

MCPD 70-519
Exam Ref:
Designing and Developing Web
Applications Using Microsoft® .NET
Framework 4

Tony Northrup

Copyright © 2011 by Tony Northrup

All rights reserved. No part of the contents of this book may be reproduced
or transmitted in any form or by any means without the written permission of
the publisher.

ISBN: 978-0-7356-5726-7

2 3 4 5 6 7 8 9 10 QG 8 7 6 5 4 3

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors
worldwide. If you need support related to this book, email Microsoft Press
Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/
en/us/IntellectualProperty/Trademarks/EN-US.aspx are trademarks of the
Microsoft group of companies. All other marks are property of their respec-
tive owners.

The example companies, organizations, products, domain names, email ad-
dresses, logos, people, places, and events depicted herein are fictitious. No
association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information con-
tained in this book is provided without any express, statutory, or implied
warranties. Neither the authors, Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or
alleged to be caused either directly or indirectly by this book.

Acquisitions and Developmental Editor: Ken Jones
Production Editor: Adam Zaremba
Editorial Production: Octal Publishing, Inc.
Technical Reviewer: Bill Chapman
Copyeditor: Roger LeBlanc
Indexer: Denise Getz
Cover Composition: Karen Montgomery
Illustrator: Robert Romano

[2013-01-25]

For my favorite nephews and niece: Tyler, Austin, and
Mya Rheaume

Contents at a Glance

Introduction xv

Preparing for the Exam xix

ChaPTER 1 Designing the application architecture 1

ChaPTER 2 Designing the User Experience 57

ChaPTER 3 Designing Data Strategies and Structures 87

ChaPTER 4 Designing Security architecture and Implementation 135

ChaPTER 5 Preparing for and Investigating application Issues 175

ChaPTER 6 Designing a Deployment Strategy 215

Index 259

vii

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Contents

Introduction xv
Microsoft Certified Professional Program xvi

Acknowledgments xvi

Support & Feedback xvii

Preparing for the Exam xix

Chapter 1 Designing the Application Architecture 1
Objective 1.1: Plan the Division of Application Logic 2

Choosing Between the Client Side and Server Side 3

Partitioning According to Separation of Concerns 5

Planning for Long-Running Processes 7

Objective Summary 10

Objective Review 10

Objective 1.2: Analyze Requirements and Recommend a
System Topology . 13

Designing a System Topology 13

Designing Interactions Between Applications 14

Mapping the Logical Design to the Physical Implementation 17

Validating Nonfunctional Requirements and Cross-
Cutting Concerns 19

Evaluating Baseline Needs 21

Objective Summary 23

Objective Review 23

viii Contents

Objective 1.3: Choose Appropriate Client-Side Technologies 26

Using Client-Side Scripting Languages 26

Using Rich Client-Side Plug-ins 29

Objective Summary 30

Objective Review 30

Objective 1.4: Choose Appropriate Server-Side Technologies 33

Choosing Between Different Control Types 33

Using Partial Classes and Methods 35

Accessing Server Methods from Client Code 35

Objective Summary 36

Objective Review 37

Objective 1.5: Design State Management . 39

Using Application State 39

Using the Cache Object 40

Evaluating User State Technologies 40

Using Session State 42

Creating Custom Page State Persisters 44

Objective Summary 45

Objective Review 46

Chapter Summary . 48

Answers . 49

Objective 1.1: Review 49

Objective 1.1: Thought Experiment 50

Objective 1.2: Review 51

Objective 1.2: Thought Experiment 51

Objective 1.3: Review 52

Objective 1.3: Thought Experiment 53

Objective 1.4: Review 53

Objective 1.4: Thought Experiment 54

Objective 1.5: Review 55

Objective 1.5: Thought Experiment 56

ixContents

Chapter 2 Designing the User Experience 57
Objective 2.1: Design the Site Structure . 57

Designing Application Segmentation 58

Using Style Sheets 59

Using Themes 61

Configuring the Routing Engine 62

Objective Summary 63

Objective Review 64

Objective 2.2: Plan for Cross-Browser and/or Form Factors 66

Evaluating the Impact of Features 66

Deciding When to Apply the Browsers File 67

Examining User Agents and Browser Capabilities 68

Identifying Structural Approaches 70

Objective Summary 71

Objective Review 72

Objective 2.3: Plan for Globalization . 74

Handling Language and Culture Preferences 74

Designing to Support Cultural Preferences 76

Choosing Between CurrentCulture and CurrentUICulture 76

Displaying Text for Differing Cultures 77

Translating Web Applications 78

Handling Unicode Data 79

Objective Summary 79

Objective Review 80

Chapter Summary . 82

Answers . 82

Objective 2.1: Review 82

Objective 2.1: Thought Experiment 83

Objective 2.2: Review 84

Objective 2.2: Thought Experiment 85

Objective 2.3: Review 85

Objective 2.3: Thought Experiment 86

x Contents

Chapter 3 Designing Data Strategies and Structures 87
Objective 3.1: Design Data Access . 87

Using ADO.NET 88

Using the Entity Framework 88

Using WCF Web Services 89

Using WCF Data Services 89

Using ASP.NET Web Services 91

Choosing a Data Access Technology 91

Objective Summary 92

Objective Review 93

Objective 3.2: Design Data Presentation and Interaction 95

Binding Server Controls to Data Sources 95

Binding MVC Views to Data Sources 97

Binding Client Controls to Data Sources 106

Objective Summary 114

Objective Review 114

Objective 3.3: Plan for Data Validation . 116

Designing Data Validation for ASP.NET Applications 116

Designing Data Validation for MVC Applications 118

Objective Summary 125

Objective Review 125

Chapter Summary . 127

Answers . 128

Objective 3.1: Review 128

Objective 3.1: Thought Experiment 129

Objective 3.2: Review 130

Objective 3.2: Thought Experiment 131

Objective 3.3: Review 131

Objective 3.3: Thought Experiment 132

xiContents

Chapter 4 Designing Security Architecture and Implementation 135
Objective 4.1: Plan for Operational Security . 136

Planning Code Access Security 136

Understanding Process Identity 139

Understanding Impersonation and Delegation 141

Objective Summary 145

Objective Review 145

Objective 4.2: Design an Authentication and Authorization Model 147

Using ASP.NET Membership 148

Implementing Authorization 149

Planning Role Management 152

Storing Passwords 152

Using Authorization Manager 153

Designing Trusted Subsystems 155

Objective Summary 157

Objective Review 158

Objective 4.3: Plan for Minimizing Attack Surfaces 160

Handling User Input 160

Throttling Input 161

Filtering Requests 162

Using SSL 164

Objective Summary 166

Objective Review 166

Chapter Summary . 168

Answers . 169

Objective 4.1: Review 169

Objective 4.1: Thought Experiment 170

Objective 4.2: Review 170

Objective 4.2: Thought Experiment 171

Objective 4.3: Review 171

Objective 4.3: Thought Experiment 173

xii Contents

Chapter 5 Preparing for and Investigating Application Issues 175
Objective 5.1: Choose a Testing Methodology . 175

Understanding Testing Methodologies 176

Understanding Code Coverage 177

Testing the Appropriate Layer 178

Objective Summary 179

Objective Review 179

Objective 5.2: Design an Exception-Handling Strategy 181

Designing an Exception-Handling Strategy 181

Processing Unhandled Exceptions in ASP.NET 183

Processing Unhandled Exceptions in MVC Applications 187

Objective Summary 188

Objective Review 188

Objective 5.3: Recommend an Approach to Debugging 190

Debugging Complex Issues 190

Performing a Root-Cause Analysis 193

Attaching to Processes 194

Debugging JavaScript 195

Controlling Debugger Displays 195

Objective Summary 198

Objective Review 198

Objective 5.4: Recommend an Approach to Performance Issues 200

Monitoring Applications 201

Logging Tracing 202

Caching Pages and Fragments 203

Objective Summary 204

Objective Review 204

Chapter Summary . 207

xiiiContents

Answers . 208

Objective 5.1: Review 208

Objective 5.1: Thought Experiment 209

Objective 5.2: Review 209

Objective 5.2: Thought Experiment 210

Objective 5.3: Review 210

Objective 5.3: Thought Experiment 211

Objective 5.4: Review 212

Objective 5.4: Thought Experiment 213

Chapter 6 Designing a Deployment Strategy 215
Objective 6.1: Design a Deployment Process . 216

Understanding Deployment Methods 216

Preventing Websites and Applications from Being Updated 221

Deploying Applications as a Single Assembly 221

Objective Summary 222

Objective Review 222

Objective 6.2: Design Configuration Management 224

Understanding the Configuration Hierarchy 224

Using the ConfigSource Attribute 226

Modifying Configuration Files for Different Environments 226

Comparing IIS to the Visual Studio Development Server 228

Configuring Application Pools 229

Migrating Between Different Versions of the .NET Framework 230

Objective Summary 231

Objective Review 231

Objective 6.3: Plan for Scalability and Reliability . 233

Scaling Web Applications 234

Moving to the Cloud 238

Load Testing 238

Using Queuing 239

Performance Tuning 240

Objective Summary 241

Objective Review 241

xiv Contents

Objective 6.4: Design a Health-Monitoring Strategy 243

Understanding Health-Monitoring Events 244

Understanding Event Providers 244

Configuring Health Monitoring 245

Designing a Health-Monitoring Strategy 247

Objective Summary 248

Objective Review 248

Chapter Summary . 251

Answers . 252

Objective 6.1 Review 252

Objective 6.1 Thought Experiment 253

Objective 6.2 Review 253

Objective 6.2 Thought Experiment 254

Objective 6.3 Review 254

Objective 6.3 Thought Experiment 256

Objective 6.4 Review 256

Objective 6.4 Thought Experiment 257

Index 259

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

xv

Introduction

Most development books take a very low-level approach, teaching you how to use indi-
vidual classes and accomplish fine-grained tasks. Like the Microsoft 70-519 certification

exam, this book takes a high-level approach, building on your lower-level web development
knowledge and extending it into application design. Both the exam and the book are so
high-level that there is very little coding involved. In fact, most of the code samples this book
provides simply illustrate higher-level concepts.

The 70-519 certification exam tests your knowledge of designing and developing web
applications. By passing the exam, you will prove that you have the knowledge and experi-
ence to design complex web applications using Microsoft technologies. This book will review
every concept described in the exam objective domains:

■■ Design application architectures

■■ Design the user experience

■■ Design data strategies and structures

■■ Design a security architecture and implementation

■■ Prepare for and investigate application issues

■■ Design a deployment strategy

This book covers every exam objective, but it does not necessarily cover every exam
question. Microsoft regularly adds new questions to the exam, making it impossible for this
(or any) book to provide every answer. Instead, this book is designed to supplement your
relevant independent study and real-world experience. If you encounter a topic in this book
that you do not feel completely comfortable with, you should spend several hours research-
ing the topic further using MSDN, blogs, and support forums. Ideally, you should also create a
practical application with the technology to gain hands-on experience.

xvi Introduction

Microsoft Certified Professional Program

Microsoft certifications provide the best method for proving your command of current Micro-
soft products and technologies. The exams and corresponding certifications are developed to
validate your mastery of critical competencies as you design and develop, or implement and
support, solutions with Microsoft products and technologies. Computer professionals who
become Microsoft certified are recognized as experts and are sought after industry-wide.
Certification brings a variety of benefits to the individual and to employers and organizations.

More Info Other MicrOsOft certificatiOns

For a full list of Microsoft certifications, go to www.microsoft.com/learning/mcp/default.asp.

Acknowledgments

First and foremost, I’d like to thank Ken Jones at O’Reilly for his work in designing the Micro-
soft Press Exam Ref book series, for choosing me (once again) as an author, and for his work
as an editor. It’s been great to work with you, as always, Ken!

I’d also like to thank Bill Chapman, the Technical Editor, Adam Zaremba, the Production
Editor, Dan Fauxsmith, the Production Manager, and Roger LeBlanc, the Copy Editor.

Finally, I must thank my friends and family for their support, especially Eddie and Christine
Mercado (for letting me use of their home after hurricane Irene), Brian and Melissa Rheaume
(for taking me to Greenport on their boat), Jose and Kristin Gonzales (for the many laughs),
Chelsea and Madelyn Knowles (for their patience while I worked too much during the Summer),
and Papa Jose and Nana Lucy (for the meat pies).

xviiIntroduction

Support & Feedback

The following sections provide information on errata, book support, feedback, and contact

information.

Errata
We’ve made every effort to ensure the accuracy of this book and its companion content.
Any errors that have been reported since this book was published are listed on our Microsoft
Press site:

http://www.microsoftpressstore.com/title/ 9780735657267

If you find an error that is not already listed, you can report it to us through the same page.

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com.

Please note that product support for Microsoft software is not offered through the addresses
above.

We Want to hear from You
At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in advance
for your input!

Stay in Touch
Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

http://www.microsoftpressstore.com/title/ 9780735657267

xix

Preparing for the Exam

M icrosoft certification exams are a great way to build your resume and let the world know
about your level of expertise. Certification exams validate your on-the-job experience

and product knowledge. Although there is no substitute for on-the-job experience, prepara-
tion through study and hands-on practice can help you prepare for the exam. We recom-
mend that you augment your exam preparation plan by using a combination of available
study materials and courses. For example, you might use the Exam Ref and another study
guide for your “at home” preparation, and take a Microsoft Official Curriculum course for the
classroom experience. Choose the combination that you think works best for you.

 1

C h A P T E R 1

Designing the application
architecture

The highest level aspect of the design process is also the most
exciting: designing the application architecture. In this stage,

the application begins to come to life, and you are not getting
bogged down in technical details. You create a logical design
for your application and then map the logical layers to physical
servers. After you determine the physical layout, you can choose
interapplication communication mechanisms and plan for cross-
cutting concerns, such as systems administration.

Further into the design process, you choose how presenta-
tion logic will be divided between the client and server. For
client-side components, you will need to decide between basic JavaScript, jQuery, Micro-
soft AJAX, and Microsoft Silverlight. For server-side components, you will need to choose
between HTML controls, server controls, user controls, and Web Parts.

Finally, you will need to decide how to implement various state-management tasks. The
Microsoft .NET Framework provides a wide variety of technologies, including application
state, session state, view state, cookies, and caching.

Objectives in this chapter:
■■ Objective 1.1: Plan the division of application logic

■■ Objective 1.2: Analyze requirements and recommend a system topology

■■ Objective 1.3: Choose appropriate client-side technologies

■■ Objective 1.4: Choose appropriate server-side technologies

■■ Objective 1.5: Design state management

i m p o r t a n t

Have you read
page xix?
It contains valuable
information regarding
the skills you need to
pass the exam.

 2 Chapter 1 Designing the Application Architecture

Real World

The application design process starts when management determines that a new
application can fulfill a business requirement. As management describes what

they need from the new application, your mind will race with all the reasons the
application won’t work the way they want. Pointing out every potential problem
might feel like you’re demonstrating your technical skill and preventing future
frustrations, but in the real world, it hinders the design process, dampens creativity,
and annoys management.

As developers, our minds have been tuned to spot and eliminate flaws. However,
you need to be creative and positive during the application design process. Do your
best to ignore the low-level challenges; troubleshooting is a job for coders. Design-
ers must create.

Objective 1.1: Plan the Division of Application Logic

In the early days of the web, browsers did little more than render HTML and display images.
Today, thanks to technologies such as JavaScript, Flash, and Silverlight, the browser can inter-
act with the user, validate data, and communicate with servers without loading new web-
pages. Use these client-side capabilities properly, and you can make your web application feel
faster, reduce bandwidth, and reduce user input errors.

Server-side processing still has its place, however. First, server-side code is much easier
to develop, test, and maintain. Second, anything but the most trivial data validation must be
performed on the server, because it is possible for malicious attackers to bypass client-side
validation. Third, some clients do not support JavaScript, Flash, or Silverlight, requiring you to
duplicate any mandatory client-side functionality on the server.

This objective covers how to:
■■ Choose whether to implement functionality on the client or server.

■■ Efficiently use client-side scripting languages.

■■ Explain the capabilities and drawbacks of rich, client-side plug-ins such as Flash
and Silverlight.

■■ Partition applications according to the separation of concerns principle.

■■ Plan for long-running processes.

 Objective 1.1: Plan the Division of Application Logic Chapter 1 3

Choosing Between the Client Side and Server Side
Many tasks can be performed at either the client or the server. For example, if you ask the
user to enter his address in a web form, you can provide a DropDownList named Country
DropDownList that contains every country/region in the world. When the user selects a coun-
try, you can populate the StateDropDownList with a list of states or provinces in his country.

You can do this on either the server or the client:

■■ Server In ASP.NET, set CountryDropDownList.AutoPostBack to True. In the
DropDownList.SelectedIndexChanged event handler, populate StateDropDownList.

■■ Client Create a JavaScript function that handles the CountryDropDownList.OnChange
JavaScript event and populates the StateDropDownList on the client.

Neither approach is clearly superior, but they each have advantages. By populating the list
on the server side, you keep more code in ASP.NET, which is generally easier to write, trouble-
shoot, and maintain than JavaScript. Additionally, server-side processing works when the
client does not support JavaScript.

By populating the list on the client side, you improve performance for both the user and
the server. Client-side processing avoids a browser postback to the server when the user
selects her country. This eliminates a delay in data entry that could last several seconds.
Additionally, by reducing the number of requests sent to the web server, it reduces the per-
formance impact on the server, thus improving scalability.

Exam tip

The 70-519 exam does not require you to know JavaScript or Microsoft aJaX; those topics
were covered by the 70-515 exam. In fact, the 70-519 exam does not require you to know
how to write code at all. You do need to know the capabilities and limitations of JavaScript
and aJaX, however, and have a higher-level understanding of the impact of writing differ-
ent types of code.

Table 1-1 compares common tasks that can be performed at either the client or server, and
how you write code to accomplish them. When validating user input, you typically validate
it on the client (for immediate responsiveness) and again at the server (for security and for
browsers that do not support JavaScript).

TAbLE 1-1 Performing Different Tasks at the Client-side and Server-side

Task Client-side feature Server-side feature

Respond to a button click JavaScript’s onClick event ASP.NET’s Button.Click event

Access a SOAP web service JavaScript SOAP clients or the
XMLHttpRequest object

Import the definition, and access
the methods directly

Update part of a page with data
from the server

ASP.NET UpdatePanel control Any server control

 4 Chapter 1 Designing the Application Architecture

Task Client-side feature Server-side feature

Validate user input RequiredFieldValidator,
RangeValidator,
RegularExpressionValidator,
and CustomValidator (with
the ClientValidationFunction
property)

RequiredFieldValidator,
RangeValidator,
RegularExpressionValidator,
and CustomValidator (with the
OnServerValidate property)

Many tasks should always be done on the server, while other tasks should be performed
on the client (when the client supports JavaScript). Table 1-2 lists tasks that can be done on
the client, and situations that require you to perform the task on the server, instead.

TAbLE 1-2 Client-side and Server-side Tasks

Client-side Tasks Server-side Tasks

For convenience, notify users if they enter data in
an invalid format. For example, if they enter too few
numbers for a credit card.

For security and data integrity, verify that user data
falls within specified bounds.

Dynamically add items to a menu, based on what
the user does within a single webpage.

Add items to a menu for restricted pages that only
authorized users can access.

Perform tasks that require access to the client
computer, such as saving files using JavaScript or
accessing the graphical processing unit (GPU) with
Silverlight.

Perform tasks that require access to resources on
the internal network that the server can access but
are not exposed to the client.

Perform tasks that consume a great deal of band-
width when communicating between the client and
server.

Perform tasks that cannot be performed on the
client, especially when the client lacks JavaScript,
Flash, or Silverlight.

Process business logic that the end user is allowed
to examine (because the user can access the source
code).

Process business logic that should not be exposed
to the end user.

Perform user-interface interactions, such as expand-
ing menus and displaying slide shows.

Perform security-oriented tasks, such as processing
credit cards and authenticating users.

If a task can be performed on either the client or the server, you should perform the task
on the server because server-side programming is more efficient, the code is easier to debug,
and the application is easier to maintain. Table 1-3 describes the key differences between
client-side and server-side programming.

TAbLE 1-3 Comparison of Client-side and Server-side Programming

Client-side Programming Server-side Programming

Code is written in Microsoft Visual Studio 2010 with
limited support for auto-complete.

Code is written in Visual Studio 2010 with full sup-
port for auto-complete, descriptions of all param-
eters, and integrated documentation.

Weak typing and run-time detection of errors. Strong typing with compile-time detection of many
errors

 Objective 1.1: Plan the Division of Application Logic Chapter 1 5

Client-side Programming Server-side Programming

Must test in every supported operating system,
browser, and browser version (which can be more
than a dozen different environments).

Only need to test in a single-web-server environ-
ment.

Somewhat imprecise debugging provided by
Microsoft Internet Explorer and Visual Studio 2010.
Other browsers require browser-specific debugging
tools.

Precise debugging provided by Microsoft Internet
Information Services (IIS) and the Visual Studio 2010
ASP.NET runtime environment.

Code might never run if the client does not support
JavaScript.

Code always runs regardless of client capabilities.

End users can view, manipulate, or bypass code. Code is never exposed to the end user.

Partitioning according to Separation of Concerns
Separation of Concerns (SoC) is a software architecture concept for dividing code used for
different purposes. For example, if you were designing a web application with SoC in mind,
you might create different application layers for the user interface, the business logic, the
data access, and the database itself.

Microsoft’s early web development languages provided little opportunity for implement-
ing SoC. However, the importance of SoC is reflected in each new web development model
that Microsoft has released, as the following sections describe.

Classic aSP
In 1998, Microsoft released Active Server Pages (ASP), now known as Classic ASP. Classic ASP
mixed the HTML user interface and all back-end code into a single file. To write output to part
of a webpage, you had to write code at the appropriate spot in the HTML:

<p>First name:
<%
 Dim firstName
 firstName = "Kim" (Akers)
 Response.Write firstName
%>
</p>
<p>Last name:
<%
 Dim lastName
 lastName = "Akers"
 Response.Write lastName
%>
</p>

Because all the code was mixed together, a web designer who wanted to modify the user
interface might accidentally change code that performed business logic or accessed the data-
base. Similarly, if a database designer changed the layout of a table in the database, it might

 6 Chapter 1 Designing the Application Architecture

affect the user interface of the application. Performing quality assurance (QA) was difficult
because you could not easily test individual components. Instead, developers had to simu-
late user input and then examine the resulting HTML output for an expected result. Different
developers could not easily work on the same page at the same time.

aSP.NET
In 2002, Microsoft released ASP.NET, which allowed developers to use code-behind files to
separate the HTML and the placement of server controls from the back-end code. This was
a definite improvement for implementing SoC, but developers still created a single class for
displaying output and responding to user input. This approach makes testing difficult because
testing an individual page requires creating an instance of the page class, its child controls,
and all dependent classes.

aSP.NET MVC
In 2009, Microsoft released ASP.NET MVC, which is named for the Model-View-Controller
software architecture and provides three different layers of SoC:

■■ Model The data and behavior of the application

■■ View The user interface, which displays data provided by the model

■■ Controller Accepts user input, and calls the model and view to generate a response

Figure 1-1 shows the MVC design pattern and the communications between the layers.

ControllerModel

View

FIgURE 1-1 The MVC design pattern

By providing SoC, MVC provides several benefits. Support for test-driven development
allows QA personnel to query the model directly to verify that it provides an expected output
when given a specific input. Developers can modify views to update the user interface with-
out any potential impact on the business logic or data access layers. Controllers completely
abstract requests from the models and views responding to the request, allowing web archi-
tects to specify a structure for the user interface without defining the application architecture.

Implementing SoC can increase development time for smaller applications, albeit by a
small margin. However, SoC can dramatically reduce debugging, QA, and maintenance time.

 Objective 1.1: Plan the Division of Application Logic Chapter 1 7

SoC also simplifies dividing development tasks between multiple developers. Therefore, the
larger the development effort, the more important SoC becomes.

Planning for Long-Running Processes
Web users are impatient and will cancel a request or give up on a website entirely if pages do
not load quickly. As a result, webpages typically need to be rendered in less than a second.
That is enough time to query a database or a web service, but performing a longer-running
task requires multiple requests.

Consider a travel agency web application that provides flight information from multiple
airlines. If a user requests information about all flights between Boston and Chicago on a spe-
cific day, the web application might need to send web service requests to a dozen different
airlines and wait for the responses before displaying the results to the user. One airline might
respond in half a second, but another airline might take 10 seconds to respond.

If the web application queried each airline synchronously (in sequence, one after another),
the response time would be delayed by the sum total of all the airline web services. It is more
efficient to submit the web service queries asynchronously (in parallel, all at the same time).
Then the response time is delayed only by the time required by the slowest web service.

When you create a method, such as a Button.Click event handler, the code in the method
runs synchronously by default. In other words, the common language runtime (CLR) runs one
line of code, waits for the results, and then moves on to the next line. This linear flow is easy
for developers to understand, and it is efficient for short-running processes.

If you have long-running processes, such as waiting for a web service to respond, you can
use asynchronous processing to allow the .NET Framework to perform other tasks instead of
waiting for the response. When the asynchronous response is complete, you can retrieve the
results and update the response to the user.

Note Writing Asynchronous code

Ideally, any task that is not dependent on the results of other tasks should be performed
asynchronously. Using asynchronous programming techniques improves performance and
scalability. In practice, however, you need to weigh the benefits against the complexity of
writing and maintaining asynchronous tasks.

Designing a Webpage for a Long-Running Process
Figure 1-2 shows the typical flow of a synchronous webpage. With this model, however, the
user gets no feedback until the server finishes rendering the response. If it takes the server
more than a few seconds, the user is likely to cancel the request.

 8 Chapter 1 Designing the Application Architecture

Server begins
processing request

Browser displays
wait cursor

Browser submits
request

Server renders
response

Browser displays
response

Server responds

2. Server Responds

1. User Clicks Link

FIgURE 1-2 The flow of a typical synchronous webpage

Figure 1-3 shows the typical flow of an asynchronous webpage. With this model, the server
informs the user that the response will take a few moments. A client-side script regularly
checks the server to determine whether the results are ready. When the long-running,
asynchronous process has completed, the final results are displayed to the user.

Server begins
processing request

Browser displays
wait cursor

Browser submits
request

Long-running
process begins

Server starts
asynchronous

process

Server renders
wait page

Browser displays
wait page

Server responds

2. Server Responds

1. User Clicks Link

Server checks
asynchronous process

Browser continues
displaying
wait page

JavaScript
submits request

Long-running
process completes

Server retrieves
results

Server renders
final response

Browser displays
final response

Server responds

4. Server Responds

3. Browser Requests Update

FIgURE 1-3 The flow of a typical asynchronous webpage

You can run a long-running process while remaining responsive to users. In the travel
agency example, developers might take one of these two approaches:

■■ Display a loading page with a progress bar or other animation that shows the appli-
cation is currently processing the request. This page uses JavaScript to communicate
with the server. When the server reports that the results are ready, JavaScript loads the
results page.

 Objective 1.1: Plan the Division of Application Logic Chapter 1 9

■■ Immediately display a formatted results page. Instead of showing the results, a prog-
ress bar indicates that the results are loading. In the background, the page runs Java-
Script to connect to the server and wait for results. As the server returns results (either
partially or all at once), JavaScript adds the results to the page.

For processes that might take more than a minute or two to complete, gather the user’s
email address and send her a notification with a link to retrieve the results.

Designing a Web Service for a Long-Running Process
Whereas web applications must render the HTML that the browser displays as the user inter-
face, web services return raw data that the client application processes. Because the web
service client creates the user interface, the web service developer does not need to decide
how to communicate the delay to the user.

The web service developer does, however, need to design the web service to accommo-
date long-running asynchronous processes. If both the client and server are based on the
.NET Framework, and the client is not protected by a firewall or Network Address Translation
(NAT) device, you can use WSDualHttpBinding, netTcpBinding, NetNamedPipeBinding,
NetPeerTcpBinding, or NetTcpContextBinding to create a callback contract on the client and
then use that callback to notify the client that the process is complete.

Note Duplex HTTp for SilverligHT anD .neT ClienTS

Silverlight clients can use PollingDuplexHttpBinding, which supports duplex communica-
tions and allows the client to be located behind a firewall or NAT device. Unfortunately,
.NET 4.0 does not include a polling duplex HTTP binding. However, you can download a
sample custom channel that might suit your needs at http://archive.msdn.microsoft.com/
duplexhttp.

If the binding type does not support duplex communications, or you must communi-
cate through a firewall that prevents incoming connections to the client, you should handle
long-running web service requests by immediately providing a token the client can use to
later retrieve the results. To provide better feedback to the end user, you can also provide an
estimated wait time that the client can use to display the progress to the user. Then have the
client regularly poll the server to determine if the process is complete.

Use polling to retrieve the results of a long-running query that is using a web service by
following this process:

1. The client sends the request to the web service. This might be, for example, “List all
flights between Boston and Chicago on May 1.”

2. The web service provides a unique token to the client and an approximate wait time.
The token should be large and cryptographically random, such as a 20-byte value
generated by RngCryptoServiceProvider. The wait time should be based on the actual
wait time for similar requests.

http://archive.msdn.microsoft.com/duplexhttp
http://archive.msdn.microsoft.com/duplexhttp

 10 Chapter 1 Designing the Application Architecture

3. The web service client displays a progress bar to the user to let him know the request
is continuing and the application is responsive. The web service asynchronously calls
a method to process the request and store the results in a database record associated
with the token.

4. After an interval (for example, one-quarter of the estimated wait time), the web service
client queries the web service for the results, providing the unique token. If the results
are ready, the web service client formats and displays the data; otherwise, it repeats
this step.

Objective Summary
■■ Use client-side scripting to provide users with a rich, responsive interface. However,

you must write server-side code when security is important. Additionally, server-side
code is more efficient to write, test, troubleshoot, and maintain.

■■ SoC simplifies development, testing, and updating of large-scale web applications.
Strive to design applications with SoC dividing the functional layers of an application.

■■ To perform a long-running request while appearing responsive to the user, divide a
request into multiple steps. In the first step, launch the long-running process asyn-
chronously and display a wait page to the user. Embed JavaScript in the wait page that
queries the server for the status of the long-running process and retrieves the final
results page when processing is complete.

Objective Review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1. You are designing an ASP.NET web application that allows members of the Administra-
tors role to edit content by using a HyperLink control on each page named EditHyper
Link. You do not want nonadministrators to discover the location of the administration
pages. Which approach should you recommend?

A. In the ASPX page, set the EditHyperLink.Visible property to True. In the JavaScript
window.onload event handler, set the link’s style.display property to none if the
user is not a member of the Administrators role.

B. In the ASPX page, set the EditHyperLink.Visible property to False. In the JavaScript
window.onload event handler, set the link’s style.display property to block if the
user is a member of the Administrators role.

 Objective 1.1: Plan the Division of Application Logic Chapter 1 11

C. In the ASPX page, set the EditHyperLink.Visible property to False. In the Page.Load
event handler, set the HyperLink.Visible property to True if the user is a member of
the Administrators role.

D. In the ASPX page, set the EditHyperLink.Visible property to False. In the EditHyper
Link.Click event handler, set the HyperLink.Visible property to False if the user is not
a member of the Administrators role.

2. You are designing an ASP.NET web application that provisions virtual machines for a
testing environment. Users can provision from 1 to 10 virtual machines at a time, and
each virtual machine provision might take up to 60 seconds. For security reasons, the
server hosting the virtual machines allows provisioning requests only from the web
server. You need to design the application to keep users notified of the provisioning
progress. Which approach should you recommend?

A. On the server, start asynchronous processes to provision each virtual machine. On
the client, use JavaScript to query the server every five seconds for a status update.

B. On the server, synchronously provision each virtual machine. When complete,
return a status update to the user.

C. On the server, calculate the approximate total provisioning time. On the client, use
JavaScript to connect to the server hosting the virtual machines and initiate the
provisioning.

D. On the client, use JavaScript to launch a separate asynchronous process for each
virtual machine to be provisioned. Within each process, request a page from the
web server that provisions a virtual machine.

3. You are creating a new website for an enterprise organization. The enterprise has
a quality assurance team that requires developers to use test-driven development.
Additionally, the application architecture must partition according to the principle of
SoC. Which template should you use?

A. Use the ASP.NET 4.0 web application project template.

B. Use the ASP.NET MVC 2 web application project template.

C. Use the Silverlight application project template.

D. Create an ASP.NET 4.0 website.

 12 Chapter 1 Designing the Application Architecture

ThoughT ExpErimEnT
Moving a Site from an Intranet to the Internet

In the following thought experiment, you apply what you’ve learned about the
“Plan the Division of Application Logic” objective to predict how a theoretical

website architecture will perform. You can find answers to these questions in the
“Answers” section at the end of this chapter.

You are a developer for City Power & Light. You are working with management to
assess the impact of moving an intranet application to the Internet. The application
was created using ASP.NET 2.0. Only authorized and authenticated employees lo-
cated on the high-speed intranet are allowed to use the application. Employees can
enter a customer’s identification number or street address, and then examine that
customer’s power usage over time by viewing a list of monthly statistics or a graphi-
cal chart. Typically, employees interpret the information over the phone when a
customer calls and requests information about his bill.

Because many of the employee computers have low-powered processors and out-
dated browsers, the application was designed without any JavaScript or client-side
logic. Employees complain that during peak hours, it can take five or ten seconds to
load a page with a chart. Showing charts for different time periods requires waiting
for a new page to load.

Management needs to give customers direct access to their usage information.
Answer the following questions about the future performance of the application:

1. Which factors currently limit the responsiveness of the site: client process-
ing, server processing, client bandwidth, or server bandwidth? How could you
improve the performance?

2. How will the website perform if the company provides customers access to it
across the Internet without modifying the application?

3. How would you create a reasonably accurate estimate of the server processing
capabilities and the amount of bandwidth the site might need on the Internet?

4. How would you reduce the amount of server processing time required to gen-
erate the charts?

5. How could you avoid reloading the entire webpage when changing the time
period of a chart?

6. How would generating charts on the client affect the site’s performance?
Which client-side technology would you use? How would you provide the raw
data to the client?

7. How would using a content delivery network (CDN) reduce Internet bandwidth
requirements? How might a CDN speed delivery of server-side or client-side charts?

 Objective 1.2: Analyze Requirements and Recommend a System Topology Chapter 1 13

Objective 1.2: Analyze Requirements and Recommend
a System Topology

Large-scale Internet and intranet applications require you to create a logical design, map it to
a physical server architecture, and choose how the different layers will interact. This objective
includes an overview of common system topologies, describes how to select a binding for
interapplication interactions, helps you choose a binding type, and provides best practices for
cross-cutting concerns.

This objective covers how to:
■■ Design a system topology.

■■ Design interactions between applications.

■■ Map the logical design to the physical implementation.

■■ Validate nonfunctional requirements and cross-cutting concerns.

■■ Evaluate baseline needs.

Designing a System Topology
There are two system topologies with which you should be familiar: MVC (as described in
Objective 1.1), and the three-tier architecture. The three-tier architecture consists of the fol-
lowing:

■■ Presentation The user interface. This tier is responsible for layout and formatting.

■■ Application Logic Also known as Business Logic, this tier is responsible for making
decisions based on business rules. If this tier has multiple layers, you can refer to the
architecture as an n-tier architecture.

■■ Data Typically implemented by a database, this tier is responsible for storing and
retrieving information.

For a typical ASP.NET web application, the three-tier architecture might be implemented
as follows:

■■ Presentation An IIS web server with an ASP.NET web application. The web applica-
tion retrieves data from the logic tier by using Windows Communication Foundation
(WCF), performs minor formatting and processing, adds it to a webpage, and returns it
to the client’s web browser.

■■ Application Logic A .NET Framework application exposing interfaces via WCF. The
logic tier receives requests from the presentation tier, such as “How long will it take to
ship this item?” or “Should I offer this customer a coupon?” The logic tier retrieves all
data required to answer queries from the data tier.

 14 Chapter 1 Designing the Application Architecture

■■ Data A database server, such as Microsoft SQL Server. The data tier stores raw data,
such as a table containing every item for sale and the number of items in inventory or
a table with every customer and an index of their orders.

Whether you implement an MVC architecture, a three-tier architecture, or an n-tier archi-
tecture, you benefit from these advantages:

■■ Easier to divide among different developers Let the database guys write the logic
tier and the design guys write the presentation tier.

■■ Easier to replace a single component For example, you could use existing Linux
web servers for the initial deployment and later migrate to Windows. By separating
the presentation layer, you would not have to rewrite the entire application—just the
presentation.

■■ Easier to scale You can add more web servers without making any changes to the
presentation layer.

■■ More flexibility Most web applications include logic and presentation in a single
assembly. By separating the two, you simplify replacing the user interface. It also allows
you to support multiple, different user interfaces, such as web, Microsoft Windows, and
mobile interfaces.

■■ Easier to test The only way to create a reliable application is to create a testable
application. As described in Objective 1.1, providing SoC allows you to more easily test
individual components.

If these three tiers aren’t familiar to you as a web developer, it is because most web appli-
cations use a two-tier logical architecture that combines presentation and logic into a single
set of classes. Unless you go out of your way, ASP.NET applications (other than MVC applica-
tions) use a two-tier architecture.

Designing Interactions Between applications
Modern web applications are rarely isolated to themselves. They query databases, web
services, and other applications to retrieve the data they need. They also provide updates by
initiating order processing and signaling support.

Whether the communications are between different applications or different tiers within
a single application, you should use WCF to implement it. WCF provides a powerful, flexible,
and (optionally) standards-based way to communicate between processes, either on the same
computer or across the network.

WCF supports many types of network protocols, implemented as bindings. If you need
to be able to communicate across the Internet, choose one of the following HTTP bindings
because HTTP communications are almost always allowed through firewalls:

 Objective 1.2: Analyze Requirements and Recommend a System Topology Chapter 1 15

■■ wshttpbinding A standards, SOAP-based web service, wsHttpBinding is perfect
when you will be communicating with .NET Framework–based hosts or if you need
to communicate across the Internet, where firewalls might block non-HTTP traffic.
wsHttpBinding provides powerful security features, making it the binding type of
choice for Internet communications. wsHttpBinding does not support streaming or
duplex communications.

■■ WSDualhttpbinding Like wsHttpBinding, except it provides duplex communica-
tions when the service needs to initiate communications to a client. As discussed in
Objective 1.1, duplex communications will not work if the client is behind a firewall or
Network Address Translation (NAT) device.

■■ basichttpbinding Like wsHttpBinding, basicHttpBinding is SOAP-based. However, it
is based on earlier SOAP 1.1 standards and does not include the full set of wsHttpBind
ing features, such as encryption. basicHttpBinding is primarily useful for communicat-
ing with WS-Basic Profile conformant web services, such as ASMX-based web services.

■■ webhttpbinding A REST-style binding that functions differently than SOAP. REST
uses a wider variety of HTTP commands than SOAP, such as GET, PUT, and DELETE.

If you don’t need to communicate across firewalls or the public Internet, and all hosts are
.NET Framework–based, you can choose from these more powerful bindings:

■■ netNamedPipebinding The preferred binding type for communications between
processes on a single computer.

■■ netTcpbinding The most powerful binding type when all hosts are based on the
.NET Framework.

■■ NetMsmqbinding Useful when you need to queue messages for later processing.
For example, the client might need to submit a task to a server that will not be able to
process the message in a timely manner or is completely offline.

■■ NetPeerTcpbinding Provides peer-to-peer communications when more than two
hosts are involved.

Use the flowchart in Figure 1-4 to choose a binding type for your scenario. Although the
flowchart does not include all binding types, it does cover the most common uses.

 16 Chapter 1 Designing the Application Architecture

Firewalls
or non-.NET?

Queing?

Peer-to-Peer?

REST
or SOAP?

ASMX?

Duplexing?

Local? NetNamedPipesBinding

NetPeerTcpBinding

NetMsqBindingYes

Yes

No

No

No

SOAP

No

No

No

Yes

Yes

NetNamedPipesBinding

WsHttpBinding

NetTCPBinding

NetPeerTcpBinding

NetMsqBindingREST

Yes

Yes

FIgURE 1-4 WCF binding decision flowchart

Any service you expose can use multiple bindings. Therefore, you can provide a binding
based on netTcpBinding for .NET Framework–based hosts and a second wsHttpBinding for
hosts that use open standards.

Although choosing the binding type is an important decision, it’s relatively easy to change
after the fact. Choose to define both the client and server bindings using configuration files,
rather than hard-coding them into your application. Rely on discover protocols, such as Web
Service Definition Language (WSDL), to save yourself from reconfiguring clients if the server
settings change.

More Info Designing Data access

For information about communicating with a database, refer to Chapter 3, “Designing Data
Strategies and Structures.”

When designing interactions between applications, consider whether your interactions will
be chatty or chunky:

 Objective 1.2: Analyze Requirements and Recommend a System Topology Chapter 1 17

■■ Chatty application communications create many small requests. Chatty applications
perform well when latency (the time it takes to send a message across the network) is
low.

■■ Chunky application communications create fewer large requests. Chunky applications
perform well when bandwidth (the total amount of data that can be sent across the
network) is high.

Choose to bundle your communications together into chunks when the network infra-
structure is high-latency and high-bandwidth, such as satellite or inter-continental com-
munications. Use chatty communications by sending smaller messages immediately when
the network infrastructure is low-latency and low-bandwidth, such as communications with
mobile devices. The difference will be insignificant on most local area networks (LANs), which
are low-latency and high-bandwidth.

Mapping the Logical Design to the Physical
Implementation
After you have divided your application into layers to create your application’s logical archi-
tecture, you need to design the physical architecture. The physical architecture defines the
number of servers you will host the application on and how they are interconnected. At a
high level, there are two different physical architecture philosophies:

■■ Separate everything Place the web server, application server, and database servers
on different computers. This approach provides greater scalability.

■■ Combine everything Place all services on a single server. For the same cost, this
approach provides better performance, reliability, and manageability.

Having a multitier logical architecture does not require you to deploy the same physical
architecture. As Figure 1-5 illustrates, you can deploy all three logical layers to a single physi-
cal computer. Alternatively, you can deploy each layer to its own computer. You also have
the option of deploying two layers to a single server, or of deploying ten web servers, three
application servers, and a database cluster—the combinations are endless.

Single Server Multiple Servers

Presentation

Logic

Data

FIgURE 1-5 Single server vs. multiple servers for a three-tier web application

 18 Chapter 1 Designing the Application Architecture

The physical architecture you choose depends on several factors. The single-server archi-
tecture has the following benefits:

■■ Up-front costs Obviously, if you deploy an application to three servers, you have
to buy more hardware. This factor can be eliminated by using virtualization software,
such as Hyper-V, and creating virtual machines for each server instance. You also need
more operating system licenses. However, you might be able to use a less-expensive
operating system for the web server, such as Windows Server 2008 R2 Web Edition. In-
stead of dividing your hardware and software budget across multiple servers, you can
put the same money into a single server and achieve much better performance.

■■ Management costs The more computers you have, the more you need to manage.
Over time, management costs typically exceed up-front costs.

■■ Complexity Simple is always superior. The more servers you add, the more complex
your configuration will be.

■■ Reliability Each server you add to a web application is another component that can
fail. If you deploy a three-tier application to three different servers, each server be-
comes a single point of failure; a failure of any one of the three servers would take the
application offline. Similarly, scheduled downtime for any of the three servers requires
scheduled downtime for the entire application. Additionally, communications between
the servers becomes another single point of failure. If the network link between the
servers fails, the entire application fails. You can use redundancy to overcome the
decreased reliability of a multiple-server architecture, but your up-front and manage-
ment costs will go up proportionately.

■■ Efficient interprocess communications Communicating across a network, even
a LAN, always introduces some latency. It will always be faster for the web, logic, and
data tiers to communicate when they are located on the same server.

The multiple-server architecture provides these benefits:

■■ Scalability With modern computing power, all but the busiest public web applica-
tions can be hosted on a single server. If your application requires more processing
time or memory than a single computer can provide, dividing different tiers between
physical computers can alleviate that concern.

■■ Isolation Deploying a tier to a separate physical computers guarantees that the load
on other tiers will not affect that tier’s performance. For example, if you are concerned
that a denial-of-service attack might cause IIS to consume 100 percent of the server’s
processing time, you can place the database on a separate physical computer to
prevent the database from being affected. The hosted application is still inaccessible
because of the load on the web server, but if other applications share the same data-
base, those applications are not affected (unless, of course, the denial-of-service attack
caused the website to submit costly database queries).

 Objective 1.2: Analyze Requirements and Recommend a System Topology Chapter 1 19

Exam tip

For the exam, know that you can move a service (such as a database server) to a different
physical computer if you absolutely must ensure that load on the web server never affects
the service.

Real World

I ’ve had the opportunity to design the architecture for hundreds of websites, rang-
ing from startups to Fortune 100 companies, and then monitor the performance

of the websites over years. About 80 percent of the time, the clients think they need
far more hardware then they ever end up using. Even during peak hours, most
applications running on a single physical server are under 2 percent utilized.

There’s the argument that websites must be designed to scale to sudden spikes in
popularity, such as being featured in the news. That’s a valid concern, but I typically
recommend deploying a single-server architecture and then using load testing (for
example, using the Microsoft Web Capacity Analysis Tool) to determine whether the
architecture can scale. In most cases, the limiting factor to scalability is not insuffi-
cient processor or memory. Instead, applications tend to run into artificial connec-
tion limits, resource locking problems, and other software-related issues.

When those issues are resolved, further load testing tends to show developers that
they need to make better use of .NET Framework caching, which can almost com-
pletely eliminate web and database server processing requirements. If the applica-
tion is well designed and coded, your upstream bandwidth will limit your perfor-
mance—a problem that can be resolved by caching content (especially multimedia
content) by using a distributed content delivery network (CDN), such as Akamai or
Amazon CloudFront.

Objective 6.3, “Plan for Scalability and Reliability,” in Chapter 6, “Designing a Deployment
Strategy,” provides more detail about how to meet quality of service (QoS) requirements.

Validating Nonfunctional Requirements and Cross-Cutting
Concerns
Cross-cutting concerns and nonfunctional requirements are noncore functions that affect
many parts of an application. For example, management, monitoring, logging, and authenti-
cation affect all parts of the application, but they are not part of the core functionality.

 20 Chapter 1 Designing the Application Architecture

More Info Other CrOss-Cutting COnCerns

This section focuses on operational cross-cutting concerns, because other concerns are
covered by different exam objectives. For information about operational security, refer to
Chapter 4, “Designing Security Architecture and Implementation.” For information about
performance monitoring, refer to Chapter 5, “Preparing For and Investigating Application
Issues.” For information about health monitoring, refer to Chapter 6.

As a developer, you should strive to create applications that systems administrators can
configure and manage without needing development experience. You can do this by follow-
ing these best practices:

■■ Read all configuration settings from XML files, such as the Web.config file You can
do this by using the ConfigurationManager.AppSettings property. Administrators should
already be familiar with editing XML files, so storing commonly changed settings
(such as the address of a server or number of seconds in a timeout) in the Web.config
file allows administrators to change an application’s behavior without contacting the
developer.

■■ Store application settings in an external .config file To allow an upgrade or re-
installation to overwrite the Web.config file without affecting the application configu-
ration, store application-specific settings in a separate XML file. You can reference this
file by using the following syntax:

<configuration>
 <appSettings file="externalSettings.config"/>
</configuration>

■■ Never store constants in a code file It might seem obvious not to store connection
strings in a code file; however, you should also avoid storing the number of rows that
appear on a page, the number of retries, or the path to a shared folder in a code file.

■■ Use resource files It’s often OK to store text, such as “OK” or “Cancel”, in an .aspx
file. However, you should never store text that appears in a user interface in a code file.
Instead, reference a resource file that administrators can edit without recompiling the
application.

■■ Disable debugging by default, but allow it to be re-enabled Ideally, if a systems
administrator cannot solve a problem, she describes it to the developer, who then
re-creates the problem in a lab environment. In practice, however, some problems
cannot easily be re-created, and you have no choice but to debug an application in the
production environment. Plan for this by designing applications that allow debugging
with proper authentication.

■■ Allow back-ups Generally, web applications can be backed up as regular files.
However, you must ensure that the data store you use can be backed up. If you use a
SQL Server database, ensure that administrators know which tables to back up, and

 Objective 1.2: Analyze Requirements and Recommend a System Topology Chapter 1 21

how frequently to back them up. Avoid keeping files locked, which might prevent them
from being backed up.

■■ Start correctly after a reboot Operations need to regularly restart servers. Although
most web applications start automatically when the server comes back online, you
should test your application to ensure that it functions properly after restarting either
the web server, the database server, or both. In particular, avoid establishing database
connections or reading important data in the Application.Start event, because the
database server might be offline when the web server starts. A related trait to plan for
is known as graceful degradation or resiliency, which allows the application to recover
from a temporary network, database, or application server outage.

■■ Plan for database changes Table structure can change over time. For example, a
future version of an application might add a column to a table. To provide forward-
compatibility and ensure that different versions of your application can interact with a
single database, refer to table columns using names rather than column numbers. This
is handled automatically if you use Entity Data Modeling.

■■ Document thoroughly Naturally, you should comment both your code and con-
figuration files. Additionally, you should write documentation for testing, deploying,
configuring, monitoring, backing up, and restoring your application.

When you actually develop the application, avoid mixing functional and nonfunctional
code. Instead, use the principals of aspect-oriented programming (AOP) and separate cross-
cutting code into separate concerns.

More Info Aspect-Oriented prOgrAmming

For more information, read “Aspect-Oriented Programming” at http://msdn.microsoft.com/
library/aa288717.aspx.

Evaluating Baseline Needs
During the design phase, you need to evaluate the baseline needs of your web application.
Don’t look too far into the future; instead, focus on what the application will need during the
first six months. When the application is in production, you will be able to examine real-world
performance factors and plan more accurately.

The following list describes the most important information you need to gather:

■■ Uptime requirements These requirements are often expressed as 99% (“two nines”),
99.9% (“three nines”), or 99.99% (“four nines”). You need to determine whether a single
server can meet the uptime requirements, factoring in planned downtime caused by
updates.

■■ Responsiveness How long users are willing to wait for a response from your server.
With Internet applications, you must also factor in the network latency.

 22 Chapter 1 Designing the Application Architecture

■■ Peak number of simultaneous users The number of users who will be logged on
simultaneously.

■■ Peak number of requests per second The number of requests the web application
will receive within a second. If this is less than one (as it is with most new web applica-
tions), you typically don’t have to worry about processor capabilities, as even low-end
shared web servers will be able to process most requests in less than a second.

More Info Reliability and Scalability

For more information about planning for scalability and reliability, refer to Chapter 6.

Estimating these values allows you to create baseline infrastructure requirements, such as
the following:

■■ Disk capacity .NET Framework code typically takes very little disk space; however,
databases can grow very large. Provide at least twice the estimated capacity of your
data to allow for the inherent inefficiencies of database storage.

■■ Number of processor cores Provide enough processing power to render pages
faster than the peak number of requests per second. If the server cannot keep up with
this number, the web server will queue requests. Short-term queuing might still occur
when an abnormally high number of requests arrives within a few seconds, but the
temporarily reduced responsiveness is typically acceptable.

■■ Memory The amount of random access memory (RAM) your application will store.
If you plan to store any large collections in memory rather than accessing them from a
database, ensure the web server has at least twice that space available. The web server
will use any excess memory for caching.

■■ bandwidth You can estimate the bandwidth requirements by multiplying the peak
number of requests per second by the average page size (including images and video).
Rendered webpages consume very little bandwidth. Instead, most web bandwidth is
consumed by transmitting images and video.

■■ Number of servers You might need multiple servers to provide redundancy to meet
the uptime requirements. If you are planning for a high peak number of requests per
second and a single server cannot provide the processing power, you might need mul-
tiple servers to meet your responsiveness requirement.

■■ CDN needs For Internet applications, verify that your Internet connection has suf-
ficient available bandwidth to meet peak requirements. If it is insufficient, use a web
hosting provider with sufficient bandwidth or distribute the images and video by using
a CDN.

 Objective 1.2: Analyze Requirements and Recommend a System Topology Chapter 1 23

Objective Summary
■■ The two most commonly used system architectures are MVC (discussed in Objective

1.1) and three-tier. The three-tier architecture creates an SoC between the presenta-
tion, application logic, and data tiers.

■■ Unless you are required to work with a system that does not support it, you should use
MFC to communicate between applications. MFC provides a wide variety of protocols
to meet interoperability, performance, and queuing requirements.

■■ When mapping logical design to physical implementation, use the minimum amount
of servers required to meet your needs. Unless you need multiple servers for redun-
dancy, scalability, or isolation, use a single server.

■■ Cross-cutting concerns such as monitoring, logging, operations, and security are not
related to the application’s core functionality. However, they contribute greatly to the
manageability of the application. Whenever possible, use coding best practices that
separate cross-cutting concerns into separate classes and store settings administrators
might want to change separately from your code.

■■ Although baseline needs must be estimated, they are important because you can use
them to specify hardware requirements. Typically, you should err on the side of using
less expensive hardware, but provide a convenient path to upgrade in the event the
application has higher requirements after it is in production.

Objective Review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1. You need to design a physical architecture to meet these requirements:

■■ The website will remain online if the web server is restarted.

■■ The database server will not be affected by a denial-of-service attack against the
web server.

■■ You must minimize hardware costs.

How many servers will you need?

A. One

B. Two

C. Three

D. Four

 24 Chapter 1 Designing the Application Architecture

2. You need to design a physical architecture to meet these requirements:

■■ The website must be able to serve six requests per minute.

■■ The database server will store 2 TB of data.

■■ You must minimize hardware costs.

How many servers will you need?

A. One

B. Two

C. Three

D. Four

3. You are designing a three-tier web application. You need to choose the method of
communication between the web and application layers to meet these requirements:

■■ The application server will use the .NET Framework 4.0.

■■ The application server must be physically isolated.

■■ The application server will be located on the same high-speed LAN as the web
server and database servers.

■■ The web server will be located behind a firewall.

■■ The communications will be two-way.

■■ The communications must be as efficient as possible.

Which WCF binding type will you use?

A. NetTcpBinding

B. NetNamedPipesBinding

C. WsHttpBinding

D. WSDualHttpBinding

ThoughT ExpErimEnT
Planning for Scalability and Forward Compatibility

In the following thought experiment, you apply what you’ve learned about the
“Analyze Requirements and Recommend a System Topology” objective to predict

how a theoretical website architecture will perform. You can find answers to these
questions in the “Answers” section at the end of this chapter.

You are a developer for Margie’s Travel, an Internet-based business that provides
travel reviews and recommendations. Margie’s Travel has hired a developer to create
an updated version of its website, and the company has asked you to review the design
to verify that it meets its requirements for scalability and forward compatibility.

 Objective 1.2: Analyze Requirements and Recommend a System Topology Chapter 1 25

The new application is designed with a traditional three-tier architecture, as shown
in Figure 1-6. Initially, all three layers will be implemented using a single server.

Presentation ASP.NET 4.0

Logic .NET 4.0

NetNamedPipesBinding

NetNamedPipesBinding

Data .NET 4.0
 SQL Server 2008 R2

Figure 1-6 A three-tier application for Margie’s Travel

Management wants to verify that the design meets its requirements. Answer the
following question about the future performance of the application:

1. What changes will the company need to make to the application if it moves
each tier to its own server?

2. What changes will the company need to make to the logic tier if it wants to
create a Windows Presentation Foundation (WPF) application as a secondary
presentation interface?

3. What changes will the company need to make if it replaces SQL Server 2008 R2
with a non-Microsoft database server?

4. What changes will the company need to make if it replaces the ASP.NET pre-
sentation interface with a Linux presentation interface? What impact will that
have?

5. The company expects the website to get about 200 visitors per day. Will a
single, dedicated server be fast enough?

 26 Chapter 1 Designing the Application Architecture

Objective 1.3: Choose Appropriate Client-Side
Technologies

Client-side technologies can make webpages feel responsive and interactive. However, because
they run on the client, they can be challenging to plan. The richest client-side technologies
require plug-ins, which some browser platforms do not support. Although JavaScript has
become standard, many developers use client-side libraries that can increase bandwidth and
page load times.

This section provides an overview of common client-side scripting languages and plug-
ins, and it gives you the information you need to choose the right technology for different
scenarios.

This objective covers how to:
■■ Use client-side scripting languages.

■■ Use rich client-side plug-ins.

Using Client-Side Scripting Languages
In practice, there is only one client-side scripting language: JavaScript. The JavaScript syntax
closely resembles C# syntax because it requires lines to end with a semicolon and uses brack-
ets to group lines of code together (for example, to group the code that makes up a function
or a for loop). However, the structure is looser than C#, and you don’t always need to declare
variables.

Here is a sample of JavaScript code to demonstrate the syntax. Because anyone with access
to a page can examine the source code, JavaScript code rarely contains comments in the real
world. To reduce bandwidth usage, JavaScript is almost always minified, which means unnec-
essary indenting and white space has been removed.

// Declare variables (without specifying a type)
numPics = 11;
secDelay = 7;

// Call the built-in functions Math.floor and Math.random
// Adding "var" identifies a local variable
var randomOffset = Math.floor(Math.random() * 11);

// A for loop
for (i = 1; i <= numPics; i++) {
 // Declare and define picNum
 picNum = i + randomOffset;

 // An if statement
 if (picNum > numPics) {

 Objective 1.3: Choose Appropriate Client-Side Technologies Chapter 1 27

 picNum = picNum - numPics;
 }

 // Define a function call that will be passed to setTimeout using a string
 // StartPic is a custom function not shown here
 var sp = "StartPic(" + picNum + ", " + numPics + ", " + secDelay + ", '" +
 picUrl[picNum] + "')";

 // setTimeout, a built-in function, runs the function declared by the first
 // parameter after the delay, in milliseconds, specified by the second parameter
 setTimeout(sp, secDelay * 1000 * (i - 1));
}

Exam tip

On the exam, you might see a reference to a second client-side scripting language: Microsoft
VBScript. VBScript provides similar client-side capabilities as JavaScript; however, VBScript is
supported only by the Microsoft Internet Explorer browser. although most users currently use
a version of Internet Explorer, most web developers prefer to write code that will work with
as many browsers as possible, including Firefox, Opera, Chrome, and Safari. Only JavaScript
works with each of those browsers. In the real world, almost all client-side code is written in
JavaScript.

Microsoft is still maintaining VBScript; however, it is no longer releasing new versions of
the scripting engine. For the exam, it is important to know that VBScript is a client-side
scripting language with similar capabilities to JavaScript. however, VBScript is not an accept-
able solution for scenarios that require compatibility with browsers other than Internet
Explorer or operating systems other than Windows.

Client-Side Libraries
JavaScript itself is not as robust as the .NET Framework. For example, it could be time-
consuming to write pure JavaScript code to retrieve data from a web service, sort it, and
display it in a grid format, because JavaScript does not have built-in functions to do that. Even
if you did write the large amount of code required to perform that task, you would then have
to test and debug it using every different browser you planned to support.

To extend JavaScript’s capabilities and provide better cross-platform support, the open-
source community has created many JavaScript libraries. There are two you should be familiar
with for the exam:

■■ jQuery jQuery is the most commonly used JavaScript library. It is only 29 KB in size
when compressed (which the client must download before it can process any Java-
Script), but it provides functions for easily selecting document elements, handling
events, animating objects, and performing other AJAX actions.

■■ Microsoft AJAX A client-side JavaScript library created by Microsoft specifically to
add client-side capabilities to ASP.NET.

 28 Chapter 1 Designing the Application Architecture

Both jQuery and Microsoft AJAX are included with Visual Studio 2010. However, new
versions of each are released regularly. Because they often contain important updates, you
should always use the latest version available. Additionally, you should test and update refer-
ences to new libraries for web applications you maintain.

More Info jQuery and Microsoft ajaX

For more information about jQuery, visit http://jquery.com. For more information about
Microsoft AJAX, visit http://www.asp.net/ajax.

Using a client-side library on your page requires the client to download the library from
your server the first time a page requests it. For all subsequent requests, the client will nor-
mally have a copy cached. Unfortunately, the initial download of the library increases page
load time and bandwidth usage. On a LAN, these differences might be negligible. On the
public Internet, however, they can be significant.

For example, the jQuery library is only 29 KB in size when minified, which broadband users
can download in a fraction of a second. However, the browser has to first download the page,
parse the reference to the jQuery library, download jQuery from the server, and then process
the library before it can begin executing any JavaScript. Depending on the client’s bandwidth
and latency (the delay it takes to send messages to and from your server), that can delay
page-rendering time by up to a full second.

Because of the performance impact of loading client-side libraries and the importance of
page load time to users and search engines, avoid using libraries for websites on the public
Internet unless absolutely necessary. At times, however, using a library can save such a signifi-
cant amount of development time that the performance impact becomes worthwhile.

Delivering Libraries with a CDN
To reduce the impact of downloading a library, you can use a CDN. A CDN stores copies of a
library in many different locations on the Internet. Browsers download whichever copy of the
library is closest to them, reducing latency and eliminating the extra bandwidth required of
your web server. Additionally, if the browser has visited another webpage that uses the same
version of the library from the same CDN, it can use the cached version, further improving
page-load time.

Microsoft, Google, and Edgecast all provide CDN services for the jQuery library. Instead of
referencing jQuery from your local server:

<script type="text/javascript" src="/Scripts/jquery/jquery-1.5.min.js" ></script>

you can reference it from Microsoft’s CDN:

<script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jquery/jquery-
1.5.min.js" ></script>

you can reference it from Google’s CDN:

 Objective 1.3: Choose Appropriate Client-Side Technologies Chapter 1 29

<script type="text/javascript" src="http://ajax.googleapis.com/ajax/libs/jquery/1.5/
jquery.min.js"></script>

or you can reference it from Edgecast’s CDN:

<script type="text/javascript" src="http://code.jquery.com/jquery-1.5.min.js"></script>

Note jQuery Versions

The .min in the file indicates that it is minified, which reduces file size. You need to refer-
ence the nonminified version only if you wanted to examine the jQuery library for debug-
ging purposes. As developers release new versions of jQuery, you should test it and then
update the version number in the script src property.

If a user has visited another page that used the same library from the same CDN, the
browser will already have a cached copy of the CDN stored locally. Therefore, the more web-
pages that use a CDN, the more visitors will have already cached the library. As a result, you
will get a greater performance benefit by using the most popular CDN.

To use the Microsoft CDN for Microsoft AJAX (your only option), simply set the Script
Manager.EnableCdn property to true, as the following example shows:

<asp:ScriptManager
 ID="ScriptManager1"
 EnableCdn="true"
 Runat="Server" />

Using Rich Client-Side Plug-ins
JavaScript is capable of providing a moderately rich user interface that changes based on
user actions. JavaScript can also display some video and animation. However, if you want to
provide a rich user interface beyond JavaScript’s capabilities, use high-performance or 3D
graphics, or display some types of video, you need to use a plug-in. Two of the most common
plug-ins are Adobe Flash and Microsoft Silverlight.

Flash and Silverlight are capable of complex, interactive animations, high-definition video,
and games. They can also directly access some aspects of the computer that are not acces-
sible to JavaScript, such as the video adapter’s graphical processing unit (GPU), which is useful
for accelerating graphics displays and performing some computations. However, Flash and
Silverlight have several disadvantages:

■■ They require users to download and install a plug-in before they can be used.

■■ Users who already have the plug-in installed might have to update the plug-in before
they can access content created for a newer version of the plug-in.

■■ Some browsers (such as the Safari browser built into the popular iPhone and iPad
products) cannot support one or both of the plug-ins.

 30 Chapter 1 Designing the Application Architecture

■■ The Flash and Silverlight objects must be stored in a separate file and embedded in a
webpage. These objects tend to be large, increasing the size of the page and reducing
page performance.

Because of these drawbacks, you should use plug-ins only when you can limit the impact
of the drawbacks. For example, if you have a technology-savvy customer base that is will-
ing to install and update the plug-in, or if you are deploying an intranet application and the
Information Technology (IT) department will support the plug-in.

If you create web applications that use Flash or Silverlight and you must support a wide
variety of browsers, create webpages that degrade gracefully. If a browser does not have
the plug-in installed, provide a link so that users can install the plug-in. If a browser cannot
support the plug-in, provide alternate content that duplicates as much of the functionality as
possible using traditional HTML and JavaScript.

Exam tip

In the real world, Flash is much more widely supported than Silverlight because it has ex-
isted for many more years. The exam, however, prefers to reference Silverlight. Fortunately,
you do not need to know how to create content for either plug-in. Instead, understand the
capabilities and drawbacks of using rich client-side plug-ins.

Objective Summary
■■ JavaScript is the only widely accepted client-side scripting language, though Internet

Explorer also supports VBScript. You can use client-side libraries to extend JavaScript’s
capabilities. Visual Studio 2010 has built-in support for two client-side libraries: jQuery
and Microsoft AJAX.

■■ Rich client-side plug-ins, including Flash and Silverlight, provide a responsive and
interactive experience rivaled only by desktop applications. However, they both require
plug-ins to be installed in most browsers. Some browsers, especially those on mobile
devices, do not support either plug-in. Therefore, when using a rich client-side plug-in,
you need to plan to provide alternate code for clients that lack the plug-in.

Objective Review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

 Objective 1.3: Choose Appropriate Client-Side Technologies Chapter 1 31

1. You are designing an ASP.NET web application that allows end users to chat live with
customer support when they click a Button control. At times, it might take several
minutes for customer support to respond to a user. You need to design the applica-
tion to be responsive to users, even when customer support cannot immediately reply.
You need to support a wide variety of browsers, including browsers built into mobile
devices. Which approach should you recommend?

A. In the Button.Click event handler, return a webpage that contains a real-time chat
client implemented by using Flash. Configure the Silverlight client to communicate
directly with customer support.

B. In the Button.Click event handler, return a webpage that contains a real-time chat
client implemented by using Silverlight. Configure the Silverlight client to commu-
nicate directly with customer support.

C. In the Button.Click event handler, connect to the customer support chat client. Add
the response to the webpage.

D. In the Button.Click event handler, return a webpage that contains client-side Java-
Script code that connects to a web service running on the server to send messages
from the user and retrieve responses from customer support.

2. You are designing the client-side component of web application with the following
requirements:

■■ Retrieve data from a web service, and display it in a <div> element on the webpage.

■■ Work with all common browsers.

■■ Do not require client-side installation.

Which two technologies should you recommend? (Choose all that apply. Each answer
forms a complete solution.)

A. Silverlight

B. jQuery

C. VBScript

D. Microsoft AJAX

3. You are designing a 3D game that will run in client browsers. The platform you choose
must be able to work in all common browsers and must support GPU acceleration.
Which technology should you choose?

A. Silverlight

B. jQuery

C. VBScript

D. Microsoft AJAX

 32 Chapter 1 Designing the Application Architecture

ThoughT ExpErimEnT
Evaluating the Impact of Rich Client Features

In the following thought experiment, you apply what you’ve learned about the
“Choose Appropriate Client-Side Technologies” objective to predict how a theo-

retical website architecture will perform. You can find answers to these questions in
the “Answers” section at the end of this chapter.

You are a development consultant. Coho Winery has asked you to review an MVC
web application that its developer created to replace its public website at http://
www.cohowinery.com. Their current public website is based on ASP.NET 2.0 and
uses no JavaScript or other client-side technology. Management needs you to
evaluate the application design to identify any problems that might occur prior to
launch.

You interview the developer and determine that three components of the site use
advanced client-side capabilities:

■■ The master page has a menu system that uses jQuery. jQuery is stored in the applica-
tion’s /Scripts/ folder.

■■ Product pages use AJAX to allow users to quickly browse different products with-
out reloading the entire page.

■■ The home page displays a 500 KB Silverlight object that gives users a virtual tour
of the winery.

Management needs to assess the future performance and compatibility of the site.
In particular, they are concerned about bandwidth fees from their web hosting
provider. Answer the following questions:

1. Will their bandwidth usage increase or decrease?

2. How can they change the design to reduce bandwidth usage?

3. Will any clients be unable to use parts of the site? How can they minimize the
compatibility problems?

 Objective 1.4: Choose Appropriate Server-Side Technologies Chapter 1 33

Objective 1.4: Choose Appropriate Server-Side
Technologies

The .NET Framework is so robust that there are often many ways to accomplish a single task.
This objective includes a high-level overview of the different server-side technologies and
describes the scenarios in which you would use each of them.

This objective covers how to:
■■ Choose between different control types.

■■ Use partial classes and methods.

■■ Access server methods from client code.

More Info HTML Helper Extensions

For information about HTML helper extensions, refer to Objective 3.2.

Choosing Between Different Control Types
The .NET Framework provides many types of controls, including HTML, server, user, Web
Parts, custom, and dynamic data. The sections that follow provide an overview of each type
of control and describe the scenarios in which you would use each.

Exam tip

The 70-515 exam covers how to create and use controls. For the 70-519 exam, be sure you
understand when you should choose each type of control.

hTML Controls
Use HTML controls when you need to create an HTML element without server-side logic. For
example, you can create an input text box using either an HTML control or a server control.
The Input (Text) HTML control simply creates the HTML <input> element, without directly
providing server-side code access to anything the user types in the text box. If the user sub-
mits a form to the server, the contents of any HTML controls will be lost. You could still access
the user input in an HTML control from client-side JavaScript, however.

Server Controls
ASP.NET renders server controls into HTML elements. For example, the TextBox server control
is rendered into an HTML <input> element, similar to the Input (Text) HTML control. Server
controls provide more robust features, however. With server controls, you can process user

 34 Chapter 1 Designing the Application Architecture

input from the code-behind file, and ASP.NET automatically maintains controls between page
loads. Server controls require more processing time on the server, and their view state con-
sumes additional bandwidth. As with HTML controls, you can access rendered server controls
from client-side JavaScript.

Although the 70-519 exam does not test most of the details of implementing server
controls, it does require you to know how to enable Cascading Style Sheet (CSS) styling
for controls that have it disabled by default. These server controls were originally designed
before CSS was commonly used, and as a result, they use tables for styling. All modern web
applications should use CSS styling.

The .NET Framework provides different properties for different controls:

■■ RenderOuterTable Several server controls (including FormView, Login, and Change
Password) have a property named RenderOuterTable. Set the RenderOuterTable prop-
erty to false to control the appearance of the controls with CSS style sheets.

■■ RepeatLayout RadioButtonList, CheckBoxList, and DataList include the RepeatLayout
property. Like RenderOuterTable, RepeatLayout uses a table for formatting. Set Repeat
Layout to Flow (instead of the default Table) to control the appearance of the controls
with CSS style sheets.

User Controls
User controls are custom server-side controls deployed using an .ascx file. Typically, user
controls contain multiple server or HTML controls. You should create user controls under the
following circumstances:

■■ You need to include a group of server controls in multiple ASPX pages.

■■ You need to deploy a custom control as a separate assembly.

■■ The layout is primarily static.

If you need to persist data between page loads, store the data in control state. Control
state functions even when a developer has disabled view state.

Do not use user controls to display common user interface elements in the same position
on every page within your site. Instead, use master pages. For example, if you want to display
the weather in the upper-right corner of every page, you should add the weather element to
your master page. However, if you want to display the weather in different locations on differ-
ent pages, you should implement it as a user control.

Web Parts
Web Parts are controls that include built-in functionality to allow end users to customize their
location, appearance, and functionality. You can use Web Part Connections to provide data to
individual Web Parts. Choose Web Parts over other types of controls when user customization
is important—for example, if you need the user to be able to move the control to a different
spot on the webpage or change the colors of the control.

 Objective 1.4: Choose Appropriate Server-Side Technologies Chapter 1 35

Custom Server Controls
Although user controls are typically composed of HTML and server controls, custom server
controls provide you complete flexibility. You have complete control over how ASP.NET
renders a custom server control into HTML, so you can accomplish almost anything. Custom
server controls take more effort to create than user controls, however.

If your custom server control does not resemble any existing server controls, inherit from
System.Web.WebControls.WebControl. Most of the time, however, you should inherit from an
existing server control that provides similar functionality to your custom server control. For
example, if you wanted to display a list of check boxes with associated images, you might
inherit from the CheckBoxList class; add properties for the image URL, title, and alt tags; and
then update the rendering to add the information to the HTML output.

You can add custom controls to the Visual Studio toolbox, which you cannot do with user
controls.

Dynamic Data Controls
Dynamic data controls are among the most complex controls in the .NET Framework. Dynamic
data controls connect to a LINQ-to-SQL object model or LINQ-to-Entities object model and
display data in a tabular format, allowing for sorting, filtering, and paging. Users can use links
to edit and delete records directly from a dynamic data control.

Choose dynamic data controls when you want to view or edit data in a database with mini-
mal development time and a standard tabular display will suffice.

Using Partial Classes and Methods
When you create a new website or web application, Visual Studio automatically generates a
large amount of code. This auto-generated code includes many of the most important classes
in your application, including your Page class and your data classes. By automatically generat-
ing code based on the template you chose, Visual Studio saves you from writing hundreds of
lines of code just to provide basic website functionality.

You can use partial classes and methods to add your own custom code to the auto-
generated code. A partial class allows you to add entirely new properties, methods, and
events to a class, without editing the auto-generated code or rewriting the class from scratch.
Similarly, a partial method allows you to add code to an auto-generated method.

Use partial classes and methods when Visual Studio auto-generates a class or method but
you need to extend its functionality.

accessing Server Methods from Client Code
The most common way to call a server-side method from the client is to configure a server
control, such as a Button control, to run the method for its Click event handler. However, this
technique requires a postback.

 36 Chapter 1 Designing the Application Architecture

If you prefer not to reload the page, you can use one of these techniques to allow client-
side code to call server-side methods and process the results:

■■ UpdatePanel You can place server controls within an UpdatePanel container, and
trigger the UpdatePanel to refresh itself when a trigger occurs. Often, triggers are
clicking a button or changing a drop-down list selection. Using an UpdatePanel does
not require manually writing JavaScript code.

■■ UpdateProgress UpdateProgress is visible only when an associated UpdatePanel
control is updating. UpdateProgress is designed to give users feedback about the
UpdatePanel asynchronous request.

■■ Page methods Mark the static method you want to expose with the WebMethod
attribute, add a ScriptManager server control, and set ScriptManager.EnablePageMethods
to true. Then you can use the PageMethods object within JavaScript to call server-side
methods and process the results.

■■ Web services Microsoft AJAX and jQuery are both capable of easily consuming web
services. Therefore, you can write client-side code to consume any static method that
you expose by using WebMethod. To access the method using the JSON format, also
add the ScriptService attribute.

Using an UpdatePanel requires less code than using a page method, but it transfers view
state as well, so the request and response are larger than page method calls. With a page
method control, you can’t access the contents of server controls, such as what a user typed
into a TextBox, directly from a page method called by the client. Instead, you need to pass
values to the page method as parameters.

Objective Summary
■■ HTML controls provide high performance with minimal overhead, but server controls

provide much easier access to their properties and values. User controls allow you to
easily combine multiple server controls into a single object. Web Parts provide robust
capabilities and allow end users to personalize their appearance and move them to dif-
ferent locations. For the ultimate in flexibility, create custom server controls. Dynamic
data controls automatically adjust their appearance to the underlying data source,
allowing you to quickly display and manage data.

■■ Partial classes and methods allow you to extend classes that Visual Studio automati-
cally generates.

■■ HtmlHelpers provide an easy way to add HTML controls to MVC views. You can create
custom HtmlHelper extensions for HTML elements that are not provided with the built-
in HtmlHelpers.

■■ You can access server methods directly from client JavaScript code, saving a full page
load. The easiest way to do this is to use a page method with Microsoft AJAX.

 Objective 1.4: Choose Appropriate Server-Side Technologies Chapter 1 37

Objective Review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1. You are creating a new web application. You must meet these requirements:

■■ Use the Login control to allow users to authenticate.

■■ Allow a web designer to configure the appearance of all controls using classes in
CSS style sheets.

How should you configure the Login control? (Choose two. Each answer forms part of
the complete solution.)

A. Define the CssClass property.

B. Set the RenderOuterTable property to true.

C. Set the RenderOuterTable property to false.

D. Define the LoginButtonType property.

2. You are planning to write client-side JavaScript that must retrieve and display a string
value returned by a server-side method. You want the messages sent between the cli-
ent and server to be as small as possible. Which approach should you choose?

A. Create a partial class.

B. Use an UpdateProgress control.

C. Use an UpdatePanel control.

D. Use a Microsoft AJAX page method.

3. You are creating a view for an MVC application. You need to create a non-standard
HTML control that should be rendered on the server. You must minimize the amount
of client and server resources used as well as your development time. Which approach
should you choose?

A. Use the jQuery library to dynamically add the HTML control to the document
object model.

B. Create an HtmlHelper extension.

C. Create a custom server control.

D. Create a custom Web Part.

 38 Chapter 1 Designing the Application Architecture

ThoughT ExpErimEnT
Evaluating a Real-Time Web Application Design

In the following thought experiment, you apply what you’ve learned about the
Choose Appropriate Server-Side Technologies objective to predict how a theoreti-

cal website architecture will perform. You can find answers to these questions in the
“Answers” section at the end of this chapter.

You are a developer for Contoso Pharmaceuticals. Recently, Contoso acquired a
smaller pharmaceutical company, Trey Research. The developers at Trey are in the
process of planning a new web application. Your manager has asked you to review
the Trey developer’s plans.

The application is designed to provide management with real-time information
about the progress of drug development, whether the manager is in the office, at
home, or on a mobile device. To support mobile clients, one of the design require-
ments is to minimize bandwidth. Managers want to be able to open a webpage and
leave it open, and have it automatically update with current project status.

Trey developers designed an application with the following features:

■■ A user control that displays all the information about a project

■■ An UpdatePanel control that contains one user control for every project that a
manager wants to monitor

■■ A Timer control that triggers the UpdatePanel control to refresh every 30 seconds

Answer the following questions about the future performance of the application:

1. Is a user control the right choice for displaying information about a project?
Which other technologies might be more efficient?

2. Is the combination of an UpdatePanel and Timer trigger the right choice to
allow the page to be dynamically updated? Which other technologies might be
more efficient?

 Objective 1.5: Design State Management Chapter 1 39

Objective 1.5: Design State Management

As a user visits a website, he might interact with multiple controls on a page, submit a single
page multiple times, and view multiple, different pages in a single site. Often, the user will
return later to the same site.

Throughout these interactions, your application needs to keep track of state. You need
to know any values the user types or selects in a form. Often, you need to track information
about a user as he visits multiple pages or makes multiple visits to your site at different times.

Keeping track of this information in a web application is a challenge, however, because
HTTP communications are inherently stateless, a web application might run on multiple web
servers, and a single user might switch between different networks or clients. Fortunately,
ASP.NET provides several state management techniques that can meet almost any need.

This objective includes an overview of those different state management techniques, along
with a description of the advantages of each. Most of this objective reviews topics covered
by the 70-515 exam. However, the 70-515 exam focused on the details of implementing state
management technologies, while the 70-519 exam focuses on choosing the appropriate state
management technology for a given scenario. Therefore, the content in this objective is very
high level.

This objective covers how to:
■■ Use application state.

■■ Use the Cache object.

■■ Evaluate user state technologies

■■ Use session state.

■■ Create custom page state persisters.

Using application State
ASP.NET provides the Application object, which you can use to store information that can be
accessed by any page or user session. The Application object is a dictionary that is useful for
storing small amounts of frequently accessed data that is the same for all users.

However, the Application object was primarily intended for backward compatibility with
ASP applications. A better alternative is to store application state in global static objects.
Global static objects perform better than the Application object and provide strong typing.

Because application state is stored in memory, accessing it is much faster than querying a
database. Consider these factors when using application state:

■■ Application state is lost when a server is restarted. Therefore, you must initialize data in
the Application_Start method in the Global.asax file.

■■ Application state is not shared between servers in a web farm. If you need to share
data between servers, use session state, or store it in a shared database.

 40 Chapter 1 Designing the Application Architecture

■■ Application state is stored in memory. If you store large amounts of data in application
state, it reduces the amount of memory available for other applications and caching.
Use the Cache object to allow the .NET Framework to automatically remove objects
you no longer need from memory.

■■ Application state is free-threaded. Because multiple threads can access application
state at the same time, you must write thread-safe code that locks and unlocks data
so that it is written to by only one thread at a time. Writing thread-safe code increases
development time.

Using the Cache Object
Just like the Application object, the Cache object is a dictionary that is available to all pages
and sessions in your application. However, while Application stores objects until the applica-
tion restarts, Cache stores them only until they expire or ASP.NET determines that it needs to
free up memory.

When you add an object to the Cache, you have the option of providing an expiration
policy. For example, the following code configures ASP.NET to remove the object after one
minute:

Sample of Visual Basic.NET Code

Cache.Insert("MyItem", "MyValue", Nothing, DateTime.Now.AddMinutes(1.0), TimeSpan.Zero)

Sample of C# Code

Cache.Insert("MyItem", "MyValue", null, DateTime.Now.AddMinutes(1d),
 System.Web.Caching.Cache.NoSlidingExpiration);

Alternatively, you can create sliding expiration policies and policies that cause a cached
object to expire when a file or directory is updated.

You should use the Cache object any time you might need to access the same data again
and that data is relatively difficult to retrieve or create. When choosing between storing data
in the Cache and Application objects, choose the Cache object in the following circumstances:

■■ The original data source might change.

■■ You might run low on memory.

■■ You will not need the value for the entire lifespan of the application.

Evaluating User State Technologies
User state is any information the server maintains between multiple user requests. ASP.NET
provides several ways to store user state:

■■ Cookies Short strings provided by the server that the client includes with each sub-
sequent request. You can store any string on the client and instruct the client to store it
for a few seconds or many years, providing a simple and persistent storage technique.
Because cookies do not store data on the server, they do not affect server scalabil-

 Objective 1.5: Design State Management Chapter 1 41

ity. However, cookies provide no inherent security; they can be easily intercepted or
modified. Additionally, because the client must send cookies with every request, large
cookies can increase bandwidth usage and slow page response times.

■■ Query strings You can add query strings to hyperlinks on your pages to pass data to
other pages. For example, if you link to a page that lists a store’s inventory, you might
specify the link like this to show only audiobooks under $10: http://www.contoso.
com/products.aspx?category=audiobook&maxprice=10. Within the Products.aspx
code-behind file, you could check for the values Request.QueryString[“category”] and
Request.QueryString[“maxprice”]. Unlike other forms of application state, query strings
are typically maintained if a user shares a link. Relying heavily on query strings can
make it more difficult for search engines to index your site.

■■ Hidden fields You can store information within a form by using HTML hidden fields.
If the user submits the form, the browser will submit the contents of the hidden field
along with any other fields in the form. However, the hidden field won’t be visible to
the user. To add a hidden field, simply add an <input> element to the form and set the
type to hidden, as this example shows:

<input type="hidden" name="code" value="93">

■■ Session state Clients identify themselves with a unique session ID, usually using a
cookie. The server then retrieves a collection of session data using the user’s unique
session ID. Sessions expire after 20 minutes by default and will not be available if the
user changes devices. Therefore, session state is useful only for short-term storage.

■■ View state ASP.NET stores view state in encrypted hidden fields in a web form. View
state allows ASP.NET to track control values across multiple requests even if session
state is disabled. View state can significantly increase page size in a way that cannot be
compressed as efficiently as standard HTML. Therefore, you should disable view state
when you do not need it.

■■ Control state Control state functions exactly like view state, except it is defined as
part of a user control. If a developer disables view state for a page but a user control
uses control state, that control state will remain intact.

■■ Authentication If you authenticate users, you can store any information about the
user in a database and associate it with their user ID. This allows state to be persis-
tent between visits, even if the user switches devices. However, users must log on to
retrieve the state.

You should use cookies to store information about user preferences. Use view state and
control state to store data between requests to the same web form on an intranet. Any data
requiring security, such as a user’s address, should be stored on a database and accessed only
on the server after the user authenticates.

Table 1-4 compares the features of the different application-state storage techniques.

 42 Chapter 1 Designing the Application Architecture

TAbLE 1-4 Application-State Storage Techniques

Cookies
Query
strings

hidden
fields

Session
state

View state/
Control state Authentication

Uses server resources

X X X

Can be shared in a link

X

Can increase bandwidth significantly

X X X

Provides some security

X X X

Works across multiple views of the same page

X X X X X X

Works across different pages in a single visit

X X X X X

Works across multiple visits from the same device

X X

Works across multiple visits from different devices

X

Using Session State
Session state involves both a client and server component:

■■ The client must identify itself to the server by using a unique session ID.

■■ The server must use the session ID to look up that client’s unique Session collection.

The sections that follow discuss the decisions you can make about both the client side and
the server side of session state.

Tracking Session on the Client
You have different options for both the client and server components. For the client, you can
choose between using cookies or cookieless session state. Using cookies is the default setting,
and it is the right choice for the vast majority of websites. Although every modern browser

 Objective 1.5: Design State Management Chapter 1 43

supports cookies, you might be faced with a scenario that requires you to support sessions
without cookies.

Cookieless session state appends the unique session ID to the webpage URL. For example,
if a client’s session ID is ow2j32ieo233kj4i2ogfj9320, the URL might be http://www.contoso.
com/(S(ow2j32ieo233kj4i2ogfj9320))/default.aspx. The altered URL creates several problems:

■■ Search engines might receive a different session ID on different visits, causing the
search engine to identify different paths to seemingly duplicate content.

■■ If a user bookmarks a page and visits it after the session has expired (20 minutes by
default), the session ID will no longer be valid.

■■ The URL is much longer than normal, making it more difficult for users to share (espe-
cially using short message formats such as Twitter).

■■ If a user shares a URL with a session ID embedded, the other user can access informa-
tion stored within her session. This creates a potential security risk.

Because of these concerns, you should choose cookie-based sessions (the default) unless
clients cannot use cookies and you must rely on session state.

Storing Session on the Server
Your web server can store session state in one of three ways:

■■ InProc The default, this setting stores session state in the server’s memory. Session
state is not shared between different web servers, and it is lost if the web server is
restarted.

■■ State Server This setting stores session state on a separate server. Multiple web
servers can share state server session state, allowing clients to transparently switch
between different web servers in a server farm. Session state is lost if the state server is
restarted.

■■ SQL Server This setting stores session state on a computer running SQL Server. Like
a state server, multiple web servers can share state server session state. Additionally,
session state is maintained if the state server is restarted. If session state must be main-
tained during a server outage, you can store state in a SQL Server cluster.

InProc session state is sufficient for most applications that use a single web server. If you
use multiple web servers (for example, as part of a network load-balancing cluster) and
requests from a single client might be sent to a different server, you need to store state on a
state server or SQL Server. In this scenario, you must define the same <machineKey> setting
(located within <configuration><system.web> in the Web.config file) on every web server.

Because a machine key is automatically generated by default, you need to manually
generate a machine key and set the value on every web server. You can use this online tool

 44 Chapter 1 Designing the Application Architecture

to quickly generate a <machineKey> value: http://aspnetresources.com/tools/machineKey. The
setting in the Web.config will resemble the following:

<configuration>
 <system.web>
 <machineKey
validationKey="8E8992656E0CD2811EA23ADA31DD7F75F199EE9476947E0860FFC9C767992AEDE0B5CFDAB
A73D059E67AB166491E1342E4101B814135CFE40BC51D55E4F6B4DE"
decryptionKey="8D02DDC2E9CE3647E5F2649DF5BA0F7A30CFAE2D5AE436AE809CA11D3A3F2121"
validation="SHA1" decryption="AES" />
 </system.web>
</configuration>

Creating Custom Page State Persisters
View state has a significant disadvantage: it can dramatically increase page size. This page
size increase is especially dramatic when you are using complex controls such as DataGrid. At
times, view state size can approach 1 MB, which takes about 15 seconds to transfer across a
512 Kbps link. You can offset this page size increase by disabling view state for controls that
don’t need to be persisted between requests, but often that is not sufficient.

View state is the default mechanism for persisting page state, and usually it is the best
choice. However, it is not the only choice. View state uses the class System.Web.UI.HIddenField
PageStatePersister, which derives from the PageStatePersister class. If view state does not meet
your needs, you can use the other built-in page state mechanism, SessionPageStatePersister,
or derive your own custom class from PageStatePersister.

SessionPageStatePersister stores view state data along with session state data. This elimi-
nates the extra bandwidth consumed by sending view state data back and forth between the
client and the server. However, it consumes more server resources by increasing session state
size. Additionally, it can fail if you make use of iframes, pop-ups, or AJAX, or if users have
multiple pages open simultaneously.

To use a different page state persister, register a custom PageAdapter class. Within the
class, override the GetStatePersister method and return an instance of your PageStatePersister.
Then use the custom PageAdapter class instead of the default page adapter. This example
demonstrates how to use SessionPageStatePersister:

Sample of Visual Basic.NET Code

Public Class SessionPageAdapter
 Inherits System.Web.UI.Adapters.PageAdapter

 Public Overrides Function GetStatePersister() As PageStatePersister
 Return New SessionPageStatePersister(Page)
 End Function 'GetStatePersister

End Class 'SessionPageAdapter

 Objective 1.5: Design State Management Chapter 1 45

Sample of C# Code

public class SessionPageAdapter : System.Web.UI.Adapters.PageAdapter {
 public override PageStatePersister GetStatePersister() {
 return new SessionPageStatePersister(Page);
 }
}

More info Page State PerSiSterS

For more information about storing page state in sessions, read “SessionPageStatePersister
Class” at http://msdn.microsoft.com/en-us/library/system.web.ui.sessionpagestatepersister.
aspx. For detailed information about creating a custom page state persister, read
“PageStatePersister Class” at http://msdn.microsoft.com/en-us/library/system.web.
ui.pagestatepersister.aspx.

Objective Summary
■■ The Application object provides a dictionary that can be accessed by any page and ses-

sion. Use it sparingly because any object you add remains in memory until the applica-
tion restarts.

■■ The Cache object provides a dictionary that can be accessed by any page and session,
just like the Application object. However, the Cache object allows you to link an item to
a dependency so that the item will be automatically removed from the cache.

■■ The .NET Framework provides many ways to track user state, including cookies, ses-
sions, and view state. Cookies tend to be reliable, but the browser has to send any
information you store in a cookie with every request. Sessions are less reliable and
can be used only for temporary information. ASP.NET uses view state to track server
control properties between page requests.

■■ By default, ASP.NET stores session state information in memory. If you deploy your ap-
plication to multiple web servers, you should store session state information in a state
server or a SQL Server database. By default, ASP.NET uses cookies to identify clients
with a specific session. If clients do not support cookies, you can choose cookieless ses-
sions instead. However, cookieless sessions add the session ID to the page URL, which
can cause a variety of issues.

■■ View state can significantly increase page size. You can reduce view state page size
requirements by using a custom page state persister. ASP.NET provides a built-in page
state persister that uses session state; however, it only works reliably if users access
only one page at a time.

http://msdn.microsoft.com/en-us/library/system.web.ui.sessionpagestatepersister.aspx
http://msdn.microsoft.com/en-us/library/system.web.ui.sessionpagestatepersister.aspx
http://msdn.microsoft.com/en-us/library/system.web.ui.pagestatepersister.aspx
http://msdn.microsoft.com/en-us/library/system.web.ui.pagestatepersister.aspx

 46 Chapter 1 Designing the Application Architecture

Objective Review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1. You are designing a web application that will be deployed across ten servers in a web
farm. The servers will be load-balanced using NLBS. Sessions must be maintained if a
user is directed to a different server mid-session. Which session type should you use?
(Choose all that apply. Each answer forms a complete solution.)

A. InProc session state

B. State server session state

C. SQL Server session state

D. Cookieless session state

2. You recently deployed an ASP.NET web application. Although the application per-
forms well on the intranet, mobile users complain that pages take too long to load.
You investigate the problem and determine that the size of the view state is very large,
increasing page size. How can you solve the problem? (Choose all that apply. Each
answer forms part of the complete solution.)

A. Create a custom PageAdapter class that uses SessionStatePersister.

B. Create a custom PageAdapter class that uses control state.

C. Disable view state.

D. Use dynamic data controls.

3. Recently, systems administrators scaled a web application you designed from one
web server to three web servers. Requests are distributed between the servers using
round-robin DNS. Since the upgrade, the administrators have noticed that sessions are
reset when a user request is sent to a different server. How can you solve the problem?
(Choose all that apply. Each answer forms part of the complete solution.)

A. Use the StateServer session state mode.

B. Use cookieless session state.

C. Create a custom PageStatePersister.

D. Configure all web servers with the same machine key.

 Objective 1.5: Design State Management Chapter 1 47

ThoughT ExpErimEnT
Scaling State Management

In the following thought experiment, you apply what you’ve learned about the
“Design State Management” objective to predict how a theoretical website

architecture will perform. You can find answers to these questions in the “Answers”
section at the end of this chapter.

You are a developer for Northwind Traders. You are working with management to
assess how an Internet application’s current state management techniques will scale
as they grow from one web server to four.

The application was created by using ASP.NET 4.0. The following aspects of the ap-
plication rely on state management:

■■ Shopping carts User shopping carts are stored in InProc session state. Adminis-
trators increased the session timeout to one hour.

■■ User information User names and addresses are stored in a SQL Server 2008
R2 database. Users are allowed to shop without logging on, but they must log on
before checking out.

■■ Inventory Inventory is stored in the database. When a user browses a list of in-
ventory, the web application stores the collection of inventory in the Cache object.

■■ Support chat status When support staff are available, the web application pro-
vides a link users can click to chat in real time with a support technician. The web
application allows support staff to specify whether they are available by adjusting
the Boolean Application[“OnlineSupport”] object.

Northwind Traders has systems administrators on staff. However, the company out-
sources its web development. As a result, the company would like to minimize the
amount of development time needed. Answer the following questions about the
change in physical implementation:

1. Which features will require developer time to work properly in the web farm,
and why? About how many hours of development effort will be required?

2. What changes will the administrators have to make so that the other features
work in a web farm environment?

 48 Chapter 1 Designing the Application Architecture

Chapter Summary

■■ Client-side scripting provides users with a rich interface, but it lacks the robustness and
security of server-side code. SoC simplifies development, testing, and the updating of
large-scale web applications by dividing the functional layers of an application. To per-
form a long-running request while appearing responsive to the user, divide a request
into multiple asynchronous steps.

■■ The two most commonly used system architectures are MVC and three-tier. MFC
allows different applications to communicate with a variety of bindings that provide
different levels of features, performance, and compatibility. Unless you need multiple
servers for redundancy, scalability, or isolation, use a single server. Whenever possible,
use coding best practices that separate cross-cutting concerns into separate classes
and store settings administrators might want to change separately from your code.

■■ JavaScript is the only widely accepted client-side scripting language, and it can be ex-
tended with the jQuery and Microsoft AJAX libraries. When you need more capabilities
than JavaScript can provide, use a plug-in such as Flash or Silverlight. However, you will
need to write extra code to provide down-level functionality for browsers that do not
support the plug-in.

■■ HTML controls provide high performance with minimal overhead, but server controls
provide much easier access to their properties and values. Custom server controls re-
quire extra development effort but provide the most flexibility. Use HtmlHelper exten-
sions to add custom HTML elements to MVC views. To improve page responsiveness,
update individual elements within a page using Microsoft AJAX page methods.

■■ The Application and Cache objects provide dictionaries that can be accessed by any
page and session. You can use cookies and sessions to track information about indi-
vidual users. ASP.NET stores view state in hidden fields within a page, allowing it to
recall server control properties when a page is posted back.

 Answers Chapter 1 49

Answers

Objective 1.1: Review
1. Correct Answer: C

A. Incorrect: This approach would display the link only to administrators. However,
because the processing is performed on the client, users could view the page
source, see that the link existed (even though the browser would not render it),
and identify the page it linked to.

B. Incorrect: Setting the Visible property to False on the ASPX page would prevent
ASP.NET from rendering the control at all. Therefore, JavaScript would not be able
to display the control.

C. Correct: This approach displays the link only to users who are members of the
Administrators group, even if the user views the page source. Because it performs
the processing on the server, security is maintained.

D. Incorrect: This approach would never display the link to a user, even if the user
was a member of the Administrators group. Additionally, the HyperLink control
does not have a Click event. To initiate a postback when a user clicks a link, you
would need to use the LinkButton control.

2. Correct Answer: A

A. Correct: This approach blends server-side and client-side programming to provide
a responsive user interface. The web server communicates directly with the server
hosting the virtual machines because the client would not have authorization.

B. Incorrect: Although this approach would work, the server would not return a
response to the user until after all virtual machines had been provisioned. The lack
of responsiveness would be unacceptable to most users.

C. Incorrect: This approach would work only if the server hosting the virtual machines
allowed provisioning requests from the client. However, the server hosting the
virtual machines allows provisioning requests only from the web server.

D. Incorrect: This approach would work if you use JavaScript to initiate web service
requests rather than page requests. However, you should not use JavaScript to
request webpages unless you intend to display them.

 50 Chapter 1 Designing the Application Architecture

3. Correct Answer: B

A. Incorrect: ASP.NET 4.0 web application projects do not allow individual classes to
be easily testable. Additionally, ASP.NET 4.0 web applications provide no inherent
SoC.

B. Correct: The MVC architecture provides SoC, which also allows individual classes
to be testable.

C. Incorrect: Silverlight is not designed to create websites.

D. Incorrect: Like ASP.NET 4.0 web applications, ASP.NET 4.0 websites do not allow
individual classes to be easily testable and provide no inherent SoC.

Objective 1.1: Thought Experiment
1. Bandwidth is not a concern because the site is located on a high-speed intranet, and

no client-side processing is performed. Therefore, server processing must be limiting
the performance of the site. To improve the performance, increase the server’s pro-
cessing capabilities by upgrading the server hardware or adding more servers.

2. With page load times of more than five seconds, the site is already performing unac-
ceptably slowly during peak hours. Adding traffic would cause it to be even slower.

3. You could use Performance Monitor to record the processing time and bandwidth un-
der the current load, and then multiply that by the expected load to estimate the total
requirements. To be even more accurate, you could take the site offline and use load-
testing software to generate artificial load on the server, and record the performance
information by using Performance Monitor.

4. You could generate the charts on the client rather than on the server.

5. You could either generate the charts on the client or use AJAX to replace the chart
without reloading the webpage.

6. Generating charts on the client would reduce the processing requirements of the
server. You could use JavaScript, Silverlight, or Flash to render the charts on the client.
You could provide the raw data to the client by embedding it as an array in the page
itself, or you could create a separate web service and have the client chart component
retrieve the data from the web service.

7. Because the website provides per-customer information, caching the webpages and
charts would have no impact on bandwidth and would actually increase page load
times. However, you could reduce bandwidth usage and improve page load times
by caching static embedded objects, such as the website logo, JavaScript, Flash, and
Silverlight objects.

 Answers Chapter 1 51

Objective 1.2: Review
1. Correct Answer: C

A. Incorrect: Refer to answer C.

B. Incorrect: Refer to answer C.

C. Correct: To allow the website to remain online if a web server is restarted, you
need to configure two web servers. To isolate the database from a denial-of-
service attack, you must place it on a separate, third server.

D. Incorrect: Refer to answer C.

2. Correct Answer: A

A. Correct: The website needs to serve six requests per minute, which is an average
of one request every ten seconds. Although the amount of processing time per
request varies based on the application, very few applications have requests that
take more than ten seconds to process, even on very low-end hardware. The data-
base storage requirement can be met by a single hard disk in a single server. There
is no compelling reason to physically separate the web and database servers, so a
single server for both roles is the best use of the hardware budget.

B. Incorrect: Refer to answer A.

C. Correct: Refer to answer A.

D. Incorrect: Refer to answer A.

3. Correct Answer: A

A. Correct: Although you could use WSDualHttpBinding, NetTcpBinding is more
efficient.

B. Incorrect: NetNamedPipesBinding is intended for communications between pro-
cesses on the same computer.

C. Incorrect: WsHttpBinding does not support two-way (duplex) communications.

D. Incorrect: WSDualHttpBinding meets all the requirements; however, NetTcp
Binding is more efficient.

Objective 1.2: Thought Experiment
1. The company will need to change from NetNamedPipesBinding (which only works

between processes on a single server) to NetTcpBinding. If the developer stored the
binding configuration in the .config files, this might only require updating the configu-
ration files. If the developer hard-coded the bindings, that code will need to be edited,
but it should be a simple change.

2. The company will need to add a secondary binding type to the logic tier, such as Net
TcpBinding.

 52 Chapter 1 Designing the Application Architecture

3. The company will need to change only the connection string for the data assembly.

4. The company will need to change the logic tier’s binding type to an open-standards
based binding type, such as WsHttpBinding. It will have a minor, but perhaps not
noticeable, negative impact on performance.

5. It’s impossible to say without testing the application to determine how many resources
each request requires, how many requests each visitor makes, and how quickly visitors
send requests at peak hours. However, most low-end servers can handle tens of thou-
sands of visitors per day.

Objective 1.3: Review
1. Correct Answer: C

A. Incorrect: Although a Flash chat client could provide a very rich and responsive
user interface, it would be incompatible with some browsers.

B. Incorrect: As with answer A, Silverlight is incompatible with some browsers.

C. Correct: Responsiveness is key here, and this approach relies on client-side Java-
Script and a separate server process to manage the communications. Because the
chat client is running entirely in JavaScript, the server could return a page immedi-
ately without waiting for customer service.

D. Incorrect: Although this approach would work, the server would not return a
webpage until after customer service typed a response. Most users are not willing
to wait several minutes while a page loads.

2. Correct Answers: B and D

A. Incorrect: Silverlight requires client-side installation.

B. Correct: jQuery, a JavaScript plug-in, meets all these requirements.

C. Incorrect: VBScript does not work with all common browsers. It natively works
only with Internet Explorer, limiting its usefulness in Internet applications.

D. Correct: Microsoft AJAX, a JavaScript plug-in, meets all these requirements.

3. Correct Answer: A

A. Correct: Of these choices, only Silverlight provides GPU acceleration. Flash also
provides GPU acceleration.

B. Incorrect: jQuery works with all common browsers and can be used for simple ani-
mations. However, at the time of this writing, it does not support GPU acceleration.

C. Incorrect: VBScript lacks GPU acceleration and natively works only with Internet
Explorer.

D. Incorrect: Microsoft AJAX works with all common browsers and can be used for
simple animations. However, at the time of this writing, it does not support GPU
acceleration.

 Answers Chapter 1 53

Objective 1.3: Thought Experiment
1. Their bandwidth usage will increase for two reasons. First, every client who visits the

site will need to download jQuery from the server. Second, clients who visit the home
page will need to download the relatively large 500 KB Silverlight object.

2. The easiest way to reduce bandwidth usage is to reference the jQuery library from a
CDN, such as that provided by Microsoft. This will also improve page load times for
many users. The Silverlight object is very large relative to the size of a typical page; if
they reduce the size of that object or remove it entirely, bandwidth usage will be much
lower.

3. JavaScript and jQuery are widely accepted, so they should not pose a problem. How-
ever, any browser that does not have Silverlight installed (including mobile devices
that cannot currently support it) will be unable to view the virtual tool. This is an easy
problem to work around; simply determine whether the browser supports Silverlight,
and provide alternate content to browsers without the necessary plug-in.

Objective 1.4: Review
1. Correct Answers: A and C

A. Correct: Set the CssClass property (and, optionally, the LoginButtonStyle.CssClass,
TextBoxStyle.CssClass, LabelStyle.CssClass, TitleTextStyle.CssClass, and ValidatorText
Style.CssClass properties) to specify the class assigned to the rendered control in
HTML. A web designer can use this class name to associate a set of styles with the
control in a CSS style sheet.

B. Incorrect: When RenderOuterTable is set to true, ASP.NET uses an HTML table to
format the control, rather than allowing the control to be formatted by using CSS
style sheets.

C. Correct: Set RenderOuterTable to false to allow a control to be styled by using CSS
style sheets.

D. Incorrect: The LoginButtonType property controls whether the button is styled
as a button, an image, or a link. Setting this value does not help you meet the
requirements.

2. Correct Answer: D

A. Incorrect: Partial classes allow you to add functionality to an auto-generated class.
They do not provide any client-server communication capabilities.

B. Incorrect: An UpdateProgress control displays the progress of updates to an
UpdatePanel control. It does not allow you to retrieve string values from a server
method.

 54 Chapter 1 Designing the Application Architecture

C. Incorrect: You could display an updated string value by using an UpdatePanel
control. However, the messages would be much larger than if you used a Microsoft
AJAX page method.

D. Correct: A Microsoft AJAX page method allows you to call server methods without
transmitting view state. This minimizes the size of the messages sent between the
client and the server.

3. Correct Answer: B

A. Incorrect: Although you could use jQuery to insert custom HTML into a page after
it is rendered, the requirements specify that the control should be rendered on the
server.

B. Correct: HtmlHelper extensions allow you to create custom Html methods that
render HTML code as strings. They are rendered on the server but do not require
view state, so they are relatively efficient.

C. Incorrect: Custom server controls provide a great deal of flexibility; however, you
can meet the requirements by using an HtmlHelper extension, and an HtmlHelper
extension requires less development time.

D. Incorrect: Custom Web Parts require extra development and consume more client
and server resources than an HtmlHelper extension.

Objective 1.4: Thought Experiment
1. Although there are many ways to display the information, a user control is a good

choice if it provides enough flexibility to meet the company’s requirements. User
controls are easy to develop, and it would be simple to add multiple instances of a user
control to the UpdatePanel container, based on which projects a manager wants to
monitor.

2. An UpdatePanel and Timer will work well to automatically refresh a portion of the page
on a regular interval. However, it probably won’t be the most efficient way. A more
bandwidth-efficient technique would be to create client-side JavaScript that made web
services requests (such as page methods) to a server method to retrieve the raw data
about a project, and then render it on the client. This technique reduces bandwidth
usage and server load, but increases development time. Additionally, although this
technique requires only a few lines of server-side code, it would require dozens of lines
of client-side JavaScript, which tends to be more difficult to troubleshoot and maintain.
Therefore, the trade-off is not entirely clear, and management would need to weigh
the benefits of reduced bandwidth against the additional development costs.

 Answers Chapter 1 55

Objective 1.5: Review
1. Correct Answers: B and C

A. Incorrect: InProc session state stores session information in the web server’s
memory. If a user is sent to a different web server, the web server will create a new
session for the user.

B. Correct: When you use state server-based session state, the web servers store and
retrieve session state on a central server. All web servers have access to the same
session state information, allowing users to move between servers mid-session.

C. Correct: When you use SQL Server–based session state, the web servers store and
retrieve session state on a database server. All web servers have access to the same
session state information, allowing users to move between servers mid-session.

D. Incorrect: Cookieless session state allows browsers that do not support cookies to
participate in a session. It does not provide for centralized session state manage-
ment, however.

2. Correct Answers: A and C

A. Correct: SessionStatePagePersister stores view state data within the session on the
server instead of using hidden fields that must be sent back and forth between the
client and server. SessionStatePagePersister can be problematic in some applica-
tions, but if users open only one page at a time, it can work properly.

B. Incorrect: Control state stores data in hidden fields, just like view state. Therefore,
using control state would not change the size of the pages.

C. Correct: Disabling view state would completely remove the hidden fields that in-
crease page size. However, it might prevent the application from working properly.
Additionally, disabling view state does not disable control state.

D. Incorrect: Dynamic data controls use view state by default.

3. Correct Answers: A and D

A. Correct: By default, ASP.NET uses the InProc session state mode, which stores
session state information in memory. Although this is very efficient, it does not
allow multiple web servers to share session state. You should use StateServer or
SqlServer session states any time you use multiple web servers and store informa-
tion in session state.

B. Incorrect: Cookieless session state changes how clients identify the session that
they are currently using. However, it does not change how the server stores that
session data.

 56 Chapter 1 Designing the Application Architecture

C. Incorrect: A custom PageStatePersister could change the default view state stor-
age mechanism. However, the default view state mechanism of storing data in
hidden fields would work properly with multiple web servers and does not need to
be changed.

D. Correct: Whether you use StateServer or SqlServer session state, you need to syn-
chronize the machine key on all web servers.

Objective 1.5: Thought Experiment
1. The only feature that will require developer time is the support chat status. Because

each web server has an isolated instance of the Application object, changing the status
would require either updating the Application[“OnlineSupport”] object on all four
servers or writing code to store the support chat status in the database server. Either
approach should take only an hour or two of development time (not including testing).

2. Administrators will not need to make any changes to the user information or inventory
features; they should work fine in a web farm environment. Naturally, thorough testing
will be required to be confident, however. Each web server will maintain a separate
cache, but developing a distributed cache might not be worthwhile. They will need to
change the session state configuration to use either a state server or the SQL Server,
and then update the machine key on all servers.

259

interactions between applications,
designing, 14–17
mapping logical design to physical
implementation, 17–19
nonfunctional requirements and cross-cutting
concerns, validating, 19–21
objective review correct answers, 51
objective review questions, 23
objective summary, 23
system topology, designing, 13
thought experiment, planning for scalability and
forward compatibility, 24, 51

server-side technologies (objective 1.4)
control types, choosing between, 33–35
objective review correct answers, 53
objective review questions, 37
objective summary, 36
partial classes and methods, using, 35
server-side methods, accessing from client
code, 35
thought experiment, evaluating a real-time web
application design, 38, 54

state management (objective 1.5)
application state, using, 39
cache object, using, 40
custom page state persisters, creating, 44
objective review correct answers, 55
objective review questions, 46
objective summary, 45
session state, using, 42–44
thought experiment, scaling state
management, 47, 56
user state technologies, evaluating, 40

application domains, configuring, 139
Application_Error method, 185

Index

A
acceptance testing, 176
access, authorizing with configuration files, 149
action filters, custom, 164
ActiveXControls property, 70
ADONETDATACONTEXT class, 113
ADONETSERVICEPROXY class, 112
ADO.NET, using, 88
ADPlus, 192
AJAX client control, binding a collection to, 107
API testing, 177
appearance, themes and style sheets for changing, 61
application architecture, designing

client-side technologies (objective 1.3)
client-side scripting languages, using, 26–29
objective review correct answers, 52
objective review questions, 30
objective summary, 30
rich client-side plug-ins, using, 29
thought experiment, evaluating the impact of
rich client features, 32, 53

division of application logic (objective 1.1)
client-side vs. server-side processes, 2–5
long-running processes, planning, 7–10
objective review correct answers, 49
objective review questions, 10
objective summary, 10
partitioning according to separation of
concerns, 5
thought experiment, moving a site from an
intranet to the Internet, 12, 50

requirements and system topology (objective 1.2)
baseline needs, evaluating, 21

260

application issues

long-running processes, planning, 7–10
objective review correct answers, 49
objective review questions, 10
objective summary, 10
partitioning according to separation of concerns, 5
thought experiment, moving a site from an intranet
to the Internet, 12, 50

applications
application domains, 139
application pools, configuring, 229
application pool threads, increasing, 192
application segmentation, designing, 58
performance tuning, 240
and websites, preventing from being updated, 221

application state, using, 39
architecture of applications, designing. See application
architecture, designing
architecture, three-tier, 13
areas, using for segmentation, 58
ASP.NET applications

application object, 39
client ID, generating, 60
Compilation Tool, 221
configuration and inheritance, 225
data validation for, 116–118
health-monitoring, 248
language and cultural preferences, automatic ad-
justment to, 75
pros and cons of, 6
standard browser definitions, 67
three-tier architecture, 13
unhandled exceptions in, processing, 183–186
web services, 91

ASP.NET membership providers, 148
ASP.NET MVC. See MVC (Model-View-Controller soft-
ware architecture)
assembly binding, debugging, 193
asynchronous code, writing, 7
asynchronous webpage, typical flow of, 8
attack surfaces, minimizing

filtering requests
cross-site request forgery attacks, 163
cross-site scripting attacks, 162
custom action filters, 164
custom filtering, implementing, 164
filtering built into IIS, 162
by source IP address, 163
URL rewrite, 164

application issues
debugging approaches (objective 5.3)

attaching to processes, 194
complex issues, debugging, 190–193
debugger displays, controlling, 195–197
JavaScript, debugging, 195
objective review correct answers, 210
objective review questions, 198
objective summary, 198
root-cause analysis, performing, 193
thought experiment, debugging problems in a
production application, 199, 211

exception-handling strategies (objective 5.2)
designing, 181
health monitoring of applications, 183
objective review correct answers, 209
objective review questions, 188
objective summary, 188
strategies for, 183
thought experiment, designing an exception-
handling strategy, 189, 210
unhandled exceptions in ASP.NET,
processing, 183–186

performance issues, approaches to (objective 5.4)
caching pages and fragments, 203
client-side scripting, using, 204
event tracing, 202
logging tracing, 202
monitoring applications, 201
objective review correct answers, 212
objective review questions, 204
objective summary, 204
thought experiment, improving insight into ap-
plication performance, 205, 213
Windows Performance Analysis Tools, 200

testing methodologies, choosing (objective 5.1)
code coverage, understanding, 177
layers, testing appropriate, 178
objective review correct answers, 208
objective review questions, 179
objective summary, 179
testing methodologies, understanding, 176
thought experiment, designing a testing
methodology, 180, 209

application logic, planning the division of
client-side vs. server-side processes

advantages of each, 2
choosing between, 3–5

261

code

default model binders, using, 100–102
displaying data in views, 97
model binders, security risks with, 103

types of, 14–16
black box testing methodology, 176
breadcrumbs, 59
browser property, 69
browsers

browser capabilities and user agents,
examining, 68–70
browser properties, 69
browser's file, deciding when to apply, 67
custom browser files, 68

bufferModes, 245
bugs. See application issues

C
cache object, using, 40, 240
caching pages and fragments, 203
CAS. See code access security (CAS)
CasPoLexe security configuration, 137
CDN. See content delivery network (CDN)
certifications, Microsoft, xvi, xix
chatty or chunky interaction between applications, 16
client controls, updating server data from, 111–113
client ID, generating, 60
client-side libraries, 27
client-side script, debugging, 195
client-side scripting, using, 204
client-side technologies, choosing

advantages of, 2
client-side scripting languages, using, 26–29
objective review correct answers, 52
objective review questions, 30
objective summary, 30
rich client-side plug-ins, using, 29
thought experiment, evaluating the impact of rich
client features, 32, 53
vs. server-side tasks, 3–5

cloud computing, moving to, 238
code

asynchronous code, writing, 7
client code, accessing server methods from, 35
code coverage, understanding, 177

secure sockets layer (SSL), 164
throttling input, 161
user input, handling, 160

authentication and authorization models
ASP.NET membership, using, 148
authorization for resources, comparing IIS to
VSDS, 228
authorization manager, using, 153–155
Custom Membership providers, 149
implementing authorization

access, authorizing with configuration files, 149
membership roles, declaratively requiring, 150
membership roles, imperatively requiring, 151

passwords, storing, 152
role management, planning, 152
trusted subsystems, designing, 155–157
user states, storing, 41
Visual Studio 2010 templates, 148

Authorization Manager, information formats sup-
ported, 154
AuthorizeAttribute class, 150
AutoID value, 61

b
back-end systems, authenticating, 155–157
bandwidth

estimating requirements for, 22
optimization for low-bandwidth clients, 66

baseline needs, evaluating, 21
basicHttpBinding, 15
binding

assembly binding, debugging, 193
binding at design time, 95
binding at run time, 96
binding client controls to data sources

binding modes, 111
data bindings and templates, 111
inline expressions, 106–109
live binding, 110
two-way data binding, 110
updating server data from client controls, 111–
113

binding MCV views to data sources
allowing data to be edited, 98–100
custom HtmlHelper extensions, creating, 105
custom model binders, creating, 103

262

code access security (CAS)

Copy Web tool, 217, 219
costs

comparing scaling up and scaling out, 237
of single-server architecture, up-front, 18

crawler property, 69
credentials, delegating, 139
credit card processing, 239
cross-browser and/or form factors, planning

browser files, custom, 68
browsers file, deciding when to apply, 67
duplicate content, preventing the indexing of, 71
emulations, using to test specific pages, 67
features, evaluating the impact of, 66
screen space, determining, 70
structural approaches, identifying, 70
user agents and browser capabilities,
examining, 68–70

cross-cutting concerns and nonfunctional requirements,
validating, 19–21
cross-site request forgery (CSRF) attacks, filtering, 163
cross-site scripting attacks, filtering, 162
cultural preferences

CurrentCulture and CurrentUICulture, choosing
between, 76
designing to support, 76
text for, displaying, 77
translating web applications, 78
Unicode data, handling, 79
web applications, translating, 78

currency, displaying properly, 77
CurrentCulture and CurrentUICulture, 76
custom error messages, 227
custom page state persisters, creating, 44
custom server controls, 35
CustomValidator control, 117

D
databases

access to, comparing IIS to VSDS, 228
connecting to, using process identities, 141
performance tuning and, 240
validation within, 119

data binding, two-way, 110
DATACONTEXT class, 111
data controls, dynamic, 35

code access security (CAS)
application domains, using, 139
CasPoLexe and machine-level security configura-
tion, 137
comparing IIS to VSDS, 228
optimizing, 136
trust levels, 137
using CAS imperatively, 138

CompareValidator control, 117
compile time, 219
complex issues, debugging, 190–193
condition coverage, 177
ConFigSource attribute, 226
configuration management, designing

application pools, configuring, 229
ASP.NET configuration and inheritance, 225
ConFigSource attribute, using, 226
configuration files, authorizing access with, 149
configuration files, modifying for different environ-
ments, 226
configuration hierarchy, understanding, 224
IIS and the Visual Studio Development Server
(VSDS), comparing, 228
IIS, configuring, 229
.NET Framework, migrating between different ver-
sions of, 230
transforms, using, 227
web applications, upgrading to .NET 4.0, 230

constrained delegation, 145
content delivery network (CDN)

estimating needs of, 22
for libraries, 28

content, preventing the indexing of duplicates, 71
controllers

data validation in, 122
server validation in, 118

control properties, altering, 70
control skins, named, 61
control states, using to store user states, 41
control types, choosing between

custom server controls, 35
dynamic data controls, 35
HTML controls, 33
server controls, 33
user controls, 34
Web Parts, 34

cookies property, 70
cookies, using to store user states, 40

263

deployment strategies

JavaScript, debugging, 195
memory dumps, 192
memory leaks, troubleshooting, 193

Debugger Displays, controlling, 195–197
performance tuning and, 240
remote debugging, 194
root-cause analysis, performing, 193

decision coverage, 177
default skins, 61
delegation. See also impersonation and delegation

constrained, 145
delegating credentials, 144

deployment strategies
configuration management, designing (objective
6.2)

application pools, configuring, 229
ASP.NET configuration and inheritance, 225
ConFigSource attribute, using, 226
configuration files, modifying for different envi-
ronments, 226
configuration hierarchy, understanding, 224
IIS and the Visual Studio Development Server
(VSDS), comparing, 228
IIS, configuring, 229
.NET Framework, migrating between different
versions of, 230
objective review correct answers, 253
objective review questions, 231
objective summary, 231
thought experiment, designing configuration
management, 232, 254
transforms, using, 227
web applications, upgrading to .NET 4.0, 230

deployment process, designing (objective 6.1)
deploying applications as a Single Assembly, 221
deployment methods, understanding, 216–220
importance of, 216
objective review correct answers, 252
objective review questions, 222
objective summary, 222
preventing websites and applications from being
updated, 221
thought experiment, designing a deployment
process, 223, 253
Visual Studio, installing Web Deployment Proj-
ects for, 222

health-monitoring strategies, designing (objective
6.4)

data model
data validation in, 119–122
server validation in, 118

data strategies and structures
data access, designing (objective 3.1)

ADO.NET, using, 88
ASP.NET Web Services, using, 91
data access technologies, choosing, 91
data access technologies overview, 87
Entity Framework, using, 88
objective review, 93
objective review correct answers, 128
objective summary, 92
thought experiment, exposing the application
logic and data layers, 94, 129
WCF Data Services, using, 89
WCF Web Services, using, 89

data presentation and interaction, designing (objec-
tive 3.2)

binding client controls to data sources, 106–115
binding MVC views to data sources, 97–102
custom HtmlHelper extensions, creating, 105
custom model binders, creating, 103–105
objective review correct answers, 130
objective review questions, 114
objective summary, 114
security risks with model binders, 103
server controls, binding to data sources, 95–97
thought experiment, online banking with data
binding, 115, 131

data validation, planning for (objective 3.3)
data validation for ASP.NET applications, 116–
118
data validation for MVC applications, 118–124
objective review correct answers, 131
objective review questions, 125
objective summary, 125
thought experiment, validating user account
information, 126, 132

data types, 100
deadlocks, debugging, 190–192
debugging approaches. See also application issues

attaching to processes, 194
complex issues, debugging

ADPlus, 192
assembly binding, 193
deadlocks, 190–192
dump files, reading, 193

264

deployment strategies, continued

Entity Framework, 88
Error Logging Modules and Handlers (ELMAH), 184
eventMappings, 246
event providers, understanding, 244
events, health-monitoring, 244, 247
event tracing, 201, 202
exams, preparing for, xix
exception-handling strategies

best practices, 182
designing, 181
health monitoring of applications, 183
strategies for, tutorials, 183
unhandled exceptions in ASP.NET, processing

Application_Error, 185
Error Logging Modules and Handlers
(ELMAH), 184
lowest to highest layers, 183
Page_error method, 184
Page.ErrorPage, using, 184
Web.config file, using, 185

F
features, evaluating the impact of, 66
filtering requests

cross-site request forgery attacks, 163
cross-site scripting attacks, 162
custom action filters, 164
custom filtering, implementing, 164
filtering built into IIS, 162
by source IP address, 163
URL rewrite, 164

Flash plug-in, 29
form factors and cross-browsers, planning

browser files, custom, 68
browsers file, deciding when to apply, 67
duplicate content, preventing the indexing of, 71
emulations, using to test specific pages, 67
features, evaluating the impact of, 66
screen space, determining, 70
structural approaches, identifying, 70
user agents and browser capabilities,
examining, 68–70

fragment caching, 203
frames property, 70
function coverage, 177

deployment strategies, continued
ASP.NET health-monitoring, 248
configuring health-monitoring, 245–247
event providers, understanding, 244
health-monitoring events, understanding, 244
objective review correct answers, 256
objective review questions, 248
objective summary, 248
process of, 247
thought experiment, designing a health-
monitoring system, 249, 257

scalability and reliability, planning for (objective 6.3)
costs, comparing, 237
load testing, 238
machine and encryption keys,
synchronizing, 234
moving to the cloud, 238
network load balancing software, 236
objective review correct answers, 254
objective review questions, 241
objective summary, 241
performance tuning, 240
queuing, using, 239
thought experiment, scaling a web
application, 242, 256
web applications, scaling, 234–237
web servers, synchronizing, 237
Windows Azure, 238

designers, positive input from, 2
designing the application architecture. See application
architecture, designing
developers, best practices for, 20
disk capacity, 22
DNS, round-robin, 235
domain restrictions, 164
dump files, reading, 193
duplex HTTP, for Silverlight clients, 9
duplicate content, preventing the indexing of, 71
dynamic data controls, 35

E
emulators, using to test specific pages, 67
encryption. See also security architecture and imple-
mentation

and machine keys, synchronizing, 234
using SSL, 164

265

loop coverage

input, throttling, 161
InputType property, 70
input validation, 160
integration testing, 176
interactions between applications, designing, 14–17
interprocess communications of single-server architec-
ture, efficiency of, 18
IsMobilDevice property, 70
isolation of multiple server architecture, 18
issues, application. See application issues

J
JavaApplets and JavaScript properties, 70
JavaScript

debugging, 195
to examine the user agent, 71

jQuery library, 27, 28

K
keys, machine and encryption, 234

L
language and culture preferences, handling, 74
layers, testing appropriate, 178
libraries

client-side, 27
delivering with a content delivery network, 28

live binding, 110
load-balancing mechanisms, 235
load testing, 238
Locator attribute, 227
logging tracing, 202
logic, application. See application logic, planning the
division of
long-running processes, planning

designing a webpage for, 7–9
designing a web service for, 9

loop coverage, 177

g
globalization, planning for

cultural preferences, designing to support, 76
CurrentCulture and CurrentUICulture, choosing
between, 76
language and culture preferences, handling, 74
text for different cultures, displaying, 77
translating web applications, 78
Unicode data, handling, 79

globalization testing, 177
GridView control, 95

h
hardware load balancers, 235
health-monitoring strategies, designing

applications, health monitoring of, 183
ASP.NET health-monitoring, 248
configuring health-monitoring, 245–247
event providers, understanding, 244
health-monitoring events, understanding, 244

hidden fields, using to store user states, 41
hierarchical configuration, 224
host names and ports, comparing IIS to VSDS, 228
HTML control types, choosing between, 33
HtmlHelper extensions, custom, 105
HTTP bindings, 14

I
IIS (Internet Information Services)

application pools, configuring, 230
configuring, 229
filtering built into, 162
and VSDS, comparing, 228

impersonation and delegation
constrained delegation, 145
delegating credentials, 144
impersonating users, 142

indexing of translated sites
duplicate content, preventing, 71
unique URLS, approaches to, 76

inheritance, ASP.NET configuration and, 225
inline expressions, binding using, 106–109
In Proc setting, 43

266

machine and encryption keys, synchronizing

data validation for
in controllers, 122
in the data model, 119–122
in the model binder, 122
places for server validation, 118
validation within the database, 119
in views, 124

N
named control skins, 61
nested master pages, 58
.NET 4.0, upgrading web applications to, 230
.NET clients, duplex HTTP for, 9
.NET Framework

health-monitoring event types, 244
migrating between different versions of, 230
properties for controls, 34

NetMsmqBinding, 15
netNamedPipeBinding, 15
NetPeerTcpBinding, 15
netTcpBinding, 15
network load balancing (NLB) software, 236
nonfunctional requirements and cross-cutting concerns,
validating, 19–21

O
operational security, planning for

code access security (CAS)
application domains, using, 139
CasPoLexe and machine-level security
configuration, 137
planning, 136
trust levels, 137
using CAS imperatively, 138

impersonation and delegation
constrained delegation, 145
delegating credentials, 144
impersonating users, 142
understanding, 141–144

process identity, 139–141
operations in Authorization Manager, 155

M
machine and encryption keys, synchronizing, 234
Machine.Config file, 225
machine-level security configuration, 137
MapPageRoute method, 62
mapping logical design to physical implementa-
tion, 17–19
master pages, 58
membership providers

ASP.NET, 148
custom, 149

membership roles
declaratively requiring, 150
imperatively requiring, 151

memory dumps, debugging, 192
memory leaks, troubleshooting, 193
memory (RAM), amount of, 22
methodologies for testing, understanding, 176
methods

and partial classes, using, 35
server-side, accessing from client code, 35

Microsoft AJAX library, 27
Microsoft certifications, xvi, xix
Microsoft Enterprise Library, 154
Microsoft Message Queuing (MSMQ), 239
model binders

custom, 103
data validation in, 122
default, 100–102
security risks with, 103
server validation in, 118

monitoring applications, 201
moving sites from an intranet to the Internet, 12
MSBuild tool, 217
multiple condition coverage, 177
multiple server architecture, benefits of, 18
MVC (Model-View-Controller software architecture)

benefits of, 6
binding MCV views to data sources

allowing data to be edited, 98–100
custom HtmlHelper extensions, creating, 105
custom model binders, creating, 103
default model binders, using, 100–102
displaying data in views, 97
model binders, security risks with, 103

267

rules

Q
query strings, using to store user states, 41
queuing, and scalability, 239

R
RabbitMQ, 239
race coverage, 177
RAM (memory), amount of, 22
range testing, 176
RangeValidator control, 117
RAZOR, 98
RegisterRoutes method, 62
RegularExpressionValidator control, 117
reliability, 18. See also scalability and reliability, plan-
ning for
remote computers, using delegation to access resources
on, 141
remote debugging, 194
RenderOuterTable property, 34
RepeatLayout property, 34
reporting, 239
RequestBrowser object, 69
requests per second, peak number of, 22
RequiredFieldValidator control, 117
resource authorization, comparing IIS to VSDS, 228
Response.Redirect, 71
responsiveness, 21
.RESX files, 78
rich client features, evaluating the impact of, 32
rich client-side plug-ins, using, 29
RoboCopy tool, 219
role-based security, 136, 146
role definitions, 154
role management, planning, 152
root-cause analysis, performing, 193
root web.config file, 225
round-robin DNS, 235
routing engine, configuring, 62
rules, 246

P
page caching, 203
Page.ErrorPage, 184
page methods, 36
page path, changing, 76
page state persisters, creating custom, 44
parent browser, 68
partial classes and methods, using, 35
partitioning according to separation of concerns

ASP.NET, 6
ASP.NET MVC, 6
classic ASP, 5

passwords, storing, 152
paths, comparing IIS to VSDS, 228
performance issues, approaches to

applications, performance tuning, 240
caching pages and fragments, 203
client-side scripting, using, 204
event tracing, 202
logging tracing, 202
monitoring applications, 201
performance counters, 201
performance testing, 177
Windows Performance Analysis Tools, 200

plug-ins
rich client-side, using, 29
support for, 66

ports and host names, comparing IIS to VSDS, 228
predictable value, 61
privileged service account, creating, 141
privileges, comparing IIS to VSDS, 228
processes, attaching debugging to, 194
processes, long-running, 7–10
process identity, understanding, 139–141
processor cores, number of, 22
processor speed, 66
profiles, 246
programming, client-side vs. server-side, 4
provider classes for health monitoring, 244
provider configuring, 245
Publish Web Site tool, 217, 219
/Purge parameter, 219

268

scalability and reliability, planning for

code access security (CAS), planning, 136–139
impersonation and delegation, 141–144
objective review correct answers, 169
objective review questions, 145–147
objective summary, 145
process identity, 139–141
thought experiment, role-based security, 146,
170

security testing, 176
segmentation, application, 58
separation of concerns (SoC)

ASP.NET MVC and, 6
partitioning according to, 5

server controls
control types, choosing between, 33
performance tuning and, 240

servers
number of, estimating, 22
server authentication, 164
server data, updating from client controls, 111–113

server-side technologies, choosing
advantages of, 2
control types, choosing between, 33–35
partial classes and methods, using, 35
server-side methods, accessing from client code, 35
vs. client-side technologies, choosing, 3–5

Server.Transfer, 70
session state

to store user states, 41
storing on the server, 43
tracking session on the client, 42

shared views, 58
Silverlight plug-in

duplex HTTP for, 9
using, 29

Single Assemblies, deploying applications as, 221
single-server architecture, benefits of, 18
site structure, designing

application segmentation, 58
routing engine, configuring, 62
style sheets, using, 59
themes, using, 61

skin files, 61
SoC. See separation of concerns (SoC)
software load balancers, 236
source IP address, filtering by, 163
SQL Server, storing session states on, 43
SSL. See secure sockets layer (SSL)

S
scalability and reliability, planning for

cloud computing, moving to, 238
costs, comparing, 237
load testing, 238
machine and encryption keys, synchronizing, 234
network load balancing software, 236
performance tuning, 240
queuing, using, 239
scaling out, 235
scaling up, 234
single server vs. multiple server architecture, 18
web applications, scaling, 234–237
web servers, synchronizing, 237
Windows Azure, 238

screen resolution, 66
screen space, determining, 70
scripting languages, client-side, 26–29
search engines, and breadcrumbs, 59
secure sockets layer (SSL), 164
security architecture and implementation

attack surfaces, minimizing (objective 4.3)
filtering requests, 162–164
objective review correct answers, 171
objective review questions, 166
objective summary, 166
secure sockets layer (SSL), 164
thought experiment, updating a compromised
web application, 167, 173
throttling input, 161
user input, handling, 160

authentication and authorization model, designing
(objective 4.2)

ASP.NET membership, using, 148
authorization, implementing, 149–151
authorization manager, 153–155
objective review correct answers, 170
objective review questions, 158
objective summary, 157
passwords, storing, 152
role management, planning, 152
thought experiment, designing an authorization
model, 159, 171
trusted subsystems, designing, 155–157

operational security, planning for (objective 4.1)
code access security (CAS), comparing IIS to
VSDS, 228

269

type property

objective 2.1, designing a site for
maintainability, 65, 83
objective 2.2, designing a mobile site, 73, 85
objective 2.3, designing a multilingual website, 81,
86
objective 3.1, exposing the application logic and
data layers, 94, 129
objective 3.2, online banking with data
binding, 115, 131
objective 3.3, validating user account
information, 126, 132
objective 4.1, role-based security, 146, 170
objective 4.2, designing an authorization
model, 159, 171
objective 4.3, updating a compromised web
application, 167, 173
objective 5.1, designing a testing
methodology, 180, 209
objective 5.2, designing an exception-handling
strategy, 189, 210
objective 5.3, debugging problems in a production
application, 199, 211
objective 5.4, improving insight into application
performance, 205, 213
objective 6.1, designing a deployment process, 223,
253
objective 6.2, designing configuration
management, 232, 254
objective 6.3, scaling a web application, 242, 256
objective 6.4, designing a health-monitoring
system, 249, 257

three-tier architecture, 13
throttling input, 161
topology of system, designing, 13
Trace.axd output, 240
transformations, 227
Transform attribute, 227
transform files, 226
transforms, using, 227
translating web applications, 78
trusted subsystems, designing, 155–157
trust levels to restrict CAS privileges, 137
two-way data binding, 110
type property, 69

state management, designing
application state, using, 39
cache object, using, 40
custom page state persisters, creating, 44
session state, using, 42–44
thought experiment, scaling state management, 47,
56
user state technologies, evaluating, 40

statement coverage, 177
state server setting, 43
static value, 61
storage techniques, application-state, 42
stress testing, 177, 238
String.Format(), 77
structural approaches, identifying, 70
style sheets, using, 59
subsystems, trusted, 155–157
synchronizing

machine and encryption keys, 234
web servers, 237

synchronous webpage, typical flow of, 8
System.Messaging namespace, 239
system privileges, comparing IIS to VSDS, 228
system topology, designing, 13

T
task definitions, 154
templates, Visual Studio 2010, 148
testing methodologies, choosing

code coverage, understanding, 177
emulations, to test specific pages, 67
layers, testing appropriate, 178
testing methodologies, understanding, 176

text for different cultures, displaying, 77
themes, using, 61
thought experiments

objective 1.1, moving a site from an intranet to the
Internet, 12, 50
objective 1.2, planning for scalability and forward
compatibility, 24, 51
objective 1.3, evaluating the impact of rich client
features, 32, 53
objective 1.4, evaluating a real-time web application
design, 38, 54
objective 1.5, scaling state management, 47, 56

270

unhandled exceptions

translating web applications, 78
Unicode data, handling, 79

site structure, designing (objective 2.1)
application segmentation, designing, 58
objective review correct answers, 82
objective review questions, 64
objective summary, 63
routing engine, configuring, 62
style sheets, using, 59
themes, using, 61
thought experiment, moving a site from an
intranet to the Internet, 65, 83

user input method, 67
users

impersonating, 142
peak number of, 22
user input, handling to minimize attack
surfaces, 160

user state technologies, evaluating, 40
UTF-16 Unicode, 79

V
validation of data, planning for

data validation for ASP.NET applications, 116–118
data validation for MVC applications

in controllers, 122
in the data model, 119–122
in the model binder, 122
places for server validation, 118
validation within the database, 119
in views, 124

VBScript property, 70
version property, 69
views

displaying data in, 97
server validation in, 118

view state, using to store user states, 41
Visual Studio Development Server (VSDS)

creating web packages from, 217
to debug deadlocks, 191
debugging JavaScript in, 195
IIS and Visual Studio Development Server (VSDS),
comparing, 228
installing Web Deployment Projects for, 222
load testing applications, 239
templates, 148

U
unhandled exceptions

in ASP.NET, processing
Application_Error, 185
Error Logging Modules and Handlers (EL-
MAH), 184
Page_error method, 184
Page.ErrorPage, using, 184
Web.config file, using, 185

Unicode data, handling, 79
unit testing, 177
UpdatePanel, 36
UpdateProgress, 36
updating applications and websites, preventing, 221
uptime requirements, 21
URL rewrite, 164
user agents and browser capabilities, examining, 68–70
user-agent string, 68
user controls, when to create, 34
user experience, designing

components of, 57
cross-browser and/or form factors, planning
(objective 2.2)

browser files, custom, 68
browser's file, deciding when to apply, 67
duplicate content, preventing the indexing of, 71
emulations, using to test specific pages, 67
features, evaluating the impact of, 66
objective review correct answers, 84
objective review questions, 72
objective summary, 71
screen space, determining, 70
structural approaches, identifying, 70
thought experiment, moving a site from an
intranet to the Internet, 73, 85
user agents and browser capabilities,
examining, 68–70

globalization, planning for (objective 2.3)
cultural preferences, designing to support, 76
CurrentCulture and CurrentUICulture, choosing
between, 76
language and culture preferences, handling, 74
objective review correct answers, 85
objective review questions, 80
objective summary, 79
text for different cultures, displaying, 77
thought experiment, moving a site from an
intranet to the Internet, 81, 86

271

XCopy deployment

W
WCF. See Windows Communication Foundation (WCF)
web applications

scaling out, performance and, 237
scaling up, 234
translating, 78
upgrading to .NET 4.0, 230

Web.config file, 185, 225
Web Deployment Projects for Visual Studio, 222
Web Deploy tool, 218
webHttpBinding, 15
web packages, 216, 217
webpages, synchronous and asynchronous, 8
Web Parts, 34
Web publishing applications, 219
web servers, synchronizing, 237
web servers, using impersonation to access resources
on, 141
web services, 36
websites and applications, preventing from being
updated, 221
white box testing methodology, 176
Windows authentication, 152
Windows Azure, 238
Windows Communication Foundation (WCF)

WCF Data Services, 89
WCF Web Services, 89

Windows Installer package, 217, 220
Windows Performance Analysis Tools, 200
WSDualHttpBinding, 15
wsHttpBinding, 15

X
XCopy deployment, 217, 218

about the author

TONy NORThRUP, MCPD, MCITP, MCSE, and CISSP, is a consultant and
author living in Waterford, Connecticut. Tony started C++ and assembly
programming long before Windows 1.0 was released, but has focused
on Windows development and administration for the last eighteen years.
He has about 30 books and several video training courses covering Win-
dows development, networking, and security. Among other titles, Tony is
coauthor of the Microsoft Press MCTS Training Kit for exam 70-515 (Web
Applications Development with Microsoft .NET Framework 4) and the

author of the Microsoft Press MCTS Training Kit for exam 70-536 (Microsoft .NET Framework
Application Development Foundation). You can learn more about Tony by friending him on
Facebook at http://facebook.com/tony.northrup, visiting his personal website at www.northrup.
org, reading his technical blog at http://vistaclues.com, and viewing his photography portfolio
at http://northrupphotography.com.

	Table of Contents
	Introduction
	Microsoft Certified Professional Program
	Acknowledgments
	Support & Feedback

	Preparing for the Exam
	Chapter 1: Designing the Application Architecture
	Objective 1.1: Plan the Division of Application Logic
	Choosing Between the Client Side and Server Side
	Partitioning According to Separation of Concerns
	Planning for Long-Running Processes
	Objective Summary
	Objective Review

	Objective 1.2: Analyze Requirements and Recommend a System Topology
	Designing a System Topology
	Designing Interactions Between Applications
	Mapping the Logical Design to the Physical Implementation
	Validating Nonfunctional Requirements and Cross-Cutting Concerns
	Evaluating Baseline Needs
	Objective Summary
	Objective Review

	Objective 1.3: Choose Appropriate Client-Side Technologies
	Using Client-Side Scripting Languages
	Using Rich Client-Side Plug-ins
	Objective Summary
	Objective Review

	Objective 1.4: Choose Appropriate Server-Side Technologies
	Choosing Between Different Control Types
	Using Partial Classes and Methods
	Accessing Server Methods from Client Code
	Objective Summary
	Objective Review

	Objective 1.5: Design State Management
	Using Application State
	Using the Cache Object
	Evaluating User State Technologies
	Using Session State
	Creating Custom Page State Persisters
	Objective Summary
	Objective Review

	Chapter Summary
	Answers
	Objective 1.1: Review
	Objective 1.1: Thought Experiment
	Objective 1.2: Review
	Objective 1.2: Thought Experiment
	Objective 1.3: Review
	Objective 1.3: Thought Experiment
	Objective 1.4: Review
	Objective 1.4: Thought Experiment
	Objective 1.5: Review
	Objective 1.5: Thought Experiment

	Index

