

Microsoft

Programming Microsoft
LINQ in Microsoft .NET
Framework 4

Paolo Pialorsi

Marco Russo

Copyright © 2010 by Paolo Pialorsi and Marco Russo

Complying with all applicable copyright laws is the responsibility of the user. All rights reserved. Without limiting the
rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any
purpose, without express written permission of Microsoft Press, Inc.

Printed and bound in the United States of America.
123456789 M 543210

Microsoft Press titles may be purchased for educational, business or sales promotional use. Online editions are also
available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/institutional
sales department: (800) 998-9938 or send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, ActiveX, Excel, FrontPage, Internet Explorer, PowerPoint, SharePoint, Webdings, Windows,
and Windows 7 are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries. Other product and company names mentioned herein may be the trademarks of their respective owners.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people,
places, and events depicted herein are fictitious, and no association with any real company, organization, product, domain
name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the author, Microsoft Corporation, nor their

respective resellers or distributors, will be held liable for any damages caused or alleged to be caused either directly or
indirectly by such information.

Acquisitions and Development Editor: Russell Jones
Production Editor: Adam Zaremba

Editorial Production: OTSI, Inc.

Technical Reviewer: Debbie Timmins

Indexing: Ron Strauss

Cover: Karen Montgomery

Compositor: Octal Publishing, Inc.

Ilustrator: Robert Romano

978-0-735-64057-3

To Andrea and Paola: thanks for your everyday support!

—~Paolo

Contents at a Glance

Part |

Part Il

W 0 N O

10
11

Part 1l
12

13

Part IV
14

15
16
17

Part V
18

19

LINQ Foundations

LINQ Introduction.t 3
LINQ Syntax Fundamentals, 23
LINQtoObjects.oiiiii i i i i i i e 49

LINQ to Relational

Choosing Between LINQ to SQL and LINQ to Entities 111
LINQtoSQL:QueryingData...........ccoviiiiiiniiininnenn.. 119
LINQtoSQL:ManagingDatacoiiiiiiiiinenan.. 171
LINQ to SQL: Modeling Dataand Tools......................... 205
LINQ to Entities: Modeling Data with Entity Framework 241
LINQ to Entities: QueryingData............... t.. 273
LINQ to Entities: ManagingData 301
LINQtoDataSet. ... e i i i 343
LINQ to XML

LINQ to XML: Managing the XML Infoset....................... 359
LINQ to XML: QueryingNodes.coiiiiiviininnnnn.. 385
Advanced LINQ

Inside EXpression Trees.o vttt it ie e 415
Extending LINQo ot e i e 465
Parallelism and Asynchronous Processing....................... 517
Other LINQ Implementations 563

Applied LINQ
LINQ in a Multitier Solution 577

LINQDataBindingc.coiiuiiiiiiiiiii i iiinnannnnnn 609

Table of Contents

Preface ..ot Xvii
Acknowledgments i Xix
INtrodUCtioN. . .. o e XXi

Part| LINQ Foundations

1 LINQIntroduction...........coiuiiiiiiii ittt 3
What Is LINQ. ... o i i e et e et et et et 3
Why Do We Need LINQ?ttt ittt iieiiaeeeeenn 5
HOW LINQ WOKKS. . ..ottt ettt et et ettt et 6

Relational Model vs. Hierarchical/Network Model. 8
XML Manipulation i i e e 14
Language Integration.ot e 17
Declarative Programmingoouiiiiiiiiiiin i, 17
Type Checkingot et 19
Transparency Across Different Type Systems. 20
LINQ Implementations.ttt i 20
LINQto Objects.ot et 20
LINQto ADO.NET . .ttt e e et e 21
LINQtOXML ..t e e e e e e 22
SUMIMIAIY . . ettt ettt et et e et et et e e 22

2 LINQSyntax Fundamentals....................ccoiiiiiiiinan.. 23

[0 F V@ @ LU T=Y 5 =T 23
QUEIY SYNtAX . o oottt e ettt 23
FullQuery Syntaxottt e i e 28

Query Keywordst e e e 29
From Clauseo oot e 29
Where Clause.ttt et 32
Select Clause.ttt e 32
Groupand Into Clausesottt 33
Orderby Clauseouuuniii ittt ettt 35
Join Clause o e 36
Let Clauseottt e 40
Additional Visual Basic Keywords, 41

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey vii

viii Table of Contents

Deferred Query Evaluation and Extension Method Resolution 42
Deferred Query Evaluation.......... i 42
Extension Method Resolution o il 43

Some Final Thoughts About LINQ Queries.coiuiiiiiinennnann. 45
Degenerate Query EXpressionsc.iiiiiiiiiiiiiiinaen. 45
ExceptionHandling i 46

YV 4] 14T 2N 48

3 LINQtoObjects.coviiiiiiii i i et i 49

QUErY OPerators . ..ottt it e i e e e 53
The Where Operator.coouuniii it iiiiaeee e 53
Projection Operatorsoiiiiiiiiniii ittt 54
Ordering Operators ..ottt 58
Grouping OPeratorsottt iiinneeeeeeans 62
JOIN OPEratorS. . oottt ettt et e 66
Set Operators.ot e 71
Aggregate Operators.ottt e 77
Aggregate Operators in Visual Basicc.cciiin.... 86
Generation Operatorsoiuiiiiiiit ittt i 88
Quantifier Operatorsouuiiniiteiiiiie ittt 90
Partitioning Operators.oiiiiuiiiiiiiiiiiii i 92
Element Operatorsttt 95
Other Operatorsttt i 100

Conversion Operators.ttt ittt 101
AsEnumerable o i 101
ToArray and TOListttt iiiiaaaenn 103
ToDiCtioNary. . .o ov e e 104
TOLOOKUP . o et e 106
OfType and Castovveit ittt iiiiaee e 107

SUMIMIANY . . ottt et ettt et et e et e e 108

Part I LINQ to Relational

4 Choosing Between LINQ to SQL and LINQ to Entities 111
Comparison Factorsoiuuiinne ittt 111
When to Choose LINQ to Entities and the Entity Framework.............. 112
Whento Choose LINQto SQL. ...ttt 114
Other Considerationsttt ittt 116

SUMIMANY . . ot et e e e e e e 117

Table of Contents

5 LINQtoSQL:QueryingData..........ccovviiiiniiiinnennnnnnn 119
Entities in LINQ 1O SQLottt i e i i it e et i 120
External Mappingot e 122
DataModeling.ot e 124
DataContext.ottt i i i e e 124
Entity Classesttt e 125
Entity Inheritance i e 127
Unique Object Identityot 129
Entity Constraintsouuiiintiitiii ittt 130
Associations Between Entities il 130
Relational Model vs. Hierarchical Model 138

Data QUerYiNg . ..ottt et et e e 138
Projections.o i 141
Stored Procedures and User-Defined Functions.................... 142
Compiled QUENIes. ... oottt e i e et 150
Different Approaches to QueryingData 152
DiIreCt QUEKIES . v ittt et e e e e e e e e 155
Deferred Loading of Entities........... i, 157
Deferred Loading of Properties......... ..., 159
Read-Only DataContext ACCESScuuuuuneeeeeeunnnnanneeennn 161
Limitations of LINQto SQLttt i i e i 161
Thinking in LINQ to SQL.ottt e eeeaeens 163
The IN/EXISTS Clause.ottt 163
SQLQuery Reduction.ttt e 166
Mixing .NET Code with SQLQueries............c.ccoiiiiineennn... 167
SUMIMIAIY . ettt e e et ittt ettt ettt 170
6 LINQtoSQL:ManagingDataccovviiiiiiinnnnnnn. 171
CRUD and CUD Operationscuvitinitie i e iiaeennnnnn 171
Entity Updates.ottt e 172
Database Updates. ...ttt 179
Customizing Insert, Update, and Delete 183
Database Interaction.ttt 185
Concurrent Operationsuuuiiinieiiiinnnnneeennnnnn. 185
Transactions.ttt i 189
EXCEPLIONS . oottt e 190
Databases and Entitieso i i 192
Entity Attributes to Maintain Valid Relationships................... 192
Deriving Entity Classes.ottt 194
Attaching Entities 197
Binding Metadata.........ot 201

Differences Between the .NET Framework and SQL Type Systems 204
SUMIMIAIY . ettt et ettt et et ettt 204

Table of Contents

7 LINQ to SQL: Modeling Dataand Tools......................... 205
File TYPes. . .ottt e i e e 205
DBML—Database Markup Language, 206

C# and Visual BasicSource Code..........oooiiiiiiiniiinnennn., 207
XML—External Mapping File i i 210
LINQto SQLFileGeneration...............cciiiiiiiiiiinnnnnnnn. 211
SQLMetal. ..o e e e e 213
Generating a DBML File from a Database.......................... 213
Generating Source Code and a Mapping File from a Database 214
Generating Source Code and a Mapping File from a DBML File 216
Using the Object Relational Designer i, 216
DataContext Properties.coiiiiiieii it 221
Entity Class. .. .coni et i e e 222
Association Between Entities il 226
Entity Inheritance i 232
Stored Procedures and User-Defined Functions.................... 235
Views and Schema Support. oo i 238
SUMIMIAIY . . ettt ettt et et ettt e iee et ine e 239
8 LINQ to Entities: Modeling Data with Entity Framework 241
The Entity DataModel o i i 241
Generating a Model from an Existing Database.................... 241
Starting froman EmptyModel. 244
Generated Code et 245
Entity Data Model (.edmx) Files........ oo iiiiiiii... 248
Associations and Foreign Keys ittt 250
CoMPLEX TYPES. . e ettt et et e e e 254
Inheritance and Conditional Mapping., 257
Modeling Stored Procedures.ot 259
Non-CUD Stored Procedurescoouuiiiiiiniiinnennnnnnn. 259

CUD Stored Procedures.c.ooviiiiiiii it nns 262
POCO SUppOrt . ..o 266
T4 Templates.ot e 271
SUMIMIAIY . . ettt et et et et ettt et et 272
9 LINQ to Entities: QueryingData..............coovviiiiinnnn... 273
EntityClient Managed Providers.cciiiiiiiiiiiininnneennnnn. 273
LINQ tO ENtitiesottt it i it et ettt e e et 275
Selecting Single Entities.ottt i 277
Unsupported Methods and Keywords 278
Canonical and Database Functions 279
User-Defined Functions.o oo ... 281

Stored Procedures.ttt e 283

Table of Contents

ObjectQuery<T> and ObjectContextccouuiiieneeeunnnnnn.. 284
Lazy Loadingttt e 284
Include ... o e 286
Loadand Isloaded i, 288
The LoadProperty Method i, 288
MergeOption.ttt e e 290
The ToTraceString Method. it 292
ExecuteStoreCommand and ExecuteStoreQuery 293
The Translate<T> Method i i, 294

Query Performance.ttt e 296
Pre-Build Store Views.o i i i il 296
EnablePlanCachingttt 297
Pre-Compiled QUeriesttt 297
Trackingvs. No Trackingttt 299

SUMIMIAIY . ot e e et et e et e e e e 299

10 LINQ to Entities: ManagingDataccoiviiinnn... 301

Managing Entities e 301
AddingaNew Entity.t e 301
UpdatinganEntity it i, 302
DeletinganEntity........ ... i 303
Using SaveChanges.ttt 304
Cascade Add/Update/Deleteccoiiiiiiiiiiiiiinnn... 305
Managing Relationships i i, 309

Using ObjectStateManager and EntityState 311
DetectChanges and AcceptAllChanges 313
ChangeObjectState and ChangeRelationshipState 314
ObjectStateManagerChangedc.cciiiiiiiiaen.. 315
EntityKey. . ..o e e 316
GetObjectByKey and TryGetObjectByKeycccveie.... 317

Managing Concurrency Conflicts............. .ot iiiiiiiinnan. 319

Managing Transactionscuuiiiiiiiiiiiii it 322

Detaching, Attaching, and Serializing Entities........................... 327
Detaching Entities. i 327
Attaching Entities 328
ApplyOriginalValues and ApplyCurrentValues. 330
Serializing Entities. i e 333

Using Self-Tracking Entities.c oottt 337

SUMMAIY . . ettt et et e e e et ettt et i e 342

Xi

xii Table of Contents

11 LINQtoDataSet.ooviiiiiii ittt 343
Introducing LINQ to DataSet. ...ttt iiii i, 343
Using LINQto Load aDataSet.cooiiiiiiiiiiiiinieennnnn.. 344

Loading a DataSet with LINQto SQL.ccoiiiiiiiioa... 344
Loading Data with LINQto DataSetcoiian... 346
Using LINQ to QueryaDataSetc.ooiiiiiiiiuiiinnneeennnnnn. 348
Understanding DataTable.AsEnumerable. 350
Creating DataView Instances with LINQ........................... 351
Using LINQ to Query a Typed DataSet...............ccciiiiuan... 352
Accessing Untyped DataSetDatacovvviiiiinnnnnnnnn 353
Comparing DataRow Instancescciiiiiiiinennnenn.. 353
UMM . . ot ettt et et e e 355

Part Il LINQ to XML

12 LINQ to XML: Managing the XML Infoset....................... 359
Introducing LINQto XML. 360
LINQ to XML Programming.uuuuineeeettuinenneeeennnnnnnnennn 363

XDOoCUMENt ...ttt e 364
XElement e 365
XAttribute. 369
XNOde. oo i 370
XName and XNamespacec.c.ouuiiiieinniinnennnnnn. 372
Other X* Classescouuniiiiiiii it 377
XStreamingElement L 377
XObject and Annotations.ttt 379
Reading, Traversing, and Modifying XML..............o it 382
SUMMAIY . ..t it ettt ettt 384

13 LINQ to XML: Querying Nodes.ooiiiiiiiiinnnnnnnn.. 385

Querying XML . ..o e 385
Attribute, Attributes i i i 385
Element, Elements.uuuuuuuiiiiiieneeennnnn. 386
XPath Axes “Like” Extension Methods 388
XNode Selection Methods. oo i, 392
InDocumentOrder. ...t e 393

Understanding Deferred Query Evaluationooovvi.t. 394

Using LINQ Queriesover XML.ttt it iiae e, 395
Querying XML Efficiently to Build Entities......................... 397

Transforming XML with LINQto XML oottt 401

Support for XSD and Validation of Typed Nodes 404

Support for XPath and System.XmlXPath 407

Securing LINQ to XML . ..ottt et et ieee s 409

Serializing LINQ to XMLottt ittt i eenns 410

SUMIMANY . . ot e e et et et e e s 412

Table of Contents

Part IV Advanced LINQ

14 Inside EXpression Trees.ovitint ettt iiie e 415
Lambda EXPressionsooitnnetie ittt 415
What Is an Expression Tree?ttt ittt iiae s 417

Creating Expression Treest iiiiiiiiiineennnnn.. 418
Encapsulation. e 420
Immutability and Modification o oL, 422
Dissecting EXpression Trees., 427
The Expression Class.ttt 429
Expression Tree Node Types.covieiiiinii ittt 431
Practical Nodes Guideo, 435
Visiting an EXpression Treecooiiit ittt e 439
Dynamically Building an Expression Treecciiiiiiieennn.. 451
How the Compiler Generates an Expression Tree................... 451
Combining Existing ExpressionTreesccoiieineeunn.. 454
Dynamic Composition of an Expression Tree....................... 459
SUMMAAIY &ttt et e ettt et ettt 463

15 Extending LINQottt i i it 465
Custom OPerators.ci ittt it it ittt et 465
Specialization of Existing Operatorscooiiiiiiiiiineeenn.. 470

Dangerous Practices.ttt 473
Limits of Specialization i 474
Creating a Custom LINQ Providerccoiiiiiiiiiiiiiinnnnennnn. 483
The IQueryable Interface.coiiiiiiiiiin it 484
From IEnumerable to IQueryableand Back 486
Inside IQueryable and IQueryProvider 488
Writing the FlightQueryProvider cccoiiioo... 491
SUMIMIANY . . ettt et ettt et ettt e e e et 515
16 Parallelism and Asynchronous Processing. 517
Task Parallel Library oo et 517
The Parallel.For and Parallel.ForEach Methods. 518
The Parallel.Invoke Method i it 520
The Task Classttt et iiiaaeeeees 521
The Task<TResult> Classouiiieiitiiieee e 522
Controlling Task Execution it 523
Using Tasks for Asynchronous Operations......................... 531
Concurrency Considerations.ooiiiiiiinnnneennnnnn.. 535
PLIN Q. oo e e e e 540
Threads Used by PLINQot it 540
Implementing PLINQ oo et 543

Consuming the Resultof aPLINQQuery............covvviiinnn... 544

xiii

xiv

Table of Contents

Controlling Result Order in PLINQ., 550
Processing Query Resultscciiiiiiiiiiiinnnnnennnnn. 552
Handling Exceptions with PLINQ........... ..., 553
CancelingaPLINQ QUerYcuuitii it it 554
Controlling Executionof aPLINQQuerycovvieinnnnn... 556
Changes in Data During Execution 557
PLINQ and Other LINQ Implementations. 557
Reactive Extensions for NET.. i, 559
SUMIMAIY .« ettt et et et ittt et e ta e 561
17 Other LINQ Implementations, 563
Database Accessand ORM. it ittt iiie e, 563
Data Access Withouta Database it 565
LINQ to SharePoint Examples........., 567

LINQ t0 SeIVICES .o v ittt ittt ettt ettt ettt 570
LINQ for System ENgineersuuirttittiineeneennnnnneannns 571
Dynamic LINQ i i e e et 572
Other LINQ EnhancementsandToolscciiiiiiiiiinnnnen... 572
SUMIMIANY . . ottt ettt et e e 574

PartV Applied LINQ

18 LINQ ina MultitierSolution, 577
Characteristics of a Multitier Solution.................... ... o .. 577
LINQtoSQLinaTwo-TierSolution ..., 579
LINQinann-TierSolution........... ..ottt 580

Using LINQ to SQL as a DAL Replacement......................... 580
Abstracting LINQ to SQL with XML External Mapping 581
Using LINQ to SQL Through Real Abstraction...................... 584
Using LINQ to XML astheDatalayer................ ..., 593
Using LINQ to Entities as the Datalayer 596
LINQ inthe Business Layer.uuiiiiiiiiniii i 599
Using LINQ to Objects to Write BetterCode....................... 600
IQueryable<T> vs. [Enumberable<T>. 602
Identifying the Right Unitof Workol 606
Handling Transactionsoo ittt 606
Concurrency and Thread Safety............. ..., 607

SUMMANY . . ot et et et et et et et e et 607

Table of Contents

19 LINQDataBindingccooiiiiiiiiiiin ittt 609
Using LINQ with ASP.INET. i 609
Using LingDataSourceouuuuiiiiieeiiinnnnnnenn. 610

Using EntityDataSource.oouuuiiiiieiiiiinnnnnnenn. 625

Binding to LINQQuUEriesooiitiiiii it 633

Using LINQ with WPF e 637
Binding Single Entities and Properties 637

Binding Collections of Entities i, 642

Using LINQ with Silverlight i, 647
Using LINQ with Windows Forms., 652
SUMIMIAIY . ottt e e et et et e ettt e 655
INdeX ..o e 657

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Xv

Preface

We saw Language Integrated Query (LINQ) for the first time in September 2005, when the
LINQ Project was announced during the Professional Developers Conference (PDC 2005). We
immediately realized the importance and the implications of LINQ for the long term. At the
same time, we felt it would be a huge error to look to LINQ only for its capability to wrap
access to relational data. This would be an error because the important concept introduced
by LINQ is the growth in code abstraction that comes from using a consistent pattern that
makes code more readable, without having to pay in terms of loss of control. We liked LINQ,
we could foresee widespread use for it, but we were worried about the possible misperception
of its key points. For these reasons, we started to think about writing a book about LINQ.

Our opportunity to write such a book began when our proposal was accepted by Microsoft
Press. We wrote an initial short version of this book, Introducing Microsoft LINQ (Microsoft Press),
which was based on beta 1 code. A second book, Programming Microsoft LINQ (Microsoft
Press), comprehensively discussed LINQ in .NET 3.5. Readers provided a lot of feedback about
both these books. We took both the positive and more importantly, the negative comments
as opportunities to improve the book. Today, we are writing the preface to the third book
about LINQ, Programming Microsoft LINQ in Microsoft .NET Framework 4, which we believe is
a more mature book, full of useful content to help people develop real-world .NET solutions
that leverage LINQ and new .NET 4.0 features!

After spending almost five years working with LINQ, this book represents a tremendous goal
for us, but it is just the beginning for you. LINQ introduces a more declarative style of pro-
gramming; it's not a temporary trend. Anders Hejlsberg, the chief designer of C#, said that
LINQ tries to solve the impedance mismatch between code and data. We think that LINQ

is probably already one step ahead of other methods of resolving that dilemma because it
can also be used to write parallel algorithms, such as when using the Parallel LINQ (PLINQ)
implementation.

LINQ can be pervasive in software architectures because you can use it in any tier of an appli-
cation; however, just like any other tool, it can be used effectively or not. We tried to address
the most beneficial ways to use LINQ throughout the book. We suspect that at the beginning,
you—as we did five years ago—will find it natural to use LINQ in place of relational database
queries, but you'll soon find that the ideas begin to pervade your approach to programming.
This turning point happens when you begin writing algorithms that operate on in-memory
data using LINQ to Objects queries. That should be easy. In fact, after only three chapters of
this book, you will already have the knowledge required to do that. But in reality, that is the
hardest part, because you need to change the way you think about your code. You need to
start thinking in LINQ. We have not found a magic formula to teach this. Probably, like any
big change, you will need time and practice to metabolize it.

Enjoy the reading!
Xvii

Acknowledgments

A book is the result of the work of many people. Unfortunately, only the authors have their
names on the cover. This section is only partial compensation for other individuals who
helped out.

First, we want to thank Luca Bolognese for his efforts in giving us resources and contacts that
helped us to write this book and the two previous editions.

We also want to thank all the people from Microsoft who answered our questions along the
way—in particular, Mads Torgersen, Amanda Silver, Erick Thompson, Joe Duffy, Ed Essey, Yuan
Yu, Dinesh Kulkarni, and Luke Hoban. Moreover, Charlie Calvert deserves special mention for
his great and precious help.

We would like to thank Microsoft Press, O'Reilly, and all the publishing people who contributed
to this book project: Ben Ryan, Russell Jones, Jaime Odell, Adam Witwer, and Debbie Timmins.
Russell has followed this book from the beginning; he helped us to stay on track, answered all
our questions, remained tolerant of our delays, and improved a lot of our drafts. Jaime and
Adam have been so accurate and patient in their editing work that we really want to thank
them for their great job. Debbie has been the main technical reviewer.

We also want to thank the many people who had the patience to read our drafts and suggest
improvements and corrections. Big thanks to Guido Zambarda, Luca Regnicoli, and Roberto
Brunetti for their reviews. Guido deserves special thanks for his great job in reviewing all the
chapters and the code samples during the upgrade of this book from .NET 3.5 to .NET 4.0.

Finally, we would like to thank Giovanni Librando, who supported us—one more time in our
life—when we were in doubt about starting this new adventure. Now the book is here, thanks
Giovanni!

Xix

Introduction

This book covers Language Integrated Query (LINQ) both deeply and widely. The main goal
is to give you a complete understanding of how LINQ works, as well as what to do—and what
not to do—with LINQ.

To work with the examples in this book, you need to install both Microsoft .NET Framework
4.0 and Microsoft Visual Studio 2010 on your development machine.

This book has been written against the released-to-market (RTM) edition of LINQ and Micro-
soft .NET 4.0. The authors have created a website (http.//www.programmingling.com/) where
they will maintain a change list, a revision history, corrections, and a blog about what is going
on with the LINQ project and this book.

Who Is This Book For?

The target audience for this book is .NET developers with a good knowledge of Microsoft .NET
2.0 or 3.x who are wondering whether to upgrade their expertise to Microsoft .NET 4.0.

Organization of This Book
This book is divided into five parts that contain 19 chapters.

The authors use C# as the principal language in their examples, but almost all the LINQ fea-
tures shown are available in Visual Basic as well. Where appropriate, the authors use Visual
Basic because it has some features that are not available in C#.

The first part of this book, “LINQ Foundations,” introduces LINQ, explains its syntax, and
supplies all the information you need to start using LINQ with in-memory objects (LINQ to
Objects). It is important to learn LINQ to Objects before any other LINQ implementation
because many of its features are used in the other LINQ implementations described in this
book. Therefore, the authors strongly suggest that you read the three chapters in Part | first.

The second part of this book, “LINQ to Relational,” is dedicated to all the LINQ implementa-
tions that provide access to relational stores of data. In Chapter 4 “Choosing Between LINQ
to SQL and LINQ to Entities,” you will find some useful tips and suggestions that will help you
choose between using LINQ to SQL and LINQ to Entities in your software solutions.

The LINQ to SQL implementation is divided into three chapters. In Chapter 5, “"LINQ to SQL:
Querying Data,” you will learn the basics for mapping relational data to LINQ entities and how
to build LINQ queries that will be transformed into SQL queries. In Chapter 6, “LINQ to SQL:

XXi

xxii

Introduction

Managing Data,” you will learn how to handle changes to data extracted from a database
using LINQ to SQL entities. Chapter 7, “"LINQ to SQL: Modeling Data and Tools," is a guide to
the tools available for helping you define data models for LINQ to SQL. If you are interested
in using LINQ to SQL in your applications, you should read all the LINQ to SQL chapters.

The LINQ to Entities implementation is also divided into three chapters. In Chapter 8, “LINQ
to Entities: Modeling Data with Entity Framework,” you will learn how to create an Entity Data
Model and how to leverage the new modeling features of Entity Framework 4.0. Chapter 9,
“LINQ to Entities: Querying Data,” focuses on querying and retrieving entities using LINQ to
Entities, while Chapter 10, “LINQ to Entities: Managing Data,” shows how to handle changes
to those entities using LINQ to Entities, how to manage data concurrency, and how to share
entities across multiple software layers. If you are interested in leveraging LINQ to Entities in
your software solutions, you should read all the LINQ to Entities chapters.

Chapter 11, “LINQ to DataSet," covers the implementation of LINQ that targets ADO.NET
DataSets. If you have an application that makes use of DataSets, this chapter will teach you
how to integrate LINQ, or at least how to progressively migrate from DataSets to the domain
models handled with LINQ to SQL or LINQ to Entities.

The third part, “"LINQ to XML," includes two chapters about LINQ to XML: Chapter 12, "LINQ
to XML: Managing the XML Infoset,” and Chapter 13, “LINQ to XML: Querying Nodes." The
authors suggest that you read these chapters before you start any development that reads or
manipulates data in XML.

The fourth part, “Advanced LINQ," includes the most complex topics of the book. In Chapter
14, “Inside Expression Trees,” you will learn how to handle, produce, or simply read an expres-
sion tree. Chapter 15, “"Extending LINQ," provides information about extending LINQ using
custom data structures by wrapping an existing service, and finally by creating a custom LINQ
provider. Chapter 16, “Parallelism and Asynchronous Processing,” describes a LINQ interface to
the Parallel Framework for .NET. Finally, Chapter 17, "Other LINQ Implementations,” offers an
overview of the most significant LINQ components available from Microsoft and third-party
vendors. For the most part, the chapters in this part are independent, although Chapter 15
makes some references to Chapter 14.

The fifth part, "Applied LINQ," describes the use of LINQ in several different scenarios of a
distributed application. Chapter 18, “LINQ in a Multitier Solution,” is likely to be interesting
for everyone because it is an architecturally focused chapter that can help you make the right
design decisions for your applications. Chapter 19, “LINQ Data Binding,” presents relevant
information about the use of LINQ for binding data to user interface controls using existing
libraries such as ASPNET, Windows Presentation Foundation, Silverlight, and Windows Form:s.
The authors suggest that you read Chapter 18 before delving into the details of specific
libraries.

Introduction xxiii

Conventions and Features in This Book

This book presents information using conventions designed to make the information readable
and easy to follow:

B Boxed elements with labels such as “Note” provide additional information or alternative
methods for completing a step successfully.

B Text that you type (apart from code blocks) appears in bold.

B A plus sign (+) between two key names means that you must press those keys at the
same time. For example, “Press Alt+Tab” means that you hold down the Alt key while
you press the Tab key.

B A vertical bar between two or more menu items (e.g., File | Close), means that you
should select the first menu or menu item, then the next, and so on.

System Requirements

Here are the system requirements you will need to work with LINQ and to work with and
execute the sample code that accompanies this book:

B Supported operating systems: Microsoft Windows Server 2003, Windows Server 2008,
Windows Server 2008 R2, Windows XP with Service Pack 2, Windows Vista, Windows 7

® Microsoft Visual Studio 2010

The Companion Website

This book features a companion website where you can download all the code used in the
book. The code is organized by topic; you can download it from the companion site here:
http://aka.ms/640573/files.

Find Additional Content Online

As new or updated material becomes available that complements this book, it will be posted
online on the Microsoft Press Online Developer Tools website. The type of material you might
find includes updates to book content, articles, links to companion content, errata, sample
chapters, and more. This website will be available soon at www.microsoft.com/learning/books
/online/developer, and will be updated periodically.

http://aka.ms/640573/files.

XXiv Introduction

Errata & Book Support

We've made every effort to ensure the accuracy of this book and its companion content. If
you do find an error, please report it on our Microsoft Press site:

Go to www.microsoftpressstore.com.
In the Search box, enter the book’s ISBN or title.
Select your book from the search results.

On your book’s catalog page, find the Errata & Updates tab

i 2 w bR

Click View/Submit Errata.
You'll find additional information and services for your book on its catalog page. If you need
additional support, please e-mail Microsoft Press Book Support at mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the addresses
above.

We Want to Hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset. Please tell us what you think of this book at:

http.//www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in advance
for your input!

Stay in Touch

Let's keep the conversation going! We're on Twitter: http.//twitter.com/MicrosoftPress

www.microsoftpressstore.com.

Part |

LINQ Foundations

In this part:

Chapter 1: LINQ Introductiont 3
Chapter 2: LINQ Syntax Fundamentalso ... 23
Chapter 3: LINQto Objectsottt i i eee 49

Chapter 1
LINQ Introduction

By surfing the web, you can find several descriptions of Microsoft Language Integrated Query
(LINQ), including these:

B LINQ provides a uniform programming model for any kind of data. With it, you can query
and manipulate data by using a consistent model that is independent of data sources.

B LINQ is another tool for embedding SQL queries into code.

B LINQ is another data abstraction layer.

All these descriptions are correct to a degree, but each focuses on only a single aspect of
LINQ. LINQ is much easier to use than a “uniform programming mode”; it can do much more
than embed SQL queries; and it is far from being just another data abstraction layer.

What Is LINQ?

LINQ is a programming model that introduces queries as a first-class concept into any Micro-
soft .NET Framework language. Complete support for LINQ, however, requires some exten-
sions to whatever .NET Framework language you are using. These language extensions boost
developer productivity, thereby providing a shorter, more meaningful, and expressive syntax
with which to manipulate data.

More Info Details about language extensions can be found on the Microsoft Developer Network
(MSDN), located at msdn.microsoft.com.

LINQ provides a methodology that simplifies and unifies the implementation of any kind of
data access. LINQ does not force you to use a specific architecture; it facilitates the implemen-
tation of several existing architectures for accessing data, such as:

m RAD/prototype
m Client/server
m N-tier

B Smart client

Part| LINQ Foundations

LINQ made its first appearance in September 2005 as a technical preview. Since then, it has
evolved from an extension of Microsoft Visual Studio 2005 to an integrated part of .NET
Framework 3.5 and Visual Studio 2008, both released in November 2007. The first released
version of LINQ directly supported several data sources. Now with .NET Framework 4 and
Visual Studio 2010, LINQ also includes LINQ to Entities, which is part of the Microsoft ADO.NET
Entity Framework, and Parallel LINQ (PLINQ). This book describes current LINQ implementa-
tions from Microsoft for accessing several different data sources, such as the following:

B LINQ to Objects
® LINQ to ADO.NET
® LINQ to Entities

® LINQ to SQL

® LINQ to DataSet
B LINQ to XML

Extending LINQ

In addition to the built-in data source types, you can extend LINQ to support additional
data sources. Possible extensions might be LINQ to Exchange or LINQ to LDAP, to name
just a couple of examples. Some implementations are already available using LINQ to
Objects. We describe a possible LINQ to Reflection query in the “LINQ to Objects” sec-
tion of this chapter. Chapter 15, “Extending LINQ," discusses more advanced extensions
of LINQ, and Chapter 17, “Other LINQ Implementations,” covers some of the existing
LINQ implementations.

\ v

LINQ is likely to have an impact on the way applications are coded, but it would be incorrect
to think that LINQ will change application architectures; its goal is to provide a set of tools
that improve code implementation by adapting to several different architectures. However, we
expect that LINQ will affect some critical parts of the layers of an n-tier solution. For example,
we envision the use of LINQ in a SQLCLR stored procedure, with a direct transfer of the query
expression to the SQL engine instead of using a SQL statement.

Many possible evolutionary tracks could originate from LINQ, but we should not forget
that SQL is a widely adopted standard that cannot be easily replaced by another, just for
performance reasons. Nevertheless, LINQ is an interesting step in the evolution of current
mainstream programming languages. The declarative nature of its syntax might be interest-
ing for uses other than data access, such as the parallel programming that is offered by

Chapter 1 LINQ Introduction 5

PLINQ. Many other services can be offered by an execution framework to a program written
using a higher level of abstraction, such as the one offered by LINQ. A good understanding of
this technology is important because LINQ has become a “standard” way to describe data
manipulation operations inside a program written in the .NET Framework.

More Info PLINQ is covered in Chapter 16, “Parallelism and Asynchronous Processing.”

Why Do We Need LINQ?

Today, data managed by a program can originate from various data sources: an array, an
object graph, an XML document, a database, a text file, a registry key, an email message, Sim-
ple Object Access Protocol (SOAP) message content, a Microsoft Excel file.... The list is long.

Each data source has its own specific data access model. When you have to query a database,
you typically use SQL. You navigate XML data by using the Document Object Model (DOM) or
XPath/XQuery. You iterate an array and build algorithms to navigate an object graph. You use
specific application programming interfaces (APIs) to access other data sources, such as an
Excel file, an email message, or the Windows registry. In the end, you use different program-
ming models to access different data sources.

The unification of data access techniques into a single comprehensive model has been attempted
in many ways. For example, by using Open Database Connectivity (ODBC) providers, you can
query an Excel file as you would a Windows Management Instrumentation (WMI) repository.
With ODBC, you use a SQL-like language to access data represented through a relational
model.

Sometimes, however, data is represented more effectively in a hierarchical or network model
instead of a relational one. Moreover, if a data model is not tied to a specific language, you
probably need to manage several type systems. All these differences create an “impedance
mismatch” between data and code.

LINQ addresses these issues by offering a uniform way to access and manage data without
forcing the adoption of a “one size fits all” model. LINQ makes use of common capabilities in
the operations in different data models instead of flattening the different structures between
them. In other words, by using LINQ, you keep existing heterogeneous data structures, such
as classes or tables, but you get a uniform syntax to query all these data types—regardless
of their physical representation. Think about the differences between a graph of in-memory
objects and relational tables with proper relationships. With LINQ, you can use the same
query syntax over both models.

6 Part| LINQ Foundations

Here is a simple LINQ query for a typical software solution that returns the names of customers
in Italy:

var query =
from ¢ in Customers
where c.Country == "Italy"
select c.CompanyName;

The result of this query is a list of strings. You can enumerate these values with a foreach loop
in Microsoft Visual C#:

foreach (string name in query) {
Console.WriteLine(name);

3

Both the query definition and the foreach loop are regular C# 3.0 statements, but what is
Customers? At this point, you might be wondering what it is we are querying. Is this query a
new form of Embedded SQL? Not at all. You can apply the same query (and the foreach loop)
to a SQL database, to a DataSet object, to an array of objects in memory, to a remote service,
or to many other kinds of data.

For example, Customers could be a collection of objects:

Customer[] Customers;

Customer data could reside in a DataTable in a DataSet:

DataSet ds = GetDataSet();
DataTable Customers = ds.Tables["Customers"];

Customers could be an entity class that describes a physical table in a relational database:

DataContext db = new DataContext(ConnectionString);
Table<Customer> Customers = db.GetTable<Customer>();

Or Customers could be an entity class that describes a conceptual model and is mapped to a
relational database:

NorthwindModel dataModel = new NorthwindModel();
ObjectSet<Customer> Customers = dataModel.Customers;

How LINQ Works

As you will learn in Chapter 2, "LINQ Syntax Fundamentals,” the SQL-like syntax used in LINQ
is called a query expression. A SQL-like query mixed with the syntax of a program written in

a language that is not SQL is typically called Embedded SQL, but languages that implement it
do so using a simplified syntax. In Embedded SQL, these statements are not integrated into
the language’s native syntax and type system because they have a different syntax and several

Chapter 1 LINQ Introduction 7

restrictions related to their interaction. Moreover, Embedded SQL is limited to querying data-
bases, whereas LINQ is not. LINQ provides much more than Embedded SQL does; it provides a
query syntax that is integrated into a language. But how does LINQ work?

Let's say you write the following code using LINQ:

Customer[] Customers = GetCustomers();
var query =
from c in Customers
where c.Country == "Italy"
select c;

The compiler generates this code:

Customer[] Customers = GetCustomers();
IEnumerable<Customer> query =

Customers

.Where(¢ => c.Country == "Italy");

The following query is a more complex example (without the Customers declaration, for the
sake of brevity):

var query =
from c in Customers
where c.Country == "Italy"

orderby c.Name
select new { c.Name, c.City };

As you can see, the generated code is more complex too:

var query =
Customers
.Where(¢ => c.Country == "Italy");
.OrderBy(c => c.Name)
.Select(¢ => new { c.Name, c.City });

As you can see, the generated code apparently calls instance members on the object returned
from the previous call: Where is called on Customers, OrderBy is called on the object returned
by Where, and finally Select is called on the object returned by OrderBy. You will see that this
behavior is regulated by what are known as extension methods in the host language (C# in
this case). The implementation of the Where, OrderBy, and Select methods—called by the
sample query—depends on the type of Customers and on namespaces specified in relevant
using statements. Extension methods are a fundamental syntax feature that is used by LINQ
to operate with different data sources by using the same syntax.

More Info An extension method appears to extend a class (the Customers class in our examples),
but in reality a method of an external type receives the instance of the class that seems to be
extended as the first argument. The var keyword used to declare query infers the variable type
declaration from the initial assignment, which in this case will return an [Enumerable<T> type.

Part| LINQ Foundations

Another important concept is the timing of operations over data. In general, a LINQ query is
not executed until the result of the query is required. Each query describes a set of operations
that will be performed only when the result is actually accessed by the program. In the follow-
ing example, this access is performed only when the foreach loop executes:

var query = from c in Customers ...
foreach (string name in query) ...

There are also methods that iterate a LINQ query result, producing a persistent copy of data
in memory. For example, the ToList method produces a typed List<T> collection:

var query = from c in Customers ...
List<Customer> customers = query.ToList(Q);

When the LINQ query operates on data that is in a relational database (such as a Microsoft
SQL Server database), it generates an equivalent SQL statement instead of operating with
in-memory copies of data tables. The query’s execution on the database is delayed until

the query results are first accessed. Therefore, if in the last two examples Customers was a
Table<Customer> type (a physical table in a relational database) or an ObjectSet<Customer>
type (a conceptual entity mapped to a relational database), the equivalent SQL query would
not be sent to the database until the foreach loop was executed or the ToList method was
called. The LINQ query can be manipulated and composed in different ways until those
events occur.

More Info A LINQ query can be represented as an expression tree. Chapter 14, “Inside Expres-
sion Trees,” describes how to visit and dynamically build an expression tree, and thereby build a
LINQ query.

Relational Model vs. Hierarchical/Network Model

At first, LINQ might appear to be just another SQL dialect. This similarity has its roots in the
way a LINQ query can describe a relationship between entities, as shown in the following
code:

var query =
from ¢ in Customers
join o in Orders
on c.CustomerID equals o.CustomerID
select new { c.CustomerID, c.CompanyName, o.0rderID };

Chapter 1 LINQ Introduction 9

This syntax is similar to the regular way of querying data in a relational model by using a SQL
Jjoin clause. However, LINQ is not limited to a single data representation model such as the
relational one, where relationships between entities are expressed inside a query but not in
the data model. (Foreign keys keep referential integrity but do not participate in a query.) In

a hierarchical or network model, parent/child relationships are part of the data structure. For
example, suppose that each customer has its own set of orders, and each order has its own list
of products. In LINQ, you can get the list of products ordered by each customer in this way:

var query =
from ¢ in Customers
from o in c.Orders
select new { c.Name, o.Quantity, o.Product.ProductName };

This query contains no joins. The relationship between Customers and Orders is expressed
by the second from clause, which uses c.Orders to say “get all Orders for the ¢ Customer.”
The relationship between Orders and Products is expressed by the Product member of the
Order instance. The result projects the product name for each order row by using o.Product.
ProductName.

Hierarchical and network relationships are expressed in type definitions through references to
other objects. (Throughout, we will use the phrase “graph of objects” to generically refer to
hierarchical or network models.) To support the previous query, we would have classes similar
to those in Listing 1-1.

LISTING 1-1 Type declarations with simple relationships

pubTlic class Customer {
pubTlic string Name;
public string City;
pubTlic Order[] Orders;

}

public struct Order {
pubTlic int Quantity;
pubTlic Product Product;

}

public class Product {
pubTlic int IdProduct;
public decimal Price;
public string ProductName;

However, chances are that we want to use the same Product instance for many different
Orders of the same product. We probably also want to filter Orders or Products without
accessing them through Customer. A common scenario is the one shown in Listing 1-2.

10

Part| LINQ Foundations

LISTING 1-2 Type declarations with two-way relationships

public class Customer {
public string Name;
public string City;
public Order[] Orders;

}

pubTlic struct Order {
public int Quantity;
public Product Product;
public Customer Customer;

}

public class Product {
pubTlic int IdProduct;
public decimal Price;
public string ProductName;
public Order[] Orders;

Let's say we have an array of all products declared as follows:

Product[] products;

We can query the graph of objects, asking for the list of orders for the single product with an
ID equal to 3:

var query =
from p in products
where p.IdProduct ==
from o in p.Orders
select o;

With the same query language, we are querying different data models. When you do not
have a relationship defined between the entities used in a LINQ query, you can always rely on
subqueries and joins that are available in LINQ syntax just as you can in a SQL language. How-
ever, when your data model already defines entity relationships, you can use them, avoiding
replication of (and possible mistakes in) the same information.

If you have entity relationships in your data model, you can still use explicit relationships in a

LINQ query—for example, when you want to force some condition, or when you simply want
to relate entities that do not have native relationships. For example, imagine that you want to
find customers and suppliers who live in the same city. Your data model might not provide an
explicit relationship between these attributes, but with LINQ you can write the following:

var query =
from ¢ in Customers
join s 1in Suppliers
on c.City equals s.City
select new { c.City, c.Name, SupplierName = s.Name };

Chapter 1 LINQ Introduction 11

Data like the following will be returned:

City=Torino Name=Marco SupplierName=Trucker
City=Dallas Name=James SupplierName=FastDelivery
City=Dallas Name=James SupplierName=Horizon
City=Seattle Name=Frank SupplierName=WayFaster

If you have experience using SQL queries, you probably assume that a query result is always a
“rectangular” table, one that repeats the data of some columns many times in a join like the
previous one. However, often a query contains several entities with one or more one-to-many
relationships. With LINQ, you can write queries like the following one to return a graph of
objects:

var query =
from ¢ in Customers
join s in Suppliers
on c.City equals s.City
into customerSuppliers
select new { c.City, c.Name, customerSuppliers };

This query returns a row for each customer, each containing a list of suppliers available in the
same city as the customer. This result can be queried again, just as any other object graph
with LINQ. Here is how the hierarchized results might appear:

City=Torino Name=Marco customerSuppliers=...
customerSuppliers: Name=Trucker City=Torino

City=Dallas Name=James customerSuppliers=...
customerSuppliers: Name=FastDelivery City=Dallas
customerSuppliers: Name=Horizon City=Dallas

City=Seattle Name=Frank customerSuppliers=...
customerSuppliers: Name=WayFaster City=Seattle

If you want to get a list of customers and provide each customer with the list of products he
ordered at least one time and the list of suppliers in the same city, you can write a query like
this:

var query =
from ¢ in Customers
select new {
c.City,
c.Name,
Products = (from o in c.Orders
select new { o.Product.IdProduct,
o0.Product.Price }).Distinct(),
CustomerSuppliers = from s in Suppliers
where s.City == c.City
select s };

12

Part| LINQ Foundations

You can take a look at the results for a couple of customers to understand how data is
returned from the previous single LINQ query:

City=Torino Name=Marco Products=... CustomerSuppliers=...
Products: IdProduct=1 Price=10
Products: IdProduct=3 Price=30

CustomerSuppliers: Name=Trucker City=Torino

City=Dallas Name=James Products=... CustomerSuppliers=...
Products: IdProduct=3 Price=30
CustomerSuppliers: Name=FastDelivery City=Dallas
CustomerSuppliers: Name=Horizon City=Dallas

This type of result would be hard to obtain with one or more SQL queries because it would
require an analysis of query results to build the desired graph of objects. LINQ offers an easy
way to move data from one model to another and different ways to get the same results.

LINQ requires you to describe your data in terms of entities that are also types in the lan-
guage. When you build a LINQ query, it is always a set of operations on instances of some
classes. These objects might be the real containers of data, or they might be simple descrip-
tions (in terms of metadata) of the external entity you are going to manipulate. A query can
be sent to a database through a SQL command only if it is applied to a set of types that maps
tables and relationships contained in the database. After you have defined entity classes, you
can use both approaches we described (joins and entity relationships navigation). The conver-
sion of all these operations into SQL commands is the responsibility of the LINQ engine.

Note When using LINQ to SQL, you can create entity classes by using code-generation tools such
as SQLMetal or the Object Relational Designer in Visual Studio. These tools are described in Chap-
ter 7, "LINQ to SQL: Modeling Data and Tools."

Listing 1-3 shows an excerpt of a Product class that maps a relational table named Products,
with five columns that correspond to public properties, using LINQ to SQL.

LISTING 1-3 Class declaration mapped on a database table with LINQ to SQL

[Table("Products™)]

public class Product {
[Column(IsPrimaryKey=true)] public int IdProduct;
[CoTumn(Name="UnitPrice")] public decimal Price;
[Column()] public string ProductName;
[Column ()] public bool Taxable;
[Column()] public decimal Tax;

When you work on entities that describe external data (such as database tables), you can cre-
ate instances of these kinds of classes and manipulate in-memory objects just as if the data

Chapter 1 LINQ Introduction 13

from all tables were loaded in memory. You submit these changes to the database through
SQL commands when you call the SubmitChanges method, as shown in Listing 1-4.

LISTING 1-4 Database update calling the SubmitChanges method of LINQ to SQL

var taxableProducts =
from p in db.Products
where p.Taxable == true
select p;
foreach(Product product in taxableProducts) {
RecalculateTaxes(product);

}
db . SubmitChanges(Q);

The Product class in the preceding example represents a row in the Products table of an exter-
nal database. When you call SubmitChanges, all changed objects generate a SQL command
to synchronize the corresponding data tables in the database—in this case, updating the cor-
responding rows in the Products table.

More Info You can find more detailed information about class entities that match tables and
relationships in Chapter 5, “LINQ to SQL: Querying Data,” in Chapter 6, “LINQ to SQL: Managing
Data,” and in Chapter 9, “LINQ to Entities: Querying Data.”

Listing 1-5 shows the same Product entity, generated using LINQ to Entities and the Entity
Framework that ships with .NET Framework 4 and Visual Studio 2010.

LISTING 1-5 The Product entity class declaration using the Entity Framework

[EdmEntityType(Name = "Product")]

public class Product {
[EdmScalarProperty(EntityKeyProperty = true)] public int IdProduct { get; set; }
[EdmScalarProperty()] public decimal Price { get; set; }
[EdmScalarProperty()] public string ProductName { get; set; }
[EdmScalarProperty()] public bool Taxable { get; set; }
[EdmScalarProperty()] public decimal Tax { get; set; }

In Chapter 4, “Choosing Between LINQ to SQL and LINQ to Entities,” we will compare the
main features of LINQ to SQL and LINQ to Entities. However, you can already see that there
are different attributes applied to the code, even if the basic idea is almost the same.

Listing 1-6 shows the same data manipulation you have already seen in LINQ to SQL, but this
time applied to the Product entity generated using the Entity Framework.

14 Part| LINQ Foundations

LISTING 1-6 Database update calling the SaveChanges method of the Entity Framework

var taxableProducts =
from p in db.Products
where p.Taxable == true
select p;

foreach (Product product in taxableProducts) {
RecalculateTaxes(product);

}
db.SaveChanges();

Once again, the main concepts are the same, even though the method invoked (SaveChanges),
which synchronizes the database tables with the in-memory data, is different.

XML Manipulation

LINQ has a different set of classes and extensions to support manipulating XML data. Imag-
ine that your customers are able to send orders using XML files such as the ORDERS.XML file
shown in Listing 1-7.

LISTING 1-7 A fragment of an XML file of orders

<?xml version="1.0" encoding="utf-8" 7>

<orders xmlns="http://schemas.devieap.com/Orders">
<order jdCustomer="ALFKI" idProduct="1" quantity="10" price="20.59"/>
<order jdCustomer="ANATR" idProduct="5" quantity="20" price="12.99"/>
<order idCustomer="KOENE" idProduct="7" quantity="15" price="35.50"/>

</orders>

Using standard .NET Framework 2.0 System.Xml classes, you can load the file by using a DOM
approach or you can parse its contents by using an implementation of Xm/Reader, as shown
in Listing 1-8.

LISTING 1-8 Reading the XML file of orders by using an Xm/Reader

String nsUri = "http://schemas.devleap.com/Orders";
Xm1Reader xmlOrders = XmlReader.Create("Orders.xml");

List<Order> orders = new List<Order>();
Order order = null;
while (xm10Orders.Read()) {
switch (xmlOrders.NodeType) {
case XmINodeType.Element:
if ((xm10Orders.Name == "order") &&
(xm10rders.NamespaceURI == nsUri)) {
order = new Order();
order.CustomerID = xmlOrders.GetAttribute("idCustomer");

Chapter 1 LINQ Introduction 15

order.Product = new Product();
order.Product.IdProduct =

Int32.Parse(xmlOrders.GetAttribute("idProduct"));
order.Product.Price =

Decimal.Parse(xmlOrders.GetAttribute("price"));
order.Quantity =

Int32.Parse(xmlOrders.GetAttribute("quantity"));
orders.Add(order);

}

break;

You can also use an XQuery to select nodes:

for $order in document("Orders.xm1")/orders/order
return $order

However, using XQuery requires learning yet another language and syntax. Moreover, the
result of the previous XQuery example would need to be converted into a set of Order
instances to be used within the code.

Regardless of the solution you choose, you must always consider nodes, node types, XML
namespaces, and whatever else is related to the XML world. Many developers do not like
working with XML because it requires knowledge of another domain of data structures and
uses its own syntax. For them, it is not very intuitive. As we have already said, LINQ provides a
query engine suitable for any kind of source, even an XML document. By using LINQ queries,
you can achieve the same result with less effort and with unified programming language syn-
tax. Listing 1-9 shows a LINQ to XML query made over the orders file.

LISTING 1-9 Reading the XML file by using LINQ to XML

XDocument xmlOrders = XDocument.Load("Orders.xm1");

XNamespace ns = "http://schemas.devieap.com/Orders";
var orders = from o in xmlOrders.Root.Elements(ns + "order")
select new Order {
CustomerID = (String)o.Attribute("idCustomer"),
Product = new Product {
IdProduct = (Int32)o.Attribute("idProduct"),
Price = (Decimal)o.Attribute("price") },
Quantity = (Int32)o.Attribute("quantity")
53

Using LINQ to XML in Microsoft Visual Basic syntax (available since Visual Basic 2008) is even
easier; you can reference XML nodes in your code by using an XPath-like syntax, as shown in
Listing 1-10.

16 Part| LINQ Foundations

LISTING 1-10 Reading the XML file by using LINQ to XML and Visual Basic syntax

Imports <xmlns:o="http://schemas.devleap.com/Orders">

Dim xm1Orders As XDocument = XDocument.Load("Orders.xml1")
Dim orders =
From o In xmlOrders.<o:orders>.<o:order>
Select New Order With {
.CustomerID = o.@idCustomer,
.Product = New Product With {
.IdProduct = o.@idProduct,
.Price = o0.@price},
.Quantity = o.@quantity}

The result of these LINQ to XML queries could be used to transparently load a list of Order

entities into a customer Orders property, using LINQ to SQL to submit the changes into the
physical database layer:

customer.Orders.AddRange(
From o In xmlOrders.<o:orders>.<o:order>
Where o.@idCustomer = customer.CustomerID
Select New Order With {
.CustomerID = o.@idCustomer,
.Product = New Product With {
.IdProduct = 0.@idProduct,
.Price = o0.@price},
.Quantity = o.@quantity})

And if you need to generate an ORDERS.XML file starting from your customer’s orders, you
can at least use Visual Basic XML literals to define the output’s XML structure. Listing 1-11
shows an example.

LISTING 1-11 Creating the XML for orders using Visual Basic XML literals

Dim xmlOrders = <o:orders>
<%= From o In orders
Select <o:order idCustomer=<%= o.CustomerID %>
idProduct=<%= o.Product.IdProduct %>
quantity=<%= o.Quantity %>
price=<%= o.Product.Price %>/> %>
</o:orders>

Note This syntax is an exclusive feature of Visual Basic. There is no equivalent syntax in C#.

Chapter 1 LINQ Introduction 17

You can appreciate the power of this solution, which keeps the XML syntax without losing the
stability of typed code and transforms a set of entities selected via LINQ to SQL into an XML
Infoset.

More Info You will find more information about LINQ to XML syntax and its potential in Chapter
12, "LINQ to XML: Managing the XML Infoset” and in Chapter 13, “LINQ to XML: Querying Nodes."

Language Integration

Language integration is a fundamental aspect of LINQ. The most visible part is the query
expression feature, which has been present since C# 3.0 and Visual Basic 2008. With it, you
can write code such as you've seen earlier. For example, you can write the following code:

var query =
from c in Customers
where c.Country == "Italy"

orderby c.Name
select new { c.Name, c.City };

The previous example is a simplified version of this code:

var query =
Customers
.Where(¢ => c.Country == "Italy");
.OrderBy(c => c.Name)
.Select(¢ => new { c.Name, c.City });

Many people call this simplification syntax sugaring because it is just a simpler way to write
code that defines a query over data. However, there is more to it than that. Many language
constructs and syntaxes are necessary to support what seems to be just a few lines of code
that query data. Under the cover of this simple query expression are local type inference,
extension methods, lambda expressions, object initialization expressions, and anonymous
types. All these features are useful by themselves, but if you look at the overall picture, you
can see important steps in two directions: one moving to a more declarative style of coding,
and one lowering the impedance mismatch between data and code.

Declarative Programming

What are the differences between a SQL query and an equivalent C# 2.0 or Visual Basic 2005
program that filters data contained in native storage (such as a table for SQL or an array for
C# or Visual Basic)?

18

Part| LINQ Foundations

In SQL, you can write the following:

SELECT * FROM Customers WHERE Country = 'Italy'

In C#, you would probably write this:

public List<Customer> ItalianCustomers(Customer customers[])

{
List<Customer> result = new List<Customer>();
foreach(Customer c in customers) {
if (c.Country == "Italy") result.Add(c);
}
return result;
}

Note This specific example could have been written in C# 2.0 using a Find predicate, but we are
using it just as an example of the different programming patterns.

The C# code takes longer to write and read. But the most important consideration is expres-
sivity. In SQL, you describe what you want. In C#, you describe how to obtain the expected
result. In SQL, selecting the best algorithm to implement to get the result (which is more
explicitly dealt with in C#) is the responsibility of the query engine. The SQL query engine has
more freedom to apply optimizations than a C# compiler, which has many more constraints
on how operations are performed.

LINQ enables a more declarative style of coding for C# and Visual Basic. A LINQ query
describes operations on data through a declarative construct instead of an iterative one.
With LINQ, programmers' intentions can be made more explicit—and this knowledge of pro-
grammer intent is fundamental to obtaining a higher level of services from the underlying
framework. For example, consider parallelization. A SQL query can be split into several con-
current operations simply because it does not place any constraint on the kind of table scan
algorithm applied. A C# foreach loop is harder to split into several loops over different parts
of an array that could be executed in parallel by different processors.

More Info You will find more information about using LINQ to achieve parallelism in code exe-
cution in Chapter 16.

Declarative programming can take advantage of services offered by compilers and frame-
works, and in general, it is easier to read and maintain. This single feature of LINQ might be
the most important because it boosts programmers’ productivity. For example, suppose that
you want to get a list of all static methods available in the current application domain that
return an /[Enumerable<T> interface. You can use LINQ to write a query over Reflection:

Chapter 1 LINQ Introduction 19

var query =
from assembly in AppDomain.CurrentDomain.GetAssemblies()
from type in assembly.GetTypes()
from method in type.GetMethods()
where method.IsStatic
&& method.ReturnType.GetInterface("IEnumerable'l") != null
orderby method.DeclaringType.Name, method.Name
group method by new { Class = method.DeclaringType.Name,
Method = method.Name };

The equivalent C# code that handles data takes more time to write, is harder to read, and
is probably more error prone. You can see a version that is not particularly optimized in
Listing 1-12.

LISTING 1-12 C# code equivalent to a LINQ query over Reflection

List<String> results = new List<string>(Q);
foreach(var assembly in AppDomain.CurrentDomain.GetAssemblies()) {
foreach(var type in assembly.GetTypes()) {
foreach(var method in type.GetMethods()) {
if (method.IsStatic &&
method.ReturnType.GetInterface("IEnumerable'l") != null) {
string fullName = String.Format("{0}.{1}",
method.DeclaringType.Name,
method.Name);
if (results.IndexOf(fullName) < 0) {
results.Add(fullName);
}

}
}
results.Sort();

Type Checking

Another important aspect of language integration is type checking. Whenever data is manip-
ulated by LINQ, no unsafe cast is necessary. The short syntax of a query expression makes no
compromises with type checking: data is always strongly typed, including both the queried
collections and the single entities that are read and returned.

The type checking of the languages that support LINQ (starting from C# 3.0 and Visual Basic
2008) is preserved even when LINQ-specific features are used. This enables the use of Visual
Studio features such as IntelliSense and Refactoring, even with LINQ queries. These Visual Stu-
dio features are other important factors in programmers’ productivity.

20

Part| LINQ Foundations

Transparency Across Different Type Systems

If you think about the type system of the .NET Framework and the type system of SQL Server,
you will realize they are different. Using LINQ gives precedence to the .NET Framework type
system, because it is the one supported by any language that hosts a LINQ query. However,
most of your data will be saved in a relational database, so it is necessary to convert many
types of data between these two worlds. LINQ handles this conversion for you automatically,
making the differences in type systems almost completely transparent to the programmer.

More Info There are some limitations in the capability to perform conversions between different
type systems and LINQ. You will find some information about this topic throughout the book, and
you can find a more detailed type system compatibilities table in the product documentation.

LINQ Implementations

LINQ is a technology that covers many data sources. Some of these sources are included
in LINQ implementations that Microsoft has provided—starting with .NET Framework 3.5—
as shown in Figure 1-1, which also includes LINQ to Entities.

LINQ to Objects LINQ to ADO.NET LINQ to XML
<book>
& Q LINQ t LINQ t :gttjlte}{gr/
LINQ to 0 o] ithor/>
(sQL J (DataSetJ (Entities J <

FIGURE 1-1 LINQ implementations provided by Microsoft starting with .NET Framework 3.5.

Each implementation is defined through a set of extension methods that implement the
operators needed by LINQ to work with a particular data source. Access to these features is
controlled by the imported namespaces.

LINQ to Objects

LINQ to Objects is designed to manipulate collections of objects, which can be related to each
other to form a graph. From a certain point of view, LINQ to Objects is the default imple-
mentation used by a LINQ query. You enable LINQ to Objects by including the System.Ling
namespace.

More Info The base concepts of LINQ are explained in Chapter 2, using LINQ to Objects as a
reference implementation.

Chapter 1 LINQ Introduction 21

However, it would be a mistake to think that LINQ to Objects queries are limited to collec-
tions of user-generated data. You can see why this is not true by analyzing Listing 1-13, which
shows a LINQ query that extracts information from the file system. The code reads the list of
all files in a given directory into memory and then filters that list with the LINQ query.

LISTING 1-13 LINQ query that retrieves a list of temporary files larger than 10,000 bytes, ordered by size

string tempPath = Path.GetTempPath();
DirectoryInfo dirInfo = new DirectoryInfo(tempPath);
var query =

from f in dirInfo.GetFiles()

where f.Length > 10000

orderby f.Length descending

select f;

LINQ to ADO.NET

LINQ to ADO.NET includes different LINQ implementations that share the need to manipulate
relational data. It also includes other technologies that are specific to each particular persis-
tence layer:

B LINQ to SQL Handles the mapping between custom types in the .NET Framework and
the physical table schema in SQL Server.

® LINQ to Entities An Object Relational Mapping (ORM) that—instead of using the
physical database as a persistence layer—uses a conceptual Entity Data Model (EDM).
The result is an abstraction layer that is independent from the physical data layer.

B LINQ to DataSet Enables querying a DataSet by using LINQ.

LINQ to SQL and LINQ to Entities have similarities because they both access information
stored in a relational database and operate on object entities that represent external data in
memory. The main difference is that they operate at a different level of abstraction. Whereas
LINQ to SQL is tied to the physical database structure, LINQ to Entities operates over a con-
ceptual model (business entities) that might be far from the physical structure (database
tables).

The reason for these different options for accessing relational data through LINQ is that dif-
ferent models for database access are in use today. Some organizations implement all access
through stored procedures, including any kind of database query, without using dynamic
queries. Many others use stored procedures to insert, update, or delete data and dynamically
build SELECT statements to query data. Some see the database as a simple object persistence
layer, whereas others put some business logic into the database by using triggers, stored pro-
cedures, or both. LINQ tries to offer help and improvement in database access without forcing
everyone to adopt a single comprehensive model.

22

Part| LINQ Foundations

More Info The use of any LINQ to ADO.NET implementation depends on the inclusion of par-
ticular namespaces in the scope. Part Il, “LINQ to Relational,” investigates LINQ to ADO.NET imple-
mentations and similar details.

LINQ to XML

You've already seen that LINQ to XML offers a slightly different syntax that operates on XML
data, allowing query and data manipulation. A particular type of support for LINQ to XML is
offered by Visual Basic, which includes XML literals in the language. This enhanced support
simplifies the code needed to manipulate XML data. In fact, you can write a query such as the
following in Visual Basic:

Dim book =
<Book Title="Programming LINQ">
<%= From person In team
Where person.Role = "Author"
Select <Author><%= person.Name %></Author> %>
</Book>

This query corresponds to the following C# syntax:

dim book =
new XElement("Book",
new XAttribute("Title", "Programming LINQ"),
from person in team
where person.Role == "Author"
select new XElement("Author", person.Name));

More Info You can find more information about LINQ to XML in Chapters 12 and 13.

Summary

In this chapter, we introduced LINQ and discussed how it works. We also examined how differ-
ent data sources can be queried and manipulated by using a uniform syntax that is integrated
into current mainstream programming languages such as C# and Visual Basic. We took a

look at the benefits offered by language integration, including declarative programming,
type checking, and transparency across different type systems. We briefly presented the LINQ
implementations available since .NET Framework 3.5—LINQ to Objects, LINQ to ADO.NET,
and LINQ to XML—which we will cover in more detail in the remaining parts of the book.

Chapter 5

LINQ to SQL: Querying Data

The first and most obvious application of Microsoft Language Integrated Query (LINQ) is in
querying an external relational database. LINQ to SQL is a LINQ component that provides the
capability to query a relational Microsoft SQL Server database, offering you an object model
based on available entities. In other words, you can define a set of objects that represents a
thin abstraction layer over the relational data, and you can query this object model by using
LINQ queries that are automatically converted into corresponding SQL queries by the LINQ to
SQL engine. LINQ to SQL supports Microsoft SQL Server 2008 through SQL Server 2000 and
Microsoft SQL Server Compact 3.5.

Using LINQ to SQL, you can write a simple query such as the following:

var query =
from c in Customers
where c.Country == "USA"

&& c.State == "WA"
select new {c.CustomerID, c.CompanyName, c.City };

This query is converted into a SQL query that is sent to the relational database:

SELECT CustomerID, CompanyName, City
FROM Customers
WHERE Country = 'USA'

AND Region = 'WA'

Important The SQL queries generated by LINQ that we show in this chapter are illustrative only.
Microsoft reserves the right to independently define the SQL query that is generated by LINQ, and
we sometimes use simplified queries in the text. Thus, you should not rely on the SQL query that is
shown.

At this point, you might have a few questions, such as:

B How can you write a LINQ query using object names that are validated by the compiler?
B When is the SQL query generated from the LINQ query?
B When is the SQL query executed?

To understand the answers to these questions, you need to understand the entity model in
LINQ to SQL, and then delve into deferred query evaluation.

119

120

Part Il LINQ to Relational

Entities in LINQ to SQL

Any external data must be described with appropriate metadata bound to class definitions.
Each table must have a corresponding class decorated with particular attributes. That class
corresponds to a row of data and describes all columns in terms of data members of the
defined type. The type can be a complete or partial description of an existing physical table,
view, or stored procedure result. Only the described fields can be used inside a LINQ query for
both projection and filtering. Listing 5-1 shows a simple entity definition.

Important You need to include the System.Data.Ling assembly in your projects to use LINQ to
SQL classes and attributes. The attributes used in Listing 5-1 are defined in the System.Data.Ling.
Mapping namespace.

LISTING 5-1 Entity definition for LINQ to SQL

using System.Data.Ling.Mapping;

[TabTe(Name="Customers")]

public class Customer {
[CoTlumn] public string CustomerID;
[CoTumn] public string CompanyName;
[Column] public string City;
[CoTumn(Name="Region")] public string State;
[CoTumn] public string Country;

The Customer type defines the content of a row, and each field or property decorated with
Column corresponds to a column in the relational table. The Name parameter can specify a
column name that is different from the data member name. (In this example, the State mem-
ber corresponds to the Region table column.) The Table attribute specifies that the class is an
entity representing data from a database table; its Name property specifies a table name that
could be different from the entity name. It is common to use the singular form for the class
name (which represents a single row) and the plural form for the name of the table (a set

of rows).

You need a Customers table to build a LINQ to SQL query over Customers data. The Table<T>
generic class is the right way to create such a type:

Table<Customer> Customers = ...;
/]
var query =

from c in Customers

/]

Chapter 5 LINQ to SQL: Querying Data 121

Note To build a LINQ query over Customers, you need a class that implements /Enumerable<T>,
using the Customer type as T. However, LINQ to SQL needs to implement extension methods in a
different way than the LINQ to Objects implementation used in Chapter 3, "LINQ to Objects.” You
must use an object that implements /Queryable<T> to build LINQ to SQL queries. The Table<T>
class implements /Queryable<T>. To include the LINQ to SQL extension, the statement using
System.Data.Ling; must be part of the source code.

The Customers table object has to be instantiated. To do that, you need an instance of the
DataContext class, which defines the bridge between the LINQ world and the external
relational database. The nearest concept to DataContext that comes to mind is a database
connection—in fact, the database connection string or the Connection object is a mandatory
parameter for creating a DataContext instance. DataContext exposes a GetTable<T> method
that returns a corresponding Table<T> for the specified type:

DataContext db = new DataContext("Database=Northwind");
Table<Customer> Customers = db.GetTable<Customer>();

Note Internally, the DataContext class uses the Sq/Connection class from Microsoft ADO.NET. You

can pass an existing Sq/Connection to the DataContext constructor, and you can also read the con-
nection used by a DataContext instance through its Connection property. All services related to the
database connection, such as connection pooling (which is turned on by default), are accessible at
the Sqg/Connection class level and are not directly implemented in the DataContext class.

Listing 5-2 shows the resulting code when you put all the pieces together.

LISTING 5-2 Simple LINQ to SQL query

DataContext db = new DataContext(ConnectionString);
Table<Customer> Customers = db.GetTabTle<Customer>();

var query =
from c in Customers

where c.Country == "USA"

&& c.State == "WA"

select new {c.CustomerID, c.CompanyName, c.City };

foreach(var row in query) {
Console.WriteLine(row);

3

The query variable is initialized with a query expression that forms an expression tree. An
expression tree maintains a representation of the expression in memory rather than pointing
to a method through a delegate. When the foreach loop enumerates data selected by the
query, the expression tree is used to generate the corresponding SQL query, using the meta-
data and information from the entity classes and the referenced DataContext instance.

122

Part Il LINQ to Relational

Note The deferred execution method used by LINQ to SQL converts the expression tree into a
SQL query that is valid in the underlying relational database. The LINQ query is functionally equiv-
alent to a string containing a SQL command, but with at least two important differences:

[The LINQ query is tied to the object model and not to the database structure.

U Its representation is semantically meaningful without requiring a SQL parser, and without
being tied to a specific SQL dialect.

The expression tree can be dynamically built in memory before its use, as you will learn in
Chapter 14, “Inside Expression Trees.”

The data returned from the SQL query accessing row and placed into the foreach loop is then
used to fill the projected anonymous type following the select keyword. In this example, the
Customer class is never instantiated, and LINQ uses it only to analyze its metadata.

To explore the generated SQL command, you can use the GetCommand method of the Data-
Context class by accessing the CommandText property of the returned DbCommand, which
contains the generated SQL query; for example:

Console.WriteLine(db.GetCommand(query).CommandText);

A simpler way to examine the generated SQL is to call ToString on a LINQ to SQL query. The
overridden ToString method produces the same result as the GetCommand(query).Com-
mandText statement:

Console.WriteLine(query);

The simple LINQ to SQL query in Listing 5-2 generates the following SQL query:
SELECT [tO].[CustomerID], [tO].[CompanyName], [t0].[City]

FROM [Customers] AS [t0]

WHERE ([tO].[Country] = @p0) AND ([tO].[Region] = @pl)

To get a trace of all SQL statements that are sent to the database, you can assign a value to
the DataContext.Log property, as shown here:

db.Log = Console.Out;

The next section provides more detail on how to generate entity classes for LINQ to SQL.

External Mapping

The mapping between LINQ to SQL entities and database structures has to be described
through metadata information. In Listing 5-1, you saw attributes on an entity definition that

Chapter 5 LINQ to SQL: Querying Data 123

fulfills this rule. However, you can also use an external XML mapping file to decorate entity
classes instead of using attributes. An XML mapping file looks like this:

<Database Name="Northwind">
<Table Name="Products">
<Type Name="Product">
<Column Name="ProductID" Member="ProductID"
Storage="_ProductID" DbType="Int NOT NULL IDENTITY"
IsPrimaryKey="True" IsDbGenerated="True" />

The Type tag defines the relationship with an entity class, and the Member attribute of the
Column tag defines the corresponding member name of the class entity (in case it differs
from the column name of the table). By default, Member is not required and if not present, is
assumed to be the same as the Name attribute of Column. This XML file usually has a .dbm/
file name extension.

More Info You can produce a Database Markup Language (DBML) file automatically with some
of the tools described in Chapter 7, “LINQ to SQL: Modeling Data and Tools.”

To load the DBML file, you can use an XmIMappingSource instance, generated by calling its
FromXml static method, and then pass that instance to the DataContext derived class con-
structor. The following example shows how to use such syntax:

string path = "Northwind.dbml";
XmIMappingSource prodMapping =
Xm1MappingSource.FromXml (File.ReadAT1Text(path));
Northwind db = new Northwind(
"Database=Test_Northwind;Trusted_Connection=yes",
prodMapping
)3

One use of this technique is in a scenario in which different databases must be mapped to a
specific data model. Differences in databases might include table and field names (for exam-
ple, localized versions of the database). In general, consider this option when you need to
realize a light decoupling of mapping between entity classes and the physical data structure
of the database.

More Info It is beyond the scope of this book to describe the details of the XML grammar

for a DBML file, but you can find that syntax described in the LinqToSqlMapping.xsd and
DbmlSchema.xsd files that reside in your Program Files\Microsoft Visual Studio 10.0\XmN\Schemas
directory if you have installed Microsoft Visual Studio 2010. If you do not have either of these files,
you can copy the code from the following product documentation pages: “External Mapping” at
http.//msdn.microsoft.com/en-us/library/bb386907.aspx and "Code Generation in LINQ to SQL" at
http.//msdn.microsoft.com/en-us/library/bb399400.aspx.

124

Part Il LINQ to Relational

Data Modeling

The set of entity classes that LINQ to SQL requires is a thin abstraction layer over the relational
model. Each entity class defines an accessible table of data, which can be queried and modi-
fied. Modified entity instances can apply their changes to the data contained in the relational
database. In this section, you will learn how to build a data model for LINQ to SQL.

More Info The options for data updates are described in Chapter 6, “LINQ to SQL: Managing
Data.”

DataContext

The DataContext class handles the communication between LINQ and external relational data
sources. Each instance has a single Connection property that refers to a relational database.
Its type is IDbConnection; therefore, it should not be specific to a particular database product.
However, the LINQ to SQL implementation supports only SQL Server databases. Choosing
between specific versions of SQL Server depends only on the connection string passed to the
DataContext constructor.

Important The architecture of LINQ to SQL supports many data providers so that it can map to
different underlying relational databases. A provider is a class that implements the System.Data.
Ling.Provider.IProvider interface. However, that interface is declared as internal and is not docu-
mented. Microsoft supports only a SQL Server provider. The Microsoft .NET Framework supports
SQL Server since version 2000 for both 32-bit and 64-bit executables, as well as SQL Server Com-
pact 3.5 SP2.

DataContext uses metadata to map the physical structure of the relational data so that LINQ
to SQL can generate the appropriate SQL code. You also use DataContext to call a stored pro-
cedure and persist data changes in entity class instances in the relational database.

Classes that specialize access for a particular database can be derived from DataContext.
Such classes offer an easier way to access relational data, including members that represent
available tables. You can define fields that reference existing tables in the database simply by
declaring them, without a specific initialization, as in the following code:

pubTlic class SampleDb : DataContext {
public SampleDb(IDbConnection connection)
: base(connection) {}
pubTlic SampTleDb(string fileOrServerOrConnection)
: base(fileOrServerOrConnection) {}
public SampleDb(IDbConnection connection, MappingSource mapping)
: base(connection, mapping) {}

public Table<Customer> Customers;

Chapter 5 LINQ to SQL: Querying Data 125

Note Table members are initialized automatically by the DataContext base constructor, which
examines the type at execution time through Reflection, finds those members, and initializes them
based on the mapping metadata.

Entity Classes

An entity class has two roles. The first role is to provide metadata to the LINQ query engine;
for this, the class itself suffices—it does not require instantiation of an entity instance. The sec-
ond role is to provide storage for data read from the relational data source, as well as to track
possible updates and support their submission back to the relational data source.

An entity class is any reference type definition decorated with the Table attribute. You cannot
use a struct (which is a value type) for this. The Table attribute can have a Name parameter
that defines the name of the corresponding table in the database. If Name is omitted, the
name of the class is used as the default:

[Table(Name="Products")] public class Product { ... }

Note Although the term commonly used is table, nothing prevents you from using an updatable
view in place of a table name in the Name parameter. Using a non-updatable view will also work—
at least until you try to update data without using that entity class.

An entity class can have any number and type of members. Just remember that only those
data members or properties decorated with the Column attribute are significant in defining
the mapping between the entity class and the corresponding table in the database:

[Column] public int ProductID;

An entity class should have a unique key. This key is necessary to support unique identity
(more on this later), to identify corresponding rows in database tables, and to generate SQL
statements that update data. If you do not have a primary key, entity class instances can

be created but are not modifiable. The Boolean IsPrimaryKey property of the Column attri-
bute, when set to true, states that the column belongs to the primary key of the table. If the
primary key used is a composite key, all the columns that form the primary key will have
IsPrimaryKey=true in their parameters:

[Column(IsPrimaryKey=true)] public int ProductID;

By default, a column mapping uses the same name as the member to which the Column attri-
bute is applied. You can specify a different name in the Name parameter. For example, the
following Price member corresponds to the UnitPrice field in the database table:

[ColTumn(Name="Un1itPrice")] public decimal Price;

126 Part Il LINQ to Relational

If you want to filter data access through member property accessors, you have to specify the
underlying storage member using the Storage parameter. If you specify a Storage parameter,
LINQ to SQL bypasses the public property accessor and interacts directly with the underlying
value. Understanding this is particularly important if you want to track only the modifications
made by your code and not the read/write operations made by the LINQ framework. In the
following code, the ProductName property is accessed for each read/write operation made by
your code:

[CoTumn(Storage="_ProductName")]
public string ProductName {
get { return this._ProductName; }
set { this.OnPropertyChanging("ProductName");
this._ProductName = value;
this.OnPropertyChanged("ProductName");

3

In contrast, LINQ to SQL performs a direct read/write operation on the _ProductName data
member when it executes a LINQ operation.

The correspondence between relational type and .NET Framework type assumes a default
relational type that corresponds to the .NET Framework type used. Whenever you need

to define a different type, you can use the DBType parameter, specifying a valid type by
using valid SQL syntax for your relational data source. You need to use this parameter only
when you want to create a database schema starting from entity class definitions (a process
described in Chapter 6). Here's an example of the DBType parameter in use:

[Column (DBType="NVARCHAR(20)")] public string QuantityPerUnit;

When the database automatically generates a column value (such as with the IDENTITY key-
word in SQL Server), you might want to synchronize the entity class member with the gener-
ated value whenever you insert an entity instance into the database. To do that, you need to
set the IsDBGenerated parameter for that member to true, and you also need to adapt the
DBType accordingly—for example, by adding the IDENTITY modifier for SQL Server tables:

[Column(DBType="INT NOT NULL IDENTITY",
IsPrimaryKey=true, IsDBGenerated=true)]
pubTlic int ProductID;

It is worth mentioning that a specific CanBeNull parameter exists. This parameter is used to
specify that the value can contain the null value; however, it is important to note that the NOT
NULL clause in DBType is still necessary if you want to create such a condition in a database
created by LINQ to SQL:

[CoTumn(DBType="INT NOT NULL IDENTITY", CanBeNull=false,
IsPrimaryKey=true, IsDBGenerated=true)]
public int ProductID;

Chapter 5 LINQ to SQL: Querying Data 127

Other parameters that are relevant in updating data are AutoSync, Expression, IsVersion, and
UpdateCheck.

More Info Chapter 6 provides a more detailed explanation of the parameters IsVersion, Expression,
UpdateCheck, AutoSync, and IsDBGenerated.

Entity Inheritance

Sometimes a single table contains many types of entities. For example, imagine a list of
contacts—some might be customers, others might be suppliers, and still others might be
company employees. From a data point of view, each entity can have specific fields. (For example,
a customer can have a discount field, which is not relevant for employees and suppliers.) From
a business logic point of view, each entity can implement different business rules. The best
way to model this kind of data in an object-oriented environment is by using inheritance to
create a hierarchy of specialized classes. LINQ to SQL allows a set of classes derived from the
same base class to map to the same relational table.

The InheritanceMapping attribute decorates the base class of a hierarchy, indicating the cor-

responding derived classes that are based on the value of a special discriminator column. The
Code parameter defines a possible value, and the Type parameter defines the corresponding

derived type. The discriminator column is defined by setting the /sDiscriminator argument to
true in the Column attribute specification.

Listing 5-3 provides an example of a hierarchy based on the Contacts table of the Northwind
sample database.

LISTING 5-3 Hierarchy of classes based on contacts

[TabTle(Name="Contacts")]
[InheritanceMapping(Code = "Customer", Type = typeof(CustomerContact))]
[InheritanceMapping(Code = "Supplier", Type = typeof(SupplierContact))]
[InheritanceMapping(Code = "Shipper", Type = typeof(ShipperContact))]
[InheritanceMapping(Code = "Employee", Type = typeof(Contact), IsDefault = true)]
public class Contact {

[Column(IsPrimaryKey=true)] public int ContactID;

[CoTumn(Name="ContactName")] public string Name;

[Column] public string Phone;

[Column(IsDiscriminator = true)] public string ContactType;

3

public class CompanyContact : Contact {
[CoTumn(Name="CompanyName")] public string Company;

3

128

Part Il LINQ to Relational

public class CustomerContact : CompanyContact {

3

public class SupplierContact : CompanyContact {
}

public class ShipperContact : CompanyContact {
public string Shipper {
get { return Company; }
set { Company = value; }

Contact is the base class of the hierarchy. If the contact is a Customer, Supplier, or Shipper,
the corresponding classes derive from an intermediate CompanyContact type, which defines
the Company field corresponding to the CompanyName column in the source table. The
CompanyContact intermediate class is necessary because you cannot reference the same col-
umn (CompanyName) in more than one field, even if this happens in different classes in the
same hierarchy. The ShipperContact class defines a Shipper property that exposes the same
value of Company but with a different semantic meaning.

Important This approach requires that you flatten the union of all possible data columns for the
whole hierarchy into a single table. If you have a normalized database, you might have data for
different entities separated in different tables. You can define a view to use LINQ to SQL to support
entity hierarchy, but to update data you must make the view updatable.

The level of abstraction offered by having different entity classes in the same hierarchy is well
described by the sample queries shown in Listing 5-4. The queryTyped query uses the OfType
operator, whereas queryfFiltered query relies on a standard where condition to filter out con-
tacts that are not customers.

LISTING 5-4 Queries using a hierarchy of entity classes

var queryTyped =
from c in contacts.OfType<CustomerContact>()
select «c;

var queryFiltered =
from c in contacts
where c 1is CustomerContact
select c;

Chapter 5 LINQ to SQL: Querying Data 129

foreach(var row in queryTyped) {
Console.WriteLine(row.Company);

3

// We need an explicit cast to access the CustumerContact members
foreach(CustomerContact row in queryFiltered) {
Console.WriteLine(row.Company);

3

The SQL queries produced by these LINQ queries are functionally identical to the following
(although the actual query is different because of generalization coding):

SELECT [tO].[ContactType], [t0].[CompanyName] AS [Company],
[t0].[ContactID], [tO0].[ContactName] AS [Name],
[t0] . [Phone]

FROM [Contacts] AS [t0]

WHERE [tO].[ContactType] = 'Customer'

The difference between queryTyped and queryFiltered queries lies in the returned type. A
queryTyped query returns a sequence of CustomerContact instances, whereas queryFiltered
returns a sequence of the base class Contact. With queryFiltered, you need to explicitly cast
the result into a CustomerContact type if you want to access the Company property.

Unique Object Identity

An instance of an entity class stores an in-memory representation of table row data. If you
instantiate two different entities containing the same row from the same DataContext, both
will reference the same in-memory object. In other words, object identity (same references)
maintains data identity (same table row) using the entity unique key. The LINQ to SQL engine
ensures that the same object reference is used when an entity instantiated from a query result
coming from the same DataContext is already in memory. This check does not happen if you
create an instance of an entity by yourself or in a different DataContext (regardless of the real
data source). In Listing 5-5, you can see that cI and c2 reference the same Contact instance,
even if they originate from two different queries, whereas c3 is a different object, even if its
content is equivalent to the others.

Note If you want to force data from the database to reload using the same DataContext, you
must use the Refresh method of the DataContext class. Chapter 6 discusses this in more detail.

130 Part 1l LINQ to Relational

LISTING 5-5 Object identity

var queryTyped =
from c in contacts.OfType<CustomerContact>()
orderby c.ContactID
select «c;

var queryFiltered =
from c in contacts
where c is CustomerContact
orderby c.ContactID
select «c;

Contact cl = null;
Contact c2 = null;
foreach(var row in queryTyped.Take(1)) {

cl = row;

}

foreach(var row in queryFiltered.Take(l)) {
c2 = row;

}

Contact c3 = new Contact();

c3.ContactID = cl.ContactID;

c3.ContactType = cl.ContactType;

c3.Name = cl.Name;

c3.Phone = cl.Phone;

Debug.Assert(cl == c2); // same instance
Debug.Assert(cl != c3); // different objects

Entity Constraints

Entity classes support the maintenance of valid relationships between entities, just like the
support offered by foreign keys in a standard relational environment. However, the entity
classes cannot represent all possible check constraints of a relational table. No attributes are
available to specify the same alternate keys (unique constraint), triggers, and check expres-
sions that can be defined in a relational database. This fact is relevant when you start to
manipulate data using entity classes because you cannot guarantee that an updated value
will be accepted by the underlying database. (For example, it could have a duplicate unique
key.) However, because you can load into entity instances only parts (rows) of the whole table,
these kinds of checks are not possible without accessing the relational database anyway.

Associations Between Entities

Relationships between entities in a relational database are modeled on the concept of foreign
keys in one table referring to primary keys of another table. Class entities can use the same
concept through the Association attribute, which can describe both sides of a one-to-many
relationship described by a foreign key.

Chapter 5 LINQ to SQL: Querying Data 131

EntityRef

Let's start with the concept of lookup, which is the typical operation used to get the customer
related to one order. Lookup can be seen as the direct translation into the entity model of the
foreign key relationship existing between the CustomerID column of the Orders table and the
primary key of the Customers table. In the example entity model, the Order entity class will
have a Customer property (of type Customer) that shows the customer data. This property is
decorated with the Association attribute and stores its information in an EntityRef< Customer>
member (named _Customer), which enables deferred loading of references (as you will see
shortly). Listing 5-6 shows the definition of this association.

LISTING 5-6 Association EntityRef

[TabTe(Name="0rders")]

public class Order {
[Column(IsPrimaryKey=true)] public int OrderID;
[CoTlumn] private string CustomerID;
[Column] public DateTime? OrderDate;

[Association(Storage="_Customer", ThisKey="CustomerID", IsForeignKey=true)]
pubTlic Customer Customer {

get { return this._Customer.Entity; }

set { this._Customer.Entity = value; }

}

private EntityRef<Customer> _Customer;

As you can see, the CustomerlID column must be defined in Order; otherwise, it would not be
possible to obtain the related Customer. The IsForeignKey argument specifies that Order is
the child side of a parent-child relationship. The ThisKey argument of the Association attribute
indicates the “foreign key” column (which would be a comma-separated list if more columns
were involved for a composite key) that defines the relationship between entities. If you want
to hide this detail in the entity properties, you can declare that column as private, just as in
the Order class shown earlier.

Note There are two other arguments for the Association attribute. One is IsUnique, which must
be true whenever the foreign key also has a uniqueness constraint. In that case, the relationship
with the parent table is one-to-one instead of many-to-one. The other argument is Name, which
is used only to define the name of the constraint for a database generated from the metadata by
using the DataContext.CreateDatabase method, which will be described in Chapter 6.

132

Part Il LINQ to Relational

Using the Order class in a LINQ query, you can specify a Customer property in a filter without
writing a join between Customer and Order entities. In the following query, the Country mem-
ber of the related Customer is used to filter orders that come from customers of a particular
Country:

Table<Order> Orders = db.GetTable<Order>(Q);
var query =
from o in Orders
where o.Customer.Country == "USA"
select 0.0rderID;

The previous query is translated into a SQL JOIN like the following one:

SELECT [t0].[OrderID]
FROM [Orders] AS [tO0]
LEFT JOIN [Customers] AS [t1]
ON [t1].[CustomerID] = [tO].[CustomerID]
WHERE [t1].[Country] = "USA"

Until now, we have used entity relationships only for their metadata in building LINQ queries.
When an instance of an entity class is created, a reference to another entity (such as the previ-
ous Customer property) works with a technique called deferred loading. The related Customer
entity is not instantiated and loaded into memory from the database until it is accessed either
in read or write mode.

Note EntityRef<T> is a wrapper class that is instantiated with the container object (a class derived
from DataContext) to give a valid reference for any access to the referenced entity. Each read/write
operation is filtered by a property getter and setter, which execute a query to load data from the
database the first time this entity is accessed if it is not already in memory.

In other words, to generate a SQL query to populate the Customer-related entity when the
Country property is accessed, you use the following code:

var query =
from o in Orders
where 0.0rderID == 10528
select o;

foreach(var row in query) {
Console.WriteLine(row.Customer.Country);

}

The process of accessing the Customer property involves determining whether the related
Customer entity is already in memory for the current DataContext. If it is, that entity is

Chapter 5 LINQ to SQL: Querying Data 133

accessed; otherwise, the following SQL query is executed and the corresponding Customer
entity is loaded in memory and then accessed:

SELECT [tO0].[Country], [tO].[CustomerID], [tO0].[CompanyName]
FROM [Customers] AS [t0]
WHERE [tO].[CustomerID] = "GREAL"

The GREAL string is the CustomerID value for order 10528. As you can see, the SELECT state-
ment queries all columns declared in the Customer entity, even if they are not used in the
expression that accessed the Customer entity. (In this case, the executed code never refer-
enced the CompanyName member.)

EntitySet

The other side of an association is a table that is referenced from another table through its
primary key. Although this is an implicit consequence of the foreign key constraint in a rela-
tional model, you need to explicitly define this association in the entity model. If the Cus-
tomers table is referenced from the Orders table, you can define an Orders property in the
Customer class that represents the set of Order entities related to a given Customer. The rela-
tionship is implemented by an instance of EntitySet<Order>, which is a wrapper class over the
sequence of related orders. You might want to directly expose this EntitySet<T> type, as in the
code shown in Listing 5-7. In that code, the OtherKey argument of the Association attribute
specifies the name of the member on the related type (Order) that defines the association
between Customer and the set of Order entities.

LISTING 5-7 Association EntitySet (visible)

[TabTle(Name="Customers")]

pubTlic class Customer {
[Column(IsPrimaryKey=true)] public string CustomerID;
[CoTumn] public string CompanyName;
[Column] public string Country;

[Association(OtherKey="CustomerID")]
public EntitySet<Order> Orders;

You might also decide to expose Orders as a property, as in the declaration shown in Listing
5-8. In this case, the Storage argument of the Association attribute specifies the EntitySet<T>
for physical storage. You could make only an /Collection<Order> visible outside the Customer
class, instead of an EntitySet<Order>, but this is not a common practice.

134

Part Il LINQ to Relational

LISTING 5-8 Association EntitySet (hidden)

public class Customer {
[Column(IsPrimaryKey=true)] public string CustomerID;
[CoTumn] public string CompanyName;
[Column] public string Country;

private EntitySet<Order> _Orders;

[Association(OtherKey="CustomerID", Storage="_Orders")]
public EntitySet<Order> Orders {
get { return this._Orders; }
set { this._Orders.Assign(value); }
}
pubTlic Customer() {
this._Orders = new EntitySet<Order>(Q);

}

With both models of association declaration, you can use the Customer class in a LINQ query,
accessing the related Order entities without the need to write a join. You simply specify the
Orders property. The next query returns the names of customers who placed more than 20
orders:

Table<Customer> Customers = db.GetTable<Customer>();
var query =

from ¢ in Customers

where c.Orders.Count > 20

select c.CompanyName;

The previous LINQ query is translated into a SQL query like the following one:

SELECT [t0].[CompanyName]
FROM [Customers] AS [t0]
WHERE (SELECT COUNT(*)
FROM [Orders] AS [t1]
WHERE [t1].[CustomerID] = [tO].[CustomerID]
) > 20

This example creates no Order entity instances. The Orders property serves only as a metadata
source to generate the desired SQL query. If you return a Customer entity from a LINQ query,
you can access the Orders of a customer on demand:

var query =
from ¢ in Customers
where c.Orders.Count > 20
select c;

Chapter 5 LINQ to SQL: Querying Data 135

foreach(var row in query) {
Console.WriteLine(row.CompanyName);
foreach(var order in row.Orders) {
Console.WriteLine(order.OrderID);
}
}

The preceding code uses deferred loading. Each time you access the Orders property of a cus-
tomer for the first time (as indicated by the bold in the preceding code), a query like the fol-
lowing one (which uses the @p0 parameter to filter CustomerlD) is sent to the database:

SELECT [tO].[OrderID], [tO].[CustomerID]
FROM [Orders] AS [tO0]
WHERE [t0].[CustomerID] = @p0

If you want to load all orders for all customers into memory using only one query to the
database, you need to request immediate loading instead of deferred loading. To do that,
you have two options. The first approach, which is demonstrated in Listing 5-9, is to force the
inclusion of an EntitySet using a DataloadOptions instance and the call to its LoadWith<T>
method.

LISTING 5-9 Use of DataloadOptions and LoadWith<T>

DataContext db = new DataContext(ConnectionString);
Table<Customer> Customers = db.GetTable<Customer>();

DataloadOptions loadOptions = new DatalLoadOptions();
ToadOptions.Loadwith<Customer>(¢ => c.Orders);
db.LoadOptions = loadOptions;
var query =

from c in Customers

where c.Orders.Count > 20

select c;

The second option is to return a new entity that explicitly includes the Orders property for the
Customer:

var query =
from ¢ in Customers
where c.Orders.Count > 20
select new { c.CompanyName, c.Orders };

These LINQ queries send a SQL query to the database to get all customers who placed more
than 20 orders, including the entire order list for each customer. That SQL query might be
similar to the one shown in the following code:

SELECT [tO].[CompanyName], [tl].[OrderID], [tl].[CustomerID], (
SELECT COUNT(*)
FROM [Orders] AS [t3]
WHERE [t3].[CustomerID] = [t0].[CustomerID]

136

Part Il LINQ to Relational

) AS [value]
FROM [Customers] AS [t0]
LEFT OUTER JOIN [Orders] AS [t1] ON [t1].[CustomerID] = [tO].[CustomerID]
WHERE (
SELECT COUNT(*)
FROM [Orders] AS [t2]
WHERE [t2].[CustomerID] = [t0].[CustomerID]
) > 20
ORDER BY [t0].[CustomerID], [tl].[OrderID]

Note Asyou can see, a single SQL statement is here and the LINQ to SQL engine parses the result,
extracting different entities (Customers and Orders). Keeping the result ordered by CustomerID,
the engine can build in-memory entities and relationships in a faster way.

You can filter the subquery produced by relationship navigation. Suppose you want to see
only customers who placed at least five orders in 1997, and you want to load only these
orders. You can use the AssociateWith<T> method of the DatalLoadOptions class to do that,
as demonstrated in Listing 5-10.

LISTING 5-10 Use of DataLoadOptions and AssociateWith<T>

DataloadOptions loadOptions = new DatalLoadOptions();
TloadOptions.AssociateWith<Customers>(
c => from o in c.Orders
where o.0rderDate.Value.Year == 1997
select 0);
db.LoadOptions = loadOptions;
var query =
from c in Customers
where c.Orders.Count > 5
select c;

The Microsoft Visual C# filter condition (0.OrderDate.Value.Year == 1997) is translated into
the following SQL expression:

(DATEPART(Year, [t2].[OrderDate]) = 1997)

AssociateWith<T> can also control the initial ordering of the collection. To do that, you can
simply add an order condition to the query passed as an argument to AssociateWith<T>. For
example, if you want to get the orders for each customer starting from the newest one, add
the orderby line shown in bold in the following code:

ToadOptions.AssociateWith<Customers>(
c => from o in c.Orders
where o.0OrderDate.Value.Year == 1997
orderby o.OrderDate descending
select 0);

Chapter 5 LINQ to SQL: Querying Data 137

Using AssociateWith<T> alone does not apply the immediate loading behavior. If you
want both immediate loading and filtering through a relationship, you have to call both
the LoadWith<T> and AssociateWith<T> methods. The order of these calls is not relevant.
For example, you can write the following code:

DataloadOptions loadOptions = new DatalLoadOptions();
loadOptions.AssociateWith<Customers>(
c => from o in c.Orders
where o.0rderDate.Value.Year == 1997
select 0);
loadOptions.LoadWith<Customer>(c => c.Orders);
db.LoadOptions = loadOptions;

Loading all data into memory using a single query might be a better approach if you are sure
you will access all data that is loaded, because you will spend less time in round-trip latency.
However, this technique will consume more memory and bandwidth when the typical access
to a graph of entities is random. Think about these details when you decide how to query
your data model.

Graph Consistency

Relationships are bidirectional between entities—when an update is made on one side, the
other side should be kept synchronized. LINQ to SQL does not automatically manage this
kind of synchronization, which has to be done by the class entity implementation. Instead,
LINQ to SQL offers an implementation pattern that is also used by code-generation tools
such as SQLMetal, a tool that is part of the Windows Software Development Kit (SDK) (and
has been part of the .NET Framework SDK since Microsoft .NET Framework 3.5), or the LINQ
to SQL class generator included with Visual Studio. Chapter 7 describes both these tools. This
pattern is based on the EntitySet<T> class on one side and on the complex setter accessor on
the other side. Take a look at the tools-generated code if you are interested in the implemen-
tation details of this pattern.

~
Change Notification

You will see in Chapter 6 that LINQ to SQL is able to track changes in entities, sub-
mitting equivalent changes to the database. This process is implemented by default
through an algorithm that compares an object’s content with its original values, requir-
ing a copy of each tracked object. The memory consumption can be high, but it can be
optimized if entities participate in the change tracking service by announcing when an
object has been changed.

138 Part 1l LINQ to Relational

The implementation of change notification requires an entity to expose all its data
through properties implementing the System.ComponentModel.INotifyPropertyChanging
interface. Each property setter needs to call the PropertyChanging method of DataContext.
Tools-generated code for entities (such as that emitted by SQLMetal and Visual Studio)
already implement this pattern.

More Info For more information about change tracking, see the product documentation
“Object States and Change-Tracking (LINQ to SQL)" at http://msdn.microsoft.com/en-us/library
/bb386982.aspx.

Relational Model vs. Hierarchical Model

The entity model used by LINQ to SQL defines a set of objects that maps database tables into
objects that can be used and manipulated by LINQ queries. The resulting model represents a
paradigm shift that has been revealed in descriptions of associations between entities because
it moves from a relational model (tables in a database) to a hierarchical or graph model
(objects in memory).

A hierarchical/graph model is the natural way to manipulate objects in a program written in
C# or Microsoft Visual Basic. When you try to consider how to translate an existing SQL query
into a LINQ query, this is the major conceptual obstacle you encounter. In LINQ, you can write
a query using joins between separate entities, just as you do in SQL. However, you can also
write a query that uses the existing relationships between entities, as we did with EntitySet
and EntityRef associations.

Important Remember that SQL does not make use of relationships between entities when que-
rying data. Those relationships exist only to define the data integrity conditions. LINQ does not
have the concept of referential integrity, but it makes use of relationships to define possible navi-
gation paths in the data.

Data Querying

A LINQ to SQL query gets sent to the database only when the program needs to read data.
For example, the following foreach loop iterates rows returned from a table:

var query =
from c in Customers
where c.Country == "USA"

select c.CompanyName;

Chapter 5 LINQ to SQL: Querying Data 139

foreach(var company in query) {
Console.WriteLine(company);

}

The code generated by the foreach statement is equivalent to the following code. The exact
moment the query is executed corresponds to the GetEnumerator call:

// GetEnumerator sends the query to the database
IEnumerator<string> enumerator = query.GetEnumerator();
while (enumerator.MoveNext()) {

Console.WriteLine(enumerator.Current);

}

Writing more foreach loops in the same query generates an equal number of calls to
GetEnumerator, and thus an equal number of repeated executions of the same query. If you
want to iterate the same data many times, you might prefer to cache data in memory. Using
ToList or ToArray, you can convert the results of a query into a List or an Array, respectively.
When you call these methods, the SQL query is sent to the database immediately:

// TolList() sends the query to the database
var companyNames = query.ToList(Q);

You might want to send the query to the database several times when you manipulate the
LINQ query between data iterations. For example, you might have an interactive user inter-
face that allows the user to add a new filter condition for each iteration of data. In Listing
5-11, the DisplayTop method shows only the first few rows of the result; query manipulation
between calls to DisplayTop simulates a user interaction that ends in a new filter condition
each time.

More Info Listing 5-11 shows a very simple technique for query manipulation, adding more
restrictive filter conditions to an existing query represented by an /Queryable<T> object. Chapter
14 describes the techniques to dynamically build a query tree in a more flexible way.

LISTING 5-11 Query manipulation

static void QueryManipulation() {
DataContext db = new DataContext(ConnectionString);
Table<Customer> Customers = db.GetTable<Customer>();
db.Log = Console.Out;

// A1l Customers
var query =
from c in Customers
select new {c.CompanyName, c.State, c.Country };

140

Part Il LINQ to Relational

DisplayTop(query, 10);

// User interaction adds a filter
// to the previous query
// Customers from USA

query =
from c in query
where c.Country == "USA"
select c;

DisplayTop(query, 10);

// User 1interaction adds another
// filter to the previous query
// Customers from WA, USA

query =
from c in query
where c.State == "WA"
select c;

DisplayTop(query, 10);

static void DisplayTop<T>(IQueryable<T> query, int rows) {
foreach(var row in query.Take(rows)) {
Console.WriteLine(row);

}

Important The previous example used /Queryable<T> as the DisplayTop parameter. If you

pass I[Enumerable<T> instead, the results would appear identical, but the query sent to the data-
base would not contain the TOP (rows) clause to filter data directly on the database. Passing
IEnumerable<T> uses a different set of extension methods to resolve the Take operator, which
does not generate a new expression tree. Refer to Chapter 2, “"LINQ Syntax Fundamentals,” for an
introduction to the differences between IEnumerable<T> and IQueryable<T>.

One common query reads a single row from a table, defining a condition that is guaranteed
to be unique, such as a record key, shown in the following code:

var query =
from c in db.Customers
where c.CustomerID == "ANATR"
select «c;

var enumerator = query.GetEnumerator();
if (enumerator.MoveNext()) {

var customer = enumerator.Current;
Console.WriteLine("{0} {1}", customer.CustomerID, customer.CompanyName);

Chapter 5 LINQ to SQL: Querying Data 141

When you know a query will return a single row, use the Single operator to state your inten-
tion. Using this operator, you can write the previous code in a more compact way:

var customer = db.Customers.Single(c => c.CustomerID == "ANATR");
Console.WriteLine("{0} {1}", customer.CustomerID, customer.CompanyName);

However, it is important to note that calling Single has a different semantic than the previous
equivalent query. Calling Single generates a query to the database only if the desired entity
(in this case, the Customer with ANATR as CustomeriD) is not already in memory. If you want

to read the data from the database, you need to call the DataContext.Refresh method:

db.Refresh(RefreshMode.OverwriteCurrentValues, customer);

More Info Chapter 6 contains more information about the entity life cycle.

Projections

The transformation from an expression tree to a SQL query requires the complete under-
standing of the query operations sent to the LINQ to SQL engine. This transformation affects
the use of object initializers. You can use projections through the select keyword, as in the fol-
lowing example:

var query =
from c in Customers
where c.Country == "USA"

select new {c.CustomerID, Name = c.CompanyName.ToUpper()} into r
orderby r.Name
select r;

The whole LINQ query is translated into this SQL statement:

SELECT [t1].[CustomerID], [tl].[value] AS [Name]

FROM (SELECT [tO].[CustomerID],
UPPER([t0] . [CompanyName]) AS [value],
[t0] . [Country]

FROM [Customers] AS [tO]
) AS [tl]
WHERE [t1].[Country] = "USA"
ORDER BY [t1].[value]

142 Part 1l LINQ to Relational

As you can see, the ToUpper method has been translated into an UPPER T-SQL function call.
To do that, the LINQ to SQL engine needs a deep knowledge of the meaning of any operation
in the expression tree. Consider this query:

var queryBad =
from c in Customers
where c.Country == "USA"
select new CustomerData(c.CustomerID, c.CompanyName.ToUpper()) into r
orderby r.Name
select r;

The preceding example calls a CustomerData constructor that can do anything a piece of
Intermediate Language (IL) code can do. In other words, there is no semantic value in calling a
constructor other than the initial assignment of the instance created. The consequence is that
LINQ to SQL cannot correctly translate this syntax into equivalent SQL code, and it throws an
exception if you try to execute the query. However, you can safely use a parameterized con-
structor in the final projection of a query, as in the following example:

var queryParamConstructor =
from c in Customers
where c.Country == "USA"
orderby c.CompanyName
select new CustomerData(c.CustomerID, c.CompanyName.ToUpper());

If you only need to initialize an object, use object initializers instead of a parameterized con-
structor call, as in the following query:

var queryGood =
from c in Customers
where c.Country == "USA"
select new CustomerData { CustomerID = c.CustomerID,
Name = c.CompanyName.ToUpper() } into r
orderby r.Name
select r;

Important Always use object initializers to encode projections in LINQ to SQL. Use parameter-
ized constructors only in the final projection of a query.

Stored Procedures and User-Defined Functions

Accessing data through stored procedures and user-defined functions (UDFs) requires the
definition of corresponding methods decorated with attributes. With this definition, you can
write LINQ queries in a strongly typed form. From the point of view of LINQ, it makes no dif-
ference whether a stored procedure or UDF is written in T-SQL or SQLCLR, but there are some
details you must know to handle differences between stored procedures and UDFs.

Chapter 5 LINQ to SQL: Querying Data 143

Note Because many of you will automatically generate specialized DataContext derived classes,
we will focus attention on the most important concepts that you should know to effectively use
these objects. If you want to create these wrappers manually, please refer to the product documen-
tation “DataContext Class” at http.//msdn.microsoft.com/library/system.data.ling.datacontext.aspx for
a detailed list of the attributes and their arguments.

Stored Procedures

Consider this Customers by City stored procedure:

CREATE PROCEDURE [dbo].[Customers By City](@paraml NVARCHAR(20))
AS BEGIN

SET NOCOUNT ON;

SELECT CustomerID, ContactName, CompanyName, City
FROM Customers AS c

WHERE c.City = @paraml

END

You can define a method decorated with a Function attribute that calls the stored procedure

through the DataContext.ExecuteMethodCall method. Listing 5-12 defines CustomersByCity as

a member of a class derived from DataContext.

LISTING 5-12 Stored procedure declaration

class SampleDb : DataContext {
// ...
[Function(Name = "Customers by City", IsComposable = false)]
public ISingleResult<CustomerInfo> CustomersByCity(string paraml) {
IExecuteResult executeResult =
this.ExecuteMethodCall(
this,
(MethodInfo) (MethodInfo.GetCurrentMethod()),
paraml);
ISingleResult<CustomerInfo> result =
(ISingleResult<CustomerInfo>) executeResult.ReturnValue;
return result;

The ExecuteMethodCall is declared in this way:

IExecuteResult ExecuteMethodCall(object instance,

MethodInfo methodInfo,
params object[] parameters)

144

Part Il LINQ to Relational

The method's first parameter is the instance, which is not required if you call a static method.
The second parameter is a metadata description of the method to call, which could be
obtained through Reflection, as shown in Listing 5-12. The third parameter is an array con-
taining parameter values to pass to the method that is called.

CustomersByCity returns an instance of ISingleResult<Customerinfo>, which implements
IEnumerable< Customerinfo> and can be enumerated in a foreach statement like this one:

SampleDb db = new SampleDb(ConnectionString);
foreach(var row in db.CustomersByCity("London™)) {
Console.WriteLine("{0} {1}", row.CustomerID, row.CompanyName);

}

As you can see in Listing 5-12, you have to access the /ExecuteResult interface returned by
ExecuteMethodCall to get the desired result. This requires further explanation. You use the
same Function attribute to decorate a method wrapping either a stored procedure or a UDF.
The discrimination between these constructs is made by the IsComposable argument of the
Function attribute: if it is false, the following method wraps a stored procedure; if it is true,
the method wraps a user-defined function.

Note The name IsComposable relates to the composability of user-defined functions in a query
expression. You will see an example of this when the mapping of UDFs is described in the next section
of this chapter.

The IExecuteResult interface has a simple definition:

pubTlic interface IExecuteResult : IDisposable {
object GetParameterValue(int parameterIndex);
object ReturnValue { get; }

}

The GetParameterValue method allows access to the output parameters of a stored proce-
dure. You need to cast this result to the correct type, also passing the ordinal position of the
output parameter in parameterindex.

The ReturnValue read-only property is used to access the return value of a stored procedure
or UDF. The scalar value returned is accessible with a cast to the correct type: a stored
procedure always returns an integer, whereas the type of a UDF function can be different.
However, when the results are tabular, you use ISingleResult<T> to access a single result
set, or IMultipleResults to access multiple result sets.

You always need to know the metadata of all possible returned result sets, applying the right
types to the generic interfaces used to return data. /SingleResult<T> is a simple wrapper of
IEnumerable<T> that also implements /FunctionResult, which has a ReturnValue read-only
property that acts as the /ExecuteResult.ReturnValue property you have already seen:

Chapter 5 LINQ to SQL: Querying Data 145

pubTlic interface IFunctionResult {
object ReturnValue { get; }

}
public interface ISingleResult<T> :
IEnumerable<T>, IEnumerable, IFunctionResult, IDisposable { }

You saw an example of ISingleResult<T> in Listing 5-12. We wrote the CustomersByCity wrap-
per in a verbose way to better illustrate the internal steps necessary to access the returning
data.

Whenever you have multiple result sets from a stored procedure, you call the IMultipleResult.
GetResult<T> method for each result set sequentially and specify the correct T type for the
expected result. IMultipleResults also implements IFunctionResult, thereby also offering a
ReturnValue read-only property:

pubTlic interface IMultipleResults : IFunctionResult, IDisposable {
IEnumerable<TElement> GetResult<TElement>();
}

Consider the following stored procedure that returns two result sets with different structures:

CREATE PROCEDURE TwoCustomerGroups

AS BEGIN
SELECT CustomerID, ContactName, CompanyName, City
FROM Customers AS c
WHERE c.City = 'London'

SELECT CustomerID, CompanyName, City
FROM Customers AS c
WHERE c.City = 'Torino'

END

The results returned from this stored procedure can be stored in the following Customerinfo
and CustomerShortinfo types, which do not require any attributes in their declarations:

public class CustomerInfo {
public string CustomerID;
public string CompanyName;
public string City;
public string ContactName;

}

public class CustomerShortInfo {
public string CustomerID;
public string CompanyName;
public string City;

}

The declaration of the LINQ counterpart of the TwoCustomerGroups stored procedure should
be like the one shown in Listing 5-13.

146 Part 1l LINQ to Relational

LISTING 5-13 Stored procedure with multiple results

class SampleDb : DataContext {
I coo
[Function(Name = "TwoCustomerGroups", IsComposable = false)]
[ResultType(typeof(CustomerInfo))]
[ResultType(typeof(CustomerShortInfo))]
pubTic IMultipleResults TwoCustomerGroups() {
IExecuteResult executeResult =
this.ExecuteMethodCall(
this,
(MethodInfo) (MethodInfo.GetCurrentMethod()));
IMultipleResults result =
(IMultipleResults) executeResult.ReturnValue;
return result;

Each result set has a different type. When calling each GetResult<T>, you need to specify the
correct type, which needs at least a public member with the same name for each returned
column. If you specify a type with more public members than available columns, the “missing”
members will have a default value. Moreover, each returned type has to be declared by using
a ResultType attribute that decorates the TwoCustomerGroups method, as you can see in List-
ing 5-13. In the next sample, the first result set must match the Customerinfo type, and the
second result set must correspond to the CustomerShortinfo type:

IMultipleResults results = db.TwoCustomerGroups();

foreach(var row in results.GetResult<CustomerInfo>()) {
// Access to CustomerInfo instance

}

foreach(var row in results.GetResult<CustomerShortInfo>()) {
// Access to CustomerShortInfo instance

3

Remember that the order of ResultType attributes is not relevant, but you have to pay atten-
tion to the order of the GetResult<T> calls. The first result set will be mapped from the first
GetResult<T> call, and so on, regardless of the parameter type used. For example, if you
invert the previous two calls, asking for CustomerShortinfo before Customerinfo, you get no
error, but you do get an empty string for the ContactName of the second result set mapped
to Customerinfo.

Important The order of GetResult<T> calls is relevant and must correspond to the order of
returned result sets. Conversely, the order of ResultType attributes applied to the method repre-
senting a stored procedure is not relevant.

Chapter 5 LINQ to SQL: Querying Data 147

Another use of IMultipleResults is the case in which a stored procedure can return different
types based on parameters. For example, consider the following stored procedure:

CREATE PROCEDURE ChooseResultType(@resultType INT)
AS BEGIN
IF @resultType =1
SELECT * FROM [Customers]
ELSE IF @resultType = 2
SELECT * FROM [Products]
END

Such a stored procedure will always return a single result, but its type might be different on
each call. We do not like this use of stored procedures and prefer to avoid this situation. How-
ever, if you have to handle this case, by decorating the method with both possible ResultType
attributes, you can handle both situations:

[Function(Name = "ChooseResultType", IsComposable = false)]
[ResultType(typeof(Customer))]
[ResultType(typeof (Product))]
pubTlic IMuTltipleResults ChooseResultType(int resultType) {
IExecuteResult executeResult =
this.ExecuteMethodCall(
this,
(MethodInfo) (MethodInfo.GetCurrentMethod()),
resultType);
IMultipleResults result =
(IMuTltipleResults) executeResult.ReturnValue;
return result;

3

In the single GetResult<T> call, you have to specify the type that correctly corresponds to
what the stored procedure will return:

IMultipleResults results = db.ChooseResultType(1);
foreach(var row in results.GetResult<Customer>()) {
// Access to Customer instance

3

If you have a similar scenario, it would be better to encapsulate the stored procedure call
(ChooseResultType in this case) in several methods, one for each possible returned type. This
way, you limit the risk of mismatching the relationship between parameter and result type:

public IEnumerable<Customer> ChooseCustomer() {
IMultipleResults results = db.ChooseResultType(1);
return results.GetResult<Customer>();

pubTlic IEnumerable<Product> ChooseProduct() {
IMultipleResults results = db.ChooseResultType(2);
return results.GetResult<Product>();

148 Part 1l LINQ to Relational

Before turning to user-defined functions, it is worth taking a look at what happens when you
call a stored procedure in a LINQ query. Consider the following code:

var query =
from ¢ in db.CustomersByCity("London")
where c.CompanyName.Length > 15
select new { c.CustomerID, c.CompanyName };

Apparently, this query can be completely converted into a SQL query. However, all the data
returned from CustomersByCity is passed from the SQL server to the client, as you can see
from the generated SQL statement:

EXEC @RETURN_VALUE = [Customers by City] @paraml = 'London'

Both the filter (where) and projection (select) operations are made by LINQ to Objects, filtering
data that has been transmitted to the client and enumerating only rows that have a Company-
Name value longer than 15 characters. Thus, stored procedures are not composable into a

single SQL query. To make this kind of composition, you need to use user-defined functions.

User-Defined Functions

To be used in LINQ, a user-defined function needs the same kind of declaration as a stored
procedure. When you use a UDF inside a LINQ query, the LINQ to SQL engine must consider
it in the construction of the SQL statement, adding a UDF call to the generated SQL. The
capability of a UDF to be used in a LINQ query is what we mean by composability—the capa-
bility to compose different queries and/or operators into a single query. Because the same
Function attribute is used for both stored procedures and UDFs, the IsComposable argument is
set to true to map a UDF, and is set to false to map a stored procedure. Remember that there
is no difference between a UDF written in T-SQL or SQLCLR.

Listing 5-14 provides an example of a LINQ declaration of the scalar-valued UDF MinUnit-
PriceByCategory that is defined in the sample Northwind database.

LISTING 5-14 Scalar-valued UDF

class SampleDb : DataContext {
I coo
[Function(Name = "dbo.MinUnitPriceByCategory", IsComposable = true)]
pubTlic decimal? MinUnitPriceByCategory(int? categoryID) {
IExecuteResult executeResult =
this.ExecuteMethodCal1l(
this,
((MethodInfo) (MethodInfo.GetCurrentMethod())),
categoryID);
decimal? result = (decimal?) executeResult.ReturnValue;
return result;

Chapter 5 LINQ to SQL: Querying Data 149

The call to a UDF as an isolated expression generates a single SQL query invocation. You can
also use a UDF in a LINQ query such as the following:

var query =
from ¢ in Categories
select new { c.CategoryID,
c.CategoryName,
MinPrice = db.MinUnitPriceByCategory(c.CategoryID)};

The generated SQL statement composes the LINQ query with the UDF that is called, resulting
in a SQL query like this:

SELECT [t0].[CategoryID],
[t0].[CategoryName],
dbo.MinUnitPriceByCategory([t0].[CategoryID]) AS [value]
FROM [Categories] AS [t0]

There are some differences in table-valued UDF wrappers. Consider the following UDF:

CREATE FUNCTION [dbo].[CustomersByCountry] (@country NVARCHAR(15))
RETURNS TABLE

AS RETURN
SELECT CustomerID,
ContactName,
CompanyName,
City

FROM Customers c
WHERE c.Country = @country

To use this UDF in LINQ, you need to declare a CustomersByCountry method, as shown in List-
ing 5-15. A table-valued UDF always sets IsComposable to true in Function arguments, but it
calls the DataContext.CreateMethodCallQuery instead of DataContext.ExecuteMethodCall.

LISTING 5-15 Table-valued UDF

class SampleDb : DataContext {

// ...

[Function(Name = "dbo.CustomersByCountry", IsComposable = true)]

pubTlic IQueryable<Customer> CustomersByCountry(string country) {

return this.CreateMethodCallQuery<Customer>(

this,
((MethodInfo) (MethodInfo.GetCurrentMethod())),
country);

150

Part Il LINQ to Relational

A table-valued UDF can be used like any other table in a LINQ query. For example, you can
join customers returned by the previous UDF with the orders they placed, as in the following

query:

Table<Order> Orders = db.GetTable<Order>(Q);
var queryCustomers =
from ¢ in db.CustomersByCountry("USA")
join o in Orders
on c.CustomerID equals o.CustomerID
into orders
select new { c.CustomerID, c.CompanyName, orders };

The generated SQL query will be similar to this one:

SELECT [tO].[CustomerID], [tO].[CompanyName],
[t1].[OrderID], [t1l].[CustomerID] AS [CustomerID2],
(SELECT COUNT(*)
FROM [Orders] AS [t2]
WHERE [t0].[CustomerID] = [t2].[CustomerID]
) AS [value]
FROM dbo.CustomersByCountry('USA') AS [t0]
LEFT OUTER JOIN [Orders] AS [t1l] ON [tO0].[CustomerID] = [tl].[CustomerID]
ORDER BY [t1].[OrderID]

Compiled Queries

If you need to repeat the same query many times, eventually with different argument values,
you might be worried about the multiple query construction. Several databases, such as SQL
Server, try to parameterize received SQL queries automatically to optimize the compilation

of the query execution plan. However, the program that sends a parameterized query to SQL
Server will get better performance because SQL Server does not have to spend time analyzing
it if the query is similar to one already processed. LINQ already does a fine job of query opti-
mization, but each time that the same query tree is evaluated, the LINQ to SQL engine parses
the query tree to build the equivalent SQL code. You can optimize this behavior by using the
CompiledQuery class.

More Info The built-in SQL Server provider sends parameterized queries to the database. Every
time you see a constant value in the SQL code presented in this chapter, keep in mind that the
real SQL query sent to the database has a parameter for each constant in the query. That constant
can be the result of an expression that is independent of the query execution. This kind of expres-
sion is resolved by the host language (C# in this case). When you use the CompiledQuery class, it
eliminates the need to parse the query tree and create the equivalent SQL code every time LINQ
processes the same query. You might ask: What is the break-even point that justifies the use of
the CompiledQuery class? Rico Mariani did a performance test that is described in a blog post at
http://blogs.msdn.com/b/ricom/archive/2008/01/14/performance-quiz-13-ling-to-sql-compiled-
query-cost-solution.aspx. The response from his benchmark is that, with at least two calls for the
query, the use of the CompiledQuery class produces a performance advantage.

Chapter 5 LINQ to SQL: Querying Data 151

To compile a query, you can use one of the CompiledQuery.Compile static methods. This
approach passes the LINQ query as a parameter in the form of an expression tree, and then
obtains a delegate with arguments corresponding to both the DataContext on which you
want to operate and the parameters of the query. Listing 5-16 illustrates the compiled query
declaration and use.

LISTING 5-16 Compiled query in a local scope

static void CompiledQueriesLocal() {
DataContext db = new DataContext(ConnectionString);
Table<Customer> Customers = db.GetTable<Customer>();

var query =
CompiledQuery.Compile(
(DataContext context, string filterCountry) =>
from ¢ in Customers
where c.Country == filterCountry
select new { c.CustomerID, c.CompanyName, c.City });

foreach (var row in query(db, "USA")) {
Console.WriteLine(row);

}

foreach (var row in query(db, "Italy")) {
Console.WriteLine(row);

}

As you can see in Listing 5-16, the Compile method requires a lambda expression whose

first argument is a DataContext instance. That argument defines the connection over which
the query will be executed. In this case, we do not use that argument inside our lambda
expression. Assigning the CompiledQuery.Compile result to a local variable is easy (because
you declare that variable with var), but you will not encounter this situation very frequently.
Chances are that you will need to store the delegate returned from CompiledQuery.Compile in
an instance or a static member to easily reuse it several times. To do that, you need to know
the correct declaration syntax.

A compiled query is stored in a Func delegate, where the first argument must be an instance
of DataContext (or a class derived from DataContext) and the last argument must be the type
returned from the query. You can define up to three arguments in the middle that will be
arguments of the compiled query. You will need to specify these arguments for each compiled
query invocation. Listing 5-17 shows the syntax you can use in this scenario to create the
compiled query and then use it.

Part Il LINQ to Relational

LISTING 5-17 Compiled query assigned to a static member

public static Func< SampleDb, string, IQueryable<Customer>>
CustomerByCountry =
CompiledQuery.Compile(
(nwind.Northwind db, string filterCountry) =>
from ¢ in db.Customers
where c.Country == filterCountry
select c);

static void CompiledQueriesStatic() {
nwind.Northwind db = new nwind.Northwind(ConnectionString);

foreach (var row in CustomerByCountry(db, "USA")) {
Console.WriteLine(row.CustomerID);

3

foreach (var row in CustomerByCountry(db, "Italy")) {
Console.WriteLine(row.CustomerID);

}

Because the Func delegate that holds the compiled query needs the result type in its declara-
tion, you cannot use an anonymous type as the result type of a compiled query. This is pos-
sible only when the compiled query is stored in a local variable, as you saw in Listing 5-16.

Different Approaches to Querying Data

When using LINQ to SQL entities, you have two approaches for querying the same data. The
classic way to navigate a relational schema is to write associative queries, just as you can do in
SQL. The alternative way offered by LINQ to SQL is through graph traversal. Given the same
query result, you might obtain different SQL queries and a different level of performance
using different LINQ approaches.

Consider this SQL query that calculates the total quantity of orders for a product (in this case,
Chocolade, which is a localized name in the Northwind database):

SELECT SUM(od.Quantity) AS TotalQuantity
FROM [Products] p
LEFT JOIN [Order Details] od

ON od. [ProductID] = p.[ProductID]
WHERE p.ProductName = 'Chocolade’

The natural conversion into a LINQ query is shown in Listing 5-18. The Single operator gets
the first row and puts it into quantityJoin, which is used to display the result.

Chapter 5 LINQ to SQL: Querying Data 153
LISTING 5-18 Query using Join

var queryJoin =
from p in db.Products
join o in db.Order_Details
on p.ProductID equals o.ProductID
into OrdersProduct
where p.ProductName == "Chocolade"
select OrdersProduct.Sum(o => o.Quantity);
var quantityloin = queryJoin.SingleQ);
Console.WriteLine(quantityloin);

As you can see, the associative query in LINQ can explicitly require the join between Products

and Order_Details through Product/D equivalency. By using entities, you can implicitly use the
relationship between Products and Order_Details defined in the Product class, as shown in List-
ing 5-19.

LISTING 5-19 Query using Association

var queryAssociation =

from p in db.Products

where p.ProductName == "Chocolade"

select p.Order_Details.Sum(o => o.Quantity);
var quantityAssociation = queryAssociation.Single();
Console.WriteLine(quantityAssociation);

The single SQL queries produced by both of these LINQ queries are identical. The LINQ query
with join is more explicit about the access to data, whereas the query that uses the association
between Product and Order_Details is more implicit in this regard. Using implicit associations
results in shorter queries that are less error-prone (because you cannot be wrong about the
join condition). At first, you might find that a shorter query is harder to read; that might be
because you are accustomed to seeing lengthier queries. Your comfort level with shorter ones
might change over time.

Note The SQL query produced by the LINQ queries in Listings 5-18 and 5-19 is different between
SQL Server 2000 and SQL Server 2005 or later versions. With SQL Server 2005, the OUTER APPLY
join is used. This is the result of an internal implementation of the provider, but the final result is
the same.

Examining this further, you can observe that reading a single product does not require a
query expression. You can apply the Single operator directly on the Products table, as shown
in Listing 5-20. Although the results are the same, the internal process is much different
because this kind of access generates instances of the Product and Order_Details entities in
memory, even if you do not use them in your program.

154 Part Il LINQ to Relational

LISTING 5-20 Access through Entity

var chocolade = db.Products.Single(p => p.ProductName == "Chocolade");
var quantityValue = chocolade.Order_Details.Sum(o => o.Quantity);
Console.WriteLine(quantityValue);

This is a two-step operation that sends two SQL queries to the database. The first one
retrieves the Product entity. The second one accesses the Order Details table to get all the
Order Details rows for the required product and sums up the Quantity value in memory for
the required product. The operation generates the following SQL statements:

SELECT [tO].[ProductID], [tO].[ProductName], [tO].[SupplierID],
[t0].[CategoryID], [tO].[QuantityPerUnit], [tO].[UnitPrice],
[t0].[UnitsInStock], [tO].[UnitsOnOrder], [t0].[ReorderLevel],
[t0]. [Discontinued]

FROM [dbo].[Products] AS [t0]

WHERE [t0].[ProductName] = "Chocolade"

SELECT [tO].[OrderID], [tO].[ProductID], [tO].[UnitPrice], [tO].[Quantity],
[t0]. [Discount]

FROM [dbo].[Order Details] AS [tO]

WHERE [t0].[ProductID] = "Chocolade"

Code that uses this kind of access is shorter to write compared to a query, but its performance
is worse if you need to get only the total Quantity value, without needing to retrieve Product
and Order_Detail entities in memory for further operations.

The queries in Listings 5-18 and 5-19 did not create Product or Order_Details instances
because the output required only the product total. From this point of view, if you already had
the required Product and Order_Details instances for Chocolade in memory, the performance
of those queries would be worse because they unnecessarily access the database to get data
that is already in memory. On the other hand, a second access to get the sum Quantity could
be faster if you use the entity approach. Consider this code:

var chocolade = db.Products.Single(p => p.ProductName == "Chocolade");
var quantityValue = chocolade.Order_Details.Sum(o => o.Quantity);
Console.WriteLine(quantityValue);

var repeatCalc = chocolade.Order_Details.Sum(o => o.Quantity);
Console.WriteLine(repeatCalc);

The quantityValue evaluation requires a database query to create Order_Details entities,
whereas the repeatCalc evaluation is made on the in-memory entities without the need to
read other data from SQL Server.

Chapter 5 LINQ to SQL: Querying Data 155

Note A good way to understand how your code behaves is to analyze the SQL queries that are
produced. In the previous examples, we wrote a Sum in a LINQ query. When the generated SQL
query contains a SUM aggregation operation, you are not reading entities in memory; however,
when the generated SQL query does not contain the requested aggregation operation, that
aggregation will be made in memory on corresponding entities.

A final thought on the number of generated queries: You might think that we generated

two queries when accessing data through the Product entity because we had two distinct
statements—one to assign the chocolade variable, and the other to assign a value to quantity-
Entity. This assumption is not completely true. Even if you write a single statement, the use of
a Product entity (the results from the Single operator call) generates a separate query. Listing
5-21 produces the same results (in terms of memory objects and SQL queries) as Listing 5-20.

LISTING 5-21 Access through Entity with a single statement

var quantityChocolade = db.Products.Single(p => p.ProductName == "Chang")
.Order_Details.Sum(o => o.Quantity);
Console.WriteLine(quantityChocolade);

Finding a better way to access data really depends on the entire set of operations performed
by a program. If you extensively use entities in your code to store data in memory, access to
data through graph traversal based on entity access might offer better performance. On the
other hand, if you always transform query results in anonymous types and never manipulate
entities in memory, you might prefer an approach based on LINQ queries. As usual, the right
answer is, "It depends.”

Direct Queries

Sometimes you might need access to database SQL features that are not available with LINQ.
For example, imagine that you want to use Common Table Expressions (CTEs) or the PIVOT
command with SQL Server. LINQ does not have an explicit constructor to do that, even if its
SQL Server provider could use these features to optimize some queries. In such cases, you can
use the ExecuteQuery<T> method of the DataContext class to send a query directly to the
database. Listing 5-22 shows an example. (The T in ExecuteQuery<T> is an entity class that
represents a returned row.)

156 Part 1l LINQ to Relational

LISTING 5-22 Direct query

var query = db.ExecuteQuery<EmployeeInfo>(@"
WITH EmployeeHierarchy (EmployeeID, LastName, FirstName,
ReportsTo, HierarchylLevel) AS
(SELECT EmpTloyeelD,LastName, FirstName,
ReportsTo, 1 as Hierarchylevel
FROM Employees
WHERE ReportsTo IS NULL

UNION ALL
SELECT e.EmployeeID, e.LastName, e.FirstName,

e.ReportsTo, eh.HierarchylLevel + 1 AS HierarchylLevel
FROM Employees e

INNER JOIN EmployeeHierarchy eh
ON e.ReportsTo = eh.EmployeeID

)
SELECT &
FROM EmployeeHierarchy

ORDER BY HierarchylLevel, LastName, FirstName");

>

As you can see, you need a type to get direct query results. We used the Employeelnfo type i
this example, which is declared as follows:

public class EmployeeInfo {
public int EmployeelD;
public string LastName;
public string FirstName;
public int? ReportsTo; // int? Corresponds to Nullable<int>
pubTlic int HierarchylLevel;

3

The names and types of Employeelnfo members must match the names and types of the col-
umns returned by the executed query. Please note that if a column can return a NULL value,
you need to use a nullable type, as we did for the ReportsTo member declared as int? above

(which corresponds to Nullable<int>).

Warning Columns in the resulting rows that do not match entity attributes are ignored. Entity
members that do not have corresponding columns are initialized with the default value. If the
Employeelinfo class contains a mismatched column name, that member will not be assigned with-
out an error. Be sure to check name correspondence in the result if you find missing column or
member values.

Chapter 5 LINQ to SQL: Querying Data 157

The ExecuteQuery method can receive parameters using the same parameter placeholders
notation (also known as curly notation) used by Console.WriteLine and String.Format, but with
a different behavior. Parameters are not replaced in the string sent to the database; they are
substituted with automatically generated parameter names such as (@p0, @p1, @p2, ...) and
are sent to SQL Server as arguments of the parametric query.

The code in Listing 5-23 shows the call to ExecuteQuery<T> using a SQL statement with two
parameters. The parameters are used to filter the customers who made their first order within
a specified range of dates.

LISTING 5-23 Direct query with parameters

var query = db.ExecuteQuery<CompanyOrders>(@"
SELECT c.CompanyName,
MIN(C o.OrderDate) AS FirstOrderDate,
MAX(o.OrderDate) AS LastOrderDate
FROM Customers c
LEFT JOIN Orders o
ON o.CustomerID = c.CustomerID
GROUP BY c.CustomerID, c.CompanyName
HAVING COUNT(o.OrderDate) > 0O
AND MINC o.OrderDate) BETWEEN {0} AND {1}
ORDER BY FirstOrderDate ASC",
new DateTime(1997, 1, 1),
new DateTime(1997, 12, 31));

The parameters in the preceding query are identified by the {0} and {1} format items. The
generated SQL query simply substitutes them with @p0 and @p1. The results are returned in
instances of the CompanyOrders class, declared as follows:

pubTlic class CompanyOrders {
public string CompanyName;
public DateTime FirstOrderDate;
pubTlic DateTime LastOrderDate;

Deferred Loading of Entities

You have seen that using graph traversal to query data is a very comfortable way to proceed.
However, sometimes you might want to stop the LINQ to SQL provider from automatically
deciding what entities have to be read from the database and when, thereby taking control
over that part of the process. You can do this by using the DeferredLoadingEnabled and Load-
Options properties of the DataContext class.

The code in Listing 5-24 makes the same QueryOrder call under three different conditions,
driven by the code in the DemoDeferredLoading method.

158 Part 1l LINQ to Relational

LISTING 5-24 Deferred loading of entities

public static void DemoDeferredLoading() {
Console.Write("DeferredLoadingEnabled=true ");
DemoDeferredLoading(true);
Console.Write("DeferredLoadingEnabled=false ");
DemoDeferredLoading(false);
Console.Write("Using LoadOptions ")
DemoLoadWith();

}

static void DemoDeferredLoading(bool deferredLoadingEnabled) {
nwDataContext db = new nwDataContext(Connections.ConnectionString);
db.DeferredLoadingEnabled = deferredlLoadingEnabled;

QueryOrder(db);
}

static void DemoLoadwWith() {
nwDataContext db = new nwDataContext(Connections.ConnectionString);
db.DeferredLoadingEnabled = false;

DatalLoadOptions loadOptions = new DatalLoadOptions();
TloadOptions.LoadWith<Order>(o => o0.0rder_Details);
db.LoadOptions = ToadOptions;

QueryOrder(db);
}

static void QueryOrder(nwDataContext db) {
var order = db.Orders.Single((0) => 0.0rderID == 10251);
var orderValue = order.Order_Details.Sum(od => od.Quantity * od.UnitPrice);
Console.WriteLine(orderValue);

The call to DemoDeferredLoading(true) sets the DeferredLoadingEnabled property to true, which
is the default condition for a DataContext instance. The call to DemoDeferredLoading(false)
disables the DeferredLoadingEnabled property. Any access to the related entities does not
automatically load data from the database, and the sum of Order_Details entities shows a
total of 0. Finally, the call to DemoLoadWith also disables DeferredLoadingEnabled, but it sets
the LoadOptions property of the DataContext, requesting the loading of Order_Details entities
related to an Order instance. The execution of the DemoDeferredLoading method in Listing
5-24 produces the following output:

DeferredLoadingEnabled=true 670,8000
DeferredLoadingEnabled=false 0
Using LoadOptions 670,8000

Chapter 5 LINQ to SQL: Querying Data 159

Remember that the use of LoadOptions is possible regardless of the state of DeferredLoading-
Enabled, and it is useful for improving performance when early loading of related entities
(rather than deferred loading) is an advantage for your application. Consider carefully before
using DeferredLoadingEnabled—it does not produce any error, but it limits the navigability of
your data model through graph traversal. However, you must remember that DeferredLoading-
Enabled is automatically considered to be false whenever the ObjectTrackingEnabled property
(discussed in the next section) is disabled too.

Deferred Loading of Properties

LINQ to SQL provides a deferred loading mechanism that acts at the property level, load-
ing data only when that property is accessed for the first time. You can use this mechanism
when you need to load a large number of entities in memory, which usually requires space
to accommodate all the properties of the class that correspond to table columns of the data-
base. If a certain field is very large and is not always accessed for every entity, you can delay
the loading of that property.

To request the deferred loading of a property, you simply use the Link<T> type to declare the
storage variable for the table column, as you can see in Listing 5-25.

LISTING 5-25 Deferred loading of properties

[TabTe(Name = "Customers")]
pubTlic class DelayCustomer {
private Link<string> _Address;

[Column(IsPrimaryKey = true)] public string CustomerID;
[Column] public string CompanyName;
[Column] public string Country;

[Column(Storage = "_Address")]
public string Address {
get { return _Address.Value; }
set { _Address.Value = value; }

3

public static class DeferredLoading {
pubTlic static void DelaylLoadProperty() {
DataContext db = new DataContext(Connections.ConnectionString);
Table<DelayCustomer> Customers = db.GetTable<DelayCustomer>(Q);
db.Log = Console.Out;

var query =
from ¢ in Customers
where c.Country == "Italy"
select c;

160

Part Il LINQ to Relational

foreach (var row in query) {
Console.WriteLine(
"{o} - {1}",
row.CompanyName,
row.Address) ;

The query that is sent to the database to get the list of Italian customers is functionally equiv-
alent to the following one:

SELECT [tO].[CustomerID], [tO].[CompanyName], [tO].[Country]
FROM [Customers] AS [tO0]
WHERE [t0].[Country] = "Italy"

This query does not retrieve the Address field. When the result of the query is iterated in the
foreach loop, the Address property of the current Customer is accessed for each customer for
the first time. This produces a query to the database like the following one to get the Address
value:

SELECT [tO].[Address]
FROM [Customers] AS [tO0]
WHERE [t0].[CustomerID] = @p0

You should use the Link<T> type only when the content of a field is very large (which should
not be the case for the Address field example) or when that field is rarely accessed. A field
defined with the SQL type VARCHAR(MAX) is generally a good candidate, as long as its value
is displayed only in a detailed form visible on demand and not on the main grid that shows
query results. Using the LINQ to SQL class generator included in Visual Studio, you can use
Link<T> and set the Delay Loaded property of the desired member property to true.

Important You need to use the Link<T> type on the storage variable for a property of type T
mapped to the column, as shown in Listing 5-25. You cannot use the Link<T> type directly on a
public data member mapped to a table column (like all the other fields); if you do, you will get an
exception during execution. That run-time error is of type VerificationException. Future versions
may have a more analytical exception.

Chapter 5 LINQ to SQL: Querying Data 161

Read-Only DataContext Access

If you need to access data exclusively as read-only, you might want to improve performance
by disabling a DataContext service that supports data modification:

DataContext db = new DataContext(ConnectionString);
db.ObjectTrackingEnabled = false;
var query = ...

The ObjectTrackingEnabled property controls the change tracking service described in
Chapter 6. By default, ObjectTrackingEnabled is set to true.

Important Disabling object tracking also disables the deferred loading feature of the same Data-
Context instance. If you want to optimize performance by disabling the object tracking feature,
you must be aware of the side effects of disabling deferred loading too. Refer to the “Deferred
Loading of Entities” section earlier in this chapter for further details.

Limitations of LINQ to SQL

LINQ to SQL has some limitations when converting a LINQ query to a corresponding SQL
statement. For this reason, some valid LINQ to Objects statements are not supported in LINQ
to SQL. In this section, we cover the most important operators that you cannot use in a

LINQ to SQL query. However, you can use specific T-SQL commands by using the extension
methods defined in the Sg/Methods class, which you will find in the System.Data.Ling.SqlClient
namespace.

More Info A complete list of unsupported methods and types is available on the “Data Types and
Functions (LINQ to SQL)" page of the product documentation, available at http.//msdn.microsoft.com
/en-us/library/bb386970.aspx.

Aggregate Operators

The general-purpose Aggregate operator is not supported. However, specialized aggregate
operators such as Count, LongCount, Sum, Min, Max, and Average are fully supported.

Any aggregate operator other than Count and LongCount requires particular care to avoid an
exception if the result is null. If the entity class has a member of a nonnullable type and you
make an aggregation on it, a null result (for example when no rows are aggregated) throws
an exception. To avoid the exception, you should cast the aggregated value to a nullable type
before considering it in the aggregation function. Listing 5-26 shows an example of the nec-
essary cast.

162

Part Il LINQ to Relational

LISTING 5-26 Null handling with aggregate operators

decimal? totalFreight =
(from o in Orders
where o.CustomerID == "NOTEXIST"
select 0).Min(o => (decimal?) o.Freight);

This cast is necessary only if you declared the Freight property with decimal, as shown in the
following code:

[TabTe(Name = "Orders")]
public class Order {

[CoTumn] public decimal Freight;
}

Another solution is to declare Freight as a nullable type, using decimal?>—but it is not a good
idea to have different nullable settings between entities and corresponding tables in the
database.

More Info You can find a more complete discussion about this issue in the post “LINQ to
SQL, Aggregates, EntitySet, and Quantum Mechanics,” written by lan Griffiths and located at
http://www.interact-sw.co.uk/iangblog/2007/09/10/ling-aggregates.

Partitioning Operators

The TakeWhile and SkipWhile operators are not supported. Take and Skip operators are sup-
ported, but be careful with Skip because the generated SQL query could be complex and not
very efficient when skipping a large number of rows, especially when the target database is
SQL Server 2000.

Element Operators

The following operators are not supported: ElementAt, ElementAtOrDefault, Last, and
LastOrDefault.

String Methods

Many of the .NET Framework String type methods are supported in LINQ to SQL because
T-SQL has a corresponding method. However, there is no support for methods that are
culture-aware (those that receive arguments of type Culturelnfo, StringComparison, and
IFormatProvider) and for methods that receive or return a char array.

Chapter 5 LINQ to SQL: Querying Data 163
DateTime Methods

The DateTime type in the .NET Framework is different than the DATETIME and SMALLDATE-
TIME types in SQL Server. The range of values and the precision is greater in the .NET Frame-
work than in SQL Server, meaning the .NET Framework can correctly represent SQL Server
types, but not the opposite. Check out the Sq/Methods extension methods, which can take
advantage of several DateDiff functions.

LIKE Operator

Although the LIKE T-SQL operator is used whenever a StartsWith, EndsWith, or Contains
operator is called on a string property, you can use LIKE directly by calling the Sqg/Methods.Like
method in a predicate.

Unsupported SQL Functionalities
LINQ to SQL does not have syntax to make use of the STDDEV aggregation.

Thinking in LINQ to SQL

When you start working with LINQ to SQL, you might have to rethink the ways in which you
are accustomed to writing queries, especially if you try to find the equivalent LINQ syntax for
a well-known SQL statement. Moreover, a verbose LINQ query might be reduced when the
corresponding SQL query is produced. You need to be aware of this change, and you have to
fully understand it to be productive in LINQ to SQL. The final part of this chapter introduces
you to thinking in LINQ to SQL.

The IN/EXISTS Clause

One of the best examples of the syntactic differences between T-SQL and LINQ is the NOT IN
clause that you can use in SQL. LINQ does not have such a clause, which makes you wonder
whether there is any way to express the same concept in LINQ. In fact, there is not always a
direct translation for each single SQL keyword, but you can get the same result with semanti-
cally equivalent statements, sometimes with equal or better performance.

Consider this SQL query, which returns all the customers who do not have an order in the
Orders table:

SELECT *

FROM [dbo] . [Customers] AS [t0]
WHERE [t0].[CustomerID] NOT IN (
SELECT [tl].[CustomerID]

FROM [dbo].[Orders] AS [t1]

164

Part Il LINQ to Relational

This is not the fastest way to get the desired result. (Using NOT EXISTS is our favorite way—
more on this shortly.) LINQ does not have an operator directly equivalent to IN or NOT IN,
but it offers a Contains operator that you can use to write the code in Listing 5-27. Pay atten-
tion to the not operator (/) applied to the where predicate, which negates the Contains condi-
tion that follows.

LISTING 5-27 Use of Contains to get an EXISTS/IN equivalent statement

public static void DemoContains() {
nwDataContext db = new nwDataContext(Connections.ConnectionString);
db.Log = Console.Out;

var query =
from ¢ in db.Customers
where !(from o in db.Orders
select o.CustomerID)
.Contains(c.CustomerID)
select new { c.CustomerID, c.CompanyName };

foreach (var c in query) {
Console.WriteLine(c);

3

The following code is the SQL query generated by LINQ to SQL:

SELECT [tO].[CustomerID], [tO].[CompanyName]
FROM [dbo] . [Customers] AS [t0]
WHERE NOT (EXISTS(
SELECT NULL AS [EMPTY]
FROM [dbo].[Orders] AS [t1]
WHERE [t1].[CustomerID] = [t0].[CustomerID]
)

Using this approach to generate SQL code is not only semantically equivalent, but it also
executes faster. If you look at the input/output (I/O) operation made by SQL Server 2005, the
first query (using NOT IN) executes 364 logical reads on the Orders table, whereas the second
query (using NOT EXISTS) requests only 5 logical reads on the same Orders table. That is a big
difference. In this case, LINQ to SQL is the best choice.

The same Contains operator might generate an IN operator in SQL, for example, if it is
applied to a list of constants, as in Listing 5-28.

Chapter 5 LINQ to SQL: Querying Data 165

LISTING 5-28 Use of Contains with a list of constants

public static void DemoContainsConstants() {
nwDataContext db = new nwDataContext(Connections.ConnectionString);

var query =
from c in db.Customers
where (new string[] { "London", "Seattle" }).Contains(c.City)
select new { c.CustomerID, c.CompanyName, c.City };

Console.WriteLine(query);

foreach (var c in query) {
Console.WriteLine(c);

}

The SQL code generated by LINQ to SQL is simpler to read than the original query:

SELECT [tO].[CustomerID], [tO].[CompanyName], [tO].[City]
FROM [dbo] . [Customers] AS [t0]
WHERE [tO0].[City] IN ("London", "Seattle")

The LINQ query is counterintuitive in that you must specify the Contains operator on the list
of constants, passing the value to look for as an argument—exactly the opposite of what you
need to do in SQL:

where (new string[] { "London", "Seattle" }).Contains(c.City)

After years of experience in SQL, it is more comfortable to imagine this hypothetical Isin
syntax:

where c.City.IsIn(new string[] { "London", "Seattle" })

However, it is probably only a question of time before you get used to the new syntax. In fact,
the semantics of Contains corresponds exactly to the argument’s position. To make the code
clearer, you could simply declare the list of constants outside the query declaration, in a cities
array, for example:

var cities = new string[] { "London", "Seattle" };
var query =
from ¢ in db.Customers
where cities.Contains(c.City)
select new { c.CustomerID, c.CompanyName, c.City };

166

Part Il LINQ to Relational

Note Creating the cities array outside the query instead of putting it in the where predicate sim-
ply improves code readability, at least in LINQ to SQL. From a performance point of view, only one
string array is created in both cases. The reason is that in LINQ to SQL, the query defines only an
expression tree, and the array is created only once to produce the SQL statement. In LINQ to SQL,
unless you execute the same query many times, performance is equivalent under either approach
(object creation inside or outside a predicate). This is different in LINQ to Objects, in which the
predicate condition in the where clause would be executed for each row of the data source.

SQL Query Reduction

Every LINQ to SQL query is initially represented in memory as an expression tree. The LINQ to
SQL engine converts this tree into an equivalent SQL query, visiting the tree and generating
the corresponding code. However, theoretically this translation can be made in many ways, all
producing the same results, even if not all the translations are equally readable or perform as
well. The actual implementation of LINQ to SQL generates good SQL code, favoring perfor-
mance over query readability, although the readability of the generated code is often quite
acceptable.

More Info You can find more information about query reduction in a LINQ provider in the
following post from Matt Warren: “LINQ: Building an IQueryable Provider - Part IX,” located at
http://blogs.msdn.com/mattwar/archive/2008/01/16/ling-building-an-iqueryable-provider-part-ix.aspx.
Implementation of a query provider is covered in Chapter 15, “Extending LINQ."

We described this quality of LINQ to SQL because it is important to know that unnecessary
parts of the query are removed before the query is sent to SQL Server. You can use this
knowledge to compose LINQ queries in many ways—for example, by appending new predi-
cates and projections to an originally large selection of rows and columns, without worrying
too much about unnecessary elements left in the query.

The LINQ query in Listing 5-29 first makes a query on Customers, which filters those custom-
ers with a CompanyName longer than 10 characters. Those companies are then filtered by
Country, operating on the anonymous type generated by the inner query.

LISTING 5-29 Example of query reduction

var query =
from s in (
from c in db.Customers
where c.CompanyName.Length > 10
select new { c.CustomerID, c.CompanyName, c.ContactName, c.City,
c.Country, c.ContactTitle, c.Address }
)
where s.Country == "UK"
select new { s.CustomerID, s.CompanyName, s.City };

Chapter 5 LINQ to SQL: Querying Data 167

Despite the length of the LINQ query, here is the SQL query it generates:

SELECT [tO].[CustomerID], [tO].[CompanyName], [tO].[City]
FROM [dbo] . [Customers] AS [t0]
WHERE ([tO0].[Country] = @p0) AND (LEN(C[tO].[CompanyName]) > @pl)

The generated SQL query made two important reductions. First, the FROM operates on a
single table instead of a SELECT ... FROM (SELECT ... FROM ...) composition that would nor-
mally be made when translating the original query tree. Second, unnecessary fields have
been removed; only CustomerID, CompanyName, and City are part of the SELECT projection
because they are the only fields necessary to the consumer of the LINQ query. The first reduc-
tion improves query readability; the second improves performance because it reduces the
amount of data transferred from the database server to the client.

Mixing .NET Code with SQL Queries

As noted previously, LINQ to SQL has some known limitations with regard to using the full
range of the .NET Framework features, not all of which can be entirely translated into cor-
responding T-SQL operations. This does not necessarily mean that you cannot write a query
containing an unsupported method, but you should be aware that such a method cannot be
translated into T-SQL and must be executed locally on the client. The side effect of this can
be that sections of the query tree that depend on a .NET Framework method without a corre-
sponding SQL translation will be executed completely as a LINQ to Objects operation, mean-
ing that all the data must be transferred to the client to apply the required operators.

You can see this effect with some examples. Consider the LINQ query in Listing 5-30.

LISTING 5-30 LINQ query with a native string manipulation in the projection

var queryl =
from p in db.Products
where p.UnitPrice > 50
select new {
ProductName =
p.UnitPrice };

"o

+ p.ProductName + e

The generated SQL query embodies the string manipulation of the ProductName:

SELECT ("** " + [t0].[ProductName]) + " **" AS [ProductName],
[t0].[UnitPrice]

FROM [dbo].[Products] AS [tO0]

WHERE [tO0].[UnitPrice] > 50

Now suppose you move the string concatenation operation into a .NET Framework extension
method, like that shown in Listing 5-31.

168 Part 1l LINQ to Relational

LISTING 5-31 String manipulation extension method

static public class Extensions {
public static string Highlight(this string s) {
return "¥* "

L

+ s + ;

}

Then you can modify the LINQ query using the Highlight method as in Listing 5-32.

LISTING 5-32 LINQ query calling a .NET Framework method in the projection

var query2 =
from p in db.Products
where p.UnitPrice > 50
select new {
ProductName = p.ProductName.Highlight(Q),
p.UnitPrice };

The result produced by query?2 in Listing 5-32 is the same as the one produced by query1 in
Listing 5-30. However, the SQL query sent to the database is different because it lacks the
string manipulation operation:

SELECT [tO0].[ProductName] AS [s],
[t0].[UnitPrice]

FROM [dbo].[Products] AS [t0]

WHERE [tO].[UnitPrice] > 50

The ProductName field is returned as s and will be used as an argument to the Highlight call.
For each row, a call to the .NET Framework Highlight method will be made. This is not an issue
when you are directly consuming the query2 results. However, if you turn the same operation
into a subquery, the dependent queries cannot be translated into a native SQL statement. For
example, consider query3 in Listing 5-33.

LISTING 5-33 LINQ query combining native and custom string manipulation

var query3 =
from a in (
from p in db.Products
where p.UnitPrice > 50
select new {
ProductName = p.ProductName.HighlightQ),
p.UnitsInStock,
p.UnitPrice
}
)
select new {
ProductName = a.ProductName.TolLower(),
a.UnitPrice };

Chapter 5 LINQ to SQL: Querying Data 169

The SQL query produced by query3 in Listing 5-33 is the same as the one produced by
query?2 in Listing 5-32, despite the addition of another string manipulation (ToLower) to
ProductName:

SELECT [tO0].[ProductName] AS [s],
[t0].[UnitPrice]

FROM [dbo] . [Products] AS [t0]

WHERE [t0].[UnitPrice] > 50

If you remove the call to Highlight and restore the original string manipulation directly inside
the LINQ query, you will get a complete native SQL query again, as shown in Listing 5-34.

LISTING 5-34 LINQ query using native string manipulation

var query4 =
from a in (
from p in db.Products
where p.UnitPrice > 50
select new {
ProductName =
p.UnitPrice

Wi W

+ p.ProductName + " **'",

}
)
select new {
ProductName = a.ProductName.ToLower(),
a.UnitPrice

I

The query4 in Listing 5-34 produces the following SQL query, which does not require further
manipulations by .NET Framework code:

SELECT LOWER([t1].[value]l) AS [ProductName], [tl].[UnitPrice]
FROM (
SELECT ("** " + [t0].[ProductName]) + " **" AS [value],
[t0].[UnitPrice]
FROM [dbo].[Products] AS [tO]
) AS [t1]
WHERE [t1].[UnitPrice] > 50

Until now, we have seen that there is a possible performance implication only when using

a .NET Framework method that does not have a corresponding SQL counterpart. However,
there are situations that cannot be handled by the LINQ to SQL engine and which throw an
exception at execution time—for example, if you try to use the result of the Highlight call in
a where predicate as shown in Listing 5-35.

170 Part Il LINQ to Relational

LISTING 5-35 LINQ query calling a .NET Framework method in a where predicate

var query5 =
from p in db.Products
where p.ProductName.Highlight().Length > 20
select new {
ProductName = p.ProductName.Highlight(Q),
p.UnitPrice

BF;

At execution time, trying to access to the query5 result (or asking for the generated SQL
query) will raise the following exception:

System.NotSupportedException
Method 'System.String Highlight(System.String)'
has no supported translation to SQL.

As you have seen, it is important to understand what operators are supported by LINQ to
SQL, because the code could work or break at execution time, depending on the use of such
operators. It is hard to define a rule of thumb other than to avoid the use of unsupported
operators. If you think that a LINQ query is composable and can be used as a source to build
another query, the only safe guideline is to use operators supported by LINQ to SQL.

Summary

This chapter covered LINQ to SQL features used to query data. With LINQ to SQL, you can
query a relational structure stored in a SQL Server database so that you can convert LINQ
queries into native SQL queries and access UDFs and stored procedures if required. LINQ to
SQL handles entity classes that map an underlying physical database structure through attri-
butes or external XML files. Stored procedures and UDFs can be mapped to methods of a class
representing a SQL Server database. LINQ to SQL supports most of the basic LINQ features
that you saw in Chapter 3.

Index

Symbols

- - (decrement operator), 417
++ (increment operator), 417
== operator, 36

A

abstract domain model, 586
AcceptAllChanges method
(ObjectContext), 313-314
Access code-generation
property, 222-240, 236
accessing untyped DataSet
data, 353
Access property for data members
of entity, 225
access through entity (listing), 154
Action property, 315
Active Directory, LINQ to, 571
AddAfterSelf method of XNode
(listing), 370
Add New Item dialog box (O/R
Designer), 216
AddObject method, 302
AddToCustomers method, 302
AdxStudio xRM SDK, 567
Aggregate keyword, 41
Aggregate operators
Average operator, 82-83
Count operator, 77
general-purpose, 161
LongCount operator, 77
Min/Max operators, 81-82
overview, 77
Sum operator, 78-79
use of, 83-86, 467
in Visual Basic, 86-88
All operator, 91
ALTER commands, 245
Amazon, LINQ to, 570
Amazon SimpleDB, 565
AncestorsAndSelf extension
method, 390
Ancestors method, 388-390
annotations, XObject and, 379-382
anonymous delegates, defining, 26
anonymous types, defined, 75
Any method, 90-91
Any operator applied to all
customer orders (listing), 91

Applied Microsoft .NET Framework
Programming (Microsoft
Press), 607

ApplyCurrentValues
method, 330-333

ApplyOriginalValues
method, 330-333

ArgumentException errors, 81

ArgumentNullException errors, 53

ArgumentOutOfRangeException
error, 98

AsEnumerable

extension method, 350
implementation, 556
method, 44

operator, 101-103

AsOrdered operator, 550-551

AsParallel extension method, 540

ASP.NET, using LINQ with, 609

AsQueryable operator, 513

AssociateWith<T> method, 136

Association attribute, 130

Association EntityRef (listing), 131

Association EntitySet (listing), 133

associations, foreign keys
and, 250-254

asynchronous operations, tasks
for, 531-535

Asynchronous Programming Model
(APM), 531

Atom Publishing Protocol (ATOM/
APP), 565

attaching entities, 197-201,
328-330

Attach method, 199-201

attributes

attribute-based
mapping, 211-212

entity attributes for valid
relationships, 192-194

Auto Generated Value data
property, 225

Auto-Sync data property, 225

AutoSync parameter (Column
attribute), 178-179

Average operator, 82-83, 161

Base Class
code-generation property
(DataContext), 222
Discriminator Value inheritance
property, 234
BinaryExpression class, 437
BinaryFormatter, 333
binding
collections of entities, 642—-647
to LINQ queries, 633-637
metadata (databases and
entities), 201-204
single entities and
properties, 637-642
BlockingCollection<T> class, 538
BLToolkit, 563
Browser, Model, 249
BuildString method, 430
business layer (BIZ), 577, 599-600

C

C# language

C# code equivalent to LINQ query
over Reflection (listing), 19

code defining customer
types, 49-51

C# query expression with left
outer join (listing), 39

C# sample of usage of let clause
(listing), 40

C# syntax to define default
namespace and custom prefix
for namespace (listing), 376

foreach loops, 18

LINQ over C#, 573

query expression to group
developers by programming
language (listing), 33

query expression used with
exception handling (listing), 47

query expression with an inner
join, 37

query expression with group join
(listing), 38

query expression with Orderby
clause (listing), 35

query expression with Where
clause (listing), 32

658

C# language (continued)

C# language (continued)
sample of usage of let clause
(listing), 40
source code (LINQ to
SQL), 207-209
CanBeNull parameter, 126
CancellationToken, cancelling tasks
with, 528
canonical functions (LINQ to
Entities), 279-281
Cardinality association
property, 228
Cardinality property, 231-232
Cascade Delete, 254
cascading deletes and updates
(databases), 175-177
CAST operator, 107-108, 204
ChangeConflictException error, 185
change notification for entities
(LINQ to SQL), 137
ChangeObjectState
method, 314-315
ChangeRelationshipState
method, 314-315
change tracking service, 172,175
Changing/Changed LINQ to XML
events, 380
Child classes, 226-227
Child Property association
property, 228
child tasks, creating, 526
chunking readers, 399
classes
derived from
Expression, 434-435
deriving entity, 194-196
exception (LINQ to SQL), 190
client-server architecture, 577
CLR via C# (Microsoft Press), 538
Code-Generation properties
for data members of entity, 225
for DataContext, 221-222
for Data function, 236
for Entity class, 223
code listings
abstract and generic interface
defining Data Mapper for every
entity in domain model, 588
abstract interface for Data
Mapper acting as CRUD on
Customer entity, 587
access through entity, 154
Access through Entity with single
statement, 155
AddAfterSelf method of
XNode, 370
adding new Customer instance to
collection of Customers, 301

adding new Customer instance
with related Orders, 305

Aggregate operator to get item
with minimum price, 467

All operator applied to customer
orders to check quantity, 91

alternative way to filter a
sequence for only Visible
customers, 472

annotations applied to an
XElement instance, 379

Any operator applied to all
customer orders, 91

.aspx page excerpt using editable
LingDataSource control, 619

.aspx page using EntityDataSource
control to render list of
Northwind customers into a
GridView control, 626

.aspx page using LingDataSource
control to render list of
Northwind customers into
GridView control, 611

.aspx page using LingDataSource
control to render Northwind
customers in a ListView with
filtering and paging through
DataPager control, 616

.aspx page with LingDataSource
control linked to set of user-
defined entities, 625

AsQueryable definition
as extension method of
FlightStatusService, 513

AsQueryable, effects of
using, 486

Association EntityRef, 131

Association EntitySet (visible), 133

attach entity to DataContext,
providing its original state for
optimistic concurrency, 199

attaching entity to ObjectContext,
correctly handling EntityState
and its OriginalValues, 331

attribute and child element
management using XElement
methods, 383

autogenerated code for Customer
entity, 247

autogenerated code for
model-first entity data
model, which inherits from
ObjectContext, 246

Average operator signatures
applied to product prices, 82

Average price of products
ordered by customers, 87

BaseDal abstract base class for
a LINQ to XML-based data
layer, 596

BaseDal type implementation
based on the Entity
Framework, 598

browsing results of Descendants
method invocation, 389

C# code equivalent to LINQ query
over Reflection, 19

C# query expression referencing
external method that throws
fictitious exception, 46

C# query expression to group
developers by programming
language, 33

C# query expression used with
exception handling, 47

C# query expression with a group
join, 38

C# query expression with a left
outer join, 39

C# query expression with an inner
join, 37

C# query expression with Orderby
clause, 35

C# query expression with Where
clause, 32

C# sample of usage of let
clause, 40

C# syntax to define default
namespace and custom prefix
for namespace, 376

calling GetCustomersByCountry
business method, 604

Call to a lambda expression from
an expression tree, 421

Call to external methods from an
expression tree, 420

CancellationToken to cancel a
task, 528

ChangeObijectState method of
ObjectStateManager, 314

child task, creating, 526-527

chunked reading of XML tree
using secured XmlReader, 409

class declaration mapped on
database table with LINQ to
SQL, 12

class entity source code in
C#, 208

classes to remove Invoke
and make parameter
substitution, 457

class of a page reading RSS
feed using a LINQ to XML
query, 633

class of page explicitly querying
Northwind'’s customers via
LINQ to SQL, 634

class of page updating Northwind
customer instance with LINQ to
SQL, 637

Click event of Button
element, 641

compiled query assigned to static
member, 152

compiled query in local
scope, 151

ComplexBinding XAML, 645

Concat operator to concatenate
Italian customers with US
customers, 100

concurrency conflicts, how to
manage, 321

console consumer application
code excerpt, 342

Contact type definition, 638

Contains operator applied to first
customer’s orders, 92

Contains operator to get
an EXISTS/IN equivalent
statement, 164

Contains operator with list of
constants, 165

ContinueWhenAll method, 525

ContinueWith method, use
of, 524, 524-525

Count operator applied to
customer order, 77

Custom aggregate function to
calculate standard deviation of
set of Double values, 87

custom CUD operations for
Contact entity, 265

Customer and Order type
definitions, 397

Customer and Order types
defined in independent domain
mode, 585

CustomerDal implementation
using the Entity Framework
under the covers, 597

customer entity modified, 199

CustomerManager type
providing a property of type
List<Customer>, 624

Customers and average order
amounts, 83

Customers and orders paired with
month of execution, 85

Customers most expensive
orders, 84

Customer type based on external
XML mapping, 584

customizing DataContext of a
LingDataSource control, 622

custom ObjectContext type to
bind custom entities with Entity
Framework, 268

custom ObjectContext using
DomainModel entities, 597

custom ObjectContext with POCO
entities, 268

custom operator example, entities
used in, 465

custom selection pattern for
EntityDataSource control using
explicit LINQ query, 632

custom selection pattern for
LingDataSource control using
explicit LINQ query, 623

custom Where extension
method defined for type
Customers, 102

database update calling
SaveChanges method of Entity
Framework, 14

database update calling
SubmitChanges method of
LINQ to SQL, 13

DatalLoadOptions and
AssociateWith<T> method, 136

DataLoadOptions and
LoadWith<T>, 135

DataSet relationships in LINQ
queries, 350

DataView, creating in traditional
way, 351

DataView, creating using LINQ
query over a DataTable, 351

DBML file excerpt, 206

DDL defining CUD stored
procedures to manage
Customers, 262

DDL defining
GetCustomersByAddress stored
procedure, 260

Declaration of Inc as anonymous
method, 415

Declaration of Inc as lambda
expression, 416

DefaultifEmpty operator syntax
with default(T) and custom
default value, 100

DefaultRowComparer.Default
as equality comparer calling
Intersect operator, 354

deferred loading of entities, 158

deferred loading of
properties, 159

defining DataContext based on
external XML mapping file, 582

code listings

definition of XML element using
DOM, 366-367

definition of XML element using
Visual Basic XML literals, 367

degenerate query expression over
a list of type Developers, 45

delegate and lambda expression
syntaxes, comparison
between, 416

deleting Customer instance,
setting CustomerlID of related
Orders to NULL, 308

deleting existing Customer
instance, 303

DescendantNodes method
invocation, 391

detaching an entity and
attaching it to different
ObjectContext, 328

direct query, 156

direct query with parameters, 157

DisplayVisitor class,
testing, 446-447

DisplayVisitor specialization of
ExpressionVisitor class, 445

Distinct operator applied to query
expression, 72

Distinct operator applied to
the list of products used in
orders, 71

ElementAt and
ElementAtOrDefault operator
syntax examples, 98

Empty operator initializes empty
set of customers, 90

encapsulating APM calls into Task
instances, 531

encapsulating EAP calls into a
Task, 533

Entity class with binding
information saved in external
XML file, 201, 202

Entity Data Model Designer
displaying complex
property, 255

EntityDataSource control to
render Northwind customers
into a ListView control with
filtering and paging through a
DataPager control, 630

entity definition for LINQ to
SQL, 120

entity inheritance at conceptual
level, 258

entity serialization, 197

Event handler for selection
change in a combo box, 649

659

660

code listings (continued)

code listings (continued)

Exception handling for a PLINQ
query, 553

ExecuteFunction method to call
stored procedure, 284

ExecuteStoreCommand method
of the ObjectContext, 293

explicit escaping of XML text, 368

explicit type casting using
XElement content, 368

expression tree assignment, 453

expression tree combination, 456,
458

Expression tree visit based
on a lambda expression
approach, 449-451

Expression visitor algorithm
implemented through a lambda
expression, 447-449

ExpressionVisitor class, Visit
method in, 440-442

factorial of a number using Range
operator, 89

filtering customers by country
selected in a combo box in
LINQ to Entities, 654

filtering customers by country
selected in a combo box in
LINQ to SQL, 654

final implementation of part of
CustomerDal type, 591

first hypothetical implementation
of part of CustomerDal
type, 590

First operator used to select first
US customer, 96

flattened list of orders made by
Italian customer, 56

Flight class definition, including
related AirportInformation
class, 493

FlightQuery class implementing
IQueryable<Flight>, 499

FlightQueryParameters class
definition, 503

FlightQueryProvider
class implementing
IQueryProvider, 502

FlightQueryTranslator member
declarations, 504

FlightQueryTranslator.
TranslateStandardComparisons
implementation, 509

FlightQueryTranslator.
VisitBinaryComparison
implementation, 507

FlightQueryTranslator.VisitBinary
implementation, 506

FlightQueryTranslator.
VisitMethodCall
implementation, 505

FlightSearch methods
as entry points in
FlightStatusService, 492

Foreign Key Associations between
Customers and Orders

NorthwindEntities nw = new
NorthwindEntities(), 253

fragment of XML file of orders, 14

generic utility method for cloning
entities, 334

GetObjectByKey and
TryGetObjectByKey
methods, 318

GroupBy operator used to group
customers by Country, 64-65

GrouplJoin operator used to map
products with orders, 69

handling concurrency exception
while editing a data item
through a LingDataSource
control, 621

handling custom selection pattern
for a LingDataSource control
using a stored procedure, 623

handling exceptions from child
tasks, 530-531

handling exceptions from
tasks, 529

helper IEnumerable<T> extension
method, 345

Helper methods DumpChanges
and Dump, 172

hierarchy of classes based on
contacts, 127

hypothetical implementation of
BaseDal type, 589

hypothetical “LINQ style” business
method to refund customers
for orders delivered late, 601

implementation of APM using
Task, 533

Implementation of
GetCustomersByCountry
method in BIZ, 603

implementation of WhereKey
operator, 475-476

Independent Associations
between Customers and
Orders, 251-252

Initialization of controls at form
load event, 653

INotifyCollectionChanged
interface signature and related
types, 643

INotifyPropertyChanging and
INotifyPropertyChanged
interface signatures and related
types, 640

Intersect and Except operators
applied to products set, 75-76

invoking GetCustomersByAddress
method and method definition
in ObjectContext, 261

invoking SaveChanges correctly
under a TransactionScope in
distributed transaction, 325

invoking SaveChanges under
TransactionScope, 323

IQueryable content obtained
from using AsQueryable, 489

IVisible interface and Customer
class, definition of, 470-471

joining two DataTable objects
with LINQ, 349

Join operator query expression
syntax, 68

Join operator used to map orders
with products, 67

KeyWrapper class,
implementing, 476

lambda expression and expression
tree assignments, 451

lambda expression and expression
tree declarations, difference
between, 419

lambda expression
assignment, 452

lazy loading behavior of Entity
Framework 4, 284

legacy style business method to
refund customers for orders
delivered late, 600

LINQ based implementation
of ReadAll method of
CustomerDal, 602

LINQ queries applied to
FlightStatusService, 514

LINQ queries on a
SortedDictionary, 477-478

LINQ query calling a .NET
Framework method in a where
predicate, 170

LINQ query calling .NET
Framework method in the
projection, 168

LINQ query combining
native and custom string
manipulation, 168

LINQ query merging LINQ to XML
and LINQ to Objects, 396

LINQ query over result of
XPathSelectElements extension
method, 409

LINQ query over XML based on
XSD typed approach, 404

LINQ query retrieving list of
temporary files larger than
10,000 bytes, ordered by
size, 21

LINQ query using native string
manipulation, 169

LINQ to Entities query that
compiles but does not run on
DBMS, 278

LINQ to Entities query using
canonical functions, 280

LINQ to Entities query using
custom UDF, 282

LINQ to Entities query with
filtering variable in query
expression, 276

LINQ to Object query, 540

LINQ to SQL query, 121

LINQ to XML and query
expressions to query XML
content, 395

LINQ to XML declaration of
XML namespace with custom
prefix, 374

LINQ to XML namespace
declaration, 372

LINQ to XML query based
on Attributes extension
methods, 386

LINQ to XML query based
on Element extension
method, 386-387

LINQ to XML query based
on Elements using a
namespace, 387

LINQ to XML query for
namespace against an
XElement instance, 375

LINQ to XML query that extracts
city nodes from list of
customers, 394

LINQ to XML sentence merged
with LINQ queries, 371

list of orders made by Italian
customers, 56

list of Quantity and IdProduct
of orders made by Italian
customers, 57

loading a DataSet by using a
DataAdapter, 344

loading both customers and their
orders, 270

loading Customer and Order
instances from XML data source
using a chunking reader, 399

loading Customer and Order
instances from XML data source
via LINQ to XML, 398

loading data into
existing DataTable with
CopyToDataTable, 348

loading DataSet using LINQ
query, 347

loading DataSet using LINQ to
SQL queries, 346

loading Northwind DataContext
with custom XML mapping
file, 583

Max operator applied to custom
types, with value selector, 82

MergeOption behavior with
custom projected result
sets, 292

Microsoft Visual C# source for the
XAML window, 639

Minltem operator, definition of
generic version of, 469

Minltem operator, use of, 470

Min operator applied to order
quantities, 81

Min operator applied to
wrong types (throwing
ArgumentException), 81

MinPrice operator for Quote
class, 468

modifying an expression tree
node with code that does not
compile, 424

multiple XML namespaces
within a single XElement
declaration, 373

nested task, creating, 526

NodesBeforeSelf and
NodesAfterSelf, use of, 392

NorthwindCustomersWithOrders.
XML persistence file, 593

null handling with aggregate
operators, 162

ObjectContext.ExecuteStoreQuery
method, 294

ObjectContext.LoadProperty
method, 289

ObjectContext.Translate<T>
method, 294-295

object identity, 130

ObjectQuery<T>.Include
method, 286

ObjectQuery<T>.Load
method, 288

code listings (continued)

ObjectQuery<T>.MergeOption
property, 290

ObjectQuery<T>.ToTraceString
method, 292

ObjectStateManager, working
with, 312

OnlyVisible operator to get only
Visible customers, 472

output XML with transformed list
of customers, 401

Parallel.ForEach statement, 519

Parallel.For statement, 518

Parallel.Invoke statement, 520

partial methods of
an autogenerated
DataContext, 580

PLINQ query, 541

PLINQ query adding and
removing order-preservation
condition, 551

PLINQ query, cancellation of, 555

PLINQ query using inverted
processing model, 549

PLINQ query using stop-and-go
processing model, 547

PLINQ query with lowest
latency offered by using
ParallelIMergeOptions, 545

PLINQ query with order
preservation, 550

PLINQ used with LINQ to XML
query, 558

POCO custom entities modified
to support navigation
properties between Customer
and Order, 270

pre-compiling LINQ to Entities
queries returning anonymous
types, 298

pre-compiling LINQ to Entities
query, 297

ProcessFilters class, use of, 460

product entity class declaration
using Entity Framework, 13

Products and their ordered
amounts, 85

projection with index argument in
selector predicate, 55

queries on SortedDictionary
using optimized Where
operator, 482-483

queries using hierarchy of entity
classes, 128

query expression in Visual
Basic, 24-27

query expression ordered using
the comparer provided by
Comparer<T>.Default, 60

661

662

code listings (continued)

code listings (continued)

query expression over immutable
list of Customers obtained by
Tolist operator, 104

query expression over list of
Customers, 102-103

query expressions with join
between data sources, 30

query expression translated into
basic elements, 27

query expression using Into
clause, 35

query expression using ToList
to copy result of query over
products, 104

query expression with descending
orderby clause, 58

query expression with group by
syntax, 64

query expression with orderby
and thenby, 60

QueryFilter class definition, 494

querying DataTable with
LINQ, 349

querying entities by using LINQ to
Entities, 275

querying typed DataSet with
LINQ, 353

querying untyped DataSet with
LINQ, 353

guery manipulation, 139

query of current processes filtered
by filterExpression, 459

query reduction example, 166

query using Association, 153

query using Join, 153

query with paging restriction, 54

query with restriction, 53

query with restriction and index-
based filter, 53

quotes collection
initialization, 466

race condition in a parallel
operation, 536

race condition, safe code
without, 537

reading entities through the
Entity Framework as a list of
records, 273

reading entities through the
Entity Framework as a list of
typed objects, 274

reading XML file of orders by
using XmlIReader, 14

reading XML file using LINQ to
XML, 15

reading XML file using LINQ
to XML and Visual Basic
syntax, 16

Read method of CustomerDal
based on LINQ to XML, 594

remote execution of LINQ
query with an asynchronous
completion event, 649, 651

Repeat operator used to repeat
same query, 89

replace customer on existing
orders, 176

Retry loop for concurrency
conflict, 185

Reverse operator applied to query
expression with orderby and
thenby, 62

Sample calls to FlightSearch using
C# 2.0, 496

Sample calls to FlightSearch using
C# 3.0, 497

Sample calls to FlightSearch using
LINQ, 498

sample LINQ query over set of
developers, 42

sample type using XElement,
serializable with
DataContractSerializer, 411

scalar-valued UDF, 148

Selecting event of a
LingDataSource control, 619

self-tracking Customer entity, 338

serialized Customer entity, 198

serializing Customer instance
using BinaryFormatter, 333

serializing Customer
instance using
DataContractSerialize, 335

serializing Customer instance
using XmlSerializer, 334

set of months generated by
Range operator to filter
orders, 89

set operators applied to query
expressions, 75

Silverlight application hosted in a
web page, 648

single operator syntax
examples, 97

source XML with list of
customers, 401

specialization of Min operator for
Quote instances, 473

specialization of standard
Where operator optimized for
SortedDictionary, 479-481

specialization of Where standard
query operator, 471

specialized Min operator
on sequences of Quote
instances, 473-474

specialized SubmitChanges to log
modified entities, 180

specialized SubmitChanges to
solve circular references of
Employee entities, 182

specialized Where for types
implementing [Visible
interface, 471-472

SQL code generated by Entity
Framework loading orders, 287

SQL code generated by the Entity
Framework to dynamically load
orders, 285

SQL code generated for LINQ to
Entities query, 280, 282

SQL code generated for the LINQ
to Entities query, 285

SQL code to generate custom
UDF, 281

stored procedure declaration, 143

stored procedure to override an
update, 184

stored procedure with multiple
results, 146

string manipulation extension
method, 168

submitting changes to
database, 179

substitution in an expression
tree, 425, 426

Sum operator applied to customer
orders, 78-79

table-valued UDF, 149

tag replacement using XElement
ReplaceWith method, 383

Take operator applied to extract
top customers ordered by order
amount, 93

TakeWhile operator applied to
extract top customers forming
80 percent of orders, 94

Task class, use of, 521

Task<TResult> class, use of, 522

ToDictionary operator applied to
customers, 105

TolLookup operator used to group
orders by product, 106

transaction controlled by
TransactionScope, 189

transaction controlled through
DataContext.Transaction
property, 190

TranslateAirportinformation
Comparison and
TranslateTimeSpanComparison
implementation, 511

T-SQL code generated from LINQ
to Entities query, 276, 277

type declarations with simple
relationships, 9

type declarations with two-way
relationships, 10

UDF import statement in
inherited ObjectContext, 282

Union operator applied to sets of
Integer numbers, 73

Union operator applied to sets of
products, 73

updating Customer instance with
related Orders, 307

updating existing Customer
instance, 303

updating Northwind'’s customer
instance with LINQ to SQL, 636

User-defined Customer and Order
entities not related to a LINQ to
SQL data model, 624

user-explicit LINQ query in the
Page_Load event, 633

using custom validation rule while
updating customer information
through an editable
LingDataSource control, 620

using LingDataSource control to
render filtered, ordered list of
Northwind’s customers into
GridView control, 614

VisitBinary method in
ExpressionVisitor
class, 443-444

VisitConstant and VisitParameter
methods in ExpressionVisitor
class, 443

VisitLambda method
in ExpressionVisitor
class, 444-445

VisitMethodCall and
Visitinvocation methods
in ExpressionVisitor
class, 444-445

VisitUnary, VisitConstant,
and VisitMemberAccess
implementations in
FlightQueryTranslator, 512

Visual Basic implicit join
statement, 40

Visual Basic query expression
with join between data
sources, 31-32

Visual Basic XML literals, 362

Visual Basic XML literals and
global XML namespaces, 376

Visual Basic XML literals used
to declare XML content with
default XML namespace, 373

Conversion operators (LINQ to Objects)

Visual Basic XML literals used to
declare XML namespace with
custom prefix, 375

Visual Basic XML literal used to
transform XML, 403

XAML code for WPF window with
a ListBox bound to LINQ to SQL
entity set, 643

XAML sample window with simple
data-binding definition, 637

XAML window with data binding
against Northwind customer
instance, 639

XAttribute, using, 369

XElement constructed using LINQ
to XML, 366

XElement serialization using
DataContractSerializer, 411

XML construction using DOM in
C#, 360

XML document built using LINQ
to XML API, 405

XML document illustrating
searching with LINQ to
XML, 388

XML for orders, creating with
Visual Basic XML literals, 16

XML functional construction, 361

XML mapping file excerpt, 210

XML mapping file for Northwind
DataContext, 582

XML names, manual escaping
of, 369

XML schema definition for sample
list of customers, 405

XML tree modification events
handling, 380

XML validation using Validate
extension method, 406

XPathEvaluate extension
method, 408

XSLT transformation using
XslCompiledTransform and
CreateNavigator extension
method, 408

XSLT used to transform XML, 402

XStreamingElement, bad usage
of, 379

XStreamingElement together with
a chunking XmlReader, 378

XStreamingElement, usage
of, 378

Zip operator applied to sets of
Integer numbers and days of
week, 76

code, using LINQ to Objects to
write, 600-601

663

Collaborative Application Markup
Language (CAML), 566
collections, concurrent, 538
collectionSelector projection, 57
column attributes for currency
control, 188-189
column mapping, 125
Common Table Expressions
(CTEs), 155
comparers, custom, 60, 64
compiled data queries, 150-152
compiled query assigned to a static
member (listing), 152
CompiledQuery.Compile static
methods, 151
compiled query in local scope
(listing), 151
Compile method, 420
compilers, generating expression
trees with, 451-454
Compile static method, 298
complex types (Entity Framework
4), 254-256
Concat (concatenation)
operator, 100
Conceptual Schema Definition
Language (CSDL), 248
concurrency
conflicts, managing, 319-322
thread safety and, 607
concurrent collections, 538
concurrent database
operations, 185-188
ConditionalExpression
class, 438-439
conditional mapping, inheritance
and, 257-259
Configure Data Source wizard, 611-
613, 626-627
Console. WriteLine method, 102
ConstantExpression instances, 437
Contains extension method, 92
Contains operator, 164
Contains operator applied to first
customer’s orders (listing), 92
ContextCreated event, 621
ContextDisposing event, 621
Context Namespace code-
generation property
(DataContext), 222
ContinueWhenAll method, 525
ContinueWith method, 524
Conversion operators (LINQ to
Objects)
AsEnumerable operator, 101-103
Cast operator, 107-108
OfType operator, 107-108
query evaluation and, 43

664

Conversion operators (LINQ to Objects) (continued)

Conversion operators (LINQ to
Objects) (continued)
ToArray/Tolist
operators, 103-104
ToDictionary extension
method, 104-105
ToLookup operator, 106-107
CONVERT operator, 204
CopyToDataTable<T> extension
method, 346-347
core library, LINQ, 26-27
Count operator, 77, 161
Count operator applied to customer
order (listing), 77
CreateDatabase method, 203
CreateQuery method, 491, 501, 502
CRUD and CUD operations
cascading deletes and
updates, 175-177
database updates, 179-180
entity states, 177-178
entity synchronization, 178-179
entity updates, 172-175
overview, 171
SubmitChanges,
overriding, 180-183
CUD operations. See CRUD and CUD
operations
CUD stored procedures, 262-266
curly notation, 157
currency control, column attributes
for, 188-189
custom comparers, 60, 64
Customers and average order
amounts (listing), 83
Customers most expensive orders
(listing), 84
custom extension methods, 41
customizing insert/update/delete
statements, 183-184
custom LINQ provider
cost-benefit balance of, 514-515
creating, 483
custom ObjectContext type with
lazy loading enabled, 271-272
custom operators, 465-470
custom selections
using with EntityDataSource, 632
using with LingDataSource
control, 622-623
custom types, using LinqDataSource
with, 623-625

D

data
handling modifications of
with LingDataSource
control, 619-622

handling modifications with
EntityDataSource, 632
paging with DataPager/
EntityDataSource
controls, 630-631
paging with LingSource and
DataPage controls, 615-619
data access layer (DAL), 577,
580-581
data access without databases
LINQ to SharePoint
examples, 567-570
overview, 565-566
database interaction (LINQ to SQL)
column attributes for currency
control, 188-189
concurrent operations, 185-188
database reads, 191
database writes, 192-193
DataContext
construction, 190-191
entity manipulation, 192
exception classes, 190
transactions, 189-190
databases
database access and
ORM, 563-564
database functions (LINQ to
Entities), 279-281
database updates, 179-180
generating DBML files from
existing, 211
generating EDM from
existing, 241-243
databases and entities
attaching entities, 197-201
binding metadata, 201-204
creating databases from
entities, 203-204
creating entities from
databases, 203
deriving entity classes, 194-196
entity attributes for valid
relationships, 192-194
data binding, using LINQ queries
for, 609
DataContext access, read-only, 161
DataContext class, 121, 124-125
DataContext construction
(databases), 190-191
DataContext.GetChangeSet
method, 180
DataContext properties, 221-222
DataContext.Transaction
property, 190
DataContract attribute, 197
DataContract serializers, 335

Data Description Language (DDL)
files, 245
Data function, 236-237
Data group properties (entity
class), 222
data layers
data layer factory, 589
using LINQ to Entities
as, 596-599
using LINQ to XML as, 593-596
Data Mapper, defined, 586
DataMember attribute, 197
data modeling (LINQ to SQL)
DataContext class, 124-125
entity classes, 125-127
entity constraints, 130
entity inheritance, 127-129
relational vs. hierarchical
model, 138
unique object identity, 129-130
DataObjects.NET, 563
DataPager control, 615-619,
630-631
data querying (LINQ to SQL)
basics, 138-141
classic and alternative approaches
to, 152-155
compiled queries, 150-152
direct queries, 155-157
entities, deferred loading
of, 157-158
projections, 141-142
properties, deferred loading
of, 159-161
read-only DataContext
access, 161
stored procedures, 142-148
user-defined functions, 148-150
DataRowComparer class, 354
DataRow instances,
comparing, 353-354
DataServiceCollection class, 650
DataSets
accessing untyped DataSet
data, 353
loading with
DataAdapter, 344-345
loading with LINQ to
SQL, 344-346
querying with LINQ, 348-349
typed DataSet, querying with
LINQ, 352-353
Data Source Configuration Wizard
(Visual Studio), 655
DataTable.AsEnumerable extension
method, 350
DataView instances, creating with
LINQ, 351-353

DateTime methods, 163

DBML (Database Markup Language)

files, 206-207
files, creating from scratch, 212
files, generating source code
and mapping file from
(SQLMetal), 216
files, loading, 123
generating files from existing
databases, 211
generating file with
SQLMetal, 213-214
DbType parameter (Column
attribute), 203
Decimal type accumulator, 85
declarative programming, 17-19
decrement (-) operators, 417
DeepEqual method (XNode), 371
DefaultlfEmpty extension
method, 39
DefaultifEmpty operator, 99
Default Methods properties (entity
class), 222-223
deferred execution method, 122
deferred loading
DeferredLoadingEnabled
setting, 191
of entities, 157-158
of properties, 159-161
usage of, 135
deferred query evaluation, 42-43,
394-395
degenerate query
expressions, 45-46
delegate and lambda expression
syntaxes, comparing
(listing), 416
DeleteAllOnSubmit<T>
method, 175
Deleted entity state, 178
delete operations
intercepting, 184
mapping to, 237-238
DELETE statements
customizing, 183-184
SQL, 173-175
deleting
entities, 303-304
event handlers, 620
Derived Class Discriminator Value
inheritance property, 234
deriving entity classes, 194-196
DescendantsAndSelf extension
method, 390
Descendants method, 388-390
detaching entities, 327-328
DetectChanges method
(ObjectContext), 313-314

dictionary, one-to-many, 106
direct data queries, 155-157
Discriminator inheritance
property, 234
DISTINCT clause, 71-72
Distinct keyword, 41
Document Object Model (DOM), 5,
359
Double static method, 421
DryadLINQ, 572
DuplicateKeyException, 192
dynamic composition of expression
trees, 459-463
dynamic LINQ, 572-573

E

EDM (Entity Data Model)
EdmGen.exe command-line
tool, 241
.edmx files, 248-249
Entity Designer Database
Generation Power Pack, 245
generated code, 245-248
generating from existing
databases, 241-243
overview, 241
starting from empty
model, 244-245
ElementAt/ElementAtOrDefault
methods, 98
Element extension
method, 386-387
element operators, 95-100, 162
Element property, 315
elementSelectors, 63, 65
ElementType property, 491
Embedded SQL, 6
Empty operator, 90
EnablePlanCaching property
(ObjectQuery<T> type), 297
encapsulation (expression
trees), 420-422
entities
access through entity
(listing), 154
access through entity with single
statement (listing), 155
adding new, 301-302
attaching, 197-201, 328-330
binding collections of, 642-647

creating databases from, 203-204

creating from databases, 203

properties for data members of
entity, 225

deferred loading of, 157-158

deleting, 303-304

deriving entity classes, 194-196

entities, associations between

detaching, 327-328
entity attributes for valid
relationships, 192-194
entity classes, 125-127
entity classes in O/R
Designer, 222-223
EntityClient managed
providers, 273-275
EntityCommand class, 274
EntityConnection class, 274
entity constraints, 130
Entity Data Model Designer, 113
Entity Data Model Designer (LINQ
to Entities), 114
EntityDataReader, 274
EntityFunctions class, 279
entity inheritance, 127-129
EntityKey type, 316-318
entity manipulation, 192
entity members (O/R
Designer), 224-225
Entity Namespace code-
generation property
(DataContext), 222
EntityObject base class, 112
EntityObject Generator template
(ADO.NET), 272
entity relationships, 10
EntitySet<T>, 605
EntitySet<T> property, 177
Entity SQL syntax, 274
EntityState property, 311-313
entity states, 177-178
entity synchronization, 178-179
entity updates, 172-175
generating source code
with attribute-based
mapping, 211-212
generating source code with
external XML mapping file, 212
in LINQ to SQL, 120-123
managing relationships, 309-310
querying XML efficiently to build
entities, 397-401
self-tracking, 337-342
serializing, 197-198, 333-337
tracking vs. no tracking of, 299
updating, 302-303

entities, associations between

association properties, 227-229
Cardinality property, 231-232
change notification, 137

entity inheritance, 232-234
EntityRef, 131-133

EntitySet, 133-137
fundamentals, 226-227

graph consistency, 137

665

666

entities, associations between (continued)

entities, associations between
(continued)
one-to-one
relationships, 229-231
overview, 130
EntityDataSource control
handling data modifications
with, 632
paging data with, 630-631
using, 625-629
using custom selections with, 632
using in combination with LINQ to
Entities queries, 609
Entity Framework. See also LINQ to
Entities
many-to-many relationships
and, 113
POCO support in version
4, 266-271
vs. standard ADO.NET data
access, 274
EnumerableRowCollection
class, 343
enumeration, inverted, 548-549
EqualityComparer<T>.Default, 92
EqualityComparer<TKey>.
Default, 64
equality comparisons, 36
equality operator, 101-102
equals keyword, 36
Equals methods, 72, 75
Event-based asynchronous pattern
(EAP), 531
exceptions
exception classes (LINQ to
SQL), 190
from child tasks, handling, 530
handling, 46-48
handling with PLINQ, 553-554
from tasks, handling, 529
Except operator, 72-75
ExecuteFunction method, 284
ExecuteMethodCall, 143
ExecuteQuery method, 157
ExecuteQuery<T> method
(DataContext class), 155
ExecuteStoreCommand/
ExecuteStoreQuery methods
(ObjectContext type), 293-295
explicit relationships, 10
Expression parameter (Column
attribute), 203
expression trees
anatomy of, 427-429
BinaryExpression class, 437
classes derived from
Expression, 434-435
combining existing, 454-459

compiler generation of, 451-454
ConditionalExpression
class, 438-439
ConstantExpression
instances, 437
creating, 418-420
defined, 25, 417-418
dynamic composition
of, 459-463
encapsulation, 420-422
Expression class, 429-430
ExpressionType
enumeration, 431-434
immutability and modification
of, 422-427
InvocationExpression node
type, 439
LambdaExpression and
ParameterExpression, 436
lambda expressions, 415-417
MethodCallExpression class, 438
node types, 431-434
overview, 415
practical nodes guide, 435-436
visiting. See visiting expression
trees
ExpressionType.Quote node, 505
extending LINQ, 4-5
extension methods
defined, 7
direct call to, 28-29
resolution of, 43-45
extensions, LINQ, 563-564
external mapping
LINQ to SQL, 122-123
XML file, 210, 212

F

factory methods (Expression
class), 430
FetchXML, 566
Field<T> custom extension
methods, 349
file generation, LINQ to
SQL, 211-213
First method, 95-96
FirstOrDefault method, 96
Fisher, Jomo, 447, 481
flat IEnumerable<Order> result
type, 56
Flickr, LINQ to, 570
FlightQueryProvider (example)
FlightStatusService class, 492-499
implementing ExpressionVisitor in
FlightQueryTranslator, 503-512
implementing IQueryable in
FlightQuery, 499-501

implementing IQueryProvider
in, 502-503

working with, 513-515

writing, 491
FlightQueryTranslator, 503-512
foreach loops, 6,18, 139
Foreign Key Association, 251
ForeignKeyReferenceAlreadyHas

ValueException, 192

foreign keys, 9, 130, 133, 250-254
For method (Parallel class), 518
FOR XML AUTO queries, 70
Fowler, Martin, 180
from clauses

basics, 29-31

defining multiple data sources, 31

join clauses and, 30

in query expression listing, 25
Func declarations, 416
func function, 84
functional construction, 361
Function attribute (UDFs), 148
functions, pure, 557

G

generation operators, 88-90

Genom-e, 564

GetChangeSet method
(DataContext), 172

GetCommand method (DataContext
class), 122

GetHashCode, 72,75

GetObjectByKey method, 317-319

GetParameterValue method, 144

GetResult<T> calls, 146

GetSchemalnfo method, 404

GetTable<T> method, 121

graph consistency (entities), 137

graph traversal, 152

GridView control, 611

Griffiths, lan, 162

GroupBy operator, 62

Group clauses

basics, 33-35
ending queries with, 28

grouping operators, 62-66

GrouplJoin operator, 69-71

group joins, 38

H

Helper.DumpChanges method, 172
hierarchical/network
relationships, 9
hierarchy, entity, 195
Highlight method, 168
Huagati tools, 113

IDENTITY keyword, 126
IEnumerable interface, converting
to IQueryable, 486-488
IEnumerable<TElement>, 63
|IEnumerable<T> interface, 23, 29,
559, 602-605
IEnumerable<XAttribute> type, 385
IEnumerator<T> interface, 559
IGrouping<TKey, TElement> generic
interface, 63
immutability/modification of
expression trees, 422-427
impedance mismatch, 5
implicit associations, 153
IMultipleResults, 147
Include method
ObjectQuery<T> type, 286-287
ObjectSet<TT> class, 270
increment (++) operators, 417
Independent Associations, 250
Indexed LINQ, 573
InDocumentOrder extension
method, 393
IN/EXISTS clause, 163-165
inheritance
conditional mapping
and, 257-259
entity inheritance, 196, 232-234
InheritanceMapping
attribute, 127
Inheritance Modifier code-
generation property, 222, 223,
236
Inheritance Modifier property for
data members of entity, 225
innerKeySelector, 67
InsertAllOnSubmit<T> method, 175
Inserting event handlers, 620
Insert operations
intercepting, 184
mapping to, 237-238
INSERT statements, 173-174,
183-184
intercepting insert/update/delete
operations, 184
Intersect operator, 72-75
into clauses
basics, 33-35
to create new Group objects, 34
InvalidOperationException error, 97
inverted enumeration
(PLINQ), 548-549
InvocationExpression node, 421,
439
Invoke node type, 457

LINQ (Microsoft Language Integrated Query)

IQueryable interface
anatomy of, 488-491
basics, 484-487
converting to
[Enumerable, 486-488
implementing in
FlightQuery, 499-501
IQueryable<T> interface, 23, 29,
602-605
IQueryProvider
anatomy of, 488-491
implementing in
FlightQueryProvider, 502-503
IsComposable argument
(UDFs), 144
IsDBGenerated Boolean flag, 188
IsDBGenerated parameter, 126
IsForeignKey argument (Association
attribute), 131
IsLoaded property, 288-289
is operator, 259
IsPrimaryKey property, 125
IsUnique argument (Association
attribute), 131
IsVersion Boolean flag, 188
iterative vs. declarative
constructs, 18

J

JavaScript Object Notation (JSON)
Json.NET 3.5 library, 571
LINQ to, 571
Join clauses, 36-40
joining two DataTable objects with
LINQ, 349
join operators, 66-71

K

Key property, 33
keySelector, 105
keySelector argument, 59
keySelector predicate, 63
keywords

query. See query keywords

unsupported by LINQ to

Entities, 278-279

KeyWrapper class, 476

L

LambdaExpression nodes, 436
lambda expressions, 26-27, 59, 67,
415-417

language integration
declarative programming, 17-19
overview, 17
transparency across type
systems, 20
type checking, 19
Last/LastOrDefault operators,
96-97, 162
lazy loading, 268-269, 284-286
LDAP, LINQ to, 571
left outer joins, 38, 69
let clauses, 28, 40-41
LIKE operator, 163
Link<T> type, 160
LingConnect, 564
LingDataSource control
using custom selections
with, 622-623
handling data modifications
with, 619-622
paging data with, 615-619
using, 610-616
using with custom
types, 623-625
LINQKit library, 463
LINQ (Microsoft Language
Integrated Query)
basic workings of, 6-8
in business layer, 599-600
creating custom provider, 483
creating DataView instances
with, 351-353
dynamic LINQ, 572-573
enhancements and
tools, 572-573
extending, 4-5
extensions, 563-564
full query syntax, 28-29
implementations of, 20-22
language integration in.
See language integration
LINQExtender, 573
LINQ over C#, 573
LINQPad, 573
LINQ to Expressions, 573
LINQ to Geo, 573
in n-tier solutions, 580
operators, 350
overview of, 3-5
queries, binding to, 633-637
query example, 6-7
query expression syntax vs.
SQL, 80-81
querying DataSets with, 348-349
querying typed DataSets
with, 352-353
query keywords. See query
keywords

667

LINQ (Microsoft Language Integrated Query) (continued)

LINQ (Microsoft Language
Integrated Query) (continued)
query syntax, 23-28
reasons for using, 5-6
relational vs. hierarchical/network
model, 8-14
for system engineers, 571
using with ASP.NET, 609
using with Silverlight, 647-652
using with Windows
Forms, 652-655
using with WPF, 637
XML manipulation and, 14-16
LINQ to Active Directory, 571
LINQ to ADO.NET, 21
LINQ to Amazon, 570
LINQ to DataSet
accessing untyped DataSet
data, 353
AsEnumerable extension
method, 350
DataRow instances,
comparing, 353-354
DataView instances, creating with
LINQ, 351-353
defined, 21
loading DataSet with
DataAdapter, 344-345
loading DataSet with LINQ to
SQL, 344-346
loading data with, 346-348
overview, 343
typed DataSet, querying with
LINQ, 352-353
LINQ to Entities
adding new entities, 301-302
ApplyCurrentValues
method, 330-333
ApplyOriginalValues
method, 330-333
associations and foreign
keys, 250-254
attaching entities, 328-330
canonical and database
functions, 279-281
cascade add/update/
delete, 305-309
choosing LINQ to SQL
over, 114-116
comparing to LINQ to
SQL, 116-117
complex types, 254-256
concurrency conflicts,
managing, 319-322
defined, 21
deleting entities, 303-304
detaching entities, 327-328

EntityClient managed
providers, 273-275
Entity Data Model (EDM).
See EDM (Entity Data Model)
factors for comparing with LINQ
to SQL, 111
inheritance and conditional
mapping, 257-259
managing relationships, 309-310
modeling stored procedures.
See stored procedures,
modeling
ObjectStateManager, 311-313
POCO support in Entity
Framework 4, 266-271
querying entities of EDMs
with, 275-277
query performance, 296-298
SaveChanges method, 304-305
self-tracking entities, 337-342
serializing entities, 333-337
single entities, selecting, 277-278
stored procedures, 283-284
T4 templates, 271-272
transactions, managing, 322-327
unsupported methods and
keywords, 278-279
updating entities, 302-303
user-defined functions, 281-282
using as data layer, 596-599
when to choose over LINQ to
SQL, 112-114
LINQ to Exchange, 4
LINQ to Flickr, 570
LINQ to Google
implementation, 570
LINQ to JSON, 571
LINQ to LDAP, 4,571
LINQ to Objects
basics, 20
Conversion operators.
See Conversion operators (LINQ
to Objects)
example, 23-28
query operators. See query
operators (LINQ to Objects)
sample data for examples, 49-91
using to write better
code, 600-601
LINQ to services, 570-571
LINQ to SharePoint
(examples), 567-570
LINQ to SQL
abstracting with XML external
mapping, 581-584
choosing LINQ to Entities
over, 112-114

comparing to Entity
Framework, 116-117
CRUD and CUD operations.
See CRUD and CUD operations
customizing insert/update/delete
statements, 183-184
as DAL replacement, 580-581
database interaction.
See database interaction (LINQ
to SQL)
database model schema
(Northwind), 610
databases and entities.
See databases and entities
data modeling. See data modeling
(LINQ to SQL)
data querying. See data querying
(LINQ to SQL)
DBML files, 206-207
defined, 21
entities in, 120-123
external mapping, 122-123
factors for comparing with LINQ
to Entities, 111
file generation, 211-213
file types for creating
entities, 205-206
limitations of, 161-163
LingToSqlMapping.xsd schema
file, 210
loading DataSets with, 344-346
O/R Designer. See O/R (Object
Relational) Designer
overview, 119
simple query (listing), 121
source code (C# & Visual
Basic), 207-209
SQLMetal. See SQLMetal
SQL queries, mixing .NET code
with, 167-170
SQL query reduction, 166-167
support of T-SQL statements, 117
thinking in, 163-166
in two-tier solutions, 579-580
using through real
abstraction, 584-593
when to choose over Entity
Framework, 114-116
XML external mapping file, 210

LINQ to Streams

implementation, 572

LINQ to WMI, 571
LINQ to XML. See also XML

(Extensible Markup Language)
basics, 22
deferred query

evaluation, 394-395
events, 380

introduction to, 360-363
LINQ query expressions, using
over XML nodes, 395-401
LINQ to XML namespace
declaration (listing), 372
LINQ to XML query for
namespace against an
XElement instance (listing), 375
LINQ to XML sentence merged
with LINQ queries (listing), 371
LINQ to XML sentence merged
with LINQ queries, using Visual
Basic XML literals (listing), 371
and query expressions to query
XML content (listing), 395
query based on Attributes
extension methods
(listing), 386
query based on Element
extension method (listing), 386
querying XML. See XML, querying
query that extracts city nodes
from list of customers
(listing), 394
reading XML file using
(listing), 15
securing, 409-410
serializing, 410-411
support for XPath/System.Xml.
XPath, 407-409
support for XSD, 404-407
transforming XML with, 401-404
using as data layer, 593-596
using in Microsoft Visual Basic
syntax, 15
validation of typed
nodes, 404-407
LINQ to XML programming
framework
basics, 363-364
XAttribute class, 369
XComment class, 377
XDeclaration class, 377
XDocument class, 364-365
XDocumentType class, 377
XElement class, 365-369
XName and XNamespace
classes, 372-377
XNode class, 370-371
XObject class, 379-382
XProcessinglnstruction class, 377
XStreamingElement
class, 377-379
XText class, 377
listings, code. See code listings
list of orders made by Italian
customers (listing), 56

list of Quantity and IdProduct
of orders made by Italian
customers (listing), 57-58
literals
Visual Basic XML, 16
XML, 362
LLBLGen Pro runtime, 564
loading
Customer and Order instances
from XML data source using a
chunking reader (listing), 399
data into existing DataTable with
CopyToDataTable (listing), 348
DataSets with
DataAdapter, 344-345
DataSet with LINQ to
SQL, 344-346
data with LINQ to
DataSet, 346-348
Load method, 288-289, 367
LoadOption enumeration, 348
LoadProperty method, 288-289
logical operators, 32-33
LongCount operator, 77, 161
Lucene Information Retrieval
System, 573

M

many-to-many relationships, 113
mapping
conceptual schema to storage
schema, 248
conditional, 257-259
files, external XML, 201-202
files, generating with
SQLMetal, 214-215
to Delete/Insert/Update
operations, 237-238
Max operator, 82, 161
members, entity, 224-225
MergeOption property
(ObjectQuery<T>
type), 290-292
metadata, binding (databases and
entities), 201-204
Metaling, 573
methods
MethodCallExpression class, 438
MethodCallExpression node, 505
method syntax, 41
unsupported by LINQ to
Entities, 278-279
Microsoft Developer Network, 3
Microsoft Dynamics CRM, 566
Microsoft Excel, 566-567
Microsoft SharePoint, 566

NHibernate

Microsoft SharePoint 2010
Developer Reference (Microsoft
Press), 570

Microsoft SharePoint
Foundation, 566

Microsoft SQL Server Data Services
(SSDS), 565

Microsoft Visual C# filter
condition, 136

Microsoft Word documents,
querying, 566

MidpointRounding
enumeration, 204

Minltem operator, 468-469

Min/Max operators, 81-82, 161,
467

MinPrice operator, 468

mixed query syntax, 41

modeling stored procedures.
See stored procedures,
modeling

MonthComparer, custom, 61

MSVS folder, 205

multiple From clauses, 32

multiple-value keys, 33

multithreaded environment, safe
programming in, 535

multitier solutions, characteristics
of, 577-579

N

Name code-generation property
DataContext, 222
defined, 236
entity class, 223
Name property for data members
of entity, 225
native extension methods, 41
nested tasks, creating, 526
.NET Framework
code, mixing with SQL
queries, 167-170
ExpressionVisitor differences
between versions 3.5 and
4.0, 440
Math.Round method, 204
.NET Framework 4 Windows
Workflow Foundation, 245
.NET Framework 2.0 System.Xml
classes, 14
Reactive Extensions (Rx)
for, 559-560
type system, 20
vs. SL type systems, 204
NHibernate, 564

669

670

nodes

nodes
in expression trees. See expression
trees
NodesBeforeSelf/NodesAfterSelf
methods, 392
non-CUD stored
procedures, 259-262
non-updatable views, 125
Northwind database, 205, 579
NOT EXISTS clause, 164
NOT IN clause, 163
n-tier solutions, LINQ in, 580
Nullable data property, 225
nullable types, 78, 82, 156
null handling with aggregate
operators (listing), 162
Numeric types, 78-82

(0

ObjectChangeTracker class, 340
ObjectContext class, 246
ObjectContext.SaveChanges
method, 304
ObjectContext type
ExecuteStoreCommand/
ExecuteStoreQuery
methods, 293-295
Translate<T> method, 294-295
object identity (listing), 130
object initializers, 142
ObjectQuery<T> type
EnablePlanCaching property, 297
Include method, 286-287
lazy loading, 284-286
Load method, 288-289
LoadProperty method, 288-289
MergeOption property, 290-292
ToTraceString method, 292-293
Object Relational Designer (Visual
Studio), 183,196
Object Relational Mapping
(ORM), 21, 250
ObjectStateManager, 311-313
ObjectStateManagerChanged
event, 315
object tracking, disabling, 161
ObjectTrackingEnabled
property, 161
OfType operator, 107-108
one-to-many dictionary, 106
one-to-many relationships, 130
one-to-one relationships, 229-231
OnlyVisible operator, 472
Open Database Connectivity
(ODBC), 5
Open Data (OData) Protocol, 565

operators
partitioning, 92, 162
projection, 54-58
quantifier, 90-92
query. See query operators (LINQ
to Objects)
operators, custom, 465-470. See
also individual operators
operators, specialization of existing
alternative way to filter a
sequence for only Visible
customers (listing), 472
dangerous practices, 473-474
implementation of WhereKey
operator (listing), 475-476
IVisible interface and
Customer class, definition of
(listing), 470-471
KeyWrapper class, implementing
(listing), 476
limits of specialization, 474-482
LINQ queries on a
SortedDictionary
(listing), 477-478
OnlyVisible operator to get only
Visible customers (listing), 472
queries on SortedDictionary using
optimized Where operator
(listing), 482-483
specialization of Min operator for
Quote instances (listing), 473
specialization of standard
Where operator optimized
for SortedDictionary
(listing), 479-481
specialization of Where standard
query operator (listing), 471
specialized Min operator on
sequences of Quote instances
(listing), 473-474
specialized Where for types
implementing IVisible interface
(listing), 471-472
OptimisticConcurrency
Exception, 330
orderby clauses
basics, 35-36
usage example, 29
OrderByDescending extension
method, 59
orderby keyword, 58
OrderBy/OrderByDescending
operators, 58-59, 550
ordering operators, 58-61
ORM (Object Relational
Model), 563-564

O/R (Object Relational) Designer
association between entities.
See entities, associations
between
creating hierarchy of classes
in, 232-233
DataContext properties, 221-222
entity classes in, 222-223
entity members, 224-225
functions of, 207
fundamentals, 216-220
stored procedures, 235-238
user-defined functions, 235-238
views and schema support, 238
OUTER APPLY join, 153
outerKeySelector predicate, 67
OverflowException errors, 82
overriding
SubmitChanges, 180-183

P

paging data
with EntityDataSource and
DataPage, 630-631
with LingDataSource and
DataPage controls, 615-619
at persistence layer level, 54
ParallelEnumerable class, 544
Parallel.For and Parallel.ForEach
methods, 518-520
Parallel.Invoke method, 520-521
ParameterExpression class, 436
parameterized constructors, 142
parent/child relationships, 9
Parent classes, 226-227
Parent Property association
properties, 228
Parse static method, 367
Participating association
property, 228
partitioning operators, 92-95, 162
"persistence ignorance” approach to
modeling, 244
Pialorsi, Paolo, 570
PingTask static function, 534
pipelined processing
(PLINQ), 545-547
PIVOT command, 155
placeholders notation, 157
PLINQO, 113
PLINQ (Parallel LINQ)
changes in data during query
execution, 557-558
controlling result order
in, 550-552
handling exceptions
with, 553-554

implementing, 543-544
inverted enumeration, 548-549
overview, 540
pipelined processing, 545-547
processing query results, 552-553
queries, cancellation of, 554-555
queries, consuming result
of, 544-550
queries, controlling execution
of, 556-557
stop-and-go processing, 547-548
threads used by, 540-543
using with other LINQ
providers, 557-559
POCO
Entity Generator template (ADO.
NET), 272
support for, 112
support in Entity Framework
4, 266-271
PossiblyModified entity state, 178
pre-building store views, 296
pre-compiled queries, 297-299
presentation layer, 577
Primary Key data property, 225
primary keys, 130, 133
ProcessFilters class, 460
projection operators, 54-58
projections (data
querying), 141-142
properties
association, 227-229
binding, 637-642
for data members of entities, 225
Code-Generation, 236
DataContext, 221-222
deferred loading of, 159-161
entity class, 222
inheritance, 234
PropertyChanging method
(DataContext), 137
pure functions, defined, 557

Q

quantifier operators, 90-92
queries
associative, 152
changes in data during execution
of (PLINQ), 557-558
compiled query assigned to a
static member (listing), 152
compiled query in local scope
(listing), 150
compiling, 298
direct, 155-157

LINQ query calling a .NET
Framework method in a where
predicate (listing), 170

LINQ query calling .NET
Framework method in the
projection (listing), 168

LINQ query combining native and
custom string manipulation
(listing), 168

LINQ query using native string
manipulation, 169

PLINQ, cancellation of, 554-555

PLINQ, consuming result
of, 544-550

PLINQ, controlling execution
of, 556-557

pre-compiled, 297-299

processing results of
(PLINQ), 552-553

query evaluation, deferred, 42-43

query manipulation (listing), 139

queryTyped/queryFiltered, 129

query using Association, 153

query using Join (listing), 153

query with paging restriction
(listing), 54

query with restriction and index-
based filter (listing), 53

query with restriction (listing), 53

SQL, mixing .NET with, 167-170

SQL query reduction, 166-167

SQL query reduction example
(listing), 166

using hierarchy of entity classes

(listing), 128
guery expressions
in C#, 24

deferred query evaluation, 42-43

defined, 25

degenerate, 45-46

with descending orderby clause
(listing), 58

Distinct operator applied to
(listing), 72

extension method
resolution, 43-45

with group by syntax (listing), 64

with group join (listing), 38

with inner join (listing), 37

using Into clause (listing), 35

with join between data sources
(listing), 30-32

with join ... into clause (listing), 70

with left outer join (listing), 39

with orderby and thenby
(listing), 60

with orderby clause with multiple
ordering conditions (listing), 36

query operators (LINQ to Objects)

with Orderby clause (listing), 35
ordered using comparer provided
by Comparer<T>.Default
(listing), 60
over immutable list of Customers
obtained by TolList operator
(listing), 104
over list of Customers converted
with AsEnumerable operator
(listing), 103
over list of Customers
(listing), 102
Set operators applied to, 75
SQL vs. LINQ query expression
syntax, 80
syntax of Select operator, 55
to group developers by
programming language
(listing), 33-34
translated into basic elements
(listing), 27
used with exception handling
(listing), 47
using TolList to copy result of
query over products, 104
in Visual Basic (listing), 24-27
with Where clause (listing), 32
querying
DataSets with LINQ, 348-349
data table with LINQ, 349
typed DataSets with
LINQ, 352-353
untyped DataSet with LINQ
(listing), 353
XML efficiently to build
entities, 397-401
query keywords
Aggregate keyword, 41
Distinct keyword, 41
from clauses, 29-31
group clauses, 33-35
into clauses, 33-35
join clauses, 36-40
let clauses, 40-41
orderby clauses, 35-36
select clauses, 32
Skip keyword, 41
Skip While keyword, 41
Take keyword, 41
Take While, 41
where clauses, 32
query operators (LINQ to Objects)
aggregate operators, 77-86
aggregate operators in Visual
Basic, 86-88
Concat (concatenation)
operator, 100
element operators, 95-100

671

query operators (LINQ to Objects) (continued)

query operators (LINQ to Objects)
(continued)
generation operators, 88-90
grouping operators, 62-66
join operators, 66-71
ordering operators, 58-62
partitioning operators, 92-95
projection operators, 54-58
quantifier operators, 90-92
SequenceEqual extension
method, 101
set operators, 71-77
Where operator, 53-54
query syntax
full, 28-29
simple example, 23-28

R

race conditions, 536-537

Range operator, 88-89

range variables, 29

Reactive Extensions (Rx) for
.NET, 559-560

Read method implementation, 595
read-only DataContext access, 161

Read Only data property, 225
reads, database, 191
real object-oriented
abstraction, 584-593
recursive lambda expressions, 417
reference type vs. value type
semantic, 75-76

Refresh method, 129, 186-187, 322

RefreshMode enumeration, 187
Register method, 528
relational databases
LINQ to SQL entities and, 192
relationships between file
types, 211
relational vs. hierarchical model
(LINQ to SQL), 8-14, 138
relationships (entities),
managing, 309-310
remote data storage, 565
Remove method
(XElement), 383-384
Repeat operator, 89-90
ReplaceWith method
(XElement), 383-384
resolution, extension
method, 43-45
Restriction operators, 53, 90
result order, controlling in
PLINQ, 550-552
resultSelector predicate, 84
resultSelector projection, 57
resultSelectors, 65

ResultType attributes, 146

Return Type property, 236-237

ReturnValue read-only
property, 144

reverse operator, 61-62

Richter, Jeffrey, 538, 607

RIGHT OUTER JOIN, 69

S

SampleSiteDataContext class, 567
SaveChanges method, 304-305
Save method overloads, 367
SaveOptions method, 304
scalar-valued UDF (listing), 148
schemas
O/R Designer and, 238
XML, 403
securing LINQ to XML, 409-410
Select clauses
basics, 32
ending queries with, 28
SelectMany operator, 56-59
Select method, 26
Select operator, 54-55
SELECT SQL statements, 171
self-tracking entities, 337-342
Self-Tracking Entity Generator
template (ADO.NET), 272
SequenceEqual extension
method, 101
serializing
LINQ to XML, 410-411
Serialization Mode code-
generation property
(DataContext), 222

serialization of entities, 197-198,

333-337
Server Data Type data
property, 225
services, LINQ to, 570-571
set operators, 71-77
SharePoint, LINQ to
(examples), 567-570
Show Only DataContext Objects
check box, 612
Silverlight, using LINQ
with, 647-652
SimpleDB, Amazon, 565
Simple Object Access Protocol
(SOAP) services, 359
single entities, binding, 637-642
Single operator, 97-98, 141, 152,
153
SingleOrDefault operator, 97-98
single-value keys, 33
Skip and Skip While keywords, 41

Skip and SkipWhile operators, 95,
162
SoapFormatter, 334
SortedDictionary, creating, 475
source code
C# and Visual Basic, 207-209
entity, generating with attribute-
based mapping, 211-212
entity, generating with external
XML mapping file, 212
generating with
SQLMetal, 214-215
Source data property, 225
SPMetal.exe, 566
SQLMetal
generating database DBML file
with, 213-214
generating source code and
database mapping file
with, 214-215
generating source code and
mapping file from DBML
file, 216
overview, 213
/serialization:unidirectional
parameter in, 197
tool, 137
SQL Servers
parameterized queries to, 150
type system, 20
SQL (Structured Query Language)
Embedded SQL, 7
queries, mixing .NET code
with, 167-170
query reduction, 166-167
ROUND operator, 204
SQLCLR stored procedure, 4
SQLConnection class, 121
SqglFunctions class, 279
SQL vs. LINQ queries, 12
SQL vs. LINQ query expression
syntax, 80
states, entity, 177-178
static methods, 45, 430
STDDEV aggregation, 163
Stock and Quote example (custom
operators), 465
stop-and-go processing
(PLINQ), 547-548
Storage argument (Association
attribute), 133
Storage parameters, 126
Storage Schema Definition
Language (SSDL), 248
stored procedures
example, 183-184
LINQ to Entities and, 283-284
with multiple results (listing), 146

O/R Designer and, 235-238
stored procedure declaration
(listing), 143
user-defined functions
and, 142-148
stored procedures, modeling
CUD stored procedures, 262-266
non-CUD stored
procedures, 259-262
overview, 259
string manipulation extension
method (listing), 168
String type methods (NET
Framework), 162
subexpressions, 40
SubmitChanges method, 172,
179-180, 568
SubmitChanges,
overriding, 180-183
SubSonic, 564
SUM aggregation operation, 155
Sum operator, 78-79, 161
synchronization
of entities, 178-179
of tasks, 538-539
SyncLINQ implementation, 572-573
syntactic sugar, 453
syntax, query. See query syntax
system engineers, LINQ for, 571
System.Collections and System.
Collections.Generic
namespaces, 538
System.Collections.Concurrent
namespace, 538
System.Data.DataSet, 343
System.Data.DataSetExtensions
assembly, 343
System.Data.Ling assembly, 120
System.Data.Ling.
Mapping.AutoSync
enumeration, 178-179
System.Data.Ling.SqlClient
namespace, 161
System.Data namespace, 354
System.Diagnostic.Process
property, 460
System.IComparable interface, 59
System.Json namespace, 571
System.Ling.Expressions
namespace, 418
System.Linq namespace, 20, 26, 53
System.Messaging.dll assembly, 324
System.Runtime.Serialization
namespace, 197
System.Threading.Tasks
namespace, 518
System.Threading.Tasks.Task
class, 521

Unidirectional serialization setting (entities)

System.Xml.Ling.Extensions
class, 385
System.Xml.Ling framework, 374
System.Xml.Ling namespace, 364
System.Xml.Schema.Extensions
class, 404
System.Xml.XPath.Extensions
class, 407
System.Xml.XPath, support
for, 407-409

T

T4 templates, 271-272
Table<T> generic class, 120
Table<T> methods, 192
table-valued UDF (listing), 149
tag replacement using XElement
ReplaceWith method
(listing), 383
Take keyword, 41
Take operator, 93, 506
Take While keyword, 41
TakeWhile operator, 94, 162
Task Parallel Library (TPL)
CancellationToken to cancel a task
(listing), 528
child task, creating
(listing), 526-527
concurrency
considerations, 535-536
concurrent collections, 538
ContinueWhenAll method
(listing), 525
ContinueWith method, use of
(listing), 524-525
controlling task execution, 523
handling exceptions from child
tasks (listing), 530-531
handling exceptions from tasks
(listing), 529
nested task, creating (listing), 526
overview, 517-518
Parallel.For and Parallel.ForEach
methods, 518-520
Parallel.Invoke method, 520-521
race conditions, 536-537
safe programming
in multithreaded
environments, 535
Task class, 521-522
TaskScheduler class, 539
tasks for asynchronous
operations, 531-535
task synchronization, 538-539
Task<TResult> class, 522-523
Task.WaitAll method, 521
Telerik OpenAccess, 564
TEntity type, 588

ThenBy/ThenByDescending
operators, 59-61
thread safety, concurrency and, 607
ThreadStatic attribute, 606
threads used by PLINQ, 540-543
Time Stamp data property, 225
TInner type joins, 67
ToArray/Tolist operators, 103-104
ToBeDeleted entity state, 178
ToBelnserted entity state, 178
ToBeUpdated entity state, 178
ToDictionary extension
method., 104-105
TolList method, 8
TolLookup operator, 106-107
Torgersen, Mads, 417
ToString method, 122, 204
ToString override, 501
ToTraceString method
(ObjectQuery<T>
type), 292-293
ToUpper method, 142
TOuter type joins, 67
tracking vs. no tracking
(entities), 299
transactions
database, 189-190
handling in n-tier
architectures, 606
managing, 322-327
Translate<T> method
(ObjectContext type), 294-295
try ... catch blocks
query expressions and, 47
TryGetObjectByKey
method, 317-319
T-SQL commands, 161
two-tier solutions, LINQ to SQL
in, 579-580
type checking, 19
typed DataSet, querying with
LINQ, 352-353
type declarations with simple
relationships (listing), 9
type declarations with two-way
relationships (listing), 10
typed nodes, validation
of, 404-407
Type property for data members of
entity, 225
type systems, transparency
across, 20

U

Unchanged entity state, 178
Unidirectional serialization setting
(entities), 197

673

674

Union operator

Union operator, 72-75
Unique association property, 228
unique object identity, 129-130
unit of work, identifying boundaries
of, 606-607
Untracked entity state, 178
untyped DataSet data,
accessing, 353
updatable views, 125
UpdateCheck argument (Column
attribute), 188
Update Check data property, 225
UpdateCustomer method, 340
Update Model From Database
feature (EDM Designer), 243
Update operations
intercepting, 184
mapping to, 237-238
updates, database, 179-180
update statements,
customizing, 183-184
updating
entities, 302-303
event handlers, 620
user-defined functions (UDFs)
LINQ to Entities, 281-282
O/R Designer and, 235-238
using inside LINQ
queries, 148-150
user interface (Ul) layer, 577

Vv

Validate method, 404
validation of typed nodes, 404-407
value type vs. reference type
semantic, 75-76
VARCHAR(MAX) type, 160
var keyword, 7
VerificationException type, 160
views, O/R Designer and, 238
VisitBinaryComparison
implementation, 507
visiting expression trees
DisplayVisitor specialization
of ExpressionVisitor class
(listing), 445
Expression tree visit based on a
lambda expression approach
(listing), 449-451
Expression visitor algorithm
implemented through a lambda
expression (listing), 447-449
ExpressionVisitor class, Visit
method in (listing), 440-442
overview, 439-440
testing DisplayVisitor class
(listing), 446-447

VisitBinary method in
ExpressionVisitor class
(listing), 443-444

VisitConstant and VisitParameter

methods in ExpressionVisitor
class (listing), 443
VisitLambda method in
ExpressionVisitor class
(listing), 444-445
VisitMethodCall and
Visitinvocation methods
in ExpressionVisitor class
(listing), 444-445

Visual Basic

aggregate operators in, 86—88

code defining customer
types, 51-52

join statements, 40-41

keywords, 41

query expression in
(listing), 24-27

query expression to group
developers by programming
language (listing), 34

query expression with join
between data sources
(listing), 31-32

query expression with orderby
clause with multiple ordering
conditions (listing), 36

reading XML file using LINQ to
XML and Visual Basic syntax
(listing), 16

source code (LINQ to
SQL), 207-209

Visual Basic XML literals and
global XML namespaces
(listing), 376

Visual Basic XML literals used
to declare XML content with
default XML namespace
(listing), 373

Visual Basic XML literals used to
declare XML namespace with
custom prefix (listing), 375

Visual Basic XML literal used to
transform XML, 403

XML for orders, creating using
Visual Basic XML literals, 16

XML literals, 362

Visual Studio, DBML files and, 218

w

Warren, Matt, 166, 440

WCF Data Services, 647

WCF Data Services in
Silverlight, 650

WOCF RIA Services, 652
Web Application Toolkit for Bing

Search, 571

websites, for downloading

AdxStudio xRM SDK, 567

BLToolkit, 563

DataObjects.NET, 563

DryadLINQ, 572

Entity Designer Database
Generation Power Pack, 114,
245

Genom-e, 564

Indexed LINQ, 573

Json.NET 3.5 library, 571

LingConnect, 564

LINQExtender, 573

LINQKit library, 463

LINQ over C#, 573

LINQPad, 573

LINQ to Expressions, 573

LINQ to Geo, 573

LLBLGen Pro runtime, 564

Metaling, 573

Microsoft DevLabs project, 560

NHibernate, 564

PLINQO, 564

SubSonic, 564

Telerik OpenAccess, 564

Web Application Toolkit for Bing
Search, 571

websites, for further information

"ADO.NET Architecture”, 273

ADO.NET third-party
providers, 596

canonical and database
functions, 281

“Code Generation in LINQ to
SQL’, 207

CopyToDataTable<T> custom
method, 345

custom partitioning in PLINQ
queries, 543

“"Dataontext class”, 142

"Data Types and Functions (LINQ
to SQL)", 161

Data Mapper, 586

data selection with
EntityDataSource, 628

"Dealing with Ling's Immutable
Expression Trees", 447

expression trees, 435

external XML mapping, 123

“"How to Create a New .edmx
File", 242

“Introducing System.Transactions
in the .NET Framework
2.0", 322

“LINQ: Building an IQueryable
Provider-Part IX", 166
"LINQ to SQL, Aggregates,
Entities, and Quantum
Mechanics”, 162
LINQ queries, applying to
EntityDataSource, 632
LINQ to Active Directory, 571
LINQ to Amazon, 570
LINQ to Flickr, 570
LINQ to Google
implementation, 570
LINQ to LDAP, 571
LINQ to Streams
implementation, 572
LINQ to WMI, 571
“MessageQueue Class”, 323
Microsoft Developer Network, 3
.NET Framework 4 TaskScheduler
implementations, 539
"Object States and Change
Tracking”, 138
ObjectShredder<T> source
code, 345
Open Data (OData) Protocol, 565
O/R Designer for LINQ to
SQL, 113
ORM tools supporting LINQ, 114
Parallel Computing Developer
Center, 518
recursive lambda expressions, 417
SQLMetal command-line
options, 213
“Supported and Unsupported
LINQ Methods (LINQ to
Entities)”, 279
T4 templates, 271
“Unit of Work”, 180
“Volatile Resource Managers in
.NET Bring Transactions to the
Common Type”, 325
WCF Data Services in
Silverlight, 650
WOCF RIA Services, 652
"Working with Entity Keys", 317
where clauses
basics, 32
defining filter with, 29
Where extension method, 26
WhereKey operator, 475
Where method, 26-27
Where operator, 53-54, 470-472,
482, 506
Windows Forms, using LINQ
with, 652-655
Windows Management
Instrumentation (WMI)
repository, 5

Windows Presentation Foundation
(WPF), 581

WithMergeOptions method, 545

WMI, LINQ to, 571

WPF (Windows Presentation
Foundation), 637

writes, database, 192-193

X

XAML (Extensible Application
Markup Language)
window with complex data
binding, 646
excerpt to define Button element
(listing), 641
window with simple data
binding, 640
XAttributes, 385-386
XComment class, 377
XContainer class, 365
XDeclaration class, 377
XDocument class, 364-365
XDocumentType class, 377
XElement attributes, 385
XElement class, 365-369
XML (Extensible Markup Language)
development frameworks
supporting, 359
document illustrating searching
with LINQ to XML (listing), 388
external mapping, abstracting
LINQ to SQL with, 581-584
external XML mapping files,
201-202, 210, 212
LINQ query expressions, using
over XML nodes, 395-401
manipulation in LINQ, 14-16
querying efficiently to build
entities, 397-401
reading/traversing/
modifying, 382-384
transforming with LINQ to
XML, 401-404
XML for orders, creating using
Visual Basic XML literals
(listing), 16
XML Infoset, 359, 363
XML literals, 362
XML names, manual escaping
of, 369
XmlReader class, 409
XmlIReader/XMLWriter, 14, 378
XmlSerializer class, 334
XML tree modification events
handling (listing), 380

675

XML, querying
InDocumentOrder extension
method, 393
XAttributes, 385-386
XNode selection
methods, 392-393
XPath Axes, extension methods
similar to, 388-392
XName and XNamespace
classes, 372-377
XNode class, 370-371, 382
XNode selection methods, 392-393
XObject annotations, 410
XObject class, 379-382
XPath
support for, 407-409
XPathEvaluate extension method
(listing), 408
XPath/XQuery, 5
XProcessinglnstruction class, 377
XQuery, selecting nodes
with, 15-16
XSD (XML Schema Definition), 359,
404-407
XSLT (Extensible Stylesheet
Language for
Transformations), 359
XStreamingElement class, 377-379
XText class, 377

y 4

“zero or one to many”
multiplicity, 308
Zip operator, 76-77

Paolo Pialorsi

Marco Russo

Paolo Pialorsi is a consultant, trainer, and author who specializes

in developing distributed applications architectures and Microsoft
SharePoint enterprise solutions. He is a founder of DevlLeap, a
company focused on providing content and consulting to profes-
sional developers. Paolo wrote Programming Microsoft LINQ and
Introducing Microsoft LINQ both published by Microsoft Press, and is
the author of three books in Italian about XML and Web Services. He
is also a regular speaker at industry conferences.

Marco Russo is a founder of DevlLeap. He is a regular contributor to
developer user communities and is an avid blogger on Microsoft
SQL Server Business Intelligence and other Microsoft technologies.
Marco provides consulting and training to professional developers on
the Microsoft .NET Framework and Microsoft SQL Server. He wrote
Programming Microsoft LINQ and Introducing Microsoft LINQ with
Paolo Pialorsi, Expert Cube Development with Microsoft SQL Server
2008 Analysis Services with Alberto Ferrari and Chris Webb, and

is the author of two books in Italian about C# and the common
language runtime.

“What do

you think of
this DOOK?

We want to hear from you!

To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Tell us how well this book meets your needs—what works effectively, and what we can
do better. Your feedback will help us continually improve our books and learning
resources for you.

Thank you in advance for your input!

Microsoft
Press

Stay in touch!

To subscribe to the Microsoft Press® Book Connection Newsletter—for news on upcoming
books, events, and special offers—please visit:

microsoft.com/learning/books/newsletter

	Preface
	Acknowledgments
	Introduction

	Chapter 1. LINQ Introduction
	What Is LINQ?
	Why Do We Need LINQ?
	How LINQ Works
	Relational Model vs. Hierarchical/Network Model
	XML Manipulation

	Language Integration
	Declarative Programming
	Type Checking
	Transparency Across Different Type Systems

	LINQ Implementations
	LINQ to Objects
	LINQ to ADO.NET
	LINQ to XML

	Summary

	Chapter 5. LINQ to SQL: Querying Data
	Entities in LINQ to SQL
	External Mapping

	Data Modeling
	DataContext
	Entity Classes
	Entity Inheritance
	Unique Object Identity
	Entity Constraints
	Associations Between Entities
	Relational Model vs. Hierarchical Model

	Data Querying
	Projections
	Stored Procedures and User-Defined Functions
	Compiled Queries
	Different Approaches to Querying Data
	Direct Queries
	Deferred Loading of Entities
	Deferred Loading of Properties
	Read-Only DataContext Access
	Limitations of LINQ to SQL

	Thinking in LINQ to SQL
	The IN/EXISTS Clause
	SQL Query Reduction
	Mixing .NET Code with SQL Queries

	Summary

	Index

