

MCPD 70-518
Exam Ref:
Designing and Developing Windows®
Applications Using Microsoft® .NET
Framework 4

Tony Northrup
Matthew A. Stoecker

Copyright © 2011 by Tony Northrup and Matthew Stoecker

All rights reserved. No part of the contents of this book may be reproduced
or transmitted in any form or by any means without the written permission of
the publisher.

ISBN: 978-0-7356-5723-6

1 2 3 4 5 6 7 8 9 QG 6 5 4 3 2 1

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors
worldwide. If you need support related to this book, email Microsoft Press
Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/
en/us/IntellectualProperty/Trademarks/EN-US.aspx are trademarks of the
Microsoft group of companies. All other marks are property of their respec-
tive owners.

The example companies, organizations, products, domain names, email ad-
dresses, logos, people, places, and events depicted herein are fictitious. No
association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information con-
tained in this book is provided without any express, statutory, or implied
warranties. Neither the authors, Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or
alleged to be caused either directly or indirectly by this book.

Acquisitions and Developmental Editor: Ken Jones
Production Editor: Holly Bauer
Editorial Production: S4Carlisle Publishing Services
Technical Reviewer: Bill Chapman
Copyeditor: Susan McClung
Indexer: Potomac Indexing, LLC
Cover Composition: Karen Montgomery
Illustrator: S4Carlisle Publishing Services

Contents at a Glance

Introduction xv

Preparing for the Exam xviii

ChAPTER 1 Designing the Layers of a Solution 1

ChAPTER 2 Designing the Presentation Layer 89

ChAPTER 3 Designing the Data Access Layer 173

ChAPTER 4 Planning a Solution Deployment 225

ChAPTER 5 Designing for Stability and Maintenance 265

Index 303

v

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Contents

Introduction xv
Microsoft Certified Professional Program xv

Acknowledgments xvi

Support and Feedback xvi

Preparing for the Exam xviii

Chapter 1 Designing the Layers of a Solution 1
Objective 1.1: Design a Loosely Coupled Layered Architecture 2

Designing Service-Oriented Architectures 2

Providing Separation of Concern 4

Designing a System Topology 4

Choosing Between Presentation and Business Logic 6

Using WCF Routing 8

Understanding BizTalk Server 10

Objective Summary 11

Objective Review 11

Objective 1.2: Design Service Interaction . 13

Designing Service and Method Granularity 14

Choosing Protocols and Binding Types 16

Using REST 18

Using Message and Data Contracts 19

Using Custom SOAP Headers 22

Managing Data Integrity 24

Choosing Synchronous vs. Asynchronous 24

vi Contents

Choosing a Message Exchange Pattern 25

Versioning 25

Hosting WCF Services 27

Objective Summary 28

Objective Review 28

Objective 1.3: Design the Security Implementation 30

Planning for User Account Control 31

Designing for Least Privilege 31

Understanding Process Identity 35

Understanding Impersonation and Delegation 36

Implementing Authorization 41

Planning Role Management 44

Using Cryptography 45

Objective Summary 49

Objective Review 50

Objective 1.4: Design for Interoperability with External Systems 52

Accessing Assemblies from Unmanaged Code 52

Accessing COM Objects 53

Objective Summary 54

Objective Review 54

Objective 1.5: Design for Optimal Processing . 56

Planning for Long-Running Processes 56

Scaling Applications 60

Moving to the Cloud 63

Using Queuing 63

Minimizing Latency 64

Using a Service Bus 65

Objective Summary 66

Objective Review 66

Objective 1.6: Design for Globalization and Localization 69

Choosing Between CurrentCulture and CurrentUICulture 70

Format Text for Differing Cultures 71

Translating Applications 72

Working with Time 72

viiContents

Comparing Data 73

Designing Databases for Globalization 74

Objective Summary 75

Objective Review 75

Chapter Summary . 78

Answers . 80

Objective 1.1: Review 80

Objective 1.1: Thought Experiment 81

Objective 1.2: Review 81

Objective 1.2: Thought Experiment 82

Objective 1.3: Review 82

Objective 1.3: Thought Experiment 83

Objective 1.4: Review 84

Objective 1.4: Thought Experiment 84

Objective 1.5: Review 85

Objective 1.5: Thought Experiment 86

Objective 1.6: Review 86

Objective 1.6: Thought Experiment 87

Chapter 2 Designing the Presentation Layer 89
Objective 2.1: Choose the Appropriate Windows Technology 90

Windows Forms 90

WPF 90

Choosing Between Windows Forms and WPF 92

Interoperating Between Windows Forms and WPF 92

Choosing a Presentation Pattern 97

Objective Summary 99

Objective Review 99

Objective 2.2: Design the UI Layout and Structure 100

Evaluate the Conceptual Design 100

Designing for Inheritance and the Reuse of Visual Elements 101

Creating a Resource Dictionary 108

Designing for Accessibility 109

Deciding When Custom Controls Are Needed 111

viii Contents

Objective Summary 112

Objective Review 112

Objective 2.3: Design Application Workflow . 113

Implementing User Navigation 114

Navigation Applications in WPF 117

Using PageFunction Objects 124

Simple Navigation and Structured Navigation 125

Designing for Different Input Types 126

Objective Summary 127

Objective Review 127

Objective 2.4: Design Data Presentation and Input 129

Designing Data Validation 129

Design a Data Binding Strategy 134

Managing Data Shared Between Forms 139

Managing Media 140

Objective Summary 140

Objective Review 141

Objective 2.5: Design Presentation Behavior . 143

Determine Which Behaviors Will Be Implemented and How 143

Creating Attached Behaviors 147

Implementing Drag-and-Drop Functionality 148

Objective Summary 154

Objective Review 154

Objective 2.6: Design for UI Responsiveness . 155

Offloading Operations from the UI Thread and
Reporting Progress 156

Using Dispatcher to Access Controls Safely on Another
Thread in WPF 161

Avoiding Unnecessary Screen Refreshes 162

Determining Whether to Sort and Filter Data on the
Client or Server 163

Addressing UI Memory Issues 164

Objective Summary 165

Objective Review 165

Chapter Summary . 167

ixContents

Answers . 168

Objective 2.1: Review 168

Objective 2.1: Thought Experiment 168

Objective 2.2: Review 168

Objective 2.2: Thought Experiment 169

Objective 2.3: Review 169

Objective 2.3: Thought Experiment 170

Objective 2.4: Review 170

Objective 2.4: Thought Experiment 171

Objective 2.5: Review 171

Objective 2.5: Thought Experiment 171

Objective 2.6: Review 172

Objective 2.6: Thought Experiment 172

Chapter 3 Designing the Data Access Layer 173
Objective 3.1: Choose the Appropriate Data Access Strategy 174

Understanding .NET Data Access Technologies 174

Supporting Different Data Sources 177

Choosing a Data Access Strategy 178

Objective Summary 179

Objective Review 179

Objective 3.2: Design the Data Object Model . 181

Mapping to Persistent Storage 182

Designing a Schema Change Management Strategy 184

Abstracting from the Service Layer 185

Objective Summary 187

Objective Review 187

Objective 3.3: Design Data Caching . 189

Understanding Caching 189

Using MemoryCache 190

Caching Web Services 190

Objective Summary 191

Objective Review 192

x Contents

Objective 3.4: Design Offline Storage and Data Synchronization 194

Determining the Need for Offline Data Storage 194

Using Sync Framework 195

Designing Synchronization 198

Objective Summary 201

Objective Review 201

Objective 3.5: Design for a Concurrent Multiuser Environment 203

Planning for Multiuser Conflicts 203

Understanding Deadlock Conflicts 205

Designing Concurrency for Web Services 206

Using Cross-Tier Distributed Transactions 207

Objective Summary 208

Objective Review 208

Objective 3.6: Analyze Data Services for Optimization 210

Understanding ORM Performance 211

Understanding Lazy and Eager Loading 211

Optimizing Round-Trips 213

Objective Summary 214

Objective Review 214

Chapter Summary . 216

Answers . 217

Objective 3.1: Review 217

Objective 3.1: Thought Experiment 218

Objective 3.2: Review 218

Objective 3.2: Thought Experiment 219

Objective 3.3: Review 219

Objective 3.3: Thought Experiment 220

Objective 3.4: Review 220

Objective 3.4: Thought Experiment 221

Objective 3.5: Review 221

Objective 3.5: Thought Experiment 222

Objective 3.6: Review 222

Objective 3.6: Thought Experiment 223

xiContents

Chapter 4 Planning a Solution Deployment 225
Objective 4.1: Define a Client Deployment Strategy 226

Understanding Installation Methods 226

Choosing an Installation Method 231

Deploying the .NET Framework 232

Deploying COM Objects 234

Objective Summary 235

Objective Review 235

Objective 4.2: Plan a Database Deployment . 237

Understanding Database Deployment Files 237

Using SQL Scripts 237

Using the Vsdbcmd.exe Tool 238

Using Data-Tier Projects 239

Using SQL Server Database Projects 239

Publishing Databases from Server Explorer 240

Publishing Databases with a WCF Web Service 241

Understanding Deployment Conflicts 242

Deploying an Embedded Database Privately 242

Objective Summary 244

Objective Review 244

Objective 4.3: Design a Solution Update Strategy 246

Updating ClickOnce Applications 247

Updating with Windows Installer 248

Packaging Shared Components 248

Checking for Windows Installer Updates 249

Updating Shared Components 249

Designing Web Services for Updates 249

Objective Summary 251

Objective Review 251

Objective 4.4: Plan for N-Tier Deployment . 253

Designing a Physical Topology 254

Determining Component Installation Order 256

Objective Summary 256

Objective Review 257

xii Contents

Chapter Summary . 259

Answers . 260

Objective 4.1: Review 260

Objective 4.1: Thought Experiment 260

Objective 4.2: Review 261

Objective 4.2: Thought Experiment 262

Objective 4.3: Review 262

Objective 4.3: Thought Experiment 263

Objective 4.4: Review 263

Objective 4.4: Thought Experiment 264

Chapter 5 Designing for Stability and Maintenance 265
Objective 5.1: Design for Error Handling . 265

Designing an Exception Handling Strategy 266

Handling Exceptions Across Tiers 267

Collecting User Feedback 270

Creating Custom Exception Classes 272

Processing Unhandled Exceptions 272

Objective Summary 273

Objective Review 274

Objective 5.2: Evaluate and Recommend a Test Strategy 275

Understanding Black Box and White Box Testing 276

Understanding Functional Tests 277

Understanding UI Tests 279

Understanding Performance Tests 281

Understanding Code Coverage 282

Objective Summary 283

Objective Review 283

xiiiContents

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Objective 5.3: Design a Diagnostics and Monitoring Strategy 285

Providing Monitoring Information 285

Providing Usage Reporting 291

Choosing Distributed or Centralized Logging 292

Designing a Diagnostics and Monitoring Strategy 293

Profiling .NET Applications 294

Objective Summary 295

Objective Review 295

Chapter Summary . 298

Answers . 299

Objective 5.1: Review 299

Objective 5.1: Thought Experiment 299

Objective 5.2: Review 300

Objective 5.2: Thought Experiment 300

Objective 5.3: Review 301

Objective 5.3: Thought Experiment 302

Index 303

xv

Introduction

Most development books take a very low-level approach, teaching you how to use
 individual classes and accomplish fine-grained tasks. Like the Microsoft 70-518

 certification exam, this book takes a high-level approach, building on your knowledge of
lower-level Microsoft Windows application development and extending it into application
design. Both the exam and the book are so high-level that there is very little coding involved.
In fact, most of the code samples this book provides simply illustrate higher-level concepts.

The 70-518 certification exam tests your knowledge of designing and developing Windows
applications. By passing this exam, you will prove that you have the knowledge and experience
to design complex, multitier Windows applications using Microsoft technologies. This book will
review every concept described in the exam objective domains, such as the following:

■■ Designing the layers of a solution

■■ Designing the Presentation layer

■■ Designing the Data access layer

■■ Planning a solution deployment

■■ Designing for stability and maintenance

This book covers every exam objective, but it does not necessarily cover every exam
question. Microsoft regularly adds new questions to the exam, making it impossible for this
(or any) book to provide every answer. Instead, this book is designed to supplement your
relevant independent study and real-world experience. If you encounter a topic in this book
that you do not feel completely comfortable with, you should visit any links described in the
text and spend several hours researching the topic further using MSDN, blogs, and support
forums. Ideally, you should also create a practical application with the technology to gain
hands-on experience.

Microsoft Certified Professional Program

Microsoft certifications provide the best method for proving your command of current
 Microsoft products and technologies. The exams and corresponding certifications are
developed to validate your mastery of critical competencies as you design and develop, or
implement and support, solutions with Microsoft products and technologies. Computer
professionals who become Microsoft-certified are recognized as experts and are sought after
industrywide. Certification brings a variety of benefits to the individual and to employers and
organizations.

xvi Introduction

More Info Other MicrOsOft certificatiOns

For a full list of Microsoft certifications, go to www.microsoft.com/learning/mcp/
default.asp.

Acknowledgments

First and foremost, I’d like to thank Ken Jones at O’Reilly for his work to design the Exam Ref
book series, for choosing me (once again) as an author, and for his work as an editor. It’s been
great to work with you, as always, Ken!

I’d also like to thank Bill Chapman, the technical reviewer, Holly Bauer, the production editor,
Dan Fauxsmith, the production manager, and Susan McClung, the copyeditor.

Finally, I must thank my friends and family for their support, especially Chelsea and
 Madelyn Knowles (for their support, patience, and companionship) and John and Linda
 Antonino (for always being gracious hosts).

Support and Feedback

The following sections provide information on errata, book support, feedback, and contact
information.

Errata
We’ve made every effort to ensure the accuracy of this book and its companion content.
Any errors that have been reported since this book was published are listed on our Microsoft
Press site:

http://www.microsoftpressstore.com/title/ 9780735657236

If you find an error that is not already listed, you can report it to us through the same
page.

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

mailto:mspinput@microsoft.com
http://www.microsoftpressstore.com/title/ 9780735657236

xviiIntroduction

We Want to hear from You
At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
 advance for your input!

Stay in Touch
Let’s keep the conversation going! We’re on Twitter:

http://twitter.com/MicrosoftPress

http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress

xviii Preparing for the Exam

Preparing for the Exam

M icrosoft certification exams are a great way to build your resume and let the world know
about your level of expertise. Certification exams validate your on-the-job experience

and product knowledge. Although there is no substitute for on-the-job experience, prepara-
tion through study and hands-on practice can help you prepare for the exam. We recom-
mend that you augment your exam preparation plan by using a combination of available
study materials and courses. For example, you might use the Exam Ref and another study
guide for your “at home” preparation, and take a Microsoft Official Curriculum course for the
classroom experience. Choose the combination that you think works best for you.

 89

C h A P T E R 2

Designing the Presentation
Layer

The Presentation layer is the layer that directly interacts with the user. The user must be
able to assimilate the data presented to him quickly and easily through the Presentation

layer and also must be able to input data efficiently into the application. The Presentation
layer itself is responsible for validating user input, maintaining responsiveness, and
 providing cues that enable an easy and accessible user experience. In this chapter, you
will learn some of the important aspects of designing a Presentation layer. You will learn
to choose between Windows Forms and Windows Presentation Foundation (WPF) for the
technology used to build the Presentation layer, to design application layout and workflow,
to handle data within the Presentation layer, and to develop a well-crafted and responsive
user experience.

Objectives in this chapter:
■■ Objective 2.1: Choose the appropriate Windows technology

■■ Objective 2.2: Design the UI layout and structure

■■ Objective 2.3: Design application workflow

■■ Objective 2.4: Design data presentation and input

■■ Objective 2.5: Design presentation behavior

■■ Objective 2.6: Design for UI responsiveness

Real World

The Presentation layer is the only layer of a distributed application that the user
sees, and thus from a user standpoint is the most important. When building

a Presentation layer, I always try to know my audience and keep the needs of my
 users paramount. The slickest, best-looking application is useless if it doesn’t do
what the users need.

 90 Chapter 2 Designing the Presentation Layer

Objective 2.1: Choose the Appropriate Windows
Technology

When creating applications for the desktop, today’s developer has two technologies to
choose from: Windows Forms and WPF. Each technology provides its own set of advantages
and drawbacks. In this section, you will learn the primary differences between the two
 technologies and how to decide which is most appropriate for your business situation.

This objective covers how to:
■■ Choose between Windows Forms and WPF.

■■ Identify areas for possible interoperation between WPF and Windows Forms.

Windows Forms
Windows Forms are the basis for most Microsoft Windows applications and can be configured
to provide a variety of user interface (UI) options. The developer can create forms of various
sizes and shapes and customize them to the user’s needs. Windows Forms is the older of the
two Windows development technologies currently supported by Microsoft, and many skilled
developers are available for creating and maintaining Windows Forms projects.

Windows Forms are the basic building blocks of the UI. They provide a container that
hosts controls and menus and allow you to present an application in a familiar and consistent
fashion. Forms can receive user input in the form of keystrokes or mouse interactions and can
display data to the user through hosted controls. Most applications that require sustained
user interaction will include at least one Windows Form, and complex applications frequently
require several forms to allow the program to execute in a consistent and logical fashion.

Windows Forms have no inherent support for changing styles. Thus, if the look and
feel of the application must change according to conditions on a particular client desktop,
 considerable coding will be required.

However, Windows Forms do provide excellent support for localization and globalization.
You can create applications easily that display alternate strings and images based on the
 locations of deployment.

Navigation in Windows Forms typically involves switching between multiple individual forms.
While this allows for parts of the application to be parceled out and presented to the user as
discrete functional units, it can also create a disjointed kind of user experience. A more cohesive
user experience is possible with Windows Forms using Multiple Document Interface (MDI) Forms.

WPF
WPF is the successor to Windows Forms for desktop application development. WPF
 applications differ from traditional Windows Forms applications in several ways. The
most notable of these is that the code for the UI is separate from the code for application

 Objective 2.1: Choose the Appropriate Windows Technology Chapter 2 91

 functionality. Although the code for the functionality of a project can be defined using
 familiar languages such as Microsoft Visual Basic .NET or Microsoft Visual C#, the UI of a
WPF project typically is defined using a relatively new declarative syntax called Extensible
 Application Markup Language (XAML).

Three basic types of applications can be created with WPF:

■■ Windows applications The most similar to Windows Forms applications. Windows
applications are Windows-driven and provide a user experience that is familiar to
 Windows users and developers alike. Multiple windows can be open at any given time,
and there is no built-in sense of navigation or history.

■■ Navigation applications Provide a page-based user experience, similar to the
 experience of using a website. Typically, only a single page can be open at any
given time, and the journal functionality keeps a record of pages visited and allows
 back-and-forth navigation. Unlike a website, however, a Navigation application is
a compiled application that runs on your desktop computer and, like a Windows
 application, has full access to the resources of your computer.

■■ XAML Browser Applications (XBAPs) Similar to Navigation applications, but they
are designed to run in Windows Internet Explorer. These applications can be deployed
to a server or to a website and are downloaded when instantiated. Applications of this
type do not have full access to a computer’s resources. XBAPs run under a partial-trust
environment, and resources such as the file system and the registry are inaccessible by
XBAPs.

The choice of an application type depends upon several factors, the two most important
of which are user experience and application requirements.

■■ user experience Determines whether you choose a Windows application or a
 page-based application. For a user experience that most closely resembles a traditional
Windows Forms application, a Windows application is the best choice. This application
type allows you to create a menu-driven, multiwindow application that combines
the rich functionality of a desktop application with the rich user experience that WPF
 provides. For a user experience that more closely resembles a website, you should
choose a page-based application. Navigation applications and XBAPs provide built-in
navigational functionality that allows you to structure the application paralleling a task,
such as in an Internet shopping application or a wizard.

■■ Application requirements If an application requires access to system resources that
fall outside the Internet security zone, then an XBAP is not a good choice—a better
choice would be a Windows application or a Navigation application. On the other hand,
XBAPs allow you to deploy the application to a web server and have users start it from
a hyperlink, thus making it easily accessible to a large-scale audience. If your application
does not require access to system resources, an XBAP might be a good choice.

All types of WPF applications provide built-in support for changing styles and themes.
Thus, if you want your application to respond to the style or theme of the desktop, it is a fairly
simple matter to incorporate that functionality.

 92 Chapter 2 Designing the Presentation Layer

WPF applications have good support for localization and globalization, but support for this
functionality is not as built-in as it is for Windows Forms. Thus, localizing an extensive WPF
application will take more time and developer resources than a similarly scoped Windows
Forms application.

Choosing Between Windows Forms and WPF
When choosing a technology for a client application, you must take into account several
considerations. What are the skills of your developer force? Must the application be localized?
What kind of support for styles and themes is needed? What sort of navigational experience
is required? The following table illustrates the relative strengths of Windows Forms and WPF
to help you make that decision.

TABLE 2-1 Important Properties of the Style Class

Criterion Windows Forms WPF

Adoption among the developer
community

Strong Growing

Support for localization and
 globalization

Excellent Fair

Support for changing styles and
themes

No Excellent

Support for a traditional
 Windows-based client application

Yes Yes

Support for navigation through a
page-based interface

No Yes, through WPF Navigation
 applications

Support for navigation through a
multiple document interface (MDI
application)

Yes No

Interoperating Between Windows Forms and WPF
In some cases, you might want to use WPF elements in a Windows Forms application, or Windows
Forms elements in a WPF application. You can use the built-in interoperation functionality of the
Microsoft .NET Framework easily to incorporate these elements as you choose.

Incorporating WPF Elements into a Windows Forms Application
You might want to incorporate WPF elements into your existing Windows Forms application
(for example, a user control developed using WPF that takes advantage of specialized WPF
behaviors in what is otherwise a Windows Forms application). You can add preexisting WPF
user controls to your Windows Forms project by using the ElementHost control. As the name
implies, the ElementHost control hosts a WPF element.

The most important property of ElementHost is the Child property. The Child property
indicates the type of WPF control to be hosted by the ElementHost control. If the WPF control
to be hosted is in a project that is a member of the solution, you can set the Child property

 Objective 2.1: Choose the Appropriate Windows Technology Chapter 2 93

in the Property Grid. Otherwise, the Child property must be set to an instance of the WPF
control in code, as shown here:

Sample of Visual Basic.NET Code

Dim aWPFcontrol As New WPFProject.UserControl1
ElementHost1.Child = aWPFcontrol

Sample of C# Code

WPFProject.UserControl1 aWPFcontrol = new WPFProject.UserControl1;
ElementHost1.Child = aWPFcontrol;

 Some of the ambient properties of Windows Forms controls have WPF equivalents.
These ambient properties are propagated to the hosted WPF controls and exposed as public
 properties on the ElementHost control. The ElementHost control translates each Windows
Forms ambient property to its WPF equivalent. For more information, see Windows Forms
and WPF Property Mapping at http://msdn.microsoft.com/library/ms751565.aspx in the online
MSDN library.

Incorporating Windows Forms Elements in a WPF Application
Although WPF provides a wide variety of useful controls and features, you might find that
some familiar functionality that you used in Windows Forms programming is not available.
Notably absent are controls such as MaskedTextBox and PropertyGrid, as well as simple dialog
boxes. Fortunately, you still can use many Windows Forms controls in your WPF applications.

Using Dialog Boxes in WPF Applications
Dialog boxes are one of the most notable things missing from the WPF menagerie of controls
and elements. Because dialog boxes are separate UIs, however, they are relatively easy to
incorporate into your WPF applications.

File Dialog Boxes
The file dialog box classes, OpenFileDialog and SaveFileDialog, are components that you want
to use frequently in your applications. They allow you to browse the file system and return the
path to the selected file. The OpenFileDialog and SaveFileDialog classes are very similar and
share most important members. Important properties of the file dialog boxes are shown in
Table 2-2, and important methods are shown in Table 2-3.

TABLE 2-2 Important Properties of the File Dialog Boxes

Property Description

AddExtension Gets or sets a value indicating whether the dialog box automatically adds an
 extension to a file name if the user omits the extension.

CheckFileExists Gets or sets a value indicating whether the dialog box displays a warning if the
user specifies a file name that does not exist.

http://msdn.microsoft.com/en-us/library/ms751565(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms751565(v=vs.85).aspx
http://msdn.microsoft.com/library/ms751565.aspx

 94 Chapter 2 Designing the Presentation Layer

Property Description

CheckPathExists Gets or sets a value indicating whether the dialog box displays a warning if the
user specifies a path that does not exist.

CreatePrompt Gets or sets a value indicating whether the dialog box prompts the user for
 permission to create a file if the user specifies a file that does not exist. Available
only in SaveFileDialog.

FileName Gets or sets a string containing the file name selected in the file dialog box.

FileNames Gets the file names of all selected files in the dialog box. Although this member
exists for both the SaveFileDialog and the OpenFileDialog classes, it is relevant
only to the OpenFileDialog class because it is possible to select more than one file
only in OpenFileDialog.

Filter Gets or sets the current file name filter string, which determines the choices that
appear in the Save As File Type or Files Of Type box in the dialog box.

InitialDirectory Gets or sets the initial directory displayed by the file dialog box.

Multiselect Gets or sets a value indicating whether the dialog box allows multiple files to be
selected. Available only in OpenFileDialog.

OverwritePrompt Gets or sets a value indicating whether the Save As dialog box displays a
warning if the user specifies a file name that already exists. Available only in
SaveFileDialog.

ValidateNames Gets or sets a value indicating whether the dialog box accepts only valid Win32
file names.

TABLE 2-3 Important Methods of the File Dialog Boxes

Method Description

OpenFile Opens the selected file as a System.IO.Stream object. For OpenFileDialog objects,
it opens a read-only stream. For SaveFileDialog objects, it saves a new copy
of the indicated file and then opens it as a read-write stream. You need to be
 careful when using the SaveFileDialog.OpenFile method to keep from overwriting
 preexisting files of the same name.

ShowDialog Shows the dialog box modally, thereby halting application execution until the
dialog box has been closed. Returns a DialogResult.

To use a file dialog box in a WPF application, follow these steps:

1. In Solution Explorer, right-click the project name and choose Add Reference.

The Add Reference dialog box opens.

2. On the .NET tab, select System.Windows.Forms, and then click OK.

3. In code, create a new instance of the desired file dialog box, as shown here:

Sample of Visual Basic Code

Dim aDialog As New System.Windows.Forms.OpenFileDialog()

 Objective 2.1: Choose the Appropriate Windows Technology Chapter 2 95

Sample of C# Code

System.Windows.Forms.OpenFileDialog aDialog =
 new System.Windows.Forms.OpenFileDialog();

4. Use the ShowDialog method to show the dialog box modally. After the dialog box is
shown, you can retrieve the file name that was selected from the FileNames property.
An example is shown here:

Sample of Visual Basic Code

Dim aResult As System.Windows.Forms.DialogResult
aResult = aDialog.ShowDialog()
If aResult = System.Windows.Forms.DialogResult.OK Then
 ' Shows the path to the selected file
 MessageBox.Show(aDialog.FileName)
End If

Sample of C# Code

System.Windows.Forms.DialogResult aResult;
aResult = aDialog.ShowDialog();
if (aResult == System.Windows.Forms.DialogResult.OK)
{
 // Shows the path to the selected file
 MessageBox.Show(aDialog.FileName);
}

Note

It is not advisable to import the System.Windows.Forms namespace because this leads
to naming conflicts with several WPF classes.

WindowsFormsHost
While using dialog boxes in WPF applications is fairly straightforward, using controls is a bit
more difficult. Fortunately, WPF provides an element specifically designed to ease this task,
which is called WindowsFormsHost.

WindowsFormsHost is a WPF element that is capable of hosting a single child element that
is a Windows Forms control. The hosted Windows Forms control automatically sizes itself to
the size of the WindowsFormsHost. You can use the WindowsFormsHost to create instances of
Windows Forms controls declaratively, and you also can set properties on hosted Windows
Forms declaratively.

Adding a Windows Forms Control to a WPF Application
To use the WindowsFormsHost element in your WPF applications, first you must add to
the XAML view a reference to the System.Windows.Forms.Integration namespace in the
 WindowsFormsIntegration assembly, as shown here. (This line has been formatted as two lines
to fit on the printed page, but it should be on a single line in your XAML.)

 96 Chapter 2 Designing the Presentation Layer

xmlns:my="clr-namespace:System.Windows.Forms.Integration;
 assembly=WindowsFormsIntegration"

If you drag a WindowsFormsHost from the Toolbox to the designer, this reference is added
automatically. You also must add a reference to the System.Windows.Forms namespace, as
shown here:

xmlns:wf="clr-namespace:System.Windows.Forms;assembly=System.Windows.Forms"

Then you can create an instance of the desired Windows Forms control as a child element
of a WindowsFormsHost element, as shown here:

<my:WindowsFormsHost Margin="48,106,30,56" Name="windowsFormsHost1">
 <wf:Button Text="Windows Forms Button" />
</my:WindowsFormsHost>

Setting Properties of Windows Forms Controls in a WPF Application
You can set properties on a hosted Windows Forms control declaratively in XAML as you
would any WPF element, as shown in bold here:

<my:WindowsFormsHost Margin="48,106,30,56" Name="windowsFormsHost1">
 <wf:Button Text="Windows Forms Button" />
</my:WindowsFormsHost>

Although you can set properties declaratively on a hosted Windows Forms control, some
of those properties will not have any meaning. For example, properties dealing with layout,
such as Anchor, Dock, Top, and Left, have no effect on the position of the Windows Forms
control. This is because its container is the WindowsFormsHost and the Windows Forms
control occupies the entire interior of that element. To manage layout for a hosted Windows
Forms control, you should set the layout properties of the WindowsFormsHost, as highlighted
in bold here:

<my:WindowsFormsHost Margin="48,106,30,56" Name="windowsFormsHost1">
 <wf:Button Text="Windows Forms Button" />
</my:WindowsFormsHost>

Setting Event handlers on Windows Forms Controls in a WPF
Application
Similarly, you can set event handlers declaratively in XAML, as shown in bold in the following
example:

<my:WindowsFormsHost Margin="48,106,30,56" Name="windowsFormsHost1">
 <wf:Button Click=”Button_Click” Name="Button1" />
</my:WindowsFormsHost>

Note that events raised by Windows Forms controls are regular .NET events, not routed
events, and therefore they must be handled at the source.

 Objective 2.1: Choose the Appropriate Windows Technology Chapter 2 97

Obtaining a Reference to a hosted Windows Forms Control in Code
In most cases, using simple declarative syntax with hosted Windows Forms controls is not
 sufficient—you have to use code to manipulate hosted Windows Forms controls. Although
you can set the Name property of a hosted Windows Forms control, that name does not
give you a code reference to the control. Instead, you must obtain a reference by using the
 WindowsFormsHost.Child property and casting it to the correct type. The following code
 example demonstrates how to obtain a reference to a hosted Windows Forms Button control:

Sample of Visual Basic Code

Dim aButton As System.Windows.Forms.Button
aButton = CType(windowsFormsHost1.Child, System.Windows.Forms.Button)

Sample of C# Code

System.Windows.Forms.Button aButton;
aButton = (System.Windows.Forms.Button)windowsFormsHost1.Child;

Choosing a Presentation Pattern
A presentation pattern separates the UI from its behavior and state. Compared to a
 traditional three-layer architecture, this results in separating the Presentation layer code from
the Business Logic and Data code. Using a presentation pattern makes your code easier to
maintain and test. Perhaps most important, it allows you to replace or extend the UI easily.

You certainly can develop a WPF or Windows Forms application without using a
 presentation pattern; that is exactly what Windows developers have been doing for most
of the time Windows has existed. In fact, for a simple “Hello, world” application, using a
 presentation pattern would increase the complexity and decrease the code readability. When
you create more complex enterprise applications that need to be tested and maintained,
 using a presentation pattern can reduce development costs greatly over time.

For .NET Framework applications, you can choose from three different presentation
 patterns:

■■ Model-View-Controller (MVC) Designed for web applications, this model uses
views that consist of HTML and .NET Framework code to create the UI by formatting
and displaying data from the model. The model stores the data and interacts with the
database. The Controllers process requests and user input.

■■ Model-View-ViewModel (M-V-VM) Designed for WPF applications, this model
closely resembles the MVC model. However, this model uses views that consist of
XAML code to create the UI. The ViewModel is an abstraction of the view; it resides
between the model and the view to present the model in a way that more closely
resembles how the user will see it (thus reducing the amount of code required in the
view itself). Views bind to the data they display by specifying the ViewModel as their
DataContext, and views send data to the ViewModel using Commands that typically
execute a ViewModel method.

 98 Chapter 2 Designing the Presentation Layer

■■ Model-View-Presenter (MVP) Designed for WPF applications, this model closely
resembles both M-V-VM and MVC. The user interacts with the view, and the view raises
events that the presenter responds to. The presenter interacts with the model and
updates the values shown in the view.

Figure 2-1 visually compares the three architectures. In particular, notice that the user
interacts solely with the controller in the MVC architecture, and then the view collects
 information from the controller about the user’s request and retrieves data directly from the
model. In the M-V-VM and MVP models, the user interacts directly with the view, and the
ViewModel or presenter communicates with the model to prepare the data for the view.

Currently, MVC is the best choice for web applications. If you are creating a WPF
 application, you can choose either M-V-VM or MVP.

The key difference between M-V-VM and MVP is the way the ViewModel/presenter
 connects to the view. As illustrated by the directions of the arrows in Figure 2-1, this relationship
is one-way for M-V-VM and two-way for MVP. Therefore, the M-V-VM View Model is loosely
coupled with the view, whereas the MVP presenter is tightly coupled to the view.

To clarify, with the MVP model, the presenter needs a reference to the view because the
presenter is responsible for manipulating the state of the view. With the M-V-VM model,
the ViewModel is completely unaware that the view exists. With M-V-VM, the view sets a
 ViewModel as its DataContext and binds to properties on the ViewModel. Any changes to
values in the ViewModel are reflected automatically on the view through that binding.

While the M-V-VM and MVP presentation patterns are very similar, M-V-VM is specialized
to simplify WPF and Microsoft Silverlight development. Their structure is very similar, but
there is simply better support for M-V-VM than for MVP. Therefore, M-V-VM is the best
choice for WPF and Silverlight applications.

ViewModel

Model

View

Database

M-V-VM

UserUser

Controller

View Model

Database

MVC

Presenter

Model

View

Database

MVP

User

FIguRE 2-1 The three .NET Framework presentation patterns

 Objective 2.1: Choose the Appropriate Windows Technology Chapter 2 99

More Info Understanding Presentation Patterns

For more information, read “WPF Apps With The Model-View-ViewModel Design Pattern”
at http://msdn.microsoft.com/magazine/dd419663.aspx.

Objective Summary
■■ Windows Forms is a well-known technology that has a host of developers for

 development projects and provides excellent support for globalization and
 localization. However, it is not as good for changing styles, and it has no inherent
navigation capability.

■■ WPF is a relatively new technology with very powerful style and navigation features.
However, because the technology is fairly new, it has not been adopted by as many
 developers, and support for globalization and localization is not as good as for
 Windows Forms.

■■ Interoperability between WPF and Windows Forms is possible through the ElementHost
and WindowsFormsHost controls.

Objective Review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of the chapter.

1. What class allows you to host a WPF control in a Windows Forms application?

A. WindowsFormsHost

B. ElementHost

C. Grid

D. Form

2. You are designing a Presentation layer for an application. You want this application to
be responsive to changes in the style of the desktop so that it blends seamlessly with
the appearance of the desktop, and you need this application to collect a variety of
specially formed data via the MaskedTextBox control. What is the best development
strategy for your Presentation layer?

A. Build using Windows Forms.

B. Build using WPF.

C. Build using Windows Forms that incorporate WPF controls.

D. Build using WPF and incorporate Windows Forms controls.

http://msdn.microsoft.com/magazine/dd419663.aspx

 100 Chapter 2 Designing the Presentation Layer

ThoughT ExpErimEnT
Designing the Presentation Layer

In the following thought experiment, design a Presentation layer for an
 application that will be distributed throughout the United States, Great Britain,

and the English-speaking parts of Canada. This application is part of a large-scale
 psychology study. The application will stream videos in the UI and collect user
input responses to the video stream in real time. Furthermore, processing behind
the scenes in response to the user’s real-time input changes the look and feel of
the application in accordance with the user’s perceived mood. The input collected
from the user will be stored locally and uploaded to a data tier after the user has
completed the test.

You can find answers to these questions in the “Answers” section at the end of this
chapter.

1. What technology, Windows Forms or WPF, should be used to implement this
application and why?

2. How can we maintain responsiveness in the UI while performing processing in
the background?

Objective 2.2: Design the uI Layout and Structure

The layout of an application can mean the difference between an application that is easy
to use and efficient and an application that is complicated and frustrates the user. Careful
 evaluation of the application design is vital to serving the needs of your users. In this section,
you will learn how to make decisions that are important to the design of the layout.

This objective covers how to:
■■ Evaluate the conceptual design.

■■ Design for inheritance and the reuse of visual elements.

■■ Design for accessibility.

■■ Decide when custom controls are required.

Evaluate the Conceptual Design
The design of your UI should fulfill the needs of the application, the client, and the user. The
interface should enable the user to complete tasks in the application quickly and easily and
without distraction. A good UI will be internally and externally consistent and allow the user

 Objective 2.2: Design the UI Layout and Structure Chapter 2 101

to learn how to use the application intuitively. In their book Software for Use: A Practical
Guide to the Models and Methods of Usage-Centered Design, authors Larry Constantine and
Lucy Lockwood describe the following principles for UI design:

■■ Design for structure A well-structured UI is logical, consistent, and intuitive. Use
a model when designing your UI. Put elements with related functionality together
in logically organized groups. Functional groups should be easily recognizable by
the user, and dissimilar items or functional groups should be easily differentiated. A
 well-structured UI will not have users hunting blindly for desired functionality but will
allow them to find what they need intuitively.

■■ Design for simplicity A well-designed UI is simple and easy to use. Common tasks
are easy to access, and navigation to more infrequently used tasks is uncomplicated
and intuitive. The use of menu items for common tasks is an example of incorporating
simplicity into a UI.

■■ Design for visibility A good UI will have necessary functional units easily visible and
accessible to the user. It is good to keep simplicity in mind with this principle, however,
as an overly visible UI is likely to be cluttered, presenting the user with too many
 options and thwarting the intent of being easy to use.

■■ Design for feedback A good UI will keep the user informed as to changes in the
state of the application. Errors that are relevant to the user or actions that need to be
performed by the user should be communicated clearly and concisely. Conversely,
the internal state of the application, if it does not require user input, should not be
 unnecessarily exposed.

■■ Design for tolerance Users make mistakes. A well-designed UI will allow the user to
recover quickly and easily from mistakes. User interfaces should allow for faulty input
to be easily and rapidly corrected and for mistaken changes to be rolled back.

■■ Design for reuse A UI should be consistent. Components and visual styles should be
reused whenever possible. Not only does this reduce the amount of time spent coding
but it also helps your UI to be consistent and purposeful.

Designing for Inheritance and the Reuse of Visual Elements
Both Windows Forms and WPF allow you to extend and reuse controls and forms in your
application. Windows Forms allows extending existing controls and forms through visual
inheritance, and WPF takes it further by allowing the visual appearance and behavior of
every WPF element to be modified through the use of styles. WPF further allows the reuse of
 components designated as resources.

Creating Extended Controls in Windows Forms
Extended controls are user-created controls that extend a preexisting .NET Framework control.
By extending existing controls, you can retain all the functionality of the control but add
properties and methods and, in some cases, alter the rendered appearance of the control.

 102 Chapter 2 Designing the Presentation Layer

Extending a Control
You can create an extended control by creating a class that inherits the control in question.
The following example demonstrates how to create a control that inherits the Button class:

Sample of Visual Basic.NET Code

Public Class ExtendedButton
 Inherits System.Windows.Forms.Button
End Class

Sample of C# Code

public class ExtendedButton : System.Windows.Forms.Button
{}

The ExtendedButton class created in the previous example has the same appearance,
behavior, and properties as the Button class, but now you can extend this functionality by
adding custom properties or methods. You also can override existing methods to incorporate
custom functionality.

Extending a Form
To create a cohesive look and feel to your application, you might want to start with a base
form that all other forms in the application derive from. You can extend preexisting forms in
the same way that you extend controls. The following example shows how to inherit from a
previously created form named BaseForm:

Sample of Visual Basic.NET Code

Public Class ExtendedForm
 Inherits MyProject.BaseForm
 ' Implementation omitted
End Class

Sample of C# Code

public class ExtendedForm : MyProject.BaseForm
{
 // Implementation omitted
}

Creating Custom Dialog Boxes
Dialog boxes are commonly used to gather information from the application user. Microsoft
Visual Studio provides prebuilt dialog boxes that enable the user to select a file, font, or
color. You can create custom dialog boxes to collect specialized information from the user.
For example, you might create a dialog box that collects user information and relays it to the
main form of the application.

A dialog box generally includes an OK button, a Cancel button, and whatever controls
are required to gather information from the user. The general behavior of an OK button is
to accept the information provided by the user and then to close the form, returning a result

 Objective 2.2: Design the UI Layout and Structure Chapter 2 103

of DialogResult.OK. The general behavior of the Cancel button is to reject the user input and
close the form, returning a result of DialogResult.Cancel.

A modal dialog box is a dialog box that pauses program execution until the dialog box is
closed. Conversely, a modeless dialog box allows application execution to continue. You can
display any form as a modal dialog box by calling the ShowDialog method.

Using Styles in WPF
Styles can be thought of as analogous to cascading style sheets as used in HTML pages. Styles
basically tell the Presentation layer to substitute a new visual appearance for the standard
one. They allow you to make changes easily to the UI as a whole and to provide a consistent
look and feel for your application in a variety of situations. Styles enable you to set properties
and hook up events on UI elements through the application of those styles. Further, you can
create visual elements that respond dynamically to property changes through the application
of triggers, which listen for a property change and then apply style changes in response.

The primary class in the application of styles is, unsurprisingly, the Style class. The Style
class contains information about styling a group of properties. A Style can be created to apply
to a single instance of an element, to all instances of an element type, or across multiple
types. The important properties of the Style class are shown in Table 2-4.

TABLE 2-4 Important Properties of the Style Class

Property Description

BasedOn Indicates another style that this style is based on. This property is useful
for creating inherited styles.

Resources Contains a collection of local resources used by the style.

Setters Contains a collection of Setter or EventSetter objects. These are used to
set properties or events on an element as part of a style.

TargetType This property identifies the intended element type for the style.

Triggers Contains a collection of Trigger objects and related objects that allow you
to designate a change in the UI in response to changes in properties.

The basic skeleton of a <Style> element in XAML markup looks like the following:

<Style>
 <!-- A collection of setters is enumerated here -->
 <Style.Triggers>
 <!-- A collection of Trigger and related objects is enumerated here -->
 </Style.Triggers>
 <Style.Resources>
 <!-- A collection of local resources for use in the style -->
 </Style.Resources>
</Style>

 104 Chapter 2 Designing the Presentation Layer

SETTERS
The most common class you will use in the construction of styles is the Setter. As their name
implies, Setters are responsible for setting some aspect of an element. Setters come in two
flavors: property setters (or just Setters, as they are called in markup), which set values for
properties; and event setters, which set handlers for events.

PROPERTY SETTERS
Property setters, represented by the <Setter> tag in XAML, allow you to set properties of
 elements to specific values. A property setter has two important properties: the Property
property, which designates the property that is to be set by the Setter, and the Value
 property, which indicates the value to which the property is to be set. The following example
demonstrates a Setter that sets the Background property of a Button element to Red:

<Setter Property="Button.Background" Value="Red" />

The value for Property must take the following form:

Element.PropertyName

If you want to create a style that sets a property on multiple different types of elements,
you could set the style on a common class that the elements inherit, as shown here:

<Style>
 <Setter Property="Control.Background" Value="Red" />
</Style>

This style sets the Background property of all elements that inherit from the Control to
which it is applied.

EVENT SETTERS
Event setters (represented by the <EventSetter> tag) are similar to property setters, but
they set event handlers rather than property values. The two important properties for an
 EventSetter are the Event property, which specifies the event for which the handler is being
set; and the Handler property, which specifies the event handler to attach to that event. An
example is shown here:

<EventSetter Event="Button.MouseEnter" Handler="Button_MouseEnter" />

The value of the Handler property must specify an extant event handler with the correct
signature for the type of event with which it is connected. Similar to property setters, the for-
mat for the Event property is <Element>.<EventName>, where the element type is specified,
followed by the event name.

Using Resources in WPF
Logical resources allow you to define objects in XAML that are not part of the visual tree but
are available for use by WPF elements in your UI. Elements in your UI can access the resource
as needed. An example of an object that you might define as a resource is a Brush used to
provide a common color scheme for the application.

 Objective 2.2: Design the UI Layout and Structure Chapter 2 105

By defining objects that are used by several elements in a Resources section, you gain
a few advantages over defining the object each time you use it. First, you gain reusability
 because you define your object only once rather than multiple times. You also gain
 flexibility—by separating the objects used by your UI from the UI itself, you can refactor
parts of the UI without having to redesign it completely. For example, you might use different
 collections of resources for different cultures in localization or for different application
 conditions.

Any type of object can be defined as a resource. Every WPF element defines a Resources
collection, which can be used to define objects that are available to that element and
the elements in its visual tree. Although it is most common to define resources in the
Resources collection of the Window, you can define a resource in any element’s Resources
collection and access it, so long as the accessing element is part of the defining element’s
visual tree.

Declaring a Logical Resource
You declare a logical resource by adding it to a Resources collection, as seen here:

<Window.Resources>
 <RadialGradientBrush x:Key="myBrush">
 <GradientStop Color="CornflowerBlue" Offset="0" />
 <GradientStop Color="Crimson" Offset="1" />
 </RadialGradientBrush>
</Window.Resources>

If you don’t intend a resource to be available to the entire Window, you can define it in the
Resources collection of an element in the Window, as shown in this example:

<Grid>
 <Grid.Resources>
 <RadialGradientBrush x:Key="myBrush">
 <GradientStop Color="CornflowerBlue" Offset="0" />
 <GradientStop Color="Crimson" Offset="1" />
 </RadialGradientBrush>
 </Grid.Resources>
</Grid>

The usefulness of this is somewhat limited, and the most common scenario is to define
 resources in the Window.Resources collection. One point to remember is that when using
static resources, you must define the resource in the XAML code before you refer to it. Static
and dynamic resources are explained later in this section.

Every object declared as a Resource must set the x:Key property. This is the name that will
be used by other WPF elements to access the resource. There is one exception to this rule:
Style objects that set the TargetType property do not need to set the x:Key property explicitly
because it is set implicitly, behind the scenes. In the previous two examples, the key is set to
myBrush.

The x:Key property does not have to be unique in the application, but it must be unique in
the Resources collection where it is defined. Thus, you could define one resource in the Grid.

 106 Chapter 2 Designing the Presentation Layer

Resources collection with a key of myBrush and another in the Window.Resources collection
with the same key. Objects within the visual tree of the Grid that refer to a resource with the
key myBrush refer to the object defined in the Grid.Resources collection, and objects that
are not in the visual tree of the Grid but are within the visual tree of the Window refer to the
object defined in the Window.Resources collection.

Application Resources
In addition to defining resources at the level of the element or Window, you can define
resources that are accessible by all objects in a particular application. You can create an
 application resource by opening the App.xaml file (for C# projects) or the Application.xaml
file (for Visual Basic projects) and adding the resource to the Application .Resources collection,
as shown in bold here:

<Application x:Class="WpfApplication2.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri="Window1.xaml">
 <Application.Resources>
 <SolidColorBrush x:Key="appBrush" Color="PapayaWhip" />
 </Application.Resources>
</Application>

Accessing a Resource in XAML
You can access a resource in XAML by using the following syntax:

{StaticResource myBrush}

In this example, the markup declares that a static resource with the key myBrush is
 accessed. Because this resource is a Brush object, you can plug that markup into any place
that expects a Brush object. This example demonstrates how to use a resource in the context
of a WPF element:

<Grid Background="{StaticResource myBrush}">
</Grid>

When a resource is referred to in XAML, the Resources collection of the declaring object
first is searched for a resource with a matching key. If one is not found, the Resources
 collection of that element’s parent is searched, and so on, up to the Window that hosts the
element and to the application Resources collection.

Static and Dynamic Resources
In addition to the syntax described previously, you can refer to a resource with the following
syntax:

{DynamicResource myBrush}

 Objective 2.2: Design the UI Layout and Structure Chapter 2 107

The difference between the syntax of DynamicResource and the syntax of StaticResource
lies in how the resources are retrieved by the referring elements. Resources referred to by the
StaticResource syntax are retrieved once by the referring element and used for the lifetime of
the resource. Resources referred to with the DynamicResource syntax, on the other hand, are
acquired every time the referred object is used.

It might seem intuitive to think that if you use the StaticResource syntax, the referring
object does not reflect changes to the underlying resource, but this is not necessarily the
case. WPF objects that implement dependency properties automatically incorporate change
notification, and changes made to the properties of the resource are picked up by any objects
using that resource. Take the following example:

<Window x:Class="WpfApplication2.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Window1" Height="300" Width="300">
 <Window.Resources>
 <SolidColorBrush x:Key="BlueBrush" Color="Blue" />
 </Window.Resources>
 <Grid Background="{StaticResource BlueBrush}">
 </Grid>
</Window>

This code renders the Grid in the Window with a Blue background. If the color property
of the SolidColorBrush object defined in the Window.Resources collection were changed
in code to Red, for instance, the background of the Grid would render as Red because
change notification would notify all objects using that resource that the property had
changed.

The difference between static and dynamic resources comes when the underlying object
changes. If the Brush defined in the Windows.Resources collection were accessed in code
and set to a different object instance, the Grid in the previous example would not detect this
change. However, if the Grid used the following markup, the change of the object would be
detected and the Grid would render the background with the new Brush:

<Grid Background="{DynamicResource BlueBrush}">
</Grid>

Accessing resources in code is discussed in the not found “Retrieving Resources in Code”
section later in this chapter.

The downside of using dynamic resources is that they tend to decrease application
 performance. Because the resources are retrieved every time they are used, dynamic
 resources can reduce the efficiency of an application. The best practice is to use static
 resources unless there is a specific reason for using a dynamic resource. Examples of when
you would want to use a dynamic resource include when you use the SystemBrushes,
 SystemFonts, and SystemParameters classes as resources, or any other time when you expect
the underlying object of the resource to change.

 108 Chapter 2 Designing the Presentation Layer

Creating a Resource Dictionary
A resource dictionary is a collection of resources that reside in a separate XAML file and
can be imported into your application. They can be useful for organizing your resources in
a single place or for sharing resources between multiple projects in a single solution. The
 following procedure describes how to create a new resource dictionary in your application:

To create a resource dictionary

1. From the Project menu, choose Add Resource Dictionary. The Add New Item dialog
box opens. Choose the name for the resource dictionary and click Add. The new
 resource dictionary is opened in XAML view.

2. Add resources to the new resource dictionary in XAML view. You can add resources to
the file in XAML view, as shown in bold here:

<ResourceDictionary
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <SolidColorBrush x:Key="appBrush" Color="DarkSalmon" />
</ResourceDictionary>

Merging Resource Dictionaries
For objects in your application to access resources in a resource dictionary, you must merge
the resource dictionary file with a Resources collection that is accessible in your application,
such as the Windows.Resources or Application.Resources collection. You merge resource
dictionaries by adding a reference to your resource dictionary file in the ResourceDictionary.
MergedDictionaries collection. The following example demonstrates how to merge the
resources in a Windows.Resources collection with the resources in resource dictionary files
named Dictionary1.xaml and Dictionary2.xaml:

<Window.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="Dictionary1.xaml" />
 <ResourceDictionary Source="Dictionary2.xaml" />
 </ResourceDictionary.MergedDictionaries>
 <SolidColorBrush x:Key="BlueBrush" Color="Blue" />
 </ResourceDictionary>
</Window.Resources>

Note that if you define additional resources in your Resources collection, they must be
defined within the bounds of the <ResourceDictionary> tags.

Choosing Where to Store a Resource
You have seen several options regarding where resources should be stored. The factors that
should be weighed when deciding where to store a resource include ease of accessibility by
referring elements, readability and maintainability of the code, and reusability.

 Objective 2.2: Design the UI Layout and Structure Chapter 2 109

For resources to be accessed by all elements in an application, you should store resources
in the Application.Resources collection. The Window.Resources collection makes resources
available only to elements in that Window, but that is typically sufficient for most purposes. If
you need to share individual resources over multiple projects in a solution, your best choice is
to store your resources in a resource dictionary that can be shared among different projects.

Readability is important for enabling maintenance of your code by other developers. The best
choice for readability is to store resources in the Window.Resources collection because this allows
developers to read your code in a single file rather than having to refer to other code files.

If making your resources reusable is important, then the ideal method for storing them is
to use a resource dictionary. This allows you to reuse resources among different projects and
to extract those resources easily for use in other solutions as well.

Designing for Accessibility
The workforce contains a significant number of people with accessibility requirements, requiring
applications that meet the broad demands of today’s business environment. Accessible
 applications begin in the design phase. When you plan for accessibility in application design, you
can integrate the principles of accessibility into the UI. Some of these principles are:

■■ Flexibility

■■ Choice of input and output methods

■■ Consistency

■■ Compatibility with accessibility aids

An accessible program requires flexibility. Users must be able to customize the UI to suit
their specific needs—for example, by increasing font sizes. A user also should have a choice of
input methods, such as keyboard and mouse devices. That is, the application should provide
keyboard access for all important features and mouse access for all main features. A choice
of output methods also renders an application more accessible, and the user should have
the ability to choose among visual cues, sounds, text, and graphics. An accessible application
should interact within its own operation and with other applications in a consistent manner,
and it should be compatible with existing accessibility aids.

Support Standard System Settings
For your application to be accessible, it must support standard system settings for size, color,
font, and input. Adopting this measure will ensure that all users' applications have a consis-
tent UI that conforms to the system settings. Users with accessibility needs can thus configure
all their applications by configuring their system settings.

You can implement standard system settings in your application by using the classes that
represent the UI options used by the system. Table 2-5 lists the classes that expose the system
settings. These classes are found in the System.Drawing namespace.

 110 Chapter 2 Designing the Presentation Layer

TABLE 2-5 Classes That Expose System Settings

 Class Description

 SystemBrushes Exposes Brush objects that can be used to paint in the system colors

 SystemColors Exposes the system colors

 SystemFonts Exposes the fonts used by the system

 SystemIcons Exposes the icons used by the system

 SystemPens Exposes Pen objects that can be used to draw in the system colors

These classes monitor changes to the system settings and adjust correspondingly. For
example, if you build an application that uses the SystemFonts class to determine all the fonts,
the fonts in the application will be reset automatically when the system settings are changed.

Ensure Compatibility with the high-Contrast Option
The high-contrast option (which users can set themselves in the Control Panel) sets the
 Windows color scheme to provide the highest possible level of contrast in the UI. This option
is useful for users requiring a high degree of legibility.

By using only system colors and fonts, you can ensure that your application is compatible
with the high-contrast settings. You also should avoid the use of background images because
they tend to reduce contrast in an application.

Provide Documented Keyboard Access to All Features
Your application should provide keyboard access for all features and comprehensive
 documentation that describes this access. Shortcut keys for controls and menu items, as well
as setting the Tab order for controls on the UI, allow you to implement keyboard navigation
in your UI. Documentation of these features is likewise important. A user must have some
means of discovering keyboard access to features, whether that is through UI cues or actual
 documentation.

Provide Notification of the Keyboard Focus Location
The location of the keyboard focus is used by accessibility aids such as Magnifier and
 Narrator. Thus, it is important that the application and the user have a clear understanding
of where the keyboard focus is at all times. For most purposes the .NET Framework provides
this functionality, but when designing your program flow, you should incorporate code to set
the focus to the first control on a form when the form is initially displayed and the Tab order
should follow the logical program flow.

Convey No Information by Sound Alone
Although sound is an important cue for many users, an application should never rely on con-
veying information by using sound alone. When using sound to convey information, you should
combine that with a visual notification, such as flashing the form or displaying a message box.

 Objective 2.2: Design the UI Layout and Structure Chapter 2 111

Accessibility Properties of Windows Forms Controls
In addition to properties that affect the visual interface of a control, Windows Forms controls
have five properties related to accessibility that determine how the control interacts with
 accessibility aids. These properties are summarized in Table 2-6.

TABLE 2-6 Accessibility Properties of Windows Controls

Property Description

AccessibleDefaultActionDescription Contains a description of the default action of a
control. This property cannot be set at design time
and must be set in code.

AccessibleDescription Contains the description that is reported to
 accessibility aids.

AccessibleName Contains the name that is reported to accessibility
aids.

AccessibleRole Contains the role that is reported to accessibility
aids. This value is a member of the AccessibleRole
enumeration, and a variety of accessibility aids use it
to determine what kind of UI element an object is.

AccessibilityObject Contains an instance of AccessibleObject, which
 provides information about the control to usability
aids. This property is read-only and set by the
 designer.

These properties provide information to accessibility aids about the role of the control
in the application. Accessibility aids then can present this information to the user or make
 decisions about how to display the control.

Deciding When Custom Controls Are Needed
User controls, custom controls, and templates all allow you to create custom elements with
custom appearances. Because each of these methods is so powerful, you might be confused
about what technique to use when creating a custom element for your application. The key to
making the right decision isn’t based on the appearance that you want to create, but rather
the functionality that you want to incorporate into your application.

The standard WPF controls provide a great deal of built-in functionality. If the functionality
of one of the preset controls, such as a progress bar or a slider, matches the functionality that
you want to incorporate, then you should create a new template for that preexisting control
to achieve your visual appearance goals. Creating a new template is the lightest solution to
creating a custom element, and you should consider that option first.

If the functionality that you want to incorporate into your application can be achieved
through a combination of preexisting controls and code, you should consider creating a user
control. User controls allow you to bind together multiple preexisting controls in a single
interface and add code that determines how they behave.

 112 Chapter 2 Designing the Presentation Layer

If no preexisting control or combination of controls can approach the functionality that
you want to create, then you should create a custom control. Custom controls allow you to
create a completely new template that defines the visual representation of the control and
add completely custom code that determines the control’s functionality.

Objective Summary
■■ The conceptual design should be evaluated for structure, simplicity, visibility, feedback,

tolerance, and reuse.

■■ Whenever possible, code should be inherited and reused. You can extend controls and
forms in Windows Forms applications and reuse styles and resources in WPF.

■■ When designing for accessibility, you should support standard system settings, ensure
compatibility with the high-contrast option, provide documented keyboard access
to all features, provide notification of the keyboard focus location, and convey no
 information by sound alone.

■■ User controls should be employed when you want to bind multiple preexisting controls
into a single functional unit. Custom controls should be used when no preexisting
control or controls incorporate the functionality you desire.

Objective Review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of the chapter.

1. Which of the following is not a best practice for designing for accessibility?

A. Provide audio for all important information.

B. Support standard system settings.

C. Ensure compatibility with the high-contrast mode.

D. Provide keyboard access to all important functionalities.

2. You have created a series of customized Brush objects that will be used to create a
common color scheme for every window in each of several applications in your com-
pany. The Brush objects have been implemented as resources. What is the best place
to define these resources?

A. In the Resources collection of each control that needs them

B. In the Resources collection of each Window that needs them

C. In the Application.Resources collection

D. In a separate resource dictionary

 Objective 2.3: Design Application Workflow Chapter 2 113

ThoughT ExpErimEnT
Customizing the Appearance of an Application

In the following thought experiment, apply what you’ve learned about this
 objective to predict how a theoretical application architecture will perform. You

can find answers to these questions in the “Answers” section at the end of this
chapter.

You are a consultant for Adventure Works. Adventure Works is designing the
UI l ayout and structure for a new WPF application. Adventure Works wants the
 application to match the organization’s style by using its colors and typography.

Adventure Works has created what they call an Appearance Standards list. This list
includes a set of property values that developers must set for any UI elements and
window backgrounds. These property values define the colors and shapes of those
UI elements so that they are consistent with the organization’s standards. To ensure
that developers follow these standards, Adventure Works has updated its testing
process to verify individual UI properties.

Answer the following questions about the performance of the application:

1. Are their appearance standards the best way to maintain a common style?

2. Will the application be accessible to visually impaired users? If not, what would
you do differently?

Objective 2.3: Design Application Workflow

Some applications require no directed workflow or have very simplistic workflow
 requirements. Other applications can be very directional or even branching in the workflow
design. This section describes how to implement user navigation in Windows Forms and WPF
applications.

This objective covers how to:
■■ Implement user navigation.

■■ Create navigation applications in WPF.

■■ Handle navigation events.

■■ Use the Hyperlink, NavigationService, PageFunction, and Journal objects.

■■ Host pages in frames.

 114 Chapter 2 Designing the Presentation Layer

Implementing User Navigation
Simple client interfaces can require no more than a single form, but for more complex
 interfaces a navigable user experience is frequently required. Both Windows Forms and WPF
allow you to incorporate user navigation into your applications.

MDI Forms in Windows Forms
MDI applications follow a parent form/child form model. An MDI application generally has
a single parent form that contains and organizes multiple child forms (although it is possible
for an application to have multiple parent forms). Microsoft Excel is an example of an MDI
 application—you can open multiple documents and work with them separately within
the parent form. The parent form organizes and arranges all the child documents that are
 currently open.

Creating an MDI Parent Form
The parent form is the main form of any MDI application. This form contains all child forms
that the user interacts with and handles the layout and organization of the child forms as well.
It is a simple task to create an MDI parent form in Visual Studio.

To create an MDI parent form

1. Create a new Windows Forms application.

2. In the Properties window for the startup form, set the IsMDIContainer property to True.
This designates the form as an MDI parent form.

Creating MDI Child Forms
MDI child forms are at the center of user interaction in MDI applications. They present the
data to the user and generally contain individual documents. Child forms are contained
within, and are managed by, a parent form. You can create an MDI child form by setting the
MdiParent property of the form.

To create an MDI child form

1. Create an MDI parent form, as described previously.

2. In Visual Studio, add a second form to the project and add controls to implement the
UI. This is the child form.

3. In a method in the parent form, such as a menu item Click event handler, create a new
instance of the child form and set its MdiParent property, as shown in the following
example:

Sample of Visual Basic.NET code

' This example takes place in a method in the parent form, and
' assumes a Form called ChildForm
Dim aChildForm As New ChildForm

 Objective 2.3: Design Application Workflow Chapter 2 115

' Sets the MdiParent property to the parent form
aChildForm.MdiParent = Me
aChildForm.Show

Sample of C# code

// This example takes place in a method in the parent form, and
// assumes a Form called ChildForm
ChildForm aChildForm = new ChildForm();
// Sets the MdiParent property to the parent form
aChildForm.MdiParent = this;
aChildForm.Show();

Identifying the Active Child Form
At times, you will want to identify the active child form in an MDI application. For example,
a common feature of MDI applications is a central menu on the parent form that contains
commands that act upon the child form that has the focus. You can use the ActiveMDIChild
 property of the parent form to obtain a reference to the form that was last accessed. The
 following code example demonstrates how to obtain a reference to the active child form:

Sample of Visual Basic.NET Code

' This example demonstrates how to obtain a reference to the active child
' form from a method inside the parent form
Dim aForm As Form
aForm = Me.ActiveMDIChild

Sample of C# Code

// This example demonstrates how to obtain a reference to the active child
// form from a method inside the parent form
Form aForm;
aForm = this.ActiveMDIChild;

Sending Data to the Active Child Form from the Clipboard
Once you have identified the active MDI form, you can use the properties of the form to send
data from the Clipboard to an active control on the form. You might use this functionality to
implement a Paste menu item to paste data from the Clipboard into a control. The following
code example demonstrates how to determine if the active control is a text box and paste
text from the Clipboard into the text box:

Sample of Visual Basic.NET Code

Dim activeForm As Form = Me.ActiveMDIChild
' Checks to see if an active form exists
If Not activeForm Is Nothing Then
 If activeForm.ActiveControl.GetType Is GetType(TextBox) Then
 Dim aTextBox As TextBox = CType(activeForm.ActiveControl, TextBox)
 ' Creates a new instance of the DataObject interface.
 Dim data As IDataObject = Clipboard.GetDataObject()
 ' Checks to see of the data in the data object is text. If it is,
 ' the text of the active Textbox is set to the text in the clipboard.

 116 Chapter 2 Designing the Presentation Layer

 If data.GetDataPresent(DataFormats.Text) Then
 aTextBox.Text = data.GetData(DataFormats.Text).ToString()
 End If
 End If
End If

Sample of C# Code

Form activeForm = this.ActiveMDIChild;
// Checks to see if an active form exists
if (activeForm != null)
{
 if (activeForm.ActiveControl.GetType() is TextBox)
 {
 TextBox aTextBox = (TextBox)activeForm.ActiveControl;
 // Creates a new instance of the DataObject interface.
 IDataObject data = Clipboard.GetDataObject();
 // Checks to see of the data in the data object is text. If it is,
 // the text of the active Textbox is set to the text in the clipboard.
 if (data.GetDataPresent(DataFormats.Text))
 {
 aTextBox.Text = data.GetData(DataFormats.Text).ToString();
 }
 }
 }

Arranging MDI Child Forms
You will commonly want to organize the forms in an MDI application so that they are ordered.
The MDI parent form can arrange the child forms that it contains by calling the LayoutMdi
method. The LayoutMdi method takes a parameter that is a member of the MdiLayout
enumeration. This method causes the forms contained by the parent form to be arranged
in the manner specified by the parameter. The members of the MdiLayout enumeration are
described in Table 2-7.

TABLE 2-7 MdiLayout Enumeration Members

Member Description

ArrangeIcons All MDI child icons are arranged within the client
region of the MDI parent form.

Cascade All MDI child windows are cascaded within the client
region of the MDI parent form.

TileHorizontal All MDI child windows are tiled horizontally within
the client region of the MDI parent form.

TileVertical All MDI child windows are tiled vertically within the
client region of the MDI parent form.

 Objective 2.3: Design Application Workflow Chapter 2 117

The following example demonstrates the LayoutMdi method by causing the contained
forms to cascade in the parent form:

Sample of Visual Basic.NET Code

' Causes the contained forms to cascade in the parent form
Me.LayoutMdi(System.Windows.Forms.MdiLayout.Cascade)

Sample of C# Code

// Causes the contained forms to cascade in the parent form
this.LayoutMdi(System.Windows.Forms.MdiLayout.Cascade);

Navigation Applications in WPF
Unlike Windows applications, which are based on the WPF Window object and are
 toolbar-driven and menu-driven, page-based applications are based on the WPF Page object
and are navigation-driven, meaning that the flow of the program is driven by navigating
through multiple pages rather than interacting with existing windows by using menu and toolbar
 commands. Although the page-based model is limited in some ways, it lends itself very well to
lightweight applications that are focused around a single task, such as a wizard or a shopping
cart application. This section will focus primarily on the navigation of page-based applications.

Using hyperlinks
The most familiar method of page-based navigation is by using hyperlinks. Hyperlinks are
displayed as a section of text, usually underlined and in a different color than the surrounding
text, which the user can click. When the user clicks a hyperlink, the application navigates to
the page indicated by the hyperlink.

Hyperlinks expose a property called NavigateUri that indicates the target of the hyperlink.
You set the NavigateUri property in XAML to indicate the navigation target when the
 hyperlink is clicked, as shown here:

<TextBlock>This is a <Hyperlink NavigateUri=”Page2.xaml”>hyperlink</Hyperlink>
</TextBlock>

Hyperlinks are not controls themselves—rather, they are inline flow elements. That means
they must be placed within another element that supports inline flow elements, such as
a TextBlock element. When a hyperlink pointing to another XAML page is clicked, a new
 instance of that page is created and the application navigates to that page. A hyperlink also
can point to a PageFunction, but it is not possible to return a value from a PageFunction using
a hyperlink. PageFunction objects are discussed in greater detail later in this section.

In addition to linking to other WPF pages, hyperlinks can link your application to
 webpages. You can link an application to a webpage by supplying the Hypertext Transfer
Protocol (HTTP) address in the NavigateUri property, as shown here:

<TextBlock>This is a <Hyperlink NavigateUri=”http://www.microsoft.com”>hyperlink</
Hyperlink> </TextBlock>

 118 Chapter 2 Designing the Presentation Layer

You can set the NavigateUri property of a hyperlink dynamically in code. This allows you
to change the navigation target of a hyperlink in response to program conditions. To change
the NavigateURI property dynamically, you must set the Name property of the hyperlink in
XAML, as shown here in bold:

<TextBlock>This is a <Hyperlink Name=”myLink”>hyperlink</Hyperlink></TextBlock>

Then you can set the NavigateUri property in code, as shown here:

Sample of Visual Basic.NET Code

myLink.NavigateUri = New System.Uri("Page2.xaml", System.UriKind.Relative)

Sample of C# Code

myLink.NavigateUri = new System.Uri("Page2.xaml", System.UriKind.Relative);

Using NavigationService
Hyperlinks provide a fairly easy way to navigate between pages, but for more complicated
navigational models, the NavigationService class provides finer control.

You can obtain a reference to the NavigationService class by calling the static
 GetNavigationService method, as shown here:

Sample of Visual Basic.NET Code

Dim myNav As NavigationService
myNav = NavigationService.GetNavigationService(Me)

Sample of C# Code

NavigationService myNav; myNav = NavigationService.GetNavigationService(this);

The NavigationService exposes a method called Navigate, which causes the application
to navigate to the specified page. The most common way to use the Navigate method is to
provide an instance of a Uniform Resource Identifier (URI), as shown here:

Sample of Visual Basic.NET Code

myNav.Navigate(New System.Uri("Page2.xaml", UriKind.Relative))

Sample of C# Code

myNav.Navigate(new System.Uri("Page2.xaml", UriKind.Relative));

You also can create an instance of a new page in memory and navigate to it with the
 Navigate method, as shown here:

Sample of Visual Basic.NET Code

Dim aPage As New Page2()
myNav.Navigate(aPage)

Sample of C# Code

Page2 aPage = new Page2();
myNav.Navigate(aPage);

 Objective 2.3: Design Application Workflow Chapter 2 119

There are advantages and disadvantages to each method. When passing a URI to the
Navigate method, the application’s journal can maintain the page data without having to
maintain the entire page object in memory. Thus, memory overhead is lower using this
method. However, it is not possible to pass information between pages using a URI. You can
pass information between pages by creating a custom constructor for your page and using it
to pass information or by setting properties on the page prior to navigating to it.

You can use the NavigationService to refresh your page by calling NavigationService.
Refresh. NavigationService also allows you to navigate forward and backward in the journal
by calling NavigationService.GoForward and NavigationService.GoBack, respectively. These
methods are demonstrated here:

Sample of Visual Basic.NET Code

myNav.Refresh()
myNav.GoForward()
myNav.GoBack()

Sample of C# Code

myNav.Refresh();
myNav.GoForward();
myNav.GoBack();

The NavigationService also exposes two Boolean properties called CanGoBack and Can-
GoForward, which you can query to determine if the application can navigate backward or
forward. An example is shown here:

Sample of Visual Basic.NET Code

If myNav.CanGoBack = True Then
 myNav.GoBack()
End If

Sample of C# Code

if (myNav.CanGoBack)
 myNav.GoBack();

Navigation is asynchronous. Thus, you can cancel navigation before it is completed by call-
ing NavigationService.StopLoading, as shown here:

Sample of Visual Basic.NET Code

myNav.StopLoading()

Sample of C# Code

myNav.StopLoading();

hosting Pages in Frames
In addition to hosting a stand-alone Navigation application in a NavigationWindow, you also
can host a page inside a control called a frame. A frame is simply a host for a XAML page
or a webpage and is itself hosted inside a page or window. This allows you to incorporate
 navigation-based sections into a Windows application.

 120 Chapter 2 Designing the Presentation Layer

The Source property of the Frame control indicates the page to be loaded into the frame.
The following code demonstrates how to set the source for a frame in XAML:

<Frame Margin="66,98,12,64" Name="frame1" Source="Page2.xaml"/>

Using the Journal
The journal is a bit of built-in technology in XBAPs and Navigation applications that keeps a
list of the pages that have been visited and allows you to navigate this list. This will be familiar
to anyone who uses Internet Explorer—the Back button navigates backward in the history to
previously visited pages. The NavigationService allows you to manipulate the contents of the
journal.

REMOVING ITEMS FROM ThE JOURNAL
You might want to remove items from the journal. For example, suppose that your application
has a complex configuration step that runs through several pages initially but is required
only once. After configuration, you might want to remove these journal entries so that the
user could navigate the regular pages without reloading the configuration pages. Removing
items from the journal is fairly straightforward. NavigationService provides a method called
RemoveBackEntry, which removes the last entry in the journal and returns an instance
of JournalEntry that describes the instance that was removed. The following example
 demonstrates how to remove the last item from the journal:

Sample of Visual Basic.NET Code

myNav.RemoveBackEntry()

Sample of C# Code

myNav.RemoveBackEntry();

You can use the CanGoBack property to remove all the items in the journal, as shown here:

Sample of Visual Basic.NET Code

While myNav.CanGoback
 myNav.RemoveBackEntry()
End While

Sample of C# Code

while (myNav.CanGoBack)
{
 myNav.RemoveBackEntry();
}

ADDING ITEMS TO ThE JOURNAL
Adding items to the journal is considerably less straightforward than removing them. In general,
you want to add items to the journal only when you want to take a “snapshot” of the state of
a single page and allow the user to navigate back to previous states. For example, if you were
performing a complex configuration task with multiple steps on a single page, you could provide
custom journal entries to allow the user to roll back changes before they were committed.

 Objective 2.3: Design Application Workflow Chapter 2 121

NavigationService provides a method called AddBackEntry, but it is more difficult to use
than it appears and is considerably more complicated than RemoveBackEntry. It takes a
single parameter, which is an instance of a class that derives from CustomContentState. This
class, which you must implement, stores the state information for the page and reconstitutes
the page state when the custom entry is navigated to. You also must implement the
 IProvideCustomContentState interface in the page for which you want to provide custom
journal entries. Finally, you must add the custom journal entry manually at the point that you
want to take the snapshot. The following is a high-level procedure that describes the general
protocol for adding custom journal entries.

To add custom journal entries

1. Create a class that inherits CustomContentState. (You need a separate class for each
page for which you want to add custom entries.) This class also must be marked with
the Serializable attribute.

2. Add member variables and public properties to this class that hold the state of each
control on the page that you want to constitute.

3. Add code to override the JournalEntryName property, which indicates the
name that will be displayed in the journal. Often you might want to set this
value in the constructor for this class, or use a method to determine an automatic
name.

4. Override the Replay method. This method is called when the application navigates
backward or forward in the journal and is used to reconstitute the page. Although
there are a few different approaches here, the best method is to create a callback
method that executes a method in the page that receives the class instance as a
 parameter, thereby allowing the page access to the stored data.

5. Create a constructor for this class. The constructor should set the value of all data
about the state of the page that needs to be stored. It also should indicate the address
of the callback method for the Replay method and any other parameters that you need
for this instance (such as the JournalEntryName).

6. In the page for which a custom journal entry will be created, create a method that
handles the callback from the Replay method. This method should use the information
in the passed parameter to restore the state of the page.

7. Implement the IProvideCustomContentState in the page. This involves implement-
ing the method GetContentState. GetContentState must return a CustomContentState
object—you return an instance of your class in this method.

8. Add code that calls the NavigationService.AddBackEntry method at each point for
which you want to create a custom journal entry. Each time you call this method, you
must provide a new instance of your class to save the custom state.

 122 Chapter 2 Designing the Presentation Layer

handling Navigation Events
Navigation in WPF applications occurs asynchronously. Thus, the NavigationService. Navigate
method will return before navigation is complete. NavigationService exposes several events
that allow your application to react at different points in the navigation process. You can
 handle these events to provide custom validation, to update navigation progress, or to
add any other custom navigation functionality that is required. Table 2-8 summarizes the
 navigation events exposed by NavigationService. The events are listed in the order in which
they occur.

TABLE 2-8 Navigation Events Exposed by NavigationService

Event Description

Navigating The Navigating event occurs just as navigation begins.

Navigated The Navigated event occurs after navigation has been
initiated but before the target page has been retrieved.

NavigationProgress The NavigationProgess event is raised after every
1 kilobyte (KB) of data has been received from the new
page.

LoadCompleted The LoadCompleted event is raised after the page has fin-
ished loading but before any of the page events fire.

FragmentNavigation The FragmentNavigation event occurs as the page is about
to be scrolled to the target element. This event does not
fire if you do not use a URI with a target element.

NavigationStopped The NavigationStopped event fires when the StopLoading
method is called. Note that this event is not fired if
 navigation is canceled in the Navigating event handler.

NavigationFailed The NavigationFailed event is raised if the requested page
cannot be located or downloaded.

Note that the NavigationService events fire whether navigation occurs through the
 NavigationService or through hyperlink clicks.

Because NavigationService events are regular .NET events, not routed events, you can
 create event handlers by creating methods with the correct signature and then attaching
them to the event with the AddHandler operator (in Visual Basic) or the += operator (in C#),
as shown here:

Sample of Visual Basic.NET Code

Public Sub HandleNavigated(ByVal sender As Object, _
 ByVal e As System.Windows.Navigation.NavigationEventArgs)
 ' Event Handling Code goes here
End Sub
Public Sub HookupEventHandler()
 ' Hookup the event handler
 AddHandler NavigationService.Navigated, AddressOf HandleNavigated
End Sub

 Objective 2.3: Design Application Workflow Chapter 2 123

Sample of C# Code

public void HandleNavigated(object sender,
 System.Windows.Navigation.NavigationEventArgse)
{
 // Event handling code goes here
}
public void HookupEventHandler()
{
 NavigationService.Navigated += HandleNavigated;
}

PASSING INFORMATION TO NAVIGATION EVENTS
The NavigationService.Navigate method exposes overloads that allow you to pass additional
information that becomes available when navigation events are being handled. For example,
you might pass time stamp information or an object that could be used to validate the page
request. To pass additional information to the event handlers, simply call one of the overloads
of NavigationService.Navigate that takes an additional object parameter, as shown here:

Sample of Visual Basic.NET Code

NavigationService.Navigate(New System.Uri("page2.xaml"), "user = Joe")

Sample of C# Code

NavigationService.Navigate(new System.Uri("page2.xaml"), "user = Joe");

The additional information will be available in the Navigated, NavigationStopped, and
LoadCompleted events through the e.ExtraData property, as shown here:

Sample of Visual Basic.NET Code

Public Sub Navigate(ByVal sender As Object,
 ByVal e As _System.Windows.Navigation.NavigationEventArgs)
 If e.ExtraData.ToString = "user=Kilroy" Then
 Trace.WriteLine("Kilroy was here")
 End If
End Sub

Sample of C# Code

public void Navigate(object sender,
 System.Windows.Navigation.NavigationEventArgs e)
 {
 if (e.ExtraData.ToString() == "user=Kilroy")
 Trace.WriteLine("Kilroy was here");
 }

CANCELLING NAVIGATION
You can cancel navigation in the Navigating event handler by setting the e.Cancel property to
True, as shown here:

Sample of Visual Basic.NET Code

Public Sub NavigatingHandler(ByVal sender As Object, _
 ByVal e As System.Windows.Navigation.NavigatingCancelEventArgs)
 e.Cancel = True
End Sub

 124 Chapter 2 Designing the Presentation Layer

Sample of C# Code

public void NavigatingHandler(object sender,
 System.Windows.Navigation.NavigatingCancelEventArgs e)
 {
 e.Cancel = true;
 }

Using PageFunction Objects
The PageFunction class is very similar to the Page class. You can design a PageFunction in the
designer, you can add controls to a PageFunction, and you can navigate to a PageFunction
through hyperlinks or by using NavigationService. The principal difference between Page
objects and PageFunction objects is that PageFunction objects can return a value. This allows
you to create pages that act in an analogous manner to dialog boxes—they can collect user
information and then return that information to the main page.

To add a PageFunction object to a project

1. From the Project menu, choose Add New Item to open the Add New Item dialog box.

2. In the Add New Item dialog box, select PageFunction (WPF). Name your PageFunction
and click Add.

A PageFunction can return any type of .NET object. When you add a PageFunction
to your project, Visual Studio automatically configures it to return a String instance.
Although this is frequently useful, you might want to return some other kind of object
from a PageFunction, such as an integer or an object. Changing the return type of your
PageFunction is relatively straightforward.

To change the return type of your PageFunction

1. In XAML view, locate the line in the PageFunction XAML that reads:

x:TypeArguments="sys:String"

Then change the TypeArguments parameter to the type you want, as follows:

x:TypeArguments="sys:Object"

For Visual Basic, that is all you need to do. For C#, the following additional step is
required.

2. In Code view, locate the class declaration and change the type, as shown here:

public partial class PageFunction1 : PageFunction<Object>

When you are ready for your PageFunction to return a value, you should call the
 OnReturn method. The OnReturn method takes a parameter of the type specified
for the PageFunction. You also can return null for this parameter if no return value is
 required. The page that navigated to the PageFunction should handle the Returned
event for that PageFunction. The instance of ReturnEventArgs returned by that event
contains the returned value.

 Objective 2.3: Design Application Workflow Chapter 2 125

To return a value from a PageFunction

1. In the page that navigates to the PageFunction, create a method that handles the
 Returned method of that PageFunction. An example is shown here:
Sample of Visual Basic.NET Code

Public Sub ReturnHandler(ByVal sender As Object, _
 ByVal e As ReturnEventArgs(Of String))
 myString = e.Result
End Sub

Sample of C# Code

public void ReturnHandler(object sender,
 ReturnEventArgs<string> e)
{
 myString = e.Result;
}

2. In the page that navigates to the PageFunction, instantiate the PageFunction
 programmatically and add code to hook up the PageFunction.Returned event to the
new event handler, as shown here:

Sample of Visual Basic.NET Code

Dim myPage As New PageFunction1
AddHandler myPage.Return, AddressOf ReturnHandler

Sample of C# Code

PageFunction1 myPage = new PageFunction1();
myPage.Return += ReturnHandler;

3. In the PageFunction, after the task is completed, call the OnReturn method and pass
the return value in a new instance of ReturnEventArgs, as shown here:

Sample of Visual Basic.NET Code

OnReturn(New ReturnEventArgs(Of String)("Kilroy was here"))

Sample of C# Code

OnReturn(new ReturnEventArgs<String>("Kilroy was here"));

Removing PageFunction Entries from the Journal
Because PageFunction objects are used frequently to collect user input, you might not want
to allow the user to return to a PageFunction via the journal after the task is completed. The
PageFunction class exposes a property called RemoveFromJournal. When RemoveFromJournal
is set to True, PageFunction entries are deleted automatically from the journal once the user is
finished with the task.

Simple Navigation and Structured Navigation
Simple navigation is a common design model in lightweight page-based applications. An
application with simple navigation has a start, an end, and a series of pages though which the
user navigates. There is generally little or no branching, and after a page is visited, it generally

 126 Chapter 2 Designing the Presentation Layer

is not returned to unless the user wants to back up. Although this paradigm is well suited
to certain types of applications, such as a configuration wizard, other kinds of applications
might find it lacking. Consider a shopping cart application. A user might want to add items
to a shopping cart, return to shop for more items, add them to the shopping cart, repeat this
a few more times, and then check out. Strictly linear navigation would be insufficient in this
case.

PageFunction objects allow you to build more structure into your application. With
 PageFunction objects, you can allow your users to leave the main line of execution to perform
tasks and then return. Using PageFunction objects, you can create execution models with
complex flow structures, and by manipulating the journal, you can control how a user is able
to navigate back through the application.

Designing for Different Input Types
Different input types require different UI designs. When designing an application for
 deployment in a public kiosk, keep these factors in mind:

■■ Design the application to be full-screen, and remove control buttons that might allow
a user to move, resize, or minimize a window.

■■ Users will speak different languages, so rely more on icons and images than text.

■■ Users will have varying accessibility requirements. Keep buttons and text large, simple,
and high-contrast.

■■ Users will not spend time learning how to use your application. Defaults should be
carefully selected, the UI must be as simple as possible, and you should limit the
 number of choices presented to the user at a time to less than four.

■■ Even with a touch-screen interface, avoid complex interactions such as dragging,
pinching, or using multiple fingers. The only user interaction should be touching the
screen or pressing a button.

■■ Perform extensive usability testing. For more information about testing, refer to
 Objective 5.2.

When designing a UI for a mobile device, keep these factors in mind:

■■ Build a task-based UI focused on the most common tasks. Use buttons instead of menus.

■■ Minimize the amount of typing required. For example, instead of prompting the user
to type their state, provide them with a list they can select from.

■■ Avoid requiring users to scroll. Instead, separate the UI into more pages.

■■ Plan for users to be interrupted regularly. Mobile application use tends to be
 interrupted more often.

■■ Design the UI behavior to be as similar as possible to the operating system’s default
behavior. For example, support swiping, panning, and pinch-to-zoom (but do not
require the user to take advantage of those capabilities).

■■ Support both horizontal and vertical screen orientations.

 Objective 2.3: Design Application Workflow Chapter 2 127

Objective Summary
■■ User navigation can be implemented in Windows Forms application through the use of

MDI forms. MDI forms allow multiple forms to be arranged and navigated as part of a
single application.

■■ Navigation applications in WPF provide an easy-to-program navigational
 experience that allows forward and backward navigation as well as branching. The
 NavigationService object provides the basic functionality required for user navigation.

■■ The Journal object allows you to keep a record of past states of a navigation
 application in case changes need to be rolled back.

■■ PageFunction objects behave like pages, but they return a value and can be useful for
receiving user input.

Objective Review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of the chapter.

1. Which of the following is NOT required to implement custom back entries?

A. A Page or PageFunction that implements IProvideCustomContentState

B. Code that calls NavigationService.AddBackEntry

C. An instance of the JournalEntry class

D. A class that inherits from CustomContentState

2. Which of the following is the correct firing order for navigation events in a navigation
application?

A. Navigating

NavigationProgress

Navigated

FragmentNavigation

LoadCompleted

B. Navigating

Navigated

NavigationProgress

LoadCompleted

FragmentNavigation

C. Navigating

NavigationProgress

 128 Chapter 2 Designing the Presentation Layer

Navigated

LoadComplete

FragmentNavigation

D. Navigating

Navigated

NavigationProgress

FragmentNavigation

LoadCompleted

ThoughT ExpErimEnT
Designing a Data Entry Wizard

In the following thought experiment, apply what you’ve learned about this
 objective to predict how a theoretical application architecture will perform. You

can find answers to these questions in the “Answers” section at the end of this
chapter.

You are a consultant for Lucerne Publishing. Lucerne is creating a new WPF
 application that its data entry team can use to enter newly published books into its
database. Because the data entry team is often staffed with temporary personnel,
the UI must be intuitive and must minimize the opportunity for making mistakes.

The process of entering information about a new book requires the data entry staff
member to enter about 40 different pieces of information. The developers have
designed a UI with these attributes:

■■ A WPF page-based application.

■■ A series of eight pages with five fields to enter different pieces of information on
each.

■■ Next and Cancel buttons in the lower-right corner of the window.

■■ A Back button in the upper-left corner of the window.

Answer the following questions about the future performance of the application:

1. Would it be better to design the application using MDI forms? Why or why
not?

2. The application creates a new record for the book after page 4. This process
cannot be changed easily. Is it possible to prevent users from going back to
earlier pages after they finish page 4? If so, how?

3. We would like to allow the user to click the Back button to undo changes
within a single page. Is this possible? If so, how?

 Objective 2.4: Design Data Presentation and Input Chapter 2 129

Objective 2.4: Design Data Presentation and Input

Most of what your Presentation layer is doing in a distributed application is either presenting
or receiving data. Your Presentation layer will be responsible for validating data, binding data
and presenting it to the user, and presenting media to the user. In this section, you will learn
how to handle data in the Presentation layer.

This objective covers how to:
■■ Design data validation.

■■ Design a data binding strategy.

■■ Manage data shared between forms.

■■ Choose media services.

Designing Data Validation
An important part of designing any UI is how to handle data input. Users can be error-prone,
and to ensure the integrity of your database, it is vital that data be validated for correctness.
You might need to use several different data validation techniques, depending on the needs
of your application.

Data Type Validation
The simplest form of data validation is data type validation. In this type of validation, data
is simply checked to ensure that it is of the appropriate type. For example, input that should
be a string is checked to see if it is a string, and numeric values are parsed to an integer or
 decimal. This type of validation can usually be accomplished with fairly simple methods
in the UI.

Range Checking
An extension of data type validation, range checking ensures not only that data is of the
 appropriate data type, but also that it falls within an acceptable range of values. For example,
a field that asked for the age of an employee might require a value between 18 and 100,
or some other range that represented the actual range of working employees within the
 company. This type of validation is also not complex and usually can be accomplished within
the UI.

Lookup Validation
Lookup validation can be thought of as a more specialized form of range checking. In lookup
validation, fields are only allowed to be one of a certain set of values, which may or may
not be sequential in any way. For example, consider an application that required the serial

 130 Chapter 2 Designing the Presentation Layer

number of an item being sold to correspond to a serial number of an item in an inventory
 database. The typical solution to lookup validation is to create a lookup table and validate
against the values contained in that table. Lookup validation can take place against a static
set of values or against values that change over time, requiring dynamic generation of the
lookup table. In either case, this kind of data validation usually requires a more complex
 business rule to validate against.

Complex Validation
Your input data might require a more complex type of validation than any of the types
 described here. For complex validation, separate business rules will be required.

Validating Data at the Client and Server
When validating user input, you should validate it on the client (for immediate responsiveness
and to assist data entry) and again at the server (for security). Never trust data validation
performed at the client because it is possible for users to bypass client-side validation controls
by modifying the application, altering data after it is sent by the application, or creating an
entirely different application that connects to the server.

The easiest way to validate data in a Windows Form application is to use the Validating
event. The Validating event occurs before a control loses the focus. This event is raised only
when the CausesValidation property of the control that is about to receive the focus is set to
True. Thus, if you want to use the Validating event to validate data entered in your control,
the CausesValidation of the next control in the tab order should be set to true. In order to
use Validating events, the CausesValidation property of the control to be validated must also
be set to True. By default, the CausesValidation property of all controls is set to True when
controls are created at design time. Controls such as Help buttons are typically the only kind
of controls that have CausesValidation set to False.

The Validating event allows you to perform sophisticated validation on your controls.
You could, for example, implement an event handler that tested whether the value entered
 corresponded to a very specific format. Another possible use is an event handler that doesn’t
allow the focus to leave the control until a value has been entered.

The Validating event includes an instance of the CancelEventArgs class. This class contains
a single property, Cancel. If the input in your control does not fall within the required
 parameters, you can use the Cancel property within your event handler to cancel the
 Validating event and return the focus to the control.

The Validated event fires after a control has been validated successfully. You can use this
event to perform any actions based upon the validated input.

The following example demonstrates a handler for the Validating event. This method
 requires an entry in TextBox1 before it will allow the focus to move to the next control.

Sample of Visual Basic.NET Code

Private Sub TextBox1_Validating(ByVal sender As Object, ByVal e As _
 System.ComponentModel.CancelEventArgs) Handles TextBox1.Validating

 Objective 2.4: Design Data Presentation and Input Chapter 2 131

 ' Checks the value of TextBox1
 If TextBox1.Text = "" Then
 ' Resets the focus if there is no entry in TextBox1
 e.Cancel = True
 End If
End Sub

Sample of C# Code

private void textBox1_Validating(object sender,
 System.ComponentModel.CancelEventArgs e)
{
 // Checks the value of textBox1
 if (textBox1.Text == "")
 // Resets the focus if there is no entry in TextBox1
 e.Cancel = true;
}

Validating Data in a WPF Application
WPF allows you to set validation rules that define how your application validates its data.
Each Binding object exposes a ValidationRules collection. You can add new rules to the
 ValidationCollection, as shown in bold in this example:

<TextBox>
 <TextBox.Text>
 <Binding Path="CandyBars">
 <Binding.ValidationRules>
 <local:CandyBarValidationRule />
 <local:SweetTreatsValidationRule />
 </Binding.ValidationRules>
 </Binding>
 </TextBox.Text>
</TextBox>

In this example, the CandyBarValidationRule and SweetTreatsValidationRule declarations
represent two custom validation rules that have been defined in your application. When
a new value is bound, each of the validation rules are evaluated in the order in which they
are declared. In this example, the CandyBarValidationRule is evaluated first, followed by the
SweetTreatsValidationRule. If there are no validation problems, the application proceeds
normally. If there is a problem that violates a validation rule, however, the following things
happen:

■■ The element with the validation error is outlined in red.

■■ The attached property Validation.HasError is set to True.

■■ A new ValidationError object is created and added to the attached Validation.Errors
collection.

■■ If the Binding.NotifyOnValidationError property is set to True, the Validation.
 Error –attached event is raised.

■■ The data-binding source is not updated with the invalid value and instead remains
unchanged.

 132 Chapter 2 Designing the Presentation Layer

Implementing Custom Validation Rules
You can create specific validation rules by creating classes that inherit the abstract class
ValidationRule. The ValidationRule class has one virtual method that must be overridden: the
Validate method. The Validate method receives an object parameter, which represents the
value that is being evaluated, and returns a ValidationResult object, which contains an IsValid
property and an ErrorCondition property. The IsValid property represents a Boolean value
that indicates whether or not the value is valid, and the ErrorCondition property is text that
can be set to provide a descriptive error condition. If a ValidationResult with an IsValid value
of True is returned, the value is considered to be valid and application execution proceeds
normally. If a ValidationResult with an IsValid result of False is returned, a ValidationError is
created as described previously.

The following example demonstrates a simple implementation of the ValidationRule
 abstract class:
Sample of Visual Basic.NET Code

Public Class NoNullStringsValidator
 Inherits ValidationRule

 Public Overrides Function Validate(ByVal value As Object, ByVal _
 cultureInfo As System.Globalization.CultureInfo) As _
 System.Windows.Controls.ValidationResult
 Dim astring As String = value.ToString
 If astring = "" Then
 Return New ValidationResult(False, "String cannot be empty")
 Else
 Return New ValidationResult(True, Nothing)
 End If
 End Function
End Class

Sample of C# Code

public class NoNullStringsValidator : ValidationRule
{
 public override ValidationResult Validate(object value,
 System.Globalization.CultureInfo cultureinfo)
 {
 string aString = value.ToString();
 if (aString == "")
 return new ValidationResult(false, "String cannot be empty");
 return new ValidationResult(true, null);
 }
}

In this example, the string contained in the value object is evaluated. If it is a zero-length
string, the validation fails; otherwise, the validation succeeds.

handling Validation Errors
Once validation errors are raised, you must decide how to respond to them. In some cases,
the visual cues provided by the validation error are enough—the user can see that the
 element is surrounded by a red outline and can detect and fix the problem. In other cases,

 Objective 2.4: Design Data Presentation and Input Chapter 2 133

however, you might need to provide feedback to the user regarding the nature of the
 validation problem.

When validation is enabled for a binding, the Validation.Error event is attached to the
bound element. Validation.Error includes an instance of ValidationErrorEventArgs, which
 contains two important properties, as described in Table 2-9.

TABLE 2-9 Important Properties of ValidationErrorEventArgs

Property Description

Action Describes whether the error in question is a new error or an old
error that is being cleared

Error Contains information about the error that occurred, the details of
which are described in further detail in Table 5-7

The Error object of ValidationErrorEventArgs contains a host of useful information
 regarding the error that occurred. Important properties of the Error object are described in
Table 2-10.

TABLE 2-10 Important Properties of the Error Object

Property Description

BindingInError Contains a reference to the Binding object that caused the
 validation error

ErrorContent Contains the string set by the ValidationRule object that returned
the validation error

Exception Contains a reference to the Exception, if any, that caused the
 validation error

RuleInError Contains a reference to the ValidationRule that caused the
 validation error

The Validation.Error event is not fired unless the NotifyOnValidationError property of the
Binding object is specifically set to True, as shown in bold here:

<Binding NotifyOnValidationError="True" Mode="TwoWay"
 Source="{StaticResource StringCollection}" Path="name">
 <Binding.ValidationRules>
 <local:NoNullStringsValidator/>
 </Binding.ValidationRules>
</Binding>

When this property is set to True, the Validation.Error event is raised anytime any
 ValidationRule in the ValidationRules collection of the Binding object detects a validation
 error. The Validation.Error event is a bubbling event. It is raised first in the element where the
validation error occurs and then in each higher-level element in the visual tree. Thus, you can

 134 Chapter 2 Designing the Presentation Layer

create a local error-handling method that specifically handles validation errors from a single
element, as shown in bold here:

<TextBox Validation.Error="TextBox1_Error" Height="21" Width="100"
 Name="TextBox1" >

Alternatively, you can create an error-handling routine that is executed higher in the visual
tree to create a more generalized validation error handler, as shown in bold here:

<Grid Validation.Error="Grid_Error">

The Validation.Error event is fired both when a new validation error is detected and
when an old validation error is cleared. Thus, it is important to check the e.Action property
to determine whether the error is being cleared or it is a new error. The following example
 demonstrates a sample validation error handler that displays the error message to the user
when a new error occurs and writes information to Trace when a validation error is cleared:

Sample of Visual Basic.NET Code

Private Sub Grid_Error(ByVal sender As System.Object, ByVal e As _
 System.Windows.Controls.ValidationErrorEventArgs)
 If e.Action = ValidationErrorEventAction.Added Then
 MessageBox.Show(e.Error.ErrorContent.ToString)
 Else
 Trace.WriteLine("Validation error cleared")
 End If
End Sub

Sample of C# Code

private void Grid_Error(object sender, ValidationErrorEventArgs e)
{
 if (e.Action == ValidationErrorEventAction.Added)
 MessageBox.Show(e.Error.ErrorContent.ToString());
 else
 System.Diagnostics.Trace.WriteLine("Validation error cleared");
}

Design a Data Binding Strategy
Data binding in the Presentation layer typically refers to binding presentation controls to
a cached client-side copy of the bound data. This data can be presented to the user and
changed or added to as need be, and then updated to or from the central data store when the
 application requires it. When deciding on a data binding strategy for your Presentation layer,
you must decide how you want to store your local data, and then determine what component
in the Presentation layer you want to use to connect the presentation logic to the local data.

Data Binding in Windows Forms
Local data in a Windows Forms application is typically held in a Dataset object. Dataset is a
very versatile class that can handle multiple data tables. While you can bind your Presentation
layer directly to a Dataset, a better strategy is to access the individual tables in a Dataset via a
BindingSource component.

 Objective 2.4: Design Data Presentation and Input Chapter 2 135

The BindingSource component manages data currency and navigation for the underlying
data source. Thus, by binding your Presentation layer controls to a BindingSource object that
refers to the local copy of data, you are able to manage the presentation of the underlying
data easily. The BindingSource component contains the information that controls need to
bind to a BindingSource by passing it a reference to a DataTable in a DataSet. By binding to
the BindingSource instead of to the DataSet, you can redirect your application to another
source of data easily without having to redirect all the data binding code to point to the new
data source.

The following code shows how to create a BindingSource and assign it a reference
to the Northwind Customers table in a Northwind database-based dataset named
 NorthwindDataSet1:

Sample of Visual Basic.NET Code

customersBindingSource = New BindingSource(NorthwindDataSet1, "Customers")

Sample of C# Code

customersBindingSource = new BindingSource(northwindDataSet1, "Customers");

Binding to Types Other Than Dataset
The BindingSource component can be used to bind to several different types of objects
and will in most cases expose the underlying data of that object as an IBindingList interface.
Table 2-11 explains the types that the BindingSource.DataSource property can be set to and
what the result will be.

TABLE 2-11 Types for the DataSource Property of BindingSource

DataSource Property List Results

Nothing An empty IBindingList of objects. Adding an item sets the list to
the type of the added item.

Nothing with DataMember set Not supported; raises ArgumentException.

Non-list type or object of type “T” Empty IBindingList of type “T”.

Array instance IBindingList containing the array elements.

IEnumerable instance An IBindingList containing the IEnumerable items.

List instance containing type “T” IBindingList instance containing type “T”.

Data Binding in WPF
WPF has data binding built in at all levels, and you can bind a WPF Presentation layer easily to
a variety of data sources, including datasets, objects, or XML representations in memory.

Binding to collections in WPF is handled in essentially the same way, whether the bound
collection is a dataset, datatable, or other in-memory object. For simple displaying of bound

http://msdn.microsoft.com/en-us/library/system.componentmodel.ibindinglist.aspx
http://msdn.microsoft.com/en-us/library/system.windows.forms.bindingsource.datamember.aspx
http://msdn.microsoft.com/en-us/library/system.argumentexception.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.ibindinglist.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.ibindinglist.aspx
http://msdn.microsoft.com/en-us/library/system.collections.ienumerable.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.ibindinglist.aspx
http://msdn.microsoft.com/en-us/library/system.collections.ienumerable.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.ibindinglist.aspx

 136 Chapter 2 Designing the Presentation Layer

members, you must set the ItemsSource property to the collection to which you are binding
and set the DisplayMemberPath property to the collection member that is to be displayed.
The following example demonstrates how to bind a ListBox to a static resource named myList
and a display member called FirstName:

<ListBox Width="200" ItemsSource="{Binding Source={StaticResource myList}}"
 DisplayMemberPath="FirstName" />

A more common scenario when working with bound lists, however, is to bind to an object
that is defined and filled with data in code. In this case the best way to bind to the list is to
set the DisplayMemberPath in the XAML and then set the DataContext of the element or its
 container in code. The following example demonstrates how to bind a ListBox to an object
called myCustomers that already has been created and populated. The ListBox displays the
entries from the CustomerName property:

Sample of Visual Basic.NET Code

' Code to initialize and fill myCustomers has been omitted
grid1.DataContext = myCustomers;

Sample of Visual C# Code

// Code to initialize and fill myCustomers has been omitted
grid1.DataContext = myCustomers;

Sample of XAML Code

<Grid Name="grid1">
 <ListBox ItemsSource="{Binding}" DisplayMemberPath="CustomerName"
 Margin="92,109,66,53" Name="ListBox1" />
</Grid>

Note that in the XAML for this example, the ItemsSource property is set to a Binding object
that has no properties initialized. The Binding object binds the ItemsSource of the ListBox,
but because the Source property of the Binding is not set, WPF searches upward through the
 visual tree until it finds a DataContext that has been set. Because the DataContext for grid1
has been set in code to myCustomers, this then becomes the source for the binding.

Navigating Bound Data in WPF
WPF has a built-in navigation mechanism for data and collections. When a collection
is bound to by a WPF Binding, an ICollectionView is created behind the scenes. The
 ICollectionView interface contains members that manage data currency, as well as managing
views, grouping, and sorting. You can get a reference to the ICollectionView by calling the
 CollectionViewSource.GetDefaultView method, as shown here:

Sample of Visual Basic.NET Code

' This example assumes a collection named myCollection
Dim myView As System.ComponentModel.ICollectionView
myView = CollectionViewSource.GetDefaultView (myCollection)

 Objective 2.4: Design Data Presentation and Input Chapter 2 137

Sample of Visual C# Code

// This example assumes a collection named myCollection
System.ComponentModel.ICollectionView myView;
myView = CollectionViewSource.GetDefaultView (myCollection);

When calling this method, you must specify the collection or list for which to retrieve the
view (which is myCollection in the previous example). CollectionViewSource.GetDefaultView
returns an ICollectionView object that is actually one of three different classes depending on
the class of the source collection.

If the source collection implements IBindingList, the view returned is a
 BindingListCollectionView object. If the source collection implements IList but not IBindingList,
the view returned is a ListCollectionView object. If the source collection implements
 IEnumerable but not IList or IBindingList, the view returned is a CollectionView object.

Binding to XML in WPF
The XmlDataProvider allows you to bind WPF elements to data in the XML format. The
 following example demonstrates an XmlDataProvider providing data from a source file called
Items.xml:

<Window.Resources>
 <XmlDataProvider x:Key="Items" Source="Items.xml" />
</Window.Resources>

You can also provide the XML data inline as an XML data island. In this case you wrap the
XML data in XData tags, as shown here:

<Window.Resources>
 <XmlDataProvider x:Key="Items">
 <x:XData>
 <!--XML Data omitted-->
 </x:XData>
 </XmlDataProvider>
</Window.Resources>

You can bind elements to the data provided by an XmlDataProvider in the same way that
you would bind to any other data source—namely, using a Binding object and specifying the
XmlDataProvider in the Source property, as shown here:

<ListBox ItemsSource="{Binding Source={StaticResource Items}}"
 DisplayMemberPath="ItemName" Name="listBox1" Width="100" Height="100"
 VerticalAlignment="Top" />

Using XPath When Binding to XML
You can use XPath expressions to filter the results exposed by the XmlDataProvider or to
filter the records displayed in the bound controls. By setting the XPath property of the
 XmlDataProvider to an XPath expression, you can filter the data provided by the source. The
following example filters the results exposed by an XmlDataProvider object to include only
those nodes called <ExpensiveItems> in the <Items> top-level node:

 138 Chapter 2 Designing the Presentation Layer

<Window.Resources>
 <XmlDataProvider x:Key="Items" Source="Items.xml"
 XPath="Items/ExpensiveItems" />
</Window.Resources>

You also can apply XPath expressions in the bound controls. The following example sets
the XPath property to Diamond (shown in bold), which indicates that only data contained in
<Diamond> tags will be bound:

<ListBox ItemsSource="{Binding Source={StaticResource Items}
 XPath=Diamond}" DisplayMemberPath="ItemName" Name="listBox1" Width="100"
 Height="100" VerticalAlignment="Top" />

Using Data Templates in the WPF Presentation Layer
A data template is a bit of XAML that describes how bound data is displayed. A data template
can contain elements that are bound to a data property, along with additional markup that
describes layout, color, and other aspects of appearance. The following example demonstrates
a simple data template that describes a Label element bound to the ContactName property.
The Foreground, Background, BorderBrush, and BorderThickness properties are also set:

<DataTemplate>
 <Label Content="{Binding Path=ContactName}" BorderBrush="Black"
 Background="Yellow" BorderThickness="3" Foreground="Blue" />
</DataTemplate>

You set the data template on a control by setting one of two properties. For content
 controls, you set the ContentTemplate property, as shown in bold here:

<Label Height="23" HorizontalAlignment="Left" Margin="56,0,0,91"
 Name="label1" VerticalAlignment="Bottom" Width="120">
 <Label.ContentTemplate>
 <DataTemplate>
 <!--Actual data template omitted-->
 </DataTemplate>
 </Label.ContentTemplate>
</Label>

For item controls, you set the ItemsTemplate property, as shown in bold here:

<ListBox ItemsSource="{Binding}" IsSynchronizedWithCurrentItem="True"
 Margin="18,19,205,148" Name="listBox1">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <!--Actual data template omitted-->
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

Note that for item controls, the DisplayMemberPath and ItemTemplate properties are
 mutually exclusive—you can set one but not the other.

A frequent pattern with data templates is to define them in a resource collection and
reference them in your element, rather than defining them inline as shown in the previous

 Objective 2.4: Design Data Presentation and Input Chapter 2 139

examples. All that is required to reuse a data template in this manner is to define the template
in a resource collection and set a Key for the template, as shown here:

<Window.Resources>
 <DataTemplate x:Key="myTemplate">
 <Label Content="{Binding Path=ContactName}" BorderBrush="Black"
 Background="Yellow" BorderThickness="3" Foreground="Blue" />
 </DataTemplate>
</Window.Resources>

Then you can set the template by referring to the resource, as shown in bold here:

<ListBox ItemTemplate="{StaticResource myTemplate}"
 Name="ListBox1" />

Managing Data Shared Between Forms
If you must share data between forms in the Presentation layer, the best way to do so is by
scoping the objects containing the data as application scope variables. This allows members
in all forms in an application to access the data.

Creating an Application Variable in Windows Forms with Visual Basic
When programming in Visual Basic .NET, the easiest way to create a variable with application
scope is to create a module and declare a public variable within that module. This variable
then will be available to all forms in the application.

Creating an Application Variable in Windows Forms with Visual C#
When programming in Visual C#, the best way to create an application-scoped variable is
to add a public, static variable to the .cs file that contains the Main sub. In Visual
Studio–generated applications, this is usually Program.cs. Variables created in this fashion
will be available to all forms in an application, though they will need to be prefaced with the
name of the class.

Creating an Application Variable in WPF
When creating an application variable in WPF, the best way is to create an application
resource that will be accessible by all objects in a particular application. You can create an
 application resource by opening the App.xaml file (for C# projects) or the Application.xaml
file (for Visual Basic projects) and adding the resource to the Application.Resources collection,
as shown in bold here:

<Application x:Class="WpfApplication2.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri="Window1.xaml">
 <Application.Resources>
 <SolidColorBrush x:Key=”appBrush” Color=”PapayaWhip” />
 </Application.Resources>
</Application>

 140 Chapter 2 Designing the Presentation Layer

Managing Media
The .NET Framework provides tools that allow you to manage sound and video media
 presentations in your client applications. For simple sound support, the SoundPlayer
 component is provided; and for more complex sound or video media, the MediaPlayer and
MediaElement components can be used.

SoundPlayer
The SoundPlayer class was introduced in .NET Framework 2.0 as a managed class to enable
audio in Windows applications. It is lightweight and easy to use, but it has significant
 limitations.

The SoundPlayer class can play only uncompressed .wav files. It cannot read compressed
.wav files, nor can it read files in other audio formats. Furthermore, the developer has no
 control over volume, balance, speed of playback, or any other aspects of sound playback.

In spite of its limitations, SoundPlayer can be a useful and lightweight way to incorporate
sound into your applications. It provides a basic set of members that allow you to load and
play uncompressed .wav files easily.

MediaPlayer and MediaElement
The MediaPlayer and MediaElement classes provide deep support for playing audio and
video media files in a variety of formats. Both of these classes use the functionality of
 Windows Media Player 10, so while they are guaranteed to be usable in applications running
on Windows Vista and later, which come with Media Player 11 as a standard feature, these
classes will not function on Windows XP installations that do not have at least Windows
 Media Player 10 installed.

The MediaPlayer and MediaElement classes are very similar and expose many of the same
members. The primary difference between the two classes is that although MediaPlayer loads
and plays both audio and video, it has no visual interface and thus cannot display video in
the UI. On the other hand, MediaElement is a full-fledged WPF element that can be used to
display video in your applications. MediaElement wraps a MediaPlayer object and provides a
visual interface to play video files. Furthermore, MediaPlayer cannot be used easily in XAML,
whereas MediaElement is designed for XAML use.

While MediaPlayer and MediaElement are designed for use in WPF applications, you can
use them in your Windows Forms applications through interoperability, as described earlier in
this chapter.

Objective Summary
■■ Data validation is a common task for the Presentation layer. Depending on the data,

any of a number of different types of validation might be necessary. Both WPF and
Windows Forms provide technologies to enable validation of user input.

 Objective 2.4: Design Data Presentation and Input Chapter 2 141

■■ WPF and Windows Forms both enable binding to datasets and other collections. In
 Windows Forms, the BindingSource object manages data currency and navigation.
In WPF, these tasks are managed through the ICollectionView interface. WPF also
 incorporates technology that allows direct binding to XML and the use of XPath queries.

■■ Data can be shared between multiple forms via application variables.

■■ The SoundPlayer, MediaPlayer, and MediaElement classes incorporate functionality that
enables multimedia presentations.

Objective Review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of the chapter.

1. You are creating a Presentation layer that will validate user input. The fields that need
to be validated include an employee age field, which must be an integer between 18
and 85. What is the correct data validation strategy for this scenario?

A. Data type validation

B. Range checking

C. Lookup validation

D. Complex validation

2. Which of the following code snippets correctly demonstrates a data template that
binds the ContactName field set in a ListBox? Assume that the DataContext is set
 correctly.

A.

<ListBox ItemsSource="{Binding}" name="ListBox1">
 <DataTemplate>
 <Label Content="{Binding Path=ContactName}" BorderBrush="Black"
 Background="Yellow" BorderThickness="3" Foreground="Blue" />
 </DataTemplate>
</ListBox>

B.

<ListBox name="ListBox1">
 <ListBox.ItemsSource>
 <DataTemplate>
 <Label Content="{Binding Path=ContactName}" BorderBrush="Black"
 Background="Yellow" BorderThickness="3" Foreground="Blue" />
 </DataTemplate>
 </ListBox.ItemsSource>
</ListBox>

 142 Chapter 2 Designing the Presentation Layer

C.

<ListBox ItemsSource="{Binding}" name="ListBox1">
 <ListBox.ItemTemplate>
 <Label Content="{Binding Path=ContactName}" BorderBrush="Black"
 Background="Yellow" BorderThickness="3" Foreground="Blue" />
 </ListBox.ItemTemplate>
</ListBox>

D.

<ListBox ItemsSource="{Binding}" name="ListBox1">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <Label Content="{Binding Path=ContactName}" BorderBrush="Black"
 Background="Yellow" BorderThickness="3" Foreground="Blue" />
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

ThoughT ExpErimEnT
Designing Data Validation

In the following thought experiment, apply what you’ve learned about this
 objective to predict how a theoretical application architecture will perform. You can

find answers to these questions in the “Answers” section at the end of this chapter.

Lucerne Publishing has designed the UI for a new page-based WPF application that
its data entry team can use to enter newly published books into its database. With
the eight pages of the UI designed, the company is ready to begin designing the
page functionality.

The process of entering information about a new book requires the data entry staff
member to enter about 40 different pieces of information. Once the information
has been entered to the database, a copy of it is sent to distributors, making it
 impossible to change. Therefore, accurate data entry is of paramount importance.

The WPF application retrieves information from and submits information to a
Windows Communication Foundation (WCF) web service. The web service, in turn,
communicates with the underlying database. In the near future, Lucerne Publishing
plans to expose the web service to partner organizations so that it can develop its
own client applications.

The developers have designed an application with the following traits:

■■ Numeric values are validated using WPF range validation as the user populates a
field.

■■ Text data, such as a book’s ISBN (a unique identifier for a book) are validated
within WPF using regular expressions.

 Objective 2.5: Design Presentation Behavior Chapter 2 143

■■ Data that refers to existing values in the database are verified by using a custom
validation rule. The ValidationRule-derived class makes a call to the WCF web
service when the user clicks the Next button.

■■ When the elements on a page can be validated, the application’s title bar is green.
If validation fails for any element on the page, the application changes the color of
the title bar to red.

Answer the following questions about the future performance of the application:

1. What would you change about the data validation design?

2. Will indicating the validation state by changing the title bar work?

Objective 2.5: Design Presentation Behavior

With the advent of WPF, the developer now has a great deal of control over how the UI
interacts with the user. While familiar behaviors such as dragging are still easy to implement,
you can also use attached events, triggers, and animation to make the user experience more
responsive than ever before.

This objective covers how to:
■■ Determine which behaviors will be implemented and how.

■■ Implement drag-and-drop functionality.

Determine Which Behaviors Will Be Implemented and how
WPF provides unprecedented functionality for implementing behaviors in the Presentation
layer through attached events, triggers, and animation.

Attached Events
It is possible for a control to define a handler for an event that the control cannot itself raise.
These incidents are called attached events. For example, consider Button controls in a Grid.
The Button class defines a Click event, but the Grid class does not. However, you still can
define a handler for buttons in the grid by attaching the Click event of the Button control in
the XAML code. The following example demonstrates attaching an event handler for a Button
contained in a Grid:

<Grid Button.Click=”changeGridColor”>
 <Button Height="23" Margin="132,80,70,0" Name="button1"
 VerticalAlignment="Top" >Button</Button>
</Grid>

 144 Chapter 2 Designing the Presentation Layer

Now every time a button contained in the Grid shown here is clicked, the changeGridColor
event handler will handle that event. In this way, the Grid can respond to another element’s
event. Attached events make it possible for any element in your Presentation layer to respond
directly to an event raised by other elements.

Triggers
Along with Setters, Triggers make up the bulk of objects that you use in creating styles in WPF
applications. Triggers allow you to implement property changes declaratively in response to
other property changes that would have required event-handling code in Windows Forms
programming. There are five kinds of Trigger objects, as listed in Table 2-12.

TABLE 2-12 Types of Trigger Objects

Type Class Name Description

Property trigger Trigger Monitors a property and activates when the value of
that property matches the Value property.

Multi-trigger MultiTrigger Monitors multiple properties and activates only
when all the monitored property values match their
 corresponding Value properties.

Data trigger DataTrigger Monitors a bound property and activates when the
value of the bound property matches the Value
 property.

Multi-data-trigger MultiDataTrigger Monitors multiple bound properties and activates
only when all the monitored bound properties match
their corresponding Value properties.

Event trigger EventTrigger Initiates a series of Actions when a specified event is
raised.

A Trigger is active only when it is part of a Style.Triggers collection—with one exception.
EventTrigger objects can be created within a Control.Triggers collection outside a Style. The
Control.Triggers collection can accommodate only EventTriggers, and any other Trigger placed
in this collection causes an error. EventTriggers are used primarily with animation.

Property Triggers
The most commonly used type of Trigger is the property trigger. The property trigger
 monitors the value of a property specified by Property. When the value of the specified
 property equals the Value property, the Trigger is activated.

Triggers listen to the property indicated by Property and compare that property to the
Value property. When the referenced property and the Value property are equal, the Trigger is
 activated. Any Setter objects in the Setters collection of the Trigger are applied to the style, and
any Actions in the EnterActions collections are initiated. When the referenced property no longer
matches the Value property, the Trigger is inactivated. All Setter objects in the Setters collection
of the Trigger are inactivated, and any Actions in the ExitActions collection are initiated.

 Objective 2.5: Design Presentation Behavior Chapter 2 145

The following example demonstrates a simple Trigger object that changes the FontWeight
of a Button element to Bold when the mouse enters the Button:

<Style.Triggers>
 <Trigger Property="Button.IsMouseOver" Value="True">
 <Setter Property="Button.FontWeight" Value="Bold" />
 </Trigger>
</Style.Triggers>

In this example, the Trigger defines one Setter in its Setters collection. When the Trigger is
activated, that Setter is applied.

Multi-Triggers
Multi-triggers are similar to property triggers in that they monitor the value of properties and
activate when those properties meet a specified value. The difference is that multi-triggers
are capable of monitoring several properties at a single time and they activate only when
all monitored properties equal their corresponding Value properties. The properties that are
monitored and their corresponding Value properties are defined by a collection of Condition
objects.

The following example demonstrates a MultiTrigger that sets the Button.FontWeight
 property to Bold only when the Button is focused and the mouse has entered the control:

<Style.Triggers>
 <MultiTrigger>
 <MultiTrigger.Conditions>
 <Condition Property="Button.IsMouseOver" Value="True" />
 <Condition Property="Button.IsFocused" Value="True" />
 </MultiTrigger.Conditions>
 <MultiTrigger.Setters>
 <Setter Property="Button.FontWeight" Value="Bold" />
 </MultiTrigger.Setters>
 </MultiTrigger>
</Style.Triggers>

Data Triggers and Multi-Data-Triggers
Data triggers are similar to property triggers in that they monitor a property and activate
when the property meets a specified value, but they differ in that the property they monitor
is a bound property. Instead of Property, data triggers expose a Binding property that
 indicates the bound property to listen to.

The following shows a data trigger that changes the Background property of a Label to Red
when the bound property CustomerName equals “Fabrikam”:

<Style.Triggers>
 <DataTrigger Binding="{Binding Path=CustomerName}" Value="Fabrikam">
 <Setter Property="Label.Background" Value="Red" />
 </DataTrigger>
</Style.Triggers>

 146 Chapter 2 Designing the Presentation Layer

Multi-data-triggers are to data triggers as multi-triggers are to property triggers. They
contain a collection of Condition objects, each of which specifies a bound property via its
Binding property and a value to compare to that bound property. When all the conditions
are satisfied, the MultiDataTrigger activates. The following example demonstrates a
 MultiDataTrigger that sets the Label.Background property to Red when CustomerName equals
“Fabrikam” and OrderSize equals 500:

<Style.Triggers>
 <MultiDataTrigger>
 <MultiDataTrigger.Conditions>
 <Condition Binding="{Binding Path=CustomerName}" Value="Fabrikam" />
 <Condition Binding="{Binding Path=OrderSize}" Value="500" />
 </MultiDataTrigger.Conditions>
 <MultiDataTrigger.Setters>
 <Setter Property="Label.Background" Value="Red" />
 </MultiDataTrigger.Setters>
 </MultiDataTrigger>
</Style.Triggers>

Event Triggers
Event triggers are different from the other Trigger types. Whereas other Trigger types monitor
the value of a property and compare it to an indicated value, event triggers specify an event
and activate when that event is raised. In addition, event triggers do not have a Setters
 collection—rather, they have an Actions collection. The following two examples demonstrate
the EventTrigger class. The first example uses a SoundPlayerAction to play a sound when a
Button is clicked:

<EventTrigger RoutedEvent="Button.Click">
 <SoundPlayerAction Source="C:\myFile.wav" />
</EventTrigger>

The second example demonstrates a simple animation that causes the Button to grow in
height by 200 units when clicked:

<EventTrigger RoutedEvent="Button.Click">
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation Duration="0:0:5"
 Storyboard.TargetProperty="Height" To="200" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger.Actions>
</EventTrigger>

Animation
The term animation brings to mind hand-drawn anthropomorphic animals performing
amusing antics in video media, but in WPF, animation has a far simpler meaning. Generally
speaking, an animation in WPF refers to an automated property change over a set period

 Objective 2.5: Design Presentation Behavior Chapter 2 147

of time. You can animate an element’s size, location, color, or virtually any other property or
properties associated with an element. You can use the Animation classes to implement these
changes.

The Animation classes are a large group of classes designed to implement these
 automated property changes. There are 42 Animation classes in the System.Windows.Media.
Animation namespace, and each one has a specific data type that they are designed to
animate. Animation classes fall into three basic groups: linear animations, key frame–based
animations, and path-based animations.

Linear animations, which automate a property change in a linear way, are named in the
format <TypeName>Animation, where <TypeName> is the name of the type being animated.
DoubleAnimation is an example of a linear animation class, and that is the animation class you
are likely to use the most.

Key frame–based animations perform their animation on the basis of several waypoints,
called key frames. The flow of a key-frame animation starts at the beginning and then
 progresses to each of the key frames before ending. The progression is usually linear.
 Key-frame animations are named in the format <TypeName>AnimationUsingKey
Frames, where <TypeName> is the name of the Type being animated. An example is
 StringAnimationUsingKeyFrames.

Path-based animations use a Path object to guide the animation. They are used most
often to animate properties that relate to the movement of visual objects along a complex
course. Path-based animations are named in the format <TypeName>AnimationUsingPath,
where <TypeName> is the name of the type being animated. There are currently only three
path-based Animation classes—PointAnimationUsingPath, DoubleAnimationUsingPath, and
MatrixAnimationUsingPath.

Creating Attached Behaviors
You also can create custom attached behaviors that change or extend the behavior of
 standard classes. Usually, developers do this to change the way a UI element interacts with
the user. For example, you might create a custom attached behavior to allow a button to
respond to right-clicking in an M-V-VM application, or to add drag-and-drop behavior to a
class that does not support it natively.

Custom attached behaviors are simpler to implement than deriving a new class from
a standard control, and they do not require you to violate the presentation pattern (as
 discussed in Objective 2.1) by writing behavior logic in the ViewModel.

To implement an attached behavior, follow these high-level steps:

1. Create a new static class that represents the behavior.

2. Within the class, expose any attached properties as public dependency objects. The
attached property will be used to enable your attached behavior.

 148 Chapter 2 Designing the Presentation Layer

3. Within the change event for your attached property, write the code that implements
your attached behavior.

4. In the XAML, apply the attached behavior to the element.

For example, imagine that you wanted to extend the standard text box behavior with
auto-complete functionality: whenever the user typed a character, the view would send
the typed phrase to a web service that returns a list of options the user can select from.
You could do this by handling the appropriate text box event in the ViewModel and then
 populating the list from the event handler. However, this technique requires writing UI logic
in your ViewModel, breaking the M-V-VM presentation pattern. It also requires writing event
 handlers for every text box that you want to add this behavior to.

You also could do this by creating an attached behavior. By creating an attached behavior,
the behavior code is contained within the view, which fits the presentation pattern better. In
addition, the attached behavior uses less, more maintainable code.

More Info Creating attaChed Behaviors

For detailed information, read “Introduction to Attached Behaviors in WPF” at
http://www.codeproject.com/KB/WPF/AttachedBehaviors.aspx, and “Attached Behavior” at
http://eladm.wordpress.com/2009/04/02/attached-behavior/.

Implementing Drag-and-Drop Functionality
Drag-and-drop functionality is ubiquitous in Windows programming. It refers to allowing the
user to grab data—such as text, an image, or another object—with the mouse and drag it to
another control. When the mouse button is released over the other control, the data that is
being dragged is dropped onto the control, and a variety of effects can then occur.

The drag-and-drop operation is similar to cutting and pasting. The mouse pointer is
 positioned over a control and the mouse button is pressed. Data is copied from a source
control; when the mouse button is released, the action is completed. All code for copying
the data from the source control and any actions taken on the target control must be coded
explicitly.

Drag-and-drop operations are very similar in WPF and Windows Forms applications.
The primary difference is that in Windows Forms, drag-and-drop methods and events are
exposed on individual controls, and in WPF, the methods are exposed on a static class called
DragDrop, which also provides attached events to WPF controls to facilitate drag-and-drop
operations.

The drag-and-drop process is primarily an event-driven process. There are events that
occur on the source control and events that occur on the target control. The drag-and-drop
events for the source control are described in Table 2-13. The drag-and-drop events for the
target control are described in Table 2-14.

http://www.codeproject.com/KB/WPF/AttachedBehaviors.aspx
http://eladm.wordpress.com/2009/04/02/attached-behavior/

 Objective 2.5: Design Presentation Behavior Chapter 2 149

TABLE 2-13 Source Control Events Involved in Implementing Drag-and-Drop Operations

Event Description

MouseDown Occurs when the mouse button is pressed while the pointer is over the
control. In general, the DoDragDrop method is called in the method that
handles this event. In WPF applications, this is a bubbling event.

GiveFeedBack Provides an opportunity for the user to set a custom mouse pointer. In
WPF applications, this is a bubbling event.

QueryContinueDrag Enables the drag source to determine whether a drag event should be
canceled. In WPF applications, this is a bubbling event.

PreviewMouseDown WPF only. The tunneling version of the MouseDown event.

PreviewGiveFeedBack WPF only. The tunneling version of the GiveFeedback event.

PreviewQueryContinueDrag WPF only. The tunneling version of the QueryContinueDrag event.

TABLE 2-14 Target Control Events Involved in Implementing Drag-and-Drop Operations

Event Description

DragEnter Occurs when an object is dragged within a control’s bounds. The handler
for this event receives a DragEventArgs object. In WPF, this is a bubbling
event.

DragOver Occurs when an object is dragged over a target control. The handler for
this event receives a DragEventArgs object. In WPF, this is a bubbling
event.

DragDrop Occurs when the mouse button is released over a target control. The
handler for this event receives a DragEventArgs object. In WPF, this is a
bubbling event.

DragLeave Occurs when an object is dragged out of the control’s bounds. In WPF,
this is a bubbling event.

PreviewDragEnter WPF only. The tunneling version of DragEnter.

PreviewDragOver WPF only. The tunneling version of DragOver.

PreviewDragDrop WPF only. The tunneling version of DragDrop.

PreviewDragLeave WPF only. The tunneling version of DragLeave.

In addition, the DoDragDrop method on the source control is required to initiate the
 drag-and-drop process in Windows Forms, and the DoDragDrop method of the DragDrop
class is required for WPF. Furthermore, the target control must have the AllowDrop property
set to True.

If you are creating an XBAP application, you must run the application with full trust to
take advantage of true drag-and-drop; partial trust allows only a simulated drag-and-drop
using limited mouse events. For more information about partial trust, refer to Objective 1.3,

 150 Chapter 2 Designing the Presentation Layer

“Design the Security Implementation,” in Chapter 1, “Designing the Layers of a Solution.”
For more information about deploying ClickOnce applications with full trust, refer to
 Objective 4.1, “Define a Client Deployment Strategy,” in Chapter 4, “Planning a Solution
Deployment.”

More Info Partial trust Drag-anD-DroP oPerations

For detailed instructions about how to implement drag-and-drop functionality in a partial
trust environment, read “Implementing Drag Drop Operations for Browser Based WPF
 Applications (XBAP)” at http://www.codeproject.com/KB/WPF/XBAPDragDrop.aspx.

The General Sequence of a Drag-and-Drop Operation
The general sequence of events that takes place in a drag-and-drop operation is as follows:

1. The drag-and-drop operation is initiated by calling the DoDragDrop method on the
source control (for Windows Forms) or the DragDrop.DoDragDrop method for WPF
applications. This is usually done in the MouseDown event handler. DoDragDrop copies
the desired data from the source control to a new instance of DataObject and sets
flags that specify which effects are allowed with this data.

2. The GiveFeedBack and QueryContinueDrag events are raised at this point. The
 GiveFeedback event handler can set the mouse pointer to a custom shape, and the
QueryContinueDrag event handler can be used to determine if the drag operation
should be continued or aborted.

3. The mouse pointer is dragged over a target control. Any control that has the
AllowDrop property set to True is a potential drop target. When the mouse pointer
enters a control with the AllowDrop property set to True, the DragEnter event for that
control is raised. The DragEventArgs object that the event handler receives can be
examined to determine if data appropriate for the target control is present. If so, the
Effect property of the DragEventArgs object then can be set to an appropriate value.

4. The user releases the mouse button over a valid target control, raising the DragDrop
event. The code in the DragDrop event handler then obtains the dragged data and
takes whatever action is appropriate in the target control.

The DragDropEffects Enumeration
To complete a drag-and-drop operation, the drag effect specified in the DoDragDrop method
must match the value of the Effect parameter of the DragEventArgs object associated with
the drag-and-drop event, which is generally set in the DragEnter handler. The Effect property
is an instance of the DragDropEffects enumeration. The members of the DragDropEffects
 enumeration are described in Table 2-15.

http://www.codeproject.com/KB/WPF/XBAPDragDrop.aspx

 Objective 2.5: Design Presentation Behavior Chapter 2 151

TABLE 2-15 DragDropEffects Enumeration Members

Member Explanation

All Data is copied, removed from the drag source, and scrolled in the target.

Copy The data is copied to the target.

Link The data is linked to the target.

Move The data is moved to the target.

None The target does not accept the data.

Scroll Scrolling is about to start or is currently occurring in the target.

Note that the main function of the Effect parameter is to change the mouse cursor when it
is over the target control. The value of the Effect parameter has no actual effect on the action
that is executed except that when the Effect parameter is set to None, no drop can take place
on that control because the DragDrop event will not be raised.

Initiating the Drag-and-Drop Operation in Windows Forms Applications
The drag-and-drop operation is initiated by calling the DoDragDrop method on the source
control. The DoDragDrop method takes two parameters: an Object, which represents the data
to be copied to the DataObject, and an instance of DragDropEffects, which specifies what
drag effects will be allowed with this data. The following example demonstrates how to copy
the text from a text box and set the allowed effects to Copy or Move:

Sample of Visual Basic.NET Code

Private Sub TextBox1_MouseDown(ByVal sender As System.Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles TextBox1.MouseDown
 TextBox1.DoDragDrop(TextBox1.Text, DragDropEffects.Copy Or DragDropEffects.Move)
End Sub

Sample of Visual C# Code

private void textBox1_MouseDown(object sender, MouseEventArgs e)
{
 textBox1.DoDragDrop(textBox1.Text, DragDropEffects.Copy | DragDropEffects.Move);
}

Note that you can use the Or operator (Visual Basic) or the | operator (C#) to combine
members of the DragDropEffects enumeration to indicate multiple effects.

Initiating the Drag-and-Drop Operation in WPF Applications
In WPF applications, you initiate the drag-and-drop operation by calling DragDrop.Do
DragDrop. This method takes three parameters: a DependencyObject that represents the
source control for the drag operation, an Object that represents that data that will be copied

 152 Chapter 2 Designing the Presentation Layer

to the DataObject, and an instance of DragDropEffects, which specifies what drag effects will
be allowed with this data. The following example demonstrates how to copy the text from a
text box and set the allowed effects to Copy or Move:

Sample of Visual Basic.NET Code

Private Sub TextBox1_MouseDown(ByVal sender As System.Object, _
 ByVal e As System.Windows.Input.MouseButtonEventArgs) _
 Handles TextBox1.MouseDown
 DragDrop.DoDragDrop(TextBox1, TextBox1.Text, DragDropEffects.Copy Or
DragDropEffects.Move)
End Sub

Sample of Visual C# Code

private void textBox1_MouseDown(object sender, MouseButtonEventArgs e)
{
 DragDrop.DoDragDrop(textBox1, textBox1.Text, DragDropEffects.Copy | DragDropEffects.
Move);
}

handling the DragEnter Event
The DragEnter event should be handled for every target control. This event occurs when
a drag-and-drop operation is in progress and the mouse pointer enters the control. This
event passes a DragEventArgs object to the method that handles it, and you can use the
 DragEventArgs object to query the DataObject associated with the drag-and-drop operation.
If the data is appropriate for the target control, you can set the Effect property to an
 appropriate value for the control. The following example demonstrates how to examine the
data format of the DataObject and set the Effect property:

Sample of Visual Basic.NET Code

 ' This is a Windows Forms example
Private Sub TextBox2_DragEnter(ByVal sender As System.Object, _
 ByVal e As System.Windows.Forms.DragEventArgs) _
 Handles TextBox2.DragEnter
 If e.Data.GetDataPresent(DataFormats.Text) = True Then
 e.Effect = DragDropEffects.Copy
 End If
End Sub
' This is a WPF example
Private Sub TextBox2_DragEnter(ByVal sender As System.Object, _
 ByVal e As System.Window.DragEventArgs) _
 Handles TextBox2.DragEnter
 If e.Data.GetDataPresent(DataFormats.Text) = True Then
 e.Effect = DragDropEffects.Copy
 End If
End Sub

Sample of Visual C# Code

// The Windows Forms and WPF examples look the same in C#
private void textBox2_DragEnter (object sender, DragEventArgs e)

 Objective 2.5: Design Presentation Behavior Chapter 2 153

{
 if (e.Data.GetDataPresent(DataFormats.Text))
 {
 e.Effect = DragDropEffects.Copy;
 }
}

Note that in WPF applications, this is an attached event that is based off of the
DragDrop class. You can attach this event in the Events pane of the Properties window in
Visual Studio.

handling the DragDrop Event
When the mouse button is released over a target control during a drag-and-drop operation,
the DragDrop event is raised. In the method that handles the DragDrop event, you can use
the GetData method of the DataObject to retrieve the copied data from the DataObject and
take whatever action is appropriate for the control. The following example demonstrates how
to drop a String into a TextBox:

Sample of Visual Basic.NET Code

 ' This is a Windows Forms example
Private Sub TextBox2_DragDrop(ByVal sender As System.Object, ByVal e As _
 System.Windows.Forms.DragEventArgs) Handles TextBox2.DragDrop
 TextBox2.Text = TryCast(e.Data.GetData(DataFormats.Text), String)
End Sub
' This is a WPF example
Private Sub TextBox2_DragDrop(ByVal sender As System.Object, ByVal e As _
 System.Windows.DragEventArgs) Handles TextBox2.DragDrop
 TextBox2.Text = TryCast(e.Data.GetData(DataFormats.Text), String)
End Sub

Sample of Visual C# Code

// The Windows Forms and WPF examples look the same in C#
private void textBox2_DragDrop(object sender, DragEventArgs e)
{
 textBox2.Text = (string)e.Data.GetData(DataFormats.Text);
}

Note that in WPF applications, this is an attached event that is based off the
DragDrop class. You can attach this event in the Events pane of the Properties window in
Visual Studio.

Implementing Drag-and-Drop Operations Between Applications
The system intrinsically supports drag-and-drop operations between .NET Framework
 applications. You don’t need to take any additional steps to enable drag-and-drop operations
that take place between applications. The only conditions that must be satisfied to enable a
drag-and-drop operation between applications are:

■■ The target control must allow one of the drag effects specified in the DoDragDrop
method call.

 154 Chapter 2 Designing the Presentation Layer

■■ The target control must accept data in the format that was set in the DoDragDrop
method call.

Objective Summary
■■ Attached events allow you to enable any WPF element to respond to events raised by

any other WPF element.
■■ Triggers allow WPF UIs to respond dynamically to user input or actions.
■■ Animation allows you to alter the appearance of WPF elements in real time.
■■ Drag-and-drop operations are supported in both Windows Forms and WPF UIs.

Objective Review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of the chapter.

1. Look at the following XAML snippet:

<Window.Resources>
 <Style x:Key="Style1">
 <Style.Triggers>
 <MultiTrigger>
 <MultiTrigger.Conditions>
 <Condition Property="TextBox.IsMouseOver"
 Value="True" />
 <Condition Property="TextBox.IsFocused"
 Value="True" />
 </MultiTrigger.Conditions>
 <Setter Property="TextBox.Background"
 Value="Red" />
 </MultiTrigger>
 </Style.Triggers>
 </Style>
</Window.Resources>
<Grid>
 <TextBox Style="{StaticResource Style1}" Height="21"
 Margin="75,0,83,108" Name="TextBox1"
 VerticalAlignment="Bottom" />
</Grid>

When will TextBox1 appear with a red background?

A. When the mouse is over TextBox1

B. When TextBox1 is focused

C. When TextBox1 is focused and the mouse is over TextBox1

D. All of the above

E. Never

 Objective 2.6: Design for UI Responsiveness Chapter 2 155

2. Which of the following events must be handled to execute a drag-and-drop operation?
(Choose all that apply.)

A. MouseDown

B. MouseUp

C. DragLeave

D. DragDrop

ThoughT ExpErimEnT
Designing UI Behavior

In the following thought experiment, apply what you’ve learned about this
 objective to predict how a theoretical application architecture will perform. You

can find answers to these questions in the “Answers” section at the end of this
chapter.

You are a consultant for the Graphic Design Institute. The Graphic Design Institute
is creating a new XBAP WPF application to allow users to upload image files. They
are designing the application to be extremely user-friendly; the UI design highlights
every selection they need to make.

The developers have designed a UI with these attributes:

■■ Users will drag a file from Windows Explorer to the WPF window. The file name
will be displayed in a text box.

■■ If the selected file has one of the valid image extensions, the button will animate.

■■ Buttons on other pages will use the same animation when the form is ready to be
submitted.

Answer the following questions about how to implement the application:

1. How can the developers initiate the button animation?

2. How can they implement the animation itself?

3. Will the drag-and-drop operation work as expected? If not, what can the
 developers do?

Objective 2.6: Design for uI Responsiveness

While the primary function of the Presentation layer is to interact with the user, you also
can use the computer power of the client by handling computing tasks that do not require
 communication with the server or data layers. Using multithreaded techniques enables you to
use the processing power of the client while maintaining responsiveness in the UI.

 156 Chapter 2 Designing the Presentation Layer

This objective covers how to:
■■ Offload operations from the UI thread.

■■ Report progress.

■■ Avoid unnecessary screen refreshes.

■■ Determine whether to sort and filter data on the client or server.

Offloading Operations from the UI Thread and Reporting
Progress
The BackgroundWorker component is designed to allow you to execute time-consuming
operations on a separate, dedicated thread. This allows you to run operations that take a lot
of time, such as file downloads and database transactions asynchronously and allow the UI to
remain responsive.

The key method of the BackgroundWorker component is the RunWorkerAsync method.
When this method is called, the BackgroundWorker component raises the DoWork event. The
code in the DoWork event handler is executed on a separate, dedicated thread, allowing the
UI to remain responsive.

Announcing the Completion of a Background Process
When the background process terminates, whether because the process is completed or
because the process is cancelled, the RunWorkerCompleted event is raised. You can alert the
user to the completion of a background process by handling the RunWorkerCompleted event.

Returning a Value from a Background Process
You might want to return a value from a background process. For example, if your process
is a complex calculation, you would want to return the end result. You can return a value
by setting the Result property of DoWorkEventArgs in DoWorkEventHandler. This value will
then be available in the RunWorkerCompleted event handler as the Result property of the
 RunWorkerCompletedEventArgs parameter.

Cancelling a Background Process
You might want to implement the ability to cancel a background process. BackgroundWorker
supports the ability to cancel a background process, but you must implement most
of the cancellation code yourself. The WorkerSupportsCancellation property of the
 BackgroundWorker component indicates whether the component supports cancellation.
You can call the CancelAsync method to attempt to cancel the operation; doing so sets the
 CancellationPending property of the BackgroundWorker component to True. By polling the
CancellationPending property of the BackgroundWorker component, you can determine
whether to cancel the operation.

 Objective 2.6: Design for UI Responsiveness Chapter 2 157

Reporting Progress of a Background Process with BackgroundWorker
For particularly time-consuming operations, you might want to report progress back to
the primary thread. You can report progress of the background process by calling the
 ReportProgress method. This method raises the BackgroundWorker.ProgressChanged event
and allows you to pass a parameter that indicates the percentage of progress that has been
 completed to the methods that handle that event. The following example demonstrates how to
call the ReportProgress method from within the BackgroundWorker.DoWork event handler and
then to update a ProgressBar control in the BackgroundWorker.ProgressChanged event handler:

Sample of Visual Basic.NET Code

Private Sub BackgroundWorker1_DoWork(ByVal sender As System.Object, _
 ByVal e As System.ComponentModel.DoWorkEventArgs) _
 Handles BackgroundWorker1.DoWork
 For i As Integer = 1 to 10
 RunTimeConsumingProcess()
 ' Calls the Report Progress method, indicating the percentage
 ' complete
 BackgroundWorker1.ReportProgress(i*10)
 Next
End Sub
Private Sub BackgroundWorker1_ProgressChanged(_
 ByVal sender As System.Object, _
 ByVal e As System.ComponentModel.ProgressChangedEventArgs) _
 Handles BackgroundWorker1.ProgressChanged
 ProgressBar1.Value = e.ProgressPercentage
End Sub

Sample of C# Code

private void backgroundWorker1_DoWork(object sender, DoWorkEventArgs e)
{
 for (int i = 1;i < 11; i++)
 {
 RunTimeConsumingProcess();
 // Calls the Report Progress method, indicating the percentage
 // complete
 backgroundWorker1.ReportProgress(i*10);
 }

}
private void backgroundWorker1_ProgressChanged(object sender,
 ProgressChangedEventArgs e)
{
 progressBar1.Value = e.ProgressPercentage;
}

Note that in order to report progress with the BackgroundWorker component, you must
set the WorkerReportsProgress property to True.

 158 Chapter 2 Designing the Presentation Layer

Requesting the Status of a Background Process
You can determine if a BackgroundWorker component is executing a background process
by reading the IsBusy property. The IsBusy property returns a Boolean value. If True, the
 BackgroundWorker component is currently running a background process. If False, the
 BackgroundWorker component is idle.

Creating Process Threads
For applications that require more precise control over multiple threads, you can create new
threads with the Thread object. The Thread object represents a separate thread of execution
that runs concurrently with other threads. You can create as many Thread objects as you like,
but the more threads there are, the greater the impact on performance and the greater the
possibility of adverse threading conditions, such as deadlocks.

Creating and Starting a New Thread
The Thread object requires a delegate to the method that will serve as the starting point
for the thread. This method must be a Sub (void in C#) method and must take either no
 parameters or a single Object parameter. In the latter case, the Object parameter is used to
pass any required parameters to the method that starts the thread. Once a thread is created,
you can start it by calling the Thread.Start method. The following example demonstrates how
to create and start a new thread:

Sample of Visual Basic.NET Code

Dim aThread As New System.Threading.Thread(Addressof aMethod)
aThread.Start()

Sample of C# Code

System.Threading.Thread aThread = new
 System.Threading.Thread(aMethod);
aThread.Start();

For threads that accept a parameter, the procedure is similar, except that the starting
method can take a single Object as a parameter and that object must be specified as the
parameter in the Thread.Start method. An example is shown below:

Sample of Visual Basic.NET Code

Dim aThread As New System.Threading.Thread(Addressof aMethod)
aThread.Start(anObject)

Sample of C# Code

System.Threading.Thread aThread = new
 System.Threading.Thread(aMethod);
aThread.Start(anObject);

 Objective 2.6: Design for UI Responsiveness Chapter 2 159

Destroying Threads
You can destroy a Thread object by calling the Thread.Abort method. This method causes the
thread on which it is called to cease its current operation and to raise a ThreadAbortException.
If there is a Catch block that is capable of handling the exception, it will execute along with
any Finally blocks. The thread then is destroyed and cannot be restarted.

Sample of Visual Basic.NET Code

aThread.Abort()

Sample of C# Code

aThread.Abort();

Synchronizing Threads
Two of the most common difficulties involved in multithread programming are deadlocks
and race conditions. A deadlock occurs when one thread has exclusive access to a particular
variable and then attempts to gain exclusive access to a second variable at the same time that
a second thread has exclusive access to the second variable and attempts to gain exclusive
access to the variable that is locked by the first thread. The result is that both threads wait
indefinitely for the other to release the variables and they cease operating.

A race condition occurs when two threads attempt to access the same variable at the same
time. For example, consider two threads that access the same collection. The first thread
might add an object to the collection. The second thread then might remove an object from
the collection based on the index of the object. The first thread then might attempt to access
the object in the collection to find that it had been removed. Race conditions can lead to
unpredictable effects that can destabilize your application.

The best way to avoid race conditions and deadlocks is by careful programming and
 judicious use of thread synchronization. You can use the SyncLock keyword in Visual Basic and
the lock keyword in C# to obtain an exclusive lock on an object. This allows the thread that
has the lock on the object to perform operations on that object without allowing any other
threads to access it. Note that if any other threads attempt to access a locked object, those
threads will pause until the lock is released. The following example demonstrates how to
obtain a lock on an object:

Sample of Visual Basic.NET Code

SyncLock anObject
 ' Perform some operation
End SyncLock

Sample of C# Code

lock (anObject)
{
 // Perform some operation
}

 160 Chapter 2 Designing the Presentation Layer

Some objects, such as collections, implement a synchronization object that should be used
to synchronize access to the greater object. The following example demonstrates how to
obtain a lock on the SyncRoot object of an ArrayList object:

Sample of Visual Basic.NET Code

Dim anArrayList As New System.Collections.ArrayList
SyncLock anArrayList.SyncRoot
 ' Perform some operation on the ArrayList
End SyncLock

Sample of C# Code

System.Collections.Arraylist anArrayList = new System.Collections.ArrayList();
lock (anArrayList.SyncRoot)
{
 // Perform some operation on the ArrayList
}

It is generally good practice when creating classes that will be accessed by multiple threads
to include a synchronization object that is used for synchronized access by threads. This
 allows the system to lock only the synchronization object, thus conserving resources by not
having to lock every single object contained in the class. A synchronization object is simply
an instance of Object and does not need to have any functionality except to be available for
locking. The following example demonstrates a class that exposes a synchronization object:

Sample of Visual Basic.NET Code

Public Class aClass
 Public SynchronizationObject As New Object()
 ' Insert additional functionality here
End Class

Sample of C# Code

public class aClass
{
 public object SynchronizationObject = new Object();
 // Insert additional functionality here
}

Special Considerations When Working with Controls
Because controls are always owned by the UI thread, it is generally unsafe to make calls to
controls from a different thread. In WPF applications, you can use the Dispatcher object,
discussed later in this section, to make safe function calls to the UI thread. In Windows Forms
applications, you can use the Control.InvokeRequired property to determine if it is safe to
make a call to a control from another thread. If InvokeRequired returns False, it is safe to make
the call to the control. If InvokeRequired returns True, however, you should use the Control.
Invoke method on the owning form to supply a delegate to a method to access the control.
Using Control.Invoke allows the control to be accessed in a thread-safe manner. The following
example demonstrates setting the Text property of a TextBox control named Text1:

 Objective 2.6: Design for UI Responsiveness Chapter 2 161

Sample of Visual Basic.NET Code

Public Delegate Sub SetTextDelegate(ByVal t As String)
Public Sub SetText(ByVal t As String)
 If TextBox1.InvokeRequired = True Then
 Dim del As New SetTextDelegate(AddressOf SetText)
 Me.Invoke(del, New Object() {t})
 Else
 TextBox1.Text = t
 End If
End Sub

Sample of C# Code

public delegate void SetTextDelegate(string t);
public void SetText(string t)
{
 if (textBox1.InvokeRequired)
 {
 SetTextDelegate del = new SetTextDelegate(SetText);
 this.Invoke(del, new object[]{t});
 }
 else
 {
 textBox1.Text = t;
 }
}

In the preceding example, the method tests InvokeRequired to determine if it is dangerous
to access the control directly. In general, this will return True if the control is being accessed
from a separate thread. If InvokeRequired does return True, the method creates a new
 instance of a delegate that refers to itself and calls Control.Invoke to set the Text property in a
 thread-safe manner.

Using Dispatcher to Access Controls Safely on Another
Thread in WPF
At times, you might want to change the UI from a worker thread. For example, you might
want to enable or disable buttons based on the status of the worker thread, or provide more
detailed progress reporting than is allowed by the ReportProgess method. The WPF threading
model provides the Dispatcher class for cross-thread calls. Using Dispatcher, you can update
your UI safely from worker threads.

You can retrieve a reference to the Dispatcher object for a UI element from its Dispatcher
property, as shown here:

Sample of Visual Basic.NET Code

Dim aDisp As System.Windows.Threading.Dispatcher
aDisp = Button1.Dispatcher

Sample of C# Code

System.Windows.Threading.Dispatcher aDisp;
aDisp = button1.Dispatcher;

 162 Chapter 2 Designing the Presentation Layer

Dispatcher provides two principal methods that you will use: BeginInvoke and Invoke. Both
methods allow you to call a method safely on the UI thread. The BeginInvoke method allows
you to call a method asynchronously, and the Invoke method allows you to call a method
s ynchronously. Thus, a call to Dispatcher.Invoke will block execution on the thread on which it is
called until the method returns, whereas a call to Dispatcher.BeginInvoke will not block execution.

Both the BeginInvoke and Invoke methods require you to specify a delegate that points to
a method to be executed. You also can supply a single parameter or an array of parameters
for the delegate, depending on the requirements of the delegate. You also are required to
set the DispatcherPriority property, which determines the priority with which the delegate is
executed. In addition, the Dispatcher.Invoke method allows you to set a period of time for the
Dispatcher to wait before abandoning the invocation. The following example demonstrates
how to invoke a delegate named MyMethod using BeginInvoke and Invoke:

Sample of Visual Basic.NET Code

Dim aDisp As System.Windows.Threading.Dispatcher = Button1.Dispatcher
' Invokes the delegate synchronously
aDisp.Invoke(System.Windows.Threading.DispatcherPriority.Normal, MyMethod)
' Invokes the delegate asynchronously
aDisp.BeginInvoke(System.Windows.Threading.DispatcherPriority.Normal, MyMethod)

Sample of C# Code

System.Windows.Threading.Dispatcher aDisp = button1.Dispatcher;
// Invokes the delegate synchronously
aDisp.Invoke(System.Windows.Threading.DispatcherPriority.Normal, MyMethod);
// Invokes the delegate asynchronously
aDisp.BeginInvoke(System.Windows.Threading.DispatcherPriority.Normal, MyMethod);

Avoiding Unnecessary Screen Refreshes
Client applications refresh the screen when the visible contents of a control are updated.
Refreshing the screen is processor-intensive, and can negatively affect the performance of
applications such as Remote Desktop, which transfer the UI across the network. While most
Windows applications will work fine without any special planning, there are several best
 practices you can follow to avoid unnecessary screen refreshes:

■■ Reduce the default animation rate of 60 frames per second (fps). The following code
sample sets it to 20 fps:

Sample of Visual Basic.NET Code

Timeline.DesiredFrameRateProperty.OverrideMetadata(_
 GetType(Timeline), _
 New FrameworkPropertyMetadata() With {Key.DefaultValue = 20})

Sample of C# Code

Timeline.DesiredFrameRateProperty.OverrideMetadata(
 typeof(Timeline),
 new FrameworkPropertyMetadata { DefaultValue = 20 }
);

 Objective 2.6: Design for UI Responsiveness Chapter 2 163

■■ Reduce the animation rate for a Storyboard or individual objects within a Storyboard.
By default, animations run at 60 fps. The lower the value of the Timeline.DesiredFrame
Rate attached property, the better your performance will be.

■■ WPF will refresh controls automatically when you specify a DependencyProperty or
implement INotifyPropertyChanged. Avoid rapidly updating values that will initiate a
refresh; for example, by updating the value within a loop. Instead, update the value
once after the loop has completed.

Determining Whether to Sort and Filter Data on the Client
or Server
Many tasks can be performed on either the client or the server. The most important
 considerations are as follows:

■■ Security Security-related tasks, such as authentication, authorization, auditing, and
data validation, always must occur on the server. Client applications should never be
trusted.

■■ Responsiveness Perform tasks on the client to provide the best responsiveness. For
example, imagine a WPF application that retrieves a list of products from a WCF web
service. If the user wants to sort the list differently, the WPF application could re-sort
the list in memory, or it could send a second request to the web service to retrieve the
list in a different order. Sending the request to the web service incurs a delay, however,
because the request and response must be sent across the network. The higher the
network latency, the longer the delay.

■■ Client and server load Performing tasks on the client increases the load on the
client, and performing tasks on the server increases the load on the server. For clients
with sufficient processing power, perform the task on the client to improve server
scalability. If your client computers do not have the processing power necessary to
perform a task in a reasonable time, perform the task on the server.

■■ Network utilization Every task that you perform on the server requires data to
be sent from the client to the server. This increases network utilization. While it
might be difficult to notice the impact on a higher-performance local area network
(LAN), wireless and wide area network (WAN) links can be saturated much more
easily, slowing the performance of every application running on the network.

As a general rule, process non-security Presentation layer tasks on the client, and
process Business Logic layer tasks on the server. If a particular Business Logic layer task
would be much faster to process on the client, then create a separate client-side Business
Logic layer assembly, and perform that processing on the client (but validate the data on the
server).

 164 Chapter 2 Designing the Presentation Layer

Addressing UI Memory Issues
UI elements can consume a great deal of memory if not used carefully. Follow these best
practices to avoid common UI-related memory leaks in WPF:

■■ Un-register event handlers from a child window to a parent window when you no
longer need them. Otherwise, the child window will remain in memory until the parent
window is closed, even if the user closes the child window.

■■ Un-register event handlers to static objects when you no longer need them. Static
objects always stay alive in memory.

■■ Stop Timer objects when you no longer need them.

■■ Set the TextBox.UndoLimit property if you plan to update a TextBox repeatedly.

■■ If a data-binding target refers back to the class that is bound to it, manually remove
the binding before closing the window. For detailed information, refer to Microsoft
Knowledge Base article 938416 at http://support.microsoft.com/kb/938416/.

■■ Freeze objects whenever possible. Freezing an object disables change notifications,
improving performance and reducing memory usage. For example, if you create a
brush to set the background color of an object, the .NET Framework must monitor
that brush for changes so that the changes can be reflected in any objects that use
the brush. Freezing the brush would spare the .NET Framework from having to do that
task. Freezable objects derive from the Freezable class and are usually graphics-related,
including bitmaps, brushes, pens, and animations. Before freezing an object, verify that
the value of the CanFreeze property is true. For detailed information, read “Freezable
Objects Overview” at http://msdn.microsoft.com/library/ms750509.aspx.

■■ Use the CLR Profiler, described in Objective 5.3 in Chapter 5, to identify memory leaks.
If you examine the working set using Task Manager or Performance Monitor, you will
see an exaggerated memory size. To get a more realistic size, minimize your .NET
Framework application. The CLR Profiler is available as a free download at
http://www.microsoft.com/download/en/details.aspx?id=16273.

More Info Addressing MeMory LeAks

For more information, read “Finding Memory Leaks in WPF-based applications” at http://
blogs.msdn.com/b/jgoldb/archive/2008/02/04/finding-memory-leaks-in-wpf-based-
applications.aspx, “Memory Leaks in WPF applications” at http://svetoslavsavov.blogspot.
com/2010/05/memory-leaks-in-wpf-applications.html, and “Top 11 WPF Performance
Tips” at http://www.wpftutorial.net/10PerformanceTips.html. For information about why
 examining the working set using Task Manager or Performance Monitor is misleading, read
“How much memory does my .NET application use?” at http://www.itwriting.com/
dotnetmem.php.

http://support.microsoft.com/kb/938416/
http://msdn.microsoft.com/library/ms750509.aspx
http://www.microsoft.com/download/en/details.aspx?id=16273
http://blogs.msdn.com/b/jgoldb/archive/2008/02/04/finding-memory-leaks-in-wpf-based-applications.aspx
http://blogs.msdn.com/b/jgoldb/archive/2008/02/04/finding-memory-leaks-in-wpf-based-applications.aspx
http://blogs.msdn.com/b/jgoldb/archive/2008/02/04/finding-memory-leaks-in-wpf-based-applications.aspx
http://svetoslavsavov.blogspot.com/2010/05/memory-leaks-in-wpf-applications.html
http://svetoslavsavov.blogspot.com/2010/05/memory-leaks-in-wpf-applications.html
http://www.wpftutorial.net/10PerformanceTips.html
http://www.itwriting.com/dotnetmem.php
http://www.itwriting.com/dotnetmem.php

 Objective 2.6: Design for UI Responsiveness Chapter 2 165

Objective Summary
■■ The BackgroundWorker component encapsulates a worker thread and provides meth-

ods to report progress from that thread.

■■ You can create new threads directly using the Thread object.

■■ When using threads that communicate directly with the UI thread, you must take care
to avoid cross-thread function calls. In Windows Forms interfaces, query the Control.
InvokeRequired property to determine if Invoke is required. In WPF, use the Dispatcher
object to communicate safely with the UI thread.

Objective Review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect are located in the “Answers” section at the end of the chapter.

1. Which of the following are required to start a background process with the Back-
groundWorker component? (Choose all that apply.)

A. Calling the RunWorkerAsync method

B. Handling the DoWork event

C. Handling the ProgressChanged event

D. Setting the WorkerSupportsCancellation property to True

2. Which of the following are good strategies for updating the UI from the worker
thread? (Choose all that apply.)

A. Use Dispatcher.BeginInvoke to execute a delegate to a method that updates the UI.

B. Invoke a delegate to a method that updates the UI.

C. Set the WorkerReportsProgress property to True, call the ReportProgress method in
the background thread, and handle the ProgressChanged event in the main thread.

D. Call a method that updates the UI from the background thread.

 166 Chapter 2 Designing the Presentation Layer

ThoughT ExpErimEnT
Designing a Responsive User Interface

In the following thought experiment, apply what you’ve learned about this
 objective to predict how a theoretical application architecture will perform. You

can find answers to these questions in the “Answers” section at the end of this
chapter.

You are a consultant for Margie’s Travel. Margie’s Travel recently began developing
a new WPF application that its travel agents will use to book flights, hotels, and
activities. The priorities for the application are:

■■ To remain responsive when the application looks up information using public web
services

■■ To run well on low-powered computers with limited memory

■■ To guide agents through the UI using animations to notify them of the progress of
web services and to draw their attention to the next step

The developers have designed an application with these attributes:

■■ All web service requests occur in background processes.

■■ The agent can sort lists by price, time, or company by clicking column headings.
Sorting occurs at the client.

■■ Pictures and video related to hotels and activities are loaded only when the user
clicks a button.

Answer the following questions about the future performance of the application:

1. Will using a background process allow the application to remain responsive
while web service requests occur? If so, what would you recommend the
 developers do differently?

2. Is it the right choice to sort lists on the client, or should the sorting occur on
the server? Why?

3. Might the animations affect the performance of lower-powered computers? If
so, what would you recommend the developers do differently?

4. Are there any free tools you could recommend to catch memory leaks in the
application?

 Chapter Summary Chapter 2 167

Chapter Summary

■■ There are two dominant technologies for Presentation layer development—Windows
Forms and WPF. Both have inherent advantages and disadvantages. Windows Forms
has a strong and dedicated developer base and offers superior globalization and
localization technology. WPF is relatively new and has not been adopted as strongly
by developers, but it offers substantial improvements in the interactivity of the UI.
You can use Windows Forms and WPF controls in the other application type through
interoperability.

■■ Your UI should be designed with the user in mind. The principles of good UI include:

■■ Structure

■■ Simplicity

■■ Visibility

■■ Feedback

■■ Tolerance

■■ Reuse

■■ You should design for inheritance and code reuse whenever possible. Use of resources
in WPF and extended controls in Windows Forms are examples of code reuse.

■■ Your UI should be designed for accessibility, and thus it should support standard
 system settings, ensure compatibility with a high-contrast mode, provide keyboard
 access to all important functionality, provide notification of the keyboard focus
 location, and convey no important information by sound alone.

■■ Application workflow can be simple or complex. For applications that require
 navigation, Navigation applications in WPF provide a range of options from simple
navigation to highly structured branching. Windows Forms applications can use MDI
technology for navigation.

■■ Data validation is most commonly handled in the Presentation layer. Both Windows
Forms and WPF provide technology to create and implement validation rules in your
UI. Management of data binding is usually handled through an intermediary class—the
DataSource in Windows Forms and ICollectionView in WPF. In addition, WPF provides
technology that enables direct binding to XML data.

■■ WPF provides a great deal of technology to implement different behaviors in the UI,
including attached events, triggers, and animation. Drag-and-drop functionality is very
similar in both Windows Forms and WPF.

■■ The BackgroundWorker object encapsulates a background task and contains
 functionality to enable stopping and starting the task, as well as reporting to the
main thread. For finer control, Thread objects can be created directly. In Windows
Forms, you must query the Control.InvokeRequired property of a control to ensure safe
 cross-thread access. In WPF, you can use the Dispatcher object for safe cross-thread
access.

 168 Chapter 2 Designing the Presentation Layer

Answers

This section contains the answers to the Object Reviews and the Thought Experiments.

Objective 2.1: Review
1. Correct Answer: B

A. Incorrect: The WindowsFormsHost allows you to host a Windows Forms control in
a WPF application.

B. Correct: The ElementHost allows you to host a WPF control in a Windows Forms
application.

C. Incorrect: The Grid element is a container that hosts other controls in a WPF
 application, but it cannot be used independently in Windows Forms applications.

D. Incorrect: The Form class is the base class for Windows Forms application, but it
cannot host WPF controls independently.

2. Correct Answer: D

A. Incorrect: Windows Forms lack the required responsiveness to styles for this
 application.

B. Incorrect: WPF does not have an inherent MaskedTextBox control.

C. Incorrect: Windows Forms lack the required responsiveness to styles, and added
WPF controls would not be helpful in this instance.

D. Correct: A WPF application will be responsive to styles, but you can use the
 Windows Forms MaskedTextBox control for the specialized input.

Objective 2.1: Thought Experiment
1. For this application, WPF is the best choice for implementing the Presentation layer.

While there are some globalization and localization concerns for which Windows
Forms would offer a superior development experience, they are fairly minor, requiring
no changes in the presentation language of the UI, and these concerns are outweighed
by the WPF advantages in the use of Styles and multimedia presentation.

2. User responsiveness can be maintained by using the BackgroundWorker component to
process the background tasks while the UI remains responsive. When the UI needs to be
updated from the background thread, this can be done safely using this Dispatcher object.

Objective 2.2: Review
1. Correct Answer: C

A. Incorrect: It is not necessary to provide audio cues for all important information,
and it is important to convey no information by sound alone.

 Answers Chapter 2 169

B. Incorrect: An accessible application should supply support for standard system
settings.

C. Correct: An accessible application should ensure compatibility with the
 high-contrast mode.

D. Incorrect: An accessible application should provide documented keyboard access
to all important functionalities.

2. Correct Answer: D

A. Incorrect: Because these Brush objects need to be used in many different
 elements, defining them at the individual element level would require a great deal
of redundancy.

B. Incorrect: Because these Brush objects need to be used in each window, defining
them at the window level would be redundant.

C. Incorrect: Although defining these resources at the application level would enable use
across the entire application, it would not facilitate reuse across multiple applications.

D. Correct: By defining your resources in a resource dictionary, you can share the
file between applications, as well as import the resources contained therein at the
window or application level as needed.

Objective 2.2: Thought Experiment
1. It’s a good start. However, they could simplify development and improve consistency

by using styles instead.

2. Maybe. However, for accessibility, it’s better to use standard system settings for
size, color, and font. When you use standard system settings, any changes the user
makes to the operating system to better support accessibility needs will be reflected
in the application. Since the organization is concerned about it, it should perform
 accessibility testing, as described in Objective 5.2, “Evaluate and Recommend a Test
Strategy,” in Chapter 5, “Designing for Stability and Maintenance.”

Objective 2.3: Review
1. Correct Answer: C

A. Incorrect: The Page or PageFunction for the custom journal entry must implement
IProvideCustomContent.

B. Incorrect: You must call NavigationService.AddBackEntry to create the custom
back entry.

C. Correct: You do not need an instance of JournalEntry to create a custom back entry.

D. Incorrect: You must create a class that inherits from CustomContentState to store
the state of the page.

 170 Chapter 2 Designing the Presentation Layer

2. Correct Answer: B

A. Incorrect: FragmentNavigation occurs after LoadCompleted, and Navigation-
Progress occurs after Navigated.

B. Correct: This is the correct order in which navigation events fire.

C. Incorrect: NavigationProgress occurs after Navigated.

D. Incorrect: FragmentNavigation occurs after LoadCompleted.

Objective 2.3: Thought Experiment
1. No, a WPF page-based application is the best choice. Page-based applications are

perfect for completing straightforward, linear tasks such as data entry.

2. Yes. You can remove pages from the journal by calling NavigationService.Remove
BackEntry repeatedly.

3. Yes (though it might be confusing to the user). To accomplish this, call
NavigationService.AddBackEntry and provide an instance of a class that derives from
CustomContentState and contains the state information for the page that the user
should return to when she clicks Back.

Objective 2.4: Review
1. Correct Answer: B

A. Incorrect: Although data type validation will validate that the input is an integer, it
will not validate the allowed range of values correctly.

B. Correct: Range checking will validate both data type and range.

C. Incorrect: Lookup validation is not required because the expected data falls within
a consistent range.

D. Incorrect: Complex validation is not required because the expected data falls
within a consistent range.

2. Correct Answer: D

A. Incorrect: The <DataTemplate> tags must be enclosed in <ListBox.
Item- Template> tags to set the data template to the ItemTemplate property.

B. Incorrect: The data template must be set to the ItemTemplate property, not the
ItemsSource property.

C. Incorrect: The data template must be enclosed in <DataTemplate> tags.

D. Correct: The data template is set correctly.

 Answers Chapter 2 171

Objective 2.4: Thought Experiment
1. Overall, the design is solid. However, it has one major flaw: all data validation occurs

on the client. Client data validation is useful for improving the responsiveness of the
application; however, for security and data integrity, you also must implement data
validation on the server. This is particularly important because Lucerne plans to expose
the web service to other clients, which might not implement proper data validation.

2. It might work, but it’s not a good UI design choice. First, it fails to indicate which
 element on a page failed to validate. Second, it provides poor accessibility because it
would not be meaningful to users who could not distinguish the colors red and green.

Objective 2.5: Review
1. Correct Answer: C

A. Incorrect: A multi-trigger requires that all conditions be met before activating its
Setters. In this case, Textbox1 is not focused.

B. Incorrect: A multi-trigger requires that all conditions be met before activating its
Setters. In this case, the mouse is not over Textbox1.

C. Correct: A multi-trigger is active when all conditions defined in it are met.

D. Incorrect: A multi-trigger requires that all conditions be met before activating its
Setters, and will only activate when all conditions are met.

E. Incorrect: When all the conditions are met, the multi-trigger activates.

2. Correct Answer: D

A. Incorrect: Although most drag-and-drop operations begin in the MouseDown
event on the source control, it is not required that they begin there.

B. Incorrect: Although it is recommended that the DragEnter event handler be used
to examine the data object and set the Effect property as appropriate, it is not
required.

C. Incorrect: The DragLeave event is used to execute code when data is dragged out
of a control, but it is not necessary for the drag-and-drop operation.

D. Correct: The DragDrop event is the only event that must be handled to complete
a drag-and-drop operation.

Objective 2.5: Thought Experiment
1. There are many ways to initiate the animation. The simplest would be to use validation

and validate that the file name ends in one of the acceptable image file extensions.

2. There are also many ways to implement the animation. However, an attached behavior
would simplify adding the behavior to multiple buttons.

 172 Chapter 2 Designing the Presentation Layer

3. Not if it’s running in a partial trust environment, which most XBAP applications do.
They either need to configure the application for full trust (which supports true
 drag-and-drop functionality) or they need to simulate drag-and-drop functionality in
the partial trust environment.

Objective 2.6: Review
1. Correct Answers: A and B

A. Correct: RunWorkerAsync raises the DoWork event, which must be handled to run
code on the background thread.

B. Correct: The DoWork event handler contains the code that will be run on the
background thread.

C. Incorrect: Handling the ProgressChanged event is not required.

D. Incorrect: Setting WorkerSupportsCancellation to True is not required.

2. Correct Answers: A and C

A. Correct: The Dispatcher.BeginInvoke method will execute a method
 asynchronously and safely on the main thread.

B. Incorrect: Direct access of the UI from a background thread is not allowed.

C. Correct: Using the built-in mechanism of BackgroundWorker for reporting is the
preferred way to report progress that can be expressed numerically.

D. Incorrect: Direct access of the UI from a background thread is not allowed.

Objective 2.6: Thought Experiment
1. Yes.

2. Yes, the sorting should occur on the client. Sorting by these values should happen
quickly, even on lower-powered clients. In addition, because the application is con-
necting to public web services, the application might not have the ability to request
the list to be sorted differently by the server.

3. Yes. They could lower the frame rate of the animations to reduce the performance
impact.

4. Yes, the CLR Profiler is an excellent tool for identifying memory leaks, and it can be
downloaded for free from Microsoft.

303

Navigation applications in WPF, 117–124
PageFunction class, 124–125
simple navigation, 125
structured navigation, 125

assemblies
accessing from unmanaged code, 52
version number considerations, 26

Assembly Registration Tool (RegAsm.exe), 53
asynchronous services, 24
Atom feeds, 198
attached events, 143
authentication

claims-based, 43
designing trusted subsystems, 39–41
hashed passwords, 47
HTTPS support, 46
impersonation and delegation considerations, 37
planning role management, 44–45

authorization
designing model, 51
federated security, 41–43

autonomous services, 3

B
background processes

announcing completion of, 156
cancelling, 156
reporting progress of, 157
requesting status of, 158
returning values from, 156

BackgroundWorker component, 156–161
backward compatibility, 25–26
basicHttpBinding binding type, 16
BehaviorExtensionElement class, 23

Index

A
acceptance testing, 277
accessibility requirements

design considerations, 109
high-contrast option, 110, 280
keyboard focus location, 110
keyboard navigation, 110
notification considerations, 110
standard system settings, 109
Windows Forms controls, 111

accessibility testing, 280
accessing data. See databases
Access (Microsoft), 178
AD DS (Active Directory Domain Services)

delegation, 38
federated security, 42

administrative privileges, 31
ADO.NET

about, 174
flat file support, 174, 178

ADO.NET data services, 176–177
ADO.NET Sync Services, 195
Animation classes, 147–148
API testing, 278
App.config file, 243
AppDomain class, 34
AppDomainSetup class, 34
application domains, 34
application life cycle, 225
Application Logic layer. See Business Logic layer
application resources, 106
application variables, 139–140
application workflow

design considerations, 113
designing for different input types, 126
implementing user navigation, 114–117

304

binding data

defining deployment strategy, 226–236
designing for long-running processes, 57
exception handling, 272
logging events, 292
sorting/filtering data considerations, 163–164

cloud computing, 63
CLR (Common Language Runtime)

MSL support, 186
partial trust and, 32–33

CLR Profiler, 164, 294
code access security (CAS), 31–34
code coverage criteria (testing), 282
cohesion, defined, 14–15
CollectionViewSource class, 136
COM (Component Object Model)

about, 52
accessing assemblies from unmanaged code, 52
accessing COM objects, 53–54

Common Language Runtime (CLR)
MSL support, 186
partial trust and, 32–33

communicational cohesion, 15
COM objects

accessing, 53–54
deploying, 234

Component Object Model (COM)
about, 52
accessing assemblies from unmanaged code, 52
accessing COM objects, 53–54

Computer Management console
Event Trace Sessions snap-in, 286
Event Viewer snap-in, 285
Performance Monitor tool, 294
WMI support, 290

Conceptual Schema Definition Language (CSDL), 186
concurrency

cross-tier distributed transactions, 207
defined, 203
design considerations, 203
designing for web services, 206
planning for multiuser conflicts, 203–205

concurrency issue, defined, 204
condition coverage (testing criteria), 282
connection objects, 174
Constantine, Larry, 101
constrained delegation, 38–39
content-based routing, 8–10
content delivery networks (CDNs), 47
context-based routing, 8

binding data
choosing binding types, 16–17
developing design strategy, 134–139
long-running processes and, 58–59

BindingSource class, 134–135
BizTalk Server, 10–11
black box testing

about, 276
acceptance testing and, 277
range testing, 278
unit testing and, 278

“black hat” hackers, 279
buffer overflow attacks, 279
Business Logic layer. See also WCF web services

about, 4
choosing between Presentation layer and, 6–7
determining component installation order, 256
exception handling, 270
sample implementations, 5, 254–255

Button class, 57, 104

C
CA (certification authority), 48, 228
caching data

design considerations, 189–190
web services, 190–191

CancelEventArgs class, 130
capacity testing, 281
CAS (code access security), 31–34
CDNs (content delivery networks), 47
central deployment, 243
centralized logging, 292
certificates, deploying, 228
certification authority (CA), 48, 228
CertMgr.exe tool, 228
change management strategies for schemas, 184
chatty application communications, 64
chunky application communications, 64
claims-based authentication, 43
C# language, 159
ClickOnce

deployment strategies, 226–228, 231
update strategies, 247–248

client-side tasks. See also Presentation layer
choosing between server-side tasks and, 6–7
data validation, 130

305

data validation

developing design strategy, 134–139
long-running processes and, 58–59

data caching
design considerations, 189–190
web services, 190–191

Data Collector Sets, 288, 294
DataContract attribute, 19, 183
data contracts, 20–88
DataContractSerializer class, 183
data integrity, 24
Data layer

about, 4, 173
analyzing data services for optimization, 210–215
choosing appropriate access strategy, 174–181
designing concurrent multiuser environment,
 203–210
designing data caching, 189–193
designing data object model, 181–188
designing data synchronization, 194–203
designing offline storage, 194–203
determining component installation order, 256
sample implementations, 6–7, 254–255

DataMember attribute, 20, 183
DataObject class, 150–153
data object model

abstracting from service layer, 185–186
defined, 181
mapping to persistent storage, 182–184
schema change management strategies, 184

DataReader class, 174
DataService class, 177
DataSet class, 134, 174
DataTable class, 174
data templates, 138
data-tier projects (DAC), 239
Data Transfer Objects (DTOs), 210, 213
data triggers, 145
data validation

client-side, 130
complex validation, 130
data type validation, 129
error handling, 132–134
implementing custom rules, 132
lookup validation, 129
range checking, 129
server-side, 130
trust boundaries and, 24
WPF applications, 131

contracts
data, 19–22
message, 19
services sharing, 3

controls. See Windows Forms controls; WPF controls
conversational exchanges, 25
Coordinated Universal Time (UTC), 72
credit card processing services, 64
cross-thread function calls, 161–162
cross-tier distributed transactions, 207–208
cryptography

about, 45
digital signatures, 48–49
federated security and, 42
IPsec, 46
SSL, 46–47
storing passwords, 47–48

Crystal Reports reporting tool, 292
CSDL (Conceptual Schema Definition Language), 186
CSV format, 178
CsvReader library, 178
CultureAndRegionInfoBuilder class, 71
CultureInfo class, 74
CurrentCulture class, 70, 74
CurrentUICulture class, 70

D
DAC (data-tier projects), 239
.dacpac format, 237, 239
Database Publishing Wizard, 240–241
databases

about, 174
choosing access strategies, 174–181
concurrent multiuser access, 203–210
deploying privately, 242
designing data caching, 189–193
designing data object model, 181–188
designing offline storage, 194–197
designing synchronization, 198–201
embedded, 242
planning deployment, 237–246
publishing from Server Explorer, 240–241
publishing with WCF web services, 241–242
synchronizing schemas between, 238

data binding
choosing binding types, 16–17

306

DateTime class

implementing between applications, 153
initiating in Windows Forms, 151
source control events, 149
target control events, 149
WPF applications, 151

DragDropEffects enumeration, 150–151
DragDrop event, 150, 153
DragEnter event, 150, 152
DragEventArgs object, 150
dstributed logging, 292
DTOs (Data Transfer Objects), 210, 213
duration testing, 282
dynamic resources, 106–107

E
eager loading, 212–213
ElementHost control, 92
embedded databases, deploying privately, 242
encryption, defined, 45
endurance testing, 282
Entity Framework

about, 174–175
abstracting data model, 185–186
choosing as data access strategy, 179
database mapping, 183
lazy loading, 212
optimistic locking, 204
ORM and, 211–212
SQL Profiler tool, 295

error handling
across tiers, 267–270
best practices, 266–267
collecting user feedback, 270–272
creating custom exception classes, 272
data validation, 132–134
designing strategies, 266–267
processing unhandled exceptions, 272
stability testing and, 277

Error object, 133
evaluating

conceptual design, 100–172
test strategies, 275–285

Event Forwarding, 292, 294
event handling

attached events, 143
drag-and-drop operations, 148–154

DateTime class, 72
DateTimeOffset class, 73
.dbschema files, 237, 238, 240
DbServerSyncProvider class, 196, 198
deadlock conflicts, 205
decision coverage (testing criteria), 282
deferred loading, 212–213
delegation

authentication and, 39
constrained, 38–39
recommended usage, 36

DELETE verb (HTTP), 18
demilitarized zone (DMZ), 254
denial-of-service (DoS) attacks, 279, 293
deployment, solution

defining client strategy, 226–236
designing update strategies, 246–253
planning considerations, 225
planning for databases, 237–246
planning for n-tier applications, 253–258

deserialization, file mapping and, 183
diagnostics and monitoring

centralized logging, 292
design considerations, 285, 293–294
distributed logging, 292
profiling technique, 294–295
providing monitoring information, 285–291
usage reporting, 288, 291–292

dialog boxes
creating custom, 102
file, 93
modal, 103
modeless, 103
in WPF applications, 93

DialogResult class, 103
Dispatcher class, 160–161
DispatcherUnhandledException event, 273
distributed transactions, 207–208
distribution points, defined, 229
DMZ (demilitarized zone), 254
DoS (denial-of-service) attacks, 279, 293
DoubleAnimationUsingPath class, 147
drag-and-drop operations

about, 148
DragDropEffects enumeration, 150–151
DragDrop event, 153
DragEnter event, 152
general sequence, 150

307

group Policy Objects (gPOs)

FileHelpers library, 178
FileIOPermission class, 34
file sharing, 52
file version number, 26
filtering data, 163–164
Finally clause, 267
firewalls, binding types and, 16
flat files

ADO.NET support, 174, 178
defined, 178

formatting strings, 71–72
frames

defined, 119
hosting pages in, 119

full-mesh topology, 200
functional cohesion, 15
functional tests

acceptance testing, 277
API testing, 278
integration testing, 278
range testing, 278
security testing, 278
stability testing, 277
stress testing, 277, 281
unit testing, 278

function coverage (testing criteria), 282

g
GAC (Global Assembly Cache), 26, 272
GET verb (HTTP), 18
GiveFeedback event, 150
Global Assembly Cache (GAC), 26, 272
globalization and localization

comparing data, 73–74
design considerations, 69, 74
formatting text for differing cultures, 71–88
setting web page culture, 70–71
testing considerations, 279
translating applications, 72
working with time, 72

GPOs (Group Policy Objects), 228
gray box testing, 276
group membership roles

authorization and, 42, 43–44
managing, 44–45

Group Policy Objects (GPOs), 228

exceptions, 273
Navigation applications, 122–124
Windows Forms controls, 96

EventLog class, 288
Event Log (Windows)

about, 285, 286–288
centralized logging, 292
collecting user feedback, 270
distributed logging, 292
term usage for event, 286

events
defined, 286
logging client-side, 292
monitoring via Event Log, 285–288

EventSetter class, 104
event setters, 104
Event Tracing For Windows, 286, 289
event triggers, 146
Event Viewer snap-in, 285
Exception class, 266–267
exception handling

across tiers, 267–270
best practices, 266–267
collecting user feedback, 270–272
creating custom exception classes, 272
data validation, 132–134
designing strategies, 266–267
processing unhandled exceptions, 272
stability testing and, 277

explicit service boundaries, 2
extended controls, 101
Extensible Application Markup Language (XAML)

accessing resources, 106
<EventSetter> tag, 104
<Setter> tag, 104
WPF support, 91

external systems, interoperability with
accessing assemblies from unmanaged code, 52
accessing COM objects, 53–54
typical methods, 52

F
FaultException class, 268–269
federated security, 41–43
feedback, collecting for error handling, 270–272
file dialog boxes, 93–94

308

hashing

Internet Information Services (IIS)
about, 8
deadlock conflicts, 205
hosting within, 27
performance counters and, 288
process identity and, 35–36

Internet Protocol Security (IPsec), 46
interoperability with external systems

accessing assemblies from unmanaged code, 52
accessing COM objects, 53–54
typical methods, 52

interoperating between Windows Forms and
 WPF, 92–97
IProvideCustomContentState interface, 121–122
IPsec (Internet Protocol Security), 46

J
journals

adding items, 120–124
defined, 120
removing items, 120
removing PageFunction entries, 125

JSON format, 177

K
Kerberos ticket, 43
keyboard navigation, 110
key frame-based animations, 147

L
latency, minimizing, 64
layered applications, creating, 6
layers vs. tiers, 4
lazy loading, 212–213
least privilege

application domains, 34
code access security, 31–34
database design considerations, 200
defined, 31
partial trust concept, 32–33

linear animations, 147
LINQ to Entities, 175

h
hashing

defined, 45
storing passwords, 47–48

high-contrast option, 110, 280
HTTP (Hypertext Transfer Protocol)

choosing binding types, 16–18
hyperlink support, 117
RESTful web services and, 18

HTTPS (Hypertext Transfer Protocol Secure), 46
hub-and-spoke topology, 198–199
hyperlinks

about, 117
NavigateUri property, 117–118

I
IBindingList interface, 135–136
IClientMessageInspector interface, 23
ICollectionView interface, 136
IcuTest tool, 277
IDispatchMessageInspector interface, 23
IEndPointBehavior interface, 23
IEnumerable interface, 176
IExtensibleDataObject interface, 250
IIS (Internet Information Services)

about, 8
deadlock conflicts, 205
hosting within, 27
performance counters and, 288
process identity and, 35–36

IList interface, 137
impersonation

authentication and, 39
example demonstrating, 37–38
recommended usage, 36

INotifyPropertyChanged interface, 163
installation methods

choosing, 231–232
ClickOnce, 226–228, 231
Windows Installer, 228–231
XCopy, 230–231

instancing, defined, 206
integration testing, 278
internalizationalization testing, 279

309

multi-triggers

MatrixAnimationUsingPath class, 147
MdiLayout enumeration, 116–117
MDI (Multiple Document Interface) Forms

about, 90
parent form/child form model, 114–117

MediaElement class, 140
media management, 140
MediaPlayer class, 140
MemoryCache class, 189–190
memory leaks, UI-related, 164
Merge Module Project template, 248
merge modules, 248–249
merging resource dictionaries, 108
MessageContract attribute, 19
message contracts, 19
message exchange patterns, choosing, 25
MessageHeader class, 22–23
MessageHeaders class, 23–24
method granularity, 16
Microsoft Access, 178
Microsoft Message Queuing (MSMQ), 64
Microsoft.ServiceBus namespace, 65
Microsoft SQL Server

database projects, 239–240
deploying embedded databases privately, 242
editions supported, 177
synchronization considerations, 198
three-layer architecture and, 6

Microsoft Systems Center Operations
 Manager (SCOM), 287
modal dialog boxes, 103
modeless dialog boxes, 103
Model-View-Controller (MVC), 4, 97
Model-View-Presenter (MVP), 98
Model-View-ViewModel (MVVM), 4, 97
monitoring and diagnostics. See diagnostics and
 monitoring
MouseDown event handler, 150
.msi files, 248
MSL (Mapping Schema Language), 186
.msm files, 248
MSMQ (Microsoft Message Queuing), 64
multi-data-triggers, 146
multiple coverage (testing criteria), 282
Multiple Document Interface (MDI) Forms

about, 90
parent form/child form model, 114–117

multi-triggers, 145

LINQ to Objects, 176
LINQ to SQL

about, 175
abstracting data model, 186–187
choosing as data access strategy, 179
database mapping, 182–183
lazy loading, 212
ORM comparison, 211
SQL Profiler tool, 295

LINQ to XML, 178
load-balancing mechanisms, 61–62
load testing, 281
localization and globalization. See globalization
 and localization
localization testing, 279
locking records, 204–206
lock keyword (C#), 159
Lockwood, Lucy, 101
logical resources

declaring, 105
defined, 104
x:Key property, 105

Logman tool, 286
lookup validation, 129
loop coverage (testing criteria), 282
loosely coupled layered architecture

BizTalk Server, 10–11
defined, 2
presentation and business logic comparison, 6–7
separation of concern, 4
service-oriented architecture, 2–3
system topology, 4–6
WCF routing, 8–10

M
Machine.config file, 206
Magnifier accessibility aid, 110
maintenance and stability

designing diagnostics strategy, 285–297
designing monitoring strategy, 285–297
error handling, 132–134, 265–275
evaluating test strategies, 275–285
recommending test strategies, 275–285

Mapping Schema Language (MSL), 186
mapping to persistent storage, 182–184
MaskedTextBox control, 93

310

MVC (Model-View-Controller)

O
ObjectCache class, 189
object-oriented programming, 175
Object Relational Mapping (ORM), 211–212
OData (Open Data Protocol) service, 176
offline storage, 194–198
Open Data Protocol (OData) service, 176
OpenFileDialog class, 93
OperationBehaviorAttribute class, 38
OperationContract attribute, 21
optimal processing

cloud computing, 63
design considerations, 56
minimizing latency, 64
planning for long-running processes, 56–60
queuing, 63–64
round-trip time, 213–214
scaling applications, 60–63
service bus, 65
synchronization performance and, 200

optimistic locking, 204–206
ORM (Object Relational Mapping), 211–212

P
Package/Publish SQL tool, 241
packaging shared components, 248–249
PageFunction class, 117, 124–125
Parallel LINQ (PLINQ), 176
partial trust, 32–33, 228
passwords, storing, 47–48
path-based animations, 147
performance counters, 286, 288
performance monitoring tools

Event Log, 285, 286–288
Event Tracing For Windows, 286, 289
performance counters, 286, 288
Windows Management Instrumentation, 286,
290–291

Performance Monitor tool, 294
performance tests

about, 281
capacity testing, 281
duration testing, 282
endurance testing, 282
performance testing, 281
scalability testing, 281

MVC (Model-View-Controller), 4, 97
MVP (Model-View-Presenter), 98
MVVM (Model-View-ViewModel), 4, 97

N
namespaces. See specific namespaces
Narrator accessibility aid, 110
NAT (Network Address Translation), 16
navigation

bound data in WPF, 136
designing for different input types, 126
implementing, 114–117
keyboard, 110
Navigation applications in WPF, 117–124
PageFunction class, 124–125
simple, 125
structured, 125
in Windows Forms, 90

Navigation applications
defined, 91
event handling, 122–124
hosting pages in frames, 119
hyperlink usage, 117–118
journal usage, 120–121
NavigationService class, 118–119

NavigationService class
about, 118–119
event handling, 122–124
manipulating journals, 120–121

NavigationWindow class, 119
.NET Framework, deploying, 232–234
NetMsmqBinding binding type, 17
NetNamedPipeBinding binding type, 17, 58
NetPeerTcpBinding binding type, 17, 58
netTcpBinding binding type, 17, 18, 58
NetTcpContextBinding binding type, 58
Network Address Translation (NAT), 16
Network Load Balancing (NLB), 62
Network Service account, 35–88
NLB (Network Load Balancing), 62
n-tier architecture

about, 4
designing physical topology, 254–256
determining component installation order, 256
planning deployment, 253

311

RunWorkerCompleted event

Q
Query Analyzer tool, 238
QueryContinueDrag event, 150
querying XML files, 178
queuing

optimal processing and, 63–64
scalability testing and, 282

R
race coverage (testing criteria), 282
range checking, 129
range testing, 278
RegAsm.exe (Assembly Registration Tool), 53
regression testing, 276
RegSvr32.exe tool, 234
relational databases. See databases
reporting, usage, 288, 291–292
Representational State Transfer (REST), 18–19, 176
resource dictionaries

creating, 108
defined, 108
merging, 108

resource-level security, 35
resources

accessing in XAML, 106
application, 106
dynamic, 106–107
logical, 104–105
static, 106–107
storing, 108

Resources collection, 105–106
REST (Representational State Transfer), 18–19, 176
RngCryptoServiceProvider class, 58
RoboCopy tool, 231–264
roles, group membership

authorization and, 42, 43–44
managing, 44–45

round-robin DNS, 25, 61
round-trip time (RTT), 213–214
routing (WCF), 8–10
RSS feeds, 198
RTT (round-trip time), 213–214
RunWorkerCompleted event, 156

persistent storage, mapping to, 182–184
pessimistic locking, 204–206
PIA (Primary Interop Assembly), 54
PLINQ (Parallel LINQ), 176
PointAnimationUsingPath class, 147
PollingDuplexHttpBinding class, 58
polling long-running processes, 58
POST verb (HTTP), 18
PowerShell scripts, 290
Presentation layer

about, 4, 89
choosing appropriate Windows technology, 90–100
choosing between Business Logic layer and, 6–7
choosing presentation patterns, 97–99
data templates, 138
designing application workflow, 113–128
designing data presentation and input, 129–143
designing presentation behavior, 143–155
designing UI layout and structure, 100–113
designing for UI responsiveness, 155–166
determining component installation order, 256
exception handling, 270
sample implementations, 5, 254–255

presentation patterns, choosing, 97–99
Primary Interop Assembly (PIA), 54
PrincipalPermission attribute, 43–44
Print Management console, 36
private deployment, 243
private keys, 48
process identity, 35–88
processing. See background processes; optimal
 processing
profiling technique, 294–295
PropertyGrid control, 93
property setters, 104
property triggers, 144
protocols, binding types and, 16–18
public keys, 48
publishing databases

from Server Explorer, 240–241
with WCF web services, 241–242

Publish Web tool, 231
PUT verb (HTTP), 18

312

SAML (Security Assertion Markup Language) token

ServiceBehavior attribute, 206
service bus, 65
ServiceContract attribute, 21
service granularity, 14–88
service-oriented architecture (SOA)

designing, 2–3
exception handling, 270

services. See web services
ServiceSecurityContext class, 37
Setter class, 104
Setup projects, 234, 243
shared components

packaging, 248–249
updating, 249–250

shared data between forms, 139
Silverlight

PollingDuplexHttpBinding class, 58
Presentation layer and, 4

simple navigation, 125
SNI (Server Name Indication), 47
SOAP headers, custom, 22–24
SOA (service-oriented architecture)

designing, 2–3
exception handling, 270

SoC (separation of concern), 4
solution deployment

defining client strategy, 226–236
designing update strategies, 246–253
planning considerations, 225
planning for databases, 237–246
planning for n-tier applications, 253–258

solution layers, designing
about, 1
design service interaction, 13–30
globalization and localization, 69–77
interoperability with external systems, 52–56
loosely coupled layered architecture, 2–13
optimal processing, 56–69
security implementation, 30–52

sorting data, 163–164
SoundPlayer class, 140
SpeedTrace Pro tool, 295
spoofing attacks, 279
SqlCeClientSyncProvider class, 198
SqlCeSyncProvider class, 196
SQL injection attacks, 279, 293
SqlMetal.exe code generation tool, 186

S
SAML (Security Assertion Markup Language) token, 43
sandboxes, defined, 34
SaveFileDialog class, 93
scalability testing, 281
scaling applications, 60–63
schemas

designing change management strategies, 184
services sharing, 3
synchronizing between databases, 238

SCOM (Systems Center Operations Manager), 287, 294
screen refreshes, avoiding unnecessary, 162–163
scripts

PowerShell, 290
SQL, 237–238

Secure Sockets Layer (SSL), 46–47
security

authorization, 41–44
ClickOnce deployment, 228
cryptography, 45–49
database deployment conflicts, 242
error handling considerations, 265
impersonation and delegation, 36–41
least privilege, 31–34, 200
process identity, 35–88
resource-level, 35
role management, 44–45
typical elements, 30
User Account Control, 31

Security Assertion Markup Language (SAML) token, 43
security classes, 45
security testing, 278
semantic compatability, SOA service and, 3
separation of concern (SoC), 4
sequential cohesion, 15
serialization, file mapping and, 183
Server Explorer, publishing databases from, 240–241
Server Manager console

Event Viewer snap-in, 285
Performance Monitor tool, 294
WMI support, 290

Server Name Indication (SNI), 47
server-side tasks. See also Business Logic layer

choosing between client-side tasks and, 6–7
data validation, 130
designing for long-running processes, 58–59
sorting/filtering data considerations, 163–164

313

Thread object

synchronous services, 24
SyncLock keyword (Visual Basic), 159
Sync Services For File Systems, 197
SyncTable class, 196
SystemBrushes class, 107
System.Diagnostics namespace, 288
System.Drawing namespace, 109
SystemFonts class, 107, 110
System.Globalization namespace, 71
System.Management.Instrumentation namespace, 286
System.Messaging namespace, 64
SystemParameters class, 107
System.Runtime.Caching namespace, 189
Systems Center Operations Manager (SCOM), 287, 294
System.Security.Cryptography namespace, 228
System.Security.Principal namespace, 37
System.ServiceModel.Channels namespace, 23
system settings, 109
System.Threading namespace, 70, 71
system topology, designing, 4–6
System.VisualBasic namespace, 178
System.Web.Caching namespace, 189
System.Web namespace, 189
System.Windows.Forms.Integration namespace, 95
System.Windows.Forms namespace, 96

T
TCP (Transfer Control Protocol), 8
Test Automation FX tool, 277
testing

black box, 276, 277, 278
code coverage considerations, 282
evaluating strategies, 275
functional, 277–279
gray box, 276
load, 281
performance, 281–282
recommending strategies, 275
regression, 276
schema changes, 185
UI, 279–280
white box, 276, 278, 282

Thread object, 158–159

SQL Profiler, 295
SQL scripts, 237–238
SqlServerAdapterBuilder class, 196
SQL Server Data-tier Application template, 239
SQL Server Management Studio, 238, 239
SQL Server (Microsoft)

database projects, 239–240
deploying embedded databases privately, 242
editions supported, 177
synchronization considerations, 198
three-layer architecture and, 6

SqlSyncProvider class, 196
SSDL (Store Schema Definition Language), 185
SSL (Secure Sockets Layer), 46–47
stability and maintenance. See maintenance and
 stability
stability testing, 277
Startup event handler, 243
stateful service exchanges, 25
stateless service exchanges, 25
statement coverage (testing criteria), 282
static resources, 106–107
storage

database considerations, 177–178
offline, 194–198
password considerations, 47–48
persistent, 182–184
resource considerations, 108

Store Schema Definition Language (SSDL), 185
stress testing, 277, 281
String.Format() method, 71–72
strings, formatting, 71–72
structural compatability, SOA service and, 3
structured navigation, 125
Style class, 92, 103–104
styles

about, 103
WPF support, 103–105

SyncAdapter class, 196
Sync Framework

designing synchronization, 198–201
offline data storage and, 194–198

synchronization
accessing files offline, 197
database considerations, 198–201
schemas between databases, 238
thread considerations, 159

314

threads

offloading operations from UI thread, 156–161
sort/filter considerations, 163–164

UI tests
about, 279
accessibility testing, 280
globalization testing, 279
internalizationalization testing, 279
localization testing, 279
usability testing, 279

UnhandledException event, 273
unit testing, 278
unmanaged code, accessing assemblies from, 52–53
updating applications

checking for updates, 249
ClickOnce considerations, 247–248
design considerations, 246–247
designing web services for updates, 249–250
packaging shared components, 248–249
updating shared components, 249–250
Windows Installer support, 248

usability testing, 279
usage reporting

about, 291–292
performance counters and, 288

User Account Control (UAC), 31
User Datagram Protocol (UDP), 8
user feedback, collecting for error handling, 270–272
user interface. See UI layout and structure; UI
 responsiveness
User.IsInRole method, 44
user name/password token, 43
user navigation. See navigation
UTC (Coordinated Universal Time), 72

V
Validated event, 130
validating data

client-side, 130
complex validation, 130
data type validation, 129
error handling, 132–134
implementing custom rules, 132
lookup validation, 129
range checking, 129
server-side, 130
trust boundaries and, 24
WPF applications, 131

threads
accessing controls, 161
creating, 158
cross-thread function calls, 161–162
deadlock conflicts and, 206
destroying, 159
starting, 158
synchronizing, 159–160
testing criteria coverage, 282

three-layer architecture
designing topology, 4–6, 254–255
exception handling, 270

tiers vs. layers, 4
tiger team, defined, 279
TimeZone class, 73
TimeZoneInfo class, 73
tokens, authorization and, 42–44
Tracefmt tool, 286
Tracelog tool, 286
Tracerpt tool, 286
TransactionScope class, 207
transactions, distributed, 207–208
Transfer Control Protocol (TCP), 8
translating applications, 72
Trigger objects, 144–147
trust boundaries, managing data integrity, 24–88
Trusted Application Deployment, 228
trusted subsystems, designing, 40–41
Type Library Importer tool, 53

u
UAC (User Account Control), 31
UDP (User Datagram Protocol), 8
UI layout and structure. See also Presentation layer

choosing presentation pattern, 97–99
creating resource dictionary, 108–109
custom control considerations, 111
designing for accessbility, 109–111
designing for inheritance, 101–107
dialog boxes and, 93, 103
evaluating conceptual design, 100–101
reusing visual elements, 101–107

UI responsiveness
addressing memory issues, 164
avoiding unnecessary screen refreshes, 162–163
cross-thread function calls, 161–162
design considerations, 155

315

WindowsImpersonationContext class

protocols and binding types, 16–18
round-trip time, 213
service and method granularity, 14–16
synchronous vs. asynchronous, 24
versioning considerations, 25–27

WF (Windows Workflow Foundation), 59–60
white box testing

about, 276
code coverage considerations, 282
unit testing and, 278

“white hat” hackers, 279
White tool, 277
Windows applications, defined, 91
Windows Azure, 65
Windows Event Log

about, 285, 286–288
centralized logging, 292
collecting user feedback, 270
distributed logging, 292
term usage for event, 286

Windows Forms
about, 4, 90
choosing between WPF and, 92
ClickOnce deployments, 226
cross-thread function calls, 161–162
data binding, 134
data validation, 130
drag-and-drop operations, 151
extending, 102
implementing navigation, 114–117
interoperating between WPF and, 92–97
managing shared data, 139
navigation in, 90

Windows Forms controls
accessibility properties, 111
adding to WPF applications, 95
creating extended controls, 101
Name property, 97
obtaining references to, 97
setting event handlers, 96
setting properties in, 96
WPF controls and, 93

WindowsFormsHost class, 95–96
WindowsFormsIntegration assembly, 95
WindowsIdentity class, 38
Windows Identity Foundation, 43
WindowsImpersonationContext class, 37

Validating event, 130
ValidationError class, 132
ValidationErrorEventArgs class, 133
ValidationRule class, 132
ValidationRules class, 131
versioning

schema change managment strategies, 185
for services, 25–27

Vsdbcmd.exe tool, 238

W
WAS (Windows Process Activation Service), 27
WCF data services

about, 176–177
choosing as data access strategy, 179
creating, 176

WCF routing, 8–10
WCF web services

Business Logic layer and, 4, 5
choosing as data access strategy, 179
deadlock conflicts, 205
designing, 12
designing concurrency, 206
exception handling, 267
hosting, 27
logging events, 293
performance counters and, 288
publishing databases, 241–242
REST support, 19
WCF data services and, 176

web browsers, ClickOnce deployments, 227
Web.config file, 9
webHttpBinding binding type, 17
web services. See also specific web services

caching, 190–191
custom SOAP headers, 22–24
data integrity and, 24
design considerations, 13, 29
designing concurrency, 206
designing for long-running processes, 58–59
designing for updates, 249–250
exception handling, 267
hosting WCF services, 27
interoperability with external systems, 52
message and data contracts, 19–22
message exchange patterns, 25

316

Windows Installer

WPF controls
Child property, 92
custom controls and, 111
Windows Forms controls and, 93

WSDualHttpBinding binding type, 16, 58
wsHttpBinding binding type, 16, 18

X
XAML (Extensible Application Markup Language)

accessing resources, 106
data templates, 138
<EventSetter> tag, 104
<Setter> tag, 104
WPF support, 91

XBAPs (XAML Browser Applications)
about, 32, 91
journal support, 120–121

XCopy deployment, 230–231
XmlDataProvider class, 137–138
XML files

binding WPF elements to data in, 137
mapping, 182, 183
querying, 178

XPath expressions, 137

Windows Installer
checking for updates, 249
deployment strategies, 228–231
update strategies, 248

Windows.Management
 .Instrumentation namespace, 290
Windows Management Instrumentation (WMI),
 286, 290–291
Windows PowerShell scripts, 290
Windows Presentation Foundation. See WPF
 (Windows Presentation Foundation)
Windows Process Activation Service (WAS), 27
Windows Workflow Foundation (WF), 59–60
WMI (Windows Management Instrumentation),
 286, 290–291
WPF (Windows Presentation Foundation)

about, 4, 5
application types supported, 90–91
choosing between Windows Forms and, 92
ClickOnce deployments, 226
creating application variables, 139
cross-thread function calls, 161–162
data binding, 135–137
data validation, 131
drag-and-drop operations, 151
implementing navigation, 114–117
interoperating between Windows Forms and, 92–97
managing shared data, 139
memory leaks, 164
Navigation applications, 91, 117–124
resource usage, 104–107
style usage, 103–105

About the Authors

TONy NORThRuP, MCPD, MCITP, MCSE, and CISSP, is a consultant and
author living in Waterford, Connecticut. Tony started C++ and assembly
programming long before Microsoft Windows 1.0 was released, but he
has focused on Windows development and administration for the last 18
years. He has created about 30 books and several video training courses
 covering Windows development, networking, and security. Among other
titles, Tony is coauthor of the MCTS Self-Paced Training Kit (Exam 70-515):
Web Applications Development with Microsoft .NET Framework 4 (Microsoft

Press, 2010) and MCTS Self-Paced Training Kit (Exam 70-536): Microsoft® .NET Framework Ap-
plication Development Foundation (Microsoft Press, 2008). You can learn more about Tony by
friending him on Facebook at http://facebook.com/tony.northrup, visiting his personal website
at http://www.northrup.org, and reading his technical blog at http://vistaclues.com.

MATThEW A. STOECKER , MCP, has written numerous books and articles on Microsoft Visual
Basic, Visual C#, Windows Forms, and Windows Presentation Foundation, including
MCTS Self-Paced Training Kit (Exam 70-502), MCTS Self-Paced Training Kit (Exam 70-505), and
MCTS Self-Paced Training Kit (Exam 70-511).

	Introduction
	Microsoft Certified Professional Program
	Acknowledgments
	Support and Feedback
	Preparing for the Exam

	Chapter 1: Designing the Layers of a Solution
	Objective 1.1: Design a Loosely Coupled Layered Architecture
	Designing Service-Oriented Architectures
	Providing Separation of Concern
	Designing a System Topology
	Choosing Between Presentation and Business Logic
	Using WCF Routing
	Understanding BizTalk Server
	Objective Summary
	Objective Review

	Objective 1.2: Design Service Interaction
	Designing Service and Method Granularity
	Choosing Protocols and Binding Types
	Using REST
	Using Message and Data Contracts
	Using Custom SOAP Headers
	Managing Data Integrity
	Choosing Synchronous vs. Asynchronous
	Choosing a Message Exchange Pattern
	Versioning
	Hosting WCF Services
	Objective Summary
	Objective Review

	Objective 1.3: Design the Security Implementation
	Planning for User Account Control
	Designing for Least Privilege
	Understanding Process Identity
	Understanding Impersonation and Delegation
	Implementing Authorization
	Planning Role Management
	Using Cryptography
	Objective Summary
	Objective Review

	Objective 1.4: Design for Interoperability with External Systems
	Accessing Assemblies from Unmanaged Code
	Accessing COM Objects
	Objective Summary
	Objective Review

	Objective 1.5: Design for Optimal Processing
	Planning for Long-Running Processes
	Scaling Applications
	Moving to the Cloud
	Using Queuing
	Minimizing Latency
	Using a Service Bus
	Objective Summary
	Objective Review

	Objective 1.6: Design for Globalization and Localization
	Choosing Between CurrentCulture and CurrentUICulture
	Format Text for Differing Cultures
	Translating Applications
	Working with Time
	Comparing Data
	Designing Databases for Globalization
	Objective Summary
	Objective Review

	Chapter Summary
	Answers
	Objective 1.1: Review
	Objective 1.1: Thought Experiment
	Objective 1.2: Review
	Objective 1.2: Thought Experiment
	Objective 1.3: Review
	Objective 1.3: Thought Experiment
	Objective 1.4: Review
	Objective 1.4: Thought Experiment
	Objective 1.5: Review
	Objective 1.5: Thought Experiment
	Objective 1.6: Review
	Objective 1.6: Thought Experiment

	Chapter 2: Designing the Presentation Layer
	Objective 2.1: Choose the Appropriate Windows Technology
	Windows Forms
	WPF
	Choosing Between Windows Forms and WPF
	Interoperating Between Windows Forms and WPF
	Choosing a Presentation Pattern
	Objective Summary
	Objective Review

	Objective 2.2: Design the UI Layout and Structure
	Evaluate the Conceptual Design
	Designing for Inheritance and the Reuse of Visual Elements
	Creating a Resource Dictionary
	Designing for Accessibility
	Deciding When Custom Controls Are Needed
	Objective Summary
	Objective Review

	Objective 2.3: Design Application Workflow
	Implementing User Navigation
	Navigation Applications in WPF
	Using PageFunction Objects
	Simple Navigation and Structured Navigation
	Designing for Different Input Types
	Objective Summary
	Objective Review

	Objective 2.4: Design Data Presentation and Input
	Designing Data Validation
	Design a Data Binding Strategy
	Managing Data Shared Between Forms
	Managing Media
	Objective Summary
	Objective Review

	Objective 2.5: Design Presentation Behavior
	Determine Which Behaviors Will Be Implemented and How
	Creating Attached Behaviors
	Implementing Drag-and-Drop Functionality
	Objective Summary
	Objective Review

	Objective 2.6: Design for UI Responsiveness
	Offloading Operations from the UI Thread and Reporting Progress
	Using Dispatcher to Access Controls Safely on Another Thread in WPF
	Avoiding Unnecessary Screen Refreshes
	Determining Whether to Sort and Filter Data on the Client or Server
	Addressing UI Memory Issues
	Objective Summary
	Objective Review

	Chapter Summary
	Answers
	Objective 2.1: Review
	Objective 2.1: Thought Experiment
	Objective 2.2: Review
	Objective 2.2: Thought Experiment
	Objective 2.3: Review
	Objective 2.3: Thought Experiment
	Objective 2.4: Review
	Objective 2.4: Thought Experiment
	Objective 2.5: Review
	Objective 2.5: Thought Experiment
	Objective 2.6: Review
	Objective 2.6: Thought Experiment

	Index

