

Windows® Communication
Foundation 4 Step by Step

John Sharp

Copyright © 2010 CM Group Ltd.

Complying with all applicable copyright laws is the responsibility of the user. All rights reserved. Without limiting the

rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or

transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any

Printed and bound in the United States of America.

ISBN: 978-0-735-64556-1

Microsoft, Microsoft Press, ActiveX, Excel, FrontPage, Internet Explorer, PowerPoint, SharePoint, Webdings, Windows,

and Windows 7 are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or

other countries. Other product and company names mentioned herein may be the trademarks of their respective owners.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos,

people, places, and events depicted herein are ¿ctitious, and no association with any real company, organization, prod-

uct, domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any

Production Editor: Kristen Borg

Production Services: Octal Publishing, Inc.

Technical Reviewer: Ashish Ghoda and Kenn Scribner

Indexing: Potomac Indexing, LLC

Cover: Karen Montgomery

Illustrator: Robert Romano

purpose, without express written permission of the publisher.

express, statutory, or implied warranties. Neither the author, Microsoft Corporation, nor their respective resellers

or distributors, will be held liable for any damages caused or alleged to be caused either directly or indirectly by

Acquisitions and Development Editor: Russell Jones

such information.

Third Printing: July 2014 with corrections November 2014

This product is printed digitally on demand.

  iii

Contents at a Glance
Chapter1
IntroducingWindowsCommunicationFoundation                 1
Chapter2
HostingaWCFService  45
Chapter3
MakingApplicationsandServicesRobust  93
Chapter4
ProtectinganEnterpriseWCFService  121
Chapter5
ProtectingaWCFServiceovertheInternet  165
Chapter6
MaintainingServiceContractsandDataContracts               203
Chapter7
MaintainingStateandSequencingOperations                  243
Chapter8
ImplementingServicesbyUsingWorkÁows  295
Chapter9
SupportingTransactions 351
Chapter10
ImplementingReliableSessions  379
Chapter11
ProgrammaticallyControllingtheConÀgurationand

Communications  399
Chapter12
ImplementingOne-WayandAsynchronousOperations          433

iv Contents at a Glance

Chapter13
ImplementingaWCFServiceforGoodPerformance             465
Chapter14
DiscoveringServicesandRoutingMessages  491
Chapter15
BuildingRESTServices  547
Chapter16
UsingaCallbackContracttoPublishandSubscribetoEvents     599
Chapter17
ManagingIdentitywithWindowsCardSpace                    625
Chapter18
IntegratingwithASP.NETClientsandEnterpriseService

Components  647

  v

Table of Contents
Acknowledgments xi

Introduction xiii

1 Introducing Windows Communication Foundation            1
What Is Windows Communication Foundation? 1

The Early Days of Personal Computer Applications                   1
Inter-Process Communications Technologies  2
The Web and Web Services  3
Using XML as a Common Data Format  4
Sending and Receiving Web Service Requests  5
JavaScript Object Notation and Rich Internet Applications             5
Handling Security and Privacy in a Global Environment               6
Service-Oriented Architectures and Windows Communication
Foundation  7

Building a WCF Service  9
DeÀning the Contracts  16
Implementing the Service  18
ConÀguring and Testing the Service  24

Building a WCF Client Application  30
Deploying a WCF Service to Internet Information Services                 39
WCF and the Principles of SOA  42
Summary  43

2 Hosting a WCF Service  45
How Does a WCF Service Work?  45

Service Endpoints 46
Processing a Client Request  47

Hosting a WCF Service by Using Windows Process Activation Service       49
Hosting a Service in a User Application  54

Using the ServiceHost Class  55

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

vi Table of Contents

Building a Windows Presentation Foundation Application to Host a WCF
Service  58

ReconÀguring the Service to Support Multiple Endpoints             72
Understanding Endpoints and Bindings 76

The WCF PredeÀned Bindings  77
ConÀguring Bindings 81
Default Endpoints  82

Hosting a WCF Service in a Windows Service  84
Summary  91

3 Making Applications and Services Robust                   93
CLR Exceptions and SOAP Faults  94

Throwing and Catching a SOAP Fault  94
Using Strongly Typed Faults 99
Reporting Unanticipated Exceptions  110

Managing Exceptions in Service Host Applications  114
ServiceHost States and Transitions  114
Handling Faults in a Host Application  115
Handling Unexpected Messages in a Host Application              116

Summary  119

4 Protecting an Enterprise WCF Service  121
What Is Security?  121

Authentication and Authorization in a Windows Environment        123
Transport-Level and Message-Level Security  124

Implementing Security in a Windows Domain  127
Protecting a TCP Service at the Message Level  127
Protecting an HTTP Service at the Transport Level                  135
Protecting an HTTP Service at the Message Level                   142
Authenticating Windows Users  146
Authorizing Users 152
Using Impersonation to Access Resources  160

Summary  163

5 Protecting a WCF Service over the Internet                 165
Authenticating Users and Services in an Internet Environment            166

Authenticating and Authorizing Users by Using the ASPNET
Membership Provider and the ASPNET Role Provider               166

 Table of Contents vii

Authenticating and Authorizing Users by Using CertiÀcates          184
Authenticating Service Messages by Using a CertiÀcate             195

Summary  202

6 Maintaining Service Contracts and Data Contracts           203
Modifying a Service Contract  204

Selectively Protecting Operations 205
Versioning a Service  211
Making Breaking and Nonbreaking Changes to a Service Contract   222

Modifying a Data Contract 224
Data Contract and Data Member Attributes 224
Data Contract Compatibility  238

Summary  242

7 Maintaining State and Sequencing Operations              243
Managing State in a WCF Service  244

Service Instance Context Modes  257
Maintaining State with the PerCall Instance Context Mode          262
Selectively Controlling Service Instance Deactivation               270

Sequencing Operations in a WCF Service  271
Summary  294

8 Implementing Services by Using WorkÁows                295
Building a Simple WorkÁow Service and Client Application               296

Implementing a WorkÁow Service  296
Implementing a Client Application for a WorkÁow Service           313

Handling Faults in a WorkÁow Service  317
Hosting a WorkÁow Service  325

Hosting a WorkÁow Service in IIS  325
Hosting a WorkÁow Service in a Custom Application               328

Implementing Common Messaging Patterns in a WorkÁow Service        332
Messaging Activities  333
Correlating Request and Reply Messages in a
WorkÁow Service Instance  335
Using Messaging Activities to Implement Messaging
Patterns  336

Managing Sessions and Maintaining State in a WorkÁow Service          337
Building Durable WorkÁow Services  347

Summary  350

viii Table of Contents

9 Supporting Transactions  351
Using Transactions in a WCF Service 352

Implementing OLE Transactions  352
Implementing the WS-AtomicTransaction Protocol                 369

Designing a WCF Service to Support Transactions 371
Transactions, Sessions, and Service Instance Context Modes         371
Transactions and Messaging  372
Transactions and Multi-Threading  372

Implementing Transactions in a WorkÁow Service  373
Long-Running Transactions  376

Summary  377

10 Implementing Reliable Sessions  379
Using Reliable Messaging 380

Implementing Reliable Sessions with WCF  381
Detecting and Handling Replay Attacks  390

ConÀguring Replay Detection with WCF  391
Summary  397

11 Programmatically Controlling
the ConÀguration and Communications                   399

The WCF Service Model  399
Services and Channels 400
Behaviors  401
Composing Channels into Bindings  403
Inspecting Messages  408

Controlling Client Communications  419
Connecting to a Service Programmatically  419
Sending Messages Programmatically 427

Summary  431

12 Implementing One-Way and Asynchronous Operations      433
Implementing One-Way Operations  434

The Effects of a One-Way Operation  434
One-Way Operations and Transactions  435
One-Way Operations and Timeouts 435
Implementing a One-Way Operation 436
Recommendations for Using One-Way Operations                 445

 Table of Contents ix

Invoking and Implementing Operations Asynchronously                 446
Invoking an Operation Asynchronously in a Client Application       446
Implementing an Operation Asynchronously in a WCF Service       447

Using Message Queues 457
Summary  464

13 Implementing a WCF Service for Good Performance         465
Using Service Throttling to Control Resource Use  466

ConÀguring Service Throttling  467
Specifying Memory Requirements  475

Transmitting Data by Using MTOM  476
Sending Large Binary Data Objects to a Client Application          478
Controlling the Size of Messages  484

Streaming Data from a WCF Service 487
Enabling Streaming in a WCF Service and Client Application         487
Designing Operations to Support Streaming  488
Security Implications of Streaming  490

Summary  490

14 Discovering Services and Routing Messages                491
Implementing Discovery  491

ConÀguring Ad Hoc Discovery  492
Handling Service Announcements  499
Using a Discovery Proxy  507

Implementing Routing  523
Routing Messages Manually  524

Using the RoutingService Class  539
Summary  546

15 Building REST Services  547
Understanding the REST Model  547
Querying Data by Implementing a REST Web Service                    549
Updating Data Through a REST Web Service  570
Using WCF Data Services  579

Consuming a WCF Data Service in a Client Application              587
Modifying Data by Using a WCF Data Service  595
Handling Exceptions in a Client Application  597

Summary  598

x Table of Contents

16 Using a Callback Contract to Publish and Subscribe to Events 599
Implementing and Invoking a Client Callback  600

DeÀning a Callback Contract  600
Implementing an Operation in a Callback Contract                 601
Invoking an Operation in a Callback Contract  604
Reentrancy and Threading in a Callback Operation                 605
Bindings and Duplex Channels  606

Using a Callback Contract to Notify a Client of the Outcome of a
One-Way Operation  606
Using a Callback Contract to Implement an Eventing Mechanism          614

Delivery Models for Publishing and Subscribing                    620
Summary  623

17 Managing Identity with Windows CardSpace               625
Using Windows CardSpace to Access a WCF Service 626

Implementing Claims-Based Security 626
Using an Identity Provider  641
Claims-Based Authentication in a Federated Environment           643

Summary  646

18 Integrating with ASPNET Clients and Enterprise Services
Components  647

Creating a WCF Service That Supports an ASPNET Client                 647
Exposing a COM+ Application as a WCF Service  657
Summary  668

Index  669

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

xi

Acknowledgments
On the back cover of his book, “Dirk Gently’s Holistic Detective Agency,” Douglas Adams
depicts an invoice presented by Mr Gently to his client for attempting to Ànd her missing cat
It contains the following items:

Item Charge

Finding cat (deceased) £5000

Detecting and triangulating vectors of interconnectedness of all things £15000

Tracing same to beach on Bahamas, fare and accommodation £150000

Struggling on in face of draining skepticism from client, drinks £32700

Saving the human race from total extinction No charge

Douglas Adams’s book was published in 1987, but 23 years later I Ànd myself empathizing
with Dirk Gently Happily, my own beloved feline, Ginger, is still very much with us, but in
common with many service-oriented developers these days, I spend more and more time
searching for solutions that enable me to connect all things together Clearly, my home ofÀce
is not quite a beach on the Bahamas, but I do admit to enjoying a decent amount of time
sunning myself in the stands at Edgbaston (the home of Warwickshire County Cricket Club)
watching batsmen attempting to endanger workmen building the new pavilion with lofted
drives over the boundary, while I contemplate how to conÀgure pieces of software to get
them to interoperate and communicate correctly My wife is always a little skeptical of how
our jaunts to see how Warwickshire fares against other county cricket teams amounts to
“work,” but she enjoys the cricket as much as I do, so she does not complain

In the world of connected solutions, Microsoft Windows Communication Foundation has
proved an absolute boon, and although I am yet to be convinced that it has saved the human
race from extinction, I have authored papers and even produced a video on how using WCF
can help to save your organization (this may be hyperbole, but you know what we technophiles
are like when we desperately want to convince management of the need to invest in new
software and machinery!) To this end, I always count it an absolute privilege whenever I get
the chance to write in depth about fun, new technology; as I mentioned in the previous edition
of this book, I thank all at Content Master for allowing me to spend a signiÀcant amount of
my time doing it

It would also be very remiss of me not to thank Russell Jones at O’Reilly Media, who badg-
ered me and patiently waited while I found the time to get started on this project as well as
for all his support and help in editing and correcting my grammar during the initial drafts of
each chapter, and to Bob Russell at Octal Publishing, who had the unrewarding job of hav-
ing to wade through every chapter seeking out any remaining “British-isms” Additionally,

xii Acknowledgments

sincere thanks are due to Ashish Ghoda and Kenn Scribner who took on the daunting task of
checking the technical accuracy of my work and who provided valuable advice, guidance, and
corrections whenever I was wrong (any remaining technical errors in the book are my own,
of course) Also, thanks to Lin Joyner at Content Master, who expended a signiÀcant effort at
great personal risk to her own sanity, for agreeing to test many of the exercises for me

Finally, I must pay the greatest tribute to my long-suffering family: to Diana, my wife and
fellow cricket-watcher, who is never short of advice when seeing a batsman struggle against a
short-pitched delivery (“Just hit the ball!”); to James who grew up and left home to go to uni-
versity while I was writing Chapter 17; and to Francesca who has learned from my wife what it
takes to make a truly excellent cup of tea

And to Ginger—please stop trying to walk across my keyboard as I type

—John Sharp

xiii

Introduction
Microsoft Windows Communication Foundation (WCF), alongside Windows WorkÁow Foun-
dation (WF) and Windows Presentation Foundation (WPF), has become part of the primary
framework for building the next wave of business applications for the Microsoft Windows
operating system WCF provides the underpinning technology driving distributed solutions
based on the Microsoft platform; with it, you can build powerful service-oriented systems
designed to address connected services and applications WCF is also an integral technology
for building and accessing services running in the cloud under Windows Azure

You can use WCF to create new services as well as augment and interoperate with many exist-
ing services created by using other technologies When designing distributed applications in
the past, you frequently had to choose a speciÀc technology, such as Web services, COM+,
Microsoft Message Queue, or NET Framework Remoting That choice often had a fundamen-
tal impact on the architecture of your solutions In contrast, WCF provides a consistent model
for implementing scalable and extensible systems that employ a variety of technologies with
which you can design and architect your solutions without being restricted by a speciÀc con-
nectivity mechanism

In short, if you are building professional, service-oriented solutions for Windows, you need to
learn about WCF

WhoThisBookIsFor
This book will show you how to build connected applications and services using WCF If you
are involved in designing, building, or deploying applications for the Microsoft Windows
operating system, sooner or later you are going to need to become familiar with WCF This
book will give you the initial boost you need to quickly learn many of the techniques required
to create systems based on WCF The book takes a pragmatic approach, covering the concepts
and details necessary to enable you to build connected solutions

Assumptions
To get the most from this book, you should meet the following proÀle:

■ You should be an architect, designer, or developer who will be creating solutions for
the Microsoft Windows family of operating systems

■ You should have experience developing applications using Visual Studio and C#

■ You should have a basic understanding of concepts such as transactions, Web services,
security, and message queuing

xiv Introduction

FindingYourBestStartingPointinThisBook
This book is designed to help you build skills in a number of essential areas It assumes that
you are new to WCF and takes you step by step through the fundamental concepts of WCF,
feature by feature The techniques and ideas that you see in one chapter are extended by
those in subsequent chapters; therefore, most readers should follow the chapters in sequence
and perform each of the exercises However, if you have speciÀc requirements or are only
interested in certain aspects of WCF, you can use the table below to Ànd your best route
through this book

If you are Follow these steps

New to Web services and distributed appli-
cations and need to gain a basic under-
standing of WCF

1 Install the code samples as described in the “Code
Samples” section of this Introduction

2 Work through Chapters 1 to 5 sequentially and per-
form the exercises

3 Complete Chapters 6 to 18 as your level of experi-
ence and interest dictates

New to Web services and distributed appli-
cations and need to learn how to use WCF
to implement solutions using common Web
services features such as sessions, transac-
tions, and reliable messaging

1 Install the code samples as described in the “Code
Samples” section of this Introduction

2 Work through Chapters 1 to 10 sequentially and
perform the exercises

3 Complete Chapters 11 to 18 as your level of experi-
ence and interest dictates

Familiar with Web services and distributed
applications, and need to learn about WCF
quickly, including its advanced features

1 Install the code samples as described in the “Code
Samples” section of this Introduction

2 Skim the Àrst chapter for an overview of WCF, but
perform the exercises

3 Read Chapter 2 and perform the exercises
4 Skim Chapter 3
5 Read Chapters 4 and 5 and complete the exercises
6 Skim Chapters 6 to 10, performing the exercises that

interest you
7 Complete the remaining chapters and exercises

Familiar with security concepts but need to
understand how to use the security features
that WCF provides

1 Install the code samples as described in the “Code
Samples” section of this Introduction

2 Skim the Àrst three chapters
3 Read Chapters 4 and 5 and perform the exercises
4 Skim Chapters 6 to 15
5 Read Chapter 17 and complete the exercises
6 Skim Chapter 18

 Introduction xv

If you are Follow these steps

Referencing the book after working
through the exercises

1 Use the index or the Table of Contents to Ànd infor-
mation about particular subjects

2 Read the Summary sections at the end of each chap-
ter to Ànd a brief review of the concepts and tech-
niques presented in the chapter

ConventionsandFeaturesinThisBook
This book presents information using conventions designed to make the information readable
and easy to follow Before you start, read the following list, which explains conventions you’ll
see throughout the book and points out helpful features that you might want to use:

■ Each exercise is a series of tasks Each task is presented as a series of numbered steps
(1, 2, 3, and so on) A bullet () indicates an exercise that has only one step

■ Reader aids labeled “Note” and “Tip” provide additional information or alternative
methods for completing a step successfully

■ Reader aids labeled “Important” alert you to information you need to check before
continuing

■ Text that you type appears in bold

■ A plus sign (+) between two key names means that you must press those keys at the
same time For example, “Press Alt+Tab” means that you hold down the Alt key while
you press the Tab key

SystemRequirements
You’ll need the following hardware and software to complete the practice exercises in this
book:

■ Microsoft Windows 7 Professional, Enterprise, or Ultimate editions

Note Some of the exercises require you to create local users and security groups This fea-
ture is not available with Windows 7 Home Basic or Home Premium editions

■ Microsoft Visual Studio 2010 Professional, Premium, Ultimate, or Test Professional
editions, including SQL Server 2008 Express

xvi Introduction

Note The exercises in this book are not intended to work with Visual Studio 2010 Express
edition

■ 16 GHz or faster 32-bit (x86) or 64-bit (x64) processor

■ 1 GB RAM (32-bit) or 2 GB RAM (64-bit)

■ 20 GB available hard disk space (32-bit) or 25 GB (64-bit)

■ DirectX 9 graphics device with WDDM 10 or higher driver

■ Microsoft mouse (or compatible) pointing device

Some of the exercises require that you have installed Internet Information Services (IIS) and
Message Queuing (MSMQ) You will also need the AdventureWorks database provided with
the code samples for this book Download and installation instructions are provided later in
this introduction

Important If you have other tools or services that establish network connections, you may
need to temporarily halt them if they use the same ports required by the exercises in this
book (alternatively, you can replace the port numbers referenced by the exercises with
others of your own choice) For example, some of the exercises reference port 8080 If you
have the Apache Web server running on your development computer, it defaults to using
port 8080, so you may need to halt or reconÀgure this service

CodeSamples
Follow these steps to download and install the code samples and other companion content
on your computer so that you can use them with the exercises:





You’ll see instructions for downloading the zip archive containing the companion con-
tent Àles

 3. Unpack the zip archive into your Documents folder This action creates the following
folder containing the exercise and solution Àles for each chapter:

Microsoft Press\WCF Step By Step

1. Navigate to http://aka.ms/645561/files.

2. Click the Downloads tab

 Introduction xvii

Installing and ConÀguring Internet Information Services and
Microsoft Message Queue
Many of the exercises in this book require you to build WCF services hosted by using Internet
Information Services (IIS) You must make sure that you have installed and conÀgured IIS on
your computer, and you must have installed ASPNET version 40 with IIS Additionally, some
exercises use Microsoft Message Queue (MSMQ) as the transport for connecting client appli-
cations to services, so you must also install the MSMQ Server Core The following instructions
describe how to do this Note that you require administrative access to your computer to
install and conÀgure IIS and MSMQ

 1. Log on to Windows as an account that has Administrator access

 2. On the Windows Start menu, click Control Panel, and then click Programs In the
Programs pane, under Programs And Features, click Turn Windows Features On Or Off

 3. In the Windows Features dialog box, expand Internet Information Services, and then
select the following features:

■❏ Web Management Tools | IIS Management Console

■❏ Web Management Tools | IIS 6 Management Compatibility | IIS 6 Metabase and
IIS 6 ConÀguration Compatibility

■❏ World Wide Web Services | Application Development Features | ASPNET (this will
also select NET Extensibility, ISAPI Extensions, and ISAPI Filters)

■❏ World Wide Web Services | Common Http Features | Directory Browsing (Default
Document should already be selected)

■❏ World Wide Web Services | Security | Basic Authentication and World Wide Web
Services | Security | Windows Authentication (Request Filtering should already be
selected)

 4. Expand Microsoft Message Queue (MSMQ) Server, and then select Microsoft Message
Queue (MSMQ) Server Core (do not select the individual items in the Microsoft
Message Queue (MSMQ) Server Core folder)

 5. Click OK, and then wait for the features to be installed and conÀgured

xviii Introduction

Installing ASPNET Version 40
The exercises in this book rely on ASPNET Version 40 being installed and conÀgured with IIS
To do this, perform the following tasks:

 1. On the Windows Start menu, click All Programs, click Microsoft Visual Studio 2010, click
Visual Studio Tools, right-click Visual Studio Command Prompt (2010), and then click
Run As Administrator In the User Account Control dialog box, click Yes

 2. In the Visual Studio Command Prompt window, type the following command:

aspnet_regiis –iru

 3. When the command has completed, leave the Visual Studio Command Prompt window
open; you will use it again after installing the AdventureWorks database

Installing and ConÀguring the AdventureWorks Database
The exercises and examples in this book make use of the AdventureWorks sample database
If you don’t already have this database installed on your computer, a copy of the database
installation program is supplied with the companion content for this book Follow these steps
to install and conÀgure the database:

 1. Log on to Windows as an account that has administrator access if you have not already
done so

 2. Verify that the SQL Server (SQLEXPRESS) service is running

Tip Start the SQL ConÀguration Manager utility in the ConÀguration Tools folder, located
in the Microsoft SQL Server 2008 program group In the left pane, click SQL Server Services
In the right pane, examine the status of the SQL Server (SQLEXPRESS) service If the status is
Stopped, right-click the service, and then click Start Wait for the status to change to Run-
ning, and then close SQL ConÀguration Manager

 3. Using Windows Explorer, move to the Microsoft Press\WCF Step By Step\Setup folder
located within your Documents folder

 4. Double-click the Àle AdventureWorks2008_SR4exe If the User Account Control dialog
box appears, click Yes

 5. Wait while the WinZip Self-Extractor tool unzips the installation program

 6. When the SQL Server 2008R2 Database Installer dialog box appears, read the license
agreement If you agree with the license terms, select the I Accept The License Terms
check box, and then click Next

 Introduction xix

 7. On the AdventureWorks 2008 Community Sample Database SR4 page, set the
Installation Instance to SQLEXPRESS, select the AdventureWorks OLTP database, deselect
all other databases, and then click Install

Note Make sure that you select the AdventureWorks OLTP database and not Adventure-
Works OLTP 2008 Depending on how you have conÀgured SQL Server, not all databases
will be available anyway, and you may see a warning icon against some of these databases
You can ignore these warnings because these databases are not required

 8. On the Installation Execution page, wait while the database is installed and conÀgured,
and then click Finish

 8. Return to the Visual Studio Command Prompt window running as Administrator in the
Microsoft Press\WCF Step By Step\Setup folder

 9. Type the following command:

osql –E –S .\SQLEXPRESS –i aspnet.sql

This command should complete without any errors (it will display a series of prompts,
“1> 2> 1> 2> 1> 2> 1> 1> 2> 1> 2> 1>”)

Note The script aspnetsql creates user accounts for the DefaultAppPool and ASPNET v40
applications pools used by IIS and grants these accounts access to the AdventureWorks
database

 10. Close the Visual Studio Command Prompt window

Using the Code Samples
Each chapter in this book explains when and how to use any code samples for that chapter
When it’s time to use a code sample, the book will list the instructions for how to open the
Àles The chapters are built around scenarios that simulate real programming projects, so you
can easily apply the skills you learn to your own work

For those of you who like to know all the details, following is a list of the code sample, Visual
Studio projects, and solutions, grouped by the folders where you can Ànd them

Important Many of the exercises require administrative access to your computer Make sure you
perform the exercises using an account that has this level of access

xx Introduction

Solution Folder Description

Chapter 1

Completed\ProductsService This solution gets you started Creating the ProductsService project
leads you through the process of building a simple WCF service
hosted by IIS You can use the service to query and update product
information in the AdventureWorks database
The ProductsClient project is a console-based WCF client applica-
tion that connects to the ProductsService service You use this
project for testing the WCF service

Chapter 2

ProductsClient This solution is the starting point for the exercises in this chapter
It contains a copy of the completed client application from
Chapter 1

Completed\ProductsClient This solution contains a version of the client application that con-
nects to the ProductsService service by using a TCP connection

Completed\HostedProducts
ServiceHost

This solution contains Windows Presentation Foundation applica-
tion that provides a host environment for the ProductsService service
You use this application to manually start and stop the service
You conÀgure the ProductsClient application to connect to the ser-
vice hosted by this application by using an HTTP endpoint

Completed\WindowsProduct
Service

This solution contains a Windows Service that hosts the Products
Service service You can start and stop the service from the Services
applet in the Windows Control Panel
You reconÀgure the ProductsClient application to connect to this
service by using an endpoint based on the Named Pipe transport

Chapter 3

ProductsServiceFault This solution contains a copy of the ProductsServiceLibrary, Products
ServiceHost, and ProductsClient applications from Chapter 2 It is
used as a starting point for the exercises in this chapter

Completed\UntypedProducts
ServiceFault

The ProductsService service in this solution traps exceptions and
reports them back to the client application as untyped SOAP faults,
which are caught and handled by the ProductsClient application

Completed\StronglyTyped
ProductsServiceFault

The ProductsService service in this solution reports exceptions as
typed SOAP faults, deÀned by using fault contracts The Products
Client application catches these strongly typed SOAP faults as
exceptions

Chapter 4

ProductsService This solution contains three projects: the ProductsService ser-
vice, the ProductsServiceHost application, and the ProductsClient
These projects are conÀgured to catch and handle SOAP faults, as
described in Chapter 3 This solution forms the starting point for
the exercises in this chapter

 Introduction xxi

Solution Folder Description

Chapter 4 (continued)

Completed\NetTcpProducts
ServiceWithMessageLevelSecurity

This solution contains an implementation of the ProductsService
service, the ProductsServiceHost application, and the Products
Client applications that applies message-level security over a TCP
binding

Completed\BasicHttpProducts
ServiceWithTransportLevel
Security

This solution shows how to implement transport-level security over
an HTTP binding

Completed\WS2007Http
ProductsServiceWithMessage
LevelSecurity

This version of the solution contains a host that implements
message-level security over an HTTP binding

Completed\ProductsService
WithBasicAuthentication

This solution contains a version of the ProductsService service that
implements basic authentication and displays the name of the user
calling the ListProducts operations The client application explicitly
provides the name and password of the user connecting to the
service

Completed\ProductsService
WithWindowsAuthentication

This solution is similar to the previous one, except that the Products
Service service implements Windows authentication The creden-
tials for the client application are picked up from the user’s login
session

Completed\ProductsService
WithAuthorization

The ProductsService service in this solution authorizes users accord-
ing to the Windows security group to which they belong Users
that do not belong to a speciÀed security group are denied access
when they attempt to invoke operations

Chapter 5

ProductsClient This folder contains a copy of the client application that is used for
testing the various conÀgurations of the InternetProductsService
service in this chapter

Completed\ASPNETMembership This solution contains the InternetProductsService service that is
deployed to IIS and authenticates users by using the ASPNET Role
Provider rather than Windows security groups

Completed\ASPNETMemberShip
UsingCertiÀcates

The InternetProductsService service in this solution uses the ASP
NET Role Provider in conjunction with certiÀcates to authenticate
users

Completed\MutualAuthentication
UsingCertiÀcates

The InternetProductsService service in this solution uses a certiÀcate
to authenticate itself to the client application

Chapter 6

ProductsService This solution contains an amended copy of the ProductsClient,
ProductsServiceLibray, and ProductsServiceHost projects from
Chapter 4 The service implements message-level security and
authenticates users by using Windows tokens This solution is used
as the starting point for the exercises in this chapter

xxii Introduction

Solution Folder Description

Chapter 6 (continued)

ProductsServiceWithVersioned
ServiceContract

This solution contains an implementation of the ProductsService
service and a client application that provides these two versions of
the service contract It is used by some of the exercises in the sec-
ond part of the chapter

Completed\ProductsService
WithProtectedOperations

This solution contains a version of the ProductsService service in
which client applications are required to encrypt and sign request
messages for some operations, but only sign requests for others
The proxy class in the ProductsClient application has been updated
to encrypt and sign, or just sign messages, as appropriate The
purpose of this solution is to show how changing security require-
ments for operations can break a service contract

Completed\ProductsService
WithAdditionalBusinessLogic

The ProductsService service in this solution contains additional
methods However, because these methods implement internal
logic for the service and are not exposed as part of the service
contract, they do not require that existing client applications are
updated

Completed\ProductsService
WithModiÀedServiceContract

This solution contains a version of the ProductsService service with
an additional operation and a modiÀed service contract The client
application has not been updated, but it still works although it can-
not invoke the new operation

Completed\ProductsService
WithVersionedServiceContract

The ProductsService service in this solution exposes two versions of
the service contract, enabling existing client applications to use the
old contract while exposing the additional operation to new client
applications

Completed\ProductsServiceWith
AdditionalFieldsInDataContract

This solution shows the effects that modifying a data contract can
have on client applications and how you can implement a data
contract that supports clients expecting different versions of a data
contract

Chapter 7

Completed\ShoppingCart This solution contains a completed version of the initial Shopping
CartService service that implements shopping cart functionality
and a client application that exercises this functionality This solu-
tion is used as the basis for subsequent exercises in this chapter

Completed\
ShoppingCartContextModes

The ShoppingCartService service in this solution demonstrates the
use of the Single instance context mode

Completed\ShoppingCartWith
State

The ShoppingCartService service in this solution uses the PerCall
instance context mode and contains code that saves the instance
state to XML Àles

Completed\ShoppingCart
WIthSequencedOperations

This solution shows how to control the sequence in which a client
application can invoke operations and control the lifetime of a
session

 Introduction xxiii

Solution Folder Description

Chapter 7 (continued)

DurableShoppingCart This solution contains a version of the ShoppingCartService service
that implements the PerSession instance context mode The solu-
tion also contains a GUI client application called Shopping
CartGUIClient This solution is used by exercises that convert the
ShoppingCartService service into a durable service

Completed\DurableShoppingCart This solution contains a completed implementation of the durable
version of ShoppingCartService service

Chapter 8

Completed\ProductsWorkÁow This solution contains a workÁow service called ProductsWork
ÁowService that retrieves the details of a speciÀed product The
solution also includes a basic console client application to test
the service

Completed\ProductsWorkÁow
WithFaultHandling

The ProductsWorkÁowService service in this solution shows how
to catch exceptions in a service and send SOAP faults to a client
application

ProductsClient This version of the client application for the ProductsWorkÁow
Service service that generates SOAP faults

Completed\ProductsWorkÁow
WithIISDeployment

This solution shows how to deploy the ProductsWorkÁowService
service to IIS

Completed\ProductsWorkÁow
WithCustomHost

This solution demonstrates how to create a custom host applica-
tion for a workÁow service

Completed\ShoppingCartService This solution contains a completed version of the ShoppingCart
Service service implemented as a workÁow service

ShoppingCartGUIClient This is a copy of the ShoppingCartGUIClient developed in Chapter 7
It is used to test the workÁow version of the ShoppingCartService
service

Completed\ShoppingCartWith
HostAndClient

This solution contains a complete version of the workÁow version
of the ShoppingCartService service, hosted in a custom host appli-
cation and accessed from the ShoppingCartGUIClient application

Completed\DurableShopping
CartWithHostAndClient

This solution demonstrates how to implement a workÁow service
as a durable service

Chapter 9

ShoppingCartService This solution contains a copy of the non-durable ShoppingCart
Service, ShoppingCartServiceHost, and ShoppingCartClient proj-
ects from Chapter 7 It is used as the starting point for the exercises
in this chapter

xxiv Introduction

Solution Folder Description

Chapter 9 (continued)

Completed\ShoppingCartService This solution contains a version of the ShoppingCartService service
that uses transactions to maintain database integrity The client
application initiates the transactions

ProductsWorkÁow This solution shows how to implement transactions in a workÁow
service It is based on the ProductsWorkÁowService from Chapter 8
The client application is also based on a workÁow

Chapter 10

ShoppingCartService This solution contains a completed version of the Shopping
CartService, ShoppingCartHost, and ShoppingCartClient applica-
tions from Chapter 9 It is used as the starting point for the exer-
cises in this chapter

Completed\ShoppingCartService This solution shows how to conÀgure the ShoppingCartService
service and ShoppingCartClient application to implement reliable
sessions You run the client application and use the WCF Service
Trace Viewer utility to examine the messages passing between the
client application and service

Completed\ShoppingCart
ServiceWithReplayDetection

This solution implements a custom binding for the Shopping
CartService service and ShoppingCartClient applications to support
the secure conversation protocol and provide automatic message
replay detection

Chapter 11

ShoppingCartService This solution contains a copy of the completed ShoppingCart
Service and ShoppingCartClient projects from Chapter 10 The
binding and endpoint conÀguration has been removed from the
ShoppingCartHost project In the exercises in this chapter, you
implement these items in code rather than by providing them in a
conÀguration Àle

Completed\ShoppingCartService This solution contains an implementation of the ShoppingCartHost
application that programmatically creates a custom binding rather
than using one of the WCF predeÀned bindings

Completed\ShoppingCart
ServiceWithMessageInspector

This solution shows how to create a custom service behavior with
which you can inspect request messages sent to the service and
response messages that it sends back to client applications

ProductsService This solution contains a copy of the ProductsService service from
Chapter 6 The code and conÀguration information in the client
that connects to the service and sends request messages has been
removed You add code that performs these tasks programmati-
cally in the exercises in this chapter

Completed\ProductsService This solution contains a completed version of the ProductsClient
application The client application connects to the service by creat-
ing a binding and a channel programmatically rather than using a
generated proxy class

 Introduction xxv

Solution Folder Description

Chapter 11 (continued)

ProductsServiceWithManualProxy This solution shows how to inherit from the ClientBase generic
abstract class to implement a proxy class that enables a client
application to authenticate itself to the service

SimpleProductsService This solution contains a stripped down version of the Products
Service service and client application You add code to the client
application to connect to the service by creating a binding and a
channel and then manually create and send a SOAP message to
the service

Completed\SimpleProducts
Service

This solution contains a completed version of the client application
that manually creates and sends a SOAP message to the service It
receives the response also as a SOAP message

Chapter 12

Completed\OneWay This solution contains a new service called AdventureWorksAdmin
The AdventureWorksAdmin service exposes an operation that can
take signiÀcant time to run It demonstrates how to implement this
operation as a one-way operation You also use this solution to
understand the circumstances under which a one-way operation
call can block a client application and how to resolve this blocking

Completed\Async This solution contains a version of the AdventureWorksAdmin service
that implements an operation that can execute asynchronously

MSMQ This solution contains a copy of the AdventureWorksAdmin service
that acts as the starting point for the exercises that demonstrate
how to use MSMQ as the transport for a WCF service

Completed\MSMQ This version of the solution contains a completed implementation
of the AdventureWorksAdmin service that uses a message queue to
receive messages from client applications You run the client appli-
cation and service at different times and verify that messages sent
by the client application are queued and received when the service
runs

Chapter 13

Throttling This solution contains a simpliÀed, non-transactional version of the
ShoppingCartService service and an extended version of the client
application that simulates multiple users connecting to the service
This solution provides the starting point for the exercises showing
how to implement throttling

Completed\Throttling This solution contains the completed version of the Shopping
CartService service You use this service to test the way in which
you can conÀgure WCF to conserve resources during periods of
heavy load

xxvi Introduction

Solution Folder Description

Chapter 13 (continued)

MTOM This solution contains a service called ShoppingCartPhotoService
that retrieves photographic images of products from the Adventure
Works database The solution also contains a basic WPF client
application that displays images sent by the server You use this
solution to examine how a WCF service transmits messages con-
taining large amounts of binary data

Completed\MTOM This version of the service encodes the binary data constituting
the image by using the Message Transmission Optimization Mech-
anism (MTOM) You use this solution to generate message traces
that you examine so you can see how the messages are encoded

Streaming This solution contains a version of the ShoppingCartPhotoService
that uses streaming to send the image data to the client applica-
tion rather than MTOM

Chapter 14

ProductsService This solution contains a copy of the ProductsService service hosted
by the ASPNET Development Web Server, and client application
that connects to this service This solution is used as the start-
ing point for the exercises that show how to implement service
discovery

Completed\ProductsServiceWith
AdHocDiscovery

The ProductsService service in this solution implements ad hoc
discovery It is deployed to IIS The client application is modiÀed
to broadcast a discovery request and retrieve the address of the
ProductsService service

Completed\ProductsServiceWith
Announcements

In this version of the solution, the ProductsService service sends
announcement messages when it starts up and shuts down The
client application listens for service announcements and caches
the URLs of services as they come on-line When the client appli-
cation sends a request, it looks up the URL of the service in this
cache

Completed\ProductsServiceWith
ManagedDiscovery

This solution shows how to implement a discovery proxy The
ProductsService service sends announcement messages, and the
discovery proxy listens for these messages and caches the URLs of
services as they come on-line The client application is modiÀed
to retrieve the address of the ProductsService from the discovery
proxy

LoadBalancingRouter This solution contains an amended copy of the durable Shopping
CartService, ShoppingCartServiceHost, and ShoppingCartGUIClient
from Chapter 7 It is used as the basis for the exercises that show
how to implement routing inside a WCF service

Completed\LoadBalancing
Router

This solution contains a WCF service called ShoppingCartService
Router that acts as a load-balancing router for two instances of
the ShoppingCartService service The client application connects
to the router, which transparently redirects requests to one instance
or the other of the ShoppingCartService service

 Introduction xxvii

Solution Folder Description

Chapter 14 (continued)

ShoppingCartServiceWithRouter This solution contains another copy of the durable Shopping
CartService, ShoppingCartServiceHost, and ShoppingCartGUI
Client from Chapter 7, except that the host application is precon-
Àgured with two HTTP endpoints This solution provides the start-
ing point for the exercises that show how to implement a WCF
routing service

Completed\ShoppingCartService
WithRouter

This solution contains a completed implementation of the WCF
routing service

MessageInspector This solution contains a version of the MessageInspector behavior
created in Chapter 11 It is used to test the routing service in the
ShoppingCartServiceWithRouter project by displaying the details
of messages as they are received by the ShoppingCartHost project

Chapter 15

Completed\ProductsSales This solution contains a REST Web service called ProductsSales
Service, host, and client application that provides access to sales
information The client application tests the ProductsSalesService
service by sending requests that query the details of orders and
customers

Completed\ProductsSales
WithUpdates

This solution contains an updated version of the ProductsSales
Service service that supports insert, update, and delete operations
The client application is extended to test this functionality

Completed\SalesData This solution contains a REST Web service called SalesData that
also provides access to customer and order information This ser-
vice is implemented by using the WCF Data Services template The
SalesDataClient application in this solution uses the client library
for the service to connect and send requests to the service

Chapter 16

ProductsServiceV3 This solution contains another version of the ProductsService ser-
vice that provides an additional operation that updates the price
of a product The solution also contains a host application, and a
client application for testing the service

Completed\ProductsServiceV3 In this solution, the ProductsService service implements a callback
contract The operation that changes the price of a product is
reconÀgured as a one way operation, and the callback contract
enables the service to asynchronously notify the client application
of the result of the operation when it has completed

Completed\ProductsServiceV3
WithEvents

This version of the ProductsService service implements an event-
ing mechanism Instances of the client applications subscribe to an
event, and the service uses a callback contract to notify each sub-
scribing client when the event occurs

xxviii Introduction

Solution Folder Description

Chapter 17

ShoppingCartService This solution contains a completed version of the ShoppingCart
Service service, host, and client applications from Chapter 10 It is
used as the starting point for the exercises in this chapter

Completed\ShoppingCartService The ShoppingCartService service in this solution implements
claims-based security The client application uses Windows Card-
Space to manage user credentials and send claims information to
the service The service uses veriÀed claims to authorize access to
users

Chapter 18

ASPNETService This solution contains a legacy ASPNET Web site called ASPNET
ProductsService This Web site provides an ASPNET Web service
The solution also contains a client application that connects to this
Web service Both applications were developed by using the NET
Framework 20 The service is used as the basis for exercises that
show how to migrate an ASPNET Web service to WCF and the NET
Framework 40

ProductsServiceHost This project contains the host application for the WCF service that
implements the functionality migrated from the ASPNETService
Web service

Completed\ASPNETService This solution is a version of the ASPNETProductsService service that
has been migrated to WCF, together with the host and client appli-
cations The code in the client application has not changed, and
connects to WCF service in exactly the same way as it did to the
original ASPNET Web service

Products This solution contains a legacy COM+ application that you conÀg-
ure to appear to client applications as a WCF service

ProductsClient This solution contains an incomplete copy of the ProductsClient
application for testing the Products COM+ application by connect-
ing to it as though it was a WCF service You Ànish this application
during the exercises in this chapter

Completed\ProductsClient This solution contains the completed version of the ProductsClient
application

Uninstalling the Code Samples
To remove the code samples from your computer, delete the folder Microsoft Press\WCF Step
By Step from your Documents folder by using Windows Explorer

 Introduction xxix

YourCompanioneBook
The eBook edition of this book allows you to:

■ Search the full text

■ Print

■ Copy and paste

To download your eBook, please see the instruction page at the back of this book

ErrataandBookSupport
We’ve made every effort to ensure the accuracy of this book and its companion content If

 1.

 2. In the Search box, enter the book’s ISBN or title

 3. Select your book from the search results

 4.

You’ll Ànd additional information and services for your book on its catalog page If you need
additional support, please e-mail Microsoft Press Book Support at mspinput@microsoft.com

Please note that product support for Microsoft software is not offered through the addresses
above

WeWanttoHearfromYou
At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas Thanks in advance
for your input!

StayinTouch
Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

Go to http://microsoftpressstore.com.

On your book’s catalog page, find the Errata and Updates tab

you do Ànd an error, please report it on our Microsoft Press site:

This%page%intentionally%left%blank%

This%page%intentionally%left%blank%

93

Chapter 3

Making Applications and Services
Robust

After completing this chapter, you will be able to:

■ Explain how the WCF runtime can convert common language runtime exceptions into SOAP
fault messages to transmit exception information from a WCF service

■ Use the FaultContract attribute in a service to deÀne strongly typed exceptions as SOAP
faults

■ Catch and handle SOAP faults in a client application

■ Describe how to conÀgure a WCF service to propagate information about unanticipated
exceptions to client applications for debugging purposes

■ Describe how to detect the Faulted state in a WCF service host application and how to
recover from this state

■ Explain how to detect and log unrecognized messages sent to a service

Detecting and handling exceptions is an important part of any professional application In a
complex desktop application, many different situations can raise an exception, ranging from
programming errors or events such as unexpected or malformed user input, to failure of one
or more hardware components in the computer running the application In a distributed envi-
ronment, the scope for exceptions is far greater This is due to the nature of networks and the
fact that, in some cases, neither the application nor the development or administrative staff
has control over how the network functions or its maintenance (who is responsible for mak-
ing sure that the Internet works?) If you factor in the possibility that your application might
also access services written by some third party, who may modify or replace the service with
a newer version (possibly untested!), or remove the service altogether, then you might begin
to wonder whether your distributed applications will ever be able to work reliably

This chapter shows you how to handle exceptions in client applications and services devel-
oped using WCF You will see how to specify the exceptions that a WCF service can raise and
how to propagate information about exceptions from a WCF service to a WCF client You will
also explore the states that a service can be in, how to determine when a host application
switches from one state to another, and how to recover a service that has failed Finally, you
will see how to detect unrecognized messages sent to a service by client applications

94 Windows Communication Foundation 4 Step by Step

CLRExceptionsandSOAPFaults
A WCF service is a managed application that runs by using the NET Framework common
language runtime, or CLR One important feature of the CLR is the protection that it provides
when an error occurs; the CLR can detect many system-level errors and raise an exception if
necessary A managed application can endeavor to catch these exceptions and either attempt
some form of recovery or at least fail in a graceful manner, reporting the reason for the
exception and providing information that can help a developer to understand the cause of
the exception in order to take steps to rectify the situation in the future

CLR exceptions are speciÀc to the NET Framework WCF is intended to build client applica-
tions and services that are interoperable with other environments For example, a Java client
application would not understand the format of a CLR exception raised by a WCF service
or how to handle it Part of the SOAP speciÀcation describes how to format and send errors
in SOAP messages by using SOAP faults The SOAP speciÀcation includes a schema for for-
matting SOAP faults as XML text and encapsulating them in a SOAP message A SOAP fault
must specify an error code and a text description of the fault (called the “reason”), and it
can include other optional pieces of information Interoperable services built using the WCF
should convert NET Framework exceptions into SOAP faults and follow the SOAP speciÀca-
tion for reporting these faults to client applications

More Info For a detailed description of the format and contents of a SOAP fault, see the World
Wide Web Consortium Web site at http://www.w3.org/TR/soap12-part1/#soapfault

Throwing and Catching a SOAP Fault
The WCF library provides the FaultException class in the System.ServiceModel namespace If a
WCF service throws a FaultException object, the WCF runtime generates a SOAP fault message
that is sent back to the client application

In the Àrst set of exercises in this chapter, you will add code to the WCF ProductsService
service that detects selected problems when accessing the AdventureWorks database and
uses the FaultException class to report these issues back to the client application

Modify the WCF Service to Throw SOAP Faults

 1. Using Visual Studio, open the ProductsServiceFault solution located in the Microsoft
Press\WCF Step By Step\Chapter 3\ProductsServiceFault folder (within your Documents
folder)

This solution contains a copy of the ProductsServiceLibrary, ProductsServiceHost, and
ProductsClient applications that you created in Chapter 2, “Hosting a WCF Service”

 Chapter 3 Making Applications and Services Robust 95

 2. In the ProductsServiceLibrary project, open the ProductsServicecs Àle to display the
code for the service in the Code And Text Editor window

 3. Locate the ListProducts method in the ProductsServiceImpl class

You should recall from Chapter 1, “Introducing Windows Communication Foundation,”
that this method uses the Entity Framework to connect to the AdventureWorks database
and retrieve the product number of every product in the Product table The product
numbers are stored in a list which is returned to the client application Notice that the
exception handler for this method currently ignores all exceptions

 4. Modify the exception handler, as shown in bold in the following:

public List<string> ListProducts()

{

 ...

 try

 {

 ...

 }

 c a t c h (Exc e pt i on e)
 {
 / / Edi t t he I ni t i a l Ca t a l og i n t he c onne c t i on s t r i ng i n a pp. c onf i g
 / / t o t r i gge r t h i s e xc e pt i on
 i f (e . I nne r Exc e pt i on i s Sys t e m. Da t a . Sql Cl i e nt . Sql Exc e pt i on)
 {
 t hr ow ne w Fa ul t Exc e pt i on(
 " Exc e pt i on a c c e s s i ng da t a ba s e : " +
 e . I nne r Exc e pt i on. Me s s a ge , ne w Fa ul t Code (" Conne c t t o da t a ba s e ")) ;
 }
 e l s e
 {
 t hr ow ne w Fa ul t Exc e pt i on(
 " Exc e pt i on r e a di ng pr oduc t numbe r s : " +
 e . Me s s a ge , ne w Fa ul t Code (" I t e r a t e t hr ough pr oduc t s ")) ;
 }
 }

 // Return the list of product numbers

 return productsList;

}

If an exception occurs, this code examines the cause If the InnerException property of
the Exception object is a SqlExecption, then the exception was caused by the code that
accesses the database in the Entity Framework If the exception is some other type, then
the problem must lie in the code that iterates through the list of products retrieved from
the database In both cases, this code creates a new System.ServiceModel.FaultException
object with the details of the exception and throws it The operation will stop running
and will instead generate a SOAP fault containing a description of the fault and a fault
code (which for the purposes in this example simply speciÀes a name for identiÀcation)
This SOAP fault is sent back to the client

96 Windows Communication Foundation 4 Step by Step

Note If you don’t create a FaultCode object, the WCF runtime will itself automatically gen-
erate a FaultCode object named “Client” and add it to the SOAP fault sent back to the client

 5. Build the solution

Modify the WCF Client Application to Catch SOAP Faults

 1. In the ProductsClient project, open the Àle Programcs to display the code for the client
application in the Code And Text Editor window

 2. In the Main method, add a try/catch block around the code that calls the operations in
the WCF service, as shown in bold in the following:

static void Main(string[] args)

{

 ...

 // Test the operations in the service

 t r y
 {
 // Obtain a list of all products

 ...

 // Fetch the details for a specific product

 ...

 // Query the stock level of this product

 ...

 // Modify the stock level of this product

 ...

 // Disconnect from the service

 ...

 }
 c a t c h (Fa ul t Exc e pt i on e)
 {
 Cons ol e . Wr i t e Li ne (" {0} : {1}" , e . Code . Na me , e . Re a s on) ;
 }

 Console.WriteLine("Press ENTER to finish");

 Console.ReadLine();

}

If any of the operations generate a SOAP fault, the WCF runtime on the client creates a
FaultException object The catch handler for the FaultException object displays the fault
code and reason The name of the fault code is the value speciÀed by the FaultCode
constructor in the service, and the Reason string is the text description of the fault pro-
vided by the service

 Chapter 3 Making Applications and Services Robust 97

Test the FaultException Handler

Important Before you perform this exercise, make sure that you still have port 8000
reserved for your application, as described in the exercise “Reserve HTTP Port 8000” in
Chapter 2 To reserve this port, open a command prompt as Administrator, and run the
following command (replace UserName with your Windows user name):

netsh http add urlacl url=http://+:8000/ user=Us e r Na me

 1. In the ProductsServiceHost project, edit the AppconÀg Àle The <connectionStrings>
section of this Àle contains the information used by the Entity Framework to connect to
the AdventureWorks database

 2. In the <add> element of the <connectionStrings> section, change the Initial Catalog
part of the connectionString attribute to refer to the Junk database, as follows (do not
change any other parts of the connectString attribute):

<connectionStrings>

 <add ... connectionString="...;I ni t i a l Ca t a l og=J unk;..." />
</connectionStrings>

 3. Build and run the solution without debugging

The Products Service Host window and the ProductsClient console window should both
start

 4. In the Products Service Host window, click Start

If a Windows Security Alert message box appears, click Allow Access

 5. When the service status in the Products Service Host window displays the message
“Service Running,” press Enter in the ProductsClient console window

After a short delay, the ProductsClient application reports an exception similar to the
following when performing Test 1 (your message might vary if you are attempting to
connect to the database as a different user):

98 Windows Communication Foundation 4 Step by Step

The ProductsService service failed when attempting to connect to the database—the
SOAP fault code is “Connect to database”

 6. Press Enter to close the ProductsClient console

 7. Click Stop in the Products Service Host window, and then close the application

 8. In the AppconÀg Àle for the ProductsServiceHost application, change the database
back to AdventureWorks in the <connectionString> attribute

 9. In the ListProducts method in the ProductsServicecs Àle, comment out the code that
instantiates the productsList object and replace it with code that sets this object to null.
In the body of the try block, add a statement that clears the productsList object before
assigning it the data retrieved from the database, as shown in bold in the following:

public List<string> ListProducts()

{

 // Create a list for holding product numbers

 List<string> productsList = nul l ; / / new List<string>();

 try

 {

 // Fetch the product number of every product in the database

 var products = from product in database.Products

 select product.ProductNumber;

 pr oduc t s Li s t . Cl e a r () ;
 productsList = products.ToList();

 }

 catch (Exception e)

 {

 ...

 }

 ...

}

Note The statement that calls Clear is actually redundant and is only used by this exercise
to illustrate generating an exception that results in a SOAP fault

 10. Build and run the solution again, without debugging

 11. In the Products Service Host window, click Start

 12. When the service is running press Enter in the ProductsClient console window

The ProductsClient application reports a different exception when performing Test 1:

 Chapter 3 Making Applications and Services Robust 99

This time, the ProductsService service failed when clearing the list of products prior
to iterating through the items retrieved from the database and adding them to the
products List collection (which is now set to null)—the SOAP fault code is “Iterate
through products”; the reason explains that an object reference was not initialized
correctly

 13. Press Enter to close the ProductsClient console window

 14. Click Stop in the Products Service Host form, and then close the application

Note Do not change the code in the Listproducts method back to the correct version
just yet

Using Strongly Typed Faults
Throwing a FaultException is very simple but is actually not as useful as it Àrst appears A client
application must examine the FaultException object that it catches to determine the cause of
the error, so it is not easy to predict what possible exceptions could occur when invoking a
WCF service In such situations, all developers can do is write generalized catch handlers with
very limited scope for recovering from speciÀc exceptions You can think of this as analogous
to using the System.Exception type to throw and handle exceptions in regular NET Framework
applications A better solution is to use strongly typed SOAP faults

In Chapter 1, you saw that a service contract for a WCF service contains a series of operation
contracts deÀning the methods, or operations, that the service implements A service contract
can additionally include information about any faults that might occur when executing an
operation If an operation in a WCF service detects an exception, it can generate a speciÀc
SOAP fault message that it can send back to the client application The SOAP fault message
should contain sufÀcient detail so the user or an administrator can understand the reason for
the exception and, if possible, take any necessary corrective action A client application can
use the fault information in the service contract to anticipate faults and provide speciÀc han-
dlers that can catch and process each different fault These are strongly typed faults

100 Windows Communication Foundation 4 Step by Step

You specify the possible faults that can occur by using the FaultContract attribute in a service
contract This is what you will do in the next set of exercises

Note You can only apply the FaultContract attribute to operations that return a response You
cannot use them with one-way operations You will learn more about one-way operations in
Chapter 12, “Implementing One-Way and Asynchronous Operations”

Use the FaultContract Attribute to Specify the SOAP Faults an Operation Can Throw

 1. In the ProductsServiceFault solution, in the ProductsServiceLibrary project, open the
IProductsServicecs Àle

 2. In the IProductsServicecs Àle, add the following classes shown in bold to the Products
namespace:

namespace Products

{

 / / Cl a s s e s f or pa s s i ng f a ul t i nf or ma t i on ba c k t o c l i e nt a ppl i c a t i ons
 [Da t a Cont r a c t]
 publ i c c l a s s Sys t e mFa ul t
 {
 [Da t a Me mbe r]
 publ i c s t r i ng Sys t e mOpe r a t i on { ge t ; s e t ; }

 [Da t a Me mbe r]
 publ i c s t r i ng Sys t e mRe a s on { ge t ; s e t ; }

 [Da t a Me mbe r]
 publ i c s t r i ng Sys t e mMe s s a ge { ge t ; s e t ; }
 }

 [Da t a Cont r a c t]
 publ i c c l a s s Da t a ba s e Fa ul t
 {
 [Da t a Me mbe r]
 publ i c s t r i ng DbOpe r a t i on { ge t ; s e t ; }

 [Da t a Me mbe r]
 publ i c s t r i ng DbRe a s on { ge t ; s e t ; }

 [Da t a Me mbe r]
 publ i c s t r i ng DbMe s s a ge { ge t ; s e t ; }
 }

 // Data contract describing the details of a product

 ...

 // Service contract describing the operations provided by the WCF service

 ...

}

 Chapter 3 Making Applications and Services Robust 101

These classes deÀne types that you will use for passing the details of SOAP faults as
exceptions from a service back to a client Note that although both classes have a simi-
lar shape, you can pass almost any type of information in a SOAP fault; the key point is
that the type and its members must be serializable These two classes use the Data
Contract and DataMember attributes to specify how they should be serialized

 3. Locate the IProductsService interface at the end of the IProductsServicecs Àle

Remember that this interface deÀnes the service contract for the ProductsService

 4. In the IProductsService interface, modify the deÀnition of the ListProducts operation, as
shown in bold in the following code:

// Service contract describing the operations provided by the WCF service

[ServiceContract]

public interface IProductsService

{

 // Get the product number of every product

 [Fa ul t Cont r a c t (t ype of (Sys t e mFa ul t))]
 [Fa ul t Cont r a c t (t ype of (Da t a ba s e Fa ul t))]
 [OperationContract]

 List<string> ListProducts();

 // Get the details of a single product

 ...

 // Get the current stock level for a product

 ...

 // Change the stock level for a product

 ...

}

The FaultContract attributes indicate that the ListProducts method can generate SOAP
faults, which a client application should be prepared to handle The parameter to the
FaultContract attribute speciÀes the information that the SOAP fault will contain In this
case, the ListProducts operation can generate two types of SOAP faults: one based on
the SystemFault type, and the other based on the DatabaseFault type

Modify the WCF Service to Throw Strongly Typed Faults

 1. In the ProductsServicecs Àle, locate the ListProducts method in the ProductsServiceImpl
class

 2. Replace the code in the catch block that traps SqlException exceptions, as shown in bold
in the following:

102 Windows Communication Foundation 4 Step by Step

public List<string> ListProducts()

{

 ...

 try

 {

 ...

 }

 catch (Exception e)

 {

 // Edit the Initial Catalog in the connection string in app.config

 // to trigger this exception

 if (e.InnerException is System.Data.SqlClient.SqlException)

 {

 Da t a ba s e Fa ul t dbf = ne w Da t a ba s e Fa ul t
 {
 DbOpe r a t i on = " Conne c t t o da t a ba s e " ,
 DbRe a s on = " Exc e pt i on a c c e s s i ng da t a ba s e " ,
 DbMe s s a ge = e . I nne r Exc e pt i on. Me s s a ge
 } ;

 t hr ow ne w Fa ul t Exc e pt i on<Da t a ba s e Fa ul t >(dbf) ;
 }

 else

 {

 ...

 }

 }

 ...

}

This block creates and populates a DatabaseFault object with the details of the excep-
tion The throw statement creates a new FaultException object based on this Database-
Fault object Note that in this case, the code makes use of the generic FaultException
class; the type parameter speciÀes a serializable type with the type-speciÀc details of the
exception At runtime, WCF uses the information in this object to create a SOAP fault
message The FaultException constructor is overloaded, and you can optionally specify
a reason message and a fault code as well as the DatabaseFault object

 3. Replace the code in the else part of the catch block with that shown in bold, as follows:

public List<string> ListProducts()

{

 ...

 try

 {

 ...

 }

 catch (Exception e)

 {

 // Edit the Initial Catalog in the connection string in app.config

 // to trigger this exception

 if (e.InnerException is System.Data.SqlClient.SqlException)

 Chapter 3 Making Applications and Services Robust 103

 {

 . . .
 }

 else

 {

 Sys t e mFa ul t s f = ne w Sys t e mFa ul t
 {
 Sys t e mOpe r a t i on = " I t e r a t e t hr ough pr oduc t s " ,
 Sys t e mRe a s on = " Exc e pt i on r e a di ng pr oduc t numbe r s " ,
 Sys t e mMe s s a ge = e . Me s s a ge
 } ;

 t hr ow ne w Fa ul t Exc e pt i on<Sys t e mFa ul t >(s f) ;
 }

 }

 ...

}

This block of code is similar to the previous catch code, except that it creates a System
Fault object and throws a FaultException based on this object The rationale behind using
a different type for the exception is that the kinds of exceptions that could arise when
accessing a database are fundamentally different from the exceptions that could occur
when reading conÀguration information Although not shown in this example, the infor-
mation returned by a database access exception could be quite different from the
information returned by a system exception

 4. Build the solution

You can now modify the client application to handle the exceptions thrown by the service
However, Àrst you must regenerate the proxy class that the client uses to communicate with
the service The service is not currently running, so you cannot use the Update Service Refer-
ence feature of Visual Studio Instead, you will use the svcutil utility to generate the proxy class
from the assembly containing the ProductsService service

Regenerate the Proxy Class for the WCF Client Application

 1. Open a Visual Studio command prompt window and move to the folder \Microsoft
Press\WCF Step By Step\Chapter 3\ProductsServiceFault\ProductsServiceLibrary\bin\
Debug folder

 2. Run the following command:

svcutil ProductsServiceLibrary.dll

This command runs the svcutil utility to extract the deÀnition of the ProductsService
service and the other types from the ProductsServiceLibrary assembly It generates the
following Àles:

104 Windows Communication Foundation 4 Step by Step

■❏ Products.xsd This is an XML schema Àle that describe the structure of the,
DatabaseFault, SystemFault, and ProductData types The svcutil utility uses the
information speciÀed in the data contracts for these types to generate this Àle
Part of this Àle, displaying the DatabaseFault type, is shown in the following:

<?xml version="1.0" encoding="utf-8"?>

<xs:schema xmlns:tns="http://schemas.datacontract.org/2004/07/Products"

elementFormDefault="qualified"

targetNamespace="http://schemas.datacontract.org/2004/07/Products"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs : c ompl e xType na me =" Da t a ba s e Fa ul t " >
 <xs : s e que nc e >
 <xs : e l e me nt mi nOc c ur s =" 0" na me =" DbMe s s a ge " ni l l a bl e =" t r ue "
 t ype =" xs : s t r i ng" / >
 <xs : e l e me nt mi nOc c ur s =" 0" na me =" DbOpe r a t i on" ni l l a bl e =" t r ue "
 t ype =" xs : s t r i ng" / >
 <xs : e l e me nt mi nOc c ur s =" 0" na me =" DbRe a s on" ni l l a bl e =" t r ue "
 t ype =" xs : s t r i ng" / >
 </ xs : s e que nc e >
 </ xs : c ompl e xType >
 <xs : e l e me nt na me =" Da t a ba s e Fa ul t " n i l l a bl e =" t r ue " t ype =" t ns : Da t a ba s e Fa ul t " / >
 ...

</xs:schema>

■❏ Tempuri.org.xsd This is another XML schema Àle This schema describes the
messages that a client can send to, or receive from, the ProductsService service
You will see later (in the WSDL Àle for the service) that each operation in the ser-
vice is deÀned by a pair of messages; the Àrst message in the pair speciÀes the
message that the client must send to invoke the operation, and the second mes-
sage speciÀes the response sent back by the service This Àle references the data
contract in the Productsxsd Àle to obtain the description of the ProductData type
used by the response message of the GetProduct operation The portion of this Àle
that deÀnes the messages for the ListProducts and GetProduct operations appears
as follows:

<?xml version="1.0" encoding="utf-8"?>

 ...

 <xs:element name="ListProducts">

 <xs:complexType>

 <xs:sequence />

 </xs:complexType>

 </xs:element>

 <xs:element name="ListProductsResponse">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="0" name="ListProductsResult" nillable="true"

 xmlns:q1="http://schemas.microsoft.com/2003/10/Serialization/Arrays"

 type="q1:ArrayOfstring" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 Chapter 3 Making Applications and Services Robust 105

 <xs:element name="GetProduct">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="0" name="productNumber" nillable="true"

 type="xs:string" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="GetProductResponse">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="0" name="GetProductResult" nillable="true"

 xmlns:q2="http://schemas.datacontract.org/2004/07/Products"

 type="q2:ProductData" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 ...

</xs:schema>

Note The name of this Àle and the namespace of the types in this Àle are dictated by the
ServiceContract attribute of the interface implemented by the service The name Tempuri.
org is the default namespace You can change it by specifying the Namespace parameter in
the ServiceContract attribute, like this:

[ServiceContract (Namespace="Adventure-Works.com")]

■❏ Schemas.microsoft.com.2003.10.Serialization.Arrays.xsd This Àle is another
XML schema that describes how to represent an array of strings in a SOAP mes-
sage The ListProducts operation references this information in the ListProducts
Response message The value returned by the ListProducts operation is a list of
strings containing product numbers As described in Chapter 1, the NET Frame-
work generic List<> type is serialized as an array when transmitted as part of a
SOAP message

■❏ Schemas.microsoft.com.2003.10.Serialization.xsd This XML schema Àle
describes how to represent the primitive types (such as Áoat, int, decimal, and
string) in a SOAP message, as well as some other built-in types frequently used
when sending SOAP messages

■❏ Tempuri.org.wsdl This Àle contains the WSDL description of the service,
describing how the messages and data contracts are used to implement the
operations that a client application can invoke It references the XML schema
Àles to deÀne the data and messages that implement operations Notice that the
deÀnition of the ListProducts operation includes the two fault messages that you
deÀned earlier:

106 Windows Communication Foundation 4 Step by Step

...

<wsdl:operation name="ListProducts">

 <soap:operation soapAction="http://tempuri.org/IProductsService/ListProducts"

style="document" />

 <wsdl:input>

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 <wsdl:fault name="DatabaseFaultFault">

 <soap:fault name="DatabaseFaultFault" use="literal" />

 </wsdl:fault>

 <wsdl:fault name="SystemFaultFault">

 <soap:fault name="SystemFaultFault" use="literal" />

 </wsdl:fault>

</wsdl:operation>

You can use the WSDL Àle and the XML schema Àles to generate the proxy class

 3. In the Visual Studio command prompt window, type the following command:

svcutil /namespace:*,ProductsClient.ProductsService tempuri.org.wsdl *.xsd

Note The character between the asterisk (*) and the string ProductsClient.ProductsService
is a comma (,)

This command runs the svcutil utility again, but this time it uses the information in the
WSDL Àle and all the schema Àles (*xsd) to generate a C# source Àle containing a class
that can act as a proxy object for the service The namespace parameter speciÀes the C#
namespace generated for the class (the namespace shown here has been selected to be
the same as that generated by Visual Studio in the exercises in Chapter 1, to minimize
the changes required to the code in the client application; however, you will need to
modify the client conÀguration Àle to match this namespace) The svcutil utility creates
two Àles:

■ Products.cs This is the source code for the proxy class

■ Output.conÀg This is an example application conÀguration Àle that the client
application could use to conÀgure the proxy to communicate with the service
By default, the conÀguration Àle generates an endpoint deÀnition with the
basicHttpBinding binding

Note You can also use the svcutil utility to generate a proxy directly from a Web service
endpoint rather than generating the metadata from an assembly This is what Visual Studio
does when you use the Add Service Reference feature For more information about the
svcutil utility, see the “ServiceModel Metadata Utility Tool” on the Microsoft Web site at
http://msdn.microsoft.com/en-us/library/aa347733.aspx

 Chapter 3 Making Applications and Services Robust 107

 4. In Visual Studio, in the ProductsClient project, copy the appconÀg Àle and paste
the copied Àle back into the ProductsClient project with the default name, Copy of
appconÀg This step is necessary because the next step will remove some important
information from the appconÀg Àle that you will need later

 5. In the ProductsClient project, delete the ProductsService service from the Service Refer-
ences folder As well as removing the service reference, this action also deletes the con-
Àguration information for accessing the service from the appconÀg Àle, which is why
you made a copy of the original version of this Àle in the previous step

 6. Add the Àle Productscs that you have just created to the ProductsClient project This
Àle is located in the Microsoft Press\WCF Step By Step\Chapter 3\ProductsServiceFault\
ProductsServiceLibrary\bin\Debug folder

 7. Delete the appconÀg Àle from the ProductsClient project and rename the Àle Copy of
appconÀg as app.conÀg

 8. Open the appconÀg Àle in the Code And Text Editor window Change the contract for
both client endpoints to ProductsClient.ProductsService.IProductsService, as shown
in bold in the following

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <system.serviceModel>

 <bindings>

 ...

 </bindings>

 <client>

 <endpoint address="http://localhost:8000/ProductsService/Service.svc"

 binding="basicHttpBinding"

 bindingConfiguration="BasicHttpBinding_IProductsService"

 contract="Pr oduc t s Cl i e nt . Pr oduc t s Se r vi c e . I Pr oduc t s Se r vi c e"
 name="BasicHttpBinding_IProductsService" />

 <endpoint address="net.tcp://localhost:8080/TcpService" binding="netTcpBinding"

 contract="Pr oduc t s Cl i e nt . Pr oduc t s Se r vi c e . I Pr oduc t s Se r vi c e"
 name="NetTcpBinding_IProductsService" />

 </client>

 </system.serviceModel>

</configuration>

This change is necessary as you generated the types for the proxy in the ProductsClient.
ProductsService namespace when you ran the svcutil utility

Note You could have copied the outputconÀg Àle generated by the svcutil utility to the
ProductsClient project and renamed it as appconÀg rather than preserving and editing
the original appconÀg Àle However, although the outputconÀg Àle speciÀes the correct
type name for the contract attribute of the endpoint, it does not include the address of the
service, so you would have had to edit the Àle and add this information Additionally, the
outputconÀg Àle only contains the deÀnition of a single BasicHttpBinding endpoint, so you
would also have needed to add the deÀnition of the NetTcpBinding endpoint It was simpler
to modify the existing appconÀg Àle!

108 Windows Communication Foundation 4 Step by Step

Modify the WCF Client Application to Catch Strongly Typed Faults

 1. In the ProductsClient project, open the Programcs Àle in the Code And Text Editor
window

 2. Add the following catch handlers shown in bold after the try block in the Main method
(leave the existing FaultException handler in place as well):

static void Main(string[] args)

{

 ...

 try

 {

 ...

 }

 c a t c h (Fa ul t Exc e pt i on<Sys t e mFa ul t > s f)
 {
 Cons ol e . Wr i t e Li ne (" Sys t e mFa ul t {0} : {1} \ n{2}" ,
 s f . De t a i l . Sys t e mOpe r a t i on, s f . De t a i l . Sys t e mMe s s a ge ,
 s f . De t a i l . Sys t e mRe a s on) ;
 }
 c a t c h (Fa ul t Exc e pt i on<Da t a ba s e Fa ul t > dbf)
 {
 Cons ol e . Wr i t e Li ne (" Da t a ba s e Fa ul t {0} : {1} \ n{2}" ,
 dbf . De t a i l . DbOpe r a t i on, dbf . De t a i l . DbMe s s a ge ,
 dbf . De t a i l . DbRe a s on) ;
 }
 catch (FaultException e)

 {

 Console.WriteLine("{0}: {1}", e.Code.Name, e.Reason);

 }

 ...

}

These two handlers catch the SystemFault and DatabaseFault faults Notice that the
Àelds containing the exception information that are populated by the Products Service
(SystemOperation, SystemMessage, SystemReason, DbOperation, DbMessage, and
DbReason) are located in the Detail Àeld of the FaultException object

Important You must place these two exception handlers before the non-generic
FaultException handler The non-generic handler would attempt to catch these exceptions
if it occurred Àrst, and the compiler would not let you build the solution

 3. Build and run the solution without debugging

 4. When the Products Service Host window appears, click Start to run the service

 Chapter 3 Making Applications and Services Robust 109

 5. When the service has started, in the client application console window, press Enter

The code in the ListProducts method in the ProductsService service still generates a
null reference exception The service throws a FaultException, containing a SystemFault
object, which is serialized as a SOAP fault The client application catches this fault and
displays the details

 6. Press Enter to close the client application Stop the service and close the Products Ser-
vice Host window

 7. Edit the ProductsServicecs Àle in the ProductsServiceLibrary project In the ListProducts
method, restore the statement that initializes the productsList variable back to its origi-
nal state and remove the code in the try block that calls the Clear method, as shown in
the following:

public List<string> ListProducts()

{

 // Create a list for holding product numbers

 List<string> productsList = ne w Li s t <s t r i ng>() ;

 try

 {

 // Connect to the AdventureWorks database by using the Entity Framework

 using (AdventureWorksEntities database = new AdventureWorksEntities())

 {

 // Fetch the product number of every product in the database

 var products = from product in database.Products

 select product.ProductNumber;

 productsList = products.ToList();

 }

 }

 catch (Exception e)

 {

 ...

 }

 ...

}

 8. Edit the AppconÀg Àle in the ProductsServiceHost project by using the Code And Text
Editor window, and change the Initial Catalog part of the connectionString attribute to
refer to the Junk database, as you did earlier:

<connectionStrings>

 <add ... connectionString="...;I ni t i a l Ca t a l og=J unk;..." />
</connectionStrings>

 9. Build and run the solution without debugging

 10. When the Products Service Host window appears, click Start to run the service

110 Windows Communication Foundation 4 Step by Step

 11. When the service has started, in the client application console window, press Enter

The application conÀguration Àle for the service host application again refers to an
invalid database This “mistake” causes the service to generate a SOAP fault containing
a DatabaseFault with details of the failure The ProductsClient application catches this
exception in the FaultException<DatabaseFault> handler

 12. Press Enter to close the client application Stop the service and close the Products Ser-
vice Host window

 13. Correct the Initial Catalog attribute in the appconÀg Àle for the ProductsServiceHost
project and set it back to refer to the AdventureWorks database, as follows:

<connectionStrings>

 <add ... connectionString="...;I ni t i a l Ca t a l og=Adve nt ur e Wor ks ;..." />
</connectionStrings>

 14. Build and run the solution without debugging

 15. In the Products Service Host window, start the service Press Enter in the client applica-
tion console window Verify that the code now runs without any exceptions Close the
client console window, stop the service, and close the Products Service Host window
when you have Ànished

Reporting Unanticipated Exceptions
Specifying the possible exceptions that a service can throw when performing an operation
is an important part of the contract for a service If you use strongly-typed exceptions, you
must specify every exception that an operation can throw in the service contract If a service
throws a strongly-typed exception that is not speciÀed in the service contract, the details
of the exception are not propagated to the client—the exception does not form part of the
WSDL description of the operation used to generate the client proxy There will inevitably be
situations where it is difÀcult to anticipate the exceptions that an operation could throw In
these cases, you should catch the exception in the service, and if you need to send it to the
client, raise an ordinary (non-generic) FaultException as you did in the Àrst set of exercises in
this chapter

While you are developing a WCF service, it can be useful to send information about all excep-
tions that occur in the service—anticipated or not—to the client application for debugging
purposes You will see how you can achieve this in the next set of exercises

 Chapter 3 Making Applications and Services Robust 111

Modify the WCF Service to Throw an Unanticipated Exception

 1. In the ProductsServiceFault solution, in the ProductsServiceLibrary project, edit the
ProductsServicecs Àle

 2. Add the following statement (shown in bold) as the Àrst line of code in the ListProducts
method in the IProductsImpl class:

public List<string> ListProducts()

{

 i n t i = 0 , j = 0 , k = i / j ;
 ...

}

This statement will generate a DivideByZeroException Note that the method does not
trap this exception, and it is not mentioned in the service contract

 3. Build and run the solution without debugging

 4. In the Products Service Host window, click Start In the client application console win-
dow, press Enter to connect to the service and invoke the ListProducts operation

The service throws the DivideByZero exception However, the details of the exception
are not forwarded to the client application Instead, the WCF runtime generates a very
nondescript SOAP fault that is caught by the DefaultException handler in the client:

This lack of detail is actually a security feature If the service provided a complete
description of the exception to the client, then, depending on the information provided,
a malicious user could glean potentially useful information about the structure of the
service and its internal workings

 5. Close the client console window Stop the service and close the Products Service Host
window

In the next exercise you will conÀgure the host server to provide detailed information about
unanticipated exceptions

112 Windows Communication Foundation 4 Step by Step

ConÀgure the WCF Service to Send Details of Exceptions

 1. In the ProductsServiceHost project, edit the AppconÀg Àle by using the Code And Text
Editor window

 2. In the <serviceBehaviors> section, edit the <serviceDebug> element in the <behavior>
section and set the includeExceptionDetailInFaults attribute to true:

<?xml version="1.0"?>

<configuration>

 ...

 <system.serviceModel>

 ...

 <behaviors>

 <serviceBehaviors>

 <behavior>

 <!-- To avoid disclosing metadata information, set the value below to

 false and remove the metadata endpoint above before deployment -->

 <serviceMetadata httpGetEnabled="false"/>

 <!-- To receive exception details in faults for debugging purposes, set

 the value below to true. Set to false before deployment to avoid

 disclosing exception information -->

 <serviceDebug i nc l ude Exc e pt i onDe t a i l I nFa ul t s =" t r ue "/>
 </behavior>

 </serviceBehaviors>

 </behaviors>

 ...

 </system.serviceModel>

</configuration>

Setting the includeExceptionDetailInFaults attribute to true causes WCF to transmit the
full details of exceptions when it generates SOAP faults for unanticipated errors

 3. Build and run the solution with debugging

 4. In the Products Service Host window, click Start In the client application console win-
dow, press Enter

The service throws the DivideByZero exception This time, the client is sent speciÀc infor-
mation about the exception and reports it:

 Chapter 3 Making Applications and Services Robust 113

 5. Close the client console window Stop the service and close the Products Service Host
window

 6. In the ProductsServiceLibrary project, edit the ProductsServicecs Àle

 7. In the ListProducts method, comment out the line of code that causes the DivideBy
ZeroException exception

 8. In the AppconÀg Àle for the ProductsServiceHost project, set the includeException
DetailInFaults attribute of the <serviceDebug> element to false

 9. Build and run the solution without debugging

 10. In the Products Service Host window, start the service Press Enter in the client applica-
tion console window Verify that the code runs without any exceptions Close the client
console window and the Products Service Host window when you have Ànished

The previous exercise used the application conÀguration Àle to specify the serviceDebug
behavior for the service You can perform the same task by using the ServiceBehavior attribute
of the class that implements the service, like this:

[Se r vi c e Be ha vi or (I nc l ude Exc e pt i onDe t a i l I nFa ul t s =t r ue)]
public class ProductsServiceImpl : IProductsService

{

 ...

}

However, it is recommended that you enable this behavior only by using the application con-
Àguration Àle There are a couple of good reasons for this:

■ You can turn the behavior on and off in the conÀguration Àle without rebuilding the
application You should not deploy an application to a production environment with this
behavior enabled, and it is very easy to forget that you have enabled this behavior if
you use the ServiceBehavior attribute in code

■ If you enable this behavior in code, you cannot disable it by altering the application
conÀguration Àle Rather more confusingly, if you disable this behavior in code, you can
enable it in the application conÀguration Àle The general rule is that if the Include
ExceptionDetailInFaults behavior is enabled either in code or in the application conÀgu-
ration Àle, it will work It must be disabled in both places to turn it off Keep life simple
by only specifying this behavior in one place—the application conÀguration Àle

114 Windows Communication Foundation 4 Step by Step

ManagingExceptionsinServiceHostApplications
In Chapter 2, you saw how to create a host application for a WCF service and use this applica-
tion to control the lifecycle of the service A service host application uses a ServiceHost object
to instantiate and manage a WCF service The ServiceHost class implements a Ànite-state
machine A ServiceHost object can be in one of a small number of states, and there are well-
deÀned rules that determine how the WCF runtime transitions a ServiceHost object from one
state to another Some of these transitions occur as the result of speciÀc method calls, while
others are caused by exceptions in the service, in the communications infrastructure, or in
the objects implementing the channel stack A service host application should be prepared to
handle these transitions and attempt recovery to ensure that the service is available whenever
possible

ServiceHost States and Transitions
When you instantiate a ServiceHost object, it starts in the Created state In this state, you can
conÀgure the object; for example, you can use the AddServiceEndpoint method to cause the
ServiceHost object to listen for requests on a particular endpoint A ServiceHost object in this
state is not ready to accept requests from client applications

You start a ServiceHost object listening for requests by using the Open method (or the Begin-
Open method if you are using the asynchronous programming model) The ServiceHost object
moves to the Opening state while it creates the channel stacks speciÀed by the bindings for
each endpoint and starts the service If an exception occurs at this point, the object transitions
to the Faulted state If the ServiceHost object successfully opens the communication channels
for the service, it moves to the Opened state Only in this state can the object accept requests
from client applications and direct them to the service

You stop a ServiceHost object from listening for client requests by using the Close (or Begin-
Close) method The ServiceHost object enters the Closing state Currently running requests
are allowed to complete, but clients can no longer send new requests to the service When
all outstanding requests have Ànished, the ServiceHost object moves to the Closed state You
can also stop a service by using the Abort method This method closes the service immedi-
ately without waiting for the service to Ànish processing client requests Stopping or aborting
the service disposes the service object hosted by the ServiceHost object and reclaims any
resources it was using To start the service, you must recreate the ServiceHost object with a
new instance of the service and then execute the Open method to reconstruct the channel
stacks and start listening for requests again

 Chapter 3 Making Applications and Services Robust 115

A ServiceHost object enters the Faulted state either when it fails to open correctly or if it
detects an unrecoverable error in a channel used by the ServiceHost object to communicate
with clients (for example, if some sort of protocol error occurs) When a ServiceHost object
is in the Faulted state, you can examine the properties of the object to try and ascertain the
cause of the failure, but you cannot send requests to the service To recover the service, you
should use the Abort method to close the service, recreate the ServiceHost object, and then
execute the Open method again Figure 3-1 summarizes the state transitions for a ServiceHost
object along with the methods and conditions that cause the object to move between states

Tip You can determine the current state of a ServiceHost object by examining the value of the
State property

Creatednew()

Open()
BeginOpen()

Close()
Abort()
BeginClose()

Error
detected

EndOpen() EndClose()
Abort()

new()

Opening

Opened

Faulted Closed

Closing

FIGURE3-1 State transition diagram for the ServiceHost class

Handling Faults in a Host Application
When a ServiceHost object moves from one state to another, it can trigger an event These
events were described in Table 2-2 in Chapter 2 From an error-handling perspective, the
most important of these is the Faulted event, which occurs when a ServiceHost object enters
the Faulted state You should subscribe to this event, and provide a method that attempts to
determine the cause, and then abort and restart the service, like this:

116 Windows Communication Foundation 4 Step by Step

// ServiceHost object for hosting a WCF service

ServiceHost productsServiceHost;

productsServiceHost = new ServiceHost(...);

...

// Subscribe to the Faulted event of the productsServiceHost object

productsServiceHost.Faulted += (eventSender, eventArgs) =>

 {

 // FaultHandler method

 // Runs when productsServiceHost enters the Faulted state

 // Examine the properties of the productsServiceHost object

 // and log the reasons for the fault

 ...

 // Abort the service

 productsServiceHost.Abort();

 // Recreate the ServiceHost object

 productsServiceHost = new ServiceHost(...);

 // Start the service

 productsServiceHost.Open();

 };

...

Note You can use the Close method rather than Abort in the fault handler, but a service in the
faulted state will not be able to continue processing current requests or receive new ones Using
the Abort method to close the service can reduce the time required in the FaultHandler method to
restart the service

Handling Unexpected Messages in a Host Application
One other exceptional circumstance that can arise in a host application is an unexpected
message from a client Client applications built by using the WCF library typically communi-
cate with the service by using a proxy object, generated by using the svcutil utility The proxy
object provides a strongly-typed interface to the service that speciÀes the operations the cli-
ent can request (and therefore the messages that the client sends) It is unlikely that a WCF
client using a correctly generated proxy object will send an unexpected message However,
remember that a WCF service is simply a service that accepts SOAP messages, and developers
building client applications can use whatever means they see Àt for sending these messages
Developers building Java client applications will typically use Java-speciÀc tools and libraries
for constructing and sending SOAP messages WCF also provides a low-level mechanism that
allows developers to open a channel to a service, create SOAP messages, and then send them
to the service, as shown in this fragment of code:

 Chapter 3 Making Applications and Services Robust 117

// Create a binding and endpoint to communicate with the ProductsService

BasicHttpBinding binding = new BasicHttpBinding();

EndpointAddress address = new EndpointAddress(

 "http://localhost:8000/ProductsService/Service.svc");

ChannelFactory<IRequestChannel> factory = new

 ChannelFactory<IRequestChannel>(binding, address);

// Connect to the ProductsService service

IRequestChannel channel = factory.CreateChannel();

channel.Open();

// Send a ListProducts request to the service

Message request = Message.CreateMessage(MessageVersion.Soap11,

 "http://tempuri.org/IProductsService/ListProducts");

Message reply = channel.Request(request);

// Process the reply

// (should be a SOAP message with a list of product numbers)

...

// Release resources and close the connection

reply.Close();

channel.Close();

factory.Close();

Don’t worry too much about the details of this block of code—you will learn more about
using Message and Channel objects in Chapter 11, “Programmatically Controlling the Con-
Àguration and Communications” The key statement is the line that creates the message sent
to the ProductsService service:

Message request = Message.CreateMessage(MessageVersion.Soap11,

 "http://tempuri.org/IProductsService/ListProducts");

The second parameter to the CreateMessage method speciÀes the action that identiÀes the
message sent to the service If you recall the earlier discussion in this chapter describing the use
of the svcutil utility to generate the client proxy, one of the Àles generated contained the WSDL
description of the service The WSDL description includes the deÀnitions of each of the opera-
tions exposed by the service and the messages that an application sends to invoke these
operations Here is part of the WSDL describing the ListProducts operation:

<wsdl:operation name="ListProducts">

 <wsdl:input wsaw:Action="http://tempuri.org/IProductsService/ListProducts"

message="tns:IProductsService_ListProducts_InputMessage" />

 ...

</wsdl:operation>

118 Windows Communication Foundation 4 Step by Step

When the service receives a message identiÀed by the action http://tempuri.org/IProducts
Service/ListProducts, it performs the ListProducts operation If a client application sends a
message specifying an action that the service does not recognize, the service host applica-
tion raises the UnknownMessageReceived event The host application can catch this event and
record the unrecognized message, like this:

// ServiceHost object for hosting a WCF service

ServiceHost productsServiceHost;

productsServiceHost = new ServiceHost(...);

...

// Subscribe to the UnknownMessageReceived event of the

// productsServiceHost object

productsServiceHost.UnknownMessageReceived += (eventSender, eventArgs) =>

 {

 // UnknownMessageReceived event handler

 // Log the unknown message

 ...

 // Display a message to the administrator

 MessageBox.Show(string.Format(

 "A client attempted to send the message: {0} ",

 eventArgs.Message.Headers.Action));

 };

...

There could be a perfectly innocent explanation for a client sending a message such as this, or
it could be part of a more concerted attack by a malicious user trying to probe a service and
gather information about the operations it supports

Important The default value for the httpGetEnabled property of the serviceMetadata behavior
is false, so unless you explicitly set it to true, WCF services do not publish their metadata It is also
worth noting that if you create a WCF service by using Visual Studio, the WCF Service template
sets httpGetEnabled to true Unless you explicitly need client applications to be able to access the
metadata of a service, you should make sure that you reset this property to false when you deploy
the service to a production environment

One other possibility is that a WCF client application is using an out-of-date proxy object
for sending messages to the service If a developer modiÀes the service contract for a WCF
service, she might change the messages that the service sends and receives If any client
applications that use the service are not updated, they might send messages that the service
no longer understands Therefore, if you update a service, you should ensure that you retain
backward compatibility with existing clients The same issues can arise with data contracts
You will learn more about how to update data contracts for a WCF service safely in Chapter 6,
“Maintaining Service Contracts and Data Contracts”

 Chapter 3 Making Applications and Services Robust 119

Summary
In this chapter, you have seen how to use the FaultException class to send information about
exceptions back to client applications as SOAP faults You have seen how to use the Fault
Contract attribute to specify the faults that a service can send and how to catch these faults
in a client application You have also seen how to propagate information about unanticipated
exceptions from a service to a client for debugging purposes You should understand how
to make a service host application robust by tracking the states of a service, recovering from
faults, and handling unexpected messages sent by client applications

This%page%intentionally%left%blank%

  669

Index

A
aborting transaction 357
Abort method of ServiceHost object 114
“Access is denied” message 158
access rights 583
AcknowledgementRange element 386
acknowledgment message

from WCF runtime 386
<AckRequested> block in SOAP header 385
ActionMessageFilter class 526
ActionMessageFilter object 532, 544

for ChannelDispatcher object 527
Action property for OperationContract at-

tribute 428, 532
activation for WCF service

conÀguring 171–174
Active Directory 123

for storing user roles 153
Active Directory CertiÀcate Services 138
Active Directory Federation Services 20 642
activities

passing information from workÁow
into 303

returning value from Execute method
of 303

Activity Designer 307
Add Application dialog box 196
AddBindingParameters method 411, 412
AddDefaultEndpoints method of Service-

Host class 82
Adding Behavior Element Extension Sec-

tions dialog box 153, 179, 493
Adding Binding Element Extension Sections

dialog box 392, 394
AddItemToCart activity 342
AddItemToCart message 385
AddItemToCart method 265, 357–358, 468

implementing 247–248
OperationBehavior attribute 354–355

AddItemToCartxaml Àle 341

Add New Web Site dialog box 13
address-based routing 523
AddressFilter property of EndpointDispatcher

object 526
Add Service Reference dialog box 30, 441,

588, 666
Add Service Reference Wizard 203, 314,

419, 446, 588
Add Web Reference command 650
ad hoc discovery 492–499

disadvantages 499–546
administrator, running as Visual Studio 39
ADONET Entity Framework 10

entity model 579
Advanced Encryption Standard (AES) 128-

bit algorithm 128
Advanced Settings dialog box 51
AdventureWorksAdminHost project 458
AdventureWorks Administrative Operations

service
adding asynchronous operation 448–452
CalculateTotalValueOfStock opera-

tion 447–457
client applications for testing 440
creating 436–440

AdventureWorksAdmin queue, creating
and testing 462–463

AdventureWorksAdminTestClient project 458
AdventureWorks database

Internet Explorer for data display
from 585–587

script to query 368
AdventureWorksEntities class 582
AdventureWorks OLTP sample database 9–10
AfterReceiveRequest method 409
AJAX (Asynchronous JavaScript and XML) 5
AlgorithmSuite property 145
AllowedImpersonationLevel property 161–

162
announcementEndpoint endpoint 519
Announcement Endpoints folder 501

670 announcement messages

announcement messages
client application modiÀcation to cap-

ture 501
ProductsService service conÀguring to

send to discovery proxy 519
announcement requests, caching in dic-

tionary collection 517
announcements

ProductsService service conÀguration to
send 500–501

AnnouncementService class 500
Anonymous value for AllowedImperson-

ationLevel property 162
AppconÀg Àle 32

<client> section 71
<connectionStrings> section 26, 97
contract for client endpoints 107
<endpoint> conÀguration section 41
for ShoppingCartHost project 418
for ProductsClient application 81
<protocolMapping> section 83
<serviceBehaviors> section 85, 112
<service> section 70

endpoint added 73–74
for ShoppingCartClient application 254
for ShoppingCartHost project 529

<systemserviceModel> section 252
AppFabric See Windows Server AppFabric
appid parameter 140
application conÀguration Àle See also App

conÀg Àle
certiÀcate details in 194
from Entity Data Model wizard 12
for service host application 110

application-deÀned endpoints, or system-
deÀned 518

application pool 40
amending identity used by 180

Application Pool property 498–546
applications See also client applications

building to host WCF service 58–76
ApplyDispatcherBehavior method 411, 412
array length in messages

WCF runtime limits on 485
arrays

data contracts allowing user to send 241

ASPNET 50
ASPNET client application

testing 655–656
WCF service to support 647–656

ASPNETDBMDF database 175
failure when accessing 180

ASPNET Development Server 24, 27, 439,
493

and discovery 498
port 436
stopping 481

ASPNET Empty Web Site template 580–
584

ASPNET Membership provider 166–183
conÀguring WCF service to use 179–180

ASPNET PasswordRecovery control 177
ASPNETProductsServicecs Àle 649
ASPNET Role Provider 124, 166–183

conÀguring WCF service to use 179–180
ASPNET Web application

submitting HTTP DELETE request 576
ASPNET Web service

examining 648–651
replacing WCF service with 651–654

ASPNET Web Site Administration Tool 166,
174, 192

ASPNET Web site, creating to host WCF
service 170, 196

Assign activity 321
AsymmetricSecurityBindingElement

class 77, 404
AsyncCallback object 448, 507
asynchronous messaging pattern 333, 337
asynchronous methods 433
asynchronous operations 446–457

in AdventureWorks administrative ser-
vice 448–452

invoking in client application 446–447
in WCF service 447–457
MSMQ for implementing 463
preventing proxy close during 455

Asynchronous Programming design pat-
tern 507

AsyncPattern property of OperationCon-
tract attribute 447, 448

AsyncResult class 448

 bindings 671

AsyncResultcs Àle 508
Atom Publishing Protocol 585, 587
authenticated user, identiÀer for 191
authentication 7, 121, 165

with ASPNET Membership Provider and
Role Provider 166–183

claims-based, in federated environ-
ment 643–646

for NetTcpBinding binding 151–152
service messages with certiÀcate 195–

202
transport-level 125
users with certiÀcates 184–202
in Windows environment 123–124
of Windows users 146–152

authority, verifying 124
authorization 122–123, 165

identity to determine 625
implementing custom 634
testing for WCF service 158–163
of users 152–160

AuthorizationContext property of service
security context 633–634

AuthorizationServiceAuthorizationMan-
ager property 635

Authorization Store Role Provider 124
autonomy of services 42

B
backward compatibility 238
Base64 encoded string 477
base address 56
Basic256 encryption algorithm 128
Basic authentication 150

conÀguring BasicHttpBinding binding to
implement 147–148

BasicHttpBinding binding 78, 79, 83, 135,
360, 478, 530, 543, 656

and client callbacks 606
conÀguring

for message-level security 142–143
for WCF service 147–148
for Windows authentication use 150–

151
default 33
properties 82

and sessions 278
SOAP messaging format for 429
TransferMode property of 490
transport-level security

for WCF client 136–137
for WCF service 136–137

BasicHttpContextBinding binding 79, 536,
540, 543

for ChannelFactory object 534
and sessions 278

BeforeSendReply method 409
BeginCalculateTotalValueOfStock meth-

od 448
BeginOpen method 57
behavior extension element

deÀning 414–419
BehaviorExtensionElement class 414
behaviors

creating custom 411–414
creating for ShoppingCartService ser-

vice 412–414
in WCF Service Model 401–403

BehaviorType property 414
bidirectional communications 606
“big-endian” 32-bit processor 4
binary data, converting for transmis-

sion 477
binary encoding 46, 466
binary encoding channel 401
BinaryMessageEncodingBinaryElement

class 77
BindingConÀguration property 136, 439
binding elements 33, 77
bindings 46, 400

client callbacks and 606
for COM+ component 664
composing channels into 403–408
conÀguring 81–82

IIS to support SSL 167–169
for WCF service 171–174

custom 403
for ShoppingCartClient applica-

tion 395–397
for ShoppingCartService service 392
programmatically creating and us-

ing 405–409

672 blocking problems, one-way request for resolving

default maximum received message
size 490

and endpoints 76–84
order of elements 403–404
predeÀned 77–80
properties for message queues 459
SendTimeout property of client 435
and sessions 278
and transaction support 360
and WS-ReliableMessaging protocol 389

blocking problems, one-way request for
resolving 443–447

Body property of TransactedReceiveScope
activity 373

boundaries 42
Breakpoint command for workÁow activ-

ity 312
broadcasting shutdown message 500
broker model for publishing and subscrib-

ing 620
Browse And Select A Net Type dialog

box 306
Buffered value for TransferMode prop-

erty 382, 487
BufferRemaining element 387
buffers

memory for 487
for messages 387

Build Deployment Package wizard 325
business analyst 295
business logic of operations, amend-

ing 212–215
business processes 295
business-to-business solutions 376

C
caching announcement requests in dic-

tionary collection 517
Caching Service, AppFabric 55
CalculateTotalValueOfStock operation

in AdventureWorksAdmin service 447–
457

invoking asynchronously 454–457
invoking in client application 452–454

CallbackBehavior attribute 606

CallbackContract property of ServiceCon-
tract attribute 600

callback contracts
adding to ProductsService service 607
deÀning 600–601
eventing mechanism implemented

with 614–622
implementing operation in 601–604
invoking operation in 604–605
for publication and subscription ser-

vice 620
to notify client of one-way operation

outcome 606–614
callback method 434, 448
callbacks 333 See also client callbacks
CancellationHandler property 376
CanCreateInstance property 279, 286, 340,

346
of Receive activity 333

catch handlers, in client application 108
certiÀcates

authenticating service messages
with 195–202

client application required to authenti-
cate using 186–187

client applications modiÀed to authenti-
cate with 187–188

code for WCF client to override validation
checking 141–142

creating to identify users 188
exporting 188–189
importing to Client CertiÀcate

Store 198–199
importing to Trusted People store 188
investigating identiÀers of users authenti-

cated with 190–191
scripts for managing 189
thumbprint of 138
updating client applications to send 190
for user authentication 184–202
WCF runtime determination of valid-

ity 141
CertiÀcates dialog box 193
CertiÀcateValidationMode property 186
certiÀcation authority (CA) 138, 184, 185
certmgr console

vs certmgr utility 189

 client applications 673

certmgr utility 188, 193, 200, 635
ChainTrust 186
ChangePrice operation 600
ChangeStockLevel custom activity 375
ChangeStockLevel method 183

testing 36
ChannelDispatcher object 401, 408, 524–

526
ServiceThrottle property of 466, 467, 469
and timing of servicing session 473

channel factory, for ShoppingCartSer-
viceRouter service 534

ChannelFactory object 401, 419
BasicHttpContextBinding object for 534
for connecting to ProductsService ser-

vice 420–424
creating client-side 428

ChannelListener object 400, 408
channels 47

basing type on service contract 422
composing into bindings 403–408
for transactions and reliable sessions 394
in WCF Service Model 400–401

channel shapes 428
channel stack 47, 77, 204, 392, 400, 524–

546
constructing 428
instantiating 419
interaction with service instance 48

channel variable, invoking methods
through 422

checkout_Click method 292
Checkout method of ShoppingCartServi-

ceImpl class 250
Choose Data Source dialog box 11
claims-based security 626

conÀguring ShoppingCartService service
for 629–632

implementing 626–641
claimset 627
Claim Type Element Editor dialog box 630
class

Entity Framework generation of 12
for implementing service contract 45

Class Library template 10
client applications

ASPNET, testing 655–656

authentication
with certiÀcates 186–187

authentication of service 122
binding conÀguration for 33
building 30–38
callback contract for notiÀcation of one-

way operation outcome 606–614
certiÀcate for authenticating of service

to 185
communication with service 5, 49
conÀguring

to authenticate WCF service 199–200
to connect with TCP 52
to use identity provider 642–643
transaction Áow to ShoppingCartSer-

vice service 364
connecting to service programmati-

cally 419–426
correlating with service instances 346–

347
data formatting by 203
disconnecting 425
endpoints for 81
fault information use 99
for ASPNET Web services

examining 648–651
invoking asynchronous operation 446–

447
invoking CalculateTotalValueOfStock op-

eration 452–454
modifying

to authenticate with WCF service by us-
ing certiÀcate 187–188

to capture announcement messag-
es 501

to catch SOAP faults 96
to connect to updated WCF ser-

vice 181–182
to discover ProductsService ser-

vice 495–498
to send probe requests to discovery

proxy 519–521
platforms for 647
for ProductsSales REST Web service 565–

570
proxy class regenerated for 103–107
reconÀguring 41

674 ClientBase abstract class

reconÀguring to connect to HTTP end-
point 74–75

regenerating proxy class and updat-
ing 229–231

reliable messaging in 382
reliable sessions enabled 381
request processing 47–49
running 38
for SalesData service testing 588–592
sending large binary data objects

to 478–484
sending message and processing re-

sponse in 427–431
sending messages to message queue

from 460–461
service availability by host application 46
ShoppingCartService service conÀgured

to Áow transactions from 360
streaming data 487–488
testing 424–431
for testing AdventureWorks Administra-

tive Operations service 440
for testing ShoppingCardService ser-

vice 253–257
trace messages from 383–390
transaction creation in 361–364
trustworthiness 165
unexpected messages from 116–118
updating

after breaking change to service con-
tract 223

to send certiÀcate to WCF service 190
to subscribe to event 618

verifying authentication of WCF ser-
vice 200–201

for WCF Data service
exception handlers 597–598

WCF data service consumption 587–595
WCF service conÀguration to authen-

ticate with to Localhost certiÀ-
cate 196–198

for workÁow service
creating 313–316
testing 317

ClientBase abstract class 425–426

client binding, SendTimeout property
of 435

client callbacks 599, 600–606
bindings and duplex channels 606
reentrancy and threading in 605–606

Client CertiÀcate Store, importing certiÀ-
cate to 198–199

client communications, controlling 419–
431

ClientCredentials property 151
of proxy object 149

ClientCredentialsUserName property of
proxy object 182, 190

clientEndpointName variable 345
client endpoint, vs service endpoint 71
client library, WCF Data Services 587
client/server model of processing 599
client-side ChannelFactory object, creat-

ing 428
Closed event of ServiceHost class 57
Closed state of ServiceHost object 114
Close method

of proxy object 36
of ServiceHost object 57

Closing event of ServiceHost class 57
closing service host console window 350
Closing state of ServiceHost object 114
cloud computing platform 8
CodeActivity class 302
code activity, generating for operation 314
COM+ 2
COM+ Application Install Wizard 659
COM+ applications

as WCF service 657–668
conÀguring 661–665

testing 665–668
COM+ catalog, deploying Products COM+

application to 657–661
COM+ Component Install Wizard 660
COM+ Integration Wizard 661
CommittableTransaction object 362
communications

bidirectional 606
channel stack and 204
inter-process 2–9

compatibility 43

 Custom Demux sample 675

CompensableActivity activity 376
compensating transactions 376
Complete method of TransactionScope

object 363, 366
CompletesInstance property 280, 286
Component Object Model (COM) 2
Component Services console, WS-Atomic-

Transaction conÀguration tab 370
CompositeType class 16
computer, global conÀguration settings 83
Computer Management console 154
ComSvcConÀg tool 657
ConcurrencyMode property 258, 445

of ServiceBehavior attribute 443
ConcurrentDictionary class 502
concurrent sessions, restricting maximum

number of 257
concurrent users, and data changes 353
conÀdentiality of communications 122
ConÀguration-Based Activation 29
conÀguration Àles

for completing tasks 399
support for conÀguring behavior 414

ConÀgurationName property, of workÁow
service 298

Connection Properties dialog box 11
connection string

for persistence database 349
for ProductsEntityModel assembly 310
for ShoppingCartHost project 286

<connectionStrings> element, in Webcon-
Àg Àle 27

consistency, transactions for 351–377
Contact entity 551
content-based routing 523
Content DeÀnition dialog box 299, 321,

340
context-based correlation 336
ContractFilter property, of EndpointDis-

patcher object 526
contract-Àrst development 16
contracts

deÀning 16–18
sharing by services 42

Contract Type Browser 73
cookies 243
correlation handle 335

Correlation Initializers property, of Receive
activity 335

corruption of messages
preventing 122

Create A New Binding dialog box 127, 129,
172, 181, 360, 392

Create A New Service Wizard 458
Create A New Standard Endpoint dialog

box 494
CreateBehavior method 414
CreateBufferedCopy method 410
CreateChannel method 422
CreateCustomer method 571
Created state, of ServiceHost object 114
CreateMessage method of Message

class 429
Create New Role page 178
Create New SQL Server Database dialog

box 283
CreateSecureConversationBindingElement

method 407
Create Self-Signed CertiÀcate dialog

box 167
CreateSequence message 384
CreateSequenceResponse message 384
Create User page 176–177
credentials of user 172
C# source Àle, generating 106
CurrentPrimaryIdentityName property, of

ServiceSecurityContext object 191
CurrentPrimaryIdentity property 183
Current property, of OperationContext

class 367
CurrentStockLevel method 22, 22–23

testing 35
custom activity 341
custom application, hosting workÁow ser-

vice in 328–332
custom AuthorizationManager 635
custom behaviors 402

creating 411–414
CustomBinding object 403
custom bindings, programmatically creat-

ing and using 405–409
custom channels 400
Custom Demux sample 527

676 database

D
database

custom code activities for querying 301
verifying updates 368

database deadlock 357
DatabaseFault object 102

Visual Basic for creating 321
database management system 2
Database property

of FindProduct activity 308
of ProductExists activity 307

data contract 16
adding class 17
deÀning for WCF service 16–17
serialization and security 241–242

DataContract attribute 17, 224
Namespace property 228

data contracts 203
adding Àeld and examining default val-

ue 237–238
adding new members 231
adding WCF service operation for investi-

gating serialization 234–236
appearance 224
changing namespace for 228–229
compatibility of versions 238–242
data member name change impact

on 227
modifying 224–242
sequence of members 232

changing 225–228
versioning strategy 231

data contract serializer 233
data format for Àle sharing 4
data members, name change impact on

data contract 227
data queries, with REST Web service imple-

mentation 549–570
DataServiceConÀguration class 582

SetEntitySetAccessRule method 582
DataServiceContext class 589

HTTP message generation 596
SaveChanges method 595

DataServiceException exception 598
DataServiceQueryException exception 598

DataServiceQuery properties 589
DataServiceRequestException excep-

tion 598
DataServices class 584
data store for durable service 279
DataSvcUtil utility 588
data transmission See Message Trans-

mission Optimization Mechanism
(MTOM)

data variable, workÁow problems from re-
naming 298

db_owner role, in AdventureWorks data-
base 41

DCOM (distributed COM) 2
deactivating service instance, selectively

controlling 270–271
deadlocked database 357
debugging

output messages for 438
workÁow service 312

decrementStockLevel method 356
decryption, and performance 465
DefaultAlgorithmSuite property 77
default basicHttpBinding binding 33
default endpoints 82–84
default service, code for 14
default value

of Àeld added to data contract 237–238
for service throttling 472

Delegation value for AllowedImperson-
ationLevel property 162

DeleteCustomer method in ProductsSales
class 575–576

DeleteCustomer operation 572
DELETE requests (HTTP) 570, 576
delivery models for publishing and sub-

scribing 620
delivery of messages, veriÀable 122
DeliveryRequirements attribute 390
Denial of Service attacks 241, 484, 486,

490
one-way operations and 446

deploying WCF service
in IIS without svc Àle 29
to IIS 39–41

 EndpointDiscoveryMetadata property 677

Description property of ServiceHost ob-
ject 413

deserialization 14
developer 295
dictionary collection, caching announce-

ment requests 517
digital signature 122
Direct Internet Message Encapsulation

protocol (DIME) 478, 484
disconnecting client applications 425
disconnecting from WCF service 36
DiscoverableProductsService Web applica-

tion 498–546
discovery 491–522

ad hoc 492–499
conÀguring services to support 492
handling service announcements 499–

506
multicast message from service support-

ing 500
DiscoveryClient class 496

Find method 496–497
instantiating object 520

discovery endpoint
creating 517
for listening for Probe requests 493

discovery proxy 507–522
conÀguring ProductsService service

to send announcement messages
to 519

implementing 508–517
modifying client application to send

probe requests to 519–521
testing 521–522

DiscoveryProxy class 507
DispatchRuntime object, OperationSelec-

tor property of 527
distributed environment, security in 6
distributed transaction 351–377
Distributed Transaction Coordinator

(DTC) 352
DivideByZeroException 111
DNS servers

hacker’s rerouting of messages 195
doClientWork method, in ShoppingCart-

Client project 468
Documents folder 11

DoWork method 604
duplex channels 428

client callbacks and 606
DurableOperation attribute 279, 285
Durable property, for message queue 459
durable service

ShoppingCartService service reconÀgura-
tion as 284–288

state maintenance with 279–294
testing 292–294, 349–350
workÁow 347–350

DurableService attribute 279, 285, 529
Duration property

of FindCriteria object 497
Dynamic Ports property 436

E
Edit WCF ConÀguration command 68
EmitDefaultValue property of DataMem-

ber attribute 238
encoding channel 392, 400

in channel stack 48
encoding format of messages 46
encoding mechanism, and perfor-

mance 466
encrypted message, sender authentica-

tion 184
encryption 122, 125

message-level or transport-level 170
and performance 465

EndAsyncSleep method 452
EndCalculateTotalValueOfStock meth-

od 448
EndOpen method 57
EndpointAddressFilterMessage object

for ChannelDispatcher object 527
EndpointAddressMessageFilter class 526
EndpointAddress objects

code creating 428
collection of 496–497

“An endpoint conÀguration for contract
could not be loaded” message 53

EndpointConÀguration property 314
EndpointDiscoveryMetadata object for dis-

covery proxy 507
EndpointDiscoveryMetadata property 503

678 EndpointDispatcher objects

EndpointDispatcher objects 401, 524–526
and Àlters 526–546
for channel stack 525

EndpointNotFoundException exception 90
endpoints

associating multiple with same URI 401
and bindings 76–84
for client application 81
contents 32
default 82–84
discovery, for listening for Probe re-

quests 493
for client application for REST ser-

vice 569
HTTP, reconÀguring client application to

connect to 74–75
listening to 333
metadata, for service 30
reconÀguring service to support mul-

tiple 72–76
specifying for service listening 26
system-deÀned or application-de-

Àned 518
TCP address speciÀed 53
testing 76
WCF runtime determination of default

values 68
Enter key, code to wait for 71
Enterprise Services 3, 8
Entity Data Model Wizard 11

application conÀguration Àle from 12
Entity Framework 10

and data on demand 21
model 547, 551

error checking in methods 555
error messages, from message processing

failure 48
eventing mechanism, callback contract to

implement 614–622
Event Sinks 622
Event Sources 622
ExactlyOnce property

for message queue 459
exception handlers

exceptions ignored in 95
in client application for WCF Data ser-

vice 597–598

order of 108
Exception object, InnerException prop-

erty 95
exceptions

client application failure with 41
detecting and handling 93
in service host applications 114–118
lack of details for security 111
reporting unanticipated 110–113
thrown by WCF runtime 272
WCF conÀguration to send details 112

Execute method of activity
return value from 303

exporting
certiÀcates 188–189
WCF service certiÀcate 198–199

eXtensible Markup Language See XML
(eXtensible Markup Language)

Extension ConÀguration Element Editor
dialog box 416, 545

<extensions> element in ShoppingCar-
tHost AppconÀg Àle 418

F
“Failed to generate a user instance of

SQL Server due to a failure” mes-
sage 180

FaultContract attribute 318
adding or removing 223
in service contract 100–101

Faulted event, of ServiceHost class 57
Faulted state

for ServiceHost object 115
method to attempt to determine

cause 115
FaultException class 94
FaultException<> exception 318
FaultException handler

testing 97–99
FaultException object 110

based on SystemFault object 103
catch handler for 96
limitations 99

fault handling
in host application 115–116
in ProductsWorkÁowService service

 host applications 679

adding 318–323
testing 324

in workÁow service 317–325
federated environment

claims-based authentication in 643–646
Fielding, Roy 547
Àle format for Àle sharing 4
Àle name, changing for Àle with service

contract 17
Àlters

deÀning rules for routing messages 544
EndpointDispatcher object and 526–546

Àlter table, for RoutingService class 539
FindCriteria class, IsMatch method 504
FindItem activity 338, 341
Find method, of DiscoveryClient

class 496–500
FindPrivateKey utility 197
FindProduct activity 307–308

Database property 308
implementing 301–305
ProductNumber property 308

FindProduct class 304
FindResponse object 496
FindService method, adding to Prod-

uctsServiceProxy class 510
forwarding messages 523
“Four Tenets of Service Orientation” 42
front-end service, routing message by 523

G
garbage collector 257, 425
GenerateDailySalesReport operation 458
GetAllCustomers method in ProductsSales

class 557, 566
GetAllOrders method 552
GetBody<> method 410
GetCallbackChannel method 604
GetCustomerForOrder method in Prod-

uctsSales class 553, 556, 566
GetCustomer method in ProductsSales

class 558, 566
GetData method 15, 16
GetDataUsingDataContract method 15, 16
GetItemFromDatabase activity 339

GetOrder method 553, 566
GetOrdersForCustomer method in Prod-

uctsSales class 558, 566
GetPhoto operation, in ShoppingCartPho-

toService service 478
GetProduct operation 21, 22, 299–301,

315, 323
implementing logic 305–309
workÁow deÀning 309

GetShoppingCart method 250, 267, 359
global conÀguration settings for com-

puter 83
global environment, security and privacy

in 6–7
groups

adding user account 424
creating 154–155

H
hackers 122, 165, 195

and replay attacks 390
handle variable, workÁow use of 298
handshaking mechanism, for security con-

text token 407
hard-coding user certiÀcate details 194
hash 184
help page for WCF service 28
hijacking shopping cart 262
host applications

building 63
conÀguring for WCF Service to support

TCP 51–52
fault handling 115–116
for ProductsSales REST Web service 559–

561
for ProductsServiceHost application 70
for ProductsServiceProxy service 517–

518
service availability to client applica-

tions 46
service conÀguration information for 24
for ShoppingCartService service 251–253
for ShoppingCartService workÁow ser-

vice 343–345
tasks required by 45

680 HostController class

unexpected message handling 116–118
for Web services 49
for workÁow service

in custom application 328–332
in IIS 325–328

HostController class
adding variable 65
handleException method 65–66
start_Click method 66
stop_Click method 67

HTTP
default binding for transport 83
for listening to port 75
reserving port 75–76
transport channel 401
verifying non-use 54

HTTP DELETE requests 570
submitting 576

HTTP endpoint 205
adding to WCF service 72–74
conÀguring 135
conÀguring with SSL certiÀcate 137–141
reconÀguring client application to con-

nect to 74–75
httpGetEnabled property

of serviceMetadata behavior 85, 118
HTTP GET requests, REST operation re-

sponse to 552
HttpGetUrl property, of serviceMetadata

element 56
HTTP MERGE message 596
HTTP POST requests 570
HTTP PUT requests 570, 596
HTTP service protection 142–145

at transport level 135–142
HttpsGetEnabled property 172
HttpsGetUrl property

of serviceMetadata element 56
HTTPS protocol 125, 195

and transport-level security 137, 172
HttpStatusCode enumeration 555
HttpsTransportBindingElement class 77
HTTPS transport channel 401
HTTPS transport, conÀguring 370

I
IAdventureWorksAdmin interface 437
IAsyncResult design pattern 57, 446, 447
IAsyncResult object 507
IChannelFactory object 534
IContextManager object 290, 291
IContractBehavior interface 411
identiÀcation of users 625
IdentiÀcation value for AllowedImperson-

ationLevel property 162
identifying service 201–202
<identity> element 201
identity, proof of 121 See also authentica-

tion
identity provider

client application conÀguration to
use 642–643

for Windows CardSpace 641–643
IDispatchMessageInspector interface 409
IDispatchOperationSelector interface 527
IDisposable interface 604
IDuplexSessionRouter interface 541
IEndpointBehavior interface 411
IExtensibleDataObject interface 240
IInstanceProvider interface 474
IIS DefaultAppPool 40
ImpersonateCallerForAllOperations attri-

bute 161
impersonation

of services, preventing 122
to access resources 160–162

Impersonation value for AllowedImperson-
ationLevel property 162

Import Application Package wizard 326
importing

certiÀcates to Trusted People store 188
certiÀcate to Client CertiÀcate Store 198–

199
WCF service code into IIS Web site 170

InactivityTimeout property 381, 383
IncludeExceptionDetailInFaults proper-

ty 112, 439
information cards for Windows Card-

Space 627, 628

 Java Web services 681

creating 637
InitData property, for trace informa-

tion 132
InitializeService method 580
InnerChannel property 290
InnerException property of exception 95,

320
input argument 303
input channel 428
inspecting messages 408–419
installing

Windows Process Activation Service
(WAS) 50

Windows service 88–89
“instance context” for services 602
InstanceContextMode property 48

of ServiceBehavior attribute 258–261,
267

InstanceContext object 48, 603
InstanceData table 293
instance pooling 474
integrity, message-level 126
Internet 3

as hostile environment 166
Internet Explorer

data display from AdventureWorks data-
base 585–587

HTTP GET requests submitted from 561
testing WCF service with 27–30
turning off feed-reading view 585

Internet Information Services (IIS) 49
conÀguring bindings to support

SSL 167–169
default port for HTTP protocol 73
deploying ProductsService service 498–

500
deploying WCF service 39–41

without svc Àle 29
importing WCF service code into Web

site 170–171
stopping and restarting 197
workÁow service hosting 325–328

Internet Information Services Manager 40,
51, 506

InternetProductsService Web application,
creating 169

inter-process communications 2–9
InvalidOperationException exception 53,

605
IOperationBehavior interface 411
IProductServicecs Àle 420, 651
IProductsService interface 652, 658
IRequestChannel class

Request method of 536
IRequestReply interface 541
IRequestReplyRouter interface 542
IServiceBehavior interface 411
IServicecs Àle 15–16
IService interface 15–16
IShoppingCartPhotoService interface 478
IShoppingCartServicecs Àle

TransactionFlow attributes 355
IShoppingCartService interface 468
ISimpleProductsServicecs Àle 427
ISimpleProductsService interface 427
ISimplexDatagramRouter interface 541
ISimplexSessionRouter interface 541
IsInitiating property of OperationContract

attribute 272
IsInRole method 157

of SystemWebSecurityRoles class 183
IsMatch method of FindCriteria class 504
IsolationLevel property 376
isolation levels for transactions 354, 362
IsRequired property of DataMember at-

tribute 238
IssuedTokenType property 630
IsSystemendpoint property 518
IsTerminating property of OperationCon-

tract attribute 272

J
JavaScript 5
JavaScript Object Notation (JSON) 6, 548,

552
Java Web services 647

682 “keep alive” message

K
“keep alive” message 383
Kerberos protocol 123
Kind property 494

L
large binary data objects, sending to client

application 478–484
LastMessage message 388
listener object 132
Listener Settings dialog box 207, 593
ListProducts method 20, 118, 208

in ProductsServiceImpl class 95
testing 34

load-balancing 465, 523
algorithm 535
for router 528

Load method, of XamlServices class 330
Localhost certiÀcate

removing from certiÀcate store 200
WCF service conÀguration to authenti-

cate to client applications with 196–
198

LocalMachine certiÀcate store, removing
certiÀcate from 200

locked resources, transactions and 376
locks, for data-modiÀcation transac-

tions 354
LogEntireMessage property 131, 382
LogMalformedMessages property 382
LogMessagesAtServiceLevel property 131
LogMessagesAtTransportLevel prop-

erty 131
logs

for exceptions and errors from service
failure 89

minimizing overhead 207
long-running transactions 376–377
lost messages 380

M
machineconÀg Àle 83
MainWindow class 345
MainWindowxamlcs Àle 345
makecert command 654

makecert utility 138, 188, 196, 631
mapping client certiÀcates to Windows ac-

counts 194
MatchAllMessageFilter object 532
Match method 526, 527
MaxArrayLength property 485, 486
MaxBufferSize property 486
MaxBytesPerRead property 485, 486
MaxClockSkew property 393
MaxConcurrentCalls property, for service-

Throttling 466, 471, 473
MaxConcurrentInstances property, for ser-

viceThrottling 466, 471
MaxConcurrentSessions property, for ser-

viceThrottling 467, 471, 473
MaxConnections property of binding con-

Àguration 257
MaxDepth property 485, 486
MaxNameTableCharCount property 485,

486
MaxReceivedMessageSize property 486,

490
MaxResponseDelay property 494
MaxResults property of FindCriteria ob-

ject 497
MaxStringContentLength property 485,

486
membership provider 180
memory, service requirements 475
MERGE message (HTTP) 596
MessageBox class 437
Message class, CreateMessage method

of 429
MessageClientCredentialType proper-

ty 152, 181, 186
MessageEncoding property of binding

conÀguration 478, 482, 483
MessageFilter abstract class 526
MessageFilter class 539
message headers, and routing to other

services 528
message-level encryption 170

for NetTcpBinding binding
for WCF service 127
in WCF client 129–131

message-level security 126, 421

 Name property 683

BasicHttpBinding binding conÀgured
for 142–143

message queue support for 460
and streaming 490
Web site to host WCF service implement-

ing 196
message patterns

for workÁow service 332–337
message queues 433, 457–463

sending messages from client applica-
tion 460–461

WCF service use of 458–460
message queuing URI, format for 459
messages See also reliable messaging;

routing
buffers for 387
conÀguring tracing for WCF service 131–

132
displaying in WCF service 235
display of announcement 506
host application handling of unexpect-

ed 116–118
inspecting 408–419
“keep alive” 383
preventing corruption 122
routing based on contents 539
sending programmatically 427–431
sending to client display 214
sequence order 379
transactions and 372
verifying sender identity 195
volatile 457

MessageSecurityException exception 148
Message security mode for binding 142
message sequence number 385
Message Transmission Optimization Mech-

anism (MTOM) 400, 466, 476–487
conÀguring ShoppingCartPhotoService

service to transmit messages 482–
484

controlling message size 484–487
messaging pattern

interfaces specifying 428
metadata

adding to services collection 509

publishing 56
for WCF service description 29
Web service publishing of 26

metadata endpoint
for service 30

methods, overloading 219
Microsoft

Component Object Model (COM) 2
Microsoft Authorization Manager 124
Microsoft Message Queue (MSMQ) 8, 49,

457
asynchronous operations implementa-

tion 463
Microsoft NET Framework 351 See NET

Framework
Microsoft Silverlight 5
Microsoft Transaction Server 2
Microsoft Windows Network Monitor 484
minFreeMemoryPercentageToActivateSer-

vice attribute 475
MsmqIntegrationBinding binding 80

and reliable messaging 389
and sessions 278

MTOM See Message Transmission Optimi-
zation Mechanism (MTOM)

multicast message, from service support-
ing discovery 500

MultipleFilterMatchesException excep-
tion 527

multiple replies to the client 337
multipleSiteBindingsEnabled property 173,

439
Multipurpose Internet Mail Extension

(MIME) speciÀcation 477
multi-threading

vs reliable sessions 445
transactions and 372

N
named pipes 2, 49, 85, 125

restricting maximum number of concur-
rent sessions 257

Name property
of OperationContract attribute 219

684 names

names
for bindings 128
for interface 611
for operations, changing 222

namespace parameter 106
Namespace property of DataContract at-

tribute 228
namespaces

changing for data contract 228–229
statements referencing 14
for WCF service class 25, 27

NegotiateServiceCredential property 186
nested data, data contracts allowing user

to send 241
nested TransactionScope object 363
NET Framework 3, 37, 50

assembly 47
common language runtime (CLR)

exceptions 94–113
XML serialization features 224

NET Framework garbage collector 257,
425

NET Framework Global Assembly
Cache 659

NetMsmqBinding binding 80, 360, 459,
463

and reliable messaging 389
and sessions 278

NetNamedPipeBinding binding 80, 369,
382

and client callbacks 606
creating 87
and sessions 278

NetPeerTcpBinding binding 80, 360, 599
and sessions 278

netsh utility 75, 205, 256, 655
for SSL conÀguration 138

NetTcpBinding binding 78, 80, 369, 381,
382

authentication mechanism for 151–152
and client callbacks 606
conÀguration 82
conÀguring to require Username authen-

tication 150
message-level encryption 127

for WCF service 127–129
in WCF client 129–131

and reliable messaging 389
and sessions 278

NetTcpContextBinding binding 80, 344,
346, 369, 536

and sessions 278
network analyzers 122, 484
network operating systems (NOS) 2
network resource

account access to 75
NETWORKSERVICE account 180, 197
networks, reliability issues 47, 379
New Client Element Wizard 254
New Group dialog box 154
New Private Queue dialog box 462
New Project dialog box 58
New Service Element Wizard 68, 251, 330,

438
New User dialog box 154
New Web Site dialog box 170
nonces 391
Notepad, to view XML Àle 268

O
OASIS (Organization for the Advancement

of Structured Information Stan-
dards) 7, 380

ObjectContext class 580
OfÁineAnnouncementReceived event 503
OLE transactions, implementing 352–369
OnBeginFind method 508

overriding 515
OnBeginOfÁineAnnouncement meth-

od 508
overriding 514–515

OnBeginOnlineAnnouncement meth-
od 507

overriding 513–514
OnBeginResolve method 508

overriding 516
OnEndFind method 508, 515
OnEndOfÁineAnnouncement meth-

od 508–509
overriding 514–515

 performance 685

OnEndOnlineAnnouncement method 507
overriding 513

OnEndResolve method 508
overriding 516

one-way messaging 336
one-way operations 433, 434–446

callback contract for client notiÀcation of
outcome 606–614

and Denial of Service attacks 446
effects 434–435
implementing 436–445
recommendations 445–446
and timeouts 435–436
and transactions 435

one-way request, for resolving blocking
problem 443–447

OnlineAnnouncementReceived event 500
subscribing to 503

OnPriceChanged operation 600
Opened event, of ServiceHost class 57
Opened state, of ServiceHost object 114
Opening event, of ServiceHost class 57
Opening state, of ServiceHost object 114
Open method

to listen for requests 56
of WorkÁowServiceHost class 330

OperationBehavior attribute 270
Impersonation property 160
TransactionAutoComplete property

of 371, 372
TransactionScopeRequired attribute

of 362
OperationContext class

Current property 367
OperationContextCurrent property 604
OperationContract attribute 18, 47, 272,

552
Action property of 532
AsyncPattern property 447, 448
Name property 219
properties 428
ProtectionLevel property 206, 208

operations
adding to service contracts 222
adding to WCF service 218–222

asynchronous 446–457
in AdventureWorks administrative ser-

vice 448–452
invoking in client application 446–447
in WCF service 447–457
preventing proxy close during 455

removing from service contract 222
OperationSelector property of Dis-

patchRuntime object 527
operations in ShoppingCartService service

controlling sequence 273–274
testing 274–294

Ordered property 390
Organization for the Advancement of

Structured Information Standards
(OASIS) 7, 380

output channel 428
OutputconÀg Àle 106
output messages, for testing or debug-

ging 438
overloaded constructor, for ProductsServi-

ceClient class 34
overloading methods 219

P
parameters

adding to existing operation in service
contract 216–218

changing in operation 223
for service contract methods 224

passwords 177, 182, 625
query of Active Directory to verify 123
risks in using 184
Windows Integrated Security and 151

Peer Channel 599
PeerOrChainTrust 187
peer-to-peer networking 599
PeerTrust 186
PerCall instance context mode 259, 260,

474
maintaining state with 262–270

PerCall service instance context mode 389,
445

performance 465
of network, multiple endpoints for 72

686 PermissiveCertiÀcatePolicyEnact method

PermissiveCertiÀcatePolicyEnact meth-
od 181

PerSession instance context mode 258,
371, 379, 389, 468, 474, 529

as default 262
ReleaseInstanceMode property and 271

PersistBeforeSend property 347
Persistence Provider Arguments Editor dia-

log box 287
persistence store

creating for SQL Persistence Provid-
er 283–284

session state persisting to 290
personal computers, early applications 1–2
Pick activity 340
“Plain Old XML” (POX) 548
platforms for client applications 647
pool of service instance objects 474
ports

for ASPNET Development Web Serv-
er 436

binding certiÀcate with thumbprint
to 140

HTTP protocol for listening to 75
removing HTTP reservation for 140

POST requests (HTTP) 570
“The primary signature must be encrypt-

ed” exception 208
PrincipalPermission attribute 156, 182
privacy

in global environment 6–7
message-level 126
XML Àles and 269

private key 184
protecting 201

private message queue 459
ProbeMatch message 492
Probe message 491

address for sending 519
services responding to 496–497

Probe requests
discovery endpoint for listening for 493
modifying client application to send to

discovery proxy 519–521
ProcessMessage method 531, 535

signature of 532
Product class, modifying deÀnition 651
ProductExists activity

Database property of 307
implementing 301–305
ProductNumber property 307

ProductNumber property
of FindProduct activity 308
of ProductExists activity 307

Productscs Àle 106
ProductsEntityModel assembly 301
Products property 21
ProductsSales class

DeleteCustomer method 575–576
GetAllCustomers method 557
GetCustomerForOrder method 556
GetCustomer method 558
GetOrdersForCustomer method 558

ProductsSalesModeledmx Àle 551
ProductsSalesProxy class

creating instance 568
ProductsSales REST Web service

client application for 565–570
extending to support data updates 571–

576
hosting 559–561
implementing 554–559
testing 561–565, 577–579

ProductsSales REST Web service con-
tract 550

ProductsServiceClient class 34
ProductsServiceClient proxy, creating in-

stance 497–498
ProductsServiceHost application 70
ProductsServiceImpl class

ListProducts method 95
ProductsServiceProxy class

adding FindService method 510
adding ResolveService method 511
adding WaitForAsyncResult utility meth-

od 512
ProductsServiceProxy service, host

for 517–518
ProductsService service

callback contract added to 607

 reentrancy in callback operation 687

ChannelFactory object for connecting
to 420–424

conÀguring
for ad hoc discovery 492–495
to send announcement messages to

discovery proxy 519
to send announcements 500–501

deploying to IIS 498–500
modifying client application to discov-

er 495–498
rebuilding as WCF Service Library 58–59
subscribe and unsubscribe operations

in 615–618
testing 505–506, 619

ProductsWorkÁowClient project, adding
service reference 314

ProductsWorkÁowService namespace
FindProduct class 304
ProductData class 302

ProductsWorkÁowService service
adding item to 301
contents 327
creating 296
custom application for hosting 329–331
fault handling

adding 318–323
testing 324

hosting by IIS, testing 328
ProductsServicexamlx Àle 323
testing 310–312
testing host 331–332
WCF service in 309

Productsxsd Àle 104
Programcs Àle 71

using statement 33
protection level of operation, chang-

ing 223
ProtectionLevel property

of Receive activity 333
ProtectionLevel property of Operation-

Contract attribute 206, 208
proxy class

for client application
for callback contract 610–612

for client application

to test ShoppingCartService ser-
vice 253

creating for service 419
for communicating with WCF service 49
generating 30
regenerating 31

for client application 103–107, 233
and updating client application 229–

231
viewing code 31

proxy object
ClientCredentials property 149
ClientCredentialsUserName proper-

ty 182, 190
Close method 36
code to wait for Enter key before creat-

ing 71
conÀguring 36
creating 53, 290
creating instance 34
generating 220
opening 77
preventing close during asynchronous

operation 455
regeneration after service contract

changes 208
public key cryptography 125
public key infrastructure (PKI) 184
public message queues 459
publishing, delivery models for 620
Publish Web Site dialog box 39, 498–546
pull delivery model 620
push delivery model 620
PUT requests (HTTP) 570, 596

R
ReadCommitted isolation level 354
ReaderQuota properties of bindings 241–

242, 485
ReadUncommitted isolation level 354
Receive activity 333, 335

Correlation Initializers property 335
ReceiveAndSendReply activity 334, 336
ReceiveReply activity 334
ReceiveRequest activity 297–298, 321
reentrancy in callback operation 605–606

688 reference, adding to WCF service

reference, adding to WCF service 19
regasm command 370
registering callback 259
relativeAddress element 29
ReleaseInstanceMode property 270
ReleaseServiceInstanceOnTransactionCom-

plete property 371, 372
reliability of communications 47
reliable message protocol 122
reliable messaging 380–390

implementing 389
in client applications, timeout from 382
vs reliable sessions 379, 389
and streaming 490

ReliableSessionBindingElement class 77
reliableSession binding extension ele-

ment 394
reliable sessions 444

implementing with WCF 381–390
vs multiple-threading 445
and replay attacks 390

reliable sessions binding element 406
RemoveItemFromCart method 266, 359

as durable operation 286
RemoveItemFromCart method of Shop-

pingCartServiceImpl class 249
RepeatableRead isolation level 354
replay attacks 122, 379, 390–397
ReplayCacheSize property 393
ReplayWindow property 393
ReplyAction property for OperationCon-

tract attribute 428
reply channel 428
reply messages, correlating with request

messages in workÁow instance 335–
336

Representational State Transfer model
(REST) 14

request channel 428
request messages 46

activity to send 334
correlating with reply messages in work-

Áow instance 335–336
Request method of IRequestChannel

class 536
Request property

of TransactedReceiveScope activity 373

request/response messaging pattern 433
ResolveService method

adding to ProductsServiceProxy
class 511

resources
availability 475
impersonation to access 160–162
locked by transactions 376
and performance 465
service throttling to control use 466–475

response messages 46
response streaming 488
response time of WCF service 467
restoreShoppingCart method 269
REST (Representational State Transfer)

model 14, 547–549
REST Web service

for data updates 570–579
querying data by implementing 549–570
service contract for 550

Result property, of ProductExists activ-
ity 307

return type of operation
changing 218, 223

return values
from Execute method of activity 303
for service contract methods 224

RevocationMode property 187
Rich Internet Applications (RIAs) 5–6
role provider 180
RoleProviderName property 179
role providers 124
roles 124

for WCF service
deÀning 174–179
specifying 156–158

round-tripping 238
by WCF runtime 239–242

RouteOnHeadersOnly property 542
Router class

private Àelds 533
ProcessMessage method 535
ServiceBehavior attribute 533
static constructor for 534

routing 523–539
Àlters deÀning rules for 544

 SendReplyToReceiveRequest activity 689

routing behavior, SoapProcessingEnabled
property of 542

RoutingService class 523, 539–546
RoutingService service

hosting and conÀguring 540–545
testing 545–546

RunClientscmd command 619
runtime environment 45

S
SalesData service 587

testing 593
client application for 588–592

SalesDataService class 581–582
SalesData WCF Data Service, testing 584–

587
SalesOrderHeader entity 551
sample database, AdventureWorks

OLTP 9–10
SaveChanges method of DataServiceCon-

text object 595
saveShoppingCart method 263, 269
scalability

controlling 467
of workÁow services 347

Schemasmicrosoftcom200310Serializa-
tionArraysxsd Àle 105

Schemasmicrosoftcom200310Serializa-
tionxsd Àle 105

schemas, sharing by services 42
scope for behaviors 402
scripts

for certiÀcate management 189
to query AdventureWorks database 368

SecureConversationBindingElement ele-
ment 406

Secure Sockets Layer (SSL) 125, 167
conÀguring 136
conÀguring IIS bindings to support 167–

169
HTTP endpoint conÀguration with certiÀ-

cate 137–141
security See also Windows CardSpace

basics 121–126
conÀguring 424–431

data contract serialization and 241–242
federated 645
for HTTP service 142–145
in global environment 6–7
implementing in Windows domain 127–

162
lack of exception detail and 111
message-level 126
and performance 465
replay attacks 379
requirements of service 46
specifying requirements for WCF service

operations 205–207
SQL Server database for information 175
transport-level 125
WCF Data Services template and 582

SecurityActionDemand parameter 156
SecurityActionDeny parameter 156
Security Assertion Markup Language

(SAML) 628
SecurityBindingElement class 404, 406
security context token

handshaking mechanism for 407
security risk

hijacking shopping cart 262
on HTTP connection 75

security token in Windows CardSpace 628
SecurityTokenService class 646
Security Token Service (STS) 642–643
SelectOperation method 527
self-issued cards 641

for Windows CardSpace 629
self-signed certiÀcate 167
Send activity 334
SendAndReceiveReply activity 334, 336
Send GetShoppingCart Response activity

PersistBeforeSend property 347
sending messages programmatically 427–

431
Send RemoveItemFromCart Response ac-

tivity
PersistBeforeSend property 347

SendReply activity 321, 334, 335, 336
SendReplyToReceiveRequest activity 321,

322

690 SendResponse activity

SendResponse activity 297–298, 308
Send SystemFault activity 322
SendTimeout property of client bind-

ing 435
<SequenceAcknowledgement> block in

messages 387
Sequence activity 321

for TransactedReceiveScope activity 374
sequence of messages

need for order 379
numbering for 384

“sequence terminated” SOAP fault mes-
sage 381

sequencing operations 243, 271–294
Sequential Service activity 305, 306
serializable class 224

for SQL Persistence Provider 285
Serializable isolation level 354
serialization 14

adding WCF service operation for investi-
gating serialization 234–236

of data contract, and security 241
of publicly accessible classes 263

Server CertiÀcates 167
service

certiÀcation for authenticating to client
application 185

client application communication
with 49

identifying 201–202
implementing successful 8
memory requirements for 475
preventing impersonation 122
response to client requests 47
versioning 211–222
in WCF Service Model 400–401

Service Activation Editor dialog box 171
ServiceActivationException exception 475
service address 46
service announcements

handling 499–506
serviceAuthorization behavior 153
ServiceAuthorizationManager class 634
serviceAuthorization service behavior ele-

ment 161

ServiceBehavior attribute
of Router class 533

ServiceBehavior property 48, 113, 353–
377

ConcurrencyMode property of 443
InstanceContextMode property of 258–

261, 267
investigating 260–262

and ReleaseInstanceMode proper-
ty 270–271

ReleaseServiceInstanceOnTransaction-
Complete property 372

of ShoppingCartServiceImpl class 468
TransactionAutoCompleteOnSession-

Close property 372
<serviceBehaviors> section in Shopping-

CartHost AppconÀg Àle 418
Service ConÀguration Editor 68
service contract

for generalized WCF service to accept
messages 528

for router service 531
sending Probe request 496

ServiceContract attribute 18, 47
CallbackContract property 600

service contracts 16, 45, 203
adding parameters to existing opera-

tion 216–218
breaking and nonbreaking changes

to 222–223
changes, and proxy regeneration 208
channel type based on 422
deÀning synchronous and asynchronous

versions of operation 456
FaultContract attribute in 100–101
information on potential faults 99
in ShoppingCartService namespace 245–

246
ISimpleProductsService interface deÀn-

ing 427
modifying 204–223
multiple 220
for REST Web service 550
selective protection of operations 205–

211

 ShoppingCartClient application 691

SessionMode property of 272
updating 211
for WCF service 18

serviceDebug behavior element 402
service deÀnition Àle 73
serviceDiscovery behavior element 493,

501
service endpoints 46–47

vs client endpoint 71
service host applications

application conÀguration Àle 110
console window, closing 350
exception management 114–118

ServiceHost class 55–57
AddDefaultEndpoints method 82
events 57
to host WCF service in Windows applica-

tion 58–76
ServiceHost object 407

Description property of 413
opening 57
specifying addresses to be listened to 55
states and transitions 114–115

service instance
correlating clients with 346–347
ID for session 279
interaction with channel stack 48
selectively controlling deactivation 270–

271
service instance context modes 257–262
service instance pooling 474
service messages, authenticating with cer-

tiÀcate 195–202
serviceMetadata element

httpGetEnabled property 85, 118
Service-Oriented Application (SOA), trans-

actions in 351–377
Service-Oriented Architecture (SOA) 7–9,

42–43, 203
service-oriented wrappers 295
service reference, adding to Prod-

uctsWorkÁowClient project 314
Service Reference Settings dialog box 446
services

conÀguring to support discovery 492
“instance context” for 602

services collection
adding metadata 509

service security context, AuthorizationCon-
text property of 633–634

ServiceSecurityContext class 183
CurrentPrimaryIdentityName prop-

erty 191
Servicesvc Àle 25
ServiceThrottle class

properties 466–467
service throttling 465, 466–475

conÀguring 467–474
default values for 472
purpose of 474

serviceThrottling behavior element 471–
472

Service Trace Viewer 396, 481, 483, 594
Service Trace Viewer utility 145
SessionMode property of service con-

tract 272
sessions 445

bindings and 278
disabling 443
for durable service 279
reliability

implementing with WCF 381–390
vs reliable messaging 379

tables for storing information 293
transactions and 372
in workÁow service 337–350

session state, persisting to persistence
store 290

SetEntitySetAccessRule method of DataS-
erviceConÀguration class 582

SetEntitySetPageSize method 583
SetTransactionComplete method 367
shopping cart 243–244, 337

hijacking 262
ShoppingCartBehavior behavior

creating behavior extension element
for 415

ShoppingCartService conÀguration to
use 416–419

ShoppingCartClient application
conÀguring to use Windows CardSpace

to send token 635–637

692 ShoppingCartGUIClient application

custom binding for 395–397
doClientWork method 468

ShoppingCartGUIClient application 345
addItem_Click method 282
examining 280
poor practices in initial version 283
updating 288–292
user interface code 281–282
version using streaming 489

ShoppingCartHost application
AppconÀg Àle 529
conÀguring to host ShoppingCartRout-

erService service 537–538
ShoppingCartInspectorcs Àle 409
ShoppingCartItem class 245, 285, 338
ShoppingCartPhotoService service 478

conÀguring to transmit MTOM-encoded
messages 482–484

default process for sending messag-
es 482

GetPhoto operation 478
version using streaming 489

ShoppingCartRouter service
creating 530–537
ShoppingCartHost application conÀgura-

tion to host 537–538
testing 538–539

ShoppingCartServiceActivitiescs Àle 338
ShoppingCartServiceImpl class

AddItemToCart method 265
OperationBehavior attribute 354–355

code to check stock levels 356
GetShoppingCart method 267
InstanceContextMode property of the

ServiceBehavior attribute 267
RemoveItemFromCart method 266

as durable operation 286
restoreShoppingCart method 264, 269
ServiceBehavior attribute of 468

ShoppingCartService service 529–530
applying throttling 468–474
change to authorize users based on

email address 632–634
channels for transactions and reliable

sessions 394
client application for testing 253–257

conÀguring for claims-based secu-
rity 629–632

conÀguring to use ShoppingCartBehavior
behavior 416–419

creating 244
creating behavior 412–414
custom binding for 392
host application 251–253
message inspector for 409–411
operations sequence 271–272

controlling 273–274
testing 274–294

programmatically creating and using cus-
tom binding 405–409

reconÀguring as durable service 284–
288

reliable sessions enabled 381
state management 262

testing capabilities 267–270
testing 638–641

information cards for 637
transactions 353

conÀguring client applications for
Áow 364

conÀguring service to Áow from client
applications 360

modiÀcations for indicating suc-
cess 366

testing 365–369
using block 361
workÁow 338–342

conÀguring as durable service 347
ShoppingCartService workÁow service

hosting 343–345
testing 345–346

shutdown message, broadcasting by ser-
vice 500

signature 185
for MTOM messages 478

Silverlight See Microsoft Silverlight
Simple Object Access Protocol (SOAP) 547
Single instance context mode 259, 261
Site Bindings dialog box 51, 168
“small-endian” 32-bit processor 4
SOAP (Simple Object Access Protocol) 5,

219

 SystemDataEntity assembly 693

SOAP fault messages
one-way operation and 434
“sequence terminated” 381

SOAP faults 94
modifying client applications to catch 96
strongly-typed 99–110

modifying WCF service to throw 101–
103

WCF client modiÀed to catch 108–110
throwing and catching 94–99

SOAP header, <AckRequested> block 385
SOAP messages 204, 400

for client parameters passed into opera-
tion 532

in Message object 410
MTOM for sending and receiving 476
raw format 484

SoapProcessingEnabled property of rout-
ing behavior 542

SOAP serialization 231
SOAP speciÀcation 94, 429
sockets 2
Solution ‘ProductsServiceLibrary’ Property

Pages dialog box 72
“A speciÀed logon session does not exist”

message 140
spooÀng 122
spoof service 185
SQL Persistence Provider 279, 287, 293

persistence store for 283–284
serializable class for 285

SqlPersistenceProvider
Factory class 287

SQL Server
adding default accounts for application

pools 41
updating user information in data-

base 192
SQL Server persistence provider 529
SslStreamSecurityBindingElement

class 404
standard endpoints 492

conÀguration 494
starting

Internet Information Services (IIS) 197
WCF service, code for 65–67

Windows service 85–87
startup projects, multiple projects set

as 256
state information, maintaining between

operations 243
stateless, REST model as 549
state maintenance

with durable service 279–294
with PerCall instance context mode 262–

270
testing capabilities of ShoppingCartSer-

vice service 267–270
in WCF service 244–271
in workÁow service 337–350

stopping
Internet Information Services (IIS) 197
WCF service, code for 65–67
Windows service 85–87

StreamedRequest value for TransferMode
property 487

StreamedResponse value for TransferMode
property 488

Streamed value for TransferMode prop-
erty 488

streaming data 487–490
and client application 487–488
message-level security and 490
operation design to support 488–490
ShoppingCartPhotoService version us-

ing 489
stream upgrades 404
strongly-typed SOAP faults 99–110

WCF client modiÀed to catch 108–110
WCF service modiÀed to throw 101–103

subscribe operations in ProductsService
service 615–618

subscribing, delivery models for 620
Subscription Manager 622
svcutil utility 49, 103, 106, 203, 220, 229,

419
/async Áag 446

SymmetricSecurityBindingElement
class 404

SystemCollectionsConcurrent
namespace 502

SystemDataEntity assembly 245

694 SystemDataServicesEntitySetRights enumeration

SystemDataServicesEntitySetRights enu-
meration 583

system-deÀned endpoints
or application-deÀned 518

SystemFault object
creating 322
FaultException based on 103

SystemIdentityModelClaimsClaimSet
class 641

SystemNetPeerToPeer namespace 599
SystemRuntimeSerialization

namespace 14
SystemServiceModelActivities

namespace 328
SystemServiceModel assembly, adding

reference to 34
SystemServiceModelChannels

namespace 405
SystemServiceModelClientBase generic

abstract class 425
SystemServiceModelDiscoveryFindCrite-

ria object 496–546
SystemServiceModelDiscovery

namespace 500, 507
SystemServiceModelDuplexClientBase

class 601
SystemServiceModelFaultException ob-

ject 95
SystemServiceModel namespace 14

predeÀned bindings in 78
WorkÁowServiceHost class 328

SystemServiceModelRouting
namespace 523

SystemServiceModelWeb assembly 549
SystemServiceModelWeb namespace 14,

559
SystemTimeoutException 435
SystemTransactions namespace 352
SystemWebSecurityRoles class

IsInRole method 183
SystemXml namespace 410

T
TCP endpoint, creating for discovery proxy

connection 520
TCP protocol 49, 72

conÀguring client application to connect
with 52

conÀguring host environment for WCF
Service to support 51–52

for discovery 517
protecting at message level 127–135
restricting maximum number of concur-

rent sessions 257
TCP transport channel

binding elements to implement 407
templates

Class Library 10
for WCF service 9, 13
for WCF Service Library template 58

Tempuriorgwsdl Àle 105
Tempuriorgxsd Àle 104
TerminateSequence message 388
testing

AdventureWorks Administrative Op-
erations service, client applications
for 440

AdventureWorksAdmin queue 462–463
ASPNET client application 655–656
authorization for WCF service 158–163
ChangeStockLevel method 36
client applications 424–431

for workÁow service 317
COM+ applications 665–668
CurrentStockLevel method 35
discovery proxy 521–522
durable service 292–294, 349–350
endpoints 76
FaultException handler 97–99
fault handling

in ProductsWorkÁowService ser-
vice 324

ListProducts method 34
output messages for 438
ProductsSales REST Web service 561–

565, 577–579
ProductsService service 505–506
ProductsService service event 619
ProductsWorkÁowService service 310–

312
host for 331–332
IIS host 328

 TransactionScope object 695

RoutingService service 545–546
SalesData service 593

client application for 588–592
SalesData WCF Data Service 584–587
ShoppingCartRouter service 538–539
ShoppingCartService service 638–641

client application for 253–257
information cards for 637
operation sequencing 274–294
state management capabilities 267–270
transactions 365–369

ShoppingCartService workÁow ser-
vice 345–346

WCF service 41, 182–185
with Internet Explorer 27–30

Windows host environment 70
Windows service 89–90

TestProductsService method 607, 611, 612
text encoding channel 401

binding elements to implement 407
Thawte 138
“There is a problem with the website’s se-

curity certiÀcate” error 174
“This operation would deadlock because”

message 605
threads

in callback operation 605–606
and service instance lifetime 259

throughput 467, 475
thumbprint of certiÀcate 138
timeouts

one-way operations and 435–436
from reliable messaging in client applica-

tions 382
time-stamped identiÀer

for replay detection 391
time-stamp in message 122
token in Windows CardSpace 628

specifying type expected 630
trace messages from client applica-

tions 383–390
trace output

examining 133–135
running WCF client and service to exam-

ine 145–146
TraceOutputOptions property

for trace information 132

tracing
conÀguring 382, 593–595
information for WCF 131
WriteLine statement for 468

TransactedReceiveScope activity 374
properties 373

transactional requirements of service 46
TransactionAutoCompleteOnSessionClose

property 371
of ServiceBehavior property 372

TransactionAutoComplete property 359
of OperationBehavior attribute 355, 371,

372
transaction channels 47
transaction Áow binding element 406
transactionFlow binding extension ele-

ment 394
TransactionFlow property 360
TransactionIsolationLevel property 353–

377
TransactionProtocol property 360, 369
transactions

aborted client requests impact 474
aborting 357
and multi-threading 372
COM+ component support for 664
conÀguring client applications for Áow to

ShoppingCartService service 364
creating in client application 361–364
enabling in ShoppingCartService ser-

vice 353
for internal consistency 351–377
in ShoppingCartService service, test-

ing 365
in workÁow service 373–377
isolation levels for 354
long-running 376–377
and messaging 372
one-way operations and 435
ShoppingCartService service conÀgured

to Áow from client applications 360
in WCF service 352–371

TransactionScope activity
workÁow client using 375

TransactionScope object
Complete method 363, 366
nested 363

696 TransactionScopeOption parameter

TransactionScopeOption parameter 362
TransactionScopeRequired property 359–

360
of OperationBehavior attribute 355, 362

TransferMode property
of BasicHttpBinding binding 490
of binding conÀgurations 487–488
Buffered setting 382

transport channels 47, 392, 400
in channel stack 48

TransportClientCredentialType proper-
ty 136, 148, 150

Transport Layer Security (TLS) 125, 127
transport-level encryption 170
transport-level security 125, 381, 391, 444,

529
advantages and disadvantages 126
for BasicHttpBinding binding

for WCF client 136–137
for WCF service 136–137

implementing for testing 654
message queue support for 460

transport protocol 46
TransportSecurityBindingElement

class 404
TransportWithMessageCredential

mode 128, 143
Trusted People store 186

importing certiÀcates to 188
TrustedStoreLocation property 187
trust relationships between separate do-

mains 124
trustworthiness

of client applications 165
of client certiÀcates, verifying 186–187

TryCatch activity 323
Catches section 320

types of parameters
changing 218, 223

U
udpAnnouncementEndpoint endpoint 501
udpDiscoveryEndpoint endpoint 492, 494
uninstalling Windows service 90
Universal Description, Discovery, and Inte-

gration (UDDI) 656
UnknownMessageReceived event 57, 118

“Unreachable code detected” warning 191
“An unsecured or incorrectly secured fault

as received from the other party”
message 180

unsubscribe operations in ProductsService
service 615–618

UpdateCustomer method 572, 573–574,
577

UpdateProductDetails method
adding implementation 234

Update Service Reference feature 33
UriTemplate property 552, 571
“URL reservation successfully added” mes-

sage 141
user account, adding to group 424
User Account Control dialog box 39
user application

hosting service in 54–57
hosting WCF Service in 84

username Properties dialog box 424
user names 625
usernames 182

Active Directory query to verify 123
Windows Integrated Security and 151

UserName token 172
users See also authentication

authorization 152–160
concurrent, and data changes 353
creating certiÀcates to identify 188
displaying name when calling operation

in WCF service 146–147
for WCF service, deÀning 174–179
investigating identiÀers authenticated

with certiÀcates 190–191
modifying WCF client to supply creden-

tials 148–150
service authentication of 123
updating information in SQL Server data-

base 192–195
using statement 19, 20, 33

in ShoppingCartService service 361

V
Validate method 411, 412
validating users with Windows Card-

Space 627
validation of parameters 555

 WCF service 697

variables, setting type 315
VeriSign 138
versioning

and data contract compatibility 238–242
services 211–222

Version Tolerant Serialization 238
Visual Basic

for creating DatabaseFault object 321
for workÁow activities 299

Visual Studio 3
for building WCF service 9–30
installing ASPNET for NET Frame-

work 50
running as administrator 39
Web deployment Tool 326

void methods, one-way methods as 437
volatile messages 457
vulnerability of messages on network 379

W
WaitForAsyncResult utility method 512
WCF Data Services 579–598

client application
exception handlers 597–598

client library 587
consuming in client application 587–595
for modifying data 595–597

WCF Data Services template 547
WCF framework

Áexibility 48
predeÀned bindings 77–80

WCFPersistence database 529
WCF runtime

acknowledgment message from 386
built-in channels 47
client application connection to ser-

vice 419–426
determination of certiÀcate validity 141
endpoint default values 68
exception for exceeded message

size 490
exception thrown by 272
limits on array length in messages 485
mappings for converting between XML

and NET Framework types 37
round-tripping by 239–242

selective control of service instance de-
activation 270

single channel stack created by 525
WCF service startup and 204

WCF service
adding HTTP endpoint 72–74
adding method 212–215
adding operation 218–222
adding reference 19
asynchronous operations 447–457
building 9–30
building application to host 58–76
client application connection settings 32
code to start and stop 65–67
COM+ application as 657–668
conÀguring

activation and binding 171–174
host environment to support TCP 51–

52
to send exception details 112–113
and testing 24–30
to use ASPNET Role Provider and ASP

NET Membership provider 179–180
to use WSDualHttpBinding bind-

ing 613–614
conÀguring COM+ application as 661–

665
creating 13–16
deÀning data contract for 16–17
deploying in IIS 39–41

without svc Àle 29
disconnecting from 36
displaying messages in 235
entity model 10–13
exporting certiÀcate 198–199
hosting

with ASPNET Web site 170
in user application 54–57
with Windows application 63
with Windows Process Activation Ser-

vice 49–54
in Windows service 84–90

how it works 45–49
implementing 18–24
importing code into IIS Web site 170–

171

698 WCF Service ConÀguration Editor

message queuing use in 458–460
modifying

to throw SOAP faults 94–96
to throw strongly-typed SOAP

faults 101–103
to throw unanticipated exception 111

in ProductsWorkÁowService project 309
replacing ASPNET Web service

with 651–654
response time and throughput 467
sequencing operations in 271–294
service contract 18, 203
testing 182–185, 207–211

with Internet Explorer 27–30
timeout 383
to support ASPNET client 647–656
transactions 371–372
verifying client application authentica-

tion 200–201
WCF Service ConÀguration Editor 68, 663

and binding conÀguration 127
WCF service contract 47
WCF Service Library 58

testing with WcfTestClient applica-
tion 59–63

WCF Service Model 399–419, 524
behaviors 401–403
composing channels into bindings 403–

408
inspecting messages 408–419
services and channels 400–401

WCF service wrapper, for COM+ compo-
nents 657

WcfSvcHost utility 59
displaying 61

WcfTestClient application 62
testing WCF Service Library with 59–63

WCF Test Client window
displaying 62

Web applications 3
creating 169

Web browser, for testing ProductsSales
REST Web service 561–565

WebconÀg Àle 25–26, 649
<connectionStrings> element 27
<protocolMapping> section 83

<serviceHostingEnvironment> ele-
ment 173

<systemserviceModel> section 26
<systemWeb> section

<authentication> element 179
<roleManager> element 179

Web deployment Tool 326
WebFaultException exception 555, 573,

575
WebGet attribute 552, 570
WebGet send response messages format-

ting 552
WebHttpBehavior endpoint behavior 559
WebHttpBinding binding 80, 360

and sessions 278
WebInvoke attribute 570, 571
Web resources

custom AuthorizationManager 635
on custom channels 400
Custom Demux sample 527
data contracts, versioning strategy 231
FindPrivateKey utility 197
on JSON 6
Kerberos protocol 123
makecert utility 138
on Microsoft Authorization Manager 124
OASIS security standards 7
on peer-to-peer applications 599
public key cryptography 125
on Security Token Service 642
on SOAP 5
Version Tolerant Serialization 238
on Windows Azure 9
on Windows CardSpace 642
on WSDL 5
WS-I Basic ProÀle speciÀcation 656
XMLorg 4

Web service environment
maintaining state 243

WebServiceHost class 559
Web services 3, 49

REST model and 548
sending and receiving requests 5
technical standards and 78

 workÁow service 699

Web Services Atomic Transaction (WS-
AtomicTransaction) speciÀca-
tion 351–352

Web Services Description Language
(WSDL)

document 5
schema 29

Web Services Enhancements (WSE) 7, 648
Web sites

default protocol bindings for 51
user access to 175

well-known address, for discovery interme-
diary service 507

While activity 337, 339
Windows 7, “There is a problem with the

website’s security certiÀcate” er-
ror 174

Windows application, creating to host WCF
service 63

Windows Application Event log 89
Windows authentication

BasicHttpBinding binding conÀguration
to use 150–151

Windows Azure 8
Windows CardSpace 626–646

identity provider for 641–643
information cards for 627, 628
self-issued cards for 629
validating users with 627

Windows CardSpace console 637–638
Windows Communication Foundation

Service-Oriented Architecture and 7–9,
42–43

Windows domain, security implementa-
tion 127–162

Windows environment, authentication
in 123–124

Windows Features dialog box 50
Windows Firewall 72
Windows host application

conÀguring 67
Windows host environment

testing 70
Windows Identity Foundation (WIF) 646
Windows Integrated Security 124, 143, 262

and user names and password transmis-
sion 151

Windows operating system
and SOA platform 8

WindowsPrincipal object 157
Windows Process Activation Service (WAS)

installing and conÀguring 50
WCF service hosting with 49–54

Windows Security Alert message box 97
Windows Server AppFabric 54–55, 347

and durable service 279
Windows service

creating installer 88
hosting WCF service in 84–90
installing 88–89
starting and stopping 85–87
testing 89–90
uninstalling 90

WindowsStreamSecurityBindingElement
class 404

Windows Token Role Provider 124
conÀguring WCF service to use 153–154

Windows users, authentication of 146–152
workÁow

as durable service 347–350
for ShoppingCartService service 338–

342
workÁow activities

Visual Basic syntax for 299
WorkÁowInvoker class 329
workÁow service

client application for 313–317
creating 313–316
testing 317

ConÀgurationName property 298
correlating request and reply messages

in instance 335–336
debugging 312
handling faults 317–325
hosting

in custom application 328–332
in IIS 325–328

implementing 296–312
implementing common message pat-

terns 332–337
passing information into activity 303
session management 337–350
state maintenance 337–350
transactions in 373–377

700 WorkÁowServiceHost class

WorkÁowServiceHost class 328–329
WorkÁowServiceHost object, creating 330
WorkÁow Toolbox

Messaging section 333–335
World Wide Web 3

REST model and 548
WriteLine statement 315

for tracing 468
ws2007FederationHttpBinding bind-

ing 629
WS2007FederationHttpBinding binding 80

and sessions 278
WS2007HttpBinding binding 79, 171, 206,

421, 444, 478, 490
and client callbacks 606
conÀguring to require Username authen-

tication 150
encryption algorithm 145
and sessions 278
SOAP messaging format for 429
WCF client conÀguration to connect

to 144
WCF service conÀguration with endpoint

based on 143
WS2007HttpBinding class 421
WS2007HttpBinding_IProductsService cli-

ent endpoint 492
WS2007HttpBinding_IShoppingCartService

endpoint 254
wsatConÀgexe utility 370
WS-AtomicTransaction protocol

implementing 369–371
WS-Discovery speciÀcation 491

versions 494
WSDL See Web Services Description Lan-

guage (WSDL)
WSDL (Web Services Description Lan-

guage)
disabling metadata publishing 561

WSDualHttpBinding binding 79, 478, 606
and reliable messaging 389
and sessions 278
WCF Service conÀguration to use 613–

614

WS-Eventing speciÀcation 621–622
WSFederationHttpBinding binding 80, 478

and reliable messaging 389
and sessions 278

WSHttpBinding binding 79, 382
and client callbacks 606
and reliable messaging 389
and sessions 278

WSHttpContextBinding binding 79, 288,
536

and sessions 278
WS-I Basic ProÀle 78, 656
WS-Policy framework 43
WS-ReliableMessaging protocol 78, 379,

380, 381
bindings and 389
message organization in conversa-

tion 384
WS-SecureConversation speciÀcation 395
WS-Security speciÀcation 78, 126
WS-* speciÀcations

ASPNET Web services and 648
WS-* SpeciÀcations 78
WS-Transactions speciÀcation 78

X
XAML Àles, reading 330
XamlServices class, Load method 330
xamlx Àle extension 297
XmlDictionaryReader object 486
XML (eXtensible Markup Language) 4, 46,

548
for SOAP messages 476

XML Àles
Notepad to view 268
and privacy 269

XML schema 4
for messages to and from Web ser-

vice 37
XML serializer 263
XmlSerializer object 264, 268

About the Author
JohnSharp is a Principal Technologist at Content Master Ltd, a technical authoring com-
pany based in the United Kingdom There he researches and develops technical content for
technical training courses, seminars, and white papers Throughout his development career,
John has been active in training, developing, and delivering courses He has conducted
training on subjects ranging from UNIX Systems Programming, to SQL Server Administra-
tion, to Enterprise Java Development

John is deeply involved with NET development, writing courses, building tutorials, and
delivering conference presentations covering Visual C#, WCF, SQL Server, Visual J#, ASPNET,
and Windows Server AppFabric Apart from Windows Communication Foundation Step By
Step, John has also authored Àve editions of Microsoft Visual C# Step By Step, and Microsoft
Visual J# .NET, all published by Microsoft Press

	Table of Contents
	Acknowledgments
	Introduction
	Chapter 3. Making Applications and Services Robust
	Index
	About the Author

