


Windows® Sysinternals 
Administrator’s Reference

Mark Russinovich
Aaron Margosis



PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2011 by Aaron Margosis and Mark Russinovich

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any 
means without the written permission of the publisher.

Library of Congress Control Number: 2011931614

ISBN: 978-0-7356-5672-7

4 5 6 7 8 9 10 11 12  LSI  7 6 5 4 3 2

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related 
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of 
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies.  All other marks are property of 
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and 
events depicted herein are fictitious. No association with any real company, organization, product, domain name, 
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without 
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or 
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by 
this book.

Acquisitions Editor: Devon Musgrave
Developmental Editor: Devon Musgrave
Project Editor: Devon Musgrave
Editorial Production: Waypoint Press
Technical Reviewer: Christophe Nassare; Technical Review services provided by Content Master, a member of 
CM Group, Ltd.
Copyeditor: Roger LeBlanc 
Indexer: Christina Yeager
Cover: Twist Creative .Seattle

            
                  [2012-10-19]



To my fellow Windows troubleshooters: Never give up! Never surrender!

— Mark Russinovich

To Elise, who makes great things possible and then makes sure they happen.  

(And who is much cooler than I am.)

— Aaron Margosis





  v

Contents at a Glance

Part I Getting Started
 1 Getting Started with the Sysinternals Utilities  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3
 2 Windows Core Concepts  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 15

Part II Usage Guide
 3 Process Explorer  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 39
 4 Process Monitor  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 101
 5 Autoruns .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 145
 6 PsTools  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 171
 7 Process and Diagnostic Utilities  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 211
 8 Security Utilities  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 261
 9 Active Directory Utilities  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 287
 10 Desktop Utilities  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 309
 11 File Utilities  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 325
 12 Disk Utilities  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 335
 13 Network and Communication Utilities  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 351
 14 System Information Utilities  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 359
 15 Miscellaneous Utilities  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 377

Part III Troubleshooting—”The Case of the Unexplained...”
 16 Error Messages  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 383
 17 Hangs and Sluggish Performance  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 405
 18 Malware  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 427





  vii

Table of Contents
Foreword  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .xix

Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .xxi
Tools the Book Covers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .xxi
The History of Sysinternals  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .xxi
Who Should Read This Book .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . xxv

Assumptions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . xxv
Organization of This Book .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . xxv
Conventions and Features in This Book  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .xxvi
System Requirements .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .xxvi
Acknowledgments  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . xxvii
Errata & Book Support  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . xxviii
We Want to Hear from You  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . xxviii
Stay in Touch  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . xxviii

Part I Getting Started
 1 Getting Started with the Sysinternals Utilities  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3

Overview of the Utilities  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3
The Windows Sysinternals Web Site  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6

Downloading the Utilities  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 7
Running the Utilities Directly from the Web  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 10
Single Executable Image  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 11
The Windows Sysinternals Forums .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 11
Windows Sysinternals Site Blog  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 12
Mark’s Blog  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 12
Mark’s Webcasts  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 13

Sysinternals License Information  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 13
End User License Agreement and the /accepteula Switch  .  .  .  .  .  .  .  .  .  . 13
Frequently Asked Questions About Sysinternals Licensing  .  .  .  .  .  .  .  .  . 14

Microsoft is interested in hearing your feedback so we can continually improve our books and learning  
resources for you. To participate in a brief online survey, please visit: 

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!



viii Table of Contents

 2 Windows Core Concepts  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 15
Administrative Rights  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 15

Running a Program with Administrative Rights on Windows XP and Windows 
Server 2003  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 16
Running a Program with Administrative Rights on Windows Vista or Newer 
18

Processes, Threads, and Jobs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 21
User Mode and Kernel Mode  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 22
Handles  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 23
Call Stacks and Symbols .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 24

What Is a Call Stack?  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 24
What Are Symbols?  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 26
Configuring Symbols  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 28

Sessions, Window Stations, Desktops, and Window Messages  .  .  .  .  .  .  .  .  .  . 30
Terminal Services Sessions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 31
Window Stations  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 32
Desktops  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 33
Window Messages  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 34

Part II Usage Guide
 3 Process Explorer  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 39

Procexp Overview .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 39
Measuring CPU Consumption .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 41
Administrative Rights  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 42

Main Window  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 43
Process List  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 43
Customizing Column Selections  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 53
Saving Displayed Data  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 65
Toolbar Reference  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 65
Identifying the Process That Owns a Window  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 66
Status Bar  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 67

DLLs and Handles  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 67
Finding DLLs or Handles  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 68
DLL View  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 69
Handle View .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 73

Process Details .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 77
Image Tab  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 78
Performance Tab  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 79



 Table of Contents ix

Performance Graph Tab  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 80
Threads Tab  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 81
TCP/IP Tab .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 82
Security Tab  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 83
Environment Tab  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 84
Strings Tab  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 85
Services Tab  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 86
 .NET Tabs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 87
Job Tab  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 88

Thread Details  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 89
Verifying Image Signatures  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 91
System Information  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 92
Display Options  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 95
Procexp as a Task Manager Replacement .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 96

Creating Processes from Procexp .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 97
Other User Sessions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 97

Miscellaneous Features  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 97
Shutdown Options  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 97
Command-Line Switches  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 98
Restoring Procexp Defaults  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 98

Keyboard Shortcut Reference .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 98

 4 Process Monitor  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 101
Getting Started with Procmon  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 102
Events  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 104

Understanding the Column Display Defaults .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 104
Customizing the Column Display  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 107
Event Properties Dialog Box  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 108
Displaying Profiling Events  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 114
Finding an Event  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 115
Copying Event Data  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 115
Jumping to a Registry or File Location  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 115
Searching Online  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 116

Filtering and Highlighting  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 116
Configuring Filters  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 117
Configuring Highlighting  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 119
Advanced Output  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 120
Saving Filters for Later Use  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 121



x Table of Contents

Process Tree  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 122
Saving and Opening Procmon Traces  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 123

Saving Procmon Traces  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 124
Opening Saved Procmon Traces  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 125

Logging Boot, Post-Logoff, and Shutdown Activity  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 127
Boot Logging  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 127
Keeping Procmon Running After Logoff  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 128

Long-Running Traces and Controlling Log Sizes  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 129
Drop Filtered Events  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 129
History Depth  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 130
Backing Files  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 130

Importing and Exporting Configuration Settings  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 131
Automating Procmon: Command-Line Options  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 132
Analysis Tools .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 134

Process Activity Summary   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 134
File Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 136
Registry Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 137
Stack Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 138
Network Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 139
Cross Reference Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 140
Count Occurrences  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 140

Injecting Debug Output into Procmon Traces .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 141
Toolbar Reference  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 142

 5 Autoruns .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 145
Autoruns Fundamentals .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 146

Disabling or Deleting Autostart Entries  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 148
Autoruns and Administrative Permissions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 148
Verifying Code Signatures  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 149
Hiding Microsoft Entries  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 150
Getting More Information About an Entry .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 151
Viewing the Autostarts of Other Users  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 151
Viewing ASEPs of an Offline System  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 152
Listing Unused ASEPs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 152
Changing the Font  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 153

Autostart Categories  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 153
Logon  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 153
Explorer .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 155
Internet Explorer  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 157



 Table of Contents xi

Scheduled Tasks  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 158
Services  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 158
Drivers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 159
Codecs .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 160
Boot Execute  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 160
Image Hijacks .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 161
AppInit  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 162
KnownDLLs .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 162
Winlogon  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 163
Winsock Providers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 164
Print Monitors  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 164
LSA Providers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 164
Network Providers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 165
Sidebar Gadgets  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 165

Saving and Comparing Results  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 166
Saving as Tab-Delimited Text  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 166
Saving in Binary ( .arn) Format .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 166
Viewing and Comparing Saved Results  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 167

AutorunsC .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 167
Autoruns and Malware .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 168

 6 PsTools  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 171
Common Features .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 172

Remote Operations .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 172
Troubleshooting Remote PsTools Connections  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 174

PsExec  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 176
Remote Process Exit  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 177
Redirected Console Output .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 178
PsExec Alternate Credentials .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 179
PsExec Command-Line Options  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 180
Process Performance Options   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 180
Remote Connectivity Options .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 181
Runtime Environment Options  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 181

PsFile  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 184
PsGetSid  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 185
PsInfo  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 187
PsKill  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 188
PsList  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 189
PsLoggedOn .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 191



xii Table of Contents

PsLogList .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 192
PsPasswd .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 196
PsService .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 197

Query .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 198
Config  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 199
Depend  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 200
Security  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 201
Find  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 202
SetConfig  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 202
Start, Stop, Restart, Pause, Continue  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 202

PsShutdown  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 203
PsSuspend  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 205
PsTools Command-Line Syntax .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 206

PsExec  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 206
PsFile  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 206
PsGetSid  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 206
PsInfo  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 207
PsKill  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 207
PsList  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 207
PsLoggedOn .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 207
PsLogList .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 207
PsPasswd .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 207
PsService .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 207
PsShutdown  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 208
PsSuspend  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 208

PsTools System Requirements .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 208

 7 Process and Diagnostic Utilities  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 211
VMMap  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 211

Starting VMMap and Choosing a Process .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 212
The VMMap window  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 214
Memory Types  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 216
Memory Information  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 217
Timeline and Snapshots  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 218
Viewing Text Within Memory Regions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 220
Finding and Copying Text  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 221
Viewing Allocations from Instrumented Processes .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 221
Address Space Fragmentation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 224
Saving and Loading Snapshot Results  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 225



 Table of Contents xiii

VMMap Command-Line Options  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 226
Restoring VMMap defaults  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 227

ProcDump  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 227
Command-Line Syntax  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 228
Specifying Which Process to Monitor  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 229
Specifying the Dump File Path  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 229
Specifying Criteria for a Dump  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 230
Dump File Options  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 232
Miniplus Dumps  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 233
Running ProcDump Noninteractively  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 235
Capturing All Application Crashes with ProcDump  .  .  .  .  .  .  .  .  .  .  .  .  .  . 236
Viewing the Dump in the Debugger  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 236

DebugView .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 237
What Is Debug Output?  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 237
The DebugView Display  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 238
Capturing User-Mode Debug Output  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 240
Capturing Kernel-Mode Debug Output  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 241
Searching, Filtering, and Highlighting Output .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 242
Saving, Logging, and Printing .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 245
Remote Monitoring  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 247

LiveKd  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 249
LiveKd Requirements  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 250
Running LiveKd  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 250
LiveKd Examples  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 251

ListDLLs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 253
Handle .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 256

Handle List and Search .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 256
Handle Counts  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 259
Closing Handles .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 260

 8 Security Utilities  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 261
SigCheck  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 261

Signature Verification  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 263
Which Files to Scan  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 264
Additional File Information  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 265
Output Format .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 267

AccessChk .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 267
What Are “Effective Permissions”? .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 267
Using AccessChk  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 268



xiv Table of Contents

Object Type  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 270
Searching for Access Rights .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 272
Output Options  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 273

AccessEnum  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 275
ShareEnum  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 277
ShellRunAs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 278
Autologon  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 280
LogonSessions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 280
SDelete  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 283

Using SDelete  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 284
How SDelete Works  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 285

 9 Active Directory Utilities  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 287
AdExplorer  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 287

Connecting to a Domain  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 287
The AdExplorer Display  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 288
Objects  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 290
Attributes  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 291
Searching  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 293
Snapshots  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 294
AdExplorer Configuration  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 296

AdInsight  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 296
AdInsight Data Capture  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 297
Display Options  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 300
Finding Information of Interest  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 301
Filtering Results  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 303
Saving and Exporting AdInsight Data  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 305
Command-Line Options .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 306

AdRestore  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 306

 10 Desktop Utilities  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 309
BgInfo  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 309

Configuring Data to Display  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 310
Appearance Options .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 313
Saving BgInfo Configuration for Later Use .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 315
Other Output Options  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 315
Updating Other Desktops  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 317

Desktops .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 318



 Table of Contents xv

ZoomIt  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 320
Using ZoomIt  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 320
Zoom Mode  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 321
Drawing Mode .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 322
Typing Mode  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 323
Break Timer  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 323
LiveZoom  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 324

 11 File Utilities  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 325
Strings  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 325
Streams  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 326
NTFS Link Utilities  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 328

Junction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 329
FindLinks .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 330

DU (Disk Usage) .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 331
Post-Reboot File Operation Utilities  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 333

PendMoves .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 333
MoveFile  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 334

 12 Disk Utilities  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 335
Disk2Vhd  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 335
Diskmon  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 337
Sync  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 339
DiskView  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 341
Contig  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 344
PageDefrag  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 345
DiskExt  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 347
LDMDump  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 347
VolumeID  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 350

 13 Network and Communication Utilities  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 351
TCPView  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 351
Whois  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 353
Portmon  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 353

Searching, Filtering, and Highlighting .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 355
Saving, Logging, and Printing .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 357



xvi Table of Contents

 14 System Information Utilities  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 359
RAMMap .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 359

Use Counts  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 360
Processes  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 362
Priority Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 363
Physical Pages  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 363
Physical Ranges  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 364
File Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 365
File Details  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 366
Purging Physical Memory  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 367
Saving and Loading Snapshots  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 367

CoreInfo  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 367
ProcFeatures  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 369
WinObj  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 370
LoadOrder  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 373
PipeList  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 374
ClockRes  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 375

 15 Miscellaneous Utilities  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 377
RegJump .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 377
Hex2Dec  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 378
RegDelNull  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 378
Bluescreen Screen Saver  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 379
Ctrl2Cap  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 380

Part III Troubleshooting—”The Case of the Unexplained...”
 16 Error Messages  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 383

The Case of the Locked Folder  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 383
The Case of the Failed AV Update  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 385
The Case of the Failed Lotus Notes Backups  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 387
The Case of the Failed Play-To  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 389
The Case of the Crashing Proksi Utility  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 390
The Case of the Installation Failure  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 391

The Troubleshooting  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 392
The Analysis  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 394

The Case of the Missing Folder Association  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 397
The Case of the Temporary Registry Profiles  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 400



 Table of Contents xvii

 17 Hangs and Sluggish Performance  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 405
The Case of the IExplore-Pegged CPU  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 405
The Case of the Excessive ReadyBoost  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 408
The Case of the Slow Keynote Demo .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 410
The Case of the Slow Project File Opens .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 415
The Compound Case of the Outlook Hangs .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 420

 18 Malware  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 427
The Case of the Sysinternals-Blocking Malware  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 427
The Case of the Process-Killing Malware  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 429
The Case of the Fake System Component .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 431
The Case of the Mysterious ASEP .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 433

Index  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 437

Microsoft is interested in hearing your feedback so we can continually improve our books and learning  
resources for you. To participate in a brief online survey, please visit: 

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!





  xix

Foreword
I was honored when Mark and Aaron asked me to write the foreword for this book.

My association with Mark and his tools goes back to 1997 when I first heard him speak at 
a Windows developer conference in Santa Clara, California. Little did I know that two years 
later we would begin collaborating on Inside Windows 2000 and the subsequent editions of 
Windows Internals.  

In fact, because of working with Mark on both the Windows Internals books and later on 
the Windows Internals courses we authored and taught together, I often get thanked for the 
Sysinternals tools—something that irks Mark! While I’m tempted to graciously accept the 
praise and say “You’re welcome,” the truth is that, while I use the tools heavily in my training 
and consulting work, I have not authored any of them.

There has been a need for a Sysinternals book for many years now, though it’s a testament 
to the design of the tools and their user interface that they have been used so widely and 
successfully without a book to explain them all. But the book opens the door even wider 
for more IT professionals to leverage the Sysinternals tools to peer beneath the surface of 
Windows to really understand what’s going on. Aaron Margosis’ careful, meticulous research 
resulted in many improvements in the tools—fixing inconsistencies, improving the help text, 
and adding new features. 

I have personally solved innumerable client and server system and application problems with 
the tools, even in situations where I didn’t think the tools would help. As a result, I coined the 
expression “When in doubt, run Filemon and Regmon” (now Procmon).

To help more IT professionals see how to apply the tools to real problems, this book has an 
entire section on case studies. These real-life examples show how your fellow IT professionals 
have used the Sysinternals tools to solve what would otherwise be unsolvable problems.

Finally, a word of warning—even though I talk to Mark on a regular basis, I can’t count the 
number of times that I’ve reported a bug to him that he’d already fixed—so make sure you 
are running the latest versions before you send him email! The best way to do that is to 
 follow the Sysinternals site blog RSS feed.

This book belongs on every IT professional’s desk (or e-reader)—and if you see Mark, tell him 
you appreciate Dave’s work on the Sysinternals tools. 

David Solomon

President, David Solomon Expert Seminars, Inc. 
www.solsem.com





  xxi

Introduction
The Sysinternals Suite is a set of over 70 advanced diagnostic and troubleshooting utilities 
for the Microsoft Windows platform written by me—Mark Russinovich—and Bryce Cogswell. 
Since Microsoft’s acquisition of Sysinternals in 2006, these utilities have been available for 
free download from Microsoft’s Windows Sysinternals Web site (part of Microsoft TechNet).

The goal of this book is to familiarize you with the Sysinternals utilities and help you 
 understand how to use them to their fullest. The book will also show you examples of how 
I and other Sysinternals users have leveraged the utilities to solve real problems on Windows 
systems.

Although I coauthored this book with Aaron Margosis, the book is written as if I am  speaking. 
This is not at all a comment on Aaron’s contribution to the book; without his hard work, this 
book would not exist. 

Tools the Book Covers
This book describes all of the Sysinternals utilities that are available on the Windows 
Sysinternals Web site (http://technet.microsoft.com/en-us/sysinternals/default.aspx) and all 
of their features as of the time of this writing (summer, 2011). However, Sysinternals is highly 
dynamic: existing utilities regularly gain new capabilities, and new utilities are introduced 
from time to time. (To keep up, follow the RSS feed of the “Sysinternals Site Discussion” blog: 
http://blogs.technet.com/b/sysinternals/.) So, by the time you read this book, some parts of 
it may already be out of date. That said, you should always keep the Sysinternals utilities 
 updated to take advantage of new features and bug fixes.

This book does not cover Sysinternals utilities that have been deprecated and are no longer 
available on the Sysinternals site. If you are still using RegMon (Registry Monitor) or FileMon 
(File Monitor), you should replace them with Process Monitor, described in Chapter 4. Rootkit 
Revealer, one of the computer industry’s first rootkit detectors (and the tool that  discovered 
the “Sony rootkit”), has served its purpose and has been retired. Similarly, a few other  utilities 
(such as Newsid and EfsDump) that used to provide unique value have been retired be-
cause either they were no longer needed or equivalent functionality was eventually added 
to Windows.

The History of Sysinternals
The first Sysinternals utility I wrote, Ctrl2cap, was born of necessity. Before I started using 
Windows NT in 1995, I mostly used UNIX systems, which have keyboards that place the Ctrl 
key where the Caps Lock key is on standard PC keyboards. Rather than adapt to the new 



xxii Introduction

layout, I set out to learn about Windows NT device driver development and to write a driver 
that converts Caps Lock key presses into Ctrl key presses as they make their way from the 
keyboard into the Windows NT input system. Ctrl2cap is still posted on the Sysinternals site 
today, and I still use it on all my systems. 

Ctrl2cap was the first of many tools I wrote to learn about the way Windows NT works  under 
the hood while at the same time providing some useful functionality. The next tool I wrote, 
NTFSDOS, I developed with Bryce Cogswell. I had met Bryce in graduate school at Carnegie 
Mellon University, and we had written several academic papers together and worked on 
a startup project where we developed software for Windows 3.1. I pitched the idea of a 
tool that would allow users to retrieve data from an NTFS-formatted partition by using the 
 ubiquitous DOS floppy. Bryce thought it would be a fun programming challenge, and we 
 divided up the work and released the first version about a month later. 

I also wrote the next two tools, Filemon and Regmon, with Bryce. These three utilities—
NTFSDOS, Filemon, and Regmon—became the foundation for Sysinternals. Filemon and 
Regmon, both of which we released for Windows 95 and Windows NT, showed file sys-
tem and registry activity, becoming the first tools anywhere to do so and making them 
 indispensible troubleshooting aids. 

Bryce and I decided to make the tools available for others to use, but we didn’t have a Web 
site of our own, so we initially published them on the site of a friend, Andrew Schulman, 
who I’d met in conjunction with his own work uncovering the internal operation of DOS 
and Windows 95. Going through an intermediary didn’t allow us to update the tools with 
enhancements and bug fixes as quickly as we wanted, so in September 1996 Bryce and I 
 created NTInternals.com to host the tools and articles we wrote about the internal operation 
of Windows 95 and Windows NT. Bryce and I had also developed tools that we decided we 
could sell for some side income, so the same month, we also founded Winternals Software, a 
commercial software company that we bootstrapped by driving traffic with a single banner 
ad on NTInternals.com. The first utility we released as Winternals Software was NTRecover, 
a utility that enabled users to mount the disks of unbootable Windows NT systems from a 
working system and access them as if they were locally attached disks. 

The mission of NTInternals.com was to distribute freeware tools that leveraged our deep 
 understanding of the Windows operating system in order to deliver powerful diagnostic, 
monitoring, and management capabilities. Within a few months, the site, shown below as it 
looked in December 1996 (thanks to the Internet Archive’s Wayback Machine), drew 1,500 
visitors per day, making it one of the most popular utility sites for Windows in the early days 
of the Internet revolution. In 1998, at the “encouragement” of Microsoft lawyers, we changed 
the site’s name to Sysinternals.com. 

Over the next several years, the utilities continued to evolve. We added more utilities as we 
needed them, as our early power users suggested enhancements, or when we thought of a 
new way to show information about Windows.



 Introduction xxiii

The Sysinternals utilities fell into three basic categories: those used to help programmers, 
those for system troubleshooting, and those for systems management. DebugView, a  utility 
that captures and displays program debug statements, was one of the early developer-
oriented tools that I wrote to aid my own development of device drivers. DLLView, a tool for 
displaying the DLLs that processes have loaded, and HandleEx, a process-listing GUI utility 
that showed open handles, were two of the early troubleshooting tools. (I merged DLLView 
and HandleEx to create Process Explorer in 2001.) The PsTools, discussed in Chapter 6, are 
some of the most popular management utilities, bundled into a suite for easy download. 
PsList, the first PsTool, was inspired initially by the UNIX “ps” command, which provides a 
process listing. The utilities grew in number and functionality, becoming a software suite of 
utilities that allowed you to easily perform many tasks on a remote system without requiring 
installation of special software on the remote system beforehand.

Also in 1996, I began writing for Windows IT Pro magazine, highlighting Windows  internals 
and the Sysinternals utilities and contributing additional feature articles,  including a 
 controversial article in 1996 that established my name within Microsoft itself, though not 
necessarily in a positive way. The article, “Inside the Difference Between Windows NT 
Workstation and Windows NT Server,” pointed out the limited differences between Windows 
NT Workstation and Windows NT Server, which contradicted Microsoft’s marketing message. 

As the utilities continued to evolve and grow, I began to contemplate writing a book on 
Windows internals. Such a book already existed, Inside Windows NT (Microsoft Press, 1992), 
the first edition of which was written by Helen Custer alongside the original release of 
Windows NT 3.1. The second edition was rewritten and enhanced for Windows NT 4.0 by 
David Solomon, a well-established operating system expert, trainer, and writer who had 
worked at DEC. Instead of writing a book from scratch, I contacted him and suggested 
that I coauthor the third edition, which would cover Windows 2000. My relationship with 



xxiv Introduction

Microsoft had been on the mend since the 1996 article as the result of my sending Windows 
bug reports directly to Windows developers, but David still had to obtain permission, which 
Microsoft granted.

As a result, David Solomon and I coauthored the third, fourth, and fifth editions of the book, 
which we renamed Windows Internals at the fourth edition. (The fifth edition of Windows 
Internals was published in 2009.) Not long after we finished Inside Windows 2000 (Microsoft 
Press, 2000), I joined David to teach his Windows internals seminars, adding my own content. 
Offered around the world, even at Microsoft to the developers of Windows, these classes 
have long used the Sysinternals utilities to show students how to peer deep into Windows 
internals and learn more when they returned to their developer and IT professional roles at 
home. David still offers Windows internals classes at http://www.solsem.com/.

By 2006, my relationship with Microsoft had been strong for several years, Winternals had 
a full line of enterprise management software and had grown to about 100 employees, and 
Sysinternals had two million downloads per month. On July 18, 2006, Microsoft acquired 
Winternals and Sysinternals. Not long after, Bryce and I (there we are below in 2006) moved 
to Redmond to become a part of the Windows team. Today, I serve as one of Microsoft’s 
small group of Technical Fellows, providing technical leadership to help drive the direction of 
the company. I’m now in the Windows Azure group, working on the “kernel” of Microsoft’s 
cloud operating system. 

 

Two of the goals of the acquisition were to make sure that the tools Bryce and I developed 
would continue to be freely available and that the community we built would thrive, and 
they have. Today, the Windows Sysinternals site on technet.microsoft.com is one of the 
most frequently visited sites on TechNet, averaging 50,000 visitors per day and three mil-
lion  downloads per month. Sysinternals power users come back time and again for the 
 latest  versions of the utilities and for new utilities, such as the recently released RAMMap 
and VMMap, as well as to participate in the Sysinternals community, a growing forum with 
over 30,000 registered users at the time of this writing. I remain dedicated to continuing to 
 enhance the existing tools and to add new tools, including ones focused on Windows Azure. 



 Introduction xxv

Many people suggested that a book on the tools would be valuable, but it wasn’t until David 
Solomon suggested that one was way overdue that I started the project. My  responsibilities 
at Microsoft did not permit me to devote the time necessary to write another book, but 
David pointed out that I could find someone to help. I was pleased that Aaron Margosis 
agreed to partner with me. Aaron is a Principal Consultant with Microsoft Public Sector 
Services who is known for his deep understanding of Windows security and application 
 compatibility. I have known Aaron for many years and his excellent writing skills,  familiarity 
with Windows internals, and proficiency with the Sysinternals tools made him an ideal 
coauthor. 

Who Should Read This Book
This book exists for Windows IT professionals and power users who want to make the most 
of the Sysinternals tools. Regardless of your experience with the tools, and whether you 
 manage the systems of a large enterprise, a small business, or the PCs of your family and 
friends, you’re sure to discover new tools, pick up tips, and learn techniques that will help you 
more effectively troubleshoot the toughest Windows problems and simplify your system- 
management operations and monitoring. 

Assumptions
This book expects that you have familiarity with the Windows operating system. Basic 
 familiarity with concepts such as processes, threads, virtual memory, and the Windows 
command prompt, is helpful, though some of these concepts are discussed in Chapter 2, 
“Windows Core Concepts”.

Organization of This Book
The book is divided into three parts. Part I, “Getting Started,” provides an overview of the 
Sysinternals utilities and the Sysinternals Web site, describes features common to all of the 
utilities, tells you where to go for help, and discusses some Windows core concepts that will 
help you better understand the platform and the information reported by the utilities.

Part II, “Usage Guide,” is a detailed reference guide covering all of the Sysinternals utilities’ 
features, command-line options, system requirements, and caveats. With plentiful screen 
shots and usage examples, this section should answer just about any question you have 
about the utilities. Major utilities such as Process Explorer and Process Monitor each get their 
own chapter; subsequent chapters cover utilities by category, such as security utilities, Active 
Directory utilities, and file utilities.



xxvi Introduction

Part III, “Troubleshooting—‘The Case of the Unexplained…’,” contains stories of  real-world 
problem solving using the Sysinternals utilities from Aaron and me, as well as from 
 administrators and power users from around the world.

Conventions and Features in This Book
This book presents information using conventions designed to make the information 
 readable and easy to follow:

■ Boxed elements with labels such as “Note” provide additional information or alternative 
methods for completing a step successfully.

■ Text that you type (apart from code blocks) appears in bold.

■ A plus sign (+) between two key names means that you must press those keys at the 
same time. For example, “Press Alt+Tab” means that you hold down the Alt key while 
you press the Tab key.

■ A vertical bar between two or more menu items (for example, File | Close), means that 
you should select the first menu or menu item, then the next, and so on.

System Requirements
The Sysinternals tools work on the following versions of Windows, including 64-bit editions, 
unless otherwise specified:

■ Windows XP with Service Pack 3

■ Windows Vista 

■ Windows 7

■ Windows Server 2003 with Service Pack 2

■ Windows Server 2003 R2

■ Windows Server 2008 

■ Windows Server 2008 R2

Some tools require administrative rights to run, and others implement specific features that 
require administrative rights. 



 Introduction xxvii

Acknowledgments
First, Aaron and I would like to thank Bryce Cogswell, cofounder of Sysinternals, for his 
 enormous contribution to the Sysinternals tools. Because of our great collaboration, what 
Bryce and I published on Sysinternals was more than just the sum of our individual efforts. 
Bryce retired from Microsoft in October 2010, and we wish him luck in whatever he pursues. 

We’d like to thank David Solomon for spurring Mark to write this book, providing detailed 
review of many chapters, and writing the Foreword. Dave has also been one of Sysinternals 
most effective evangelists over the years and has suggested many valuable features. 

Thanks to Curtis Metz and Karl Seng, who manage the Sysinternals Web site, forums, and 
code-publishing process. Otto Helweg had that role when Microsoft acquired Sysinternals, 
and we thank him for helping to preserve the spirit of Sysinternals during the integration. 

We are grateful to the following people who provided valuable and insightful  technical 
 review, corrections, and suggestions for the book: Andreas Klein, Brian Matusz, Bruno Aleixo, 
Carsten Kinder, Chris Jackson, Ewan MacKellar, Fatih Colgar, Gautam Anand, Gowri Kumar 
Chandramouli, Greg Cottingham, John Dietrick, Mario Hewardt, Mario Raccagni, Mark 
Priem, Matt Garson, Pavel Lebedynskiy, Richard Diver, Scott Frunzi, Stephen Griffin, and Tim 
Reckmeyer. Andrew Richards deserves special mention for providing detailed feedback on 
more chapters than any other reviewer.

We also want to thank Carl Harrison for supplying a sidebar on using LiveKd to capture 
 online kernel dumps. 

We’d like to thank Martin DelRe from Microsoft Press for seeing the potential of the book; 
Devon Musgrave, also from Microsoft Press, for championing the book; and Steve Sagman 
from Waypoint Press for guiding the book through the editorial and production process. 
Thanks also to Christophe Nasarre for technical editing and Roger LeBlanc for copyediting. 

Aaron’s wife Elise deserves thanks for providing Aaron with enthusiastic encouragement at a 
 crucial point in the book’s development. Aaron thanks her and their children—Elana, Jonah, 
and Gabriel—for their love and support. Aaron also thanks Brenda Schrier for his author 
photo.

Mark thanks his wife, Daryl, and daughter, Maria, for supporting all his endeavors. 



xxviii Introduction

Errata & Book Support
We’ve made every effort to ensure the accuracy of this book and its companion content. 
Any errors that have been reported since this book was published are listed on our Microsoft 
Press site: 

http://www.microsoftpressstore.com/title/ 9780735656727

If you find an error that is not already listed, you can report it to us through the same page.

If you need additional support, e-mail Microsoft Press Book Support at  
mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the addresses 
above.

We Want to Hear from You
At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable 
asset. Please tell us what you think of this book at: 

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in advance 
for your input!

Stay in Touch
Let’s keep the conversation going. Follow Microsoft Press on Twitter: http://twitter.com/
MicrosoftPress.

http://www.microsoftpressstore.com/title/ 9780735656727


  211

Chapter 7

Process and Diagnostic Utilities
Process Explorer and Process Monitor, discussed in Chapters 3 and 4, respectively, are the 
primary utilities for analyzing the runtime behavior and dynamic state of processes and of 
the system as a whole. This chapter describes six additional Sysinternals utilities for viewing 
details of process state:

■ VMMap is a GUI utility that displays details of a process’ virtual and physical memory 
usage.

■ ProcDump is a console utility that can generate a memory dump for a process when 
it meets specifiable criteria, such as exhibiting a CPU spike or having an unresponsive 
window.

■ DebugView is a GUI utility that lets you monitor user-mode and kernel-mode debug 
output generated from either the local computer or a remote computer.

■ liveKd lets you run a standard kernel debugger on a snapshot of the running local 
 system without having to reboot into debug mode.

■ listDlls is a console utility that displays information about DLLs loaded on the system.

■ Handle is a console utility that displays information about object handles held by 
 processes on the system.

VMMap
VMMap (shown in Figure 7-1) is a process virtual and physical memory analysis utility. It 
shows graphical and tabular summaries of the different types of memory allocated by a 
 process, as well as detailed maps of the specific virtual memory allocations, showing char-
acteristics such as backing files and types of protection. VMMap also shows summary and 
detailed information about the amount of physical memory (working set) assigned by the 
operating system for the different virtual memory blocks.

VMMap can capture multiple snapshots of the process’ memory allocation state, graphically 
display allocations over time, and show exactly what changed between any two points in 
time. Combined with VMMap’s filtering and refresh options, this allows you to identify the 
sources of process memory usage and the memory cost of application features.

VMMap can also instrument a process to track its individual memory allocations and 
show the code paths and call stacks where those allocations are made. With full symbolic 
 information, VMMap can display the line of source code responsible for any memory 
allocation.



212 Part II Usage Guide

 
FIGURE 7-1 VMMap main window.

Besides flexible views for analyzing live processes, VMMap supports the export of data in 
multiple formats, including a native format that preserves detailed information so that you 
can load it back into VMMap at a later time. It also includes command-line options that 
 enable scripting scenarios.

VMMap is the ideal tool for developers who want to understand and optimize their 
 application’s memory resource usage. (To see how Microsoft Windows allocates physical 
memory as a systemwide resource, see RAMMap, which is described in Chapter 14, “System 
Information Utilities.”) VMMap runs on x86 and x64 versions of Windows XP and newer.

Starting VMMap and Choosing a Process
The first thing you must do when starting VMMap is to pick a process to analyze. If you 
don’t specify a process or an input file on the VMMap command line (described later in this 
 chapter), VMMap displays its Select or Launch Process dialog box. Its View A Running Process 
tab lets you pick a process that is already running, and the Launch And Trace A New Process 
tab lets you start a new, instrumented process and track its memory allocations. You can 
 display the Select or Launch Process dialog box at a later time by pressing Ctrl+P.



 Chapter 7 Process and Diagnostic Utilities 213

View a Running Process
Select a process from the View A Running Process tab (shown in Figure 7-2), and click OK. To 
quickly find a process by process ID (PID) or by memory usage, click on any column header 
to sort the rows by that column. The columns include User, Private Bytes, Working Set, and 
Architecture (that is, whether the process is 32-bit or 64-bit). Click Refresh to update the list.

FIGURE 7-2 VMMap Select or Launch Process dialog box lists running processes.

The View A Running Process tab lists only processes that VMMap can open. If VMMap is not 
running with administrative permissions (including the Debug privilege), the list includes only 
processes running as the same user as VMMap and at the same integrity level or a lower one. 
On Windows Vista and newer, you can restart VMMap with elevated rights by clicking the 
Show All Processes button in the dialog box, or by choosing File | Run As Administrator.

On x64 editions of Windows, VMMap can analyze 32-bit and 64-bit processes. VMMap 
launches a 32-bit version of itself to analyze 32-bit processes and a 64-bit version to  analyze 
64-bit processes. (See “Single Executable Image” in Chapter 1, “Getting Started with the 
Sysinternals Utilities,” for more information.) With the –64 command-line option, described 
later in this chapter, the 64-bit version is used to analyze all processes.

Launch and Trace a New Process
When you launch an application from VMMap, the application is instrumented to track all 
individual memory allocations along with the associated call stack. Enter the path to the 
 application and optionally any command-line arguments and the start directory as shown in 
Figure 7-3, and then click OK.



214 Part II Usage Guide

FIGURE 7-3 Launch and trace a new process.

VMMap injects a DLL into the target process at startup and intercepts its virtual memory 
API calls. Along with the allocation type, size, and memory protection, VMMap captures the 
call stack at the point when the allocation is made. VMMap aggregates this information in 
various ways, which are described in the “Viewing Allocations from Instrumented Processes” 
section later in this chapter. (See “Call Stacks and Symbols” in Chapter 2, “Windows Core 
Components,” for more information.)

On x64 editions of Windows, VMMap can instrument and trace x86 and x64 programs, 
launching a 32-bit or 64-bit version of itself accordingly. However, on x64 Windows VMMap 
cannot instrument and trace .NET programs built for “Any CPU”. It can instrument those pro-
grams on 32-bit versions of Windows, and you can analyze an “Any CPU” program on x64 
without instrumentation by picking it from the View A Running Process tab of the Select or 
Launch Process dialog box.

Note “Any CPU” is the default target architecture for Microsoft C# and Visual Basic .NET 
 applications built with Microsoft Visual Studio 2005 and newer.

The VMMap window
After you select or launch a process, VMMap analyzes the process, displaying graphical 
representations of virtual and physical memory, and tabular Summary and Details Views. 
Memory types are color coded in each of these components, with the Summary View also 
serving as a color key.



 Chapter 7 Process and Diagnostic Utilities 215

The first bar graph in the VMMap window (shown in Figure 7-1) is the Committed  summary. 
Its differently-colored areas show the relative proportions of the different types of 
 committed memory within the process’ address space. It also serves as the basis against 
which the other two graphs are scaled. The total figure shown above the right edge of the 
graph is not all allocated memory, but the process’ “accessible” memory. Regions that have 
only been reserved cannot yet be accessed and are not included in this graph. In other 
words, the memory included here is backed by RAM, a paging file, or a mapped file.

The second bar graph in the VMMap window is the Private Bytes summary. This is process 
memory not shareable with other processes and that’s backed by physical RAM or by a 
 paging file. It includes the stack, heaps, raw virtual memory, page tables, and read/write 
portions of image and file mappings. The label above the right side of the graph reports 
the total size of the process’ private memory. The colored areas in the bar graph show the 
 proportions of the various types of memory allocations contributing to the private byte 
 usage. The extent of the colored areas toward the graph’s right edge indicates its proportion 
to in-use virtual memory.

The third bar graph shows the working set for the process. The working set is the process’ 
virtual memory that is resident in physical RAM. Like the Private Bytes graph, the colored 
areas show the relative proportions of different types of allocations in RAM, and their extent 
toward the right indicates the proportion of the process’ committed virtual memory that is 
resident in RAM.

Note that these graphs show only the relative proportions of the different allocation types. 
They are not layout maps that show where in memory they are allocated. The Address Space 
Fragmentation dialog box, described later in this chapter, provides such a map for 32-bit 
processes.

Below the three graphs, the Summary View table lists the different types of memory 
 allocations (described in the “Memory Types” section in this chapter), the total amount of 
each type of allocation, how much is committed, and how much is in physical RAM. Select 
a memory type in Summary View to filter what is shown in the Details View window. You 
can sort the Summary View table by the values in any column by clicking the corresponding 
column header. Clicking a column header again reverses the sort order for that column. The 
order of the colored areas in the VMMap bar graphs follows the sort order of the Summary 
View table. You can also change the column order for this table by dragging a column 
 header to a new position, and resize column widths by dragging the borders between the 
column headers.

Below Summary View, Details View displays information about each memory region of the 
process’ user-mode virtual address space. To show only one allocation type in Details View, 
select that type in the Summary View. To view all memory allocations, select the Total row 
in the Summary View. As with the Summary View, the columns in Details View allow sorting, 
resizing and reordering.



216 Part II Usage Guide

Allocations shown in Details View can expand to show sub-blocks within the original 
 allocation. This can occur, for example, when a large block of memory is reserved, and then 
parts of it are committed. It also occurs when the image loader or an application creates a 
file mapping and then creates multiple mapped views of that file mapping; for example, to 
set protection differently on the different regions of the file mapping. You can expand or 
collapse individual groups of sub-allocations by clicking the plus (+) and minus (–) icons in 
Details View. You can also expand or collapse all of them by choosing Expand All or Collapse 
All from the Options menu. The top row of such a group shows the sums of the individual 
components within it. When a different sort order is selected for Details View, sub-blocks 
 remain with their top-level rows and are sorted within that group.

If VMMap’s default font is not to your liking, choose Options | Font to select a different font 
for Summary View, Details View, and some of VMMap’s dialog boxes.

Memory Types
VMMap categorizes memory allocations into one of several types:

■ Image The memory represents an executable file, such as an EXE or DLL, that has 
been loaded into a process by the image loader. Note that Image memory does not 
include executable files loaded as data files—these are included in the Mapped File 
memory type. Executable code regions are typically read/execute-only and shareable. 
Data regions, such as initialized data, are typically read/write or copy-on-write. When 
copy-on-write pages are modified, additional private memory is created in the process 
and is marked as read/write. This private memory is backed by RAM or a paging file 
and not by the image file. The Details column in Details View shows the file’s path or 
section name.

■ Mapped File The memory is shareable and represents a file on disk. Mapped files are 
often resource DLLs and typically contain application data. The Details column shows 
the file's path.

■ Shareable Shareable memory is memory that can be shared with other processes 
and is backed by RAM or by the paging file (if present). Shareable memory typically 
 contains data shared between processes through DLL shared sections or through 
 pagefile-backed, file-mapping objects (also known as pagefile-backed sections).

■ Heap A heap represents private memory allocated and managed by the user-mode 
heap manager and typically contains application data. Application memory allocations 
that use Heap memory include the C runtime malloc library, the C++ new operator, the 
Windows Heap APIs, and the legacy GlobalAlloc and LocalAlloc APIs.

■ Managed Heap Managed Heap represents private memory that is allocated and 
managed by the .NET runtime and typically contains application data.



 Chapter 7 Process and Diagnostic Utilities 217

■ Stack Stack memory is allocated to each thread in a process to store function 
 parameters, local variables, and invocation records. Typically, a fixed amount of Stack 
memory is allocated and reserved when a thread is created, but only a relatively small 
amount is committed. The amount of memory committed within that allocation will 
grow as needed, but it will not shrink. Stack memory is freed when its thread exits.

■ Private Data Private Data memory is memory that is allocated by VirtualAlloc and 
that is not further handled by the Heap Manager or the .NET runtime, or assigned to 
the Stack category. Private Data memory typically contains application data, as well as 
the Process and Thread Environment Blocks. Private Data memory cannot be shared 
with other processes.

Note VMMap’s definition of “Private Data” is more granular than that of Process 
Explorer’s “private bytes.” Procexp’s “private bytes” includes all private committed memory 
belonging to the process.

■ Page Table Page Table memory is private kernel-mode memory associated with the 
process’ page tables. Note that Page Table memory is never displayed in VMMap’s 
Details View, which shows only user-mode memory.

■ Free Free memory regions are spaces in the process’ virtual address space that are 
not allocated. To include free memory regions in Details View when inspecting a 
 process’ total memory map, choose Options | Show Free Regions.

Memory Information
Summary View and Details View show the following information for allocation types and in-
dividual allocations. To reduce noise in the output, VMMap does not show entries that have a 
value of 0.

■ Size The total size of the allocated type or region. This includes areas that have been 
reserved but not committed.

■ Committed The amount of the allocation that is committed—that is, backed by RAM, 
a paging file, or a mapped file.

■ Private The amount of the allocation that is private to the process.

■ Total WS The total amount of working set (physical memory) assigned to the type or 
region.

■ Private WS The amount of working set assigned to the type or region that cannot be 
shared with other processes.

■ Shareable WS The amount of working set assigned to the type or region that can be 
shared with other processes.



218 Part II Usage Guide

■ Shared WS The amount of Shareable WS that is currently shared with other processes.

■ Locked WS The amount of memory that has been guaranteed to remain in physical 
memory and not incur a page fault when accessed.

■ Blocks The number of individually allocated memory regions.

■ Largest In Summary View, the size of the largest contiguous memory block for that 
allocation type.

■ Address In Details View, the base address of the memory region in the process’ 
 virtual address space.

■ Protection In Details View, identifies the types of operations that can be performed 
on the memory. In the case of top-level allocations that show expandable sub-blocks, 
Protection identifies a summary of the types of protection in the sub-blocks. An access 
violation occurs on an attempt to execute code from a region not marked Execute (if 
DEP is enabled), to write to a region not marked Write or Copy-on-Write, or to access 
memory that is marked as no-access or is only reserved but not yet committed.

■ Details In Details View, additional information about the memory region, such as the 
path to its backing file, Heap ID (for Heap memory), Thread ID (for Stack memory), or 
.NET AppDomain and Garbage Collection generations.

Note The VirtualProtect API can change the protection of any page to something different from 
that set by the original memory allocation. This means that there can potentially be pages of 
memory private to the process in a shareable memory region, for instance, because the  region 
was created as a pagefile-backed section, but then the application or some other software 
changed the protection to copy-on-write and modified the pages.

Timeline and Snapshots
VMMap retains a history of snapshots of the target process’ memory allocation state. You 
can load any of these snapshots into the VMMap main view and compare any two snapshots 
to see what changed.

When tracing an instrumented process, VMMap captures snapshots automatically. You can 
set the automatic capture interval to 1, 2, 5, or 10 seconds from the Options | Trace Snapshot 
Interval submenu. You can pause and resume automatic snapshots by pressing Ctrl+Space, 
and manually capture a new snapshot at any time by pressing F5.

When you analyze a running process instead of launching an instrumented one, VMMap 
does not automatically capture snapshots. You must manually initiate each snapshot by 
pressing F5.



 Chapter 7 Process and Diagnostic Utilities 219

Click the Timeline button on the VMMap main view to display the Timeline dialog box 
(shown in Figure 7-4), which renders a graphical representation of the history of allocations 
in the process’ working set. The Timeline lets you load a previous snapshot into the VMMap 
main view and compare any two snapshots. The graph’s horizontal axis represents the num-
ber of seconds since the initial snapshot, and its vertical access to the process’ working set. 
The colors in the graph correspond to the colors used to represent memory types in the 
VMMap main window.

FIGURE 7-4 VMMap Timeline dialog box.

When automatic capture is enabled for an instrumented trace, the Timeline dialog box 
 automatically updates its content. You can click the Pause button to suspend automatic 
 snapshot capture; click it again to resume automatic captures. When viewing a process 
 without instrumented tracing, the Timeline dialog box must be closed and reopened to 
 update its content.

Click on any point within the timeline to load the corresponding snapshot into the VMMap 
main view. To compare any two snapshots, click on a point near one of the snapshots and 
then drag the mouse to the other point. While you have the mouse button down, the time-
line displays vertical lines indicating when snapshots were captured and shades the area 
between the two selected points, as shown in Figure 7-5. To increase the granularity of the 
timeline to make it easier to select snapshots, click the plus (+) and minus (–) zoom buttons 
and move the horizontal scroll.

FIGURE 7-5 VMMap Timeline dialog box while dragging between two snapshots.



220 Part II Usage Guide

When you compare two snapshots, the VMMap main view graphs and tables show the 
 differences between the two snapshots. All displayed numbers show the positive or nega-
tive changes since the previous snapshot. Address ranges in Details View that are in the new 
snapshot but not in the previous one are highlighted in green; address ranges that were only 
in the previous screen shot are highlighted in red. You might need to expand sub-allocations 
to view these. Rows in Details View that retain their normal color indicate a change in the 
amount of assigned working set. To view changes only for a specific allocation type, select 
that type in Summary View.

If you choose Empty Working Set from the View menu, VMMap first releases all physical 
memory assigned to the process and then captures a new snapshot. This feature is useful for 
measuring the memory cost of an application feature: empty the working set, exercise the 
feature, and then refresh the display to look at how much physical memory the application 
referenced.

To switch from comparison view to single-snapshot view, open the Timeline dialog box and 
click on any snapshot.

Viewing Text Within Memory Regions
In some cases, the purpose of a memory region can be revealed by the string data stored 
within it. To view ASCII or Unicode strings of three or more characters in length, select a 
 region in Details View and then choose View | Strings. VMMap displays a dialog box show-
ing the virtual address range and the strings found within it, as shown in Figure 7-6. If the 
 selected region has sub-blocks, the entire region is searched.

String data is not captured as part of a snapshot. The feature works only with a live process, 
and not with a saved VMMap (.mmp) file loaded from disk. Further, the strings are read 
 directly from process memory when you invoke the Strings feature. That memory might have 
changed since the last snapshot was captured.

Note In computer programming, the term “string” refers to a data structure consisting of a 
 sequence of characters, usually representing human-readable text.



 Chapter 7 Process and Diagnostic Utilities 221

FIGURE 7-6 The VMMap Strings dialog box.

Finding and Copying Text
To search for specific text within Details View, press Ctrl+F. The Find feature selects the next 
visible row in Details View that contains the text you specify in any column. Note that it will 
not search for text in unexpanded sub-blocks. To repeat the previous search, press F3.

VMMap offers two ways to copy text from the VMMap display to the clipboard:

■ Ctrl+A copies all text from the VMMap display, including the process name and ID, and 
all text in Summary View and Details View, retaining the sort order. All sub-allocation 
data is copied even if it is not expanded in the view. If a specific allocation type is 
 selected in Summary View, only that allocation type will be copied from Details View.

■ Ctrl+C copies all text from the Summary View table if Summary View has focus. If 
Details View has focus, Ctrl+C copies the address field from the selected row, which 
can then be pasted into a debugger.

Viewing Allocations from Instrumented Processes
When VMMap starts an instrumented process, it intercepts the program’s calls to virtual 
memory APIs and captures information about the calls. The captured information includes 
the following:

■ The function name, which indicates the type of allocation. For example, VirtualAlloc 
and VirtualAllocEx allocate private memory; RtlAllocateHeap allocates heap memory.

■ The operation, such as Reserve, Commit, Protect (change protection), and Free.



222 Part II Usage Guide

■ The memory protection type, such as Execute/Read and Read/Write.

■ The requested size, in bytes.

■ The virtual memory address at which the allocated block was created.

■ The call stack at the point when the API was invoked.

The call stack identifies the code path within the program that resulted in the allocation 
 request. VMMap assigns a Call Site ID number to each unique call stack that is captured. The 
first call stack is assigned ID 1, the second unique stack is assigned ID 2, and so forth. If the 
same code path is executed multiple times, each instance will have the same call stack, and 
the data from those allocations are grouped together under a single Call Site ID.

Note Symbols must be properly configured to obtain useful information from instrumented 
processes. See “Call Stacks and Symbols” in Chapter 2 for information on configuring symbols.

Refresh the VMMap main view, and then click the Trace button. The Trace dialog box (shown 
in Figure 7-7) lists all captured memory allocations grouped by Call Site ID. The Function 
 column identifies the API that was called; the Calls column indicates how many times that 
code path was invoked; the Bytes column lists the total amount of memory allocated through 
that site. The values in the Operation and Protection columns are the values that were passed 
in the first time the call site was invoked.

FIGURE 7-7 VMMap Trace dialog box.

Click the plus sign to expand the call site and show the virtual memory addresses at which 
the requested memory was provided. The Bytes column shows the size of each allocation. 
Note that when memory is freed, a subsequent allocation request through the same call 



 Chapter 7 Process and Diagnostic Utilities 223

site might be satisfied at the same address. When this happens, VMMap does not display a 
 separate entry. The Bytes column reports the size only of the first allocation granted at that 
address. However, the sum shown for the Call Site is accurate.

By default, the Trace dialog box shows only those operations for which “Bytes” is more than 
0. Select the “Show all memory operations” check box to display operations that report no 
bytes. These include operations such as RtlCreateHeap, RtlFreeHeap, and VirtualFree (when 
releasing an entire allocation block).

In Figure 7-7, the call site assigned the ID 1136 was invoked eight times to allocate 26 MB 
of private memory. That node is expanded and shows the virtual memory addresses and 
the  requested sizes. Because all of these requests went through a single code path, you can 
 select any of them or the top node and click the Stack button to see that site’s call stack, 
shown in Figure 7-8. If full symbolic information and source files are available, select a frame 
in the call stack and click the Source button to view the source file in the VMMap source file 
viewer with the indicated line of source selected.

FIGURE 7-8 Call stack for a call site accessed from the Trace dialog box.

Click the Call Tree button in the VMMap main window for another way to visualize where 
your program allocates memory. The Call Tree dialog box (shown in Figure 7-9) identifies 
the commonalities and divergences in all the collected call stacks and renders them as an 
 expandable tree. The topmost nodes represent the outermost functions in the call stacks. 
Their child nodes represent functions that they called, and their child nodes represent the 
various functions they called on the way to a memory operation. Across each row, the Count 
and % Count columns indicate how many times in the collected set of call stacks that code 
path was traversed; the Bytes and % Bytes columns indicate how much memory was allo-
cated through that path. You can use this to quickly drill down to the places where the most 
allocations were invoked or the most memory was allocated.



224 Part II Usage Guide

FIGURE 7-9 The VMMap Call Tree dialog box.

Finally, you can view the call stack for a specific heap allocation by selecting it in Details View 
and clicking the Heap Allocations button to display the Heap Allocations dialog box. (See 
Figure 7-10). Select the item in the dialog box, and click Stack to display the call stack that 
resulted in that allocation.

FIGURE 7-10 The Heap Allocations dialog box.

Address Space Fragmentation
Poor or unlucky memory management can result in a situation where there is plenty of free 
memory, but no individual free blocks large enough to satisfy a particular request. For  
32-bit processes, the Address Space Fragmentation dialog box (shown in Figure 7-11) shows 
the  layout of the different allocation types within the process’ address space. This can help 
identify whether fragmentation is a problem and locate the problematic allocations.



 Chapter 7 Process and Diagnostic Utilities 225

FIGURE 7-11 Address Space Fragmentation (32-bit processes only).

When analyzing a 32-bit process, choose View | Fragmentation View to display Address 
Space Fragmentation. The graph indicates allocation types using the same colors as the 
VMMap main view, with lower virtual addresses at the top of the window. The addresses 
at the upper and lower left of the graph indicate the address range currently shown. If the 
entire address range cannot fit in the window, you move the vertical scroll bar to view other 
parts of the address range. The slider to the left of the graph changes the granularity of the 
graph. Moving the slider down increases the size of the blocks representing memory alloca-
tions in the graph. If you click on a region in the graph, the dialog box shows its address, 
size, and allocation type just below the graph, and it selects the corresponding allocation in 
Details View of the VMMap main view.

Saving and Loading Snapshot Results
The Save and Save As menu items in the File menu include several file formats to save 
 output from a VMMap snapshot. The Save As Type drop-down list in the file-save dialog box 
 includes the following:

■  .MMP This is the native VMMap file format. Use this format if you want to load the 
output back into the VMMap display on the same computer or a different computer. 
This format saves data from all snapshots, enabling you to view differences from the 
Timeline dialog box when you load the file back into VMMap.

■  .CSV This option saves data from the most recent snapshot as comma-separated 
values, which is ideal for generating output that you can easily import into Microsoft 
Excel. If a specific allocation type is selected in Summary View, details are saved only 
for that memory type.



226 Part II Usage Guide

■  .TXT This option saves data as formatted text, which is ideal for sharing the text 
 results in a readable form using a monospace font. Like the .CSV format, if a specific 
allocation type is selected, details are saved only for that type.

To load a saved .MMP file into VMMap, press Ctrl+O, or pass the file name to VMMap on the 
command line with the –o option. Also, when a user runs VMMap, VMMap associates the 
.mmp file extension with the path to that instance of VMMap and the –o option so that users 
can open a saved .mmp file by double-clicking it in Windows Explorer.

VMMap Command-Line Options
VMMap supports the following command-line options:

vmmap [-64] [-p {PID | processname} [outputfile]] [-o inputfile]

–64
On x64 editions of Windows, VMMap will run a 32-bit version of itself when a 32-bit process 
is selected, and a 64-bit version when a 64-bit process is selected. With the –64 option, the 
64-bit version of VMMap is used to analyze all processes. For 32-bit processes, the 32-bit 
version of VMMap more accurately categorizes allocation types. The only advantages of the 
64-bit version are that it can identify the thread ID associated with 64-bit stacks and more 
accurately report System memory statistics.

Note The –64 option applies only to opening running processes; it does not apply when 
 instrumenting and tracing processes launched from VMMap.

–p {PID | processname} [outputfile]
Use this format to analyze the process specified by the PID or process name. If you specify 
a name, VMMap will match it against the first process that has a name that begins with the 
specified text.

If you specify an output file, VMMap will scan the target process, output results to the named 
file, and then terminate. If you don’t include an extension, VMMap will add .MMP and save in 
its native format. Add a .CSV extension to the output file name to save as comma-separated 
values. Any other file extension will save the output using the .TXT format.

–o inputfile
When you use this command, VMMaps open the specified .MMP input file on startup.



 Chapter 7 Process and Diagnostic Utilities 227

Restoring VMMap defaults
VMMap stores all its configuration settings in the registry in “HKEY_CURRENT_USER\
Software\Sysinternals\VMMap.” The simplest way to restore all VMMap configuration settings 
to their defaults is to close VMMap, delete the registry key, and then start VMMap again.

ProcDump
ProcDump lets you monitor a process and create a user-mode dump file when that process 
meets criteria that you specify, such as exceeding CPU or memory thresholds, hitting an 
exception or exiting unexpectedly, UI becoming nonresponsive, or exceeding performance 
counter thresholds. ProcDump can capture a dump for a single instance of criteria being met 
or continue capturing dumps each time the problem recurs. ProcDump can also generate an 
immediate dump or a periodic series of dumps.

A process dump file is a detailed snapshot of a process’ internal state, and it can be used 
by an administrator or a developer to help determine the cause of an application problem. 
Dump files are analyzed with a debugger such as WinDbg, which ships with the Debugging 
Tools for Windows.

Because ProcDump has little impact on a system while monitoring a process, it is ideal for 
capturing data for problems that are difficult to isolate and reproduce, even if it takes weeks 
for a problem to repeat. ProcDump does not terminate the process being monitored, so you 
can acquire dump files from processes in production with little, if any, disruption in service.

ProcDump also introduces a new “Miniplus” dump type that is ideal for use with very 
large processes such as Microsoft Exchange Server and SQL Server. A Miniplus dump is the 
 equivalent of a full memory dump but with large allocations (for example, cache) omitted, 
and it has been shown to reduce dump sizes of such processes by 50 to 90 percent without 
reducing the ability to do effective dump analysis. (See Figure 7-12.)

FIGURE 7-12 ProcDump launching a process and capturing a dump when it exceeds a CPU limit for three 
seconds.



228 Part II Usage Guide

Command-Line Syntax
The following code block shows the full command-line syntax for ProcDump, and Table 7-1 
gives brief descriptions of each of the options. They are discussed in greater detail in the 
 following sections.

procdump [-c percent [-u]] [-s n] [-n count] [-m commit] [-h] [-e [1] [-b]] [-t]

[-p counter threshold]

[-ma | -mp] [-r] [-o] [-64]  

{ {processname | PID} [dumpfile] | -x {imagefile} {dumpfile} [arguments] }

TABlE 7-1 ProcDump Command-line Options

Option Description
Target Process and Dump File
processname Name of the target process. It must be a unique instance and already running.

PID Process ID of the target process.

dumpfile Name of dump file. This is optional if the process is already running; it’s required 
if using –x.

–x Starts the target process, using imagefile and command-line arguments.

imagefile Name of executable file to launch.

arguments Optional command-line arguments to pass to new process.

Dump Criteria
–c percent CPU usage above which to capture a dump.

–u Used with –c to scale threshold against number of CPUs present.

–s n Used with –c, sets duration of high CPU usage to trigger a dump.
Used with –p, sets duration of a performance counter threshold exceeded to 
 trigger a dump.
Used with –n and no other dump criteria, dumps process every n seconds.

–n count Used with –c, –s, or –p, specifies number of dumps to capture.

–m commit Specifies commit charge limit in MB at which to capture a dump.

–h Captures a dump when a hung window is detected.

–e Captures a dump when an unhandled exception occurs. If followed with 1, it also 
captures a dump on a first-chance exception.

–b Used with –e, treats breakpoints as exceptions. Otherwise, it ignores them.

–t Captures a dump when the process terminates.

–p counter 
threshold

Captures a dump when the named performance counter exceeds the threshold.

Dump File Options
–ma Include all process memory in the dump.

–mp “Miniplus”; creates the equivalent of a full dump but with large allocations 
 omitted.



 Chapter 7 Process and Diagnostic Utilities 229

Option Description
–r Reflects (clones) the process for the dump to minimize the time the process is 

suspended. (This option requires Windows 7 or Windows Server 2008 R2 or 
higher.)

–o Overwrites an existing dump file.

–64 Creates a 64-bit dump of the target process. (for x64 editions of Windows only).

Specifying Which Process to Monitor
You can launch the target process from the ProcDump command line or monitor an 
 already-running process. To start the process with ProcDump, use the –x option, followed 
by the name of the executable to start, the name of the dump file to write to, and then any 
command-line arguments to pass to the program. Note that you must specify the actual 
 executable to run—ProcDump will not launch an application via a file association. If you use 
this option, the –x and what follows it must be the last items on the ProcDump command 
line.

To monitor an already-running program, specify its image name or process ID (PID) on 
the command line. If you specify a name and there are multiple processes with that name, 
ProcDump will not pick one—you must specify a PID instead.

Administrative rights are not required to monitor a process running in the same security 
 context as ProcDump. Administrative rights, including the Debug privilege, are required 
to monitor an application running as a different user or at a higher integrity level than 
ProcDump’s.

Specifying the Dump File Path
The dumpfile command-line parameter specifies the path and base file name for the dump 
file. You are required to supply a dumpfile parameter when starting the target process with 
–x. The dumpfile parameter is optional when monitoring an already-running process; if you 
omit it, ProcDump creates the dump file in the current folder and uses the target process 
name as the base file name.

You can specify dumpfile as an absolute or relative path. If dumpfile names an existing folder, 
ProcDump creates the dump file in that folder, using the process name as the base name. 
Otherwise, the last part of the dumpfile parameter becomes the base file name for the dump 
file. For example, if you specify C:\dumps\sample as the dumpfile parameter and C:\dumps\
sample is an existing folder, ProcDump creates the dump file in that folder with the process 
name as the dump file’s base name. If C:\dumps\sample does not exist, ProcDump creates 
the dump file in C:\dumps with “sample” as the base file name. The target folder must exist; 
otherwise, ProcDump reports an error and exits immediately.



230 Part II Usage Guide

To avoid an accidental overwrite of other dump files, ProcDump creates unique dump file 
names by incorporating the current date and time into the file name. The format for the 
file name is basename_yyMMdd_HHmmss.dmp. For example, the following command line 
 creates an immediate dump file for Testapp.exe:

procdump testapp

If that dump were created at exactly 11:45:56 PM on December 28, 2010 its file name would 
be Testapp_101228_234556.dmp. This file naming ensures that an alphabetic sort of dump 
files associated with a particular executable will also be sorted chronologically (for files 
 created from the years 2000 through 2099). Note that the format of the file name is fixed 
and is independent of regional settings. ProcDump also ensures that the dump file has a file 
extension of .dmp.

The one case where the date and time is not incorporated into the dump file name is if 
you capture an immediate dump of a running process and specify the dump file name. For 
 example, the following command creates a dump file for Testapp.exe in c:\dumps\dumpfile.
dmp (assuming that c:\dumps\dumpfile is not an existing folder):

procdump testapp c:\dumps\dumpfile

If c:\dumps\dumpfile.dmp already exists, ProcDump will not overwrite it unless you add the 
–o option to the command line.

Dumps that are created later as a result of satisfied dump criteria always have the date and 
time incorporated into the dump file name or names. 

Specifying Criteria for a Dump
As mentioned, to capture an immediate dump of a running process, just specify it by name 
or PID with no other dump criteria, and an optional dump file name.

ProcDump can monitor a target process’ CPU usage and create a dump file when it exceeds 
a threshold for a fixed period of time. In this example, if Testapp’s CPU usage continually 
 exceeds 90 percent for five seconds, ProcDump generates a dump file and then exits:

procdump -c 90 -s 5 testapp

If you omit the –s option, the default time period is 10 seconds. To capture multiple samples, 
in case the first was to the result of some transient condition not related to the problem 
you’re tracking (that is, a false positive), use the –n option to specify how many dumps to 
capture before exiting. In the following example, ProcDump will continue monitoring Testapp 
and create a new dump file every time it sustains 95 percent CPU for two seconds, until it has 
captured 10 dumps:

procdump -c 95 -s 2 -n 10 testapp



 Chapter 7 Process and Diagnostic Utilities 231

On a multi-core system, a single thread cannot consume 100 percent of all the processors’ 
time. On a dual core, the maximum one thread can consume is 50 percent; on a quad core, 
the maximum is 25 percent. To scale the –c threshold against the number of CPUs on the 
system, add –u to the command line. On a dual-core system, procdump –c 90 –u testapp 
creates a dump when Testapp exceeds 45 percent CPU for 10 seconds—the equivalent of 
90 percent of one of the CPUs. On a 16-core system, the trigger threshold is 5.625 percent. 
Because –c requires an integer value, the –u option increases the granularity with which you 
can specify a threshold on multi-core systems. See “The Compound Case of the Outlook 
Hangs” in Chapter 17, “Hangs and Sluggish Performance”, for an example of its use.

Note A user-mode thread running a tight CPU-bound loop can, and often will, be scheduled to 
run on more than one CPU, unless its processor affinity has been set to tie it to one CPU. The –u 
option scales the threshold only against the number of cores; it doesn’t mean, “Create a dump if 
the process exceeds the threshold on a single CPU.” That wouldn’t be possible anyway because 
Windows does not provide the tracking information to support such a query.

To capture a periodic series of dumps, use the –s and –n options together without any other 
dump criteria. The –s option specifies the number of seconds between the end of the previ-
ous capture and the beginning of the next capture. The –n option specifies how many dumps 
to capture. The following example captures a dump of Testapp immediately, another dump 
five seconds later, and again five seconds after that, for a total of three dumps:

procdump -s 5 -n 3 testapp

To capture a dump when the process hits an unhandled exception, use the –e option. Use 
–e 1 to capture a dump on any exception, including a first-chance exception. Use –t to 
 capture a dump when the process terminates. The –t option is useful to identify the cause 
of an unexpected process exit that is not caused by an unhandled exception. If you add –b, 
ProcDump treats debug breakpoints as exceptions; otherwise, it ignores them. For example, a 
program might contain code like the following:

if (IsDebuggerPresent()) 

    DebugBreak();

ProcDump attaches to the target program as a debugger, the IsDebuggerPresent API 
will  return TRUE, and DebugBreak will be called. ProcDump will capture a dump when 
DebugBreak is called only if you specify –b.

ProcDump’s –h option monitors the target process for a hung (nonresponsive) top-level 
window and captures a dump when detected. ProcDump uses the same definition of “not 
responding” that Windows and Task Manager use: if a window belonging to the process fails 
to respond to window messages for five seconds, it’s considered hung. ProcDump must be 
running on the same desktop as the target process to use this option.



232 Part II Usage Guide

You can use a process’ commit charge threshold to trigger a dump. Specify the memory 
threshold in MB with the –m option. The following example captures a dump when Testapp’s 
commit charge exceeds 200 MB:

procdump -m 200 testapp

ProcDump checks the memory counters of the process once per second, and it captures a 
dump only if the amount of process memory charged against the system commit limit (the 
sum of the paging file sizes plus most of RAM) exceeds the threshold at the moment of the 
check. If the commit charge spikes only briefly, ProcDump might not detect it. 

Finally, you can use any performance counter to trigger a dump. Specify the –p option, 
 followed by the name of the counter and the threshold to exceed. Put the counter name in 
double quotes if it contains spaces. The following example captures a dump of Taskmgr.exe if 
the number of processes on the system exceeds 750 for three seconds or more:

procdump -p "\System\Processes" 750 -s 3 taskmgr.exe

One way to obtain valid counter names is to add them in Performance Monitor and then 
view the names on the Data tab of the Properties dialog box. However, Perfmon’s default 
notation for distinguishing multiple instances of a process with a hash sign and a sequence 
number (for example, cmd#2) is neither predictable nor stable—the name associated with a 
specific process can change as other instances start or exit. Therefore, ProcDump does not 
support this notation, but instead supports the process_PID notation described in Microsoft 
Knowledge Base article 281884. For example, if you have two instances of Testapp with PIDs 
1135 and 924, you can monitor attributes of the former by specifying it as testapp_1135. 
The following example captures a dump of that process if its handle count exceeds 200 for 
three seconds:

procdump -p "\Process(testapp_1135)\Handle Count" 200 -s 3 1135

The process_PID notation is not mandatory. You can specify just the process name, but 
 results will be unpredictable if multiple instances of that process are running.

Options can be combined. The following command captures a dump if Testapp exceeds 
the CPU or the commit charge threshold, has a hung window or unhandled exception, or 
 otherwise exits:

procdump -m 200 -c 90 -s 3 -u -h -t -e testapp

To stop monitoring at any time, just press Ctrl+C or Ctrl+Break.

Dump File Options
Different debug dump options are available depending on the version of dbghelp.dll 
that ProcDump uses. To get the latest and greatest features, install the latest version of 



 Chapter 7 Process and Diagnostic Utilities 233

Debugging Tools for Windows, copy ProcDump.exe into the folder containing dbghelp.dll, 
and run it from there.

At a minimum, dumps created by ProcDump will contain basic information about the process 
and all its threads, including stack traces for all threads; data sections from all loaded mod-
ules, including global variables; and module signature information so that the corresponding 
symbol files can be downloaded from a symbol server, even if the dump is analyzed on a 
completely different platform.

Note With Dbghelp.dll version 6.1 or higher, ProcDump adds thread CPU usage data so that 
the debugger’s !runaway command can show the amount of time consumed by each thread. 
Version 6.1 is included with Windows 7 and Windows Server 2008 R2.

To include all the process’ accessible memory in the dump, add the –ma option to the 
ProcDump command line. With newer versions of dbghelp.dll, this option also  captures 
memory region information, including details about the allocations and protection 
s ettings. Note that the –ma option makes the dump file much larger and can be very time- 
consuming, potentially taking several minutes to write the memory of a large application to 
disk. (The Miniplus dump option, described in the next section, is as useful as a full dump but 
is up to 90 percent smaller.)

Ordinarily, ProcDump needs to suspend the target process while the dump is being captured. 
Windows 7 and Windows Server 2008 R2 introduced a process reflection feature, which allows 
the process to be “cloned” so that the process can continue to run while a memory snapshot 
is dumped. You can take advantage of this feature by using the –r option. ProcDump creates 
three files: dumpfile.dmp, which captures process and thread information; dumpfile-reflected.
dmp, which captures the process’ memory; and dumpfile.ini, which ties them together and 
is the file you should open with the debugger. Windbg treats *.ini as a valid dump file type, 
although the file-open dialog box doesn’t indicate so.

On x64 editions of Windows, ProcDump creates a 32-bit dump file when the target process 
is a 32-bit process. To override this default and create a 64-bit dump file, add –64 to the 
ProcDump command line.

Miniplus Dumps
The Miniplus (–mp) dump type was specifically designed to tackle the growing problem of 
capturing full dumps of large applications such as the Microsoft Exchange Information Store 
(store.exe) on large servers. For example, capturing a full dump of Exchange 2010 can take 
30 minutes and result in a dump file of 48 GB. Compressing that file down to 8 GB can take 
another 60 minutes, and uploading the compressed file to Microsoft support can take an-
other six hours. Capturing a Miniplus dump of the same Exchange server takes one minute, 



234 Part II Usage Guide

and results in a 1.5-GB dump file that takes two minutes to compress and about 15 minutes 
to upload.

Although originally designed for Exchange, the algorithm is generic and works as well on 
Microsoft SQL Server or any other native application that allocates large memory regions. 
This is because the algorithm uses heuristics to determine what data is to be included.

A Miniplus dump starts by creating a minidump and adds (“plus”) memory deemed 
 important. The first step is to consider only pages marked as read/write. This excludes the 
majority of the image pages but still retains the image pages associated with global variables. 
The next step is to find the largest read/write memory area larger than 512 MB. If found, the 
memory area is provisionally excluded. A memory area is the collection of same-sized mem-
ory allocations. For example, if there are twenty 64-MB regions (1280 MB total), and five 
128-MB regions (640 MB total), the 64-MB regions will be excluded because they use more 
memory than the 128-MB regions even though the size of the allocations is not the largest. 
These excluded regions have a second chance to be included. They are divided into 4-MB 
chunks, and if referenced by any thread stack, the referenced 4-MB chunk is included. 

Even if the process isn’t overly large, Miniplus dumps are still considerably smaller than full 
dumps because they do not contain the process’ executable image. For example, a full dump 
of Notepad is approximately 50 MB, but a Notepad Miniplus dump is only about 2 MB. And 
a full dump of Microsoft Word is typically around 280 MB, but a Miniplus dump of the same 
process is only about 36 MB. When the process isn’t overly large, you can get an approximate 
size of the dump by viewing the Total/Private value in VMMap.

Note When debugging Miniplus dumps, the debugger needs to substitute in the omitted 
 image pages from a symbol store (.sympath) or executable store (.exepath). If you are capturing 
Miniplus dumps of your application, you need to maintain both a symbol and executable store 
that contains each build of your application.

An additional benefit of the Miniplus implementation is its ability to recover from memory 
read failures. A memory read failure is the reason why various dump utilities sometimes fail 
to capture a full dump. If you run across this issue when capturing a full dump, try using 
Miniplus instead to activate this recovery logic.

The Miniplus dump option can be combined with other ProcDump options as the following 
examples demonstrate. To capture a single Miniplus dump of store.exe, use the following 
command line:

procdump -mp store.exe

Use the following command to capture a single Miniplus dump when store.exe crashes:

procdump -mp -e store.exe



 Chapter 7 Process and Diagnostic Utilities 235

This command captures three Miniplus dumps of store.exe 15 seconds apart:

procdump -mp -n 3 -s 15 store.exe

To capture three Miniplus dumps when the RPC Averaged Latency performance counter is 
over 250 ms for 15 seconds, use this command:

procdump -mp -n 3 -s 15 -p "\MSExchangeIS\RPC Averaged Latency" 250 store.exe

Note I don’t recommend you capture a Miniplus dump of a managed (.NET) application, but 
that you capture a full dump (–ma) instead. The Miniplus algorithm tries to capture a full dump 
in this situation, but because it builds on top of a minidump, the resulting dump isn’t as complete 
as a full dump. A full dump is needed because intact GC data structures and access to the NGEN 
image (which won’t be on a symbol or executable store) are required by the debugger.

Running ProcDump Noninteractively
ProcDump does not need to be run in an interactive desktop session. Some reasons that 
you might want to run it noninteractively are that you have a long-running target process 
and don’t want to remain logged in while monitoring it, or you’re tracking a problem that 
 happens when no one is logged on or during a logoff.

The following example shows how to use PsExec to run ProcDump as System in the same 
noninteractive session and desktop in which services running as System run. The example 
runs it within a Cmd.exe instance so that its console outputs can be redirected to files. 
Note the use of the escape (̂ ) character with the output redirection character (>) so that it 
isn’t treated as an output redirector on the PsExec command line but becomes part of the 
Cmd.exe command line. The following example should be typed as a single command line. 
(See Chapter 6, “PsTools,” for more information about PsExec, and see Chapter 2 for more 
 information about noninteractive sessions and desktops.)

psexec -s -d cmd.exe /c procdump.exe -e -t testapp c:\temp\testapp.dmp ^>  

    c:\temp\procdump.out 2^> c:\temp\procdump.err

If the target application crashes during a logoff, this type of command will work better than 
if ProcDump were running in the same session, because ProcDump could end up exiting 
earlier than the target. However, if the logoff terminates the target application,  ProcDump 
will not be able to capture a dump. ProcDump acts as a debugger for its target process, and 
logoff detaches any debuggers attached to processes that it terminates.

Note also that ProcDump cannot monitor for hung application windows when the target 
process is running on a different desktop from ProcDump.



236 Part II Usage Guide

Capturing All Application Crashes with ProcDump
You can use ProcDump to create a crash dump whenever any application crashes by 
 configuring it as the postmortem debugger.1 In the registry, go to HKLM\Software\Microsoft\
Windows NT\CurrentVersion\AeDebug. Set the “Debugger” REG_SZ value to the ProcDump 
command line to execute, using %ld as the placeholder for the PID of the crashing process. 
For example, the following command will create a full memory dump in C:\Dumps whenever 
any application crashes with the process name and time stamp in the file name:

"C:\Program Files\Sysinternals\procdump.exe" /accepteula -ma %ld C:\Dumps

It is important to specify the dump file path. Otherwise, ProcDump tries to create the dump 
file in the current directory, which is %SystemRoot%\System32 when started in this manner. 
Because the configured debugger is launched in the same security context as the crashing 
process, ProcDump cannot create the dump file there unless the crashing process had ad-
ministrative rights. Also note that the target folder must exist before ProcDump launches, 
and it must be writable.

Viewing the Dump in the Debugger
For all dumps triggered by a condition, ProcDump records a comment in the dump that 
describes why the dump was captured. The comment can be seen in the initial text that 
WinDbg presents when you open the dump file. The first line of the comment shows the 
ProcDump command line that was used to create the dump. The second line of the comment 
describes what triggered the dump, along with other pertinent data if available. For example, 
if the memory threshold had been passed, the comment shows the memory commit limit 
and the process’ commit usage:

*** Process exceeded 100 MB commit usage: 107 MB

If the CPU threshold has been passed, the comment shows the CPU threshold, the duration, 
and the thread identifier (TID) that consumed the largest amount of CPU cycles in the period: 

*** Process exceeded 50% CPU for 3 seconds. Thread consuming CPU: 4484 (0x1184)

If the performance counter threshold had been exceeded, the comment reports the 
 performance counter, threshold, duration, and TID that consumed the largest amount of CPU 
cycles in the period. 

*** Counter "\Process(notepad_1376)\% Processor Time" exceeded 5 for 3 seconds.  

    Thread consuming CPU: 1368 (0x558)

1 Windows Error Reporting can capture crash dumps, but ProcDump can be easier to configure.



 Chapter 7 Process and Diagnostic Utilities 237

If a hung window triggered the dump, the comment includes the window handle in 
 hexadecimal. If the dump was captured immediately, was timed, or was triggered by an 
 exception or a normal termination, the comment reports only the cause with no additional 
data.

To avoid you having to change the thread context to the busy thread (the ~~[TID]s 
 command) when opening a dump that has been created because of a CPU or performance 
counter trigger, ProcDump inserts a fake exception to do it for you. This is very useful when 
you capture multiple dump files because you can open each dump file knowing that the 
default thread context is the thread of interest. The insertion of the fake exception into the 
dump results in the debugger reporting a false positive with text like the following:

This dump file has an exception of interest stored in it. 

The stored exception information can be accessed via .ecxr. 

(104c.14c0): Wake debugger - code 80000007 (first/second chance not available) 

eax=000cfe00 ebx=00188768 ecx=00000001 edx=00000000 esi=00000000 edi=00000000 

eip=01001dc7 esp=00feff70 ebp=00feff88 iopl=0         nv up ei pl zr na pe nc 

cs=0023  ss=002b  ds=002b  es=002b  fs=0053  gs=002b             efl=00000246

Now that you know about that, you can safely ignore it.

DebugView
DebugView is an application that lets you monitor debug output generated from the  local 
computer or from remote computers. Unlike most debuggers, DebugView can display 
 user-mode debug output from all processes within a session, as well as kernel-mode debug 
output. It offers flexible logging and display options, and it works on all x86 and x64 versions 
of Windows XP and newer.

What Is Debug Output?
Windows provides APIs that programs can call to send text that can be captured and 
 displayed by a debugger. If no debugger is active, the APIs do nothing. These interfaces 
make it easy for programs to produce diagnostic output that can be consumed by any 
 standard debugger and that is discarded if no debugger is connected.

Debug output can be produced both by user-mode programs and by kernel-mode drivers. 
For user-mode programs, Windows provides the OutputDebugString Win32 API. 16-bit appli-
cations running on x86 editions of Windows can produce debug output by calling the Win16 
OutputDebugString API, which is forwarded to the Win32 API. For managed applications, the 
Microsoft .NET Framework provides the System.Diagnostics.Debug and Trace classes with 



238 Part II Usage Guide

static methods that internally call OutputDebugString. Those methods can also be called from 
Windows PowerShell—for example:

[System.Diagnostics.Debug]::Print("Some debug output")

Kernel-mode drivers can produce diagnostic output by invoking the DbgPrint or DbgPrintEx 
routines, or several related functions. Programmers can also use the KdPrint or KdPrintEx 
macros, which produce debug output only in debug builds and do nothing in release builds.

Although Windows provides both an ANSI and a Unicode implementation of the 
OutputDebugString API, internally all debug output is processed as ANSI. The Unicode 
 implementation of OutputDebugString converts the debug text based on the current system 
locale and passes that to the ANSI implementation. As a result, some Unicode characters 
might not be displayed correctly.

The DebugView Display
Simply execute the DebugView program file (Dbgview.exe). It will immediately start capturing 
and displaying Win32 debug output from all desktops in the current terminal server session.

Note All interactive desktop sessions are internally implemented as terminal server sessions.

As you can see in Figure 7-13, the first column is a DebugView-assigned, zero-based 
 sequence number. Gaps in the sequence numbers might appear when filter rules exclude 
lines of text or if DebugView’s internal buffers are overflowed during extremely heavy 
 activity. The sequence numbers are reset whenever the display is cleared. (DebugView 
 filtering is described later in this chapter.)

FIGURE 7-13 DebugView.



 Chapter 7 Process and Diagnostic Utilities 239

The second column displays the time at which the item was captured, either in elapsed time 
or clock time. By default, DebugView shows the number of seconds since the first debug 
record in the display was captured, with the first item always being 0.00. This can be  helpful 
when debugging timing-related problems. This timer is reset when the display is cleared. 
Choose Clock Time from the Options menu if you prefer that the local clock time be dis-
played instead. Additionally, choose Show Milliseconds from the Options menu if you want 
the time stamp to show that level of granularity. You can also configure the time display with 
command-line options: /o to display clock time, /om to display clock time with milliseconds, 
and /on to show elapsed time.

Tip Changing the Show Milliseconds setting doesn’t change the display of existing entries. 
You can refresh these entries by pressing Ctrl+T twice to toggle Clock Time off and back on. All 
 entries will then reflect the new setting for Show Milliseconds.

The debug output is in the Debug Print column. For user-mode debug output, the process 
ID (PID) of the process that generated the output appears in square brackets, followed by the 
output itself. If you don’t want the PID in the display, disable the Win32 PIDs option in the 
Options menu.

You can select one or more rows of debug output and copy them to the Windows  clipboard 
by pressing Ctrl+C. DebugView supports standard Windows methods of selecting  multiple 
rows such as holding down Shift while pressing the Up or Down arrow keys to select 
 consecutive rows, or holding down Ctrl while clicking nonconsecutive rows.

By default, the Force Carriage Returns option is enabled, which displays every string passed 
to a debug output function on a separate line, whether or not that text is terminated with a 
carriage return. If you disable that option in the Options menu, DebugView buffers output 
text in memory and adds it to the display only when a carriage return is encountered or the 
memory buffer is filled (approximately 4192 characters). This allows applications and drivers 
to build output lines with multiple invocations of debug output functions. However, if output 
is being generated from more than one process, the output can be jumbled together, and 
the PID that appears on the line will be that of the process that output a carriage return or 
filled the buffer.

If the text of any column is too wide for that column, move the mouse over it and the full 
text will appear in a tooltip.

Debug output is added to the end of the list as it is produced. DebugView’s Autoscroll 
 feature (which is off by default) scrolls the display as new debug output is captured so that 
the most recent entry is visible. To toggle Autoscroll on and off, press Ctrl+A or click the 
Autoscroll icon in the toolbar.



240 Part II Usage Guide

You can annotate the output by choosing Append Comment from the Edit menu. The text 
you enter in the Append Comment dialog box is added to the debug output display and to 
the log file if logging is enabled. Note that filter rules apply to appended comments as well 
as to debug output.

You can increase the display space for debug output by selecting Hide Toolbar on the 
Options menu. You can also increase the number of visible rows of debug output by 
 selecting a smaller font size. Choose Font from the Options menu to change the font.

To run DebugView in the background without taking up space in the taskbar, select Hide 
When Minimized from the Options menu. When you subsequently minimize the DebugView 
window, it will appear only as an icon in the notification area (also known as “the tray”). You 
can then right-click on the icon to display the Capture pop-up menu, where you can choose 
to enable or disable various Capture options. Double-click the icon to display the DebugView 
window again. You can enable the Hide When Minimized option on startup by adding /t to 
the DebugView command line.

Select Always On Top from the Options menu to keep DebugView as the topmost window on 
the desktop when it’s not minimized.

Capturing User-Mode Debug Output
DebugView can capture debug output from multiple local sources: the current terminal 
services session, the global terminal services session (“session 0”), and kernel mode. Each 
of these can be selected from the Capture menu. All capturing can be toggled on or off by 
choosing Capture Events, pressing Ctrl+E, or clicking the Capture toolbar icon. When Capture 
Events is off, no debug output is captured; when it is on, debug output is captured from the 
selected sources.

By default, DebugView captures only debug output from the current terminal services 
 session, called “Capture Win32” on the Capture menu. A terminal services session can be 
thought of as all user-mode activity associated with an interactive desktop logon. It includes 
all processes running in the window stations and (Win32) Desktops of that session.

On Windows XP and on Windows Server 2003, an interactive session can be in session 0, 
and it always is when Fast User Switching and Remote Desktop are not involved. Session 0 is 
the session in which all services also execute and in which global objects are defined. When 
DebugView is executing in session 0 and Capture Win32 is enabled, it will capture debug 
output from services as well as the interactive user’s processes. Administrative rights are not 
required to capture debug output from the current session, even that from services. (See 
the “Sessions, Window Stations, Desktops, and Window Messages” section of Chapter 2 for 
more information.)



 Chapter 7 Process and Diagnostic Utilities 241

With Fast User Switching or Remote Desktop, Windows XP and Windows Server 2003  users 
often log in to sessions other than the global one. Also, beginning with Windows Vista, 
 session 0 isolation ensures that users never log on to the session in which services run. When 
run in a session other than session 0, DebugView adds the Capture Global Win32 option to 
the Capture menu. When enabled, this option captures debug output from processes run-
ning in session 0. DebugView must run elevated on Windows Vista and newer to use this 
 option. Administrative rights are not required to enable this option on Windows XP.

Capturing Kernel-Mode Debug Output
You can configure DebugView to capture kernel-mode debug output generated by device 
drivers or by the Windows kernel by enabling the Capture Kernel option on the Capture 
menu. Process IDs are not reported for kernel-mode output because such output is typically 
not related to a process context. Kernel-mode capture requires administrative rights, and in 
particular the Load Driver privilege.

Kernel-mode components can set the severity level of each debug message. On Windows 
Vista and newer, kernel-mode debug output can be filtered based on severity level. If you 
want to capture all kernel debug output, choose the Enable Verbose Kernel Output option on 
the Capture menu. If this option is not enabled, DebugView captures only debug output at 
the error severity level.

DebugView can be configured to pass kernel-mode debug output to a kernel-mode 
 debugger or to swallow the output. You can toggle pass-through mode on the Capture 
menu or with the Pass-Through toolbar icon. The pass-through mode allows you to see 
kernel-mode debug output in the output buffers of a conventional kernel-mode debugger 
while at the same time viewing it in DebugView.

Because it is an interactive program, DebugView cannot be started until after you log on. 
Ordinarily, to view debug output generated prior to logon, you need to hook up a kernel 
 debugger from a remote computer. DebugView’s Log Boot feature offers an alternative, 
 capturing kernel-mode debug output during system startup, holding that output in memory, 
and displaying it after you log in and start DebugView interactively. When you choose Log 
Boot from the Capture menu, DebugView configures its kernel driver to load very early 
in the next boot sequence. When it loads, it creates a 4-MB buffer and captures verbose 
 kernel debug output in it until the buffer is full or DebugView connects to it. When you start 
DebugView with administrative rights and Capture Kernel enabled, DebugView checks for 
the existence of the memory buffer in kernel memory. If that is found, DebugView displays its 
contents. Configuring boot logging requires administrative permissions and applies only to 
the next boot.

If DebugView is capturing kernel debug output at the time of a bugcheck (also known as a 
blue-screen crash), DebugView can recover the output it had captured to that point from 



242 Part II Usage Guide

the crash dump file. This can be helpful if, for example, you are trying to diagnose a crash 
 involving a kernel-mode driver you are developing. You can also instrument your driver to 
produce debug output so that users who experience a crash using your driver can send you a 
debug output file instead of an entire memory dump.

Choose Process Crash Dump from the File menu to select a crash dump file for DebugView 
to analyze. DebugView will search the file for its debug output buffers. If it finds them, 
DebugView will prompt you for the name of a log file in which to save the output. You can 
load saved output files into DebugView for viewing. Note that the system must be config-
ured to create a kernel or full dump (not a minidump) for this feature to work. DebugView 
saves all capture configuration settings on exit and restores them the next time it runs. 
Note that if it had been running elevated and capturing kernel or global (session 0) debug 
output, DebugView displays error messages and disables those options if it doesn’t have 
 administrative rights the next time it runs under the same user account, because it will not be 
able to capture output from those sources. You can avoid these error messages by starting 
DebugView with the /kn option to disable kernel capture and /gn to disable global capture.

Searching, Filtering, and Highlighting Output
DebugView has several features that can help you focus on the debug output you are 
 interested in. These capabilities include searching, filtering, highlighting, and limiting the 
number of debug output lines saved in the display. 

Clearing the Display 
To clear the display of all captured debug text, press Ctrl+X or click the Clear icon in the 
 toolbar. You can also clear the DebugView output from a debug output source: when 
DebugView sees the special debug output string DBGVIEWCLEAR (all capitals) anywhere in 
an input line, DebugView clears the output. Clearing the output also resets the sequence 
number and elapsed timer to 0.

Searching 
If you want to search for a line containing text of interest, press Ctrl+F to display the Find 
dialog box. If the text you specify matches text in the output window, DebugView selects the 
next matching line and turns off the Autoscroll feature to keep the line in the window. Press 
F3 to repeat a successful search. You can press Shift+F3 to reverse the search direction. 

Filtering
Another way to isolate output you are interested in is to use DebugView’s filtering capability. 
Click the Filter/Highlight button in the DebugView toolbar to display the Filter dialog box, 



 Chapter 7 Process and Diagnostic Utilities 243

shown in Figure 7-14. The Include and Exclude fields are used to set criteria for including or 
excluding incoming lines of debug text based on their content. The Highlight group box is 
used to color-code selected lines based on their content. Filter and Highlight rules can be 
saved to disk and then reloaded at a later time. (Highlighting is discussed in the next section 
of this chapter.)

FIGURE 7-14 The DebugView Filter dialog box.

Enter substring expressions in the Include field that match debug output lines that you want 
DebugView to display, and enter substring expressions in the Exclude field to specify debug 
output lines that you do not want DebugView to display. You can enter multiple expressions, 
separating each with a semicolon. Do not include spaces in the filter expression unless you 
want the spaces to be part of the filter. Note that the “*” character is interpreted as a wild-
card, and that filters are interpreted in a case-insensitive manner and are also applied to the 
Process ID portion of the line if PIDs are included in the output. The default rules include 
 everything (“*”) and exclude nothing.

As shown in the example in Figure 7-14, say that you want DebugView to display  debug 
 output only if it contains the words “win,” “desk,” or “session,” unless it also contains the 
word “error.” Set the Include filter to “win;desk;session” (without the quotes) and the 
Exclude filter to “error.” If you want DebugView to show only output that has “MyApp:” 
and the word “ severe” following later in the output line, use a wildcard in the Include filter: 
“myapp:*severe”.

Filtering is applied only to new lines of debug output as they are captured and to comments 
appended with the Append Comment feature. New text lines that match the rules that are 
in effect are displayed; those that don’t match are dropped and cannot be “unhidden” by 
changing the filter rules after the fact. Also, changing the filter rules does not remove lines 
that are already displayed by DebugView.

If any filter rules are in effect when you exit DebugView, DebugView will display them in a 
dialog box the next time you start it. Simply click OK to continue using those rules, or change 
them first. You can edit them in place, click Load to use a previously saved filter, or click Reset 
to remove the filter. To bypass this dialog box and continue to use the rules that were in 
 effect, add /f to the DebugView command line.



244 Part II Usage Guide

Highlighting
Highlighting lets you color-code selected lines based on the text content of those lines. 
DebugView supports up to 20 separate highlighting rules, each with its own foreground and 
background color. The highlight rule syntax is the same as that for the Include filter.

Use the Filter drop-down list in the Highlight group box to select which filter (numbered 1 
through 20) you want to edit. By default, each filter is associated with a color combination 
but no highlight rule. To set a rule for that filter, type the text for the rule in the drop-down 
list showing the color combination. In Figure 7-14, Filter 1 highlights lines containing the 
word “Console.”

Lower-numbered highlight filters take precedence over higher-numbered rules. If a line of 
text matches the rules for Filter 3 and Filter 5, the line will be displayed in the colors associ-
ated with Filter 3. Changing highlight rules updates all lines in the display to reflect the new 
highlight rules.

To change the colors associated with a highlight filter, select that filter in the drop-down list 
and click on the Colors button. To change the foreground color, select the FG radio button, 
choose a color, and click the Select button. Do the same using the BG radio button to change 
the background color, and then click OK.

Saving and Restoring Filter and Highlight Rules
Use the Load and Save buttons on the Filter dialog box to save and restore filter settings, 
including the Include, Exclude, and Highlight filter rules, as well as the Highlight color 
 selections. DebugView uses the .INI file extension for its filter files, even though they are not 
formatted as initialization files.

Clicking the Reset button resets all Filter and Highlight rules to DebugView defaults. Note 
that Reset does not restore default Highlight colors.

History Depth
A final way to control DebugView output is to limit the number of lines that are retained in 
the display. Choose History Depth from the Edit menu to display the History Depth dialog 
box. Enter the number of output lines you want DebugView to retain, and it will keep only 
that number of the most recent debut output lines, discarding older ones. A history depth 
of 0 (zero) represents no limit on the number of output lines retained. You can specify the 
 history depth on the command line with the /h switch, followed by the desired depth.

You do not need to use the History Depth feature to prevent all of a system’s virtual memory 
from being consumed in long-running captures. DebugView monitors system memory 
 usage, alerts the user, and suspends capture of debug output when it detects that memory is 
running low.



 Chapter 7 Process and Diagnostic Utilities 245

Saving, Logging, and Printing
DebugView lets you save captured debug output to file, either on demand or as it is being 
captured. Saved files can be opened and displayed by DebugView at a later time. DebugView 
also lets you print all or parts of the displayed output.

You can save the contents of the DebugView output window as a text file by choosing Save 
or Save As from the File menu. DebugView uses the .LOG extension by default. The file 
format is tab-delimited ANSI text. You can display the saved text in DebugView at a later 
time by choosing Open from the File menu, or by specifying the path to the file on the 
DebugView command line, as in the following example: 

dbgview c:\temp\win7-x86-vm.log

Logging
To have DebugView log output to a file as it displays it, choose Log To File from the File 
menu. The first time you choose that menu item or click the Log To File button on the 
 toolbar, DebugView displays the Log-To-File Settings dialog box shown in Figure 7-15, 
prompting you for a file location. From that point forward, the Log To File menu option and 
toolbar  button toggle logging to that file on or off. To log to a different file or to change 
other log file settings, choose Log To File As from the File menu. (If log-to-file is currently 
 enabled, choosing Log To File As has the same effect as toggling Log To File off.)

FIGURE 7-15 The DebugView Log-to-File Settings dialog box.

The other configuration options in the Log-To-File Settings dialog box are

■ Unlimited Log Size This selection allows the log file to grow without limit.

■ Create New Log Every Day When this option is selected, DebugView will not limit 
the size of the log file, but will create a new log file every day, with the current date 
appended to the base log file name. You can also select the option to clear the display 
when the new day’s log file is created.



246 Part II Usage Guide

■ Limit Log Size When this option is selected, the log file will not grow past the size 
limit you specify. DebugView will stop logging to the file at that point, unless you 
also select the Wrap option. With Wrap enabled, DebugView will wrap around to the 
 beginning of the file when the file’s maximum size is reached.

If Append is not selected and the target log file already exists, DebugView truncates the 
 existing file when logging begins. If Append is selected, DebugView appends to the existing 
log file, preserving its content.

If you are monitoring debug output from multiple remote computers and enable logging to 
a file, all output is logged to the one file you specify. Ranges of output from different com-
puters are separated with a header that indicates the name of the computer from which the 
subsequent lines were recorded.

Logging options can also be controlled by using the command-line options listed in 
Table 7-2:

TABlE 7-2 Command-line Options for logging

Option Description
–l logfile Logs output to the specified logfile

–m n Limits log file to n MB

–p Appends to the file if it already exists; otherwise, overwrites it

–w Used with –m, wrap to the beginning of the file when the maximum size is 
reached

–n Creates a new log file every day, appending the date to the file name

–x Used with –n, clears the display when a new log file is created

Printing
Choose Print or Print Range from the File menu to print the contents of the display to a 
printer. Choose Print Range if you want to print only a subset of the sequence numbers dis-
played, or choose Print if you want to print all the output records. Note that capture must be 
disabled prior to printing.

The Print Range dialog box also lets you specify whether or not sequence numbers and time 
stamps will be printed along with the debug output. Omitting these fields can save page 
space if they are not necessary. The settings you choose are used in all subsequent print 
operations. 

To prevent wrap-around when output lines are wider than a page, consider using landscape 
mode instead of portrait when printing.



 Chapter 7 Process and Diagnostic Utilities 247

Remote Monitoring
DebugView has remote monitoring capabilities that allow you to view debug output 
 generated on remote systems. DebugView can connect to and monitor multiple remote 
computers and the local computer simultaneously. You can switch the view to see output 
from a computer by selecting it from the Computer menu as shown in Figure 7-16, or you 
can cycle through them by pressing Ctrl+Tab. The active computer view is identified in the 
title bar and by an arrow icon in the Computer menu. Alternatively, you can open each 
 computer in a separate window and view their debug outputs simultaneously.

FIGURE 7-16 DebugView monitoring two remote computers and the local computer.

To perform remote monitoring, DebugView runs in agent mode on the remote system, 
sending debug output it captures to a central DebugView viewer that displays the output. 
Typically, you will start DebugView in agent mode on the remote system manually. In some 
circumstances, the DebugView viewer can install and start the remote agent component 
 automatically, but with host-based firewalls now on by default, this is usually impractical.

To begin remote monitoring, press Ctrl+R or choose Connect from the Computer menu to 
display a computer connection dialog box. Enter the name or IP address of the remote com-
puter, or select a previously-connected computer from the drop-down list, and click OK. 
DebugView will try to install and start an agent on that computer; if it cannot, DebugView 
tries to find and connect to an already-running, manually-started agent on the computer. 
If its attempt is successful, DebugView begins displaying debug output received from that 
computer, adding the remote computer name to the title bar and to the Computer menu. 

To begin monitoring the local computer, choose Connect Local from the Computer menu. 
Be careful not to connect multiple viewers to a single computer because the debug output 
will be split between those viewers.



248 Part II Usage Guide

To view debug output from two computers side by side, choose New Window from the File 
menu to open a new DebugView window before establishing the second connection. Make 
the connection from that new window. 

To stop monitoring debug output from a computer, make it the active computer view by 
 selecting it in the Computer menu, and then choose Disconnect from the Computer menu.

Running the DebugView Agent
To manually start DebugView in agent mode, specify /a as a command-line argument. 
DebugView displays the “Waiting for connection” dialog box shown in Figure 7-17 until a 
DebugView monitor connects to it. The dialog box then indicates “Connected.” Note that in 
agent mode, DebugView does not capture or save any debug output when not connected to 
a DebugView monitor. When connected, the DebugView agent always captures Win32  debug 
output in the current terminal services session. To have the agent capture kernel  debug 
 output, add /k to the command line; to capture verbose kernel debug output, also add /v to 
the command line. To capture global (session 0) output, add /g to the command line.

FIGURE 7-17 The DebugView Remote Agent window.

If the monitor disconnects or the connection is otherwise broken, the agent status window 
reverts to “Waiting for connection” and DebugView awaits another connection. By adding /e 
to the DebugView agent command line, you can opt to display an error message when this 
occurs and not accept a new connection until the error message is dismissed.

You can hide the agent status window and instead display an icon in the taskbar notification 
area by adding /t to the command line. The icon is gray when the agent is not connected 
to a monitor and colored when it is connected. You can open the status window by double-
clicking on the icon and return it to an icon by minimizing the status window. You can hide 
the DebugView agent user interface completely by adding /s to the DebugView command 
line. In this mode, DebugView remains active until the user logs off, silently accepting con-
nections from DebugView monitors. Note that /s overrides /e: if the viewer disconnects, 
DebugView will silently await and accept a new connection without displaying a notification.

The manually-started DebugView agent listens for connections on TCP port 2020. The 
Windows Firewall might display a warning the first time you run DebugView in agent mode. 
If you choose to allow the access indicated in the warning message, Windows will create 
a program exception for DebugView in the firewall. That or a port exception for TCP 2020 
will enable the manually-started DebugView agent to work. Note that connections are 
 anonymous and not authenticated.



 Chapter 7 Process and Diagnostic Utilities 249

The agent automatically installed and started on the remote computer by the viewer is 
implemented as a Windows service. Therefore, it runs in terminal services session 0, where 
it can monitor only kernel and global Win32 debug output; it cannot monitor debug out-
put from interactive user sessions outside of session 0. Also, it listens for a connection on 
a random high port, which isn’t practical when using a host-based firewall. In most cases, 
the manually started DebugView agent will generally be much more reliable and is the 
 recommended way to monitor debug output remotely.

When using the agent automatically installed by the monitor, the state of global capture, 
Win32 debug capture, kernel capture, and pass-through for the newly established remote 
session are all adopted from the current settings of the DebugView viewer. Changes you 
make to these settings on the viewer take effect immediately on the monitored computer.

liveKd
LiveKd is a utility that allows you to use kernel debuggers to examine a snapshot of a live 
system without booting the system in debugging mode. This can be useful when kernel-level 
troubleshooting is required on a machine that wasn’t booted in debugging mode. Certain 
issues might be hard to reproduce, so rebooting a system can be disruptive. On top of that, 
booting a computer in debug mode changes how some subsystems behave, which can fur-
ther complicate analysis. In addition to not requiring booting with debug mode enabled, 
LiveKd allows the Microsoft kernel debuggers to perform some actions that are not normally 
possible with  local kernel debugging, such as creating a full memory dump file.

In addition to examining the local system, LiveKd supports the debugging of Hyper-V guest 
virtual machines (VMs) externally from the Hyper-V host. In this mode, the debugger runs 
on the Hyper-V host and not on the guest VMs, so there is no need to copy any files to the 
 target VM or configure the VM in any way.

LiveKd creates a snapshot dump file of kernel memory, without actually stopping the kernel 
while the snapshot is captured. LiveKd then presents this simulated dump file to the kernel 
debugger of your choosing. You can then use the debugger to perform any operations on 
this snapshot of live kernel memory that you could on any normal dump file.

Because LiveKd relies on physical memory to back the simulated dump, the kernel debugger 
might run into situations in which data structures are in the middle of being changed by the 
system and are inconsistent. Each time the debugger is launched, it starts with a fresh view 
of the system state. If you want to refresh the snapshot, quit the debugger (with the q com-
mand), and LiveKd will ask you whether you want to start it again. If the debugger enters a 
loop in printing output, press Ctrl+C to interrupt the output, quit, and rerun it. If it hangs, 
press Ctrl+Break, which will terminate the debugger process and ask you whether you want 
to run the debugger again.



250 Part II Usage Guide

LiveKd Requirements
LiveKd supports all x86 and x64 versions of Windows. It must be run with administrative 
rights, including the Debug privilege.

LiveKd depends on the Debugging Tools for Windows, which must be installed on the 
same machine before you run LiveKd. The URL for the Debugging Tools for Windows is 
http://www.microsoft.com/whdc/devtools/debugging/default.mspx. The Debugging Tools 
 installer used to be a standalone download, but it is now incorporated into the Windows 
SDK. To get the Debugging Tools, you must run the SDK installer and select the Debugging 
Tools options you want. Among the options are the Debugging Tools redistributables, which 
are the standalone Debugging Tools installers, available for x86, x64, and IA64. These work 
well if you want to install the Debugging Tools on other machines without running the SDK 
installer.

LiveKd requires that kernel symbol files be available. These can be downloaded as needed 
from the Microsoft public symbol server. If the system to be analyzed does not have an 
Internet connection, see the “Online Kernel Memory Dump Using LiveKd” sidebar to learn 
how to acquire the necessary symbol files.

Running LiveKd
The LiveKd command-line syntax is

livekd [-w | -k debugger-path | -o dumpfile] [[-hvl] | [-hv VMName][-p]] [debugger options]

Table 7-3 summarizes the LiveKd command-line options, which are then discussed in more 
detail.

TABlE 7-3 liveKd Command-line Options

Option Description
–w Runs WinDbg.exe instead of Kd.exe

–k debugger-path Runs the specified debugger instead of Kd.exe

–o dumpfile Saves a kernel dump to the dumpfile instead of launching a debugger

–hvl From Hyper-V host, lists the GUIDs and names of available guest VMs

–hv VMName From Hyper-V host, debugs the VM identified by GUID or name

–p From Hyper-V host, pauses the target VM while capturing the dump 
 (recommended for use with –o)

debugger options Additional command-line options to pass to the kernel debugger



 Chapter 7 Process and Diagnostic Utilities 251

By default, LiveKd takes a snapshot of the local computer and runs Kd.exe. The –w and –k 
 options let you specify WinDbg.exe or any other debugger instead of Kd.exe. LiveKd passes 
any additional command-line options that you specify on to the debugger, followed by –z 
and the path to the simulated dump file.

To debug a Hyper-V virtual machine from the host, specify –hv and either the friendly name 
or the GUID of the VM. To list the names and GUIDs of the available VMs, run LiveKd with the 
–hvl option. Note that you can debug only one VM on a host at a time.

With the –o option, LiveKd just saves a kernel dump of the target system to the specified 
dumpfile and doesn’t launch a debugger. This option is useful for capturing system dumps 
for offline analysis. If the target is a Hyper-V VM, you can also add –p to the command line 
to pause the VM while the snapshot is being captured in order to get a completely consistent 
snapshot. 

If you are launching a debugger and don’t specify –k and a path to a debugger, LiveKd will 
find Kd.exe or WinDbg.exe if it is in one of the following locations:

■ The current directory when you start LiveKd

■ The same directory as LiveKd

■ The default installation path for the Debugging Tools (“%ProgramFiles%\Debugging 
Tools for Windows (x86)” on x86 or “%ProgramFiles%\Debugging Tools for Windows 
(x64)” on x64)

■ A directory specified in the PATH variable

If the _NT_SYMBOL_PATH environment variable has not been configured, LiveKd will ask if 
you want it to configure the system to use Microsoft’s symbol server, and then it will ask for 
the local folder in which to download symbol files (C:\Symbols by default).

Refer to the Debugging Tools documentation regarding how to use the kernel debuggers.

Note The debugger will complain that it can’t find symbols for LiveKdD.SYS. This is expected 
because I have not made symbols for LiveKdD.SYS available. The lack of these symbols does not 
affect the behavior of the debugger.

LiveKd Examples
This command line debugs a snapshot of the local computer, passing parameters to WinDbg 
to write a log file and not to display the Save Workspace? dialog box:

livekd -w -Q -logo C:\dbg.txt



252 Part II Usage Guide

This command line captures a kernel dump of the local computer and does not launch a 
debugger:

livekd -o C:\snapshot.dmp

When run on a Hyper-V host, this command lists the virtual machines available for 
 debugging; it then shows sample output:

C:\>livekd -hvl 

 

Listing active Hyper-V partitions... 

 

Hyper-V VM GUID                        Partition ID   VM Name 

------------------------------------   ------------   ------- 

3187CB6B-1C8B-4968-A501-C8C22468AB77             29   WinXP x86 (SP3) 

9A489D58-E69A-48BF-8747-149344164B76             30   Win7 Ultimate x86 

DFA26971-62D7-4190-9ED0-61D1B910466B             28   Win7 Ultimate x64

You can then use either a GUID or a VM name from the listing to specify the VM to debug. 
This command pauses the “Win7 Ultimate x64” VM from the example and captures a kernel 
dump of that system, resuming the VM after the dump has been captured:

livekd -p -o C:\snapshot.dmp -hv DFA26971-62D7-4190-9ED0-61D1B910466B

Finally, this command debugs a snapshot of the “WinXP x86 (SP3)” VM using Kd.exe:

livekd -hv "WinXP x86 (SP3)"

Online Kernel Memory Dump Using liveKd
How many times have you had to acquire a kernel memory dump, but you or your 
customer (quite rightly) refused to have the target system attached to the Internet, 
 preventing the downloading of required symbol files? I have had that dubious pleasure 
far too often, so I decided to write down the process for my future reference.

The key problem is that you need to get the correct symbol files for the kernel memory 
dump. At a minimum, you must have symbols for Ntoskrnl.exe. Just downloading the 
symbol file packages from WHDC or MSDN for your operating system and service pack 
version is not quite good enough, because files and corresponding symbols might have 
been changed by updates since the service pack was released.

Here is the process I follow:

■ Copy Ntoskrnl.exe and any other files for which you want symbols from the 
System32 folder on the computer to be debugged to a folder (for example, 
C:\DebugFiles) on a computer with Internet access.

■ Install the Debugging Tools for Windows on the Internet-facing system.



 Chapter 7 Process and Diagnostic Utilities 253

■ From a command prompt on that system, run Symchk to download symbols 
for the files you selected into a new folder. The command might look like this:

symchk /if C:\DebugFiles\*.* /s srv*C:\DebugSymbols*http://msdl.microsoft.

com/download/symbols

■ Copy the downloaded symbols (for example, the C:\DebugSymbols folder in 
the previous example) from the Internet-facing system to the original system.

■ Install the Debugging Tools for Windows on the computer from which you 
 require a kernel memory dump, and copy LiveKd.exe into the same folder 
with the debuggers. Add this folder to the PATH.

■ With administrator privileges, open a command prompt and set the environ-
ment variable _NT_SYMBOL_PATH to the folder containing symbol files. For 
example:

SET _NT_SYMBOL_PATH=C:\DebugSymbols

■ At the command prompt, run liveKd -w -Q to start WinDbg.

■ When the WinDbg prompt appears, type the following command to create a 
full memory dump:

.dump /f c:\memory.dmp

You need to make sure there is enough space on this drive.

■ Type q to quit WinDbg and then n to quit LiveKd.

You should find the full memory dump in C:\memory.dmp, which you can compress 
and deliver for analysis.

Note This sidebar is adapted from a blog post by Carl Harrison. Carl’s blog is at 
http://blogs.technet.com/carlh. 

listDlls
ListDLLs is a console utility that displays information about DLLs loaded in processes on the 
local computer. It can show you all DLLs in use throughout the system or in specific pro-
cesses, and it can let you search for processes that have a specific DLL loaded. It is also useful 
for verifying which version of a DLL a process has loaded and from what path. It can also flag 
DLLs that have been relocated from their preferred base address or that have been replaced 
after they have been loaded.



254 Part II Usage Guide

ListDLLs requires administrative rights, including the Debug privilege, only to list DLLs 
in  processes running as a different user or at a higher integrity level. It does not require 
 elevated permissions for processes running as the same user and at the same integrity level 
or a lower one.

The command-line syntax for ListDLLs is

listdlls [-r] [processname | PID | -d dllname]

Run ListDLLs without command-line parameters to list all processes and the DLLs loaded in 
them, as shown in Figure 7-18. For each process, ListDLLs outputs a dashed-line separator, 
followed by the process name and PID. If ListDLLs has the necessary permissions to open the 
process, it then displays the full command line that was used to start the process,  followed 
by the DLLs loaded in the process. ListDLLs reports the base address, size, version, and path 
of the loaded DLLs in tabular form with column headers. The base address is the virtual 
memory address at which the module is loaded. The size is the number of contiguous bytes, 
starting from the base address, consumed by the DLL image. The version is extracted from 
the file’s version resource, if present; otherwise, it is left blank. The path is the full path to 
the DLL.

FIGURE 7-18 ListDLLs output.

ListDLLs compares the time stamp in the image’s Portable Executable (PE) header in memory 
to that in the PE header of the image on disk. A difference indicates that the DLL file was 
replaced on disk after the process loaded it. ListDLLs flags these differences with output like 
the following:

  *** Loaded C:\Program Files\Utils\PrivBar.dll differs from file image: 

  *** File timestamp:         Wed Feb 10 22:06:51 2010 

  *** Loaded image timestamp: Thu Apr 30 01:48:12 2009 

  *** 0x10000000  0x9c000   1.00.0004.0000  C:\Program Files\Utils\PrivBar.dll



 Chapter 7 Process and Diagnostic Utilities 255

ListDLLs reports only DLLs that are loaded as executable images. Unlike Process Explorer’s 
DLL View (discussed in Chapter 3), it does not list DLLs or other files or file mappings loaded 
by the image loader as data, including DLLs that are loaded for resources only.

The –r option flags DLLs that have been relocated to a different virtual memory address from 
the base address specified in the image.2 With –r specified, a DLL that has been  relocated 
will be preceded in the output with a line reporting the relocation and the image base 
 address. The following example output shows webcheck.dll with an image base address of 
0x00400000 but loaded at 0x01a50000:

  ### Relocated from base of 0x00400000: 

  0x01a50000  0x3d000   8.00.6001.18702  C:\WINDOWS\system32\webcheck.dll

To limit which processes are listed in the output, specify a process name or PID on the 
 command line. If you specify a process name, ListDLLs reports only on processes with an 
 image name that matches or begins with the name you specify. For example, to list the DLLs 
loaded by all instances of Internet Explorer, run the following command:

listdlls iexplore.exe

ListDLLs will show each iexplore.exe process and the DLLs loaded in each. If you specify a 
PID, ListDLLs shows the DLLs in that one process.

To identify the processes that have a particular DLL loaded, add –d to the command line 
followed by the full or partial name of the DLL. ListDLLs searches all processes that it has 
permission to open and inspect the full path of each of its DLLs. If the name you specified 
appears anywhere in the path of a loaded DLL, ListDLLs outputs the information for the 
 process and for the matching DLLs. For example, to search for all processes that have loaded 
Crypt32.dll, run the following command:

listdlls -d crypt32

You can use this option not only to search for DLLs by name, but for folder locations as well. 
To list all DLLs that have been loaded from the Program Files folder hierarchy, you can run 
this command:

listdlls -d "program files"

2 With Address Space Layout Randomization (ASLR), introduced in Windows Vista, an ASLR-compatible DLL’s base 
address is changed at first load after each boot. ListDLLs reports a DLL as relocated only if it is loaded in a pro-
cess to a different address from its preferred ASLR address in that boot session because of a conflict with another 
 module.



256 Part II Usage Guide

Handle
Handle is a console utility that displays information about object handles held by processes 
on the system. Handles represent open instances of basic operating system objects that 
 applications interact with, such as files, registry keys, synchronization primitives, and shared 
memory. You can use the Handle utility to search for programs that have a file or folder 
open, preventing its access or deletion from another program. You can also use Handle to list 
the object types and names held by a particular program. For more information about object 
handles, see “Handles” in Chapter 2.

Because the primary purpose for Handle is to identify in-use files and folders, running 
Handle without any command-line parameters lists all the File and named Section handles 
owned by those processes. Handle’s command-line parameters in various combinations 
 allow you to list all object types, search for objects by name, limit which process or pro-
cesses to  include, display handle counts by object type, show details about pagefile-backed 
Section objects, display the user name with the handle information, or (although generally 
ill- advised) close open handles.

Note that loading a DLL or mapping another file type into a process’ address space via 
the LoadLibrary API does not also add a handle to the process’ handle table. Such files can 
therefore be in use and not be able to be deleted, even though a handle search might come 
up empty. ListDLLs, described earlier in this chapter, can identify DLLs loaded as execut-
able images. More powerfully, Process Explorer’s Find feature searches for both DLL and 
handle names in a single operation, and it includes DLLs mapped as data. Process Explorer is 
 described in Chapter 3.

Handle List and Search
The command-line syntax to list object handles is

handle [-a [-l]] [-p process|PID] [[-u] objname]

If you specify no command-line parameters, Handle lists all processes and all the File and 
named Section handles owned by those processes, with dashed-line separators between the 
information for each process. For each process, Handle displays the process name, PID, and 
account name that the process is running under, followed by the handles belonging to that 
process. The handle value is displayed in hexadecimal, along with the object type and the 
object name (if it has one).

“File” handles can include folders, device drivers, and communication endpoints, in addition 
to normal files. File handle information also includes the sharing mode that was set when 
the handle was opened. The parenthesized sharing flags can include R, W, or D, indicating 



 Chapter 7 Process and Diagnostic Utilities 257

that other callers (including other threads within the same process) can open the same file 
for reading, writing, or deleting, respectively. A hyphen instead of a letter indicates that the 
sharing mode is not set. If no flags are set, the object is opened for exclusive use through this 
handle.

A named Section, also called a file mapping object, can be backed by a file on disk or by the 
pagefile. An open file-mapping handle to a file can prevent it from being deleted. Pagefile-
backed named Sections are used to share memory between processes.

To search for handles to an object by name, add the object name to the command line. 
Handle will list all object handles where the object’s name contains the name you specified. 
The search is case insensitive. When performing an object name search, you can also add the 
–u option to display the user account names of the processes that own the listed handles.

The object name search changes the format of the output. Instead of grouping handles by 
process with separators, each line lists a process name, PID, object type, handle value, handle 
name, and optionally a user name.

So if you are trying to find the process that is using a file called MyDataFile.txt in a folder 
called MyDataFolder, you can search for it with a command like this:

handle mydatafolder\mydatafile.txt

To view all handle types rather than just Files and named Sections, add –a to the Handle 
command line. Handle will list all handles of all object types, including unnamed objects. You 
can combine the –a parameter with –l (lower case L) to show all Section objects and the size 
of the pagefile allocation (if any) associated with each one. This can help identify leaks of 
 system commit caused by mapped pagefile-backed sections.

To limit which processes are included in the output, add –p to the command line, followed 
by a partial or full process name or a process ID. If you specify a process name, Handle lists 
handles for those processes with an image name that matches or begins with the name you 
specify. If you specify a PID, Handle lists handles for that one process.

Let’s look at some examples. This command line lists File and named Section object handles 
owned by processes where the process name begins with explore, including all running 
 instances of Explorer.exe:

handle -p explore

Partial output from this command is shown in Figure 7-19.



258 Part II Usage Guide

FIGURE 7-19 Partial output from handle –p explore.

By contrast, the following command lists object handles of every type and in every process 
where the object name contains “explore”:

handle -a explore

Partial output from this object name search includes processes that have file, registry key, 
process, and thread handles with “explore” in the names and is shown in Figure 7-20.

FIGURE 7-20 Partial output from handle –a explore.

The following contrived example demonstrates searching for an object name that contains 
a space and includes the user name in the output. It shows all object types that contain the 
search name, including registry keys, but it limits the search to processes that begin with c:

handle -a -p c -u "session manager"

The output from this command is shown in Figure 7-21.

Handle requires administrative privilege to run. Because some objects grant full access only 
to System but not to Administrators, you can generally get a more complete view by running 
Handle as System, using PsExec (discussed in Chapter 6). If Handle.exe and PsExec are both in 
the system Path, this can be accomplished with the following simple command:

psexec -s handle -accepteula -a



 Chapter 7 Process and Diagnostic Utilities 259

FIGURE 7-21 Output from handle –a –p c –u “session manager”.

Handle Counts
To see how many objects of each type are open, add –s to the Handle command line. 
Handle will list all object types for which there are any open handles systemwide, and the 
number of handles for each. At the end of the list, Handle shows the total number of handles.

To limit the handle count listing to handles held by specific processes, add –p followed by a 
full or partial process name, or a process ID:

handle -s [-p process|PID]

Using the same process name-matching algorithm described in the “Handle List and Search” 
section earlier, Handle shows the counts of the object handles held by the specified process 
or processes and by object type, followed by the total handle count. This command lists the 
handle counts for all Explorer processes on the system:

handle -s -p explorer

The output looks like the following:

Handle type summary: 

  ALPC Port       : 44 

  Desktop         : 5 

  Directory       : 5 

  EtwRegistration : 371 

  Event           : 570 

  File            : 213 

  IoCompletion    : 4 

  Key             : 217 

  KeyedEvent      : 4 

  Mutant          : 84 

  Section         : 45 

  Semaphore       : 173 

  Thread          : 84 



260 Part II Usage Guide

  Timer           : 7 

  TpWorkerFactory : 8 

  UserApcReserve  : 1 

  WindowStation   : 4 

  WmiGuid         : 1 

Total handles: 1840

Closing Handles
As described earlier, a process can release its handle to an object when it no longer needs 
that object, and its remaining handles are also closed when the process exits. You can use 
Handle to close handles held by a process without terminating the process. This is typically 
risky. Because the process that owns the handle is not aware that its handle has been closed, 
using this feature can lead to data corruption or can crash the application; closing a handle in 
the System process or a critical user-mode process such as Csrss can lead to a system crash. 
Also, a subsequent resource allocation by the same process could be assigned the old handle 
value because it is no longer in use. If the program tried to access the now-closed object, it 
could end up operating on the wrong object.

With those caveats in mind, the command-line syntax for closing a handle is

handle -c handleValue -p PID [-y]

The handle value is interpreted as a hexadecimal number, and the owning process must be 
specified by its PID. Before closing the handle, Handle displays information about the handle, 
including its type and name and ask for confirmation. You can bypass the confirmation by 
adding –y to the command line.

Note that Windows protects some object handles so that they cannot be closed except 
 during process termination. Attempts to close these handles fail silently, so Handle will report 
that the handle was closed even though it was not.



  261

Chapter 8

Security Utilities
This chapter describes a set of Sysinternals utilities focused on Microsoft Windows security 
management and operations:

■ SigCheck is a console utility for verifying file digital signatures, listing file hashes, and 
viewing version information

■ AccessChk is a console utility for searching for objects—such as files, registry keys, 
and services—that grant permissions to specific users or groups, as well as providing 
 detailed information on permissions granted.

■ AccessEnum is a GUI utility that searches a file or registry hierarchy and identifies 
where permissions might have been changed.

■ ShareEnum is a GUI utility that enumerates file and printer shares on your network and 
who can access them.

■ ShellRunAs is a shell extension that restores the ability to run a program under a 
 different user account on Windows Vista.

■ Autologon is a GUI utility that lets you configure a user account for automatic logon 
when the system boots.

■ logonSessions is a console utility that enumerates active Local Security Authority 
(LSA) logon sessions on the current computer.

■ SDelete is a console utility for securely deleting files or folder structures and erasing 
data in unallocated areas of the hard drive.

SigCheck
SigCheck is a multipurpose console utility for performing security-related functions on one 
or more files or a folder hierarchy. Its primary purpose is to verify whether files are digitally 
signed with a trusted certificate. As Figure 8-1 shows, SigCheck can also report catalog and 
image signer information, calculate file hashes using several hash algorithms, and display 
extended version information. It can also display a file’s embedded manifest, scan folders for 
unsigned files, and report results in comma-separated value (CSV) format.



262 Part II Usage Guide

FIGURE 8-1 Output from sigcheck –a –i –h c:\windows\explorer.exe.

A digital signature associated with a file helps to ensure the file’s authenticity and integrity. 
A verified signature demonstrates that the file came from the owner of the code-signing 
certificate and that the file has not been modified since its signing. The assurance provided 
by a code-signing certificate depends largely on the diligence of the certification authority 
(CA) that issued the certificate to authenticate the proposed owner, on the diligence of the 
certificate owner to protect the certificate’s private key from disclosure, and on the verifying 
system not allowing the installation of rogue root CA certificates.

As part of the cost of doing business and providing assurance to customers, most legitimate 
software publishers will purchase a code-signing certificate from a legitimate CA, such as 
VeriSign or Thawte, and sign the files they distribute to customer computers. The lack of a 
valid signature on an executable file that purports to be from a legitimate publisher is reason 
for suspicion.

Note In the past, malware was rarely signed. As the sophistication of malware publishers has 
increased, however, even this is no longer a guarantee. Some malware publishers are now setting 
up front organizations and purchasing code-signing certificates from legitimate CAs. Others are 
stealing poorly-protected private keys from legitimate businesses and using those keys to sign 
malware.

SigCheck’s command-line parameters provide numerous options for performing verifications, 
specifying the files to scan, and formatting output. The syntax is shown here, followed by 
Table 8-1, which provides a summary of the parameters:

sigcheck.exe [-e] [-s] [-i] [-r] [-u] [-c catalogFile] [-a] [-h] [-m] [-n] [-v] [-q] target



 Chapter 8 Security Utilities 263

TABlE 8-1 SigCheck Command-line Parameters

Parameter Description
target Specifies the file or directory to process. It can include wildcard characters.

Signature Verification
–i Shows the catalog name and image signers.

–r Checks for certificate revocation.

–u Reports unsigned files only, including files that have invalid signatures.

–c Looks for a signature in the specified catalog file.

Which Files to Scan
–e Scans executable files only. (It looks at the file headers, not the extension, to 

 determine whether a file is an executable.)

–s Recurses subdirectories.

Additional File Information
–a Shows extended version information.

–h Shows file hashes.

–m Shows the manifest.

–n Shows the file version number only.

Output Format
–v CSV output (not compatible with –i or –m).

–q Quiet (suppresses the banner).

The target parameter is the only required one. It can specify a single file, such as explorer.
exe; it can specify multiple files using a wildcard, such as *.dll; or it can specify a folder, using 
relative or absolute paths. If you specify a folder, SigCheck scans every file in the folder. The 
following command scans every file in the current folder:

sigcheck .

Signature Verification
Without further parameters, SigCheck reports the following for each file scanned:

■ Verified If the file has been signed with a code-signing certificate that derives from a 
root certification authority that is trusted on the current computer, and the file has not 
been modified since its signing, this field reports Signed. If it has not been signed, this 
field reports Unsigned. If it has been signed but there are problems with the signature, 
those problems are noted. Problems can include the following: the signing  certificate 
was outside its validity period at the time of the signing; the root authority is not 
trusted (which can happen with a self-signed certificate, for example); the file has been 
modified since signing.



264 Part II Usage Guide

■ Signing date Shows the date on which the file was signed. This field shows n/a if the 
file has not been signed.

■ Publisher The Company Name field from the file’s version resource, if found.

■ Description The Description field from the file’s version resource, if found.

■ Product The Product Name field from the file’s version resource, if found.

■ Version The Product Version field from the file’s version resource, if found. Note that 
this is from the string portion of the version resource, not the binary value that is used 
for version comparison.

■ File version The File Version field from the file’s version resource, if found. Note that 
this, too, is from the string portion of the version resource.

To show additional signature details, add –i to the command line. Using this parameter shows 
the following two additional fields if the file’s signature is valid:

■ Catalog Reports the file in which the signature is stored. In many cases, the 
file  indicated will be the same as the file that was signed. However, if the file was 
 catalog-signed, the signature will be stored in a separate, signed catalog file. Many files 
that ship with Windows are catalog-signed. Catalog-signing can improve performance 
in some cases, but it’s particularly useful for signing nonexecutable files that have a file 
format that does not support embedding signature information. 

■ Signers Shows the Subject CN name from the code-signing certificate and from the 
CA certificates in its chain.

By default, SigCheck does not check whether the signing certificate has been revoked by 
its issuer. To verify that the signing certificate and the certificates in its chain have not been 
revoked, add –r to the command line. Note that revocation checking can add significant net-
work latency to the signature check, because SigCheck has to query certificate revocation list 
(CRL) distribution points.

To focus your search only for unsigned files, add –u to the command line. SigCheck then 
scans all specified files, but it reports only those that are not signed or that have signatures 
that cannot be verified.

Windows maintains a database of signature catalogs to enable quick lookup of signature 
information based on a file hash. If you want to verify a file against a catalog file that is not 
registered in the database, specify the catalog file on the SigCheck command line with the 
–c option.

Which Files to Scan
Most nonexecutable files are not digitally signed with code-signing certificates. Some 
 nonexecutable files that ship with Windows and that are never modified might be 



 Chapter 8 Security Utilities 265

 catalog-signed, but data files that can be updated—including initialization files, registry 
hive backing files, document files, and temporary files—are never code-signed. If you scan 
a folder that contains a large number of such files, you might have difficulty finding the 
 unsigned  executable files that are usually of greater interest. To filter out these false positives, 
you could search just for *.exe, then *.dll, then *.ocx, then *.scr, and so on. The problem with 
that approach isn’t all the extra work or that you might miss an important extension. The 
problem is that an executable file with a .tmp extension, or any other extension, or no exten-
sion at all can still be launched! And malware authors often hide their files from inspection by 
 masquerading under apparently innocuous file extensions.

So instead of filtering on file extensions, add –e to the SigCheck command line to scan only 
executable files. When you do, SigCheck will verify whether the file is an executable before 
verifying its signature and ignore the file if it’s not. Specifically, SigCheck checks whether 
the first two bytes are MZ. All 16-bit, 32-bit, and 64-bit Windows executables—including 
 applications, DLLs, and system drivers—begin with these bytes. SigCheck ignores the file 
 extension, so executables masquerading under other file extensions still get scanned.

To search a folder hierarchy instead of a single folder, add –s to the SigCheck command line. 
SigCheck then scans files matching the target parameter in the folder specified by target 
 parameter (or in the current folder if target doesn’t specify a folder) and in all subfolders. The 
following command scans all *.dll files in and under the C:\Program Files folder:

sigcheck -s "c:\program files\*.dll"

Additional File Information
Add the –a option to extract additional information from every file scanned. Adding –a 
 augments the SigCheck output with these fields:

■ Strong Name If the file is a .NET assembly and has a strong-name signature, this 
field reports Signed; otherwise, it shows Unsigned. (.NET’s strong-name signing is 
 independent of certificate-based code-signing and does not imply any level of trust.

■ Original Name The Original Name field from the file’s version resource, if found.

■ Internal Name The Internal Name field from the file’s version resource, if found.

■ Copyright The Copyright field from the file’s version resource, if found.

■ Comments The Comments field from the file’s version resource, if found.

A hash is a statistically unique value generated from a block of data using a  cryptographic 
 algorithm, such that a small change in the data results in a completely different hash. 
Because a good hash algorithm makes it computationally infeasible using today’s  technology 
to modify the data without modifying the hash, hashes can be used to detect changes 
to data from corruption or tampering. If you add the –h option, SigCheck calculates and 



266 Part II Usage Guide

 displays hashes for the files it scans, using the MD5, SHA1 and SHA256 algorithms. These 
hashes can be compared to hashes calculated on a known-good system to verify file 
 integrity. Hashes are useful for files that are unsigned, but that have known master versions. 
Also, some file-verification systems rely on hashes instead of signatures.

Application manifests are XML documents that can be embedded in application files. They 
were first introduced in Windows XP to enable the declaration of required side-by-side 
 assemblies. Windows Vista and Windows 7 each extended the manifest file schema to enable 
an application to declare its compatibility with Windows versions and whether it requires 
 administrative rights to run. The presence of a Windows Vista-compatible manifest also 
 disables file and registry virtualization for the process. To dump a file’s embedded manifest, 
add –m to the SigCheck command line. Here is the output from SigCheck reporting its own 
manifest:

c:\program files\sysinternals\sigcheck.exe: 

        Verified:       Signed 

        Signing date:   19:14 6/7/2010 

        Publisher:      Sysinternals - www.sysinternals.com 

        Description:    File version and signature viewer 

        Product:        Sysinternals Sigcheck 

        Version:        1.70 

        File version:   1.70 

        Manifest: 

<assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0"> 

  <trustInfo xmlns="urn:schemas-microsoft-com:asm.v3"> 

    <security> 

      <requestedPrivileges> 

        <requestedExecutionLevel level="asInvoker" uiAccess="false"></

requestedExecutionLevel> 

      </requestedPrivileges> 

    </security> 

  </trustInfo> 

</assembly>

To output only the file’s version number, add –n to the SigCheck command line. SigCheck 
displays only the value of the File Version field in the file’s version resource, if found, and 
it displays n/a otherwise. This option can be useful in batch files, and it’s best used when 
 specifying a single target file.

Command-line options, of course, can be combined. For example, the following command 
searches the system32 folder hierarchy for unsigned executable files, displaying hashes and 
detailed version information for those files:

sigcheck -u -s -e -a -h c:\windows\system32



 Chapter 8 Security Utilities 267

Output Format
SigCheck normally displays its output as a formatted list, as shown in Figure 8-1. To report 
output as comma-separated values (CSVs) to enable import into a spreadsheet or database, 
add –v to the SigCheck command line. SigCheck outputs column headers according to the 
file information you requested through other command-line options, followed by a line of 
comma-separated values for each file scanned. Note that the –v option cannot be used with 
the –i or –m option.

You can suppress the display of the SigCheck banner with the –q option. Removing these 
lines can help with batch-file processing of SigCheck output as well as with CSV output.

AccessChk
AccessChk is a console utility that reports effective permissions on securable objects,  account 
rights for a user or group, or token details for a process. It can search folder or registry 
 hierarchies for objects with read or write permissions granted (or not granted) to a user or 
group, or it can display the raw access control list for securable objects.

What Are “Effective Permissions”?
Effective permissions are permissions that a user or group has on an object, taking into 
 account group memberships, as well as permissions that might be specifically denied. For 
example, consider the C:\Documents and Settings folder on a Windows 7 computer, which 
is actually a junction that exists for application compatibility purposes. It grants full  control 
to Administrators and to System, and Read permissions to Everyone. However, it also 
 specifically denies List Folder permissions to Everyone. If MYDOMAIN\Abby is a member of 
Administrators, Abby’s effective permissions include all permissions except for List Folder; 
if MYDOMAIN\Abby is a regular user, and thus an implicit member of Everyone, Abby’s 
 permissions include just the Read permissions except List Folder. 

Windows includes the Effective Permissions Tool in the Advanced Security Settings dialog 
box that is displayed by clicking the Advanced button in the permissions editor for some 
 object types. The Effective Permissions Tool calculates and displays the effective permis-
sions for a specified user or group on the selected object. AccessChk uses the same APIs as 
Windows and can perform the same calculations, but for many more object types and in a 
scriptable utility. AccessChk can report permissions for files, folders, registry keys, processes, 
and any object type defined in the Windows object manager namespace, such as directories, 
sections and semaphores.



268 Part II Usage Guide

Note that the “effective permissions” determination in Windows is only an approximation 
of the actual permissions that a logged-on user would have. Actual permissions might be 
 different because permissions can be granted or denied based on how a user logs on (for 
 example, interactively or as a service); logon types are not included in the effective permis-
sions  calculation. Share permissions, and local group memberships and privileges are not 
taken into account when calculating permissions on remote objects. In addition, there can be 
anomalies with the inclusion or exclusion of built-in local groups (See Knowledge Base article 
323309 at http://support.microsoft.com/kb/323309.) In particular, I recently came across an 
undocumented bug involving calculation of permissions for the Administrators group. And 
 finally, effective permissions can depend on the ability of the user performing the calcula-
tions to read information about the target user from Active Directory. (See Knowledge Base 
article 331951 at http://support.microsoft.com/kb/331951.)

Using AccessChk
The basic syntax of AccessChk is

accesschk [options] [user-or-group] objectname

The objectname parameter is the securable object to analyze. If the object is a container, 
such as a file system folder or a registry key, AccessChk will report on each object in that 
 container instead of on the object itself. If you specify the optional user-or-group parameter, 
AccessChk will report the effective permissions for that user or group; otherwise it will show 
the effective access for all accounts referenced in the object’s access control list (ACL).

By default, the objectname parameter is interpreted as a file system object, and can include 
? and * wildcards. If the object is a folder, AccessChk reports the effective permission for all 
files and subfolders within that folder. If the object is a file, AccessChk reports its effective 
permissions. For example, here are the effective permissions for c:\windows\explorer.exe on a 
Windows 7 computer:

c:\windows\explorer.exe 

  RW NT SERVICE\TrustedInstaller 

  R  BUILTIN\Administrators 

  R  NT AUTHORITY\SYSTEM 

  R  BUILTIN\Users

For each object reported, AccessChk summarizes permissions for each user and group 
 referenced in the ACL, displaying R if the account has any Read permissions, W if the account 
has any Write permissions, and nothing if it has neither.

Named pipes are considered file system objects; use the “\pipe\” prefix to specify a named 
pipe path, or just “\pipe\” to specify the container in which all named pipes are defined: 
accesschk \pipe\ reports effective permissions for all named pipes on the computer; 
 accesschk \pipe\srvsvc reports effective permissions for the srvsvc pipe, if it exists. 



 Chapter 8 Security Utilities 269

Note that wildcard searches such as \pipe\s* are not supported because of limitations in 
Windows’ support for named-pipe directory listings.

Volumes are also considered file system objects. Use the syntax \\.\X: to specify a local 
 volume, replacing X with the drive letter. For example, accesschk \\.\C: reports the permis-
sions on the C volume. Note that permissions on a volume are not the same as permissions 
on its root directory. Volume permissions determine who can perform volume maintenance 
tasks using the disk utilities described in Chapter 12, for example.

The options let you specify different object types, which permission types are of interest, 
whether to recurse container hierarchies, how much detail to report, and whether to report 
effective permissions or the object’s ACL. Options are summarized in Table 8-2, and then 
 described in greater detail.

TABlE 8-2 AccessChk Command-line Options

Parameter Description
Object Type
–d Object name represents a container; reports permissions on that object rather 

than on its contents

–k Object name represents a registry key

–c Object name represents a Windows service

–p Object name is the PID or (partial) name of a process

–f Used with –p, shows full process token information for the specified process

–o Object name represents an object in the Windows object manager namespace

–t Used with –o, –t type specifies the object type
Used with –p, reports permissions for the process’ threads

–a Object name represents an account right

Searching for Access Rights
–s Recurses container hierarchy

–n Shows only objects that grant no access (usually used with user-or-group)

–w Shows only objects that grant Write access

–r Shows only objects that grant Read access

–e Shows only objects that have explicitly set integrity levels (Windows Vista and 
newer)

Output
–l Shows ACL rather than effective permissions

–u Suppresses errors

–v Verbose

–q Quiet (suppresses the banner)



270 Part II Usage Guide

Object Type
As mentioned, if the named object is a container—such as a file system folder, a registry key, 
or an object manager directory—AccessChk reports on the objects within that container 
rather than on the container itself. To have AccessChk report on the container object, add 
the –d option to the command line. For example, accesschk c:\windows reports effective 
permissions for every file and subfolder in the Windows folder; accesschk -d c:\windows 
reports the permissions on the Windows folder. Similarly, accesschk . reports permissions 
on everything in the current folder, while accesschk -d . reports permissions on the current 
folder only. As a final example, accesschk * reports permissions on all objects in the current 
folder, while accesschk -d * reports permissions only on subfolder objects in the current 
folder.

To inspect permissions on a registry key, add –k to the command line. You can specify the 
root key with short or full names (for example, HKLM or HKEY_LOCAL_MACHINE), and you 
can follow the root key with a colon (:), as Windows PowerShell does. (Wildcard characters 
are not supported.) All of the following equivalent commands report the permissions for the 
subkeys of HKLM\Software\Microsoft:

accesschk -k hklm\software\microsoft

accesschk -k hklm:\software\microsoft

accesschk -k hkey_local_machine\software\microsoft

Add –d to report permissions just for HKLM\Software\Microsoft but not for its subkeys.

To report the permissions for a Windows service, add –c to the command line. Specify * as 
the object name to show all services, or scmanager to check the permissions of the Service 
Control Manager. (Partial name or wildcard matches are not supported.) For example, 
 accesschk –c lanmanserver reports permissions for the Server service on a Windows 7 
computer, and this is its output:

lanmanserver 

  RW NT AUTHORITY\SYSTEM 

  RW BUILTIN\Administrators 

  R  NT AUTHORITY\INTERACTIVE 

  R  NT AUTHORITY\SERVICE

This command reports the permissions specifically granted by each service to the 
“Authenticated Users” group:

accesschk -c "authenticated users" *

In the context of services, W can refer to permissions such as Start, Stop, Pause/Continue, 
and Change Configuration, while R includes permissions such as Query Configuration and 
Query Status.



 Chapter 8 Security Utilities 271

To view permissions on processes, add –p to the command line. The object name can be 
either a process ID (PID) or a process name, such as “explorer.” AccessChk will match partial 
names: accesschk –p exp will report permissions for processes with names beginning with 
“exp”, including all instances of Explorer. Specify * as the object name to show  permissions 
for all processes. Note that administrative rights are required to view the permissions of 
 processes running as another user or with elevated rights. The following output is what you 
can expect to see for an elevated instance of Cmd.exe on a Windows 7 computer, using 
 accesschk –p 3048:

[3048] cmd.exe 

  RW BUILTIN\Administrators 

  RW NT AUTHORITY\SYSTEM

Combine –p with –t to view permissions for all the threads of the specified process. (Note 
that the t option must come after p in the command line.) Looking at the same elevated 
 instance of Cmd.exe, accesschk –pt 3048 reports:

[3048] cmd.exe 

  RW BUILTIN\Administrators 

  RW NT AUTHORITY\SYSTEM 

  [3048:7148] Thread 

  RW BUILTIN\Administrators 

  RW NT AUTHORITY\SYSTEM 

  R  Win7-x86-VM\S-1-5-5-0-248063-Abby

The process has a single thread with ID 7148, with permissions similar to that of the 
 containing process.

Combine –p with –f to view full details of the process token. For each process listed, 
AccessChk will show the permissions on the process token, and then show the token user, 
groups, group flags, and privileges.

You can view permissions on objects in the object manager namespace—such as events, 
semaphores, sections and directories—with the –o command line switch. To limit output 
to a specific object type, add –t and the object type. For example, the following command 
 reports effective permissions for all objects in the \BaseNamedObjects directory:

accesschk -o \BaseNamedObjects

The following command reports effective permissions only for Section objects in the 
\BaseNamedObjects directory:

accesschk -o -t section \BaseNamedObjects

If no object name is provided, the root of the namespace directory is assumed. WinObj, 
 described in Chapter 14, “System Information Utilities,” provides a graphical view of the 
 object manager namespace.



272 Part II Usage Guide

Although they aren’t securable objects per se, privileges and account rights can be reported 
by AccessChk with the –a option. Privileges grant an account a systemwide capability not 
associated with a specific object, such as SeBackupPrivilege, which allows the account to 
bypass access control to read an object. Account rights determine who can or cannot log on 
to a system and how. For example, SeRemoteInteractivelogonRight must be granted to 
an account in order to log on via Remote Desktop. Privileges are listed in access tokens, while 
account rights are not.

I’ll demonstrate usage of the –a option with examples. Note that AccessChk requires 
 administrative rights to use the option. Use * as the object name to list all privileges and 
 account rights and the accounts to which they are assigned:

accesschk -a *

An account name followed by * lists all the privileges and account rights assigned to that 
account. For example, the following command displays those assigned to the Power Users 
group (it is interesting to compare the results of this from a Windows XP system and a 
Windows 7 system):

accesschk -a "power users" *

Finally, specify the name of a privilege or account right to list all the accounts that have it. 
(Again, you can use accesschk –a * to list all privileges and account rights.) The following 
command lists all the accounts that are granted SeDebugPrivilege:

accesschk -a sedebugprivilege

Searching for Access Rights
One of AccessChk’s most powerful features is its ability to search for objects that grant access 
to particular users or groups. For example, you can use AccessChk to verify whether anything 
in the Program Files folder hierarchy can be modified by Users, or whether any services grant 
Everyone any Write permissions.

The –s option instructs AccessChk to search recursively through container hierarchies, such 
as folders, registry keys, or object namespace directories. The –n option lists objects that 
grant no access to the specified account. The –r option lists objects that grant Read permis-
sions, and –w lists objects that grant Write permissions. Finally, on Windows Vista and newer, 
–e shows objects that have an explicitly set integrity label, rather than the implicit default of 
Medium integrity and No-Write-Up.



 Chapter 8 Security Utilities 273

Let’s consider some examples:

■ Search the Windows folder hierarchy for objects that can be modified by Users:

accesschk -ws Users %windir%

■ Search for global objects that can be modified by Everyone:

accesschk -wo everyone \basenamedobjects

■ Search for registry keys under HKEY_CURRENT_USER that have an explicit integrity 
label:

accesschk -kse hkcu

■ Search for services that grant Authenticated Users any Write permissions:

accesschk -cw "Authenticated Users" *

■ List all named pipes that grant anyone Write permissions:

accesschk -w \pipe\*

■ List all object manager objects under the \sessions directory that do not grant any 
 access to Administrators:

accesschk -nos Administrators \sessions

This last example points out another powerful feature of AccessChk. Clearly, to view the 
permissions of an object, you must be granted the Read Permissions permission for that 
object. And just as clearly, there are many objects throughout the system that do not grant 
any access to regular users; for example, each user’s profile contents are hidden from other 
nonadministrative users. To report on these objects, AccessChk must be running with 
 elevated/administrative rights. Yet there are some objects that do not grant any access to 
Administrators but only to System. So that it can report on these objects when an adminis-
trative token is insufficient, AccessChk duplicates a System token from the Smss.exe process 
and impersonates it to retry the access attempt. Without that feature, the previous example 
would not work.

Output Options
Instead of reporting just R or W to indicate permissions, you can view verbose permissions 
by adding –v to the AccessChk command line. Beneath each account name, AccessChk lists 
the specific permissions using the symbolic names from the Windows SDK. These are the 



274 Part II Usage Guide

 effective permissions reported with the –v option for %SystemDrive%\ on a Windows 7 
system:

C:\ 

  Medium Mandatory Level (Default) [No-Write-Up] 

  RW BUILTIN\Administrators 

        FILE_ALL_ACCESS 

  RW NT AUTHORITY\SYSTEM 

        FILE_ALL_ACCESS 

  R  BUILTIN\Users 

        FILE_LIST_DIRECTORY 

        FILE_READ_ATTRIBUTES 

        FILE_READ_EA 

        FILE_TRAVERSE 

        SYNCHRONIZE 

        READ_CONTROL 

   W NT AUTHORITY\Authenticated Users 

        FILE_ADD_SUBDIRECTORY

The verbose output shows that Administrators and System have full control, Users have Read 
access, and Authenticated Users additionally have the ability to create subfolders within that 
folder.

Instead of showing effective permissions, you can display the object’s actual access  control 
list (ACL) with the –l (lower case L) option. Here is the ACL for the “C:\Documents and 
Settings” junction on Windows 7 that was described at the beginning of the AccessChk 
 section. Each access control entry (ACE) is listed in order, identifying a user or group, whether 
access is allowed or denied, and which permissions are allowed or denied. If present, ACE 
flags are shown in square brackets, indicating inheritance settings. If [INHERITED_ACE] is not 
present, the ACE is an explicit ACE.

C:\Documents and Settings 

  Medium Mandatory Level (Default) [No-Write-Up] 

  [0] Everyone 

      ACCESS_DENIED_ACE_TYPE 

        FILE_LIST_DIRECTORY 

  [1] Everyone 

      ACCESS_ALLOWED_ACE_TYPE 

        FILE_LIST_DIRECTORY 

        FILE_READ_ATTRIBUTES 

        FILE_READ_EA 

        FILE_TRAVERSE 

        SYNCHRONIZE 

        READ_CONTROL 

  [2] NT AUTHORITY\SYSTEM 

      ACCESS_ALLOWED_ACE_TYPE 

        FILE_ALL_ACCESS 

  [3] BUILTIN\Administrators 

      ACCESS_ALLOWED_ACE_TYPE 

        FILE_ALL_ACCESS



 Chapter 8 Security Utilities 275

AccessChk reports any errors that occur when enumerating objects or retrieving security 
 information. Add –u to the command line to suppress these error messages. Objects that 
trigger errors will then go unreported. Finally, to omit the AccessChk banner text, add –q to 
the command line.

AccessEnum
AccessEnum is a GUI utility that makes it easy to identify files, folders, or registry keys that 
might have had their permissions misconfigured. Instead of listing the permissions on  every 
object it scans, AccessEnum identifies the objects within a file or registry hierarchy that have 
permissions that differ from those of their parent containers. This lets you focus on the point 
at which the misconfiguration occurred, rather than on every object that inherited that 
setting.

For example, sometimes in an effort to get an application to work for a nonadministrative 
user, someone might grant Full Control to Everyone on the application’s subfolder under 
Program Files, which should be read-only to nonadministrators. As shown in Figure 8-2, 
AccessEnum identifies that folder and shows which users or groups have been granted  access 
that differs from that of Program Files. In the example, the first line shows the permissions 
on C:\Program Files; the second line shows a subfolder that grants Everyone at least some 
read and write permissions (possibly full control), while the last two items do not grant 
Administrators any Write access.

FIGURE 8-2 AccessEnum.

In the text box near the top of the AccessEnum window, enter the root path of the folder or 
registry subkey that you want to examine. Instead of typing a path, you can pick a folder by 
clicking the Directory button, or pick a registry key by clicking the Registry button. Click the 
Scan button to begin scanning.

AccessEnum abstracts Windows’ access-control model to just Read, Write and Deny 
 permissions. An object is shown as granting Write permission whether it grants just a single 
write permission (such as Write Owner) or the full suite of write permissions via Full Control. 
Read permissions are handled similarly. Names appear in the Deny column if a user or group 



276 Part II Usage Guide

is explicitly denied any access to the object. Note that the legacy folder junctions described 
in the AccessChk section deny Everyone the List Folder permission. AccessEnum reports 
Access Denied if it is unable to read an object’s security descriptor.

When AccessEnum compares an object and its parent container to determine whether their 
permissions are equivalent, it looks only at whether the same set of accounts are granted 
Read, Write and Deny access, respectively. If a file grants just Write Owner access and its 
 parent just Delete access, the two will still be considered equivalent because both allow some 
form of writing.

AccessEnum condenses the number of accounts displayed as having access to an object 
by hiding accounts with permissions that are duplicated by a group to which the account 
belongs. For example, if a file grants Read access to both user Bob and group Marketing, 
and Bob is a member of the Marketing group, then only Marketing will be shown in the list 
of accounts having Read access. Note that with UAC’s Admin-Approval Mode on Windows 
Vista and newer, this can hide cases where non-elevated processes run by a member 
of the Administrators group have more access. For example, if Abby is a member of the 
Administrators group, AccessEnum will report objects that grant Full Control explicitly to 
Abby as well as to Administrators as granting access only to Administrators, even though 
Abby’s non-elevated processes also have full control.

By default, AccessEnum shows only objects for which permissions are less restrictive than 
those of their parent containers. To list objects for which permissions are different from their 
parents’ in any way, choose File Display Options from the Options menu and select Display 
Files With Permissions That Differ From Parent.

Because access granted to the System account and to other service accounts is not usually of 
interest when looking for incorrect permissions, AccessEnum ignores permissions involving 
those accounts. To consider those permissions as well, select Show Local System And Service 
Accounts from the Options menu.

Click a column header to sort the list by that column. For example, to simplify a search for 
rogue Write permissions, click on the Write column, and then look for entries that list the 
Everyone group or other nonadministrator users or groups. You can also reorder columns by 
dragging a column header to a new position.

When you find a potential problem, right-click the entry to display AccessEnum’s context 
menu. If the entry represents a file or folder, clicking Properties displays Explorer’s Properties 
dialog box for the item; click on the Security tab to examine or edit the object’s permissions. 
Clicking Explore in the context menu opens a Windows Explorer window in that folder. If the 
entry represents a registry key, clicking Explore opens Regedit and navigates to the selected 
key, where you can inspect or edit its permissions. Note that on Windows Vista and newer, 
AccessEnum’s driving of the navigation of Regedit requires that AccessEnum run at the same 
or a higher integrity level than Regedit.



 Chapter 8 Security Utilities 277

You can hide one or more entries by right-clicking an entry and choosing Exclude. The 
 selected entry and any others that begin with the same text will be hidden from the display. 
For example, if you exclude C:\Folder, then C:\Folder\Subfolder will also be hidden.

Click the Save button to save the list contents to a tab-delimited Unicode text file. Choose 
Compare To Saved from the File menu to display the differences in permissions between the 
current list against a previously saved file. You can use this feature to verify the configuration 
of one system against that of a baseline system.

ShareEnum
An aspect of Windows network security that is often overlooked is file shares. Lax  security 
settings are an ongoing source of security issues because too many users are granted 
 unnecessary access to files on other computers. If you didn’t specify permissions when 
 creating a file share in Windows, the default used to be to grant Everyone Full Control. That 
was later changed to grant Everyone just Read access, but even that might expose sensitive 
information to more people than those who should be authorized.

Windows provides no utilities to list all the shares on a network and their security settings. 
ShareEnum fills that void, giving you the ability to enumerate all the file and printer shares in 
a domain, an IP address range, or your entire network to quickly view the share permissions 
in a table view, and to change the permissions on those shares.

Because only a domain administrator has the ability to view all network resources, 
ShareEnum is most effective when you run it from a domain administrator account.

ShareEnum is a GUI utility and doesn’t accept any command line parameters (other than 
 / accepteula). From the drop-down list, select <All domains>, which scans your entire 
 network, <IP address range>, which lets you select a range of addresses to scan, or the name 
of a domain. Click Refresh to scan the selected portion of your network. If you selected  
<IP address range>, you will be prompted to enter a range of IP addresses to scan.

ShareEnum displays share information in a list view, as shown in Figure 8-3.

FIGURE 8-3 ShareEnum.



278 Part II Usage Guide

Click on a column header to sort the list by that column’s data, or drag the column headers 
to reorder them. ShareEnum displays the following information about each share:

■ Share Path The computer and share name.

■ Local Path The location in the remote computer’s file system that the share exposes.

■ Domain The computer’s domain.

■ Type Whether the share is a file share (Disk), a printer share (Printer), or Unknown.

■ Everyone Permissions that the share grants to the Everyone group, categorized as 
Read, Write, Read/Write, or blank if no permissions are granted to the Everyone group.

■ Other Read Entities other than the Everyone group that are granted Read permission 
to the share.

■ Other Write Entities other than the Everyone group that are granted Change or Full 
Control permissions to the share.

■ Deny Any entities that are explicitly denied access to the share.

Click the Export button to save the list contents to a tab-delimited Unicode text file. Choose 
Compare To Saved from the File menu to display the differences in permissions between the 
current list and a previously exported file.

To change the permissions for a share, right-click it in the list and choose Properties. 
ShareEnum displays a permissions editor dialog box for the share. To open a file share in 
Windows Explorer, right-click the share in the list and choose Explore from the popup menu.

ShellRunAs
In Windows XP and Windows Server 2003, you could run a program as a different user by 
right-clicking the program in Windows Explorer, choosing Run As from the context menu, 
and entering alternate credentials in the Run As dialog box. This feature was often used to 
run a program with an administrative account on a regular user’s desktop. Beginning with 
Windows Vista, the Run As menu option was replaced with Run As Administrator, which 
 triggers UAC elevation. For those who had used the Run As dialog box to run a program 
under a different account without administrative rights, the only remaining option was the 
less-convenient Runas.exe console utility. To restore the capabilities of the graphical RunAs 
interface with added features, I co-wrote ShellRunAs with Jon Schwartz of the Windows team.

Note Some features of ShellRunAs were restored in Windows 7. Holding down Shift while 
 right-clicking a program or shortcut adds Run As A Different User to the context menu.

ShellRunAs lets you start a program with a different user account from a context menu 
 entry, displaying a dialog box to collect a user name and password (shown in Figure 8-4) or 



 Chapter 8 Security Utilities 279

a smartcard PIN on systems configured for smartcard logon. You can also use ShellRunAs 
similarly to Runas.exe but with a more convenient graphical interface. None of ShellRunAs’ 
features require administrative rights, not even the registering of context menu entries. 
ShellRunAs can be used on Windows XP or newer.

FIGURE 8-4 ShellRunAs prompting for user credentials.

ShellRunAs also supports the Runas.exe netonly feature, which was never previously available 
through a Windows GUI. With the netonly option, the target program continues to use the 
launching user’s security context for local access, but it uses the supplied alternate creden-
tials for remote access. (See Figure 8-5.) Note that a console window might flash briefly when 
ShellRunAs starts a program with netonly.

FIGURE 8-5 ”Run As Different User” options added to the Explorer context menu.

The valid command-line syntax options for ShellRunAs are listed next, followed by 
 descriptions of the command-line switches:

ShellRunAs /reg [/quiet]

ShellRunAs /regnetonly [/quiet]

ShellRunAs /unreg [/quiet]

■ /reg Registers Run As Different User as an Explorer context menu option for the 
 current user. (See Figure 8-5.)

■ /regnetonly Registers Run As Different User (Netonly) as an Explorer context menu 
option for the current user.

■ /unreg Unregisters any registered ShellRunAs context menu options for the 
current user.

■ /quiet Does not show a result dialog box for registration or unregistration.



280 Part II Usage Guide

ShellRunAs [/netonly] program [arguments]

This syntax allows the direct launching of a program from the ShellRunAs command 
line. With /netonly, you can specify that the credentials collected should be used only 
for remote access.

Autologon
The Autologon utility enables you to easily configure Windows’ built-in autologon 
 mechanism, which automatically logs on a user at the console when the computer starts 
up. To enable autologon, simply run Autologon, enter valid credentials in the dialog box, 
and click the Enable button. You can also pass the user name, domain, and password as 
 command-line arguments, as shown in the following example:

autologon Abby MYDOMAIN Pass@word1

The password is encrypted in the registry as an LSA secret. The next time the system starts, 
Windows will try to use the entered credentials to log on the user at the console. Note that 
Autologon does not verify the submitted credentials, nor does it verify that the specified user 
account is allowed to log on to the computer. Also note that although LSA Secrets are en-
crypted in the registry, a user with administrative rights can easily retrieve and decrypt them.

To disable autologon, run Autologon and click the Disable button or press the Escape key. To 
disable autologon one time, hold down the Shift key during startup at the point where the 
logon would occur. Autologon can also be prevented via Group Policy.

Autologon is supported on Windows XP and newer, and requires administrative privileges.

logonSessions
The LogonSessions utility enumerates active logon sessions created and managed by the 
Local Security Authority (LSA). A logon session is created when a user account or service 
 account is authenticated to Windows. Authentication can occur in many ways. Here are some 
examples: 

■ Via an interactive user logon at a console or remote desktop dialog box

■ Through network authentication to a file share or a Web application

■ By the service control manager using saved credentials to start a service

■ Via the Secondary Logon service using Runas.exe

■ Simply “asserted” by the operating system, as is done with the System account and for 
NT AUTHORITY\ANONYMOUS LOGON, which is used when performing actions on 
 behalf of an unauthenticated user or an “identify” level impersonation token.



 Chapter 8 Security Utilities 281

An access token is created along with the logon session to represent the account’s security 
context. The access token is duplicated for use by processes and threads that run under 
that security context, and it includes a reference back to its logon session. A logon session 
 remains active as long as there is a duplicated token that references it.

Each logon session has a locally-unique identifier (LUID). A LUID is a system-generated 64-bit 
value guaranteed to be unique during a single boot session on the system on which it was 
generated. Some LUIDs are predefined. For example, the LUID for the System account’s logon 
session is always 0x3e7 (999 decimal), the LUID for Network Service’s session is 0x3e4 (996), 
and Local Service’s is 0x3e5 (997). Most other LUIDs are randomly generated.

There are a few resources that belong to logon sessions. These include SMB sessions and 
network drive letter mappings (for example, NET USE), and Subst.exe associations. You can 
see these in the Windows object manager namespace using the Sysinternals WinObj utility 
(discussed in Chapter 14), under \Sessions\0\DosDevices\LUID. Resources belonging to the 
System logon session are in the global namespace.

Note that these LSA logon sessions are orthogonal to terminal services (TS) sessions. TS 
 sessions include interactive user sessions at the console and remote desktops, and “session 
0”, in which all service processes run. A process’ access token identifies the LSA logon session 
from which it derived, and (separately) the TS session in which it is running. Although most 
processes running as System (logon session 0x3e7) are associated with session 0, there are 
two System processes running in every interactive TS session (an instance of Winlogon.exe 
and Csrss.exe). You can see these by selecting the Session column in Process Explorer.

LogonSessions is supported on Windows XP and newer, and it requires administrative 
 privileges. Run LogonSessions at an elevated command prompt and it will list information 
about each active logon session, including the LUID that is its logon session ID, the user 
name and SID of the authenticated account, the authentication package that was used, the 
logon type (such as Service or Interactive), the ID of the terminal services session with which 
the logon session is primarily associated, when the logon occurred (local time), the name of 
the server that performed the authentication, the DNS domain name, and the User Principal 
Name (UPN) of the account. If you add /p to the command line, LogonSessions will list  under 
each logon session all of the processes with a process token associated with that logon 
 session. Here is sample output from LogonSessions:

 [0] Logon session 00000000:000003e7: 

    User name:    MYDOMAIN\WIN7-X64-VM$ 

    Auth package: Negotiate 

    Logon type:   (none) 

    Session:      0 

    Sid:          S-1-5-18 

    Logon time:   6/9/2010 23:02:35 

    Logon server:  

    DNS Domain:   mydomain.lab 

    UPN:          WIN7-X64-VM$@mydomain.lab 

 



282 Part II Usage Guide

[1] Logon session 00000000:0000af1c: 

    User name:     

    Auth package: NTLM 

    Logon type:   (none) 

    Session:      0 

    Sid:          (none) 

    Logon time:   6/9/2010 23:02:35 

    Logon server:  

    DNS Domain:    

    UPN:           

 

[2] Logon session 00000000:000003e4: 

    User name:    MYDOMAIN\WIN7-X64-VM$ 

    Auth package: Negotiate 

    Logon type:   Service 

    Session:      0 

    Sid:          S-1-5-20 

    Logon time:   6/9/2010 23:02:38 

    Logon server:  

    DNS Domain:   mydomain.lab 

    UPN:          WIN7-X64-VM$@mydomain.lab 

 

[3] Logon session 00000000:000003e5: 

    User name:    NT AUTHORITY\LOCAL SERVICE 

    Auth package: Negotiate 

    Logon type:   Service 

    Session:      0 

    Sid:          S-1-5-19 

    Logon time:   6/9/2010 23:02:39 

    Logon server:  

    DNS Domain:    

    UPN:           

 

[4] Logon session 00000000:00030ee4: 

    User name:    NT AUTHORITY\ANONYMOUS LOGON 

    Auth package: NTLM 

    Logon type:   Network 

    Session:      0 

    Sid:          S-1-5-7 

    Logon time:   6/9/2010 23:03:32 

    Logon server:  

    DNS Domain:    

    UPN:           

 

[5] Logon session 00000000:0006c285: 

    User name:    MYDOMAIN\Abby 

    Auth package: Kerberos 

    Logon type:   Interactive 

    Session:      1 

    Sid:          S-1-5-21-124525095-708259637-1543119021-20937 

    Logon time:   6/9/2010 23:04:06 

    Logon server:  

    DNS Domain:   MYDOMAIN.LAB 

    UPN:          abby@mydomain.lab 

 



 Chapter 8 Security Utilities 283

[6] Logon session 00000000:000709d3: 

    User name:    MYDOMAIN\Abby 

    Auth package: Kerberos 

    Logon type:   Interactive 

    Session:      1 

    Sid:          S-1-5-21-124525095-708259637-1543119021-20937 

    Logon time:   6/9/2010 23:04:06 

    Logon server:  

    DNS Domain:   MYDOMAIN.LAB 

    UPN:          abby@MYDOMAIN.LAB

Because the System and Network Service accounts can authenticate with the credentials 
of the computer account, the names for these accounts appear as domain\computer$ (or 
workgroup\computer$ if they’re not domain-joined). The logon server will be the computer 
name for local accounts and can be blank when logging on with cached credentials.

Also note that on Windows Vista and newer with User Account Control (UAC) enabled, 
two logon sessions are created when a user interactively logs on who is a member of the 
Administrators group,1 as you can see with MYDOMAIN\Abby in entries [5] and [6] in the 
preceding sample. One logon session contains the token representing the user’s full rights, 
and the other contains the filtered token with powerful groups disabled and powerful 
 privileges removed. This is the reason that when an administrator elevates, the drive-letter 
mappings that are present for the non-elevated processes aren’t defined for the elevated 
ones. You can see these and other per-session data by navigating to \Sessions\0\DosDevices\
LUID in WinObj, described in Chapter 14. (Also see Knowledge Base article 937624 
 (available at http://support.microsoft.com/kb/937624) for information about  configuring 
EnablelinkedConnections.)

SDelete
Object reuse protection is a fundamental policy of the Windows security model. This means 
that when an application allocates file space or virtual memory it is unable to view data that 
was previously stored in that space. Windows zero-fills memory and zeroes the sectors on 
disk where a file is placed before it presents either type of resource to an application. Object 
reuse protection does not dictate that the space that a file occupies be zeroed when it is 
 deleted, though. This is because Windows is designed with the assumption that the operating 
system alone controls access to system resources. However, when the operating system is not 
running it is possible to use raw disk editors and recovery tools to view and recover data that 
the operating system has deallocated. Even when you encrypt files with Windows’ Encrypting 
File System (EFS), a file’s original unencrypted file data might be left on the disk after a new 
encrypted version of the file is created. Space used for temporary file storage might also not 
be encrypted.

1 More accurately, two logon sessions are created if the user is a member of a well-known “powerful” group or is 
granted administrator-equivalent privileges such as SeDebugPrivilege.



284 Part II Usage Guide

The only way to ensure that deleted files, as well as files that you encrypt with EFS, are safe 
from recovery is to use a secure delete application. Secure delete applications overwrite a 
deleted file’s on-disk data using techniques that are shown to make disk data unrecover-
able, even if someone is using recovery technology that can read patterns in magnetic 
 media that reveal weakly deleted files. SDelete (Secure Delete) is such an application. You 
can use SDelete both to securely delete existing files, as well as to securely erase any file 
data that exists in the unallocated portions of a disk (including files you have already deleted 
or  encrypted). SDelete implements the U.S. Department of Defense clearing and  sanitizing 
 standard DOD 5220.22-M, to give you confidence that after it is deleted with SDelete, your 
file data is gone forever. Note that SDelete securely deletes file data, but not file names 
 located in free disk space.

Using SDelete 
SDelete is a command-line utility. It works on Windows XP and newer and does not require 
administrative rights. It uses a different command-line syntax for secure file deletion and 
for erasing content in unallocated disk space. To securely delete one or more files or folder 
 hierarchies, use this syntax:

sdelete [-p passes] [-a] [-s] [-q] file_spec

The file_spec can be a file or folder name, and it can contain wildcard characters. The –p 
 option specifies the number of times to overwrite each file object. The default is one pass. 
The –a option is needed to delete read-only files. The –s option recurses subfolders to 
 delete files matching the specification or to delete a folder hierarchy. The –q option (quiet) 
 suppresses the listing of per-file results. Here are some examples:

REM  Securely deletes secret.txt in the current folder 

sdelete secret.txt

REM  Securely deletes all *.docx files in the current folder and subfolders 

sdelete -s *.docx

REM  Securely deletes the C:\Users\Bob folder hierarchy 

sdelete -s C:\Users\Bob

To securely delete unallocated disk space on a volume, use this syntax:

sdelete [-p passes] [-z|-c] [d:]

There are two ways to overwrite unallocated space: the –c option overwrites it with random 
data, while the –z option overwrites it with zeros. The –c option supports DoD compliance; 
the –z option makes it easier to compress and optimize virtual hard disks. The –p option 
specifies the number of times to overwrite the disk areas. If the drive letter is not specified, 
the current volume’s unallocated space is cleansed. Note that the colon must be included in 
the drive specification.



 Chapter 8 Security Utilities 285

Note The Windows Cipher /W command is similar in purpose to SDelete –c, writing random 
data over all hard drive free space outside of the Master File Table (MFT).

Note that during free-space cleaning, Windows might display a warning that disk space is 
running low. This is normal, and the warning can be ignored. (The reason this happens will be 
explained in the next section.)

How SDelete Works
Securely deleting a file that has no special attributes is relatively straightforward: the secure 
delete program simply overwrites the file with the secure delete pattern. What is trickier is 
to securely delete compressed, encrypted, or sparse files, and securely cleansing disk free 
spaces.

Compressed, encrypted and sparse files are managed by NTFS in 16-cluster blocks. If a 
 program writes to an existing portion of such a file, NTFS allocates new space on the disk to 
store the new data, and after the new data has been written NTFS deallocates the clusters 
previously occupied by the file. NTFS takes this conservative approach for reasons related to 
data integrity, and (for compressed and sparse files) in case a new allocation is larger than 
what exists (for example, the new compressed data is larger than the old compressed data). 
Thus, overwriting such a file will not succeed in deleting the file’s contents from the disk.

To handle these types of files SDelete relies on the defragmentation API. Using the 
 defragmentation API, SDelete can determine precisely which clusters on a disk are  occupied 
by data belonging to compressed, sparse and encrypted files. When SDelete knows which 
clusters contain the file’s data, it can open the disk for raw access and overwrite those 
clusters.

Cleaning free space presents another challenge. Because FAT and NTFS provide no means 
for an application to directly address free space, SDelete has one of two options. The first 
is that—like it does for compressed, sparse and encrypted files—it can open the disk for 
raw access and overwrite the free space. This approach suffers from a big problem: even if 
SDelete were coded to be fully capable of calculating the free space portions of NTFS and 
FAT drives (something that’s not trivial), it would run the risk of collision with active file oper-
ations taking place on the system. For example, say SDelete determines that a cluster is free, 
and just at that moment the file system driver (FAT, NTFS) decides to allocate the cluster for 
a file that another application is modifying. The file system driver writes the new data to the 
cluster, and then SDelete comes along and overwrites the freshly written data: the file’s new 
data is gone. The problem is even worse if the cluster is allocated for file system metadata 
because SDelete will corrupt the file system’s on-disk structures.



286 Part II Usage Guide

The second approach, and the one SDelete takes, is to indirectly overwrite free space. First, 
SDelete allocates the largest file it can. SDelete does this using noncached file I/O so that 
the contents of the NT file system cache will not be thrown out and replaced with use-
less data associated with SDelete’s space-hogging file. Because noncached file I/O must be 
sector (512-byte) aligned, there might be some left over space that isn’t allocated for the 
SDelete file even when SDelete cannot further grow the file. To grab any remaining space, 
SDelete next allocates the largest cached file it can. For both of these files, SDelete performs 
a  secure overwrite, ensuring that all the disk space that was previously free becomes securely 
cleansed.

On NTFS drives, SDelete’s job isn’t necessarily through after it allocates and overwrites the 
two files. SDelete must also fill any existing free portions of the NTFS MFT (Master File Table) 
with files that fit within an MFT record. An MFT record is typically 1 KB in size, and every file 
or directory on a disk requires at least one MFT record. Small files are stored entirely within 
their MFT record, while files that don’t fit within a record are allocated clusters outside the 
MFT. All SDelete has to do to take care of the free MFT space is allocate the largest file it can; 
when the file occupies all the available space in an MFT record, NTFS will prevent the file 
from getting larger, because there are no free clusters left on the disk (they are being held by 
the two files SDelete previously allocated). SDelete then repeats the process. When SDelete 
can no longer even create a new file, it knows that all the previously free records in the MFT 
have been completely filled with securely overwritten files.

To overwrite the file name of a file that you delete, SDelete renames the file 26 times, each 
time replacing each character of the file’s name with a successive alphabetic character. For 
instance, the first rename of sample.txt would be to AAAAAA.AAA.

The reason that SDelete does not securely delete file names when cleaning disk free space 
is that deleting them would require direct manipulation of directory structures. Directory 
 structures can have free space containing deleted file names, but the free directory space is 
not available for allocation to other files. Hence, SDelete has no way of allocating this free 
space so that it can securely overwrite it.



  437

Symbols
/accepteula command-line 

option, 14, 178
–? command-line option, 172
\\computer command-line 

option, 172
–e command-line option, 149
/e command-line option, 43
.evt files, 195
/LoadConfig command-line 

option, 131
_NT_SYMBOL_PATH 

environment variable, 251
/OpenLog command-line 

option, 102, 126
–p command-line option, 174
/Run32 command-line option, 

125
/savecred option, 17
–64 command-line option, 226
/smartcard option, 17
%TEMP% folder, extracting files 

into, 11
/Terminate command, 35
–u command-line option, 174
/WaitForIdle command, 35

A
access checks, with process or 

thread tokens, 84
access control entries (ACEs), 

274
access control lists, displaying, 

267, 274
ACCESS DENIED errors, 

troubleshooting, 390–391
access rights

for processes, 74
searching for, 269

access to system resources, 
15–20

access tokens, 21
creation of, 281
for logon sessions, 18
for threads, 22

AccessChk, 267–275, 340
access rights, searching for, 

272–273
administrative rights for, 272, 

273
command-line options, 269
error messages, 275
output options, 273–275
syntax, 268

AccessEnum, 275–277
file display options, 276
hiding entries, 277
saving files, 277
Show Local System And 

Service Accounts option, 
276

account rights, reporting on, 
267–275, 272

ACEs, 274 
Active Directory Application 

Mode (ADAM), 288
Active Directory databases, 

saving snapshots of, 
294–296

Active Directory domains
connecting to, 288
deleted objects in, restoring, 

306–307
SIDs of, 185

Active Directory Explorer 
(AdExplorer), 287–296

attributes of objects, 288–289, 
291–293

attributes of objects, adding, 
editing, and deleting, 292

configuration settings, 296
database snapshots, 294–296
directories, removing from 

display, 288
display, 288–289
domains, connecting to, 

287–288
Favorites menu, 289
navigation history, 289
object properties, viewing, 

290–291

object tree, 288–289
search functionality, 293–294

Active Directory Lightweight 
Directory Services (LDS), 
288

Active Directory naming 
contexts, opening, 287

Active Directory object tree, 
288–289

Active Directory objects
attributes of, 291–293
attributes of, adding, 292–293
creating, 290
distinguished names, 289
information about, viewing, 

299
permissions settings, 295
properties of, 290–291
renaming or deleting, 290
searching for, 293–294
viewing information about, 

290–291
Active Directory utilities, 5
Active Directory viewer and 

explorer. See Active 
Directory Explorer 
(AdExplorer)

active memory, 361
Active Setup\Installed 

Components keys, 153
ADAM, 288 
address space fragmentation, 

224–225
Address Space Fragmentation 

dialog box, 224–225
Address Space Layout 

Randomization (ASLR), 55
Address Windowing Extension 

(AWE), 359
AdInsight, 287, 296–306

Autoscroll feature, 297
columns, 298–299
command-line parameters, 

306
data capture, 297–300

Index



438 

AdInsight (continued)
data, saving and exporting, 

305–306
Details Pane, 297
display names, 300–301
display options, 300–301
event errors, finding, 303
Event Pane, 297
events, input and output 

parameters, 299
events, viewing, 303
filtering results, 303–304
Find dialog box, 301
highlighting events, 302–303
Highlight Preferences dialog 

box, 302
history depth, 300
session 0 execution, 296
text searches, 301–302
time display options, 300

admin approval mode, 18
administrative rights, 15–20

for AccessChk, 272, 273
for Autoruns, 148
for BgInfo, 317
for Disk2Vhd, 335
for Diskmon, 338
for DiskView, 341
for Handle, 258
for ListDLLs, 254
for LogonSessions, 281
malware and, 431
for MoveFile, 334
for Msconfig, 145
on Windows Vista computers, 

18–20
on Windows XP and Windows 

Server 2003 computers, 
16–18

for PageDefrag, 345
for Portmon, 353
for ProcDump, 229
for Process Explorer, 42–43
for Procmon, 102, 126
for PsKill, 189
for PsList, 189
for PsLoggedOn, 191
for PsLogList, 193
for PsService, 197–198

for PsShutdown, 203
for PsTools utilities, 175
for RAMMap, 359
Run As dialog box options, 17
with Runas.exe utility, 17
User Account Control and, 

18–20
for VMMap, 213
for WinObj, 370

Administrators
Debug Programs privilege, 43
in Windows Vista, 18

Administrators group 
membership, 16

AdRestore, 287, 306–307
ADSes, 8–9, 326–328 
ADSI Edit, 287
Advanced Security Settings 

dialog box, Effective 
Permissions Tool, 267

adware, 157
Allow Service To Interact With 

Desktop option, 33
alternate credentials

for PsPasswd, 196
for PsExec, 179
for remote operations, 174
specifying, 171

alternate data streams (ADSes)
creating and writing to, 

326–328
removing, 8–9

alternate programs, starting, 
161

AlwaysInstallElevated Windows 
Installer policy, 16

annotation of desktop screen 
shots, 320–324

anonymous authentication, 179
antivirus software

on-access virus scans, 418
updating errors, 385–386

AppData directory, redirecting, 
416

AppData\Roaming folder, 
special considerations for, 
416

AppInit DLLs, 162
AppInit_DLLs registry value, 435

application-compatibility shims, 
411

application crashes, crash 
dumps, 236–237

application domains
listing of, 87
number of, 60

application feature memory 
costs, 211

application hangs, 
troubleshooting, 405–426

Application Information 
(Appinfo) service, 18

application installation errors, 
troubleshooting, 391–396

application manifests, 266
application startup delays, 

troubleshooting, 410–415
applications

details about, 108
resource use, 24
starting from VMMap, 

213–214
AppLocker feature, 410

Rule Creation wizard, 411
.arn file extension, 166
ASEPs. See Autostart 

Extensibility Points (ASEPs) 
ASLR, 55 
assemblies

loaded, viewing, 60
viewing, 87

At.exe, 158
Attachment Execution Service, 

327
Attribute Properties dialog box, 

291–292
Audiodg.exe, 43
authentication, 280

anonymous authentication, 
179

LSA autostart entries for, 
164–165

smartcard authentication, 
17–18

Authentication ID (Auth ID), 111
Autologon, 280
Automatic start drivers, load 

order, 373

AdInsight



439

Autoplay, troubleshooting, 395
Autorun, 385

disabling, 395
troubleshooting failures of, 

391–396
Autorun.inf, 395

InFileMapping for, 395
redirection of, 394

Autoruns, 4, 35, 146–170
administrative rights for, 148
Analyze Offline System 

option, 152
AppInit DLL entries, 162
automating scans, 167
Autoruns Data (*.arn) format, 

166–167
autostart categories, 153–165
BootExecute entries, 160
codecs entries, 160
digital signatures, verifying, 

149–150
drivers entries, 159
empty locations, including, 

152–153
entries, details about, 151
entries, disabling or deleting, 

148
Explorer ASEP locations, 

155–157
“File not found” entries, 169
fonts, changing, 153
Hide Windows Entries or Hide 

Microsoft And Windows 
Entries options, 150

Include Empty Locations 
option, 152

Internet Explorer ASEP 
locations, 157–158

KnownDLLs entries, 162–163
Logon ASEP locations, 

153–155
LSA providers entries, 

164–165
main window, 146–147
malware and, 168–170
Microsoft autostarts, hiding, 

150
network providers entries, 165
offline analysis, 152
other users’ autostarts, 

viewing, 151

print monitors entries, 164
results, comparing, 167
results, saving, 166–167
in Safe Mode, 430
scans, canceling, 147
scheduled tasks entries, 158
search capabilities, 147
suspicious entries, 169–170
Verify Code Signatures option, 

149
Windows services entries, 

158–159
Winlogon entries, 163
Winsock providers entries, 164

AutorunsC, 146, 167–168
command-line options, 

167–168
output, 167–168

Autostart Extensibility Points 
(ASEPs), 145

baseline of, 146
displaying, 146–147
malicious, 433–436
of offline systems, 152
unused, listing, 152–153
of users, displaying, 151

autostarts, 145
AppInit DLLs, 162
categories of, 153–165
codecs, 160
configuration location, 

jumping to, 151
description of, 147
disabling or deleting, 148
drivers, 159
gadgets, 165
Image Hijacks, 161–162
Internet Explorer related, 

157–158
KnownDLLs, 162–163
Local Security Authority 

related, 164–165
logon entries, 153–155
of Microsoft-published 

software, 150
network providers, 165
online search for, 151
path to, 147
print monitor DLLs, 164
publisher of, 147
scheduled tasks, 158

signing certificates, verifying, 
149–150

of standard users, 151
viewing, 146. See 

also Autoruns
Windows Explorer related, 

155–157
Windows native-mode 

executables, 160
Windows services, 158–159
Winlogon.exe related, 163
Winsock related, 164

AWE, 359 

B
backing files, 130–131

specifying, 128
bad memory, 361
\BaseNamedObjects directory, 

373
basic disks, 347–348
batch files, running Procmon as, 

102, 132
BgInfo, 309–318

administrative rights for, 317
appearance options, 313–315
bitmaps, creating, 315
color depth, 314
comma-separated values, 

saving data as, 316
configuration settings, saving, 

315
Database Settings dialog box, 

316
data fields, 311
data to display, 310–313
Define New Field dialog box, 

312–313
Desktops dialog box, 317–318
Do Not Alter This Wallpaper 

option, 316
editor window, 310
information sources, 312
other desktops, changing, 

317–318
output options, 315–317
popup window, displaying 

data as, 317
positioning text on-screen, 

314

BgInfo



440 

BgInfo (continued)
Rich Text File, saving data as, 

317
64-Bit Registry View, 313
SQL Server database, saving 

data to, 316
Time Remaining indicator, 310
User Defined Fields dialog 

box, 312
wallpaper, previewing, 315
wallpaper background, 

313–314
binary file format, saving 

Autoruns scans in, 166–167
BitLocker-To-Go Group Policy 

settings, 410
blogs

Mark’s blog, 12–13
site blog, 12

“Blue Screen of Death” (BSOD) 
crashes

from process termination, 188
simulating, 379–380
troubleshooting, 241–242

Bluescreen Screen Saver, 
379–380

boot configuration database 
(BCD), referencing disks in, 
337

boot logging, 127–128, 
402–404

filtering and, 129
boot start drivers, load order, 

373
boot-start services, 200
BootExecute, 160
buddy system malware, 52
buffer overflow result code, 

105–106
buffer overflows, 105
bugs, reporting, 11–12, 14
built-in commands, running, 

178
BUILTIN domain, SIDs in, 185
bytes

graph of, 81
in I/O operations, 62
process use of, 58

C
C# applications, 214
cache topology, enumerating, 

368
cached memory, 361
Call Site ID numbers, 222
call stacks, 24–30. See also stack 

traces
analyzing, 405–426
Call Site ID number, 222
capturing, 27–28
displaying, 90
examining, 393–394, 402–403
memory allocations, 222–224
third-party drivers in, 418
viewing, 112–113

Call Tree dialog box, 223–224
calling sequence, 25
Caps Lock keypresses, 

converting to Control 
keypresses, 380

Carnegie Mellon University’s 
Computer Emergency 
Response Team (CERT), 395

carriage returns in debug 
output, 239

“Case of the Unexplained” 
sessions, 13

catalog signing, 149, 264
CERT, 395 
certification authorities (CAs), 

legitimacy of, 262
checkpoints, 198
Cipher /W command, 285
Citrix Corporation ICA client, 

400–404
classes loaded, viewing, 60
client environments, converting 

to virtual hard disk, 337
client-side APIs, intercepting 

and interpreting, 296
clock ticks, interval between, 

375
ClockRes, 375
Close Handle command, 76
CloseHandle API, 24
Cmd.exe, built-in commands, 

178–179
code access, 359

code paths, displaying, 24
code-signing certificates, 262
codecs, autostarts of, 160
Cogswell, Bryce, 3, 39
Column Selection dialog box, 

107
column sets

customizing, 107–108
saving, 64–65, 68

COM extension, 26
comma-separated values (CSVs), 

225
reporting results as, 188
snapshots, saving as, 225

command-line ASEPs, 161
command-line options

–?, 172
–64, 226
/accepteula, 178
AdInsight, 306
AdRestore, 306
for AutorunsC, 167–168
\\computer, 172
–e, 149
for LiveKd, 250–251
/LoadConfig, 131
logging options, 246
/OpenLog, 102, 126
–p, 174, 179
for ProcDump, 228–229
for Procmon, 132–134
for PsExec, 180–184
for PsLogList, 193–196
for PsShutdown, 203–204
for PsTools utilities, 206–208
remote computer, specifying, 

173
/Run32, 125
/savecred option, 17
/smartcard option, 17
–u, 174, 179
of VMMap, 226

command-line switches
/e, 43
in Process Explorer, 98

command processor autorun 
keys, 162

command prompt on remote 
computers, 176, 178

BgInfo



441

command shell
escape character (̂ ), 176
terminating, 178

commit charge, viewing, 94
committed memory, 217

analyzing, 215
graphs of, 93–94

communication utilities, 6
compressed (.zip) files

deleting securely, 285–286
downloading, 7
unblocking, 8–9

computers. See also local 
system; remote systems

finding, 202
key information about, 

187–188
SIDs of, 185–186

Conficker, 395
config command, 199–200
configuration information 

of services and drivers, 
199–200

configuration settings
locked down locations, 148
registry key for, 146

Configure Highlighting dialog 
box, 45

Connect To Active Directory 
dialog box, 287–288, 294

connected endpoints, viewing, 
352

connections
closing, 352
timeout for, 205

console applications, remote 
enabling, 176

console output, redirected, 
178–179

console sessions, 32
console utilities, 171

starting from elevated 
command prompt, 19

cont command, 202
container objects, effective 

permissions on, 270
containers

deleted, 307
searching within, 293–294

contention metrics, 61

context switches
displaying, 57
tracking, 42

Contig, 344–345
copying event data, 115
CoreInfo, 367–369

output options, 368
Cottingham, Greg, 431
Count Values Occurrences 

dialog box, 140
CPU cycles

displaying, 56, 57
measuring, 42

CPU registers, processor state, 
22

CPU usage
displaying, 56–57
graphs of, 65, 80, 93
measuring, 41–42
for thread execution, 89

crash dumps, 236–237
CreateFileW calls, 418
Credential Provider interface, 

163
credentials. See also alternate 

credentials
prompt for, 19–20
for PsExec, 179

cross-process memory 
functions, 22

Cross Reference Summary 
dialog box, 140

cryptographic providers, 165
Csrss.exe, 431–432
CSV files, 225

reporting results as, 188
snapshots, saving as, 225
traces, saving as, 124

Ctrl2Cap, 380
cycle counter, processor support 

of, 369

D
DACLs, human-readable, 201
data, recovering, 283
data capture filters, 304
Data Execution Prevention 

(DEP), 55
support of, 369

Database Settings dialog box, 
316

Dbghelp.dll, 28–29
updating, 232–233

Dbgview.exe, 238
deadlocks, 162
debug engine DLLs, 28
debug output, 237–238. See 

also DebugView
monitoring, 237–249

debug output events, 141–142
Debug Output Profiling 

events, 114, 141
Debug Programs privilege, 43
DebugBreak, calling, 231
debuggers

alternate programs as, 161
kernel debuggers, 249–253
specifying, 251

debugging
Hyper-V guest virtual 

machines, 249
Miniplus dumps, 234
symbol files, 26

debugging mode, booting in, 
249

Debugging Tools for Windows, 
233

Dbghelp.dll, 28
LiveKd requirement for, 250
symbol files, downloading, 27
URL for, 29, 250

DebugView, 211, 237–249
agent mode, 247
agent mode, manually 

starting in, 248
Always On Top option, 240
Autoscroll feature, 239
Capture Global Win32 option, 

241
clearing display, 242
comments, appending to 

output, 240
copying output, 239
crash dump file analysis, 242
debug output, 237–238
display, 238–240
display space, increasing, 240
Enable Verbose Kernel Output 

option, 241

DebugView



442 

DebugView (continued)
Filter dialog box, 242–243
filter settings, 244
filtering capabilities, 242–243
Force Carriage Returns option, 

239
Hide When Minimized option, 

240
highlight settings, 244
highlighting capabilities, 244
History Depth dialog box, 244
history depth of output, 244
kernel-mode debug output, 

241–242
Log Boot feature, 241
Log-To-File Settings dialog 

box, 245–246
logging output, 245–246
pass-through mode, 241
Print Range dialog box, 246
printing output, 246
recovering output, 241–242
Remote Agent window, 248
remote monitoring 

capabilities, 247–249
saving output, 245
search capabilities, 242
sequence numbers, 238
services, capturing output of, 

240
system memory usage 

monitoring, 244
time of capture, 239
user-mode debug output, 

240–241
decimal numbers, converting to 

hexadecimal, 378
Default desktop, 33
default target architecture, 214
Define New Field dialog box, 

312–313
defragmentation, 342

of files, 344–345
solid state drives and, 344
system files, 345–346

defragmentation API, 285
delete operations

on installation programs, 333
listing, 333–334
scheduling, 334

deleted containers, restoring, 
307

deleted objects, restoring, 
306–307

demand-start services, 200
Deny flag, 84
deny permissions, enumerating, 

275–276
DEP, 55, 369 
depend command, 200–201
dependencies of drivers and 

services, 200–201
Dependency Walker (Depends.

exe) utility, 53, 71
Desktop abstraction, 33
Desktop Gadgets, 165
desktop utilities, 5
desktop wallpaper, system 

information displayed as, 
309–318

desktops, 33–34
BgInfo wallpaper for, 317
identifying, 34
relationship with sessions and 

window stations, 30–31
screen shots of, 320–324
switching among, 318–319
windows, connection 

between, 318
Desktops, 33, 318–320

configuration dialog box, 319
desktop switch window, 319
exiting, 320

Desktops dialog box, 317–318
device drivers

kernel-mode operation, 22
load order, 373–374

diagnostic utilities, 4
Difference Highlighting 

Duration dialog box, 45
digital signature verification, 

91–92, 149–150, 261
verification failures, 169
turning off, 414–415

directories
alternate data streams, 326
disk space usage, 331–333
effective permissions on, 267
information about, viewing, 

371

directory servers, connecting 
to, 288

disabled privileges, 84
disabled services, 200
discretionary access control list 

(DACL), human-readable, 
201

disk extents, 347
disk free space, overwriting, 

284–286
disk I/O, metrics on, 63–64
disk management utilities, 5, 

335–350
Contig, 344–345
DiskExt, 347
Diskmon, 337–339
Disk2Vhd, 335–337
DiskView, 341–344
LDMDump, 347–349
PageDefrag, 345–346
Sync, 339–340
VolumeID, 350

disk space usage, reporting, 
331–333

Disk Usage (DU), 331–333
disk volumes, information 

about, 187
DiskExt, 347
Diskmon, 337–339

administrative rights for, 338
notification area icon, 339

disks
basic and dynamic disks, 

347–348
flushing caches, 339–340
partition information, 

displaying, 347
Disk2Vhd, 335–337

administrative rights for, 335
command-line options, 337
Prepare For Use In Virtual PC 

option, 336
DiskView, 341–344

administrative rights for, 341
dump format, 343–344
file arrangement, 342
file clusters, finding, 343
File Errors dialog box, 341
fragment cells, 342
Volume Properties dialog box, 

343

DebugView



443

dismounting removable drives, 
339

distinguished names (DNs), 
finding, 289

DLL extension, 26
DLL injection, 296
DLL load failures, 

troubleshooting, 387–389
DLL Properties dialog box, 72
DLL tab, 69–70
DLL view, 39, 67–77

columns in, 70–71
customizing, 69–71

DllMain function, 162
DLLs

AppInit DLLs, 162
description and publisher 

information, 169
executable images, loading 

as, 255
export tables, 26
finding, 68–69
malicious DLLs, 433–436
mapping, 162
properties of, 72–73, 90
relocated, 71, 255
viewing, 69–73, 253–255

domain account passwords, 
setting, 196–197

domain administrators, 
enumerating and restoring 
deleted objects, 307

domain connections, saving, 
288

domain registration lookups, 
353

domains
connecting to, 287–288
deleted objects in, restoring, 

306–307
SIDs of, 185–186
whois lookups, 352

downloaded content, 
unblocking, 327

downloading utilities, 7–8
unblocking .zip files, 8–9

driver files, 11
drivers

autostarting, 159
bugs in, 159

configuration information, 
199–200

dependencies, 200, 200–201
disabling or deleting, 159
error control for, 200
searching for, 202
security information, 201
status information, 198–199
types of, 198, 200

Drop Filtered Events option, 129
dump files. See also ProcDump; 

process dump files
critical sections in, 421–422
generating, 424
kernel-memory dump files, 

249–253
obtaining, 421

dump of processes, 53, 227–237
dynamic attributes, 46
dynamic disks, 347–348

E
effective permissions, 267–268

reporting, 267–275
Effective Permissions Tool, 267
elevation of privilege, 19

window messaging and, 35
elevation-of-privilege attacks, 

interactive services and, 199
embedded manifests

displaying, 261–262
dumping, 266

embedded nulls, deleting 
registry keys with, 378–379

Encapsulating Security Payload 
(ESP), 179

encrypted files, deleting 
securely, 285–286

Encrypting File System (EFS), 
283

encryption, IPsec with ESP 
(Encapsulating Security 
Payload) for, 179

End-User License Agreement 
(EULA), 13–14

on remote computers, 178
endpoint addresses, resolving, 

82
endpoints, viewing, 351–355

environment variables, viewing, 
84–85

error messages, 
troubleshooting, 383–404

error severity levels, 241
escape character (̂ ), 176–177
Event Class filters, 117
event data, copying, 115, 140
event errors, viewing, 303
Event Filters dialog box, 304
event IDs, 192, 195
event-log messages, 192, 194
event logs

clearing, 196
defragmenting, 345–346
exporting, 195
registered name, 196
viewing records of, 192–196

Event Properties dialog box, 
108–113

Event tab, 109–110
file attribute codes, 109
navigation buttons, 109
Process tab, 111–112
Stack tab, 112–113

event records
comma-delimited fields, 194
displaying, 192–196
event IDs, 195
event sources, 195
event type, 195
filtering, 194–195
hex dump format, 194
most recent, 195
number to display, specifying, 

194
order of, 194

event sources, 192, 195
Event Time Results reports, 305
Event Tracing for Windows 

(ETW), 128
events

capturing, 103
context menu filter options, 

118–119
debug output events, 141–142
details about, viewing, 108–

110, 109
filtered, dropping from log 

file, 129

events



444 

events (continued)
filtering and highlighting in 

Procmon, 116–122
finding, 115
Load Image events, 104
Process Profiling events, 114
Procmon-captured, 104–116, 

138
profiling events, 114
reporting on, 305
searching online, 116
sequence number, 298
Thread Profiling events, 114
time of day, 104
viewing associated events, 303

Events report, 305
Events with Details reports, 305
Exchange Server

CPU spikes, troubleshooting, 
423–424

high item count folders, 425
troubleshooting problems 

with, 420–426
EXE files, 26

description and publisher 
information, 169

hijacks of, 161
executable code, functions, 

24–26
executable files, 21

details about, 265
digital signatures on, 262
EXE or DLL, 26
properties of, 90
scanning for, 265
verification of, 72

executable images, 54
DLLs loaded as, 255
path to, 54, 432
in process address space, 112
properties of, 78–79
verifying, 91–92

execution on remote 
computers, PsExec for, 
176–184

exit codes, 177, 198
of PsInfo, 188

Explorer.exe, autostart entries 
related to, 155

export tables, 26

exporting
event logs, 195
from VMMap, 212

external storage devices, 
removing, 339

F
F5 key, 46
FAT drives, changing ID number, 

350
file access

delays, troubleshooting, 
415–419

redirecting, 394–395
file activity

summary of, 136–137
viewing, 102. See also Process 

Monitor (Procmon)
file associations, changing, 161
File Errors dialog box, 341
file extensions

of EXEs and DLLs, 26
file and folder operations, 

listing by, 137
file fragmentation, display of, 

342
file handles, 256–257
file hashes, calculating, 261–286
file locations, jumping to, 

115–116
file management utilities, 

325–334
file mapping objects, 22, 257
file mappings

listing, 71
mapped views of, 216

Filemon, 102
filtering capabilities, 116

file names, overwriting, 286
“File not found” autostart 

entries, 169–170
file objects, sharing mode, 76
file reads

noncached, 417
re-reads, 418

file and registry virtualization, 
disabling, 20

file shares
enumerating, 277–278

permissions on, changing, 278
security settings on, 277
violations of, 401–404

file signatures, verifying, 149–
150, 169

File Summary dialog box, 
136–137

file system
activity, capturing, 104
autostart locations, 145

file system buffers, flushing to 
disk, 339

file system objects, reporting, 
326–328

file utilities, 5
files

alternate data streams, 326
attributes of, 109–110
clusters, locating, 343
defragmentation of, 344–345
deleting securely, 284–286
effective permissions on, 267
in-use, identifying, 256–260
mapping into memory, 365
moving, renaming, and 

deleting, scheduling, 334
multiple paths to, 328
opened remotely, listing, 

184–185
properties of, viewing, 71
searching for, 71
searching for strings in, 325

Filter dialog box, 117–118
filtered access tokens, 18
filtering

AdInsight data, 303–304
advanced output, 120–121
boot logging and, 129
configuring, 117–119
context menu options, 

118–119
debug output, 242–243
Drop Filtered Events option, 

129
events in Procmon, 116–122
resetting filters, 118
rule sets, importing, 131
rules, adding, 117
rules, editing and removing, 

117–118

events



445

filtering (continued)
rules, ORing and ANDing, 118
saving filters, 121–122

find utility, 325
find command, 202
FindLinks, 330–331
findstr utility, 325
flash cards, troubleshooting 

problems with, 409–410
folder activity summary, 

136–137
folder association errors, 

troubleshooting, 397–399
folder hierarchies

file and folder operations, 
listing by, 136

searching, 265
folders

effective permissions on, 267
in-use, identifying, 256–260

forums, 11–12
fragmentation, memory, 

224–225
display of, 342

frames
frame number, 112
kernel-mode and user-mode, 

112
free memory, 217, 361
fsutil hardlink command, 329
fsutil hardlink list filename 

command, 331
fsutil reparsepoint command, 

329
full symbol files, 27
functions, 24–25

calling sequence, 25
identifying, 26
names and offsets of, 26

G
gadget software autostart 

entries, 165
garbage collection, metrics on, 

60–61
GDI objects, displaying 

attributes of, 57–59
generation 0, 1, or 2 objects, 

garbage collection on, 60

GetLogicalProcessor- 
Information function, 367

GetLogicalProcessor- 
InformationEx function, 367

GINA DLL interface, 163
global namespace, 32
global objects, 240
\GLOBAL?? directory, 373
Goto Next/Previous Event Error 

button, 303
graphs

of processes, viewing, 80–81
in Process Explorer, 65–66
of systemwide metrics, 92–95

group account rights, 267–275
GUI threads, 34

H
HAL, compatibility issues, 336 
Handle, 39, 211, 256–260

administrative rights for, 258
all handle types, viewing, 257, 

258
command-line syntax, 256, 

260
examples of, 257–259
handle counts, 259–260
handles, closing, 260
named Sections, 257
process information, 256
processes in output, limiting, 

257
search capabilities, 257

Handle Properties dialog box, 
77

HandleEx, 39
Handle tab, 75–77
Handle view, 34, 67–77

customizing, 75–77
handles, 24, 256. See also object 

handles
attributes of, 75–76
closing, 76, 260
count of, 57, 372
open, 21
properties, viewing, 76–77
releasing, 24, 384
viewing, 67–77

hard disk activity, logging, 
337–339

hard drives, overwriting 
unallocated space on, 
284–285

hard links
creating, 329
finding, 330–331
NTFS support for, 328

hard resets, 127
hardware attributes, displaying, 

311
Harrison, Carl, 253
hashes, 265–266
Heap Allocations dialog box, 

224
heaps, 216

bytes allocated in, 61
helper classes, downloading, 

142
hexadecimal numbers, 

converting to decimal, 378
Hex2Dec, 378
hibernation files, 

defragmenting, 345–346
Highlighted Events reports, 305
highlighting

configuring, 119–120
debug output, 244
events and errors in AdInsight, 

302–303
events in Procmon, 116–122
saving settings, 121

Highlighting dialog box, 120
histogram report of LDAP calls, 

305
History Depth dialog box, 130
HKCU\Software

Internet Explorer per-user 
ASEPs under, 157

logon per-user ASEPs under, 
154

Windows Explorer per-user 
ASEPs under, 156

HKCU\Software\Sysinternals\
Active Directory Explorer 
EulaAccepted value, 296

HKLM\System\
CurrentControlSet\Control\
NetworkProvider\Order, 165

HKLM\System\CurrentControlSet\Control\NetworkProvider\Order



446 

HKLM\System\
CurrentControlSet\Control\
Print\Monitors, 164

HKLM\System\
CurrentControlSet\
Control\Session Manager\
KnownDlls, 162

HKLM\System\
CurrentControlSet\Services

drivers in subkeys of, 159
services in subkeys of, 158

HKLM\System\
CurrentControlSet\Services\
EventLog, 195

Host Process for Windows 
Services (Svchost.exe), 158

hotfixes, information about, 188
hotkeys

for switching desktops, 318
for ZoomIt, 320–321

HTML-formatted reports of 
AdInsight captured events, 
305

hung windows, process file 
dumps on, 231

Hyper-V guest virtual machines, 
debugging, 249, 251

Hyper-V host, running 
debugger on, 249

I
iexplore.exe process

infinite loops, 
troubleshooting, 405–407

listing, 255
illegal operations, 159
Image File Execution Options 

(IFEO) subkeys, 161
image files

searching for strings in, 325
viewing, 69

Image Hijacks, 161–162
Image memory, 216
image names, terminating 

processes by, 189
image pages, excluding from 

dumps, 234
image signatures, verifying, 72, 

91–92

image signer information, 261
image strings, 72, 85
impersonation, 84, 179
in-use files and folders, 

identifying, 256–260
Include Process From Window 

option, 117
infinite loops, troubleshooting, 

405–407
ini-file APIs, 394
IniFileMapping, 394–395
input/output control (IOCTL) 

commands, logging, 
353–357

insertion strings, 192
installation, Sysinternals utilities 

and, 171
installation programs, move and 

delete requests, 333
installation type, 187
installer detection, 19
instrumented processes

memory allocations, viewing, 
221–224

of memory snapshots, 
218–219

symbols and, 222
integrity labels, 272–273
integrity level (IL) of processes, 

35, 55
interactive desktops as terminal 

server sessions, 238
interactive logon type, 183
interactive services, 199, 204
Interactive Services Detection 

service (UI0Detect), 33
interactive sessions, one at a 

time, 31
Internet

running utilities from, 10
unblocking downloads from, 

8–9
Internet Explorer

autostarts related to, 157–158
extensibility of, 157
Protected Mode, 20, 184

internode access costs, 367
Interrupts pseudo-process, 49, 

190
invalid pages, 58

I/O
disk I/O metrics, 63–64
graph of, 65, 81
metrics on, 95
private I/O counts, 61–62

I/O prioritization, 62
ipconfig, running remotely, 176
IPsec with ESP (Encapsulating 

Security Payload), 179
IPv4 endpoints, viewing, 

351–353
IPv6 endpoints, viewing, 

351–353
IsDebuggerPresent API, 231
IsProcessorFeaturePresent 

function, 369

J
Jackson, Chris, 410
job objects, 51
jobs, 21–22

details about, viewing, 88
in process list, 44

Jump To feature, 35
Junction, 329–330
junctions, 328–330

K
Kd.exe, 251
kernel build numbers, 187
kernel debuggers, 249–253
kernel memory

dump files, 249–253
metrics on, 94

kernel mode, 22–23
illegal operations in, 159
processes, code access of, 359

kernel-mode core, 23
kernel-mode debug output, 237

capturing, 241–242
at system startup, 241

kernel-mode stack, 22
kernel-mode stack frames, 112
kernel objects, viewing, 67–77
kernel service functions, 23
kernel symbol files, 

downloading, 250
keyboard activity, simulating, 35

HKLM\System\CurrentControlSet\Control\Print\Monitors



447

keyboard shortcuts for Process 
Explorer, 98–99

Kill Process button, 52, 79
KnownDLLs, 162–163
\KnownDLLs/\KnownDlls32 

directory, 373

l
large applications, dumps of, 

233–235
large page memory, 359
Last Known Good option, 128
Launch And Trace A New 

Process tab, 212
LDAP calls, 307

histogram reports of, 305
LDAP function names, 298
LDM, 347–349 
LDMDump, 347–349
Leznek, Jason, 410
license information, 13–14
limited rights processes, 

183–184
List Folder permission, 276
ListDLLs, 211, 253–255

administrative rights for, 254
command-line syntax, 254
output, 254
process information, 255
process name or PID, 

specifying, 255
relocated DLLs, 255
search capabilities, 255

Listdlls processes, listing, 434
live directory servers, 

connecting to, 288
live systems, examining, 

249–253
LiveKd, 211, 249–253

command-line syntax, 
250–251

examples of, 251–253
kernel memory dump files, 

249
online kernel memory dumps, 

252–253
system requirements, 250

LiveKdD.SYS symbols, 251
LiveZoom, 320, 324
Load Driver privilege, 241

Load Image events, 104
load order groups, 199, 200
Load and Unload Device Drivers 

privilege for Procmon, 102
LoadLibrary API, 256
LoadOrder (Loadord.exe), 

373–374
local accounts for remote 

administration, 174, 176
local computers

debug output, monitoring, 
247–249

DLLs in processes, 253–255
local groups, SID of, 185
local logons, 191
local namespaces, 32
Local Security Authority (LSA), 

18, 30
logon sessions created by, 280

local system
key information about, 187
processes, suspending, 

205–206
Windows event logs, 

displaying, 192–196
local user account passwords, 

setting, 196–197
locally-unique identifiers 

(LUIDs), 281
location of code execution, 112
locked folders, troubleshooting, 

383–385
locks, checking for, 421–422
.LOG extension, 245
log files

size, controlling, 129–131
of system activity, 123–126

logged-on users, listing, 
191–192

logging
boot logging, 127–128
debug output, 245–246
hard disk activity, 337–339
input/output control 

commands, 353–357
Portmon data, 357
virtual memory capacity and, 

130–131
Logical Disk Manager (LDM) 

database, displaying 
information about, 347–349

Logical Prefetcher, 403–404
logical processors

mapping to physical 
processors, 367–369

sockets assigned to, 367
logoff

debuggers, detachment of, 
235

logging activities during and 
after, 128–129

logoff scripts, 153
logon

autostart entries for, 153–155
information about, viewing, 

191–192
logon attributes, displaying, 311
logon desktops, BgInfo 

wallpaper for, 317
logon processes, 49–51
logon scripts, 153
logon sessions

access tokens for, 281
enumerating, 280–283
locally-unique identifiers, 281
resources owned by, 281
User Access Control and, 283

Logon SID group, 84
logon SIDs, 179, 186
LogonSessions, 18, 280–283

administrative rights for, 281
sample output, 281–283

Lotus Notes backup errors, 
387–389

low memory, detecting, 355
LSA logon sessions, 18, 30, 280

window station, 32
Lsass.exe, 165
LUIDs, 281

M
machine SIDs, 185
magnification of desktop screen 

shots, 320–324
MakeMeAdmin script 

(Margosis), 18
malicious files, 157

bogus root certificates of, 152
malware, 145, 427

administrative rights and, 431
AppInit DLLs as, 162

malware



448 

malware (continued)
Autorun.inf worms, 395
Autoruns and, 168–170
bogus services, 159
buddy system, 52
digital signatures on, 262
fake system components, 

431–433
Marioforever virus, 433
packed images, 44
process-killing malware, 

429–431
PsTools utilities flagged as, 

172
rootkits, 152, 159, 169
Sysinternals-blocking 

malware, 427–429
telltale signs of, 169
troubleshooting, 427–436
User32.dll modifications, 

433–436
Win32/Visal.b worm, 431
writable removable drive 

propagation mechanisms, 
395

managed heaps, 216
managed (.NET) applications, 

Miniplus vs. full dumps of, 
235

Mandatory Integrity Control 
(MIC), 35

manifests
displaying, 261–262
dumping, 266
for elevation, 19

manual start services, 200
mapped files, 216

strings in, 72–73
validation of, 72

Margosis, Aaron, 7
blog, 18

Marioforever virus, 433
Mark’s blog, 12
Mark’s Webcasts, 13
McDonald, Iain, 410
memory

amount of, 187
committed memory, 215
management of, 224–225

mapping files into, 365
object reuse protection and, 

283
private bytes, 215
process dump files triggered 

by, 232
purging, 367
shared, viewing, 59
string data in, 220–221
types of, 216–217
working set, 215

memory address of objects, 76
memory allocations

analyzing, 211–227
information about, 217–218
of instrumented processes, 

221–224
protection in, 218
snapshots of, 218–220
types of, 361–362

memory blocks, 218
protection of, 218

memory dumps
online, 252–253
from ProcDump, 227–237

memory leaks, bytes usage and, 
58, 81

memory-mapped files, viewing, 
69

memory priority of pages, 59
memory-related metrics, 94
memory snapshots, saving and 

loading, 359
memory strings, 73, 85
memory usage

determining, 211
displaying attributes of, 57–59
monitoring, 355
of processes, 23 

methods, just-in-time compiled, 
60

MFT records, 286
MIC, 35 
Microsoft Desktop Optimization 

Pack (MDOP), 410
Microsoft Enterprise Desktop 

Virtualization (MED-V), 410
Microsoft public symbol server, 

27, 126

configuring systems for, 251
Microsoft public symbols, 30
Microsoft Security Essentials, 

386, 427
Microsoft support for 

Sysinternals utilities, 14
Microsoft TechEd US 

conference, 410
Microsoft TechNet Web site, 3
Microsoft Windows. 

See Windows operating 
system

MIME filters, 155
Miniplus process dumps, 227, 

233–235
debugging, 234
managed (.NET) applications 

and, 235
miscellaneous utilities, 6
mklink command, 329
.mmp file format, 225
modes of execution, 22–23
modified memory, 361
Modify Attribute dialog box, 

292–293
Module button, 90
modules, properties of, 113
mouse activity, simulating, 35
move operations

on installation programs, 333
scheduling, 334

MoveFile, 334
administrative rights for, 334

MOVEFILE_DELAY_UNTIL_
REBOOT flag, 333

MoveFileEx API, 333
Msconfig, 145–146
MSDN Library Web site, 305
MSVBVM60.DLL, 27
multi-core systems, process 

dump thresholds on, 231
multipartition volumes, 347–348
multiple computers, remote 

operations on, 173–174
multiprocessor systems, 

troubleshooting on, 405 

malware



449

N
named files

options for working with, 71
Procmon data, storing in, 

130–131
named objects, viewing type 

and name, 75
named pipes

effective permissions on, 268
enumerating, 374–375
listing, 184–185

named Sections, 257
namespace extensions, 155
namespace handlers, 155
namespace service providers, 

164
namespaces, global and local, 

32
NET FILE command, 184
.NET Framework, assembly 

digital signature checking, 
turning off, 414–415

.NET processes, 44
performance counters for, 

59–61, 87
net session command, 191
.NET tab, 59–61
NET.EXE, 197
network activity

capturing, 104
summary of, 139

network attributes, displaying, 
311

network authentication, 280
network and communication 

utilities, 6
network events, tracing, 128
network I/O metrics, 63
network loopback, blocking of, 

175
network resources, 

authenticated access to, 179
network shares, troubleshooting 

file access delays, 415–419
Network Summary dialog box, 

139
New Object – Advanced dialog 

box, 290–291
No-Execute memory pages, 

processor support of, 369

noncached reads, performance 
impact of, 417–418

nonexecutable files, digital 
signing of, 264–265

NOS Microsystems, 407
notification area

Diskmon icon in, 339
displaying graphs in, 66
Process Explorer icon, 95

NPFS.sys, 374
NT AUTHORITY\ANONYMOUS 

LOGON, 280
NT AUTHORITY domain, SIDs 

in, 185
NTFS, new data management, 

285
NTFS drives

graphical display of, 341–342
ID number, changing, 350

NTFS link utilities, 328–331
Ntoskrnl.exe, 23
null characters, deleting registry 

keys with, 378–379
NUMA topology information, 

367–368
numbers, converting from 

hexadecimal to decimal, 378

O
object address, 76
object handles

closing, 260
counts of, 259–260
information about, 256–260
viewing, 73–77

Object Manager namespace, 
271

navigating, 370–373
object reuse protection, 283
object types, 23–24
objects

effective permissions on, 267, 
271

information about, viewing, 
370–373

modifiable by users, 272–273
open, finding, 68–69
operations on, 105
permanent, 372

permissions on, 372
permissions on parent 

containers of, 275–276
pointers to, 24
security descriptors of, 77

offline analysis, 152
of system dumps, 251

offline systems, viewing 
ASEPs of, 152

on-access virus scans, 418–419
one-hop limitation of 

impersonation, 179
online kernel memory dumps, 

252–253
open files

closing, 185
on remote systems, 184–185

open handles, list of, 21
operating system attributes, 

displaying, 311
operating system components, 

kernel-mode operation, 22
operations, information about, 

105
Organize Filters dialog box, 

121–122
out-of-order loads, 162
Outlook

hangs, troubleshooting, 
420–426

high item count folders, 425
OutputDebugString API, 

237–238
own processes, 44, 51

P
packed images, 44
PAE, 369–370 
page faults, viewing, 58
page level memory, 363–364
page lists, 361

metrics on, 94
page table memory, 217
PageDefrag, 345–346

administrative rights for, 345
scripting, 346

pages
memory priority, 59
mode of access, 23

pages



450 

paging files, defragmenting, 
345–346

paging lists, purging, 367
paging metrics, 94
parent-child relationships, 

viewing, 189
parent processes, 21
partitioning, LDM, 348
partitions, location information, 

347
passwords, for domain and local 

user accounts, 196–197
PATH environment

changes to, 177
Path system environment 

variable, launching utilities 
from, 7–8

paths
cross-references to, 140
of dump files, 229–230
file and folder operations, 

listing by, 136
spaces in, 176
types of, 105

pause command, 202
PDB extension, 26
PendMoves, 333–334
per-user ASEPs, 145, 151

Internet Explorer ASEPs, 
157–158

logon ASEPs, 154
modification of, 151
Windows Explorer ASEPs, 156

performance, system, 
troubleshooting, 405–426

performance counters
counter names, 232
process dump files triggered 

by, 232
performance metrics, viewing, 

79–80
permissions

actual vs. effective, 268
editing, 276
Everyone Full Control, 277
on file shares, 277–278
misconfiguration of, 

identifying, 275–277
on objects, 295, 372
reporting, 267–275

on services, 87
troubleshooting errors with, 

390
volume permissions, 340

Permissions button, 84, 87
Physical Address Extensions 

(PAE), processor support of, 
369–370

physical disks
capturing images of, 335–337
event logging on, 338–339

physical memory
analyzing, 211–227
graphs of, 65, 93–94
metrics on, 94
purging, 367
releasing, 220
usage analysis, 359–367

physical memory addresses, 
valid ranges, 364–365

physical processors, mapping to 
logical processors, 367–369

PID 0 pseudo-process, 190
PIDs. See process IDs (PIDs) 
PipeList, 374–375
Play To feature errors, 389–390
Plug-and-Play drivers, load 

order, 374
PML file format, 124
port monitors, 164
Portmon, 353–358

administrative rights for, 353
display options, 354
event counter, 354
filtering capabilities, 355–356
highlighting, 356
logging data, 357
Log-To-File Settings dialog 

box, 357
printing data, 358
Print Range dialog box, 358
saving data, 357
search capabilities, 355
settings, storage of, 355

ports, input/output control 
commands, 353–357

post-logoff logging, 128–129
postmortem debuggers, 

ProcDump as, 236

post-reboot file operation 
utilities, 333–334

PowerShell remoting 
capabilities, 410

prefetch files, 403–404
print spooler, troubleshooting 

problems with, 164
printer shares, enumerating, 

277–278
prioritized standby lists, 363
private bytes, 215

graph of, 81
private I/O counts, 61–62
private memory, 216, 217
private symbol files, 27
private virtual address spaces, 

21
privileges

disabled, 84
removing, 183
reporting on, 272
user privileges, 16

ProcDump, 211, 227–237
administrative rights for, 229
call-stack analysis features, 

405–426
command-line syntax, 

228–229
commit charges dumps, 232
crash dumps, 236–237
default thread context, 237
dump criteria, specifying, 

230–232
dump file path, specifying, 

229–230, 236
dump files, 421, 424–425
dump files, series of, 231
dump options, 232–233
exceptions, dumps on, 231
hung windows, dumps on, 

231, 235
list modules command, 422
Miniplus (–mp) dumps, 

233–235
as postmortem debugger, 236
process_PID notation, 232
process reflection and, 233
processes to monitor, 

specifying, 229
running noninteractively, 235

paging files, defragmenting



451

ProcDump (continued)
64-bit dump files, 233
thread CPU usage data, 233
thread stack dumps, 422
triggers for dumps, 231–232
viewing dump files, 236–237

process activity
capturing, 104
saving snapshot of, 65
summary of, 134–135
viewing, 39–65, 102. See 

also Process Monitor 
(Procmon)

Process Activity Summary 
dialog box, 134–135

process and diagnostic utilities, 
4

Process Disk tab, 63–64
process dump files, 53, 227–237

comments in, 236
commit charges, triggering 

with, 232
criteria for, 230–232
DebugView analysis, 242
default thread context, 237
names of, 230
overwriting, 230
path, 229–230, 236
performance counters 

triggers, 232
64-bit dumps, 233
unhandled exceptions and, 

231
Process Explorer (Procexp), 4, 39

administrative rights for, 
42–43, 55, 58

call-stack analysis features, 
405–426

command-line options, 98
Configure Symbols dialog 

box, 29
CPU usage, 23, 41–42
default configuration settings, 

restoring, 98
display options, 95–96
DLL view, 40, 67–77
executable images, full path 

of, 432
graphs on toolbar, 65
Handle view, 34, 40, 67–77

image signatures, verifying, 
91–92

instances of, 95–96
keyboard shortcuts, 98–99
main window, 40, 43–67
notification area icon, 95
open handles, finding, 384
other user sessions, 97
overview of, 39–43
process activity, saving to text 

file, 65
process details, 77–88
process handle table, 74
process list, 40–41, 43–53
processes, creating in, 97
Session column, enabling, 182
shutdown options, 97
status bar, 43, 67
system information, 92–95
vs. Task Manager, 96–97
thread details, 89–91
toolbar, 43, 65–66
updating display, 46
visible window ownership, 

displaying, 66–67
x86, x64, and IA64 versions, 

40
process handle table, 74
process IDs (PIDs), 21

analyzing processes by, 226
listing processes by, 190
suspending processes by, 206
terminating processes by, 189

Process Image tab, 54–55
Process I/O tab, 61–62
process-killing malware, 

429–431
process list, 43–53

color highlighting, 44–45
column configuration, saving, 

64–65
columns, customizing display, 

53
columns, reordering, 47
columns, resizing, 47
columns, sorting, 47
content, copying, 47
default columns, 46
exited processes, 45
job objects, 51

jobs, 44
logon processes, 49–51
.NET processes, 44
new processes, 45
own processes, 44
packed images, 44
precedence order, 44
process actions, 51–54
Process column, 46, 47
running processes in, 43
services, 44
startup processes, 49–51
suspended processes, 44
system processes, 48
tooltips, 48
tree view, 47
updating display, 46
user processes, 51

Process Memory tab, 57–59
Process menu, 51–53
Process Monitor (Procmon), 4, 

101–144
administrative rights for, 102, 

126
advanced output, 120
analysis tools, 134–140
Autoscroll feature, 103
backing files, 130–131
boot logging, 127–128, 402–

403, 434
buffer overflow results, 

105–107
call-stack analysis features, 

405–426
call stack information, 27–28
child processes, searching for, 

387
clearing events, 103
column display, customizing, 

107–108
column set, default, 104–105
command-line options, 

132–134
configuration settings, 

importing and exporting, 
131

Count Values Occurrences 
dialog box, 140

Cross Reference Summary 
dialog box, 140

Process Monitor (Procmon)



452 

Process Monitor (Procmon) 
(continued)

debug output events in traces, 
141–142

display options, 103
event data, copying, 115
Event Properties dialog box, 

108–113
events, 104–116
events, finding, 115
features of, 102
File Summary dialog box, 

136–137, 415
Filter dialog box, 117–118
filtering options, 116–122, 

392, 397, 412
getting started with, 103
Help menu, 132
Highlighting dialog box, 120
highlighting feature, 116–122, 

392–393
history depth, 130
History Depth dialog box, 130
installation failures, 

troubleshooting with, 
392–396

Jump To feature, 35
log file size, controlling, 

129–131
logon operations, recording, 

402
Network Summary dialog box, 

139
Organize Filters dialog box, 

121–122
post-logoff logging, 128–129
Process Activity Summary 

dialog box, 134–135
process tree, 122–123
Process Tree dialog box, 

122–123
profiling events, displaying, 

114
RegJump, 35
registry key, configuration 

settings in, 131
Registry Summary dialog box, 

137–138
result codes, 105–107
Save Filter dialog box, 121

Save To File dialog box, 124
searching online, 116
shortcuts to, 131
shutting down, 128
Stack Summary dialog box, 

138–139
stack trace functionality, 402
status bar, 103
symbols, configuring, 113
System process activity, 

viewing, 408–409
/Terminate command, 35
toolbar icons, 104, 142–143
traces, comparing side by side, 

398–399
traces, saving and opening, 

123–126
utility errors, troubleshooting, 

390–391
/WaitForIdle command, 35

Process Monitor Backing Files 
dialog box, 130–131

process names
analyzing processes by, 226
listing processes by, 190
searching online for, 116

Process Network tab, 62–63
Process Performance tab, 56–57
process_PID notation, 232
process priority, setting, 180
Process Profiling events, 114
Process Properties dialog box, 

53, 77–88
Environment tab, 84–85
Image tab, 78–79
Job tab, 88
.NET tabs, 87–88
Performance Graph tab, 

80–81
Performance tab, 79–80
Security tab, 83–84
Services tab, 86–87
Strings tab, 85–86
TCP/IP tab, 82
Threads tab, 81, 89–91

process reflection, 233
process termination, closing 

handles during, 260
Process Timeline dialog box, 

135

process tokens, 84
Process Tree dialog box, 

122–123
process trees, terminating, 189
processes, 21–22

access rights, 74
application icons associated 

with, 122–123
attributes, displaying, 54–55
bytes used by, 58
cloning, 233
comments, adding, 79
contents of, viewing, 67–77
control, 35
CPU, memory, and thread 

information for, 190
CPU usage, 56–57
creating in Process Explorer, 

97
cross-references among, 140
definition of, 21
detailed information about, 

77–88, 111–112, 122–123, 
135, 211–260, 299

dump of, 53
dynamic attributes, 46
effective permissions on, 267, 

271
environment variables, 84–85
exit codes, 177
handle table, 24
handles, releasing, 24
handles owned by, 73–77, 

256–260
hierarchy of, viewing, 122–123
integrity level, 35, 55
killing, 52, 79
launching and tracing, 

213–214
limited rights, 183–184
logon processes, 49–51
memory allocations, 

analyzing, 211–227
memory dumps of, 227–237
memory-related information, 

190
.NET processes, 44, 59–61
open files of, 184
own processes, 44, 51
parent processes, 21

Process Monitor (Procmon)



453

processes (continued)
parent/child relationship, 47
performance metrics, viewing, 

79–80
physical memory pages, 362
priority of, 52, 57
private bytes, 215
private I/O counts, 61–62
processor affinity, setting, 51
Properties dialog box, 53
restarting, 52
running processes, listing, 

189–191
running remotely, 176
runtime information, 108
searching names online, 53
security context, 83–84
start time, 57
startup processes, 49–51
suspended processes, 44
suspending, 52, 205–206
terminating, 178
terminating with PsKill, 

188–189
threads, displaying, 57
timelines of, 123, 135
token details, 267–275
tracking information on, 39. 

See also Process Explorer 
(Procexp)

user-defined comments, 48, 
55

user mode and kernel mode, 
18, 22, 51

visible windows of, 55, 66–67
window stations, 32
Windows services in, 44

processor access modes, 22–23
processor affinity, setting, 51
processors

details about, 90
feature support, 369–370
modes of execution, 22–23
state of, 22
topology, enumerating, 368

ProcFeatures, 369–370
Procmon Configuration (*.PMC) 

files, 131
profile logging, 400
profiling events

capturing, 104
displaying in Procmon, 114

program associations, registry 
key for, 397

program start failures, 
troubleshooting, 104

programs
conditional copying to remote 

systems, 181
definition of, 21
running as different user, 

278–280
Project file opens, 

troubleshooting, 415–419
Protected Administrator 

accounts, 175
Protected Mode Internet 

Explorer, 184
protected processes, 

information on, 43
protection, for memory blocks, 

218
proxying, 164
ps utility (UNIX), 172
PsExec, 171, 176–184. See 

also PsTools suite
administrative rights for, 182
alternate credentials, 179
command-line options, 180–

184, 206
exit codes, 177
file copying, 181
runtime environment options, 

181–184
-s option, 128
standard output, 177
system timeouts, 181
target process performance 

options, 180–181
PsExec -s cmd.exe, 33
PsFile, 171, 184–185. See 

also PsTools suite
command-line syntax, 206

PsGetSid, 171, 185–186. See 
also PsTools suite

command-line syntax, 206
PsInfo, 171, 187–188. See 

also PsTools suite
command-line syntax, 207
exit code, 188

PsKill, 171, 188–189. See 
also PsTools suite

administrative rights for, 189
command-line syntax, 207

PsList, 39, 171, 189–191. See 
also PsTools suite

administrative rights for, 189
command-line syntax, 207
task manager mode, 190–191
updated memory statistics, 

191
PsLoggedOn, 171, 191–192. See 

also PsTools suite
administrative rights for, 191
alternate credentials, 171
command-line syntax, 207

PsLogList, 171, 192–196. See 
also PsTools suite

administrative rights for, 193
command-line options, 193–

196, 207
continuous mode, 194

PsPasswd, 171, 196–197. See 
also PsTools suite

alternate credentials for, 171, 
196

command-line syntax, 207
PsService, 171, 197–202. See 

also PsTools suite
administrative rights for, 

197–198
command-line syntax, 

207–208
commands and options, 197
config command, 199–200
cont command, 202
depend command, 200–201
find command, 202
pause command, 202
query command, 198–199
restart command, 202
security command, 201
setconfig command, 202
start command, 202
stop command, 202

PsShutdown, 171, 203–205. See 
also PsTools suite

administrative rights for, 203
command-line options, 203–

204, 208

PsShutdown



454 

PsShutdown (continued)
notification and cancellation 

dialog box, 204
PsSuspend, 171, 205–206. See 

also PsTools suite
command-line syntax, 208

PsTools suite, 4, 171–172
administrative rights for, 175
command-line syntax, 

206–208
common features of utilities, 

172–176
downloading, 7
malware, flagged as, 172
remote connections, 

troubleshooting, 174–177
remote operations, 172–174
remote operations, alternate 

credentials for, 174
system requirements, 208–209
utilities in, 171

P2V Migration for Software 
Assurance, 337

public symbol files, 27

Q
query command, 198–199

filtering results, 199
quota charges, 372

R
RAMMap, 359–367

administrative rights for, 359
File Details tab, 366
File Summary tab, 365–366
memory allocation types, 

361–362
page lists, 361
Physical Pages tab, 363–364
Physical Ranges tab, 364–365
Priority Summary tab, 363
Processes tab, 362
purging physical memory, 367
snapshots, saving, 367
Use Counts tab, 360–362

random access memory (RAM)
allocation type, 360–362
files with data in, 

enumerating, 365–366

pages lists, 360–362
prioritized standby lists, 363
usage analysis, 359–367

read permissions
enumerating, 275–276
reporting, 267–275

Read Permissions permission, 
273

ReadyBoost driver, 
troubleshooting excessive 
CPU usage, 408–410

reboots, delete and renaming 
operations, 333–334

redirected console output, 
178–179

redirections, 161
reference counts, 372
RegDelNull, 378–379
RegEdit

navigating, 377
opening, 276

registered owners, 187
registry

autostart locations, 145
Image File Execution Options 

(IFEO) subkeys, 161
Internet Explorer systemwide 

ASEPs in, 157–158
logon systemwide ASEPs in, 

154–155
user profiles loaded in, 192
Windows Explorer systemwide 

ASEPs in, 156–157
registry activity

capturing, 104
summary of, 137–138
viewing, 102. See also Process 

Monitor (Procmon)
registry hives, defragmenting, 

345–346
registry keys

effective permissions on, 267, 
270

nonexistent, redirecting to, 
395

null characters in, deleting, 
378–379

registry locations, jumping to, 
115–116

registry paths, navigating to, 
377

registry profiles, temporary, 
400–404

Registry Summary dialog box, 
137–138

RegJump, 35, 377
Regmon, 102

filtering capabilities, 116
Related Session Events window, 

303
Related Transaction Events 

window, 303
relative IDs (RIDs), 185
remote computers, debug 

output from, 246–249
remote connections, 

troubleshooting, 174–177
remote monitoring, DebugView 

capabilities, 247–249
remote operations. See 

also target processes
alternate credentials for, 174
command-line syntax, 

206–208
on multiple computers, 

173–174
PsExec for, 176–184
PsTools, 171
PsTools connectivity, 

troubleshooting, 174–177
PsTools utilities capabilities, 

172–174
remote processes, 

impersonation by, 179
Remote Registry service, 191
remote services, creating, 173
remote systems

command prompt on, 176, 
178

conditional copying of 
programs, 181

files open on, 184–185
listing process information 

on, 189
logons, viewing information 

about, 191
passwords for local accounts 

on, 196

PsShutdown



455

remote systems (continued)
processes, suspending, 

205–206
specifying, 173
Windows event logs, 

displaying, 192–196
RemoteComputers syntax, 206
RemoteComputer syntax, 206
removable drives, dismounting, 

339
rename operations

listing, 333–334
scheduling, 334

Replace Task Manager option, 
96–97

reporting bugs, 11–12, 14
resource share logons, 191
resources

access to, 15–20
creating or opening, 24
of logon sessions, 281
querying or manipulating, 24
type representations, 23
wasted, 42

restart command, 202
Restore Task Manager option, 

96
ResumeThread API, 206
return addresses in call stacks, 

25
Richards, Andrew, 420
RIDs, 185
.RMP extension, 367
Robbins, John, 142
root nodes Properties dialog 

box, 290
RootDSE node, 290
rootkit detection utility, 427
RootkitRevealer, 427
rootkits, 152, 169

drivers in, 159
Run keys, 153
Run As A Different User 

command, 278
Run As Administrator button, 

148
Run As Administrator command, 

19, 278
Run As command, 278
Run As dialog box, 149

starting programs with 
administrative rights, 16–17

Run As Different User 
command, 279

Run As Limited User option, 97
Runas.exe, 278

netonly feature, 279
starting programs with 

administrative rights, 16–17
runaway threads, 

troubleshooting, 405–407
running processes

listing, 189–191
runtime characteristics of, 

189–191
snapshots of, 218–219
viewing, 213

RunOnce keys, 153
runtime characteristics, of 

running processes, 189–191
runtime code access security 

checks, metrics on, 61
runtime environment of PsExec, 

181–184
Russinovich, Mark, 3, 39

blog, 12
Webcasts, 13

S
Safe Mode, boot logging and, 

128
Safe Mode with Command 

Prompt, 430
Safe Removal applet, 339
Save Column Set dialog box, 64
Save Filter dialog box, 121
Save This Connection option, 

288
Save To File dialog box, 124
SC.EXE, 197
scareware, 427
scheduled tasks, 146

autostart entries, 158
disabling, 158

schema objects, 307
Schwartz, Jon, 278
SCR extension, 26
screen magnification utility, 

320–324

Screen-saver desktop, 33
screen savers, autostart entry 

for, 163
screen shots, magnifying and 

annotating, 320–324
SDelete, 283–286

command-line syntax, 
284–285

file name overwriting, 286
functionality of, 285–286

Search Container dialog box, 
293

Search dialog box, 69
searching

for DLLs, 68–69
for files, 71
for open objects, 68–69

searching online, for module 
information, 113

Secondary Logon (Seclogon) 
service, 16–17, 280

sections, effective permissions 
on, 267, 271

secure delete applications, 284
secure desktop, 33

running processes in, 182–183
security

Address Space Layout 
Randomization, 55

administrative rights, 15–20
Data Execution Prevention, 55
of drivers and services, 201 
permissions on services, 87
window messaging 

architecture and, 35
security command, 201
security context

impersonated, 179
of processes, 83–84
of threads, 22

security descriptors, 77
of threads, 90

security identifiers (SIDs), 185, 
390

names associated with, 185
translating to names, 185–186

security management utilities, 
261–286

security policy, disabling UAC 
elevation, 19

security policy, disabling UAC elevation



456 

Security Reference Monitor, 23
security utilities, 5
SecurityProviders ASEP, 165
Select Columns dialog box, 

53–54, 297–298
DLL tab, 69–70
Handle tab, 75–77
.NET tab, 59–61
Process Disk tab, 63–64
Process Image tab, 54–55
Process I/O tab, 61–62
Process Memory tab, 57–59
Process Network tab, 62–63
Process Performance tab, 

56–57
Status Bar tab, 67

Select or Launch Process dialog 
box, 212–214

semaphores, effective 
permissions on, 267

Server service, files opened by, 
184–185

Service Control Manager, 158
authentication through, 280

service processes, endpoints, 82
service provider interface (SPI), 

164
services

access to, granting or denying, 
390

Allow Service To Interact With 
Desktop option, 33

capturing output of, 240
configuration information, 

199–200
dependencies, 200–201
error control for, 200
hosted by processes, viewing, 

86–87
interactive services, 199
out of date, deleting, 385
permissions on, 87
searching for, 202
security identifiers, 390
security information about, 

201
start name, 200
start order, 373–374
start types for, 202
state of, 198

status information, 198–199
threads associated with, 89
tracking information on, 39. 

See also Process Explorer 
(Procexp)

wait time, 198
Session Manager process (Smss.

exe), 160
DLL mapping, 162
installation programs, 

registering, 333
session 0, 240
session 0 isolation, 32, 241
sessions

one at a time, 31
relationship with window 

stations, and desktops, 30
session ID, 32
terminal services sessions, 

31–32
\Sessions\0\DosDevices\LUID 

directory, 373
\Sessions\n directory, 373
\Sessions\n\BaseNamedObjects 

directory, 373
setconfig command, 202
severity levels, error, 241
shareable memory, 216
shareable working set, 217
shared memory

private address spaces as, 22
viewing, 59

ShareEnum, 277–278
sharing violations, 401–404
shatter attacks, 35
shell extensions, 155
ShellRunAs, 278–280

command-line syntax, 
279–280

Run As Different User 
command, 279

shims, 410
Show Details For All Processes 

command, 43
Show Profiling Events button, 

141
Show Unnamed Handles And 

Mappings option, 71, 76
shutdown

cancellation of, 205

PsShutdown, 203–205
Shutdown.exe, 203
shutdown reason options, 203
shutdown scripts, 153
shutdown sequence, logging, 

127–129
SID-to-name lookups, 84
Sidebar Gadgets, 165
SIDs, 185–186, 390
SieExtPub.dll, 422
SigCheck, 150, 261–267

additional file information, 
265–266

command-line parameters, 
262–263

embedded manifests, 
displaying, 266

executable files, scanning for, 
265

file version number, 
displaying, 266

hashes, displaying, 265–266
output format, 267
signature verification, 

263–264
unsigned files, searching for, 

264
signature catalogs, 264
signature verification, 79, 91–92, 

261–267
of autostart files, 149–150
delays with, troubleshooting, 

413–415
failures of, 169
turning off, 414–415

signing certificates, verifying, 
264

simulated crashes, 379–380
single executable images, 11
site blog, 12
64-bit systems

codecs ASEPs, 160
Internet Explorer ASEPs, 158
logon ASEPs, 155
Windows Explorer ASEPs, 157

smartcard authentication, 17–18
Snapshot dialog box, 294
snapshots, 294–296

comparing, 219–220, 294–295
creating, 296

Security Reference Monitor



457

snapshots (continued)
of disks, 335
of kernel memory, 249
loading, 226
of memory allocations, 

218–220
opening, 288
saving, 225–226
string data and, 220
timelines of, 219

soft links, NTFS support for, 328
software applications

auto-starting, 145. See 
also autostarts

information about, 188
software installation failures, 

troubleshooting, 391–396
software updates, errors with, 

385–386
solid state drives, 

defragmentation and, 344
Solomon, David, 43, 101
sparse files, deleting securely, 

285–286
SPI, 164 
Spooler service, 164
spyware, 157
SQL Server databases, BgInfo 

data, writing to, 316
srvsvc named pipe, 184
stack, 22. See also call stacks

viewing, 82
Stack button, 90
stack memory, 217
Stack Summary dialog box, 

138–139
stack traces. See also call stacks

examining, 416
saving, 113
summary of, 138–139
symbols, viewing, 126
third-party drivers in, 418

standby memory, 361
Star Wars IV: A New Hope, 150
start command, 202
Start menu, launching utilities 

from, 7–8
start types for services, setting, 

202
Startup folders, ASEPs of, 153

startup processes, 49–51
startup scripts, 153
Status Bar tab, 67
StockViewer, 410–411
stop command, 202
storage, thread-local, 22
Streams, 326–328

unblocking .zip files with, 9
strings

definition of, 73
image and memory strings, 85
in mapped files, 72–73
saving to text file, 86

Strings, 325–326
command-line syntax, 325
malware behaviors, detecting, 

432–433
Strings dialog box, 220–221
subfunctions, 24
SUBST associations, 188
suspend count, 206
suspended processes, 52

in process list, 44
SuspendThread API, 206
suspension of processes, 

205–206
Svchost.exe, 158, 159
symbol files, 26–28, 126

building of, 27
default locations, 29
details in, 27
downloading, 27

symbol servers, 27
symbolic links

creating, 329
link targets, navigating to, 371
NTFS support for, 328

symbols, 26–28
configuring, 28–30
instrumented processes and, 

222
for kernel memory dump, 

252–253
for LiveKdD.SYS, 251

symbols path, 29
Microsoft public symbols, 30

Sync, 339–340
sync utility, 339
.sys file extension, 159
Sysinternals Live, 10

displaying directory, 10
UNC path, 10

Sysinternals Site Discussion 
blog, 12

Sysinternals source code, 14
Sysinternals utilities, 7. See 

also Autoruns; Process 
Explorer (Procexp); Process 
Monitor (Procmon); PsTools 
suite

AccessChk, 267–275
AccessEnum, 275–277
AdExplorer, 287–296
AdInsight, 296–306
administrative rights for, 16
AdRestore, 306–307
Autologon, 280
benefits of, 3
BgInfo, 309–318
Bluescreen Screen Saver, 

379–380
ClockRes, 375
community support forum, 3
Contig, 344–345
CoreInfo, 367–369
Ctrl2Cap, 380
DebugView, 237–249
Desktops, 318–320
Disk2Vhd, 335–337
DiskExt, 347
Diskmon, 337–339
Disk Usage (DU), 331–333
DiskView, 341–344
distribution of, 14
downloading, 7–8
driver files, 11
embedded resources, 11
error message 

troubleshooting, 383–404
EULA acceptance, 178
FindLinks, 330–331
Handle, 256–260
Hex2Dec, 378
Junction, 329–330
launching, 7
LDMDump, 347–349
license information, 13–14
ListDLLs, 253–255
LiveKd, 249–253
LoadOrder, 373–374

Sysinternals utilities



458 

Sysinternals utilities (continued)
LogonSessions, 280–283
malware blocking access to, 

427–429
Microsoft support, 3, 14
MoveFile, 334
new features, utilities, and 

bug fixes, 3
number of copies, 14
overview, 3–6
PageDefrag, 345–346
PendMoves, 333–334
PipeList, 374–375
Portmon, 353–358
ProcDump, 227–237
process state, viewing with, 

211–260
ProcFeatures, 369–370
RAMMap, 359–367
RegDelNull, 378–379
RegJump, 377
running from Web, 10
SDelete, 283–286
ShareEnum, 277–278
ShellRunAs, 278–280
SigCheck, 261–267
single executable images, 11
Streams, 326–328
Strings, 325–326
symbolic information, 28–30
Sync, 339–340
TCPView, 351–353
32-bit and 64-bit system 

support, 11
VMMap, 211–227
VolumeID, 350
Web site, 6–13
Whois, 353
WinObj, 370–373
ZoomIt, 320–324

Sysinternals Web site, 6–13
SysinternalsBluescreen.scr, 379
System account, executing 

programs in, 176, 182
system activity

boot activity, logging, 
127–128

log of, 123–126
system clock, current resolution, 

375

System Configuration Utility 
(msconfig.exe), 145–146

System.Diagnostics.Debug class, 
237

System.Diagnostics.Trace class, 
237

System event log
displaying records of, 192
PsShutdiown errors, 205

system files, defragmenting, 
345–346

system hangs and crashes, 
troubleshooting, 127

System Idle Process, 48
system information, 187–188

desktop wallpaper, displaying 
as, 309–318

memory usage, monitoring, 
355

viewing, 92–95
System Information dialog box, 

92–94
system information utilities, 6, 

359–376
system performance

KnownDLLs and, 162
noncached reads impact on, 

417–418
on-access virus scans and, 

418–419
troubleshooting, 405–426

system performance metrics, 
92–95

System process
high CPU usage, 

troubleshooting, 408–410
logging activity of, 128

system processes, 43, 48
system requirements for PsTools 

utilities, 208–209
system resources, access to, 

15–20
system shutdown, logging 

activity of, 127–129
System start drivers, load order, 

373
system-start services, 200
system startup, kernel-mode 

debug output at, 241
system uptime, 187

system volumes, capturing 
images of, 336

systemwide commit charge, 65

T
tab-delimited text, saving 

Autoruns scans as, 166
target processes

directory for, 183
interactive running, 182
limited rights execution, 183
priority of, setting, 180
process tree of, 189
runtime environment, 

181–184
scheduling on multiprocessor 

systems, 181
secure Winlogon desktop 

environment, 182–183
terminating, 188–189
tracing, 214

Task Manager
CPU usage calculation, 41
vs. Process Explorer, 96–97
processes, viewing in, 39
replacing and restoring, 

96–97
Show Processes From All Users 

option, 431–432
Users tab, 97

Task Scheduler, 146, 158
Taskkill.exe, 189
TCP endpoints, viewing, 82, 

351–353
TCP operations, metrics on, 

62–63
TCP port 2020 connections, 248
TCPView, 351–353

connected endpoints, viewing, 
352

Resolve Addresses option, 352
update options, 351–352
Whois lookups, 352

tdx driver (NetIO Legacy TDI 
Support Driver), 200

TechEd presentations, 13
terminal server sessions

capturing output of, 240–241
interactive desktops as, 238

Sysinternals utilities



459

terminal services, supported 
features, 31

terminal services (TS) sessions, 
31–32, 281

displaying information on, 55
window stations, 32–33

termination, with PsKill, 
188–189

text, searching for in strings 
list, 86

text files of AdInsight captured 
events, 305

third-party drivers, 159
troubleshooting problems 

with, 418
32-bit processes, address space 

fragmentation, 224–225
thread identifiers (TIDs), 22, 89
thread-local storage (TLS), 22
Thread Profiling events, 114
Thread Profiling Options dialog 

box, 114
thread stacks, 82, 112–113

root cause, identifying with, 
405–407

thread tokens, 84
threads, 21–22

activity of, viewing, 102. 
See also Process Monitor 
(Procmon)

call stack, 90
call stack, viewing, 82, 

112–113
components of, 22
contention metrics, 61
context switches, tracking of, 

42
CPU-bound, troubleshooting, 

405–407
CPU cycles, 42
CPU time, 89
CPU usage data, 233
default thread context, 237
desktops, 34
detailed information about, 

81, 89–91
effective permissions on, 271
information about, listing, 190
killing, 91
number of, displaying, 57

processor time consumption, 
231

running, 43
security descriptor, 90
services associated with, 89
start address, 89
suspend count, 206
suspending, 91
user-mode and kernel-mode 

operation, 23
virtual address space, 22

threads of execution, 21
TIDs, 22, 89 
Timeline dialog box, 219
Timelines Cover Displayed 

Events Only option, 123
timer resolution, changes in, 

375
timestamps, displaying, 311
TMP extension, 26
token details, reporting, 

267–275
token filtering, 18, 183
tombstone lifetimes, 307
tombstoned objects, restoring, 

306–307. See also AdRestore
tooltips

for Process Explorer graphs, 
65–66

in process list, 48
Trace dialog box, 222–223
traces

analyzing, 134–140
debug output events in, 

141–142
log file size and, 129–131
opening, 125–126
saving, 123–125
stack traces, 113

transition memory, 361
transport service providers, 164
tree view, listing processes in, 

190
troubleshooting

ACCESS DENIED errors, 
390–391

application hangs, 405–426
application startup delays, 

410–415
blue-screen crashes, 241–242

error messages, 383–404
file access delays, 415–419
folder association errors, 

397–399
infinite loops, 405–407
kernel-level, 249
locked folders, 383–385
Lotus Notes backup errors, 

387–389
malware, 427–436
Outlook hangs, 420–426
Play To feature errors, 

389–390
print spooler problems, 164
with process dump files, 227
Procmon traces, 123
program start failures, 104
Project file open delays and 

errors, 415–419
PsTools remote connectivity, 

174–177
ReadyBoost driver CPU 

consumption, 408–410
runaway threads, 405–407
slow system performance, 

405–426
software installation failures, 

391–396
software update errors, 

385–386
system hangs and crashes, 

127
User Environment errors, 

400–404
utility errors, 390–391

trusted certificates, verifying, 
261

TS sessions, 31–33, 55, 281
Tskill.exe, 189
.txt file format, saving snapshots 

as, 226

U
UAC. See User Account Control 

(UAC) 
UDP/UDPV6 endpoints, viewing, 

82, 351–353
unallocated space, overwriting, 

284

unallocated space, overwriting



460 

unhandled exceptions, process 
dump files and, 231

Universal Naming Convention 
(UNC) syntax, 10

unnamed objects, 76
unusual conditions, identifying, 

123
Usage Guide, 15
User Account Control (UAC), 16

Admin-Approval Mode, 276
administrative rights and, 

18–20
disabling, 20
elevation, triggering, 19
elevation, types of, 19
logon sessions created with, 

283
remote operations and, 175

User Account Control (UAC) 
elevation

for Process Explorer, 43
for remote operations, 175
triggering, 278

user account profiles, not 
loading, 183

user accounts
alternate, credentials for, 174
passwords for, 196
SID of, 185

user-defined comments for 
processes, 48

User Defined Fields dialog box, 
312

User Environment errors, 
troubleshooting, 400–404

User Interface Privilege Isolation 
(UIPI), 35–36

user mode, 22–23
user-mode debug output, 237

capturing, 240–241
user-mode processes, code 

access, 359
user-mode services, types of, 

198
user-mode stack, 22
user-mode stack frames, 112
user names, searching logons 

by, 191–192
USER objects, displaying 

attributes of, 57–59

user privileges, 16
elevation of, 19. See also User 

Account Control (UAC) 
elevation

user processes, 51, 153
creation of, 18

user profile load errors, 
troubleshooting, 400–404

user profiles, loaded in registry, 
192

User rights, 15–16
Userenv.log, 401
User32.dll

AppInit DLLs loaded in, 162
malicious modification of, 

435–436
users

account rights of, 267–275
administrative control, 

effective, 16
ASEPs of, viewing, 151
autologon for, 280
locally logged on, 191, 192
Write permissions, 340

V
validation, performing, 72
Veghte, Bill, 410
verification

of digital signatures, 149, 
261–267

failures of, 169
performing, 79, 91–92
turning off, 414–415

Verify button, 91
version information, displaying, 

261
version resource, 91
View A Running Process tab, 

212, 213
virtual address space

shared, 23
of threads, 22

virtual desktops, applications 
on, 318–320

virtual hard disks (VHDs), 
capturing physical disks as, 
335–337

virtual machines (VMs), 
attaching to VHDs, 336

virtual memory
analyzing, 211–227
displaying attributes of, 57–59
Procmon data in, 130–131

Virtual PC, virtual disk size limit, 
337

virtualization, 55
VirtualProtect API, 218
visible windows

bringing to front, 79
ownership, determining, 

66–67
Visual Basic 6

MSVBVM60.DLL, 27
.NET applications, 214

VMMap, 211–227
administrative rights for, 213
Call Tree button, 223
command-line options, 226
default font, 216
default settings, restoring, 227
Details View, 215–218
exporting data from, 212
Find feature, 221
Heap Allocations button, 224
instrumented processes, 

viewing, 221–223
launching applications from, 

213–214
main window, 212, 214–216
memory information, 217–218
memory types, 216–217
native file format, 225
output files, 226
process to analyze, picking, 

212
snapshots, 218–220
snapshots, saving and loading, 

225–226
starting, 212
Strings dialog box, 220–221
Summary View, 215, 217–218
text, finding and copying, 221
32-bit and 64-bit versions, 

213, 214, 226
Timeline dialog box, 219
Trace dialog box, 222–223

unhandled exceptions, process dump files and 



461

VMMap (continued)
View A Running Process tab, 

213
VMs, attaching to VHDs, 336 
volume clusters, graphical view 

of, 342
volume management utilities, 

335–350
volume permissions, 340
Volume Properties dialog box, 

343
Volume Snapshot, 335
VolumeID, 350

changing, 350
Write permissions for, 350

volumes
effective permissions on, 269
flushing to disk, 339–340
graphical display of, 341–344

W
wait time of services, 198
wallpaper, system information 

displayed as, 309–318
Web, running utilities from, 10
WebClient service, starting, 10
Whois, 353
Whois lookups, 352
WinDbg.exe, 421

dump files, viewing in, 
236–237

locations of, 251
WinDiff, 399
window manager, 35
window messages, 34–36
window messaging architecture, 

35
window stations, 32–33

desktops, 33–34
identifying, 34
relationship with sessions and 

desktops, 30–31
window submenu, 51
windows

desktops, connection 
between, 318

ownership, determining, 
66–67

Windows Attachment Execution 
Service, alternate data 
stream, 8–9

Windows desktop objects, 
318–319

Windows event logs, displaying 
records, 192–196

Windows Explorer, autostart 
entries, 155–157

Windows Firewall, DebugView 
exception in, 248

Windows Hardware Abstraction 
Layer (HAL), compatibility 
issues, 336

Windows Internals: Including 
Windows Server 2008 and 
Windows Vista, Fifth Edition 
(Russinovich and Solomon), 
15, 43, 360, 370, 374

Windows Management 
Instrumentation (WMI) job 
object, 21

Windows native-mode 
executables, autostarting, 
160

Windows Object Manager, 370
Windows operating system

administrative rights, 15–20
Autostart Extensibility Points, 

145
call stacks, 24–30
core concepts, 15–36
desktops, 33–34
fake system components, 

431–433
jobs, 21
kernel-mode core, 23
Last Known Good option, 128
load order of drivers and 

services, 373–374
object types, 23–24
offline instances, ASEPs of, 152
processes, 21–22
processor access modes, 

22–23
Safe Mode with Command 

Prompt, starting in, 430
signature catalog database, 

264
64-bit versions, 155

terminal services sessions, 
31–32

threads, 21–22
utilities for, 3. See 

also Sysinternals utilities
window messages, 34–36
window stations, 32–33

Windows Powercfg.exe tool, 375
Windows PowerShell, redirected 

console output and, 178
Windows Preinstallation 

Environment (WinPE), 385
Windows process, components 

of, 21
Windows Server 2003

administrative rights, running 
programs with, 16–18

GINA DLL interface, 163
Run As command, 278
Run As dialog box, 149
VHDs, creating on, 336

Windows Server 2008, process 
reflection feature, 233

Windows services. See 
also services

autostarting, 158–159
dependencies of, 159
description of, 158
disabling or deleting, 158–159
effective permissions on, 270
listing, 197–202
monitoring, 296
multiple services, hosting, 158
Parameters key, 159
path to, 158–159
in processes, 86–87
processes containing, 44
startup of, 158–159

Windows 7
administrative rights, running 

programs with, 18–20
AppLocker feature, 410
compatibility issues, 

troubleshooting, 410–415
Desktop Gadgets, 165
IT Pro–oriented 

enhancements, 410
Logical Prefetcher, 404
process reflection feature, 233
ReadyBoost, 408

Windows 7



462 

Windows 7 (continued)
Run As A Different User 

command, 278
Windows Sockets (Winsock), 

164
Windows Sysinternals Forums, 

11–12
Windows Sysinternals Web site, 

6–7
Utilities Index, 7

Windows Task Scheduler, 158
Windows Vista

administrative rights, running 
programs with, 18–20

compatibility issues, 
troubleshooting, 410–415

Credential Provider interface, 
163

interactive logon type, 183
junctions, 328
Logical Prefetcher, 404
PsList, running remotely, 189
ReadyBoost, 408
Run As Administrator button, 

148
Run As Administrator 

command, 278
session 0 isolation, 241
shims for, 410
Sidebar Gadgets, 165
startup processes, 49–51
Task Scheduler, 158
token filtering, 183
User Account Control (UAC), 

16

Windows Vista Integrity 
Mechanism Technical 
Reference, 36

Windows XP
administrative rights, running 

programs with, 16–18
autologon feature, 280
GINA DLL interface, 163
Logical Prefetcher, 403–404
Run As command, 278
Run As dialog box, 149
startup processes, 49–51
Taskkill.exe and Tskill.exe, 189
VHDs, creating on, 336

Winlogon, 163, 165
malicious DLLs in, 434
notification packages, 163

Winlogon desktop, 33
running processes in, 182–183

WinObj, 23, 370–373
administrative rights for, 370
object properties, 372
running with elevated rights, 

370
Win32 services. See also services

listing, 197, 199
Win32/Visal.b worm, 431
WinVerifyTrust function, 414
.wit file format, 305
WMPNetworkSvc service, 390
working set

analyzing, 211–227, 215
code and data mapping to, 

359
emptying, 220
locked, 218

purging, 367
shareable, 218
size of, 59
total amount, 217

WOW64, 172
write operations, capturing, 

133–134
write permissions, 340

for Contig, 344
enumerating, 275–276
reporting, 267–275
searching for, 272–273
for VolumeID, 350

X
XML, saving traces as, 125

Z
zeroed memory, 361
.zip files

downloading, 7–8
unblocking, 8–9

Zone.Identifier stream, 327
ZoomIt, 320–324

Break Timer, 323
clearing screen, 322
configuration dialog box, 

320–321
drawing mode, 321–323
LiveZoom, 324
normal zoom mode, 321
pen color, 322
typing mode, 323
zooming modes, 320

Windows 7



  

About the Authors
Mark Russinovich is a Technical Fellow in the Windows Azure 
group at Microsoft, working on Microsoft’s datacenter operating 
system. He is a widely recognized expert in Windows operating 
system  internals as well as operating system security and design. 
He is the author of the recently published cyberthriller Zero Day 
and  co-author of the Microsoft Press Windows Internals books. 
Russinovich joined Microsoft in 2006 when Microsoft acquired 
Winternals Software, the company he cofounded in 1996, as 
well as Sysinternals, where he  authors and publishes dozens of 
popular Windows administration and diagnostic utilities. He is a 
featured speaker at major industry  conferences, including 
Microsoft’s TechEd, WinHEC, and Professional Developers 
Conference.

You can contact Mark at markruss@microsoft.com and follow him on Twitter at 
http://www.twitter.com/markrussinovich. 

Aaron Margosis is a Principal Consultant with Microsoft Public 
Sector Services where he has worked primarily with U.S. federal 
government customers since 1999. He specializes in application 
development on Microsoft platforms with an emphasis on secu-
rity and application compatibility in locked-down environments, 
and is a highly-regarded speaker at Microsoft conferences. He 
is well known for having evangelized running Windows XP as 
a non- admin and for publishing utilities and guidance to make 
 doing so more feasible. His MakeMeAdmin script pioneered the 
concept of a single user account running in both administrative 
and non-admin contexts, influencing the design of User Account 
Control. Aaron’s several security utilities can be downloaded 
through his blog (http://blogs.msdn.com/aaron_margosis) and 
his team’s blog (http://blogs.technet.com/fdcc).

You can contact Aaron at aaronmar@microsoft.com.




	Cover
	Copyright
	Contents at a Glance
	Table of Contents
	Foreword
	Introduction
	Tools the Book Covers
	The History of Sysinternals
	Who Should Read This Book
	Assumptions

	Organization of This Book
	Conventions and Features in This Book
	System Requirements
	Acknowledgments
	Errata & Book Support
	We Want to Hear from You
	Stay in Touch

	Chapter 7 - Process and Diagnostic Utilities
	VMMap
	Starting VMMap and Choosing a Process
	The VMMap window
	Memory Types
	Memory Information
	Timeline and Snapshots
	Viewing Text Within Memory Regions
	Finding and Copying Text
	Viewing Allocations from Instrumented Processes
	Address Space Fragmentation
	Saving and Loading Snapshot Results
	VMMap Command-Line Options
	Restoring VMMap defaults

	ProcDump
	Command-Line Syntax
	Specifying Which Process to Monitor
	Specifying the Dump File Path
	Specifying Criteria for a Dump
	Dump File Options
	Miniplus Dumps
	Running ProcDump Noninteractively
	Capturing All Application Crashes with ProcDump
	Viewing the Dump in the Debugger

	DebugView
	What Is Debug Output?
	The DebugView Display
	Capturing User-Mode Debug Output
	Capturing Kernel-Mode Debug Output
	Searching, Filtering, and Highlighting Output
	Saving, Logging, and Printing
	Remote Monitoring

	LiveKd
	LiveKd Requirements
	Running LiveKd
	LiveKd Examples

	ListDLLs
	Handle
	Handle List and Search
	Handle Counts
	Closing Handles


	Chapter 8 - Security Utilities
	SigCheck
	Signature Verification
	Which Files to Scan
	Additional File Information
	Output Format

	AccessChk
	What Are “Effective Permissions”?
	Using AccessChk
	Object Type
	Searching for Access Rights
	Output Options

	AccessEnum
	ShareEnum
	ShellRunAs
	Autologon
	LogonSessions
	SDelete
	Using SDelete 
	How SDelete Works


	Index



