-SQL solution, 151–153
Virtual Auxiliary Table of Numbers T-SQL

solution, 134–136
offset functions. See also FIRST_VALUE function;

LAG function; LAST_VALUE function; LEAD
function; NTH_VALUE function

about, 4, 74–79
carry-along-sort technique, 153, 157
framing and, 22, 119–128
optimizing, 116–128
ordered set functions and, 94–98
ordering and, 74, 119–128
partitioning and, 74
SQL Server support, 4, 74, 76, 78, 94
SQL standard support, 3

OLAP functions, 3
ON clause, 161
optimization of window functions

aggregate functions, 116–128
distribution functions, 128–132
indexing guidelines, 103–108
logical query processing and, 23
offset functions, 116–128
parallel APPLY technique and, 112–115
ranking functions, 108–112
sample data, 101–103
SQL and, 5, 14

ORDER BY clause
about, 7
backward scans and, 107–108

ORDER BY clause

216 Index

ORDER BY clause, continued
Max Concurrent Intervals T-SQL solution, 176
modification statements and, 29
Paging T-SQL solution, 144
presentation ordering and, 58
processing order, 54
ranking functions and, 61
Sequences of Keys T-SQL solution, 142
Virtual Auxiliary Table of Numbers T-SQL

solution, 135
window functions support, 8, 23, 25–28

ordered set functions
about, 71, 81
hypothetical set functions, 81–90
inverse distribution functions, 68, 71–73, 81,

90–94
offset functions, 94–98
SQL Server and, 81
string concatenation, 98–99

ordering (sort order)
about, 21–22
aggregate functions and, 22, 36–49, 119–128
based on constants, 109
distribution functions and, 68
elements of sets and, 7
framing and, 36
logical query processing and, 25
Max Concurrent Intervals T-SQL solution, 176
Median T-SQL solution, 203–204
offset functions and, 74, 119–128
POC concept and, 104–106
RANK function, 3
ranking functions and, 21, 58, 109
Running Totals T-SQL solution, 161
Sorting Hierarchies T-SQL solution, 206–210
total ordering, 15

OVER clause
about, 1–3, 10
constants and, 62
usage example, 2, 13, 36

P
Packing Intervals solution (T-SQL)

about, 181–183
solutions based on window functions, 184–193
traditional set-based solution, 183–184

paging
Paging T-SQL solution, 143–145
tiling versus, 64

parallelism
backward scans and, 105
Packing Intervals T-SQL solution, 189
parallel APPLY technique, 112–115, 121–122, 127,

152
Top-N-per-Group T-SQL solution, 152

Parallelism (Distribute Streams) exchange
iterator, 115

Parallelism (Gather Streams) exchange iterator, 114
Parallelism (Redistribute Streams) exchange

iterator, 114
PARTITION BY clause

about, 20
usage example, 36

partitioning
about, 13–14, 20–21
aggregate functions and, 13–14, 34–36
distribution functions and, 68
offset functions and, 74
Packing Intervals T-SQL solution, 181
parallel APPLY technique and, 113
POC concept and, 104–106
ranking functions and, 58
Running Totals T-SQL solution, 160–161

PERCENTILE_CONT function
about, 72–73
distribution-function form of, 68
Median T-SQL solution, 202
optimizing, 129–131
ordered-set-function form of, 90–94
SQL Server support, 4

PERCENTILE_DISC function
about, 71–72
distribution-function form of, 68
optimizing, 129–132
ordered-set-function form of, 90–92
SQL Server support, 4

percentiles (inverse distribution functions).
See also PERCENTILE_COUNT function;
PERCENTILE_DISC function

about, 68, 71–73
Median T-SQL solution, 202–204
optimization of, 129–132
as ordered set functions, 81, 90–94

PERCENT_RANK function
about, 4, 68–69
hypothetical-set-function form of, 82, 85–87, 89
optimizing, 128–129

 Running Totals solution (T-SQL)

 Index 217

performance benchmarks
Max Concurrent Intervals T-SQL solution, 180
Running Totals T-SQL solution, 169–171

Pivoting solution (T-SQL), 148–151
POC indexes

about, 104–105
Running Totals T-SQL solution, 161
Sort iterator and, 109
Top-N-per-Group T-SQL solution, 151–152

Q
QUALIFY clause, 30
Query Options dialog box, 136

R
RANGE clause

about, 22
aggregate functions and, 37
CURRENT ROW option, 43–47, 77
UNBOUNDED option, 43–46, 77
window frame extent part and, 43–47
window frame units part and, 120

rank distribution functions. See also CUME_DIST
function; PERCENT_RANK function

about, 68–71, 90
as hypothetical set functions, 82–90
optimization of, 128–129

RANK function
about, 4, 57, 66–67
calculating percentile rank, 70
determinism and, 67
hypothetical-set-function form of, 82–84, 87–89
Mode T-SQL solution, 156
optimizing, 111–112
ordering element and, 21
partitioning element and, 20
Removing Duplicates T-SQL solution, 147
usage example, 3, 9, 28

ranking functions. See also DENSE_RANK function;
NTILE function; RANK function; ROW_
NUMBER function

about, 4, 57
as hypothetical set functions, 82–90
optimization of, 108–112
ordering and, 21, 58, 109

partitioning and, 58
SQL Server support, 4, 57
SQL standard support, 3

RDBMSs (relational database management
systems), 6

relational database management systems
(RDBMSs), 6

relational model
about, 6–7
ordering and, 8

Removing Duplicates solution (T-SQL), 145–148
Rincón, Eladio, 113
ROW_NUMBER function

about, 4, 57, 58–63
COUNT function and, 59–60
determinism and, 60–64
distinct aggregates and, 52
Gaps and Islands T-SQL solution, 197
islands problem, 18–19
Max Concurrent Intervals T-SQL solution, 178–

180
Median T-SQL solution, 202
Mode T-SQL solution, 154–156
modification statements and, 29
optimizing, 109–110
Packing Intervals T-SQL solution, 184
Paging T-SQL solution, 143–145
Pivoting T-SQL solution, 149
Removing Duplicates T-SQL solution, 145–147
Running Totals T-SQL solution, 166
Sequences of Keys T-SQL solution, 139, 141–142
Sorting Hierarchies T-SQL solution, 206–210
Top-N-per-Group T-SQL solution, 152
usage example, 27, 92–93
Virtual Auxiliary Table of Numbers T-SQL

solution, 135
row pattern recognition, 51
ROWS clause

about, 22
converting RANGE option to, 120–121
CURRENT ROW option, 37–38
UNBOUNDED FOLLOWING option, 37–38, 77
UNBOUNDED PRECEDING option, 37–38
window frame extent part and, 37–43

Running Totals solution (T-SQL)
about, 158–160
CLR-based solution, 164–166
cursor-based solution, 162–164
multirow UPDATE with variables, 167–169

