Microsoft

Learn Program A a I

tell application *finder® ET Errorstring o
*alente ey acaln --,u.l. :‘ folders.
TEfEaUnt Ttems in x) # 2 then

display dialog errorstring button

and if
¥ LE &m 3f

harscter of {y a5 tExt) i8.° thém --
sel ¥ to item 2ol y
if last chaAfAcL

it's & fajider

> the controly a

1 ghuunm ok~ default b
J&T Eﬂﬂﬂ Cal

Blal
Iialog Effarstiing buttans “ok* default button

q:ﬂ ayncidlders{folderl, folder)
ynoamifolderl, folder2)
syncemifolder?, Tolderl) i

end synclalders

”“”" LS Ll | -
r“lmmwl Il

” “l

J -ill
0

Microsoft

Microsoft: XNA"
Game Studio 4.0: Learn
Programming Now!

Rob Miles

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2011 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2001012345
ISBN: 978-0-7356-5157-9

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press
International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to
mspinput@microsoft.com.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions Editor: Devon Musgrave

Developmental Editor: Devon Musgrave

Project Editor: Valerie Woolley

Editorial and Production: Waypoint Press

Technical Reviewers: Nick Gravelyn, Kurt Meyer; Technical Review services provided by Content Master,
a member of CM Group, Ltd.

Cover: Girvin

Body Part No. X17-37448

To Jake, a great dog who is much missed.

Table of Contents

Acknowledgments. i e Xvii
Introduction i e Xix
Who This Book IS FOrt i i i enn Xix
System Requirements. ittt e XX
Code Samplesot e e e XX
Errata and Book Support.ot XX
We Wantto Hear fromYou..........cooiiiiiiiniiiii it XXi
Stay inToucCh e XXi

Part| Getting Started

1 Computers, C#, XNA,andYoucoiiiiiiinnnn.. 3
Introduction. 3
Learning to Programttt i 3
Becoming a Great Programmer, 4
How the Book Works i i i 4
CHand XNA .. e 5
Getting Started e 6
Installing the Development Environment
and the XNA Framework i i 6
SettingUpaPCtoRun XNAGamesccooiiiiininneennnn.. 7
Setting Up an Xbox 360 to Run XNA Games 7
Setting up a Windows Phone to run XNAgames 10
Writing Your First Program i 12
Creating Your First Project. i i, 12
Running Your First Program oo i, 14
StoppingaProgram 16

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

vi Table of Contents

Storing Games on the Xbox 360 or Windows Phone 17
Running the Same XNA Game on Different Devices 17
Conclusiono e 19
Chapter Review Questions.ottt 20
2 Programs, Data, and Pretty Colors. 21
Introduction. e 21
Makinga Game Program. ittt i i 22
Statements in the Draw Method 23
Working with Colors. i et 24
Storing ColorValues. o i, 24
SettingaColorValue o i 25
Controlling Color.o e e e e 27
Gamesand Classesttt e 27
Classes as Offices. ... ov ittt e 29
GameWorldData. ... 30
Storing Data in Computer Memory...............coiiiieeean... 31
Drawing by Using Our Color Intensity Variables.................. 32
Updating Our Colors.ottt e 33
Memory Overflow and Data Values.t 35
Making a Proper Mood Light.......... 36
Making Decisions in Your Programcciiiiian.. 37

The Completed Mood Light oo i it 41
Finding Program Bugsttt 42
Conclusion e 44
Chapter Review Questions.ottt 44
3 GettingPlayerlnput......... i, 47
Introduction. i i 47
ReadingaGamepadot e 48
Gamepadsand Classes.c.oouiuiiiiiiinniin ... 48
FindingaGamepad.t 50
Testing the Gamepad Status............., 51
Using the Keyboard i 54
Stopping the Game with the Escape Key 54
Using a Gamepad and a Keyboard at the Same Time.............. 55
Adding Vibration. 56
Controlling the Vibration of a Gamepad 56

Testing Intensity Values. i i i 57

Table of Contents

Program Bugsot e 61
Conclusiont 63
Chapter Review Questions.ttt 64

Part Il Images, Sound, and Text

4 DisplayingIlmages.ttt i i 67
Introduction.o 67
Resourcesand Contentottt 68

Getting Some Picturesottt 68
Content Management Using XNA oo, 69
Working with Content Using XNA Game Studio 70
XNA Game Studio Solutions and Projects 70
Adding ContenttoaProject............ o it 72
Using Resources ina Gameuvitnienntinneenneenneennennnnn 75
Loading XNA Texturesooiniiit i 75
Positioning Your Game Spriteonthe Screen..................... 79
Sprite Drawing with SpriteBatch. 81
Fillingthe Screen.o i i 83
Conclusion ... i 86
Chapter Review Questions.ttt 86

5 Writing Text. ...t i i e i e 87
Introduction.o 87
Text and Computers.ot e e 87

TextasaResource......... ...ttt 88
Creating the XNA Clock Project........... ... i, 88
AddingaFontResource.c.ooiiiiiiin i 88
LoadingaFont...... ... i e 91
DrawingwithaFont..... i i 92
Changing the Font Properties., 94
Gettingthe Dateand Timeo i 95
Making a Prettier Clock with 3-DTextccoiiiiiiinneennnn.. 97
Drawing Multiple Text Strings i, 97
Repeating Statements withaforLoop 99
Other Loop Constructions. cooiiiiiiiniinennn... 101

Fun with for Loopst 101

vii

viii Table of Contents

Creating Fake 3-Dottt e e e 103
Creating Shadows Using TransparentColors.................... 104
Drawing Images with Transparency............................ 105

CoNCIUSION . . oot e 106

Chapter Review Questions. . ..ottt 106

6 Creating a Multi-PlayerGame. 107

Introduction. e 107
Creating the Button-BashGame 107
Level and Edge Detectorsooiininniiiiinneennnnnnn. 111
Constructing the CompleteGame................ 111
Adding TestCodeoiiniii i 114

Conclusion e 116

Chapter Review Questions.ottt 116

7 PlayingSoundsi it e 117

Adding Sound e 117
Creating the Drum Pad Project. oiiiiiiin.. 117
Capturing Sounds with Audacity 117
Storing Sounds in Your Project............. o .. 119
Using Soundsinan XNA Programccoiiieiinnnnnn. 121
Playing Background Music oo il 123
Creatinga RayGuNottt 123

CoNCIUSION . . oot e 129

Chapter Review QuUestions. oottt 130

8 CreatingaTimer........oiiiiiiniininiiniininennnnnnn. 131

Making Another Game. i 131
Reaction TimerBugttt 134

Finding Winners Using Arrays.couuittiniinn i 136
Creating an Arraycoiiinii ittt 136
UsingDatainan Arrayc.iiiiiiiniiiinneiinnnnann. 137
SCANNING AN AITaY . . oo i ettt it ettt ettt 138
Using an Array asa Lookup Table 140
Displayingthe Winner......... i, 141

Conclusion i e 143

Chapter Review QUestions. o i ittt 143

Table of Contents

9 Reading Textlnput............ ..o iiiiiiiiiiiinnn... 145
Using the Keyboard in XNA i i 145
Creating the Message Board Project........................... 145
Registering Key Pressesoouuiiiiniiiniineiineneann. 146

The Keys TYPe .ottt e et et 147
Enumerated Types.ot e 148
Working with Arrays, Objects, and References....................... 148
Values and Referenceso, 149
Arrays as Offices it 149

Say Hello to the Garbage Collector............................ 151
Using Referencesand Valuest 151

Why Do We Have References and Values? 153
References and GetPressedKeys 153
Displaying Keysooiii i i e e e 153
Detecting Key Pressesottt 155
Decoding Key Characters., 159
Using the Shift Keyso i 160
Editingthe Text.t i 161
Conclusion ... it 163
Chapter Review Questions.ttt 163

Part Il Writing Proper Games

10 Using C# Methods to Solve Problems..................... 167
Introduction.o 167
PlayingwithImages i e 167

Zoominglnonanimage........... ..ottt 167
CreatingaZoom-Out.ottt it 169
Updating the Drawing Rectangle. 170
Creating a Method to Calculate Percentages. 173
Returning Nothing Usingvoid 175
Debugging C# Programs.ouiitinitineinnennennnenn. 179
Hitting a Breakpoint........ i 180
Using Floating-Point Numbersin C#........................... 183
The Compilerand CETypes. ...t 184
Compilersand Casting............ouiiiiiiiinniiinnnennnn.. 185

EXPression TYpes. . ..ottt e 186

Table of Contents

Stoppingthe Zoom. 188
Zooming fromtheCenter........... i i, 188
Conclusion o e 191
Chapter Review Questions. oottt 192
11 AGameasaC#Program..............coiiiiiiinninnenn. 193
Introduction. o e 193
Creating Game Graphics i 194
Projects, Resources, and Classes.t 195
XNA Game Studio Solutions and Projects 195

The Program.cs File. i s 198
Renaming the GamelI Class........ ... iiiiiiiiiiinnaae.. 203
Creating Game Objectsooiiiiin ittt 205
SPrites iNn Gamesttt e 205
Managing the Size of Game Sprites. 206
Moving Sprites. e 209
BouncingtheCheeset iiiiiiiiiiii i, 210
Dealing with Display Overscan...............ccooiiiiiiinana... 211
Conclusion o 213
Chapter Review Questions.o, 214
12 Games, Objects,and State................ 215
Introduction. o e 215
Adding Bread toYourGame.ottt 215
Using a Structure to Hold Sprite Information 216
Using the Gamepad Thumbsticks to Control Movement 218
Improving Programs Using Methods 219
Handling Collisions. o i 222
Making the Cheese Bounce offtheBat......................... 222
Strange Bounce Behavior........ o i il 223
Strange Edge Behavior.......... i i 224
Adding Tomato Targetsottt 227
Tomato Collisionsoiiiiiiiiiiiiiiiiiiiiiiiiaann. 229
Conclusion i e 232

Chapter Review Questions.ottt i 232

Table of Contents

13 MakingaCompleteGame.ccoviiiiniininnnnn. 233
Introduction. 233
Making a Finished Game i i 233

Adding ScorestoaGame ...ttt i 233
Adding Survival. L 235
Adding Progressionoiiiiiiiiii i 236
Improving Code Design.ooitniiiii i i 239
Refactoring by Creating Methods fromCode 240
Refactoring by Changing Identifiers 241
Creating Code Regions.ttt 244
Creating Useful Comments.............. ... i, 245
Adding a Background. 246
Adding aTitle Screen. o i 247
GamesandState.......... ... il 247
Usingthe State Values it 248
Building a State Machine.............. . .. i i, 249
Conclusiont 252
Chapter Review QUestions.ttt 252

14 Classes, Objects,and Games................ ..., 253
Introduction. ... 253
Design with Objects i i 253

An Object RefresherCourse ..., 254
Cohesion and Objects.ot 254
Coupling Between Objects 257
Designing Object Interactions 260
Container Objects.ttt 261
Background and Title Screen Objects................ 263
Classes and Structurest 264
Creating and Using a Structure. oo, 264
Creating and Using an InstanceofaClass 265
RefErenCeso e 267
Multiple ReferencestoaniInstance............................ 267
No ReferencestoaniInstance............, 268
Why Bother with References?......... 268
Value and Reference Types ooiiiii i 269

Should Our Game Objects Be Classes or Structures? 269

xii

Table of Contents

Creating a Sprite Class Hierarchy i it 271
The BaseSprite Classoouie ettt i iie i 271
Extending the BaseSprite to Produce a TitleSprite 272
Building aClass Hierarchyo i it 273

Adding a Deadly Pepperot e 274
Creating a DeadlySprite Classcoiiiiiiiiiinennn.. 275

Conclusion i e 279

Chapter Review QUesStions. oottt it 280

15 Creating Game Components.c..coviiennenen.. 281

Introduction.o 281

Objects and Abstraction i 281
Creating an Abstract Classin C#., 282
Extending an Abstract Class ..., 282
Designing with Abstract Classes., 284
References to Abstract Parent Classes. 284

Constructing Class Instances. it 285
Constructorsin Structures. o i i, 287
Constructors in Class Hierarchies.............................. 287

Adding 100 Killer Tangerinescouuiiiiiiiiiiiinnnennn.. 289
Creating a KillerSprite Class.oiiiiiiiiiiiii .. 290
Positioning the KillerSprites Using Random Numbers............ 290
Using Lists of References, 293

Adding Artificial Intelligence i 297
ChasingtheBreadBat iiiiiiiiiiiiinnenn... 297

Adding Game Sounds. e 302

From Objects to Components.coiiiiiiiiiiinineneennn. 304
C#interfaces ... 305
CreatinganiInterface, 306
Implementingan Interface it 307
References to Interfaces il 307
Linking Bread, Cheese, and Tomatoes. 308
Designing with Interfaces L. 308

CoNCIUSION . . oot e 309

Chapter Review Questions.oiiiiiiiiiniinn ... 309

Table of Contents xiii

16 Creating Multi-Player Networked Games.................. 311
Introduction. 311
Networks and Computers.......... ..o, 311

Startingwiththe Signal i 311
Building Upto Packets.oo it 312
Addressing Messages.ttt e 312
ROUtING . ..t e 313
Callsand Datagrams.iiiitniin it 314
Networks and Protocols il 314
XbOX LIVe oo 315
Gamertagsand Xbox Liveoi i, 315
System Linkand XNA e 316
Bread and Cheese PONg.ttt 316
Managing Gamer Profilesin XNA 317
Ensuring a Gamer Is Signed In for Network Play................. 321
CreatingaGamelobby i, 322
Network Gamesand State..............t 322
Playingthe Gameottt 329
The Completed Game.ttt 334
ConcluSION ..ot 334
Chapter Review Questions.ottt 335

Part IV Making Mobile Games for Windows Phone 7

with XNA

17 Motion-Sensitive Gamesc.iiiiiiiiiininn.. 339
Introduction.o 339

The Accelerometer e 339
What Does the Accelerometer ActuallyDo? 339
Accelerationand Physics o 340
Making Sense of Accelerometer Readings...................... 341

Creating a "Cheese Lander” TippingGame ... 343
Game World Objects in “Cheese Lander”....................... 343

Getting Access to the Accelerometer Class from XNA............ 344

Using the Accelerometerinan XNAGame. 346

Starting the Accelerometer........ i i, 349

xiv

Table of Contents

Using Accelerometer ValuesinaGame. 349
Using Vectors to Express Movement........................... 352
Adding Friction e 353
Detecting Shaking.o . i 354

A Quick Digression About Threads and Synchronization 355
CoNCIUSION . .ot e 357
Chapter Review Questions.oiiiiiiiiiniiin ... 357
18 Exploring Touchlnput........ iiiiiiin.. 359
Introduction. e 359
The Windows Phone Touch Screen oo, 359
Getting Touch Input. 359
CreatingaPanicButton....... i ... 360
Reading Touch Events iiiiiiiiiiiiiiaaann. 361
Touch Location Types.oiiiini i it 361
Using the LocationofaTouch 363
CreatingaTouch Drumpad. i 364
Creating a soundPad Class for Each Drum Sound 364
Storing soundPad Values inthe Game. 365
Drawing the Soundpads.o i i, 366
Updating the Soundpads. o, 367
Making the Soundpads Flash 368
Creating a Shuffleboard Game..........o i i, 370
The PuckSprite Class.t 370
Conclusion i e 377
Chapter Review QuUestions. oottt it 377
19 Mobile Game Developmentcciiiiion.. 379
Introduction. i i 379
The Windows Phone. 379
The Windows Phone Marketplace...............ot 379
Maximizing the Phone Battery Life in XNA Games. 380
Setting the Update RateofaGame............................ 380

Dealing with Changes in Phone Orientation 381

Table of Contents

Selecting Orientationsinan XNAGame........................ 381
Getting Messages When the Orientation Changes............... 382
Using a Specific Display Size for Windows Phone Games 383
Hiding the Windows Phone StatusBar.............................. 384
Stopping the Screen Timeout from Turning Off Your Game............ 384
Creating a Phone State Machine 385
Gamesand States i i 385
Handing Incoming Phone Calls 390
Detecting Phone Calls, 392

A Game as a Windows Phone Application 393
The Windows Phone Back and Start Buttons.................... 393
Starting New Programs with the Start Button................... 396
Using Isolated Storage to Store Game State 397
Getting Your Games into the Marketplace........................ ... 403
The Windows Phone Marketplace.............. 403
Registering forthe AppHub. 404
Using a Windows Phone Device..............cciiiiiiiiiii... 404
Creating GamesforSale........... o i, 405
Conclusiont e 405
Chapter Review Questions.ttt 405
Answers to the Chapter Review Questions................. 407
Index. ...t e 427

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Acknowledgments

I'm not sure if you are meant to have fun writing books, but | do. Thanks to Devon Musgrave,
Ben Ryan, Valerie Woolley, and Steve Sagman for making everything fit so well together

and to Kurt Meyer and Nick Gravely for making sure it all makes sense. | must also mention
the XNA team who keep making a great thing better, year on year, and the Windows Phone
team who have made something amazing.

Xvii

Introduction

With Microsoft XNA, Microsoft is doing something really special. It is providing an accessible
means for people to create programs for the Windows PC, Xbox 360, and Windows Phone.
Now pretty much anyone can take a game idea, run it on a genuine console, and even send
it to market in Xbox Live or the Windows Phone Marketplace.

This book shows you how to make game programs and run them on an Xbox 360, a
Microsoft Windows PC, or a Windows Phone device. It also gives you an insight into how
software is created and what being a programmer is really like.

Who This Book Is For

If you have always fancied writing software but have no idea how to start, then this book is
for you. If you have ever played a computer game and thought, "l wonder how they do that?”
or, better yet, "l want to make something like that,” then this book will get you started with
some very silly games that you and all your friends can have a go at playing and modifying.
Along the way, you'll also get a decent understanding of C#, which is a massively popular
programming language used by many thousands of software developers all over the world.
The C# skills that you pick up in this book can also be used as the basis of a career in pro-
gramming, should you find that you really enjoy writing programs. And because the design
of the C# language is very similar to C, C++, and Java, you will find that your skills can be
used with them too.

The book is structured into 19 chapters, starting with the simplest possible XNA program
and moving on to show you how to use the Xbox gamepad, the keyboard, sounds, graphics,
and network in your games. In the course of learning how to use C# and XNA, you create
some very silly games, including Color Nerve, Mind Reader, Gamepad Racer, Bread and
Cheese, and Button Bash. You can even download the full versions of these games from
http.//www.verysillygames.com and use them at your next party. The final section shows you
how to take your programming skills and use them to create games for the Windows Phone
device.

With this book, | show you that programming is a fun, creative activity that lets you bring
your ideas to life.

Xix

XX Introduction

System Requirements

You need the following hardware and software to build and run the code samples for this
book. Chapter 1, “Computers, C#, XNA, and You,"” explains how to set up your environment.

A Windows PC with 3-D graphics acceleration if you want to run your XNA games on
your PC.

Microsoft Windows Vista or Windows 7.

Microsoft Visual Studio 2010 C# Express Edition for Windows Phone, Visual Studio 2010
Standard Edition, Visual Studio 2010 Professional Edition, or Visual Studio 2010 Team
Suite.

To test your games on a console, you need an Xbox 360 fitted with a hard disk. Your
Xbox 360 must be connected to Xbox Live, and you need to join the App Hub. You will
find out how to do this in Chapter 1.

If you have a Windows Phone you can run XNA games on that as well. Any Windows
Phone device can be connected to your PC so you can load your XNA games into it.

Code Samples

All the code samples discussed in this book can be downloaded from the book’s detail page,
located at:

http://oreilly.com/catalog/9780735651579

Display the detail page in your Web browser, and follow the instructions for downloading
the files.

There are also code samples and games at http.//www.verysillygames.com.

Errata and Book Support

We've made every effort to ensure the accuracy of this book and its companion content. If
you do find an error, please report it on our Microsoft Press site at Oreilly.com:

i & W NH

Go to http.//microsoftpress.oreilly.com.

In the Search box, enter the book’s ISBN or title.

Select your book from the search results.

On your book’s catalog page, under the cover image, you'll see a list of links.

Click View/Submit Errata.

Introduction XXi

You'll find additional information and services for your book on its catalog page. If you need
additional support, please e-mail Microsoft Press Book Support at mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

We Want to Hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey.

The survey is short, and we read every one of your comments and ideas. Thanks in advance
for your input!

Stay in Touch

Let's keep the conversation going! We're on Twitter: http.//twitter.com/MicrosoftPress.

Chapter 3
Getting Player Input

In this chapter, you will
B Find out how Microsoft XNA represents the gamepads and keyboards.
B Discover the C# language structures that let us get player input.

B Write some really silly games and scare people with them.

Introduction

You now know the basics of computer game programming. You know that a program is
actually a sequence of statements, each of which performs a single action. You have seen
that statements are held inside methods, each of which performs a particular task, and
that methods are held in classes along with data. The program itself works on data values,
which are held in variables of a particular type, and the program can make decisions based
on the values that the variables have. (If none of this makes much sense, reread Chapter 2,
“Programs, Data, and Pretty Colors,” until it does.)

Now you are going to expand your understanding to include how to receive input from

the outside world so that games can actually react to what the player does. You shall see
that once we have done this, a number of possibilities open up, and you can create some
truly silly games, including "Color Nerve,” "Mind Reader,” “The Thing That Goes Bump in the
Night,” and “Gamepad Racer.”

Program Project: A Mood Light Controller

In Chapter 2, you created a light that changes color over time. | also mentioned that
this is the kind of thing that will be used in the starships of the future. A color-changing
light is not all that useful for reading books, but it's great for setting moods; what our
starship captain really needs is a light that she can set to any color. So now you are
going to make a lamp that can be controlled by an Xbox gamepad. The user presses the
red, blue, green, and yellow buttons on the gamepad to increase the amount of that
color in the light. To make this work, you have to discover how to read the gamepad.

Before you start looking at gamepads, though, you need to decide how the program
will actually work. Consider the following statement of C# from the previous mood-light
program, which is part of the Update method:

if (redCountingUp) redIntensity++;
47

48

Part | Getting Started

This is one of the tests that controls the intensity of the red part of the color. What it is saying
is “If the Boolean value redCountingUp is True, increase the value of redIntensity by 1."
The statement is processed each time Update is called (at the moment that is 60 times a
second), so this means that if redCountingUp is True, the red intensity of the screen gets
progressively brighter over time.

You want to write some code that says, “If the red button on Gamepad 1 is being pressed,
increase the value of redIntensity by 1.” Then, if the player holds down the button, the
screen gets redder. So all you have to do is change this test to read the button on the
gamepad, and you can create a user-controlled light easily.

Reading a Gamepad

The gamepads are actually very complex devices. They are connected to the host device
either by a universal serial bus (USB) cable or by a wireless connection. As far as you are
concerned, the way that programs work with gamepads does not depend on how they are
connected. The connection to a gamepad can be used to read the buttons and joysticks and
can also be used to send commands to the gamepad—for example, to turn the vibration
effect on and off. The Xbox and XNA provide support for up to four gamepads connected
simultaneously.

Gamepads and Classes

The gamepad information is represented in XNA by means of a class called GamePadState.
The job of this class is to provide the connection between the program and the physical
gamepad that the player is holding. To understand how you are going to use this, you have
to learn a bit more about how classes work.

You have already seen what a class is in the section “Games and Classes” in Chapter 2. A class
contains data (variables that can hold stuff) and methods (code that can do stuff). You

can think of a class as an office, with a desk holding the variables and people acting as the
methods. Figure 3-1 shows the office plan for the class Gamel, which you have seen is the
basis of an XNA game.

This class contains some variables on the desk (in this case, the background color intensities)
and two methods, which we have called Mr. Draw and Mrs. Update. Each method has a
corresponding telephone. Programs can place calls to the telephones to request that the
method perform the required task.

Chapter 3 Getting Player Input 49

redIntensity

greenlntensity E E

bluelntensity

Draw Update

Desk

Mr. Draw Mrs. Update

Gamel office

FIGURE 3-1 The Gamel class as an office plan.

The Great Programmer Speaks: Classes Are Not Really Offices Our Great Programmer
has been reading these notes and finds them quite amusing. She says that classes are not exactly
like offices, but she thinks that for the purpose of getting an understanding of how programs are
constructed, it is okay to regard them as such.

When an XNA game starts, the XNA system makes an instance of the Game1l class that it then
can ask to Draw and Update. When an instance of a class is created, the instructions for the
methods that it contains are loaded into memory and space is set aside for the data variables
that the instance holds.

The class files that you write give the plans for the class so when the program runs, instances
of each class can be created. In real life, you would make a game office by building a

room, putting a desk and some telephones in the room, and then hiring a Mr. Draw and

a Mrs. Update. The process of making an instance of a class is similar. However, to save
memory, the running program uses only one copy of the method code, which is shared
among all the instances of a class.

Note It is important to remember that this happens when a program runs. The process of
creating instances of classes is not performed by the compiler. The job of the compiler is to
convert your C# source code into instructions that the target device runs. By the time that
your program has control, the compiler has done its job, and the computer is just running the
machine language output that the compiler produced.

50

Part | Getting Started
Finding a Gamepad

XNA also looks after a lot of other things when a game is running, one of which is the GamePad
class connected to all the gamepads. You don't have to know how the gamepad is actually
connected; for all you know, it might use tiny pixies traveling up and down the wires carrying
pixie notes written on pixie paper saying, “Master has pressed the Red Button,” but then again
it might not. Figure 3-2 shows how the GamePad class would look if it were an office.

GetState

Desk

Mr. GetState

GamePad

FIGURE 3-2 The GamePad class as an office.

The GamePad class contains a method called GetState, which gets the state of one of the
gamepads. When GetState is called, it looks at one of the gamepads, reads its settings, and
then sends information back for use in the statement it was called from.

The GetState method is supplied with a parameter that identifies the gamepad to be read.
A parameter is a way that a call can give information to a method. You have seen these
before; in your very first programs, you were passing Color parameters into the Clear
method to select the color of the screen that you wanted.

In the case of the GetState method, the parameter identifies the gamepad that you want
to read. If you are thinking in terms of offices, you can think of a parameter as part of the
instructions that come down the telephone. When the phone rings and Mr. GetState answers it,

Chapter 3 Getting Player Input 51

he is asked, “Get me the state of Gamepad 1." The information about the state of the gamepad
is sent back in a GamePadState structure, which is shown in Figure 3-3.

GamePadState

Buttons

Green A ButtonState.Pressed
Red B ButtonState.Released
Blue X ButtonState.Released
Yellow Y ButtonState.Released
Start ButtonState.Released
Back ButtonState.Released

FIGURE 3-3 GamePadState structure with the green A button pressed.

You can think of this as a set of items filled in on a form if you wish, but actually it is a C#
structure that contains the data members shown in Figure 3-3, as well as some other data.

So, if Mrs. Update wants to know the state of one of the gamepads on the Xbox, she calls the
GetState method in the GamePad class and asks, “"Can you give me the state of the gamepad
for Player 1, please?” Mr. GetState jumps up, fills in a “GamePadState” form, and sends it back
to her. Figure 3-4 gives the breakdown of the C# statement that gets the state of a gamepad
into a variable of type GamePadState.

GamePadState Equals or

variable called padl “Gozzinta"” State of the gamepads for Player 1

(GamepadState padl)@(camePad).@etState (G'IayerIndex.One);

o~

The class that looks The GetState The gamepads to be
after gamepads method read

FIGURE 3-4 Getting the status of a gamepad.

Testing the Gamepad Status

Now that you have the status, you can use it in the program to see if a button has been
pressed. Figure 3-5 shows the breakdown of the C# statement that will perform the test.

The button we are The == (equals) The value we are The statement we perform
testing comparison operator looking for if the test succeeds

é(ButtonState. Pressed))(redIntenS'ity++) ;

FIGURE 3-5 Testing a button on a gamepad.

52

Part | Getting Started

This compares the state of the red button B with the value ButtonState.Pressed. If the two
are equal, this means that the button is down, and the Update method must make the red
intensity bigger. You can then use the same principle to manage the blue and green values,
which means that you now have an Update method that looks like the following:

protected override void Update(GameTime gameTime)
{
// Allows the game to exit
if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)
this.Exit(Q);

GamePadState padl = GamePad.GetState(PlayerIndex.One);

if (padl.Buttons.B == ButtonState.Pressed) redIntensity++;
if (padl.Buttons.X == ButtonState.Pressed) blueIntensity++;
if (padl.Buttons.A == ButtonState.Pressed) greenIntensity++;

base.Update(gameTime);

}

The only problem with the Update method described here is that the program doesn’t
handle the yellow button yet. When the yellow button is pressed, the program needs to
increase the green and the red intensities; that is, it must perform two statements if the
condition is true. It turns out that doing so is very easy; you can just put the two statements
into a block that is controlled by the condition, as shown here:

if (padl.Buttons.Y == ButtonState.Pressed)
{

redIntensity++;

greenIntensity++;

3

You have seen blocks before; the body of a method (the bit that does the work) is a block.
In C# terms, a block is a number of statements that are enclosed in curly braces. The code
shown here performs both statements if the condition is true because they are in a block

controlled by the condition.

The Great Programmer Speaks: Blocks Rock Our Great Programmer tends to use blocks
after if conditions even when she doesn't actually need to. She says that it makes the program
text clearer, and that it is much easier to add extra statements later if you need to.

If you put the preceding statements into the Update method of one of your earlier Mood
Light programs, you get compiler warning messages because the new version of Update
doesn't use all the variables that were created for previous versions of the program. To get

Chapter 3 Getting Player Input 53

rid of these warnings, you must delete the statements that create the unused variables. The
Great Programmer doesn't like it when programs have variables in them that are not used.
She says this looks unprofessional, and | agree with her.

Sample Code: Manual MoodLight All the sample projects can be obtained from the

Web resources for this text, which can be found at http://oreilly.com/catalog/9780735651579.
The sample project in the directory “01 Manual MoodLight” in the resources for this chapter
implements the Update method, as shown in this section. You can increase the brightness of the
colors on the screen by pressing the buttons on the gamepad.

Game Ildea: Color Nerve

Every now and then, we are going to try out a game idea. These start out very simply
and then build up to more complicated and interesting games. You can use the
Manual MoodLight code to create your first game. The game uses something we saw
in Chapter 2. You noticed that if you keep making a value bigger, there comes a point
where it won't fit in the memory store allocated for it, and then it overflows. This is
what caused the screen to go from bright white to black. However, you can use this to
create our first “Very Silly Game.”

Color Nerve is a game for two or more players. The players take turns pressing one or
more buttons on the gamepad. (The other players must watch carefully to make sure
that they actually do press at least one button.) Each player can press as many buttons
as he wants for as long as he wants during his turn, but if the screen changes suddenly
(because one of the color values has gone from 255 to 0), he is out, and the game
continues. The last player left in the game is the winner.

This game can be very tactical. Players can press the buttons for very short times, or

at the start of the game, they can show their nerve by holding the buttons down for
longer periods, trying to cause problems for the next player. They can also try to work
out which color has wrapped around so that they can press that button when it is their
turn. The game works very well at parties, any number of people can take part, and the
rules are very easy to understand. In Chapter 4, “Displaying Images,” you will improve
the game to add pictures as well as a plain screen.

54 Part | Getting Started

Using the Keyboard

XNA works with keyboards as well as with gamepads. You might be surprised to learn that
you can plug a USB keyboard into an Xbox 360 and use it just as you'd use the keyboard on
the PC. If you want the program to work with the keyboard, you can add code that does this,
as shown here:

KeyboardState keys = Keyboard.GetState();

if (keys.IsKeyDown(Keys.R)) redIntensity++;
if (keys.IsKeyDown(Keys.B)) blueIntensity++;
if (keys.IsKeyDown(Keys.G)) greenIntensity++;
if (keys.IsKeyDown(Keys.Y))
{

redIntensity++;

greenIntensity++;

}

Note that the process is very similar to how the gamepad works, but there are slight
differences. You don't need to tell the GetState method on the Keyboard which keyboard to
read because XNA supports only a single keyboard. The KeyboardState item that is returned
from the call is not actually a piece of paper; instead, it is an object that provides methods
that the program can use to discover whether a particular key is pressed. Rather than seeing
if the state of a button is set to the value ButtonState.Pressed, the program can call the
method IsKeyDown. You supply the IsKeyDown method with a parameter that identifies the
key you are interested in, as follows:

if (keys.IsKeyDown(Keys.R)) redIntensity++;

This code is a conditional statement that increases the value of redIntensity if the R key is
pressed. The method IsKeyDown returns true if the key is down and false if not. You can,
therefore, use it to control the update of the redIntensity value.

Stopping the Game with the Escape Key

The Update method that is created when you make a new XNA game contains a test that
checks for the Back button on gamepad 1 and calls the Exit method to stop the game when
the Back button is pressed. If you are using a keyboard instead of a gamepad you will not be
able to press this button to stop the game. You can add a test for the Escape key on the key-
board. This key is a “control” key, in that it does not actually relate to a printable character,
but is designed to signal an action you want the program to take. Other control keys include
the Enter key and the Backspace key. You can use the same IsKeyDown method to test for
the Escape key.

if (keys.IsKeyDown(Keys.Escape)) Exit(Q);

This code stops the game when the Escape key is pressed.

Chapter 3 Getting Player Input 55

Using a Gamepad and a Keyboard at the Same Time

If you want to use a gamepad and a keyboard simultaneously, you have to test for both. This
means that the Update method now looks like this:

protected override void Update(GameTime gameTime)

{
GamePadState padl = GamePad.GetState(PlayerIndex.One);
if (padl.Buttons.Back == ButtonState.Pressed) Exit(Q);
if (padl.Buttons.B == ButtonState.Pressed) redIntensity++;
if (padl.Buttons.X == ButtonState.Pressed) blueIntensity++;
if (padl.Buttons.A == ButtonState.Pressed) greenIntensity++;
if (padl.Buttons.Y == ButtonState.Pressed)
if (padl.Buttons.B == ButtonState.Pressed) redIntensity++;
{
redIntensity++;
greenIntensity++;
}
KeyboardState keys = Keyboard.GetState();
if (keys.IsKeyDown(Keys.Escape)) Exit(Q);
if (keys.IsKeyDown(Keys.R)) redIntensity++;
if (keys.IsKeyDown(Keys.B)) bluelntensity++;
if (keys.IsKeyDown(Keys.G)) greenIntensity++;
if (keys.IsKeyDown(Keys.Y))
{
redIntensity++;
greenIntensity++;
}
base.Update(gameTime);
}

This code is not good because you are doing the same thing twice, just triggered in

a different way. The Great Programmer, if she ever saw this, would not be impressed.
Fortunately C# provides a way that a program can combine two conditions and then perform
some code if either condition is true. This way of combining conditions is called the OR
logical operator because it is true if one thing or the other is true, and it is written in the
program as two vertical bars (||):

GamePadState padl = GamePad.GetState(PlayerIndex.One);
KeyboardState keys = Keyboard.GetState();

if (padl.Buttons.B == ButtonState.Pressed ||
keys.IsKeyDown(Keys.R)) redIntensity++;

The OR logical operator is placed between two Boolean expressions that can be either true or
false. If one or the other expression is true, the combined logical condition works out to be true.

56 Part| Getting Started

In this code, if the red button is pressed on the gamepad or the R key is pressed on the keyboard
(or both), the redIntensity value increases. This is exactly what you want, and it means that
Color Nerve can now be played with the gamepad or the keyboard (or both at the same time).
Logical operators are so called because they produce logical rather than numerical results. There
are other logical operators that you will use as you create more complex programs.

Note If you find this logical operator stuff hard to understand, just go back to the problem that
you are trying to solve. You want the program to perform a statement (redIntensity++) if
the red key is pressed on the gamepad or if the R key is pressed on the keyboard. So you use the
OR operator (||) to combine the two tests and make a condition that triggers if one or the other
condition is true.

Sample Code: Color Nerve The sample project in the directory “02 Color Nerve” in the
resources for this chapter implements the game. You can adjust the colors of the screen by
pressing the gamepad buttons or a key on the keyboard.

Adding Vibration

The communication between the gamepad and the game works in both directions. Not only can
you read buttons on the gamepad, but also you can send commands to the gamepad to turn on
the vibration motors. Again, you don't have to know exactly how these messages are delivered;
all you need to know is the features of XNA that are used to control this vibration effect.

This means you can make your Color Nerve game even more exciting by making the
gamepad vibrate when the intensity values are getting close to their limits. It is interesting
how features like this can enhance even a simple game. You will be using the vibration effect
on the gamepads quite a lot in the next few games.

Controlling the Vibration of a Gamepad

The GamePad class provides a method called SetVibration that lets a program control the
vibration motors:

GamePad.SetVibration(PlayerIndex.One, 0, 1);

The SetVibration method uses three parameters. The first one identifies which gamepad
you want to vibrate. The second parameter is a value between 0.0 and 1 that controls the
vibration of the left motor. The bigger the number, the more the gamepad vibrates. The third
parameter controls the right motor in the same way as the left one. The statement shown

Chapter 3 Getting Player Input 57

here would set the right motor of Gamepad 1 vibrating at full speed. The left motor is the
low-frequency vibration, and the right motor is the high-frequency vibration.

If you think of the GamePad class/office having a man called Mr. SetVibration, this means that
he would be told which gamepad to vibrate and the settings for the left and right motors.
Once the method has been called, the gamepad starts to vibrate, and it keeps vibrating

until you call the method again to change its setting. In other words, you can think of the
SetVibration method as a switch that can be set to a number of different positions. Initially,
both of the gamepad motors are set at 0, which means no vibration.

Testing Intensity Values

The game needs to decide when to turn on the vibration. To do this, it must test the intensity
values and turn on the vibration motor if any of them is getting too large. The program can
decide to turn on the motors if any of the red, green, or blue intensity values is greater than
220. To do this, the program must test the intensity values as follows:

if (redIntensity > 220)
{

GamePad.SetVibration(PlayerIndex.One, 0, 1);
}

This code shows another form of condition. In the previous examples, the conditions have
been checking to see if two values are equal. This code tests if one value is greater than
another. The greater-than sign (>) is another logical operator. Placed between two values, it
returns true if the value on the left is greater than the value on the right and false if not.
That is exactly what you want.

Using the preceding code, the gamepad starts to vibrate using the right motor when the

red intensity value goes above 220. If you add this code to the Update method in the Color
Nerve game, you find that if you increase the red value, the gamepad starts to vibrate.
Unfortunately, our program has a bug. When the red intensity value returns to 0O, the
vibration does not stop. You need to add some code that turns off the motor when the
intensity value is less than 220. It turns out that this is very easy to do—you can add an else
part to the condition:

if (redIntensity > 220)

{
GamePad.SetVibration(PlayerIndex.One, 0, 1);

}

else

{
GamePad.SetVibration(PlayerIndex.One, 0, 0);

}

58

Part | Getting Started

The statement after the else is performed if the condition is found to be false. (You

can add an else part to any if condition that you create.) This means that when the red
intensity value returns to 0, the vibration stops. You can extend the tests using OR so that the
program tests all the intensity values:

if (redIntensity > 220 ||
greenIntensity > 220 ||
blueIntensity > 220)

{

GamePad.SetVibration(PlayerIndex.One, 0, 1);
}
else
{

GamePad.SetVibration(PlayerIndex.One, 0, 0);
}

Now the vibration is controlled by all the intensity values. As an improvement to the game,
you might want to experiment with different kinds of vibration for different colors, perhaps
by using the low-frequency motor as well. This is controlled by the other value in the call of
SetVibration:

GamePad.SetVibration(PlayerIndex.One, 1, 0);

The line of code shown here turns on the low-frequency vibration. You might also want to
experiment with the thresholds at which the vibration starts.

The program still has one more problem. If you run it and make the gamepad vibrate,

when the program finishes, the gamepad doesn't always stop vibrating. You need to add
code that stops the vibration when the game ends. The game stops when the player presses
the Back button on the gamepad. The test for this is in the Update method. If the Back
button is pressed, the Exit method is called to stop the game:

if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)
this.Exit(Q);

The Exit method removes the game display and shuts the game down in a tidy fashion.
What the program must do is turn off the gamepad motors before Exit is called. To do this,
the program needs to perform more than one statement if the Back button is pressed, so we
need another block:

if (GamePad.GetState(PlayerIndex.0One).Buttons.Back == ButtonState.Pressed)

{
GamePad.SetVibration(PlayerIndex.One, 0, 0);

this.Exit(Q);
}

Now, when the player presses the Back button to end the program, the vibration motors are
turned off.

Chapter 3 Getting Player Input 59

The Great Programmer Speaks: When in Doubt, Make Sure Yourself The Great
Programmer says that if you are in a situation where you are not sure whether something

is always the case, you should add code to remove all possible doubt. Testing the vibration
behavior described in this section, | discovered that the gamepad is left vibrating on earlier
versions of XNA, but not on some newer ones. To make absolutely sure that the vibration stops
regardless of the version of XNA under which your game runs, you should include the code to
stop the vibration yourself.

Sample Code: Vibration Color Nerve Game The sample project in the “03 Color Nerve with
Vibes" directory in the source code resources for this chapter holds a version of Color Nerve that
has the vibration effect enabled.

Game ldea: Secret Vibration Messages

Once you see that it is easy to read gamepad buttons and drive the motors, you

can start to have more fun with XNA, particularly with wireless gamepads. You can
create mind-reading games where your assistant seems to know exactly what you

are thinking. What the audience doesn't know is that both of you are holding Xbox
gamepads in your jacket pockets and using them to send signals back and forth using
the vibration feature. The code to do this is actually very simple, and you should be
able to understand what it does:

protected override void Update(GameTime gameTime)
{
// Allows the game to exit
if(GamePad.GetState(PlayerIndex.0One).Buttons.Back == ButtonState.Pressed)
{
GamePad.SetVibration(PlayerIndex.One, 0, 0);
GamePad.SetVibration(PlayerIndex.Two, 0, 0);
this.Exit(Q);
}

GamePadState padl = GamePad.GetState(PlayerIndex.One);
GamePadState pad2 = GamePad.GetState(PlayerIndex.Two);

if (padl.Buttons.A == ButtonState.Pressed)

{

GamePad.SetVibration(PlayerIndex.Two, 0, 1);
}
else
{

GamePad.SetVibration(PlayerIndex.Two, 0, 0);
}

if (pad2.Buttons.A == ButtonState.Pressed)

60 Part| Getting Started

{

GamePad.SetVibration(PlayerIndex.One, 0, 1);
}
else
{

GamePad.SetVibration(PlayerIndex.One, 0, 0);
}

base.Update(gameTime);
}

The Update method reads the A button on the gamepad for Player 1. If this is pressed,
it turns on the fast vibration motor in the gamepad for Player 2. It then repeats the
process the other way, sending signals from Gamepad 2 to Gamepad 1. This gives you
a way in which you can send wireless signals from one gamepad to another. Note that
both conditions have else parts so that if the button is not pressed, the vibration is
turned off.

You could also use this for practical jokes; for example, just leave a gamepad
underneath your victim’s bed and then wait until he turns the light off and settles
down. Then give the vibration a quick blast for the maximum scare factor. Just don't
blame me if you never get the gamepad back!

Sample Code: Vibration Messages The sample project in the “04 Mind Reader” directory
in the source code resources for this chapter holds a version of the vibration message program.
Just remember to use it wisely. The program also turns the display screen black so that it is not
obvious that there is a program running.

Game lIdea: Gamepad Racer

The final game idea in this chapter is really silly, but it can be great fun. The first thing
you need to do is find a large, smooth table. Put a couple of books under the legs at
one end so that the table is sloping, not horizontal. If you put a wireless Xbox gamepad
at the top of the table and make the gamepad vibrate, it slides down the table toward
the other end. You may need to experiment with the angle, but I've found that with
care, you can arrange things so that a gamepad takes around 30 seconds to slide all the
way down the table with vibration at full power. If you line up four gamepads on the
top of the table, players can pick the one they think will win, and then you can race
them down the slope.

The code for this game is very simple indeed; the Update method just turns on all the
vibration motors in the gamepads:

protected override void Update(GameTime gameTime)

Chapter 3 Getting Player Input 61

// Allows the game to exit
if(GamePad.GetState(PlayerIndex.0One).Buttons.Back == ButtonState.Pressed)
{
GamePad.SetVibration(PlayerIndex.One, 0, 0);
GamePad.SetVibration(PlayerIndex.Two, 0, 0);
GamePad.SetVibration(PlayerIndex.Three, 0, 0);
GamePad.SetVibration(PlayerIndex.Four, 0, 0);
this.Exit(Q);
}

GamePad.SetVibration(PlayerIndex.One, 1, 1);
GamePad.SetVibration(PlayerIndex.Two, 1, 1);
GamePad.SetVibration(PlayerIndex.Three, 1, 1);
GamePad.SetVibration(PlayerIndex.Four, 1, 1);

base.Update(gameTime);
}
The only complication is that when the game ends, you must turn off all the vibrations.
Put all the gamepads at the top of the slope and then run the program. Press the Back
button on Gamepad 1 to stop the game.

Sample Code: Gamepad Racer The sample project in the “05 GamepadRacer” directory in
the source code resources for this chapter holds a version of the Gamepad Racer program.

Note By carefully tuning vibration values it is possible to “sabotage” gamepads so that the same
one wins each time. Note that | do not condone such behavior.

Program Bugs

Your younger brother is still trying to learn to program, but he keeps having problems. He
claims that this book is faulty because the programs don't work properly when he types
them in. He is trying to get the Color Nerve game to work, but every time he runs the
program, the yellow intensity gets brighter whether he presses the button or not. You take a
look at his program and find the following code in the Update method:

if (padl.Buttons.Y == ButtonState.Pressed ||
keys.IsKeyDown(Keys.Y)) ;

{
redIntensity++;
greenIntensity++;

62

Part | Getting Started

This is the only part of the program where the yellow intensity is being increased, and it
seems that the condition is being ignored.

This looks perfectly okay, and it seems to compile and run correctly, but it seems to be
making the yellow intensity brighter every time. At this point, it is a good idea to look at
Microsoft Visual Studio and see if the compiler is trying to tell you anything about the code.
Figure 3-6 shows your brother’s code after he has compiled it.

L] MoodLight - Microsoft Visual Studio 2010 Express for Windows Phone [ol & ==
File Edit View Project Debug Tools Window Help
§) e S | % B9 - | b [WindowsPhone Emulator || [# [accellerste || &F L

R =

~ Solution Explorer

A
& T
FMl “: MoodLight.Gamel -] 5% Update(GameTime gameTime) Qi 2 EE
g £0 [-d Solution 'MoodLight' (2 projects) =
if (padl.Buttons.B == ButtonState.Pressed || 4 & Mooduight K|
keys. TsKeyDown(Key=.R)) redIntensity++; Bal Properties |
i References
if (padl.Buttons.X = tonState.Pressed || et Rekrences
keys . TsKeyDown (K)) blueIntensity++; . ontem -
if (padl.Buttons.A = tonState.Pressed || Fropee e

keys . IsKeyDown (K)) greenIntensity++; -

if (padl.Buttons.Y =

E.Prassed I v =
i L

keys . TsKeyDown (K
redIntensity++;
greenIntensity++;

}

base.Update(gameTime);

100% ~ <[n " »

Error List e
@ 0Ermors | f,1Waming | (i) 0 Messages

Description File Line Column | Project

&1 Possible mistaken empty statement Gamel.cs 93 4 MoedLight

IERLLES B Output %a Find Symbol Results

FIGURE 3-6 Visual Studio compiler warning display.

Your attention is drawn to the bottom left corner, where the message “Possible mistaken
empty statement” appears. If you double-click this message, you find that the cursor moves
to a point just after the if condition (I've drawn a circle around it in Figure 3-6).

The C# compiler is trying to tell us something about this statement. If we go back to the
original listing, we find that your brother has added an extra semicolon at the end of the
condition. The problem is that this ends the statement controlled by the condition. So if
the R button or the R key is pressed or the Dpad is pressed down, the program decides to
do nothing (an empty statement) and then goes on and performs the next statements no
matter what, leading to the effect that we are seeing. Figure 3-7 shows how this happens.

Chapter 3 Getting Player Input 63

if (padl.Buttons.Y == ButtonState.Pressed ||
keys.IsKeyDown(Keys.Y))(:)
N

{
redIntensity++; This ends the statement
greenIntensity++; controlled by the condition.
3
J
\ This block is always
executed.

FIGURE 3-7 The effect of an extra semicolon.

You remove the semicolon, the warning goes away, and the program works fine. Your
younger brother is now starting to revise his opinion of you and offers to take out the trash
that night, even though it is your turn.

The Great Programmer Speaks: Helping Other People Is a Good Plan The Great
Programmer has been watching all this with approval. She figures that it is always a good idea
to try to help people who are stuck with a problem. Sometimes when a programmer working
on uncovering a bug has the chance to explain what is going wrong with a piece of code to an
innocent bystander, that can be enough to allow the programmer to work out what is broken.
That means you can get a reputation as a fearsome bug fixer just by standing by. Furthermore,
seeing what mistakes other people make can give you hints on things that you need to look out
for when your programs go wrong. Oh, and sometimes you get your trash taken out for free.

Conclusion

You have learned a lot in this chapter, and you have finally managed to create some games that
players can have fun with. You have seen how XNA allows programs to interact with physical
devices by calling methods on classes, and we have seen how a program can make decisions on
the information that it receives from the devices and use this to make simple (and silly) games.

64 Part |

Getting Started

Chapter Review Questions

No chapter would be complete without a review. So here it is. You should know the routine
by now; just decide whether a statement is true or false and look the answers up in
Appendix A at the back of the book to find out whether you are a winner or a loser.

1. If a class is an office, a method is a desk.
2. The compiler creates all the instances of classes in a program.
3. An if statement must have an else part.
4. A parameter is used to feed information into a class.
5. The else part of an if statement is always performed.
6. The state of a gamepad is represented in an XNA program by a byte value.
7. The GamePad.GetState method can be used to see if a button is pressed on a gamepad
(this is a tough question; you are allowed to look at the chapter to work it out).
8. A block is a number of C# statements enclosed in curly brackets.
9. The C# condition (true || false) means “true or false” and would work out to true.
10. The C# condition (redIntensity > 220) evaluates to true if the value in
greenIntensity is greater than 220.
11. The gamepad vibration always turns off automatically when an XNA game stops

running.

Index

Numbers and Symbols

2-D vectors, 92
3-D effect for text, 99
fake, 103
&& (AND) operator, 178
== comparison operator, 40
.cs file extension, 22
.NET classes
Random, 291
.NET Framework, 95
-- operator, 39
++ operator, 34
|| (OR) condition, 178
#region compiler directives, 244

A

Abs method, 226
absolute value of a number, 226
abstract classes, 282
designing with, 284
extending, 282
references to, 284
acceleration, 336
accelerometer, 335
acceleratorPower variable, 345

AccelerometerReadingEventArgs object, 344

adding reference to in XNA, 341
axes, 337
orientation, 338
ReadingChanged event, 343
reading X, Y, and X values, 342
sensitivity, 345
shaking, 350
starting, 345
using values, 345
velocity, 346
Accelerometer class, 340
AccelerometerReadingEventArgs object, 344
access modifiers, 217
Add Existing Item — Content dialog box, 73
adding content, 72
adding items to lists, 294
Add method, 294
algorithms, 37
alpha channel, 104

AND (&8&) logical operator, 111
App Hub community, 6-7, 399
membership levels, 7
registering, 400
arg parameter, 202
arithmetic OR operator, 378
arrays
as lookup tables, 140
bounds, 138
creating, 136
elements, 136
index of elements, 137
one-dimensional, 136-143
reference variable, 149
subscript of elements, 137
artificial intelligence (Al), 297
aspect ratio, 207
aspectRatio variable, 208
assets, 69
asynchronous processes, 351
attract mode, 251
Audacity, 117, 118
audio. See sounds
automatic sign-in, 316
avatars, 311

Back button in Windows Phone, 390
detecting, 390
background music, 123, 128
backgrounds, 272
adding, 246
base class. See parent class
base key word, 276
BaseSprite class, 272
batching up sprite-drawing instructions, 81
battery life in Windows Phone, 376
behaviors, 27
Draw, 27
Update, 27
binding methods, 321
bitmaps, 68
bits, 35, 307
blocks, 23, 52
bodies of methods, 174
Boolean algebra, 37

427

428

bounds of an array

bounds of an array, 138
braces, 23
Bread and Cheese game, 193
break key word, 158
breakpoints, 179, 224

hitting, 180
broadcast addresses, 308
broadcasting video, 310
Button-Bashing Mob game, 107
button positions on gamepads, 110
bytes, 35

C

calling methods, 175

calls, 310

Cannot implicitly convert type error message,

185

casts, 185

CheckCollision method, 258

Cheese Lander game, 339

child classes, 270

classes, 27
abstract, 282
Accelerometer, 340
and references, 267
child, 270
collection, 293
constructors, 286
creating, 265
extending, 273
GamePad, 50
GamePadState, 48
Gamer, 317
Guide, 317
hierarchy, 270
inheritance, 270
instances, 49
MediaPlayer, 128
members, 29
namespaces, 200
parent, 270
protected members, 274
Random, 291
SoundEffectinstance
SpriteBatch, 81
static, 201
TouchPanel, 357
vector, 348
vs. structures, 264

class instances, 285

class members
static, 292

clear method, 24
client-server games
PlayingAsHost state, 326
PlayingAsPlayer state, 326
server behavior, 326
closing curly bracket (}), 23
code design, 239
code regions, 244
code review, 286
cohesion, 254
collection classes, 293
collisions, handling, 222
Color Nerve game, 53
Color Nerve with a Picture game, 85
colors
controlling, 27
setting values, 25
storing values, 24
structures, 24
transparency, 104
comments, 245
compilation errors, 15
compiler directives
using, 199
compiler
casting, 186
conditional compilation, 115
directives, 199
errors, 15
errors vs. warnings, 38
integer division vs. floating-point division,
186
preprocessor, 115
warnings, 38
components, 281-309
computer memory, 31
memory overflow, 35
conditional compilation, 115, 199
conditional statements, 37. See also conditions
else parts, 39
if, 38
connectivity. See networks
constructors, 286
child classes, 288
class hierarchies, 287
structures, 287
container objects, 261
Contains method, 359
content
adding, 72
adding to projects, 72
sounds, 119
content folders, 196

content management, 69
pipeline, 75
content management solution, 12
Content Manager, 12, 197
adding content, 72
sounds, 119
XML file format, 91
control expression, 160
control keys, 54
coordinates, 79
copyright, 118
coupling objects, 257
C# programs, 193-214
Create Directory For Solution check box, 14
Create Directory For Solution option, 70
Createlnstance method
Create method, 321
cropping pictures, 69

D

datagrams, 310
data loss, 185
data types
double, 191
float, 191
date
getting, 95
value, 95
DateTime.Now, 95
DateTime type, 95
Now property, 96
deadly pepper sprite, 275
debugging, 179, 224
breakpoints, 179
declaring a delegate, 322
declaring a variable, 25
delegates, 322
parameters, 322
type-safe, 322
development environment. See Microsoft
Visual Studio 2010 Express Edition for
Windows Phone
directives, 115
DirectX version, 7
displayHeight variable, 206
displaying keys, 153
display overscan, televisions, 211
displayWidth variable, 206
Dispose method, 323
DoAdd method, 322
DoSimpleSum delegate type, 322
double precision floating-point values, 207

fonts

do - while loop construction, 101
Draw method, 23, 27, 76
DrawText method, 93, 234
Dream-Build-Play contest, 8
Drumpad game, 360

Drum Pad project, 117

E

edge detectors, 111
else parts, 39
emulator, 7
encapsulation, 257
enumerated types, 148
erasing saved game files, 398
error list, 38
error messages
Cannot implicitly convert type, 185
type or namespace name could not be found,
200
EventHandler method, 323
events, 321
event generator, 323
exception handlers, 284
exceptions, 78, 398
Existing Item - Content dialog box, 120
Exit method, 54
Express edition
downloading, 6
Windows Phone, 6
expressions, 98
extending classes, 273
Extensible Markup Language (XML), 90
Extract Method dialog box, 240

F

fake 3-D text, 103
fields, 80
files

folders, 195

organizing, 195
filling the screen with a picture, 83
finger control. See touch input
floating-point numbers, 183
floating-point values

double, 207

float, 207
floating-point variables, 191
float type, 183
font files, 88
fonts

adding as resources, 88

429

fonts (continued)

fonts (continued)
drawing with, 92
files, 88
Kootenay, 89
loading, 91
properties, 94
scaling, 94
SprintFont type, 91
sprite font references, 89
vectors, 92
forces, 336
foreach loops, 295
for loops, 99, 156
frameworks, 6
friction, 349
fully qualified names, 200

G

Gamel class, renaming, 203
Gamel.cs file, 198
Game_Activated method, 388
game consoles, 81
Game_Deactivated method, 388
game lobby, 318
Game Over displays, 384
gameOver method, 251
GamePad class, 50
Gamepad Racer game, 60
gamepads

and keyboards, 55

button positions, 110

ButtonState, 52

getting state, 50

reading, 48-53

SetVibration method, 56

thumbsticks, 218

vibration, 56

vibration frequency, 57

vibration motors, 57
GamePadState, 113
GamePadState class, 48
GamePadState structure, 51
Gamer class, 317
gamer profiles, 314

automatic sign-in, 316
GamerServicesComponent, 313
gamertags, 311
games

adding scores, 233

artificial intelligence (Al), 297

attract mode, 251

backgrounds, 246

Escape key, 54

levels, 236

multi-player, 107-116, 307

networked, 307

progression in, 236

selling, 375

sound, 117

state, 247

survival, 235

title screens, 247
GameSpriteStruct variable, 217
GameState variable, 383
game topology, 325

peer to peer, 325

server-client, 326
game world data, 28
garbage collector, 151, 268
generic methods, 77
generics, 293
GetPressedKeys method, 147
GetState method, 50
Giant Clock project, 87
gozzinta operators, 26
graphical objects. See sprites
graphics processor unit (GPU), 81
gravity, 336
greater-than sign (>) operator, 57
Guide class, 317

H

handlelncomingCall method, 387

hardware and driver requirements for XNA, 7
headers for methods, 173
hostSession_GamerJoined method, 323

IDE. See Integrated Development Environment

Microsoft Visual Studio 2010 Express Edition
for Windows Phone, 6

identifiers, 25
changing, 241

if condition, 38

images. See pictures

Implement Abstract Class option, 282

indexes, 137

Indie games, 399

inheritance
child, 270
overriding methods from parent, 273
parent, 270

inheritance of behaviors, 270

Initialize method, 80
inputs
edge-triggered, 146
keyboard, 146
level-sensitive mode, 146
instances, 49
references to, 267
integer variables, 108
Integrated Development Environment, 6
IntelliSense, 84, 245, 344
overriding a method, 276
public override, 276
Intellisense comments, 245
interfaces, 305
C#, 306
creating, 306
designing with, 308
implementing, 307
references to, 307
Internet, 309
calls, 310
datagrams, 310
connections, 310
Internet Protocol (IP), 311
TCP/IP, 311
Transport Control Protocol (TCP), 311
Internet Protocol (IP), 311
Internet service provider (ISP), 309
Intersects method, 222
int variable, 108
IsConnected property, 113
IsDataAvailable property, 328
IsKkeyDown method, 54
IsLooped property
isolated storage in Windows Phone, 393

J

JakeDisplay project, 70
Joint Photographic Experts Group, 68

K

keyboards
and gamepads, 55
control keys, 54
displaying keys, 153
IskeyDown method, 54
KeyboardState, 54
key presses, 146
keyState, 147
Keys type, 147

lock objects

oldKeyState, 147
rollover, 146
uppercase keys, 148
KeyboardState, 54
keys. See also keyboards
arrays, 150
decoding, 160
detecting presses, 155
displaying, 153
GetPressedKeys method, 148
Keys type, 147
lower-case, 161
registering presses, 146
ToLower method, 161
Keys element in an array, 147
Keys type, 147
KeyViewer project, 154
KillerSprite sprite, 290
Kootenay font, 89
sizing, 95

L

learning programming, 3
Length property, 150
level detectors, 111
levels, 236
library projects, 72
life counters, 235
light-emitting diode (LED), 307
linking objects, 257
linking to resources, 74
links, 74
List class, 294
List collections
creating, 293
Remove methods, 296
lists
accessing elements, 294
Add method, 294
foreach loops, 295
references, 293
Remove methods, 296
type, 294
LoadContent method, 76
loadGame method, 392
loading saved games on Windows Phone, 397
Load method, 77, 91
lobby display, 324
local Gamer Profiles, 312
localization, 96
local variables, 28
lock objects, 351

431

432

locks

locks, 351

logical operators, 56
AND (&&), 111
greater-than sign (>), 57

lookup tables using arrays, 140

loop constructions, 99
do - while, 101
for, 101
while, 101
loops
abandoning, 159
break, 158
for, 159
foreach, 295
low-level data types, 269

M

machine instructions, 15
Main method, 199, 202-203
arg parameter, 202
parameters, 202
managing resources, 12
markup languages, 90
Math.Abs method, 348
Math class, 226
Math.Min method, 349
measuring forces, 336
MediaPlayer class, 128
members of classes, 29

memory, garbage collector process, 151

memory overflow, 35

Message Board project, 145, 158

method body, 174
method header, 174
methods, 23
Abs, 226
Add, 294
base key word, 276
body, 174
calling, 175
CheckCollision, 258
Clear, 24
collapsing, 244
constructors, 286
Contains, 359
Createlnstance

Exit, 54
Game_Activated, 388
Game_Deactivated, 388
gameOver, 251

generic, 77
GetPressedKeys, 147
GetState, 50
handlelncomingCall, 387
header, 173

identifiers, 173
inheritance, 273
Initialize, 80

Intersects, 222
IsKeyDown, 54

Load, 77

LoadContent, 76
Math.Abs, 348
Math.Min, 349
parameters, 50
pauseGame, 387
placeholders, 282

Play, 122,128
refactoring using, 240
reference parameters, 221
Remove, 161
resumeGame, 388
return type void, 175
Run, 203

ScaleSprites, 218
SendData, 327
SetVibration, 56
sharing values between, 28
signature, 174
startGame, 251

static, 202

testing, 176
ToLongDateString(), 96
ToLongTimeString(), 96
ToShortDateString(), 96
ToShortTimeString(), 96
ToString(), 96
UnloadContent, 81
Update, 27
updatePlayingGame, 385
value parameters, 221
virtual, 273

WriteLine, 396

Dispose, 323 method signature, 174

DoAdd, 322 Microsoft Cross-Platform Audio Creation Tool
Draw, 27 (XACT), 117

drawText, 234 Microsoft.Devices.Sensors library, 341
DrawText, 93 Microsoft DreamSpark initiative, 8, 400

EventHandler, 323 Microsoft Faculty Connection, 8

Microsoft .NET Framework, 95

Microsoft Paint, 69

Microsoft Visual Studio resource library files,
340

Microsoft Visual Studio 2010 Express Edition for
Windows Phone, 6

starting, 6

Mind Reader game, 59

Mob Reaction Timer game, 131

modifiers, access, 217

Mood Light Controller project, 47

movement. See vectors

moving sprites, 209

mp3 files, 119

MSDN Academic Alliance, 8

multi-player games, 107-116, 307. See
also networked gaming

multiple touches, 363

multitouch, 355

music. See sounds

N

namespaces, 199
fully qualified, 200
narrowing, 185
nesting for loops, 156
nesting loops, 156
networked game state, 318
networked gaming, 307
client behavior, 329
finding games, 325
game lobby, 318
host roles, 320
player roles, 320
server behavior, 326
signing in players, 320
split-screen multi-player mode, 317
System Link, 312
titleScreen state, 320
topology, 325
Xbox Live, 311
networks, 307
addresses, 308
broadcast addresses, 308
destination addresses, 309
encoding messages, 309
Internet Protocol (IP), 311
messages, 309
protocols, 308, 310
routing, 309
streaming media, 310
System Link, 311

parameters

TCP/IP, 311
Transport Control Protocol (TCP), 311
Xbox Live, 311
New Project dialog box, 70
Newton, Isaac, 336
Newton'’s Second Law of Motion, 336
NotSignedIn state, 320
null references, 127

(0

object hierarchies, 270
objects, 253-280
advantages of classes, 270
advantages of structures, 270
cohesion, 254
container, 261
coupling, 257
defined, 254
encapsulation, 257
interaction tables, 260
linkage, 257
managed by reference, 269
managed by value, 269
member privacy, 274
need, 253
object-based design, 254
private data, 255
protecting data in, 255
together, 254
oldKeyState variable, 147
open curly bracket character ({), 23
operands, 34
operators
--, 39
++, 34
== comparison, 40
logical, 56
operands, 34
OR, 55
OrientationChanged events, 378
OR logical operator (||), 55
overflow, 35

P

PacketReader class, 326

PacketWriter class, 326

packet writers, Write method, 327
Paint.NET graphics program, 69, 194, 275
panic button, 356

Pan property, 125

parameters, 50

433

434

parent classes

parent classes
abstract references to, 285
base class, 289
passing value parameters into method calls,
221
pauseGame method, 387
PCs, running XNA games, 7
peer reviewed games, 399
peer to peer game topology, 325
period character (.), 168
Picture Display game, 67
picture mood lights, 86
picture recognition game, 86
pictures. See also sprites
adding to projects, 73
compression, 69
cropping, 69
drawing with transparency, 105
fade-in effect, 105
file types, 68
filling the screen, 83
formats, 68
for Windows Phone display, 68
lossless, 68
Paint.NET program, 69
scaling, 69
textures, 75
transparency, 69
zooming, 167, 188
pipeline, 75
Pitch property
pixels, 79
PlayingAsHost state, 323, 326
PlayingAsPlayer state, 326
Play method, 122, 128
Portable Network Graphics (PNG), 68
position on the screen, 79
preprocessor commands, 115
private fields in structures, 217
profiles, 314
Program.cs source file, 198, 202
programming languages, 5
programs
blocks, 23, 52
comments, 23, 245
debugging, 224
events, 321
methods, 23
sensible layout, 33
starting, 14
statements, 23
stopping, 16
structures, 24

projects, 12

adding content, 72

copying for another device, 17

creating, 12, 70

empty, 15

library, 72

multiple, 17

organizing files, 195

Starter Kits, 12

StartUp, 18

templates, 12

types, 12
project templates, 12
properties, 95, 298

IsConnected, 113

Length, array, 150

Now, 96

ThumbSticks, 218
protected class members, 274
protecting data inside objects, 255
protocols, 308, 310

Internet Protocol (IP), 311

internetwork, 311

local-level, 311

TCP/IP, 311

Transport Control Protocol (TCP), 311
pseudorandom numbers, 291
public fields in structures, 217
public keyword, 217
public override, 276
publishing games in Windows Phone

Marketplace, 8

R

Random class, 291
random sequence of numbers, 293
RayGun effect, 123
ReadingChanged event, 343
Rectangle structure, 80
Rectangle type, 79
refactoring, 240
changing identifiers, 240
creating methods from code, 240
refactoring code, 205
references, 221, 267-269
advantages, 268
disadvantage, 269
lists, 293
multiple to a single class, 267
vs. value types, 269
references to project items, 70
reference types, 149

reference variables, 151, 266
ref modifiers, 221
regions, 244
registering a Windows Phone, 11
Remove method, 161
renaming items, 205

globally, 205

refactoring, 205
renaming the Gamel class, 203
resistive touch screens, 355
resources

adding to projects, 73

fonts, 88

linking, 74

sprites, 79
resumeGame method, 388
return statement, 174
reusing code with projects, 72
roles, 324

host, 324

player, 324

SelectingRole state, 324
routing, 309
Run method, 203
running your first program, 14

S

sample rate of sounds, 118
ScaleSprites method, 218
scaling pictures, 69
scaling text sprites, 94
scores
adding, 233
displaying, 234
screens, getting width, 84
screen timeout on Windows Phone, 380
SDK. See Software Development Kit; See
also XNA SDK
architecture, 6
frameworks, 6
XNA, 5
secure Web sites, 309
selecting a player role, 324
SelectingRole state, 320
selling games, 375
SendData method, 327
Chat parameter, 327
InOrder parameter, 327
None parameter, 327
ReliablelnOrder parameter, 328
Reliable parameter, 328
SetVibration method, 56

sprites

shadows, 104
Shaker game, 335
ShowSignlIn page, 320
Shuffleboard game, 366
SignedinGamers property, 317
Signin method, 317
sizing sprintes, 208
Software Development Kits, 5
Solution Explorer, 71, 341

font items in, 89

New Folder option, 196
solutions

Solution Explorer, 71

vs. projects, 70, 195
SoundEffectinstance class
SoundEffect variable, 121
sounds, 117-130, 302

audio channels, 123

background music, 123, 128

capturing, 118

disk space, 118

format, 118

IsLooped property

longer samples, 128

MediaPlayer class, 129

mp3 files, 119

Pan property, 125

Pitch property, 125

playing, 122

quality, 118

recommended sample rate and resolution,

118

resolution, 118

sample rate, 118

simultaneous, 123

State property, 129

storing, 120

wav files, 118

Windows Media Player, 120

Windows Phone channel limit, 304

wma files, 119
source code, 15
split-screen multi-player mode, 317
SprintFont, 91
SpriteBatch, 77
SpriteBatch class, 81
spriteBatch variable, 81
sprite class hierarchies, 271
sprite font references, 89
sprites, 205

aspect ratios, 207

deadly pepper, 275

display size, 206

435

sprites (continued)

sprites (continued)
managing size, 206
moving, 209
overscan, 211
positioning, 79
random positioning, 290
removing, 231
sizing, 80, 208
structures for information, 216
tinting, 85
visibility. See also visibility
Start button, 108
Start button in Windows Phone, 390
starting new programs, 392
Start Debugging button, 14
Starter Kits, 12
downloading additional, 12
startGame method, 251
starting projects, 12
state, 247
diagram, 249
known good, 398
machines, 249
saving, 394
variable, 248
state diagrams, 382
state machines, 381
creating, 383
Windows Phone, 383
statements, 23
conditional, 37
switch, 160
using, 202
State property, 129
static classes, 201
static class members, 292
static methods, 202, 226
status bar, hiding on Windows Phone, 380
streaming media, 310
Stream objects, 393
streams
Close method, 396
connecting, 394
input/output classes, 395
isolated storage, 394
rawStream, 396
StreamReader, 397
StreamWriter, 396
text, 394
StreamWriter, 396
strings, 96
struct. See structures
structures, 24

constructors, 287

creating, 264

fields, 217

private fields, 217

public fields, 217

sprite information, 216

vs. classes, 264
student developers, 400
subscripts, 137
Super Zoom Out game, 169
SupportedOrientations property, 377
survival, 235
switch statements, 160
System Link, 311, 312

local Gamer Profiles, 312
System namespace, 199, 226

T

TargetElapsedTime property, 376
test-driven development, 176
testing methods, 176
text, 87-106
3-D effect, 99
case, 161
drawing, 92
drawing multiple strings, 97
editing, 161
entry, 145
font properties, 94
newline character, 161
reading input, 145-163
scaling, 94
shadows, 104
strings, 96
vectors, 92
text streams, 394
Texture2D type, 76
texture file not found exception, 78
textures, 75
background, 246
reference, 227
reusing for multiple objects, 262
sizing for Windows Phone, 229
this key word, 259
throw keyword, 398
thumbsticks
ThumbSticks property, 218
values, 218
ThumbSticks property, 218
ticks, 210, 376
time
getting, 95

time (continued)
localization, 96
value, 95
timers, 131-143
timer variable, 131-143
TimeSpan variables, 376
ticks, 376
title screens, 247
titleScreen state, 320
TitleSprite, 272
together objects, 254
ToLongDateString() method, 96
ToLongTimeString() method, 96
ToLower method, 161
ToShortDateString() method, 96
ToShortTimeString() method, 96
ToString method, 154
ToString() method, 96
touch input, 355-373
capacitive touch screens, 355
Contains method, 359
dragging sprites, 367
finger-controlled game objects, 366
multiple touches, 363
multitouch, 355
pinching, 355
TouchLocation items, 356
touch location life cycle, 357
TouchLocation values, 359
TouchPanel objects, 355
TouchLocation items, 356
touch location life cycle, 357
TouchLocation values, 359
TouchPanel class, 357
TouchPanel objects, 355
ToUpper method, 161
transparency, 104
alpha channel, 104
pictures, 105
Transport Control Protocol (TCP), 311
type of a variable, 25
types
DateTime, 95
enumerated, 148
float, 183
managed by reference
value vs. reference, 149
type-safe delegates, 322

U

Undo command, 243
UnloadContent method, 81

void

updateBackground method, 246
Update method, 27, 76
updatePlayingGame method, 385
update rate

effect on battery life, 377

PC and Xbox vs. Windows Phone, 376

TargetElapsedTime property, 376
using directives, 200
using statement, 202

Vv

value types, 149
value variables, 151
variables
array, 136
aspectRatio, 208
bool type, 37
GameSpriteStruct, 217
identifiers, 25
int, 108
keyState, 147
local, 28
oldKeyState, 147
reference, 151, 266
spriteBatch, 81
timer, 131-143
type, 25
value, 151
vector classes, 348
Length method, 348
Vector2 type, 348
vectors
2-D, 92
controlling sounds, 349
friction, 349
Vector2 type, 348
Vector3 data type, 344
velocity, 346
reducing with friction, 349
vibration, 56
low-frequency and high-frequency, 57
virtual methods, 273
visibility
initial state, 230
Visible field, 230
Visual Studio, 6
service packs, 6
versions, 6
Visual Studio 2010 Windows Phone emulator,
10
Visual Studio solution (.sIn) file, 18
void, 175

437

438 WaitingAsPlayer state

wW Xbox 360

connected to TV, 85
Game Library, 17
gamer profiles, 313

WaitingAsPlayer state, 324
warnings, 39
wav files, 118

©) gamepad, 7
wavy blue lines in the compiler, 184 Guide 313
while loop construction, 101 linkiing to XNA Game Studio, 8

Windows Bitmap (BMP), 68
Windows Live ID, 8
Windows Media Player, 120
Windows Phone

networking, 313
running XNA games, 7
storing games, 17

| Xbox gamepads
accelerometer, 335 wired, 7
accelerometer axes, 338 wireless, 7

Back anc! Start buttons, 389 Xbox Live, 311
battery life, 376

capacitive touch screens, 355
connecting to Visual Studio 2010, 11
detecting phone calls, 388

display resolution, 68, 379

hiding status bar, 380 Xbox Live subscriptions, 7

incoming calls, handling, 386 x coordinate values, 79
isolated storage, 393 XML 90

Landscape mode, 377 YNA

loading saved games, 397
memory restrictions, 74
orientation, 338

avatars, 311
Community Games, 8
gamertags, 311
Xbox Live Gamer Tag, 8
Xbox Live Indie Games, 8

development environment, 6
framework, 6
hardware and driver requirements, 7

OrientationChanged event, 378 IDE. 6
orientations, 377 installing on PC, 7
registering, 11 XNA Game Studio

registering devices, 400

saving game state, 392, 394
screen timeout, 380

selecting orientations, 377
setting up to run XNA games, 10
sizing textures for, 229

connecting to Xbox devices, 8
content folders, 196
program files, 198
Solution Explorer, 22
solutions vs. projects, 195
XNA Game Studio Connect application, 7-8

state machine, 381 XNA Game Studio Device Center, 8
storing games, 17 adding an Xbox, 9

streams, 394 . . XNA Game Studio projects. See projects
supported orientations, 377 creating, 12

touch input, 355-373 XNA Indie Games, 399

update rate, 376 XNA workspaces, 17
Xbox Live Games menu, 17

Windows Phone emulator in Visual Studio

2010, 10, 372 Y
Windows Phone Marketplace, 8, 10, 375, 399
workspaces, 195
WriteLine method, 396

y coordinate values, 79

y A
X zooming in on pictures, 167
. . zooming pictures, 188
XACT audio tool. See also Microsoft Cross- Zune, 10

Platform Audio Creation Tool

	Table of Contents

	Acknowledgments
	Introduction
	Who This Book Is For
	System Requirements
	Code Samples
	Errata and Book Support
	We Want to Hear from You
	Stay in Touch

	Chapter 3: Getting Player Input
	Introduction
	Reading a Gamepad
	Gamepads and Classes
	Finding a Gamepad
	Testing the Gamepad Status

	Using the Keyboard
	Stopping the Game with the Escape Key
	Using a Gamepad and a Keyboard at the Same Time

	Adding Vibration
	Controlling the Vibration of a Gamepad
	Testing Intensity Values

	Program Bugs
	Conclusion
	Chapter Review Questions

	Index
	Numbers and Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

