
Contents
Introduction
Hardware Requirements
Software Requirements
Using the Companion Media
How to Install the Practice Tests
How to Use the Practice Tests
How to Uninstall the Practice Tests
Microsoft Certified Professional Program
Errata and Book Support
We Want to Hear from You
Stay in Touch
Preparing for the Exam
CHAPTER 1
Building a User Interface
Before You Begin
Lesson 1: Using WPF Controls
WPF Controls Overview
Content Controls
Other Controls
Setting the Tab Order for Controls
Item Controls
ListBox Control 
ComboBox Control 
TreeView Control and TreeViewItem Control 
Menus
ToolBar Control 
StatusBar Control 
Layout Controls
Control Layout Properties
Using Attached Properties
Layout Panels
Accessing Child Elements Programmatically
Aligning Content
Lesson Summary
Lesson Review
Lesson 2: Using Resources
Using Binary Resources
Content Files
Using Logical Resources
Creating a Resource Dictionary
Retrieving Resources in Code
Lesson Summary
Lesson Review
Lesson 3: Using Styles and Triggers
Using Styles
Triggers
Understanding Property Value Precedence
Lesson Summary
Lesson Review
Case Scenarios
Case Scenario 1: Streaming Stock Quotes
Case Scenario 2: Cup Fever
Suggested Practices
On Your Own
Take a Practice Test
CHAPTER 2
Working with Events and Commands
Before You Begin
Lesson 1: Configuring Events and Event Handling
Types of Routed Events
RoutedEventArgs
Attaching an Event Handler
The EventManager Class
Defining a New Routed Event
Creating a Class-Level Event Handler
Application-Level Events
Lesson Summary
Lesson Review
Lesson 2: Configuring Commands
A High-Level Procedure for Implementing a Command
Invoking Commands
Command Handlers and Command Bindings
Creating Custom Commands
Lesson Summary
Lesson Review
Lesson 3: Implementing Animation
Using Animations
Lesson Summary
Lesson Review
Case Scenarios
Case Scenario 1: Validating User Input
Case Scenario 2: Humongous Insurance User Interface
Suggested Practices
Take a Practice Test
CHAPTER 3
Adding and Managing Content
Before You Begin
Lesson 1: Managing the Visual Interface
Brushes
Shapes
Transformations
The Visual Tree
Adding to and Removing Controls from the Visual Interface at Run Time
Lesson Summary
Lesson Review
Lesson 2: Adding Multimedia Content
Using SoundPlayer

MediaPlayer and MediaElement
Handling Media-Specific Events
Lesson Summary
Lesson Review
Case Scenario
Case Scenario: The Company with Questionable Taste
Suggested Practices
On Your Own
Take a Practice Test
CHAPTER 4
Windows Forms and Windows Forms Controls
Before You Begin
Lesson 1: Working with Windows Forms and Container Controls
Overview of Windows Forms
Adding Forms to Your Project
Properties of Windows Forms
Modifying the Appearance and Behavior of the Form
Overview of Container Controls
The GroupBox Control
The Panel Control
The FlowLayoutPanel Control
The TableLayoutPanel Control
The TabControl Control
The SplitContainer Control
Lesson Summary
Lesson Review
Lesson 2: Configuring Controls in Windows Forms
Overview of Controls
Configuring Controls at Design Time
Modifying Control Properties at Design Time
The Button Control
The Label Control
Creating Access Keys for Controls without Using Label Controls
The TextBox Control
The MaskedTextBox Control
Lesson Summary
Lesson Review
Lesson 3: Using List-Display and Specialized Controls
Overview of List-Based Controls
ListBox Control
ComboBox Control
CheckedListBox Control
Adding Items to and Removing Items from a List-Based Control
The ListView Control
TreeView Control
NumericUpDown Control
DomainUpDown Control
Value-Setting Controls
The CheckBox Control
The RadioButton Control
The TrackBar Control
Choosing Dates and Times
DateTimePicker Control
MonthCalendar Control
Working with Images
PictureBox Control
ImageList Component
Lesson Summary
Lesson Review
Lesson 4: Using Tool Strips and Menus
Overview of the ToolStrip Control
Tool Strip Items
Displaying Images on Tool Strip Items
The ToolStripContainer Class
Merging Tool Strips
Overview of the MenuStrip Control
Creating Menu Strips and Tool Strip Menu Items
Adding Enhancements to Menus
Moving Items between Menus
Disabling, Hiding, and Deleting Menu Items
Merging Menus
Switching between MenuStrip Controls Programmatically
Context Menus and the ContextMenuStrip Control
Lesson Summary
Lesson Review
Case Scenarios
Case Scenario 1: Designing a Simple User Interface 
Case Scenario 2: Designing a User Interface 
Suggested Practices
Take a Practice Test
CHAPTER 5
Working with User-Defined Controls
Before You Begin
Lesson 1: Creating Controls in Windows Forms
Introduction to Composite Controls
Creating Extended Controls
Lesson Summary
Lesson Review
Lesson 2: Using Control Templates
Creating Control Templates
Inserting a Trigger Object in a Template
Respecting the Templated Parent’s Properties
Applying Templates with Style
Viewing the Source Code for an Existing Template
Using Predefined Part Names in a Template
Lesson Summary
Lesson Review
Lesson 3: Creating Custom Controls in WPF
Control Creation in WPF
Choosing among User Controls, Custom Controls, and Templates
Implementing and Registering Dependency Properties
Creating User Controls
Creating Custom Controls
Consuming User Controls and Custom Controls
Rendering a Theme-Based Appearance
Lesson Summary
Lesson Review
Case Scenarios
Case Scenario 1: Full Support for Styles
Case Scenario 2: The Pizza Progress Bar
Suggested Practices
Take a Practice Test

CHAPTER 6
Working with Data Binding
Before You Begin
Lesson 1: Configuring Data Binding
The Binding Class
Binding to a WPF Element
Binding to an Object
Setting the Binding Mode
Binding to a Nullable Value
Setting the UpdateSourceTrigger Property
Lesson Summary
Lesson Review
Lesson 2: Converting Data
Implementing IValueConverter
Using Converters to Return Objects
Localizing Data with Converters
Using Multi-value Converters
Lesson Summary
Lesson Review
Lesson 3: Validating Data and Configuring Change Notification
Validating Data
Configuring Data Change Notification
Lesson Summary
Lesson Review
Case Scenarios
Case Scenario 1: The Currency Trading Review Console
Case Scenario 2: Currency Trading Console
Suggested Practices
Take a Practice Test
CHAPTER 7
Configuring Data Binding
Before You Begin
Lesson 1: Binding to Data Sources
Binding to a List
Binding to ADO.NET Objects
Binding to Hierarchical Data
Binding to an Object with ObjectDataProvider
Binding to XML Using XmlDataProvider
Lesson Summary
Lesson Review
Lesson 2: Manipulating and Displaying Data
Data Templates
Sorting Data
Grouping
Filtering Data
Lesson Summary
Lesson Review
Case Scenarios
Case Scenario 1: Getting Information from the Field
Case Scenario 2: Viewing Customer Data
Suggested Practices
Take a Practice Test
CHAPTER 8
Working with Data Grids and Validating User Input
Before You Begin
Lesson 1: Implementing Data-bound Controls in Windows Forms
Binding Controls to Data
Configuring DataGridView Columns
Adding Tables and Columns to DataGridView
Deleting Columns in DataGridView
Determining the Clicked Cell in DataGridView
Validating Input in the DataGridView Control
Format a DataGridView Control by Using Custom Painting
Using DataGrid in WPF Applications
Using DataGrid Columns
Lesson Summary
Lesson Review
Lesson 2:  Validating User Input
Field-Level Validation
Using Events in Field-Level Validation 
Handling the Focus 
Form-Level Validation 
Providing User Feedback 
Implementing IDataErrorInfo in WPF Applications
Lesson Summary
Lesson Review
Case Scenario
Case Scenario: The Writer Completeness Chart
Suggested Practices
Take a Practice Test
CHAPTER 9
Enhancing Usability
Before You Begin
Lesson 1:  Implementing Asynchronous Processing
Running a Background Process
Using Delegates
Creating Process Threads
Using Dispatcher to Access Controls Safely on Another Thread in WPF
Lesson Summary
Lesson Review
Lesson 2:  Implementing Globalization and Localization 
Globalization and Localization
Localizing a WPF application
Localizing an Application
Using Culture Settings in Validators and Converters
Lesson Summary
Lesson Review
Lesson 3: Integrating Windows Forms Controls and WPF Controls
Using Windows Forms Controls in WPF Applications
Using Dialog Boxes in WPF Applications
WindowsFormsHost
Adding a WPF User Control to Your Windows Form Project
Lesson Summary
Lesson Review
Case Scenarios

Case Scenario 1:  The Publishing Application
Case Scenario 2:  Creating a Simple Game
Suggested Practices
Take a Practice Test
CHAPTER 10
Advanced Topics
Before You Begin
Lesson 1:  Working with Security
Working with Code Access Security Policies
Requesting User Account Control Permissions
Software Restriction Policies
Lesson Summary
Lesson Review
Lesson 2:  Managing Settings
Creating Settings at Design Time
Loading Settings at Run Time
Saving User Settings at Run Time
Lesson Summary
Lesson Review
Lesson 3: Implementing Drag and Drop
Implementing Drag and Drop Functionality  
Lesson Summary
Lesson Review
Case Scenario
Case Scenario: The Configurable Application
Suggested Practices
Take a Practice Test
CHAPTER 11
Testing and Debugging WPF Applications
Before You Begin
Lesson 1: Testing the User Interface
Using Automation Peers to Automate the User Interface
Using the WPF Tree Visualizer to Inspect the User Interface
Lesson Summary
Lesson Review
Lesson 2:  Debugging with Intellitrace and PresentationTraceSources
Using Intellitrace
Using PresentationTraceSources
Lesson Summary
Lesson Review
Case Scenario
Case Scenario: Debug Drama
Suggested Practices
Take a Practice Test
CHAPTER 12
Deployment
Before You Begin
Lesson 1: Creating a Windows Setup Project
Setup Projects
Lesson Summary
Lesson Review
Lesson 2: Deploying Applications with ClickOnce
Deploying with ClickOnce
Configuring ClickOnce Update Options
Deploying an XBAP with ClickOnce
Configuring the Application Manifest
Associating a Certificate with the Application
Lesson Summary
Lesson Review
Case Scenarios
Case Scenario 1: Distributing the Application a Little Early
Case Scenario 2: Installing the Server Core
Suggested Practices
Take a Practice Test
Answers 
Chapter 1: Lesson Review Answers
Lesson 1
Lesson 2
Lesson 3
Chapter 1 Case Scenario Answers
Case Scenario 1: Streaming Stock Quotes
Case Scenario 2: Cup Fever
Chapter 2: Lesson Review Answers
Lesson 1
Lesson 2
Lesson 3
Chapter 2: Case Scenario Answers
Case Scenario 1: Validating User Input
Case Scenario 2: Humongous Insurance User Interface
Chapter 3: Lesson Review Answers
Lesson 1
Lesson 2
Chapter 3: Case Scenario Answers
Case Scenario: The Company with Questionable Taste
Chapter 4: Lesson Review Answers
Lesson 1
Lesson 2
Lesson 3
Lesson 4
Chapter 4: Case Scenario Answers
Case Scenario 1: Designing a Simple User Interface 
Case Scenario 2: Designing a User Interface 
Chapter 5: Lesson Review Answers
Lesson 1
Lesson 2
Lesson 3
Chapter 5: Case Scenario Answers
Case Scenario 1: Full Support for Styles
Case Scenario 2: The Pizza Progress Bar
Chapter 6: Lesson Review Answers
Lesson 1
Lesson 2
Lesson 3
Chapter 6: Case Scenario Answers 
Case Scenario 1: The Currency Trading Review Console
Case Scenario 2: Currency Trading Console
Chapter 7: Lesson Review Answers

Lesson 1
Lesson 2
Chapter 7: Case Scenario Answers
Case Scenario 1: Getting Information from the Field
Case Scenario 2: Viewing Customer Data
Chapter 8: Lesson Review Answers
Lesson 1
Lesson 2
Chapter 8: Case Scenario Answers
Case Scenario: The Writer Completeness Chart
Chapter 9: Lesson Review Answers
Lesson 1
Lesson 2
Lesson 3
Chapter 9: Case Scenario Answers
Case Scenario 1: The Publishing Application
Case Scenario 2: Creating a Simple Game
Chapter 10: Lesson Review Answers
Lesson 1
Lesson 2
Lesson 3
Chapter 10: Case Scenario Answers
Case Scenario: The Configurable Application
Chapter 11: Lesson Review Answers
Lesson 1
Lesson 2
Chapter 11: Case Scenario Answers
Case Scenario: Debug Drama
Chapter 12: Lesson Review Answers
Lesson 1
Lesson 2
Chapter 12: Case Scenario Answers
Case Scenario 1: Distributing the Application a Little Early
Case Scenario 2: Installing the Server Core
About the Author
Systems Requirements
Hardware Requirements
Software Requirements



PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2011 by Matthew A. Stoecker

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any 
means without the written permission of the publisher.

Library of Congress Control Number: 2010942625
ISBN: 978-0-7356-2742-0

Printed and bound in the United States of America.

3 4 5 6 7 8 9 10 11 12 QGT 6 5 4 3 2

Microsoft Press books are available through booksellers and distributors worldwide. For further information about 
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International 
directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to tkinput 
@microsoft.com.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty 
/Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of 
their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and 
events depicted herein are fictitious. No association with any real company, organization, product, domain name, 
e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without 
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or 
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by 
this book.

Acquisitions Editor: Martin DelRe
Developmental Editor: Karen Szall 
Project Editor: Iram Nawaz 
Editorial Production: nSight, Inc. 
Technical Reviewer: Kurt Meyer 
Cover: Tom Draper Design

Body Part No. X17-40175

[2012-03-09]

http://www.microsoft.com/mspress
mailto:@microsoft.com
http://www.microsoft.com/about/legal/en/us/IntellectualProperty


Exam 70-511: TS: Microsoft Windows Applications 
Development with Microsoft .NET Framework 4

0bjective Chapter Lesson
1.  Building a User Interface by Using Basic Techniques (23%)
1.1 Choose the most appropriate control class 1 

4
1 
1, 2, 3, 4

1.2 Implement screen layout by using nested control hierarchies. 1 1
1.3 Create and apply styles and theming. 1 

5
3 
3

1.4 Manage reusable resources. 1 2
1.5 Implement an animation in WPF. 2 3
2.  Enhancing a User Interface by Using Advanced Techniques (21%)
2.1 Manage routed events in WPF. 2 1
2.2 Configure WPF commanding. 2 2
2.3 Modify the visual interface at run time. 3 1, 2
2.4 Implement user-defined controls. 5 1, 3
2.5 Create and display graphics. 3 1
2.6 Add multimedia content to an application in WPF. 3 2
2.7 Create and apply control templates in WPF. 5 2
2.8 Create data, event, and property triggers in WPF. 1 3
3.  Managing Data at the User Interface Layer (23%) 
3.1 Implement data binding. 6 

7
1 
1

3.2 Implement value converters in WPF. 6 2
3.3 Implement data validation. 6 

8
3 
2

3.4 Implement and consume change notification interfaces. 6 3
3.5 Prepare collections of data for display. 7 2
3.6 Bind to hierarchical data. 7 1
3.7 Implement data-bound controls. 8 1
3.8 Create a data template in WPF. 7 2
4.  Enhancing the Functionality and Usability of a Solution (17%)
4.1 Integrate WinForms and WPF within an application. 9 3
4.2 Implement asynchronous processes and threading. 9 1
4.3 Incorporate globalization and localization features. 9 2
4.4 Implement drag and drop operations within and across applications. 10 3
4.5 Implement security features of an application. 10 1
4.6 Manage user and application settings. 10 2
4.7 Implement dependency properties. 5 3
5.  Stabilizing and Releasing a Solution (17%)
5.1 Implement a WPF test strategy. 11 1, 2
5.2 Debug XAML by using the WPF Visualizer. 11 1
5.3 Debug WPF issues by using PresentationTraceSources. 11 2
5.4 Configure a ClickOnce deployment. 12 2
5.5 Create and configure a Windows Installer project. 12 1
5.6 Configure deployment security settings. 12 2

Exam Objectives  The exam objectives listed here are current as of this book’s publication date. Exam objectives  
are subject to change at any time without prior notice and at Microsoft’s sole discretion. Please visit the Microsoft 
Learning Web site for the most current listing of exam objectives: http://www.microsoft.com/learning/en/us/
exams/70-511.mspx.

http://www.microsoft.com/learning/en/us/exams




Contents at a Glance

Introduction	 xv

CHAPTER 1	 Building a User Interface	 1

CHAPTER 2	 Working with Events and Commands	 75

CHAPTER 3	 Adding and Managing Content	 119

CHAPTER 4	 Windows Forms and Windows Forms Controls	 157

CHAPTER 5	 Working with User-Defined Controls	 273

CHAPTER 6	 Working with Data Binding	 315

CHAPTER 7	 Configuring Data Binding	 367

CHAPTER 8	 Working with Data Grids and Validating User Input	 407

CHAPTER 9	 Enhancing Usability	 447

CHAPTER 10	 Advanced Topics	 493

CHAPTER 11	 Testing and Debugging WPF Applications	 521

CHAPTER 12	 Deployment	 545

Index	 607





vii

Contents

	 Introduction	 xv
Hardware Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          xvi

Software Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          xvii

Using the Companion Media. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     xvii

Microsoft Certified Professional Program . . . . . . . . . . . . . . . . . . . . . . . . . . .                           xix

Support for This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            xx

We Want to Hear from You. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                        xx

Chapter 1	 Building a User Interface	 1
Lesson 1: Using WPF Controls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                        3

WPF Controls Overview	 3

Content Controls	 4

Other Controls	 7

Setting the Tab Order for Controls	 12

Item Controls	 12

ListBox Control 	 12

ComboBox Control 	 13

TreeView Control and TreeViewItem Control 	 14

Menus	 15

ToolBar Control 	 17

StatusBar Control 	 19

Layout Controls	 19

Control Layout Properties	 19

Using Attached Properties	 21

What do you think of this book? We want to hear from you! 
Microsoft is interested in hearing your feedback so we can continually improve our  
books and learning resources for you. To participate in a brief online survey, please visit: 

www.microsoft.com/learning/booksurvey/

http://www.microsoft.com/learning/booksurvey/


viii Contents

Layout Panels	 22

Accessing Child Elements Programmatically	 31

Aligning Content	 32

Lesson 2: Using Resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          41

Using Binary Resources	 41

Content Files	 43

Using Logical Resources	 46

Creating a Resource Dictionary	 50

Retrieving Resources in Code	 51

Lesson 3: Using Styles and Triggers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                  57

Using Styles	 57

Triggers	 63

Understanding Property Value Precedence	 66

Chapter 2	 Working with Events and Commands	 75
Lesson 1: Configuring Events and Event Handling. . . . . . . . . . . . . . . . . . . .                     77

Types of Routed Events	 78

RoutedEventArgs	 79

Attaching an Event Handler	 80

The EventManager Class	 81

Defining a New Routed Event	 81

Creating a Class-Level Event Handler	 83

Application-Level Events	 83

Lesson 2: Configuring Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                   89

A High-Level Procedure for Implementing a Command	 90

Invoking Commands	 90

Command Handlers and Command Bindings	 92

Creating Custom Commands	 95

Lesson 3: Implementing Animation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 102

Using Animations	 102

Chapter 3	 Adding and Managing Content	 119
Lesson 1: Managing the Visual Interface . . . . . . . . . . . . . . . . . . . . . . . . . . .                            121

Brushes	 121



ixContents

Shapes	 128

Transformations	 133

The Visual Tree	 136

Adding to and Removing Controls from the  
Visual Interface at Run Time	 139

Lesson 2: Adding Multimedia Content. . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              144

Using SoundPlayer	 144

MediaPlayer and MediaElement	 147

Handling Media-Specific Events	 150

Chapter 4	 Windows Forms and Windows Forms Controls	 157
Lesson 1: Working with Windows Forms and Container Controls. . . . . .       159

Overview of Windows Forms	 159

Adding Forms to Your Project	 160

Properties of Windows Forms	 161

Modifying the Appearance and Behavior of the Form	 163

Overview of Container Controls	 170

The GroupBox Control	 173

The Panel Control	 173

The FlowLayoutPanel Control	 174

The TableLayoutPanel Control	 176

The TabControl Control	 179

The SplitContainer Control	 181

Lesson 2: Configuring Controls in Windows Forms . . . . . . . . . . . . . . . . . .                   191

Overview of Controls	 191

Configuring Controls at Design Time	 193

Modifying Control Properties at Design Time	 196

The Button Control	 197

The Label Control	 201

Creating Access Keys for Controls without  
Using Label Controls	 202

The TextBox Control	 203

The MaskedTextBox Control	 204

Lesson 3: Using List-Display and Specialized Controls. . . . . . . . . . . . . . . .                 212

Overview of List-Based Controls	 212



x Contents

ListBox Control	 213

ComboBox Control	 214

CheckedListBox Control	 214

Adding Items to and Removing Items from a  
List-Based Control	 216

The ListView Control	 223

TreeView Control	 225

NumericUpDown Control	 228

DomainUpDown Control	 228

Value-Setting Controls	 229

The CheckBox Control	 229

The RadioButton Control	 231

The TrackBar Control	 232

Choosing Dates and Times	 233

DateTimePicker Control	 233

MonthCalendar Control	 233

Working with Images	 235

PictureBox Control	 235

ImageList Component	 236

Lesson 4: Using Tool Strips and Menus. . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              244

Overview of the ToolStrip Control	 244

Tool Strip Items	 246

Displaying Images on Tool Strip Items	 248

The ToolStripContainer Class	 249

Merging Tool Strips	 249

Overview of the MenuStrip Control	 251

Creating Menu Strips and Tool Strip Menu Items	 253

Adding Enhancements to Menus	 256

Moving Items between Menus	 258

Disabling, Hiding, and Deleting Menu Items	 259

Merging Menus	 260

Switching between MenuStrip Controls Programmatically	 261

Context Menus and the ContextMenuStrip Control	 261



xiContents

Chapter 5	 Working with User-Defined Controls	 273
Lesson 1: Creating Controls in Windows Forms. . . . . . . . . . . . . . . . . . . . . . 275

Introduction to Composite Controls	 275

Creating Extended Controls	 282

Lesson 2: Using Control Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 288

Creating Control Templates	 288

Inserting a Trigger Object in a Template	 291

Respecting the Templated Parent’s Properties	 292

Applying Templates with Style	 294

Viewing the Source Code for an Existing Template	 294

Using Predefined Part Names in a Template	 295

Lesson 3: Creating Custom Controls in WPF . . . . . . . . . . . . . . . . . . . . . . . .                        300

Control Creation in WPF	 300

Choosing among User Controls, Custom Controls,  
and Templates	 300

Implementing and Registering Dependency Properties	 301

Creating User Controls	 303

Creating Custom Controls	 304

Consuming User Controls and Custom Controls	 304

Rendering a Theme-Based Appearance	 305

Chapter 6	 Working with Data Binding	 315
Lesson 1: Configuring Data Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                317

The Binding Class	 317

Binding to a WPF Element	 318

Binding to an Object	 320

Setting the Binding Mode	 323

Binding to a Nullable Value	 323

Setting the UpdateSourceTrigger Property	 324

Lesson 2: Converting Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                         328

Implementing IValueConverter	 328

Using Converters to Return Objects	 335

Localizing Data with Converters	 336



xii Contents

Using Multi-value Converters	 338

Lesson 3: Validating Data and Configuring Change Notification. . . . . . .        346

Validating Data	 346

Configuring Data Change Notification	 350

Chapter 7	 Configuring Data Binding	 367
Lesson 1: Binding to Data Sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                  369

Binding to a List	 369

Binding to ADO.NET Objects	 373

Binding to Hierarchical Data	 376

Binding to an Object with ObjectDataProvider	 378

Binding to XML Using XmlDataProvider	 379

Lesson 2: Manipulating and Displaying Data. . . . . . . . . . . . . . . . . . . . . . . .                         385

Data Templates	 385

Sorting Data	 394

Grouping	 396

Filtering Data	 399

Chapter 8	 Working with Data Grids and Validating User Input	 407
Lesson 1: Implementing Data-bound Controls in Windows Forms. . . . .      409

Binding Controls to Data	 409

Configuring DataGridView Columns	 412

Adding Tables and Columns to DataGridView	 413

Deleting Columns in DataGridView	 413

Determining the Clicked Cell in DataGridView	 414

Validating Input in the DataGridView Control	 414

Format a DataGridView Control by Using Custom Painting	 416

Using DataGrid in WPF Applications	 417

Using DataGrid Columns	 418

Lesson 2:  Validating User Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    427

Field-Level Validation	 427

Using Events in Field-Level Validation 	 429

Handling the Focus 	 431



xiiiContents

Form-Level Validation 	 433

Providing User Feedback 	 434

Implementing IDataErrorInfo in WPF Applications	 436

Chapter 9	 Enhancing Usability	 447
Lesson 1:  Implementing Asynchronous Processing. . . . . . . . . . . . . . . . . .                   449

Running a Background Process	 450

Using Delegates	 456

Creating Process Threads	 460

Using Dispatcher to Access Controls Safely on 
Another Thread in WPF	 464

Lesson 2:  Implementing Globalization and Localization . . . . . . . . . . . . .              468

Globalization and Localization	 468

Localizing a WPF application	 472

Localizing an Application	 472

Using Culture Settings in Validators and Converters	 476

Lesson 3: Integrating Windows Forms Controls and WPF Controls. . . . .      483

Using Windows Forms Controls in WPF Applications	 483

Using Dialog Boxes in WPF Applications	 483

WindowsFormsHost	 485

Adding a WPF User Control to Your Windows Form Project	 487

Chapter 10	 Advanced Topics	 493
Lesson 1:  Working with Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                   495

Working with Code Access Security Policies	 497

Requesting User Account Control Permissions	 498

Software Restriction Policies	 499

Lesson 2:  Managing Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                      503

Creating Settings at Design Time	 504

Loading Settings at Run Time	 504

Saving User Settings at Run Time	 505

Lesson 3: Implementing Drag and Drop. . . . . . . . . . . . . . . . . . . . . . . . . . . .                             510

Implementing Drag and Drop Functionality  	 510



xiv Contents

Chapter 11	 Testing and Debugging WPF Applications	 521
Lesson 1: Testing the User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                523

Using Automation Peers to Automate the User Interface	 523

Using the WPF Tree Visualizer to Inspect the User Interface	 527

Lesson 2:  Debugging with Intellitrace and PresentationTraceSources . .   533

Using Intellitrace	 533

Using PresentationTraceSources	 535

Chapter 12	 Deployment	 545
Lesson 1: Creating a Windows Setup Project. . . . . . . . . . . . . . . . . . . . . . . .                         547

Setup Projects	 547

Lesson 2: Deploying Applications with ClickOnce. . . . . . . . . . . . . . . . . . . . 559

Deploying with ClickOnce	 559

Configuring ClickOnce Update Options	 562

Deploying an XBAP with ClickOnce	 565

Configuring the Application Manifest	 566

Associating a Certificate with the Application	 567

Index	 607



xv

Introduction
This training kit is designed for developers who plan to take Microsoft Certified 

Technology Specialist (MCTS) exam 70-511 as well as for developers who need to know 
how to develop applications by using Microsoft .NET Framework 4. Before you begin us-
ing this kit, you must have a working knowledge of Windows and Microsoft Visual Basic or 
Microsoft Visual C#. The topics in this training kit cover what you need to know for the  
exam as described on the Skills Measured tab for the exam, which is available at  
http://www.microsoft.com/learning/en/us/exam.aspx?ID=70-511&locale=en-us#tab2.

By using this training kit, you’ll learn how to do the following:

■	 Choose the most appropriate control class

■	 Implement screen layout using nested control hierarchies

■	 Create and apply styles and theming

■	 Manage reusable resources

■	 Implement an animation in Windows Presentation Foundation (WPF)

■	 Manage routed events in WPF

■	 Configure WPF commanding

■	 Modify the visual interface at run time

■	 Implement user-defined controls

■	 Create and display graphics

■	 Add multimedia content to an application in WPF

■	 Create and apply control templates in WPF

■	 Create data, event, and property triggers in WPF

■	 Implement data binding

■	 Implement value converters in WPF

■	 Implement data validation

■	 Implement and consume change notification interfaces

■	 Prepare collections of data for display

■	 Bind to hierarchical data

■	 Implement data-bound controls

■	 Create a data template in WPF

■	 Integrate WinForms and WPF within an application

■	 Implement asynchronous processes and threading

http://www.microsoft.com/learning/en/us/exam.aspx?ID=70-511&locale=en-us#tab2


xvi Introduction

■	 Incorporate globalization and localization features

■	 Implement drag and drop operations across applications

■	 Implement security features of an application

■	 Manage user and application settings

■	 Implement dependency properties

■	 Implement a WPF test strategy

■	 Debug XAML by using WPF Visualizer

■	 Debug WPF issues by using PresentationTraceSources

■	 Configure a ClickOnce deployment

■	 Create and configure a Windows Installer project

■	 Configure deployment security settings

Refer to the objective mapping page in the front of this book to see where in the book 
each exam objective is covered.

Hardware Requirements
You should use a computer that is not your primary workstation to do the practice exer-
cises in this book because you will make changes to the operating system and application 
configuration.

To use the companion CD, you need a computer running Microsoft Windows XP with 
Service Pack 3 (SP3), Windows Vista with SP2, Windows 7, Windows Server 2003 with SP2, 
Windows Server 2003 R2, Windows Server 2008 with SP2, or Windows Server 2008 R2. The 
computer must meet the following minimum requirements: 

■	 Personal computer with at least a 1-GHz 32-bit (x86) or 64-bit (x64) processor

■	 At least 1 GB of RAM (x86 systems) or 2 GB of RAM (x64 systems)

■	 At least a 40-GB hard disk

■	 DVD-ROM drive

■	 Super VGA (800 x 600) or higher resolution video adapter and monitor

■	 Keyboard and Microsoft mouse or compatible pointing device

For chapter 10 you will need a computer running Windows 7 Professional, Ultimate, or 
Enterprise Edition.



xviiIntroduction

Software Requirements
The computer used with the companion CD-ROM should also have the following software:

■	 A Web browser such as Windows Internet Explorer

■	 An application that can display PDF files such as Adobe Acrobat Reader, which can be 
downloaded at www.adobe.com/reader

■	 Microsoft Visual Studio 2010 Professional, a trial version of which can be downloaded 
at http://www.microsoft.com/visualstudio/en-us/products/2010-editions/professional

These requirements will support use of the companion CD-ROM.

Using the Companion Media
The companion media (CD) included with this training kit contains the following:

■	 Practice tests  You can reinforce your understanding of programming with Microsoft 
.NET Framework 4 by using electronic practice tests that you customize to meet your 
needs from the pool of lesson review questions in this book, or you can practice for 
the 70-511 certification exam by using tests created from a pool of 200 realistic exam 
questions, which give you many practice exams to ensure that you are prepared.

■	 An eBook  An electronic version (eBook) of this book is included for when you do not 
want to carry the printed book with you.

NOTE  DIGITAL CONTENT FOR DIGITAL BOOK READERS

If you bought a digital-only edition of this book, you can enjoy select content from the 
print edition’s companion media. Go to http://go.microsoft.com/fwlink/?LinkId=207838 
to get your downloadable content. This content is always up to date and available to 
all readers. 

How to Install the Practice Tests
To install the practice test software from the companion CD to your hard disk, perform the 
following steps:

	 1.	 Insert the companion CD into your CD drive and accept the license agreement. A CD 
menu appears.

http://www.adobe.com/reader
http://www.microsoft.com/visualstudio/en-us/products/2010-editions/professional
http://go.microsoft.com/fwlink/?LinkId=207838


xviii Introduction

NOTE  IF THE CD MENU DOES NOT APPEAR

If the CD menu or the license agreement does not appear, AutoRun might be disabled 
on your computer. Refer to the Readme.txt file on the CD for alternate installation 
instructions.

	 2.	 Click Practice Tests and follow the instructions on the screen.

How to Use the Practice Tests
To start the practice test software, follow these steps:

	 1.	 Click Start, click All Programs, and then select Microsoft Press Training Kit Exam Prep. 
A window appears that shows all the Microsoft Press training kit exam prep suites 
installed on your computer.

	 2.	 Double-click the lesson review or practice test you want to use.

NOTE  LESSON REVIEWS VS. PRACTICE TESTS

Select the (70-511) Windows Applications Development with Microsoft .NET 
Framework 4 lesson review to use the questions from the “Lesson Review” sections of 
this book. Select the (70-511) Windows Applications Development with Microsoft .NET 
Framework 4 practice test to use a pool of 200 questions similar to those that appear on 
the 70-511 certification exam.

Lesson Review Options
When you start a lesson review, the Custom Mode dialog box appears so that you can con-
figure your test. You can click OK to accept the defaults, or you can customize the number of 
questions you want, how the practice-test software works, the exam objectives to which you 
want the questions to relate, and whether you want your lesson review to be timed. If you 
are retaking a test, you can select whether you want to see all the questions again or only the 
questions you missed or did not answer.

After you click OK, your lesson review starts.

■	 Article I  To take the test, answer the questions and use the Next and Previous but-
tons to move from question to question.

■	 Article II  After you answer an individual question, if you want to see which answers 
are correct—along with an explanation of each correct answer—click Explanation.



xixIntroduction

■	 Article III  If you prefer to wait until the end of the test to see how you did, answer all 
the questions and then click Score Test. You will see a summary of the exam objectives 
you chose and the percentage of questions you got right, both overall and per objec-
tive. You can print a copy of your test, review your answers, or retake the test.

Practice Test Options
When you start a practice test, you choose whether to take the test in Certification Mode, 
Study Mode, or Custom Mode.

■	 Certification Mode  Closely resembles the experience of taking a certification exam. 
The test has a set number of questions. It is timed, and you cannot pause and restart 
the timer.

■	 Study Mode  Creates an untimed test during which you can review the correct an-
swers and the explanations after you answer each question.

■	 Custom Mode  Gives you full control over the test options so that you can custom-
ize them as you like. In all modes, the test user interface is basically the same but with 
different options enabled or disabled, depending on the mode. The main options are 
discussed in the previous section, “Lesson Review Options.”

When you review your answer to an individual practice test question, you see a 
“References” section that lists where in the training kit you can find the information that 
relates to that question and provides links to other sources of information. After you click Test 
Results to score your entire practice test, you can click the Learning Plan tab to see a list of 
references for every objective.

How to Uninstall the Practice Tests
To uninstall the practice test software for a training kit, use the Uninstall A Program option in 
Windows Control Panel.

Microsoft Certified Professional Program
Microsoft certifications provide the best method for proving your command of current 
Microsoft products and technologies. The exams and corresponding certifications are 
developed to validate your mastery of critical competencies as you design and develop, or 
implement and support, solutions with Microsoft products and technologies. Computer 
professionals who become Microsoft certified are recognized as experts and are sought after 
industry-wide. Certification brings a variety of benefits to the individual and to employers and 
organizations.



xx Introduction

MORE INFO  ALL THE MICROSOFT CERTIFICATIONS

For a full list of Microsoft certifications, go to www.microsoft.com/learning/mcp/default.asp.

We Want to Hear from You
At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable 
asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in advance 
for your input! 

Stay in Touch
Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

http://www.microsoft.com/learning/mcp/default.asp
http://microsoftpress.oreilly.com
mailto:tkinput@microsoft.com
http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress


xxiIntroduction

Preparing for the Exam
Microsoft certification exams are a great way to build your résumé and let the world know 

about your level of expertise. Certification exams validate your on-the-job experience 
and product knowledge. Although there is no substitution for on-the-job experience, prepa-
ration through study and hands-on practice can help you prepare for the exam. We recom-
mend that you round out your exam preparation plan by using a combination of available 
study materials and courses. For example, you might use this Training Kit and another study 
guide for your at-home preparation and take a Microsoft Official Curriculum course for the 
classroom experience. Choose the combination you think works best for you.





		  CHAPTER 1	 1

C H A P T E R  1

Building a User Interface

The user interface is the visual representation of your ap-
plication. Users of your application use the user inter-

face to interact with the application through the manipula-
tion of controls, which are hosted in windows. Currently, you 
can use two Microsoft technologies in Visual Studio to build 
Microsoft Windows applications: Windows Forms and Windows 
Presentation Foundation (WPF).

Windows Forms historically has been the basis for most 
Microsoft Windows applications and can be configured to pro-
vide a variety of user interface (UI) options. The developer can 
create forms of various sizes and shapes and customize them to the user’s needs. Forms are 
hosts for controls, which provide the main functionality of the UI. 

WPF is the successor to Windows Forms for desktop application development. WPF 
applications differ from traditional Windows Forms applications in several ways, the most 
notable of which is that the code for the user interface is separate from the code for ap-
plication functionality. Although the code for the functionality of a project can be defined 
using familiar languages such as Microsoft Visual Basic .NET or Microsoft Visual C#, the 
user interface of a WPF project is typically defined using a relatively new declarative syntax 
called Extensible Application Markup Language (XAML). 

Although this training kit does cover some elements of Windows Forms program-
ming, the primary focus for this training kit and the exam for which it prepares you is WPF 
technology.

This chapter introduces you to the fundamentals of creating a Windows application. 
Lesson 1 describes the kinds of WPF controls and how to use them. Lesson 2 explains using 
resources, and Lesson 3 describes how to incorporate styles into your WPF application.

Exam objectives in this chapter:
■	 Choose the most appropriate control class.
■	 Implement screen layout by using nested control hierarchies.
■	 Manage reusable resources.
■	 Create and apply styles and theming.
■	 Create data, event, and property triggers in WPF.

i m p o r t a n t

Have you read 
page xxi?
It contains valuable  
information regarding 
the skills you need to 
pass the exam.



	 2	 CHAPTER 1	 Building a User Interface

Lessons in this chapter:
■	 Lesson 1: Using WPF Controls  3
■	 Lesson 2: Using Resources  41
■	 Lesson 3: Using Styles and Triggers  57

Before You Begin

To complete the lessons in this chapter, you must have:

■	 A computer that meets or exceeds the minimum hardware requirements listed in the 
“Introduction” section at the beginning of the book.

■	 Microsoft Visual Studio 2010 Professional edition installed on your computer.

■	 An understanding of Visual Basic or C# syntax and familiarity with Microsoft .NET 
Framework 4.

■	 An understanding of XAML.

REAL WORLD

Matt Stoecker

When I develop a Windows application, I pay special attention to the design 
of the UI. A well thought out UI that flows logically can help provide a 

consistent user experience from application to application and make learning new 
applications easy for users. Familiarity and common themes translate into increased 
productivity. With both Windows Forms and WPF available to create applications, 
an unprecedented number of options are now available for your programming 
tasks.



	 Lesson 1: Using WPF Controls	 CHAPTER 1	 3

Lesson 1: Using WPF Controls

In this lesson, you learn to use WPF controls for WPF application development and how to use 
individual controls, item controls, and layout controls, each of which is necessary for creating 
WPF applications.

After this lesson, you will be able to: 
■	 Explain what a content control is.
■	 Describe and use several common WPF controls.
■	 Use a dependency property.
■	 Create and use an item control in your user interface.
■	 Create a menu.
■	 Create a toolbar.
■	 Create a status bar.
■	 Explain the properties of a control that manage layout.
■	 Explain how to use the Grid control.
■	 Explain how to use the UniformGrid control.
■	 Explain how to use the StackPanel control.
■	 Explain how to use the WrapPanel control.
■	 Explain how to use the DockPanel control.
■	 Explain how to use the Canvas control.
■	 Configure control sizing.
■	 Align content at design time.
■	 Use the GridSplitter control.

Estimated lesson time: 2 hours

WPF Controls Overview
There are three basic types of controls in WPF. First, there are individual controls, which cor-
respond with many of the familiar controls from Windows Forms programming. Controls 
such as Button, Label, and TextBox are familiar to developers and users alike. These controls 
generally have a single purpose in an application; for example, buttons are clicked, text boxes 
receive and display text, and so on. A subset of these controls comprises content controls, 
which are designed to display a variety of kinds of content. Content controls, discussed later 
in this lesson, typically contain a single nested element.

A second kind of WPF control is the item control, which is designed to contain groups 
of related items. Examples of these include ListBox controls, Menu controls, and TreeView 
controls. These controls typically enable the user to select an item from a list and perform an 



	 4	 CHAPTER 1	 Building a User Interface

action with that item. Item controls can contain multiple nested elements. These controls are 
discussed later in this lesson.

Finally, layout controls, which contain multiple nested controls of any type, provide built-in 
logic for the visual layout of those controls. Examples include Grid, StackPanel, and Canvas. 
These controls are also discussed later in this lesson. 

Content Controls
Many of the controls you use to build your WPF application are content controls. Simply, a 
content control derives from the ContentControl class and can contain a single nested ele-
ment. This nested element can be of any type and can be set or retrieved in code through the 
Content property. The following XAML example demonstrates setting the content of a Button 
control to a string value (shown in bold):

<Button Height="23" Margin="36,0,84,15" Name="button2" 
   VerticalAlignment="Bottom">This is the content string</Button>

You also can set the content in code, as shown in the following example:

Sample of Visual Basic Code

Button2.Content = "This is the content string" 

Sample of C# Code 

button2.Content = "This is the content string";

The type of the Content property is Object, so it can accept any object as content. How 
content is rendered, however, depends on the type of the object in the Content property. 
For items that do not derive from UIElement, the ToString method is called, and the result-
ing string is rendered as the control content. Items that derive from UIElement, however, are 
displayed as contained within the content control. The following example code demonstrates 
how to render a button that has an image as its content:

<Button Margin="20,20,29,74" Name="button1"> 
   <Image Source="C:\Pictures\HumpbackWhale.jpg"/>  
</Button>

Assuming that the path to the image is valid, this code will render a button that displays a 
picture file of a humpback whale named HumpbackWhale.jpg.

Note that even though content controls can contain only a single nested element, there 
is no inherent limit on the number of nested elements that the content can contain. For 
example, it is possible for a content control to host a layout control that itself contains several 
additional UI elements. The following code shows a simple example of Button with a nested 
StackPanel control that itself has nested elements:

<Button Margin="20,20,-12,20" Name="button1"> 
   <StackPanel>  
             <Image Source="C:\Pictures\HumpbackWhale.jpg"></Image>  
             <TextBlock>This is a Humpback Whale</TextBlock>  



	 Lesson 1: Using WPF Controls	 CHAPTER 1	 5

   </StackPanel>  
</Button>

At run time, this will be rendered as an image of a humpback whale with text beneath it.

Label Control and Mnemonic Keys
The Label control is one of the simplest WPF controls. It is mostly just a container for content. 
Typical usage for a Label control is as follows:

<Label Name="label1">This is a Label</Label>

Labels contain built-in support for mnemonic keys, which move the focus to a designated 
control when the Alt key is pressed with the mnemonic key. For example, if R were the mne-
monic key for a particular control, the focus would shift to that control when Alt+R is pressed.

Typical usage for mnemonic keys in labels occurs when the label designates a control 
that can receive the focus, such as TextBox. The mnemonic key is specified by preceding the 
desired key with the underscore (_) symbol and appears underlined at run time when the Alt 
key is pressed. For example, the following code appears as Press Alt+A at run time when you 
press the Alt key:

<Label>Press Alt+_A</Label>

Although this code designates the mnemonic key for the label, it has no effect unless you 
designate a target control as well. You can designate a target control by setting the Target 
property of the Label control. The following example demonstrates how to create a mnemon-
ic key with a target control named TextBox1:

<Label Target="{Binding ElementName=TextBox1}" Height="27" 
   HorizontalAlignment="Left" VerticalAlignment="Top" Width="51">_Name  
</Label>  
<TextBox Name="TextBox1" Margin="53,1,94,0" Height="26"  
   VerticalAlignment="Top">  
</TextBox>

The syntax exemplified by {Binding ElementName=TextBox1} will be discussed further in 
Chapter 6, “Working with Data Binding.”

Button Control
The Button control should be familiar to most developers. This control is designed to be 
clicked to enable the user to make a choice, to close a dialog box, or to perform another ac-
tion. You can execute code by clicking the button to handle the Click event. (For information 
about handling events, see Chapter 2, “Working with Events and Commands.”)

The Button control exposes two important properties useful when building user interfaces: 
the IsDefault property and the IsCancel property.

The IsDefault property determines whether a particular button is considered the default 
button for the user interface. When IsDefault is set to True, the button’s Click event is raised 
when you press Enter. Similarly, the IsCancel property determines whether the button should 



	 6	 CHAPTER 1	 Building a User Interface

be considered a Cancel button. When IsCancel is set to True, the button’s Click event is raised 
when Esc is pressed.

ACCESS KEYS
Buttons provide support for access keys, which are similar to the mnemonic keys supported 
by labels. When a letter in a button’s content is preceded by an underscore symbol (_), that 
letter will appear underlined when the Alt key is pressed, and the button will be clicked when 
the user presses Alt and that key together. For example, assume you have a button defined as 
follows:

<Button>_Click Me!</Button>

The text in the button appears as “Click Me” when Alt is pressed, and the button is clicked 
when Alt+C is pressed. If more than one button defines the same access key, neither is acti-
vated when the access key combination is pressed, but focus alternates between the buttons 
that define that key.

CHECKBOX CONTROL
The Checkbox control actually inherits from the ButtonBase class and typically enables the 
user to select whether an option is on or off. You can determine whether a check box is 
selected by accessing the IsChecked property. The IsChecked property is a Boolean? (bool? in 
C#) data type similar to the Boolean type but allows an indeterminate state as well. A check 
box will be in the indeterminate state when a window first opens.

Because Checkbox inherits from ButtonBase, it raises a Click event whenever the user 
selects or clears the check box. The best way to react to the user selecting or clearing a check 
box is to handle the Click event.

RADIOBUTTON CONTROL
Like Checkbox, RadioButton inherits from the ButtonBase class. RadioButton controls are typi-
cally used in groups to enable the user to select one option from a group. Clicking a radio 
button causes the Click event to be raised to react to user choices.

A fundamental feature of RadioButton controls is that they can be grouped. In a group of 
RadioButton controls, selecting one automatically clears all the others. Thus, it is not possible 
for more than one radio button in a group to be selected at one time.

Usually, all RadioButton controls in a single container are automatically in the same group. 
If you want to have a single group of three RadioButton controls in a window, all you need 
to do is add them to your window; they are automatically grouped. You can have multiple 
groups in a single container by setting the GroupName property. The following example 
demonstrates two groups of two radio buttons each.

<RadioButton GroupName="Group1" Name="RadioButton1" Height="22" 
   VerticalAlignment="Top" Margin="15,10,0,0"  
   HorizontalAlignment="Left" Width="76">Button 1</RadioButton>  
<RadioButton GroupName="Group1" Name="RadioButton2"  
   Margin="15,34,0,0" Height="22" VerticalAlignment="Top"  



	 Lesson 1: Using WPF Controls	 CHAPTER 1	 7

   HorizontalAlignment="Left" Width="76">Button 2</RadioButton>  
<RadioButton GroupName="Group2" Name="RadioButton3"  
   Margin="15,58,0,0" Height="21" HorizontalAlignment="Left"  
   VerticalAlignment="Top" Width="76">Button 3</RadioButton>  
<RadioButton GroupName="Group2" Name="RadioButton4"  
   Margin="15,85,0,0" Height="22" HorizontalAlignment="Left"  
   VerticalAlignment="Top" Width="76">Button 4</RadioButton>

You also can create groups of radio buttons by wrapping them in containers, such as in the 
code shown here:

<StackPanel Height="29" VerticalAlignment="Top"> 
   <RadioButton Name="RadioButton1">Button 1</RadioButton>  
   <RadioButton Name="RadioButton2">Button 2</RadioButton>  
</StackPanel>  
<StackPanel Height="34" Margin="0,34,0,0" VerticalAlignment="Top">  
   <RadioButton Name="RadioButton3">Button 3</RadioButton>  
   <RadioButton Name="RadioButton4">Button 4</RadioButton>  
</StackPanel>

EXAM TIP

It is important to realize that even though a content control can host only a single element, 
the element that it hosts can itself host child elements. Thus, a content control might host 
a grid, which in turn might host a number of objects.

Other Controls
There are other controls in the WPF suite that are not content controls. They do not have a 
Content property and typically are more limited in how they display or more specialized in 
terms of the content they display. For example, the TextBlock control displays text, and the 
Image control represents an image.

TextBlock Control 
TextBlock is one of the simplest WPF elements. It just represents an area of text that appears 
in a window. The following example demonstrates a TextBlock control: 

<TextBlock>Here is some text</TextBlock>

If you want to change the text in a TextBlock control in code, you must set the Name prop-
erty of the TextBlock control so that you can refer to it in code, as shown here:

<TextBlock Name="TextBlock1">Here is some text</TextBlock>

Then you can change the text or any other property by referring to it in the code, as 
shown here:

Sample of Visual Basic Code

TextBlock1.Text = "Here is the changed text" 



	 8	 CHAPTER 1	 Building a User Interface

Sample of C# Code

TextBlock1.Text = "Here is the changed text";

By default, the font of the text in the TextBlock element will be the same as the font of the 
window. If you want different font settings for the TextBlock, you can set font-related proper-
ties, as shown here:

<TextBlock FontFamily="Batang" FontSize="12" 
   FontStyle="Italic" FontWeight="Bold"  
   FontStretch="Normal">Here is some text</TextBlock>

Image Control 
The Image control represents an image. The chief property of the Image control is the Source 
property, which takes a System.Windows.Media.ImageSource class in code, but, when set in 
XAML, it can be set as the Uniform Resource Identifier (URI) from which the image is loaded. 
For example, look at the following code.

<Image Source="C:\Pictures\Humpbackwhale.jpg"/>

The URI can be either a local disk resource or a Web resource.

The Image.Stretch property determines how an image is displayed, whether it is shown 
at actual size and cropped (if necessary) to fit the image bounds, or whether it is shrunk or 
stretched to fit the bounds of the Image control. Table 1-1 describes the possible values for 
the Stretch property.

TABLE 1-1  Values for the Stretch Property

VALUE DESCRIPTION

None The image content is presented at its original size. If necessary, it is 
cropped to fit the available space.

Fill The image content is resized (stretched or shrunk as needed) to fit the 
Image control size.

Uniform The image content is resized to fit the destination dimensions while 
preserving its native aspect ratio. No cropping will occur, but unfilled 
space on the Image control edges might result.

UniformToFill The image content is resized to fit the destination dimensions while 
preserving its native aspect ratio. If the aspect ratio of the Image con-
trol differs from the image content, the content is cropped to fit the 
Image control.



	 Lesson 1: Using WPF Controls	 CHAPTER 1	 9

TextBox Control 
The TextBox control is designed for the editing and display of text. The Textbox control 
enables the user to type text into the user interface. That text is accessible later by the ap-
plication in the TextBox.Text property. You can use a TextBox control solely for text display by 
setting the IsReadOnly property to True, as shown in bold here:

<TextBox IsReadOnly="True" Height="93" Margin="16,14,97,0"  
   Name="TextBox1" VerticalAlignment="Top"/>

The preceding code disables user input for the TextBox1 control.

Although the TextBox control can be created as a rectangle of any size, it is single-line 
by default. To enable text wrapping in a TextBox, set the TextWrapping property to Wrap, as 
shown in bold here:

<TextBox TextWrapping="Wrap" Height="93" Margin="16,14,97,0"  
   Name="TextBox1" VerticalAlignment="Top"/>

You can also set the TextWrapping property to WrapWithOverflow, which allows some 
words to overflow the edges of the text box if the wrapping algorithm is unable to break the 
text in an appropriate location.

The TextBox control includes automatic support for scroll bars. You can enable vertical 
scroll bars by setting the VerticalScrollBarVisibility property to Auto or Visible, as shown in 
bold here:

<TextBox VerticalScrollBarVisibility="Visible" Height="93"  
   Margin="16,14,97,0" Name="TextBox1" VerticalAlignment="Top"/>

Setting VerticalScrollBarVisibility to Visible makes the vertical scroll bar visible at all times, 
whereas setting it to Auto makes the vertical scroll bar appear only when scrollable content is 
present. You also can enable a horizontal scroll bar by setting the HorizontalScrollBarVisibility 
property, but this setting is less useful.

ProgressBar Control 
The ProgressBar control is designed to allow the application to provide visual feedback to the 
user regarding the progress of a time-consuming task. For example, you might use a progress 
bar to display progress for a file download. The progress bar appears as an empty box that 
gradually fills in to display progress. Table 1-2 shows important properties of the ProgressBar 
control.



	10	 CHAPTER 1	 Building a User Interface

Table 1-2  Properties of the ProgressBar Control

Property Description

IsEnabled Determines whether the ProgressBar control is enabled.

IsIndeterminate Determines whether the progress bar is showing the actual value or 
generic progress. When IsIndeterminate is False, the progress bar will 
show the actual value represented by the Value property. When True, 
it will show generic progress.

Maximum The Maximum value for the ProgressBar control. When the Value 
property equals the Maximum property, the ProgressBar control is 
filled.

Minimum The Minimum value for the ProgressBar control. When the Value 
property equals the Minimum property, the ProgressBar control is 
empty.

Orientation Determines whether the progress bar is shown horizontally or 
vertically.

Value The Value displayed in the ProgressBar control. The Value will always 
be between the values of the Minimum and Maximum properties.

In code, you can change the ProgressBar display by adding to or subtracting from the 
Value property, as shown here:

Sample of Visual Basic Code

' Adds 1 to the Value  
ProgressBar1.Value += 1 

Sample of C# Code

// Adds 1 to the Value  
ProgressBar1.Value += 1;

Slider Control 
The Slider control enables the user to set a value by grabbing a graphic handle, or thumb, 
with the mouse and moving it along a track. This is often used to control volume, color 
intensity, or other application properties that can vary along a continuum. Table 1-3 shows 
important Slider properties.



	 Lesson 1: Using WPF Controls	 CHAPTER 1	 11

TABLE 1-3  Properties of the Slider Control

PROPERTY DESCRIPTION

IsDirectionReversed Determines whether the direction is reversed. When set to False 
(the default), the minimum value is on the left and the maximum 
value is on the right. When set to True, the minimum is on the 
right and the maximum is on the left.

IsEnabled Determines whether the slider is enabled.

LargeChange Represents the amount added to or subtracted from the Value 
property when a large change is required. This amount is added 
or subtracted from the slider when the user clicks it on either 
side of the thumb or uses the PageUp or PageDown key.

Maximum The maximum value for the Slider control. When the Value 
property equals the Maximum value, the thumb is completely on 
the right side of the slider (assuming the default direction and 
orientation of the control).

Minimum The minimum value for the Slider control. When the Value prop-
erty equals the Minimum value, the thumb is completely on the 
left side of the slider (assuming the default direction and orienta-
tion of the control).

Orientation Determines whether the slider is shown horizontally or vertically.

SmallChange Represents the amount added to or subtracted from the Value 
property when a small change is required. This amount is added 
to or subtracted from the slider when you use the arrow keys.

TickFrequency Sets the interval between ticks that are displayed in the Slider 
control.

TickPlacement Determines the location of ticks in the Slider control. The default 
setting is None, meaning that no tick marks appear.

Ticks Used in advanced applications. You can determine the exact 
number and placement of tick marks by setting the Ticks collec-
tion directly. 

Value The value displayed in the Slider control. The Value property 
always is between the Minimum and Maximum values.

The Slider control raises the ValueChanged event whenever its Value property changes. 
You can handle this event to hook up the slider with whatever aspect of the application the 
slider controls.



	12	 CHAPTER 1	 Building a User Interface

Setting the Tab Order for Controls
A common mode of user interaction with the user interface is to cycle the focus through the 
controls by pressing the Tab key. By default, controls in the user interface will receive the fo-
cus from Tab key presses in the order in which they are defined in the XAML. You can set the 
tab order manually by setting the attached TabIndex property to an integer, as shown here:

<Button TabIndex="2" Name="button1"/>

See “Using Attached Properties” later in this chapter for more information about attached 
properties.

When the user presses the Tab key, the focus cycles through the controls in the order 
determined by the TabIndex value. Lower values receive focus first, followed by higher val-
ues. Controls whose TabIndex property is not explicitly set receive the focus after controls 
for which the property has been set, in the order that they are defined in the XAML. If two 
controls have the same TabIndex value, they receive the focus in the order the controls are 
defined in the XAML.

You can keep a control from receiving focus when the user presses the Tab key by setting 
the KeyboardNavigation.IsTabStop attached property to False, as shown in bold here:

<Button KeyboardNavigation.IsTabStop="False" Name="button1"/>

Item Controls
Item controls, also known as list-based controls, are designed to contain multiple child ele-
ments. Item controls are a familiar part of any user interface. Data is displayed frequently in 
item controls, and lists are used to allow the user to choose from a series of options. Item 
controls in WPF take the idea of lists one step further. Like content controls, item controls 
do not have restrictions on the kind of content they can present. Thus, an item control could 
present a list of strings or something more complex, such as a list of check box controls, or 
even a list that included various kinds of controls. 

ListBox Control 
The simplest form of item control is ListBox. As the name implies, ListBox is a simple control 
designed to display a list of items. A ListBox control typically displays a list of ListBoxItem con-
trols, which are content controls, each of which hosts a single nested element. The simplest 
way to populate a ListBox control is by adding items directly in XAML, as shown here:

<ListBox Margin="19,0,0,36" Name="listBox1"> 
   <ListBoxItem>This</ListBoxItem>  
   <ListBoxItem>Is</ListBoxItem>  
   <ListBoxItem>A</ListBoxItem>  
   <ListBoxItem>List</ListBoxItem>  
</ListBox>



	 Lesson 1: Using WPF Controls	 CHAPTER 1	 13

The ListBox control automatically lays out its content in a stack and adds a vertical scroll 
bar if the list is longer than the available space in the control.

By default, the ListBox control enables you to select a single item. You can retrieve the 
index of the selected item from the ListBox.SelectedIndex property, or you can retrieve the 
selected item itself through the ListBox.SelectedItem property. The ListBoxItem control also 
exposes an IsSelected property that is positive when the item is selected.

You can set the SelectionMode property to enable the user to select multiple items. 
Table 1-4 shows the possible values for the SelectionMode property.

TABLE 1-4  Values for the SelectionMode Property

VALUE DESCRIPTION

Single The user can select only one item at a time.

Multiple The user can select multiple items without holding down a modifier 
key. Modifier keys have no effect.

Extended The user can select multiple consecutive items while holding down the 
Shift key or nonconsecutive items by holding down the Ctrl key and 
clicking the items. 

You can set the SelectionMode property in XAML as shown here:

<ListBox SelectionMode="Extended"> 
</ListBox>

When multiple items are selected, you can retrieve the selected items through the ListBox.
SelectedItems property.

Although the ListBox control is used most commonly with ListBoxItem controls, it can 
display a list of any item types. For example, you might want to create a list of CheckBox 
controls. You can accomplish this by simply adding CheckBox controls to the ListBox control, 
as shown here:

<ListBox Name="listbox1" VerticalAlignment="Top">  
   <CheckBox Name="Chk1">Option 1</CheckBox>  
   <CheckBox Name="Chk2">Option 2</CheckBox>  
   <CheckBox Name="Chk3">Option 3</CheckBox>  
   <CheckBox Name="Chk4">Option 4</CheckBox>  
</ListBox>

ComboBox Control 
The ComboBox control works very similarly to the ListBox control. It can contain a list of items, 
each of which can be an object of any type, as in the ListBox control. Thus, the ComboBox 
control can host a list of strings, a list of controls such as for check boxes, or any other kind of 
list. The difference between the ComboBox control and the ListBox control is how the control 
is presented. The ComboBox control appears as a drop-down list. Like the ListBox control, 



	14	 CHAPTER 1	 Building a User Interface

you can get a reference to the selected item through the SelectedItem property, and you can 
retrieve the index of the selected item through the SelectedIndex property.

When an item is selected, the string representation of the content of that item is displayed 
in the ComboBox control. Thus, if the ComboBox control hosts a list of strings, the selected 
string is displayed. If the ComboBox control hosts a list of CheckBox controls, the string repre-
sentation of the Checkbox.Content property is displayed. Then the selected value is available 
through the ComboBox.Text property.

Users also can edit the text displayed in the ComboBox control. They can even type in 
their own text, like in a text box. To make the ComboBox control editable, you must set the 
IsReadOnly property to False and set the IsEditable property to True.

You can open and close the ComboBox control programmatically by setting the 
IsDropDownOpen property to True (to open it) and False (to close it).

TreeView Control and TreeViewItem Control 
TreeView is a simple item control that is very similar to ListBox in its implementation, but 
in practice, it is quite different. The primary purpose of the TreeView control is to host 
TreeViewItem controls, which enable the construction of trees of content. 

The TreeViewItem control is the primary control used to construct trees. It exposes a Header 
property that enables you to set the text displayed in the tree. The TreeViewItem control 
itself also hosts a list of items. The list of items hosted in a TreeViewItem can be expanded or 
collapsed by clicking the icon to the left of the header. The following XAML demonstrates a 
TreeView control populated by a tree of items.

<TreeView>  
   <TreeViewItem Header="Boy's Names">  
             <TreeViewItem Header="Jack"/>  
             <TreeViewItem Header="Jim"/>  
             <TreeViewItem Header="Mark"/>  
             <TreeViewItem Header="Ray"/>  
   </TreeViewItem>  
   <TreeViewItem Header="Girl's Names">  
             <TreeViewItem Header="Betty"/>  
             <TreeViewItem Header="Libby"/>  
             <TreeViewItem Header="Janet"/>  
             <TreeViewItem Header="Sandra"/>  
   </TreeViewItem>  
</TreeView>

You can create TreeView controls that have controls as the terminal nodes just as easily, as 
shown in this example:

<TreeView>  
   <TreeViewItem Header="Pizza Toppings">  
             <CheckBox Content="Pepperoni"/>  
             <CheckBox Content="Sausage"/>  
             <CheckBox Content="Mushroom"/>  
             <CheckBox Content="Tomato"/>  



	 Lesson 1: Using WPF Controls	 CHAPTER 1	 15

   </TreeViewItem>  
   <TreeViewItem Header="Sandwich Items">  
             <CheckBox Content="Lettuce"/>  
             <CheckBox Content="Tomato"/>  
             <CheckBox Content="Mustard"/>  
             <CheckBox Content="Hot Peppers"/>  
   </TreeViewItem>  
</TreeView>

You can obtain a reference to the selected item in the TreeView control with the TreeView.
SelectedItem property.

Menus
Menus enable you to present the user with a list of controls that are typically associated with 
commands. Menus are displayed in hierarchical lists of items, usually grouped into related 
areas. WPF provides two types of menu controls: Menu, which is designed to be visible in the 
user interface, and ContextMenu, which is designed to function as a pop-up menu in certain 
situations.

Whereas the Menu control can be put anywhere in the user interface, it typically is docked 
to the top of the window. Menus expose an IsMainMenu property. When this property is True, 
pressing Alt or F10 causes the menu to receive focus, thereby enabling common Windows 
application behavior.

Although a Menu control can contain controls of any kind, the Toolbar control is better 
suited for presenting controls to the user. The Menu control is designed for presenting lists of 
MenuItem controls.

MenuItem Control 
The MenuItem control is the main unit used to build menus. A MenuItem control represents a 
clickable section of the menu and has associated text. MenuItem controls are themselves item 
controls and can contain their own list of controls, which typically are also MenuItem controls. 
The following XAML example demonstrates a simple menu:

<Menu Height="22" Name="menu1" VerticalAlignment="Top" 
   HorizontalAlignment="Left" Width="278">  
   <MenuItem Header="_File">  
             <MenuItem Header="Open"/>  
             <MenuItem Header="Close"/>  
             <MenuItem Header="Save" Command="ApplicationCommands.Save"/>  
   </MenuItem>  
</Menu>

The Command property indicates the command associated with that menu item. When 
the user clicks the menu item, the command specified by the Command property is invoked. 
If a shortcut key is associated with the command, it is displayed to the right of the MenuItem 
header. Commands are discussed in detail in Chapter 2 of this text.

Table 1-5 describes the important properties of the MenuItem control.



	16	 CHAPTER 1	 Building a User Interface

TABLE 1-5  Properties of the MenuItem Control

PROPERTY DESCRIPTION

Command The command associated with the menu item. This command is invoked 
when the menu item is clicked. If a keyboard shortcut is associated with 
the command, it is displayed to the right of the menu item.

Header The text displayed in the menu.

Icon The icon displayed to the left of the menu item. If IsChecked is set to True, 
the icon is not displayed even if it is set.

IsChecked When this property is set to True, a check is displayed to the left of the 
menu item. If the Icon property is set, the icon is not displayed while 
IsChecked is set to True.

IsEnabled Determines whether the menu item is enabled. When set to  False, the 
item appears dimmed and does not invoke the command when clicked.

Items The list of items contained by the MenuItem control. The list typically 
contains more MenuItem controls.

As with many other WPF controls, you can create an access key for a menu item by pre-
ceding the letter in the Header property with an underscore symbol (_), as shown here:

<MenuItem Header="_File">

The underscore symbol will not appear at run time, but when the Alt key is held down, it 
appears under the key it precedes. Pressing that key with the Alt key held down has the same 
effect as clicking the menu item.

Each MenuItem control can contain its own set of items, which are also typically MenuItem 
controls. These can be created in XAML by nesting MenuItem elements inside the parent 
MenuItem control. When a menu item that has sub-items is clicked, those items are shown in 
a new menu. 

BEST PRACTICES  MENUITEM CONTROLS WITH SUB-ITEMS

It is best practice not to assign a command to MenuItem controls that contain sub-items. 
Otherwise, the command is executed every time the user wants to view the list of sub-
items.

You can add a separator bar between menu items by using the Separator control, as shown 
here:

   <MenuItem Header="Close"/> 
   <Separator/>  
   <MenuItem Header="Save" Command="ApplicationCommands.Save"/>

The separator bar appears as a horizontal line between menu items.



	 Lesson 1: Using WPF Controls	 CHAPTER 1	 17

ContextMenu Control 
Unlike Menu controls, the ContextMenu control does not have a fixed location in the user 
interface. Rather, it is associated with other controls. To create a ContextMenu control for a 
control, define it in the XAML code for the Control.ContextMenu property, as shown in the 
following example with a ListBox control:

<ListBox Margin="77,123,81,39" Name="listBox1"> 
    <ListBox.ContextMenu>  
              <ContextMenu>  
                <MenuItem Header="Cut" Command="ApplicationCommands.Cut"/>  
                <MenuItem Header="Copy" Command="ApplicationCommands.Copy"/>  
                <MenuItem Header="Paste" Command="ApplicationCommands.Paste"/>  
              </ContextMenu>  
   </ListBox.ContextMenu>  
</ListBox>

After a ContextMenu control has been set for a control, it is displayed whenever the user 
right-clicks the control or presses Shift+F10 while the control has the focus.

Another common scenario for adding ContextMenu controls to a control is to add them 
as a resource in the Window.Resources collection. Resources are discussed in Lesson 2 of this 
chapter, “Using Resources.”

ToolBar Control 
Like menus, the ToolBar control is designed to present controls to the user. The ToolBar 
control is ideally suited to host controls such as Button, ComboBox, TextBox, CheckBox, and 
RadioButton. The ToolBar control also can use the Separator control described in the previous 
section.

Toolbars automatically override the style of some of the controls they host. Buttons, for 
example, appear flat when shown in a toolbar and are highlighted in blue when the mouse is 
over the control. This gives controls in a toolbar a consistent appearance by default.

You add items to the ToolBar control in the same manner as any other item control. An 
example is shown here:

<ToolBar Height="26" Margin="43,23,35,0" Name="toolBar1" 
   VerticalAlignment="Top">  
   <Button>Back</Button>  
   <Button>Forward</Button>  
   <TextBox Name="textbox1" Width="100"/>  
</ToolBar>

ToolBar.OverflowMode Property
When more controls are added to a ToolBar control than can fit, controls are removed until 
the controls fit in the space. Controls removed from the ToolBar control are placed automati-
cally in the Overflow menu. The Overflow menu appears as a drop-down list on the right 
side of the toolbar when the toolbar is in the horizontal configuration. You can manage how 



	18	 CHAPTER 1	 Building a User Interface

controls are placed in the Overflow menu by setting the attached ToolBar.OverflowMode 
property. (See “Using Attached Properties” later in this chapter for more information.) Table 
1-6 shows the possible values for this property.

Table 1-6  Values for the ToolBar.OverflowMode Property

VALUE DESCRIPTION

OverflowMode.Always The control always appears in the Overflow menu, even if 
there is space available in the toolbar.

OverflowMode.AsNeeded The control is moved to the Overflow menu as needed. This 
is the default setting for this property.

OverflowMode.Never Controls with this value are never placed in the 
Overflow menu. If there are more controls with the 
Toolbar.OverflowMode property set to Never than can be 
displayed in the space allotted to the toolbar, some con-
trols will be cut off and unavailable to the user.

The following example demonstrates how to set the Toolbar.OverflowMode property:

<ToolBar Height="26" Margin="43,23,35,0" Name="toolBar1" 
   VerticalAlignment="Top">  
   <Button ToolBar.OverflowMode="Always">Back</Button>  
</ToolBar>

ToolBarTray Class 
WPF provides a special container class for ToolBar controls, called ToolBarTray. ToolBarTray 
enables the user to resize or move ToolBar controls that are contained in the tray at run time. 
When ToolBar controls are hosted in a ToolBarTray control, the user can move the ToolBar 
controls by grabbing the handle on the left side of the toolbar. The following example dem-
onstrates the ToolBarTray control.

<ToolBarTray Name="toolBarTray1" Height="65" VerticalAlignment="Top"> 
  <ToolBar Name="toolBar1" Height="26" VerticalAlignment="Top">  
     <Button>Back</Button>  
     <Button>Forward</Button>  
     <Button>Stop</Button>  
  </ToolBar>  
  <ToolBar>  
     <TextBox Width="100"/>  
     <Button>Go</Button>  
  </ToolBar>  
</ToolBarTray>



	 Lesson 1: Using WPF Controls	 CHAPTER 1	 19

StatusBar Control 
The StatusBar control is quite similar to the ToolBar control. The primary difference is in us-
age. StatusBar is used most commonly to host controls that convey information, such as Label 
and ProgressBar controls. Like the toolbar, the status bar overrides the visual style of many 
of the controls it hosts, but it provides a different appearance and behavior than the toolbar. 
The following example demonstrates a simple StatusBar control with hosted controls.

<StatusBar Height="32" Name="statusBar1" VerticalAlignment="Bottom"> 
  <Label>Application is Loading</Label>  
  <Separator/>  
  <ProgressBar Height="20" Width="100" IsIndeterminate="True"/>  
</StatusBar>

Quick Check
■	 Describe the difference between a Menu control and a ContextMenu control.

Quick Check Answer
■	 Both Menu elements and ContextMenu elements are list controls that host 

MenuItem elements. The primary difference between them is that Menu ele-
ments are visible elements that are part of the visual tree and can be hosted 
by content controls. ContextMenu elements, however, have no direct visual 
representation and are added to another individual control by setting the 
other control’s ContextMenu property.

Layout Controls
WPF offers unprecedented support for a variety of layout styles. The addition of several spe-
cialized controls enables you to create a variety of layout models, and panels can be nested 
inside each other to create user interfaces that exhibit complex layout behavior. In this lesson, 
you learn how to use these specialized controls.

Control Layout Properties
Controls in WPF manage a great deal of their own layout and positioning and further interact 
with their container to determine their final positioning. Table 1-7 describes common control 
properties that influence layout and positioning.



	20	 CHAPTER 1	 Building a User Interface

Table 1-7  Properties That Control Layout

Property Description

FlowDirection Gets or sets the direction in which text and other UI 
elements flow within any parent element that controls 
their layout.

Height Gets or sets the height of the control. When set to Auto, 
other layout properties determine the height.

HorizontalAlignment Gets or sets the horizontal alignment characteristics 
applied to this element when it is composed within a 
parent element such as a panel or item control. 

HorizontalContentAlignment Gets or sets the horizontal alignment of the control’s 
content.

Margin Gets or sets the distance between each of the control’s 
edges and the edge of the container or the adjacent 
controls, depending on the layout control hosting the 
child control.

MaxHeight Gets or sets the maximum height for a control.

MaxWidth Gets or sets the maximum width for a control.

MinHeight Gets or sets the minimum height for a control.

MinWidth Gets or sets the minimum width for a control.

Padding Gets or sets the amount of space between a control and 
its child element.

VerticalAlignment Gets or sets the vertical alignment characteristics ap-
plied to this element when it is composed within a par-
ent element such as a layout or item control.

VerticalContentAlignment Gets or sets the vertical alignment of the control’s 
content.

Width Gets or sets the width of the control. When set to Auto, 
other layout properties determine the width.

A few of these properties are worth a closer look.

Margin Property 
The Margin property returns an instance of the Thickness structure that describes the space 
between the edges of the control and other elements that are adjacent. Depending on which 
layout panel is used, the adjacent element might be the edge of the container, such as a panel 
or Grid cell, or it might be a peer control, as would be the case in the vertical margins in a 
StackPanel control. 



	 Lesson 1: Using WPF Controls	 CHAPTER 1	 21

The Margin property can be set asymmetrically to allow different amounts of margin on 
each side. Consider the following example:

<Button Margin="0,48,96,1" Name="button1">Button</Button>

In this example, a different margin distance is set for each control edge. The order of 
edges in the Margin property is Left, Top, Right, Bottom, so in this example, the left margin is 
0, the top margin is 48, the right margin is 96, and the bottom margin is 1.

Margins are additive. For example, if you have two adjacent controls in a StackPanel 
control and the topmost one has a bottom margin of 20 and the bottommost one has a top 
margin of 10, the total distance between the two control edges will be 30.

HorizontalAlignment and VerticalAlignment Properties
The HorizontalAlignment and VerticalAlignment properties determine how a control is aligned 
inside its parent when there is extra horizontal or vertical space. The values for these proper-
ties are mostly self-explanatory. The HorizontalAlignment property has possible values of Left, 
Right, Center, and Stretch. The VerticalAlignment property has possible values of Top, Bottom, 
Center, and Stretch. As you might expect, setting the HorizontalAlignment property to Left, 
Right, or Center aligns the control in its container to the left, right, or center, respectively. 
Similar results are seen with the VerticalAlignment property. The setting that is worth noting 
is the Stretch value. When set to Stretch, the control will stretch in the horizontal or vertical 
directions (depending on the property) until the control is the size of the available space after 
taking the value of the Margin property into account.

NOTE  WHEN THERE IS NO EFFECT

In some containers, setting these properties might have no effect. For example, in 
StackPanel, the vertical layout is handled by the container, so setting the VerticalAlignment 
property has no effect, although setting the HorizontalAlignment property still does.

Using Attached Properties
WPF introduces a new concept in properties: attached properties. Because WPF controls con-
tain the information required for their own layout and orientation in the user interface, it is 
sometimes necessary for controls to define information about the control that contains them. 
For example, a Button control contained by a Grid control will define in which grid column 
and row it appears. This is accomplished through attached properties. The Grid control at-
taches a number of properties to every control it contains, such as properties that determine 
the row and column in which the control exists. In XAML, you set an attached property with 
code like the following:

<Button Grid.Row="1" Grid.Column="1"></Button>

Refer to the class name (that is, Grid) rather than to the instance name (for example, grid1) 
when setting an attached property because attached properties are attached by the class and 



	22	 CHAPTER 1	 Building a User Interface

not by the instance of the class. In some cases, such as with the TabIndex property (shown in 
the next section), the class name is assumed and can be omitted in XAML.

Here’s a full example of a Grid control that defines two rows and two columns and contains 
a single button that uses attached properties to orient itself in the grid:

<Grid> 
  <Grid.ColumnDefinitions>  
    <ColumnDefinition Width="139*"/>  
    <ColumnDefinition Width="139*"/>  
  </Grid.ColumnDefinitions>  
  <Grid.RowDefinitions>  
    <RowDefinition Height="126*"/>  
    <RowDefinition Height="126*"/>  
  </Grid.RowDefinitions>  
  <Button Grid.Row="1" Grid.Column="1"></Button>  
</Grid>

Layout Panels
WPF includes a variety of layout panels with which to design your user interface. This section 
explores these panels and explains when to use them.

Grid Panel 
Grid is the most commonly used panel for creating user interfaces in WPF. The Grid panel 
enables you to create layouts that depend on the Margin, HorizontalAlignment, and 
VerticalAlignment properties of the child controls it contains. Controls hosted in a Grid control 
are drawn in the order in which they appear in markup or code, thereby enabling you to cre-
ate layered user interfaces. In the case of overlapping controls, the last control to be drawn 
will be on top. 

With the Grid control, you can define columns and rows in the grid. Then you can assign 
child controls to designated rows and columns to create a more structured layout. When 
assigned to a column or row, a control’s Margin, HorizontalAlignment, and VerticalAlignment 
properties operate with respect to the edge of the row or column, not to the edge of the 
Grid container itself. Columns and rows are defined by creating ColumnDefinition and 
RowDefinition properties, as seen here:

<Grid> 
  <Grid.RowDefinitions> 
    <RowDefinition Height="125*"/>  
    <RowDefinition Height="125*"/>  
  </Grid.RowDefinitions>  
  <Grid.ColumnDefinitions>  
    <ColumnDefinition Width="80*"/>  
    <ColumnDefinition Width="120*"/>  
  </Grid.ColumnDefinitions>  
</Grid>



	 Lesson 1: Using WPF Controls	 CHAPTER 1	 23

Rows and columns can be either fixed or variable in their width and height. To designate 
a fixed width or height, simply set the Width or Height property to the size you would like, as 
shown here:

<RowDefinition Height="125"/>

In contrast, you can make a variable-sized row or column by appending an asterisk (*) to 
the end of the Width or Height setting, as shown here:

<RowDefinition Height="125*"/>

When the asterisk is added, the row or column grows or shrinks proportionally to fit the 
available space. Look at the following example:

<RowDefinition Height="10*"/> 
<RowDefinition Height="20*"/>

Both the rows created by this code grow and shrink to fit the available space, but one row 
is always twice the height of the other. These numbers are proportional only among them-
selves. Thus, using 1* and 2* will have the same effect as using 100* and 200*.

You can have a Grid control that contains both fixed and variable rows or columns, as seen 
here:

<RowDefinition Height="125"/> 
<RowDefinition Height="125*"/>

In this example, the first row always maintains a height of 125, and the second grows or 
shrinks as the window is resized.

GRID ATTACHED PROPERTIES
The Grid control provides attached properties to its child controls. You can position controls 
into specific Grid rows or columns by setting the attached properties Grid.Column and Grid.
Row, as shown in bold here:

<Grid> 
    <Grid.RowDefinitions>  
      <RowDefinition Height="10*"/>  
      <RowDefinition Height="5*"/>  
    </Grid.RowDefinitions>  
    <Grid.ColumnDefinitions>  
      <ColumnDefinition Width="117"/>  
      <ColumnDefinition Width="161"/>  
    </Grid.ColumnDefinitions>  
    <Button Name="button2" Grid.Row="0" Grid.Column="1">Button</Button> 
</Grid>

Occasionally, you might have a control that spans more than one column or row. To indi-
cate this, you can set the Grid.ColumnSpan or Grid.RowSpan property as shown here:

<Button Name="button2" Grid.ColumnSpan="2">Button</Button>



	24	 CHAPTER 1	 Building a User Interface

Using the GridSplitter Control
The GridSplitter control enables the user to resize grid rows or columns at run time and ap-
pears at run time as a vertical or horizontal bar between two rows or columns that the user 
can grab with the mouse and move to adjust the size of those columns or rows. Table 1-8 
shows the important properties of the GridSplitter control.

Table 1-8  Properties of the GridSplitter Control

Property Description

Grid.Column This attached property from the Grid control determines the 
column in which the grid splitter exists.

Grid.ColumnSpan This attached property from the Grid control determines the 
number of columns the grid splitter spans. For horizontal grid 
splitters, this property should equal the number of columns in 
the grid.

Grid.Row This attached property from the Grid control determines the row 
in which the grid splitter exists.

Grid.RowSpan This attached property from the Grid control determines the 
number of rows the grid splitter spans. For vertical grid splitters, 
this property should equal the number of rows in the grid.

Height Determines the height of the grid splitter. For vertical grid split-
ters, this property should be set to Auto.

HorizontalAlignment Determines the horizontal alignment of the grid splitter. For hori-
zontal grid splitters, this property should be set to Stretch. For 
vertical grid splitters, this property should be set to Left or Right.

Margin Determines the margin around the grid splitter. Typically, your 
margin will be set to 0 to make the grid splitter flush with grid 
columns and rows.

ResizeBehavior Gets or sets which columns or rows are resized relative to the 
column or row for which the GridSplitter control is defined. The 
default value is BasedOnAlignment, which sets the resize behav-
ior based on the alignment of the GridSplitter control relative to 
the row(s) or column(s) to which the grid splitter is adjacent.

ResizeDirection Gets or sets a value that indicates whether the GridSplitter 
control resizes rows or columns. The default value is Auto, which 
automatically sets the resize direction based on the positioning 
of the GridSplitter control.

ShowsPreview Gets or sets a value that indicates whether the GridSplitter con-
trol updates the column or row size as the user drags the control.



	 Lesson 1: Using WPF Controls	 CHAPTER 1	 25

VerticalAlignment Determines the vertical alignment of the grid splitter. For vertical 
grid splitters, this property should be set to Stretch. For horizon-
tal grid splitters, this property should be set to Top or Bottom.

Width Determines the width of the grid splitter. For horizontal grid 
splitters, this property should be set to Auto.

Although the GridSplitter control is easy for the user to use, it is not the most intuitive 
control for developers to use. Although you can drag and drop the grid splitter onto your 
window from the toolbox, you must do a fair amount of configuration to make the grid split-
ter useful. The GridSplitter control must be placed within a grid cell, even though it always 
resizes entire rows or columns, and it should be positioned either adjacent to the edge of the 
row or column that you want to resize or put into a dedicated row or column that is between 
the rows or columns you want to resize. You can position the grid splitter manually in the de-
signer by grabbing the handle that appears at the upper left corner of the grid splitter. Figure 
1-1 shows the grid splitter in the designer.

Figure 1-1  The grid splitter in the designer.

When the ResizeBehavior property is set to Auto, WPF automatically sets the correct resize 
behavior based on the alignment of the grid splitter.

The typical UI experience for the grid splitter is to have a visual element that spans all the 
rows or columns in a grid. Thus, you must manually set the Grid.ColumnSpan property for 
horizontal grid splitters or the Grid.RowSpan property for vertical grid splitters to span all the 
rows or columns the grid contains.

The following procedure describes how to add a grid splitter to your window at design 
time. To add a grid splitter to your window:

	 1.	 From the toolbox, drag a grid splitter onto your window and drop it in a cell that is 
adjacent to the row or column for which you want to set resizing. You might want to 
create a dedicated row or column to hold the grid splitter alone so there is no interfer-
ence with other UI elements.



	26	 CHAPTER 1	 Building a User Interface

	 2.	 Set the Margin property of the grid splitter to 0.

	 3.	 For vertical grid splitters, set the VerticalAlignment property to Stretch. For horizontal 
grid splitters, set the HorizontalAlignment property to Stretch. Set the remaining align-
ment property to the appropriate setting to position the GridSplitter control adjacent 
to the column(s) or row(s) for which you want to enable resizing.

	 4.	 For horizontal grid splitters, set the Width property to Auto and set the Height prop-
erty to the appropriate height. For vertical grid splitters, set the Height property to 
Auto and set the Width property to the appropriate width.

	 5.	 For vertical grid splitters, set the Grid.RowSpan property to the number of rows in the 
grid. For horizontal grid splitters, set the Grid.ColumnSpan property to the number of 
columns in the grid.

Note that you can perform this configuration in the Properties window, in XAML, or (in 
most but not all cases) by manipulating the GridSplitter control in the designer with the 
mouse.

UniformGrid Control 
Although similar in name, the UniformGrid control has very different behavior from the Grid 
control. In fact, the UniformGrid control is very limited. It automatically lays out controls in a 
grid of uniform size, adjusting the size and number of rows and columns as more controls are 
added. Grid cells are always the same size. The UniformGrid control typically is not used for 
designing entire user interfaces, but it can be useful for quickly creating layouts that require a 
grid of uniform size, such as a checkerboard or the buttons on a calculator.

You can set the number of rows and columns in the UniformGrid control by setting the 
Rows and Columns properties, as shown here:

<UniformGrid Rows="2" Columns="2"> 
</UniformGrid>

If you set the number of rows and columns in this manner, you fix the number of cells (and 
thus the controls that can be displayed) in a single uniform grid. If you add more controls 
than a uniform grid has cells, the controls will not be displayed. Cells defined first in XAML are 
the cells displayed in such a case.

If you set only the number of rows, additional columns will be added to accommodate new 
controls. Likewise, if you set only the number of columns, additional rows will be added.

StackPanel Control 
The StackPanel control provides a simple layout model. It stacks the controls it contains one 
on top of the other in the order that they are defined. Typically, StackPanel containers stack 
controls vertically. You can also create a horizontal stack by setting the Orientation property 
to Horizontal, as shown here:

<StackPanel Orientation="Horizontal"> 
</StackPanel>



	 Lesson 1: Using WPF Controls	 CHAPTER 1	 27

This creates a stack of controls from left to right. If you want to create a right-to-left stack 
of controls, you can set the FlowDirection property to RightToLeft, as shown here:

<StackPanel Orientation="Horizontal" FlowDirection="RightToLeft"> 
</StackPanel>

No combination of property settings in the stack panel creates a bottom-to-top stack.

Note that the layout properties of the controls contained in the StackPanel control also 
influence how the stack appears. For example, controls appear in the center of the StackPanel 
by default, but if the HorizontalAlignment property of a specific control is set at Left, that 
control appears on the left side of the StackPanel. 

WrapPanel Control 
The WrapPanel control provides another simple layout experience that typically is not used 
for creating entire user interfaces. Simply, the WrapPanel control lays out controls in a hori-
zontal row side by side until the horizontal space available in the WrapPanel is used up. Then 
it creates additional rows until all its contained controls are positioned. Thus, controls are 
wrapped in the user interface like text is wrapped in a text editor like Notepad. A typical use 
for this layout panel is to provide automatic layout for a related set of controls that might be 
resized frequently, such as those in a toolbar.

You can wrap controls from right to left by setting the FlowDirection property to 
RightToLeft, as shown here:

<WrapPanel FlowDirection="RightToLeft"> 
</WrapPanel>

DockPanel Control 
The DockPanel control provides a container that enables you to dock contained controls to 
the edges of the dock panel. In Windows Forms development, docking was accomplished by 
setting the Dock property on each individual dockable control. In WPF development, how-
ever, you use the DockPanel control to create interfaces with docked controls. Docking typi-
cally is useful for attaching controls such as toolbars or menus to edges of the user interface. 
The position of docked controls remains constant regardless of how the user resizes the user 
interface.

The DockPanel control provides docking for contained controls by providing an attached 
property called Dock. The following example demonstrates how to set the DockPanel.Dock 
property in a contained control:

<Button DockPanel.Dock="Top">Button</Button>

The DockPanel.Dock property has four possible values: Top, Bottom, Left, and Right, 
which indicate docking to the top, bottom, left, and right edges of the DockPanel control, 
respectively.



	28	 CHAPTER 1	 Building a User Interface

The DockPanel control exposes a property called LastChildFill, which can be set to True or 
False. When set to True (the default setting), the last control added to the layout will fill all 
remaining space.

The order in which controls are added to the DockPanel control is crucial in determining 
the layout. When controls are laid out in a DockPanel control, the first control to be laid out is 
allocated all the space on the edge it is assigned. For example, Figure 1-2 shows a DockPanel 
control with a single Button control docked to the side of the container.

Figure 1-2  A DockPanel control with a single docked control.

As subsequent controls are added to other edges, they occupy the remaining space on 
those edges, as demonstrated by Figures 1-3, 1-4, and 1-5.

Figure 1-3  A DockPanel control with two docked controls.



	 Lesson 1: Using WPF Controls	 CHAPTER 1	 29

Figure 1-4  A DockPanel control with three docked controls.

Figure 1-5  A DockPanel control with four docked controls.

In this sequence of figures, the second control is docked to the left edge. It occupies all 
the edge that is not occupied by the first control. The next control is docked again to the top 
edge, where it is docked adjacent to the first control that already is docked to the top, and it 
occupies the remaining space on the top edge that was not taken by the button docked on 
the left edge. The fourth figure shows a similar progression, with another control docked to 
the left edge.

DockPanel controls are typically not used as the sole basis for user interfaces, but rather 
are used to dock key components to invariant positions. Usually, the LastChildFill property in 
a DockPanel control is set to True, and the last child added is a Grid or other container control 
that can be used for the layout of the rest of the user interface. Figure 1-6 shows a sample 
user interface that has a menu docked to the top edge, a list box docked to the left edge, and 
a grid that fills the remaining space. 



	30	 CHAPTER 1	 Building a User Interface

Figure 1-6  A DockPanel control that contains a menu, a list box, and a grid.

Canvas Control 
The Canvas control is a container that allows absolute positioning of contained controls. It 
has no layout logic of its own, and all contained controls are positioned on the basis of four 
attached properties: Canvas.Top, Canvas.Bottom, Canvas.Right, and Canvas.Left. The value 
of each of these properties defines the distance between the indicated edge of the Canvas 
control and the corresponding edge of the child control. For example, the following XAML 
defines a button that is 20 units away from the top edge of the Canvas control and 30 units 
away from the left edge.

<Canvas>  
   <Button Canvas.Top="20" Canvas.Left="30">Button</Button>  
</Canvas>

You can define only one horizontal and one vertical attached property for each contained 
control. Thus, you can neither set the value of both Canvas.Left and Canvas.Right for a single 
control, nor both Canvas.Top and Canvas.Bottom.

When the Canvas container is resized, contained controls retain their fixed distance from 
the Canvas edges but can move relative to one another if different edges have been fixed for 
different controls.

Because the Canvas control allows for a freeform layout and does not incorporate any 
complex layout functionality of its own, contained controls can overlap in a Canvas control. 
By default, controls declared later in the XAML are shown on top of controls declared earlier 
in the XAML. However, you can set the Z-order (that is, which control appears on top) manu-
ally by setting the Panel.ZIndex attached property. Panel.ZIndex takes an arbitrary integer 
value. Controls with a higher Panel.ZIndex value always appear on top of controls with a lower 
Panel.ZIndex value. An example is shown here:

<Button Panel.ZIndex="12">This one is on top</Button>  
<Button Panel.ZIndex="5">This one is on the bottom</Button>



	 Lesson 1: Using WPF Controls	 CHAPTER 1	 31

Quick Check
■	 Describe what attached properties are and how they work.

Quick Check Answer
■	 Attached properties are properties that a containing element, such as a 

layout control, attaches to a contained element such as a content control. 
Properties are set by the contained element but typically affect how that 
element is rendered or laid out in the containing element. An example is the 
Grid.Row attached property, which is attached to all elements contained by a 
Grid element. By setting the Grid.Row property on a contained element, you 
set what row of the grid that element is rendered in.

Accessing Child Elements Programmatically
Layout controls expose a Children collection that enables you to access the child controls pro-
grammatically. You can obtain a reference to a child element by the index, as shown here:

Sample of Visual Basic Code

Dim aButton As Button 
aButton = CType(grid1.Children(3), Button) 

Sample of C# Code

Button aButton; 
aButton = (Button)grid1.Children[3];

You can add a control programmatically by using the Children.Add method, as shown here:

Sample of Visual Basic Code

Dim aButton As New Button() 
grid1.Children.Add(aButton) 

Sample of C# Code

Button aButton = new Button(); 
grid1.Children.Add(aButton);

Similarly, you can remove a control programmatically with the Children.Remove method:

Sample of Visual Basic Code’

grid1.Children.Remove(aButton) 

Sample of C# Code

grid1.Children.Remove(aButton);

And you can remove a control at a specified index by using the RemoveAt method, as 
shown here:

Sample of Visual Basic Code

grid1.Children.RemoveAt(3) 



	32	 CHAPTER 1	 Building a User Interface

Sample of C# Code

grid1.Children.RemoveAt(3);

Aligning Content
Frequently, you want to align the content contained in different controls as well as the edges 
of the controls themselves. You can align control edges and content at design time by using 
snaplines.

Snaplines are visual aids in the Visual Studio Integrated Development Environment (IDE) 
that provide feedback to the developer when control edges are aligned or when control 
content is aligned. When you position controls manually with the mouse in the designer, 
snaplines appear when the horizontal or vertical edges of the control are in alignment, as 
shown in Figures 1-7 and 1-8. 

FIGURE 1-7  Horizontal snaplines.

FIGURE 1-8  Vertical snaplines.



	 Lesson 1: Using WPF Controls	 CHAPTER 1	 33

Snaplines also indicate when content is aligned, enabling you to align content across mul-
tiple controls. Figure 1-9 shows an example of content snaplines.

FIGURE 1-9  Content snaplines.

PRACTICE	 Creating a Simple Application 

In this practice, you create a simple application to change the font of text in a RichTextBox 
control by using controls in a toolbar.

EXERCISE  Using Layout Controls

	 1.	 In Visual Studio, create a new WPF application.

	 2.	 In XAML view, change the Grid opening and closing tags to be DockPanel tags, as 
shown here:

<DockPanel> 
</DockPanel>

	 3.	 From the toolbox, drag a ToolBar control onto the window. Add a full-length closing 
tag and set the DockPanel.Dock property to Top, as shown here:

<ToolBar DockPanel.Dock="Top" Height="26" Name="toolBar1" Width="276"> 
</ToolBar>

Even though you have set the DockPanel.Dock property to Top, the toolbar remains in 
the center of the window because the DockPanel.LastChildFill property is set to True by 
default, and this setting overrides the DockPanel.Dock property.

	 4.	 In XAML view, use the following XAML to add a Grid container to the DockPanel 
control: 

<Grid Name="grid1"> 
</Grid>

The toolbar now is at the top of the DockPanel control.



	34	 CHAPTER 1	 Building a User Interface

	 5.	 In XAML view, add the following ColumnDefinition elements to the Grid control:

<Grid.ColumnDefinitions>  
   <ColumnDefinition Width="100"/>  
   <ColumnDefinition Width="5"/>  
   <ColumnDefinition Width="*"/>  
</Grid.ColumnDefinitions>

	 6.	 In XAML view, use the following XAML to add a ListBox control to the first column:

<ListBox Grid.Column="0" Name="listBox1"></ListBox>

	 7.	 In XAML view, use the following XAML to add a GridSplitter control to the second 
column:

<GridSplitter Name="gridSplitter1" Margin="0" Width="5" 
Grid.Column="1" HorizontalAlignment="Left"/>

In this practice, the GridSplitter control is given a dedicated column.

	 8.	 In XAML view, use the following XAML to add a RichTextBox control to the third 
column:

<RichTextBox Grid.Column="2" Name="richTextBox1"/>

	 9.	 In the XAML for the ToolBar control, use the following XAML to add three controls to 
the ToolBar control:

<Button>Bold</Button> 
<Button>Italic</Button>  
<Slider Name="Slider1" Minimum="2" Maximum="72" Width="100"/>

	 10.	 Double-click the button labeled Bold to open the Click event handler. Add the follow-
ing code:

Sample of Visual Basic Code

richTextBox1.Selection.ApplyPropertyValue(FontWeightProperty, _
    FontWeights.Bold) 

Sample of C# Code

richTextBox1.Selection.ApplyPropertyValue(FontWeightProperty, 
    FontWeights.Bold);

	 11.	 In the designer, double-click the button labeled Italic to open the Click event handler. 
Add the following code:

Sample of Visual Basic Code

richTextBox1.Selection.ApplyPropertyValue(FontStyleProperty, _
    FontStyles.Italic) 

Sample of C# Code

richTextBox1.Selection.ApplyPropertyValue(FontStyleProperty, 
    FontStyles.Italic);



	 Lesson 1: Using WPF Controls	 CHAPTER 1	 35

	 12.	 In the designer, double-click the slider to open the ValueChanged event handler. Add 
the following code:

Sample of Visual Basic Code

Try 
    richTextBox1.Selection.ApplyPropertyValue(FontSizeProperty, _ 
      Slider1.Value.ToString())  
Catch  
End Try 

Sample of C# Code

try 
{  
   richTextBox1.Selection.ApplyPropertyValue(FontSizeProperty,  
      Slider1.Value.ToString());  
}  
catch { }

	 13.	 In the Window1 constructor, add the following code after InitializeComponent. (In 
Visual Basic, you will have to add the entire constructor.)

Sample of Visual Basic Code

Public Sub New() 
   InitializeComponent()  
   For Each F As FontFamily In Fonts.SystemFontFamilies  
      Dim l As ListBoxItem = New ListBoxItem()  
      l.Content = F.ToString()  
      l.FontFamily = F  
      listBox1.Items.Add(l)  
   Next  
End Sub 

Sample of C# Code

foreach (FontFamily F in Fonts.SystemFontFamilies) 
{  
   ListBoxItem l = new ListBoxItem();  
   l.Content = F.ToString();  
   l.FontFamily = F;  
   listBox1.Items.Add(l);  
}

	 14.	 In the designer, double-click the ListBox control to open the SelectionChanged event 
handler. Add the following code:

Sample of Visual Basic Code

richTextBox1.Selection.ApplyPropertyValue(FontFamilyProperty, _
   CType(listBox1.SelectedItem, ListBoxItem).FontFamily) 

Sample of C# Code

richTextBox1.Selection.ApplyPropertyValue(FontFamilyProperty, 
   ((ListBoxItem)listBox1.SelectedItem).FontFamily);



	36	 CHAPTER 1	 Building a User Interface

	 15.	 Press F5 to build and run your application. Note that you can resize the columns 
containing the RichTextBox and the ListBox by manipulating the grid splitter with the 
mouse. 

Lesson Summary
■	 Controls in WPF are primarily divided into three types: content controls, which can 

contain a single nested element; item controls, which can contain a list of nested ele-
ments; and layout controls, which are designed to host multiple controls and provide 
layout logic for those controls. Certain specialized controls, such as the TextBox, Image, 
and ProgressBar controls, are individual controls and can be considered part of the 
content control category. Virtually any type of object can be assigned to the Content 
property of a content control. If the object inherits from UIElement, the control is 
rendered in the containing control. Other types are rendered as a string: the string 
returned by their content’s ToString method.

■	 Item controls are designed to present multiple child items. Examples of item controls 
include ListBox, ComboBox, and TreeView as well as Menu, ToolBar, and StatusBar con-
trols.

■	 Menu controls are designed to display hierarchical lists of MenuItem controls in the 
familiar menu format. Each MenuItem control can contain its own list of MenuItem 
controls and can have a command associated with it that is invoked when the 
MenuItem control is clicked, although typically not both at once.

■	 The ContextMenu control appears near an associated control when the user right-clicks 
the associated control. You can define a ContextMenu control in XAML for the associ-
ated control’s Control.ContextMenu property.

■	 ToolBar controls are designed for displaying groups of associated controls, usually 
with related functionality. Controls displayed in a toolbar by default conform to the 
appearance and behavior of the toolbar itself. StatusBar controls are similar to ToolBar 
controls but typically are used more often for presenting information than for present-
ing controls that are an active part of the user interface. 

■	 Layout controls are containers that provide layout logic for contained controls. A 
layout control is typically the child element in a window. How controls are arranged in 
a layout panel depends largely on the layout properties of the contained controls. The 
HorizontalAlignment and VerticalAlignment properties of child controls determine how 
a control is aligned in the horizontal and vertical directions, and the Margin property 
defines an area of space that surrounds the control. The impact of a control’s layout 
properties can differ, depending on the control in which they are hosted.

■	 Attached properties are properties provided to a control by its container or by another 
class. Controls have these properties only when they are in the correct context to 
express them. Examples of attached properties include the Grid.Row, Grid.Column, and 
KeyboardNavigation.TabIndex properties.



	 Lesson 1: Using WPF Controls	 CHAPTER 1	 37

■	 The Grid control is the most commonly used layout panel for the development of user 
interfaces. The Grid control enables you to define grid rows and columns and to host 
multiple elements in each cell. The Grid control provides attached properties to child 
controls that determine the grid column and row in which they are hosted. 

■	 The GridSplitter control enables the user to resize grid columns and rows at run time.

■	 Layout panels such as UniformGrid, StackPanel, WrapPanel, DockPanel, and Canvas 
controls are commonly used to create specialized parts of the user interface and are 
usually not the highest-level panel in the user interface.

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 1, 
“Using WPF Controls.” The questions are also available on the companion CD if you prefer to 
review them in electronic form.

NOTE  ANSWERS 

Answers to these questions and explanations of why each answer choice is correct or incor-
rect are located in the “Answers” section at the end of the book.

	 1.	 How many child controls can a content control contain?

	 A.	 0

	 B.	 1 

	 C.	 No limit 

	 D.	 Depends on the control 

	 2.	 Which of the following XAML samples correctly shows a button in a cell created by the 
intersection of the second column and the second row of a grid with four cells? 

	 A.	

<Grid> 
   <Grid.ColumnDefinitions>  
      <ColumnDefinition/>  
      <ColumnDefinition/>  
   </Grid.ColumnDefinitions>  
   <Grid.RowDefinitions>  
      <RowDefinition/>  
      <RowDefinition/>  
   </Grid.RowDefinitions>  
   <Button Grid.Cell="1,1"></Button>  
</Grid>

	 B.	

<Grid> 
   <Grid.ColumnDefinitions>  
      <ColumnDefinition/>  



	38	 CHAPTER 1	 Building a User Interface

      <ColumnDefinition/>  
   </Grid.ColumnDefinitions>  
   <Grid.RowDefinitions>  
      <RowDefinition/>  
      <RowDefinition/>  
   </Grid.RowDefinitions>  
   <Button Grid.Column="1" Grid.Row="1"></Button>  
</Grid>

	 C.	

<Grid> 
   <Grid.ColumnDefinitions>  
      <ColumnDefinition/>  
      <ColumnDefinition/>  
   </Grid.ColumnDefinitions>  
   <Grid.RowDefinitions>  
      <RowDefinition/>  
      <RowDefinition/>  
   </Grid.RowDefinitions>  
   <Button></Button>  
</Grid>

	 D.	

<Grid> 
   <Grid.ColumnDefinitions>  
      <ColumnDefinition/>  
      <ColumnDefinition/>  
   </Grid.ColumnDefinitions>  
   <Grid.RowDefinitions>  
      <RowDefinition/>  
      <RowDefinition/>  
   </Grid.RowDefinitions>  
   <Button Grid.Cell="2,2"></Button>  
</Grid>

	 3.	 Which XAML sample correctly defines a context menu for Button1?

	 A.	

<Grid> 
   <ContextMenu name="mymenu">  
      <MenuItem>MenuItem</MenuItem>  
   </ContextMenu>  
   <Button ContextMenu="mymenu" Height="23" HorizontalAlignment="Left"  
      Margin="54,57,0,0" Name="button1" VerticalAlignment="Top"  
      Width="75">Button</Button>  
</Grid>

	 B.	

<ContextMenu Name="mymenu"> 
   <MenuItem>MenuItem</MenuItem>  
</ContextMenu>  
<Grid>  
   <Button ContextMenu="mymenu" Height="23" HorizontalAlignment="Left"  



	 Lesson 1: Using WPF Controls	 CHAPTER 1	 39

       Margin="54,57,0,0" Name="button1" VerticalAlignment="Top"  
       Width="75">Button</Button>  
</Grid>

	 C.	

<Menu Name="mymenu" ContextMenu="True"> 
   <MenuItem>MenuItem</MenuItem>  
</Menu>  
<Grid>  
   <Button ContextMenu="mymenu" Height="23" HorizontalAlignment="Left"  
      Margin="54,57,0,0" Name="button1" VerticalAlignment="Top"  
      Width="75">Button</Button>  
</Grid>

	 D.	

<Grid> 
   <Button Height="23" HorizontalAlignment="Left" Margin="54,57,0,0"  
      Name="button1" VerticalAlignment="Top" Width="75">  
      <Button.ContextMenu>  
         <ContextMenu>  
             <MenuItem>MenuItem</MenuItem>  
          </ContextMenu>  
      </Button.ContextMenu>  
      Button  
   </Button>  
</Grid>

	 4.	 What is the maximum number of child elements that an item control can contain?

	 A.	 0

	 B.	 1 

	 C.	 No limit

	 D.	 Depends on the control

	 5.	 Which layout panel would be the best choice for a user interface that requires evenly 
spaced controls laid out in a regular pattern?

	 A.	 Grid 

	 B.	 Canvas 

	 C.	 UniformGrid 

	 D.	 WrapPanel 

	 6.	 You are working with a Button control contained in a Canvas control. Which XAML 
sample will position the button edges 20 units from the bottom edge of the canvas 
and 20 units from the right edge of the canvas as well as maintain that positioning 
when the canvas is resized? (Each correct answer presents a complete solution. Choose 
all that apply.)



	40	 CHAPTER 1	 Building a User Interface

	 A.	

<Button Margin="20" Canvas.Bottom="0" Canvas.Right="0"></Button>

	 B.	

<Button Margin="20"></Button>

	 C.	

<Button Canvas.Bottom="20" Canvas.Right="20"></Button>

	 D.	

<Button Margin="20" Canvas.Bottom="20" Canvas.Right="20"></Button>



	 Lesson 2: Using Resources	 CHAPTER 1	 41

Lesson 2: Using Resources

Resources are files or objects an application uses but are not created in the actual executable 
code. Windows Forms uses binary resources to allow programs access to large files such as 
images or large text files. Although WPF technology uses binary resources, it also introduces 
the idea of logical resources, which define objects for use in your application and allow you 
to share objects among elements. In this lesson, you learn how to access encoded and binary 
resources in both Windows Forms and WPF applications. You learn how to create resource-
only dynamic-link libraries (DLLs) and load resource-only assemblies. You also learn how to 
create logical resources and resource dictionaries and to access resources in code for your 
WPF applications. Last, you learn the difference between static and dynamic resources and 
when to use each.

After this lesson, you will be able to: 
■	 Embed a binary resource in an application.
■	 Retrieve a binary resource by using code.
■	 Retrieve a binary resource by using pack URI syntax.
■	 Access a resource in another assembly by using pack URI syntax.
■	 Add a content file to an application.
■	 Create a resource-only DLL.
■	 Load and access a resource-only DLL.
■	 Create a logical resource.
■	 Create an application resource.
■	 Access a resource in XAML.
■	 Explain the difference between a static resource and a dynamic resource.
■	 Create a resource dictionary.
■	 Merge resource dictionaries.
■	 Decide where to store a resource.
■	 Access a resource object in code.

Estimated lesson time: 1 hour

Using Binary Resources
Binary resources enable you to compile large binary files in your application assemblies and 
retrieve them for use in your application. Binary resources are different from logical resourc-
es, which can be defined and accessed in XAML files. Logical resources are discussed later in 
this lesson.



	42	 CHAPTER 1	 Building a User Interface

Embedding Resources
Embedding resources in your application is fairly easy. All you need to do is add the file to 
your project and set the file’s Build Action property to Resource. When the application is 
compiled, the resource is compiled automatically as a resource and embedded in your ap-
plication. You can use this procedure to embed resources in both Windows Forms and WPF 
applications.

To embed a resource in your application,

	 1.	 From the Project menu, choose Add Existing Item. The Add Existing Item dialog box 
opens.

	 2.	 Browse to the file you want to add. Click Add to add it to your project.

	 3.	 In the Properties window, set the Build Action property for this file to Resource.

NOTE  THE BUILD ACTION PROPERTY 

Do not set the Build Action property to Embedded Resource, which embeds the re-
source using a different resource management scheme that is less accessible from WPF 
applications.

You can update a resource that has been previously added to an application by following 
the previous procedure and recompiling your application.

Loading Resources
The WPF Image class is capable of interacting directly with embedded resources. To specify an 
image resource, all you have to do is refer to the embedded file path, as shown in bold here:

<Image Source="myPic.bmp" Margin="17,90,61,22"  
   Name="Image1" Stretch="Fill"/>

This example refers to a resource that has been added directly to your project. In most 
cases, you want to organize your resources in folders in your application. Naturally, you must 
include the folder name in your path, as shown in bold here:

<Image Source="myFolder/myPic.bmp" Margin="17,90,61,22"  
   Name="Image1" Stretch="Fill"/>

When accessing embedded resources, the forward slash (/) is used in the URI by conven-
tion, but either the forward slash or the back slash (\) will work.

Pack URIs
The syntax previously shown to access embedded resources is actually a shorthand syntax 
that represents the longer syntax for pack URIs, which is a way WPF accesses embedded 
resources directly by specifying a URI to that resource. The full syntax for using pack URIs to 
locate an embedded resource is as follows:

pack://<Authority>/<Folder>/<FileName>



	 Lesson 2: Using Resources	 CHAPTER 1	 43

The <Authority> specified in the pack URI syntax is one of two possible values. It can be 
either application:,,, which designates that the URI should look to the assembly the current 
application is in for resource or content files, or siteOfOrigin:,,, which indicates that the ap-
plication should look to the site of the application’s origin for the indicated resource files. The 
siteOfOrigin syntax is discussed further in the “Retrieving Loose Files with siteOfOrigin Pack 
URIs” section later in this chapter. If a relative URI is used, application:,,, is assumed to be the 
<Authority>.

Thus, the previous example of an Image element could be rewritten to use the full pack 
URI syntax, as shown in bold here:

<Image Source="pack://application:,,,/myFolder/myPic.bmp"  
   Margin="17,90,61,22" Name="Image1" Stretch="Fill"/>

The full pack URI syntax comes in handy when you need to retrieve an embedded resource 
in code, as shown here:

Sample of Visual Basic Code 

Dim myImage As Image 
myImage.Source = New BitmapImage(New _ 
   Uri("pack://application:,,,/myFolder/myPic.bmp")) 

Sample of C# Code 

Image myImage; 
myImage.Source = new BitmapImage(new  
   Uri("pack://application:,,,/myFolder/myPic.bmp"));

Using Resources in Other Assemblies
You can also use the pack URI syntax to access resources embedded in other assemblies. The 
following example demonstrates the basic pack URI syntax for accessing embedded resources 
in other assemblies:

pack://application:,,,/<AssemblyName>;component/<Folder>/<FileName>

Thus, if you wanted to locate a file named myPic.bmp in the folder myFolder in another 
assembly named myAssembly, you would use the following pack URI:

Pack://application:,,,/myAssembly;component/myFolder/myPic.bmp

As with other pack URIs, if the embedded file does not exist within a folder, the folder is 
omitted in the URI.

Content Files
You do not want to embed all the files your application uses as resources. For example, files 
that need to be updated frequently should not be embedded, because embedding such files 
would require the application to be recompiled whenever a file is updated. Other examples 
of files that you do not want to embed are sound and media files. Because MediaPlayer and 

pack://application:,,,/myFolder/myPic.bmp
pack://application:,,,/myFolder/myPic.bmp
pack://application:,,,/myFolder/myPic.bmp
pack://application:,,,/
Pack://application:,,,/myAssembly


	44	 CHAPTER 1	 Building a User Interface

MediaElement controls do not support the pack URI syntax, the only way to provide sound 
files is as content files. Fortunately, it is easy to add content files as unembedded resources.

To add a content file,

	 1.	 From the Project menu, choose Add Existing Item. The Add Existing Item dialog box 
opens.

	 2.	 Browse to the file you want to add. Click Add to add it to your project.

	 3.	 In the Properties window, set the Build Action property for this file to Content.

	 4.	 In the Properties window, set the Copy To Output Directory property to Copy Always. 
This ensures that this file is copied to your application directory when your application 
is built. 

After a file has been added as a content file, you can refer to it using the relative URI, as 
shown in bold here:

<MediaElement Margin="52,107,66,35" Source="crash.mp3" 
   Name="mediaElement1"/>

Retrieving Loose Files with siteOfOrigin Pack URIs
In some cases, you want to deploy an application that requires regular updating of resources. 
Because compiled XAML cannot reference a binary resource in its current directory un-
less that file has been added to the project, this requires any files referenced in XAML to be 
included as part of the application. That, in turn, requires users to install updated versions of a 
desktop application every time content files have changed.

You can solve this problem by using siteOfOrigin pack URIs to refer to the site from which 
the application was deployed.

The siteOfOrigin:,,, syntax means different things depending on the location from which 
the application was originally installed. If the application is a full-trust desktop application 
that was installed using Windows Installer, the siteOfOrigin:,,, syntax in a pack URI refers to 
the root directory of the application.

If the application is a full-trust application that was installed using ClickOnce, the 
siteOfOrigin:,,, syntax refers to the Uniform Resource Locator (URL) or the Universal Naming 
Convention (UNC) path from which the application was originally deployed.

For a partial-trust application deployed with ClickOnce or an XAML Browser Application 
(XBAP), siteOfOrigin:,,, refers to the URL or UNC path that hosts the application.

Pack URIs that use the siteOfOrigin:,,, syntax always point to loose files (that is, files that 
are copied to the output directory but are not compiled); they never point to embedded 
resources. Thus, the files they reference should always exist in the directory specified by the 
siteOfOrigin:,,, syntax in a loose, uncompiled state.

The following example demonstrates use of the siteOfOrigin:,,, syntax:

<Image Source="pack://siteOfOrigin:,,,/OfficeFrontDoor.jpg"/>

pack://siteOfOrigin:,,,/OfficeFrontDoor.jpg"/


	 Lesson 2: Using Resources	 CHAPTER 1	 45

Retrieving Resources Manually
You might need to use resource files with objects that do not support the pack URI  
syntax. In these cases, you must retrieve the resources manually using the Application 
.GetResourceStream method. This method returns a System.Windows.Resources 
.StreamResourceInfo object that exposes two properties: the ContentType property, which 
describes the type of content contained in the resource, and the Stream property, which con-
tains an UnmanagedMemoryStream object that exposes the raw data of the resource. Then 
you can manipulate that data programmatically. The following example demonstrates how to 
retrieve the text contained in an embedded resource text file:

Sample of Visual Basic Code 

Dim myInfo As System.Windows.Resources.StreamResourceInfo  
Dim myString As String  
myInfo = Application.GetResourceStream( _ 
   New Uri("myTextFile.txt", UriKind.Relative))  
Dim myReader As New System.IO.StreamReader(myInfo.Stream)  
   ' myString is set to the text contained in myTextFile.txt  
myString = myReader.ReadToEnd()  

Sample of C# Code 

System.Windows.Resources.StreamResourceInfo myInfo;  
string myString;  
myInfo = Application.GetResourceStream(  
   new Uri("myTextFile.txt", UriKind.Relative));  
System.IO.StreamReader myReader =   
   new System.IO.StreamReader(myInfo.Stream);  
// myString is set to the text contained in myTextFile.txt  
myString = myReader.ReadToEnd();

Creating Resource-Only DLLs
You can create DLLs that contain only compiled resources. This can be useful in situations 
when resource files need to change frequently but recompiling the application is not an op-
tion. You can update and recompile the resources and then swap the old resource DLL for the 
new one.

Creating a resource-only DLL is fairly straightforward. To create a resource-only DLL, 
simply create an empty project in Visual Studio and add resource files to it. You can access 
resources in a resource-only DLL through the assembly resource stream.

To create a resource-only DLL:

	 1.	 In Visual Studio, create a new project with the Empty Project template.

	 2.	 In Solution Explorer, right-click the project name and choose Properties to open the 
Project Properties page. In the Application tab, set the Output Type to Class Library.

	 3.	 From the Project menu, choose Add Existing Item to add resource files to your project. 



	46	 CHAPTER 1	 Building a User Interface

	 4.	 In Solution Explorer, select a resource file. In the Properties window, set the Build 
Action property to Embedded Resource. Repeat this step for each resource file.

	 5.	 From the Build menu, choose Build <application>, where <application> is the name of 
your application, to compile your resource-only DLL.

To access resources programmatically using the assembly resource stream:

	 1.	 Get the AssemblyName object that represents the resource-only assembly, as shown 
here:

Sample of Visual Basic Code 

Dim aName As System.Reflection.AssemblyName 
aName = System.Reflection.AssemblyName.GetAssemblyName("C:\myAssembly.dll")

Sample of C# Code 

System.Reflection.AssemblyName aName; 
aName = System.Reflection.AssemblyName.GetAssemblyName("C:\\myAssembly.dll");

	 2.	 Use the AssemblyName object to load the assembly, as shown here:

Sample of Visual Basic Code

Dim asm As System.Reflection.Assembly 
asm = System.Reflection.Assembly.Load(aName)

Sample of C# Code 

System.Reflection.Assembly asm; 
asm = System.Reflection.Assembly.Load(aName);

	 3.	 After the assembly has been loaded, you can access the names of the resources 
through the Assembly.GetManifestResourceNames method and the resource streams 
through the Assembly.GetManifestResourceStream method. The following example 
demonstrates how to retrieve the names of the resources in an assembly and then load 
an image from the resource stream into a Windows Forms PictureBox control:

Sample of Visual Basic Code 

Dim res() As String = asm.GetManifestResourceNames 
PictureBox1.Image = New _ 
   System.Drawing.Bitmap(asm.GetManifestResourceStream(res(0)))

Sample of C# Code

String[] res = asm.GetManifestResourceNames(); 
pictureBox1.Image = new  
   System.Drawing.Bitmap(asm.GetManifestResourceStream(res[0]));

Using Logical Resources
Logical resources enable you to define objects in XAML that are not part of the visual tree but 
are available for use by WPF elements in your user interface. Elements in your user interface 
can access the resource as needed. An example of an object that you might define as a re-
source is Brush, used to provide a common color scheme for the application.



	 Lesson 2: Using Resources	 CHAPTER 1	 47

By defining objects that several elements use in a Resources section, you gain a few ad-
vantages over defining an object each time you use it. First, you gain reusability because you 
define your object only once rather than multiple times. You also gain flexibility: By separat-
ing the objects used by your user interface from the user interface itself, you can refactor 
parts of the user interface without having to redesign it completely. For example, you might 
use different collections of resources for different cultures in localization or for different ap-
plication conditions.

Any type of object can be defined as a resource. Every WPF element defines a Resources 
collection, which you can use to define objects available to that element and the elements in 
its visual tree. Although it is most common to define resources in the Resources collection of 
the window, you can define a resource in any element’s Resources collection and access it so 
long as the accessing element is part of the defining element’s visual tree.

Declaring a Logical Resource
You declare a logical resource by adding it to a Resources collection, as shown here:

<Window.Resources>
   <RadialGradientBrush x:Key="myBrush"> 
      <GradientStop Color="CornflowerBlue" Offset="0" /> 
      <GradientStop Color="Crimson" Offset="1" /> 
   </RadialGradientBrush> 
</Window.Resources>

If you don’t intend a resource to be available to the entire window, you can define it in the 
Resources collection of an element in the window, as shown in this example:

<Grid>
   <Grid.Resources> 
      <RadialGradientBrush x:Key="myBrush"> 
         <GradientStop Color="CornflowerBlue" Offset="0" /> 
         <GradientStop Color="Crimson" Offset="1" /> 
      </RadialGradientBrush> 
   </Grid.Resources> 
</Grid>

The usefulness of this is somewhat limited, and the most common scenario is to define re-
sources in the Window.Resources collection. One point to remember is that when using static 
resources, you must define the resource in the XAML code before you refer to it. Static and 
dynamic resources are explained later in this lesson.

Every object declared as a Resource must set the x:Key property. This is the name other 
WPF elements will use to access the resource. There is one exception to this rule: Style objects 
that set the TargetType property do not need to set the x:Key property explicitly because it is 
set implicitly behind the scenes. In the previous two examples, the key is set to myBrush. 

The x:Key property does not have to be unique in the application, but it must be unique 
in the Resources collection in which it is defined. Thus, you could define one resource in the 
Grid.Resources collection with a key of myBrush and another in the Window.Resources col-
lection with the same key. Objects within the visual tree of the grid that reference a resource 



	48	 CHAPTER 1	 Building a User Interface

with the key myBrush reference the object defined in the Grid.Resources collection, and 
objects that are not in the visual tree of the grid but are within the visual tree of the Window 
reference the object defined in the Window.Resources collection.

Application Resources
In addition to defining resources at the level of the element or Window, you can define 
resources that are accessible by all objects in a particular application. You can create an ap-
plication resource by opening the App.xaml file (for C# projects) or the Application.xaml file 
(for Visual Basic projects) and adding the resource to the Application.Resources collection, as 
shown in bold here:

<Application x:Class="WpfApplication2.App"
    xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 
    xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
    StartupUri="Window1.xaml">    
    <Application.Resources> 
       <SolidColorBrush x:Key="appBrush" Color="PapayaWhip" /> 
    </Application.Resources>
</Application>

Accessing a Resource in XAML
You can access a resource in XAML by using the following syntax:

{StaticResource myBrush}

In this example, the markup declares that a static resource with the myBrush key is ac-
cessed. Because this resource is a Brush object, you can plug that markup into any place that 
expects a Brush object. This example demonstrates how to use a resource in the context of a 
WPF element:

<Grid Background="{StaticResource myBrush}">
</Grid>

When a resource is referenced in XAML, the Resources collection of the declaring object is 
first searched for a resource with a matching key. If one is not found, the Resources collection 
of that element’s parent is searched, and so on, up to the window that hosts the element and 
to the application Resources collection.

Static and Dynamic Resources
In addition to the syntax described previously, you can reference a resource with the follow-
ing syntax:

{DynamicResource myBrush}

The difference between the DynamicResource and StaticResource syntax lies in how the 
referencing elements retrieve the resources. Resources referenced by the StaticResource syn-
tax are retrieved once by the referencing element and used for the lifetime of the resource. 

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml


	 Lesson 2: Using Resources	 CHAPTER 1	 49

Resources referenced with the DynamicResource syntax are acquired every time the refer-
enced object is used.

It might seem intuitive to think that, if you use StaticResource syntax, the referencing 
object does not reflect changes to the underlying resource, but this is not necessarily the 
case. WPF objects that implement dependency properties automatically incorporate change 
notification, and changes made to the properties of the resource are picked up by any objects 
using that resource. Take the following example:

<Window x:Class="WpfApplication2.Window1"
   xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 
   xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
   Title="Window1" Height="300" Width="300"> 
   <Window.Resources> 
      <SolidColorBrush x:Key="BlueBrush" Color="Blue" /> 
   </Window.Resources> 
   <Grid Background="{StaticResource BlueBrush}"> 
   </Grid> 
</Window>

This example renders the grid in the window with a blue background. If the Color property 
of the SolidColorBrush defined in the Window.Resources collection was changed in code to 
red, for instance, the background of the grid would render as red because change notification 
would notify all objects using that resource that the property had changed.

The difference between static and dynamic resources comes when the underlying object 
changes. If Brush defined in the Windows.Resources collection were accessed in code and set 
to a different object instance, the grid in the previous example would not detect this change. 
However, if the grid used the following markup, the change of the object would be detected, 
and the grid would render the background with the new brush:

<Grid Background="{DynamicResource BlueBrush}">
</Grid>

Accessing resources in code is discussed in the “Retrieving Resources in Code” section later 
in this chapter.

The downside of using dynamic resources is that they tend to decrease application perfor-
mance because they are retrieved every time they are used, thus reducing the efficiency of 
an application. The best practice is to use static resources unless there is a specific reason for 
using a dynamic resource. Examples of instances in which you would want to use a dynamic 
resource include when you use the SystemBrushes, SystemFonts, and SystemParameters 
classes as resources (see Chapter 5, “Working With User Defined Controls,” Lesson 3, for more 
information about these classes) or any other time when you expect the underlying object of 
the resource to change.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml


	50	 CHAPTER 1	 Building a User Interface

Creating a Resource Dictionary
A resource dictionary is a collection of resources that reside in a separate XAML file and can 
be imported into your application. They can be useful for organizing your resources in a 
single place or for sharing resources between multiple projects in a single solution. The fol-
lowing procedure describes how to create a new resource dictionary in your application.

To create a resource dictionary:

	 1.	 From the Project menu, choose Add Resource Dictionary. The Add New Item dialog 
box opens. Choose the name for the resource dictionary and click Add. The new re-
source dictionary is opened in XAML view.

	 2.	 Add resources to the new resource dictionary in XAML view. You can add resources to 
the file in XAML view, as shown in bold here:

<ResourceDictionary 
   xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 
   xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">    
   <SolidColorBrush x:Key="appBrush" Color="DarkSalmon" /> 
</ResourceDictionary>

Merging Resource Dictionaries
For objects in your application to access resources in a resource dictionary, you must merge 
the resource dictionary file with a Resources collection that is accessible in your application, 
such as the Window.Resources or Application.Resources collection. You merge resource dic-
tionaries by adding a reference to your resource dictionary file in the ResourceDictionary
.MergedDictionaries collection. The following example demonstrates how to merge the 
resources in a Window.Resources collection with the resources in resource dictionary files 
named Dictionary1.xaml and Dictionary2.xaml:

<Window.Resources>
   <ResourceDictionary> 
      <ResourceDictionary.MergedDictionaries> 
         <ResourceDictionary Source="Dictionary1.xaml" /> 
         <ResourceDictionary Source="Dictionary2.xaml" /> 
      </ResourceDictionary.MergedDictionaries> 
      <SolidColorBrush x:Key="BlueBrush" Color="Blue" /> 
   </ResourceDictionary> 
</Window.Resources>

If you define additional resources in your Resources collection, they must be defined within 
the bounds of the ResourceDictionary tags.

Choosing Where to Store a Resource
You have seen several options regarding where resources should be stored. The factors that 
should be weighed when deciding where to store a resource include ease of accessibility by 
referencing elements, readability and maintainability of the code, and reusability.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml


	 Lesson 2: Using Resources	 CHAPTER 1	 51

For resources to be accessed by all elements in an application, store resources in the 
Application.Resources collection. The Window.Resources collection makes resources available 
only to elements in that window, but that is typically sufficient for most purposes. If you need 
to share individual resources over multiple projects in a solution, your best choice is to store 
your resources in a resource dictionary that can be shared among different projects.

Readability is important for enabling maintenance of your code by other developers. The 
best choice for readability is to store resources in the Window.Resources collection because 
developers can then read your code in a single file rather than having to refer to other code 
files.

If making your resources reusable is important the ideal method for storing them is to use 
a resource dictionary. This allows you to reuse resources among different projects and extract 
those resources easily for use in other solutions as well.

Retrieving Resources in Code
You can access resources in code. The FindResource method enables you to obtain a reference 
to a resource by using the Key value. To use the FindResource method, you must call it from 
an element reference that has access to that resource. The following code example demon-
strates how to obtain a reference to a resource with a Key value of myBrush through a Button 
element that has access to that resource:

Sample of Visual Basic Code

Dim aBrush As SolidColorBrush
aBrush = CType(Button1.FindResource("myBrush"), SolidColorBrush)

Sample of C# Code 

SolidColorBrush aBrush; 
aBrush = (SolidColorBrush)Button1.FindResource("myBrush");

The FindResource method throws an exception if the named resource cannot be found. To 
avoid possible exceptions, you can use the TryFindResource method instead.

You also can access resources directly through the Resources collection on the element 
that contains it. The caveat here is that you must know in which collection the resource is 
defined and use the correct Resources collection. The following example demonstrates how 
to access a resource with the Key value of myBrush through the Resources collection of the 
window:

Sample of Visual Basic Code 

Dim aBrush As SolidColorBrush
aBrush = CType(Me.Resources("myBrush"), SolidColorBrush)

Sample of C# Code 

SolidColorBrush aBrush; 
aBrush = (SolidColorBrush)this.Resources["myBrush"];



	52	 CHAPTER 1	 Building a User Interface

When used in code, resources are read-write. Thus, you actually can change the object to 
which a resource refers. This example demonstrates how you can create a new object in code 
and set an existing resource to it:

Sample of Visual Basic Code 

Dim aBrush As New SolidColorBrush(Colors.Red)
Me.Resources("myBrush") = aBrush

Sample of C# Code 

SolidColorBrush aBrush = new SolidColorBrush(Colors.Red); 
this.Resources["myBrush"] = aBrush;

If the object a resource refers to is changed in code, objects that use that resource behave 
differently, depending on how the resource is referenced. Resources referenced with the 
DynamicResource markup use the new object when the resource is changed in code. Objects 
that reference resources with the StaticResource markup continue to use the object they ini-
tially retrieved from the Resources collection and are unaware of the change.

PRACTICE	 Practice with Logical Resources

In this practice, you create two resource dictionaries and merge them with the resources in 
your window.

EXERCISE  Creating Resource Dictionaries

	 1.	 Open the partial solution for this practice.

	 2.	 From the Project menu, choose Add Resource Dictionary. Name the file 
GridResources.xaml and click Add.

	 3.	 Add another resource dictionary and name it ButtonResources.xaml.

	 4.	 In Solution Explorer, double-click GridResources.xaml to open the GridResources re-
source dictionary. Add the following LinearGradientBrush object to the GridResources.
xaml file:

<LinearGradientBrush x:Key="GridBackgroundBrush">
   <GradientStop Color="AliceBlue" Offset="0" /> 
   <GradientStop Color="Blue" Offset=".5" /> 
   <GradientStop Color="Black" Offset="1" /> 
</LinearGradientBrush>

	 5.	 Double-click ButtonResources.xaml to open the ButtonResources resource dictionary. 
Add the following resources to this file:

<LinearGradientBrush x:Key="ButtonBackgroundBrush">
   <GradientStop Color="Yellow" Offset="0" /> 
   <GradientStop Color="Red" Offset="1" /> 
</LinearGradientBrush> 
<SolidColorBrush Color="Purple" x:Key="ButtonForegroundBrush" /> 
<SolidColorBrush Color="LimeGreen" x:Key="ButtonBorderBrush" /> 
<Style TargetType="Button"> 



	 Lesson 2: Using Resources	 CHAPTER 1	 53

   <Setter Property="Background" Value="{StaticResource  
      ButtonBackgroundBrush}" /> 
   <Setter Property="Foreground" Value="{StaticResource  
      ButtonForegroundBrush}" /> 
   <Setter Property="BorderBrush" Value="{StaticResource  
      ButtonBorderBrush}" /> 
</Style>

These resources include brushes for the background, foreground, and border as well as 
a style that automatically applies these brushes to Button elements.

	 6.	 Double-click Window1 to open the designer for the window. Above the definition for 
the Grid element, add the following Resources section to the XAML code for the win-
dow:

<Window.Resources>
   <ResourceDictionary> 
      <ResourceDictionary.MergedDictionaries> 
         <ResourceDictionary Source="ButtonResources.xaml" /> 
         <ResourceDictionary Source="GridResources.xaml" /> 
      </ResourceDictionary.MergedDictionaries> 
   </ResourceDictionary> 
</Window.Resources>

	 7.	 Modify the Grid definition to reference the resource that defines the brush to be used 
for the background of the grid, as shown here:

<Grid Background="{StaticResource GridBackgroundBrush}">

	 8.	 Press F5 to build and run your application. The Brush objects defined in the resource 
dictionaries are applied to your window.

Lesson Summary
■	 You can add binary resources to an application by using the Add Existing Item menu in 

Visual Studio and setting the Build Action property of the added file to Resource.

■	 For resource-aware classes such as the Image element, you can retrieve embedded 
resources by using pack URI syntax. The pack URI syntax also provides for accessing 
resources in other assemblies.

■	 If you are working with classes that are not resource-aware, you must retrieve re-
sources manually by using the Application.GetResourceStream method to retrieve the 
UnmanagedMemoryStream that encodes the resource. Then you can use the File IO 
classes to read the stream.

■	 Content files can be added as loose files, which are files that are copied to the output 
directory but are not compiled. You must use content files to add sound or media files 
to an application because MediaPlayer and MediaElement are incapable of reading 
embedded resources.



	54	 CHAPTER 1	 Building a User Interface

■	 You can create resource-only DLLs and retrieve the resources stored within by using 
the Assembly.GetManifestResourceStream method.

■	 Logical resources are objects defined in XAML and can be used by elements in your 
application.

■	 You can define a resource in several locations: in the Resources collection for Element, 
in the Resources collection for the window, in the Resources collection for Application, 
or in a resource dictionary. Where you define a resource depends largely on reusabil-
ity, maintainability of code, and how available the resource object needs to be to the 
rest of the application.

■	 Static resources retrieve an object from a Resources collection once, whereas dynamic 
resources retrieve the object each time it is accessed. Although changes made to an 
object are detected by static resources, a change within the actual underlying object is 
not.

■	 Resource dictionaries are separate XAML files that define resources. Resource diction-
aries can be merged with an existing Resources collection for an element. 

■	 Resources can be retrieved in code, either by accessing the Resources collection di-
rectly or by using the FindResource or TryFindResource method.

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 2, 
“Using Resources.” The questions are also available on the companion CD if you prefer to 
review them in electronic form.

NOTE  ANSWERS 

Answers to these questions and explanations of why each answer choice is correct or incor-
rect are located in the “Answers” section at the end of the book.

	 1.	 Which of the following examples of the pack URI syntax accesses a file named 
myImage.jpg in a folder named MyFolder in another assembly named myAssembly?

	 A.	

Pack://application:,,,/myAssembly;component/MyFolder/myImage.jpg 

	 B.	

Pack://application:,,,/myAssembly;MyFolder/component/myImage.jpg 

	 C.	

Pack://application:,,,;component/myAssemby/MyFolder/myImage.jpg

	 D.	

Pack://application:,,,/myAssembly;component/myImage.jpg

Pack://application:,,,/myAssembly
Pack://application:,,,/myAssembly
Pack://application:
Pack://application:,,,/myAssembly


	 Lesson 2: Using Resources	 CHAPTER 1	 55

	 2.	 You are adding an image to your application for use in an Image element. What is the 
best setting for the Build Action property in Visual Studio?

	 A.	 Embedded Resource 

	 B.	 Resource 

	 C.	 None 

	 D.	 Content 

	 3.	 You are adding a media file to your application for use in a MediaElement element. 
What is the best setting for the Build Action property in Visual Studio?

	 A.	 Embedded Resource 

	 B.	 Resource 

	 C.	 None 

	 D.	 Content 

	 4.	 You have created a series of customized Brush objects to create a common color 
scheme for every window in each of several applications in your company. The Brush 
objects have been implemented as resources. What is the best place to define these 
resources?

	 A.	 In the Resources collection of each control that needs them

	 B.	 In the Resources collection of each window that needs them

	 C.	 In the Application.Resources collection

	 D.	 In a separate resource dictionary

	 5.	 Look at the following XAML:

<Window x:Class="Window1"
   xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 
   xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
   Title="Window1" Height="300" Width="300"> 
   <Window.Resources> 
      <SolidColorBrush Color="Red" x:Key="ForegroundBrush" /> 
      <SolidColorBrush Color="Blue" x:Key="BackgroundBrush" /> 
   </Window.Resources> 
   <Grid> 
      <Button Background="{StaticResource BackgroundBrush}"  
         Foreground="{DynamicResource ForegroundBrush}" Height="23"  
         Margin="111,104,92,0" Name="Button1"  
         VerticalAlignment="Top">Button</Button> 
   </Grid> 
</Window>

What happens to the colors of the button when the following code is executed?

Sample of Visual Basic Code

Dim aBrush As New SolidColorBrush(Colors.Green)
Me.Resources("ForegroundBrush") = aBrush 
Dim bBrush As SolidColorBrush 
bBrush = CType(Me.Resources("BackgroundBrush"), SolidColorBrush) 
bBrush.Color = Colors.Black

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml


	56	 CHAPTER 1	 Building a User Interface

Sample of C# Code 

SolidColorBrush aBrush = new SolidColorBrush(Colors.Green);
this.Resources["ForegroundBrush"] = aBrush; 
SolidColorBrush bBrush; 
bBrush = (SolidColorBrush)this.Resources["BackgroundBrush"]; 
bBrush.Color = Colors.Black;

	 A.	 Nothing happens.

	 B.	 The background turns black.

	 C.	 The foreground turns green.

	 D.	 Both B and C.



	 Lesson 3: Using Styles and Triggers	 CHAPTER 1	 57

Lesson 3: Using Styles and Triggers

Styles enable you to create a cohesive appearance and behavior for your application. You can 
use styles to define a standard color and sizing scheme for your application and use triggers 
to provide dynamic interaction with your UI elements. In this lesson, you learn to create and 
implement styles, apply a style to all instances of a single type, and to implement style inheri-
tance. You learn to use setters to set properties and event handlers and triggers to change 
property values dynamically. Finally, you learn about the order of property precedence.

After this lesson, you will be able to: 
■	 Create and implement a style.
■	 Apply a style to all instances of a type.
■	 Implement style inheritance.
■	 Use property and event setters.
■	 Explain the order of property value precedence.
■	 Use and implement triggers, including property triggers, data triggers, event 

triggers, and multiple triggers.

Estimated lesson time: 30 minutes

Using Styles
Styles can be thought of as analogous to cascading style sheets as used in Hypertext Markup 
Language (HTML) pages. Styles basically tell the presentation layer to substitute a new visual 
appearance for the standard one. They enable you to make changes to the user interface as 
a whole easily and to provide a consistent appearance and behavior for your application in a 
variety of situations. Styles enable you to set properties and hook up events on UI elements 
through the application of those styles. Further, you can create visual elements that respond 
dynamically to property changes through the application of triggers, which listen for a prop-
erty change and then apply style changes in response. 

Properties of Styles
The primary class in the application of styles is, unsurprisingly, the Style class, which contains 
information about styling a group of properties. A style can be created to apply to a single 
instance of an element, to all instances of an element type, or across multiple types. Table 1-9 
shows the important properties of the Style class.



	58	 CHAPTER 1	 Building a User Interface

TABLE 1-9  Important Properties of the Style Class

PROPERTY DESCRIPTION

BasedOn Indicates another style that this style is based on. This property is 
useful for creating inherited styles.

Resources Contains a collection of local resources the style uses. The 
Resources property is discussed in detail in Lesson 2 of this chapter.

Setters Contains a collection of Setter or EventSetter objects. These are 
used to set properties or events on an element as part of a style.

TargetType Identifies the intended element type for the style.

Triggers Contains a collection of Trigger objects and related objects that en-
able you to designate a change in the user interface in response to 
changes in properties.

The basic skeleton of a <Style> element in XAML markup looks like the following:

<Style>
   <!-- A collection of setters is enumerated here --> 
   <Style.Triggers> 
   <!-- A collection of Trigger and related objects is enumerated here --> 
   </Style.Triggers> 
   <Style.Resources> 
      <!-- A collection of local resources for use in the style --> 
   </Style.Resources> 
</Style>

Setters
The most common class you will use in the construction of styles is the Setter. As their name 
implies, setters are responsible for setting some aspect of an element. Setters come in two 
types: property setters (or just setters, as they are called in markup), which set values for 
properties, and event setters, which set handlers for events.

PROPERTY SETTERS
Property setters, represented by the <Setter> tag in XAML, enable you to set properties 
of elements to specific values. A property setter has two important properties: Property, 
which designates the property to be set by the setter, and Value, which indicates the value 
to which the property is to be set. The following example demonstrates a setter that sets the 
Background property of a Button element to red:

<Setter Property="Button.Background" Value="Red" />

The value for the Property property must take the following form:

Element.PropertyName



	 Lesson 3: Using Styles and Triggers	 CHAPTER 1	 59

If you want to create a style that sets a property on multiple types of elements, you can set 
the style on a common class that the elements inherit, as shown here:

<Style> 
   <Setter Property="Control.Background" Value="Red" /> 
</Style>

This style sets the Background property of all elements that inherit from the control to 
which it is applied.

Event Setters
Event setters (represented by the <EventSetter> tag) are similar to property setters, but they 
set event handlers rather than property values. The two important properties for EventSetter 
are the Event property, which specifies the event for which the handler is being set, and the 
Handler property, which specifies the event handler to attach to that event. An example is 
shown here:

<EventSetter Event="Button.MouseEnter" Handler="Button_MouseEnter" />

The value of the Handler property must specify an existing event handler with the cor-
rect signature for the type of event with which it is connected. Similar to property setters, the 
format for the Event property is

Element.EventName

where the element type is specified, followed by the event name. 

Creating a Style
You’ve seen the simplest possible implementation of a style—a single setter between two 
Style tags—but you haven’t yet seen how to apply a style to an element. There are several 
ways to do this. This section examines the various ways to apply a style to elements in your 
user interface.

Setting the Style Property Directly
The most straightforward way to apply a style to an element is to set the Style property 
directly in XAML. The following example demonstrates directly setting the Style property of a 
Button element:

<Button Height="25" Name="Button1" Width="100"> 
   <Button.Style> 
      <Style> 
         <Setter Property="Button.Content" Value="Style set directly" /> 
         <Setter Property="Button.Background" Value="Red" /> 
      </Style> 
   </Button.Style> 
</Button>

Although setting the style directly in an element might be the most straightforward, it is 
seldom the best method. When setting the style directly, you must set it for each element you 



	60	 CHAPTER 1	 Building a User Interface

want to be affected. In most cases, it is simpler to set the properties of the element directly at 
design time.

One scenario in which you might want to set the style directly in an element is to pro-
vide a set of triggers for that element. Because triggers must be set in a style (except for 
EventTrigger, as you will see in the next section), you could conceivably set the style directly to 
set triggers for an element.

Setting a Style in a Resources Collection
The most common method for setting styles is to create the style as a member of a Resources 
collection and then apply the style to elements in your user interface by referencing the re-
source. The following example demonstrates creating a style as part of the Windows 
.Resources collection:

<Window.Resources> 
   <Style x:Key="StyleOne"> 
      <Setter Property="Button.Content" Value="Style defined in resources" /> 
      <Setter Property="Button.Background" Value="Red" /> 
   </Style> 
</Window.Resources>

Under most circumstances, you must supply a key value for a style that you define in the 
Resources collection. Then you can apply that style to an element by referencing the resource, 
as shown in bold here:

<Button Name="Button1" Style="{StaticResource StyleOne}" Height="30"  
   Width="200" />

The advantage of defining a style in the resources section is that you can then apply that 
style to multiple elements by simply referencing the resource. 

Applying Styles to All Controls of a Specific Type
You can use the TargetType property to specify a type of element to be associated with the 
style. When you set the TargetType property on a style, that style is applied to all elements of 
that type automatically. Furthermore, you must not specify the qualifying type name in the 
Property property of any setters you use; you can just refer to the property name. When you 
specify TargetType for a style you have defined in a Resources collection, you do not need to 
provide a key value for that style. The following example demonstrates the use of the Target-
Type property:

<Window.Resources> 
   <Style TargetType="Button"> 
      <Setter Property=" Content" Value="Style set for all buttons" /> 
      <Setter Property="Background" Value="Red" /> 
   </Style> 
</Window.Resources>

When you apply the TargetType property, you do not need to add any additional markup 
to the elements of that type to apply the style.



	 Lesson 3: Using Styles and Triggers	 CHAPTER 1	 61

If you want an individual element to opt out of the style, you can set the style on that ele-
ment explicitly, as seen here:

<Button Style="{x:Null}" Margin="10">No Style</Button>

This example explicitly sets the style to Null, which causes the button to revert to its de-
fault look. You also can set the style to another style directly, as seen earlier in this lesson. 

SETTING A STYLE PROGRAMMATICALLY
You can create and define a style programmatically. Although defining styles in XAML is 
usually the best choice, creating a style programmatically might be useful when you want 
to create and apply a new style dynamically, possibly based on user preferences. The typical 
method for creating a style programmatically is to create the Style object in code; create set-
ters (and triggers if appropriate); add them to the appropriate collection on the Style object; 
and then, when finished, set the Style property on the target elements. The following example 
demonstrates creating and applying a simple style in code:

Sample of Visual Basic Code 

Dim aStyle As New Style
Dim aSetter As New Setter 
aSetter.Property = Button.BackgroundProperty 
aSetter.Value = Brushes.Red 
aStyle.Setters.Add(aSetter) 
Dim bSetter As New Setter 
bSetter.Property = Button.ContentProperty 
bSetter.Value = "Style set programmatically" 
aStyle.Setters.Add(bSetter) 
Button1.Style = aStyle

Sample of C# Code 

Style aStyle = new Style();
Setter aSetter = new Setter(); 
aSetter.Property = Button.BackgroundProperty; 
aSetter.Value = Brushes.Red; 
aStyle.Setters.Add(aSetter); 
Setter bSetter = new Setter(); 
bSetter.Property = Button.ContentProperty; 
bSetter.Value = "Style set programmatically"; 
aStyle.Setters.Add(bSetter); 
Button1.Style = aStyle;

You can also define a style in a Resources collection and apply that style in code, as shown 
here:

Sample of XAML Code

<!-- XAML -->
<Window.Resources> 
   <Style x:Key="StyleOne"> 
      <Setter Property="Button.Content" Value="Style applied in code" /> 
      <Setter Property="Button.Background" Value="Red" /> 
   </Style> 
</Window.Resources>



	62	 CHAPTER 1	 Building a User Interface

Sample of Visual Basic Code 

Dim aStyle As Style
aStyle = CType(Me.Resources("StyleOne"), Style) 
Button1.Style = aStyle

Sample of C# Code 

Style aStyle;
aStyle = (Style)this.Resources["StyleOne"]; 
Button1.Style = aStyle;

Implementing Style Inheritance
You can use inheritance to create styles that conform to the basic appearance and behavior of 
the original style but provide differences that offset some controls from others. For example, 
you might create one style for all the Button elements in your user interface and create an 
inherited style to provide emphasis for one of the buttons. You can use the BasedOn property 
to create Style objects that inherit from other Style objects. The BasedOn property references 
another style, automatically inherits all the members of that style, and then enables you to 
build on that style by adding additional members. The following example demonstrates two 
Style objects: an original style and a style that inherits it:

<Window.Resources>
   <Style x:Key="StyleOne"> 
      <Setter Property="Button.Content" Value="Style set in original Style" /> 
      <Setter Property="Button.Background" Value="Red" /> 
      <Setter Property="Button.FontSize" Value="15" /> 
      <Setter Property="Button.FontFamily" Value="Arial" /> 
   </Style> 
   <Style x:Key="StyleTwo" BasedOn="{StaticResource StyleOne}"> 
      <Setter Property="Button.Content" Value="Style set by inherited style" /> 
      <Setter Property="Button.Background" Value="AliceBlue" /> 
      <Setter Property="Button.FontStyle" Value="Italic" /> 
   </Style>  
</Window.Resources>

Figure 1-10 displays the result of applying these two styles.

FIGURE 1-10  Two buttons: the original style and an inherited style.



	 Lesson 3: Using Styles and Triggers	 CHAPTER 1	 63

When a property is set in both the original style and the inherited style, the property value 
set by the inherited style always takes precedence. But when a property is set by the original 
style and not set by the inherited style, the original property setting is retained.

Quick Check
■	 Under what circumstances is a style automatically applied to an element? 

How else can a style be applied to an element?

Quick Check Answer
■	 A style is applied to an element automatically when it is declared as a 

resource in the page and the TargetType property of the style is set. If the 
TargetType property is not set, you can apply a style to an element by setting 
that element’s Style property, either in XAML or in code.

Triggers
Along with setters, triggers make up the bulk of objects you use in creating styles. Trig-
gers enable you to implement property changes declaratively in response to other property 
changes that would have required event-handling code in Windows Forms programming. 
There are five kinds of Trigger objects, as listed in Table 1-10.

TABLE 1-10  Types of Trigger Objects

TYPE CLASS NAME DESCRIPTION

Property trigger Trigger Monitors a property and activates when the 
value of that property matches the Value 
property

Multi-trigger MultiTrigger Monitors multiple properties and activates 
only when all the monitored property values 
match their corresponding Value properties

Data trigger DataTrigger Monitors a bound property and activates 
when the value of the bound property 
matches the Value property

Multi-data trigger MultDataTrigger Monitors multiple bound properties and 
activates only when all the monitored bound 
properties match their corresponding Value 
properties

Event trigger EventTrigger Initiates a series of actions when a specified 
event is raised

A trigger is active only when it is part of a Style.Triggers collection, with one exception. 
EventTrigger objects can be created within a Control.Triggers collection outside a style. The 



	64	 CHAPTER 1	 Building a User Interface

Control.Triggers collection can accommodate only EventTrigger, and any other trigger placed 
in this collection causes an error. EventTrigger is used primarily with animation and is dis-
cussed further in Chapter 2, Lesson 3.

Property Triggers
The most commonly used type of trigger is the property trigger, which monitors the value 
of a property specified by the Property property. When the value of the specified property 
equals the Value property, the trigger is activated. Table 1-11 shows the important properties 
of property triggers.

Table 1-11  Important Properties of Property Triggers

Property Description

EnterActions Contains a collection of Action objects that are applied when the trigger 
becomes active. Actions are discussed in greater detail in Lesson 2 of 
this chapter.

ExitActions Contains a collection of Action objects that are applied when the trigger 
becomes inactive. Actions are discussed in greater detail in Lesson 2 of 
this chapter.

Property Indicates the property that is monitored for changes.

Setters Contains a collection of Setter objects that are applied when the trigger 
becomes active.

Value Indicates the value that is compared to the property referenced by the 
Property property.

Triggers listen to the property indicated by the Property property and compare that prop-
erty to the Value property. When the referenced property and the Value property are equal, 
the trigger is activated. Any Setter objects in the Setters collection of the trigger are applied 
to the style, and any actions in the EnterActions collections are initiated. When the referenced 
property no longer matches the Value property, the trigger is inactivated. All Setter objects in 
the Setters collection of the trigger are inactivated, and any actions in the ExitActions collec-
tion are initiated. 

The following example demonstrates a simple Trigger object that changes the FontWeight 
value of a Button element to Bold when the mouse enters the button:

<Style.Triggers> 
   <Trigger Property="Button.IsMouseOver" Value="True"> 



	 Lesson 3: Using Styles and Triggers	 CHAPTER 1	 65

      <Setter Property="Button.FontWeight" Value="Bold" /> 
   </Trigger> 
</Style.Triggers>

In this example, the trigger defines one setter in its Setters collection. When the trigger is 
activated, that setter is applied. 

Multi-triggers
Multi-triggers are similar to property triggers in that they monitor the value of properties 
and activate when those properties meet a specified value. The difference is that multi-
triggers are capable of monitoring several properties at a time, and they activate only when 
all monitored properties equal their corresponding Value properties. The properties that are 
monitored, and their corresponding Value properties, are defined by a collection of Condition 
objects. The following example demonstrates a MultiTrigger property that sets the Button.
FontWeight property to Bold only when the button is focused and the mouse has entered the 
control:

<Style.Triggers>
   <MultiTrigger> 
      <MultiTrigger.Conditions> 
         <Condition Property="Button.IsMouseOver" Value="True" /> 
         <Condition Property="Button.IsFocused" Value="True" /> 
      </MultiTrigger.Conditions> 
      <MultiTrigger.Setters> 
         <Setter Property="Button.FontWeight" Value="Bold" /> 
      </MultiTrigger.Setters> 
   </MultiTrigger> 
</Style.Triggers>

Data Triggers and Multi-data Triggers
Data triggers are similar to property triggers in that they monitor a property and activate 
when the property meets a specified value, but they differ in that the property they monitor 
is a bound property. Instead of a Property property, data triggers expose a Binding prop-
erty that indicates the bound property to listen to. The following shows a data trigger that 
changes the Background property of a label to red when the bound property CustomerName 
equals “Fabrikam”:

<Style.Triggers>
   <DataTrigger Binding="{Binding Path=CustomerName}" Value="Fabrikam"> 
      <Setter Property="Label.Background" Value="Red" /> 
   </DataTrigger> 
</Style.Triggers>

Multi-data triggers are to data triggers as multi-triggers are to property triggers. They 
contain a collection of Condition objects, each of which specifies a bound property through 
its Binding property, and a value to compare to that bound property. When all the condi-
tions are satisfied, the multi-data trigger activates. The following example demonstrates 



	66	 CHAPTER 1	 Building a User Interface

a multi-data trigger that sets the Label.Background property to red when CustomerName 
equals “Fabrikam” and OrderSize equals 500:

<Style.Triggers>
   <MultiDataTrigger> 
      <MultiDataTrigger.Conditions> 
         <Condition Binding="{Binding Path=CustomerName}" Value="Fabrikam" /> 
         <Condition Binding="{Binding Path=OrderSize}" Value="500" /> 
      </MultiDataTrigger.Conditions> 
      <MultiDataTrigger.Setters> 
         <Setter Property="Label.Background" Value="Red" /> 
      </MultiDataTrigger.Setters> 
   </MultiDataTrigger> 
</Style.Triggers>

Event Triggers
Event triggers are different from the other trigger types. Whereas other trigger types moni-
tor the value of a property and compare it to an indicated value, event triggers specify an 
event and activate when that event is raised. In addition, event triggers do not have a Setters 
collection; rather, they have an Actions collection. Most actions deal with animations, which 
are discussed in detail in Lesson 3 of Chapter 2. The following two examples demonstrate the 
EventTrigger class. The first example uses SoundPlayerAction to play a sound when a button is 
clicked: 

<EventTrigger RoutedEvent="Button.Click">
   <SoundPlayerAction Source="C:\myFile.wav" /> 
</EventTrigger>

The second example demonstrates a simple animation that causes the button to grow in 
height by 200 units when clicked:

<EventTrigger RoutedEvent="Button.Click">
   <EventTrigger.Actions> 
      <BeginStoryboard> 
         <Storyboard> 
            <DoubleAnimation Duration="0:0:5"  
               Storyboard.TargetProperty="Height" To="200" /> 
         </Storyboard> 
      </BeginStoryboard> 
   </EventTrigger.Actions> 
</EventTrigger>

Understanding Property Value Precedence
By now, you have probably noticed that properties can be set in many ways. They can be 
set in code, they can be set by styles, they can have default values, and so on. It might seem 
logical at first to believe that a property will have the value to which it was last set, but this 
is actually incorrect. A defined and strict order of precedence determines a property’s value 



	 Lesson 3: Using Styles and Triggers	 CHAPTER 1	 67

based on how it was set, not when. The precedence order is summarized here, with highest 
precedence listed first:

	 1.	 Set by coercion by the property system.

	 2.	 Set by active animations or held animations. (See Chapter 2 for a detailed discussion of 
animations.)

	 3.	 Set locally by code, by direct setting in XAML, or through data binding.

	 4.	 Set by TemplatedParent. Within this category is a sub-order of precedence, again listed 
in descending order:

	 a.	 Set by triggers from the templated parent

	 b.	 Set by the templated parent through property sets

	 5.	 Implicit style; this applies only to the Style property.

	 6.	 Set by Style triggers.

	 7.	 Set by Template triggers.

	 8.	 Set by Style setters.

	 9.	 Set by the default Style. There is a sub-order within this category, again listed in de-
scending order:

	 a.	 Set by triggers in the default style

	 b.	 Set by setters in the default style

	 10.	 Set by inheritance.

	 11.	 Set by metadata.

EXAM TIP

The order of property precedence seems complicated, but actually it is fairly logical. Be 
sure you understand the concept behind the property order in addition to knowing the 
order itself. 

This may seem like a complicated and arbitrary order of precedence, but upon closer ex-
amination it is actually very logical and based upon the needs of the application and the user. 
The highest precedence is property coercion. This takes place in some elements if an attempt 
is made to set a property beyond its allowed values. For example, if an attempt is made to set 
the Value property of a Slider control to a value higher than the Maximum property, Value is 
coerced to equal the Maximum property. Next in precedence come animations. For anima-
tions to have any meaningful use, they must be able to override preset property values. The 
next highest level of precedence is properties that have been set explicitly through developer 
or user action.

Properties set by TemplatedParent are next in the order of precedence. These are proper-
ties set on objects that come into being through a template, discussed further in Chapter 
4. Next in the order is a special precedence item that applies only to the Style property of 
an element. Provided the Style property has not been set by any item with a higher-level 



	68	 CHAPTER 1	 Building a User Interface

precedence, it is set to a style whose TargetType property matches the type of element in 
question. Then come properties set by triggers, first those set by Style, then those set by 
Template. This is logical because for triggers to have any meaningful effect, they must over-
ride properties set by styles. 

Properties set by styles come next, first properties set by user-defined styles and then 
properties set by the default style (also called the theme, which typically is set by the operat-
ing system). Finally come properties that are set through inheritance and the application of 
metadata.

For developers, there are a few important implications that are not intuitively obvious. The 
most important is that if you set a property explicitly—whether in XAML or in code—the ex-
plicitly set property blocks any changes dictated by a style or trigger. WPF assumes that you 
want that property value to be there for a reason and does not allow it to be set by a style or 
trigger, although it still can be overridden by an active animation. 

A second, less obvious, implication is that when using the Visual Studio designer to drag 
and drop items onto the design surface from the toolbox, the designer explicitly sets several 
properties, especially layout properties. These property settings have the same precedence as 
they would if you had set them yourself. So if you are designing a style-oriented user inter-
face, you should either enter XAML code directly in XAML view to create controls and set as 
few properties explicitly as possible, or you should review the XAML Visual Studio generates 
and delete settings as appropriate. 

You can clear a property value that has been set in XAML or code manually by calling the 
DependencyObject.ClearValue method. The following code example demonstrates how to 
clear the value of the Width property on a button named Button1:

Sample of Visual Basic Code 

Button1.ClearValue(WidthProperty)

Sample of C# Code 

Button1.ClearValue(WidthProperty);

After the value has been cleared, it can be reset automatically by the property system.

PRACTICE	 Creating High-Contrast Styles

In this practice, you create a rudimentary, high-contrast style for Button, TextBox, and Label 
elements. 

EXERCISE 1  Using Styles to Create High-Contrast Elements

	 1.	 Create a new WPF application in Visual Studio.

	 2.	 In XAML view, just above the <Grid> declaration, create a Window.Resources section, 
as shown here:

<Window.Resources>
  
</Window.Resources>



	 Lesson 3: Using Styles and Triggers	 CHAPTER 1	 69

	 3.	 In the Window.Resources section, create a high-contrast style for TextBox controls that 
sets the background color to Black and the foreground to White. The TextBox controls 
also should be slightly larger by default. An example is shown here:

<Style TargetType="TextBox">
   <Setter Property="Background" Value="Black" /> 
   <Setter Property="Foreground" Value="White" /> 
   <Setter Property="BorderBrush" Value="White" /> 
   <Setter Property="Width" Value="135" /> 
   <Setter Property="Height" Value="30" /> 
</Style>

	 4.	 Create similar styles for Button and Label, as shown here:

<Style TargetType="Label">
   <Setter Property="Background" Value="Black" /> 
   <Setter Property="Foreground" Value="White" /> 
   <Setter Property="Width" Value="135" /> 
   <Setter Property="Height" Value="33" /> 
</Style> 
<Style TargetType="Button"> 
   <Setter Property="Background" Value="Black" /> 
   <Setter Property="Foreground" Value="White" /> 
   <Setter Property="Width" Value="135" /> 
   <Setter Property="Height" Value="30" /> 
</Style>

	 5.	 Type the following in XAML view. Note that you should not add controls from the 
toolbox because that automatically sets some properties in the designer at a higher 
property precedence than styles:

<Label Margin="26,62,126,0" VerticalAlignment="Top">
   High-Contrast Label</Label> 
<TextBox Margin="26,117,126,115">High-Contrast TextBox 
   </TextBox> 
<Button Margin="26,0,126,62" VerticalAlignment="Bottom"> 
   High-Contrast Button</Button>

	 6.	 Press F5 to build and run your application. Note that while the behavior of these con-
trols is unaltered, their appearance has changed. 

EXERCISE 2  Using Triggers to Enhance Visibility

	 1.	 In XAML view for the solution you completed in Exercise 1, add a Style.Triggers section 
to the TextBox style, as shown here:

<Style.Triggers>
  
</Style.Triggers>

	 2.	 In the Style.Triggers section, add triggers that detect when the mouse is over the con-
trol and enlarge FontSize in the control, as shown here:

<Trigger Property="IsMouseOver" Value="True">
   <Setter Property="FontSize" Value="20" /> 
</Trigger>



	70	 CHAPTER 1	 Building a User Interface

	 3.	 Add similar Style.Triggers collections to your other two styles.

	 4.	 Press F5 to build and run your application. The font size of a control now increases 
when you move the mouse over it.

Lesson Summary
■	 Styles enable you to define consistent visual styles for your application. Styles use a 

collection of setters to apply style changes. The most commonly used setter type is the 
property setter, which enables you to set a property. Event setters enable you to hook 
up event handlers as part of an applied style. 

■	 Styles can be set inline, but more frequently, they are defined in a Resources collec-
tion and are set by referring to the resource. You can apply a style to all instances of a 
control by setting the TargetType property to the appropriate type.

■	 Styles are most commonly applied declaratively, but they can be applied in code by 
creating a new style dynamically or by obtaining a reference to a preexisting style 
resource.

■	 You can create styles that inherit from other styles by using the BasedOn property.

■	 Property triggers monitor the value of a dependency property and can apply setters 
from their Setters collection when the monitored property equals a predetermined 
value. Multi-triggers monitor multiple properties and apply their setters when all mon-
itored properties match corresponding specified values. Data triggers and multi-data 
triggers are analogous but monitor bound values instead of dependency properties.

■	 Event triggers perform a set of actions when a particular event is raised. They are used 
most commonly to control animations.

■	 Property values follow a strict order of precedence, depending on how they are set.

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 
3, “Using Styles and Triggers.” The questions are also available on the companion CD if you 
prefer to review them in electronic form.

NOTE  ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-
rect are located in the “Answers” section at the end of the book. 

	 1.	 Look at the following XAML sample:

<Window.Resources>
   <Style x:Key="Style1"> 
      <Setter Property="Label.Background" Value="Blue" /> 
      <Setter Property="Button.Foreground" Value="Red" /> 
      <Setter Property="Button.Background" Value="LimeGreen" /> 



	 Lesson 3: Using Styles and Triggers	 CHAPTER 1	 71

   </Style> 
</Window.Resources> 
<Grid> 
   <Button Height="23" Margin="81,0,122,58" Name="Button1"  
      VerticalAlignment="Bottom">Button</Button> 
</Grid>

Assuming that the developer hasn’t set any properties any other way, what is the back-
ground color of Button1? 

	 A.	 Blue 

	 B.	 Red 

	 C.	 LimeGreen 

	 D.	 System Default 

	 2.	 Look at the following XAML sample:

<Window.Resources>
   <Style x:Key="Style1"> 
      <Style.Triggers> 
         <MultiTrigger> 
            <MultiTrigger.Conditions> 
               <Condition Property="TextBox.IsMouseOver"  
                  Value="True" /> 
               <Condition Property="TextBox.IsFocused"  
                  Value="True" /> 
            </MultiTrigger.Conditions> 
            <Setter Property="TextBox.Background"  
               Value="Red" /> 
         </MultiTrigger> 
      </Style.Triggers> 
   </Style> 
</Window.Resources> 
<Grid> 
   <TextBox Style="{StaticResource Style1}" Height="21"  
      Margin="75,0,83,108" Name="TextBox1"  
      VerticalAlignment="Bottom" /> 
</Grid>

When will TextBox1 appear with a red background?

	 A.	 When the mouse is over TextBox1 

	 B.	 When TextBox1 is focused

	 C.	 When TextBox1 is focused and the mouse is over TextBox1 

	 D.	 All of the above

	 E.	 Never

	 3.	 Look at the following XAML sample:

<Window.Resources>
   <Style TargetType="Button"> 
      <Setter Property="Content" Value="Hello" /> 
      <Style.Triggers> 



	72	 CHAPTER 1	 Building a User Interface

         <Trigger Property="IsMouseOver" Value="True"> 
            <Setter Property="Content" Value="World" /> 
         </Trigger> 
         <Trigger Property="IsMouseOver" Value="False"> 
            <Setter Property="Content" Value="How are you?" /> 
         </Trigger> 
      </Style.Triggers> 
   </Style> 
</Window.Resources> 
<Grid> 
   <Button Height="23" Margin="81,0,122,58" Name="Button1"  
      VerticalAlignment="Bottom">Button</Button> 
</Grid>

What does Button1 display when the mouse is NOT over the button?

	 A.	 Hello 

	 B.	 World 

	 C.	 Button 

	 D.	 How are you? 



	 Case Scenarios	 CHAPTER 1	 73

Case Scenarios

In the following case scenario, you apply what you’ve learned about how to use controls to 
design user interfaces. You can find answers to these questions in the “Answers” section at the 
end of this book.

Case Scenario 1: Streaming Stock Quotes
You’re creating an application for a client that he can use to view streaming stock quotes. 
The geniuses in the Control Development department already have created a control that 
connects to the stock quote server and displays real-time streaming stock quotes, as well as a 
Chart control that displays live information about stocks in chart form. Your job is to create a 
simple application that hosts these controls along with a few controls (a text box and a pair of 
buttons) that the client can use to select the stock or stocks in which he is interested.

The technical requirements are:

■	 Users always must be able to access the controls that enable them to select the stock 
quote.

■	 The Chart control requires a fair amount of two-dimensional room and cannot be 
hosted in a toolbar.

■	 The Stock Quote control behaves like a stock ticker and requires linear space but mini-
mal height.

Answer the following questions for your manager:

	 1.	 What kinds of item controls can be used to organize the controls that need to go into 
this application?

	 2.	 What kind of layout controls enable the design of an easy-to-use user interface?

Case Scenario 2: Cup Fever
You’ve had a little free time around the office, and you’ve decided to write a simple but 
snazzy application to organize and display results from World Cup soccer matches. The 
technical details are all complete: You’ve located a Web service that feeds up-to-date scores, 
and you’ve created a database that automatically applies updates from this service for match 
results and keeps track of upcoming matches. The database is exposed through a custom 
data object built on ObservableCollection lists. All that remains are the finishing touches. 
Specifically, when users choose an upcoming match from a drop-down list at the top of the 
window, you want the window’s color scheme to match the colors of the teams in the selected 
matchup.

You’ve also identified the technical requirements. The user interface is divided into two 
sections, each of which is built on a Grid container. Each section represents a team in the cur-
rent or upcoming match. The user interface for each section must apply the appropriate team 
colors automatically when the user chooses a new match.



	74	 CHAPTER 1	 Building a User Interface

Answer the following question for all your office mates, who are eagerly awaiting the ap-
plication’s completion.

■	 How can you implement these color changes to the user interface?

Suggested Practices

To help you successfully master the exam objectives presented in this chapter, complete the 
following tasks.

On Your Own
Complete these suggested practices on your own to reinforce the topics presented in this 
chapter.

■	 Practice 1  Build a calculator program that uses the UniformGrid control for the num-
ber button layout and a toolbar for the function key layout. Host both in a single Grid 
control. Then modify your solution to create a version that hosts both in a DockPanel 
control.

■	 Practice 2  Practice creating resources by creating resource dictionaries that contain a 
variety of Brush and Style objects. Incorporate these resource dictionaries into existing 
applications or build new applications around them.

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you can 
test yourself on just one exam objective, or you can test yourself on all the 70-511 certifica-
tion exam content. You can set up the test so that it closely simulates the experience of taking 
a certification exam, or you can set it up in study mode so that you can look at the correct 
answers and explanations after you answer each question.

MORE INFO  PRACTICE TESTS 

For details about all the practice test options available, see the “How to Use the Practice 
Tests” section in this book’s Introduction. 



		  CHAPTER 9	 447

C H A P T E R  9

Enhancing Usability

Developers of both Windows Presentation Foundation (WPF) and Windows Forms ap-
plications can access the built-in functionality of the Microsoft .NET Framework to 

enhance the usability of the applications they develop. In this chapter, you learn to use this 
built-in functionality to create applications that are responsive, global, and interoperational. 
In Lesson 1, “Implementing Asynchronous Processing,” you learn how to implement asyn-
chronous processing and programming for your applications; in Lesson 2, “Incorporating 
Globalization and Localization,” you learn how to globalize and localize your applications; 
and in Lesson 3, “Integrating Windows Forms and WPF,” you learn how to use WPF controls 
in Windows Forms applications, and vice versa.

Exam objectives in this chapter: 
■	 Implement asynchronous processes and threading.
■	 Incorporate globalization and localization features.
■	 Integrate WinForms and WPF within an application.

Lessons in this chapter:
■	 Lesson 1: Implementing Asynchronous Processing  449
■	 Lesson 2: Implementing Globalization and Localization  468
■	 Lesson 3: Integrating Windows Forms Controls and WPF  483



	448	 CHAPTER 9	 Enhancing Usability

Before You Begin

To complete the lessons in this chapter, you must have:

■	 A computer that meets or exceeds the minimum hardware requirements listed in the 
“About This Book” section at the beginning of the book.

■	 Microsoft Visual Studio 2010 Professional installed on your computer.

■	 An understanding of Microsoft Visual Basic or C# syntax and familiarity with 
.NET Framework 4.0.

■	 An understanding of Extensible Application Markup Language (XAML).

REAL WORLD

Matthew Stoecker

Even with ever-increasing processor speeds, time-consuming tasks are still a cen-
tral part of many of the applications I write. The BackgroundWorker component 

enables the creation of simple, asynchronous operations and is easily accessible to 
programmers of all levels. For more advanced operations, delegates and threads 
provide the needed level of functionality.



	 Lesson 1:  Implementing Asynchronous Processing	 CHAPTER 9	 449

Lesson 1:  Implementing Asynchronous Processing

You are frequently required to perform tasks that consume fairly large amounts of time, such 
as file downloads. The BackgroundWorker component provides an easy way to run time-
consuming processes in the background, thereby leaving the user interface (UI) responsive 
and available for user input.

After this lesson, you will be able to:
■	 Run a background process by using the BackgroundWorker component.
■	 Announce the completion of a background process by using the 

BackgroundWorker component.
■	 Cancel a background process by using the BackgroundWorker component.
■	 Report the progress of a background process by using the BackgroundWorker 

component.
■	 Request the status of a background process by using the BackgroundWorker 

component.

Estimated lesson time: 45 minutes

The BackgroundWorker component is designed to enable you to execute time-consuming 
operations on a separate, dedicated thread so you can run operations that take a lot of time, 
such as file downloads and database transactions, asynchronously while the UI remains re-
sponsive. 

The key method of the BackgroundWorker component is the RunWorkerAsync method. 
When this method is called, the BackgroundWorker component raises the DoWork event. The 
code in the DoWork event handler is executed on a separate, dedicated thread so that the 
UI remains responsive. Table 9-1 shows the important members of the BackgroundWorker 
component.

TABLE 9-1  Important Members of the BackgroundWorker Component

MEMBER DESCRIPTION

CancellationPending Property. Indicates whether the application has re-
quested cancellation of a background operation.

IsBusy Property. Indicates whether the BackgroundWorker is 
currently running an asynchronous operation.

WorkerReportsProgress Property. Indicates whether the BackgroundWorker 
component can report progress updates.

WorkerSupportsCancellation Property. Indicates whether the BackgroundWorker 
component supports asynchronous cancellation.



	450	 CHAPTER 9	 Enhancing Usability

CancelAsync Method. Requests cancellation of a pending back-
ground operation.

ReportProgress Method. Raises the ProgressChanged event.

RunWorkerAsync Method. Starts the execution of a background opera-
tion by raising the DoWork event.

DoWork Event. Occurs when the RunWorkerAsync method is 
called. Code in the DoWork event handler is run on a 
separate and dedicated thread.

ProgressChanged Event. Occurs when ReportProgress is called. 

RunWorkerCompleted Event. Occurs when the background operation 
has been completed or cancelled or has raised an 
exception.

Running a Background Process
The RunWorkerAsync method of the BackgroundWorker component starts the execution of 
the background process by raising the DoWork event. The code in the DoWork event handler 
is executed on a separate thread. The following procedure explains how to create a back-
ground process.

To create a background process with the BackgroundWorker component:

	 1.	 From the Toolbox, drag a BackgroundWorker component onto the form.

	 2.	 In the component tray, double-click the BackgroundWorker component to create the 
default event handler for the DoWork event. Add the code that you want to run on the 
separate thread. An example is shown here. 

Sample of Visual Basic Code

Private Sub BackgroundWorker1_DoWork(ByVal sender As System.Object, _ 
   ByVal e As System.ComponentModel.DoWorkEventArgs) _  
   Handles BackgroundWorker1.DoWork  
   ' Insert time-consuming operation here  
End Sub 

Sample of C# Code

private void backgroundWorker1_DoWork(object sender, DoWorkEventArgs e) 
{  
   // Insert time-consuming operation here  
}

	 3.	 Elsewhere in your code, start the time-consuming operation on a separate thread by 
calling the RunWorkerAsync method, as shown:

Sample of Visual Basic Code

BackgroundWorker1.RunWorkerAsync() 



	 Lesson 1:  Implementing Asynchronous Processing	 CHAPTER 9	 451

Sample of C# Code

backgroundWorker1.RunWorkerAsync();

Providing Parameters to the Background Process
Sometimes you will want to run a background process that requires a parameter. For example, 
you might want to provide the address of a file for download. You can provide a parameter 
in the RunWorkerAsync method. This parameter will be available as the Argument property of 
the instance of DoWorkEventArgs in the DoWork event handler. 

To provide a parameter to a background process:

	 1.	 Include the parameter in the RunWorkerAsync call, as shown here:

Sample of Visual Basic Code

BackgroundWorker1.RunWorkerAsync("C:\myfile.txt") 

Sample of C# Code

backgroundWorker1.RunWorkerAsync("C:\\myfile.txt");

	 2.	 Retrieve the parameter from the DoWorkEventArgs.Argument property and cast it ap-
propriately to use it in the background process. An example is shown here:

Sample of Visual Basic Code

Private Sub BackgroundWorker1_DoWork(ByVal sender As System.Object, _ 
   ByVal e As System.ComponentModel.DoWorkEventArgs) _  
   Handles BackgroundWorker1.DoWork  
   Dim myPath As String  
   myPath = CType(e.Argument, String)  
   ' Use the argument in the process  
   RunTimeConsumingProcess()  
End Sub 

Sample of C# Code

private void backgroundWorker1_DoWork(object sender, DoWorkEventArgs e) 
{  
   string myPath;  
   myPath = (string)e.Argument;  
   // Use the argument in the process  
   RunTimeConsumingProcess();  
}

Announcing the Completion of a Background Process
When the background process terminates, whether because the process is completed or can-
celled, the RunWorkerCompleted event is raised. You can alert the user to the completion of a 
background process by handling the RunWorkerCompleted event. Here is an example:

Sample of Visual Basic Code

Private Sub BackgroundWorker1_RunWorkerCompleted( _ 
   ByVal sender As System.Object, _  



	452	 CHAPTER 9	 Enhancing Usability

   ByVal e As System.ComponentModel.RunWorkerCompletedEventArgs) _  
   Handles BackgroundWorker1.RunWorkerCompleted  
   MsgBox("Background process completed!")  
End Sub 

Sample of C# Code

private void backgroundWorker1_RunWorkerCompleted(object sender, 
   RunWorkerCompletedEventArgs e)  
{  
   System.Windows.Forms.MessageBox.Show("Background process completed");  
}

You can ascertain whether the background process was cancelled by reading the 
e.Cancelled property, as shown here:

Sample of Visual Basic Code

Private Sub BackgroundWorker1_RunWorkerCompleted( _ 
   ByVal sender As System.Object, _  
   ByVal e As System.ComponentModel.RunWorkerCompletedEventArgs) _  
   Handles BackgroundWorker1.RunWorkerCompleted  
   If e.Cancelled Then  
      MsgBox("Process was cancelled!")  
   Else  
      MsgBox("Process completed")  
   End If  
End Sub 

Sample of C# Code

private void backgroundWorker1_RunWorkerCompleted(object sender, 
   RunWorkerCompletedEventArgs e)  
{  
   if (e.Cancelled)  
   {  
      System.Windows.Forms.MessageBox.Show ("Process was cancelled!");  
   }  
   else  
   {  
      System.Windows.Forms.MessageBox.Show("Process completed");  
   }  
}

Returning a Value from a Background Process
You might want to return a value from a background process. For example, if your pro-
cess is a complex calculation, you would want to return the result. You can return a value 
by setting the Result property of DoWorkEventArgs in DoWorkEventHandler. This value will 
then be available in the RunWorkerCompleted event handler as the Result property of the 
RunWorkerCompletedEventArgs parameter, as shown in the following example:

Sample of Visual Basic Code

Private Sub BackgroundWorker1_DoWork(ByVal sender As System.Object, _ 
   ByVal e As System.ComponentModel.DoWorkEventArgs) _  



	 Lesson 1:  Implementing Asynchronous Processing	 CHAPTER 9	 453

   Handles BackgroundWorker1.DoWork  
   ' Assigns the return value of a method named ComplexCalculation to  
   ' e.Result  
   e.Result = ComplexCalculation()  
End Sub  
Private Sub BackgroundWorker1_RunWorkerCompleted( _  
   ByVal sender As System.Object, _  
   ByVal e As System.ComponentModel.RunWorkerCompletedEventArgs) _  
   Handles BackgroundWorker1.RunWorkerCompleted  
   MsgBox("The result is " & e.Result.ToString)  
End Sub 

Sample of C# Code

private void backgroundWorker1_DoWork(object sender, DoWorkEventArgs e) 
{  
   // Assigns the return value of a method named ComplexCalculation to  
   // e.Result  
   e.Result = ComplexCalculation();  
}  
private void backgroundWorker1_RunWorkerCompleted(object sender,  
   RunWorkerCompletedEventArgs e)  
{  
   System.Windows.Forms.MessageBox.Show("The result is " +   
      e.Result.ToString());  
}

Cancelling a Background Process
You might want to implement the ability to cancel a background process. BackgroundWorker 
supports this ability, but you must implement most of the cancellation code yourself. The 
WorkerSupportsCancellation property of the BackgroundWorker component indicates 
whether the component supports cancellation. You can call the CancelAsync method to 
attempt to cancel the operation; doing so sets the CancellationPending property of the 
BackgroundWorker component to True. By polling the CancellationPending property of the 
BackgroundWorker component, you can determine whether to cancel the operation.

To implement cancellation for a background process:

	 1.	 In the Properties window, set the WorkerSupportsCancellation property to True to en-
able the BackgroundWorker component to support cancellation.

	 2.	 Create a method that is called to cancel the background operation. The following 
example demonstrates how to cancel a background operation in a Button.Click event 
handler:

Sample of Visual Basic Code

Private Sub btnCancel_Click(ByVal sender As System.Object, _ 
   ByVal e As System.EventArgs) Handles btnCancel.Click  
   BackgroundWorker1.CancelAsync()  
End Sub 



	454	 CHAPTER 9	 Enhancing Usability

Sample of C# Code

private void btnCancel_Click(object sender, EventArgs e) 
{  
   backgroundWorker1.CancelAsync();  
}

	 3.	 In the BackgroundWorker.DoWork event handler, poll the BackgroundWorker
.CancellationPending property and implement code to cancel the operation if it is True. 
You should also set the e.Cancel property to True, as shown in the following example:

Sample of Visual Basic Code

Private Sub BackgroundWorker1_DoWork(ByVal sender As System.Object, _ 
   ByVal e As System.ComponentModel.DoWorkEventArgs) _  
   Handles BackgroundWorker1.DoWork  
   For i As Integer = 1 to 1000000  
      TimeConsumingMethod()   
      If BackgroundWorker1.CancellationPending Then  
         e.Cancel = True  
         Exit Sub  
      End If  
   Next  
End Sub 

Sample of C# Code

private void backgroundWorker1_DoWork(object sender, DoWorkEventArgs e) 
{  
   for (int i = 0; i < 1000000; i++)  
   {  
      TimeConsumingMethod();  
      if (backgroundWorker1.CancellationPending)  
      {  
          e.Cancel = true;  
          return;               
      }  
   }  
}

Reporting Progress of a Background Process with BackgroundWorker
For particularly time-consuming operations, you might want to report progress back to 
the primary thread. You can report progress of the background process by calling the 
ReportProgress method. This method raises the BackgroundWorker.ProgressChanged event 
and enables you to pass a parameter that indicates the percentage of progress that has been 
completed to the methods that handle that event. The following example demonstrates how 
to call the ReportProgress method from within the BackgroundWorker.DoWork event handler 
and then how to update a ProgressBar control in the BackgroundWorker.ProgressChanged 
event handler:

Sample of Visual Basic Code

Private Sub BackgroundWorker1_DoWork(ByVal sender As System.Object, _ 
   ByVal e As System.ComponentModel.DoWorkEventArgs) _  



	 Lesson 1:  Implementing Asynchronous Processing	 CHAPTER 9	 455

   Handles BackgroundWorker1.DoWork  
   For i As Integer = 1 to 10  
      RunTimeConsumingProcess()  
      ' Calls the Report Progress method, indicating the percentage   
      ' complete  
      BackgroundWorker1.ReportProgress(i*10)  
   Next  
End Sub  
Private Sub BackgroundWorker1_ProgressChanged( _  
   ByVal sender As System.Object, _  
   ByVal e As System.ComponentModel.ProgressChangedEventArgs) _  
   Handles BackgroundWorker1.ProgressChanged  
   ProgressBar1.Value = e.ProgressPercentage  
End Sub 

Sample of C# Code

private void backgroundWorker1_DoWork(object sender, DoWorkEventArgs e) 
{  
   for (int i = 1;i < 11; i++)  
   {  
      RunTimeConsumingProcess();  
      // Calls the Report Progress method, indicating the percentage   
      // complete  
      backgroundWorker1.ReportProgress(i*10);  
   }  
  
}  
private void backgroundWorker1_ProgressChanged(object sender,   
   ProgressChangedEventArgs e)  
{  
   progressBar1.Value = e.ProgressPercentage;  
}

Note that to report progress with the BackgroundWorker component, you must set the 
WorkerReportsProgress property to True.

Requesting the Status of a Background Process
You can determine whether a BackgroundWorker component is executing a background 
process by reading the IsBusy property, which returns a Boolean value. If True, the 
BackgroundWorker component is currently running a background process. If False, the 
BackgroundWorker component is idle. An example follows:

Sample of Visual Basic Code

If Not BackgroundWorker1.IsBusy 
   BackgroundWorker1.RunWorkerAsync()  
End If 

Sample of C# Code

if (!(backgroundWorker1.IsBusy)) 
{  
   backgroundWorker1.RunWorkerAsync();  
}



	456	 CHAPTER 9	 Enhancing Usability

Quick Check
	 1.	  What is the purpose of the BackgroundWorker component?

	 2.	 Briefly describe how to implement cancellation for a background process with 
BackgroundWorker.

Quick Check Answers
	 1.	 The BackgroundWorker component enables you to run operations on a separate 

thread while allowing the UI to remain responsive without complicated imple-
mentation or coding patterns.

	 2.	 First, you set the WorkerSupportsCancellation property of the BackgroundWorker 
component to True. Then you create a method that calls the BackgroundWorker
.CancelAsync method to cancel the operation. Finally, in the background process, 
you poll the BackgroundWorker.CancellationPending property and set e.Cancel 
to True if CancellationPending is True, and take appropriate action to halt the 
process.

Using Delegates
Special classes called delegates enable you to call methods in a variety of ways. A delegate is 
essentially a type-safe function pointer that enables you to pass a reference to an entry point 
for a method and invoke that method in a variety of ways without making an explicit func-
tion call. You use the Delegate keyword (delegate in C#) to declare a delegate, and you must 
specify the same method signature as the method that you want to call with the delegate. 
The following example demonstrates a sample method and the declaration of a delegate that 
can be used to call that method:

Sample of Visual Basic Code

Public Function TestMethod(ByVal I As Integer) As String 
   ' Insert method implementation here  
End Function  
Public Delegate Function myDelegate(ByVal I As Integer) As String 

Sample of C# Code

public string TestMethod(int I) 
{  
   // Insert method implementation here  
}  
public delegate string myDelegate(int i);

After a delegate has been declared, you can create an instance of it that specifies a 
method that has the same signature. In C#, you can specify the method by simply naming 
the method. In Visual Basic, you must use the AddressOf operator to specify the method. The 
following example demonstrates how to create an instance of the delegate that specifies the 
method shown in the previous example.



	 Lesson 1:  Implementing Asynchronous Processing	 CHAPTER 9	 457

Sample of Visual Basic Code

Dim del As New myDelegate(AddressOf TestMethod) 

Sample of C# Code

myDelegate del = new myDelegate(TestMethod);

After an instance of a delegate has been created, you can invoke the method that refers to 
the delegate by simply calling the delegate with the appropriate parameters or by using the 
delegate’s Invoke method. Both are shown in the following example:

Sample of Visual Basic Code

del(342) 
del.Invoke(342) 

Sample of C# Code

del(342); 
del.Invoke(342);

Using Delegates Asynchronously
Delegates can be used to call any method asynchronously. In addition to the Invoke method, 
every delegate exposes two methods, BeginInvoke and EndInvoke, that call methods asyn-
chronously. Calling the BeginInvoke method on a delegate starts the method that it refers 
to on a separate thread. Calling EndInvoke retrieves the results of that method and ends the 
separate thread.

The BeginInvoke method begins the asynchronous call to the method represented by the 
delegate. It requires the same parameters as the method the delegate represents, as well 
as two additional parameters: an AsyncCallback delegate that references the method to be 
called when the asynchronous method is completed, and a user-defined object that contains 
information about the asynchronous call. BeginInvoke returns an instance of IAsyncResult, 
which monitors the asynchronous call.

The EndInvoke method retrieves the results of the asynchronous call and can be called 
any time after BeginInvoke has been called. The EndInvoke method signature requires as a 
parameter the instance of IAsyncResult returned by BeginInvoke and returns the value that 
is returned by the method represented by the delegate. The method signature also contains 
any Out or ByRef parameters of the method it refers to in its signature.

You can use BeginInvoke and EndInvoke in several ways to implement asynchronous meth-
ods. Among them are the following:

■	 Calling BeginInvoke, doing work, and then calling EndInvoke on the same thread

■	 Calling BeginInvoke, polling IAsyncResult until the asynchronous operation is complet-
ed, and then calling EndInvoke

■	 Calling BeginInvoke, specifying a callback method to be executed when the asynchro-
nous operation has completed, and calling EndInvoke on a separate thread



	458	 CHAPTER 9	 Enhancing Usability

Waiting for an Asynchronous Call to Return with EndInvoke
The simplest way to implement an asynchronous method call is to call BeginInvoke, do some 
work, and then call EndInvoke on the same thread that BeginInvoke was called on. Although 
this approach is simplest, a potential disadvantage is that the EndInvoke call blocks execu-
tion of the thread until the asynchronous operation is completed if it has not completed yet. 
Thus, your main thread might still be unresponsive if the asynchronous operation is particu-
larly time-consuming. The −DelegateCallback and −AsyncState parameters are not required 
for this operation, so Nothing (null in C#) can be supplied for these parameters. The follow-
ing example demonstrates how to implement an asynchronous call in this way, using the 
TestMethod and myDelegate methods that were defined in the preceding examples:

Sample of Visual Basic Code

Dim del As New myDelegate(AddressOf TestMethod) 
Dim result As IAsyncResult  
result = del.BeginInvoke(342, Nothing, Nothing)  
' Do some work while the asynchronous operation runs  
Dim ResultString As String  
ResultString = del.EndInvoke(result) 

Sample of C# Code

myDelegate del = new myDelegate(TestMethod); 
IAsyncResult result;  
result = del.BeginInvoke(342, null, null);  
// Do some work while the asynchronous operation runs  
string ResultString;  
ResultString = del.EndInvoke(result);

Polling IAsyncResult until Completion
Another way of executing an asynchronous operation is to call BeginInvoke and then poll the 
IsCompleted property of IAsyncResult to determine whether the operation has finished. When 
the operation has finished, you can then call EndInvoke. An advantage of this approach is 
that you do not need to call EndInvoke until the operation is complete. Thus, you do not lose 
any time by blocking your main thread. The following example demonstrates how to poll the 
IsCompleted property:

Sample of Visual Basic Code

Dim del As New myDelegate(AddressOf TestMethod) 
Dim result As IAsyncResult  
   result = del.BeginInvoke(342, Nothing, Nothing)  
While Not result.IsCompleted  
   ' Do some work  
End While  
Dim ResultString As String  
ResultString = del.EndInvoke(result) 

Sample of C# Code

myDelegate del = new myDelegate(TestMethod); 
   IAsyncResult result;  



	 Lesson 1:  Implementing Asynchronous Processing	 CHAPTER 9	 459

result = del.BeginInvoke(342, null, null);  
while (!(result.IsCompleted))  
{  
   // Do some work while the asynchronous operation runs  
}  
string ResultString;  
ResultString = del.EndInvoke(result);

Executing a Callback Method When the Asynchronous Operation 
Returns
If you do not need to process the results of the asynchronous operation on the same thread 
that started the operation, you can specify a callback method to be executed when the op-
eration is completed. This enables the operation to complete without interrupting the thread 
that initiated it. To execute a callback method, you must provide an instance of AsyncCallback 
that specifies the callback method. You can also supply a reference to the delegate itself so 
that EndInvoke can be called in the callback method to complete the operation. The following 
example demonstrates how to specify and run a callback method:

Sample of Visual Basic Code

Private Sub CallAsync() 
   Dim del As New myDelegate(AddressOf TestMethod)  
   Dim result As IAsyncResult  
   Dim callback As New AsyncCallback(AddressOf CallbackMethod)  
   result = del.BeginInvoke(342, callback, del)  
End Sub  
 
Private Sub CallbackMethod(ByVal result As IAsyncResult)  
   Dim del As myDelegate  
   Dim ResultString As String  
   del = CType(result.AsyncState, myDelegate)  
   ResultString = del.EndInvoke(result)  
End Sub 

Sample of C# Code

private void CallAsync() 
{  
   myDelegate del = new myDelegate(TestMethod);  
   IAsyncResult result;  
   AsyncCallback callback =  new AsyncCallback(CallbackMethod);  
   result = del.BeginInvoke(342, callback, del);  
}  
 
private void CallbackMethod(IAsyncResult result)  
{  
   myDelegate del;  
   string ResultString;  
   del = (myDelegate)result.AsyncState;  
   ResultString = del.EndInvoke(result);  
}



	460	 CHAPTER 9	 Enhancing Usability

Creating Process Threads
For applications that require more precise control over multiple threads, you can create new 
threads with the Thread object, which represents a separate thread of execution that runs 
concurrently with other threads. You can create as many Thread objects as you like, but the 
more threads there are, the greater the impact on performance and the greater the possibility 
of adverse threading conditions, such as deadlocks. 

MORE INFO  THREADING

Multithreading and use of the Thread object is an extremely complex and detailed subject. 
The information in this section should not be considered comprehensive. For more infor-
mation, see Managed Threading at http://msdn.Microsoft.com/en-us/library/3e8s7xdd.aspx.

Creating and Starting a New Thread
The Thread object requires a delegate to the method that will serve as the starting point for 
the thread. This method must be a Sub (void in C#) method and must either have no param-
eters or take a single −Object parameter. In the latter case, the −Object parameter passes any 
required parameters to the method that starts the thread. After a thread is created, you can 
start it by calling the Thread.Start method. The following example demonstrates how to cre-
ate and start a new thread:

Sample of Visual Basic Code

Dim aThread As New System.Threading.Thread(Addressof aMethod) 
aThread.Start() 

Sample of C# Code

System.Threading.Thread aThread = new  
   System.Threading.Thread(aMethod);  
aThread.Start();

For threads that accept a parameter, the procedure is similar except that the starting 
method can take a single Object as a parameter, and that object must be specified as the 
parameter in the Thread.Start method. Here is an example:

Sample of Visual Basic Code

Dim aThread As New System.Threading.Thread(Addressof aMethod) 
aThread.Start(anObject) 

Sample of C# Code

System.Threading.Thread aThread = new  
   System.Threading.Thread(aMethod);  
aThread.Start(anObject);

http://msdn.Microsoft.com/en-us/library/3e8s7xdd.aspx


	 Lesson 1:  Implementing Asynchronous Processing	 CHAPTER 9	 461

Destroying Threads
You can destroy a Thread object by calling the Thread.Abort method. This method causes the 
thread on which it is called to cease its current operation and to raise a ThreadAbortException 
exception. If a Catch block is capable of handling the exception, it will execute along with any 
Finally blocks. The thread is then destroyed and cannot be restarted. 

Sample of Visual Basic Code

aThread.Abort() 

Sample of C# Code

aThread.Abort();

Synchronizing Threads
Two of the most common difficulties involved in multithread programming are deadlocks 
and race conditions. A deadlock occurs when one thread has exclusive access to a particular 
variable and then attempts to gain exclusive access to a second variable at the same time that 
a second thread has exclusive access to the second variable and attempts to gain exclusive ac-
cess to the variable locked by the first thread. The result is that both threads wait indefinitely 
for the other to release the variables, and they cease operating.

A race condition occurs when two threads attempt to access the same variable at the same 
time. For example, consider two threads that access the same collection. The first thread 
might add an object to the collection. The second thread might then remove an object from 
the collection based on the index of the object. The first thread might then attempt to access 
the object in the collection to find that it had been removed. Race conditions can lead to 
unpredictable effects that can destabilize your application.

The best way to avoid race conditions and deadlocks is by careful programming and judi-
cious use of thread synchronization. You can use the SyncLock keyword in Visual Basic and 
the lock keyword in C# to obtain an exclusive lock on an object. This enables the thread that 
has the lock on the object to perform operations on that object without allowing any other 
threads to access it. Note that if any other threads attempt to access a locked object, those 
threads will pause until the lock is released. The following example demonstrates how to 
obtain a lock on an object:

Sample of Visual Basic Code

SyncLock anObject 
   ' Perform some operation  
End SyncLock 

Sample of C# Code

lock (anObject) 
{  
   // Perform some operation  
}



	462	 CHAPTER 9	 Enhancing Usability

Some objects, such as collections, implement a synchronization object that should be used 
to synchronize access to the greater object. The following example demonstrates how to 
obtain a lock on the SyncRoot object of an ArrayList object:

Sample of Visual Basic Code

Dim anArrayList As New System.Collections.ArrayList 
SyncLock anArrayList.SyncRoot  
   ' Perform some operation on the ArrayList  
End SyncLock 

Sample of C# Code

System.Collections.Arraylist anArrayList = new System.Collections.ArrayList();
lock (anArrayList.SyncRoot)  
{  
   // Perform some operation on the ArrayList  
}

It is generally good practice when creating classes that will be accessed by multiple threads 
to include a synchronization object for synchronized access by threads. This enables the 
system to lock only the synchronization object, thus conserving resources by not having to 
lock every single object contained in the class. A synchronization object is simply an instance 
of Object, and does not need to have any functionality except to be available for locking. The 
following example demonstrates a class that exposes a synchronization object:

Sample of Visual Basic Code

Public Class aClass 
   Public SynchronizationObject As New Object()  
   ' Insert additional functionality here  
End Class 

Sample of C# Code

public class aClass 
{  
    public object SynchronizationObject = new Object();  
   // Insert additional functionality here  
}

Special Considerations when Working with Controls
Because controls are always owned by the UI thread, it is generally unsafe to make calls to 
controls from a different thread. In WPF applications, you can use the Dispatcher object, 
discussed later in this lesson, to make safe function calls to the UI thread. In Windows Forms 
applications, you can use the Control.InvokeRequired property to determine whether it is 
safe to make a call to a control from another thread. If InvokeRequired returns False, it is safe 
to make the call to the control. If InvokeRequired returns True, however, you should use the 
Control.Invoke method on the owning form to supply a delegate to a method to access the 
control. Using Control.Invoke enables the control to be accessed in a thread-safe manner. The 
following example demonstrates setting the Text property of a TextBox control named Text1:



	 Lesson 1:  Implementing Asynchronous Processing	 CHAPTER 9	 463

Sample of Visual Basic Code

Public Delegate Sub SetTextDelegate(ByVal t As String) 
Public Sub SetText(ByVal t As String)  
   If TextBox1.InvokeRequired = True Then  
      Dim del As New SetTextDelegate(AddressOf SetText)  
      Me.Invoke(del, New Object() {t})  
   Else  
      TextBox1.Text = t  
   End If  
End Sub 

Sample of C# Code

public delegate void SetTextDelegate(string t); 
public void SetText(string t)  
{  
   if (textBox1.InvokeRequired)  
   {  
      SetTextDelegate del = new SetTextDelegate(SetText);  
      this.Invoke(del, new object[]{t});  
   }  
   else  
   {  
      textBox1.Text = t;  
   }  
}

In the preceding example, the method tests InvokeRequired to determine whether it is 
dangerous to access the control directly. In general, this will return True if the control is being 
accessed from a separate thread. If InvokeRequired does return True, the method creates a 
new instance of a delegate that refers to itself and calls Control.Invoke to set the Text prop-
erty in a thread-safe manner.

Quick Check 
	 1.	 What is a delegate? How is a delegate used?

	 2.	 What is thread synchronization, and why is it important?

Quick Check Answers
	 1.	 A delegate is a type-safe function pointer. It contains a reference to the entry 

point of a method and can be used to invoke that method. A delegate can be 
used to invoke a method synchronously on the same thread or asynchronously 
on a separate thread. 

	 2.	 When you are working with multiple threads of execution, problems can occur if 
multiple threads attempt to access the same resources. Thread synchronization is 
the process of ensuring that threads do not attempt to access the same resource 
at the same time. One way to synchronize threads is to obtain exclusive locks on 
the objects you want to access, thereby prohibiting other threads from affecting 
them at the same time.



	464	 CHAPTER 9	 Enhancing Usability

Using Dispatcher to Access Controls Safely on Another 
Thread in WPF
At times, you might want to change the user interface from a worker thread. For example, 
you might want to enable or disable buttons based on the status of the worker thread, or to 
provide more detailed progress reporting than is allowed by the ReportProgess method. The 
WPF threading model provides the Dispatcher class for cross-thread calls. Using Dispatcher, 
you can update your user interface safely from worker threads.

You can retrieve a reference to the Dispatcher object for a UI element from its Dispatcher 
property, as shown here:

Sample of Visual Basic Code 

Dim aDisp As System.Windows.Threading.Dispatcher 
aDisp = Button1.Dispatcher 

Sample of C# Code 

System.Windows.Threading.Dispatcher aDisp; 
aDisp = button1.Dispatcher;

Dispatcher provides two principal methods you will use: BeginInvoke and Invoke. Both 
methods enable you to call a method safely on the UI thread. The BeginInvoke method 
enables you to call a method asynchronously, and the Invoke method enables you to call a 
method synchronously. Thus, a call to Dispatcher.Invoke will block execution on the thread on 
which it is called until the method returns, whereas a call to Dispatcher.BeginInvoke will not 
block execution. 

Both the BeginInvoke and Invoke methods require you to specify a delegate that points to 
a method to be executed. You can also supply a single parameter or an array of parameters 
for the delegate, depending on the requirements of the delegate. You also are required to set 
the DispatcherPriority property, which determines the priority with which the delegate is ex-
ecuted. In addition, the Dispatcher.Invoke method enables you to set a period of time for the 
Dispatcher to wait before abandoning the invocation. The following example demonstrates 
how to invoke a delegate named MyMethod, using BeginInvoke and Invoke:

Sample of Visual Basic Code 

Dim aDisp As System.Windows.Threading.Dispatcher = Button1.Dispatcher 
' Invokes the delegate synchronously  
aDisp.Invoke(System.Windows.Threading.DispatcherPriority.Normal, MyMethod)  
' Invokes the delegate asynchronously  
aDisp.BeginInvoke(System.Windows.Threading.DispatcherPriority.Normal, MyMethod) 

Sample of C# Code 

System.Windows.Threading.Dispatcher aDisp = button1.Dispatcher; 
// Invokes the delegate synchronously  
aDisp.Invoke(System.Windows.Threading.DispatcherPriority.Normal, MyMethod);  
// Invokes the delegate asynchronously  
aDisp.BeginInvoke(System.Windows.Threading.DispatcherPriority.Normal, MyMethod);



	 Lesson 1:  Implementing Asynchronous Processing	 CHAPTER 9	 465

Practice	 Working with BackgroundWorker

In this practice, you use the BackgroundWorker component. You write a time-consuming 
method to be executed on a separate thread. You implement cancellation functionality, and 
you use Dispatcher to update the user interface from the worker thread.

Exercise  Practice with BackgroundWorker

	 1.	 Open the partial solution for this exercise from its location on the companion CD. The 
partial solution already has a user interface built and has code for a BackgroundWorker 
component and stubs for methods. Note that the WorkerSupportsCancellation prop-
erty of BackgroundWorker is set to True in the constructor in the partial solution.

	 2.	 In Code view, add the following code to the Window1 class for a delegate to the 
UpdateLabel method:

Sample of Visual Basic Code

Private Delegate Sub UpdateDelegate(ByVal i As Integer)  
Private Sub UpdateLabel(ByVal i As Integer)  
    Label1.Content = "Cycles: " & i.ToString  
End Sub 

Sample of C# Code

private delegate void UpdateDelegate(int i); 
private void UpdateLabel(int i)  
{  
    Label1.Content = "Cycles: " + i.ToString();  
}

	 3.	 In the DoWork event handler, add the following code:

Sample of Visual Basic Code

For i As Integer = 0 To 500  
    For j As Integer = 1 To 10000000  
    Next  
    If aWorker.CancellationPending Then  
       e.Cancel = True  
       Exit For  
    End If  
    Dim update As New UpdateDelegate(AddressOf UpdateLabel)  
    Label1.Dispatcher.BeginInvoke(update, Windows.Threading. _  
        DispatcherPriority.Normal, i)  
Next

Sample of C# Code

for (int i = 0; i <= 500; i++)  
{  
     for (int j = 1; j <= 10000000; j++)  
     {  
 
     }  
    if (aWorker.CancellationPending)  



	466	 CHAPTER 9	 Enhancing Usability

    {  
        e.Cancel = true;  
        return;  
     }  
     UpdateDelegate update = new UpdateDelegate(UpdateLabel);  
     Label1.Dispatcher.BeginInvoke(  
        System.Windows.Threading.DispatcherPriority.Normal, update, i);  
}

	 4.	 In Code view, add the following code to the RunWorkerCompleted event handler:

Sample of Visual Basic Code

If Not e.Cancelled Then 
   Label2.Content = "Run Completed"  
Else  
   Label2.Content = "Run Cancelled"  
End If 

Sample of C# Code

if (!(e.Cancelled)) 
   Label2.Content = "Run Completed";  
else  
   Label2.Content = "Run Cancelled";

	 5.	 In the designer, double-click the button marked Start to open the Button1_Click event 
handler and add the following code:

Sample of Visual Basic Code

Label2.Content = ""
aWorker.RunWorkerAsync() 

Sample of C# Code

label2.Content = "";
aWorker.RunWorkerAsync(); 

	 6.	 In the designer, double-click the Cancel button to open the Button2_Click event 
handler and add the following code:

Sample of Visual Basic Code

aWorker.CancelAsync() 

Sample of C# Code

aWorker.CancelAsync();

	 7.	 Press F5 to run your application and test the functionality.

Lesson Summary
■	 The BackgroundWorker component enables you to execute operations on a separate 

thread of execution. You call the RunWorkerAsync method of the BackgroundWorker 
component to begin the background process. The event handler for the DoWork 
method contains the code that will execute on a separate thread.



	 Lesson 1:  Implementing Asynchronous Processing	 CHAPTER 9	 467

■	 The BackgroundWorker.RunCompleted event is fired when the background process is 
completed.

■	 You can enable cancellation of a background process by setting the BackgroundWorker
.WorkerSupportsCancellation property to True. You then signal BackgroundWorker 
to cancel the process by calling the CancelAsync method, which sets the 
CancellationPending method to True. You must poll the CancellationPending property 
and implement cancellation code if the CancellationPending property registers as True.

■	 You can report progress from the background operation. First you must set the 
WorkerReportsProgress property to True. You can then call the ReportProgress 
method from within the background process to report progress. This raises the 
ProgressChanged event, which you can handle to take any action.

■	 A control’s Dispatcher object can be used to execute code safely in the user interface 
from a worker thread. Dispatcher.BeginInvoke is used to execute code asynchronously, 
and Dispatcher.Invoke is used to execute code synchronously.

■	 Delegates are type-safe function pointers that enable you to call methods with the 
same signature. You can call methods synchronously by using the delegate’s Invoke 
method, or asynchronously by using BeginInvoke and EndInvoke.

■	 When BeginInvoke is called, an operation specified by the delegate is started on a 
separate thread. You can retrieve the result of the operation by calling EndInvoke, 
which will block the calling thread until the background process is completed. You can 
also specify a callback method to complete the operation on the background thread if 
the main thread does not need the result.

■	 Thread objects represent separate threads of operation and provide a high degree of 
control of background processes. You can create a new thread by specifying a method 
that serves as an entry point for the thread. 

■	 You can use the SyncLock (Visual Basic) and lock (C#) keywords to restrict access to a 
resource to a single thread of execution.

■	 You must not make calls to controls from background threads. Use the Control.
InvokeRequired property to determine whether it is safe to make a direct call to a con-
trol. If it is not safe to make a direct call to the control, use the Control.Invoke method 
to make a safe call to the control.

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 1, 
“Implementing Asynchronous Processing.” The questions are also available on the companion 
CD if you prefer to review them in electronic form.

NOTE  ANSWERS 

Answers to these questions and explanations of why each answer choice is correct or incor-
rect are located in the “Answers” section at the end of the book.



	468	 CHAPTER 9	 Enhancing Usability

	 1.	 Which of the following are required to start a background process with the 
BackgroundWorker component? (Choose all that apply.)

	 A.	 Calling the RunWorkerAsync method

	 B.	 Handling the DoWork event

	 C.	 Handling the ProgressChanged event

	 D.	 Setting the WorkerSupportsCancellation property to True 

	 2.	 Which of the following are good strategies for updating the user interface from the 
worker thread? (Choose all that apply.)

	 A.	 Use Dispatcher.BeginInvoke to execute a delegate to a method that updates the 
user interface. 

	 B.	 Invoke a delegate to a method that updates the user interface.

	 C.	 Set the WorkerReportsProgress property to True, call the ReportProgress method in 
the background thread, and handle the ProgressChanged event in the main thread.

	 D.	 Call a method that updates the user interface from the background thread.

Lesson 2:  Implementing Globalization and 
Localization 

Applications that display data in formats appropriate to a particular culture and that display 
locale-appropriate strings in the user interface (UI) are considered globally ready applications. 
You can create globally ready applications with Visual Studio by taking advantage of the 
built-in support for globalization and localization. In this lesson, you learn how to implement 
localization and globalization in a Windows Forms application and a WPF application.

After this lesson, you will be able to:
■	 Implement globalization and localization within a Windows Form.
■	 Implement globalization and localization within a WPF application.

Estimated lesson time: 30 minutes

Globalization and Localization
Globalization and localization are different processes of internationalization. Globalization 
refers to formatting existing data in formats appropriate for the current culture setting. Lo-
calization, however, refers to retrieving appropriate data based on the culture. The following 
examples illustrate the difference between globalization and localization:

■	 Globalization  In some countries, currency is formatted using a period (.) as a thou-
sand separator and a comma (,) as a decimal separator, whereas other countries use 



	 Lesson 2:  Implementing Globalization and Localization 	 CHAPTER 9	 469

the opposite convention. A globalized application formats currency data with the 
appropriate thousand separator and decimal separator based on the current culture 
settings.

■	 Localization  The title of a form is displayed in a given language based on the locale 
in which it is deployed. A localized application retrieves the appropriate string and 
displays it based on the current culture settings.

Culture
Culture refers to cultural information about the country or region in which the application is 
deployed. In the .NET Framework, cultures are represented by a culture code that indicates 
the current language. For example, the following culture codes represent the following lan-
guages:

■	 en  Specifies the English language

■	 eu  Specifies the Basque language

■	 tr  Specifies the Turkish language

Culture codes can specify only the language, like the ones shown here, or they can specify 
both the language and the region. Culture codes that specify only the language are called 
neutral culture codes, whereas culture codes that specify both the language and the region 
are called specific culture codes. Examples of specific culture codes are shown in the follow-
ing list:

■	 en-CA  Specifies the English language and Canada as the region

■	 af-ZA  Specifies the Afrikaans language and South Africa as the region

■	 kn-IN  Specifies the Kannada language and India as the region

You can find a complete list of culture codes in the CultureInfo class reference topic 
(http://msdn.Microsoft.com/en-us/library/system.globalization.cultureinfo.aspx) in the 
.NET Framework reference documentation.

Most culture codes follow the format just described, but some culture codes are excep-
tions. The following culture codes are examples that specify the character sets in addition to 
other information:

■	 uz-UZ-Cyrl  Specifies the Uzbek language, the Uzbekistan region, and the Cyrillic 
alphabet

■	 uz-UZ-Latn  Specifies the Uzbek language, the Uzbekistan region, and the Latin 
alphabet

■	 zh-CHT  Specifies the traditional Chinese language, no region

■	 zh-CHS  Specifies the simplified Chinese language, no region

http://msdn.Microsoft.com/en-us/library/system.globalization.cultureinfo.aspx


	470	 CHAPTER 9	 Enhancing Usability

Changing the Current Culture
Your application automatically reads the culture settings of the system and implements them. 
Thus, in most circumstances, you do not have to change the culture settings manually. You 
can, however, change the current culture of your application in code by setting the current 
culture to a new instance of the CultureInfo class. The CultureInfo class contains information 
about a particular culture and how it interacts with the application and system. For example, 
the CultureInfo class contains information about the type of calendar, date formatting, cur-
rency formatting, and so on for a specific culture. You set the current culture of an application 
programmatically by setting the CurrentThread.CurrentCulture property to a new instance of 
the CultureInfo class. The CultureInfo constructor requires a string that represents the appro-
priate culture code as a parameter. The following code example demonstrates how to set the 
current culture to French Canadian:

Sample of Visual Basic Code

System.Threading.Thread.CurrentThread.CurrentCulture = New _ 
   System.Globalization.CultureInfo("fr-CA") 

Sample of C# Code

System.Threading.Thread.CurrentThread.CurrentCulture = new  
   System.Globalization.CultureInfo("fr-CA");

Implementing Globalization
The CurrentThread.CurrentCulture property controls the culture used to format data. When 
CurrentCulture is set to a new instance of CultureInfo, any data formatted by the application is 
updated to the new format. Data that is not formatted by the application is not affected by a 
change in the current culture. Consider the following examples:

Sample of Visual Basic Code

Label1.Text = "$500.00" 
Label2.Text = Format(500, "Currency") 

Sample of C# Code

label1.Text = "$500.00"; 
label2.Text = (500).ToString("C");

When the culture is set to en-US, which represents the English language and the United 
States as the region (which is the default culture setting for computers in the United States), 
both labels display the same string—that is, “$500.00”. When the current culture is set to 
fr-FR, which represents the French language and France as the region, the text in the two 
labels differs. The text in Label1 always reads “$500.00” because it is not formatted by the 
application. The text in Label2, however, reads “500,00 €”. Note that the currency symbol is 
changed to the appropriate symbol for the locale—in this case, the euro symbol—and the 
decimal separator is changed to the separator that is appropriate for the locale (in this case, 
the comma). 



	 Lesson 2:  Implementing Globalization and Localization 	 CHAPTER 9	 471

Implementing Localization
You can implement localization—that is, provide a user interface (UI) specific to the current 
locale—by using the built-in localization features of Visual Studio, which enable you to create 
alternative versions of forms that are culture-specific and automatically manages retrieval of 
resources appropriate for the culture. 

Changing the Current User Interface Culture
The UI culture is represented by an instance of CultureInfo and is distinct from the CultureInfo
.CurrentCulture property. The CurrentCulture setting determines the formatting that will 
be applied to system-formatted data, whereas the CurrentUICulture setting determines the 
resources that will be loaded into localized forms at run time. You can set the UI culture by 
setting the CurrentThread.CurrentUICulture property, as shown in the following example:

Sample of Visual Basic Code

' Sets the current UI culture to Thailand 
System.Threading.Thread.CurrentThread.CurrentUICulture = New _  
   System.Globalization.CultureInfo("th-TH") 

Sample of C# Code

// Sets the current UI culture to Thailand 
System.Threading.Thread.CurrentThread.CurrentUICulture = new   
   System.Globalization.CultureInfo("th-TH");

When the current UI culture is set, the application loads resources specific to that culture 
if they are available. If culture-specific resources are unavailable, the UI displays resources for 
the default culture.

Note that the UI culture must be set before a form that displays any localized resources 
is loaded. If you want to set the UI culture programmatically, you must set it before the form 
has been created, either in the form’s constructor or in the application’s Main method.

Creating Localized Forms
Every form exposes a Localizable property that determines whether the form is localized. 
Setting this property to True enables localization for the form.

When the Localizable property of a form is set to True, Visual Studio .NET automatically 
handles the creation of appropriate resource files and manages their retrieval according to 
the CurrentUICulture setting. 

At design time, you can create localized copies of a form by using the Language property. 
It is available only at design time and assists in the creation of localized forms. When the 
Language property is set to (Default), you can edit any of the form’s UI properties or controls 
to provide a representation for the default UI culture. To create a localized version of the 
form, you can set the Language property to any value other than (Default). Visual Studio will 
create a resource file for the new language and store any values you set for the UI in that file.



	472	 CHAPTER 9	 Enhancing Usability

To create localized forms:

	 1.	 Set the Localizable property of your form to True.

	 2.	 Design the UI of your form and translate any UI elements into the localized languages.

	 3.	 Add UI elements for the default culture. This is the culture that will be used if no other 
culture is specified.

	 4.	 Set the Language property of your form to the culture for which you want to create a 
localized form.

	 5.	 Add the localized UI content to your form.

	 6.	 Repeat steps 4 and 5 for each localized language.

	 7.	 Build your application.

When CurrentUICulture is set to a localized culture, your application loads the appropriate 
version of the form by reading the corresponding resource files. If no resource files exist for a 
specified culture, the default culture UI is displayed.

Localizing a WPF application
Localization in WPF is enabled through satellite assemblies. Localizable elements of your ap-
plication are segregated into resource assemblies that are loaded automatically, depending 
on the current UI culture. When a localized application is started, the application first looks 
for resource assemblies targeted to the specific culture and region (fr-CA in the previous 
example). If those assemblies are not found, it looks for assemblies targeted to the language 
only (fr in the previous example). If neither is found, the application looks for a neutral re-
source set. If this is not found either, an exception is raised. You should localize your applica-
tion for every language in which you expect it to be used.

You can avoid localization-based exceptions by setting the NeutralResourcesLanguage at-
tribute. This attribute designates the resource set to be used if a specific set of resources can-
not be found. The following example demonstrates how to use the NeutralResourcesLanguage 
attribute:

Sample of Visual Basic Code

<Assembly: NeutralResourcesLanguage("en-US", _
UltimateResourceFallbackLocation.Satellite)>

Sample of C# Code

[assembly: NeutralResourcesLanguage("en-US",
UltimateResourceFallbackLocation.Satellite)]

Localizing an Application
Localization in WPF is a multi-step process. The following procedure is a high-level protocol 
for localizing a WPF application. Each of the steps is discussed in greater detail later in this 
lesson.



	 Lesson 2:  Implementing Globalization and Localization 	 CHAPTER 9	 473

To localize an application:

	 1.	 Add a UICulture attribute to the project file and build the application to generate 
culture-specific subdirectories.

	 2.	 Mark localizable properties with the Uid attribute to identify them uniquely. You must 
perform this step for each XAML file in your application.

NOTE  LOCALIZABLE PROPERTIES

Localizable properties include more than just text strings; they might include colors, 
layout properties, or any other UI property that has cultural significance.

	 3.	 Extract the localizable content from your application using a specialized tool (as dis-
cussed later in this chapter).

	 4.	 Translate the localizable content.

	 5.	 Create subdirectories to hold satellite assemblies for the new cultures.

	 6.	 Generate satellite assemblies using a specialized tool.

Adding the UICulture Attribute to the Project File
By default, a WPF application is not culture-aware. You can make your application culture-
aware by adding the UICulture attribute to the project file and building the application. The 
UICulture attribute indicates the default culture for the application (usually en-US for applica-
tions created and run in the United States). After adding this attribute, building the applica-
tion generates a subdirectory for the culture in the application directory with localizable 
content in a satellite assembly.

To add the UICulture attribute to the project file:

	 1.	 Open the project file for your project (<ProjectName>.csproj for C# applications and 
<ProjectName>.vbproj for Visual Basic applications) with Notepad or a similar text 
editor.

	 2.	 Locate the first <PropertyGroup> tag. Within that tag, add the following set of 
XAML tags:

<UICulture>en-US</UICulture>

If you are creating your application in a location other than the United States, or are 
using a language other than English, adjust the culture code in this tag accordingly.

	 3.	 Save the project file and build your application.

Marking Localizable Elements
The first step in actually localizing your application is to mark elements that are localizable; 
this includes all strings displayed in the user interface, but many other properties are localiz-
able as well. For example, languages that use different alphabets might require the FontWidth 



	474	 CHAPTER 9	 Enhancing Usability

property of visual elements to be localized, and languages that are read from right to left 
(rather than from left to right, as English is) require localization of the FlowDirection property 
of visual elements. Images are typically localized; thus, ImageSource properties have to be 
adjusted to point to the appropriate images. Different languages require the localization of 
font or other UI element sizes to account for differences in string lengths. Even color combi-
nations can be culturally sensitive and require you to localize the Foreground and Background 
brushes. Deciding what to localize in an application is often the most difficult part of the 
entire process, but it is also the most important and should be given a great deal of thought. 
The point to keep in mind is that localization involves much more than simple translation; it is 
a complex process that requires sufficient research and planning.

You can mark elements for localization by adding the Uid attribute to the element in 
XAML. This is an attribute that uniquely identifies an element for the purpose of localization. 
You can add the Uid attribute as shown here in bold:

<Button x:Uid="Button_1" Margin="112,116,91,122" 
   Name="Button1">Button</Button>

Alternatively, you can use the Msbuild.exe tool to mark every element in your applica-
tion with the Uid attribute by using the updateuid flag and pointing it to your project file, as 
shown here:

msbuild /t:updateuid myApplication.vbproj

This tool should be run from the command prompt in Visual Studio, which is available in 
the Visual Studio Tools subdirectory of your Visual Studio folder on the Start menu.

When localizable resources are extracted from your application, every localizable property 
of every element marked with the Uid attribute is extracted.

Note that you must mark every element in your application that is in an XAML file and that 
you want to localize. This includes resources and resources in resource dictionaries.

Extracting Localizable Content
Extraction of localizable content from your application requires a specialized tool. You can 
download a command-line tool named LocBaml that can extract localizable content, and 
third-party solutions are also available. To acquire LocBaml, navigate to http://msdn.microsoft
.com/en-us/library/ms771568.aspx and download the source files from the link in the LocBaml 
Tool Sample topic.

The LocBaml tool is not a compiled application. You must compile it before you can use it, 
and then you must run it as a command-line application from the directory that contains your 
compiled application and use the /parse switch to provide the path to the resources dynamic 
link library (DLL). An example is shown here:

locbaml /parse en-US\myApplication.resources.dll

LocBaml outputs a .csv file that contains all localizable properties from all the elements 
that have been marked with the Uid attribute.

http://msdn.microsoft


	 Lesson 2:  Implementing Globalization and Localization 	 CHAPTER 9	 475

Translating Localizable Content
Content typically is not translated by the developer. Rather, localization specialists are em-
ployed to provide translated strings and values for other translatable properties. The .csv 
file generated by LocBaml provides a row of data pertaining to each localizable property 
extracted from the application. Each row contains the following information:

■	 The name of the localizable resource

■	 The Uid of the element and the name of the localizable property

■	 The localization category, such as Title or Text

■	 Whether the property is readable (that is, whether it is visible as text in the user inter-
face)

■	 Whether the property value can be modified by the translator (always true unless you 
indicate otherwise)

■	 Any additional comments you provide for the translator

■	 The value of the property

The final entry in each row, the value of the property, is the property that must be trans-
lated by the translator. When translation is complete, the .csv file is returned to you with the 
translated values in the final column.

Creating Subdirectories
Before satellite assemblies can be created, you must create a subdirectory named for the 
appropriate culture code to house them. This subdirectory should be created in the direc-
tory where your compiled application exists, and it should be named for the culture code for 
which you are creating satellite assemblies. For example, if you were creating satellite assem-
blies for French as spoken in Canada, you would name your directory fr-CA.

Generating Satellite Assemblies
After the resources have been translated and the subdirectories have been created, you are 
ready to generate your satellite assemblies, which hold culture-specific resources for a local-
ized application. If you are using LocBaml, you can generate satellite assemblies by running 
LocBaml again from the directory in which your compiled application resides and using the 
/generate switch to generate a satellite assembly. The following example demonstrates a 
command-line use of LocBaml to generate a satellite assembly:

locbaml /generate en-US\myApplication.resources.dll 
/trans:myApplication.resources.FrenchCan.csv /cul:fr-CA /out:fr-CA

Let’s break down what this command does. The /generate switch tells LocBaml to 
generate a satellite assembly based on the indicated assembly, which, in this example, is  
en-US\myApplication.resources.dll. The /trans switch specifies the .csv file used to generate 
the satellite assembly (myApplication.resources.FrenchCan.csv in this example). The /cul switch 



	476	 CHAPTER 9	 Enhancing Usability

associates the indicated culture with the satellite assembly, and the /out switch specifies the 
name of the folder, which must match the specified culture exactly.

Loading Resources by Locale
After satellite assemblies have been created, your application automatically loads the ap-
propriate resources for the culture. As described previously, you can change the current 
UI culture by setting the CurrentThread.CurrentUICulture property to a new instance of 
System.Globalization.CultureInfo, or you can change culture settings through the system. If 
the culture changes while an application is running, you must restart the application to load 
culture-specific resources. If you use code to change the UI culture, you must set UICulture to 
a new instance of CultureInfo before any of the user interface is rendered. Typically, the best 
place to do this is in the Application.Startup event handler.

Exam Tip

Localization is a complex process that typically involves localization specialists in addition 
to the developer. Focus on learning the aspects of localization that involve the developer 
directly, such as preparing the application for localization and marking localizable ele-
ments. Processes that probably will be performed by a different person, such as extracting 
content and translation, are likely to be emphasized less on the exam.

Using Culture Settings in Validators and Converters
Although localizing UI elements is an invaluable part of localization, you must also format 
data appropriately for the current culture setting. In some cases, this happens automatically. 
For example, the String.Format method uses the correct decimal and time separators based 
on the current UI culture. But when you provide formatting for data presented in your user 
interface or provide validation, your code must take the current culture into account.

The Convert and ConvertBack methods of the IValueConverter interface and the Validate 
method of the ValidationRule class provide a parameter that indicates the culture. In the 
case of IValueConverter, the parameter is named culture, and in the Validate method, the 
parameter is called cultureInfo. In both cases, the parameter represents an instance of 
System.Globalization.CultureInfo. Whenever you create a validation rule or converter in a lo-
calized application, you always should test the culture value and provide culture-appropriate 
formatting for your data. The following shows an example:

Sample of Visual Basic Code

<ValueConversion(GetType(String), GetType(String))> _ 
Public Class LanguageConverter 
   Implements IValueConverter 
   ' Note: the Translator class is assumed to be a class that contains a  
   ' dictionary used to translate the provided strings.  
   Dim myTranslator As New Translator 



	 Lesson 2:  Implementing Globalization and Localization 	 CHAPTER 9	 477

   Public Function Convert(ByVal value As Object, ByVal targetType As  _ 
      System.Type, ByVal parameter As Object, ByVal culture As  _ 
      System.Globalization.CultureInfo) As Object Implements _ 
      System.Windows.Data.IValueConverter.Convert 
      Dim astring As String = CType(value, String) 
      Select Case culture.ToString 
         Case "fr-FR" 
            Return myTranslator.EnglishToFrench(astring) 
         Case "de-DE" 
            Return myTranslator.EnglishToGerman(astring) 
         Case Else 
            Return astring 
      End Select 
   End Function 
 
   Public Function ConvertBack(ByVal value As Object, ByVal targetType _ 
      As System.Type, ByVal parameter As Object, ByVal culture As  _ 
      System.Globalization.CultureInfo) As Object Implements _ 
      System.Windows.Data.IValueConverter.ConvertBack 
      Dim astring As String = CType(value, String) 
      Select Case culture.ToString 
         Case "fr-FR" 
            Return myTranslator.FrenchToEnglish(astring) 
         Case "de-DE" 
            Return myTranslator.GermanToEnglish(astring) 
         Case Else 
            Return astring 
      End Select 
   End Function 
End Class    

Sample of C# Code

[ValueConversion(typeof(string), typeof(string))]
public class LanguageConverter : IValueConverter 
{ 
   // Note: the Translator class is assumed to be a class that contains a 
   // dictionary used to translate the provided strings.  
   Translator myTranslator = new Translator(); 
   public object Convert(object value, Type targetType, object parameter, 
      System.Globalization.CultureInfo culture) 
   { 
      string aString = (string)value; 
      switch(culture.ToString()) 
      { 
         case "fr-FR": 
            return myTranslator.EnglishToFrench(aString); 
         case "de-DE": 
            return myTranslator.EnglishToGerman(aString); 
         default: 
            return aString; 
      } 
   } 
 
   public object ConvertBack(object value, Type targetType, object 



	478	 CHAPTER 9	 Enhancing Usability

      parameter, System.Globalization.CultureInfo culture) 
   { 
      string aString = (string)value; 
      switch(culture.ToString()) 
      { 
         case "fr-FR": 
            return myTranslator.FrenchToEnglish(aString); 
         case "de-DE": 
            return myTranslator.GermanToEnglish(aString); 
         default: 
            return aString; 
      } 
   } 
}

Quick Check
	 1.	 What is the difference between globalization and localization?

	 2.	 What is the difference between CurrentCulture and CurrentUICulture?

Quick Check Answers
	 1.	 Globalization refers to formatting data in formats appropriate for the current 

culture setting. Localization refers to retrieving and displaying appropriately 
localized data based on the culture.

	 2.	 The CurrentCulture determines how data is formatted as appropriate for the 
current culture setting. The CurrentUICulture determines what set of resource 
strings should be loaded for display in the UI.

PRACTICE	 Create Localized Forms

In this practice, you create localized forms. You create a form for the default culture that 
demonstrates date/time display and currency display as well as strings for the default culture. 
Then you create a localized version of this form that includes German strings. Finally, you 
create a form that enables you to choose the locale for which you would like to display your 
localized form and sets the culture appropriately. A completed solution to this practice can be 
found in the files installed from the companion CD.

EXERCISE  Creating Localized Forms

	 1.	 In Visual Studio, create a new Windows Forms application.

	 2.	 From the Project menu, choose Add Windows Form to add a new Form to your proj-
ect. Name the new form Form2.



	 Lesson 2:  Implementing Globalization and Localization 	 CHAPTER 9	 479

	 3.	 In the designer, click the tab for Form2. From the Toolbox, add four Label controls. Set 
the Text properties as follows:

LABEL TEXT PROPERTY VALUE

Label1 Currency Format

Label2 (nothing)

Label3 Current Date and Time

Label4 (nothing)

	 4.	 Double-click Form2 to open the Form2_Load event handler. Add the following code to 
the Form2_Load event handler:

Sample of Visual Basic Code

Label2.Text = Format(500, "Currency") 
Label4.Text = Now.ToShortDateString 

Sample of C# Code

label2.Text = (500).ToString("C"); 
label4.Text = System.DateTime.Now.ToShortDateString();

	 5.	 In the designer, set the Form2.Localizable property to True and set the Language prop-
erty to German (Germany).

	 6.	 Set the Text properties of Label1 and Label3 as follows:

LABEL TEXT PROPERTY VALUE

Label1 Währung-Format

Label3 Aktuelle Uhrzeit

	 7.	 In the designer, click the tab for Form1.

	 8.	 From the Toolbox, add three Button controls to the form and set their Text properties 
as shown here:

BUTTON BUTTON TEXT PROPERTY VALUE

Button1 United States

Button2 United Kingdom

Button3 Germany

	 9.	 In the designer, double-click the Button1 control to open the Button1_Click default 
event handler and add the following code:

Sample of Visual Basic Code

System.Threading.Thread.CurrentThread.CurrentCulture = New _ 
   System.Globalization.CultureInfo("en-US")  
System.Threading.Thread.CurrentThread.CurrentUICulture = New _  
   System.Globalization.CultureInfo("en-US")  



	480	 CHAPTER 9	 Enhancing Usability

Dim aform As New Form2()  
aform.Show() 

Sample of C# Code

System.Threading.Thread.CurrentThread.CurrentCulture = new  
   System.Globalization.CultureInfo("en-US");  
System.Threading.Thread.CurrentThread.CurrentUICulture = new   
   System.Globalization.CultureInfo("en-US");  
Form2 aform = new Form2();  
aform.Show();

	 10.	 In the designer, double-click the Button2 control to open the Button2_Click default 
event handler and add the following code:

Sample of Visual Basic Code

System.Threading.Thread.CurrentThread.CurrentCulture = New _ 
   System.Globalization.CultureInfo("en-GB")  
System.Threading.Thread.CurrentThread.CurrentUICulture = New _  
   System.Globalization.CultureInfo("en-GB")  
Dim aform As New Form2()  
aform.Show() 

Sample of C# Code

System.Threading.Thread.CurrentThread.CurrentCulture = new  
   System.Globalization.CultureInfo("en-GB");  
System.Threading.Thread.CurrentThread.CurrentUICulture = new   
   System.Globalization.CultureInfo("en-GB");  
Form2 aform = new Form2();  
aform.Show();

	 11.	 In the designer, double-click the Button3 control to open the Button3_Click default 
event handler and add the following code:

Sample of Visual Basic Code

System.Threading.Thread.CurrentThread.CurrentCulture = New _ 
   System.Globalization.CultureInfo("de-DE")  
System.Threading.Thread.CurrentThread.CurrentUICulture = New _  
   System.Globalization.CultureInfo("de-DE")  
Dim aform As New Form2()  
aform.Show() 

Sample of C# Code

System.Threading.Thread.CurrentThread.CurrentCulture = new  
   System.Globalization.CultureInfo("de-DE");  
System.Threading.Thread.CurrentThread.CurrentUICulture = new   
   System.Globalization.CultureInfo("de-DE");  
Form2 aform = new Form2();  
aform.Show();

	 12.	 Press F5 to build and run your application. Click each button to see a localized form. 
Note that the appropriate format for currency and the date are displayed in the local-
ized form and that the new strings are loaded for the German form.



	 Lesson 2:  Implementing Globalization and Localization 	 CHAPTER 9	 481

Lesson Summary
■	 Culture refers to cultural information about the country or region in which the ap-

plication is deployed and is represented by a culture code. Globalization refers to the 
process of formatting application data in formats appropriate for the locale. Localiza-
tion refers to the process of loading and displaying localized strings in the UI.

■	 The CurrentCulture setting for the thread determines the culture used to format ap-
plication data. The CurrentUICulture setting for the thread determines the culture used 
to load localized resources.

■	 You can create localized forms by setting the Localizable property of a form to True 
and then setting the Language property to a language other than (Default). A new 
copy of the form is created for this culture, and localized resources can be added to 
this form.

■	 You can implement right-to-left display in a control by setting the RightToLeft prop-
erty to True. You can reverse the control layout of an entire form by setting the 
RightToLeftLayout and RightToLeft properties of a form to True.

■	 Localization in WPF requires localizable elements to be marked with the Uid attribute, 
which uniquely identifies localizable elements in your application.

■	 LocBaml is a command-line application available from Microsoft as a downloadable, 
compilable sample. LocBaml can be used to extract localizable resources from your 
application and to build satellite assemblies with localized resources.

■	 Methods in IValueConverter and ValidationRule provide a reference to the CultureInfo 
object to be used in the operation. Whenever culture-specific formatting or validation 
is required, your code should check the culture to provide the appropriate functionality.

Lesson Review
The following questions are intended to reinforce key information presented in Lesson 2, 
“Implementing Globalization and Localization.” The questions are also available on the com-
panion CD if you prefer to review them in electronic form.

NOTE  ANSWERS 

Answers to these questions and explanations of why each answer choice is correct or incor-
rect are located in the “Answers” section at the end of the book.

	 1.	 Which of the following lines of code should be used to format data appropriately for 
Germany?

	 A.	

Sample of Visual Basic Code

System.Threading.Thread.CurrentThread.CurrentUICulture = New _ 
   System.Globalization.CultureInfo("de-DE") 



	482	 CHAPTER 9	 Enhancing Usability

Sample of C# Code

System.Threading.Thread.CurrentThread.CurrentUICulture = New 
   System.Globalization.CultureInfo("de-DE");

	 B.	

Sample of Visual Basic Code

Me.CurrentUICulture = New System.Globalization.CultureInfo("de-DE") 

Sample of C# Code

this.CurrentUICulture = New System.Globalization.CultureInfo("de-DE");

	 C.	

Sample of Visual Basic Code

System.Threading.Thread.CurrentThread.CurrentCulture = New _ 
   System.Globalization.CultureInfo("de-DE") 

Sample of C# Code

System.Threading.Thread.CurrentThread.CurrentCulture = New 
   System.Globalization.CultureInfo("de-DE");

	 D.	

Sample of Visual Basic Code

Me.CurrentCulture = New System.Globalization.CultureInfo("de-DE") 

Sample of C# Code

this.CurrentCulture = New System.Globalization.CultureInfo("de-DE");

	 2.	 Given a form that contains a Label control named Label1 and a Button control named 
Button1, all with default settings, which of the following must you do to display the 
entire form and all controls in a right-to-left layout with right-to-left text display? 
(Choose all that apply.)

	 A.	 Set the Label1.RightToLeft property to True.

	 B.	 Set the Button1.RightToLeft property to True.

	 C.	 Set the Form1.RightToLeft property to True.

	 D.	 Set the Form1.RightToLeftLayout property to True.



	 Lesson 3: Integrating Windows Forms Controls and WPF Controls	 CHAPTER 9	 483

Lesson 3: Integrating Windows Forms Controls and 
WPF Controls

The WPF suite of controls is very full, and, together with the WPF control customization 
abilities, you can create a very wide array of control functionality for your applications. Some 
types of functionality, however, are absent from the WPF elements and can be difficult to 
implement on your own. Fortunately, WPF provides a method for using Windows Forms 
controls in your application. Likewise, you can incorporate WPF controls into your Windows 
Forms applications. In this lesson, you learn how to use Windows Forms controls in WPF ap-
plications, and vice versa.

After this lesson, you will be able to: 
■	 Describe how to use a Windows Forms control in a WPF application.
■	 Integrate Windows Forms dialog boxes into WPF applications.
■	 Integrate WPF controls into Windows Forms applications.

Estimated lesson time: 30 minutes

Using Windows Forms Controls in WPF Applications
Although WPF provides a wide variety of useful controls and features, you might find that 
some familiar functionality you used in Windows Forms programming is not available. No-
tably absent are controls such as MaskedTextBox and PropertyGrid, as well as simple dialog 
boxes. Fortunately, you can still use many Windows Forms controls in your WPF applications.

Using Dialog Boxes in WPF Applications
Dialog boxes are one of the most notable things missing from the WPF menagerie of controls 
and elements. Because dialog boxes are separate user interfaces, however, they are relatively 
easy to incorporate into your WPF applications.

File Dialog Boxes
The file dialog boxes OpenFileDialog and SaveFileDialog are components that you want to use 
frequently in your applications. They enable you to browse the file system and return the path 
to the selected file. The OpenFileDialog and SaveFileDialog classes are very similar and share 
most important members. Table 9-2 shows important properties of the file dialog boxes, and 
Table 9-3 shows important methods.



	484	 CHAPTER 9	 Enhancing Usability

TABLE 9-2  Important Properties of the File Dialog Boxes

PROPERTY DESCRIPTION

AddExtension Gets or sets a value indicating whether the dialog box automatically 
adds an extension to a file name if the user omits the extension.

CheckFileExists Gets or sets a value indicating whether the dialog box displays a warn-
ing if the user specifies a file name that does not exist.

CheckPathExists Gets or sets a value indicating whether the dialog box displays a warn-
ing if the user specifies a path that does not exist.

CreatePrompt Gets or sets a value indicating whether the dialog box prompts the 
user for permission to create a file if the user specifies a file that does 
not exist. Available only in SaveFileDialog.

FileName Gets or sets a string containing the file name selected in the file dialog 
box.

FileNames Gets the file names of all selected files in the dialog box. Although this 
member exists for both the SaveFileDialog and the OpenFileDialog 
classes, it is relevant only to the OpenFileDialog class because it is only 
possible to select more than one file in OpenFileDialog.

Filter Gets or sets the current file name filter string, which determines the 
choices that appear in the Save As File Type or Files Of Type box in the 
dialog box.

InitialDirectory Gets or sets the initial directory displayed by the file dialog box.

Multiselect Gets or sets a value indicating whether the dialog box allows multiple 
files to be selected. Available only in OpenFileDialog.

OverwritePrompt Gets or sets a value indicating whether the Save As dialog box displays 
a warning if the user specifies a file name that already exists. Available 
only in SaveFileDialog.

ValidateNames Gets or sets a value indicating whether the dialog box accepts only 
valid Win32 file names.

TABLE 9-3  Important Methods of the File Dialog Boxes

METHOD DESCRIPTION

OpenFile Opens the selected file as a System.IO.Stream object. For 
OpenFileDialog objects, it opens a read-only stream. For 
SaveFileDialog objects, it saves a new copy of the indicated file and 
then opens it as a read-write stream. You need to be careful when 
using the SaveFileDialog.OpenFile method to keep from overwriting 
preexisting files of the same name.

ShowDialog Shows the dialog box modally, thereby halting application execution 
until the dialog box has been closed. Returns a DialogResult result.



	 Lesson 3: Integrating Windows Forms Controls and WPF Controls	 CHAPTER 9	 485

To use a file dialog box in a WPF application:

	 1.	 In Solution Explorer, right-click the project name and choose Add Reference. The 
Add Reference dialog box opens.

	 2.	 On the .NET tab, select System.Windows.Forms and then click OK.

	 3.	 In code, create a new instance of the desired file dialog box, as shown here:

Sample of Visual Basic Code

Dim aDialog As New System.Windows.Forms.OpenFileDialog()

Sample of C# Code

System.Windows.Forms.OpenFileDialog aDialog = 
   new System.Windows.Forms.OpenFileDialog();

	 4.	 Use the ShowDialog method to show the dialog box modally. After the dialog box is 
shown, you can retrieve the file name that was selected from the FileNames property. 
An example is shown here:

Sample of Visual Basic Code

Dim aResult As System.Windows.Forms.DialogResult
aResult = aDialog.ShowDialog() 
If aResult = System.Windows.Forms.DialogResult.OK Then 
   ' Shows the path to the selected file 
   MessageBox.Show(aDialog.FileName) 
End If

Sample of C# Code

System.Windows.Forms.DialogResult aResult;
aResult = aDialog.ShowDialog(); 
if (aResult == System.Windows.Forms.DialogResult.OK)  
{ 
   // Shows the path to the selected file 
   MessageBox.Show(aDialog.FileName); 
}

NOTE  AVOIDING NAMING CONFLICTS

It is not advisable to import the System.Windows.Forms namespace because this leads to 
naming conflicts with several WPF classes.

WindowsFormsHost
Although using dialog boxes in WPF applications is fairly straightforward, using controls is 
a bit more difficult. Fortunately, WPF provides an element, WindowsFormsHost, specifically 
designed to ease this task.

WindowsFormsHost is a WPF element capable of hosting a single child element that is 
a Windows Forms control. The hosted Windows Forms control automatically sizes itself 
to the size of WindowsFormsHost. You can use WindowsFormsHost to create instances of 



	486	 CHAPTER 9	 Enhancing Usability

Windows Forms controls declaratively, and you can set properties on hosted Windows Forms 
declaratively.

Adding a Windows Forms Control to a WPF Application
To use the WindowsFormsHost element in your WPF applications, first you must add a 
reference to the System.Windows.Forms.Integration namespace to the XAML view in the 
WindowsFormsIntegration assembly, as shown here. (This line has been formatted to fit on the 
printed page, but it should be on a single line in your XAML.)

xmlns:my="clr-namespace:System.Windows.Forms.Integration;
   assembly=WindowsFormsIntegration"

If you drag a WindowsFormsHost element from the Toolbox to the designer, this refer-
ence is added automatically. You must also add a reference to the System.Windows.Forms 
namespace, as shown here:

xmlns:wf="clr-namespace:System.Windows.Forms;assembly=System.Windows.Forms"

Then you can create an instance of the desired Windows Forms control as a child element 
of a WindowsFormsHost element, as shown here:

<my:WindowsFormsHost Margin="48,106,30,56" Name="windowsFormsHost1">
   <wf:Button Text="Windows Forms Button" /> 
</my:WindowsFormsHost>

Setting Properties of Windows Forms Controls in a WPF application
You can set properties on a hosted Windows Forms control declaratively in XAML like you 
would any WPF element, as shown in bold here:

<my:WindowsFormsHost Margin="48,106,30,56" Name="windowsFormsHost1">
   <wf:Button Text="Windows Forms Button" />
</my:WindowsFormsHost>

Although you can set properties declaratively on a hosted Windows Forms control, some 
of those properties will not have any meaning. For example, properties dealing with layout, 
such as Anchor, Dock, Top, and Left, have no effect on the position of the Windows Forms 
control. This is because its container is WindowsFormsHost, and the Windows Forms control 
occupies the entire interior of that element. To manage layout for a hosted Windows Forms 
control, set the layout properties of WindowsFormsHost as shown in bold here:

<my:WindowsFormsHost Margin="48,106,30,56" Name="windowsFormsHost1">
   <wf:Button Text="Windows Forms Button" /> 
</my:WindowsFormsHost>

Setting Event Handlers on Windows Forms Controls in a WPF 
Application
Similarly, you can set event handlers declaratively in XAML, as shown in bold in the following 
example:



	 Lesson 3: Integrating Windows Forms Controls and WPF Controls	 CHAPTER 9	 487

<my:WindowsFormsHost Margin="48,106,30,56" Name="windowsFormsHost1">
   <wf:Button Click="Button_Click" Name="Button1" />
</my:WindowsFormsHost>

Note that events raised by Windows Forms controls are regular .NET events, not routed 
events, and therefore they must be handled at the source.

Obtaining a Reference to a Hosted Windows Forms Control in Code
In most cases, using simple declarative syntax with hosted Windows Forms controls is not 
sufficient; you have to use code to manipulate hosted Windows Forms controls. Although 
you can set the Name property of a hosted Windows Forms control, that name does not 
give you a code reference to the control. Instead, you must obtain a reference by using the 
WindowsFormsHost.Child property and casting it to the correct type. The following code ex-
ample demonstrates how to obtain a reference to a hosted Windows Forms Button control:

Sample of Visual Basic Code

Dim aButton As System.Windows.Forms.Button
aButton = CType(windowsFormsHost1.Child , System.Windows.Forms.Button)

Sample of C# Code

System.Windows.Forms.Button aButton;
aButton = (System.Windows.Forms.Button)windowsFormsHost1.Child;

Adding a WPF User Control to Your Windows Form Project
You can add preexisting WPF user controls to your Windows Forms project by using the 
ElementHost control. As the name implies, the ElementHost control hosts a WPF element.

The most important property of ElementHost is the Child property, which indicates the 
type of WPF control to be hosted by the ElementHost control. If the WPF control to be hosted 
is in a project that is a member of the solution, you can set the Child property in the Property 
grid. Otherwise, the Child property must be set to an instance of the WPF control in code, as 
shown here:

Sample of Visual Basic Code

Dim aWPFcontrol As New WPFProject.UserControl1
ElementHost1.Child = aWPFcontrol

Sample of C# Code

WPFProject.UserControl1 aWPFcontrol = new WPFProject.UserControl1;
ElementHost1.Child = aWPFcontrol;

PRACTICE	 Practice with Windows Forms Elements

In this practice, you practice using Windows Forms elements in a WPF application. You create 
a simple application that uses MaskedTextBox to collect phone numbers and then write a list 
of phone numbers to a file that you select using a SaveFileDialogBox. 



	488	 CHAPTER 9	 Enhancing Usability

Exercise  Using Windows Forms Elements

	 1.	 Create a new WPF application.

	 2.	 From the Toolbox, drag a WindowsFormsHost element onto the design surface and size 
it to the approximate size of an average text box.

	 3.	 In XAML view, add the following line to the Window tag to import the 
System.Windows.Forms namespace:

xmlns:wf="clr-namespace:System.Windows.Forms;assembly=System.Windows.Forms"

	 4.	 Modify WindowsFormsHost in XAML so that it encloses a child MaskedTextBox. When 
finished, your code should look like this:

<WindowsFormsHost Margin="26,30,125,0" Name="windowsFormsHost1"  
   Height="27" VerticalAlignment="Top"> 
   <wf:MaskedTextBox /> 
<WindowsFormsHost>

	 5.	 Set the name of MaskedTextBox to MaskedTextBox1 and set the Mask property to 
(000)-000-0000, as shown here:

<wf:MaskedTextBox Name="MaskedTextBox1" Mask="(000)-000-0000" />

	 6.	 In XAML, add the following two buttons as additional children of the Grid: 

<Button Height="23" Margin="21,76,125,0" Name="Button1"  
   VerticalAlignment="Top">Add to collection</Button> 
<Button Margin="21,0,125,118" Name="Button2" Height="22"  
   VerticalAlignment="Bottom">Save collection to file</Button>

	 7.	 In the code window, add variables that represent a generic List of string objects and a 
Windows Forms SaveFileDialog element, as shown here:

Sample of Visual Basic Code

Dim PhoneNumbers As New List(Of String) 
Dim aDialog As System.Windows.Forms.SaveFileDialog

Sample of C# Code

List<string> PhoneNumbers = new List<String>(); 
System.Windows.Forms.SaveFileDialog aDialog;

	 8.	 In the designer, double-click the button labeled Add To Collection to open the default 
Click event handler. Add the following code:

Sample of Visual Basic Code

Dim aBox As System.Windows.Forms.MaskedTextBox 
aBox = CType(windowsFormsHost1.Child, System.Windows.Forms.MaskedTextBox) 
PhoneNumbers.Add(aBox.Text) 
aBox.Clear()

Sample of C# Code

System.Windows.Forms.MaskedTextBox aBox; 
aBox = (System.Windows.Forms.MaskedTextBox)windowsFormsHost1.Child; 



	 Lesson 3: Integrating Windows Forms Controls and WPF Controls	 CHAPTER 9	 489

PhoneNumbers.Add(aBox.Text); 
aBox.Clear();

	 9.	 In the designer, double-click the button labeled Save Collection To File to open the 
default Click event handler. Add the following code:

Sample of Visual Basic Code

aDialog = New System.Windows.Forms.SaveFileDialog
aDialog.Filter = "Text Files | *.txt" 
aDialog.ShowDialog() 
Dim myWriter As New System.IO.StreamWriter(aDialog.FileName, True) 
For Each s As String In PhoneNumbers 
   myWriter.WriteLine(s) 
Next 
myWriter.Close()

Sample of C# Code

aDialog = new System.Windows.Forms.SaveFileDialog();
aDialog.Filter = "Text Files | *.txt"; 
aDialog.ShowDialog(); 
System.IO.StreamWriter myWriter = new  
   System.IO.StreamWriter(aDialog.FileName, true); 
foreach(string s in PhoneNumbers) 
   myWriter.WriteLine(s); 
myWriter.Close();

	 10.	 Press F5 to build and run your application. Add a few phone numbers to the collection 
by filling in MaskedTextBox and pressing the Add To Collection button. Then press the 
Save Collection To File button to open SaveFileDialogBox, and then select a file and 
save the list.

Lesson Summary
■	 Windows Forms dialog boxes can be used in WPF applications as they are. Dialog 

boxes can be shown modally by calling the ShowDialog method. Although they can be 
used without problems in WPF applications, Windows Forms dialog boxes typically use 
Windows Forms types. Therefore, conversion might be necessary in some cases.

■	 WPF provides the WindowsFormsHost element to host Windows Forms controls in the 
user interface. You can obtain a reference to the hosted Windows Forms control in 
code by casting the WindowsFormsHost.Child property to the appropriate type.

■	 Windows Forms provides the ElementHost control to host a WPF element.

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 3, 
“Integrating Windows Forms Controls and WPF.” The questions are also available on the com-
panion CD if you prefer to review them in electronic form.



	490	 CHAPTER 9	 Enhancing Usability

NOTE  ANSWERS 

Answers to these questions and explanations of why each answer choice is correct or incor-
rect are located in the “Answers” section at the end of the book.

	 1.	 Look at the following XAML sample:

<my:WindowsFormsHost Margin="31,51,118,0" Name="windowsFormsHost1" 
   Height="39" VerticalAlignment="Top"> 
   <wf:MaskedTextBox Name="MaskedTextBox1" /> 
</my:WindowsFormsHost>

Assuming that the namespaces for both of these objects are referenced and imported 
properly, which of the following code samples set(s) the background of MaskedTextBox 
to black? (Choose all that apply.)

	 A.	

<my:WindowsFormsHost Background="Black" Margin="31,51,118,0" 
   Name="windowsFormsHost1" Height="39" VerticalAlignment="Top"> 
   <wf:MaskedTextBox Name="MaskedTextBox1" /> 
</my:WindowsFormsHost>

	 B.	

<my:WindowsFormsHost Margin="31,51,118,0" Name="windowsFormsHost1" 
   Height="39" VerticalAlignment="Top"> 
   <wf:MaskedTextBox Name="MaskedTextBox1" BackColor="Black" /> 
</my:WindowsFormsHost>

	 C.	

Sample of Visual Basic Code

MaskedTextBox1.BackColor = System.Drawing.Color.Black

Sample of C# Code

MaskedTextBox1.BackColor = System.Drawing.Color.Black;

	 D.	

Sample of Visual Basic Code

Dim aMask as System.Windows.Forms.MaskedTextBox
aMask = CType(windowsFormsHost1.Child, System.Windows.Forms.MaskedTextBox) 
aMask.Backcolor = System.Drawing.Color.Black

Sample of C# Code

System.Windows.Forms.MaskedTextBox aMask;
aMask = (System.Windows.Forms.MaskedTextBox)windowsFormsHost1.Child; 
aMask.BackColor = System.Drawing.Color.Black;



	 Suggested Practices	 CHAPTER 9	 491

Case Scenarios

In the following case scenarios, you apply what you’ve learned about enhancing usability. You 
can find answers to these questions in the “Answers” section at the end of this book.

Case Scenario 1:  The Publishing Application
Now that the great document management application for Fabrikam, Inc., is complete, you 
have been asked to help design an application for distribution to its clients. This application 
should enable clients to download large, book-length documents from an online library while 
enabling clients to continue browsing the library and selecting other documents for down-
load. When download of a single document is complete, download of the next document 
should begin if more are selected. When download of a document is complete, the UI should 
be updated to reflect that.

■	 What strategies can you use to coordinate document download with the UI interac-
tion and how can the UI be constantly updated without fear of deadlocks or other 
problems?

Case Scenario 2:  Creating a Simple Game
You finally have a day off from your job, so you decide to spend some time writing a nice, 
relaxing solitaire program. You have the actual gameplay pretty well done, and you are 
now just adding the bells and whistles. You would like to implement functionality that plays 
sounds in the background based on user interactions. These sounds are in a specialized for-
mat, and you must use a proprietary player that does not intrinsically support asynchronous 
play. You have a list of five sound files you can play, and you would like to save time and make 
the coding easy on yourself.

■	 What is a strategy for implementing the required functionality with a minimum of 
complexity in your program?

Suggested Practices

To help you successfully master the exam objectives presented in this chapter, complete the 
following tasks.

■	 Practice 1  Create an application that computes the value of pi on a separate thread 
and continually updates the UI with the value in a thread-safe manner.

■	 Practice 2  Create a localized form using a language that reads right to left. The local-
ized version of the form should include appropriate strings and the layout should be 
reversed.



	492	 CHAPTER 9	 Enhancing Usability

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you can test 
yourself on just the content covered in this chapter, or you can test yourself on all the 70-511 
certification exam content. You can set up the test so that it closely simulates the experience 
of taking a certification exam, or you can set it up in study mode so that you can look at the 
correct answers and explanations after you answer each question.

MORE INFO  PRACTICE TESTS

For details about all the practice test options available, see the “How to Use the Practice 
Tests” section in this book’s Introduction.



607

Index

Symbols and Numbers
& (ampersand), 257
* (asterisk), 23
/ (forward slash), 42
\ (back slash), 42
_ (underscore)

access keys and, 6, 16
mnemonic keys and, 5
Prompt character and, 207

= (assignment operator), 164

A
Accept buttons, 200–201
access keys

about, 6
Button controls and, 6
creating for controls, 202
creating for menu items, 16, 257
defining, 201–202
Label controls and, 201

Action class(es)
BeginStoryboardName property, 106
managing animation playback, 106
SpeedRatio property, 107

Actions collection, 66
Activated event, 84
ADO.NET objects

binding to, 373–375
filtering, 399–400
Visual Studio designer tools, 375

aligning content, 32–33
Alt key, 5–6, 16
ampersand (&), 257
Animation class(es)

AccelerationRatio property, 103, 108
AutoReverse property, 103, 109
BeginTime property, 103
By property, 104
controlling animations, 104
creating and starting in code, 112
DecelerationRatio property, 103, 108
Duration property, 103–104
FillBehavior property, 103, 109
From property, 104
managing playback timeline, 108–110
RepeatBehavior property, 103, 109
SpeedRatio property, 103, 110
template triggers and, 291
To property, 104
triggers and, 105–108

animations
about, 102–103
creating and starting in code, 112
default template and, 110
EventTrigger class and, 63
key-frame, 102, 110–112
linear, 102–103
non-double types, 110–113
path-based, 103
properties of, 103–104
simultaneous, 105
Storyboard class and, 104–105
template triggers and, 291
triggers and, 105–108

app.config file
configuring trace sources, 536
PresentationTraceSources class and, 537–538

app.manifest.xml file
copying permission set text into, 498
create custom security requests, 497
requesting UAC permissions, 498



608

B
back slash (\\), 42
background processes

announcing completion of, 451
BackgroundWorker component and, 450
cancelling, 453–454
providing parameters to, 451
reporting progress of, 454–455
requesting status of, 455
returning values from, 452

BackgroundWorker component
about, 449
CancelAsync method, 450, 453
CancellationPending property, 449, 453–454
DoWork event, 449–450, 454
IsBusy property, 449, 455
ProgressChanged event, 450, 454
ReportProgress method, 450
RunWorkerAsync method, 449–451
RunWorkerCompleted event, 450
WorkerReportsProgress property, 449
WorkerSupportsCancellation property, 449, 453

BeginStoryboard action, 106
Bezier curve, 112
binary resources

about, 41
accessing in other assemblies, 43
embedding, 42
loading, 42
logical resources and, 41
pack URIs, 42
using in other assemblies, 43
Windows Forms support, 41

binding (data)
ADO.NET objects, 373–375
complex, 410
configuring, 317–324
control templates, 293–294
controls, 409–412
creating in code, 319
data sources and controls, 417–418
defined, 315, 409
hierarchical data, 376–377
list-based controls, 218–219, 369–373
ObjectDataProvider class and, 378–379
objects, 320–322
properties, 317, 371, 386

Application class
application-level events, 83–86
Find command, 91, 93
GetResourceStream method, 45
Startup event handler, 476

Application Manifest, 566–567
application pack URIs, 43
application resources, 48
application settings, 503, 505
ApplicationCommands class

about, 90
Open command, 90

ApplicationDeployment class
about, 563
CheckForUpdate method, 564
CurrentDeployment property, 563
Update method, 564

application-level events, 83–86
ArrayList object, 462
assemblies

accessing resources in other, 43
satellite, 475

Assembly class
GetManifestResourceNames method, 46
GetManifestResourceStream method, 46
ThemeInfoAttribute, 306

assignment operator (=), 164
asterisk (*), 23
asynchronous processing

BackgroundWorker component, 449–450
creating process threads, 460–463
delegates and, 456–459
Dispatcher class support, 464–465
running background processes, 450–455

attached events, 80
attached properties

defined, 21–22, 31
Grid controls, 23
Storyboard class and, 105

AutomationPeer class(es)
about, 523
creating, 524
GetChildren method, 524
GetName method, 524
GetParent method, 524
GetPattern method, 524, 527
pattern interfaces, 524–526

Application class



609

AutoEllipsis property, 197
Click event and, 5, 80, 197–198, 202
code examples, 4
creating high-contrast styles, 68–69
DialogResult property, 197, 200
event handlers and, 197
FlatAppearance property, 197, 199–200
FlatStyle property, 197, 199–200
FontWeight property, 65
ImageIndex property, 237
ImageKey property, 237
ImageList property, 237
IsCancel property, 5
IsDefault property, 5
MouseDown event and, 198
Style property, 59
Text property, 197
TextAlign property, 197
ToolBar controls and, 17

ButtonBase class, 6

C
callback methods, 459
Cancel buttons, 5, 200–201
CancelEventArgs class, 432
Canvas controls

about, 4, 30
Bottom property, 30
code examples, 30
Left property, 30
Right property, 30
Top property, 30
Zindex property, 30

CAS (code access security), 496
CellValidating event, 414
certificates, associating with applications, 567–568
change notification, 350–352
Char data type, 430
CheckBox controls

about, 6, 229–230
AutoCheck property, 230
Checked property, 230
CheckState property, 230
Click event and, 6
ImageIndex property, 237
ImageKey property, 237

relational databases, 381–382
removing dynamically, 319
simple, 410
WPF elements, 318–319

Binding class
about, 317
Element property, 320
ElementName property, 317
FallbackValue property, 317
Mode property, 318, 323
NotifyOnSourceUpdated property, 318
NotifyOnTargetUpdated property, 318
Path property, 318, 374, 376
RelativeSource property, 318, 320–322
Source property, 318, 320, 370
TargetNullValue property, 318, 323
UpdateSourceTrigger property, 324
ValidationRules collection and, 346
XPath property, 318

BindingListCollectionView.CustomFilter property, 399
BindingNavigator component, 411
BindingOperations.ClearBinding method, 319
BindingSource component

defining data sources, 411
MoveNext method, 411
MovePrevious method, 411

borders
BorderThickness property, 292
setting style for forms, 165

Brush class
about, 122–128
Background property, 121, 473
BorderBrush property, 121
controls and, 121–122
Fill property, 121
Foreground property, 121, 388, 473
Freeze method, 122
OpacityMask property, 121
Stroke property, 121

brushes, visual interface and, 121–128
bubbling events

about, 78–79
handling, 80

Button controls
about, 3, 5–7, 197
access keys and, 6
animations and, 110
attached properties and, 21

CheckBox controls



610

navigating, 371–373
synchronization objects and, 462

CollectionViewSource.GetDefaultView method, 372
Color.FromArgb method, 122
ColorAnimation class, 110
ColumnStyles collection, 176
CombinedGeometry class

about, 131–132
GeometryCombineMode property, 132

ComboBox controls
about, 13, 214
Content property, 14
DataSource property, 214, 218
DisplayMember property, 214, 218
DropDownHeight property, 214
DropDownStyle property, 214
DropDownWidth property, 214
FormatString property, 214
FormattingEnabled property, 214
IsDropDownOpen property, 14
IsEditable property, 14
IsReadOnly property, 14
Items property, 214
SelectedIndex property, 214
SelectedItem property, 214
SelectedValue property, 214
Text property, 14
ToolBar controls and, 17
ValueMember property, 214, 218

command bubbling, 93
command handlers, 89, 92
Command object

about, 89
CanExecute method, 90, 94

command source, 89
CommandBinding object, 89, 92
CommandBindings collection, 93
commands

about, 89
architectural overview, 89
associating with controls, 90
creating, 95–96
disabling, 94–95
implementing, 90
invoking from code, 91
invoking with gestures, 91
predefined, 90

Commit actions, 552

ImageList property, 237
IsChecked property, 6, 323
ListBox controls and, 13
RadioButton controls and, 238
Text property, 230
ThreeState property, 230
ToolBar controls and, 17

CheckedListBox controls
about, 214
CheckedItems property, 215
CheckIndices property, 215
FormatString property, 215
FormattingEnabled property, 215
Items property, 215
MultiColumn property, 215
SelectedIndex property, 215
SelectedItem property, 215
SetItemChecked method, 215
SetItemCheckState method, 215

CheckForUpdateCompleted event, 564
child controls

accessing programmatically, 31
Grid panel support, 22

Children collection
accessing child elements, 31
Add method, 31
Remove method, 31
RemoveAt method, 31

class-level event handlers, 83
Click event

Button controls and, 5, 80, 197–198, 202
Checkbox controls and, 6
ToolStrip controls and, 247–248

ClickOnce
about, 559
associating certificates with applications, 567–568
configuring Application Manifest, 566–567
configuring update options, 562–565
deploying with, 559–562
deploying XBAPs, 565–566
siteOfOrigin pack URIs and, 44

clipping elements, 135–136
code access security (CAS)

defined, 496
working with policies, 497–498

collections
binding item controls to, 369–370
binding properties to, 371

CheckedListBox controls



611

ContextMenuStrip controls
about, 261, 263
associating properties with controls, 262
merging, 260

control containment hierarchy, 77
control templates

applying, 290
applying with Style class, 294
choosing, 300
creating, 288–290
defined, 288
inserting Trigger objects, 291
predefined part names, 295
theme-specific, 306–307
viewing source code, 294

controls. See also specific types of controls
about, 191
adding to forms, 170
adding/removing at runtime, 139–140, 171
altering appearance of, 283
Anchor property, 191, 196
associating commands with, 90
BackColor property, 191, 280
BackgroundImage property, 191
binding to data, 409–412
Brush objects and, 121–122
CanFocus property, 431
CausesValidation property, 191, 432, 436
Command property, 94
composite, 275–281
configuring at design time, 193–195
ContainsFocus property, 191
Controls property, 192
creating access keys for, 202
Cursor property, 192
DataMember property, 410
DataSource property, 410
Dock property, 192, 196
Enabled property, 192
flipping, 135
Focus method, 431–433
Font property, 192
ForeColor property, 192
HasChildren property, 192
Height property, 192–193
Invoke property, 462
InvokeRequired property, 462
Location property, 192, 194

ComponentCommands class, 90
composite controls

about, 275–276
adding events, 278
adding methods, 276
adding properties, 277
BackColor property, 280
creating in WPF, 300–307
exposing properties, 279
invisible at run time, 279
ToolboxBitmapAttritute class and, 280
transparent backgrounds, 280
Visible property, 279

conditional formatting, 388–389
container controls. See also specific types of container 
controls

about, 157, 170
adding controls to, 170–171, 193–195
Anchor property, 171
BackColor property, 170
Controls collection and, 170
Controls property, 170
Dock property, 172, 183
Enabled property, 170
Font property, 170
ToolStripContainer class and, 249
Visible property, 170

content alignment, 32–33
content controls

about, 4–7
Content property, 4
ContentTemplate property, 387
defined, 3
layout controls and, 4

content files
adding to resources, 43–44
Build Action property, 42, 44
creating resource-only DLLs, 45–46
retrieving resources manually, 45
siteOfOrigin pack URIs and, 44

ContentControl class, 4
context menus

about, 261
adding/removing items, 261

ContextMenu controls
about, 15, 17
adding/removing items, 261
Menu controls and, 19

controls



612

EntryPoint property, 554
handling errors, 554
InstallerClass property, 554
SourcePath property, 554

Custom Actions editor, 548, 552–553
custom controls

choosing, 300
creating, 304
defined, 300
implementing/registering dependency properties, 
300–302
testing, 304–305
theme-based appearance, 305–307

Cut command, 89

D
data binding

ADO.NET objects, 373–375
complex, 410
configuring, 317–324
control templates, 293–294
controls, 409–412
creating in code, 319
data sources and controls, 417–418
defined, 315, 409
hierarchical data, 376–377
list-based controls, 218–219, 369–373
ObjectDataProvider class and, 378–379
objects, 320–322
properties, 317, 371, 386
relational databases, 381–382
removing dynamically, 319
simple, 410
WPF elements, 318–319

data conversion
conditional formatting with, 388–389
culture settings and, 476
formatting as currency, 331–333
formatting dates, 333–346
formatting strings, 331
IValueConverter interface, 328–333
localizing data, 336
multi-value converters, 338–340
returning objects, 335–336

data sets, navigating records in, 411
data sources

Margin property, 195
MaximumSize property, 192
MinimumSize property, 192
modifying properties, 196
Name property, 192
OnPaint method, 283
Parent property, 192
process threads and, 462–464
Region property, 192
RenderTransformOrigin property, 135
repositioning, 194
resizing, 193
setting location of, 194
Size property, 192–193
snaplines and, 195
TabIndex property, 192
Tag property, 192
testing, 304–305
Text property, 192, 202
transforming, 134
UseMnemonic property, 202
Visible property, 192, 279
Width property, 192–193
working with images, 235–237

Controls collection
about, 170
Add method, 177, 179
removing MenuStrip controls, 261

converting data
conditional formatting with, 388–389
culture settings and, 476
formatting as currency, 331–333
formatting dates, 333–346
formatting strings, 331
IValueConverter interface, 328–333
localizing data, 336
multi-value converters, 338–340
returning objects, 335–336

Copy command, 89
CultureInfo class, 470–471
CurrentThread.CurrentCulture property, 470–471
CurrentThread.CurrentUICulture property, 476
custom actions

about, 552–553
Arguments property, 553
Condition property, 554
creating, 554
CustomActionData property, 554

Controls collection



613

MaxDate property, 233
MinDate property, 233
Value property, 233

Deactivated event, 84
deadlocks, 461
debugging

Intellitrace support, 533–535
PresentationTraceSource class and, 535–539
Tree Visualizer support, 527–528

delegates
about, 456–457, 463
BeginInvoke method, 457–458
calling asynchronously, 457
EndInvoke method, 457–458
IAsyncResult interface and, 458
Invoke method, 457

dependency properties
data binding and, 319
implementing/registering, 300–302

DependencyObject class
about, 301
ClearValue method, 68

deploying with ClickOnce
about, 559–560
associating certificates with applications, 567–568
configuring Application Manifest, 566–567
configuring update options, 562–565
deploying XBAPs, 565–566
migrating settings, 565
migrating user data, 565
online/offline considerations, 561
publishing to temporary location, 561
selecting publishing location, 560
specifying application information, 562

deployment projects, configuring, 551–552
dialog boxes, 483–485
digital clock, creating, 284–285
direct events, 78–79
discrete key frames, 111–112
Dispatcher class

accessing controls, 464
BeginInvoke method, 464
Dispatcher property, 464
DispatcherPriority property, 464
Invoke method, 464
UI thread and, 462

DispatcherUnhandledException event, 84
DLLs, resource-only, 45–46

adding, 380–381
binding DataGrid controls, 417–418
binding list-based controls, 218–219, 369–373
defining with BindingSource component, 411

data templates
DataTemplateSelector class and, 390–392
defined, 385
hierarchical, 392–393
setting, 387–388

databases, binding to, 381–382
DataColumn.Expression property, 400
DataGrid controls

about, 417
binding data sources, 417–418
column types, 418–420
ItemsSource property, 417
RowDetailsTemplate property, 420

DataGridView controls
adding tables and columns, 413
binding examples, 410
CellValidating event, 414
configuring columns, 412
CurrentCell property, 414
DataMember property, 411
DataSource property, 411
deleting columns, 413–414
determining clicked cell, 414
displaying data, 411
formatting, 416
validating input, 414–415

DataGridViewCellPaintingEventArgs class, 416
DataRelation class, 376
DataSet.DataContext property, 374
DataTable.DataContext property, 373
DataTemplateSelector class, 390–392
DataTrigger class

about, 63, 65
Background property, 65
Binding property, 65
hosting Action objects, 108
Property property, 65

dates/times
choosing, 233
formatting, 333–346

DateTimePicker controls
about, 233
CustomFormat property, 233
Format property, 233

DLLs, resource-only



614

RadiusY property, 130
Stretch property, 129
Width property, 129

EllipseGeometry class, 131
embedded resources

about, 42
retrieving loose files, 45

Enter event, 431
EnterActions collection, 108
ErrorProvider component

about, 435
BlinkRate property, 435
BlinkStyle property, 435
displaying errors, 435–436
Icon property, 435
SetError method, 435–436

event handlers
attaching, 80–81
Button controls and, 197
class-level, 83
Windows Forms controls, 486

EventManager class
about, 81
class-level event handlers, 83
defining routed events, 81–82
GetRoutedEvents method, 81
GetRoutedEventsForOwner method, 81
RegisterClassHandler method, 81, 83
RegisterRoutedEvent method, 81

events. See also specific types of events
adding to controls, 278
application-level, 83–86
attached, 80
drag and drop functionality and, 510–511
field-level validation and, 429–430
filtering in Intellitrace, 535
focus, 431
media-specific, 150–187
raising, 82
selecting to record with Intellitrace, 534
viewing in Intellitrace, 534

EventSetter class
about, 59
Event property, 59
Handler property, 59

EventTrigger class
about, 63, 66
animations and, 105–106

DockPanel controls
about, 27–29
Dock property, 27
LastChildFill property, 28–29

DomainUpDown controls
about, 228
Items property, 229
ReadOnly property, 229
Text property, 229

DoubleAnimation class, 102
DoubleAnimationUsingPath class, 103
DoWork event, 449–450, 454
DoWorkEventArgs class

Argument property, 451
Result property, 452

drag and drop process
about, 510
DragDrop event, 515
DragDropEffects enumeration, 512–513
DragEnter event, 514
general sequence, 512
implementing between applications, 515
Windows Forms and, 513
WPF applications and, 513

DragDrop class
about, 510
AllowDrop property, 511–512
DoDragDrop method, 511–513

DragDrop event, 511–512, 515
DragDropEffects enumeration, 512–513
DragEnter event, 511–512, 514
DragEventArgs object

about, 512
Effect property, 512

DragLeave event, 511
DragOver event, 511
dynamic resources

about, 48–49
retrieving in code, 52

E
EditingCommands class, 90
ElementHost controls, 487
Ellipse class

Height property, 129
RadiusX property, 130

DockPanel controls



615

FlowLayoutPanel controls
about, 170, 174–175
AutoScroll property, 174–175
BorderStyle property, 175
FlowDirection property, 174–175
GetFlowBreak method, 175–176
SetFlowBreak method, 175–176
WrapContents property, 174–175

Form class
Backcolor property, 162
BackgroundImage property, 162
BackgroundImageLayout property, 162
ControlBox property, 162
Cursor property, 162
Enabled property, 162
Font property, 163–164
ForeColor property, 163
FormBorderStyle property, 163, 165
HelpButton property, 163
Icon property, 163
KeyPreview property, 434
Language property, 471
Localizable property, 471
Location property, 163
MaximizeBox property, 163
MaximizeSize property, 163
MinimizeBox property, 163
MinimizeSize property, 163
Opacity property, 163, 167
Size property, 163–164, 166
StartLocation property, 167
StartPosition property, 163, 166–167, 170
Text property, 163–164
TopMost property, 163, 167
TransparencyKey property, 280
Visible property, 163, 169
Windowstate property, 163, 166

formatting
conditional, 388–389
DataGridView controls, 416
dates, 333–346
display items in list-based controls, 220–222
strings, 331, 333
strings as currency, 331–333

form-level validation, 433–434
forms. See also Windows Forms

adding controls to, 170–171
Controls property, 170

code examples, 66
setting Style property, 60

ExceptionValidationRule, setting, 347
ExecutedRoutedEventArgs class, 92
Exit event, 84
ExitActions collection, 108
extended controls

about, 282
overriding methods, 283

Extensible Application Markup Language (XAML)
about, 1
accessing resources in, 48
attaching event handlers, 80

F
field-level validation

keyboard events, 429–430
TextBox controls and, 428

file associations, 566–567
file dialog boxes

AddExtension property, 484
CheckFileExists property, 484
CheckPathExists property, 484
CreatePrompt property, 484
FileName property, 484
FileNames property, 484
Filter property, 484
InitialDirectory property, 484
Multiselect property, 484
OpenFile method, 484
OverwritePrompt property, 484
ShowDialog method, 484
ValidateNames property, 484

File System editor
about, 547
adding files to setup projects, 548–549
adding icons during setup, 549–550
VersionNT system property, 550

File Transfer Protocol (FTP), 560
File Types editor, 548
FileIO permission set, 497
filtering

data, 399–400
events in Intellitrace, 535
properties in Tree Visualizer, 528

flipping elements, 135

forms



616

keeping forms on top of, 167
shapes and, 128–133
testing, 523–528
transformations and, 133–136
visual tree and, 136–138
working with images, 235–237

Grid controls
about, 4
attached properties, 23
attached properties and, 21
Column property, 23–24
ColumnDefinition property, 22
ColumnSpan property, 23–26
Height property, 23
HorizontalAlignment property, 22
layout panels, 22–26
Margin property, 22
Row property, 23–24
RowDefinition property, 22
RowSpan property, 23–26
VerticalAlignment property, 22
Width property, 23

Grid panel, 22–26
GridSplitter controls

about, 24–26
Grid.Column property, 24
Grid.ColumnSpan property, 24–26
Grid.Row property, 24
Grid.RowSpan property, 24–26
Height property, 24, 26
HorizontalAlignment property, 24, 26
Margin property, 24, 26
ResizeBehavior property, 24–25
ResizeDirection property, 24
ShowsPreview property, 24
VerticalAlignment property, 25–26
Width property, 25–26

GroupBox controls
about, 173
Text property, 173

grouping
controls, 6
data, 396–398

GroupStyle object, 396

keeping on top of user interface, 167
localized, 471–472
modifying appearance/behavior, 163
opacity in, 167
resizing, 166
setting border style, 165
setting properties, 486
setting startup state, 166
setting title, 164
specifying startup location, 166–167
startup, 168–169
transparency in, 167

forward slash (/), 42
FTP (File Transfer Protocol), 560

G
Geometry class

Clip property, 135–136
clipping elements, 135–136
CombineMode property, 131
Path class and, 131

GeometryGroup class
about, 131–132
Fillrule property, 132

gestures, invoking commands with, 91
GiveFeedBack event, 511–512
globalization

current culture and, 470
defined, 468
implementing, 470

GotFocus event, 431
gpedit.msc application

about, 499
creating additional rules, 500–501
selecting security levels, 500

GradientStop class
about, 126
Color property, 123, 126
Offset property, 123, 126

graphic handles (thumbs), 10
graphics (user interfaces)

about, 1
brushes and, 121–128
choosing dates/times, 233
inspecting with Tree Visualizer, 527–528

forward slash (/)



617

IIS (Internet Information Services), 560
IItemContainerProvider interface, 525
IList interface, 372
Image class, 42
Image controls

about, 8
Source property, 8
Stretch property, 8

ImageBrush class
ImageSource property, 127
Stretch property, 127
TileMode property, 127–128
ViewBox property, 127
Viewport property, 127

ImageList class
about, 224, 235–238
ColorDepth property, 236–237
Images property, 236–237
ImageSize property, 236–237

Images Collection editor, 237
ImageSource class, 8, 473
immediate mode graphics, 136
IMultipleViewProvider interface, 525
individual controls, 3
INotifyCollectionChanged interface, 417
INotifyPropertyChanged interface, 351, 417
Install actions, 552
Installer class, 552–553
InstallException exception, 554
IntelliSense, 504
Intellitrace

about, 533
enabling, 533–534
filtering events, 535
opening files, 535
selecting events to record, 534
setting location for recordings, 534
viewing events in Debug mode, 534

Internet Information Services (IIS), 560
IRangeValueProvider interface, 525
IScrollItemProvider interface, 525
IScrollProvider interface, 525
ISelectionItemProvider interface, 525
ISelectionProvider interface, 526
ISynchronizedInputProvider interface, 526
ITableItemProvider interface, 526
ITableProvider interface, 526
item controls. See also specific controls

H
hierarchical data

binding to, 376–377
control containment hierarchy, 77
data templates and, 392–393

HierarchicalDataTemplate class
about, 392
ItemBindingGroup property, 392
ItemContainerStyle property, 392
ItemContainerStyleSelector property, 392
ItemsSource property, 392
ItemStringFormat property, 392
ItemTemplate property, 392
ItemTemplateSelector property, 392

HTTP (Hypertext Transfer Protocol), 560
Hypertext Transfer Protocol (HTTP), 560

I
IAsyncResult interface, 457–458
IBindingList interface, 372
ICollectionView interface

about, 371
CurrentItem property, 371–372
CurrentPosition property, 371
filtering data, 399–400
grouping data, 396–398
IsCurrentAfterLast property, 371
IsCurrentBeforeFirst property, 372
MoveCurrentTo method, 372
MoveCurrentToFirst method, 372
MoveCurrentToLast method, 372
MoveCurrentToNext method, 372
MoveCurrentToPosition method, 372
MoveCurrentToPrevious method, 372
SortDescriptions property, 394
sorting data and, 394

ICommandSource interface, 90
IComparer interface, 395
IDataErrorInfo interface, 436–438
IDockProvider interface, 525
IEnumerable interface, 372, 417
IExpandCollapseProvider interface, 525
IGridItemProvider interface, 525
IGridProvider interface, 525
IInvokeProvider interface, 525

item controls



618

about, 78
field-level validation and, 429
form-level validation and, 434

KeyEventArgs class, 429
key-frame animations

about, 102, 110–111
discrete, 111–112
Height property, 111
KeySpline property, 112
KeyTime property, 110–111
linear, 111–112
spline, 112
types of, 111–112
Value property, 110

KeyFrames collection, 110, 112
KeyPress event

about, 430
form-level validation and, 434
validating characters, 430

KeyPressEventArgs.KeyChar property, 430
KeyUp event

field-level validation and, 429
form-level validation and, 434

L
Label controls

about, 3, 5, 201
access keys and, 201
AutoSize property, 201
Background property, 65
binding example, 373
code examples, 5
Content property, 318, 371
creating high-contrast styles, 68–69
mnemonic keys, 5
StatusBar controls and, 19
Target property, 5
Text property, 201

Launch Conditions editor, 548
layout controls

about, 19–21
accessing child elements, 31
Anchor property, 486
content controls and, 4
defined, 4
Dock property, 486

about, 3, 12, 212
adding/removing items, 216–217
binding to data sources, 218–219
binding to lists, 369–373, 386
determining item location, 217–218
DisplayMemberPath property, 369, 373, 387
formatting display items, 220–222
IsSynchronizedWithCurrentItem property, 369, 373, 
376
Items property, 216
ItemsSource property, 370, 373
ItemTemplate property, 370, 387
menus and, 15
selecting items, 222–223
sorting, 220

Items collection
about, 213
Add method, 216, 254, 258, 261
AddRange method, 216
Clear method, 217
IndexOf method, 217
Insert method, 216
Remove method, 217, 259, 261
RemoveAt method, 217, 259

ITextProvider interface, 526
ITextRangeProvider interface, 526
IToggleProvider interface, 526
ITransformProvider interface, 526
IValueConverter interface

Convert method, 328–329, 397, 476
ConvertBack method, 328–329, 397, 476
creating custom grouping, 397
formatting as currency, 331–333
formatting dates, 333–346
formatting strings, 331
implementing, 328–331
localizing data, 336

IValueProvider interface, 526
IVirtualizedItemProvider interface, 526
IWindowProvider interface, 526

K
keyboard handlers, 434
KeyboardEventArgs class, 79
KeyboardNavigation.IsTabStop property, 12
KeyDown event

Items collection



619

code examples, 12
DataSource property, 213, 218
DisplayMember property, 213, 218
DisplayMemberPath property, 369
FormatString property, 213, 220
FormattingEnabled property, 213, 220
IsSelected property, 13
IsSynchronizedWithCurrentItem property, 369
Items property, 213
ItemsSource property, 370
ItemTemplate property, 370, 385
ListBoxItem controls and, 13
MultiColumn property, 213
SelectedIndex property, 13, 213, 218, 222
SelectedIndices property, 213, 218
SelectedItem property, 13, 213, 222
SelectedItems property, 13, 213
SelectedValue property, 213
SelectionMode property, 13, 213, 218
Sorted property, 220
ValueMember property, 213, 218

ListBoxItem controls, 13
ListCollectionView class, 395
lists

binding item controls to, 369–370, 386
binding properties to, 371
navigating, 371–373

ListView controls
about, 223, 225, 229
Columns property, 223
Groups property, 223
Items property, 223
LargeImageList property, 223
ShowGroups property, 223
SmallImageList property, 223
View property, 223

ListViewItem class
Group property, 224
ImageIndex property, 224
ImageKey property, 224
SubItems property, 224
Text property, 224

Load event handler, 279
localization

adding UICulture attribute, 473
creating subdirectories, 475
current culture and, 470
data converters and, 336

FlowDirection property, 20, 473
Height property, 20
HorizontalAlignment property, 20–21
HorizontalContentAlignment property, 20
Left property, 486
Margin property, 20–21
MaxHeight property, 20
MaxWidth property, 20
MinHeight property, 20
MinWidth property, 20
Padding property, 20
Top property, 486
VerticalAlignment property, 20–21
VerticalContentAlignment property, 20
Width property, 20

layout panels, 22–26
Leave event, 431
Line class, 130
linear animations, 102–103
linear key frames, 111–112
LinearGradientBrush class

about, 123
coordinate system, 123
EndPoint property, 124–125
GradientStop class and, 123
Spread property, 125
StartPoint property, 124–125

LineGeometry class, 131
list-based controls. See also specific controls

about, 3, 12, 212
adding/removing items, 216–217
binding to data sources, 218–219
binding to lists, 369–373, 386
determining item location, 217–218
DisplayMemberPath property, 369, 373, 387
formatting display items, 220–222
IsSynchronizedWithCurrentItem property, 369, 373, 
376
Items property, 216
ItemsSource property, 370, 373
ItemTemplate property, 370, 387
menus and, 15
selecting items, 222–223
sorting, 220

ListBox controls
about, 3, 12–13, 213
binding example, 373
CheckBox controls and, 13

localization



620

HasAudio property, 147
HasVideo property, 147
LoadedBehavior property, 147
MediaEnded event, 150
MediaFailed event, 150
MediaOpened event, 150
NaturalDuration property, 147
NaturalVideoHeight property, 147
NaturalVideoWidth property, 147
Open method, 148
pack URI limitations, 43
Pause method, 148
Play method, 148
Position property, 147
Source property, 148
SpeedRatio property, 148
Stop method, 148

MediaEnded event, 150
MediaFailed event, 150
MediaOpened event, 150
MediaPlayer class

about, 147–148
Balance property, 147
BufferingProgress property, 147
DownloadProgress property, 147
HasAudio property, 147
HasVideo property, 147
LoadedBehavior property, 147
MediaEnded event, 150
MediaFailed event, 150
MediaOpened event, 150
NaturalDuration property, 147
NaturalVideoHeight property, 147
NaturalVideoWidth property, 147
Open method, 148
pack URI limitations, 43
Pause method, 148
Play method, 148
Position property, 147
Source property, 148
SpeedRatio property, 148
Stop method, 148

Menu controls
about, 3, 15
ContextMenu controls and, 19
IsMainMenu property, 15

menu strips

defined, 469
extracting content, 474
implementing, 471
loading resources, 476
marking elements, 473
translating content, 475
WPF support, 472–476

lock keyword, 461
logical resources

accessing in XAML, 48
application resources, 48
binary resources and, 41
declaring, 47
defined, 41, 46
dynamic resources, 48–49
static resources, 48–49

LostFocus event, 431

M
MaskedTextBox controls

about, 204
AllowPromptAsInput property, 205
AsciiOnly property, 205, 207
BeepOnError property, 205, 207
configuring for user input, 207
CutCopyMaskFormat property, 205, 207
HidePromptOnLeave property, 205
InsertKeyMode property, 205
Mask property, 204–207
PromptChar property, 205, 207
RejectInputOnFirstFailure property, 205, 207
ResetOnPrompt property, 205, 207
ResetOnSpace property, 205, 207
SkipLiterals property, 205, 207
TextMaskFormat property, 205, 207

MaskedTextProvider controls, 205
MatrixAnimationUsingPath class, 103
MatrixTransform class, 133
media players, creating, 150–152
MediaCommands class, 90
MediaElement class

about, 147, 149
Balance property, 147
BufferingProgress property, 147
DownloadProgress property, 147

lock keyword



621

callback, 459
overriding, 283

mnemonic keys, 5
MonthCalendar controls

about, 233
AnnuallyBoldedDates property, 234
BoldedDates property, 234
FirstDayOfWeek property, 234
MaxDate property, 234
MaxSelectionCount property, 234
MinDate property, 234
MonthlyBoldedDates property, 234
SelectionEnd property, 234
SelectionRange property, 234
SelectionStart property, 234

MouseDown event
about, 78
Button controls and, 198
drag and drop process and, 511–512

MouseEventArgs class
about, 79
Button property, 198
Clicks property, 198
Delta property, 198
Location property, 198
X property, 198
Y property, 198

MouseLeave event, 78
Msbuild.exe tool, 474
MultiDataTrigger class

about, 63, 65
Binding property, 65
hosting Action objects, 108

multimedia content, 144–152
MultiTrigger class

about, 63, 65
hosting Action objects, 108
Value property, 65

N
navigating

lists/collections, 371–373
records in data sets, 411

NavigationCommands class, 90
NeutralResourcesLanguage attribute, 472

copying menu items at run time, 262
creating, 253–255

MenuItem controls
about, 15
code examples, 15–16
Command property, 15–16
Enabled property, 259
Header property, 16
Icon property, 16
IsChecked property, 16
IsEnabled property, 16
Items property, 16
Separator controls and, 16
Visible property, 259

menus/menu items
about, 15–17
adding enhancements to, 256–258
adding separator bars, 256
copying at run time, 262
creating access keys, 16, 257
creating shortcut keys, 257
deleting, 259
disabling, 259
hiding, 259
merging, 260
moving items between, 258

MenuStrip controls
about, 251
AllowItemReorder property, 251
AllowMerge property, 251
creating, 253
Dock property, 251
LayoutStyle property, 251
MergeAction property, 260
merging, 260
RenderMode property, 251
ShowItemToolTips property, 252
Stretch property, 252
switching programmatically, 261
TextDirection property, 252

merging
menus, 260
resource dictionaries, 50
tool strips, 249–250

MessageBox.Show method, 434
methods

adding to controls, 276

NeutralResourcesLanguage attribute



622

P
pack URIs

about, 42–43
accessing resources in other assemblies, 43
application syntax, 43
content file limitations, 43
siteOfOrigin syntax, 44

Panel controls
about, 170, 173
AutoScroll property, 174
BorderStyle property, 174, 181
TabPage controls and, 179

partial-trust environments, 495–496, 566
Paste command, 89
Path class

Data property, 132
Geometry class and, 131

path-based animations, 103
PathGeometry class, 131
pattern interfaces

AutomationPeer classes and, 524–526
retrieving, 527

PauseStoryboard action, 106
Permission class(es), 497
permissions sets, 497–498
PictureBox controls

about, 235
ErrorImage property, 235
Image property, 235–236
ImageLocation property, 235
InitialImage property, 235
SizeMode property, 235

PointAnimationUsingPath class, 103
Points collection, 130
Polygon class

about, 130
Fill property, 130
FillRule property, 130–131

Polyline class, 130
Predicate delegate, 399
PresentationTraceSources class

about, 535
available trace sources, 535–536
configuring programmatically, 539
configuring with app.config file, 537–538
enabling, 536

PreviewDragDrop event, 511

nodes. See also TreeView controls
adding/removing, 226–227
collapsing/expanding, 225, 227

Nodes collection
Add method, 226
Collapse method, 227
Expand method, 227
Remove method, 227
RemoveAt method, 227

NumericUpDown controls
about, 228
Hexadecimal property, 228
Increment property, 228
Maximum property, 228
Minimum property, 228
ThousandsSeparator property, 228
Value property, 228

O
ObjectDataProvider class

about, 378
ConstructorParameters property, 378
IsAsynchronous property, 378
MethodName property, 378
MethodParameters property, 378
ObjectInstance property, 378
ObjectType property, 378

ObservableCollection collection, 352
opacity in forms, 167
OpenFileDialog class

about, 483
AddExtension property, 484
CheckFileExists property, 484
CheckPathExists property, 484
CreatePrompt property, 484
FileName property, 484
FileNames property, 484
Filter property, 484
InitialDirectory property, 484
Multiselect property, 484
OpenFile method, 484
OverwritePrompt property, 484
ShowDialog method, 484
ValidateNames property, 484

nodes



623

control templates and, 291
EnterActions property, 64
ExitActions property, 64
hosting Action objects, 108
Property property, 64
Setter class and, 64, 291
Style class and, 58
Value property, 64

property value precedence, 66–68
PropertyChanged event, 351
PropertyChangedEventArgs class, 351
publishing applications

selecting location, 560
to temporary locations, 561

Q
QueryContinueDrag event, 511–512

R
race conditions, 461
RadialGradientBrush class

about, 125
GradientOrigin property, 125
RadiusX property, 125
RadiusY property, 125

RadioButton controls
about, 6, 229, 231
CheckBox controls and, 238
Checked property, 231
code examples, 6
GroupBox controls and, 173
GroupName property, 6
ImageIndex property, 237
ImageKey property, 237
ImageList property, 237
Text property, 231
ToolBar controls and, 17

Rectangle class
Height property, 129
RadiusX property, 130
RadiusY property, 130
Stretch property, 129
Width property, 129

RectangleGeometry class, 131

PreviewDragEnter event, 511
PreviewDragLeave event, 511
PreviewDragOver event, 511
PreviewGiveFeedback event, 511
PreviewKeyDown event, 78
PreviewMouseDown event

about, 78
drag and drop process and, 511

PreviewQueryContinueDrag event, 511
process threads

about, 460
controls and, 462–463
creating/starting, 460
destroying, 461
Dispatcher class and, 464
synchronizing, 461–462

ProgressBar controls
about, 9
IsEnabled property, 10
IsIndeterminate property, 10
LargeChange property, 10
Maximum property, 10
Minimum property, 10
Orientation property, 10
SmallChange property, 10
StatusBar controls and, 19
Value property, 10

ProgressChanged event, 450, 454
properties

adding to controls, 277
binding, 317, 371, 386
dependency, 300–302, 319
exposing, 279
filtering in Tree Visualizer, 528
setting, 503
setting for setup projects, 550–551
Windows Forms controls, 486

Properties window, 196
property setters

about, 58
Background property, 58
Property property, 58
Style class and, 58, 294
Trigger class and, 64, 291

property triggers
about, 63–64
animations and, 105–108
code examples, 64

RectangleGeometry class



624

OriginalSource property, 79
RaiseEvent method, 82
RoutedEvent property, 79
Source property, 79

RowStyles collection, 176
RunWorkerCompleted event, 450–452

S
satellite assemblies, 475
SaveFileDialog class

about, 483
AddExtension property, 484
CheckFileExists property, 484
CheckPathExists property, 484
CreatePrompt property, 484
FileName property, 484
FileNames property, 484
Filter property, 484
InitialDirectory property, 484
Multiselect property, 484
OpenFile method, 484
OverwritePrompt property, 484
ShowDialog method, 484
ValidateNames property, 484

ScaleTransform class
about, 134
ScaleX property, 135
ScaleY property, 135

scroll bars
FlowLayoutPanel controls and, 174
Panel controls and, 174
TabPage controls and, 179
TextBox controls and, 9

searching in Tree Visualizer, 528
security

CAS policies, 497–498
ClickOnce applications and, 559
partial-trust environments, 495–496
software restriction policies, 499–501

Security properties page, 497
SeekStoryboard action

about, 106–107
Offset property, 107
Origin property, 107

separator bars, adding to menus, 256
Separator controls

Registry editor, 548
relational databases, binding to, 381–382
resizing

controls, 193
forms, 166

resource dictionaries
creating, 50
defined, 50
merging, 50

resource-only DLLs, creating, 45–46
resources. See also specific types of resources

accessing in other assemblies, 43
accessing in XAML, 48
adding content files, 43–46
ContextMenu controls and, 17
data templates and, 388
defined, 41
embedding in applications, 42
FindResource method, 51
loading, 42
loading by locale, 476
retrieving in code, 51–52
retrieving manually, 45
storage considerations, 50
Template property, 290
TryFindResource method, 51

Resources collection
about, 47
accessing resources, 48, 51
converters and, 388
declaring logical resources, 47
merging resource dictionaries, 50
setting styles, 60–61
storage considerations, 51
x:Key property, 47

ResumeStoryboard action, 106
retained mode graphics, 136
Rollback actions, 552
RotateTransform class, 133
routed events

control containment hierarchy, 77
defining, 81–82
types of, 78–79

RoutedEventArgs class
about, 79
Command property, 92
defining routed events, 82
Handled property, 79–81

Registry editor



625

SupportURL property, 551
TargetPlatform property, 551
Title property, 551
UpgradeCode property, 551
Version property, 551
VersionNT system property, 550

Shape class
about, 128
Fill property, 129
Height property, 129
Margin property, 129
Stretch property, 129
Stroke property, 129
StrokeThickness property, 129
Width property, 129

shapes, visual interface and, 128–133
shortcut keys, creating, 257
simultaneous animations, 105
siteOfOrigin pack URIs

about, 43
retrieving loose files, 44

SkewTransform class, 134
SkipStoryboardToFill action, 106
Slider controls

about, 10
IsDirectionReversed property, 11
IsEnabled property, 11
LargeChange property, 11
Maximum property, 11
Minimum property, 11
Orientation property, 11
SmallChange property, 11
TickFrequency property, 11
TickPlacement property, 11
Ticks property, 11
Value property, 11, 319
ValueChanged event and, 11

snaplines, 32, 195
software restriction policies, 499–501
SolidColorBrush class, 122
SortDescription objects, 394
sorting

data, 394–395
list-based controls, 220

SoundPlayer class
about, 144–146
IsLoadCompleted property, 144
Load method, 144

MenuItem controls and, 16
ToolBar controls and, 17

SessionEnding event, 84
SetStoryboardSpeedRatio action, 106–107
Setter class

about, 58
Background property, 58
Property property, 58
Style class and, 58, 294
Trigger class and, 64, 291

settings
application, 503, 505
creating at design time, 504
loading at run time, 504
Name property, 503–504
properties of, 503
saving at run time, 505
Scope property, 503–504
Type property, 503–504
user, 503, 505
Value property, 503–504

setup projects
adding, 547
adding files to, 548–549
adding icons during setup, 549–550
AddRemoveProgramsIcon property, 550
Author property, 550
configuring deployment projects, 551–552
custom actions, 552–554
defined, 547
Description property, 550
DetectNewerInstalledVersion property, 551
editors supported, 547
InstallAllUsers property, 551
Keywork property, 550
Localization property, 551
Manufacturer property, 551
ManufacturerURL property, 551
PostBuildEvent property, 551
PreBuildEvent property, 551
ProductCode property, 551
ProductName property, 551
RemovePreviousVersion property, 551
RunPostBuildEvent property, 551
SearchPath property, 551
setting properties, 550–551
Subject property, 551
SupportPhone property, 551

SoundPlayer class



626

storing resources, 50
Storyboard class

about, 104–105
AccelerationRatio property, 103, 108
AutoReverse property, 103, 109
BeginTime property, 103
DecelerationRatio property, 103, 108
Duration property, 103
FillBehavior property, 103, 109
managing animation playback, 106
managing playback time line, 108–110
RepeatBehavior property, 103, 109
SpeedRatio property, 103, 110

StreamGeometry class, 131
String Collection editor, 216
StringAnimationUsingKeyFrames class, 102
strings, formatting, 331, 333
Style class

about, 57
applying control templates, 294
BasedOn property, 58, 62
code examples, 58
Resources property, 58
Setter class and, 58, 294
TargetType property, 47, 58, 60, 63, 294
Trigger class and, 58

style inheritance, 62–63
styles

applying to elements, 60–61, 63
creating, 59–61
defined, 57
high-contrast, 68–69
properties of, 57–58
property value precedence and, 68
setting programmatically, 61
setting Style property, 59
toolbars overriding, 17

synchronization objects, 462
synchronizing threads, 461–462
SyncLock keyword, 461
System.Deployment namespace, 563
System.Windows.Data namespace, 536
System.Windows.DependencyProperty namespace, 536
System.Windows.Documents namespace, 536
System.Windows.Forms namespace, 485–486
System.Windows.Freezable namespace, 536
System.Windows.Interop namespace, 536
System.Windows.Markup namespace

LoadAsync method, 144
LoadComplete event, 145
LoadTimeout property, 145
Play method, 145
PlayLooping method, 145
PlaySync method, 145
SoundLocation property, 145
SoundLocationChanged event, 145
Stop method, 145
Stream property, 145
StreamChanged event, 145

SoundPlayerAction class
about, 146
Source property, 146

spline key frames, 112
SplitContainer controls

about, 170, 181–182
BorderStyle property, 181–182
FixedPanel property, 181–182
IsSplitterFixed property, 182
Orientation property, 181–182
Panel1 property, 181–182
Panel1Collapsed property, 182
Panel1MinSize property, 182
Panel2 property, 181–182
Panel2Collapsed property, 182
Panel2MinSize property, 182
SplitterDistance property, 182
SplitterWidth property, 182

SplitterPanel controls, 181
StackPanel controls

about, 4, 26
binding examples, 386
code examples, 4
FlowDirection property, 26
HorizontalAlignment property, 21, 27
VerticalAlignment property, 21

Startup event, 84
Startup event handler, 476
startup forms, setting up, 168–169
static resources

about, 48–49
retrieving in code, 52

StatusBar controls
about, 19
code examples, 19

StatusStrip controls, 245
StopStoryboard action, 106

SoundPlayerAction class



627

TemplateBinding class, 292–294
TemplatedParent class, 67, 292–294
templates. See control templates; data templates
testing

controls, 304–305
user interfaces, 523–528

TextBox controls
about, 3, 7, 9, 203
AutoCompleteCustomSource property, 203
AutoCompleteMode property, 203
AutoCompleteSource property, 203
CharacterCasing property, 203
code examples, 5, 7, 9
creating high-contrast styles, 68–69
data binding example, 410
field-level validation, 428
HorizontalScrollBar property, 9
IsReadOnly property, 9
Lines property, 203
MaxLength property, 203, 428
mnemonic keys, 5
MultiLine property, 203–204, 428
Name property, 7
PasswordChar property, 203–204, 428
ReadOnly property, 203, 428
scroll bar support, 9
ScrollBars property, 203
Text property, 9, 203–204
TextWrapping property, 9
ToolBar controls and, 17
UseSystemPasswordChar property, 204
VerticalScrollBarVisibility property, 9
WordWrap property, 204

Thread object
Abort method, 461
about, 460
Start method, 460

ThreadAbortException exception, 461
threads (process)

about, 460
controls and, 462–463
creating/starting, 460
destroying, 461
Dispatcher class and, 464
synchronizing, 461–462

thumbs (graphic handles), 10
tool strips

adding items to, 245–246

trace sources and, 536
XamlWriter class, 294

System.Windows.Media.Animation namespace, 102, 536
System.Windows.NameScope namespace, 536
System.Windows.ResourceDictionary namespace, 536
System.Windows.RoutedEvent namespace, 536
System.Windows.Shell namespace, 536
SystemBrushes class, 49
SystemColors class

theme-based appearance and, 305
WindowColor object and, 320

SystemFonts class
dynamic resources and, 49
theme-based appearance and, 305

SystemParameters class
dynamic resources and, 49
theme-based appearance and, 305

T
Tab key, 12
TabControl controls

about, 179
Alignment property, 180
Appearance property, 180
Multiline property, 180
TabPages property, 179–180

TabIndex property, 12
TableLayoutPanel controls

about, 176–178
AutoScroll property, 176, 178
CellBorderStyle property, 176, 178
ColumnCount property, 178
Columns property, 179
ColumnStyles property, 179
Controls.Add method, 179
GrowStyle property, 177, 179
RowCount property, 179
Rows property, 179
RowStyles property, 179

tables, adding with DataGridView, 413
TabPage Collection editor, 179
TabPage controls

about, 179
AutoScroll property, 181
BorderStyle property, 179, 181
Text property, 179, 181

tool strips



628

default naming scheme, 253
DisplayState property, 252
DoubleClickEnabled property, 252
DropDownItems property, 252, 259
Enabled property, 252
Image property, 252
MergeAction property, 252, 260
MergeIndex property, 252
ShortcutKeyDisplayString property, 253, 258
ShortcutKeys property, 253, 257
ShowShortcutKeys property, 253, 257
Text property, 253
TextImageRelation property, 253

ToolStripProgressBar controls, 248
ToolStripSeparator controls, 247
ToolStripSplitButton controls, 248
ToolStripTextBox controls, 248
ToString method, 4, 333
trace listeners, 538
trace sources, 535–536
TrackBar controls

about, 229, 232
LargeChange property, 232
Maximum property, 232
Minimum property, 232
SmallChange property, 232
TickFrequency property, 232
TickStyle property, 232
Value property, 232

Transform class
flipping elements, 135
RenderTransform property, 133–134
RenderTransformOrigin property, 135
transforming elements, 134
types of objects, 133–134

transformations, visual interface and, 133–136
TranslateGroup class, 134
TranslateTransform class, 134
translating localizable content, 475
transparency

in composite controls, 280
in forms, 167

Tree Visualizer (WPF)
about, 527
filtering properties in, 528
opening, 527
searching in, 528
sections depicted, 528

common properties, 246–247
creating menu items, 253–255
displaying images on items, 248–249
MergeAction property, 247, 260
MergeIndex property, 247
merging, 249–250
tool strip items overview, 246–248
ToolTipText property, 247

ToolBar controls
about, 15, 17
code examples, 17
OverflowMode property, 17–18
ToolBarTray class, 18

ToolBarTray class, 18
ToolboxBitmapAttritute class, 280
ToolStrip controls

about, 244–249
AllowItemReorder property, 244
AllowMerge property, 244
CanOverflow property, 244
Dock property, 244
LayoutStyle property, 245
merging, 249–250
RenderMode property, 245
ShowItemToolTips property, 245
Stretch property, 245
TextDirection property, 245

ToolStripButton controls
about, 246–247
DisplayStyle property, 249
Image property, 249
ImageAlign property, 249
ImageScaling property, 249
ImageTransparentColor property, 249

ToolStripComboBox controls, 247
ToolStripContainer class, 249
ToolStripDropDownButton controls, 248
ToolStripLabel controls, 247
ToolStripManager class

about, 250
Merge method, 249, 260

ToolStripMenuItem controls
about, 251
AutoSize property, 252
changing properties, 254–255
Checked property, 252, 256
CheckOnClick property, 252, 256
CheckState property, 252, 256

ToolBar controls



629

mnemonic keys and, 5
Prompt character and, 207

Uniform Resource Identifier (URI)
control limitations, 43
Image controls and, 8
pack URIs and, 42–44

UniformGrid controls
about, 26
Columns property, 26
Rows property, 26

Uninstall actions, 552
Universal Naming Convention (UNC), 44
URI (Uniform Resource Identifier)

control limitations, 43
Image controls and, 8
pack URIs and, 42–44

usability
implementing asynchronous processing, 449–464
implementing globalization, 468–476
implementing localization, 468–476
integrating controls, 483–487

User Account Control (UAC) permissions, 498
user controls

choosing, 300
creating, 303–304
defined, 300
implementing/registering dependency properties, 
300–302
testing, 304–305

user feedback, 434–436
User Interface editor, 548
user interfaces

about, 1
brushes and, 121–128
choosing dates/times, 233
inspecting with Tree Visualizer, 527–528
keeping forms on top of, 167
shapes and, 128–133
testing, 523–528
transformations and, 133–136
visual tree and, 136–138
working with images, 235–237

user settings, 503, 505
UserControl class, 275

TreeNode class, 225
TreeNode editor, 226
TreeView controls

about, 3, 14, 225, 229
adding/removing nodes, 226–227
code examples, 14
FirstNode property, 226
LastNode property, 226
NextNode property, 226
NextVisibleNode property, 226
Nodes property, 225–226
Parent property, 226
PrevNode property, 226
PrevVisibleNode property, 226
SelectedItem property, 15
TreeView property, 226

TreeViewItem controls
about, 14
code examples, 14
Header property, 14

Trigger class
about, 63–64
animations and, 105–108
code examples, 64
control templates and, 291
EnterActions property, 64
ExitActions property, 64
hosting Action objects, 108
Property property, 64
Setter class and, 64, 291
Style class and, 58
Value property, 64

tunneling events
about, 78–79
handling, 80

U
UAC (User Account Control) permissions, 498
UI Automation, 523
UI thread, 462
UICulture attribute, 473
Uid attribute, 473–474
UIElement class, 4
UNC (Universal Naming Convention), 44
underscore (_)

access keys and, 6, 16

UserControl class



630

GetDrawing method, 138
GetEdgeMode method, 138
GetEffect method, 138
GetOffset method, 138
GetOpacity method, 138
GetOpacityMask method, 138
GetParent method, 138
GetTransform method, 138
GetXSnappingGuidelines method, 138
GetYSnappingGuidelines method, 138
HitTest method, 138
HitTestFilterCallback method, 138
HitTestParameters method, 138
HitTestResultCallback method, 138

W
Windows Forms

about, 1, 157, 159
adding forms to projects, 160–161
adding/removing controls at runtime, 139–140
binary resources support, 41
creating controls in, 275–283
drag and drop process and, 513
properties of, 161–163
UI thread and, 462
WPF applications and, 483–487

Windows Presentation Foundation (WPF)
about, 1, 7–11
localization support, 472–476
logical resources support, 41
Windows Forms and, 483–487

WindowsFormsHost element
about, 485
adding to WPF applications, 486
Child property, 487
setting event handlers, 486
setting properties, 486

WindowsFormsIntegration assembly, 486
WPF (Windows Presentation Foundation)

about, 1, 7–11
localization support, 472–476
logical resources support, 41
Windows Forms and, 483–487

WPF controls
about, 3
access keys, 6, 16

V
Validated event, 431–433
validating data/input

Char data type and, 430
culture settings and, 476
DataGridView controls and, 414–415
field-level validation, 428–430
form-level validation, 433–434
handling validation errors, 348–350
implementing custom rules, 347–348
providing user feedback, 434–436
setting ExceptionValidationRule, 347
ValidationRules collection, 346–347

Validating event
about, 431–433
displaying errors, 436

ValidationErrorEventArgs class
about, 348
Action property, 349
Error property, 349

ValidationResult class, 347
ValidationRule class, 347, 436, 476
ValidationRules collection, 346
ValueChanged event, 11
value-setting controls, 229–232
VersionNT system property, 550
Visual class

about, 136
Shape class and, 129

Visual Studio
Columns Collection editor, 418
configuring update settings, 563
designer tools, 375
Msbuild.exe tool, 474
Settings editor, 504

visual tree, 136–138
VisualTreeHelper class

about, 137
code examples, 138
GetBitmapEffect method, 137
GetBitmapEffectInput method, 137
GetCacheMode method, 137
GetChild method, 137
GetChildrenCount method, 137
GetClip method, 137
GetContentBounds method, 137
GetDescendantBounds method, 137

Validated event



631

adding to projects, 487
applying styles, 60–61
attached properties, 21–23, 31
binding, 318–319, 379–380
ContextMenu property, 17
creating, 300–307
creating AutomationPeer classes, 524
DataContext property, 320
drag and drop process and, 513
layout panels, 22–30
SetBinding method, 319
setting tab order, 12
TabIndex property, 12
Windows Forms and, 483–487

WPF Tree Visualizer
about, 527
filtering properties in, 528
opening, 527
searching in, 528
sections depicted, 528

WrapPanel controls
about, 27
FlowDirection property, 27

X
XAML (Extensible Application Markup Language)

about, 1
accessing resources in, 48
attaching event handlers, 80

XBAP (XAML Browser Application)
ClickOnce support, 559, 565–566
siteOfOrigin pack URIs and, 44

XML
binding WPF elements, 379–380
generating for permission sets, 497

XmlDataProvider class
about, 379
code example, 379
Document property, 379
Source property, 379
XPath property, 379

XPath expressions, 379

XPath expressions





633

About the Author

MATTHEW A. STOECKER started programming in BASIC on a TRS-80 at the age of nine. In 
2001, he joined Microsoft Corporation as a writer and programmer writing about Microsoft 
Visual Basic .NET. He has authored numerous technical articles about Visual Basic .NET and 
Microsoft Visual C# and has written or contributed to multiple books about these languages. 
He holds a PhD in microbiology (which he hopes he will never have to use again) and lives in 
Bellevue, Washington.


	Cover
	Chapter 1
	Chapter 9
	Index



