

Microsoft

Microsoft ADO.NET 4
Step by Step

Tim Patrick

Copyright © 2010 Tim Patrick.

Complying with all applicable copyright laws is the responsibility of the user. All rights reserved. Without limiting the
rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any
purpose, without express written permission of Microsoft Press, Inc.

Printed and bound in the United States of America.
123456789 WCT 543210

Microsoft Press titles may be purchased for educational, business or sales promotional use. Online editions are also
available for most titles (http.//my.safaribooksonline.com). For more information, contact our corporate/institutional
sales department: (800) 998-9938 or send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, ActiveX, Excel, FrontPage, Internet Explorer, PowerPoint, SharePoint, Webdings, Windows,
and Windows 7 are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries. Other product and company names mentioned herein may be the trademarks of their respective owners.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos,
people, places, and events depicted herein are fictitious, and no association with any real company, organization, prod-
uct, domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the author, Microsoft Corporation, nor their

respective resellers or distributors, will be held liable for any damages caused or alleged to be caused either directly
or indirectly by such information.

Acquisitions and Development Editor: Russell Jones
Production Editor: Kristen Borg

Production Services: Octal Publishing, Inc.
Technical Reviewer: Sahil Malik

Indexing: Potomac Indexing, LLC

Cover: Karen Montgomery

Compositor: Susan Brown

Hlustrator: Robert Romano

978-0-735-63888-4

To Abel Chan, a good friend and a good programmer.

Contents at a Glance

Part| Getting to Know ADO.NET

Chapter 1
Introducing ADO.NET 4 ittt 3
Chapter 2
Building Tablesof Data.............. i, 17
Chapter 3
Storing Datain Memory......... it 37
Chapter 4
Accessing the Right Data Values. 59
Chapter 5
Bringing Related Data Together.............. 73
Chapter 6
Turning Datainto Information 89
Chapter 7
Savingand RestoringData................ 107

Part I Connecting to External Data Sources

Chapter 8

Establishing External Connections. 121
Chapter 9

Querying Databases i 135
Chapter 10

Adding Standards toQueries 153
Chapter 11

Making External Data AvailableLocally 169
Chapter 12

Guaranteeing Dataintegrity 191

vi

Contents at a Glance

Part Il Entity Framework

Chapter 13
Introducing the Entity Framework. 213
Chapter 14
VisualizingDataModels. 225
Chapter 15
Querying Data in the Framework.............................. 245
Chapter 16
Understanding Entities Through Objects 267

Part IV LINQ

Chapter 17
Introducing LINQ i i i 289
Chapter 18
UsingLINQtoDataSet i, 305
Chapter 19
Using LINQto Entities............ 315
Chapter 20
Using LINQto SQL e 331

Part V Providing RESTful Services with WCF Data Services
Chapter 21

Binding Data with ADO.NET ciiii.... 347
Chapter 22

Providing RESTful Services with WCF Data Services 369

Table of Contents

Acknowledgments. i . XV

IntrodUuction i e XVii

rart1 Getting to Know ADO.NET

1 Introducing ADO.NET 4. ittt 3
What Is ADONET? . ..o 3

Why ADONET 2. . et 5

Major Components of ADO.NETttt e 5
Extensions to ADO.NET. 7
Connecting to External Data ... 8
SUMIMAIY et e e e 15

Chapter 1 Quick Reference. i 16

2 Building TablesofData it 17
Implementing Tables. i 17

Logical and Physical Table Implementations. 17

The DataTable Class. 18

Adding Data Columns. 21

Dataset Designero 27
SUMMATY L o e e e e 34

Chapter 2 Quick Reference. ... 35

3 StoringDatainMemoryo it 37
Adding Data 37

Creating New ROWSo 37

Defining Row Values 38

Storing RowsinaTable........ ... 40

What do you think of this book? We want to hear from you!

icrosoft is interested in hearing your feedback so we can continually improve our books and learning

(M
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

vii

viii Table of Contents

Examining and ChangingData i 42
Removing Data. 45
Batch Processing. e 46
Row State. 47

ROW VerSiONS. .. oo 48
Validating Changest 49
Exception-Based Errors. 50
Validation-Based Errors.t 51
SUMMIAIY .« .ttt e e e e e e e e e e e 56
Chapter 3 Quick Reference. 57
4 Accessing the Right DataValues. 59
Queryingand SortingData 59
Finding Rows by Primary Key. 60
Selecting Rows with a Search Criteria. 62
Sorting Search Results. 64
Performing Case-Sensitive Lookups., 67
Using Expression Columns 67
SUMIMIAIY et e e e e e 71
Chapter 4 Quick Reference. i 71
5 Bringing Related Data Together........................... 73
Collecting Tables into Sets 73
Establishing Relationships Between Tables 76
Understanding Table Relations 76
Creating Data Relations 78
Locating Parent and Child Records. 79
Defining Table Constraints 81
SUMMIAIY .« .ttt e e e e e e 87
Chapter 5 Quick Reference. 88
6 Turning Data into Information 89
Aggregating Data. 89
Generating a Single Aggregate. 91
Adding an Aggregate Column. 94
Aggregating Data Across Related Tables........................... 95

Referencing Parent Fields in Expressions. 98

Table of Contents

Setting Up Indexed Views. 98
Creatinga DataView 99
Usinga DataView.o 101

SUMIMIATY e e e 106

Chapter 6 Quick Reference. ... 106

7 Savingand RestoringData 107

Serializing DataSet and DataTable Objects 107
Writing XML . ..o 108
Reading XML.o 110

Guiding XML Generation 111
Identifying Namespaces.o 111
Nesting Child Tables 113
Managing and Positioning Columns 113

SUMIMAIY e e 117

Chapter 7 Quick Reference. 118

rarti Connecting to External Data Sources

8 Establishing External Connections........................ 121
Using Connection SEringst 121

SQL Server Connection Strings 122

OLE DB and ODBC Connection Stringsooovieiinnn.. 124

Connection String Builders. 124

Storing Connection Stringso 126

Understanding Data Providers. 126
Connecting to SQL Server via a Data Provider.......................... 127

Creating and Opening Connections. ..., 128

Connection Pooling. 132

SUMMAATY . o e 133

Chapter 8 Quick Reference. ... 133

9 Querying Databases.............c.coiiiiiiiiiiiiiiiiia 135
Processing SQL QUENIES. 135

Creating Command Objects. 136

Processing QUENIesttt 137

Processing Asynchronously o i i 139

Table of Contents

Returning Query Results. 140
Returninga Single Value. 141
Returning Data ROWS. 142
Accessing Field Values. i 144
Processing More Complicated Results. 146

SUMMAIY .« . e e e e e 150

Chapter 9 Quick Reference. 151

10 Adding Standardsto Queries, 153

Developing Parameterized QUeries 153
Understanding the Need for Parameters 154
Implementing Standard Queries. o i i 155
Using Parameters with Other Providers. 160

Using Parameters in Stored Procedures. 161

SUMMAY .« .o 166

Chapter 10 Quick Reference. ... 167

11 Making External Data Available Locally 169

Understanding Data Adapters. ... 169

Moving Data from Sourceto Memory. ..., 171
Moving Data into a DataTable. 171
Moving Data into a DataSet. 173

Moving Data from Memory to Source. ..., 175
Configuring the Update Commands 175
Performing the Update......... i i, 179
Generating Update Commands Automatically..................... 180

Table and Column Mapping. 186

SUMMATY .« . e e 188

Chapter 11 Quick Reference. 189

12 Guaranteeing Data Integrity............., 191

Transactions and CONCUITENCY.ttt e e 191

Using Local Transactions. 195
Employing Savepoints. 202

Using Distributed Transactions o .. 204

SUMIMaATY o e 208

Chapter 12 Quick Reference.o 209

Table of Contents

rart il Entity Framework

13 Introducing the Entity Framework........................ 213
Understanding the Entity Framework. 213
Defining the Entity Framework's Terms 215
Understanding the Entity Framework's Layers 216
Understanding the Conceptual Model 217
Understanding the Storage Model.......... 217
Understanding the Model Mappings. i, 218
Using the Entity Framework. 218
Buildingthe Model 218
Generating the Objects. 220
Instantiating the Context i i i i 221
Running Framework Queries. ... 222
SUMIMAIY .ot e e e e 223
Chapter 13 Quick Reference. i 223
14 VisualizingDataModels. 225
Designing an Entity Framework Model 225
Using the Entity Data Model Wizard 225
Entity Data Model Designer.t 230
Working with the Mapping Details Panel 235
Using the Model Browser. ... 240
Managing the Object Layer...........c e 241
SUMIMIAIY e e 242
Chapter 14 Quick Reference.o 243
15 Querying Data in the Framework. 245
Getting to Know Entity SQL 246
Writing Basic QUEries o 246
Using Literals, Operators, and Expressions 249
Grouping and Aggregating Entity Data........................... 252
Using Features Unique to Entity SQL 254
Running Entity SQLQUErIES 256
Running Queries Using an ObjectQuery.......................... 256
Running Queries Using a Provider 260
SUMMAIY .o e e 264

Chapter 15 Quick Reference. 265

xi

xii Table of Contents

16 Understanding Entities Through Objects 267
Managing Entity Data Through Objects 267

Accessing Entity Data Through Objects........................... 268

Modifying Entity Data Through Objects 271

Using Query Builder Methods 278

Queryable Extension Methods L. 283

SUMIMIATY o e 285

Chapter 16 Quick Reference. ... 285

Part v LINQ

17 Introducing LINQottt 289
Getting to KNnow LINQ.o 289

Using LINQ with NET Objects.ot 291

Starting a Query with the FromClause 293

Projecting Results with the SelectClause 293

Filtering Results with the WhereClause. 295

Sorting Results with the Order By Clause 296

Selecting Linked Results with the Join Keyword. 297

Limiting the Queried Content i, 299

Summarizing Data Using Aggregates, 301

Applying Set Operationsc i, 302

SUMIMIATY .« e e 303

Chapter 17 Quick Reference. i 304

18 Using LINQtoDataSet...............coiiiiiiiiiinian... 305
Understanding the LINQ to DataSet Provider........................... 305

Writing Queries with LINQ to DataSet oo i i i, 306

SUMIMIaATY o e 312

Chapter 18 Quick Reference.o 313

19 Using LINQtoEntities i, 315
Understanding the LINQ to Entities Provider 315

Writing Queries with LINQ to Entities. 316

Working with Entity and Database Functions...................... 321

Working with Custom Database Functions........................ 324

SUMMIATY .« .ttt e e e 329

Chapter 19 Quick Reference. 329

Table of Contents

20 UsingLINQtoSQL . ..ottt 331
Understanding the LINQ to SQL Provider.............................. 332
Comparing LINQ to SQL with LINQ to Entities..................... 332

Understanding the Components of LINQto SQL................... 333

Using the Object Relational Designer................ oi.... 335

Using Custom Database Functions in Queries 339

SUMIMAIY .o 343

Chapter 20 Quick Reference. o 343

rartv Presenting Data to the World

21 Binding Datawith ADO.NET, 347
Binding Data in Windows Forms. 347
Creating Complex-Bound Applications 348
Creating Simple-Bound Applications. 351
Understanding Windows Forms Data Binding..................... 352
Binding Data in WPF 354
Creating Data-Bound WPF Applications 354
Understanding WPF Data Binding, 360
Binding Data in ASP.INET 362
Creating Data-Bound ASP.NET Applications....................... 362
Understanding ASP.NET Data Binding. 364
SUMIMAIY .o e e 367
Chapter 21 Quick Reference., 367
22 Providing RESTful Services with WCF Data Services 369
Getting to Know the Service Layers i 369
Introducing WCF Data Services., 369
Introducing REST o 370
Setting UpaDataService. ... 371
Defining Service Rights. 375
Accessing a Data Service using REST i 377
Querying Entitieswith REST. 377
Updating Entities with REST. 381
SUMMAIY o e e e e e 384
Chapter 22 Quick Reference. 384

xiii

Acknowledgments

An open-ended thank you goes to Microsoft, not only for developing some of the products
that have kept me gainfully employed for nearly three decades, but for welcoming me into
their book-writing fold. It was also a pleasure to work again with the team at O'Reilly Media,
Microsoft’s publishing partner. Editors Russell Jones and Kristen Borg kept all the trains run-
ning on time, which wasn't easy given the busy technical and publishing traffic. Rounding out
the group were Meghan Blanchette, Sumita Mukherji, and Adam Witwer. Thank you all.

Sahil Malik, ADO.NET expert and fellow author, has the distinction of having read through
every single word of this book looking for technical concerns. Nancy Sixsmith did the same
for the mechanics of language, grammar, and consistency. The book is richer for their
involvement.

Claudette Moore once again worked her agenting magic, somehow always managing

to make everyone on both sides of a contract happy. This book would be nothing more
than a series of discarded emails were it not for her hard work and dedication. Thank you,
Claudette, for yet another adventure.

Thanks to all my friends at Harvest, especially fellow food and movie lovers Alice, Brenda,
Andy, Suzy, Matt, Tiffany, Jeff, and Monica. Love and appreciation in heaps to my wife Maki
and my son Spencer, both of whom exude patience and care. And thanks once again to God
for making all these other acknowledgments possible in the first place.

Tim Patrick
October 2010

Introduction

ADO.NET is Microsoft's core data access library for .NET developers, and is the heart of many
data-centric technologies on the Windows development platform. It works with C#, Visual
Basic, and other .NET-enabled languages. If you are a .NET developer looking to interact with
database content or other external data sources, then ADO.NET is the right tool for you.

Microsoft ADO.NET 4 Step by Step provides an organized walkthrough of the ADO.NET li-
brary and its associated technologies. The text is decidedly introductory; it discusses the
basics of each covered system, with examples that provide a great head start on adding data
features to your applications. While the book does not provide exhaustive coverage of every
ADO.NET feature, it does offer essential guidance in using the key ADO.NET components.

In addition to its coverage of core ADO.NET library features, the book discusses the Entity
Framework, the LINQ query system, and WCF Data Services. Beyond the explanatory content,
each chapter includes step by step examples and downloadable sample projects that you can
explore for yourself.

Who Is This Book For?

As part of Microsoft Press's “Developer Step By Step” series of training resources, Microsoft
ADO.NET 4 Step by Step makes it easy to learn about ADO.NET and the advanced data tools
used with it.

This book exists to help existing Visual Basic and C# developers understand the core con-
cepts of ADO.NET and related technologies. It is especially useful for programmers looking
to manage database-hosted information in their new or existing .NET applications. Although
most readers will have no prior experience with ADO.NET, the book is also useful for those
familiar with earlier versions of either ADO or ADO.NET, and who are interested in getting
filled in on the newest features.

Assumptions

As a reader, the book expects that you have at least a minimal understanding of .NET devel-
opment and object-oriented programming concepts. Although ADO.NET is available to most,
if not all, .NET language platforms, this book includes examples in C# and Visual Basic only. If
you have not yet picked up one of those languages, you might consider reading John Sharp’s
Microsoft Visual C# 2010 Step by Step (Microsoft Press 2010) or Michael Halvorson’'s Microsoft
Visual Basic 2010 Step by Step (Microsoft Press 2010).

With a heavy focus on database concepts, this book assumes that you have a basic under-
standing of relational database systems such as Microsoft SQL Server, and have had brief

Xvii

xviii Microsoft ADO.NET 4 Step by Step

exposure to one of the many flavors of the query tool known as SQL. To go beyond this

book and expand your knowledge of SQL and Microsoft's SQL Server database platform,
other Microsoft Press books such as Mike Hotek’s Microsoft® SQL Server® 2008 Step by Step
(Microsoft Press, 2008) or ltzik Ben-gan's Microsoft® SQL Server® 2008 T-SQL Fundamentals
(Microsoft Press, 2008) offer both complete introductions and comprehensive information on
T-SQL and SQL Server.

Organization of This Book

This book is divided into five sections, each of which focuses on a different aspect or technol-
ogy within the ADO.NET family. Part |, “Getting to Know ADO.NET,” provides a quick over-
view of ADO.NET and its fundamental role in .NET applications, then delves into the details
of the main ADO.NET library, focusing on using the technology without yet being concerned
with external database connections. Part Il, “Connecting to External Data Sources,” continues
that core library focus, adding in the connectivity features. Part Ill, “Entity Framework,” in-
troduces the Entity Framework, Microsoft's model-based data service. Another service layer,
LINQ, takes center stage in Part IV, “"LINQ.” Finally, Part V, “Presenting Data to the World,”
covers some miscellaneous topics that round out the full discussion of ADO.NET.

Finding Your Best Starting Point in This Book

The different sections of Microsoft ADO.NET 4 Step by Step cover a wide range of technolo-
gies associated with the data library. Depending on your needs and your existing under-
standing of Microsoft data tools, you may wish to focus on specific areas of the book. Use
the following table to determine how best to proceed through the book.

If you are Follow these steps

New to ADO.NET development, or Focus on Parts | and Il and on Chapter 21 in Part V, or read
an existing ADO developer through the entire book in order.

Familiar with earlier releases Briefly skim Parts | and Il if you need a refresher on the core
of ADO.NET concepts.

Read up on the new technologies in Parts Ill and IV and be
sure to read Chapter 22 in Part V.

Interested in the Entity Framework Read Part Ill. Chapter 22 in Part V discusses data services built
on top of Entity Framework models.

Interested in LINQ data providers Read through the chapters in Part IV.

Most of the book'’s chapters include hands-on samples that let you try out the concepts just
learned. No matter which sections you choose to focus on, be sure to download and install
the sample applications on your system.

Introduction Xix

Conventions and Features in This Book

This book presents information using conventions designed to make the information read-
able and easy to follow.

In most cases, the book includes separate exercises for Visual Basic programmers and
Visual C# programmers. You can skip the exercises that do not apply to your selected
language.

Each exercise consists of a series of tasks, presented as numbered steps (1, 2, and so on)
listing each action you must take to complete the exercise.

Boxed elements with labels such as “Note” provide additional information or alternative
methods for completing a step successfully.

Text that you type (apart from code blocks) appears in bold.

A plus sign (+) between two key names means that you must press those keys at the
same time. For example, "Press Alt+Tab” means that you hold down the Alt key while
you press the Tab key.

A vertical bar between two or more menu items (e.g. File | Close), means that you
should select the first menu or menu item, then the next, and so on.

System Requirements

You will need the following hardware and software to complete the practice exercises in this
book:

One of Windows XP with Service Pack 3 (except Starter Edition), Windows Vista with
Service Pack 2 (except Starter Edition), Windows 7, Windows Server 2003 with Service
Pack 2, Windows Server 2003 R2, Windows Server 2008 with Service Pack 2, or
Windows Server 2008 R2

Visual Studio 2010, any edition (multiple downloads may be required if using Express
Edition products)

SQL Server 2008 Express Edition or higher (2008 or R2 release), with SQL Server
Management Studio 2008 Express or higher (included with Visual Studio, Express
Editions require separate download)

Computer that has a 1.6GHz or faster processor (2GHz recommended)

1 GB (32 Bit) or 2 GB (64 Bit) RAM (add 512 MB if running in a virtual machine or SQL
Server Express Editions; more for advanced SQL Server editions)

3.5GB of available hard disk space
5400 RPM hard disk drive

XX Microsoft ADO.NET 4 Step by Step
B DirectX 9 capable video card running at 1024 x 768 or higher-resolution display
B DVD-ROM drive (if installing Visual Studio from DVD)
B [nternet connection to download software or chapter examples

Depending on your Windows configuration, you might need Local Administrator rights to
install or configure Visual Studio 2010 and SQL Server 2008 products.

Code Samples

Most of the chapters in this book include exercises that let you interactively try out new
material learned in the main text. All sample projects, in both their pre-exercise and post-
exercise formats, are available for download from the book’s catalog page online:

http.//aka.ms/638884/files

— Note In addition to the code samples, your system should have Visual Studio 2010 and SQL

= Server 2008 installed. The instructions below use SQL Server Management Studio 2008 to set up
the sample database used with the practice examples. If available, install the latest service packs
for each product.

Installing the Code Samples

Follow these steps to install the code samples on your computer so that you can use them
with the exercises in this book.

1. Open the file that you downloaded from the book's web site.

2. Copy the entire contents of the opened .zip file to a convenient location on your hard
disk.

http://aka.ms/638884/files

Introduction XXi

Installing the Sample Database

Follow these steps to install the sample database used by many of the book's practice
examples.

Note You must first download and install the Code Samples using the instructions listed above.
Also, you must have both SQL Server 2008 and SQL Server Management Studio 2008 installed,
any edition.

1. Start SQL Server Management Studio 2008 and open a new Object Explorer connec-
tion to the target database instance using the File | Connect Object Explorer menu
command.

2. In the Object Explorer panel, right-click on the Databases branch of the connection
tree, and select New Database from the shortcut menu.

3. When the New Database dialog box appears, enter StepSample in the Database Name
field. Click OK to create the database.

xxii Microsoft ADO.NET 4 Step by Step

4. Select File | Open | File from the main SQL Server Management Studio menu, and
locate the DB Script.sql file installed with the book’s sample projects. This file appears in
the Sample Database folder within the main installation folder.

5. Click the Execute button on the SQL Editor toolbar to run the script. This will create the
necessary tables and objects needed by the practice examples.

6. Close SQL Server Management Studio 2008.

Using the Code Samples

The main installation folder extracted from the ADO.NET 4 SBS Examples.zip file contains
three subfolders.

B Sample Database This folder contains the SQL script used to build the sample data-
base. The instructions for creating this database appear earlier in this Introduction.

B Exercises The main example projects referenced in each chapter appear in this folder.
Many of these projects are incomplete, and will not run without following the steps in-
dicated in the associated chapter. Separate folders indicate each chapter’s sample code,
and there are distinct folders for the C# and Visual Basic versions of each example.

B Completed Exercises This folder contains all content from the Exercises folder, but with
chapter-specific instructions applied.

Introduction xxiii

To complete an exercise, access the appropriate chapter-and-language folder in the Exercises
folder, and open the project file. If your system is configured to display file extensions,

Visual Basic project files use a .vbproj extension, while C# project files use .csproj as the file
extension.

Uninstalling the Code Samples

To remove the code samples from your system, simply delete the installation folder that you
extracted from the .zip file.

Software Release

This book was written for use with Visual Studio 2010, including the Express Editions prod-
ucts. Much of the content will apply to other versions of Visual Studio, but the code samples
may be not be fully compatible with earlier or later versions of Visual Studio.

The practice examples in the book use SQL Server 2008, including the Express Edition prod-
ucts. Many of the examples may work with SQL Server 2005 or earlier versions, but neither
the installation script nor the sample projects have been tested with those earlier releases.

Errata and Book Support

We've made every effort to ensure the accuracy of this book and its companion content. If
you do find an error, please report it on our Microsoft Press site:

1. Go to www.microsoftpressstore.com.

2. In the Search box, enter the book’s ISBN or title.

3. Select your book from the search results.

4. On your book’s catalog page, find the Errata & Updates tab
5. Click View/Submit Errata.

You'll find additional information and services for your book on its catalog page. If you need
additional support, please e-mail Microsoft Press Book Support at mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the addresses
above.

www.microsoftpressstore.com

We Want to Hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in advance
for your input!

Stay in Touch

Let's keep the conversation going! We're on Twitter: http.//twitter.com/MicrosoftPress.

Part |

Getting to Know ADO.NET

Chapter 1: Introducing ADO.NET 4
Chapter 2: Building Tables of Data

Chapter 3: Storing Data in Memory
Chapter 4: Accessing the Right Data Values
Chapter 5: Bringing Related Data Together
Chapter 6: Turning Data into Information

Chapter 7: Saving and Restoring Data

Chapter 1

Introducing ADO.NET 4

After completing this chapter, you will be able to:
B [dentify what ADO.NET is
B Explain ADO.NET's role in an application
® |dentify the major components that make up ADO.NET
B Create an ADO.NET link between a database and a .NET application

This chapter introduces you to ADO.NET and its purpose in the world of Microsoft .NET
application development. ADO.NET has been included with the .NET Framework since

its initial release in 2002, playing a central role in the development of both desktop and
Internet-targeted applications for programmers using C#, Visual Basic, and other Framework
languages.

What Is ADO.NET?

ADO.NET is a family of technologies that allows .NET developers to interact with data in stan-
dard, structured, and primarily disconnected ways. If that sounds confusing, don't worry. This
book exists to remove the confusion and anxiety that many developers experience when they
first learn of ADO.NET's multiple object layers, its dozens of general and platform-specific
classes, and its myriad options for interacting with actual data.

Applications written using the .NET Framework depend on .NET class libraries, which exist in
special DLL files that encapsulate common programming functionality in an easy-to-access
format. Most of the libraries supplied with the .NET Framework appear within the System
namespace. System.lO, for instance, includes classes that let you interact with standard disk
files and related data streams. The System.Security library provides access to, among other
things, data encryption features. ADO.NET, expressed through the System.Data namespace,
implements a small set of libraries that makes consuming and manipulating large amounts of
data simple and straightforward.

ADO.NET manages both internal data—data created in memory and used solely within an
application—and external data—data housed in a storage area apart from the application,
such as in a relational database or text file. Regardless of the source, ADO.NET generalizes

the relevant data and presents it to your code in spreadsheet-style rows and columns.

Microsoft ADO.NET 4 Step by Step

Note Although ADO.NET manipulates data in tabular form, you can also use ADO.NET to access
nontabular data. For instance, an ADO.NET provider (discussed later in the chapter, on page 7)
could supply access to hierarchical data such as that found in the Windows Registry, as long as
that provider expressed the data in a tabular structure for ADO.NET's use. Accessing such non-
tabular data is beyond the scope of this book.

If you are already familiar with relational databases such as Microsoft SQL Server, you will
encounter many familiar terms in ADO.NET. Tables, rows, columns, relations, views; these
ADO.NET concepts are based loosely on their relational database counterparts. Despite these
similarities, ADO.NET is not a relational database because it doesn't include key “relational
algebra” features typically found in robust database systems. It also lacks many of the com-
mon support features of such databases, including indexes, stored procedures, and triggers.
Still, if you limit yourself to basic create, read, update, and delete (CRUD) operations, ADO.NET
can act like a miniature yet powerful in-memory database.

As an acronym, "ADO.NET" stands for—nothing. Just like the words “scuba,” “laser,” and "NT"
in Windows NT, the capital letters in ADO.NET used to mean something, but now it is just

a standalone term. Before Microsoft released the .NET Framework, one of the primary data
access tools Windows developers used in their programs was known as ADO, which did stand
for something: ActiveX Data Objects. After .NET arrived on the scene, ADO.NET became the
natural successor to ADO. Although conceptual parallels exist between ADO.NET and ADO,
the technologies are distinct and incompatible.

Note ADO is based on Microsoft's older COM technology. The .NET Framework provides sup-
port for COM components, and therefore enables .NET programs to use ADO. This is especially
useful for development teams transitioning legacy applications to .NET. Although ADO and
ADO.NET components can appear in the same application, they can interact only indirectly
because their object libraries are unrelated.

When communicating with external data stores, ADO.NET presents a disconnected data
experience. In earlier data platforms, including ADO, software developers would typically
establish a persistent connection with a database and use various forms of record locking to
manage safe and accurate data updates. But then along came the Internet and its browser-
centric view of information. Maintaining a long-standing data connection through bursts of
HTTP text content was no longer a realistic expectation. ADO.NET's preference toward on-again,
off-again database connections reflects this reality. Although this paradigm change brought
with it difficulties for traditional client-server application developers, it also helped usher in
the era of massive scalability and n-tier development that is now common to both desktop
and Web-based systems.

Chapter 1 Introducing ADO.NET 4 5

Why ADO.NET?

In the early days of computer programming, the need for a data library like ADO.NET didn’t
exist. Programmers had only a single method of accessing data: direct interaction with the
values in memory. Permanently stored data existed on tape reels in fire-resistant, climate-
controlled, raised-floor rooms. Data queries could take hours, especially if someone with
more clout had a higher-priority processing need.

Over time, computers increased in complexity, and (as if to fill some eternal maxim) data
processing needs also expanded to consume all available computing resources. Businesses
sought easier ways to manage entire records of numeric, text, and date-time values on their
mainframe systems. Flat-file and relational database systems sprang up to establish propri-
etary management of millions of data values. As personal computers arrived and matured,
developers soon had several database systems at their disposal.

This was great news for data consumers. Businesses and individuals now had powerful tools
to transform data bits into usable information, to endow seemingly unrelated values with
meaning and purpose. But it was bad news for developers. As technology marched on, com-
panies purchased one proprietary system after another. Programming against such systems
meant a reinvention of the proverbial wheel each time a middle manager asked for yet
another one-time report. Even the standard SQL language brought little relief because each
database vendor provided its own spin on the meaning of “standard.”

What programmers needed was a way to generalize different data systems in a standard,
consistent, and powerful way. In the world of .NET application development, Microsoft ADO.NET
meets that need. Instead of worrying about the minutiae associated with the different data-
base systems, programmers using ADO.NET focus on the data content itself.

Major Components of ADO.NET

The System.Data namespace includes many distinct ADO.NET classes that work together to
provide access to tabular data. The library includes two major groups of classes: those that
manage the actual data within the software and those that communicate with external data
systems. Figure 1-1 shows the major parts that make up an ADO.NET instance.

Microsoft ADO.NET 4 Step by Step

Your Source Code |

| Entity Framework, LINQ, Other Components |

ADO.NET
Data Provider —I—|
| Connection | DataSet
DataTable
| Command | _I
| DataAdapter | DataRelation 1
| DataReader | L

E @
)

Database XML File
or Storage

FIGURE 1-1 Key ADO.NET elements.

At the data-shaped heart of the library is the DataTable. Similar in purpose to tables in a
database, the DataTable manages all the actual data values that you and your source code
ultimately care about. Each DataTable contains zero or more rows of data, with the individual
data values of each row identified by the table’s column definitions.

B Each table defines DataColumn items, each representing the individual data values that
appear in the table’s records. DataColumn definitions include a data type declaration
based on the kind of data destined for each column. For instance, a CustomerLastName
column might be defined to use data of type System.String, whereas an OrderSalesTax
column could be crafted for use with System.Decimal content.

B One DataRow entry exists for each record of data stored within a table, providing access
to the distinct columnar data values. ADO.NET includes methods that let you add
to, delete from, modify, and query each DataTable object's rows. For tables connected
to an external data storage area, any changes made can be propagated back to the
source.

B You can optionally establish links between the tables of data using DataRelation entries.

Chapter 1 Introducing ADO.NET 4 7

B Programmatic limitations can be placed on tables and their data values using Constraint
instances.

B DataView instances provide a limited or modified view of the rows in a DataTable.

B Tables can be grouped together into a DataSet. Some tools that interact with ADO.NET
data require that any tables be bound within a DataSet, but if you plan to do some lim-
ited work with only a single table, it's fine to work with just the DataTable instance.

DataTable instances and their associated objects are sufficient for working with internal data.
To connect with external data from a database, ADO.NET features multiple data providers,
including a custom provider for Microsoft SQL Server. Database platforms without a specific
provider use the more generic ODBC and OLE DB providers, both included with ADO.NET.
Several third-party providers can be purchased or obtained free of charge, which target spe-
cific platforms, including Oracle.

B All communication with the external data source occurs through a Connection object.
ADO.NET supports connection pooling for increased efficiency between queries.

B SQL queries and data management statements get wrapped in a Command object
before being sent to the data source. Commands can include optional Parameter
instances that let you call stored procedures or create fill-in-the-blank queries.

B The DataAdapter object stores standard query definitions for interacting with a data-
base, removing the tedium of constantly needing to build SQL statements for each
record you want to read or write, and helping to automate some ADO.NET-related
tasks.

B The DataReader object provides fast, read-only access to the results of a query for
those times when you just need to get your data quickly.

ADO.NET also includes features that let you save an entire DataSet as an XML file and load it
back in later. And that's just the start. You'll learn how to use all these elements—and more—
throughout the upcoming chapters.

Extensions to ADO.NET

Generalizing access to data is a key benefit of using ADO.NET. But an even greater advantage
for .NET developers is that all values managed through ADO.NET appear as objects, first-class
members of the .NET data world. Each data field in a table is a strongly typed data member,
fully compliant with .NET's Common Type System. Individual fields can be used just like any
other local variable. Data rows and other sets of objects are standard .NET collections and
can be processed using standard iteration methods.

8 Microsoft ADO.NET 4 Step by Step

Because ADO.NET values exist as true .NET objects and collections, Microsoft has enhanced the
core ADO.NET feature set with new tools. Two of these technologies, the Entity Framework
and LINQ, are not formally part of ADO.NET. But their capability to interact with and enhance
the ADO.NET experience makes them essential topics for study.

The Entity Framework, the focus of Part Ill of this book, emphasizes the conceptual view of
your data. Although the data classes in ADO.NET are programmer-friendly, you still need to
keep track of primary keys and relationships between tables and fields. The Entity Framework
attempts to hide that messiness, and restores the promise of what object-oriented program-
ming was supposed to be all about. In the Entity Framework, a customer object includes its
orders; each order includes line item details. Instead of working with the raw table data, you
interact with logically designed entities that mimic their real-world counterparts, and let the
Framework worry about translating it all into SQL statements.

LINQ, introduced in Part IV, brings the joy of English-like queries to your favorite program-
ming language. Microsoft enhanced both Visual Basic and C# with new LINQ-specific
language features. Now, instead of building string-based SQL statements to query data, the
syntax of each programming language becomes the query language. LINQ is a generic data
tool, enabling you to easily mix ADO.NET data and other content sources together into a
single set of results.

Connecting to External Data

Chapter 8, “Establishing External Connections,” introduces the code elements that support
communications between ADO.NET and external sources of data. Although using only code
to establish these connections is quite common, Visual Studio also includes the Data Source
Connection Wizard, a mouse-friendly tool that guides you through the creation of a ready-
to-use DataSet. Here's an example of using the Connection Wizard.

Creating a Data Source Using the Connection Wizard

1. Start Visual Studio 2010. Select File | New | Project from the main menu.

ADO.NET is supported in most common project types. To keep things simple for now,
create a Windows Forms application using either C# or Visual Basic as the language.
The following figures show the process using a Visual Basic Windows Forms application,
although the steps are identical in C#.

2. In the New Project dialog box, provide a name for the project.
3. Click OK.

Visual Studio will create a project.

Chapter 1 Introducing ADO.NET 4

4. Select Data | Add New Data Source from the menu.

Visual Studio displays the Data Source Configuration Wizard.

The Database choice should already be selected in the Choose A Data Source Type
panel.

10 Microsoft ADO.NET 4 Step by Step
5. Click Next.

6. In the Choose a Database Model panel, choose Dataset.

7. Click Next.

The Wizard displays the Choose Your Data Connection panel. If you previously con-
figured data sources, they will appear in the Which Data Connection Should Your
Application Use To Connect To The Database? list.

8. Because you are setting up a connection to the test database for the first time, click the
New Connection button.

Chapter 1 Introducing ADO.NET 4 11

9. When the Choose Data Source dialog box appears, select Microsoft SQL Server from
the Data Source list.

The Data Provider field will automatically choose the SQL Server data provider. For
maximum flexibility, clear the Always Use This Selection field.

Choose Data Source @
Data source: o
Microsoft Access Database File Daseilpien
Microsoft Data Source Use this selection to connect to

i f er Micrasoft SQL Server 2005 ar abowe, ar

Microsoft SQL Server Compact 3.5 k to Microsoft SQL Azure using the NET
Microsoft SGL Server Database File Framewark Data Provider far SQL Server.
Oracle Database
<other:

Data provider:

’.NET Framework Data Provider for SQL £ v]

[T] Aslways use this selection [Caontinue] ’ Famee]

Note Choosing Microsoft SQL Server will access a database that has previously been attached
to a SQL Server database instance. To create a data source that directly references a database file
not necessarily attached to the engine instance, select Microsoft SQL Server Database File from
the Data Source list instead. The wizard will then prompt you for the disk location of the file.

12

Microsoft ADO.NET 4 Step by Step

10. Click Continue to accept the data source.

11. In the Add Connection dialog box, select the server from the Server Name field.

12.

For SQL Server 2008 Express Edition instances, this is typically the name of the local
computer with \SQLEXPRESS appended to the name. If you are using the full SQL
Server product, leave off the \SQLEXPRESS suffix. For SQL Server instances hosted on
the same system as your Visual Studio installation, you can use (local) as the server
name.

For SQL Server instances configured with database-managed authentication, select Use
SQL Server Authentication and supply the appropriate user name and password. For
databases managed with Windows authentication (the likely choice for the test data-
base), select Use Windows Authentication instead.

The Select Or Enter a Database Name field should now include the available databases
within the test database file. (If not, confirm that you have supplied the right server
name and authentication values and that SQL Server is running on your system.)

Select StepSample (or the name of your primary test database) from the list. Then click
OK to complete the connection configuration.

Control returns to the wizard with the new data connection selected in the list on the
Choose Your Data Connection panel.

Chapter 1 Introducing ADO.NET 4 13

Note ADO.NET uses connection strings, short, semicolon-delimited definition strings, to iden-
tify the data source. As you develop new applications, you will probably forgo the Data Source
Configuration Wizard as a means of building connection strings. If you are curious about what
appears in a connection string, expand the Connection String field in the Choose Your Data
Connection panel.

13. Click the Next button to continue.

The next wizard panel asks if the connection string should be stored in the application’s
configuration file. The field should already be selected, which is good, although you
might want to give it a more programmer-friendly name.

Note .NET applications use two types of configuration files (although it varies by project type):
application configuration files and user configuration files. Although your application has access
to the settings in both files, if you plan to include a feature in your program that modifies these
saved settings, make sure that you place such settings in the user configuration file. Application
configuration files can’t be modified from within the associated application.

14. Click the Next button once more to continue.

SQL Server will perform a quick analysis of your database, compiling a list of all avail-
able data-exposing items, including tables, views, stored procedures, and functions.
The Choose Your Database Objects panel displays all items found during this discovery
process.

14

Microsoft ADO.NET 4 Step by Step

15.

16.

17.

For this test, include the Customer table in the DataSet by expanding the Tables section
and marking the Customer table with a check mark.

You can optionally modify the DataSet Name field to something that will be easier to
repeatedly type in your source code. Click Finish to exit the wizard and create the data
source. The data source is now available for use in your application.

Select Data | Show Data Sources from the Visual Studio menu to see the data source.

The wizard also added a new .xsd file to your project; it appears in the Solution Explorer
with your other project files. This XML file contains the actual definition of the data
source. Removing this file from the project removes the Wizard-created data source.

~ Data Source New xsd File o

Visual Studio also lets you preview the data records within the data source.

Select Data | Preview Data from the Visual Studio menu to open the Preview Data
dialog box.

The menu choice might be hidden depending on what is currently active in the Visual
Studio IDE. If that menu choice does not appear, click the form in the design window
and then try to select the menu item again.

Chapter 1 Introducing ADO.NET 4 15

Preview Data @

Select an object to preview: Pararmeters:

StepSarnpleDataSet. Customer Fill, GetData |Z| Marne Type Walue

Mo parameters are defined on the selected ohject.

Results:

o] FullMarne Address1 Address? City StateRegion PostalCode A
FE Coho Vineyard | 123 Main Street Slbary 32 35000

2z Fourth Coffee 9576 Oak Boule... Los Angeles] 00110

3 Tailspin Toys 23 leffersan Aw., Harmilton 26 Fronz

< T v

Columns: 10 Rows: 3

Summary

This chapter provided an overview of Microsoft's ADO.NET technology and its major data
management components. At its heart, computer programming is all about data manipula-
tion, whether the data values represent customer records, characters and objects in a 3D
interactive video game, or the bits in a compressed audio file. With this inherent focus on
data, it makes sense that Microsoft would provide a great tool for interacting with tabular
data, one of the most useful ways of organizing data, especially in a business setting.

As you will see in upcoming chapters, the concepts included in this opening chapter have
direct ties to specific ADO.NET classes and class members. As a .NET developer, you already
have a core understanding of how ADO.NET can be used in an application because every-
thing in the library is expressed as standard .NET objects. The only things you still need to
learn are some of the details that are specific to ADO.NET—the very subjects covered in the
rest of this book.

Chapter 1 Quick Reference

To

Create a new data source

Preview data in an existing data source

Remove a data source from a project

Do This

Create or open a project in Visual Studio.
Select Data | Add New Data Source.
Follow the steps in the Connection Wizard.

Select Data | Preview Data.

Select the target data source from the Select An Object
To Preview list.

Click the Preview button.

Select the .xsd file in the Solution Explorer.

Press the Delete key or right-click on the file and select
Delete from the shortcut menu.

Chapter 3
Storing Data in Memory

After completing this chapter, you will be able to:
B Explain how a DataTable stores data
B Add new data rows to a table
B Examine, update, and remove existing values in a table row
B Explain how ADO.NET differentiates between pending and final data values
B Integrate data verification code into your DataTable object

Adding columns to a DataTable is an essential step in managing data in ADO.NET, but the
columns themselves contain no data. To store actual data values in an ADO.NET table, you
must use the DataRow class. After you place one or more data rows in a table, the real work
of managing application-specific information begins. This chapter introduces the DataRow
class and its role in data storage within each data table.

Note The exercises in this chapter all use the same sample project, a simple editor of DataRow
records within a single DataTable. Although you will be able to run the application after each
exercise, the expected results for the full application might not appear until you complete all
exercises in the chapter.

Adding Data

Adding new data rows to a table is a three-step process:

1. Create a new row object.
2. Store the actual data values in the row object.

3. Add the row object to the table.

Creating New Rows

The DataColumn objects you add to a DataTable let you define an unlimited number of
column combinations. One table might manage information on individuals, with textual
name fields and dates for birthdays and driver-license expirations. Another table might exist
to track the score in a baseball game, and contain no names or dates at all. The type of
information you store in a table depends on the columns included in that table, along with
the name, data type, and field constraints for each column.

37

38

Microsoft ADO.NET 4 Step by Step

The DataRow class lets you store a single row of data in a table. However, a row of data that
tracks customers or medical patients is not the same as a row that tracks baseball scores. The
columns differ in number, data types, and even their names and positions. Therefore, each
ADO.NET DataRow must be configured to work with a specific DataTable and its collection of
DataColumn instances.

The DataTable class includes the NewRow method to generate table-specific data rows.
Whenever you want to add a new row of data to a table, the first step always involves gener-
ating a new DataRow with the NewRow method.

C#

DataRow oneRow = someTable.NewRow() ;

Visual Basic

Dim oneRow As DataRow = someTable.NewRow()

The generated row includes information about each data column defined for the table.
Typically, the data associated with each column in the new row is initially NULL, the database
state for an unassigned field. However, if a DataColumn definition includes a DefaultValue
setting, that initial value will appear immediately in the generated row for the named column.
Also, any column that has its Autolncrement and related fields set (typically a primary key
field) will include generated sequential values for that column.

Defining Row Values

The DataRow class includes an Item property that provides access to each defined column,
by name, zero-based index number, or reference to the physical DataColumn instance. When
writing code with a specific table format in mind, programmers generally use the column-
name method because it makes clear which field is being referenced in a code statement.

C#
oneRow.Item["ID"] = 123; // by column name
oneRow.Item[0] = 123; // by column position

DataColumn whichColumn = someTable.Columns[0];
oneRow.Item[whichColumn] = 123; // by column instance

Visual Basic
oneRow.Item("ID") = 123 ' by column name
oneRow.Item(0) = 123 ' by column position

Dim whichColumn As DataColumn = someTable.Columns(0)
oneRow.Item(whichColumn) = 123 ' by column instance

Chapter 3 Storing Data in Memory 39

Because /tem is the default member for the DataRow class, you can omit the name when
referencing row values, as shown here:

C#
oneRow["ID"] = 123;

Visual Basic

oneRow("ID") 123

Visual Basic includes a special “exclamation point” syntax that condenses the statement even
more, but you can use it only with column names, not with column indexes.

Visual Basic
oneRow!ID = 123

Note Members of the /tem class are defined as the generic Object type; they are not strongly
typed to the data type defined for the columns. This means that you can store data of an incorrect
type in any field during this assignment phase. Errors will not be reported until you attempt to
add the DataRow object to the table's Rows collection, as described in the “Storing Rows in a
Table" section of this chapter on page 40.

As you assign values to a row, they become available immediately for use in other
expressions.

C#

orderData["Subtotal"] = orderRecord.PreTaxTotal;

orderData["SalesTax"] = orderRecord.PreTaxTotal * orderRecord.TaxRate;
orderData["Total"] = orderData["Subtotal"] + orderData["SalesTax"];

Visual Basic

orderData!Subtotal = orderRecord.PreTaxTotal

orderData!SalesTax = orderRecord.PreTaxTotal orderRecord.TaxRate
orderData!Total = orderData!Subtotal + orderData!SalesTax

&

40 Microsoft ADO.NET 4 Step by Step

Fields with no default or auto-increment value are automatically set to NULL. If for any
reason you need to set a field to NULL from a non-NULL state, assign it with the value of
.NET's DBNull class.

C#
oneRow["Comments"] = System.DBNull.Value;

Visual Basic
oneRow!Comments = System.DBNull.Value

As mentioned in Chapter 2, “Building Tables of Data,” you can test field values in C# using the
DBNull.Value.Equals method or in Visual Basic with the IsDBNull function. The DataRow class
includes its own IsNull method; it is functionally equivalent to the methods from Chapter 2.
Instead of passing the IsNull method a field value to test, you pass it the column’s name, the
column’s position, or an instance of the column.

C#
if (oneRow.IsNull("Comments™))...

Visual Basic
If (oneRow.IsNull("Comments") = True)...

Note System.DBNull is not the same as null in C#, or Nothing in Visual Basic. Those keywords
indicate the absence of an object’s value. System.DBNull.Value is an object that presents a value.

Storing Rows in a Table

After you have assigned all required data values to the columns in a new row, add that row
to the DataTable using the table’s Rows.Add method.

C#

someTable.Rows.Add(oneRow) ;

Visual Basic

someTable.Rows.Add(oneRow)

An overload of the Add method lets you skip the formal row-object creation process; instead,
you supply the final field values directly as arguments. All provided values must appear in the
same order and position as the table’s DataColumn instances.

Chapter 3 Storing Data in Memory 41

C#

//

————— Assumes column O is numeric, 1 is string.

someTable.Rows.Add(new Object[] {123, "Fred"});

Visual Basic

————— Assumes column 0 1is numeric, 1 is string.

someTable.Rows.Add(123, "Fred");

Whichever method you employ, the Add process tests all data values to be added to the
table for data type compliance before adding the row. If the new row contains any values
that can't be stored in the target column-specific data type, the Add method throws an
exception.

Adding Rows to a DataTable: C#

1.

Open the “Chapter 3 CSharp” project from the installed samples folder. The project
includes two Windows.Forms classes: AccountManager and AccountDetail.

Open the source code view for the AccountManager form. Locate the AccountManager_
Load event handler. This routine creates a custom DataTable instance with five columns:
ID (a read-only, auto-generated long integer), FullName (a required 30-character
unique string), Active (a Boolean), AnnualFee (an optional decimal), and StartDate (an
optional date).

Add the following statements just after the “Build some sample data rows” comment.
These rows add new DataRow objects to the table using the Rows.Add alternative
syntax:

CustomerAccounts.Rows.Add(new Object[] {1L, "Blue Yonder Airlines", true,
500m, DateTime.Parse("1/1/2007")});

CustomerAccounts.Rows.Add(new Object[] {2L, "Fourth Coffee", true, 350m,
DateTime.Parse("7/25/2009")});

CustomerAccounts.Rows.Add(new Object[] {3L, "Wingtip Toys", false}l);

Adding Rows to a DataTable: Visual Basic

1.

2.

Open the “Chapter 3 VB” project from the installed samples folder. The project includes
two Windows.Forms classes: AccountManager and AccountDetail.

Open the source code view for the AccountManager form. Locate the AccountManager_
Load event handler. This routine creates a custom DataTable instance with five columns:
ID (a read-only, auto-generated long integer), FullName (a required 30-character
unique string), Active (a Boolean), AnnualFee (an optional decimal), and StartDate (an
optional date).

42 Microsoft ADO.NET 4 Step by Step

3. Add the following statements just after the “Build some sample data rows” comment.
These rows add new DataRow objects to the table using the Rows.Add alternative
syntax:

CustomerAccounts.Rows.Add({1&, "Blue Yonder Airlines", True, 500@, #1/1/2007#})
CustomerAccounts.Rows.Add({2&, "Fourth Coffee", True, 350@, #7/25/2009#})
CustomerAccounts.Rows.Add({3&, "Wingtip Toys", False})

Examining and Changing Data

After adding a data row to a table, you can process it as a table member. For instance, you can
iterate through the table’s Rows collection, examining the stored column values as you pass
through each record. The following code adds up the sales tax for all records in the allSales
table:

C#

decimal totalTax = Om;
foreach (DataRow scanRow in someTable.Rows)
if (!DBNull.Value.Equals(scanRow["SalesTax"]))
totalTax += (decimal)scanRow["SalesTax"];

Visual Basic

Dim totalTax As Decimal = 0@
For Each scanRow As DataRow In someTable.Rows
If (IsDBNull(scanRow!SalesTax) = False) Then _
totalTax += CDec(scanRow!SalesTax)
Next scanRow

Because each row’s collection of items is not strongly typed, you might need to cast or convert
each field to the target data type before using it.

Note ADO.NET does include extension methods that provide strongly typed access to each
row’'s members. These methods were added to the system to support LINQ and its method of
querying data within the context of the Visual Basic or C# language. Part IV of this book intro-
duces LINQ and its use with ADO.NET data.

Because of this lack of strong typing, be careful when assigning new values to any row already
included in a table. For example, code that assigns a string value to an integer column will
compile without error, but will generate a runtime error.

Chapter 3 Storing Data in Memory 43

Modifying Existing Rows in a DataTable: C#

Note This exercise uses the “Chapter 3 CSharp” sample project and continues the preceding
exercise in this chapter.

1.

2.

Open the source code view for the AccountDetail form. Locate the AccountDetail_Load
routine.

Add the following code, which fills in the form’s display fields with content from an
existing DataRow instance:

if (AccountEntry != null)

{
AccountID.Text = string.Format("{0:0}", AccountEntry["ID"]);
ActiveAccount.Checked = (bool)AccountEntry["Active"];
if (DBNull.Value.Equals(AccountEntry["FullName"]) == false)
AccountName.Text = (string)AccountEntry["FullName"];
if (DBNull.Value.Equals(AccountEntry["AnnualFee"]) == false)
AnnualFee.Text = string.Format("{0:0.00}",
(decimal)AccountEntry["AnnualFee"]);
if (DBNull.Value.Equals(AccountEntry["StartDate"]) == false)
StartDate.Text = string.Format("{0:d}",
(DateTime)AccountEntry["StartDate"]);
}

Locate the ActOK_Click routine. In the Try block, just after the “Save the changes in the
record” comment, you'll find the following code line:

workArea.BeginEdit(Q);

Just after that line, add the following code, which updates an existing DataRow instance
with the user’s input:

workArea["Active"] = ActiveAccount.Checked;

if (AccountName.Text.Trim().Length == 0)
workArea["FullName"] = DBNull.Value;

else
workArea["FullName"] = AccountName.Text.Trim();

if (AnnualFee.Text.Trim().Length == 0)
workArea["AnnualFee"] = DBNull.Value;

else
workArea["AnnualFee"] = decimal.Parse(AnnualFee.Text);

if (StartDate.Text.Trim().Length == 0)
workArea["StartDate"] = DBNull.Value;

else
workArea["StartDate"] = DateTime.Parse(StartDate.Text);

44 Microsoft ADO.NET 4 Step by Step

Modifying Existing Rows in a DataTable: Visual Basic

Note This exercise uses the "Chapter 3 VB” sample project and continues the preceding exercise
in this chapter.

1.

2.

Open the source code view for the AccountDetail form. Locate the AccountDetail_Load
routine.

Add the following code, which fills in the form’s display fields with content from an
existing DataRow instance:

If (AccountEntry IsNot Nothing) Then
AccountID.Text = CStr(AccountEntry!ID)
ActiveAccount.Checked = CBool(AccountEntry!Active)
If (IsDBNull(AccountEntry!FullName) = False) Then _
AccountName.Text = CStr(AccountEntry!FulTName)
If (IsDBNull(AccountEntry!AnnualFee) = False) Then _
AnnualFee.Text = Format(CDec(AccountEntry!AnnualFee), "0.00™)
If (IsDBNull(AccountEntry!StartDate) = False) Then _
StartDate.Text = Format(CDate(AccountEntry!StartDate), "Short Date")
End If

Locate the ActOK_Click routine. In the Try block, just after the “Save the changes in the
record” comment, you'll find the following code line:

workArea.BeginEdit()

Just after that line, add the following code, which updates an existing DataRow instance
with the user’s input:

workArea!Active = ActiveAccount.Checked
If (AccountName.Text.Trim.Length = 0) _

Then workArea!Ful1Name = DBNull.Value _

Else workArea!FulTName = AccountName.Text.Trim
If (AnnualFee.Text.Trim.Length = 0) _

Then workArea!AnnualFee = DBNull.Value _

Else workArea!AnnualFee = CDec(AnnualFee.Text)
If (StartDate.Text.Trim.Length = 0)

Then workArea!StartDate = DBNull.Value _

Else workArea!StartDate = CDate(StartDate.Text)

Chapter 3 Storing Data in Memory 45
Removing Data

You remove DataRow objects from a table via the DataTable.Rows collection’s Remove and
RemoveAt methods. The Remove method accepts an instance of a row that is currently in
the table.

C#
DataRow oneRow = someTable.Rows[0];

someTable.Rows.Remove(oneRow) ;

Visual Basic

Dim oneRow As DataRow = someTable.Rows(0)
someTable.Rows.Remove (oneRow)

The RemoveAt method also removes a row, but you pass it the index position of the row to
delete.

C#

someTable.Rows.RemoveAt(0);

Visual Basic
someTable.Rows.RemoveAt(0)

If you have an instance of a data row available, but you want to call the RemoveAt method,
you can obtain the index of the row from the Rows collection’s IndexOf method.

C#
int rowPosition = someTable.Rows.IndexOf(oneRow);

Visual Basic

Dim rowPosition As Integer = someTable.Rows.IndexOf(oneRow)

You can put any row you remove from a table right back into the Rows collection by using
the standard DataTable.Rows.Add method. Another Rows method, InsertAt, adds a DataRow
object to a table, but lets you indicate the zero-based position of the newly added row. (The
Add method always puts new rows at the end of the collection.) The following code inserts a
row as the first item in the collection:

C#

someTable.Rows.InsertAt(oneRow, 0);

Visual Basic

someTable.Rows.InsertAt(oneRow, 0)

46 Microsoft ADO.NET 4 Step by Step

To remove all rows from a table at once, use the DataTable.Rows object’s Clear method.

C#

someTable.Rows.Clear();

Visual Basic
someTable.Rows.Clear()

As convenient as Remove, RemoveAt, and Clear are, they come with some negative side
effects. Because they fully remove a row and all evidence that it ever existed, these methods
prevent ADO.NET from performing certain actions, including managing record removes
within an external database. The next section, “Batch Processing,” discusses a better method
of removing data records from a DataTable instance.

Batch Processing

The features shown previously for adding, modifying, and removing data records within

a DataTable all take immediate action on the content of the table. When you use the Add
method to add a new row, it's included immediately. Any field-level changes made within
rows are stored and considered part of the record—assuming that no data-specific exceptions
get thrown during the updates. After you remove a row from a table, the table acts as if it
never existed.

Although this type of instant data gratification is nice when using a DataTable as a simple
data store, sometimes it is preferable to postpone data changes or make several changes at
once, especially when you need to verify that changes occurring across multiple rows are
collectively valid.

ADO.NET includes table and row-level features that let you set up “proposed” changes to
be accepted or rejected en masse. When you connect data tables to their external database
counterparts in later chapters, ADO.NET uses these features to ensure that updates to both
the local copy of the data and the remote database copy retain their integrity. You can also
use them for your own purposes, however, to monitor changes to independent DataTable
instances.

Note In reality, ADO.NET always uses these batch processing monitoring tools when changes
are made to any rows in a table, even changes such as those in this chapter's simple code samples.
Fortunately, the Framework is designed so that you can safely ignore these monitoring

features if you don’t need them.

Chapter 3 Storing Data in Memory 47

To use the batch system, simply start making changes. When you are ready to save or reject all
changes made within a DataTable, call the table’'s AcceptChanges method to commit and ap-
prove all pending changes, or call the RejectChanges method to discard all unsaved changes.
Each DataRow in the table also includes these methods. You can call the row-level methods
directly, but the table-level methods automatically trigger the identically named methods in
each modified row.

C#

someTable.AcceptChanges(); // Commit all row changes
someTable.RejectChanges(); // Reject changes since last commit

Visual Basic

someTable.AcceptChanges() ' Commit all row changes

someTable.RejectChanges() ' Reject changes since last commit
Row State

While making your row-level edits, ADO.NET keeps track of the original and proposed ver-
sions of all fields. It also monitors which rows have been added to or deleted from the table,
and can revert to the original row values if necessary. The Framework accomplishes this by
managing various state fields for each row. The main tracking field is the DataRow.RowState
property, which uses the following enumerated values:

B DataRowState.Detached The default state for any row that has not yet been added
to a DataTable.

B DataRowState.Added This is the state for rows added to a table when changes to
the table have not yet been confirmed. If you use the RejectChanges method on the
table, any added rows will be removed immediately.

B DataRowState.Unchanged The default state for any row that already appears in a
table, but has not been changed since the last call to AcceptChanges. New rows created
with the NewRow method use this state.

B DataRowState.Deleted Deleted rows aren’t actually removed from the table until
you call AcceptChanges. Instead, they are marked for deletion with this state setting.
See the following discussion for the difference between “deleted” and “removed” rows.

B DataRowsState.Modified Any row that has had its fields changed in any way is
marked as modified.

Every time you add or modify a record, the data table updates the row state accordingly.
However, removing records from a data table with the Rows.Remove and Rows.RemoveAt
methods circumvents the row state tracking system, at least from the table’s point of view.

48

Microsoft ADO.NET 4 Step by Step

To enable ADO.NET batch processing support on deleted rows, use the DataRow object’s
Delete method. This does not remove the row from the DataTable.Rows collection. Instead,
it marks the row’s state as deleted. The next time you use the table or row AcceptChanges
method to confirm all updates, the row will be removed permanently from the table.

If you want to use the batch processing features, or if your DataTable instances are associated
with a database table, even if that table is temporarily disconnected, you need to use the
row-specific Delete method instead of Remove and RemoveAt.

C#

someTable.Rows.Remove(oneRow); // Removes row immediately
oneRow.Delete(); // Marks row for removal during approval
Visual Basic

someTable.Rows.Remove(oneRow) ' Removes row immediately
oneRow.Delete() ' Marks row for removal during approval

If you retain a reference to a deleted row once it has been removed from the table, its
RowState property will be set to DataRowState.Detached, just like a new row that has not yet
been added to a table.

Note When working with DataTable instances that are connected to true database tables,
ADO.NET will still allow you to use the Remove and RemoveAt methods. However, these methods
will not remove the row from the database-side copy. They remove only the local DataTable.Rows
copy of the row. You must use the row’s Delete method to ensure that the row gets removed
from the database upon acceptance.

Row Versions

When you make changes to data within a data table’s rows, ADO.NET keeps multiple copies
of each changed value. Row version information applies to an entire row, even if only a single
data column in the row has changed.

B DataRowVersion.Original The starting value of the field before it was changed (the
value that was in effect after the most recent use of AcceptChanges occurred).

B DataRowVersion.Proposed The changed but unconfirmed field value. The Proposed
version of a field doesn't exist until you begin to make edits to the field or row.
When changes are accepted, the proposed value becomes the actual (Original) value
of the field.

Chapter 3 Storing Data in Memory 49

B DataRowVersion.Current For fields with pending edits, this version is the same as
Proposed. For fields with confirmed changes, the Current version is the same as the
Original version.

m DataRowVersion.Default For rows attached to a DataTable, this version is the same
as Current. For detached rows, Default is the same as Proposed. The Default version of
a row is not necessarily the same as the default values that might appear in newly
created rows.

Depending on the current state of a row, some of these row versions might not exist. To
determine whether a row version does exist, use the DataRow.HasVersion method. The fol-
lowing code block uses the HasVersion method and a special overload of the /tem method
to access various row versions:

C#
if (oneRow.HasVersion(DataRowVersion.Proposed))

{
if (oneRow.Item["Salary", DataRowVersion.Original] !=
oneRow.Item["Salary", DataRowVersion.Proposed])
MessageBox.Show("Proposed salary change.");
}
Visual Basic

If (oneRow.HasVersion(DataRowVersion.Proposed) = True) Then
If (oneRow.Item("Salary", DataRowVersion.Original) <>
oneRow.Item("Salary", DataRowVersion.Proposed)) Then _
MessageBox.Show("Proposed salary change.™)
End If

The default row version returned by the Item property is the Current version.

Validating Changes

As mentioned earlier in the "Storing Rows in a Table” section on page 40, attempting to store
data of the incorrect data type in a column will throw an exception. However, this will not
prevent a user from entering invalid values, such as entering 7,437 into a System.Int32 col-
umn that stores a person’s age. Instead, you must add validation code to your data table to
prevent such data range errors.

50 Microsoft ADO.NET 4 Step by Step

Exception-Based Errors
ADO.NET monitors some data errors on your behalf. These errors include the following:

B Assigning data of the wrong data type to a column value.

B Supplying string data to a column that exceeds the maximum length defined in the
column’s DataColumn.MaxLength property.

B Attempting to store a NULL value in a primary key column.
B Adding a duplicate value in a column that has its Unique property set.

B Taking data actions that violate one of the table’s custom constraints. Constraints are
discussed in Chapter 5, “Bringing Related Data Together.”

When one of these data violations occurs, ADO.NET throws an exception in your code at
the moment when the invalid assignment or data use happens. The following code block
generates an exception because it attempts to assign a company name that is too long for a
20-character column:

C#

DataColumn withRule = someTable.Columns.Add("FullName", typeof(string));

withRule.MaxLength = 20;

// ...later...

DataRow rowToUpdate = someTable.Rows[0];

rowToUpdate["FulTName"] = "Graphic Design Institute"; // 24 characters
/] ----- Exception occurs with this assignment

Visual Basic

Dim withRule As DataColumn = someTable.Columns.Add("FulIName", GetType(String))
withRule.MaxLength = 20

' ...]later. ..
Dim rowToUpdate As DataRow = someTable.Rows(0)
rowToUpdate!FullName = "Graphic Design Institute" ' 24 characters

————— Exception occurs with this assignment

Naturally, you would want to enclose such assignments within exception handling blocks.
However, there are times when adding this level of error monitoring around every field
change is neither convenient nor feasible—not to mention the impact it has on performance
when adding or updating large numbers of records. To simplify exception monitoring, the
DataRow class includes the BeginEdit method. When used, any data checks normally done at
assignment are postponed until you issue a matching DataRow.EndEdit call.

Chapter 3 Storing Data in Memory 51

C#

rowToUpdate.BeginEdit();

rowToUpdate["FullName"] = "Graphic Design Institute"; // 24 characters
// ----- No exception occurs

rowToUpdate["RevisionDate"] = DateTime.Today; // Other field changes as needed
rowToUpdate.EndEdit(Q);

// ----- Exception for FullName field occurs here
Visual Basic

rowToUpdate.BeginEdit()

rowToUpdate!Ful1Name = "Graphic Design Institute" ' 24 characters
————— No exception occurs

rowToUpdate!RevisionDate = Today ' Other field changes as needed
rowToUpdate.EndEdit()

————— Exception for FullName field occurs here

To roll back any changes made to a row since using Beginkdit, use the CancelEdit method.
Even when you complete a row’s changes with the EndEdit method, the changes are not yet
committed. It is still necessary to call the AcceptChanges method, either at the row or the
table level.

The DataTable.AcceptChanges and DataRow.AcceptChanges methods, when used, automati-
cally call DataRow.EndEdit on all rows with pending edits. Similarly, DataTable.RejectChanges
and DataRow.RejectChanges automatically issue calls to DataRow.CancelEdit on all pending
rows changes.

Validation-Based Errors

For data issues not monitored by ADO.NET, including business rule violations, you must set up
the validation code yourself. Also, you must manually monitor the data table for such errors
and refuse to confirm changes that would violate the custom validation rules.

Validation occurs in the various event handlers for the DataTable instance that contains the
rows to monitor. Validation of single-column changes typically occurs in the ColumnChanging
event. For validation rules based on the interaction between multiple fields in a data row, use
the RowChanging event. The RowDeleting and TableNewRow events are useful for checking
data across multiple rows or the entire table. You can also use any of the other table-level
events (ColumnChanged, RowChanged, RowDeleted, TableClearing, TableCleared) to execute
validation code that meets your specific needs.

Inside the validation event handlers, use the Proposed version of a row value to assess its
preconfirmed value. When errors occur, use the row’s SetColumnError method (with the name,
position, or instance of the relevant column) to indicate the problem. For row-level errors,
assign a description of the problem to the row’s RowError property. The following code applies
a column-level business rule to a numeric field, setting a column error if there is a problem:

52 Microsoft ADO.NET 4 Step by Step

C#

private void Applicant_ColumnChanging(Object sender,
System.Data.DataColumnChangeEventArgs e)

{
/] ----- Check the Age column for a valid range.
if (e.Column.ColumnName == "Age")
{
if ((int)e.Proposedvalue < 18 || (int)e.ProposedvValue > 29)
e.Row.SetColumnError(e.Column,
"Applicant's age falls outside the allowed range.");
}
}
Visual Basic

Private Sub AppTlicant_ColumnChanging(ByVal sender As Object,
ByVal e As System.Data.DataColumnChangeEventArgs)
————— Check the Age column for a valid range.
If (e.Column.ColumnName = "Age") Then
If (CInt(e.Proposedvalue) < 18) Or (CInt(e.ProposedValue) > 29) Then
e.Row.SetColumnError(e.Column,
"Applicant's age falls outside the allowed range.")
End If
End If
End Sub

Adding column or row-level errors sets both the DataRow.HasErrors and the DataTable.
HasErrors properties to True, but that's not enough to trigger an exception. Instead, you need
to monitor the HasErrors properties before confirming data to ensure that validation rules are
properly applied. Another essential method, ClearErrors, removes any previous error notices
from a row.

C#

// ----- Row-Tevel monitoring.
oneRow.ClearErrors();
oneRow.BeginEdit();

oneRow.FullName = "Tailspin Toys"; // Among other changes
if (oneRow.HasErrors)
{

ShowFirstRowError(oneRow) ;
oneRow.CancelEdit();

}

else
oneRow.EndEdit();

// ----- Table-Tevel monitoring. Perform row edits, then...

if (someTable.HasErrors)

{
DataRow[] errorRows = someTable.GetErrors();
ShowFirstRowError(errorRows[0]);
someTable.RejectChanges(); // Or, Tlet user make additional corrections

Chapter 3 Storing Data in Memory

else
someTable.AcceptChanges();
// ...later...
pubTlic void ShowFirstRowError(DataRow whichRow)
{
// ----- Show first row-level or column-level error.
string errorText = "No error";
DataColumn[] errorColumns = whichRow.GetColumnsInError(Q);
if (errorColumns.Count > 0)
errorText = whichRow.GetColumnError(errorColumns[0]);
else if (whichRow.RowError.Length > 0)
errorText = whichRow.RowError;
if (errorText.Length == 0) errorText = "No error";
MessageBox.Show(errorText) ;
}
Visual Basic

————— Row-Tevel monitoring.
oneRow.ClearErrors()
oneRow.BeginEdit()
oneRow.FullName = "Tailspin Toys" ' Among other changes
If (oneRow.HasErrors = True) Then
ShowFirstRowError(oneRow)
oneRow.CancelEdit()
Else
oneRow. EndEdit()
End If

————— Table-level monitoring. Perform row edits, then...
If (someTable.HasErrors = True) Then
Dim errorRows() As DataRow = someTable.GetErrors()
ShowFirstRowError(errorRows (0))
someTable.RejectChanges() ' Or, Tet user make additional corrections
Else
someTable.AcceptChanges ()
End If

...later...

Public Sub ShowFirstRowError(ByVal whichRow As DataRow)
Ve Show first column-Tevel or row-level error.
Dim errorText As String = ""
Dim errorColumns() As DataColumn = whichRow.GetColumnsInError()

If (errorColumns.Count > 0) Then
errorText = whichRow.GetColumnError(errorColumns(0))
ElseIf (whichRow.RowError.Length > 0) Then
errorText = whichRow.RowError
End If
If (errorText.Length = 0) Then errorText = "No error"
MessageBox.Show(errorText)
End Sub

53

54 Microsoft ADO.NET 4 Step by Step

Validating Content in a DataRow: C#

Note This exercise uses the “Chapter 3 CSharp” sample project and continues the preceding
exercise in this chapter.

1. Open the source code view for the AccountManager form.

2. Locate the CustomerAccounts_ColumnChanging event handler, which is called when-
ever a column value in a CustomerAccounts table row changes. Add the following code,
which checks for valid data in two of the columns:

if (e.Column.ColumnName == "AnnualFee")

{
/] ----- Annual fee may not be negative.
if (DBNull.Value.Equals(e.ProposedValue) == false)
{

if ((decimal)e.ProposedValue < Om)
e.Row.SetColumnError(e.Column,
"Annual fee may not be negative.");

}
}
else if (e.Column.ColumnName == "StartDate")
{
// ----- Start date must be on or before today.
if (DBNull.Value.Equals(e.ProposedValue) == false)
{
if (((DateTime)e.ProposedValue).Date > DateTime.Today)
e.Row.SetColumnError(e.Column,
"Start date must occur on or before today.");
}
}

3. Locate the CustomerAccounts_RowChanging event handler, which is called whenever
any value in a row changes within the CustomerAccounts table. Add the following code,
which checks for valid data involving multiple columns:

if (e.Row.HasVersion(DataRowVersion.Proposed) == true)
{
if (((bool)e.Row["Active", DataRowVersion.Proposed] == true) &&
(DBNuT1.Value.Equals(e.Row["StartDate",
DataRowVersion.Proposed]) == true))
e.Row.RowError = "Active accounts must have a valid start date.";

Chapter 3

Validating Content in a DataRow: Visual Basic

Note This exercise uses the “Chapter 3 VB" sample project and continues the preceding exercise
in this chapter.

1. Open the source code view for the AccountManager form.

Storing Data in Memory

4. Run the program. Use its features to create, edit, and delete data rows. When you
attempt to provide invalid data—incorrect data types, violations of business rules,
duplicate account names—the program provides the appropriate error messages.

2. Locate the CustomerAccounts_ColumnChanging event handler, which is called when-

55

ever a column value in a CustomerAccounts table row changes. Add the following code,

which checks for valid data in two of the columns:

If (e.Column.ColumnName = "AnnualFee") Then
————— Annual fee may not be negative.
If (IsDBNull(e.Proposedvalue) = False) Then
If (CDec(e.Proposedvalue) < 0@) Then _
e.Row.SetColumnError(e.Column,
"Annual fee may not be negative.™)
End If
ElseIf (e.Column.ColumnName = "StartDate") Then
V- Start date must be on or before today.
If (IsDBNull(e.Proposedvalue) = False) Then
If (CDate(e.ProposedValue).Date > Today) Then _
e.Row.SetColumnError(e.Column,
"Start date must occur on or before today.")
End If
End If

56 Microsoft ADO.NET 4 Step by Step

3. Locate the CustomerAccounts_RowChanging event handler, which is called whenever
any value in a row changes within the CustomerAccounts table. Add the following code,
which checks for valid data involving multiple columns:

If (e.Row.HasVersion(DataRowVersion.Proposed) = True) Then
If (CBool(e.Row("Active", DataRowVersion.Proposed)) = True) And
(IsDBNul1(e.Row("StartDate",
DataRowVersion.Proposed)) = True) Then
e.Row.RowError = "Active accounts must have a valid start date."
End If
End If
4. Run the program. Use its features to create, edit, and delete data rows. When you attempt
to provide invalid data—incorrect data types, violations of business rules, duplicate

account names—the program provides the appropriate error messages.

Summary

This chapter discussed the DataRow class, the final destination of all data in ADO.NET. With
one instance created per data record, the DataRow class manages each individual columnar
field. When used alone, its stored values use the generic Object data type, but when inserted
into a DataTable object’s Rows collection, all data type limitations and other constraints
established for the table’s columns act together to verify the row’s content.

Beyond these column settings, you can add event handlers to the DataTable that apply custom
business rules to the column and row data, providing an additional layer of validation—and
ultimately, integrity—for the table’s data.

Chapter 3 Quick Reference

To
Add a row to a DataTable

Delete a row from a DataTable

Check for data issues in new and modified
DataRow objects

Temporarily suspend data validation while
modifying a data row

Chapter 3 Storing Data in Memory 57

Do This

Use the DataTable object’s NewRow method to obtain a
DataRow instance.

Update the /tem values in the DataRow as needed.

Add the row using the table’s Rows.Add method.

Call the DataRow object’s Delete method.
Call the DataTable object’'s AcceptChanges method.

Create a DataTable.
Add DataColumn definitions as needed.

Add event handlers for the DataTable object’s
ColumnChanging, RowChanging, or other events.

In the handlers, call the DataRow object's SetColumnError
method or update its RowError property.

Call the DataRow object’s BeginEdit method.

Update the /tem values in the DataRow as needed.

Call the DataRow object’s EndEdit method.

Index

Symbols

$filter option 380
$orderby option 380
$select option 380
$value option 383
* (asterisk) symbol, using as
entity name 376
.csdl file extensions 217
{} (curly braces), building
custom collections
using 254
.dbml file extensions 336
.edmx file extensions 217,
218, 325
= (equal sign), comparing
columns to literal
values using 63
>= (greater than or equal
to sign)
comparing columns to lit-
eral values using 63
in Where clause (LINQ)
296
> (greater than sign)
comparing columns to lit-
eral values using 63
<> (inequality sign)
comparing columns to lit-
eral values using 63
<= (less than or equal to
sign)
comparing columns to lit-
eral values using 63
< (less than sign)
comparing columns to lit-
eral values using 63
in Where clause (LINQ)
296

.NET applications, types of
configuration files
13
.NET developers, ADO.NET
and 3
.NET Framework.
See also Entity
Framework (EF)
ADO.NET in 213
connection string builders
in 126
data providers 126-127
strongly typed DataSets
in 214
.NET objects, tools 8
() parentheses
in expression evaluation
63
using in Where clause
(LINQ) 296
@-prefixed placeholders
155, 157, 161, 167,
178
"’ (single quotes)
using BINARY keyword
with 250
using GUID keyword with
250
using strings with 249
\SQLEXPRESS
appended with SQL
Server 2008 Express
Edition instances 12
.ssdl file extensions 217,
325
- (subtraction) operators, in
Entity SQL language
250
.svc service files 370
.t (text templates) file ex-
tensions 241

xsd file extensions
created from Connection
Wizard 14
creating tables with
mouse 28

A

ABS (absolute value) 251
AcceptChanges method
48, 57,99
Access, provider class li-
braries for 126
ACID
rules 192-193
with transactions 204
Acos function 323
acronym, ADO.NET 4
Add Connection dialog box
12
Add Entity dialog box
231-232
Add Function Import dialog
box 233-234
Add... functions
in Entity SQL language
251
in LINQ to Entities 322
adding
aggregate columns
94-95
BindingNavigator control
to Windows forms
353
calculated columns 71
connections to databases
32
data columns 21-28
data rows to tables 37-41
Entity Framework model
to projects 243

385

Add New

expression columns
68-70
mapping condition to en-
tity 237-239
navigation buttons to
WPF window 357-
360
new entities through ob-
jects 271-272
relationships between
two tables 79
tables to DataSets 75
Add New Item dialog box
28
AddObject method 272
add operator in REST 380
AddWithValue method 157
ADO.NET
about 3-5
components of 5-7
extensions to 7-8
prior versions of, Oracle
providers in 127
ADO.NET Data Services
369
ADO.NET Entity Data
Model Designer
about 218
generating objects using
220
mapping details panel,
working with 235-
240
using 230-236
ADO.NET Entity Data
Model Wizard 218,
225-229, 325, 372
ADO.NET EntityObject
Generator 241
ADO.NET Self-Tracking
EntityObject
Generator 241
ADO vs. ADO.NET 4
Aggregate clauses 301,
302

aggregate functions 252-
254, 301-302
aggregating data 89-98
adding aggregate col-
umns 94-95
functions for 89-90
generating
single aggregates
91-94
summaries 95-98
referencing parent fields
in expressions 98
aliases, using in Entity SQL
language 247
All
as EntitySetRights mem-
ber 376
function 301
AllowDBNull, DataColumn
class property 23
AllowDelete Boolean prop-
erties 101
AllowEdit Boolean proper-
ties 101
AllowNew Boolean proper-
ties 101
AllRead, as EntitySetRights
member 376
AllWrite, as EntitySetRights
member 376
AND operator 250, 296
and operator in REST 380
anonymous type definition
(new {}) 294
anonymous types 290
Any function 301
application configuration
files, modifying set-
tings in 13
Application Name key 123
"applies” as keyword in
Entity SQL language
248-249
arguments, XmIWriteMode
109

arrays
of DataRow instances
in Select method 98
of DataRowView instances
in FindRows method
102
ASC (ascending sorts) 65
ascending sorts (ASC) 65
Ascii function 323
ASC modifier 248
AsEnumerable extension
method 306
Asin function 323
AsNonUnicode function
322
ASP.NET
applications 371
data binding in 362-366
services 370
association ends, Entity
Framework definition
of 215
associations
editing 232-233
edit mappings 237
Entity Framework defini-
tion of 215, 216
sets of, Entity Framework
definition 216
asterisk (*) symbol, using as
entity name 376
AsUnicode function 322
Atan2 function 323
Atan function 323
Atomicity rule 192
AtomPub (Atom Publishing
Protocol) 370, 377-
378, 382
AttachDBFilename key 123
Autolncrement,
DataColumn class
property 23, 38
AutolncrementSeed,
DataColumn class
property 23

AutolncrementStep,
DataColumn class
property 23

auto-update EF model 233

Average function 301

Avg function 89, 252

batch processing 46-49
BeginEdit method 50-53, 57
BeginExecuteNonQuery
method 139-141
BeginExecuteXmlReader
method 146
BeginTransaction method
196
BINARY keyword 250
BindingContext instances
353
binding data
about 347
in ASP.NET 362-366
in Windows forms 347-354
creating complex forms
348
creating simple forms
351-352
understanding 352-354
in Windows Presentation
Foundation (WPF)
352-362
creating data-bound ap-
plications 355-361
BindingNavigator control
353
BindingSource class 353
Bitwise functions 251
BLOBs 281
Boolean functions
All 301
Any 301
Contains 251
EndsWith 251
StartsWith 251
Boolean operators
AND 63, 296, 380

NOT 63, 296, 380
OR 63, 296, 380

Boolean properties
AllowDelete 101
AllowEdit 101
AllowNew 101

Boolean values
true and false keywords as

249
BuildConnection function
129
C
C#

accessing data through
model-generated ob-
jects 268-270

accessing field values 144

adding aggregate columns
95

adding BindingNavigator
control to Windows
forms 353-354

adding columns to
DataTables 25-26

adding constraints manu-
ally 83

adding database tables, us-
ing DataSet Designer
32-33

adding DelimSubstring
method to System.
String data 278

adding expression columns
68-69

adding new entities
through objects 271-
272

adding parameters to a
command 156

adding relationships be-
tween two tables 79

adding rows to DataTables
41

adding tables to Data Sets
75

C# 387

AddWithValue method in
setting parameters
157

building connection strings
125

calling AddLocation stored
procedure 162-163

calling
BeginExecuteNonQuery
method 139

calling Complete method
of TransactionScope
205-206

calling DeleteObject meth-
od 273

calling
EndExecuteNonQuery
method 139

calling stored procedures
with parameters 163-
165

computing aggregate val-
ues 91-93

configuring update com-
mands 175-176

creating command objects
136

creating custom tables,
in DataSet Designer
28-32

creating data bound WPF
applications 355-361

creating data service from
EF model 372-373

creating DataSet objects
73-74

creating DataTables 19

creating data views 99-101

creating instances of
TransactionScope 204

creating new instance of
command builder 180

creating SQL Server con-
nections 128-129

C#

defining update and
delete rules in
DataRelations 85-86
employing savepoints
203
finding rows by primary
key 60-61
generating DataTables
from DataView
103-104
generating EF objects
220-221
generating summaries 96
generating XML from
DataSet 114-115
GetOrdinal method in
144
implementing many-to-
many relationships
based on primary
keys 83-84
LINQ- specific language
features 8
locating parent-child re-
cords 80
modifying databases
through entity ob-
jects 274-276
modifying existing prop-
erties 271
modifying rows in
DataTable 43-44
moving data into
DataSets 173-174
moving data into
DataTables 171-173
nesting child tables 113
null values in 290
opening SQL Server con-
nections 129-130
processing database que-
ries 146-147
processing with distrib-
uted transactions
206-207

processing with local
transactions 198-
200

ReadXmlin 110

referencing parent fields
in expressions 98

removing DataRow ob-
jects 45-46

retrieving entity
data through
ObjectQuery 257-
258

retrieving entity data
through provider
261-263

returning data rows
142-143

running nonqueries
138-139

selecting and sorting
DataRow objects
65-66

SELECT queries, return-
ing single values
141-142

syncing data with
SqglDataAdapter
181-183

System.DBNull in 40

this keyword and 280

transactions on open da-
tabase connections
196

updating Data Tables 179

updating data with pa-
rameters 158-159

using batch processing
47

using BeginEdit 51

using ColumnMapping
property 114

using Commit and
Rollback methods
197

using CreateObjectSet
method 222

using DataRow class types
38
using DataRow.
HasVersion method
49
using Dataset Designer
with 27
using DataTableMapping
objects 186-187
using ExecuteReader
method to generate
data reader 260
using LINQ in
applying set operations
302-303, 303
calling custom database
functions 326-327
creating implicit joins
306-307
filtering results with
Where clause 296
limiting data returned
299-300
projecting results with
Select clause 294
querying LINQ to SQL
340-341
querying the data set
309-310
querying to Entities
317-319
selecting linked results
with Join keyword
298-299
sorting results with
OrderBy clause 297
starting queries with
From clause 293
summarizing data using
aggregates 301-302
to SQL provider struc-
ture 334-336
using database func-
tions 323
using EntityFunctions
class 323

Where clause not sup-
ported 321-322
using namespace ele-
ments 19
using namespace proper-
tiesin 112-113
using query builder meth-
ods 283
using Rollback method
203
validating data 51-55
viewing source code 233
WriteXML method in
108-109
calculated columns, add-
ing 71
calling
custom database func-
tions 326-329
DataRow.EndEdit 50, 51
Dispose 205
EndExecuteNonQuery
method 139
SaveChanges 273
stored procedures 138,
161
Cancel method 140
canonical functions, using
323
Caption, DataColumn class
property 24
cardinality, relational data-
base modeling term
76
cascade deletes in parent-
child relationships,
enforcing 88
CASE block, in Entity SQL
language 252
case-sensitive lookups, per-
forming 67
CAST function 251
Ceiling function 251
Char function 323
Charlndex functions 323
Checksum function 323

Child keywords to table re-

lationships 95-96

child-parent data, generat-

ing hierarchal 118

child-parent topics.

See parent-child

Child prefixes 94
child records, locating

79-81

child tables

nesting 113

Choose Data Source dialog

box 11

classes

BindingSource 353
ComplexObject 268
DataContext 334
DataRowExtensions 305
DataTableExtensions 305
DbTransaction 195
EdmFunctionAttribute
325
EntityFunctions 322, 323
EntityObject 220, 268
ObjectContext 268
ObjectQuery 256-259
ObjectQuery(Of T) 268,
283, 315
ObjectSet(Of TEntity)
268, 315
OdbcTransaction 195
OleDbTransaction 195
SglCommand 136-137
SglDataAdapter 172
SqglFunctions 323
SqglParameter 161
SQLParameter 157
SqglTransaction 195
System.Data
Constraint 81-87
DataRelation 78
TransactionScope 204
within data providers 127

classes in DataTables 18-21

DataColumn
about 21-22

collections, entity-based

ColumnMapping prop-
erty 114
Namespace property in
111-113
properties in 23-24
DataRow
about 18-20, 37
configuring 38
entries 6
HasVersion method 49
methods in retrieving
current child rows of
data 79-81
removing objects
45-46
validating content in
54-56
DataSet
Namespace property in
111-113
DataTable
about 19, 24-25
in LINQ queries 305,
306
Namespace property
111-113
supporting expression
columns 67
DataView
about 99-100
creating 99-101
using 101-105
class libraries, providers
126-127
clearing data in Entity
Framework
using functions in Entity
SQL language 250-
252
CLR (Common Language
Runtime) 324
code generation items 241
Code Generation Strategy
property 242
collections, entity-based
254

389

390

ColumnAttribute

ColumnAttribute 334
ColumnChanged event 51
ColumnChanging event 51
column errors, setting 51
ColumnMapping property
114
ColumnName, DataColumn
class property 24
column names
as filter expression ele-
ment 63
columns
data types in bound rela-
tionship 78
expression, using 67-70
managing and position-
ing 113-117
mapping with external
database tables
186-188
rowversion 195
command builders, using
181
Command classes, SQL
Server 127
command objects, creating
136-137
commands
CREATE FUNCTION DDL
324
commands, Update Model
From Database
shortcut 233
CommandText field, types
of string data ac-
cepted 137
command trees 280
CommandType property
137
Commit method 196-197
commit/rollback support
MSDTC distributed trans-
actions and 204
Common Language
Runtime (CLR) 324

Common Type System, of
NET
ADO.NET and 7
Complete method 205-
206
ComplexObject class 268
complex properties, craft-
ing 233, 234-235
components of ADO.NET
5-7
Compute method
calculating aggregate of
his single table col-
umns 91
Parent and Child prefixes
and 94
Concat function 251
conceptual models (con-
ceptual layers)
focus of Entity Data
Model Designer 235
in Entity Framework 215,
217-218
linking with storage mod-
els 226
using 218-219
Conceptual Schema
Definition Language
(CSDL) 217, 218-219,
226, 235, 242, 268
concurrency
data transactions and
191-195
definition of 194
configuration files for .NET
Applications 13
connecting to SQL Server
via data providers
127-132
Connection classes, SQL
Server 127
Connection objects 7
connection pooling 7, 129,
132
connection strings
building 226

content for building
124-126
identifying data sources
using 13
using 121-126
Connection Timeout key
124
Connection Wizard, creat-
ing a data source us-
ing 8-14
Consistency rule 193
Constraint class,
UniqueConstraint 81
Constraint instances, us-
ing 7
constraints, defining table
81-87
Contains function 251
Control keys, selecting
properties using 234
CONVERT function 64
Cos function 323
Cot function 323
COUNT and BIGCOUNT
functions 252
Count function 90, 301
Count method 283
count of records, getting
304
COUNT(*) syntax 252
CreateDateTime function
322
CreateDateTimeOffset
function 322
CREATE FUNCTION DDL
command 324
CreateObjectSet method
222
CreateTime function 322
creating
C# data tables 19
command objects 136-
137
complex types for use in
entity 243
custom tables

with DataSet Designer
28-32
database connections
128-129
data-bound ASP.NET ap-
plications 362-364
data-bound WPF applica-
tions 355-361
data reader 142-143
data relations 78-79
data service from EF
model 372-375
DataSet objects 73-74
data sources
using Connection
Wizard 8-14
DataTable objects 18
with Dataset Designer
28
DataViews 99-101
instances of command
builder 180
properties within an en-
tity 232
row objects 37-38
SqglDataReader object
149
Visual Basic data tables
20
CROSS JOIN keyword 248
cross joins 297
CRUD operations 4
CSDL (Conceptual Schema
Definition Language)
217, 218-219, 226,
235, 242, 268
curly braces ({ }), building
custom collections
using 254
CurrentTimestamp function
323
CurrentUser function 323
custom DataTables, creat-
ing 28-34

D

data. See also external data
aggregating 89-98
adding aggregate col-
umns 94-95
functions to 89-90
generating single ag-
gregates 91-94
generating summaries
95-98
referencing parent fields
in expressions 98
examining and changing
42-44
integrity of 191-208
employing savepoints
202-203
transactions and con-
currency 191-195
using distributed trans-
actions 204-208
using local transactions
195-203
managing 3
removing 45-46
tabular form
manipulating 4
DataAdapter
class
Entity Framework and
214
SQL Server 127
objects 7
understanding 169-171
data adapters
role in forms data binding
352
understanding 169-171
Database Explorer
adding connections to
databases 32
O/R Designer and 336
databases

DataColumn

connecting to SQL Server
127-132
processing queries 146—
149
querying 135-150
processing SQL queries
135-140
returning results 140—
149
resolution of conflicts in
192-194
databases, normalization of
21-28
database tables
adding to DataSet
Designer 32-34
data binding
about 347
in ASP.NET 362-366
in Windows forms 347-
354
creating complex forms
348-350
creating simple forms
351-352
understanding 352-354
in Windows Presentation
Foundation (WTF)
352-362
creating data-bound
applications 355-—
361
DataBindings collection
353
DataColumn
adding expression col-
umns by creating
68-69
definitions
data type declarations
6
including a DefaultValue
setting 38
items, defining 6
objects

391

392

DataColumn class

about 37-38
DataColumn class
about 21-22
ColumnMapping prop-
erty 114
Namespace property in
111-113
properties in 23-24
Data Connections, in Server
Explorer
adding connections to
databases 32
DataContext class 334
data definition language
(DDLs) 246
Data definition statements
136
data encryption, provid-
ing System.Security
library 3
DataGridView control 350
Datalength function 323
data manipulation lan-
guage (DML) 246
Data manipulation state-
ments 136
data providers
connecting to SQL Server
via 127-132
understanding 126-127
data range errors 49-56
DataReader classes, SQL
Server 127
DataReader instance, re-
trieving records us-
ing SQLDataAdapter
170
DataReader objects 7
DataRelation class 78-79
DataRelation entries, link-
ing 6
DataRelations
defining update and de-
lete rules in 85-87
Entity Framework defini-
tion of 215

data relationships. See rela-
tional databases
DataRow class
about 18-20, 37
configuring 38
entries 6
HasVersion method 49
methods in retrieving
parent-child rows of
data 79-81
removing objects 45-46
validating content in
54-56
DataRow.EndEdit call 50,
51
DataRowExtensions class
305
DataRow.HasErrors prop-
erty 52
DataRow instances
in LINQ 306
using Select method with
98
DataRow objects
Delete method 48
removing 45-46
selecting and sorting
65-68
data rows
adding process 37-44
creating rows 37-38
defining row values
38-40
storing rows in tables
40-41
roll back changes 51
DataRowState
Added 47
.Deleted 47
.Detached 47, 48
.Modified 47
.Unchanged 47
DataRowVersion
.Current 49
.Default 49
.Original 48

.Proposed 48
DataRowView instances,
generated from
DataView 99
DataService(Of T) 372
data services
accessing using REST
377-384
setting up 371-376
types of 369-370
DataSet class
Namespace property
111-113
DataSet Designer
adding database tables
32-33
creating custom tables
28-32
using in code 33-34
using Toolbox with 29, 35
DataSet instance 353, 360
DataSet objects, creating
73-74
DataSets
adding tables to 75
column mapping with the
external database
tables 186-188
Entity Framework and
214
linking to external data
169-171
LINQ to 291
moving data into 173-
175
moving data to source
from 178
parallel for EF entities in
215
preventing incoming
data from modifying
schema of 189
tables grouped as 7,
73-76
DataSet tables

creating relationships be-
tween 78-79
Data Source Configuration
Wizard 13, 355, 360
Data Source Connection
Wizard 27, 122-124,
126
Data Source key 123
data sources
creating 8-14
removing 16
DataTable classes
DataColumn 21-24
about 21-22
ColumnMapping prop-
erty 114
Namespace property in
111-113
properties in 23-24
DataRow
about 18-20, 37
configuring 38
entries 7
HasVersion method 49
methods in retrieving
parent-child rows of
data 79-81
removing objects
45-46
validating content in
54-56
DataSet
Namespace property
111-113
DataTable
about 19, 24-25
in LINQ queries 305,
306
Namespace property
111-113
supporting expression
columns 67
DataView
about 99-100
creating 100-102
using 102-106

DataTable class type
about 18,19
data-related events in 19
generating table-specific
data rows 38
PrimaryKey property
24-25
DataTableExtensions class
305
DataTable.HasErrors prop-
erty 52
DataTableMapping objects
186
DataTable objects
Compute method 91
populating Columns col-
lection of 21-28
using Dataset Designer to
create 28
DataTable.Rows.Find meth-
od 71
DataTables
about 17
adding to DataSets 75
as Key ADO.NET element
6-7
building 17-36
adding data columns
21-28
classes in. See classes in
DataTables
implementing tables
17-21
using Dataset Designer
27-33
collecting into sets 73-76
column mapping with
external database
tables 186-188

DataView instances and 7

defining constraints
81-87
establishing relationships
between 76-81
creating data relations
78-79

DataView instances

locating parent-child
records 79-81
types of relationships
76-78
generating from
DataView 103-105
logical implementation of
objects 17-18
modifying names of 29
modifying TableName
property 19
moving data into 171-
173
moving data to source
from 178-179
parallel for EF entities in
215
physical implementation
of objects 18
searching rows
by primary key 60-62
with search criteria
62-64
storing data in 37-57
adding data process
37-41
batch processing 46-48
examining in changing
data 42-44
removing data 45-46
validating changes
49-56

DataType, DataColumn

class property 24

data types

columns bound in rela-
tionships and 78

user-defined, for entities
215

DataView class

about 99-100
creating 99-101
using 101-105

DataView instances

setting RowStateFilter
properties 100

393

394

DataView methods

view of rows 7
DataView methods
Find 102
FindRows 101
ToTable 103, 105
DataViewRowsState, enu-
merated values of
100
DateAdd function 323
date and time functions
251, 322, 323
DateDiff function 323
DateName function 323
DatePart function 323
DATETIME keyword 249

DateTimeMod, DataColumn

class property 24
DBNull
returning for nondata re-
sults 141
DbTransaction class 195
DbType property 157
DDLs (data definition lan-
guage) 246
DefaultValue
automatic 40
setting in DataColumn
definition 38
DefaultValue, DataColumn
class property 24
defining
constraints for relation-
ships 81-87
updated delete rules In

DataRelations 85-87

Degrees function 323
Delete method 48, 57, 101
DeleteObject method 273
DELETE queries, adding in
SqglDataAdapter 185
DeleteRule properties
setting 82
DELETE statements
building 274
generating automatically
180

update operations and
169-170, 171, 180
DelimSubstring method
278-279
DEREF function 255
DESC modifier 65, 248
dialog boxes
Add Connection 12
Add Entity 231
Add Function Import
233-234
Add New Item 28
Choose Data Source 11
Feed And Web Slice
Setting 379
Unique Constraint 30-31
Difference function 323
Diff... functions 251, 322
Direction property in
SQLParameter class
161
Dispose, calling 205
Dispose method 128
Distinct clause 299
DISTINCT keyword 254
Distinct method 281

distributed transactions, us-

ing 204-208, 209
div operator in REST 380
DML (data manipulation
language) 246
double-precision floating-
point value literal
249
drag-and-drop visual de-
signer. See Object
Relational (O/R)
Designer
Durability rule 193

E

EDM (Entity Data Model)
adding 225
conceptual model in EF

and 216

EdmFunction attribute 326,
328
EdmFunctionAttribute class
325
edmgen.exe 220, 223
EF (Entity Framework).
See Entity Framework
(EF)
ELSE clause
in Entity SQL language
252
embedded XML expres-
sions 291
Encrypt and
TrustServerCertificate
keys 124
EndEdit, DataRow call 50,
51
EndEdit method 51, 57
EndExecuteNonQuery
method 139-140
EndExecuteXmlIReader
method 146
EndsWith function 251
EnlistTransaction method
205
entities
editing 231-232
Entity Framework defini-
tion of 215, 216
importing database tables
as 227-230
LINQ to. See LINQ (pro-
viders)
managing through ob-
jects 267-278
accessing entity data
268-270
modifying entity data
271-278
using Query Builder
methods 278-284
entity
adding mapping condi-
tions to 237-239

creating complex types
for 243
Entity Framework defini-
tion of 215
using stored procedures
to manage data
239-240
entity-based collections
254
Entity Client 127
EntityClient Provider 260-
265
entity container
Entity Framework defini-
tion of 216
instantiated version of
221
ObjectContext class as
embodiment of 268
Entity Data Model
Designer, ADO.NET
about 218
generating objects using
220
Map Entity To Functions
button 274
mapping details panel,
working with 236-
241
using 230-236
Entity Data Model (EDM)
adding 225
conceptual model in EF
and 217
Entity Data Model Wizard
218, 225-229, 325,
372
Entity Framework (EF)
about 8, 213
adding to projects 243
as Object Services layer
267
building models 218-219
designing models 225-
240

creating a data service
372-375
refreshing model after
making structural
changes 243
using Entity Data Model
Designer 230-236
using Entity Data Model
Wizard 225-229
using Model Browser
240
working with map-
ping details panel
235-240
generating objects 220-
221
instantiating context 221
layers 216-218
LINQ provider. See LINQ
(providers)
namespaces, grouping of
related entities 217
OrderBy clause, as query
builder method in
222
provider 370
running framework que-
ries 222
storage model 325
understanding 213-216
Where clause, as query
builder method in
222
EntityFunctions class 322,
323
entity keys 215
EntityObject base class 220
EntityObject class 268
EntityObject Generator,
ADO.NET 241
entity set, definition of 216
EntitySetRights members
376
Entity SQL language
about 222, 246

events

building custom collec-
tions 254
grouping and aggre-
gating entity data
252-254
query builder method
equivalents 281-282
user-defined functions
255
using functions 250-252
using literals 249-251
using operators 250
writing basic queries
246-248
Entity SQL queries 256-
264
about 278
converting into command
tree 280
using EntityClientProvider
260-265
using ObjectQuery class
256-259
Entity Types, definition of
215
envelope transactions, pa-
rameterized update
queries and 199, 201
eq operator in REST 380
equal sign (=)
comparing columns to lit-
eral values using 63
Equals keyword 299
errors
data range 49-56
row-level 51-52
setting column 51
event handlers, validation
occurring in 51
events
ColumnChanged 51
ColumnChanging 51
RowChanged 51
RowChanging 51
RowDeleted 51
RowDeleting 51

395

396

Excel

TableCleared 51
TableClearing 51
TableNewRow 51
Excel
provider class libraries for
126
Except function 302
exception-based errors
49-51
exception handling blocks
50
EXCEPT keyword 252
Except method 282
ExecuteNonQuery method
138, 260
ExecuteReader method
142, 260
ExecuteScalar method 141
ExecuteSQL method 147,
148
ExecuteSQLReturn method
149
ExecuteXmlReader method
146
EXISTS keyword, in Entity
SQL language 250
Exp function 323
exporting, DataSet as file to
XML 118
expression columns, using
67-70
expressions, filter elements
63-64
extension methods 280,
290, 302-303
external connections 121-
132
connection pooling 129,
132
connection strings
builders 124-126
using 121-126
data providers
connecting to SQL
Server via 127-132
understanding 126-127

keys for establishing
123-124
using connection strings
121-125
external data
connecting to 8-14
linking to local data set
169-171
managing 3
moving data into
DataSets 173-175
moving data into
DataTables 171-173
moving from memory to
175-185
configuring update
commands 175-179
generating update com-
mands 180-185
performing update
179-180

F

false keyword 249
Feed And Web Slice Setting
dialog box 379
Field extension method
307-308
Field (Of T) method 306
Fill method 171, 172, 174,
186
“fill" operations
moving data from data-
bases into DataSets
169, 171
filter expression elements
63-64
filtering, results with the
Where clause 295
Find method
FindRows tasks and 102
locating single row based
on primary key 60
FindRows method 101-102
First method 283, 284

floating-point value literals
249
Floor function 251
Foreign Key Columns 229
ForeignKeyConstraint class
81
formats, aggregation 90
FOR UPDATE clause 195
FROM clause, in Entity SQL
language 246-248
From clause in LINQ 293,
298
FullName value, modifying
158
FULL OUTER JOIN keyword
248
full outer joins 297
function imports, editing
233-234
functions
Acos 323
Add...
in Entity SQL language
251
in LINQ to Entity 322
aggregate 252-254,
301-302
All 301
Any 301
Ascii 323
Asin 323
AsNonUnicode 322
AsUnicode 322
Atan 323
Atan2 323
Average 301
Avg 89, 252
Bitwise 251
BuildConnection 129
canonical, using 323
CAST 251
Ceiling 251
Char 323
Charindex 323
Checksum 323
Concat 251

Contains 251

CONVERT 64

Cos 323

Cot 323

Count 90, 301

COUNT and BIGCOUNT
252

CreateDateTime 322

CreateDateTimeOffset
322

CreateTime 322

CurrentTimestamp 323

CurrentUser 323

DataLength 323

DateAdd 323

date and time 251, 322,
323

DateDiff 323

DateName 323

DatePart 323

Degrees 323

DEREF 255

Diff... 251, 322

Difference 323

EndsWith 251

Except 302

Exp 323

Floor 251

GetColumnTable 25

GetConnectionString
146, 159, 183, 198,
200, 274, 276, 318,
319, 340, 341

GetDate 323

GetDesignerTable 34

GetUtcDate 323

HostName 323

IIF 64

IndexOf 251

Intersect 302

IsDate 323

IsDBNull 23, 40, 42, 44,
56

ISNULL 64

IsNumeric 323

Left 251, 322

LEN 64

Length 251

Log 323

Logl0 323

LongCount 301

LTrim 251

math 251, 323

Max 90, 252, 301

Min 90, 252, 301

NChar 323

NewGuid 251

PatIndex 323

Pi 323

Power 251

QuoteName 323

Radians 323

Rand 323

REF 255

Replace 251

Replicate 323

Reverse 251

Right 251, 322

Round 251, 322

ROW 255

RTrim 251

SaveFormData 274-275,
276-277

SET 252

Sign 323

SoundCode 323

Space 323

“SqlServer” in Entity SQL
language 251

SQRT 322

Square 323

StandardDeviation 323

StartsWith 251

statistical 323

StDev 90, 253

STDEVP 253

string 251, 322, 323

StringConvert 323

Stuff 323

Substring 64, 251

Sum 89, 252, 301

Tan 323

GetOrdinal method

ToLower 251

ToUpper 251

TransferDistributed 206,
207

Trim 64, 251

Truncate 323

Unicode 323

Union 302

UnionAll 302

user-defined 255

user-defined (LINQ) 324-
329, 339-342

UserName 323

Var 90, 253, 323

VarP 253, 323

G

Generate Database Wizard
217
ge operator in REST 380
GetBytes method 145
GetChar method 145
GetChars method 145
GetChildRows method
79-81
GetColumnTable function
25
GetConnectionString func-
tion 146, 159, 183,
198, 200, 274, 276,
318, 319, 340, 341
GetDate function 323
GetDateTime method 145
GetDateTimeOffset method
145
GetDecimal method 144
GetDesignerTable function
34
GetDouble method 145
GetFloat method 145
GetGuid method 145
GetIntl6 method 145
GetInt32 method 145
GetInt64 method 145
GetOrdinal method 144

397

398

GetParentRows method

GetParentRows method
79-81, 80
GetSchemaTable method
146
GetSglMoney method 145
GetString method 145
GetTimeSpan method 145
GetUtcDate function 323
GET verb, HTTP 377
greater than or equal to
sign (>=)
comparing columns to lit-
eral values using 63
in Where clause (LINQ)
296
greater than sign (>), com-
paring columns to
literal values using
63
Group By clause
collecting aggregate sum-
maries with 302
GROUP BY clause
in Entity SQL language
253
GroupBy method 281
GROUP BY (SQL language)
in ADO.NET 95
group joins 299
Group keyword 299
gt operator in REST 380
GUID keyword 250

H

HasErrors, DataRow prop-
erty 52

HasErrors, DataTable prop-
erty 52

HasRows property in re-
turning data rows
142

HasVersion method,
DataRow 49

HAVING clause, in Entity
SQL language 253

HostName function 323
HTTP
GET verb 377
inserting new records
382
issuing DELETE request
383
requests, as querying
method in EF 222
transport 371

[Enumerable(Of T) interface
289, 315
[IF function 64
[IS (Microsoft Internet
Information Service)
370
implementing tables 17-21
importing
database tables into
DataTables 189
DataSet as file to XML
118
indexed views 98-105
IndexOf function 251
inequality sign (<>)
comparing columns to lit-
eral values using 63
inference, local type 290
Initial Catalog key 123
InitializeService method
375
INNER JOIN keyword 248
inner joins 297
IN operator
in Entity SQL language
250
using in filter expressions
63
INSERT queries, adding in
SglDataAdapter 184
INSERT statements
building 274

generating automatically
180
returning specified fields
141
update operations and
169-170, 171, 180
integer literals 249
Integrated Security key
123
integrity of data 191-208
employing savepoints
202-203
transactions and concur-
rency 191-195
using distributed transac-
tions 204-208
using local transactions
195-203
IntelliSense in Visual Studio
326, 328
Interact method 281
internal data, managing 3
Internet Explorer 8, access-
ing XML 379
Intersect function 302
INTERSECT keyword 252
Intersect method 282
invalid data
preventing 49-56
IQueryable interface 370
IQueryable(Of T) interface
283, 289, 315
IsDate function 323
IsDBNull function 23, 40,
42,44, 56
IS NOT operator 250
IsNullable property 157
ISNULL function 64
IsNumeric function 323
Isolation rule 193
IS operator 250
Item properties, in defining
row values 38
"it" keyword 280
IUpdatable interface 370

J

JavaScript Object Notation
(JSON) 370, 379

joined-table queries and
SQLCommandBuilder
181

Join keyword 247, 297

JSON (JavaScript Object
Notation) 370, 379,

382

K

key ADO.NET elements
6-7

keyboard shortcuts, add-
ing new columns to
DataTables 30, 35

keys for server connections

123-124

L

lambda expressions 290,
296

Left function 251, 322
LEFT OUTER JOIN keyword
248
left outer joins 297, 299
LEN function 64
Length function 251
le operator in REST 380
less than or equal to sign
(<=)
comparing columns to lit-
eral values using 63
less than sign (<)
comparing columns to lit-
eral values using 63
in Where clause (LINQ)
296
LIKE operator, matching
string patterns us-
ing 63
limiting connection time to
SQL Server 132
LIMIT keyword 253

linking
DataTable objects in rela-
tionships 88
results with Join keywords
297-298
tables 76-78
LINQ
about 8
as querying method in
EF 222
data types of columns
307
enhancements to .Net
language 289-291
LINQ (providers)
to DataSet 291, 305-312
to Entities
about 291, 315-316
downside to 329
working with custom
database functions
324-329
working with database
functions 321-324
writing queries 316-321
to Objects
about 291
filtering results with
Where clause 295
limiting data returned
299-300
projecting results with
Select clause 293-
295
selecting linked results
with Join keyword
297-298
sorting results with
OrderBy clause
296-297
starting queries with
From clause 293
summarizing data using
aggregates 301-302
using 291-292
to SQL

logical implementation

about 291, 331
building models 337-
339
components of 333-
335
using custom database
functions 339
to XML 291
LINQ queries
about 278
converting into command
tree 280
DataTable class in 305
support of joins 297
with Objects
filtering results with
Where clause 295
limiting data returned
299-300
projecting results with
Select clause 293-
295
selecting linked results
with Join keyword
297-298
sorting results with
OrderBy clause
296-297
starting queries with
From keyword 293
summarizing data using
aggregates 301-302
ListBox control 347
literals 64, 249-251, 291
local transactions, using
195-203, 209
local type inference 290
locking records 193-194
Logl0 function 323
Log function 323
logical implementation of
tables 17-18
logical implementation
of underlying data
source 213

399

400

logical models.

logical models. See storage
models (storage lay-
ers)

logical operators 250, 296,
380

LongCount function 301

lookups, performing case-
sensitive 67

It operator in REST 380

LTrim function 251

M

Many-to-Many table re-
lationships 76-77,
83-84

Map Entity To Functions
button 274

Map Entity toolbar buttons
239

Mapping Details panel 226,
235-240, 274

mappings (mapping layers)

adding condition to entity
237-239

in Entity Framework 218

linking storage and con-
ceptual models with
226

modifying 235-240

using 219

Mapping Specification
Language (MSL) 218,
219, 226, 235

MappingType enumerated
values 114

math functions 251, 323

math operators 250, 380

Max function 90, 252, 301

MaxLength, DataColumn
class property 24

Max method 283

Me keyword 280

MERGE verb 382

metadata key-value pairs
226

methods

AcceptChanges 48, 57, 99
AddObject 272
AddWithValue 157
AsEnumerable extension
306
BeginExecuteNonQuery
139
BeginExecuteXmlReader
146
BeginTransaction 196
Cancel 140
Commit 196-197
Complete 205-206
Compute
calculating aggregate of
single table columns
91
Parent and Child prefixes
and 94
Count 283
CreateObjectSet 222
DataTable.Rows.Find 71
Delete 101
DeleteObject 273
DelimSubstring 278-279
Dispose 128
Distinct 281
EndExecuteNonQuery
139
EndExecuteXmlIReader
146
EnlistTransaction 205
Except 282
ExecuteNonQuery 138,
260
ExecuteReader 142, 260
ExecuteScalar 141-142
ExecuteSQL 147, 148
ExecuteSQLReturn 147,
149
ExecuteXmlReader 146
extension 280, 290,
302-303
Field extension 307-308
Field (Of T) 306
Field(Of T) 306

Fill 171, 172, 174, 186
Find 102

FindRows 101

First 283, 284
GetBoolean method 145
GetByte method 145
GetBytes 145
GetChar 145
GetChars 145
GetChildRows 79-81
GetDateTime 145
GetDateTimeOffset 145
GetDecimal method 144
GetDouble 145
GetFloat 145
GetGuid 145
GetIntl6 145
GetInt32 145
GetInt64 145
GetOrdinal 144
GetParentRow 80
GetParrentRow 79-81
GetSchemaTable 146
GetSglMoney 145
GetString 145
GetTimeSpan 145
GroupBy 281
InitializeService 375
Interact 281

Intersect 282

Max 283
OfType 281
Open 196
OpenReader 147, 149
OrderBy 280, 281, 297
partial 291
query builder 278-284,

281-282

ReadXML 110-111
ReadXmlSchema 110
Refresh 273
RefreshConstraints 85
Rollback 196-197
Save 202-203
Select

inefficiency of 98-99

sorting rows 100
Select query builder
methods 280
SelectValue 281
SetEntitySetAccessRule
376
Skip 281
SqlConnectionStringBuilder
148
SqglDataAdapter.Fill 171,
173-174
SqglDataAdapter.FillSchema
174
ThenBy 297
Top 281
ToTable 103, 105
Union 281, 282
UnionAll 281, 282
Update 180
Where 281, 282, 283, 284
WriteXML 108-110
Microsoft Access, provider
class libraries for 126
Microsoft Distributed
Transaction
Coordinator (MSDTCQ)
204
Microsoft Excel, provider
class libraries for 126
Microsoft Internet Explorer
8, accessing XML 379
Microsoft Internet
Information Service
(11S) 370
Microsoft SQL Server.
See SQL Server
Choosing Data Source dia-
log box and 11
relationship to ADO.NET
7
sharing terms with ADO.
NET 4
Microsoft SQL Server 2005.
See SQL Server 2005
Microsoft SQL Server 2008
Express Edition

connection keys for 123
naming the server 12
Microsoft Visual Studio.
See Visual Studio
Min function 90, 252, 301
MissingMappingAction
properties 187
MissingSchemaAction prop-
erties 188-189
Model Browser 240
modeling terms of relation-
al databases
cardinality 76
models, Entity Framework
building 218-219
definition of 215
modifying
application configuration
file settings 13
databases through entity
objects 274-277
DataTable names 29
FullName values 158
RowFilter 101
rows in DataTables 43-45
RowStateFilter 101
Sort 101
TableName properties 19
mod operator in REST 380
monitoring errors 50
mouse
selecting properties with
234
xsd extension for tables
created by 28
Move Via a Thumbnail View
control in Entity Data
Model Designer 229
MSDTC (Microsoft
Distributed
Transaction
Coordinator) distrib-
uted transactions
204

nullable types

MSL (Mapping Specification
Language) 218, 219,
226, 235

mul operator in REST 380

MultipleActiveResultSets
key 124

N

Name property of the
ObjectSet 280
Namespace properties, in
DataTable classes
111-113
namespaces
feature in XML 111-113
grouping of related enti-
ties 217
SqlClient 127
SqlTypes 145
navigation property, Entity
Framework definition
of 216
NChar function 323
ne operator in REST 380
Nested property, in child
tables 113
new {} (@ahonymous type
definition) 294
NewGuid function 251
NewRow method, generat-
ing table-specific
data rows 38, 57
nexted results 146
nondata results, returning
System.DBNull for
141
None, as EntitySetRights
member 376-384
nonqueries, running 137-
138
non-Unicode strings 249
Normalization process 21
Nothing values 290
NOT operator 250, 296
not operator in REST 380
nullable types 290

401

402

NULL values

NULL values

as default value 40

in aggregate functions
90

in C# 290

in Entity SQL language
250

in SglDataReader 144

IsNullable property 157

ISNULL function and 64

o

ObjectContext
class 268
objects 221
object initializers 290
object layer
generation rules 234
managing 241
ObjectQuery
class 256-259
instance 280
ObjectQuery(Of T) class
268, 283, 315
Object Relational (O/R)
Designer 335-339
objects
DataColumn, adding to
DataTable 37
DataRow
AcceptChanges method
48
Delete method 48
removing 45-46
DataSet, creating 73-74
DataTable
creating 18
logical implementation
of 17-18
physical implementation
of 18
populating Columns
collection of 21-28
DataTableMapping 186

in Entity Framework
model, generating
220-221
LINQ to
about 291
filtering results with
Where clause 295
limiting data returned
299-300
projecting results with
Select clause 293-
295
selecting linked results
with Join keyword
297
sorting results with
OrderBy clause
296-297
starting queries with
From clause 293
summarizing data using
aggregates 301-302
using 291-292
ObjectContext 221
serializing data set and
Data Table 107-111
SqlDataAdapter 171
TransactionScope 206,
207
values appearing as 7
Object Services
about 267-268
accessing entity data
268-270
modifying entity data
271-278

using query builder meth-

ods 278-284
ObjectSet(Of TEntity) class
268, 315
object types, generic 39
ODBC
connection string build-
ers 126

employing savepoints and

202

implementation of com-
mand-related pro-
cessing 135
parameter class and 160
provider class libraries for
126-127
supporting nested results
146
OdbcCommand 136
OdbcDataAdapter class
170
ODBC providers 7
OdbcTransaction class 195
OfType method 281
OLE DB
connection string build-
ers 126
creating parameterized
queries for 167
employing savepoints and
202
implementation of com-
mand-related pro-
cessing 135
parameter class in 154,
160
provider class libraries for
126-127
supporting nested results
146
OleDbCommand 136
OleDbConnection 127, 133
OleDbDataAdapter class
170
OLEdbParameter 154
OLE DB providers 7
OleDbTransaction class 195
One-to-Many table rela-
tionships 76, 81-82
One-to-One table relation-
ships 76
Open Data Protocol 369-
370
Open method 196
OpenReader method 147,
149

operators
Boolean 63
comparison 63
IN 63
LIKE 63
Optimistic concurrency
194
Oracle
as target specific platform
7
provider in prior versions
127
SELECT statements
FOR UPDATE clause 195
OrderBy clause
as query builder method
in EF 222
in applying Skip or Take
clauses 300
in LINQ 296-297
ORDER BY clause 248
OrderByDescending exten-
sion method 297
OrderBy extension method
297
OrderBy method 280, 281
O/R (Object Relational)
Designer 335-339
OR operator 250, 296
or operator in REST 380
outer joins 297
"out” parameters, creating
167
OUTPUT keywords
INSERT statements 141
OVERLAPS keyword 252

P

ParameterDirection
InputOutput option 161
options 161
.Output option 161, 167
.ReturnValue option 161

Parameter instances, pur-

pose of 7

ParameterName property
157
parameters
developing queries with
153-161
implementing standard
queries 155-161
understanding 154-155
using parameters in
stored procedures
161-166, 179
Parameters collection 156,
157
parent-child
data, generating hierar-
chal 118
records, locating 79-81
relationships
enforcing cascade de-
letes 88
establishing 76-78
parent-column values
rules for updating or de-
leting 82
Parent fields
referencing in expressions
98
parentheses ()
in expression evaluation
63
using in Where clause
(LINQ) 296
Parent prefixes 94
partial methods 291
passing
instance of DataSet
173-174
SchemaType.Mapped 174
strings to Add method 74
PatIndex function 323
Pessimistic concurrency
194
physical implementation of
DataTable objects 18
Pi function 323
POST verb 382
Power function 251

querying databases

PrimaryKey property, in
DataTable class 24—
25,35

primary keys

adding 30

finding rows by 60-62

properties

creating from scalar
properties complex
234-235

editing 232

Entity Framework defini-
tion of 215

selecting 234

Properties panel, in DataSet
Designer 33

protecting records 193-
194

PUT verb 382

Q

queries. See also SQL que-
ries; See also LINQ
queries
developing parameter-
ized 153-161
implementing standard
queries 155-161
understanding need for
parameters 154-155
using stored procedures
161-166
Queryable extension meth-
ods 283-284
query builder methods
278-284
querying data 59-64
querying databases 135-
149
processing SQL queries
135-140
asynchronously 139-
141
creating command ob-
jects 136-137

403

404 querying data

processing queries
137-138
returning results 140-149
accessing field values
144-146
processing complicated
results 146-151
returning data rows
142-144
returning single values
141-142
running EF queries 222
querying data in Entity
Framework 245-264
about 245
running Entity SQL que-
ries 256-264
using an ObjectQuery
class 256-259
using
EntityClientProvider
260-265
using Entity SQL language
246-255
building custom collec-
tions 254
grouping and aggre-
gating entity data
252-254
user-defined functions
255
using functions 250-
252
using literals 249-251
using operators 250
writing basic queries
246
QuoteName function 323

R

Radians function 323
Rand function 323
range variable 293
“read locks” 198

ReadMultiple, as
EntitySetRights
member 376

ReadOnly, DataColumn
class property 24

ReadSingle, as
EntitySetRights
member 376

ReadXML method 110-111

ReadXmlISchema method
110

records, locking and pro-
tecting 193-195

Refactor complex types
233

REF function 255

RefreshConstraints method
85

Refresh method 273

relational databases

ADO.NET and 4
definition of concepts
215-216
establishing relationships
between 78-79
creating data relations
78-79
locating parent-child
records 79-81
types of relationships
76-78
modeling terms
cardinality 76
relationships
establishing, between
tables 76-81
understanding table
76-78

relaxed delegates 290

Replace function 251

Replicate function 323

RESTful, as HTTP transport
371

REST (Representational
State Transfer)

about 369, 370

accessing data services
using 377-384
configuring data rights
from 375-376
updating entities with
381-383
using operators in 380
Reverse function 251
Right function 251, 322
RIGHT OUTER JOIN key-
word 248
right outer joins 297
rollback changes to rows
51
rollback local transactions
209
Rollback method 196-197
Round function 251, 322
RowChanged event 51
RowChanging event 51
RowDeleted event 51
RowDeleting event 51
RowfFilter, modifying 101
ROW function 255
row-level errors 51-52
rows
limiting operations on
101
returning data 142-144
roll back changes 51
searching rows
by primary key 60-62
with search criteria
62-64
tags in DataTable 113
Rows.Add method 40, 41,
42, 57
rows, data
adding process 37-41
creating rows 37-38
defining row values
38-40
storing rows in table
40-41
retrieving sets of 151

Rows.Find method, locat-
ing row by primary
key 60
RowsStateFilter
modifying 101
setting properties 100
RowStates 47-48
rowversion columns 195
RowVersions 48-49
RTrim function 251
rules
defining update and de-
lete 85-87
for establishing data rela-
tionships 78
for updating or deleting
parent-column val-
ues 82
rules defining transactions
193-194

S

SaveChanges, calling 273
SaveFormData function
274-275, 276-277
Save method 202-203
savepoints, employing
202-203
scalar properties, creating
complex properties
from 234-235
schema language, using
MSL 226
schemas
Entity Framework and
changes in external
214
using XML, in Entity
Framework model
218
SchemaType.Mapped 174
searching
criteria 62-64
sorting results 64-67
Select clause

in Entity SQL language
246-248
in LINQ 293-295
SELECT command, adding
to SglDataAdapter
184
SelectCommand property
171
Select method
entity SQL equivalent of
281
inefficiency of 98-99
searching many table col-
umns 62-64
sorting rows and 100
SELECT queries
returning data rows
142-144
returning simple results
141
using user-defined func-
tions 255
SELECT statements
Fill operations issuing
169-171
FOR UPDATE clause
(Oracle) 195
in transactions 198
of LINQ queries 278
SelectValue method 281
Self-Tracking EntityObject
Generator, ADO.NET
241
serializing DataSet and
DataTable objects
107-111
Server Explorer
accessing 32
Data Connections items in
32-33
O/R Designer and 336,
337-339
server identity functions
323
service layers 369-371

SqglConnection

SetEntitySetAccessRule
method 376
SET function 252
setting, RowStateFilter
properties 100
Shift keys, selecting prop-
erties using 234
Sign function 323
single quotes (')
using BINARY keyword
with 250
using GUID keyword with
250
using strings with 249
Skip clause 300
SKIP keyword 253
Skip method 281
Solution Explorer
files added from
Connection Wizard
14
panel 234
sorting
DataView rows 100
results with the Order By
clause 296-297
search results 64-67
Sort, modifying 101
SoundCode function 323
source code object layer
managing 241
regenerating 233
Space function 323
SqlBulkCopy 127
SqlClient namespace 127
SglCommandBuilder 180-
181, 194, 348
SglCommand class
about 127, 136-137, 156
ExecuteNonQuery meth-
od 138,143
instances 171
objects 139-140, 141-
142, 156-157
SglCommand objects 146
SqglConnection 127,132

405

SqlConnectionStringBuilder

SqglConnectionStringBuilder
146, 148, 158, 159,
318, 319, 340, 341
SglDataAdapter 127
associating command
builder with 181-182
.Fill method 171, 173-174
.FillSchema method 174
importing database tables
through 189
.MissingMappingAction
property 187
.MissingSchemaAction
properties 188-189
objects 171
.SelectCommand property
175
support features of 170-
171
syncing data with 181-
185
SqglDataAdapter class 172,
188
SqglDataReader class
about 127
accessing field values
144-146
data access methods on
145-146
DBNull values in 144
in retrieving multiple re-
cord sets 146-150
scanning data sets with
143
using with
ExecuteNonQuery
method 143
SqglDataReader objects, cre-
ating 149
SqlDbType property 157
SqglFunctions class 323
SQL language
GROUP BY clause in ADO.
NET 95
types of statements 136—
137

SglMetal.exe 343
SqglParameter class 157
SQL provider, LINQ to
about 291, 331
building models 337-339
components of 333-335
Entities provider vs. 332
using custom database
functions 339
SQL queries
processing 135-140
asynchronously 139-141
creating command ob-
jects 136-137
running nonqueries
138-139
returning results 140-149
accessing field values
144-146
processing complicated
results 146-151
returning data rows
142-144
returning single values
141-142
risks of building state-
ments with string ele-
ments 154
SQL query statements 136
"@" as placeholders in
155
SQL Server
ACID requirements and
193
command builder for
180-181
connecting via data pro-
viders 127-132
connection strings 122-
124,125
creating parameterized
queries for 167
databases, communicating

with 122-125
employing savepoints on
202

Entity Framework support
for 215
Entity Framework vs. 245
LINQ to Entities support
in 332
ODBC connection strings
and 124
OLE DB connection strings
and 124
processing queries 135-
140
asynchronously 139-141
creating command ob-
jects 136-137
running nonqueries
137-138
provider class libraries for
126-127
provider-specific class
names 127
queries, wrapper for 150
returning query results
140-149
accessing field values
144-146
processing complicated
results 146-151
returning data rows
142-144
returning single values
141-142
SqlTransaction class in 195
support for Common
Language Runtime
(CLR) 324
table updates 195
Visual Studio 2010 Entity
Framework support
for 228
SQL Server 2005
INSERT statements in 141
SQL Server 2008 Express
Edition
connection keys for 123
naming the server 12

SQL Server Authentication
12
“SqlServer” functions in
Entity SQL language
251-252
SqglTransaction class 195
SqglTransaction instance
199
SqlTypes namespace 145
SqglValue property 157
SQRT function 322
Square function 323
SquareRoot function 323
SSDL (Store Schema

Definition Language)

217, 219, 226, 325

StandardDeviation function

323
StartsWith function 251
StatesByYear class 326
statistical functions 323
STDEV function 90, 253
STDEVP function 253
storage models (storage
layers)
in Entity Framework 217
linking properties from
multiple 237
linking with conceptual
models 226
modifying 236
using 219
using as conditions 237
stored procedures
about 137
calling 138
editing function imports
233-234
in Entity SQL language
246
managing entity data us-
ing 239-240
row-producing 142
table-valued, in EF model
229

update database-side
content from entity
changes 243
using parameters in
161-166
Store Schema Definition
Language (SSDL)
217, 219, 226, 325
storing
data in DataTables 37-57
adding data process
37-41
batch processing 46-49
examining in changing
data 42-44
removing data 45-46
validating changes
49-56
rows in tables 40-41
string concatenations 139
StringConvert function 323
string functions 251, 322
strings, Unicode and non-
Unicode 249
strongly typed DataSets in
.NET Framework 214
Stuff function 323
sub operator in REST 380
subqueries, in Entity SQL
language 254
Substring function 64, 251
Sum function 89, 252, 301
synonyms, for Boolean op-
erators in Entity SQL
language 250
System.Data
Constraint classes 81-87
.DataTable 17, 18
namespace 3, 21
System.DBNull in C# 40
System.Object instances
144
System.Security library 3

T

transactions

TableAdapter instance 352,
360
TableAdapterManager in-
stance 352, 360
TableAttribute 334
TableCleared event 51
TableClearing event 51
TableDetails form 26
TableMapping rules, adjust-
ing 214
TableName properties,
modifying 19
TableNewRow event 51
tables. See DataTables
tabular data format, ma-
nipulating 4
tags for DataTable rows
113
Take clause 300
Tan function 323
testing
database connections
129,131
tabular results of user
supplied query 145
update and delete rules
86
text templates 241
ThenByDescending exten-
sion method 297
ThenBy extension method
297
this keyword 280
TIME keyword 249
TolLower function 251
Toolbox, using with DataSet
Designer 29, 35
TOP
clause in Entity SQL lan-
guage 253
keyword 300
method 281
ToTable method 103, 105
ToUpper function 251
transactions
concurrency and 191-195

407

408

TransactionScope class

definition of 192
distributed, using 204-208
issuing savepoints within
203
using local 195-203, 209
TransactionScope class 204
TransactionScope object 206,
207
TransferDistributed function
206, 207
TransferLocal routine 199,
200
Trim function 64, 251
true keyword 249
Truncate function 323
truncate, using time and date
functions 251
TrustServerCertificate and
Encrypt keys 124
T-SQL query language 246,
253, 254-255

U

Unicode function 323

Unicode strings 249

UnionAll function 302

UnionAll method 281, 282

Union function 302

UNION keyword 252

Union method 281, 282

UniqueConstraint class
81-84

Unique Constraint dialog box
30-31

Unique, DataColumn class
property 24

UnitEditor_Load event han-
dler 181, 184

Update method 180-182

Update Model From
Database shortcut
command 233

UPDATE queries

adding in SqlDataAdapter
184
parameterized 199, 201

UpdateRule properties, set-
ting 82
UPDATE statements
building 274
generating automatically
180
update operations and
169-170, 171, 180

UpdateStatus.SkipCurrentRow

180

user configuration files, mod-

ifying settings in 13
user-defined
data type for entities 215
functions 255
functions (LINQ) 324-329,
339-342
UserName function 323

Vv

validation-based errors
51-56
VALUE keyword 248
Value property 157
Var function 90, 253, 323
VarP function 253, 323
"VCR" controls 353
views, indexed 98-105
Visual Basic
accessing data through
model-generated ob-
jects 268-270
accessing field values 144
adding aggregate columns
95
adding BindingNavigator
control to Windows
forms 353
adding columns to
DataTables 26-27
adding database tables
to DataSet Designer
32-33
adding DelimSubstring
method to System.
String class 279

adding expression columns
70

adding new entities
through objects 271-
272

adding relationships be-
tween two tables 79

adding rows to DataTables
41

adding tables to DataSets
75

building connection strings
125

ByRef parameter 255

calling
BeginExecuteNonQuery
method 140

calling Complete method
of TransactionScope
205-206

calling DeleteObject meth-
od 273

calling stored procedures
with parameters 165-
166

computing aggregate val-
ues 91, 93-94

configuring update com-
mands 175-177

creating custom tables
in DataSet Designer
28-32

creating data-pound WPF
applications 355-361

creating data service from
EF models 373-375

creating DataTables 20-21

creating DataViews 99-101

creating instances of
TransactionScope 204

creating new instance of
command builder 180

creating SQL Server con-
nections 128-129

defining row values 38-40

defining update and
delete rules in Data
Relations 86-87
employing savepoints
203
finding rows by primary
key 61-62
generating DataView
tables from DataView
104-105
generating EF objects
221
generating summaries 97
generating XML from
DataSet 116-117
GetOrdinal method in
144
LINQ- specific language
features 8
locating parent-child re-
cords 81
Me keyword in 280
modifying databases
through entity ob-
jects 276-277
modifying existing prop-
erties 271
modifying rows in
DataTable 44
moving data into
DataSets 173-174
moving Data into
DataTables 172-174
nesting child tables 113
Nothing values 290
opening SQL Server con-
nections 130-131
processing database que-
ries in 148-149
processing local transac-
tions 200-202
processing with distrib-
uted transactions
207-208
ReadXmlin 110

referencing parent fields
in expressions 98

retrieving entity
data through
ObjectQuery 258-
259

retrieving entity data
through provider
263-265

running nonqueries 138

selecting and sorting
DataRow objects
66-67

syncing data with
SqlDataAdapter
183-185

transactions on open da-
tabase connections
196

updating data in with pa-
rameters 159-160

updating DataTables 179

using batch processing
47

using BeginEdit 51

using ColumnMapping
property 114

using Commit and
Rollback methods
197-198

using CreateObjectSet
method 222

using DataRow class types
38

using DataRow.
HasVersion method
49

using Dataset Designer
with 27

using DataTableMapping
objects 186-187

using ExecuteReader
method to generate
data reader 260

using LINQ in

Visual Basic

applying set operations
303
calling custom database
functions 327-328
creating implicit joins
306-307
filtering results with
Where clause 296
limiting data returned
299-300
projecting results with
Select clause 294-
295
querying LINQ to SQL
341-342
querying the data set
310-312
querying to Entities
319-321
selecting linked results
with Join keyword
298-299
sorting results with
OrderBy clause 297
starting queries with
From clause 293
summarizing data using
aggregates 301-302
to SQL provider struc-
ture 334-336
using database func-
tions 323
using EntityFunctions
class 323
Where clause not sup-
ported 321-322
using namespace ele-
ments 19
using namespace proper-
tiesin 112-113
using query builder meth-
ods 284
using Rollback method
203
validating data 51-55
viewing source code 233

409

visual designer

WriteXML method in 109-
110
XML literals functionality
in 291
visual designer 332. See
also Object Relational
(O/R) Designer
Visual Studio
DataAdapterManager in
352
DataSet Designer and 28
design tool file extensions
217
editor 235
edmgen.exe in 220, 223
GetSchemaTable method
146
in ASP.NET and 362
IntelliSense in 326, 328
managing code generation
process 241
Mapping Details panel 226
Model Browser of 240
providers for 126
queryable methods 283
regenerating Visual Basic or
C# source code object
layer 233
support for building WPF/
XAML applications
354
Windows SDK in 336
Visual Studio 2005, strongly
typed DataSets in 214
Visual Studio 2008
ADO.NET Data Services in
369
LINQ to SQL provider in
332
.NET Framework and 213
Visual Studio 2010, creating
projects using 8-9
Visual Studio 2010 Entity
Framework 228
Visual Studio Express Edition
ASP.NET and 362

Database Explorer in 336,

337-339

Visual Studio IDE, menu
choices hidden in 14

Visual Studio Properties
panel, selecting asso-
ciations with 232

Visual Studio Toolbox 336

w

WCF (Windows
Communication
Foundation) Data
Services

about 369-370

as querying method in EF
222

as RESTful system 371

defining service rights
375-377

setting up 371-376

web browser content 362

WHEN clause, in Entity SQL
language 252

WHERE clause

as query builder method in
EF 222

comparison operators with-
in 250

Where clause, in LINQ 295,
306-307, 321-322

Where method 281, 282,
283, 284

Windows Communication
Foundation (WCF)
Data Services

about 369-370

as querying method in EF
222

as RESTful system 371

defining service rights
375-377

setting up 371-376

Windows forms, binding data
in 347-354

creating complex data-
bound forms 348-350
creating simple-bound
forms 351-352
understanding 352-354
Windows Presentation
Foundation (WPF),
binding data in 354-
362
Windows SDK 336
With clause 292
WITH (NOLOCK) hint 198
Wizards
ADO.NET Entity Data Model
371
Connection
creating a data source us-
ing 8-14
Data Source Configuration
355, 360
forgoing 13
Data Source Connection
27,122-124,126
Entity Data Model 218,
225-229, 325, 372
Generate Database 217
WPF (Windows Presentation
Foundation), binding
data in 354-362
wrappers for SQL Server que-
ries
SqlClient.SglCommand class
150
Write..., as EntitySetRights
member 376
WriteXML method 108-110,
113
writing XML 108-110

X

XAML language 354, 360-
361
XML (Extensible Markup
Language)
about 107

zoom controls 411

accessing Framework
modeling layers 226
accessing through
Internet Explorer 8
379
axis properties 291
building WPF/XAML
applications 354,
360-361
columns, managing and
positioning 113-117
documents 370
embedded expressions
291
exporting DataSet file as
118
generation of 111-117
storing connection
strings 126
identifying namespaces
111-113
LINQ to 291
literals 291
nesting child tables 113
processing return data
from queries in 146
reading 110-111
schema dialects in Entity
Framework 216, 217
writing 108-110
xmlns attributes 112
XmlIReadMode enumerated
values 110-111
XmlWriteMode arguments
109-110

y 4

zoom controls in Entity
Data Model Designer
229

About the Author

Tim Patrick is an author and software architect with over 25 years of experience in software
development and technical writing. He has written seven books and several articles on pro-
gramming and other topics. In 2007, Microsoft awarded him with its Most Valuable Profes-
sional (MVP) award in recognition of the benefits his writings bring to Visual Basic and .NET

programmers. Tim earned his undergraduate degree in Computer Science from Seattle
Pacific University.

“What do
you think of
this book?

We want to hear from you!
To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Tell us how well this book meets your needs—what works effectively, and what we can
do better. Your feedback will help us continually improve our books and learning
resources for you.

Thank you in advance for your input!

Microsoft
Press

Stay in touch!

To subscribe to the Microsoft Press® Book Connection Newsletter—for news on upcoming
books, events, and special offers—please visit:
microsoft.com/learning/books/newsletter

	Table of Contents
	Acknowledgments
	Introduction
	1-Introducing ADO.NET 4
	What Is ADO.NET?
	Why ADO.NET?
	Major Components of ADO.NET
	Extensions to ADO.NET
	Connecting to External Data
	Summary
	Chapter 1 Quick Reference

	3-Storing Data in Memory
	Adding Data
	Creating New Rows
	Defining Row Values
	Storing Rows in a Table

	Examining and Changing Data
	Removing Data
	Batch Processing
	Row State
	Row Versions

	Validating Changes
	Exception-Based Errors
	Validation-Based Errors

	Summary
	Chapter 3 Quick Reference

	Index

