Microsoft Excel 2010 Formulas & Functions

INSIDE OUT

- The ultimate, in-depth reference
- Hundreds of timesaving solutions
- Supremely organized, packed with expert advice

Includes downloadable eBook + SAMPLE FILES
See back
You’re beyond the basics, so dive right in and really put Excel formulas and functions to work! This supremely organized reference packs hundreds of timesaving solutions, troubleshooting tips, and workarounds. It’s all muscle and no fluff. Discover how the experts increase their data analysis capabilities using Excel 2003, 2007, and 2010—and challenge yourself to new levels of mastery.

- Customize Excel formulas using 350+ built-in functions
- Create reusable formulas for common calculations
- Learn smarter ways to calculate date and time values
- Systematically search worksheets with lookup and reference functions
- Perform advanced calculations using mathematical, statistical, and financial functions
- Build complex formulas by nesting one function inside of another
- Analyze profit margins and more with new functions in Excel 2010
- Develop your own functions with Microsoft Visual Basic® for Applications (VBA)

Your book + sample files—ready to download!

- Fully searchable companion eBook. See the instruction page at the back of the book.

U.S.A. $59.99
Canada $62.99

Microsoft Office
Microsoft Excel
Contents at a Glance

Chapter 1
Solving Problems with Functions 1

Chapter 2
Using Functions and PowerPivot 41

Chapter 3
From Numbers to Formulas 103

Chapter 4
Formulas and Functions 141

Chapter 5
Functions in Special Operations 159

Chapter 6
Custom Functions 193

Chapter 7
Date and Time Functions 219

Chapter 8
Text and Data Functions 255

Chapter 9
Logical Functions 291

Chapter 10
Lookup and Reference Functions 307

Chapter 11
Information Functions 347

Chapter 12
Statistical Functions 379

Chapter 13
Database Functions 635

Chapter 14
Cube Functions 673

Chapter 15
Financial Functions 689

Chapter 16
Mathematical and Trigonometry Functions . 809

Chapter 17
Engineering Functions 903

Appendix A
Excel Functions (in Alphabetical Order) 971

Appendix B
Excel Functions (by Category) 993

Appendix C
What’s New in Excel 2007 and Excel 2010 1011
Table of Contents

Introduction .. xix

Chapter 1: **Solving Problems with Functions** ... 1
Introducing the New Functions in Excel 2010 ... 1
Scenario and Goals .. 1
The New Way to Work with Data, Formulas, and Functions 2
 Creating the Month Data Series .. 2
 Creating an Individual Data Series ... 4
Entering Test Data Fast ... 7
Converting Formula Results into Fixed Values ... 8
Formatting Numeric Values ... 10
Calculating Profit Margin .. 11
Formatting Data as a Table ... 12
Calculating Profit Margin as a Percentage ... 13
Applying Conditional Formatting .. 18
Creating Meaningful Charts .. 21
 Creating a Column Chart ... 21
 Creating a Pie Chart ... 24
 Formatting a Chart ... 25
Working with PivotTables .. 28
 Creating a PivotTable ... 29
 Using a PivotTable ... 31
Using PivotCharts: Graphical Pivot .. 35
 Creating a PivotChart ... 35
 Changing the Original Data .. 38

Chapter 2: **Using Functions and PowerPivot** .. 41
Using Date and Time Functions .. 41

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey
<table>
<thead>
<tr>
<th>Chapter 3: From Numbers to Formulas</th>
<th>103</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entering Formulas</td>
<td>103</td>
</tr>
<tr>
<td>Operators</td>
<td>104</td>
</tr>
<tr>
<td>Arithmetic Operators</td>
<td>104</td>
</tr>
<tr>
<td>Comparison Operators</td>
<td>106</td>
</tr>
<tr>
<td>The & Text Operator</td>
<td>107</td>
</tr>
<tr>
<td>Reference Operators</td>
<td>108</td>
</tr>
<tr>
<td>Using Financial Math Functions</td>
<td>84</td>
</tr>
<tr>
<td>An Annuity Calculation Example</td>
<td>87</td>
</tr>
<tr>
<td>Calculating Repayment</td>
<td>88</td>
</tr>
<tr>
<td>Calculating Exchange Rates</td>
<td>89</td>
</tr>
<tr>
<td>Investment Appraisal Example</td>
<td>90</td>
</tr>
<tr>
<td>Amortization Calculation Example</td>
<td>90</td>
</tr>
<tr>
<td>Using Math and Trigonometry Functions</td>
<td>90</td>
</tr>
<tr>
<td>Generating Random Test Data</td>
<td>91</td>
</tr>
<tr>
<td>PowerPivot</td>
<td>93</td>
</tr>
<tr>
<td>Using PowerPivot in Excel 2010</td>
<td>93</td>
</tr>
<tr>
<td>Using Cube Functions</td>
<td>80</td>
</tr>
<tr>
<td>Using Database Functions</td>
<td>73</td>
</tr>
<tr>
<td>Dynamic Database Names</td>
<td>73</td>
</tr>
<tr>
<td>Database Functions in Practice</td>
<td>78</td>
</tr>
<tr>
<td>Using Information Functions</td>
<td>64</td>
</tr>
<tr>
<td>Using Statistical Functions</td>
<td>67</td>
</tr>
<tr>
<td>Overview</td>
<td>67</td>
</tr>
<tr>
<td>Statistical Functions in Practice</td>
<td>70</td>
</tr>
<tr>
<td>Using Search and Reference Functions</td>
<td>61</td>
</tr>
<tr>
<td>Searching Through a Cross Table</td>
<td>61</td>
</tr>
<tr>
<td>Using Logical Functions</td>
<td>58</td>
</tr>
<tr>
<td>Calculating Profitability</td>
<td>59</td>
</tr>
<tr>
<td>Using Text and Data Functions</td>
<td>50</td>
</tr>
<tr>
<td>Separating Text Strings Such as ZIP Code and Location</td>
<td>50</td>
</tr>
<tr>
<td>Separating First and Last Names</td>
<td>51</td>
</tr>
<tr>
<td>Switching the First and Last Names</td>
<td>52</td>
</tr>
<tr>
<td>Resolving the IBAN</td>
<td>53</td>
</tr>
<tr>
<td>Calculating the Frequency of a Character in a String</td>
<td>54</td>
</tr>
<tr>
<td>Removing All Spaces</td>
<td>54</td>
</tr>
<tr>
<td>Correcting the Position of Signs</td>
<td>55</td>
</tr>
<tr>
<td>Displaying the File and Worksheet Name</td>
<td>55</td>
</tr>
<tr>
<td>Concatenating the Content of Cells</td>
<td>56</td>
</tr>
<tr>
<td>Breaking Lines in Concatenated Text</td>
<td>57</td>
</tr>
<tr>
<td>Visualizing Data</td>
<td>58</td>
</tr>
<tr>
<td>The & Text Operator</td>
<td>42</td>
</tr>
<tr>
<td>Date and Time Number Formats</td>
<td>43</td>
</tr>
<tr>
<td>Leap Years</td>
<td>44</td>
</tr>
<tr>
<td>Analysis Functions</td>
<td>44</td>
</tr>
<tr>
<td>Date and Time Functions in Practice</td>
<td>44</td>
</tr>
<tr>
<td>Using Text and Data Functions</td>
<td>40</td>
</tr>
<tr>
<td>Separating Text Strings Such as ZIP Code and Location</td>
<td>40</td>
</tr>
<tr>
<td>Separating First and Last Names</td>
<td>41</td>
</tr>
<tr>
<td>Switching the First and Last Names</td>
<td>42</td>
</tr>
<tr>
<td>Resolving the IBAN</td>
<td>43</td>
</tr>
<tr>
<td>Calculating the Frequency of a Character in a String</td>
<td>44</td>
</tr>
<tr>
<td>Removing All Spaces</td>
<td>44</td>
</tr>
<tr>
<td>Correcting the Position of Signs</td>
<td>45</td>
</tr>
<tr>
<td>Displaying the File and Worksheet Name</td>
<td>45</td>
</tr>
<tr>
<td>Concatenating the Content of Cells</td>
<td>46</td>
</tr>
<tr>
<td>Breaking Lines in Concatenated Text</td>
<td>47</td>
</tr>
<tr>
<td>Visualizing Data</td>
<td>48</td>
</tr>
<tr>
<td>Using Logical Functions</td>
<td>40</td>
</tr>
<tr>
<td>Calculating Profitability</td>
<td>41</td>
</tr>
<tr>
<td>Using Search and Reference Functions</td>
<td>42</td>
</tr>
<tr>
<td>Searching Through a Cross Table</td>
<td>42</td>
</tr>
<tr>
<td>Using Information Functions</td>
<td>43</td>
</tr>
<tr>
<td>Using Statistical Functions</td>
<td>44</td>
</tr>
<tr>
<td>Overview</td>
<td>44</td>
</tr>
<tr>
<td>Statistical Functions in Practice</td>
<td>47</td>
</tr>
<tr>
<td>Using Database Functions</td>
<td>48</td>
</tr>
<tr>
<td>Dynamic Database Names</td>
<td>48</td>
</tr>
<tr>
<td>Database Functions in Practice</td>
<td>49</td>
</tr>
<tr>
<td>Using Cube Functions</td>
<td>40</td>
</tr>
<tr>
<td>Using Financial Math Functions</td>
<td>41</td>
</tr>
<tr>
<td>An Annuity Calculation Example</td>
<td>44</td>
</tr>
<tr>
<td>Calculating Repayment</td>
<td>45</td>
</tr>
<tr>
<td>Calculating Exchange Rates</td>
<td>46</td>
</tr>
<tr>
<td>Investment Appraisal Example</td>
<td>47</td>
</tr>
<tr>
<td>Amortization Calculation Example</td>
<td>48</td>
</tr>
<tr>
<td>Using Math and Trigonometry Functions</td>
<td>49</td>
</tr>
<tr>
<td>Generating Random Test Data</td>
<td>50</td>
</tr>
<tr>
<td>PowerPivot</td>
<td>51</td>
</tr>
<tr>
<td>Using PowerPivot in Excel 2010</td>
<td>52</td>
</tr>
<tr>
<td>Using Text and Data Functions</td>
<td>40</td>
</tr>
<tr>
<td>Separating Text Strings Such as ZIP Code and Location</td>
<td>40</td>
</tr>
<tr>
<td>Separating First and Last Names</td>
<td>41</td>
</tr>
<tr>
<td>Switching the First and Last Names</td>
<td>42</td>
</tr>
<tr>
<td>Resolving the IBAN</td>
<td>43</td>
</tr>
<tr>
<td>Calculating the Frequency of a Character in a String</td>
<td>44</td>
</tr>
<tr>
<td>Removing All Spaces</td>
<td>44</td>
</tr>
<tr>
<td>Correcting the Position of Signs</td>
<td>45</td>
</tr>
<tr>
<td>Displaying the File and Worksheet Name</td>
<td>45</td>
</tr>
<tr>
<td>Concatenating the Content of Cells</td>
<td>46</td>
</tr>
<tr>
<td>Breaking Lines in Concatenated Text</td>
<td>47</td>
</tr>
<tr>
<td>Visualizing Data</td>
<td>48</td>
</tr>
<tr>
<td>Using Logical Functions</td>
<td>40</td>
</tr>
<tr>
<td>Calculating Profitability</td>
<td>41</td>
</tr>
<tr>
<td>Using Search and Reference Functions</td>
<td>42</td>
</tr>
<tr>
<td>Searching Through a Cross Table</td>
<td>42</td>
</tr>
<tr>
<td>Using Information Functions</td>
<td>43</td>
</tr>
<tr>
<td>Using Statistical Functions</td>
<td>44</td>
</tr>
<tr>
<td>Overview</td>
<td>44</td>
</tr>
<tr>
<td>Statistical Functions in Practice</td>
<td>47</td>
</tr>
<tr>
<td>Using Database Functions</td>
<td>48</td>
</tr>
<tr>
<td>Dynamic Database Names</td>
<td>48</td>
</tr>
<tr>
<td>Database Functions in Practice</td>
<td>49</td>
</tr>
<tr>
<td>Using Cube Functions</td>
<td>40</td>
</tr>
<tr>
<td>Using Financial Math Functions</td>
<td>41</td>
</tr>
<tr>
<td>An Annuity Calculation Example</td>
<td>44</td>
</tr>
<tr>
<td>Calculating Repayment</td>
<td>45</td>
</tr>
<tr>
<td>Calculating Exchange Rates</td>
<td>46</td>
</tr>
<tr>
<td>Investment Appraisal Example</td>
<td>47</td>
</tr>
<tr>
<td>Amortization Calculation Example</td>
<td>48</td>
</tr>
<tr>
<td>Using Math and Trigonometry Functions</td>
<td>49</td>
</tr>
<tr>
<td>Generating Random Test Data</td>
<td>50</td>
</tr>
<tr>
<td>PowerPivot</td>
<td>51</td>
</tr>
<tr>
<td>Using PowerPivot in Excel 2010</td>
<td>52</td>
</tr>
</tbody>
</table>
References in Formulas ... 111
 Relative References .. 113
 Absolute References ... 113
 Mixed References ... 115
 What Is a Circular Reference? .. 117
 Array Formulas .. 119
 Tips and Tricks .. 121
 Turning the Formula View On and Off 121
 Entering Formulas in Several Cells .. 122
 Entering Formulas in Several Worksheets 122
 Selecting Formula Cells ... 122
 Determining Which Cells Are Referenced in a Formula 123
 Copying and Moving Formulas .. 123
 Moving Formula Cells ... 125
 Copying Formula Cells ... 126
 Converting Formula Results into Fixed Values 131
 Converting Existing Values .. 132
 Protecting Formulas .. 132
 Hiding Formulas .. 133
 Specifying the Formula Calculation Type 133
 Analyzing Formulas ... 134
 Troubleshooting: Example 1 .. 138
 Troubleshooting: Example 2 .. 139

Chapter 4: Formulas and Functions ... 141

What Is a Worksheet Function? ... 142
 The Syntax of a Function ... 143
 Arguments as Arithmetic Data in a Function 144
 Options for Passing Arguments ... 144
 Including Calculations in a Function 146

Entering Functions ... 146
 Using the Function Wizard ... 148
 Hands-On Practice ... 148
 Searching for Functions ... 151
 Entering Cell References ... 152
 Getting Excel Help for Functions ... 152
 Specifying Nested Functions .. 153
 Editing Formulas ... 155

Tips and Tricks .. 156
 Viewing Arguments .. 156
 Using a Complex Formula in Several Workbooks 156
 Partial Calculations in Formulas ... 158

Chapter 5: Functions in Special Operations 159

Functions in Names ... 159
 Querying Current Information ... 160
 Payment Targets as “Text Modules” .. 163
 Dynamic Range Names ... 163
Functions for Conditional Formatting .. 166
 Highlighting Weekends in Color ... 167
 Using the MATCH() Function .. 170
 Highlighting Identical Values .. 172
 Finding the Differences Between Tables on Different Worksheets 174
 List Print Layout .. 176
 Emphasizing the Top Three Elements ... 177
 Highlighting Cells Containing Spaces .. 179
 Navigating in Tables with Reference Lines .. 179
 Formatting Data Groups ... 182
 Formatting Subtotal Results ... 183
 Tips for Conditional Formatting in Excel 2003 185
 Tips and Troubleshooting for Conditional Formatting 187
Functions for Validation .. 187
 Cell Protection with Validation ... 188
 Variable List Areas .. 188
 Limiting Input with Formulas .. 190
 Avoiding Duplicate Entries ... 190
 Displaying Messages upon Field Completion 192

Chapter 6:

Custom Functions .. 193
Creating a Custom Function .. 194
The AreaCircle() Function ... 196
The AreaQuad() Function ... 203
 Functions with Several Arguments .. 203
 Functions with Optional Arguments ... 204
 Branches with Logical Conditions .. 206
The AreaSect() Function .. 210
 Optional Arguments with Default Values ... 210
The DigitSum() Function ... 211
 Programming Loops .. 212
The AreaCircle1() Function .. 214
 Using Built-in Functions in Custom Functions 215
 The Functions in the Function Wizard .. 217
 Using Your Own Functions .. 217
Saving Functions in Add-Ins ... 218

Chapter 7:

Date and Time Functions ... 219
DATE() ... 220
DATEDIF() .. 222
DATEVALUE() .. 224
DAY() ... 225
days360() .. 226
EDATE() ... 228
EOMONTH() ... 230
HOUR() .. 231
MINUTE() .. 232
Chapter 8: Text and Data Functions .. 255

ASC() .. 256
BAHTTEXT() .. 257
CHAR() .. 258
CLEAN() .. 259
CODE() ... 260
CONCATENATE() ... 261
DOLLAR() .. 262
EXACT() ... 264
FIND(), FINDB() ... 266
FIXED() ... 268
LEFT(), LEFTB() ... 269
LEN(), LENB() ... 270
LOWER() ... 272
MID(), MIDB() ... 273
PHONETIC() ... 275
PROPER() ... 275
REPLACE(), REPLACEB() ... 276
REPT() .. 278
RIGHT(), RIGHTB() ... 279
SEARCH(), SEARCHB() ... 281
SUBSTITUTE() .. 283
T() ... 284
TEXT() .. 285
TRIM() .. 286
UPPER() .. 287
VALUE() ... 289

Chapter 9: Logical Functions .. 291

AND() ... 291
FALSE() ... 293
IF() ... 296
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFERROR()</td>
<td>300</td>
</tr>
<tr>
<td>NOT()</td>
<td>301</td>
</tr>
<tr>
<td>OR()</td>
<td>302</td>
</tr>
<tr>
<td>TRUE()</td>
<td>304</td>
</tr>
</tbody>
</table>

Chapter 10: Lookup and Reference Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDRESS()</td>
<td>308</td>
</tr>
<tr>
<td>AREAS()</td>
<td>311</td>
</tr>
<tr>
<td>CHOOSE()</td>
<td>312</td>
</tr>
<tr>
<td>COLUMN()</td>
<td>314</td>
</tr>
<tr>
<td>COLUMNS()</td>
<td>315</td>
</tr>
<tr>
<td>GETPIVOTDATA()</td>
<td>316</td>
</tr>
<tr>
<td>HLOOKUP()</td>
<td>316</td>
</tr>
<tr>
<td>HYPERLINK()</td>
<td>319</td>
</tr>
<tr>
<td>INDEX()</td>
<td>320</td>
</tr>
<tr>
<td>INDIRECT()</td>
<td>326</td>
</tr>
<tr>
<td>LOOKUP()</td>
<td>328</td>
</tr>
<tr>
<td>MATCH()</td>
<td>330</td>
</tr>
<tr>
<td>OFFSET()</td>
<td>333</td>
</tr>
<tr>
<td>ROW()</td>
<td>337</td>
</tr>
<tr>
<td>ROWS()</td>
<td>338</td>
</tr>
<tr>
<td>RTD()</td>
<td>339</td>
</tr>
<tr>
<td>TRANSPOSE()</td>
<td>341</td>
</tr>
<tr>
<td>VLOOKUP()</td>
<td>344</td>
</tr>
</tbody>
</table>

Chapter 11: Information Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CELL()</td>
<td>348</td>
</tr>
<tr>
<td>COUNTBLANK()</td>
<td>352</td>
</tr>
<tr>
<td>ERROR.TYPE()</td>
<td>354</td>
</tr>
<tr>
<td>INFO()</td>
<td>356</td>
</tr>
<tr>
<td>ISBLANK()</td>
<td>359</td>
</tr>
<tr>
<td>ISERR()</td>
<td>360</td>
</tr>
<tr>
<td>ISERROR()</td>
<td>361</td>
</tr>
<tr>
<td>ISEVEN()</td>
<td>362</td>
</tr>
<tr>
<td>ISLOGICAL()</td>
<td>364</td>
</tr>
<tr>
<td>ISNA()</td>
<td>365</td>
</tr>
<tr>
<td>ISNONTEXT()</td>
<td>366</td>
</tr>
<tr>
<td>ISNUMBER()</td>
<td>367</td>
</tr>
<tr>
<td>ISODD()</td>
<td>368</td>
</tr>
<tr>
<td>ISREF()</td>
<td>369</td>
</tr>
<tr>
<td>ISTEM()</td>
<td>371</td>
</tr>
<tr>
<td>N()</td>
<td>372</td>
</tr>
<tr>
<td>NA()</td>
<td>373</td>
</tr>
<tr>
<td>TYPE()</td>
<td>375</td>
</tr>
</tbody>
</table>
Chapter 12: Statistical Functions ... 379

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVEDEV()</td>
<td>388</td>
</tr>
<tr>
<td>AVERAGE()</td>
<td>390</td>
</tr>
<tr>
<td>AVERAGEA()</td>
<td>392</td>
</tr>
<tr>
<td>AVERAGEIF()</td>
<td>395</td>
</tr>
<tr>
<td>AVERAGEIFS()</td>
<td>398</td>
</tr>
<tr>
<td>BETA.DIST()/BETADIST()</td>
<td>401</td>
</tr>
<tr>
<td>BETA.INV()/BETAINV()</td>
<td>403</td>
</tr>
<tr>
<td>BINOM.DIST()/BINOMDIST()</td>
<td>407</td>
</tr>
<tr>
<td>BINOM.INV()/CRITBINOM()</td>
<td>411</td>
</tr>
<tr>
<td>CHISQ.DIST()</td>
<td>413</td>
</tr>
<tr>
<td>CHISQ.DIST.RT()/CHIDIST()</td>
<td>414</td>
</tr>
<tr>
<td>CHISQ.INV()</td>
<td>416</td>
</tr>
<tr>
<td>CHISQ.INV.RT()/CHIINV()</td>
<td>417</td>
</tr>
<tr>
<td>CHISQ.TEST()/CHITEST()</td>
<td>420</td>
</tr>
<tr>
<td>CONFIDENCE.NORM()/CONFIDENCE()</td>
<td>423</td>
</tr>
<tr>
<td>CONFIDENCE.T()</td>
<td>427</td>
</tr>
<tr>
<td>CORREL()</td>
<td>428</td>
</tr>
<tr>
<td>COUNT()</td>
<td>431</td>
</tr>
<tr>
<td>COUNTA()</td>
<td>434</td>
</tr>
<tr>
<td>COUNTBLANK()</td>
<td>435</td>
</tr>
<tr>
<td>COUNTIF()</td>
<td>435</td>
</tr>
<tr>
<td>COUNTIFS()</td>
<td>438</td>
</tr>
<tr>
<td>COVAR()</td>
<td>441</td>
</tr>
<tr>
<td>COVARIANCE.P()</td>
<td>444</td>
</tr>
<tr>
<td>COVARIANCE.S()</td>
<td>445</td>
</tr>
<tr>
<td>DEVSQ()</td>
<td>446</td>
</tr>
<tr>
<td>EXPON.DIST()/EXPONDIST()</td>
<td>448</td>
</tr>
<tr>
<td>F.DIST()</td>
<td>452</td>
</tr>
<tr>
<td>F.DIST.RT()/FDIST()</td>
<td>453</td>
</tr>
<tr>
<td>F.INV()</td>
<td>456</td>
</tr>
<tr>
<td>F.INV.RT()/FINV()</td>
<td>457</td>
</tr>
<tr>
<td>F.TEST()/FTEST()</td>
<td>460</td>
</tr>
<tr>
<td>FISHER()</td>
<td>462</td>
</tr>
<tr>
<td>FISHERINV()</td>
<td>467</td>
</tr>
<tr>
<td>FORECAST()</td>
<td>468</td>
</tr>
<tr>
<td>FREQUENCY()</td>
<td>472</td>
</tr>
<tr>
<td>GAMMA.DIST()/GAMMADIST()</td>
<td>476</td>
</tr>
<tr>
<td>GAMMA.INV()/GAMMAINV()</td>
<td>481</td>
</tr>
<tr>
<td>GAMMALN()</td>
<td>482</td>
</tr>
<tr>
<td>GAMMALN.PRECISE()</td>
<td>484</td>
</tr>
<tr>
<td>GEOMEAN()</td>
<td>485</td>
</tr>
<tr>
<td>GROWTH()</td>
<td>487</td>
</tr>
<tr>
<td>HARMEAN()</td>
<td>491</td>
</tr>
<tr>
<td>HYPGEOM.DIST()/HYPGEOMDIST()</td>
<td>494</td>
</tr>
<tr>
<td>Function</td>
<td>Page</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>INTERCEPT()</td>
<td>497</td>
</tr>
<tr>
<td>KURT()</td>
<td>500</td>
</tr>
<tr>
<td>LARGE()</td>
<td>503</td>
</tr>
<tr>
<td>LINEST()</td>
<td>506</td>
</tr>
<tr>
<td>LOGEST()</td>
<td>511</td>
</tr>
<tr>
<td>LOGNORM.DIST() / LOGNORMDIST()</td>
<td>515</td>
</tr>
<tr>
<td>LOGNORM.INV() / LOGINV()</td>
<td>518</td>
</tr>
<tr>
<td>MAX()</td>
<td>520</td>
</tr>
<tr>
<td>MAXA()</td>
<td>521</td>
</tr>
<tr>
<td>MEDIAN()</td>
<td>522</td>
</tr>
<tr>
<td>MIN()</td>
<td>525</td>
</tr>
<tr>
<td>MINA()</td>
<td>526</td>
</tr>
<tr>
<td>MODE.SNGL() / MODE()</td>
<td>528</td>
</tr>
<tr>
<td>MODE.MULT()</td>
<td>530</td>
</tr>
<tr>
<td>NEGBINOM.DIST() / NEGBINOMDIST()</td>
<td>531</td>
</tr>
<tr>
<td>NORM.DIST() / NORMDIST()</td>
<td>533</td>
</tr>
<tr>
<td>NORM.INV() / NORMINV()</td>
<td>537</td>
</tr>
<tr>
<td>NORM.S.DIST() / NORMSDIST()</td>
<td>539</td>
</tr>
<tr>
<td>NORM.S.INV() / NORMSINV()</td>
<td>542</td>
</tr>
<tr>
<td>PEARSON()</td>
<td>544</td>
</tr>
<tr>
<td>PERCENTILE()</td>
<td>548</td>
</tr>
<tr>
<td>PERCENTILE.EXC()</td>
<td>550</td>
</tr>
<tr>
<td>PERCENTILE.INC()</td>
<td>551</td>
</tr>
<tr>
<td>PERCENTRANK()</td>
<td>552</td>
</tr>
<tr>
<td>PERCENTRANK.EXC()</td>
<td>554</td>
</tr>
<tr>
<td>PERCENTRANK.INC()</td>
<td>555</td>
</tr>
<tr>
<td>PERMUT()</td>
<td>556</td>
</tr>
<tr>
<td>POISSON.DIST() / POISSON()</td>
<td>558</td>
</tr>
<tr>
<td>PROB()</td>
<td>561</td>
</tr>
<tr>
<td>QUARTILE()</td>
<td>563</td>
</tr>
<tr>
<td>QUARTILE.EXC()</td>
<td>566</td>
</tr>
<tr>
<td>QUARTILE.INC()</td>
<td>567</td>
</tr>
<tr>
<td>RANK()</td>
<td>568</td>
</tr>
<tr>
<td>RANK.AVG()</td>
<td>570</td>
</tr>
<tr>
<td>RANK.EQ()</td>
<td>571</td>
</tr>
<tr>
<td>RSQ()</td>
<td>572</td>
</tr>
<tr>
<td>SKEW()</td>
<td>575</td>
</tr>
<tr>
<td>SLOPE()</td>
<td>578</td>
</tr>
<tr>
<td>SMALL()</td>
<td>581</td>
</tr>
<tr>
<td>STANDARDIZE()</td>
<td>583</td>
</tr>
<tr>
<td>STDEV.P() / STDEVP()</td>
<td>585</td>
</tr>
<tr>
<td>STDEV.S() / STDEV()</td>
<td>588</td>
</tr>
<tr>
<td>STDEVA()</td>
<td>590</td>
</tr>
<tr>
<td>STDEVPA()</td>
<td>593</td>
</tr>
<tr>
<td>STEYX()</td>
<td>595</td>
</tr>
<tr>
<td>T.DIST()</td>
<td>599</td>
</tr>
<tr>
<td>T.DIST. RT()</td>
<td>600</td>
</tr>
</tbody>
</table>
Chapter 13: **Database Functions** ... 635

Arguments in Database Functions .. 636
Working with Databases and Records 638
Using Controls ... 640
Overview of the Database Functions 640
Functions in This Chapter ... 641
DAVERAGE() .. 641
DCOUNT() ... 643
DCOUNTA() .. 645
DGET() ... 647
DMAX() ... 649
DMIN() .. 650
DPRODUCT() ... 652
DSTDEV() .. 654
DSTDEVP() ... 656
DSUM() .. 657
DVAR() .. 661
DVARP() ... 662
GETPIVOTDATA() .. 664

Chapter 14: **Cube Functions** ... 673

CUBEKPIMEMBER() .. 676
CUBEKPIPROPERTY() .. 678
CUBEKPIVALUE() .. 681
CUBERANKEDMEMBER() ... 682
CUBEBASE() ... 684
CUBESET() .. 686
CUBESETCOUNT() .. 687

Chapter 15: **Financial Functions** 689

ACCRINT() .. 695
ACCRINTM() .. 697
AMORDEGRC() ... 699
AMORLINC() .. 702
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUPDAYBS()</td>
<td>704</td>
</tr>
<tr>
<td>COUPDAYS()</td>
<td>705</td>
</tr>
<tr>
<td>COUPDAYSNC()</td>
<td>707</td>
</tr>
<tr>
<td>COPNC()</td>
<td>708</td>
</tr>
<tr>
<td>COUPN()</td>
<td>710</td>
</tr>
<tr>
<td>COUPPC()</td>
<td>711</td>
</tr>
<tr>
<td>CUMIPMT()</td>
<td>713</td>
</tr>
<tr>
<td>CUMPRINC()</td>
<td>715</td>
</tr>
<tr>
<td>DB()</td>
<td>717</td>
</tr>
<tr>
<td>DDB()</td>
<td>719</td>
</tr>
<tr>
<td>DISC()</td>
<td>720</td>
</tr>
<tr>
<td>DOLLARDE()</td>
<td>723</td>
</tr>
<tr>
<td>DOLLARFR()</td>
<td>724</td>
</tr>
<tr>
<td>DURATION()</td>
<td>725</td>
</tr>
<tr>
<td>EFFECT()</td>
<td>727</td>
</tr>
<tr>
<td>FV()</td>
<td>729</td>
</tr>
<tr>
<td>FVSCHEDULE()</td>
<td>732</td>
</tr>
<tr>
<td>INTRATE()</td>
<td>734</td>
</tr>
<tr>
<td>IPMT()</td>
<td>736</td>
</tr>
<tr>
<td>IRR()</td>
<td>738</td>
</tr>
<tr>
<td>ISPMT()</td>
<td>741</td>
</tr>
<tr>
<td>MDURATION()</td>
<td>742</td>
</tr>
<tr>
<td>MIRR()</td>
<td>744</td>
</tr>
<tr>
<td>NOMINAL()</td>
<td>746</td>
</tr>
<tr>
<td>NPER()</td>
<td>747</td>
</tr>
<tr>
<td>NPV()</td>
<td>750</td>
</tr>
<tr>
<td>ODDFPRICE()</td>
<td>752</td>
</tr>
<tr>
<td>ODDFYIELD()</td>
<td>755</td>
</tr>
<tr>
<td>ODDLPRICE()</td>
<td>757</td>
</tr>
<tr>
<td>ODDLYIELD()</td>
<td>759</td>
</tr>
<tr>
<td>PMT()</td>
<td>762</td>
</tr>
<tr>
<td>PPMT()</td>
<td>765</td>
</tr>
<tr>
<td>PRICE()</td>
<td>767</td>
</tr>
<tr>
<td>PRICEDISC()</td>
<td>771</td>
</tr>
<tr>
<td>PRICEMAT()</td>
<td>774</td>
</tr>
<tr>
<td>PV()</td>
<td>776</td>
</tr>
<tr>
<td>RATE()</td>
<td>779</td>
</tr>
<tr>
<td>RECEIVED()</td>
<td>783</td>
</tr>
<tr>
<td>SLN()</td>
<td>785</td>
</tr>
<tr>
<td>SYD()</td>
<td>786</td>
</tr>
<tr>
<td>TBILLEQ()</td>
<td>788</td>
</tr>
<tr>
<td>TBILLPRICE()</td>
<td>789</td>
</tr>
<tr>
<td>TBILLYIELD()</td>
<td>790</td>
</tr>
<tr>
<td>VDB()</td>
<td>792</td>
</tr>
<tr>
<td>XIRR()</td>
<td>794</td>
</tr>
</tbody>
</table>
Chapter 16: **Mathematical and Trigonometry Functions.** 809

- Functions for Mathematical Calculations. .. 810
- Functions for Trigonometry Calculations. .. 810
- Other Functions ... 811
- ABS() ... 813
- ACOS() ... 814
- ACOSH() ... 816
- AGGREGATE() .. 818
- ASIN() ... 821
- ASINH() ... 822
- ATAN() ... 824
- ATAN2() ... 825
- ATANH() ... 827
- CEILING() ... 828
- CEILING.PRECISE() ... 829
- COMBIN() ... 830
- COS() .. 832
- COSH() .. 834
- DEGREES() ... 835
- EVEN() ... 837
- EXP() .. 838
- FACT() ... 839
- FACTDOUBLE() .. 840
- FLOOR() .. 841
- FLOOR.PRECISE() ... 842
- GCD() ... 843
- INT() .. 845
- LCM() .. 846
- LN() ... 847
- LOG() ... 848
- LOG10() .. 849
- MDETERM() .. 850
- MINV() ... 851
- MMUL() ... 854
- MOD() ... 855
- MROUND() .. 857
- MULTINOMIAL() .. 858
- ODD() ... 859
- PI() ... 859
- POWER() .. 860
Chapter 17: Engineering Functions

How Engineering Functions Are Organized

- Conversion Functions .. 904
 - Number Systems .. 907
 - Binary System ... 908
 - BIN2DEC() .. 910
 - BIN2HEX() .. 911
 - BIN2OCT() .. 912
 - DEC2BIN() .. 914
 - DEC2HEX() .. 915
 - DEC2OCT() .. 917
 - HEX2BIN() .. 918
 - HEX2DEC() .. 920
 - HEX2OCT() .. 921
 - OCT2BIN() .. 922
 - OCT2DEC() .. 924
 - OCT2HEX() .. 925
 - CONVERT() .. 926
 - Functions for Complex Numbers 905
 - Functions for Higher Mathematics 906
 - Saltus Functions ... 906

- Conversion Functions .. 904
 - Number Systems .. 907
 - Binary System ... 908
 - BIN2DEC() .. 910
 - BIN2HEX() .. 911
 - BIN2OCT() .. 912
 - DEC2BIN() .. 914
 - DEC2HEX() .. 915
 - DEC2OCT() .. 917
 - HEX2BIN() .. 918
 - HEX2DEC() .. 920
 - HEX2OCT() .. 921
 - OCT2BIN() .. 922
 - OCT2DEC() .. 924
 - OCT2HEX() .. 925
 - CONVERT() .. 926

- Functions for Complex Numbers 905
- Functions for Higher Mathematics 906
- Saltus Functions ... 906
Functions for Complex Numbers .. 931
 The Imaginary Part ... 932
 COMPLEX() .. 934
 IMABS() .. 935
 IMAGINARY() .. 938
 IMARGUMENT() ... 939
 IMCONJUGATE() .. 940
 IMCOS() .. 940
 IMDIV() ... 941
 IMEXP() .. 942
 IMLN() .. 944
 IMLOG10() .. 945
 IMLOG2() .. 946
 IMPOWER() ... 946
 IMPRODUCT() .. 948
 IMREAL() .. 949
 IMSIN() .. 950
 IMSQRT() .. 950
 IMSUB() .. 952
 IMSUM() ... 953
Functions for Higher Mathematics .. 954
 Bessel Functions .. 955
 Error Integrals .. 955
 BESSELI() ... 955
 BESSELJ() ... 957
 BESSELY() ... 959
 ERFC.PRECISE() / ERFC() .. 961
 ERF.PRECISE() / ERF() ... 963
 Saltus Functions .. 967
 DELTA() .. 967
 GESTEP() ... 969

Appendix A: Excel Functions (in Alphabetical Order) 971

Appendix B: Excel Functions (by Category) ... 993
 Date and Time Functions ... 993
 Text and Data Functions ... 994
 Logical Functions ... 996
 Lookup and Reference Functions .. 996
 Information Functions ... 997
 Statistical Functions ... 997
 Database Functions ... 1002
 Cube Functions ... 1003
 Financial Functions ... 1003
 Mathematical and Trigonometry Functions 1006
 Engineering Functions .. 1008
Appendix C: **What’s New in Excel 2007 and Excel 2010** 1011

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>New in Excel 2007</td>
<td>1011</td>
</tr>
<tr>
<td>New Limits</td>
<td>1012</td>
</tr>
<tr>
<td>New in Excel 2010</td>
<td>1013</td>
</tr>
<tr>
<td>New Functions</td>
<td>1014</td>
</tr>
<tr>
<td>Support for Calculation Clusters</td>
<td>1015</td>
</tr>
<tr>
<td>New Solver</td>
<td>1015</td>
</tr>
<tr>
<td>PowerPivot</td>
<td>1015</td>
</tr>
</tbody>
</table>

Index ... 1017
Introduction

In the beginning there was the idea....The proposal to write about every single Microsoft Excel function with interesting and comprehensible examples came from Helmut Reinke—and everyone on the team agreed. "Yes, this is what Excel users need—a comprehensive reference book with all of the functions." That was eight years ago, and the enthusiasm hasn’t diminished.

At the beginning of this year, the idea to translate our reference book into English arose. And what could we say? There they were again: the same enthusiasm as in 2007, and along with it the tremendous task of translation. But we have persevered, and now we are really proud and happy to present to you the first edition of our function book in English. Since we wrote the German edition, a couple of small Excel revolutions took place: A few years ago, Excel 2007 was launched with many new properties and possibilities. For a year and a half now, we also have had Excel 2010 at our disposal, which includes even more new possibilities. We will address them partially in this book.

We hope that you, dear reader, will welcome this concept, and that this reference work will give you many ideas and support you when needed.

Who This Book Is For

Functions are the most powerful tools in Excel. Our goal is to give readers an understanding of every single function with the aid of plausible examples so that everyone can be capable of realizing the inexhaustible possibilities.

So this book is aimed at everyone who is interested in working with Excel—whether you are a beginner or a power user and whether you are using Excel privately or for business. We want to make readers with little experience familiar with the functions so that they will find meaningful scenarios for using them. But we also want to address the reader who is more familiar with Excel, and so we provide several scenarios to help that reader move to the next level of knowledge.

Do you want to calculate the probability of winning the lottery? Do you have to provide a meaningful report of your company’s annual sales? No problem. Let’s get started.

Assumptions About You

We make a basic assumption that you are generally experienced in working with Microsoft Office and know a few Excel basics. We do not spend time explaining the user interface of Excel and the buttons on the ribbon.
If you are an experienced Excel user, you can just skim over Chapter 1, “Solving Problems with Functions,” and Chapter 2, “Using Functions and PowerPivot.” If you are not so experienced, we hope to give you an idea of the general possibilities offered by Excel. We hope that the many pages you have in front of you will be helpful to you. Use them to your advantage, and if you like the book, please don’t keep your opinion to yourself. Write to us and let us know what you like about it, and especially what we should improve.

We promise that we will be here for you if you have questions or are running into problems. You can write to us at: info@mindbusiness.de.

How This Book Is Organized

All the functions have been tested in Microsoft Office Excel 2000 through Excel 2010. With the exception of characteristics specific to Excel 2007 and Excel 2010, most descriptions can even be used with Excel 97. Where necessary, we added comments regarding the particularities of the different versions.

The book is divided into four sections.

Introducing Formulas and Functions in Excel

The first section contains Chapters 1 through 4. They describe working with Excel, provide a general introduction to using Excel 2010, and give you a first look at formulas and functions. For beginners and experts alike, we have outlined the use of formulas and table functions with all the important notes, instructions, tips, and tricks.

Because we consider the Excel 2010 PowerPivot add-in quite extraordinary, we have introduced it briefly in this section. It has relatively little to do with spreadsheet functions, but we still wanted to acquaint you with it.

Creating Your Own Solutions in Excel

Chapter 5, “Functions in Special Operations,” and Chapter 6, “Custom Functions,” show that you can do a lot more with most functions than just use them in a worksheet. You can create and program your own functions.

Chapter 5 provides examples for using special functions in names and conditional formatting, as well as for validity and data checks. We hope you will find many ideas and clues for your own Excel solutions here.
Chapter 6 introduces you to programming in Excel. You can create any custom functions in Excel and then use them just like the built-in functions.

Functions

Chapters 7 through 17 provide the descriptions of the main Excel functions:

- Chapter 7, “Date and Time Functions”
- Chapter 8, “Text and Data Functions”
- Chapter 9, “Logical Functions”
- Chapter 10, “Lookup and Reference Functions”
- Chapter 11, “Information Functions”
- Chapter 12, “Statistical Functions”
- Chapter 13, “Database Functions”
- Chapter 14, “Cube Functions” (new in Excel 2007)
- Chapter 15, “Financial Functions”
- Chapter 16, “Mathematical and Trigonometry Functions”
- Chapter 17, “Engineering Functions”

Appendices

This book includes three appendices: Appendix A and Appendix B list the functions alphabetically and categorically (respectively), and Appendix C explains what is new in Excel 2007 and Excel 2010.

And now we wish you lots of success for your work with Microsoft Excel!
Features and Conventions Used in This Book

This book uses special text and design conventions to make it easier for you to find the information you need.

Text Conventions

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviated commands for navigating the ribbon</td>
<td>For your convenience, this book uses abbreviated commands. For example, “Click Home, Insert, Insert Cells” means that you should click the Home tab on the ribbon, then click the Insert button, and finally click the Insert Cells command.</td>
</tr>
<tr>
<td>Boldface type</td>
<td>Boldface indicates text that you type.</td>
</tr>
<tr>
<td>Initial Capital Letters</td>
<td>The first letters of the names of tabs, dialog boxes, dialog box elements, and commands are capitalized. Example: the Save As dialog box.</td>
</tr>
<tr>
<td>Italicized type</td>
<td>Italicized type indicates new terms.</td>
</tr>
<tr>
<td>Plus sign (+) in text</td>
<td>Keyboard shortcuts are indicated by a plus sign (+) separating key names. For example, Ctrl+Alt+Delete means that you press the Ctrl, Alt, and Delete keys at the same time.</td>
</tr>
</tbody>
</table>

Design Conventions

INSIDE OUT

An example of an “Inside Out” heading

These are the book’s signature tips. In these tips, you get the straight scoop on what’s going on with the software—inside information about why a feature works the way it does. You’ll also find handy workarounds to deal with software problems.

Sidebar

Sidebars provide helpful hints, timesaving tricks, or alternative procedures related to the task being discussed.

See Also Cross-references point you to locations in the book that offer additional information about the topic being discussed.
CAUTION

Cautions identify potential problems that you should look out for when you’re completing a task or that you must address before you can complete a task.

Note

Notes offer additional information related to the task being discussed.

Certain parts of the text are specially marked to draw your attention to important comments. We have used the following categories:

<table>
<thead>
<tr>
<th>Category</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note</td>
<td>Additional information about this topic that’s worth knowing</td>
</tr>
<tr>
<td>Important</td>
<td>Makes you aware of facts you must know and keep in mind</td>
</tr>
<tr>
<td>Tip</td>
<td>Tips and tricks regarding the current context</td>
</tr>
</tbody>
</table>

Your Companion eBook

The eBook edition of this book allows you to:

- Search the full text
- Print
- Copy and paste

To download your eBook, please see the instruction page at the back of this book.

Using the Sample Files

You’ll find the sample files that are used in this book at:

http://www.microsoftpressstore.com/title/9780735658028

Important

The Microsoft Excel 2010 software is not available from this website. You should purchase and install that software before using this book.
Microsoft offers special updates and file converters for opening an Excel 2007 and Excel 2010 workbook in a previous Excel versions (97–2003). If the converters are not installed with the Office update, you might be prompted to install them when opening an Excel 2007 or Excel 2010 workbook.

After you install the updates and the converter, you can open Excel 2007 and Excel 2010 workbooks. You can edit and save the workbooks. However, the new features and formats of Excel 2007 and Excel 2010 are not displayed in previous Excel versions. You will find detailed information at the following Microsoft website: http://office.microsoft.com/en-us/excel/HA100775611031.aspx

You should also read the information that is provided for the sample files in each chapter.

The following table lists the names of the sample files that are used in the book. Because some users who are working with older Excel versions (Excel 2000 through Excel 2003) might not be able to open the new file formats of Excel 2007 and Excel 2010 (.xlsx, .xlsm, and so on), the sample files are provided in both formats: .xls (Excel 97 through Excel 2003) and .xlsx (Excel 2007 and Excel 2010).

Important

When you open a sample file in Excel and then close Excel, you can save the file in the same format or in a different format. By default, Excel offers the standard format again. However, if you choose the standard format (*.xlsx), Excel will display a message box that contains the information that you are going to save your work as a macro-free workbook. You should click No and save your work in a macro-enabled file type (*.xlsm).
<table>
<thead>
<tr>
<th>Chapter Folder</th>
<th>Workbook/Worksheet Name</th>
<th>Location and/or Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DifferentialCalculation.xls or</td>
<td>Chapter02 folder</td>
</tr>
<tr>
<td></td>
<td>DifferentialCalculation.xlsx</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lookup.xls or Lookup.xlsx</td>
<td>Chapter02 folder</td>
</tr>
<tr>
<td></td>
<td>Practice_Statistics.xls or</td>
<td>Chapter02 folder</td>
</tr>
<tr>
<td></td>
<td>Practice_Statistics.xlsx</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DBFunction empty.xls or</td>
<td>Chapter02 folder</td>
</tr>
<tr>
<td></td>
<td>DBFunction empty.xlsx</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Practice_Database.xls or</td>
<td>Chapter02 folder</td>
</tr>
<tr>
<td></td>
<td>Practice_Database.xlsx</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Financial mathematics.xls or</td>
<td>Chapter02 folder</td>
</tr>
<tr>
<td></td>
<td>Financial mathematics.xlsx</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Math.xls or Math.xlsx</td>
<td>Chapter02 folder</td>
</tr>
<tr>
<td>Chapter03</td>
<td>Arithmetic Operators</td>
<td>Chapter03.xls or Chapter03.xlsx</td>
</tr>
<tr>
<td></td>
<td>Priority</td>
<td>Chapter03.xls or Chapter03.xlsx</td>
</tr>
<tr>
<td></td>
<td>Comparison Operators</td>
<td>Chapter03.xls or Chapter03.xlsx</td>
</tr>
<tr>
<td></td>
<td>Text Operator</td>
<td>Chapter03.xls or Chapter03.xlsx</td>
</tr>
<tr>
<td></td>
<td>Relative Reference</td>
<td>Chapter03.xls or Chapter03.xlsx</td>
</tr>
<tr>
<td></td>
<td>Absolute Reference</td>
<td>Chapter03.xls or Chapter03.xlsx</td>
</tr>
<tr>
<td></td>
<td>Mixed Reference</td>
<td>Chapter03.xls or Chapter03.xlsx</td>
</tr>
<tr>
<td></td>
<td>Array Formula</td>
<td>Chapter03.xls or Chapter03.xlsx</td>
</tr>
<tr>
<td>Chapter05</td>
<td>Fct_Names</td>
<td>Chapter05_Names.xls or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chapter05_Names.xlsx</td>
</tr>
<tr>
<td></td>
<td>Comparison</td>
<td>Chapter05_CF.xls or Chapter05_CF.xlsx</td>
</tr>
<tr>
<td></td>
<td>Training</td>
<td>Chapter05_Names.xls or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chapter05_Names.xlsx</td>
</tr>
<tr>
<td></td>
<td>Weekend</td>
<td>Chapter05_CF.xls or Chapter05_CF.xlsx</td>
</tr>
<tr>
<td></td>
<td>Holidays</td>
<td>Chapter05_CF.xls or Chapter05_CF.xlsx</td>
</tr>
<tr>
<td></td>
<td>Accident1, Accident2</td>
<td>Chapter05_CF.xls or Chapter05_CF.xlsx</td>
</tr>
<tr>
<td></td>
<td>Print Layout</td>
<td>Chapter05_CF.xls or Chapter05_CF.xlsx</td>
</tr>
<tr>
<td></td>
<td>Top3</td>
<td>Chapter05_CF.xls or Chapter05_CF.xlsx</td>
</tr>
<tr>
<td></td>
<td>Empty</td>
<td>Chapter05_CF.xls or Chapter05_CF.xlsx</td>
</tr>
<tr>
<td></td>
<td>Credit</td>
<td>Chapter05_CF.xls or Chapter05_CF.xlsx</td>
</tr>
<tr>
<td></td>
<td>Groups</td>
<td>Chapter05_CF.xls or Chapter05_CF.xlsx</td>
</tr>
<tr>
<td></td>
<td>Subtotals</td>
<td>Chapter05_CF.xls or Chapter05_CF.xlsx</td>
</tr>
<tr>
<td></td>
<td>Depending list, Paygrouplist</td>
<td>Chapter05_DV.xls or Chapter05_DV.xlsx</td>
</tr>
<tr>
<td></td>
<td>Duplicates</td>
<td>Chapter05_DV.xls or Chapter05_DV.xlsx</td>
</tr>
<tr>
<td></td>
<td>Completed</td>
<td>Chapter05_DV.xls or Chapter05_DV.xlsx</td>
</tr>
<tr>
<td>Chapter Folder</td>
<td>Workbook/Worksheet Name</td>
<td>Location and/or Description</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Chapter06</td>
<td>Circle</td>
<td>Geometry.xls or Geometry.xlsm</td>
</tr>
<tr>
<td></td>
<td>Fundamentals</td>
<td>Geometry.xls or Geometry.xlsm</td>
</tr>
<tr>
<td></td>
<td>Quadrilateral</td>
<td>Geometry.xls or Geometry.xlsm</td>
</tr>
<tr>
<td></td>
<td>Sector of a circle</td>
<td>Geometry.xls or Geometry.xlsm</td>
</tr>
<tr>
<td>Chapter07</td>
<td>WORKDAY</td>
<td>Date_Time.xls or Date_Time.xlsx</td>
</tr>
<tr>
<td></td>
<td>WORKDAY.INTL</td>
<td>Date_Time.xlsx</td>
</tr>
<tr>
<td></td>
<td>Practice</td>
<td>Date_Time.xls or Date_Time.xlsx</td>
</tr>
<tr>
<td></td>
<td>YEARFRAC</td>
<td>Date_Time.xls or Date_Time.xlsx</td>
</tr>
<tr>
<td></td>
<td>DATEDIF</td>
<td>Date_Time.xls or Date_Time.xlsx</td>
</tr>
<tr>
<td></td>
<td>DATE</td>
<td>Date_Time.xls or Date_Time.xlsx</td>
</tr>
<tr>
<td></td>
<td>DATEVALUE</td>
<td>Date_Time.xls or Date_Time.xlsx</td>
</tr>
<tr>
<td></td>
<td>EDATE</td>
<td>Date_Time.xls or Date_Time.xlsx</td>
</tr>
<tr>
<td></td>
<td>TODAY</td>
<td>Date_Time.xls or Date_Time.xlsx</td>
</tr>
<tr>
<td></td>
<td>YEAR</td>
<td>Date_Time.xls or Date_Time.xlsx</td>
</tr>
<tr>
<td></td>
<td>NOW</td>
<td>Date_Time.xls or Date_Time.xlsx</td>
</tr>
<tr>
<td></td>
<td>WEEKNUM</td>
<td>Date_Time.xls or Date_Time.xlsx</td>
</tr>
<tr>
<td></td>
<td>MINUTE</td>
<td>Date_Time.xls or Date_Time.xlsx</td>
</tr>
<tr>
<td></td>
<td>MONTH</td>
<td>Date_Time.xls or Date_Time.xlsx</td>
</tr>
<tr>
<td></td>
<td>EOMONTH</td>
<td>Date_Time.xls or Date_Time.xlsx</td>
</tr>
<tr>
<td></td>
<td>NETWORKDAYS</td>
<td>Date_Time.xls or Date_Time.xlsx</td>
</tr>
<tr>
<td></td>
<td>NETWORKDAYS.INTL</td>
<td>Date_Time.xlsx</td>
</tr>
<tr>
<td></td>
<td>SECOND</td>
<td>Date_Time.xls or Date_Time.xlsx</td>
</tr>
<tr>
<td></td>
<td>HOUR</td>
<td>Date_Time.xls or Date_Time.xlsx</td>
</tr>
<tr>
<td></td>
<td>DAY</td>
<td>Date_Time.xls or Date_Time.xlsx</td>
</tr>
<tr>
<td></td>
<td>DAYS360</td>
<td>Date_Time.xls or Date_Time.xlsx</td>
</tr>
<tr>
<td></td>
<td>WEEKDAY</td>
<td>Date_Time.xls or Date_Time.xlsx</td>
</tr>
<tr>
<td></td>
<td>TIME</td>
<td>Date_Time.xls or Date_Time.xlsx</td>
</tr>
<tr>
<td></td>
<td>TIMEVALUE</td>
<td>Date_Time.xls or Date_Time.xlsx</td>
</tr>
<tr>
<td>Chapter08</td>
<td>ASC</td>
<td>Text_Data.xls or Text_Data.xlsx</td>
</tr>
<tr>
<td></td>
<td>BAHTTEXT</td>
<td>Text_Data.xls or Text_Data.xlsx</td>
</tr>
<tr>
<td></td>
<td>CODE</td>
<td>Text_Data.xls or Text_Data.xlsx</td>
</tr>
<tr>
<td></td>
<td>DOLLAR</td>
<td>Text_Data.xls or Text_Data.xlsx</td>
</tr>
<tr>
<td></td>
<td>REPLACE</td>
<td>Text_Data.xls or Text_Data.xlsx</td>
</tr>
<tr>
<td></td>
<td>FIXED</td>
<td>Text_Data.xls or Text_Data.xlsx</td>
</tr>
<tr>
<td></td>
<td>FIND</td>
<td>Text_Data.xls or Text_Data.xlsx</td>
</tr>
<tr>
<td>Chapter Folder</td>
<td>Workbook/Worksheet Name</td>
<td>Location and/or Description</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td>TRIM</td>
<td>Text_Data.xls or Text_Data.xlsx</td>
</tr>
<tr>
<td></td>
<td>UPPER</td>
<td>Text_Data.xls or Text_Data.xlsx</td>
</tr>
<tr>
<td></td>
<td>PROPER</td>
<td>Text_Data.xls or Text_Data.xlsx</td>
</tr>
<tr>
<td></td>
<td>EXACT</td>
<td>Text_Data.xls or Text_Data.xlsx</td>
</tr>
<tr>
<td></td>
<td>LOWER</td>
<td>Text_Data.xls or Text_Data.xlsx</td>
</tr>
<tr>
<td></td>
<td>LEN</td>
<td>Text_Data.xls or Text_Data.xlsx</td>
</tr>
<tr>
<td></td>
<td>LEFT</td>
<td>Text_Data.xls or Text_Data.xlsx</td>
</tr>
<tr>
<td></td>
<td>RIGHT</td>
<td>Text_Data.xls or Text_Data.xlsx</td>
</tr>
<tr>
<td></td>
<td>CLEAN</td>
<td>Text_Data.xls or Text_Data.xlsx</td>
</tr>
<tr>
<td></td>
<td>SEARCH</td>
<td>Text_Data.xls or Text_Data.xlsx</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>Text_Data.xls or Text_Data.xlsx</td>
</tr>
<tr>
<td></td>
<td>MID</td>
<td>Text_Data.xls or Text_Data.xlsx</td>
</tr>
<tr>
<td></td>
<td>TEXT</td>
<td>Text_Data.xls or Text_Data.xlsx</td>
</tr>
<tr>
<td></td>
<td>CONCATENATE</td>
<td>Text_Data.xls or Text_Data.xlsx</td>
</tr>
<tr>
<td></td>
<td>SUBSTITUTE</td>
<td>Text_Data.xls or Text_Data.xlsx</td>
</tr>
<tr>
<td></td>
<td>VALUE</td>
<td>Text_Data.xls or Text_Data.xlsx</td>
</tr>
<tr>
<td></td>
<td>REPT</td>
<td>Text_Data.xls or Text_Data.xlsx</td>
</tr>
<tr>
<td></td>
<td>CHAR</td>
<td>Text_Data.xls or Text_Data.xlsx</td>
</tr>
<tr>
<td>Chapter09</td>
<td>Samples</td>
<td>Logical_values.xls or Logical_values.xlsx</td>
</tr>
<tr>
<td></td>
<td>Properties and Interpretation</td>
<td>Logical_values.xls or Logical_values.xlsx</td>
</tr>
<tr>
<td></td>
<td>IF</td>
<td>Logical_values.xls or Logical_values.xlsx</td>
</tr>
<tr>
<td>Chapter10</td>
<td>Address.xls or Address.xlsx</td>
<td>Chapter10 folder</td>
</tr>
<tr>
<td></td>
<td>Offset.xls or Offset.xlsx</td>
<td>Chapter10 folder</td>
</tr>
<tr>
<td></td>
<td>References.xls or References.xlsx</td>
<td>Chapter10 folder</td>
</tr>
<tr>
<td></td>
<td>Misc</td>
<td>References.xls or References.xlsx</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>References.xls or References.xlsx</td>
</tr>
<tr>
<td></td>
<td>MTRANS</td>
<td>References.xls or References.xlsx</td>
</tr>
<tr>
<td></td>
<td>exampleRTD.xls, exampleRTD.xlsx, exampleRTD.xlsm, exampleRTD.dll</td>
<td>Chapter10 folder</td>
</tr>
<tr>
<td></td>
<td>Column-Row</td>
<td>References.xls or References.xlsx</td>
</tr>
<tr>
<td></td>
<td>LOOKUP</td>
<td>Lookups.xls or Lookups.xlsx</td>
</tr>
<tr>
<td></td>
<td>test.doc or test.docx</td>
<td>Chapter10 folder</td>
</tr>
<tr>
<td></td>
<td>VLOOKUP</td>
<td>Lookups.xls or Lookups.xlsx</td>
</tr>
<tr>
<td></td>
<td>MATCH</td>
<td>Lookups.xls or Lookups.xlsx</td>
</tr>
<tr>
<td></td>
<td>HLOOKUP</td>
<td>Lookups.xls or Lookups.xlsx</td>
</tr>
<tr>
<td>Chapter Folder</td>
<td>Workbook/Worksheet Name</td>
<td>Location and/or Description</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Chapter11</td>
<td>Misc</td>
<td>Informations.xls or Informations.xlsm</td>
</tr>
<tr>
<td></td>
<td>Error</td>
<td>Informations.xls or Informations.xlsm</td>
</tr>
<tr>
<td></td>
<td>Info</td>
<td>Informations.xls or Informations.xlsm</td>
</tr>
<tr>
<td></td>
<td>IS-functions</td>
<td>Informations.xls or Informations.xlsm</td>
</tr>
<tr>
<td></td>
<td>ISEVEN</td>
<td>Informations.xls or Informations.xlsm</td>
</tr>
<tr>
<td></td>
<td>ISODD</td>
<td>Informations.xls or Informations.xlsm</td>
</tr>
<tr>
<td></td>
<td>NA</td>
<td>Informations.xls or Informations.xlsm</td>
</tr>
<tr>
<td></td>
<td>Cell</td>
<td>Informations.xls or Informations.xlsm</td>
</tr>
<tr>
<td>Chapter12</td>
<td>INTERCEPT</td>
<td>Regression.xls or Regression.xlsx</td>
</tr>
<tr>
<td></td>
<td>RSQ</td>
<td>Regression.xls or Regression.xlsx</td>
</tr>
<tr>
<td></td>
<td>BETAINV or BETA.INV</td>
<td>Probability.xls or Probability.xlsx</td>
</tr>
<tr>
<td></td>
<td>BETADIST or BETA.DIST</td>
<td>Probability.xls or Probability.xlsx</td>
</tr>
<tr>
<td></td>
<td>BINOM.INV</td>
<td>Probability.xls</td>
</tr>
<tr>
<td></td>
<td>BINOMDIST or BINOM.DIST</td>
<td>Probability.xls or Probability.xlsx</td>
</tr>
<tr>
<td></td>
<td>CHIINV or CHI.INV</td>
<td>Probability.xls or Probability.xlsx</td>
</tr>
<tr>
<td></td>
<td>CHISQ.INV or CHISQ.INV.RT</td>
<td>Probability.xlsx</td>
</tr>
<tr>
<td></td>
<td>CHITEST or CHI.TEST or CHISQ.TEST</td>
<td>Probability.xls or Probability.xlsx</td>
</tr>
<tr>
<td></td>
<td>CHIDIST or CHISQ.DIST or CHISQ.DIST.RT</td>
<td>Probability.xls or Probability.xlsx</td>
</tr>
<tr>
<td></td>
<td>CRITBINOM</td>
<td>Probability.xls or Probability.xlsx</td>
</tr>
<tr>
<td></td>
<td>EXPONDIST or EXPON.DIST</td>
<td>Probability.xls or Probability.xlsx</td>
</tr>
<tr>
<td></td>
<td>FINV or F.INV or F.INV.RT</td>
<td>Probability.xls or Probability.xlsx</td>
</tr>
<tr>
<td></td>
<td>FISHER</td>
<td>Probability.xls or Probability.xlsx</td>
</tr>
<tr>
<td></td>
<td>FISHERINV or FISHER.INV</td>
<td>Probability.xls or Probability.xlsx</td>
</tr>
<tr>
<td></td>
<td>FTEST or F.TEST</td>
<td>Probability.xls or Probability.xlsx</td>
</tr>
<tr>
<td></td>
<td>FDIST or F.DIST or F.DIST.RT</td>
<td>Probability.xls or Probability.xlsx</td>
</tr>
<tr>
<td></td>
<td>GAMMAINV or GAMMA.INV</td>
<td>Probability.xls or Probability.xlsx</td>
</tr>
<tr>
<td></td>
<td>GAMMALN</td>
<td>Probability.xls or Probability.xlsx</td>
</tr>
<tr>
<td></td>
<td>GAMMALN.PRECISE</td>
<td>Probability.xls or Probability.xlsx</td>
</tr>
<tr>
<td></td>
<td>GAMMADIST or GAMMA.DIST</td>
<td>Probability.xls or Probability.xlsx</td>
</tr>
<tr>
<td></td>
<td>GEOMEAN</td>
<td>Average.xls or Average.xlsx</td>
</tr>
<tr>
<td></td>
<td>TRIMMEAN</td>
<td>Average.xls or Average.xlsx</td>
</tr>
<tr>
<td></td>
<td>ZTEST or Z.TEST</td>
<td>Probability.xls or Probability.xlsx</td>
</tr>
<tr>
<td></td>
<td>HARMEAN</td>
<td>Average.xls or Average.xlsx</td>
</tr>
<tr>
<td>Chapter Folder</td>
<td>Workbook/Worksheet Name</td>
<td>Location and/or Description</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Web access</td>
<td>WEBACCESS.xls or WEBACCESS.xlsx</td>
<td></td>
</tr>
<tr>
<td>COUNT</td>
<td>Count.xls or Count.xlsx</td>
<td></td>
</tr>
<tr>
<td>COUNTA</td>
<td>Count.xls or Count.xlsx</td>
<td></td>
</tr>
<tr>
<td>COUNTBLANK</td>
<td>Count.xls or Count.xlsx</td>
<td></td>
</tr>
<tr>
<td>FREQUENCY</td>
<td>Count.xls or Count.xlsx</td>
<td></td>
</tr>
<tr>
<td>HYPGEOMDIST or HYPGEOM.DIST</td>
<td>Probability.xls or Probability.xlsx</td>
<td></td>
</tr>
<tr>
<td>LARGE</td>
<td>Count.xls or Count.xlsx</td>
<td></td>
</tr>
<tr>
<td>SMALL</td>
<td>Count.xls or Count.xlsx</td>
<td></td>
</tr>
<tr>
<td>CONFIDENCE or CONFIDENCE.NORM</td>
<td>Probability.xls or Probability.xlsx</td>
<td></td>
</tr>
<tr>
<td>CONFIDENCE.T</td>
<td>Probability.xls or Probability.xlsx</td>
<td></td>
</tr>
<tr>
<td>CORREL</td>
<td>Probability.xls or Probability.xlsx</td>
<td></td>
</tr>
<tr>
<td>COVAR</td>
<td>Regression.xls or Regression.xlsx</td>
<td></td>
</tr>
<tr>
<td>COVARIANCE.P</td>
<td>Regression.xls or Regression.xlsx</td>
<td></td>
</tr>
<tr>
<td>COVARIANCE.S</td>
<td>Regression.xls or Regression.xlsx</td>
<td></td>
</tr>
<tr>
<td>KURT</td>
<td>Symmetry.xls or Symmetry.xlsx</td>
<td></td>
</tr>
<tr>
<td>LOGINV or LOGNORM.INV</td>
<td>Probability.xls or Probability.xlsx</td>
<td></td>
</tr>
<tr>
<td>LOGNORMDIST or LOGNORM.DIST</td>
<td>Probability.xls or Probability.xlsx</td>
<td></td>
</tr>
<tr>
<td>MAX&MIN</td>
<td>Count.xls or Count.xlsx</td>
<td></td>
</tr>
<tr>
<td>MAXA&MINA</td>
<td>Count.xls or Count.xlsx</td>
<td></td>
</tr>
<tr>
<td>MEDIAN</td>
<td>Average.xls or Average.xlsx</td>
<td></td>
</tr>
<tr>
<td>AVEDEV</td>
<td>Variance.xls or Variance.xlsx</td>
<td></td>
</tr>
<tr>
<td>AVERAGE</td>
<td>Average.xls or Average.xlsx</td>
<td></td>
</tr>
<tr>
<td>AVERAGEA</td>
<td>Average.xls or Average.xlsx</td>
<td></td>
</tr>
<tr>
<td>AVERAGEIF</td>
<td>Average.xls or Average.xlsx</td>
<td></td>
</tr>
<tr>
<td>AVERAGEIFS</td>
<td>Average.xlsx</td>
<td></td>
</tr>
<tr>
<td>MODE or MODE.SNGL</td>
<td>Average.xls or Average.xlsx</td>
<td></td>
</tr>
<tr>
<td>MODE.MULT</td>
<td>Average.xlsx</td>
<td></td>
</tr>
<tr>
<td>NEGBINOMDIST or NEGBINOM.DIST</td>
<td>Probability.xls or Probability.xlsx</td>
<td></td>
</tr>
<tr>
<td>NORMINV or NORM.INV</td>
<td>Probability.xls or Probability.xlsx</td>
<td></td>
</tr>
<tr>
<td>NORMSINV or NORM.S.INV</td>
<td>Probability.xls or Probability.xlsx</td>
<td></td>
</tr>
<tr>
<td>NORMDIST, NORMSDIST or NORM.DIST or NORM.S.DIST</td>
<td>Probability.xls or Probability.xlsx</td>
<td></td>
</tr>
<tr>
<td>Chapter Folder</td>
<td>Workbook/Worksheet Name</td>
<td>Location and/or Description</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>PEARSON</td>
<td>Regression.xls or Regression.xlsx</td>
<td></td>
</tr>
<tr>
<td>POISSON or POISSON.DIST</td>
<td>Probability.xls or Probability.xlsx</td>
<td></td>
</tr>
<tr>
<td>PERCENTILE</td>
<td>Average.xls or Average.xlsx</td>
<td></td>
</tr>
<tr>
<td>PERCENTILE.INC or PERCENTILE.EXC</td>
<td>Average.xlsx</td>
<td></td>
</tr>
<tr>
<td>PERCENTRANK</td>
<td>Average.xls or Average.xlsx</td>
<td></td>
</tr>
<tr>
<td>PERCENTRANK.INC or PERCENTRANK.EXC</td>
<td>Average.xlsx</td>
<td></td>
</tr>
<tr>
<td>QUARTILE</td>
<td>Average.xls or Average.xlsx</td>
<td></td>
</tr>
<tr>
<td>QUARTILE.INC or QUARTILE.EXC</td>
<td>Average.xlsx</td>
<td></td>
</tr>
<tr>
<td>RANK</td>
<td>Count.xls or Count.xlsx</td>
<td></td>
</tr>
<tr>
<td>RANK.EQ</td>
<td>Count.xlsx</td>
<td></td>
</tr>
<tr>
<td>RANK.AVG</td>
<td>Count.xlsx</td>
<td></td>
</tr>
<tr>
<td>LINEST</td>
<td>Regression.xls or Regression.xlsx</td>
<td></td>
</tr>
<tr>
<td>LOGEST</td>
<td>Regression.xls or Regression.xlsx</td>
<td></td>
</tr>
<tr>
<td>FORECAST</td>
<td>Regression.xls or Regression.xlsx</td>
<td></td>
</tr>
<tr>
<td>SKEW</td>
<td>Symmetry.xls or Symmetry.xlsx</td>
<td></td>
</tr>
<tr>
<td>STDEV or STDEVS</td>
<td>Variance.xls or Variance.xlsx</td>
<td></td>
</tr>
<tr>
<td>STDEVA</td>
<td>Variance.xlsx</td>
<td></td>
</tr>
<tr>
<td>STDEVVP or STDEVP</td>
<td>Variance.xls or Variance.xlsx</td>
<td></td>
</tr>
<tr>
<td>STDEVPA</td>
<td>Variance.xlsx</td>
<td></td>
</tr>
<tr>
<td>STANDARDIZE</td>
<td>Probability.xls or Probability.xlsx</td>
<td></td>
</tr>
<tr>
<td>SLOPE</td>
<td>Regression.xls or Regression.xlsx</td>
<td></td>
</tr>
<tr>
<td>STEYX</td>
<td>Probability.xls or Probability.xlsx</td>
<td></td>
</tr>
<tr>
<td>DEVSQ</td>
<td>Regression.xls or Regression.xlsx</td>
<td></td>
</tr>
<tr>
<td>TINV or T.INV or T.INV.2T</td>
<td>Probability.xls or Probability.xlsx</td>
<td></td>
</tr>
<tr>
<td>TREND</td>
<td>Regression.xls or Regression.xlsx</td>
<td></td>
</tr>
<tr>
<td>TTEST or T.TEST</td>
<td>Probability.xls or Probability.xlsx</td>
<td></td>
</tr>
<tr>
<td>TDIST or T.DIST or T.DIST.2T</td>
<td>Probability.xls or Probability.xlsx</td>
<td></td>
</tr>
<tr>
<td>T.DIST.RT</td>
<td>Probability.xlsx</td>
<td></td>
</tr>
<tr>
<td>VAR or VAR.S</td>
<td>Variance.xls or Variance.xlsx</td>
<td></td>
</tr>
<tr>
<td>VARA</td>
<td>Variance.xlsx or Variance.xlsx</td>
<td></td>
</tr>
<tr>
<td>VARP or VAR.P</td>
<td>Variance.xls or Variance.xlsx</td>
<td></td>
</tr>
<tr>
<td>VARPA</td>
<td>Variance.xls or Variance.xlsx</td>
<td></td>
</tr>
<tr>
<td>GROWTH</td>
<td>Regression.xls or Regression.xlsx</td>
<td></td>
</tr>
<tr>
<td>Chapter Folder</td>
<td>Workbook/Worksheet Name</td>
<td>Location and/or Description</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>PERMUT</td>
<td>Probability.xls or Probability.xlsx</td>
<td></td>
</tr>
<tr>
<td>PROB</td>
<td>Probability.xls or Probability.xlsx</td>
<td></td>
</tr>
<tr>
<td>WEIBULL or WEIBULL.DIST</td>
<td>Probability.xls or Probability.xlsx</td>
<td></td>
</tr>
<tr>
<td>COUNTIF</td>
<td>Count.xls or Count.xlsx</td>
<td></td>
</tr>
<tr>
<td>COUNTIFS</td>
<td>Count.xlsx</td>
<td></td>
</tr>
<tr>
<td>Chapter13</td>
<td>Raw data</td>
<td>DBFUNCTION_empty.xls or DBFUNCTION_empty.xlsx</td>
</tr>
<tr>
<td>DCOUNT</td>
<td>DBFUNCTION2.xls or DBFUNCTION2.xlsx</td>
<td></td>
</tr>
<tr>
<td>DCOUNTA</td>
<td>DBFUNCTION2.xls or DBFUNCTION2.xlsx</td>
<td></td>
</tr>
<tr>
<td>DGET</td>
<td>DBFUNCTION2.xls or DBFUNCTION2.xlsx</td>
<td></td>
</tr>
<tr>
<td>DMAX or DMIN</td>
<td>DBFUNCTION2.xls or DBFUNCTION2.xlsx</td>
<td></td>
</tr>
<tr>
<td>DAVERAGE</td>
<td>DBFUNCTION2.xls or DBFUNCTION2.xlsx</td>
<td></td>
</tr>
<tr>
<td>DPPRODUCT</td>
<td>DBFUNCTION2.xls or DBFUNCTION2.xlsx</td>
<td></td>
</tr>
<tr>
<td>DSTDEV</td>
<td>DBFUNCTION2.xls or DBFUNCTION2.xlsx</td>
<td></td>
</tr>
<tr>
<td>DSTDEVP</td>
<td>DBFUNCTION2.xls or DBFUNCTION2.xlsx</td>
<td></td>
</tr>
<tr>
<td>DSUM</td>
<td>DBFUNCTION2.xls or DBFUNCTION2.xlsx</td>
<td></td>
</tr>
<tr>
<td>DVAR</td>
<td>DBFUNCTION2.xls or DBFUNCTION2.xlsx</td>
<td></td>
</tr>
<tr>
<td>DVARP</td>
<td>DBFUNCTION2.xls or DBFUNCTION2.xlsx</td>
<td></td>
</tr>
<tr>
<td>GETPIVOTDATA</td>
<td>DBFUNCTION2.xls or DBFUNCTION2.xlsx</td>
<td></td>
</tr>
<tr>
<td>Chapter14</td>
<td>Cube Test.cub</td>
<td>Use the offline cube file to test the cube functions without Microsoft Analysis Services</td>
</tr>
<tr>
<td>offline cubeTest.xlsx</td>
<td>This workbook contains the example applications for the cube functions</td>
<td></td>
</tr>
<tr>
<td>offLine.odc</td>
<td>Use the office data connection file to access data through workbook connections</td>
<td></td>
</tr>
<tr>
<td>offline.oqy</td>
<td>Use the office data connection file to access data through Microsoft Query</td>
<td></td>
</tr>
<tr>
<td>Chapter Folder</td>
<td>Workbook/Worksheet Name</td>
<td>Location and/or Description</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Chapter15</td>
<td>AMORDEGRC</td>
<td>Depreciation Calculation.xls or Depreciation Calculation.xlsx</td>
</tr>
<tr>
<td></td>
<td>AMORLINC</td>
<td>Depreciation Calculation.xls or Depreciation Calculation.xlsx</td>
</tr>
<tr>
<td></td>
<td>ACCRINT</td>
<td>Simple Interest Calculation.xls or Simple Interest Calculation.xlsx</td>
</tr>
<tr>
<td></td>
<td>ACCRINTM</td>
<td>Simple Interest Calculation.xls or Simple Interest Calculation.xlsx</td>
</tr>
<tr>
<td></td>
<td>Bill of Exchange</td>
<td>Simple Interest Calculation.xls or Simple Interest Calculation.xlsx</td>
</tr>
<tr>
<td></td>
<td>PV</td>
<td>Compound Interest Calculation.xls or Compound Interest Calculation.xlsx; Repayment Calculation.xls or Repayment Calculation.xlsx; Annuity Calculation.xls or Annuity Calculation.xlsx</td>
</tr>
<tr>
<td></td>
<td>SYD</td>
<td>Depreciation Calculation.xls or Depreciation Calculation.xlsx</td>
</tr>
<tr>
<td></td>
<td>Treasury Bonds</td>
<td>Simple Interest Calculation.xls or Simple Interest Calculation.xlsx</td>
</tr>
<tr>
<td></td>
<td>DURATION</td>
<td>Price Calculation.xls or Price Calculation.xlsx</td>
</tr>
<tr>
<td></td>
<td>EFFECT</td>
<td>Compound Interest Calculation.xls or Compound Interest Calculation.xlsx</td>
</tr>
<tr>
<td></td>
<td>DDB</td>
<td>Depreciation Calculation.xls or Depreciation Calculation.xlsx</td>
</tr>
<tr>
<td></td>
<td>DB</td>
<td>Depreciation Calculation.xls or Depreciation Calculation.xlsx</td>
</tr>
<tr>
<td></td>
<td>IRR</td>
<td>Investment Calculation.xls or Investment Calculation.xlsx</td>
</tr>
<tr>
<td></td>
<td>ISPMT</td>
<td>Simple Interest Calculation.xls or Simple Interest Calculation.xlsx</td>
</tr>
<tr>
<td></td>
<td>PRICE</td>
<td>Price Calculation.xls or Price Calculation.xlsx</td>
</tr>
<tr>
<td></td>
<td>SLN</td>
<td>Depreciation Calculation.xls or Depreciation Calculation.xlsx</td>
</tr>
<tr>
<td></td>
<td>MDURATION</td>
<td>Price Calculation.xls or Price Calculation.xlsx</td>
</tr>
<tr>
<td></td>
<td>NPV</td>
<td>Investment Calculation.xls or Investment Calculation.xlsx</td>
</tr>
<tr>
<td>Chapter Folder</td>
<td>Workbook/Worksheet Name</td>
<td>Location and/or Description</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>DOLLARFR</td>
<td>Other.xls or Other.xlsx</td>
<td></td>
</tr>
<tr>
<td>DOLLARDE</td>
<td>Other.xls or Other.xlsx</td>
<td></td>
</tr>
<tr>
<td>MIRR</td>
<td>Investment Calculation.xls or Investment Calculation.xlsx</td>
<td></td>
</tr>
<tr>
<td>YIELD</td>
<td>Price Calculation.xls or Price Calculation.xlsx</td>
<td></td>
</tr>
<tr>
<td>YIELDMAT</td>
<td>Simple Interest Calculation.xls or Simple Interest Calculation.xlsx</td>
<td></td>
</tr>
<tr>
<td>PMT</td>
<td>Annuity Calculation.xls or Annuity Calculation.xlsx</td>
<td></td>
</tr>
<tr>
<td>TBILL</td>
<td>Simple Interest Calculation.xls or Simple Interest Calculation.xlsx</td>
<td></td>
</tr>
<tr>
<td>ODDFPRICE</td>
<td>Price Calculation.xls or Price Calculation.xlsx</td>
<td></td>
</tr>
<tr>
<td>ODDFYIELD</td>
<td>Price Calculation.xls or Price Calculation.xlsx</td>
<td></td>
</tr>
<tr>
<td>ODDLPRICE</td>
<td>Simple Interest Calculation.xls or Simple Interest Calculation.xlsx</td>
<td></td>
</tr>
<tr>
<td>ODDLYIELD</td>
<td>Simple Interest Calculation.xls or Simple Interest Calculation.xlsx</td>
<td></td>
</tr>
<tr>
<td>VDB</td>
<td>Found in Depreciation Calculation.xls or Depreciation Calculation.xlsx</td>
<td></td>
</tr>
<tr>
<td>XIRR</td>
<td>Investment Calculation.xls or Investment Calculation.xlsx</td>
<td></td>
</tr>
<tr>
<td>XNPV</td>
<td>Investment Calculation.xls or Investment Calculation.xlsx</td>
<td></td>
</tr>
<tr>
<td>RATE</td>
<td>Compound Interest Calculation.xls or Compound Interest Calculation.xlsx; Annuity Calculation.xls or Annuity Calculation.xlsx</td>
<td></td>
</tr>
<tr>
<td>PRICE and YIELD</td>
<td>Price Calculation.xls or Price Calculation.xlsx</td>
<td></td>
</tr>
<tr>
<td>FV</td>
<td>Compound Interest Calculation.xls or Compound Interest Calculation.xlsx; Annuity Calculation.xls or Annuity Calculation.xlsx; Repayment Calculation.xlsx or Repayment Calculation.xlsx</td>
<td></td>
</tr>
<tr>
<td>FVSCHEDULE</td>
<td>Compound Interest Calculation.xls or Compound Interest Calculation.xlsx</td>
<td></td>
</tr>
<tr>
<td>Chapter Folder</td>
<td>Workbook/Worksheet Name</td>
<td>Location and/or Description</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>NPER</td>
<td>NPER Compound Interest Calculation.xls or NPER Compound Interest Calculation.xlsx; Annuity Calculation.xls or Annuity Calculation.xlsx; or Repayment Calculation.xls or Repayment Calculation.xlsx</td>
<td></td>
</tr>
<tr>
<td>Chapter16</td>
<td>AGGREGATE.xlsx</td>
<td>Chapter16 folder</td>
</tr>
<tr>
<td>ARRAY_FUNCTION</td>
<td>Chapter16.xls or Chapter16.xlsx</td>
<td></td>
</tr>
<tr>
<td>ARRAY_FUNCTION2</td>
<td>Chapter16.xls or Chapter16.xlsx</td>
<td></td>
</tr>
<tr>
<td>ATAN2</td>
<td>Chapter16.xls or Chapter16.xlsx</td>
<td></td>
</tr>
<tr>
<td>COMBIN</td>
<td>Chapter16.xls or Chapter16.xlsx</td>
<td></td>
</tr>
<tr>
<td>Data&Chart and Example</td>
<td>ACosH.xls or ACosH.xlsx</td>
<td></td>
</tr>
<tr>
<td>Data&Chart</td>
<td>ASinH.xls or ASinH.xlsx</td>
<td></td>
</tr>
<tr>
<td>Data&Chart</td>
<td>ATanH.xls or ATanH.xlsx</td>
<td></td>
</tr>
<tr>
<td>Data&Chart and Example</td>
<td>CosH.xls or CosH.xlsx</td>
<td></td>
</tr>
<tr>
<td>Data&Chart and Distribution</td>
<td>SinH.xls or SinH.xlsx</td>
<td></td>
</tr>
<tr>
<td>Data&Chart and Water waves</td>
<td>TanH.xls or TanH.xlsx</td>
<td></td>
</tr>
<tr>
<td>EXP</td>
<td>Chapter16.xls or Chapter16.xlsx</td>
<td></td>
</tr>
<tr>
<td>EXP_LOG_LN</td>
<td>Chapter16.xls or Chapter16.xlsx</td>
<td></td>
</tr>
<tr>
<td>FACT</td>
<td>Chapter16.xls or Chapter16.xlsx</td>
<td></td>
</tr>
<tr>
<td>FLOOR</td>
<td>Chapter16.xls or Chapter16.xlsx</td>
<td></td>
</tr>
<tr>
<td>GCD_LCM</td>
<td>Chapter16.xls or Chapter16.xlsx</td>
<td></td>
</tr>
<tr>
<td>LOG_LN</td>
<td>Chapter16.xls or Chapter16.xlsx</td>
<td></td>
</tr>
<tr>
<td>MOD</td>
<td>Chapter16.xls or Chapter16.xlsx</td>
<td></td>
</tr>
<tr>
<td>POWER</td>
<td>Chapter16.xls or Chapter16.xlsx</td>
<td></td>
</tr>
<tr>
<td>PRODUCT</td>
<td>Chapter16.xls or Chapter16.xlsx</td>
<td></td>
</tr>
<tr>
<td>PRODUCT_SUM</td>
<td>Chapter16.xls or Chapter16.xlsx</td>
<td></td>
</tr>
<tr>
<td>RAND</td>
<td>Chapter16.xls or Chapter16.xlsx</td>
<td></td>
</tr>
<tr>
<td>ROMAN</td>
<td>Chapter16.xls or Chapter16.xlsx</td>
<td></td>
</tr>
<tr>
<td>ROUND</td>
<td>Chapter16.xls or Chapter16.xlsx</td>
<td></td>
</tr>
<tr>
<td>ROUNDDUP</td>
<td>Chapter16.xls or Chapter16.xlsx</td>
<td></td>
</tr>
<tr>
<td>Seriessum</td>
<td>Seriessum.xls or Seriessum.xlsx</td>
<td></td>
</tr>
<tr>
<td>SIGN</td>
<td>Chapter16.xls or Chapter16.xlsx</td>
<td></td>
</tr>
<tr>
<td>SIN_COS</td>
<td>Chapter16.xls or Chapter16.xlsx</td>
<td></td>
</tr>
<tr>
<td>SQRT</td>
<td>Chapter16.xls or Chapter16.xlsx</td>
<td></td>
</tr>
</tbody>
</table>
Acknowledgments

In this introduction we would like to thank our editors Kenyon Brown and Thomas Braun-Wiesholler at O'Reilly Media and Kathy Krause at Online Training Solutions, Inc. (OTSI) for their inspiration, patience, and effort. The first edition of this book we published eight years ago in German for Microsoft Excel users in Germany, Austria, and Switzerland. Now we are proud to present you with our book translated into English. It was a great experience to transfer all of the chapters and sample files to readers in the United States and all over the world. Sometimes it was easy because we could remove the German-specific and European-specific topics. Other times it was challenging to find the U.S. analogy for some topics and samples. None of us is a native speaker, but with the great teamwork of the O'Reilly translators and editors, we learned a lot.
We have tried to bring you substantiated descriptions, practical examples, and solutions in all chapters, and to present the wide range of material without errors. Whether we have succeeded in fulfilling our own requirements is up to you to decide. We are realists and know that a book like this can always be improved in spite of all our efforts. We are therefore looking forward to receiving your critiques, suggestions, and notes.

Support and Feedback

The following sections provide information on errata, book support, feedback, and contact information.

Errata & Support

We’ve made every effort to ensure the accuracy of this book and its companion content. Any errors that have been reported since this book was published are listed on our Microsoft Press site:

http://www.microsoftpressstore.com/title/9780735658028

If you find an error that is not already listed, you can report it to us through the same page.

If you need additional support, email Microsoft Press Book Support at msinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the addresses above.

We Want to Hear from You

At Microsoft Press, your satisfaction is our top priority and your feedback our most valuable asset. Please tell us what you think of this book at

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in advance for your input!

Stay in Touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress
This chapter introduces Microsoft Excel and its functions. There are more practical examples with detailed function descriptions in Chapters 7 to 17 of this book.

First you will become familiar with Excel 2010, because there have been some notable changes since Excel 2007. Even if you are already using Excel 2010, you should be able to find some interesting points and suggestions.

Introducing the New Functions in Excel 2010

Microsoft Excel 2010 includes several new functions, many of which are introduced in the following Profit Margin example. Calculating a profit margin is important for price calculations and for planning operating results. By calculating the profit margin, you can build a decision-oriented cost accounting system.

Scenario and Goals

The Contoso, Ltd. company wants to evaluate and analyze its profit margins, focusing on overall percentages and variances. After you complete this example, you should be able to perform the following actions in Excel:

- Automatically fill in a month series and create your own fill styles
- Enter formulas
- Work with tables and style sheets
In this section, you will learn how to effectively work with Excel 2010 and explore the new possibilities.

Creating the Month Data Series

To quickly create a list of all months of the year, perform the following steps:

1. Select File/New and click Create to open an empty Excel workbook.

2. Enter the following text in columns A2 through E2 (see Figure 1-1):

 - **Month** (A2)
 - **Purchase** (B2)
 - **Sales** (C2)
 - **Profit margin** (D2)

 ![Figure 1-1](image)

 Figure 1-1 Naming the table columns.
3. To enter the names of the months, you will use the fill feature. Start by entering **January** in cell A3.

4. Select cell A3 and point to the small square in the lower-right corner of the selected cell, the fill handle (see Figure 1-2). The mouse pointer changes to a black crosshair pointer.

 ![Figure 1-2](image)

 Figure 1-2 The fill handle for extending the data series.

5. Drag the crosshairs into cell A14. While you drag the crosshairs down, you will see the names of the months in the preview (see Figure 1-3).

 ![Figure 1-3](image)

 Figure 1-3 The months are added by using the fill handle.

6. Release the mouse button in cell A14 to display all months from January through December (see Figure 1-4).
Figure 1-4 The names of the months are automatically filled in.

Creating an Individual Data Series

This feature can be used to fill rows or columns; it works for weekdays, months, and dates. To fill a number series, fill in the first two numbers in the sequence manually, select the two completed cells, and then drag the fill handle. The function can also be useful if you want to create your own data or AutoFill series. For example, if you don’t want to enter a list of sales managers over and over again, you can define your own AutoFill list:

1. Click the last sheet tab at the bottom of the workbook, which is the one with the new sheet symbol, to open a new sheet. Alternatively, you can press the Ctrl+F11 key combination.

2. Enter Sales manager in a free cell.

3. Enter the names of the sales managers in the cells below the Sales manager title (see Figure 1-5).

Figure 1-5 Creating a custom data series.
4. Select the range containing the names.

5. Click the File tab and select Options (see Figure 1-6).

![Figure 1-6 Selecting Excel options.](image)

6. In the Excel Options dialog box, select the Advanced category and click Edit Custom Lists in the General section (see Figure 1-7).

![Figure 1-7 Opening frequently used lists.](image)
7. Make sure that the cell reference for the selected list is displayed in the Import List From Cells field, and click Import (see Figure 1-8).

![Figure 1-8 Specifying the cell range to be imported.](image)

The elements in the selected list are added to the List Entries field (see Figure 1-9).

![Figure 1-9 The list entries are added.](image)

8. Click OK twice.
Now you have to enter only the name of one sales manager in a cell and drag the fill handle in the desired direction to generate the list of the sales managers on any spreadsheet. The series is created automatically.

This strategy gives you almost unlimited possibilities for creating a data series.

Entering Test Data Fast

Now let’s return to the scenario described earlier in the chapter, in the section titled “Scenario and Goals.” To complete the table with sales and purchase values, you need a set of sample data so that you can create and check the example. A convenient way to do this is to generate a set of random data by using the RANDBETWEEN() function.

1. Select cell B3 in the Excel sheet that contains the table you created previously.

2. Enter the following function: `=RANDBETWEEN(1000,500000)`. The values 1000 and 500000 indicate the minimum and maximum values and are divided by the comma (see Figure 1-10).

3. Press the Enter key. A random number from 1,000 through 500,000 appears in the cell (see Figure 1-11).

4. Select the cell and double-click the fill handle. The Purchase column is automatically filled through December (see Figure 1-12).
5. Edit the table however you want.

Converting Formula Results into Fixed Values

To ensure that the random values in the Purchase and Sales columns don’t change, create a permanent copy of the entries by performing the following steps:

1. Select the cells in the Purchase column from January through December.

2. Point to the right edge of the selected column. The pointer changes into an arrow.

3. Click the right mouse button and drag the selection to the right and back. The movement is illustrated by a dashed line (see Figure 1-13).
Tip Use the Paste Values icon

If you are working with Excel 2010, there is an easier way to copy the values. Copy the values in the Purchase column, and then paste them by opening the Paste menu and clicking the Paste Values icon (see Figure 1-14).

Figure 1-14 The Paste Values icon.

4. When the selection is back in the original position, release the mouse button and select Copy Here As Values Only in the shortcut menu (see Figure 1-15).

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Month</td>
<td>Purchase</td>
</tr>
<tr>
<td>3</td>
<td>January</td>
<td>176,314.00</td>
</tr>
<tr>
<td>4</td>
<td>February</td>
<td>100,419.00</td>
</tr>
<tr>
<td>5</td>
<td>March</td>
<td>181,190.00</td>
</tr>
<tr>
<td>6</td>
<td>April</td>
<td>60,947.00</td>
</tr>
<tr>
<td>7</td>
<td>May</td>
<td>66,849.00</td>
</tr>
<tr>
<td>8</td>
<td>June</td>
<td>57,936.00</td>
</tr>
<tr>
<td>9</td>
<td>July</td>
<td>2,957.00</td>
</tr>
<tr>
<td>10</td>
<td>August</td>
<td>4,410.00</td>
</tr>
<tr>
<td>11</td>
<td>September</td>
<td>183,933.00</td>
</tr>
<tr>
<td>12</td>
<td>October</td>
<td>102,958.00</td>
</tr>
<tr>
<td>13</td>
<td>November</td>
<td>172,551.00</td>
</tr>
<tr>
<td>14</td>
<td>December</td>
<td>98,044.00</td>
</tr>
</tbody>
</table>

Figure 1-15 Converting numbers into fixed values.

The random values in the column are now fixed values and not formula-generated.
5. Repeat these steps and those in the section titled “Entering Test Data Fast” for the values in the Sales column, after you generate a fixed set of random values there, too.

Formatting Numeric Values

To format the numeric values in the Purchase and Sales columns as currency values, perform the following steps:

1. Select the cells B3 to C14.

2. Click the Accounting Number Format button in the Number group on the Home Tab (see Figure 1-16).

![Accounting Number Format](image)

Figure 1-16 Formatting numbers as dollar values.

The selected values are automatically displayed as decimal numbers with two decimal places, in the currency format (see Figure 1-17).

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Month</td>
<td>Purchase</td>
<td>Sales</td>
</tr>
<tr>
<td>3</td>
<td>January</td>
<td>178,314.00</td>
<td>219,572.00</td>
</tr>
<tr>
<td>4</td>
<td>February</td>
<td>100,419.00</td>
<td>205,043.00</td>
</tr>
<tr>
<td>5</td>
<td>March</td>
<td>181,190.00</td>
<td>385,835.00</td>
</tr>
<tr>
<td>6</td>
<td>April</td>
<td>60,947.00</td>
<td>201,285.00</td>
</tr>
<tr>
<td>7</td>
<td>May</td>
<td>66,848.00</td>
<td>213,776.00</td>
</tr>
<tr>
<td>8</td>
<td>June</td>
<td>57,386.00</td>
<td>397,653.00</td>
</tr>
<tr>
<td>9</td>
<td>July</td>
<td>2,957.00</td>
<td>263,100.00</td>
</tr>
<tr>
<td>10</td>
<td>August</td>
<td>4,410.00</td>
<td>354,351.00</td>
</tr>
<tr>
<td>11</td>
<td>September</td>
<td>183,339.00</td>
<td>247,343.00</td>
</tr>
<tr>
<td>12</td>
<td>October</td>
<td>102,958.00</td>
<td>352,121.00</td>
</tr>
<tr>
<td>13</td>
<td>November</td>
<td>172,501.00</td>
<td>340,069.00</td>
</tr>
<tr>
<td>14</td>
<td>December</td>
<td>85,044.00</td>
<td>379,739.00</td>
</tr>
</tbody>
</table>

Figure 1-17 The numbers are displayed as dollar amounts.
Calculating Profit Margin

To calculate the profit margin, do the following:

1. Click in cell D3 and subtract the Purchase amount from the Sales amount. To do this, enter an equal sign (=) in cell D3, click in cell C3, enter a minus sign (–) and then click in cell B3 (see Figure 1-18).

 Figure 1-18 Subtracting values.

2. Press the Enter key.

3. Double-click the fill handle to calculate the profit margin through December (see Figure 1-19).

 Figure 1-19 The profit margin is calculated for all months.
Formatting Data as a Table

In Excel 2007 and Excel 2010, a selection of preset table formats can be readily accessed from the ribbon.

1. Select the cells containing the entire table (A2:D14).

2. On the Home tab, click the Format As Table button in the Style group and select one of the table layouts shown in Figure 1-20.

3. The Create Table dialog box shows the range to be formatted (see Figure 1-21). Click OK.
Calculating Profit Margin as a Percentage

This section explains how to calculate the profit margin as a percentage for the full year. To do this, perform the following steps:

1. Select cell D15, which is below the profit margin for December.

2. On the Home tab, in the Editing group, click the AutoSum button (see Figure 1-23).

The table is formatted in the selected layout (see Figure 1-22).

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Month</td>
<td>Purchase</td>
<td>Sales</td>
<td>Profit margin</td>
</tr>
<tr>
<td>3</td>
<td>January</td>
<td>$178,314.00</td>
<td>$219,572.00</td>
<td>$41,258.00</td>
</tr>
<tr>
<td>4</td>
<td>February</td>
<td>$100,419.00</td>
<td>$205,043.00</td>
<td>$104,624.00</td>
</tr>
<tr>
<td>5</td>
<td>March</td>
<td>$181,190.00</td>
<td>$385,835.00</td>
<td>$204,645.00</td>
</tr>
<tr>
<td>6</td>
<td>April</td>
<td>$50,947.00</td>
<td>$201,285.00</td>
<td>$140,338.00</td>
</tr>
<tr>
<td>7</td>
<td>May</td>
<td>$66,848.00</td>
<td>$218,776.00</td>
<td>$156,927.00</td>
</tr>
<tr>
<td>8</td>
<td>June</td>
<td>$57,386.00</td>
<td>$397,653.00</td>
<td>$340,267.00</td>
</tr>
<tr>
<td>9</td>
<td>July</td>
<td>$29,557.00</td>
<td>$283,100.00</td>
<td>$253,543.00</td>
</tr>
<tr>
<td>10</td>
<td>August</td>
<td>$4,410.00</td>
<td>$334,551.00</td>
<td>$330,141.00</td>
</tr>
<tr>
<td>11</td>
<td>September</td>
<td>$183,993.00</td>
<td>$247,348.00</td>
<td>$63,410.00</td>
</tr>
<tr>
<td>12</td>
<td>October</td>
<td>$102,558.00</td>
<td>$352,121.00</td>
<td>$249,563.00</td>
</tr>
<tr>
<td>13</td>
<td>November</td>
<td>$172,501.00</td>
<td>$340,069.00</td>
<td>$167,568.00</td>
</tr>
<tr>
<td>14</td>
<td>December</td>
<td>$89,044.00</td>
<td>$379,739.00</td>
<td>$290,695.00</td>
</tr>
</tbody>
</table>

Figure 1-22 Formatting tables in only a few steps.

After you have formatted the data as a table, you can use the filter options that have been placed in the table header.

INSIDE OUT Format data as a table for added functionality

Formatting data as a table provides a convenient way to arrange the information neatly and concisely and also provides access to additional table features.
The sum is automatically calculated and displayed in the Profit Margin column (see Figure 1-24).

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Month</td>
<td>Purchase</td>
<td>Sales</td>
<td>Profit margin</td>
</tr>
<tr>
<td>3</td>
<td>January</td>
<td>$176,314.00</td>
<td>$219,572.00</td>
<td>$41,258.00</td>
</tr>
<tr>
<td>4</td>
<td>February</td>
<td>$100,419.00</td>
<td>$205,043.00</td>
<td>$104,624.00</td>
</tr>
<tr>
<td>5</td>
<td>March</td>
<td>$181,190.00</td>
<td>$385,835.00</td>
<td>$204,645.00</td>
</tr>
<tr>
<td>6</td>
<td>April</td>
<td>$60,947.00</td>
<td>$201,265.00</td>
<td>$140,318.00</td>
</tr>
<tr>
<td>7</td>
<td>May</td>
<td>$66,043.00</td>
<td>$213,776.00</td>
<td>$146,733.00</td>
</tr>
<tr>
<td>8</td>
<td>June</td>
<td>$57,385.00</td>
<td>$337,653.00</td>
<td>$280,267.00</td>
</tr>
<tr>
<td>9</td>
<td>July</td>
<td>$2,857.00</td>
<td>$283,103.00</td>
<td>$280,146.00</td>
</tr>
<tr>
<td>10</td>
<td>August</td>
<td>$6,410.00</td>
<td>$334,551.00</td>
<td>$330,141.00</td>
</tr>
<tr>
<td>11</td>
<td>September</td>
<td>$183,993.00</td>
<td>$247,343.00</td>
<td>$63,350.00</td>
</tr>
<tr>
<td>12</td>
<td>October</td>
<td>$102,358.00</td>
<td>$362,121.00</td>
<td>$259,763.00</td>
</tr>
<tr>
<td>13</td>
<td>November</td>
<td>$172,501.00</td>
<td>$849,065.00</td>
<td>$676,564.00</td>
</tr>
<tr>
<td>14</td>
<td>December</td>
<td>$83,044.00</td>
<td>$375,739.00</td>
<td>$292,695.00</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>$2,375,179.00</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1-23 Calculating the sum with one mouse click.

Figure 1-24 Simplified calculation options with table formatting.
Tip Choose calculations options

Did you notice the arrow to the right of the sum field? Click the arrow to open a menu, select one of the different options, and view the result (see Figure 1-25).

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales</td>
<td>Profit margin</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>$ 219,572.00</td>
<td>$ 41,258.00</td>
</tr>
<tr>
<td>$ 205,043.00</td>
<td>$ 104,624.00</td>
</tr>
<tr>
<td>$ 305,835.00</td>
<td>$ 204,645.00</td>
</tr>
<tr>
<td>$ 204,285.00</td>
<td>$ 140,383.00</td>
</tr>
<tr>
<td>$ 213,776.00</td>
<td>$ 146,927.00</td>
</tr>
<tr>
<td>$ 397,653.00</td>
<td>$ 340,267.00</td>
</tr>
<tr>
<td>$ 283,100.00</td>
<td>$ 280,148.00</td>
</tr>
<tr>
<td>$ 334,351.00</td>
<td>$ 330,141.00</td>
</tr>
<tr>
<td>$ 247,348.00</td>
<td>$ 65,410.00</td>
</tr>
<tr>
<td>$ 362,121.00</td>
<td>$ 253,163.00</td>
</tr>
<tr>
<td>$ 340,069.00</td>
<td>$ 167,568.00</td>
</tr>
<tr>
<td>$ 379,739.00</td>
<td>$ 296,695.00</td>
</tr>
</tbody>
</table>

$ 2,375,179.00

Figure 1-25 The calculation options for table ranges.

3. Create the profit margin percentage in the column next to the Profit Margin column. When you enter the text in column E, the table formatting is automatically extended to the additional column (see Figure 1-26).

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Profit margin</td>
<td>Profit margin (%)</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>$ 41,258.00</td>
<td>$</td>
</tr>
<tr>
<td>$ 104,624.00</td>
<td>$</td>
</tr>
</tbody>
</table>

Figure 1-26 Adding columns to the table.
4. Press the Enter key. The column is added to the table automatically and inherits the table layout (see Figure 1-27).

![Table](image)

Figure 1-27 New columns are automatically adjusted to the table layout.

5. To calculate the profit margin as a percentage for January, click cell E3 (Profit Margin (%) column, January row).

6. The formula is “the profit margin of January divided by the total profit margin.” To enter this in the cell, click cell D3 after the equal sign, type a forward slash, and then click cell D15 (see Figure 1-28).

![Figure 1-28](image)

Figure 1-28 In Excel 2007 and Excel 2010, formulas include table values.

7. Press the Enter key to confirm. Because the data has been formatted as a table, the formula entered is automatically applied to all cells in the Profit Margin (%) column (see Figure 1-29).
Calculating Profit Margin as a Percentage

8. Select the numeric values in the Profit Margin (%) column, and click the Percent Style button in the Number group on the Home Tab (see Figure 1-30).

The values are now displayed as percentages (see Figure 1-31).

Figure 1-29 The formula is applied to all cells in the column.

<table>
<thead>
<tr>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profit margin</td>
<td>Profit margin (%)</td>
</tr>
<tr>
<td>$41,258.00</td>
<td>0.02</td>
</tr>
<tr>
<td>$104,624.00</td>
<td>0.04</td>
</tr>
<tr>
<td>$204,645.00</td>
<td>0.06</td>
</tr>
<tr>
<td>$140,388.00</td>
<td>0.06</td>
</tr>
<tr>
<td>$246,927.00</td>
<td>0.06</td>
</tr>
<tr>
<td>$340,267.00</td>
<td>0.14</td>
</tr>
<tr>
<td>$280,143.00</td>
<td>0.12</td>
</tr>
<tr>
<td>$30,141.00</td>
<td>0.14</td>
</tr>
<tr>
<td>$68,410.00</td>
<td>0.08</td>
</tr>
<tr>
<td>$279,169.00</td>
<td>0.11</td>
</tr>
<tr>
<td>$187,568.00</td>
<td>0.07</td>
</tr>
<tr>
<td>$296,656.00</td>
<td>0.12</td>
</tr>
<tr>
<td>$2,375,179.00</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1-30 Numbers are displayed as percentages.

Figure 1-31 The profit margins as percentages.
Applying Conditional Formatting

To make data easier to interpret, use the conditional formatting feature to automatically format the data. With conditional formats, values are selected if they meet certain criteria, and the cell range is formatted accordingly. Conditional formats visually highlight the distribution and variation of data.

With regard to our example, the condition could be “Format in green all cells in the Profit Margin column that contain a value of at least $200,000.” To enter this format, perform the following steps:

1. Select the cell range in the Profit Margin column.

2. Click the Conditional Formatting button in the Style group on the Home tab, and then click New Rule (see Figure 1-32).

3. In the New Formatting Rule dialog box, under Select A Rule Type, select Format Only Cells That Contain.

4. Specify the settings in the Edit The Rule Description pane. Select Cell Value and Greater Than Or Equal To in the list boxes.

5. Enter the value **200000** in the third field (see Figure 1-33).
Figure 1-33 Defining the formatting rule.

6. Click the Format button.

7. Click the Fill tab of the Format Cells dialog box, and select a background color (see Figure 1-34).

Figure 1-34 The condition is displayed in color.
8. Click OK twice to confirm your selection. The values in the Profit margin column are displayed in the color you selected if the condition is met (see Figure 1-35).

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Month</td>
<td>Purchase</td>
<td>Sales</td>
<td>Profit margin</td>
</tr>
<tr>
<td>2</td>
<td>January</td>
<td>$121,314.00</td>
<td>$219,872.00</td>
<td>$41,259.01</td>
</tr>
<tr>
<td>3</td>
<td>February</td>
<td>$103,419.00</td>
<td>$205,043.00</td>
<td>$104,624.00</td>
</tr>
<tr>
<td>4</td>
<td>March</td>
<td>$183,130.00</td>
<td>$365,035.00</td>
<td>$206,645.00</td>
</tr>
<tr>
<td>5</td>
<td>April</td>
<td>$60,047.00</td>
<td>$201,285.00</td>
<td>$140,238.00</td>
</tr>
<tr>
<td>6</td>
<td>May</td>
<td>$66,485.00</td>
<td>$213,775.00</td>
<td>$146,927.00</td>
</tr>
<tr>
<td>7</td>
<td>June</td>
<td>$57,386.00</td>
<td>$357,653.00</td>
<td>$345,267.00</td>
</tr>
<tr>
<td>8</td>
<td>July</td>
<td>$2,957.00</td>
<td>$283,100.00</td>
<td>$280,143.00</td>
</tr>
<tr>
<td>9</td>
<td>August</td>
<td>$4,410.00</td>
<td>$334,551.00</td>
<td>$330,141.00</td>
</tr>
<tr>
<td>10</td>
<td>September</td>
<td>$183,333.00</td>
<td>$247,345.00</td>
<td>$53,410.00</td>
</tr>
<tr>
<td>11</td>
<td>October</td>
<td>$122,358.00</td>
<td>$362,221.00</td>
<td>$255,163.00</td>
</tr>
<tr>
<td>12</td>
<td>November</td>
<td>$172,501.00</td>
<td>$340,069.00</td>
<td>$167,568.00</td>
</tr>
<tr>
<td>13</td>
<td>December</td>
<td>$213,044.00</td>
<td>$379,739.00</td>
<td>$296,695.00</td>
</tr>
</tbody>
</table>

Figure 1-35 Values meeting the condition have a green background.

You can use conditional formatting to automatically display the values in your table in different colors to give them significant visual impact.

You can also use other color fill options or an icon set to format cells. Conditions can apply to text, numeric, date, or time values, as well as to values that fall below or above the average.

Data bars are also a quick way to visually highlight values in tables (see Figure 1-36).

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Month</td>
<td>Purchase</td>
<td>Sales</td>
<td>Profit margin</td>
</tr>
<tr>
<td>2</td>
<td>January</td>
<td>$170,314.00</td>
<td>$219,072.00</td>
<td>$41,259.01</td>
</tr>
<tr>
<td>3</td>
<td>February</td>
<td>$100,419.00</td>
<td>$205,043.00</td>
<td>$104,624.00</td>
</tr>
<tr>
<td>4</td>
<td>March</td>
<td>$183,130.00</td>
<td>$365,035.00</td>
<td>$206,645.00</td>
</tr>
<tr>
<td>5</td>
<td>April</td>
<td>$60,047.00</td>
<td>$201,285.00</td>
<td>$140,238.00</td>
</tr>
<tr>
<td>6</td>
<td>May</td>
<td>$66,485.00</td>
<td>$213,775.00</td>
<td>$146,927.00</td>
</tr>
<tr>
<td>7</td>
<td>June</td>
<td>$57,386.00</td>
<td>$357,653.00</td>
<td>$345,267.00</td>
</tr>
<tr>
<td>8</td>
<td>July</td>
<td>$2,957.00</td>
<td>$283,100.00</td>
<td>$280,143.00</td>
</tr>
<tr>
<td>9</td>
<td>August</td>
<td>$4,410.00</td>
<td>$334,551.00</td>
<td>$330,141.00</td>
</tr>
<tr>
<td>10</td>
<td>September</td>
<td>$183,333.00</td>
<td>$247,345.00</td>
<td>$53,410.00</td>
</tr>
<tr>
<td>11</td>
<td>October</td>
<td>$122,358.00</td>
<td>$362,221.00</td>
<td>$255,163.00</td>
</tr>
<tr>
<td>12</td>
<td>November</td>
<td>$172,501.00</td>
<td>$340,069.00</td>
<td>$167,568.00</td>
</tr>
<tr>
<td>13</td>
<td>December</td>
<td>$213,044.00</td>
<td>$379,739.00</td>
<td>$296,695.00</td>
</tr>
</tbody>
</table>

Figure 1-36 Using formats to highlight numeric values.

There are many different options to choose from.
Tip Apply conditional formats to highlight data

In Excel 2007 and Excel 2010, conditional formats have improved significantly (see Figure 1-37). Now you can add not only colors but also arrows, traffic lights, and other icons. This functionality is also referred to as KPI (Key Performance Indicators).

Creating Meaningful Charts

Sometimes it is useful to display data in a chart instead of in a table. In Excel 2007 and Excel 2010, the options for creating bar charts, pie charts, and other charts have been enhanced.

Creating a Column Chart

To convert our example table into a simple but informative column chart, perform the following steps:

1. Select the table cells starting from Month to the profit margin December (see Figure 1-38).
22 Chapter 1 Solving Problems with Functions

2. On the Insert tab in the Chart group, click the Column button and select the first chart under 2D Column (see Figure 1-39).

Figure 1-39 Selecting the chart format.
The chart is immediately displayed on your Excel sheet (see Figure 1-40).

![Figure 1-40](image1.png) The data displayed as a chart.

In the same way you created a column chart, you can create a 2D, 3D, or line chart (see Figure 1-41). To do this, select a chart format by clicking the Line button to open the menu.

![Figure 1-41](image2.png) Another view of the chart.
Creating a Pie Chart

To display the values in the Profit Margin column by month, you can use a pie chart. Do the following:

1. Select the cells containing values in the Months and Profit Margin columns. To select only these two columns, first select the Months column. Then press the Ctrl key and select the Profit Margin column. Both columns are selected (see Figure 1-42).

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Month</td>
<td>Purchase</td>
<td>Sales</td>
<td>Profit margin</td>
</tr>
<tr>
<td>3</td>
<td>January</td>
<td>$178,314.00</td>
<td>$219,572.00</td>
<td>$41,258.00</td>
</tr>
<tr>
<td>4</td>
<td>February</td>
<td>$100,419.00</td>
<td>$205,045.00</td>
<td>$104,626.00</td>
</tr>
<tr>
<td>5</td>
<td>March</td>
<td>$181,139.00</td>
<td>$385,035.00</td>
<td>$204,645.00</td>
</tr>
<tr>
<td>6</td>
<td>April</td>
<td>$60,947.00</td>
<td>$201,285.00</td>
<td>$140,338.00</td>
</tr>
<tr>
<td>7</td>
<td>May</td>
<td>$66,849.00</td>
<td>$213,775.00</td>
<td>$146,927.00</td>
</tr>
<tr>
<td>8</td>
<td>June</td>
<td>$57,306.00</td>
<td>$397,659.00</td>
<td>$340,262.00</td>
</tr>
<tr>
<td>9</td>
<td>July</td>
<td>$2,957.00</td>
<td>$283,100.00</td>
<td>$280,143.00</td>
</tr>
<tr>
<td>10</td>
<td>August</td>
<td>$4,410.00</td>
<td>$385,551.00</td>
<td>$381,141.00</td>
</tr>
<tr>
<td>11</td>
<td>September</td>
<td>$183,933.00</td>
<td>$247,343.00</td>
<td>$53,410.00</td>
</tr>
<tr>
<td>12</td>
<td>October</td>
<td>$102,958.00</td>
<td>$362,121.00</td>
<td>$258,163.00</td>
</tr>
<tr>
<td>13</td>
<td>November</td>
<td>$172,501.00</td>
<td>$340,065.00</td>
<td>$167,568.00</td>
</tr>
<tr>
<td>14</td>
<td>December</td>
<td>$83,044.00</td>
<td>$373,739.00</td>
<td>$290,695.00</td>
</tr>
</tbody>
</table>

Figure 1-42 Selecting only certain columns of the list.

2. Click the Pie button to open the menu, and select the first chart type under 3D Pie (see Figure 1-43).

Figure 1-43 Selecting a pie chart.
The pie chart is displayed immediately (see Figure 1-44).

![Pie Chart]

Figure 1-44 The pie chart shows the profit margin.

Formatting a Chart

Excel 2010 provides many formatting options you can use to emphasize values in pie charts.

Do the following:

1. Click the frame of the chart.

 The Chart Tools contextual tab opens. On this tab, you can choose between the available formatting options (see Figure 1-45).

![Chart Tools Tab]

Figure 1-45 The Chart Tools tab in Excel 2010 for editing charts.
2. With these tools, you can select any of the format options. For example, click Layout 6 in the Chart Layouts section (see Figure 1-46).

![Figure 1-46 Changing the chart layout.](image)

Layout 6 displays your pie chart with percentages, or values (see Figure 1-47).

![Figure 1-47 The settings of the selected chart layout are applied.](image)

3. With the chart formats, you can also adjust the chart colors. Just click one of the available formats (see Figure 1-48).

![Figure 1-48 Using chart formats to adjust the color.](image)

The color of the chart changes according to your selection (see Figure 1-49).
4. In Excel 2010—as in Excel 2007 and Excel 2003—more chart format options are available in the shortcut menu of the selected chart. Right-click the chart to open the menu, and then select Format Data Labels or Format Data Series to change the format of your chart (see Figure 1-50).

Figure 1-49 The selected chart colors are applied.

Figure 1-50 Additional formatting options.
In Excel 2010, working with charts is a lot easier. The options for editing and formatting are more extensive, and fully formatted charts can be created with just a few clicks.

INSIDE OUT

Use sparklines to graphically represent values

Check out the new sparklines in Excel 2010. These “word graphics” illustrate values by using miniature line, bar, or profit-and-loss charts. Sparklines illustrate numeric values so that the values can be interpreted more easily (see Figure 1-51).

Figure 1-51 Values illustrated by the new sparklines.

Working with PivotTables

PivotTables help you arrange and consolidate data into well-defined tables. With a PivotTable, you can easily generate cross-tabulations and analyze information by rotating and moving column and row selections and by filtering. The original data remains unchanged, and the PivotTable is quickly generated even with large amounts of data. In Excel 2007 and Excel 2010, PivotTable data can also easily be displayed as a PivotChart.
Tip
A PivotTable is useful for quickly obtaining summary information from long lists or large amounts of data.

Creating a PivotTable

Sample Files
Use the Basic data worksheet in the Excel_Pivot_Data.xls or Excel_Pivot_Data.xlsx sample file. The sample files are found in the Chapter01 folder. For more information about the sample files, see the section titled “Using the Sample Files” on page xxiii.

To create a PivotTable, perform the following steps:

1. Open the Excel_Pivot_Data.xlsx file from the sample files.

2. In the table, select the cell range for which you want to create the PivotTable. In this case, select cell A1 (Customer Name) through cell J100 (Total Price), or select the entire table by pressing Ctrl+A from anywhere within the table.

3. On the Insert tab, in the Table group, click the arrow on the PivotTable button and select PivotTable (see Figure 1-52).

Figure 1-52 Creating a PivotTable.
Because you have already selected the data, the PivotTable range is displayed in the Select Table Or Range box in the PivotTable dialog box.

4. Select an option under Choose Where You Want The PivotTable Report To Be Placed. Selecting the New Worksheet option is recommended (see Figure 1-53).

5. Click OK. The PivotTable framework is displayed.

Tip Find Pivot functions on the Insert tab

In Excel 2003, the Pivot functions were located on the File menu. In Excel 2007 and Excel 2010, you can open the Pivot functions by clicking a button on the Insert tab. The functions open in a separate tool window as soon as you start creating a PivotTable.
An empty PivotTable report is added, in this case in a new worksheet, and the PivotTable field list is displayed. In this list, you can select fields, create a layout, and change the PivotTable report.

You can also use the PivotTable tools on the PivotTable Tool contextual tab, which you can access from the ribbon (see Figure 1-54).

Figure 1-54 The PivotTable layout.

Using a PivotTable

The following example illustrates the functionality of a PivotTable. Assume that you want to find out in which country the most orders for gloves are placed. For this you need the PivotTable fields Country, Product Category, and Order Quantity.
Follow these steps:

1. Select the Country, Product Category, and Order Quantity check boxes in the PivotTable field list.

After you have enabled the fields, the associated data are automatically positioned in the default range of the layout, but you can move the fields to any position (see Figure 1-55).

![Figure 1-55 The fields in the standard report.](image-url)
2. Because you want to view the order quantity for gloves per country, you should move the Product Category column into the Report Filter area. This will allow you to filter by country. Drag the Product Category field into the Report Filter area within the PivotTable field list (see Figure 1-56).

![Figure 1-56 Moving fields by dragging.](image)

As soon as you release the mouse button, the data is arranged in the PivotTable (see Figure 1-57).

![Figure 1-57 The newly arranged fields.](image)
3. In the (All) list, select Gloves and click OK (see Figure 1-58).

![Figure 1-58](image)

Select Gloves from the list so that only the result for gloves will be displayed.

Only the order quantities for gloves in the individual countries are displayed (see Figure 1-59). Canada is the frontrunner!

![Figure 1-59](image)

Figure 1-59 Getting meaningful results with only a few clicks.

Note

Don’t worry if a report is not what you were expecting. With Excel, you can try various options to see how the data looks in different formats by rearranging the data, moving data, or even starting again.
Using PivotCharts: Graphical Pivot

The new user interface also makes it easier to create PivotCharts. All filter enhancements for PivotTables are also available for PivotCharts. There are special PivotChart tools and shortcut menus you can use to create a PivotChart to analyze the data within a chart.

You can change the layout and the format of charts or the chart elements in the same way you make changes for Pivot Tables. Unlike in previous Excel versions, in Excel 2007 and Excel 2010, the chart format is maintained if you change the PivotChart.

Creating a PivotChart

Creating a chart for a PivotTable takes only seconds. Use the previous PivotTable example to practice. Do the following:

1. Click in the PivotTable, and select the PivotTable Tools contextual tab above the default tab (see Figure 1-60).

Figure 1-60 Working with PivotTable tools.

2. In the Tools group, click the PivotChart button (see Figure 1-61). The Insert Chart dialog box opens. The first layout under Column is selected (see Figure 1-62).

Figure 1-61 Creating a chart from PivotTable data.
Figure 1-62 Selecting the chart format.

3. Keep this setting and click OK. The chart and a PivotChart filter range are displayed (see Figure 1-63).

Figure 1-63 The PivotChart is created.

4. As soon as you change the filter, the chart also changes. In the Country list, select Germany and click OK (see Figure 1-64).
Using PivotCharts: Graphical Pivot

Figure 1-64 Selecting a filter.

The chart changes automatically, and the corresponding values are displayed (see Figure 1-65).

Figure 1-65 The chart changes depending on the Pivot data.
Changing the Original Data

PivotTables and PivotCharts change dynamically: If a value changes in the original data, the PivotTable and the associated chart also change. Try it out:

1. In the original data, increase the order quantity for gloves in Germany in any row (see Figure 1-66).

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>Alexandra L</td>
<td>Washington</td>
<td>Canada</td>
<td>Canada</td>
<td>North America</td>
<td>Half-Finger Gloves, L Gloves</td>
<td>11,05,11</td>
<td>6</td>
</tr>
<tr>
<td>55</td>
<td>Cassidy</td>
<td>Washington</td>
<td>United Kingdom</td>
<td>United Kingdom</td>
<td>Europe</td>
<td>Half-Finger Gloves, L Gloves</td>
<td>64,05,11</td>
<td>1</td>
</tr>
<tr>
<td>88</td>
<td>Elijah Alexander</td>
<td>Canada</td>
<td>Canada</td>
<td>Canada</td>
<td>North America</td>
<td>Half-Finger Gloves, L Gloves</td>
<td>29,04,11</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>Bruno G Suri</td>
<td>Germany</td>
<td>Germany</td>
<td>Europe</td>
<td>Half-Finger Gloves, L Gloves</td>
<td>26,00,11</td>
<td>2500</td>
<td></td>
</tr>
</tbody>
</table>

 Figure 1-66 Changing the original data.

2. Go back to the PivotTable and open the PivotTable Tools contextual tab.

3. On the Analyze tab, in the Data group, click the Refresh button (see Figure 1-67).

 Figure 1-67 Applying changes to the original data by clicking Refresh.

 The PivotTable as well as the PivotChart are automatically updated (see Figure 1-68).

 Figure 1-68 The values are updated.
Note

You can change additional settings for PivotCharts: Select a chart element and open the shortcut menu (see Figure 1-69).

Figure 1-69 The shortcut menu allows quick access to the settings.
Cube functions were introduced in Microsoft Excel 2007. They are used with connections to external SQL data sources and provide analysis tools. Data cubes are multidimensional sets of data that can be stored in a spreadsheet, providing a means to summarize information from the raw data source. A cube is different from queries in Microsoft Access or Microsoft SQL Server because the data in a cube is already grouped in hierarchies, and calculated measures are saved in the cube. This offers two advantages to the user: Summary information is readily available, and most of the heavy-duty calculations are performed on the server. The user does not have to spend much time consolidating the data in Excel. However, you cannot use calculated fields or elements for a PivotTable.

To use cube functions, you must be working with data that is available in one of these two forms:

- Through a connection to a SQL Server Analysis Services data source
- In an offline cube in the user’s local file system

These conditions limit the usefulness of cube functions. So that you will be able to work through some examples, the sample files accompanying this book include offline cube and data connection files for the example outlined in Chapter 2, “Using Functions and PowerPivot.”

Note

You can create and change an offline cube (a file with the extension .cub) in Excel.

First, you must establish a connection to the Analysis Services by using Microsoft Query (on the Data Tab, Query External Data/From Other Source/From Microsoft Query), or by using the Data Connection Assistant (on the Insert Tab, select PivotTable/Use External Data Source). Then click the OLAP Tools button, as shown in Figure 14-1, to open the
Offline OLAP Settings dialog box. (OLAP stands for online analytical processing.) Click the Create Offline Data File button to create the cube, and follow the step-by-step instructions.

Figure 14-1 Creating an offline cube.

However, you will have to change the sample data connection files (they have either the extension .odc for a workbook connection, or .qy for Microsoft Query) because the path to a database must be the full path. Use Windows Notepad to change the paths as follows:

Data Source='X:\Documents\Chp14\Book\CubeTest.cub';
Location='X:\Documents\Chp14\Book\CubeTest.cub';

Sample Files
Use the offline cubeTest.xlsx sample file. This sample file and the additional files are found in the Chapter14 folder. For more information about the sample files, see the section titled “Using the Sample Files” on page xxiii.

The prepared sample workbook serves as a guide. To avoid unnecessary errors when modifying this sample, perform the following steps to create your own workbook:

1. On the Insert tab, select PivotTable/Use External Data Source. (You can search for additional elements and use the existing data connection files.)

2. Create the layout and include the content from the data source.

3. Use the cube functions.
When you open a workbook with data connections and use the default Excel settings, you have to explicitly allow these connections (click the Enable Content button, as shown in Figure 14-2). When you activate a document in Excel 2010, the document is trusted and you don’t have to confirm the activation again until the trusted document is reset in the Trust Center.

Figure 14-2 The security warning that is shown when Excel is accessing external data.

Note

If you select Convert To Formulas from the OLAP Tools menu (see Figure 14-1, shown earlier in this chapter), Excel converts part of the PivotTable or the entire PivotTable into an unformatted table with the same content as the PivotTable. The advantage of this is that the entire layout (columns and rows) is fixed. You can also include filters.

If you are familiar with formulas, you can create individual structures similar to PivotTables that allow for flexible data evaluation.

The descriptions of the functions throughout the rest of this chapter refer to the example in Chapter 2. The example uses two store groups named North and South, which sell sweets (chocolate and cookies) from the years 2008 through 2011. Each store group consists of two stores. Table 14-1 describes the functions.
Table 14-1 Overview of the Cube Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUBEKPIMEMBER()</td>
<td>Returns the requested property for a Key Performance Indicator (KPI) of a cube</td>
</tr>
<tr>
<td>CUBEMEMBER()</td>
<td>Returns a member of the cube</td>
</tr>
<tr>
<td>CUBEMEMBERPROPERTY()</td>
<td>Returns the requested property (attribute) for a cube member</td>
</tr>
<tr>
<td>CUBERANKEDMEMBER()</td>
<td>Returns the n-th ranked member of a set</td>
</tr>
<tr>
<td>CUBESET()</td>
<td>Defines a set of members to create a subcube</td>
</tr>
<tr>
<td>CUBESETCOUNT()</td>
<td>Returns the number of items in a set</td>
</tr>
<tr>
<td>CUBEVALUE()</td>
<td>Returns the aggregated value from a data cube</td>
</tr>
</tbody>
</table>

CUBEKPIMEMBER()

Syntax
CUBEKPIMEMBER(connection,kpi_name,kpi_property,caption)

Definition
This function returns a Key Performance Indicator (KPI) property and displays the KPI name in the cell.

Arguments

- **connection (required)**
 A string with the name of the workbook connection to the cube. After you enter the first quotation mark, the existing context-sensitive data connections are displayed (see Figure 14-4, shown later in this chapter in the description of CUBEMEMBER()).

- **kpi_name (required)**
 Specifies the name of the KPI in the cube.

- **kpi_property (required)**
 A KPI consists of several components that are specified by using an integer (see Table 14-2).

<table>
<thead>
<tr>
<th>Integer</th>
<th>MDX expression</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[KPIValue]</td>
<td>Actual value</td>
</tr>
<tr>
<td>2</td>
<td>[KPIGoal]</td>
<td>Target value</td>
</tr>
<tr>
<td>3</td>
<td>[KPIStatus]</td>
<td>State of the KPI at a specific moment in time</td>
</tr>
<tr>
<td>4</td>
<td>[KPI Trend]</td>
<td>Measure of the value over time</td>
</tr>
<tr>
<td>5</td>
<td>[KPIWeight]</td>
<td>Relative importance assigned to the KPI</td>
</tr>
<tr>
<td>6</td>
<td>[KPI Current Time Member]</td>
<td>Temporal context for the KPI</td>
</tr>
</tbody>
</table>
● **caption (optional)** A string displayed in the cell instead of the caption of the KPI components in the cube.

Background

Note

In the cell containing the function, the message #GETTING_DATA temporarily appears while the data is being queried.

Error values and messages provide information about incorrect or missing entries:

- If the connection name is not a valid workbook connection, the CUBEKPIMEMBER() function returns the #NAME? error.
- If the OLAP server (or the offline cube) is not available, you get an error message. The content of the affected cell doesn’t change.
- CUBEKPIMEMBER() returns the #N/A error value when kpi_name or kpi_property is invalid.
- CUBEKPIMEMBER() might return the #N/A error when the connection to the data source is interrupted and cannot be re-established.

You can combine CUBEKPIMEMBER() with CUBEVALUE(). Specify CUBEKPIMEMBER() as the second argument or reference for CUBEVALUE().

Example In this example, a KPI named **average** is saved in the cube. This cube calculates the average of the sales and the total number of sales as integers. Both values are also saved as measures in the cube but cannot be used to calculate fields in the PivotTable. The target value (goal) is $1,500. Figure 14-3 shows the example for cookies.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Year</td>
<td>All</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sales</td>
<td>Column Labels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Row Labels</td>
<td>Cookies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>North</td>
<td>13796</td>
<td>7421</td>
<td>21217</td>
</tr>
<tr>
<td>5</td>
<td>NorthEast</td>
<td>6242</td>
<td>4181</td>
<td>10403</td>
</tr>
<tr>
<td>6</td>
<td>NorthWest</td>
<td>7554</td>
<td>3260</td>
<td>10824</td>
</tr>
<tr>
<td>7</td>
<td>South</td>
<td>10000</td>
<td>10391</td>
<td>10391</td>
</tr>
<tr>
<td>8</td>
<td>SouthEast</td>
<td>2467</td>
<td>5033</td>
<td>8500</td>
</tr>
<tr>
<td>9</td>
<td>SouthWest</td>
<td>4533</td>
<td>5359</td>
<td>9891</td>
</tr>
<tr>
<td>10</td>
<td>Grand Total</td>
<td>21796</td>
<td>17812</td>
<td>39600</td>
</tr>
</tbody>
</table>

Figure 14-3 The KPI average.
The formula

\[=\text{CUBEKPIMEMBER("offline","average",1)}\]

displays the word *average*. The formula

\[=\text{CUBEVALUE("offline","average",1)}\]

returns 1453 (the rounded average of all sales). In the second formula, you can enter a reference to the cell containing the first formula as the second argument. To get the target value of the average, use the formula

\[=\text{CUBEVALUE("offline","average",2)}\]

The value of 2 in the last argument is important, because it indicates, in this case, the target value.

You can use the cell containing the formula to create cell captions. The real content of the cell is more informative, as shown by using the CUBEVALUE() function.

See Also All other cube functions, GETPIVOTDATA()

CUBEMEMBER()

Syntax

\[\text{CUBEMEMBER(connection,member_expression,caption)}\]

Definition

This function returns a member (cell) from a cube. Use CUBEMEMBER() to validate that the member exists and to pass the member to other functions through a cell reference.

Arguments

- **connection (required)**

 The text string name of the workbook connection to the cube, in quotation marks. When you are entering the connection, after you type the first quotation mark, existing context-sensitive data connections are displayed (see Figure 14-4).

Figure 14-4 Context sensitivity helps you enter formulas.
CUBEMEMBER()

- **member_expression (required)** Defines the position of a member in the cube based on a multidimensional expression (MDX). The expression can be entered directly or it can be referenced in a cell. You can also use tuples in expressions.

- **caption (optional)** A string displayed in the cell instead of the caption of the member in the cube. If a tuple is used, the function returns the caption of the last member in the tuple.

Background When you use CUBEMEMBER() as an argument for another cube function, the MDX expression instead of the displayed value is used in the argument.

Note
In the cell containing the function, the message #GETTING_DATA temporarily appears while the data is being queried.

Error values and messages provide information about incorrect or missing entries:

- If the connection name is not a valid workbook connection, the CUBEMEMBER() function returns the #NAME? error.

- If the OLAP server (or the offline cube) is not available, you get an error message. The content of the affected cell doesn’t change.

- If at least one member within the tuple is invalid, the CUBEMEMBER() function returns the #VALUE! error.

- If member_expression is longer than 255 characters, the CUBEMEMBER() function returns the #VALUE! error.

- CUBEMEMBER() returns the #N/A error when:
 - The member_expression syntax is incorrect.
 - The member specified in the MDX query doesn’t exist in the cube.
 - The tuple is invalid because there is no intersection for the specified values.
 - The set contains at least one member with a different dimension from the other members.

- CUBEMEMBER() may also return the #N/A error when the connection to the data source is interrupted and cannot be re-established.
Example So that you can gain a better understanding of the use of the functions in this section, take a close look at the PivotTable in Figure 14-5.

Figure 14-5 The candy sales PivotTable used to demonstrate the cube functions.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>All</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Column Labels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Cookies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Row Labels</td>
<td>Sales</td>
<td>Sales Count</td>
<td>Average</td>
</tr>
<tr>
<td>6</td>
<td>North</td>
<td>13796</td>
<td>0</td>
<td>1724</td>
</tr>
<tr>
<td>7</td>
<td>NorthEast</td>
<td>6242</td>
<td>4</td>
<td>1560</td>
</tr>
<tr>
<td>8</td>
<td>NorthWest</td>
<td>7554</td>
<td>4</td>
<td>1088</td>
</tr>
<tr>
<td>9</td>
<td>South</td>
<td>8000</td>
<td>7</td>
<td>1143</td>
</tr>
<tr>
<td>10</td>
<td>SouthEast</td>
<td>9467</td>
<td>8</td>
<td>1156</td>
</tr>
<tr>
<td>11</td>
<td>SouthWest</td>
<td>4533</td>
<td>4</td>
<td>1133</td>
</tr>
<tr>
<td>12</td>
<td>Grand Total</td>
<td>21796</td>
<td>15</td>
<td>1453</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The formula

=CUBEMEMBER("offLine","[Products].[Product].[All].[Cookies]"")

looks for a single cell and returns the Cookies member which has the caption we looked for. If you use the tuple

=CUBEMEMBER("offLine",
 "([Stores].[Store].[All].[NorthEast],[Products].[All].[Cookies],
 [Years].[2009])")

the result is 2009 (the cookie sales in the year 2009 in the NorthEast store). If you use

=CUBEMEMBER("offLine",
 "([Stores].[Group].[All].[North],[Stores].[Store].[All].[NorthEast])")

to find an empty intercept, you get the #N/A error. To display the word total, enter

=CUBEMEMBER("offLine","[Products].[Product].[All]","total")

You can use the cell containing the formula to create cell captions. The actual content of the cell is more informative if it refers to the cells with the CUBEMEMBER() entries.

See Also All other cube functions, GETPIVOTDATA()
CUBEMEMBERPROPERTY()

Syntax
CUBEMEMBERPROPERTY(connection, member_expression, property)

Definition
This function returns the property of a member from the cube. Use CUBEMEMBERPROPERTY() to validate that a member exists within the cube and to return the property for this member as a value.

Arguments

- **connection (required)**
 A string with the name of the workbook connection to the cube. After you enter the first quotation mark, the existing context-sensitive data connections are displayed (see Figure 14-4, shown earlier).

- **member_expression (required)**
 Defines the position of a member in the cube based on an MDX. The expression can be entered directly or can be in a cell that is referenced. You can also use tuples in expressions.

- **property (required)**
 The name of the property for which you want to return the value.

Note
For a PivotTable that retrieves data from a cube, use the PivotTable tools to find out whether a member has properties (see Figure 14-6).

![Figure 14-6](image)

Figure 14-6
Checking whether cube members have properties—not all members do.

Background
In the example in this section, the stores have the Group property with the possible values North or South (shown previously in Figure 14-5).

In the cell containing the function, the message #GETTING_DATA temporarily appears while the data is being queried.

Error values and messages provide information about wrong or missing entries:

- If the connection name is not a valid workbook connection, the CUBEMEMBERPROPERTY() function returns the #NAME? error.

- If the OLAP server (or the offline cube) is not available, you get an error message. The content of the affected cell doesn’t change.
If the `member_expression` syntax is incorrect, or if the member specified by `member_expression` doesn’t exist in the cube, the CUBEMEMBERPROPERTY() function returns the #N/A error.

CUBEMEMBERPROPERTY() might return the #N/A error when the connection to the data source is interrupted and cannot be re-established.

Example As previously mentioned, the stores in the PivotTable have the Group properties North and South. The formula

= CUBEMEMBERPROPERTY("offline","[Stores].[Store].[All].[NorthEast]","group")

returns North, and the formula

= CUBEMEMBERPROPERTY("offline","[Stores].[Store].&[3]","group")

returns South. This example uses the position number of the store in the list instead of the store name.

See Also All other cube functions, GETPIVOTDATA()

CUBERANKEDMEMBER()

Syntax CUBERANKEDMEMBER(`connection`, `set_expression`, `rank`, `caption`)

Definition This function returns the \(n \)-th member in a set.

Arguments

- **`connection` (required)** A string with the name of the workbook connection to the cube. After you enter the first quotation mark, the existing context-sensitive data connections are displayed (see Figure 14-4, shown earlier).

- **`set_expression` (required)** Defines the number of members in the cube based on an MDX. The expression can be entered directly or can be in a cell that is referenced. You can also use tuples in expressions.

- **`rank` (required)** An integer indicating the position of a member in the set.

- **`caption` (required)** A string displayed in the cell instead of the caption of the member in the cube. If a tuple is used, the function returns the caption of the last member in the tuple.
Background

Note
In the cell containing the function, the message #GETTING_DATA temporarily appears while the data is being queried.

Error values and messages provide information about incorrect or missing entries:

- If the connection name is not a valid workbook connection, the CUBERANKEDMEMBER() function returns the #NAME? error.
- If the OLAP server (or the offline cube) is not available, you get an error message. The content of the affected cell doesn’t change.
- If set_expression is longer than 255 characters, the CUBERANKEDMEMBER() function returns the #VALUE! error.
- CUBERANKEDMEMBER() returns the #N/A error when:
 - The set_expression syntax is incorrect.
 - The set specified in the MDX query doesn’t exist in the cube.
- CUBERANKEDMEMBER() might return the #N/A error when the connection to the data source is interrupted and cannot be re-established.

Example If you reference a cell in the formula

= CUBERANKEDMEMBER("offline", B9, 1)

that returns the store set with

=CUBESET("offline","[Stores].[Store].Children", "all store sales",2,"[Measures].[Sale]"")

the result is NorthEast. This store has the most sales for all products and in all years. The nested formula

= CUBERANKEDMEMBER("offLine",CUBESET("offLine","([Stores].[Store].[All].[NorthEast],[Years].Children)","all sales",2;"[Measures].[Sales]")",3)

calculates the year with the least sales for this store (position 3): 2011.

See Also All other cube functions, GETPIVOTDATA()
CUBESET()

Syntax
CUBESET(connection, set_expression, caption, sort_order, sort_by)

Definition
This function returns a calculated set of members by sending a set expression to the cube on the server, which creates the set and then returns that set to Excel. The content of the cell and the actual value of the cell are different.

Arguments

- **connection (required)**
 A string with the name of the workbook connection to the cube. After you enter the first quotation mark, the existing context-sensitive data connections are displayed (see Figure 14-4, shown earlier).

- **set_expression (required)**
 Defines the number of elements in the cube based on an MDX. The expression can be entered directly or can be in a cell that is referenced. You can also use tuples in expressions.

- **caption (optional)**
 A string displayed in the cell instead of the caption of the member in the cube. If a tuple is used, the function returns the caption of the last member in the tuple.

- **sort_order (optional)**
 The type of sorting; the values are integers that affect the treatment of the fifth argument, `sort_by` (see Table 14-3). The formulas are context-sensitive (see Figure 14-7).

```
=CUBESET("'offline'","[Stores].[Store Name].Children","'all sales'",

=CUBESET("'offline'","[Stores].[Store Name].Children","'all sales'",
  CUBESET(connection, set_expression, caption, sort_order, sort_by),
  sort_by)
```

Figure 14-7
Tooltips show the choices for the CUBESET() function.

Table 14-3
Integers for the Fourth Argument of the CUBESET() Function

<table>
<thead>
<tr>
<th>Integer</th>
<th>Description</th>
<th>Impact on the Fifth Argument</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Leaves the set in the existing order in the cube</td>
<td>Ignored</td>
</tr>
<tr>
<td>1</td>
<td>Sorts the set in ascending order by <code>sort_by</code></td>
<td>Required</td>
</tr>
<tr>
<td>2</td>
<td>Sorts the set in descending order by <code>sort_by</code></td>
<td>Required</td>
</tr>
<tr>
<td>3</td>
<td>Sorts the set in ascending alphabetical order</td>
<td>Ignored</td>
</tr>
<tr>
<td>Integer</td>
<td>Description</td>
<td>Impact on the Fifth Argument</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------------------------------</td>
</tr>
<tr>
<td>4</td>
<td>Sorts the set in descending alphabetical order</td>
<td>Ignored</td>
</tr>
<tr>
<td>5</td>
<td>Sorts the set in natural ascending order</td>
<td>Ignored</td>
</tr>
<tr>
<td>6</td>
<td>Sorts the set in natural descending order</td>
<td>Ignored</td>
</tr>
</tbody>
</table>

The default value of the fourth argument is 0. An alphabetical sorting for a set of tuples is based on the last element in the tuple. You will find more information about the different sort orders in the SQL Analysis Services Help.

- **sort_by (optional)** The `sort_by` argument depends on the fourth argument and defines the values in the set that is sorted. If `sort_by` is not provided but `sort_order` requires `sort_by`, the function returns the `#VALUE!` error.

Background When you use CUBESET() as an argument for another cube function, the set instead of the displayed value is used in the argument.

Note

In the cell containing the function, the message `#GETTING_DATA` temporarily appears while the data is being queried.

Error values and messages provide information about incorrect or missing entries:

- If the connection name is not a valid workbook connection, the CUBESET() function returns the `#NAME?` error.

- If the OLAP server (or the offline cube) is not available, you get an error message. The content of the affected cell doesn’t change.

- If `set_expression` is longer than 255 characters, the CUBESET() function returns the `#VALUE!` error.

- CUBESET() returns the `#N/A` error when:
 - The `set_expression` syntax is incorrect.
 - The set specified in the MDX query doesn’t exist in the cube.
 - The set contains at least one member with a different dimension from the other members.

- CUBESET() might return the `#N/A` error when the connection to the data source is interrupted and cannot be re-established.
Example The formula

=CUBESET("offline","[Stores].[Store].Children",
"all store sales",2,"[Measures].[Sale]"
)

returns the sorted set of all stores based on the sales (all products and years). The store with
the largest sale is listed first.

You can use the cell containing the formula to create cell labels. The actual content of the
cell is more informative if it refers to the cells with the CUBESET() entries.

See Also All other cube functions, GETPIVOTDATA()

CUBESETCOUNT()

Syntax CUBESETCOUNT(set)

Definition This function returns the number of members in a set.

Argument

- set (required) A set defined with the CUBESET() function or a reference to the cell
 containing members of the cube

Background The result of this function is an integer. If the argument causes an error, this
error is also returned as the result.

Note

In the cell containing the function, the message #GETTING_DATA temporarily appears
while the data is being queried.

Example In the CUBESETCOUNT() function, if you reference a cell that returns the sorted
set of the stores like

=CUBESET("offline","[Stores].[Store].Children", "all store sales",2,"[Measures].
[Sale]"
)

the result will be 4. You get the same result if you pass this formula as an argument. The
keyword Children is not context sensitive.

See Also All other cube functions, GETPIVOTDATA()
CUBEVALUE()

Syntax CUBEVALUE(connection,member_expression1,member_expression2,...)

Definition This function returns the value of a member (cell) from a cube.

Arguments

- **connection (required)** A string with the name of the workbook connection to the cube. After you enter the first quotation mark, the existing context-sensitive data connections are displayed (see Figure 14-4, shown earlier).

- **member_expression1 (required) and member_expression2 (optional)** At least one and up through 255 expressions that define the position of a member in the cube based on an MDX. The expression can be entered directly or can be in a cell that is referenced. You can also use tuples in expressions. Alternatively, member_expression can be a set defined with the CUBESET() function. If no measure is specified in member_expression, the default measure for that cube is used.

 Because the argument can be repeated, you can define intersections. You can also use tuples.

Background When you use CUBEVALUE() as an argument for another cube function, the MDX expression instead of the displayed value is used in the argument.

Note

In the cell containing the function, the message #GETTING_DATA temporarily appears while the data is being queried.

Error values and messages provide information about wrong or missing entries:

- If the connection name is not a valid workbook connection, the CUBEVALUE() function returns the #NAME? error.

- If the OLAP server (or the offline cube) is not available, you get an error message. The content of the affected cell doesn’t change.

- If at least one member within the arguments or the tuple is invalid, the CUBEVALUE() function returns the #VALUE! error.

- If member_expression is longer than 255 characters, the CUBEVALUE() function returns the #VALUE! error.
- CUBEVALUE() returns the #N/A error when:
 - The member_expression syntax is incorrect.
 - The member specified in the MDX query doesn't exist in the cube.
 - The tuple is invalid because there is no intersection for the specified values.
 - The set contains at least one member with a different dimension from the other members.

- CUBEVALUE() might return the #N/A error when the connection to the data source is interrupted and cannot be re-established.

The formula

```
=CUBEVALUE("offline","[Measures].[GrossSales]","[Stores].[Store].[All].

  [NorthEast]"," [Years].[Year].[All].[2009]","[Products].[Product].

  [All].[Cookies]")
```

calculates the gross sales for cookies in the store NorthEast in the year 2009: $1,856.40. You get the same result if you use a tuple (the arguments of the previous formula are enclosed in parentheses):

```
=CUBEVALUE("offline","([Measures].[GrossSales],[Stores].[Store].[All].

  [NorthEast],[Years].[Year].[All].[2009],[Products].[Product].[All].

  [Cookies])")
```

If you enter the formula

```
=CUBEMEMBER("offline","[Products].[Product].[All].[Cookies]")
```

in cell B3, the formula

```
=CUBEVALUE("offline",B3)
```

returns the total sales for cookies: $21,796.

You can also use the examples for the CUBEKPI MEMBER() function. The formula

```
=CUBEVALUE("offline",CUBERANKEDMEMBER("offline",CUBESET("offline","[Stores]

  .[Store].Children","all store sales",2;"[Measures].[sale"]",1))
```

returns $10,814 for the total sales of the best store (NorthEast).

See Also All other cube functions, GETPIVOTDATA()

Sample Files

Use the offline cubeTest.xlsx sample file. This sample file and the additional files are found in the Chapter14 folder. For more information about the sample files, see the section titled "Using the Sample Files" on page xxiii.
Symbols
64-bit version, Excel 2010, 1013
1900 date system, for Windows, 42
1904 date system, for Mac, 42, 46
& (ampersand), text operator, 107–108
<> (angle brackets)
 > greater than operator, 107, 296, 639
 >= greater than or equal to operator, 107, 296, 639
 < less than operator, 107, 296, 639
 <= less than or equal to operator, 107, 296, 639
 <> not equal to operator, 107, 296, 639
 <> in search criteria, 638
‘ (apostrophe), preceding comments in custom functions, 201
* (asterisk)
 multiplication operator, 104, 106
 wildcard, 637, 639
@ (at sign), in cell references in tables, 117
\ (backslash), indicating fill-aligned text, 349
{ (braces), enclosing array formulas, 119, 120
^ (caret)
 exponentiation operator, 104, 106
 indicating centered text, 349
: (colon), range operator, 108–110
, (comma)
 connection operator, 108, 110
 separating function arguments, 143, 144
$ (dollar sign), preceding cell references, 114, 116
“ (double quote), indicating right-aligned text, 349
“” (double quotes)
 enclosing text or spaces in cells, 107, 108
 enclosing text with wildcards, 639
= (equal sign)
 assigning results to custom functions, 195
 equal to operator, 107, 296, 639
 preceding formulas, 103
 in search criteria, 639
 =? wildcard, 639
 =* wildcard, 639
/ (forward slash)
 in date values, 41
 division operator, 104, 106
- (minus sign)
 correcting position of, 55
 in date values, 41
 negative value operator, 55, 106
 subtraction operator, 104, 106
() (parentheses)
 cells formatted with, determining, 349
 enclosing function arguments, 143
 grouping expressions in formulas, 105–106
 highlighting of, 106
% (percent operator), 104, 106
+ (plus sign)
 addition operator, 104, 106
 in keyboard shortcuts, xxii
? (question mark), wildcard, 637, 639
‘ (single quote), indicating left-aligned text, 349
“ “ (space)
 in database record, 638
 in functions, avoiding, 144
 highlighting cells containing, 179
 including in cells, 108
 intersection operator, 108, 110–111
 removing from text, 54–55
 in search criteria, 638
ABS() function, 813–814
absolute references, 113–115. See also mixed references
absolute value, 813–814, 935–937
ACCRINT() function, 695–697
ACCRINTM() function, 697–699
accrued interest, 695–697, 697–699, 713–714
ACOS() function, 814–816
ACOSH() function, 816–817
add-ins
 PowerPivot add-in, 1015
 saving custom functions in, 218
 Solver add-in, 1015
Add-Ins dialog box, 44
addition operator (+), 104, 106
Add Procedure dialog box, 198–199
ADDRESS() function, 308–311
address (of a cell). See cell references
address (postal address), separating parts of, 50–51
AGGREGATE() function, 818–821, 1014
algebraic form of complex number, 942–944
AM designation, for times, 43
AMORDEGRC() function, 702–703
AMORLINC() function, 702–703
amortization calculations, 90, 691
ampersand (&), text operator, 107–108
analytical statistics, 67
Analyze tab, Data group, Refresh button, 38
AND() function, 60, 291–292
angle brackets (<>)
 > greater than operator, 107, 296, 639
 >= greater than or equal to operator, 107, 296, 639
 < less than operator, 107, 296, 639
 <= less than or equal to operator, 107, 296, 639
 <> not equal to operator, 107, 296, 639
 <> in search criteria, 638
annuities, 85–89, 690
 amount of, 762–764
 duration of annuity calculation, 747–750
 interest part of, 736–738
interest rate for, 779–783
loans repaid as annuity loans, 713–714
repayment part of, 765–766
anticipative interest rate, 720–722
anticipative interest yield, 690
apostrophe (‘), preceding comments in custom functions, 201
Arabic numbers, converting to Roman numerals, 867–869
arccosine, 814–816
arctangent, 824–825, 825–826
AreaCircle1() custom function, 214–216
AreaCircle() custom function, 196–203
AreaQuad() custom function, 203–210
AreaSect() custom function, 210–211
AREAS() function, 311–312
arguments
 of built-in functions, 143, 144–146, 152, 156
 of custom functions, 200, 203–205
arithmetic-degressive (digital) method of depreciation, 786–787
arithmetic functions. See mathematical functions
arithmetic operators, 104–106
array formulas, 119–120
arrays, 810. See cell ranges
determinant of, 850–851
inverse of, 851–854
multiplication of, 854–855
ASC() function, 256–257
ASIN() function, 821–822
ASINH() function, 822–823
asset depreciation
 with arithmetic-degressive (digital) method, 786–787
 based on French accounting system, 699–701
 with geometric-degressive method, 717–718, 792–793
 with linear depreciation method, 702–703, 785–786
 with multiple-rate method, 719–720
asterisk (*)
 multiplication operator, 104, 106
 wildcard, 637, 639
ATAN2() function, 825–826
ATAN() function, 824–825
ATANH() function, 827–828
at sign (@), in cell references in tables, 117
auditing formulas, 134–138
AutoCorrect, saving formulas with, 156–157
AutoFill series, 4–7
AutoFilter
 for formatting, 178
 limits for, 1012
 list control used by, 640
automatic calculation of formulas, 134
AVEDEV() function, 388–389
average absolute deviation, 388–389
AVERAGEA() function, 392–394
AVERAGE() function, 71, 390–392, 818
AVERAGEIF() function, 72, 395–398, 1011
AVERAGEIFS() function, 72, 398–401, 1011
averages. See mean values
B
backslash (\), indicating fill-aligned text, 349
BAHTTEXT() function, 257–258
Bessel functions, 955
 of first kind, 957–959
 of first kind, modified, 955–957
 of second kind, 961–963
 of second kind, modified, 959–961
BESSELI() function, 955–957
BESSELJ() function, 957–959
BESSELK() function, 959–961
BESSELY() function, 961–963
BETADIST() and BETA.DIST() functions, 401–403
beta distribution, 401–403, 403–407
BETAINV() and BETA.INV() functions, 403–407
BIN2DEC() function, 910–911
BIN2HEX() function, 911–912
BIN2OCT() function, 912–913
binary system, 907, 908–909
 converting decimal to, 914–915
 converting hexadecimal to, 918–920
 converting octal to, 922–924
 converting to decimal, 910–911
 converting to hexadecimal, 911–912
 converting to octal, 912–913
BINOMDIST() and BINOM.DIST() functions, 407–411
binomial distribution, 407–411, 411–413, 531–532
BINOM.INV() function, 411–413
blank cells. See empty cells
blank, determining whether cell is, 65
Boolean comparison operators. See comparison operators
boolean data type. See logical data type
braces ({}), enclosing array formulas, 119, 120
branching, VBA, 206–210
built-in functions. See functions
buttons. See controls
C
calculated search criteria, 639
calculation clusters, 1014, 1015
calculations. See formulas; functions
caret (^)
 exponentiation operator, 104, 106
 indicating centered text, 349
case-sensitivity
 of formulas, 112
 of functions, 147
CEILING() function, 828–829
CEILING.PRECISE() function, 829–830, 1014
CELL() function, 55, 160, 162, 348–352
cell ranges
 as function arguments, 145–146, 152
 largest values in, 503–505
 number of columns in, 315–316
 number of contiguous ranges in a reference, 311–312
 number of empty cells in, 352–353
 number of rows in, 338–339
 references to, 108, 109–110
 transposing, 341–343
cell reference data type, 144
cell references, 111–119
 absolute references, 113–115
 to cell ranges, 108, 109–110
 changing type of, F4 key for, 117
 circular references, 117–119
 column number of, 314–315
 converting row and column numbers to, 308–311
cell references (cont.)
converting text string to, 326–327
determining, for a cell, 348
determining whether value is, 369–371
to entire columns or rows, 109–110
to entire worksheet, 110
as function arguments, 145, 152
to intersection of cells, 108, 110–111
mixed references, 108, 110
number of contiguous ranges in a reference, 311–312
number of rows in, 338–339
relative references, 113
return reference that is offset from starting reference, 333–337
row number of, 337–338
of upper-left cell, determining, 357

cells
color of, 349
column number of, 349
contents of, 349
data type of, 349
empty
database search criteria for, 639
determining if cell is, 359–360, 435
formatting. See formatting
formatting of, determining, 349
information about, 348–352
justification of, 349
limits for, 1012
row number of, 349
validating. See validation
width of, 348

CHAR() function, 57, 179, 258–259
charts
column charts, 21–23
formatting, 25–28
miniature, in a cell. See sparklines
pie charts, 24–25
from PivotTable data. See PivotCharts
check boxes. See controls
CHIDIST() function, 413–414

CHISQ.DIST() function, 413–414
CHISQ.DIST.RT() function, 414–416
CHISQ.INV() function, 416–417
CHISQ.INV.RT() function, 418–419
CHISQ.TEST() function, 420–422
CHITEST() function, 420–422
CHOOSE() function, 312–314
circular references, 117–119
CLEAN() function, 259–260
CODE() function, 260–261
colon (·), range operator, 108–110
color
limits for, 1012
of a cell, 349
column charts, 21–23
COLUMN() function, 314–315
column number, determining for a cell, 349
COLUMNS() function, 315–316
columns, in database, 635. See also database; database functions
columns, in worksheet
limits for, 1012
references to entire columns, 109–110
COM automation, retrieving real-time data from, 339–341
combinations, number of, 830–831
COMBIN() function, 830–831
comma (·)
connection operator, 108, 110
separating function arguments, 143, 144
comments, VBA, 201
comparison operators, 106–107, 296
COMPLEX() function, 934–935
complex number functions, 905, 931–932
absolute value of complex number, 935–937
algebraic form of complex number, 942–944
argument Φ for, 939
complex conjugate of complex number, 940
cosine of complex number, 940–941
division of complex numbers, 941–942
exponentiation of complex number, 946–948
imaginary part of complex number, 938
linking real numbers to create a complex number, 934–935
list of, 905–906
logarithm of complex number, 945, 946
multiplication of complex numbers, 948–949
natural logarithm of complex number, 944–945
real part of complex number, 949
sine of complex number, 950
square root of complex number, 950–951
subtraction of complex numbers, 952
sum of complex numbers, 953
compound interest, 690
CONCATENATE() function, 57, 261–262
concatenating text, 56–57
conditional calculations. See also logical functions
 AVERAGEIF() function, 395–398, 1011
 AVERAGEIFS() function, 398–401, 1011
 COUNTIF() function, 172–174, 191, 435–438
 COUNTIFS() function, 438–440, 1011
 SUMIF() function, 886–888
 SUMIFS() function, 888–889, 1011, 1012
conditional formatting
 for alternate rows in a list, 176–177
 changing, 185
 comparing table content, 174–176
 finding cells containing, 185–186
 formulas for, 166–187
 for grouping data, 182–183
 for holiday dates, 169–172
 for identical values, 172–174
 KPIs in, 21
 for largest values, 505
 limits for, 1012
 for range of values, 18–21
 for reference lines in tables, 179–182
 for spaces in cells, 179
 for subtotals, 183–185
 toolbar icon for, 186–187
 for top three values, 177–178
 troubleshooting, 187
 for weekend dates, 167–170

Conditional Formatting dialog box, 166, 178, 180, 181, 183, 185
conditions, VBA, 206–210
CONFIDENCE() function, 423–426
confidence interval, 423–426, 427
CONFIDENCE.T() function, 427
connection operator (,), 108, 110
constants
 in formulas, 105, 111
 as function arguments, 145
contact information for this book, xxxvi
controls, 640
conventions used in this book, xxii–xxiii
conversion functions
 Arabic numbers to Roman numerals, 867–869
 between measurement systems, 926–931
 binary number to decimal number, 910–911
 binary number to hexadecimal number, 911–912
 binary number to octal number, 912–913
 decimal number to binary number, 914–915
 decimal number to hexadecimal number, 915–917
 decimal number to octal number, 917–918
 degrees to radians, 863–865
 for engineering, 904, 907–909
 hexadecimal number to binary number, 918–920
 hexadecimal number to decimal number, 920–921
 hexadecimal number to octal number, 921–922
 octal number to binary number, 922–924
 octal number to decimal number, 924
 octal number to hexadecimal number, 925–926
 radians to degrees, 835–837
CONVERT() function, 926–931
correlation, 68, 428–431
CORREL() function, 428–431
COS() function, 832–834
COSH() function, 834–835
cosine, 832–834, 940–941
COUNTA() function, 71, 434, 818
COUNTBLANK() function, 352–353, 435
COUNT() function, 431–433, 818
COUNTIF() function, 172–174, 191, 435–438
COUNTIFS() function, 438–440, 1011
counting
all numbers in argument list, 431–433, 818
all numbers in database matching search criteria, 643–645
all values in argument list, 434, 818
all values in database matching search criteria, 645–647
all values matching search criteria, 435–438, 438–440
cells, 71
cells that are not empty, 79
empty cells, 435
list of functions for, 69–70
CUMIPMT() function, 713–714
CUMPRINC() function, 715–717
currency
decimal places as numerator of fraction, converting, 723–724, 724–725
formatting numeric values as, 10, 262–263
current directory, path of, 357
custom functions
arguments for
declaring, 200
multiple arguments, 203–205
optional arguments, 204–205, 210–211
branching with logical conditions, 206–210
categories for, 1012
comments in, 201
creating, 194–203
Excel built-in functions in, 215–216
list of, displaying, 203
loops in, 212–214
naming, 199
public, 200
return value, data type for, 200
saving in add-ins, 218
splitting statements across multiple lines, 205
testing, 202
using, 217
variables in, 213–214
Customize dialog box, 187

D
D1–D9, indicating date and time formats, 350
data. See dates and times; logical values; numeric values; text
database, 635–636
controls in, 640
search criteria for, 636–639
spaces in, 638
database functions, 73–80
arguments in, 636–638
counting, 79
counting records, 643–645, 645–647
dynamic names used in, 73–78
list of, 640–641, 1002–1003
maximum value of column, 649–650
mean values, 80, 641–643
minimum value of column, 650–651
multiplication of column values, 652–654
PivotTable reports, retrieving data from, 664–672
requirements for, 73
retrieving records, 647–648
search criteria for, 636–639
standard deviation, 654–655, 656–657
subtotal, 883–885
sum of column values, 657–660
variance, 661–662, 662–663
data cubes, functions for. See cube functions
data functions. See numeric values, functions for
data series
individual, 4–7
month, 2–4
data tables. See tables (formerly called lists)
data types
determining, for a value or cell, 349, 375–378
list of, 144
data validation. See validation
Data Validation dialog box, 188, 189, 190, 191
DATEDIF() function, 222–223
DATE() function, 220–222
dates and times, 41–50
conditional formatting based onor holidays, 169–172
for weekends, 167–170
conversions of
between measurement units, 927
from text to Excel time, 241
from separate parts to Excel date, 220–222
from separate parts to Excel time, 239–240
from text to Excel date, 224–225
current date, determining, 237–238, 242
current time
determining, 237–238
entering, 45
data series containing, 2–4
date calculations
Daylight Saving Time, 45
day of the year, 45
leap years, 44
months added or subtracted from start date, 228–229, 230–231
quarters of the year, 49
using in names, 163
work days added or subtracted from start date, 247–249, 249–251
Excel date system for, 42–43
extracting parts of
day number, 225–226
hour, 231–232
minute, 232–233
month number, 233–234
second, 238–239
weekday number, 243–245
week number, 246–247
year, 251–252
formatting, 43
functions for
enabling, 44
list of, 219–220, 993–994
interval (difference) calculations
fraction of a year between two dates, 252–254
number of days between dates, 226–228
number of work days between dates, 234–235, 236–237
number of years, months, or days between dates, 222–223
time calculations
adding times, 48
decimal (industrial) hours, converting to, 49–50
including other types of values, 48
rounding times, 49
subtracting times, 46–48
values for, entering, 41, 45
date/time data type, 144
DATEVALUE() function, 224–225
DAVERAGE() function, 80, 641–643
DAY() function, 225–226
Daylight Saving Time, calculating, 45
DAYS360() function, 85, 226–228
DB() function, 717–718
DCOUNTA() function, 79, 645–647
DCOUNT() function, 643–645
DDB() function, 719–720
DEC2BIN() function, 914–915
DEC2HEX() function, 915–917
DEC2OCT() function, 917–918
decimal (industrial) hours, 49–50
decimal system, 907
 converting binary to, 910–911
 converting hexadecimal to, 920–921
 converting octal to, 924
 converting to binary, 914–915
 converting to hexadecimal, 915–917
 converting to octal, 917–918
degrees
 converting radians to, 835–837
 converting to radians, 863–865
DEGREES() function, 835–837
DELTA() function, 967–969
depreciation of assets. See asset depreciation
descriptive statistics, 67
Design tab (PowerPivot), 97, 98
determinant of an array, 850–851
Developer tab, Visual Basic button, 196
deviations
 average absolute, 388–389
 squared, sum of, 446–448
 standard deviation. See standard deviation
DEV SQ() function, 446–448
DGET() function, 647–648
digital (arithmetic-degressive) method of depreciation, 786–787
DigitSum() custom function, 211–214
Dirac delta function, 967
DISC() function, 720–722
distributions
 beta distribution, 401–403, 403–407
 binomial distribution, 407–411, 411–413
 frequency distribution, 472–476
gamma distribution, 476–480, 481–482
 hypergeometric distribution, 494–497
 lognormal distribution, 515–518, 518–519
 negative binomial distribution, 531–532
 normal distribution, 533–536, 537–539, 539–541, 542–544
 Poisson distribution, 558–560
 skewness of, 575–578
 standardized normal distribution, 583–585
 t-distribution, 599, 600, 601–602, 603, 604–606
 Weibull distribution, 629–632
#DIV/0! error, 66, 354
division, 863
 of complex numbers, 941–942
 remainder of, 855–857
division operator (/), 104, 106
DMAX() function, 649–650
DMIN() function, 650–651
DOLLARDE() function, 723–724
DOLLARFR() function, 724–725
DOLLAR() function, 262–263
dollar sign ($), preceding cell references, 114, 116
double factorial, 840–841
double quote ("), indicating right-aligned text, 349
double quotes (""),
 enclosing text or spaces in cells, 107, 108
 enclosing text with wildcards, 639
Do Until loops, VBA, 212
Do While loops, VBA, 212
DPRODUCT() function, 652–654
DSTDEV() function, 654–655
DSTDEV() function, 656–657
DSUM() function, 80, 657–660
DURATION() function, 725–727
DVAR() function, 661–662
DVARP() function, 662–663
dynamic name, for database, 73–78
dynamic range names, 163–165
E
eBook edition of this book, xxiii
EDATE() function, 228–229
Edit Relationship dialog box, 98
EFFECT() function, 727–729
Else keyword, VBA, 206
empty cells
database search criteria for, 639
determining if cell is, 435
empty, determining whether cell is, 65
End Function statement, VBA, 195
energy measurements, conversions between, 928
engineering functions, 903–906
complex number functions, 905, 931–932
 absolute value of complex number, 935–937
 algebraic form of complex number, 942–944
 argument Φ for, 939
 complex conjugate of complex number, 940
 cosine of complex number, 940–941
division of complex numbers, 941–942
 exponentiation of complex number, 946–948
 imaginary part of complex number, 938
 linking real numbers to create a complex num-
er, 934–935
logarithm of complex number, 945, 946
 multiplication of complex numbers, 948–949
 natural logarithm of complex number, 944–945
 real part of complex number, 949
 sine of complex number, 950
 square root of complex number, 950–951
 subtraction of complex numbers, 952
 sum of complex numbers, 953
conversion functions, 904, 907–909
 between measurement systems, 926–931
 binary number to hexadecimal number, 911–912
 binary number to octal number, 912–913
decimal number to binary number, 914–915
decimal number to hexadecimal number, 915–917
decimal number to octal number, 917–918
hexadecimal number to binary number, 918–920
hexadecimal number to decimal number, 920–921
hexadecimal number to octal number, 921–922
octal number to binary number, 922–924
octal number to decimal number, 924
octal number to hexadecimal number, 925–926
higher mathematics functions, 906
 Bessel function of first kind, 957–959
 Bessel function of second kind, 961–963
 complement to Gauss error function, 966–967
 modified Bessel function of first kind, 955–957
 modified Bessel function of second kind, 959–961
 probability integrals, 963–966
 list of, 904–906, 1008–1009
 saltus functions, 906, 967–970
EOMONTH() function, 230–231
equal sign (=)
 assigning results to custom functions, 195
equal to operator, 107, 296, 639
 preceding formulas, 103
 in search criteria, 639
 =? wildcard, 639
 *= wildcard, 639
ERFC() function, 966–967
ERFC.PRECISE() function, 966–967, 1014
ERF() function, 963–966
ERF.PRECISE() function, 963–966, 1014
errata information for this book, xxxvi
errors
 checking for, 300–301
determining if value is, 361–362
determining whether cell contains, 65–66
determining whether value is, 360–361
 #DIV/0! error, 66
 list of, 300
 #N/A error. See #N/A error
 #NAME? error, 217
determining, 354–356
 type of, determining, 354–356
ERROR.TYPE() function, 354–356
EVEN() function, 837–838
even number, determining whether cell is, 65
EXACT() function, 264–265
example files for this book, xxiii–xxxv
Excel
 memory usage of, determining, 357
 version of, determining, 357
Excel 2003
- circular references, error for, 117
- conditional formatting, 166–167, 168–169, 185–187
- copying and pasting formulas, 131
- copying formulas with Fill function, 129
- custom functions, list of, 203
- defining names, 160–161
- EDATE() function, as add-in, 228
- engineering functions, enabling, 903
- EOMONTH() function, as add-in, 230
- Excel options, 6
- extending selections, 124
- financial functions, enabling, 691
- formula auditing, 135, 137
- formula calculation types, 133
- formulas in data validation, 190
- function ScreenTips, displaying, 147
- ISEVEN() function, as add-in, 362
- ISODD() function, as add-in, 368
- limits in, list of, 1012
- mathematical and trigonometry functions, enabling, 811
- moving cells, 125
- nesting limits for functions, 142, 143
- Pivot functions, 30
- protecting formulas, 132
- Visual Basic Editor, 196

Excel 2003 (differences from Excel 2010)
- 1904 date system, enabling, 46
- analysis functions, enabling, 44
- cell formatting, 42, 48
- column limits, 3
- lists, assigning dynamic names using, 77
- row limits, 3

Excel 2007, 1011–1013
- AVERAGEIF() function, 395–398, 1011
- AVERAGEIFS() function, 398–401, 1011
- converting files for earlier Excel versions, xxiv
- COUNTIFS() function, 438–440, 1011
- cube functions, 1011–1012
- custom functions, sharing, 218
- Excel options, 6
- file formats, 1013
- IFERROR() function, 1011, 1012
- limits in, list of, 1012
- statistical functions added in, 385, 398, 438
- SUMIFS() function, 888–889, 1011, 1012

Excel 2010, 1013–1016
- 64-bit version, 1013
- AGGREGATE() function, 818–821, 1014
- calculation clusters, 1014, 1015
- CEILING.PRECISE() function, 829–830, 1014
- converting files for earlier Excel versions, xxiv
- ERFC.PRECISE() function, 966–967, 1014
- ERF.PRECISE() function, 963–966, 1014
- file formats, 1013
- FLOOR.PRECISE() function, 842–843, 1014
- limits in, list of, 1012
- NETWORKDAYS.INTL() function, 1014
- PowerPivot, 1015
- Solver add-in, 1015
- statistical functions
 - compatibility category of, 385
 - new and changed, list of, 386–387
 - WORKDAY.INTL() function, 1014

Excel 2010 (new and changed features in)
- PowerPivot for Excel 2010 add-in, 93–102
- statistical functions, 70

Excel Cluster Connector, 1015
- Excel Options dialog box, 5
- exchange rates. See investments
- EXP() function, 838–839
- EXPON.DIST() function, 448–451
- EXPONDIST() function, 448–451
- exponential curve for regression analyses, 511–515
- exponential distributed random variable, probability of, 448–451
- exponential trend, 487–491
- exponentiation, 838–839, 860–861, 946–948
- exponentiation operator (^), 104, 106
- expressions, as function arguments, 145, 146

F
- F0 or F2, indicating number formats, 350
- F4 key, changing reference types, 117
FACTDOUBLE() function, 840–841
FACT() function, 839–840
factorial, 839–840, 840–841
FALSE() function, 293–295
FDIST() and F.DIST.RT() functions, 453–455
F.DIST() function, 452–453
F-distribution
left quantile, 452–453, 456
right quantile, 453–455, 457–459
fields, in database, 635, 636. See also database; database functions
file extensions, 218, 1013
.xlam file extension, 1013
.xlsb file extension, 1013
.xlsm file extension, 218, 1013
.xlsx file extension, 218, 1013
.xltm file extension, 1013
.xltx file extension, 1013
file name of workbook, determining, 55, 161, 349
File tab, Options button, 196
filtering tabular data. See PivotTables
financial functions, 84–90, 690–695
amortization calculations, 691
annuities, 690
amount of annuity, 762–764
duration of annuity calculation, 747–750
interest part of, 736–738
interest rate for, 779–783
loans repaid as annuity loans, 713–714
repayment part of, 765–766
asset depreciation
with arithmetic-degressive (digital) method, 786–787
based on French accounting system, 699–701
with geometric-degressive method, 717–718, 792–793
with linear depreciation method, 702–703, 785–786
with multiple-rate method, 719–720
capital value for series of surpluses, 796–798
cash value of regular payment flow, 776–779
final value
for regular payment flow, 729–732
for variable periods, 732–734
fixed-interest securities
accrued interest of, 695–697, 697–699
annual yield of, 806–808
date of first interest payment, 708–709
date of last interest payment, 711–712
days in interest period, 705–706
days since last interest payment, 704–705
days to next coupon date, 707–708
Macauley Duration for, 725–727
modified duration for, 742–743
number of interest payments, 710–711
price of, 752–755, 757–759, 767–771
interest, 85–89, 148–150
accrued interest, 695–697, 697–699, 713–714
annual interest rate in arrears, 788–789
anticipative interest rate, 720–722
anticipative interest yield, 690
compound interest, 690
duration of compound interest rate, annuity, or repayment, 747–750
effective annual interest rate, 727–729
interest payment for annuity, 736–738
interest rate for compound interest and annuities, 779–783
interest rate for marked down securities, 734–736
interest yield in arrears, 690
internal interest rate, 794–796
internal interest rate of dynamic investment, 738–740
nominal interest rate, 746
period interest rate, calculated from annual, 741–742
simple interest, 690
investments, 89–90, 691
internal interest rate of dynamic investment, 738–740
internal yield of investment, 744–745
list of, 692–695, 1003–1005
loan repayments, 690
accrued interest between two points, 713–714
net cash value of future period surpluses, 750–752
repayment portion between two points, 715–717
price, 691. See also securities
repayment amount of a deposit, 783–785
fixed-interest securities (cont.)
securities. See also fixed-interest securities
annual yield for marked down security, 803–806
anticipative interest rate, 720–722
decimal places as numerator of fraction, converting, 723–724, 724–725
disbursement amount of simply discounted security, 771–774
interest rate for marked down securities, 734–736
price of discounted securities as percent, 789–790
price of security with simple interest yield in arrears, 774–776
yield of discounted security, 790–791
FIND() and FINDB() functions, 51, 52, 55, 160–161, 161, 179, 266–267
Find And Replace dialog box, 179
FINV() and F.INV.RT() functions, 457–459
F.INV() function, 456
FISHER() function, 462–466
FISHERINV() function, 467
Fisher transformation, 462–466, 467
FIXED() function, 268–269
FLOOR() function, 841–842
FLOOR.PRECISE() function, 842–843, 1014
fonts used in this book, xxii
force measurements, conversions between, 928
FORECAST() function, 468–471
forecasts. See probability
Format Cells dialog box, 19, 48
Format dialog box, 167
formatting
charts, 25–28
conditional. See conditional formatting
dates, 43
determining, for a cell, 349
limits for, 1012
numeric values
as currency, 10, 262–263
as percentage, 17
table formats, 12–13
formulas
array formulas, 119–120
auditing, 134–138
calculation options for, 133–134
case-sensitivity of, 112
cell references in. See cell references
combining results from multiple formulas, 107–108
for conditional formatting, 166–187
constants in, 105, 111
converting to fixed values, 131–132
copying, 123–125, 126–130
absolute references in, 113–115
mixed references in, 115–116
relative references in, 113
editing, 155
entering, 103–104, 112–113
in multiple cells, 122
in multiple worksheets, 122
hiding, 133
highlighting cells referenced by, 123
limits for, 1012
moving, 125–126
in names, 159–165
operators in. See operators
partial calculations in, analyzing, 158
protecting from being changed, 132–133
results of, converting to fixed values, 8–10
saving to repeat in other workbooks, 156–157
selecting cells containing, 122–123
tracing, 136–137
troubleshooting, 138–140
for validation, 187–192
viewing formulas in cells, 121
viewing results in cell, 104
Formulas tab
Add Function (fx) button, 203
Defined Names group, Define Names button, 63, 74, 76, 160–161
Insert Function button, 148
For Next loops, VBA, 212–214
forward slash (/)
in date values, 41
division operator, 104, 106
French accounting system
 depreciation of assets, 699–701
 linear depreciation of assets, 702–703
frequency distribution, 472–476
FREQUENCY() function, 472–476
FTEST() and F.TEST() functions, 460–462
f-test, statistics from, 460–462
Function Arguments dialog box, 150
Function Assistant, 148
 help from, 152–153
 required and optional arguments in, 144
 searching for functions, 151
functions. See also specific functions
 arguments for, 143, 144–146, 152, 156, 1012
 case sensitivity of, 147
 for conditional formatting, 166–187
 cube functions, 80–84, 673–676, 1003. See also cube functions
custom functions
 arguments for, 200, 203–205
 branching with logical conditions, 206–210
 comments in, 201
 creating, 194–203
 Excel built-in functions in, 215–216
 list of, displaying, 203
 loops in, 212–214
 naming, 199
 optional arguments for, 204–205, 210–211
 public, 200
 return value, data type for, 200
 saving in add-ins, 218
 splitting statements across multiple lines, 205
 testing, 202
 using, 217
 variables in, 213–214
database functions, 73–80, 640–641, 1002–1003. See also database functions
date and time functions, 41–50, 219–220, 993–994
 editing, 155, 156
 engineering functions, 903–906, 1008–1009. See also engineering functions
 entering, 146–150
financial functions, 84–90, 690–695, 1003–1005. See also financial functions
 help for, 152–153
 information functions, 64–66, 347–348, 997. See also information functions
 list of
 in alphabetical order, 971–992
 by category, 993–1010
 logical functions, 58–61, 291, 996
 lookup and reference functions, 61–64, 307–308, 996. See also lookup and reference functions
 mathematical functions, 90–92, 810–813, 1006–1007. See also mathematical functions
 in names, 159–165
 nesting, 142, 143, 153–155, 1012
 ScreenTips for, 147
 searching for, 151
 statistical functions, 67–72, 381–385, 997–1002, 1014. See also statistical functions
 syntax of, 143
text and data functions, 50–58, 255–256, 994–995. See also text
trigonometry functions, 90–92, 810–813, 1006–1007. See also trigonometry functions
for validation, 187–192
Function statement, VBA, 195
FV() function, 86–87, 87, 729–732
FVSCHEDULE() function, 732–734
G
GAMMADIST() and GAMMA.DIST() functions, 476–480
gamma distribution, 476–480, 481–482
gamma function, natural log of, 482–484, 484–485
GAMMAINV() and GAMMA.INV() functions, 481–482
GAMMA.INV() function, 481–482
GAMMALN() function, 482–484
GAMMALN.PRECISE() function, 484–485
Gauss error integrals, 963–966, 966–967
Gauss test, 632–634
GCD() function, 843–844
GEOMEAN() function, 485–486
grouped data, 472–476
geometric-degressive method of asset depreciation, 717–718, 792–793
geometric mean, 485–486
GESTEP() function, 969–970
GETPIVOTDATA() function, 664–672
Go To dialog box, 76, 165, 186
greater than operator (>), 107, 296, 639
greater than or equal to operator (>=), 107, 296, 639
greatest common divisor, 843–844
GROWTH() function, 487–491
H
HARMEAN() function, 491–494
harmonic mean, 491–494
help, for functions, 152–153
HEX2BIN() function, 918–920
HEX2DEC() function, 920–921
HEX2OCT() function, 921–922
hexadecimal system, 908
 converting binary to, 911–912
 converting decimal to, 915–917
 converting octal to, 925–926
 converting to binary, 918–920
 converting to decimal, 920–921
 converting to octal, 921–922
h format, for times, 43
higher mathematics functions, 906, 954–955
 Bessel function of first kind, 957–959
 Bessel function of second kind, 961–963
 complement to Gauss error function, 966–967
 modified Bessel function of first kind, 955–957
 modified Bessel function of second kind, 959–961
 probability integrals, 963–966
highlighting cells conditionally. See conditional formatting
HLOOKUP() function, 62, 316–318
Home tab
 Conditional Formatting button, 166
 Editing group, AutoSum button, 13
 Number Format button, 42
 Number group, 48
 Accounting Number Format button, 10
 Percent Style button, 17
Style group
 Conditional Formatting button, 18, 60
 Format As Table button, 12
Home tab (PowerPivot)
 Get External Data group, 94
 PivotTable arrow, 99
HOUR() function, 231–232
hyperbolic cosine, 834–835
hyperbolic sine, 879–881
hyperbolic tangent, 899–901
hypergeometric distribution, 494–497
HYPERLINK() function, 319–320
HYPGEOMDIST() and HYPGEOM.DIST() functions, 494–497
I
IBAN (International Bank Account Number), separating parts of, 53
icons
 in conditional formatting. See KPI (Key Performance Indicator)
 Wingdings font for, 58
IFERROR() function, 300–301, 1011, 1012
IF() function, 55, 60–61, 296–299
If-Then conditions, VBA, 206–210
IMABS() function, 935–937
IMAGINARY() function, 938
imaginary numbers. See complex number functions
IMARGUMENT() function, 939
IMCONJUGATE() function, 940
IMCOS() function, 940–941
IMDIV() function, 941–942
IMEXP() function, 942–944
IMLN() function, 944–945
IMLOG2() function, 946
IMLOG10() function, 945
IMPOWER() function, 946–948
IMPRODUCT() function, 948–949
IMREAL() function, 949
IMSIN() function, 950
IMSQRT() function, 950–951
IMSUB() function, 952
IMSUM() function, 953
INDEX() function, 62, 320–326
INDIRECT() function, 162, 178, 310, 326–327
individual data series, 4–7
Industrial (Decimal) Hours, 49–50
INFO() function, 356–359
Information functions, 64–66
- Cell content, 348–352
- Cell formatting, 348–352
- Cell location, 348–352
- Cell reference, determining if, 369–371
- Data type of value, determining, 375–377
- Empty cells determining if, 359–360
- Number of, 352–353
- Error in cell determining if, 360–361, 361–362
 - Type of, 354–356, 365–366
- Even number, determining if, 362–364
- Excel status and version, list of, 347–348, 997
- Logical value, determining if, 364–365
 - #N/A error, returning, 373–374
- Non-text value, determining if, 366–367
- Numeric value converting to, 372–373
 - Determining if, 367–368
- Odd number, determining if, 368–369
- Operating system information, 356–359
- Text value, determining if, 371–372
Insert Chart dialog box, 35
Insert Function dialog box, 149, 217
Insert tab
 - Chart group, Column button, 22
 - Tables group
 - PivotTable button, 29
 - Table button, 77
INTERCEPT() function, 497–500
Interest, 85–89, 148–150
 - Accrued interest, 695–697, 697–699, 713–714
 - Annual interest rate in arrears for U.S. treasury bills, 788–789
 - Anticipative interest rate, 720–722
 - Anticipative interest yield, 690
 - Compound interest, 690
 - Duration of compound interest rate, annuity, or repayment, 747–750
 - Effective annual interest rate, 727–729
 - Interest payment for annuity, 736–738
 - Interest rate for compound interest and annuities, 779–783
 - Interest rate for marked down securities, 734–736
 - Interest yield in arrears, 690
 - Internal interest rate, 794–796
 - Internal interest rate of dynamic investment, 738–740
 - Nominal interest rate, 746
 - Period interest rate, calculated from annual, 741–742
 - Simple interest, 690
International Bank Account Number. See IBAN
Intersection operator (" "), 108, 110–111
INT() function, 845
INTRATE() function, 86, 734–736
Inverse hyperbolic
 - Cosine, 816–817
 - Sine, 822–823
 - Tangent, 827–828
Inverse of an array, 851–854
Investments, 89–90, 691
 - Internal interest rate of dynamic investment, 738–740
 - Internal yield of investment, 744–745
 - Net cash value of future period surpluses, 750–752
IPMT() function, 736–738
IRR() function, 738–740
ISBLANK() function, 65, 359–360
ISERR() function, 65, 360–361
ISERROR() function, 65–66, 361–362
ISEVEN() function, 65, 362–364
ISLOGICAL() function, 65, 364–365
IsMissing() function, VBA, 205
ISNA() function, 365–366
ISNONTEXT() function, 65, 366–367
ISNUMBER() function, 65, 170–171
ISODD() function, 65, 368–369
ISPMT() function, 741–742
ISREF() function, 65, 369–371
ISTEXT() function, 65, 371–372
J

J format, for dates, 43
justification, determining for a cell, 349

K

keyboard, selections using, 124
keyboard shortcuts, specification of, xxii
KPI (Key Performance Indicator)
 with conditional formatting, 21
 for cube data, 676–678
KURT() function, 68, 500–503
kurtosis, 68, 500–503

L

LARGE() function, 178, 503–505, 818. See also MAX() function
LCM() function, 846–847
leap years, calculating, 44
least common multiple, 846–847
LEFT() and LEFTB() functions, 51, 52, 53, 55, 160–161, 179, 269–270
LEN() and LENB() functions, 52, 54, 55, 270–271
Len() function, VBA, 214
length measurements, conversions between, 927
less than operator (<), 107, 296, 639
less than or equal to operator (<=), 107, 296, 639
linear depreciation of assets, 702–703, 785–786
linear trends, 468–471, 613–618
line breaks, inserting in text, 57
line, statistics for, 506–511
LINES() function, 506–511
links, creating, 319–320
liquid measurements, conversions between, 929
list boxes. See controls
lists (Excel 2003 only). See also tables (formerly called lists)
 assigning dynamic names using, 77
LN() function, 847–848
loan repayments, 690. See amortization calculations;
 interest calculations
 accrued interest between two points, 713–714
 duration of repayment calculation, 747–750
 repayment portion between two points, 715–717
locking cells. See protection
LOG10() function, 849–850
logarithm, 848–849, 849–850
 of complex number, 944–945, 945, 946
 natural, 847–848, 944–945
LOGEST() function, 511–515
LOG() function, 66, 848–849
logical conditions, VBA, 206–210
logical data type, 144
logical functions, 58–61. See also information functions
 AND() function, 291–292
 comparison operators in, 106–107
 FALSE() function, 293–295
 IFERROR() function, 300–301
 IF() function, 296–299
 list of, 291, 996
 NOT() function, 301–302
 OR() function, 302–304
 TRUE() function, 304–306
logical value, determining whether cell is, 65
logical values
 comparison operators for, 106–107
 determining whether value or cell contains, 364–365
LOGINV() function, 518–519
lognormal distribution, 515–518, 518–519
LOGNORMDIST() and LOGNORM.DIST() functions, 515–518
LOGNORM.INV() function, 518–519
lookup and reference functions, 61–64
 errors in, 65
 list of, 307–308, 996
 position based on lookup table, 330–333
 value based on horizontal lookup table, 316–318
 value based on lookup table, 328–329
 value based on row and column number, 320–326
 value based on vertical lookup table, 344–346
LOOKUP() function, 62, 328–329
loops, VBA, 212–214
LOWER() function, 272–273

M

Mac, 1904 date system used by, 42, 46
macros, 194, 218
magnetic field intensity measurements, conversions between, 929
manual calculation of formulas, 134
MATCH() function, 62–63, 170–172, 330–333
mathematical functions, 90–92, 810–813. See also higher mathematics functions; trigonometry functions
absolute value, 813–814
aggregates, 818–821
combinations, number of, 830–831
determinant of an array, 850–851
division, 863
double factorial, 840–841
exponentiation, 838–839, 860–861
factorial, 839–840
greatest common divisor, 843–844
inverse of an array, 851–854
least common multiple, 846–847
list of, 811–813, 1006–1007
logarithm, 848–849, 849–850
multiplication, 862
multiplication of arrays, 854–855
pi constant, 859–860
polynomial coefficient, 858
power series, sum of, 873–875
random numbers, 865–866, 866–867
remainder of division, 855–857
rounding, 810
down to nearest multiple of significance, 841–842
down to next integer or multiple of significance, 842–843
down to next smaller integer, 845
down to specified number of decimal places, 870–871
to nearest multiple, 857–858
to next integer or multiple of significance, 829–830
to smallest multiple of significance, 828–830
to specified number of decimal places, 869–870
up to nearest even integer, 837–838
up to nearest odd integer, 859
up to specified number of decimal places, 872–873
sign of a number, 876–877
square root, 881–882, 882–883
sum, 818, 885–886, 886–888, 888–889
of difference of squares, 892–893
of products, 890–891
of squared values, 891
of squares of differences, 895–896
of sum of squares, 893–895
truncation, 902
math operators. See arithmetic operators
MAXA() function, 521–522
MAX() function, 178, 520–521, 818. See also LARGE() function
maximum values, 520–521, 521–522, 649–650, 818
MDETERM() function, 850–851
MDURATION() function, 742–743
mean values
of cells, 71–72
of cells that are not empty, 80
geometric mean, 485–486
harmonic mean, 491–494
list of functions for, 67–68
median, 522–525, 818
mode, 528–529, 530
percentile, 548–550, 550–551, 551, 818
percent rank, 552–556
quartile, 563–566, 566–567, 567–568, 818
measurement systems, conversions between, 132, 926–931
MEDIAN() function, 522–525, 818
median value, 522–525, 818
M format, for dates, 43
m format, for times, 43
MIDB() function, 273–274
MID() function, 53, 55, 161, 162, 273–274
Mid() function, VBA, 214
MINA() function, 526–527
MIN() function, 178, 525–526, 818. See also SMALL() function
minimum values, 525–526, 526–527, 581–582, 650–651, 818
minus sign (-)
correcting position of, 55
in date values, 41
negative value operator, 55, 106
subtraction operator, 104, 106
MINUTE() function, 232–233
MINVERSE() function, 851–854
MIRR() function, 744–745
mixed references, 115–117
MMULT() function, 854–855
mode, 528–529, 530
MODE() function, 528–529
MODE.MULT() function, 530
MODE.SNGL() function, 528–529, 818
MOD() function, 177, 855–857
money. See currency
month data series, 2–4
MONTH() function, 233–234
most frequent values (mode), 528–529, 530
mouse, selections using, 124–125
MROUND() function, 857–858
MULTINOMIAL() function, 858
multiple-rate method of asset depreciation, 719–720
multiplication, 818, 862
of arrays, 854–855
of column values, 652–654
of complex numbers, 948–949
multiplication operator (*), 104, 106

N
#N/A error
determining whether value or cell contains, 65, 365–366
included in ISERROR() results, 361
not included in ISERR() results, 360
returned by ERROR.TYPE() function, 354
returning #N/A error, 373–374
NA() function, 66, 373–374
#NAME? error, 217, 354
Name Manager, 162
names
custom lists of. See individual data series
defining, 160–161
dynamic range names, 163–165
formulas in, 159–165
names (of people)
reversing parts of, 52
separating parts of, 51–52
natural logarithm, 847–848, 944–945
negative binomial distribution, 531–532
negative value operator (-), 106
NEGVINOM.DIST() function, 531–532
NEGVINOMDIST() function, 531–532
NETWORKDAYS() function, 234–235
NETWORKDAYS.INTL() function, 236–237, 1014
New Formatting Rule dialog box, 18
newline character, 57
New Name dialog box, 74, 76, 161
N() function, 372–373
NOMINAL() function, 746
normal distribution, 533–536, 537–539, 539–541, 542–544, 583–585
NORMDIST() and NORM.DIST() functions, 533–536
NORMINV() and NORM.INV() functions, 537–539
NORMSDIST() and NORM.S.DIST() functions, 539–541
NORMSINV() and NORM.S.INV() functions, 542–544
not equal to operator (<>, 107, 296, 639
NOT() function, 301–302
NOW() function, 237–238
NPER() function, 747–750
NPV() function, 750–752
#NULL! error, 354
number data type, 144
numeric values
absolute value of, 813–814
aggregates of, 818–821
binary system for, 907, 908–909
complex numbers. See complex number functions
conversions of. See conversion functions
from numeric values to numerals in Thai text, 257–258
from numeric values to text formatted as currency, 262–263
from numeric values to text in number format, 285–286
from numeric values to text with specified decimal places, 268–269
from text to a numeric value, 289–290
converting a value to, 372–373
decimal system for, 907
determining if value or cell contains, 367–368
determining whether cell contains, 65
in engineering calculations. See engineering functions
even, determining whether cell is, 65
even, determining whether value is, 362–364
in financial calculations. See financial functions
formatting
as currency, 10
functions for, list of, 255–256
hexadecimal system for, 908
in mathematical calculations. See mathematical functions
octal system for, 908
odd, determining whether cell is, 65
odd, determining whether value is, 368–369
sign of, 876–877
in statistical calculations. See statistical functions
in trigonometry calculations. See trigonometry functions
visualizing with repeating cell graphics, 58

#NUM! error, 354

O

object-oriented programming, 215
OCT2BIN() function, 922–924
OCT2DEC() function, 924
OCT2HEX() function, 925–926
octal system, 908
converting binary to, 912–913
converting decimal to, 917–918
converting hexadecimal to, 921–922
converting to binary, 922–924
converting to decimal, 924
converting to hexadecimal, 925–926
ODDFPRICE() function, 752–755
ODD() function, 859
ODDFYIELD() function, 755–757
ODDLPRICE() function, 757–759
ODDLYIELD() function, 759–761
odd number, determining whether cell is, 65
OFFSET() function, 63–64, 333–337
OLAP (online analytical processing) cubes. See cube functions
OLAP tools, 84
one’s complement, for binary system, 909
online analytical processing (OLAP) cubes. See cube functions
operands, 103–104. See also constants; references
operating system, information about, 356–359
operators, 103–104, 104–111
arithmetic operators, 104–106
comparison operators, 106–107, 296
priority of, specifying, 105–106
reference operators, 108–111
for search criteria, 639
text operator (&), 107–108
Optional keyword, VBA, 204
OR() function, 302–304
P

P0 or P2, indicating percentage formats, 350
parameters. See arguments, of functions
parentheses (())
cells formatted with, determining, 349
enclosing function arguments, 143
grouping expressions in formulas, 105–106
highlighting of, 106
Paste Special dialog box, 92
path
of current directory, 357
of workbook, 160–161
Pearson correlation coefficient, 544–547, 572–574
PEARSON() function, 544–547
PERCENTILE.EXC() function, 550–551, 818
PERCENTILE() function, 548–550
PERCENTILE.INC() function, 551, 818
percentile (p quantile), 548–550, 550–551, 551, 818
percent operator (%), 104, 106
PERCENTRANK.EXC() function, 554
PERCENTRANK() function, 552–553
PERCENTRANK.INC() function, 555–556
performance measurements, conversions between, 928
permutations, 556–557
PERMUT() function, 556–557
PHONETIC() function, 275
pi
constant for, 859–860
square root of number multiplied by, 882–883
pie charts, 24–25
PI() function, 214–215, 859–860
PivotCharts, 35–40
changing settings for, 39
creating, 35–37
dynamically changing data in, 38–39
using with PowerPivot, 99–101
PivotTable dialog box, 30
PivotTables, 28–34
converting to a cube, 84
creating, 29–31
creating PivotCharts from, 35–37
dynamically changing data in, 38–39
filtering data, 31–34
reports, retrieving data from, 664–672
using with PowerPivot, 93, 99–101
plus sign (+)
addition operator, 104, 106
in keyboard shortcuts, xxii
PM designation, for times, 43
PMT() function, 149–150, 179, 762–764
POISSON.DIST() function, 558–560
Poisson distribution, 558–560
POISSON() function, 558–560
polynomial coefficient, 858
position, 568–570, 570–571, 571–572. See also relative position
POWER() function, 860–861
PowerPivot add-in, 93–102, 1015
power series, sum of, 873–875
PPMT() function, 765–766
pressure measurements, conversions between, 928
price calculations, 691. See also securities
PRICEDISC() function, 85, 771–774
PRICE() function, 767–771
PRICEMAT() function, 774–776
probability, 69, 70, 561–563
probability integrals, 963–966
probability theory, 67
PROB() function, 561–563
PRODUCT() function, 818, 862
products, sum of, 890–891
profit, calculating, 59–61
profit margin, calculating, 11, 13–17
PROPER() function, 275–276
protection
determining, for a cell, 349
preventing cells and formulas from being changed, 132–133
validation of data as, 188
Public keyword, VBA, 200
PV() function, 776–779
Q
quantiles
of gamma distribution, 476–480, 481–482
left quantile
of chi-squared distribution, 413–414, 416–417
of F-distribution, 452–453, 456
of lognormal distribution, 518–519
p quantile (percentile), 548–550, 550–551, 551
right quantile
of chi-squared distribution, 414–416, 418–419
of F-distribution, 453–455, 457–459
quarters of the year, calculating, 49
QUARTILE.EXC() function, 566–567, 818
QUARTILE() function, 563–566
QUARTILE.INC() function, 567–568, 818
quartiles, 563–566, 566–567, 567–568, 818
question mark (?), wildcard, 637, 639
quotes
double quote ("), indicating right-aligned text, 349
double quotes (""")
enclosing text or spaces in cells, 107, 108
enclosing text with wildcards, 639
single quote (‘), indicating left-aligned text, 349
QUOTIENT() function, 863
R
radians
converting degrees to, 863–865
converting to degrees, 835–837
RADIANS() function, 153–155, 863–865
RAM usage, 1012
RANDBETWEEN() function, 7–8, 91–92, 866–867
RAND() function, 865–866
random numbers, generating, 7–8, 91–92, 865–866, 866–867
range names, dynamic, 163–165
range operator (), 108–110
ranges. See cell ranges
RANK.AVG() function, 570–571
RANK.EQ() function, 571–572
RANK() function, 568–570
RATE() function, 779–783
real-time data, retrieving, 339–341
RECEIVED() function, 783–785
records, in database, 635. See also database; database functions
reference data type. See cell reference data type
reference functions. See lookup and reference functions
reference lines in tables, highlighting, 179–182
reference operators, 108–111
references. See cell references
#REF! error, 354
regression analyses, 68
 exponential curve for, 511–515
 intercept point of regression line, 497–500
 line statistics, 506–511
 slope of regression line, 578–581
relative position, 552–553, 554, 555–556. See also position
relative references, 113, 117. See also mixed references
remainder of division, 855–857
repayment calculations. See loan repayments
REPLACE() and REPLACEB() functions, 276–277
REPT() function, 58, 278–279
return value, for custom function, 200
RIGHT() and RIGHTB() functions, 50, 51, 52, 53, 55, 162, 179, 279–280
ROMAN() function, 811, 867–869
Roman numerals, converting Arabic numbers to, 867–869
ROUNDDOWN() function, 870–871
ROUND() function, 87, 869–870
rounding, 810
down to nearest multiple of significance, 841–842
down to next integer or multiple of significance, 842–843
down to next smaller integer, 845
down to specified number of decimal places, 870–871
to nearest multiple, 857–858
to next integer or multiple of significance, 829–830
to smallest multiple of significance, 828–829
to specified number of decimal places, 869–870
up to nearest even integer, 837–838
up to nearest odd integer, 859
up to specified number of decimal places, 872–873
ROUNDUP() function, 872–873
ROW() function, 337–338
row limits, with PowerPivot, 93
row number, determining for a cell, 349
rows
 highlighting alternate rows, 176–177
 limits for, 1012
 references to entire rows, 109–110
ROWS() function, 338–339
rows, in database, 635. See also database; database functions
RSQ() function, 572–574
RTD() function, 339–341
Rules Manager, 166

S
saltus functions, 906, 967–970
sample files for this book, xxiii–xxxv
ScreenTips, for functions, 147
search and reference functions. See lookup and reference functions
SEARCH() and SEARCHB() functions, 281–283
search criteria for database functions, 636–638
 calculated criteria in, 639
 including all records, 638
 including all records with an empty field, 639
 multiple conditions in, 639
 operators and wildcards for, 639
searching for functions, 151
searching worksheets. See lookup and reference functions
SECOND() function, 238–239

securities
annual yield for marked down security, 803–806
anticipative interest rate, 720–722
decimal places as numerator of fraction, converting, 723–724, 724–725
disbursement amount of simply discounted security, 771–774
fixed-interest
accrued interest of, 695–697, 697–699
annual yield of, 806–808
date of first interest payment, 708–709
date of last interest payment, 711–712
days in interest period, 705–706
days since last interest payment, 704–705
days to next coupon date, 707–708
Macauley Duration for, 725–727
modified duration for, 742–743
number of interest payments, 710–711
price of, 752–755, 757–759, 767–771
marked down, interest rate for, 734–736
price of discounted securities as percent, 789–790
price of security with simple interest yield in arrears, 774–776
yield of discounted security, 790–791

selections, 124–125
SERIES() function, 64
SERIESSUM() function, 873–875
s format, for times, 43
SharePoint 2010, publishing PowerPivot results to, 93, 96

sheet
name of, determining, 162
number of active worksheets, 357
references to entire worksheet, 110
SIGN() function, 876–877
sign of a number, 876–877
simple interest, 690
$, indicating fraction format, 350
$, indicating standard format, 350
sine, 877–879, 950
SIN() function, 153–155, 877–879
single quote (‘), indicating left-aligned text, 349

SINH() function, 879–881
64-bit version, Excel 2010, 1013
SKEW() function, 68, 575–578
skewness of a distribution, 575–578
slash (/). See forward slash (/)
SLN() function, 785–786
SLOPE() function, 578–581
slope of regression line, 578–581
SMALL() function, 178, 581–582, 818. See also MIN() function
Solver add-in, 1015
sort keys, limits for, 1012
space (“ “)
in database record, 638
in functions, avoiding, 144
highlighting cells containing, 179
including in cells, 108
intersection operator, 108, 110–111
removing from text, 54–55
in search criteria, 638

sparklines, 28
spread, 68–69
SQL Server Analysis Services, 673. See also cube functions
SQR() function, 881–882
SQRTP() function, 882–883
squared deviations, sum of, 446–448
squared values
sum of, 891
sum of differences of, 892–893
sum of sum of, 893–895
square root, 881–882, 882–883, 950–951
standard deviation
based on population, 585–587, 818
based on population, including text and logical values, 593–595
based on population in database, 656–657
based on sample, 588–590, 818
based on sample, including text and logical values, 590–592
based on sample in database, 654–655
standard error, 595–598
standardized normal distribution, 583–585
STANDARDIZE() function, 583–585
statistical functions, 67–72, 1014
 average absolute deviation, 388–389
 beta distributions, 401–403, 403–407
 binomial distributions, 407–411, 411–413
 compatibility category of, 385
 confidence interval, 423–426, 427
 correlation, 68, 428–431
 counting, 69–70, 71
 all numbers in argument list, 431–433, 818
 all numbers in database matching search criteria, 643–645
 all values in argument list, 434, 818
 all values in database matching search criteria, 645–647
 all values matching search criteria, 435–438, 438–440
 empty cells, 435
 covariance, 441–444, 444–445, 445–446
 examples using, scenario for, 387
 exponential distributed random variable, probability of, 448–451
 exponential trend, 487–491
 Fisher transformation, 462–466, 467
 frequency distribution, 472–476
 f-test, statistics from, 460–462
 gamma distribution, 476–480, 481–482
 gamma function, natural log of, 482–484, 484–485
 Gauss test, 632–634
 kurtosis, 500–503
 linear trends, 468–471, 613–618
 list of, 381–385, 997–1002
 lognormal distribution, 515–518, 518–519
 maximum values, 503–505, 520–521, 521–522, 818
 mean values, 67–68, 71–72
 geometric mean, 485–486
 harmonic mean, 491–494
 median, 522–525, 818
 mode, 528–529, 530
 percent rank, 552–553
 minimum values, 525–526, 526–527, 581–582, 818
 negative binomial distribution, 531–532
 normal distribution, 533–536, 537–539, 539–541, 542–544
 Pearson correlation coefficient, 544–547, 572–574
 permutations, 556–557
 Poisson distribution, 558–560
 position, 568–570, 570–571, 571–572
 p quantile (percentile), 548–550, 550–551, 551, 818
 probability, 69, 70, 561–563
 quartiles, 563–566, 566–567, 567–568
 regression analyses, 68
 exponential curve for, 511–515
 intercept point of regression line, 497–500
 line statistics, 506–511
 slope of regression line, 578–581
 relative position, 552–553, 554, 555–556
 skewness of a distribution, 575–578
 spread, 68–69
 squared deviations, sum of, 446–448
 standard deviation. See standard deviation
 standard error, 595–598
 standardized normal distribution, 583–585
 symmetry, 68
 t-distribution, 599, 600, 601–602, 603, 604–606
 t-test, 606–612
 uses of, 380–381
 variance, 68–69
 based on population, 620–622, 818
 based on population, including text and logical values, 627–628
 based on population in database, 662–663
 based on sample, 622–624, 818
 based on sample, including text and logical values, 625–626
 based on sample in database, 661–662
 Weibull distribution, 629–632
STDEVA() function, 590–592
STDEV() function, 588–590
STDEVPA() function, 593–595
STDEVP() and STDEV.P() functions, 585–587, 818
STDEV.S() function, 588–590, 818
STEYX() function, 595–598
Str() function, VBA, 213
strings. See text
SUBSTITUTE() function, 54, 54–55, 283–284
SUBTOTAL() function, 883–885
subtraction of complex numbers, 952
subtraction operator (-), 104, 106
sum, 818, 885–886, 886–888, 888–889
of complex numbers, 953
of difference of squares, 892–893
of a power series, 873–875
of products, 890–891
of squared values, 891
of squares of differences, 895–896
of sum of squares, 893–895
of values in database, 657–660
SUM() function, 90, 141–142, 143–146, 818, 885–886
SUMIF() function, 90–91, 886–888
SUMIFS() function, 888–889, 1011, 1012
summarizing tabular data. See PivotTables
SUMPRODUCT() function, 890–891
SUMSQ() function, 891
SUMX2MY2() function, 892–893
SUMX2PY2() function, 893–895
SUMXMY2() function, 895–896
support information for this book, xxxvi
SYD() function, 786–787
symmetry, 68

T

table names, in formulas, 311
tables
formatting data as, 12–13
for summarizing or filtering data. See PivotTables
tables (formerly called lists). See also PivotTables
assigning dynamic names using, 77–78
automatic formula calculation excluding, 134
comparing, 174–176
reference lines in, 179–182
relative references in, 117
TAN() function, 896–899
tangent, 896–899
TANH() function, 899–901
TBILLEQ() function, 788–789
TBILLPRICE() function, 789–790
TBILLYIELD() function, 790–791
TDIST() and T.DIST.2T() functions, 601–602
T.DIST() function, 599
t-distribution, 70, 599, 600, 601–602, 603, 604–606
T.DIST.RT() function, 600
technical functions. See engineering functions
temperature measurements, conversions between, 929
testing custom functions, 202
text, 50–58
in cells, enclosing in quotes (""), 107, 108
comparing two strings, 264–265
conversions of
from character code to character, 258–259
from character to character code, 260–261
from double-byte to single-byte characters, 256–257
from text to cell reference, 326–327
from numeric values to numerals in Thai text, 257–258
from numeric values to text formatted as currency, 262–263
from numeric values to text in number format, 285–286
from numeric values to text with specified decimal places, 268–269
from text to a numeric value, 289–290
determining if value or cell contains, 366–367
determining whether a string is, 65, 284–285
determining whether value is, 371–372
extracting parts of
in addresses, 50–52
in IBAN numbers, 53
last characters of a string, 279–280
middle characters of a string, 273–274
phonetic Furigana characters, 275
frequency of a character in, 54
functions for, list of, 255–256, 994–995
length of string, 270–271
manipulating
 changing all characters to lowercase, 272–273
 changing all characters to uppercase, 287–289
 changing first character of all words to uppercase, 275–276
concatenating multiple strings, 56–57, 261–262
line breaks, inserting, 57
removing all non-printable characters, 259–260
removing all spaces in, 54–55
removing leading or trailing spaces, 286–287
repeating characters a specified number of times, 278–279
replacing characters, 276–277, 283–284
reversing parts of, 52
searching for a string within, 266–267, 281–283
wrapping, enabling, 57
text data type, 144
TEXT() function, 285–286
text operator (&), 107–108
T format, for dates, 43
T() function, 284–285
TIME() function, 239–240
times. See dates and times
TIMEVALUE() function, 241
TINV() and T.INV.2T() functions, 70, 604–606
T.INV() function, 70, 603
T.INV.RE() function, 70
TODAY() function, 163, 242
tracing formulas, 136–137
TRANSPOSE() function, 341–343
treasury bills
 annual interest rate in arrears for U.S. treasury bills, 788–789
 price of discounted securities as percent, 789–790
 yield of discounted security, 790–791
TREND() function, 613–618
trends. See probability
trigonometry functions, 90–92, 810. See also mathematical functions
 adjacent angle, based on sine, 821–822
 arccosine, 814–816
 arctangent, 824–825, 825–826
 converting degrees to radians, 863–865
 converting radians to degrees, 835–837
 cosine, 832–834, 940–941
 hyperbolic cosine, 834–835
 hyperbolic sine, 879–881
 hyperbolic tangent, 899–901
 inverse hyperbolic cosine, 816–817
 inverse hyperbolic sine, 822–823
 inverse hyperbolic tangent, 827–828
 list of, 811–813, 1006–1007
 natural logarithm, 847–848, 944–945
 sine, 877–879, 950
 tangent, 896–899
TRIM() function, 179, 286–287
TRIMMEAN() function, 391, 618–620
troubleshooting
 conditional formatting, 187
 formulas, 138–140
TRUE() function, 304–306
truncation, 902
TRUNC() function, 902
t-test, 606–612
TTEST() and T.TEST() functions, 606–612
two’s complement, for binary system, 909
TYPE() function, 375–378
Type statement, VBA, 195
type styles used in this book, xxii
U
undecorated_Grammar (.), continuing lines in custom functions, 205
UPPER() function, 287–289
U.S. treasury bills
 annual interest rate in arrears for U.S. treasury bills, 788–789
 price of discounted securities as percent, 789–790
 yield of discounted security, 790–791
Val() function, VBA, 214

validation
dependencies on other cells, 188–189
duplicate entries, avoiding, 190–192
formulas for, 187–192
limits on length of data, 188
messages displayed on completion of entries, 192

#VALUE! error, 354
VALUE() function, 289–290
VARA() function, 625–626
VAR() function, 622–624
variables. See names
variables, VBA, 213–214

variance, 68–69
based on population, 620–622, 818
including text and logical values, 627–628
in database, 662–663
based on sample, 622–624, 818
including text and logical values, 625–626
in database, 661–662
VARPA() function, 627–628
VARP() and VAR.P() functions, 620–622, 818
VAR.S() function, 622–624, 818

VBA (Visual Basic for Applications), 193
branching, 206–210
comments, 201
conditions, 206–210
creating custom functions using. See custom functions
End Function statement, 195
Function statement, 195
IsMissing() function, 205
Len() function, 214
loops, 212–214
Mid() function, 214
Optional keyword, 204
Public keyword, 200
Str() function, 213
Type statement, 195
Val() function, 214

x
XIRR() function, 794–796
.xlam file extension, 1013
.xlsb file extension, 1013
.xlsm file extension, 218, 1013
.xlsx file extension, 218, 1013
.xltm file extension, 1013
.xltx file extension, 1013
XML, file formats using, 1013
XNPV() function, 796–798

Y
YEARFRAC() function, 252–254
YEAR() function, 251–252
YIELDDISC() function, 86, 803–806
YIELD() function, 799–803
YIELDMAT() function, 806–808

Z

Z.TEST() function, 632–634
ZTEST() function, 632–634
About the Authors

In this book you will find our combined experience from working with Microsoft Excel on a daily basis in corporate management, software training, statistics, database projects, and programming. Here is who we are:

Sara Unverhau has a degree in international business administration (equivalent to an MBA) with a focus on marketing, corporate management, and languages. She works in marketing and communications. Sara has written many articles and book chapters about topics related to business administration for different publishers.

Jens Bock has a degree in business administration (equivalent to an MBA). Jens specializes in quality control and documentation, which is also the area in which he works. As a consultant for quality control and web applications, he contributed his broad range of experience with Excel.

Dr. Bodo Fienitz has a doctorate in chemistry and since 1991 has been lecturing full-time in adult education. In addition to science (chemistry, physics, and biology), he teaches IT-related topics for theoretical and practical applications. His lectures range from IT basics and operating systems to solutions for the commercial and technical sectors. He first came into contact with data processing in 1971 while studying electrical engineering at the Technische Universität Berlin. For his doctorate in chemistry at the Freie Universität Berlin during the 1980s, he used computer-aided process control, measurement data logging, and measurement data evaluation. Working with the required visualization and subsequent data processing made Dr. Fienitz an Excel expert.

Egbert Jeschke has been working for years as a trainer, application consultant, and application developer. As someone who has committed himself to relational and multidimensional databases, he can appreciate the strengths of Excel and knows how to take advantage of them. Thorough knowledge of SQL, Microsoft Visual Basic for Applications (VBA), and word processing with Microsoft Word make him well-rounded. He is the author and coauthor of several books about Microsoft Office software through Microsoft Press and other publishers.

Dr. Eckehard Pfeifer is a mathematician who works as a freelance consultant, developer, and trainer. He is a Microsoft Certified Application Developer for Microsoft .NET, and his specialty is mainly the Office environment. He writes for various special-interest magazines and loose-leaf editions. He is the coauthor of several books through Microsoft Press (Excel and Microsoft PowerPoint handbooks as well as books on Excel and Microsoft Office 2007 programming).

Helmut Reinke is the guiding spirit of this team and has written numerous publications about Office applications, commercial solutions, project management, and business administration. He is an organization programmer who focuses on success planning and business planning. He has been an Excel guru since the early days of Excel. In addition to benefitting this book with his many years of experience working in sales and commerce, he has contributed his skilled didactical experience as a lecturer and trainer.
What do you think of this book?

We want to hear from you!
To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Tell us how well this book meets your needs—what works effectively, and what we can do better. Your feedback will help us continually improve our books and learning resources for you.

Thank you in advance for your input!