
Introduction
System Requirements
Hardware Requirements
Software Requirements
Code Samples
Using the CD
How to Install the Practice Tests
How to Use the Practice Tests
How to Uninstall the Practice Tests
Acknowledgments
Support & Feedback
Errata
We Want to Hear from You
Stay in Touch
Preparing for the Exam
CHAPTER 1
ADO.NET Disconnected Classes
Before You Begin
Lesson 1: Working with the DataTable and DataSet Classes
The DataTable Class
Using DataView as a Window into a Data Table
Using a DataSet Object to Coordinate Work Between Data Tables
Lesson Summary
Lesson Review
Lesson 2: Serialization, Specialized Types, and Data Binding
Serializing and Deserializing the Data Table with XML Data
Serializing and Deserializing DataSet Objects
Handling Specialized Types
Data Binding Overview
Lesson Summary
Lesson Review
Case Scenarios
Case Scenario 1: The Traveling Sales Team
Case Scenario 2: Sorting and Filtering Data
Suggested Practices
Take a Practice Test
CHAPTER 2
ADO.NET Connected Classes
Before You Begin
Lesson 1: Connecting to the Data Store
Using Providers to Move Data
Getting Started with the DbConnection Object
Storing the Connection String in the Application Configuration File
Encrypted Communications to SQL Server
Storing Encrypted Connection Strings in Web Applications
Connection Pooling
Lesson Summary
Lesson Review 
Lesson 2: Reading and Writing Data
DbCommand Object
DbDataReader Object
Using Multiple Active Result Sets (MARS) to Execute Multiple Commands on a Connection
Performing Bulk Copy Operations with a SqlBulkCopy Object 
DbDataAdapter Object
DbProviderFactory Classes
Using DbException to Catch Provider Exceptions
Working with SQL Server User-Defined Types (UDTs)
Lesson Summary
Lesson Review 
Lesson 3: Working with Transactions
What Is a Transaction?
Concurrency Models and Database Locking
Transaction Isolation Levels
Single Transactions and Distributed Transactions
Creating a Transaction
Introducing the System.Transactions Namespace
Working with Distributed Transactions
Viewing Distributed Transactions
Lesson Summary
Lesson Review 
Case Scenarios
Case Scenario 1: Clustered Servers and Connection Pooling
Case Scenario 2: The Daily Imports
Suggested Practices
Take a Practice Test

CHAPTER 
3Introducing LINQ

Before You Begin
Lesson 1: Understanding 
LINQ
A LINQ Example
Deferred Execution
LINQ Providers
Features That Make Up 
LINQ
Lesson Summary
Lesson Review
Lesson 2: Using LINQ 
Queries
Syntax-Based and 
Method-Based Queries
LINQ Keywords
Projections
Using the Let Keyword 
to Help with Projections
Specifying a Filter
Specifying a Sort Order
Paging
Joins
Grouping and 
Aggregation
Parallel LINQ (PLINQ)
Lesson Summary
Lesson Review
Case Scenarios
Case Scenario 1: 
Fibonacci Sequence
Case Scenario 2: Sorting 
and Filtering Data
Suggested Practices
Create Query with 
Extension Methods
Create LINQ Queries
Take a Practice Test
CHAPTER 4
LINQ to SQL
Before You Begin
Lesson 1: What Is LINQ 
to SQL?
Modeling Your Data
Examining the Designer 
Output
Managing Your 
Database Connection 
and Context Using 
DataContext
Lesson Summary
Lesson Review
Lesson 2: Executing 
Queries Using LINQ to 
SQL
Basic Query with Filter 
and Sort
Projections
Inner Joins
Outer Joins
Grouping and 
Aggregation
Paging
Lesson Summary
Lesson Review
Lesson 3: Submitting 
Changes to the Database
Using DataContext 
to Track Changes and 
Cache Objects
The Life Cycle of an 
Entity
Modifying Existing 

Entities
Adding New Entities to DataContext
Deleting Entities
Using Stored Procedures
Using DataContext to Submit Changes
Submitting Changes in a Transaction
Lesson Summary
Lesson Review
Case Scenario
Case Scenario: Object-Oriented Data 
Access
Suggested Practices
Create an Application That Uses LINQ 
to SQL Queries
Create an Application That Modifies 
Data by Using LINQ to SQL
Take a Practice Test
CHAPTER 5
LINQ to XML
Before You Begin 
Lesson 1: Working with the 
XmlDocument and XmlReader 
Classes
The XmlDocument Class
The XmlReader Class
Lesson Summary
Lesson Review
Lesson 2: Querying with LINQ to XML
Introducing the XDocument Family
Using the XDocument Classes
Lesson Summary
Lesson Review
Lesson 3: Transforming XML Using 
LINQ to XML 
Transforming XML to Objects
Transforming XML to Text
Transforming XML to XML
Lesson Summary
Lesson Review
Case Scenario
Case Scenario: XML Web Service
Suggested Practices
Take a Practice Test
CHAPTER 6
ADO.NET Entity Framework
Before You Begin
Lesson 1: What Is the ADO.NET Entity 
Framework?
Entity Framework Architecture 
Overview
Entity Framework vs. LINQ to SQL
Modeling Data
Managing your Database Connection 
and Context Using ObjectContext
More Modeling and Design
Implementing Inheritance in the Entity 
Framework
POCO Entities
Lesson Summary
Lesson Review
Lesson 2: Querying and Updating with 
the Entity Framework
Using LINQ to Entities to Query Your 
Database
Introducing Entity SQL
Using ObjectContext to Submit 
Changes to the Database
Lesson Summary
Lesson Review
Case Scenarios
Case Scenario 1: Choosing an Object-
Relational Mapper

Case Scenario 2: Using the Entity Framework
Suggested Practices
Create an Application That Uses LINQ to Entities 
Queries
Create an Application That Modifies Data by Using 
LINQ to Entities
Take a Practice Test
CHAPTER 7
WCF Data Services
Before You Begin
Lesson 1: What Is WCF Data Services?
Introducing OData
Creating a WCF Data Service
Querying Data through WCF Data Services
Lesson Summary
Lesson Review
Lesson 2: Consuming WCF Data Services
Adding a Client Application
Lesson Summary
Lesson Review
Case Scenario
Case Scenario: Exposing Data
Suggested Practices
Take a Practice Test
CHAPTER 8
Developing Reliable Applications
Before You Begin
Lesson 1: Monitoring and Collecting Performance Data
Implementing Instrumentation
Logging Queries
Accessing and Implementing Performance Counters
Lesson Summary
Lesson Review
Lesson 2: Handling Exceptions
Preventing Connection and Command Exceptions
Handling Connection and Query Exceptions
Handling Exceptions When Submitting Changes
Lesson Summary
Lesson Review
Lesson 3: Protecting Your Data
Encoding vs. Encryption
Symmetric Cryptography
Asymmetric Cryptography
Hashing and Salting
Digital Signatures
Encrypting Connections and Configuration Files
Principle of Least Privilege
Lesson Summary
Lesson Review
Lesson 4: Synchronizing Data
The Microsoft Sync Framework
Lesson Summary
Lesson Review
Case Scenario
Case Scenario: Data Synchronization
Suggested Practices
Take a Practice Test
CHAPTER 9
Deploying Your Application
Before You Begin
Lesson 1: Deploying Your Application
Packaging and Publishing from Visual Studio .NET
Deploying WCF Data Services Applications
Deployment for ASP.NET Websites
Silverlight Considerations
Deploying Entity Framework Metadata
Lesson Summary
Lesson Review
Case Scenario
Case Scenario: Data Synchronization
Suggested Practices
Take a Practice Test

Answers
About the Author



 
● ● ● ● ● ● ● ● ● ● ● 

How to access  
your CD files 

 
 
 
 
 
 
 
 
 
 

Microsoft Press

The print edition of this book includes a CD. To access the 
CD files, go to http://aka.ms/627390/files, and look for the 
Downloads tab.  
 
Note: Use a desktop web browser, as files may not be 
accessible from all ereader devices. 
 
Questions? Please contact: mspinput@microsoft.com  

http://aka.ms/627390/files




Exam 70-516: TS: Accessing Data with  
Microsoft .NET Framework 4

Objective Chapter Lesson

Modeling Data (20%)

Map entities and relationships by using the Entity Data Model. Chapter 6 Lesson 1

Map entities and relationships by using LINQ to SQL. Chapter 4 Lesson 1

Create and customize entity objects. Chapter 6 Lesson 1

Connect a POCO model to the entity Framework. Chapter 6 Lesson 1

Create the database from the Entity Framework model. Chapter 6 Lesson 1

Create model-defined functions. Chapter 6 Lesson 1

Managing Connections and Context (18%)

Configure connection strings and providers. Chapter 2 Lesson 1

Create and manage a data connection. Chapter 2 Lesson 1

Secure a connection. Chapter 2 Lesson 1

Manage the DataContext and ObjectContext. Chapter 4 
Chapter 6

Lesson 1 
Lesson 1

Implement eager loading. Chapter 4 
Chapter 6 
Chapter 7

Lesson 1 
Lesson 1 
Lesson 1

Cache data. Chapter 1 
Chapter 4

Lesson 1 
Lesson 3

Configure ADO.NET Data Services. Chapter 7 Lesson 1, 2

Querying Data (22%)

Execute a SQL query. Chapter 2 Lesson 2

Create a LINQ query. Chapter 3 
Chapter 4

Lesson 1, 2 
Lesson 2

Create an Entity SQL (ESQL) query. Chapter 3 
Chapter 4 
Chapter 6

Lesson 1, 2 
Lesson 2 
Lesson 2

Handle special data types. Chapter 1 
Chapter 2

Lesson 2 
Lesson 2

Query XML. Chapter 5 Lesson 1, 2, 3

Query data by using ADO.NET Data Services. Chapter 7 Lesson 1

Manipulating Data (22%)

Create, update, or delete data by using SQL statements. Chapter 2 Lesson 2

Create, update, or delete data by using DataContext. Chapter 4 Lesson 3

Create, update, or delete data by using ObjectContext. Chapter 6 Lesson 2

Manage transactions. Chapter 2 
Chapter 6

Lesson 3 
Lesson 2

Create disconnected objects. Chapter 1 Lesson 1



Developing and Deploying Reliable Applications (18%)

Monitor and collect performance data. Chapter 8 Lesson 1

Handle exceptions. Chapter 8 Lesson 2

Protect data. Chapter 8 Lesson 3

Synchronize data. Chapter 2 
Chapter 8

Lesson 3 
Lesson 4

Deploy ADO.NET components. Chapter 9 Lesson 1

Exam Objectives  The exam objectives listed here are current as of this book’s publication date. Exam objectives 
are subject to change at any time without prior notice and at Microsoft’s sole discretion. Please visit the Microsoft 
Learning Web site for the most current listing of exam objectives: http://www.microsoft.com/learning/en/us/Exam 
.aspx?ID=70-516.



MCTS Self-Paced Training 
Kit (Exam 70-516):  
Accessing Data with 
Microsoft® .NET 
Framework 4

Glenn Johnson



PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2011 by Glenn Johnson

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any 
means without the written permission of the publisher.

Library of Congress Control Number: 2011927329

ISBN: 978-0-7356-2739-0

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related 
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of 
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty 
/Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of 
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and 
events depicted herein are fictitious. No association with any real company, organization, product, domain name, 
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without 
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or 
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by 
this book.

Acquisitions Editor: Martin Del Re
Developmental Editor: Karen Szall
Project Editor: Valerie Woolley
Editorial Production: nSight, Inc.
Technical Reviewer: Christophe Nasarre; Technical Review services provided by Content Master, a member of 
CM Group, Ltd.
Copyeditor: Kerin Forsyth
Indexer: Luci Haskins
Cover: Twist Creative • Seattle

This product is printed digitally on demand.

http://www.microsoft.com/learning/booksurvey
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx


Contents at a Glance

Introduction	 xiii

Chapter 1	 ADO.NET Disconnected Classes	 1

Chapter 2	 ADO.NET Connected Classes	 63

Chapter 3	 Introducing LINQ	 143

Chapter 4	 LINQ to SQL	 237

Chapter 5	 LINQ to XML	 295

Chapter 6	 ADO.NET Entity Framework	 359

Chapter 7	 WCF Data Services	 459

Chapter 8	 Developing Reliable Applications	 503

Chapter 9	 Deploying Your Application	 581

Answers	 601

Index	 623





vii

Contents

	I ntroduction	 xiii
System Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                             xiii

Code Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                   xv

Using the CD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                    xv

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                              xvii

Support & Feedback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                             xviii

Chapter 1	 ADO.NET Disconnected Classes	 1
Lesson 1: Working with the DataTable and DataSet Classes. . . . . . . . . . .            3

The DataTable Class	 4

Using DataView as a Window into a Data Table	 17

Using a DataSet Object to Coordinate Work Between 
Data Tables	 20

Lesson 2: Serialization, Specialized Types, and Data Binding. . . . . . . . . . .            34

Serializing and Deserializing the Data Table with XML Data	 34

Serializing and Deserializing DataSet Objects	 37

Handling Specialized Types	 48

Data Binding Overview	 51

Chapter 2	 ADO.NET Connected Classes	 63
Lesson 1: Connecting to the Data Store. . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              65

Using Providers to Move Data	 65

Getting Started with the DbConnection Object	 66

What do you think of this book? We want to hear from you! 
Microsoft is interested in hearing your feedback so we can continually improve our  
books and learning resources for you. To participate in a brief online survey, please visit: 

www.microsoft.com/learning/booksurvey/



viii Contents

Storing the Connection String in the Application  
Configuration File	 75

Encrypted Communications to SQL Server	 76

Storing Encrypted Connection Strings in Web Applications	 76

Connection Pooling	 77

Lesson 2: Reading and Writing Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 85

DbCommand Object	 85

DbDataReader Object	 89

Using Multiple Active Result Sets (MARS) to Execute  
Multiple Commands on a Connection	 91

Performing Bulk Copy Operations with a SqlBulkCopy Object 	 93

DbDataAdapter Object	 95

DbProviderFactory Classes	 101

Using DbException to Catch Provider Exceptions	 105

Working with SQL Server User-Defined Types (UDTs)	 105

Lesson 3: Working with Transactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                120

What Is a Transaction?	 120

Concurrency Models and Database Locking	 121

Transaction Isolation Levels	 121

Single Transactions and Distributed Transactions	 123

Creating a Transaction	 123

Introducing the System.Transactions Namespace	 126

Working with Distributed Transactions	 130

Viewing Distributed Transactions	 133

Chapter 3	 Introducing LINQ	 143
Lesson 1: Understanding LINQ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     145

A LINQ Example	 145

Deferred Execution	 147

LINQ Providers	 149

Features That Make Up LINQ	 150

Lesson 2: Using LINQ Queries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                      205

Syntax-Based and Method-Based Queries	 205

LINQ Keywords	 208

Projections	 210



ixContents

Using the Let Keyword to Help with Projections	 211

Specifying a Filter	 211

Specifying a Sort Order	 212

Paging	 213

Joins	 215

Grouping and Aggregation	 221

Parallel LINQ (PLINQ)	 223

Chapter 4	 LINQ to SQL	 237
Lesson 1: What Is LINQ to SQL?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    239

Modeling Your Data	 239

Examining the Designer Output	 243

Managing Your Database Connection and Context  
Using DataContext	 249

Lesson 2: Executing Queries Using LINQ to SQL. . . . . . . . . . . . . . . . . . . . .                      260

Basic Query with Filter and Sort	 260

Projections	 261

Inner Joins	 262

Outer Joins	 264

Grouping and Aggregation	 267

Paging	 268

Lesson 3: Submitting Changes to the Database . . . . . . . . . . . . . . . . . . . . .                      277

Using DataContext to Track Changes and Cache Objects	 277

The Life Cycle of an Entity	 278

Modifying Existing Entities	 280

Adding New Entities to DataContext	 282

Deleting Entities	 283

Using Stored Procedures	 285

Using DataContext to Submit Changes	 286

Submitting Changes in a Transaction	 286

Chapter 5	 LINQ to XML	 295
Lesson 1: Working with the XmlDocument and XmlReader Classes . .   297

The XmlDocument Class	 297

The XmlReader Class	 306



x Contents

Lesson 2: Querying with LINQ to XML. . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              320

Introducing the XDocument Family	 320

Using the XDocument Classes	 328

Lesson 3: Transforming XML Using LINQ to XML . . . . . . . . . . . . . . . . . . . .                    344

Transforming XML to Objects	 344

Transforming XML to Text	 347

Transforming XML to XML	 348

Chapter 6	 ADO.NET Entity Framework	 359
Lesson 1: What Is the ADO.NET Entity Framework?. . . . . . . . . . . . . . . . . .                   361

Entity Framework Architecture Overview	 361

Entity Framework vs. LINQ to SQL	 363

Modeling Data	 365

Managing your Database Connection and Context  
Using ObjectContext	 376

More Modeling and Design	 385

Implementing Inheritance in the Entity Framework	 391

POCO Entities	 407

Lesson 2: Querying and Updating with the Entity Framework. . . . . . . . .          421

Using LINQ to Entities to Query Your Database	 421

Introducing Entity SQL	 425

Using ObjectContext to Submit Changes to the Database	 434

Chapter 7	 WCF Data Services	 459
Lesson 1: What Is WCF Data Services?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

Introducing OData	 461

Creating a WCF Data Service	 462

Querying Data through WCF Data Services	 471

Lesson 2: Consuming WCF Data Services. . . . . . . . . . . . . . . . . . . . . . . . . . .                            482

Adding a Client Application	 482

Chapter 8	 Developing Reliable Applications	 503
Lesson 1: Monitoring and Collecting Performance Data. . . . . . . . . . . . . .               505

Implementing Instrumentation	 505



xiContents

Logging Queries	 505

Accessing and Implementing Performance Counters	 512

Lesson 2: Handling Exceptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     521

Preventing Connection and Command Exceptions	 521

Handling Connection and Query Exceptions	 523

Handling Exceptions When Submitting Changes	 527

Lesson 3: Protecting Your Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     537

Encoding vs. Encryption	 537

Symmetric Cryptography	 539

Asymmetric Cryptography	 545

Hashing and Salting	 549

Digital Signatures	 552

Encrypting Connections and Configuration Files	 554

Principle of Least Privilege	 556

Lesson 4: Synchronizing Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                      560

The Microsoft Sync Framework	 560

Chapter 9	 Deploying Your Application	 581
Lesson 1: Deploying Your Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               582

Packaging and Publishing from Visual Studio .NET	 582

Deploying WCF Data Services Applications	 583

Deployment for ASP.NET Websites	 590

Silverlight Considerations	 592

Deploying Entity Framework Metadata	 593

Answers	 601

Index	 623



xii Contents

What do you think of this book? We want to hear from you! 
Microsoft is interested in hearing your feedback so we can continually improve our  
books and learning resources for you. To participate in a brief online survey, please visit: 

www.microsoft.com/learning/booksurvey/



xiii

Introduction
This training kit is designed for developers who write or support applications that ac-

cess data written in C# or Visual Basic using Visual Studio 2010 and the Microsoft .NET 
Framework 4.0 and who also plan to take the Microsoft Certified Technology Specialist 
(MCTS) exam 70-516. Before you begin using this kit, you must have a solid foundation-level 
understanding of Microsoft C# or Microsoft Visual Basic and be familiar with Visual Studio 
2010.

The material covered in this training kit and on exam 70-516 relates to the data access 
technologies in ADO.NET 4.0 with Visual Studio 2010. The topics in this training kit cover what 
you need to know for the exam as described on the Skills Measured tab for the exam, which is 
available at http://www.microsoft.com/learning/en/us/exam.aspx?ID=70-516&locale=en
-us#tab2. 

By using this training kit, you will learn how to do the following:

■	 Work with the ADO.NET disconnected classes

■	 Work with the ADO.NET connection classes

■	 Write and execute LINQ queries

■	 Implement LINQ to SQL classes

■	 Implement LINQ to XML in your applications

■	 Implement the ADO.NET Entity Framework in your applications

■	 Create and Implement WCF Data Service applications

■	 Monitor and Collect ADO.NET performance data 

■	 Synchronize offline data

■	 Deploy Data Access applications

Refer to the objective mapping page in the front of this book to see where in the book 
each exam objective is covered. 

System Requirements

The following are the minimum system requirements your computer needs to meet to 
complete the practice exercises in this book and to run the companion CD. To minimize 
the time and expense of configuring a physical computer for this training kit, it’s recom-
mended, but not required, that you use a virtualized environment, which will allow you to 
work in a sandboxed environment. This will let you make changes without worrying about 



xiv Introduction

your day-to-day environment. Virtualization software is available from Microsoft (Virtual PC, 
Virtual Server, and Hyper-V) and other suppliers such as VMware (VMware Workstation) and 
Oracle (VirtualBox).

Hardware Requirements
Your computer should meet the following minimum hardware requirements: 

■	 2.0 GB of RAM (more is recommended)

■	 80 GB of available hard disk space

■	 DVD-ROM drive

■	 Internet connectivity

Software Requirements
The following software is required to complete the practice exercises:

■	 Windows 7. You can download an Evaluation Edition of Windows 7 at the Microsoft 
Download Center at http://technet.microsoft.com/en-us/evalcenter/cc442495. 

■	 SQL Server 2008 Developer Edition is recommended because some labs and sample 
code use this edition for permanently mounted databases. An Evaluation Edition is 
available from http://msdn.microsoft.com/en-us/evalcenter/bb851668.aspx.

■	 SQL Server 2008 Express Edition is recommended because some labs and sample code 
use this edition for User Instance mounted databases. A full release is available from 
http://www.microsoft.com/express/Database.

Note S QL Server Installation

If you are using a 64-bit OS, you should install 64-bit SQL Server before installing  
Visual Studio 2010. Visual Studio 2010 includes, and attempts to install, the 32-bit SQL 
Server 2008 Express Edition. 

If you install the 64-bit versions of SQL Server first, the Visual Studio 2010 installer will see 
that SQL Server Express Edition is already installed and will skip over installing the 32-bit 
SQL Server 2008 Express Edition.

■	 Visual Studio 2010. You can download an evaluation edition from http://msdn.microsoft
.com/en-us/evalcenter/default. Although the labs and code samples were generated 
using Visual Studio 2010 Premium Edition, you can use the Express Edition of Visual 
Studio for many of the labs, which is available from http://www.microsoft.com/express.



xvIntroduction

Code Samples

The code samples are provided in Visual C# and Visual Basic. You will find a folder for each 
chapter that contains CS (C#) and VB (Visual Basic) code. In these folders, you will find the 
sample code solution and a folder for each lesson that contains the practice code. The 
Practice Code folder contains Begin and Completed folders, so you can choose to start at the 
beginning and work through the practice or you can run the completed solution.

Using the CD

A companion CD is included with this training kit. The companion CD contains the following:

■	P ractice tests  You can reinforce your understanding of the topics covered in this 
training kit by using electronic practice tests that you customize to meet your needs. 
You can run a practice test that is generated from the pool of Lesson Review questions 
in this book. Alternatively, you can practice for the 70-516 certification exam by using 
tests created from a pool of over 200 realistic exam questions, which give you many 
practice exams to ensure that you are prepared.

■	C ode Samples  All of the Visual Basic and C# code you see in the book you will also 
find on the CD.

■	A n eBook  An electronic version (eBook) of this book is included for when you do not 
want to carry the printed book with you. 

Companion Content for Digital Book Readers: If you bought a digital edition of this book, you can 
enjoy select content from the print edition’s companion CD. 
Visit http://www.microsoftpressstore.com/title/9780735627390 to get your downloadable content. This content 
is always up-to-date and available to all readers. 

How to Install the Practice Tests
To install the practice test software from the companion CD to your hard disk, perform the 
following steps:

	 1.	 Insert the companion CD into your CD drive and accept the license agreement. A CD 
menu appears.

http://www.microsoftpressstore.com/title/9780735627390


xvi Introduction

Note  If the CD menu does not appear

If the CD menu or the license agreement does not appear, AutoRun might be disabled 
on your computer. Refer to the Readme.txt file on the CD for alternate installation 
instructions.

	 2.	 Click Practice Tests and follow the instructions on the screen.

How to Use the Practice Tests
To start the practice test software, follow these steps:

	 1.	 Click Start, All Programs, and then select Microsoft Press Training Kit Exam Prep. 

A window appears that shows all the Microsoft Press training kit exam prep suites 
installed on your computer.

	 2.	 Double-click the lesson review or practice test you want to use.

Note  Lesson reviews vs. practice tests

Select the (70-516): Accessing Data with Microsoft .NET Framework 4 lesson review to 
use the questions from the “Lesson Review” sections of this book. Select the (70-516): 
Accessing Data with Microsoft .NET Framework 4 practice test to use a pool of ques-
tions similar to those that appear on the 70-516 certification exam.

Lesson Review Options
When you start a lesson review, the Custom Mode dialog box appears so that you can con-
figure your test. You can click OK to accept the defaults, or you can customize the number of 
questions you want, how the practice test software works, which exam objectives you want 
the questions to relate to, and whether you want your lesson review to be timed. If you are 
retaking a test, you can select whether you want to see all the questions again or only the 
questions you missed or did not answer.

After you click OK, your lesson review starts. The following list explains the main options 
you have for taking the test:

■	 To take the test, answer the questions and use the Next and Previous buttons to move 
from question to question.

■	 After you answer an individual question, if you want to see which answers are cor-
rect—along with an explanation of each correct answer—click Explanation.



xviiIntroduction

■	 If you prefer to wait until the end of the test to see how you did, answer all the ques-
tions and then click Score Test. You will see a summary of the exam objectives you 
chose and the percentage of questions you got right overall and per objective. You can 
print a copy of your test, review your answers, or retake the test.

Practice Test Options
When you start a practice test, you choose whether to take the test in Certification Mode, 
Study Mode, or Custom Mode:

■	C ertification Mode  Closely resembles the experience of taking a certification exam. 
The test has a set number of questions. It is timed, and you cannot pause and restart 
the timer.

■	S tudy Mode  Creates an untimed test during which you can review the correct an-
swers and the explanations after you answer each question.

■	C ustom Mode  Gives you full control over the test options so that you can customize 
them as you like.

In all modes, the user interface when you are taking the test is basically the same but with 
different options enabled or disabled depending on the mode. The main options are dis-
cussed in the previous section, “Lesson Review Options.”

When you review your answer to an individual practice test question, a “References” sec-
tion is provided that lists where in the training kit you can find the information that relates to 
that question and provides links to other sources of information. After you click Test Results 
to score your entire practice test, you can click the Learning Plan tab to see a list of references 
for every objective.

How to Uninstall the Practice Tests
To uninstall the practice test software for a training kit, use the Program And Features option 
in Windows Control Panel.

Acknowledgments

The author’s name appears on the cover of a book, but I am only one member of a much 
larger team. Thanks very much to Valerie Woolley, Christophe Nasarre, and Karen Szall for 
working with me, being patient with me, and making this a great book. Christophe Nasarre 
was my technical reviewer, and he was far more committed to the project than any reviewer 
I’ve worked with in the past. I certainly could not have completed this book without his help. 



xviii Introduction

Each of these editors contributed significantly to this book and I hope to work with them all in 
the future.

And a special thanks to Kristy Saunders for writing all of the practice test questions for the 
practice test located on the CD.

Support & Feedback

The following sections provide information on errata, book support, feedback, and contact 
information. 

Errata
We have made every effort to ensure the accuracy of this book and its companion content. If 
you do find an error, please report it on our Microsoft Press site at:

	 1.	 Go to www.microsoftpressstore.com.

	 2.	 In the Search box, enter the book’s ISBN or title.

	 3.	 Select your book from the search results.

	 4.	 On your book’s catalog page, under the cover image, you will see a list of links.

	 5.	 Click View/Submit Errata.

You will find additional information and services for your book on its catalog page. If you 
need additional support, please send an email message to Microsoft Press Book Support at 
mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the ad-
dresses above.

We Want to Hear from You
At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable 
asset. Please tell us what you think of this book at: 

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in ad-
vance for your input!

Stay in Touch
Let us keep the conversation going! We are on Twitter: http://twitter.com/MicrosoftPress.

www.microsoftpressstore.com


xixIntroduction

Preparing for the Exam
Microsoft certification exams are a great way to build your resume and let the world know 

about your level of expertise. Certification exams validate your on-the-job experience 
and product knowledge. While there is no substitution for on-the-job experience, preparation 
through study and hands-on practice can help you prepare for the exam. We recommend 
that you round out your exam preparation plan by using a combination of available study 
materials and courses. For example, you might use the Training kit and another study guide 
for your “at home” preparation, and take a Microsoft Official Curriculum course for the class-
room experience. Choose the combination that you think works best for you.

Note that this Training Kit is based on publicly available information about the exam and 
the author’s experience. To safeguard the integrity of the exam, authors do not have access to 
the live exam.





		  CHAPTER 3	 143

CHAPTER        3

Introducing LINQ

There always seems to be problems when it comes to moving data between the data-
base and the client application. One of the problems stems from the differences in data 

types at both locations; another big problem is the handling of null values at each location. 
Microsoft calls this an impedance mismatch.

Yet another problem stems from passing commands to the database as strings. In your 
application, these strings compile as long as the quote is at each end of the string. If the 
string contains a reference to an unknown database object, or even a syntax error, the data-
base server will throw an exception at run time instead of at compile time.

LINQ stands for Language Integrated Query. LINQ is the Microsoft solution to these 
problems, which LINQ solves by providing querying capabilities to the database, using 
statements that are built into LINQ-enabled languages such as Microsoft C# and Vi-
sual Basic 2010. In addition, these querying capabilities enable you to query almost any 
collection.

Exam objectives in this chapter:
■	 Create a LINQ query.

Lessons in this chapter: 
■	 Lesson 1: Understanding LINQ  145
■	 Lesson 2: Using LINQ Queries  205



	144	 CHAPTER 3	 Introducing LINQ

Before You Begin

You must have some understanding of C# or Visual Basic 2010. This chapter requires only the 
hardware and software listed at the beginning of this book. 

Real World

Glenn Johnson

There are many scenarios in which your application has collections of objects 
that you want to query, filter, and sort. In many cases, you might need to return 

the results of these queries as a collection of different objects that contain only 
the information needed—for instance, populating a grid on the user interface with 
a subset of the data. LINQ really simplifies these query problems, providing an 
elegant, language-specific solution.



	 Lesson 1: Understanding LINQ	 CHAPTER 3	 145

Lesson 1: Understanding LINQ

This lesson starts by providing an example of a LINQ expression so you can see what a LINQ 
expression looks like, and some of the basic syntax is covered as well. This lesson also shows 
you the Microsoft .NET Framework features that were added to make LINQ work. The features 
can be used individually, which can be useful in many scenarios.

After this lesson, you will be able to:
■	 Use object initializers.
■	 Implement implicitly typed local variables.
■	 Create anonymous types.
■	 Create lambda expressions.
■	 Implement extension methods.
■	 Understand the use of query extension methods.

Estimated lesson time: 60 minutes

A LINQ Example
LINQ enables you to perform query, set, and transform operations within your programming 
language syntax. It works with any collection that implements the IEnumerable or the generic 
IEnumerable<T> interface, so you can run LINQ queries on relational data, XML data, and 
plain old collections.

So what can you do with LINQ? The following is a simple LINQ query that returns the list of 
colors that begin with the letter B, sorted.

Sample of Visual Basic Code

Dim colors() =
{ 
    "Red", 
    "Brown", 
    "Orange", 
    "Yellow", 
    "Black", 
    "Green", 
    "White", 
    "Violet", 
    "Blue" 
} 
 
Dim results as IEnumerable(Of String)=From c In colors _ 
            Where c.StartsWith("B") _ 
            Order By c _ 
            Select c



	146	 CHAPTER 3	 Introducing LINQ

Sample of C# Code

string[] colors = 
{  
    "Red",  
    "Brown",  
    "Orange",  
    "Yellow",  
    "Black",  
    "Green",  
    "White",  
    "Violet",  
    "Blue"  
}; 
 
IEnumerable<string> results = from c in colors 
              where c.StartsWith("B") 
              orderby c 
              select c;

The first statement in this example uses array initializer syntax to create an array of strings, 
populated with various colors, followed by the LINQ expression. Focusing on the right side of 
the equals sign, you see that the LINQ expression resembles a SQL statement, but the from 
clause is at the beginning, and the select clause is at the end.

You’re wondering why Microsoft would do such a thing. SQL has been around for a long 
time, so why didn’t Microsoft keep the same format SQL has? The reason for the change is 
that Microsoft could not provide IntelliSense if it kept the existing SQL command layout. By 
moving the from clause to the beginning, you start by naming the source of your data, and 
Visual Studio .NET can use that information to provide IntelliSense through the rest of the 
statement.

In the example code, you might be mentally equating the “from c in colors” with a 
For Each (C# foreach) loop; it is. Notice that c is the loop variable that references one item 
in the source collection for each of the iterations of the loop. What is c’s type and where 
is c declared? The variable called c is declared in the from clause, and its type is implicitly 
set to string, based on the source collection as an array of string. If your source collection is 
ArrayList, which is a collection of objects, c’s type would be implicitly set to object, even if 
ArrayList contained only strings. Like the For Each loop, you can set the type for c explicitly as 
well, and each element will be cast to that type when being assigned to c as follows:

Sample of Visual Basic Code

From c As String In colors _

Sample of C# Code

from string c in colors

In this example, the source collection is typed, meaning it is an array of string, so there is 
no need to specify the type for c because the compiler can figure this out.



	 Lesson 1: Understanding LINQ	 CHAPTER 3	 147

The from clause produces a generic IEnumerable object, which feeds into the next part of 
the LINQ statement, the where clause. Internally, imagine the where clause has code to iterate 
over the values passed into the where clause and output only the values that meet the speci-
fied criteria. The where clause also produces a generic IEnumerable object but contains logic 
to filter, and it is passed to the next part of the LINQ statement, the order by clause.

The order by clause accepts a generic IEnumerable object and sorts based on the criteria. 
Its output is also a generic IOrderedEnumerable object but contains the logic to sort and is 
passed to the last part of the LINQ statement, the select clause.

The select clause must always be the last part of any LINQ expression. This is when you can 
decide to return (select) the entire object with which you started (in this case, c) or something 
different. When selecting c, you are returning the whole string. In a traditional SQL statement, 
you might select * or select just the columns you need to get a subset of the data. You might 
select c.SubString(0,2) to return the first two characters of each of the colors to get a subset of 
the data or create a totally different object that is based on the string c.

Deferred Execution
A LINQ query is a generic IEnumerable object of what you select. The variable to which this 
result is assigned is known as the range variable. This is not a populated collection; it’s merely 
a query object that can retrieve data. LINQ doesn’t access the source data until you try to use 
the query object to work with the results. This is known as deferred execution.

Exam Tip

For the exam, understand what deferred execution is because you can expect LINQ ques-
tions related to this topic. 

The generic IEnumerable interface has only one method, GetEnumerator, that returns an 
object that implements the generic IEnumerator interface. The generic IEnumerator interface 
has a Current property, which references the current item in the collection, and two methods, 
MoveNext and Reset. MoveNext moves to the next element in the collection. Reset moves the 
iterator to its initial position—that is, before the first element in the collection. 

The data source is not touched until you iterate on the query object, but if you iterate on 
the query object multiple times, you access the data source each time. For example, in the 
LINQ code example, a variable called results was created to retrieve all colors that start with B, 
sorted. In this example, code is added to loop over the results variable and display each color. 
Black in the original source data is changed to Slate. Then code is added to loop over the 
results again and display each color.

Sample of Visual Basic Code

For Each Color As String In results
    txtLog.AppendText(Color + Environment.NewLine) 
Next 
 



	148	 CHAPTER 3	 Introducing LINQ

colors(4) = "Slate" 
 
txtLog.AppendText("---------" + Environment.NewLine) 
For Each Color As String In results 
    txtLog.AppendText(Color + Environment.NewLine) 
Next

Sample of C# Code

foreach (var color in results)
{ 
    txtLog.AppendText(color + Environment.NewLine); 
} 
 
colors[4] = "Slate"; 
 
txtLog.AppendText("---------" + Environment.NewLine); 
foreach (var color in results) 
{ 
    txtLog.AppendText(color + Environment.NewLine); 
}

The second time the results variable was used, it displayed only Blue and Brown, not the 
original three matching colors (Black, Blue, and Brown), because the query was re-executed 
for the second loop on the updated collection in which Black was replaced by a color that 
does not match the query criteria. Whenever you use the results variable to loop over the 
results, the query re-executes on the same data source that might have been changed and, 
therefore, might return updated data.

You might be thinking of how that effects the performance of your application. Certainly, 
performance is something that must be considered when developing an application. How-
ever, you might be seeing the benefit of retrieving up-to-date data, which is the purpose of 
deferred execution. For users who don’t want to re-run the query every time, use the result-
ing query object to produce a generic list immediately that you can use repeatedly afterward. 
The following code sample shows how to create a frozen list.

Sample of Visual Basic Code

Dim results As List(Of String) = (From c In colors _
            Where c.StartsWith("B") _ 
            Order By c _ 
            Select c).ToList()
 
For Each Color As String In results 
    txtLog.AppendText(Color + Environment.NewLine) 
Next 
 
colors(4) = "Slate" 
 
txtLog.AppendText("---------" + Environment.NewLine) 
For Each Color As String In results 
    txtLog.AppendText(Color + Environment.NewLine) 
Next



	 Lesson 1: Understanding LINQ	 CHAPTER 3	 149

Sample of C# Code

List<string> results = (from string c in colors
                              where c.StartsWith("B") 
                              orderby c 
                              select c).ToList();
 
foreach (var color in results) 
{ 
    txtLog.AppendText(color + Environment.NewLine); 
} 
 
colors[4] = "Slate"; 
 
txtLog.AppendText("---------" + Environment.NewLine); 
foreach (var color in results) 
{ 
    txtLog.AppendText(color + Environment.NewLine); 
}

In this code example, the result of the LINQ query is frozen by wrapping the expression 
in parentheses and adding the ToList() call to the end. The results variable now has a type 
of List Of String. The ToList method causes the query to execute and put the results into the 
variable called results; then the results collection can be used again without re-executing the 
LINQ expression.

LINQ Providers
In the previous examples, you can see that LINQ works with .NET Framework objects be-
cause the .NET Framework comes with a LINQ to Objects provider. Figure 3-1 shows the LINQ 
providers that are built into the .NET Framework. Each LINQ provider implements features 
focused on the data source.

LINQ Providers

LINQ to
Objects

LINQ to
DataSets

LINQ to
SQL

LINQ to
Entities

LINQ to
XML

LINQ Enabled ADO.NET

Figure 3-1  This figure shows the LINQ providers built into the .NET Framework.

The LINQ provider works as a middle tier between the data store and the language envi-
ronment. In addition to the LINQ providers included in the .NET Framework, there are many 
third-party LINQ providers. To create a LINQ provider, you must implement the IQueryable 
interface. This has a Provider property whose type is IQueryProvider, which is called to initial-
ize and execute LINQ expressions. 



	150	 CHAPTER 3	 Introducing LINQ

Features That Make Up LINQ
Now that you’ve seen a LINQ expression, it’s time to see what was added to the .NET 
Framework to create LINQ. Each of these features can be used by itself, but all of them are 
required to create LINQ.

Object Initializers
You can use object initializers to initialize any or all of an object’s properties in the same 
statement that instantiates the object, but you’re not forced to write custom constructors.

You might have seen classes that have many constructors because the developer was 
trying to provide a simple way to instantiate and initialize the object. To understand this, con-
sider the following code example of a Car class that has five automatic properties but doesn’t 
have any custom constructors.

Sample of Visual Basic Code

Public Class Car
    Public Property VIN() As String 
    Public Property Make() As String 
    Public Property Model() As String 
    Public Property Year() As Integer 
    Public Property Color() As String 
End Class

Sample of C# Code

public class Car
{ 
    public string VIN { get; set; } 
    public string Make { get; set; } 
    public string Model { get; set; } 
    public int Year { get; set; } 
    public string Color { get; set; } 
}

To instantiate a Car object and populate the properties with data, you might do something 
like the following:

Sample of Visual Basic Code

Dim c As New Car()
c.VIN = "ABC123" 
c.Make = "Ford" 
c.Model = "F-250" 
c.Year = 2000

Sample of C# Code

Car c = new Car();
c.VIN = "ABC123"; 
c.Make = "Ford"; 
c.Model = "F-250"; 
c.Year = 2000;



	 Lesson 1: Understanding LINQ	 CHAPTER 3	 151

It took five statements to create and initialize the object, and Color wasn’t initialized. If a 
constructor was provided, you could instantiate the object and implicitly initialize the proper-
ties with one statement, but what would you do if someone wanted to pass only three param-
eters? How about passing five parameters? Do you create constructors for every combination 
of parameters you might want to pass? The answer is to use object initializers.

By using object initializers, you can instantiate the object and initialize any combination of 
properties with one statement, as shown in the following example:

Sample of Visual Basic Code

Dim c As New Car() With {.VIN = "ABC123", .Make = "Ford", _
                         .Model = "F-250", .Year = 2000}

Sample of C# Code

Car c = new Car() { VIN = "ABC123", Make = "Ford", 
                    Model = "F-250", Year = 2000 };

Conceptually, the Car object is being instantiated, and the default constructor generated 
by the compiler is executed. Each of the properties will be initialized with its default value. If 
you are using a parameterless constructor, as shown, the parentheses are optional, but if you 
are executing a constructor that requires parameters, the parentheses are mandatory.

Collection initializers are another form of object initializer, but for collections. Collection 
initializers have existed for arrays since the first release of the .NET Framework, but you can 
now initialize collections such as ArrayList and generic List using the same syntax. The fol-
lowing example populates a collection of cars, using both object initializers and collection 
initializers.

Sample of Visual Basic Code

Private Function GetCars() As List(Of Car)
    Return New List(Of Car) From 
    { 
        New Car() With {.VIN = "ABC123", .Make = "Ford", 
                        .Model = "F-250", .Year = 2000}, 
        New Car() With {.VIN = "DEF123", .Make = "BMW", 
                        .Model = "Z-3", .Year = 2005}, 
        New Car() With {.VIN = "ABC456", .Make = "Audi", 
                        .Model = "TT", .Year = 2008}, 
        New Car() With {.VIN = "HIJ123", .Make = "VW", 
                        .Model = "Bug", .Year = 1956}, 
        New Car() With {.VIN = "DEF456", .Make = "Ford", 
                        .Model = "F-150", .Year = 1998} 
    } 
End Function

Sample of C# Code

private List<Car> GetCars()
{ 
    return new List<Car> 
    { 
        new Car {VIN = "ABC123",Make = "Ford",  



	152	 CHAPTER 3	 Introducing LINQ

                 Model = "F-250", Year = 2000}, 
        new Car {VIN = "DEF123",Make = "BMW",   
                 Model = "Z-3",   Year = 2005}, 
        new Car {VIN = "ABC456",Make = "Audi",  
                 Model = "TT",    Year = 2008}, 
        new Car {VIN = "HIJ123",Make = "VW",    
                 Model = "Bug",   Year = 1956}, 
        new Car {VIN = "DEF456",Make = "Ford",  
                 Model = "F-150", Year = 1998} 
    }; 
}

The code example creates a generic List object and populates the list with five cars, all in 
one statement. No variables are needed to set the properties of each car because it’s being 
initialized.

How are object initializers used in LINQ? They enable you to create some types of pro-
jections in LINQ. A projection is a shaping or transformation of the data in a LINQ query to 
produce what you need in the output with the select statement instead of including just the 
whole source object(s). For example, if you want to write a LINQ query that will search a color 
list for all the color names that are five characters long, sorted by the matching color, instead 
of returning an IEnumerable object of string, you might use object initializers to return an 
IEnumerable object of Car in which the car’s color is set to the matching color, as shown here:

Sample of Visual Basic Code

Dim colors() =
    { 
        "Red", 
        "Brown", 
        "Orange", 
        "Yellow", 
        "Black", 
        "Green", 
        "White", 
        "Violet", 
        "Blue" 
    } 
 
Dim fords As IEnumerable(Of Car) = From c In colors 
                                  Where c.Length = 5 
                                  Order By c 
                                  Select New Car() With 
                                         {.Make = "Ford", 
                                          .Color = c} 
 
For Each car As Car In fords 
    txtLog.AppendText(String.Format("Car: Make:{0} Color:{1}" _ 
                    & Environment.NewLine, car.Make, car.Color)) 
Next

Sample of C# Code

string[] colors =
{ 



	 Lesson 1: Understanding LINQ	 CHAPTER 3	 153

    "Red", 
    "Brown", 
    "Orange", 
    "Yellow", 
    "Black", 
    "Green", 
    "White", 
    "Violet", 
    "Blue" 
}; 
 
IEnumerable<Car> fords = from c in colors 
                         where c.Length == 5 
                         orderby c 
                         select new Car() 
                               { 
                                   Make = "Ford", 
                                   Color = c 
                               }; 
 
foreach (Car car in fords) 
{ 
    txtLog.AppendText(String.Format("Car: Make:{0} Color:{1}" 
                    + Environment.NewLine, car.Make, car.Color)); 
}

The whole idea behind this example is that you want to construct a collection of cars, 
but each car will have a color from the collection of colors that matches the five-letter-long 
criterion. The select clause creates the Car object and initializes its properties. The select 
clause cannot contain multiple statements. Without object initializers, you wouldn’t be able to 
instantiate and initialize the Car object without first writing a constructor for the Car class that 
takes Make and Color parameters.

Implicit Typed Local Variable Declarations
Doesn’t it seem like a chore to declare a variable as a specific type and then instantiate that 
type in one statement? You have to specify the type twice, as shown in the following example:

Sample of Visual Basic Code

Dim c as Car = New Car( )

Sample of C# Code

Car c = new Car( )

Visual Basic users might shout, “Hey, Visual Basic doesn’t require me to specify the type 
twice!” But what about the example in which you make a call to a method that returns a 
generic List Of Car, but you still have to specify the type for the variable that receives the col-
lection, as shown here?

Sample of Visual Basic Code

Dim cars As List(Of Car) = GetCars()



	154	 CHAPTER 3	 Introducing LINQ

Sample of C# Code

List<Car> cars = GetCars();

In this example, would it be better if you could ask the compiler what the type is for this 
variable called cars? You can, as shown in this code example:

Sample of Visual Basic Code

Dim cars = GetCars()

Sample of C# Code

var cars = GetCars();

Instead of providing the type for your variable, you’re asking the compiler what the type is, 
based on whatever is on the right side of the equals sign. That means there must be an equals 
sign in the declaration statement, and the right side must evaluate to a typed expression. You 
cannot have a null constant on the right side of the equals sign because the compiler would 
not know what the type should be.

If you’re wondering whether this is the same as the older variant type that existed in earlier 
Visual Basic, the answer is no. As soon as the compiler figures out what the type should be, 
you can’t change it. Therefore, you get IntelliSense as though you explicitly declared the vari-
able’s type.

Here are the rules for implicitly typed local variables:

■	 They can be implemented on local variables only.

■	 The declaration statement must have an equals sign with a non-null assignment.

■	 They cannot be implemented on method parameters.

Implicitly typed local variables can be passed to methods, but the method’s parameter 
type must match the actual type that was inferred by the compiler.

Do you really need this feature? Based on this explanation, you can see that this feature 
is simply an optional way to save a bit of typing. You might also be wondering why implicitly 
typed local variables are required for LINQ: This feature is required to support anonymous 
types, which are used in LINQ.

Anonymous Types
Often, you want to group together some data in a somewhat temporary fashion. That is, you 
want to have a grouping of data, but you don’t want to create a new type just for something 
that might be used in one method. To understand the problem that anonymous types solves, 
imagine that you are writing the graphical user interface (GUI) for your application, and a col-
lection of cars is passed to you in which each car has many properties. If you bind the collec-
tion directly to a data grid, you’ll see all the properties, but you needed to display only two of 
the properties, so that automatic binding is displaying more data than you want. This is when 
anonymous types can be used.



	 Lesson 1: Understanding LINQ	 CHAPTER 3	 155

In the following code sample, you want to create an anonymous type that contains only 
Make and Model properties because these are the only properties you need.

Sample of Visual Basic Code

Dim x = New With {.Make = "VW", .Model = "Bug"}
txtLog.AppendText(x.Make & ", " & x.Model)

Sample of C# Code

var x = new {Make = "VW", Model = "Bug"};
txtLog.AppendText(x.Make + ", " + x.Model);

If you type in this code, you see that in the second statement, when x is typed and you 
press the period key, the IntelliSense window is displayed and you see Make and Model as 
available selections. The variable called x is implicitly typed because you simply don’t know 
what the name of the anonymous type is. The compiler, however, does know the name of the 
anonymous type. This is the benefit of getting IntelliSense for scenarios in which implicitly 
typed local variables are required.

Anonymous types are used in LINQ to provide projections. You might make a call to 
a method that returns a list of cars, but from that list, you want to run a LINQ query that 
retrieves the VIN as one property and make and year combined into a different property for 
displaying in a grid. Anonymous types help, as shown in this example:

Sample of Visual Basic Code

Dim carData = From c In GetCars()
    Where c.Year >= 2000 
    Order By c.Year 
    Select New With 
                  { 
                      c.VIN, 
                      .MakeAndModel = c.Make + " " + c.Model 
                  } 
 
dgResults.DataSource = carData.ToList()

Sample of C# Code

var carData = from c in GetCars()
              where c.Year >= 2000 
              orderby c.Year 
              select new  
              { 
                  c.VIN, 
                  MakeAndModel = c.Make + " " + c.Model 
              }; 
 
dgResults.DataSource = carData.ToList();

When this example is executed, the LINQ query will locate all the cars that have a Year 
property equal to or greater than 2000. This will result in finding three cars that are sorted by 
year. That result is then projected to an anonymous type that grabs the VIN and combines the 



	156	 CHAPTER 3	 Introducing LINQ

make and model into a new property called MakeAndModel. Finally, the result is displayed in 
the grid, as shown in Figure 3-2.

Figure 3-2  Anonymous types are displayed in the grid.

Lambda Expressions
Lambda expressions can be used anywhere delegates are required. They are very much like 
anonymous methods but have a much abbreviated syntax that makes them easy to use inline.

Consider the generic List class that has a Find method. This method accepts a generic 
Predicate delegate as a parameter. If you look up the generic Predicate delegate type, you 
find that this delegate is a reference to a method that accepts a single parameter of type T 
and returns a Boolean value. The Find method has code that loops though the list and, for 
each item, the code executes the method referenced through the Predicate parameter, pass-
ing the item to the method and receiving a response that indicates found or not found. Here 
is an example of using the Find method with a Predicate delegate:

Sample of Visual Basic Code

Dim yearToFind As Integer
 
Private Sub PredecateDelegateToolStripMenuItem_Click( _ 
            ByVal sender As System.Object, _ 
            ByVal e As System.EventArgs) _ 
        Handles PredecateDelegateToolStripMenuItem.Click 
 
    yearToFind = 2000 
    Dim cars = GetCars() 
    Dim found = cars.Find(AddressOf ByYear) 
    txtLog.AppendText(String.Format( _ 
            "Car VIN:{0} Make:{1} Year:{2}" & Environment.NewLine, _ 



	 Lesson 1: Understanding LINQ	 CHAPTER 3	 157

            found.VIN, found.Make, found.Year)) 
End Sub 
 
Private Function ByYear(ByVal c As Car) As Boolean 
    Return c.Year = yearToFind 
End Function

Sample of C# Code

int yearToFind = 2000;
 
private void predecateDelegateToolStripMenuItem_Click( 
    object sender, EventArgs e) 
{ 
    var cars = GetCars(); 
    yearToFind = 2000; 
    var found = cars.Find(ByYear); 
    txtLog.AppendText(string.Format( 
        "Car VIN:{0} Make:{1} Year{2}" + Environment.NewLine, 
        found.VIN, found.Make, found.Year)); 
} 
 
private bool ByYear(Car c) 
{ 
    return c.Year == yearToFind; 
}

In this example, the yearToFind variable is defined at the class level to make it accessible to 
both methods. That’s typically not desirable because yearToFind is more like a parameter that 
needs to be passed to the ByYear method. The problem is that the Predicate delegate accepts 
only one parameter, and that parameter has to be the same type as the list’s type. Another 
problem with this code is that a separate method was created just to do the search. It would 
be better if a method wasn’t required.

The previous example can be rewritten to use a lambda expression, as shown in the follow-
ing code sample:

Sample of Visual Basic Code

Private Sub LambdaExpressionsToolStripMenuItem_Click( _
        ByVal sender As System.Object, _ 
        ByVal e As System.EventArgs) _ 
        Handles LambdaExpressionsToolStripMenuItem.Click 
    Dim cars = GetCars() 
    Dim theYear = 2000 
    Dim found = cars.Find(Function(c) c.Year = theYear)
    txtLog.AppendText(String.Format( _ 
            "Car VIN:{0} Make:{1} Year:{2}" & Environment.NewLine, _ 
            found.VIN, found.Make, found.Year)) 
End Sub

Sample of C# Code

private void lambdaExpressionsToolStripMenuItem_Click(
    object sender, EventArgs e) 
{ 



	158	 CHAPTER 3	 Introducing LINQ

    var cars = GetCars(); 
    var theYear = 2000; 
    var found = cars.Find(c => c.Year== theYear);
    txtLog.AppendText(string.Format( 
        "Car VIN:{0} Make:{1} Year{2}" + Environment.NewLine, 
        found.VIN, found.Make, found.Year)); 
}

You can think of the lambda expression as inline method. The left part declares the 
parameters, comma delimited. After the => sign, you have the expression. In this example, 
the lambda expression is supplied inline with the Find method. This eliminates the need for a 
separate method. Also, the variable called theYear is defined as a local variable in the enclos-
ing method, so it’s accessible to the lambda expression.

Formally, a lambda expression is an expression that has one input and contains only a 
single statement that is evaluated to provide a single return value; however, in the .NET 
Framework, multiple parameters can be passed to a lambda expression, and multiple state-
ments can be placed into a lambda expression. The following example shows the multi-
statement lambda expression syntax.

Sample of Visual Basic Code

Dim found = cars.Find(Function(c As Car)
                         Dim x As Integer 
                         x = theYear 
                         Return c.Year = x 
                     End Function) 

Sample of C# Code

var found = cars.Find(c => 
{ 
    int x; 
    x = theYear; 
    return c.Year == x; 
});

In C#, if the lambda expression takes multiple parameters, the parameters must be sur-
rounded by parentheses, and if the lambda expression takes no parameters, you must provide 
an empty set of parentheses where the parameter would go.

How are lambda expressions used with LINQ? When you type your LINQ query, behind 
the scenes, parts of it will be converted into a tree of lambda expressions. Also, you must use 
lambda expressions with query extension methods, which are covered right after extension 
methods, which follows.

Extension Methods
Extension methods enable you to add methods to a type, even if you don’t have the source 
code for the type. 



	 Lesson 1: Understanding LINQ	 CHAPTER 3	 159

To understand why you might want this, think of this simple scenario: You want to add an 
IsNumeric method to the string class, but you don’t have the source code for the string class. 
What would you do? 

One solution is to create a new class that inherits from string, maybe called MyString, and 
then add your IsNumeric method to this class. This solution has two problems. First, the string 
class is sealed, which means that you can’t inherit from string. Even if you could inherit from 
string to create your custom class, you would need to make sure that everyone uses it and not 
the string class that’s built in. You would also need to write code to convert strings you might 
receive when you make calls outside your application into your MyString class.

Another possible, and more viable, solution is to create a helper class, maybe called 
StringHelper, that contains all the methods you would like to add to the string class but can’t. 
These methods would typically be static methods and take string as the first parameter. Here 
is an example of a StringHelper class that has the IsNumeric method:

Sample of Visual Basic Code

Public Module StringHelper
    Public Function IsNumeric(ByVal str As String) As Boolean 
        Dim val As Double 
        Return Double.TryParse(str, val) 
    End Function 
End Module

Sample of C# Code

public static class StringHelper
{ 
    public static bool IsNumeric(string str) 
    { 
        double val; 
        return double.TryParse(str, out val); 
    } 
}

The following code uses the helper class to test a couple of strings to see whether they are 
numeric. The output will display false for the first call and true for the second call.

Sample of Visual Basic Code

Dim s As String = "abc123"
txtLog.AppendText(StringHelper.IsNumeric(s) & Environment.NewLine) 
s = "123" 
txtLog.AppendText(StringHelper.IsNumeric(s) & Environment.NewLine)

Sample of C# Code

string s = "abc123";
txtLog.AppendText(StringHelper.IsNumeric(s) + Environment.NewLine); 
s = "123"; 
txtLog.AppendText(StringHelper.IsNumeric(s) + Environment.NewLine);



	160	 CHAPTER 3	 Introducing LINQ

What’s good about this solution is that the user doesn’t need to instantiate a custom string 
class to use the IsNumeric method. What’s bad about this solution is that the user needs to 
know that the helper class exists, and the syntax is clunky at best. 

Prior to .NET Framework 3.5, the helper class solution was what most people implemented, 
so you will typically find lots of helper classes in an application, and, yes, you need to look for 
them and explore the helper classes so you know what’s in them.

In .NET Framework 3.5, Microsoft introduced extension methods. By using extension 
methods, you can extend a type even when you don’t have the source code for the type. In 
some respects, this is deceptive, but it works wonderfully, as you’ll see.

In the previous scenario, another solution is to add the IsNumeric method to the string 
class by using an extension method, adding a public module (C# public static class) and creat-
ing public static methods in this class. In Visual Basic, you add the <Extension()> attribute 
before the method. In C#, you add the keyword this in front of the first parameter to indicate 
that you are extending the type of this parameter. 

All your existing helper classes can be easily modified to become extension methods, but 
this doesn’t break existing code. Here is the modified helper class, in which the IsNumeric 
method is now an extension method on string.

Sample of Visual Basic Code

Imports System.Runtime.CompilerServices
 
Public Module StringHelper 
    <Extension()> _
    Public Function IsNumeric(ByVal str As String) As Boolean 
        Dim val As Double 
        Return Double.TryParse(str, val) 
    End Function 
End Module

Sample of C# Code

public static class StringHelper
{ 
    public static bool IsNumeric(this string str)
    { 
        double val; 
        return double.TryParse(str, out val); 
    } 
}

You can see in this code example that the changes to your helper class are minimal. Now 
that the IsNumeric method is on the string class, you can call the extension method as follows.

Sample of Visual Basic Code

Dim s As String = "abc123"
txtLog.AppendText(s.IsNumeric() & Environment.NewLine) 
s = "123" 
txtLog.AppendText(s.IsNumeric() & Environment.NewLine)



	 Lesson 1: Understanding LINQ	 CHAPTER 3	 161

Sample of C# Code

string s = "abc123";
txtLog.AppendText(s.IsNumeric() + Environment.NewLine); 
s = "123"; 
txtLog.AppendText(s.IsNumeric() + Environment.NewLine);

You can see that this is much cleaner syntax, but the helper class syntax still works, so 
you can convert your helper class methods to extension methods but you’re not forced to 
call the helper methods explicitly. Because the compiler is not able to find IsNumeric in the 
string class, it is looking for the extension methods that extend string with the right name 
and the right signature. Behind the scenes, it is simply changing your nice syntax into calls to 
your helper methods when you build your application, so the clunky syntax is still there (in 
the compiled code), but you can’t see it. Performance is exactly the same as well. The differ-
ence is that the IntelliSense window now shows you the extension methods on any string, as 
shown in Figure 3-3. The icon for the extension method is a bit different from the icon for a 
regular method. In fact, there are already extension methods on many framework types. In 
Figure 3-3, the method called Last is also an extension method.

Figure 3-3  Extension methods for the string class are shown in the IntelliSense window.

In the previous code samples, did you notice that when a line needed to be appended 
in the TextBox class called txtLog, the string passed in is concatenated with Environment.
NewLine? Wouldn’t it be great if TextBox had a WriteLine method? Of course it would! In this 
example, a helper class called TextBoxHelper is added, as follows.

Sample of Visual Basic Code

Imports System.Runtime.CompilerServices
 
Public Module TextBoxHelper 
    <Extension()> _ 
    Public Sub WriteLine(ByVal txt As TextBox, ByVal line As Object) 
        txt.AppendText(line & Environment.NewLine) 
    End Sub 
End Module

Sample of C# Code

using System.Windows.Forms;
 
    public static class TextBoxHelper 



	162	 CHAPTER 3	 Introducing LINQ

    { 
        public static void WriteLine(this TextBox txt, object line) 
        { 
            txt.AppendText(line + Environment.NewLine); 
        } 
    }

Using this new extension method on the TextBox class, you can change the code from the 
previous examples to use the string extension and the TextBox extension. This cleans up your 
code, as shown in the following example.

Sample of Visual Basic Code

Dim s As String = "abc123"
txtLog.WriteLine(s.IsNumeric()) 
s = "123" 
txtLog.WriteLine(s.IsNumeric())

Sample of C# Code

string s = "abc123";
txtLog.WriteLine(s.IsNumeric()); 
s = "123"; 
txtLog.WriteLine(s.IsNumeric());

Here are some rules for working with extension methods:

■	 Extension methods must be defined in a Visual Basic module or C# static class.

■	 The Visual Basic module or C# static class must be public.

■	 If you define an extension method for a type, and the type already has the same 
method, the type’s method is used and the extension method is ignored.

■	 In C#, the class and the extension methods must be static. Visual Basic modules and 
their methods are automatically static (Visual Basic Shared).

■	 The extension method works as long as it is in scope. This might require you to add an 
imports (C# using) statement for the namespace in which the extension method is to 
get access to the extension method.

■	 Although extension methods are implemented as static (Visual Basic Shared) methods, 
they are instance methods on the type you are extending. You cannot add static meth-
ods to a type with extension methods.

Query Extension Methods
Now that you’ve seen extension methods, you might be wondering why Microsoft needed 
extension methods to implement LINQ. To do so, Microsoft added extension methods to sev-
eral types, but most important are the methods that were added to the generic IEnumerable 
interface. Extension methods can be added to any type, which is interesting when you think 
of adding concrete extension methods (methods that have code) to interfaces, which are 
abstract (can’t have code).



	 Lesson 1: Understanding LINQ	 CHAPTER 3	 163

Consider the following example code, in which an array of strings called colors is created 
and assigned to a variable whose type is IEnumerable of string.

Sample of Visual Basic Code

Dim colors() =
{ 
    "Red", 
    "Brown", 
    "Orange", 
    "Yellow", 
    "Black", 
    "Green", 
    "White", 
    "Violet", 
    "Blue" 
} 
Dim colorEnumerable As IEnumerable(Of String) = colors

Sample of C# Code

string[] colors =
{ 
    "Red", 
    "Brown", 
    "Orange", 
    "Yellow", 
    "Black", 
    "Green", 
    "White", 
    "Violet", 
    "Blue" 
} 
IEnumerable<string> colorEnumerable = colors;

Because the colorEnumerable variable’s type is IEnumerable of string, when you type 
colorEnumerable and press the period key, the IntelliSense window is displayed and shows the 
list of methods available on the generic IEnumerable interface, as shown in Figure 3-4. These 
methods are known as query extension methods. In addition to the query extension methods 
that exist for IEnumerable, the generic IEnumerable interface also contains query extension 
methods.

Figure 3-4  This figure shows Extension methods on the IEnumerable interface.



	164	 CHAPTER 3	 Introducing LINQ

Some of these extension methods are mapped directly to Visual Basic and C# keywords 
used in LINQ (also known as LINQ operators). For example, you’ll find Where and OrderBy ex-
tension methods that map directly to the where and orderby (Visual Basic Order By) keywords. 

Microsoft added these extension methods to the IEnumerable interface by implementing 
the extension methods in a class called Enumerable, which is in the System.Linq namespace. 
This class is in an assembly called System.Core.dll to which most project templates already 
have a reference.

Note To  Use LINQ and Query Extension Methods

To use LINQ and query extension methods, your project must reference System.Core.dll, 
and, in your code, you must import (C# using) the System.Linq namespace.

The Enumerable class also has three static methods you might find useful: Empty, Range, 
and Repeat. Here is a short description of each of these methods.

■	 Empty  The generic Empty method produces a generic IEnumerable object with no 
elements.

■	 Range  The Range method produces a counting sequence of integer elements. This 
can be useful when you want to join a counter to another element sequence that 
should be numbered. This method takes two parameters: the starting number and the 
count of how many times to increment. If you pass 100,5 to this method, it will pro-
duce 100, 101, 102, 103, 104.

■	 Repeat  Use the generic Repeat method to produce an IEnumerable<int> object that 
has the same element repeated. This method accepts two parameters: Element and 
Count. The element parameter is the element to be repeated, and count specifies how 
many times to repeat the element.

The next section covers many of the query extension methods that are implemented on 
the Enumerable class to extend the generic IEnumerable interface.

All
The All method returns true when all the elements in the collection meet a specified criterion 
and returns false otherwise. Here is an example of checking whether all the cars returned 
from the GetCars method call have a year greater than 1960.

Sample of Visual Basic Code

txtLog.WriteLine(GetCars().All(Function(c) c.Year > 1960))

Sample of C# Code

txtLog.WriteLine(GetCars().All(c => c.Year > 1960));



	 Lesson 1: Understanding LINQ	 CHAPTER 3	 165

Any
The Any method returns true when at least one element in the collection meets the specified 
criterion and returns false otherwise. The following example checks whether there is a car that 
has a year of 1960 or earlier.

Sample of Visual Basic Code

txtLog.WriteLine(GetCars().Any(Function(c) c.Year <= 1960))

Sample of C# Code

txtLog.WriteLine(GetCars().Any(c => c.Year <= 1960));

AsEnumerable
To explain the AsEnumerable method, remember the rule mentioned earlier in this chapter for 
extension methods:

■	 If you define an extension method for a type, and the type already has the same 
method, the type’s method will be used, and the extension method is ignored.

Use the AsEnumerable method when you want to convert a collection that implements the 
generic IEnumerable interface but is currently cast as a different type, such as IQueryable, to 
the generic IEnumerable. This can be desirable when the type you are currently casting has a 
concrete implementation of one of the extension methods you would prefer to get called. 

For example, the Table class that represents a database table could have a Where method 
that takes the predicate argument and executes a SQL query to the remote database. If you 
don’t want to execute a call to the database remotely, you can use the AsEnumerable method 
to cast to IEnumerable and execute the corresponding Where extension method.

In this example, a class called MyStringList inherits from List Of String. This class has a 
single Where method whose method signature matches the Where method on the generic 
IEnumerable interface. The code in the Where method of the MyStringList class is returning all 
elements but, based on the predicate that’s passed in, is converting elements that match to 
uppercase.

Sample of Visual Basic Code

Public Class MyStringList
    Inherits List(Of String) 
    Public Function Where(ByVal filter As Predicate(Of String)) As IEnumerable(Of 
String) 
        Return Me.Select(Of String)(Function(s) IIf(filter(s), s.ToUpper(), s)) 
    End Function 
End Class

Sample of C# Code

public class MyStringList : List<string>
{ 
    public IEnumerable<string> Where(Predicate<string> filter)  
    { 
        return this.Select(s=>filter(s) ? s.ToUpper() : s); 



	166	 CHAPTER 3	 Introducing LINQ

    } 
}

When the compiler looks for a Where method on a MyStringList object, it finds an imple-
mentation in the type itself and thus does not need to look for any extension method. The 
following code shows an example:

Sample of Visual Basic Code

Dim strings As New MyStringList From {"orange", "apple", "grape", "pear"}
For Each item In strings.Where(Function(s) s.Length = 5) 
    txtLog.WriteLine(item) 
Next

Sample of C# Code

var strings = new MyStringList{"orange","apple","grape","pear"};
foreach (var item in strings.Where(s => s.Length == 5)) 
{ 
    txtLog.WriteLine(item); 
}

This produces four items in the output, but the apple and grape will be uppercase. To call 
the Where extension method, use AsEnumerable as follows:

Sample of Visual Basic Code

For Each item In strings.AsEnumerable().Where(Function(s) s.Length = 5)
    txtLog.WriteLine(item) 
Next

Sample of C# Code

foreach (var item in strings.AsEnumerable().Where(s => s.Length == 5))
{ 
    txtLog.WriteLine(item); 
}

This produces only two items, the apple and the grape, and they will not be uppercase.

AsParallel
See “Parallel LINQ (PLINQ)” later in this chapter.

AsQueryable
The AsQueryable extension method converts an IEnumerable object to an IQueryable object. 
This might be needed because the IQueryable interface is typically implemented by query 
providers to provide custom query capabilities such as passing a query back to a database for 
execution.

The IQueryable interface inherits the IEnumerable interface so the results of a query can 
be enumerated. Enumeration causes any code associated with an IQueryable object to be 
executed. In the following example, the AsQueryable method is executed, and information is 
now available for the provider.



	 Lesson 1: Understanding LINQ	 CHAPTER 3	 167

Sample of Visual Basic Code

Private Sub asQueryableToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) _ 
        Handles asQueryableToolStripMenuItem.Click 
    Dim strings As New MyStringList From {"orange", "apple", "grape", "pear"} 
    Dim querable = strings.AsQueryable() 
    txtLog.WriteLine("Element Type:{0}", querable.ElementType) 
    txtLog.WriteLine("Expression:{0}", querable.Expression) 
    txtLog.WriteLine("Provider:{0}", querable.Provider) 
End Sub

Sample of C# Code

private void asQueryableToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    IEnumerable<string> strings = new MyStringList  
        { "orange", "apple", "grape", "pear" }; 
    var querable = strings.AsQueryable(); 
    txtLog.WriteLine("Element Type:{0}", querable.ElementType); 
    txtLog.WriteLine("Expression:{0}", querable.Expression); 
    txtLog.WriteLine("Provider:{0}", querable.Provider); 
}

You can think of the AsQueryable method as the opposite of the AsEnumerable method. 

Average
The Average extension method is an aggregate extension method that can calculate an aver-
age of a numeric property that exists on the elements in your collection. In the following 
example, the Average method calculates the average year of the cars.

Sample of Visual Basic Code

Dim averageYear = GetCars().Average(Function(c) c.Year)
txtLog.WriteLine(averageYear)

Sample of C# Code

var averageYear = GetCars().Average(c => c.Year);
txtLog.WriteLine(averageYear);

Cast
Use the Cast extension method when you want to convert each of the elements in your 
source to a different type. The elements in the source must be coerced to the target type, or 
an InvalidCastException is thrown.

Note that the Cast method is not a filter. If you want to retrieve all the elements of a spe-
cific type, use the OfType extension method. The following example converts IEnumerable of 
Car to IEnumerable of Object.

Sample of Visual Basic Code

Private Sub castToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) Handles castToolStripMenuItem.Click 
    Dim cars As IEnumerable(Of Car) = GetCars() 



	168	 CHAPTER 3	 Introducing LINQ

    Dim objects As IEnumerable(Of Object) = cars.Cast(Of Object)() 
End Sub

Sample of C# Code

private void castToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    IEnumerable<Car> cars = GetCars(); 
    IEnumerable<Object> objects = cars.Cast<object>(); 
}

Concat
Use the Concat extension method to combine two sequences. This method is similar to the 
Union operator, but Union removes duplicates, whereas Concat does not remove duplicates.

The following example combines two collections to produce a result that contains all ele-
ments from both collections.

Sample of Visual Basic Code

Private Sub concatToolStripMenuItem_Click(ByVal sender As System.Object, _
       ByVal e As System.EventArgs) _ 
       Handles concatToolStripMenuItem.Click 
   Dim lastYearScores As Integer() = New Integer() {88, 56, 23, 99, 65} 
   Dim thisYearScores As Integer() = New Integer() {93, 78, 23, 99, 90} 
   Dim item As Integer 
   For Each item In lastYearScores.Concat(thisYearScores) 
       Me.txtLog.WriteLine(item) 
   Next 
End Sub

Sample of C# Code

private void concatToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    int[] lastYearScores = { 88, 56, 23, 99, 65 }; 
    int[] thisYearScores = { 93, 78, 23, 99, 90 }; 
 
    foreach (var item in lastYearScores.Concat(thisYearScores)) 
    { 
        txtLog.WriteLine(item); 
    } 
}

The result:

88
56 
23 
99 
65 
93 
78 
23 
99 
90



	 Lesson 1: Understanding LINQ	 CHAPTER 3	 169

Contains
The Contains extension method determines whether an element exists in the source. If the 
element has the same values for all the properties as one item in the source, Contains returns 
false for a reference type but true for a value type. The comparison is done by reference for 
classes and by value for structures. The following example code gets a collection of cars, cre-
ates one variable that references one of the cars in the collection, and then creates another 
variable that references a new car.

Sample of Visual Basic Code

Private Sub containsToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) _ 
        Handles containsToolStripMenuItem.Click 
    Dim cars = Me.GetCars 
    Dim c1 = cars.Item(2) 
    Dim c2 As New Car 
    txtLog.WriteLine(cars.Contains(c1)) 
    txtLog.WriteLine(cars.Contains(c2)) 
End Sub

Sample of C# Code

private void containsToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    var cars = GetCars(); 
    Car c1 = cars[2]; 
    Car c2 = new Car(); 
    txtLog.WriteLine(cars.Contains(c1)); 
    txtLog.WriteLine(cars.Contains(c2)); 
}

The result:

True
False

Count
The Count extension method returns the count of the elements in the source. The following 
code example returns the count of cars in the source collection:

Sample of Visual Basic Code

Private Sub countToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) _ 
        Handles countToolStripMenuItem.Click 
    Dim cars = Me.GetCars 
    txtLog.WriteLine(cars.Count()) 
End Sub

Sample of C# Code

private void countToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    var cars = GetCars(); 
    txtLog.WriteLine(cars.Count()); 
}



	170	 CHAPTER 3	 Introducing LINQ

The result:

5

DefaultIfEmpty
Use the DefaultIfEmpty extension method when you suspect that the source collection might 
not have any elements, but you want at least one element corresponding to the default value 
of the type (false for Boolean, 0 for numeric, and null for a reference type). This method re-
turns all elements in the source if there is at least one element in the source.

Sample of Visual Basic Code

Private Sub defaultIfEmptyToolStripMenuItem_Click(ByVal sender As System.Object, _
       ByVal e As System.EventArgs) _ 
       Handles defaultIfEmptyToolStripMenuItem.Click 
   Dim cars As New List(Of Car) 
   Dim oneNullCar = cars.DefaultIfEmpty() 
   For Each car In oneNullCar 
       txtLog.WriteLine(IIf((car Is Nothing), "Null Car", "Not Null Car")) 
   Next 
End Sub

Sample of C# Code

private void defaultIfEmptyToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    List<Car> cars = new List<Car>();  
    IEnumerable<Car> oneNullCar = cars.DefaultIfEmpty(); 
    foreach (var car in oneNullCar) 
    { 
        txtLog.WriteLine(car == null ? "Null Car" : "Not Null Car"); 
    } 
}

The result:

Null Car

Distinct
The Distinct extension method removes duplicate values in the source. The following code 
sample shows how a collection that has duplicate values is filtered by using the Distinct 
method. Matching to detect duplication follows the same rules as for Contains.

Sample of Visual Basic Code

Private Sub distinctToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) _ 
        Handles distinctToolStripMenuItem.Click 
    Dim scores = New Integer() {88, 56, 23, 99, 65, 93, 78, 23, 99, 90} 
    For Each score In scores.Distinct() 
        txtLog.WriteLine(score) 
    Next 
End Sub



	 Lesson 1: Understanding LINQ	 CHAPTER 3	 171

Sample of C# Code

private void distinctToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    int[] scores = { 88, 56, 23, 99, 65, 93, 78, 23, 99, 90 }; 
    foreach (var score in scores.Distinct()) 
    { 
        txtLog.WriteLine(score); 
    } 
}

The result:

88
56 
23 
99 
65 
93 
78 
90

ElementAt
Use the ElementAt extension method when you know you want to retrieve the nth ele-
ment in the source. If there is a valid element at that 0-based location, it’s returned or an 
ArgumentOutOfRangeException is thrown.

Sample of Visual Basic Code

Private Sub elementAtToolStripMenuItem_Click(ByVal sender As System.Object, _
            ByVal e As System.EventArgs) _ 
            Handles elementAtToolStripMenuItem.Click 
    Dim scores = New Integer() {88, 56, 23, 99, 65, 93, 78, 23, 99, 90} 
    txtLog.WriteLine(scores.ElementAt(4)) 
End Sub

Sample of C# Code

private void elementAtToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    int[] scores = { 88, 56, 23, 99, 65, 93, 78, 23, 99, 90 }; 
    txtLog.WriteLine(scores.ElementAt(4)); 
}

The result:

65

ElementAtOrDefault
The ElementAtOrDefault extension method is the same as the ElementAt extension method 
except that an exception is not thrown if the element doesn’t exist. Instead, the default value 
for the type of the collection is returned. The sample code attempts to access an element that 
doesn’t exist.



	172	 CHAPTER 3	 Introducing LINQ

Sample of Visual Basic Code

Private Sub elementAtOrDefaultToolStripMenuItem_Click( _
        ByVal sender As System.Object, _ 
        ByVal e As System.EventArgs) _ 
        Handles elementAtOrDefaultToolStripMenuItem.Click 
    Dim scores = New Integer() {88, 56, 23, 99, 65, 93, 78, 23, 99, 90} 
    txtLog.WriteLine(scores.ElementAtOrDefault(15)) 
End Sub

Sample of C# Code

private void elementAtOrDefaultToolStripMenuItem_Click(
    object sender, EventArgs e) 
{ 
    int[] scores = { 88, 56, 23, 99, 65, 93, 78, 23, 99, 90 }; 
    txtLog.WriteLine(scores.ElementAtOrDefault(15)); 
}

The result:

0

Except
When you have a sequence of elements and you want to find out which elements don’t exist 
(as usual, by reference for classes and by value for structures) in a second sequence, use the 
Except extension method. The following code sample returns the differences between two 
collections of integers.

Sample of Visual Basic Code

Private Sub exceptToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) _ 
    Handles exceptToolStripMenuItem.Click 
    Dim lastYearScores As Integer() = New Integer() {88, 56, 23, 99, 65} 
    Dim thisYearScores As Integer() = New Integer() {93, 78, 23, 99, 90} 
    Dim item As Integer 
    For Each item In lastYearScores.Except(thisYearScores) 
        Me.txtLog.WriteLine(item) 
    Next 
End Sub

Sample of C# Code

private void exceptToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    int[] lastYearScores = { 88, 56, 23, 99, 65 }; 
    int[] thisYearScores = { 93, 78, 23, 99, 90 }; 
 
    foreach (var item in lastYearScores.Except(thisYearScores)) 
    { 
        txtLog.WriteLine(item); 
    } 
}



	 Lesson 1: Understanding LINQ	 CHAPTER 3	 173

The result:

88
56 
65

First
When you have a sequence of elements and you just need the first element, use the First 
extension method. This method doesn’t care how many elements are in the sequence as long 
as there is at least one element. If no elements exist, an InvalidOperationException is thrown.

Sample of Visual Basic Code

Private Sub firstToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) _ 
        Handles firstToolStripMenuItem.Click 
    Dim scores = New Integer() {88, 56, 23, 99, 65, 93, 78, 23, 99, 90} 
    txtLog.WriteLine(scores.First()) 
End Sub

Sample of C# Code

private void firstToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    int[] scores = { 88, 56, 23, 99, 65, 93, 78, 23, 99, 90 }; 
    txtLog.WriteLine(scores.First()); 
}

The result:

88

FirstOrDefault
The FirstOrDefault extension method is the same as the First extension method except that if 
no elements exist in the source sequence, the default value of the sequence type is returned. 
This example will attempt to get the first element when there are no elements.

Sample of Visual Basic Code

Private Sub firstOrDefaultToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) _ 
        Handles firstOrDefaultToolStripMenuItem.Click 
    Dim scores = New Integer() {} 
    txtLog.WriteLine(scores.FirstOrDefault()) 
End Sub

Sample of C# Code

private void firstOrDefaultToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    int[] scores = { }; 
    txtLog.WriteLine(scores.FirstOrDefault()); 
}

The result:

0



	174	 CHAPTER 3	 Introducing LINQ

GroupBy
The GroupBy extension method returns a sequence of IGrouping<TKey, TElement> objects. 
This interface implements IEnumerable<TElement> and exposes a single Key property that 
represents the grouping key value. The following code sample groups cars by the Make 
property.

Sample of Visual Basic Code

Private Sub groupByToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) _ 
        Handles groupByToolStripMenuItem.Click 
    Dim cars = GetCars() 
    Dim query = cars.GroupBy(Function(c) c.Make) 
    For Each group As IGrouping(Of String, Car) In query 
        txtLog.WriteLine("Key:{0}", group.Key) 
        For Each c In group 
            txtLog.WriteLine("Car VIN:{0} Make:{1}", c.VIN, c.Make) 
        Next 
    Next 
End Sub

Sample of C# Code

private void groupByToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    var cars = GetCars(); 
    var query = cars.GroupBy(c => c.Make); 
    foreach (IGrouping<string,Car> group in query) 
    { 
        txtLog.WriteLine("Key:{0}", group.Key); 
        foreach (Car c in group) 
        { 
            txtLog.WriteLine("Car VIN:{0} Make:{1}", c.VIN, c.Make); 
        } 
    } 
}

The result:

Key:Ford
Car VIN:ABC123 Make:Ford 
Car VIN:DEF456 Make:Ford 
Key:BMW 
Car VIN:DEF123 Make:BMW 
Key:Audi 
Car VIN:ABC456 Make:Audi 
Key:VW 
Car VIN:HIJ123 Make:VW

Because there are two Fords, they are grouped together. 

The ToLookup extension method provides the same result except that GroupBy returns a 
deferred query, whereas ToLookup executes the query immediately, and iterating on the re-
sult afterward will not change if the source changes. This is equivalent to the ToList extension 
method introduced earlier in this chapter, but for IGrouping instead of for IEnumerable.



	 Lesson 1: Understanding LINQ	 CHAPTER 3	 175

GroupJoin
The GroupJoin extension method is similar to the SQL left outer join where it always produces 
one output for each input from the “outer” sequence. Any matching elements from the inner 
sequence are grouped into a collection that is associated with the outer element. In the fol-
lowing example code, a collection of Makes is provided and joined to the cars collection.

Sample of Visual Basic Code

Private Sub groupToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) Handles groupToolStripMenuItem.Click 
    Dim makes = New String() {"Audi", "BMW", "Ford", "Mazda", "VW"} 
    Dim cars = GetCars() 
 
    Dim query = makes.GroupJoin(cars, _ 
            Function(make) make, _ 
            Function(car) car.Make, _ 
            Function(make, innerCars) New With {.Make = make, .Cars = innerCars}) 
 
    For Each item In query 
        txtLog.WriteLine("Make: {0}", item.Make) 
        For Each car In item.Cars 
            txtLog.WriteLine("Car VIN:{0}, Model:{1}", car.VIN, car.Model) 
        Next 
    Next 
End Sub

Sample of C# Code

private void groupToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    var makes = new string[] { "Audi", "BMW", "Ford", "Mazda", "VW" }; 
    var cars = GetCars(); 
 
    var query = makes.GroupJoin(cars,  
        make => make, car => car.Make,  
        (make, innerCars) => new { Make = make, Cars = innerCars }); 
 
    foreach (var item in query) 
    { 
        txtLog.WriteLine("Make: {0}", item.Make); 
        foreach (var car in item.Cars) 
        { 
            txtLog.WriteLine("Car VIN:{0}, Model:{1}", car.VIN, car.Model); 
        } 
    } 
}

The result:

Make: Audi
Car VIN:ABC456, Model:TT 
Make: BMW 
Car VIN:DEF123, Model:Z-3 
Make: Ford 
Car VIN:ABC123, Model:F-250 
Car VIN:DEF456, Model:F-150 



	176	 CHAPTER 3	 Introducing LINQ

Make: Mazda 
Make: VW 
Car VIN:HIJ123, Model:Bug

Intersect
When you have a sequence of elements in which you want to find out which exist in a second 
sequence, use the Intersect extension method. The following code example returns the com-
mon elements that exist in two collections of integers.

Sample of Visual Basic Code

Private Sub intersectToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) Handles intersectToolStripMenuItem.Click 
    Dim lastYearScores As Integer() = New Integer() {88, 56, 23, 99, 65} 
    Dim thisYearScores As Integer() = New Integer() {93, 78, 23, 99, 90} 
    Dim item As Integer 
    For Each item In lastYearScores.Intersect(thisYearScores) 
        Me.txtLog.WriteLine(item) 
    Next 
End Sub

Sample of C# Code

private void intersectToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    int[] lastYearScores = { 88, 56, 23, 99, 65 }; 
    int[] thisYearScores = { 93, 78, 23, 99, 90 }; 
 
    foreach (var item in lastYearScores.Intersect(thisYearScores)) 
    { 
        txtLog.WriteLine(item); 
    } 
}

The result:

23
99

Join
The Join extension method is similar to the SQL inner join, by which it produces output only 
for each input from the outer sequence when there is a match to the inner sequence. For 
each matching element in the inner sequence, a resulting element is created. In the following 
sample code, a collection of Makes is provided and joined to the cars collection.

Sample of Visual Basic Code

Private Sub joinToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) Handles joinToolStripMenuItem.Click 
    Dim makes = New String() {"Audi", "BMW", "Ford", "Mazda", "VW"} 
    Dim cars = GetCars() 
 
    Dim query = makes.Join(cars, _ 
        Function(make) make, _ 
        Function(car) car.Make, _ 



	 Lesson 1: Understanding LINQ	 CHAPTER 3	 177

        Function(make, innerCar) New With {.Make = make, .Car = innerCar}) 
    For Each item In query 
        txtLog.WriteLine("Make: {0}, Car:{1} {2} {3}", 
            item.Make, item.Car.VIN, item.Car.Make, item.Car.Model) 
    Next 
End Sub

Sample of C# Code

private void joinToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    var makes = new string[] { "Audi", "BMW", "Ford", "Mazda", "VW" }; 
    var cars = GetCars(); 
 
    var query = makes.Join(cars, 
        make => make, car => car.Make, 
        (make, innerCar) => new { Make = make, Car = innerCar }); 
 
    foreach (var item in query) 
    { 
        txtLog.WriteLine("Make: {0}, Car:{1} {2} {3}",  
            item.Make, item.Car.VIN, item.Car.Make, item.Car.Model); 
    } 
}

The result:

Make: Audi, Car:ABC456 Audi TT
Make: BMW, Car:DEF123 BMW Z-3 
Make: Ford, Car:ABC123 Ford F-250 
Make: Ford, Car:DEF456 Ford F-150 
Make: VW, Car:HIJ123 VW Bug

exam tip

For the exam, expect to be tested on the various ways to join sequences.

Last
When you want to retrieve the last element in a sequence, use the Last extension method. 
This method throws an InvalidOperationException if there are no elements in the sequence. 
The following sample code retrieves the last element.

Sample of Visual Basic Code

Private Sub lastToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) Handles lastToolStripMenuItem.Click 
    Dim scores = New Integer() {88, 56, 23, 99, 65, 93, 78, 23, 99, 90} 
    txtLog.WriteLine(scores.Last()) 
End Sub

Sample of C# Code

private void lastToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    int[] scores = { 88, 56, 23, 99, 65, 93, 78, 23, 99, 90 }; 



	178	 CHAPTER 3	 Introducing LINQ

    txtLog.WriteLine(scores.Last()); 
}

The result:

90

LastOrDefault
The LastOrDefault extension method is the same as the Last extension method except that if 
no elements exist in the source sequence, the default value of the sequence type is returned. 
This example will attempt to get the last element when there are no elements.

Sample of Visual Basic Code

Private Sub lastOrDefaultToolStripMenuItem_Click(ByVal sender As System.Object, _
       ByVal e As System.EventArgs) Handles lastOrDefaultToolStripMenuItem.Click 
   Dim scores = New Integer() {} 
   txtLog.WriteLine(scores.LastOrDefault()) 
End Sub

Sample of C# Code

private void lastOrDefaultToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    int[] scores = { }; 
    txtLog.WriteLine(scores.LastOrDefault()); 
}

The result:

0

LongCount
The LongCount extension method is the same as the Count extension method except that 
Count returns a 32-bit integer, and LongCount returns a 64-bit integer.

Sample of Visual Basic Code

Private Sub longCountToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) Handles longCountToolStripMenuItem.Click 
    Dim cars = Me.GetCars 
    txtLog.WriteLine(cars.LongCount()) 
End Sub

Sample of C# Code

private void longCountToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    var cars = GetCars(); 
    txtLog.WriteLine(cars.LongCount()); 
}

The result:

5



	 Lesson 1: Understanding LINQ	 CHAPTER 3	 179

Max
When you’re working with a non-empty sequence of values and you want to determine which 
element is greatest, use the Max extension method. The Max extension has several overloads, 
but the following code sample shows two of the more common overloads that demonstrate 
the Max extension method’s capabilities.

Sample of Visual Basic Code

Private Sub maxToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) Handles maxToolStripMenuItem.Click 
    Dim scores = New Integer() {88, 56, 23, 99, 65, 93, 78, 23, 99, 90} 
    txtLog.WriteLine(scores.Max()) 
 
      Dim cars = GetCars() 
      txtLog.WriteLine(cars.Max(Function(c) c.Year)) 
End Sub

Sample of C# Code

private void maxToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    int[] scores = { 88, 56, 23, 99, 65, 93, 78, 23, 99, 90 }; 
    txtLog.WriteLine(scores.Max()); 
 
    var cars = GetCars(); 
    txtLog.WriteLine(cars.Max(c => c.Year)); 
}

The result:

99

2008

In this example, the parameterless overload is called on a collection of integers and returns 
the maximum value of 99. The next overload example enables you to provide a selector that 
specifies a property that finds the maximum value.

Min
When you’re working with a non-empty sequence of values and you want to determine 
which element is the smallest, use the Min extension method, as shown in the following code 
sample.

Sample of Visual Basic Code

Private Sub maxToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) Handles maxToolStripMenuItem.Click 
    Dim scores = New Integer() {88, 56, 23, 99, 65, 93, 78, 23, 99, 90} 
    txtLog.WriteLine(scores.Min()) 
End Sub

Sample of C# Code

private void maxToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    int[] scores = { 88, 56, 23, 99, 65, 93, 78, 23, 99, 90 }; 



	180	 CHAPTER 3	 Introducing LINQ

    txtLog.WriteLine(scores.Min()); 
}

The result:

23

OfType
The OfType extension method is a filtering method that returns only objects that can be type 
cast to a specific type. The following sample code retrieves just the integers from the object 
collection.

Sample of Visual Basic Code

Private Sub ofTypeToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) Handles ofTypeToolStripMenuItem.Click 
    Dim items = New Object() {55, "Hello", 22, "Goodbye"} 
    For Each intItem In items.OfType(Of Integer)() 
        txtLog.WriteLine(intItem) 
    Next 
End Sub

Sample of C# Code

private void ofTypeToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    object[] items = new object[] { 55, "Hello", 22, "Goodbye" }; 
    foreach (var intItem in items.OfType<int>()) 
    { 
        txtLog.WriteLine(intItem); 
    } 
}

The result:

55
22

OrderBy, OrderByDescending, ThenBy, and ThenByDescending
When you want to sort the elements in a sequence, you can use the OrderBy or 
OrderByDescending extension methods, followed by the ThenBy and ThenByDescending ex-
tension methods. These extension methods are nonstreaming, which means that all elements 
in the sequence must be evaluated before any output can be produced. Most extension 
methods are streaming, which means that each element can be evaluated and potentially out-
put without having to evaluate all elements.

All these extension methods return an IOrderedEnumerable<T> object, which inherits 
from IEnumerable<T> and enables the ThenBy and ThenByDescending operators. ThenBy 
and ThenByDescending are extension methods on IOrderedEnumerable<T> instead of on 
IEnumerable<T>, which the other extension methods extend. This can sometimes create un-
expected errors when using the var keyword and type inference. The following code example 
creates a list of cars and then sorts them by make, model descending, and year.



	 Lesson 1: Understanding LINQ	 CHAPTER 3	 181

Sample of Visual Basic Code

Private Sub orderByToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) Handles orderByToolStripMenuItem.Click 
    Dim cars = GetCars().OrderBy(Function(c) c.Make) _ 
                        .ThenByDescending(Function(c) c.Model) _ 
                        .ThenBy(Function(c) c.Year) 
    For Each item In cars 
        txtLog.WriteLine("Car VIN:{0} Make:{1} Model:{2} Year:{3}", _ 
        item.VIN, item.Make, item.Model, item.Year) 
    Next 
End Sub

Sample of C# Code

private void orderByToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    var cars = GetCars().OrderBy(c=>c.Make) 
                            .ThenByDescending(c=>c.Model) 
                            .ThenBy(c=>c.Year); 
    foreach (var item in cars) 
    { 
        txtLog.WriteLine("Car VIN:{0} Make:{1} Model:{2} Year:{3}", 
            item.VIN, item.Make, item.Model, item.Year); 
    } 
}

The result:

Car VIN:ABC456 Make:Audi Model:TT Year:2008
Car VIN:DEF123 Make:BMW Model:Z-3 Year:2005 
Car VIN:ABC123 Make:Ford Model:F-250 Year:2000 
Car VIN:DEF456 Make:Ford Model:F-150 Year:1998 
Car VIN:HIJ123 Make:VW Model:Bug Year:1956

Reverse
The Reverse extension method is an ordering mechanism that reverses the order of the 
sequence elements. This code sample creates a collection of integers but displays them in 
reverse order.

Sample of Visual Basic Code

Private Sub reverseToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) Handles reverseToolStripMenuItem.Click 
    Dim scores = {88, 56, 23, 99, 65, 93, 78, 23, 99, 90} 
 
    For Each item In scores.Reverse() 
        txtLog.WriteLine(item) 
    Next 
End Sub

Sample of C# Code

private void reverseToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    int[] scores = { 88, 56, 23, 99, 65, 93, 78, 23, 99, 90 }; 
    foreach (var item in scores.Reverse()) 



	182	 CHAPTER 3	 Introducing LINQ

    { 
        txtLog.WriteLine(item); 
    } 
}

The result:

90
99 
23 
78 
93 
65 
99 
23 
56 
88

Select
The Select extension method returns one output element for each input element. Although 
Select returns one output for each input, the Select operator also enables you to perform a 
projection to a new type of element. This conversion or mapping mechanism plays an impor-
tant role in most LINQ queries.

In the following example, a collection of Tuple types is queried to retrieve all the elements 
whose make (Tuple.item2) is Ford, but the Select extension method transforms these Tuple 
types into Car objects.

Sample of Visual Basic Code

Private Sub selectToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) Handles selectToolStripMenuItem.Click 
    Dim vehicles As New List(Of Tuple(Of String, String, Integer)) From { _ 
            Tuple.Create(Of String, String, Integer)("123", "VW", 1999), _ 
            Tuple.Create(Of String, String, Integer)("234", "Ford", 2009), _ 
            Tuple.Create(Of String, String, Integer)("567", "Audi", 2005), _ 
            Tuple.Create(Of String, String, Integer)("678", "Ford", 2003), _ 
            Tuple.Create(Of String, String, Integer)("789", "Mazda", 2003), _ 
            Tuple.Create(Of String, String, Integer)("999", "Ford", 1965) _ 
            } 
    Dim fordCars = vehicles.Where(Function(v) v.Item2 = "Ford") _ 
            .Select(Function(v) New Car With { _ 
                                               .VIN = v.Item1, _ 
                                               .Make = v.Item2, _ 
                                               .Year = v.Item3 _ 
                                         }) 
    For Each item In fordCars 
        txtLog.WriteLine("Car VIN:{0} Make:{1} Year:{2}", _ 
                         item.VIN, item.Make, item.Year) 
    Next 
End Sub

Sample of C# Code

private void selectToolStripMenuItem_Click(object sender, EventArgs e)



	 Lesson 1: Understanding LINQ	 CHAPTER 3	 183

{ 
    var vehicles = new List<Tuple<string,string,int>> 
    { 
        Tuple.Create("123", "VW", 1999), 
        Tuple.Create("234","Ford",2009), 
        Tuple.Create("567","Audi", 2005), 
        Tuple.Create("678","Ford", 2003), 
        Tuple.Create("789","Mazda", 2003), 
        Tuple.Create("999","Ford",1965) 
    }; 
 
    var fordCars = vehicles 
                        .Where(v=>v.Item2=="Ford") 
                        .Select(v=>new Car 
                        { 
                            VIN=v.Item1,  
                            Make=v.Item2,  
                            Year=v.Item3 
                        }); 
    foreach (var item in fordCars ) 
    { 
        txtLog.WriteLine("Car VIN:{0} Make:{1} Year:{2}", 
              item.VIN, item.Make, item.Year); 
    } 
}

The result:

Car VIN:234 Make:Ford Year:2009
Car VIN:678 Make:Ford Year:2003 
Car VIN:999 Make:Ford Year:1965

SelectMany
When you use the Select extension method, each element from the input sequence can pro-
duce only one element in the output sequence. The SelectMany extension method projects 
a single output element into many output elements, so you can use the SelectMany method 
to perform a SQL inner join, but you can also use it when you are working with a collection 
of collections, and you are querying the outer collection but need to produce an output ele-
ment for each element in the inner collection.

In the following code sample is a list of repairs in which each element in the repairs col-
lection is a Tuple that contains the VIN of the vehicle as item1 and a list of repairs as item2. 
SelectMany expands each Tuple into a sequence of repairs. Select projects each repair and the 
associated VIN into an anonymous type instance.

Sample of Visual Basic Code

Private Sub selectManyToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) Handles selectManyToolStripMenuItem.Click 
    Dim repairs = New List(Of Tuple(Of String, List(Of String))) From 
            { 
                Tuple.Create("ABC123", 
                    New List(Of String) From {"Rotate Tires", "Change oil"}), 
                Tuple.Create("DEF123", 



	184	 CHAPTER 3	 Introducing LINQ

                    New List(Of String) From {"Fix Flat", "Wash Vehicle"}), 
                Tuple.Create("ABC456", 
                    New List(Of String) From {"Alignment", "Vacuum", "Wax"}), 
                Tuple.Create("HIJ123", 
                    New List(Of String) From {"Spark plugs", "Air filter"}), 
                Tuple.Create("DEF456", 
                    New List(Of String) From {"Wiper blades", "PVC valve"}) 
            } 
    Dim query = repairs.SelectMany(Function(t) _ 
        t.Item2.Select(Function(r) New With {.VIN = t.Item1, .Repair = r})) 
 
    For Each item In query 
        txtLog.WriteLine("VIN:{0} Repair:{1}", item.VIN, item.Repair) 
    Next 
End Sub

Sample of C# Code

private void selectManyToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    var repairs = new List<Tuple<string, List<string>>> 
                { 
                    Tuple.Create("ABC123",  
                        new List<string>{"Rotate Tires","Change oil"}), 
                    Tuple.Create("DEF123",  
                        new List<string>{"Fix Flat","Wash Vehicle"}), 
                    Tuple.Create("ABC456",  
                        new List<string>{"Alignment","Vacuum", "Wax"}), 
                    Tuple.Create("HIJ123",  
                        new List<string>{"Spark plugs","Air filter"}), 
                    Tuple.Create("DEF456",  
                        new List<string>{"Wiper blades","PVC valve"}), 
                }; 
    var query = repairs.SelectMany(t =>  
        t.Item2.Select(r => new { VIN = t.Item1, Repair = r })); 
 
    foreach (var item in query) 
    { 
        txtLog.WriteLine("VIN:{0} Repair:{1}", item.VIN, item.Repair); 
    } 
}

The result:

VIN:ABC123 Repair:Rotate Tires
VIN:ABC123 Repair:Change oil 
VIN:DEF123 Repair:Fix Flat 
VIN:DEF123 Repair:Wash Vehicle 
VIN:ABC456 Repair:Alignment 
VIN:ABC456 Repair:Vacuum 
VIN:ABC456 Repair:Wax 
VIN:HIJ123 Repair:Spark plugs 
VIN:HIJ123 Repair:Air filter 
VIN:DEF456 Repair:Wiper blades 
VIN:DEF456 Repair:PVC valve



	 Lesson 1: Understanding LINQ	 CHAPTER 3	 185

SequenceEqual
One scenario you might run into is when you have two sequences and want to see whether 
they contain the same elements in the same order. The SequenceEqual extension method 
can perform this task. It walks through two sequences and compares the elements inside for 
equality. You can also override the equality test by providing an IEqualityComparer object as 
a parameter. The following example code compares two sequences several times and displays 
the result.

Sample of Visual Basic Code

Private Sub sequenceEqualToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) Handles sequenceEqualToolStripMenuItem.Click 
    Dim lastYearScores = New List(Of Integer) From {93, 78, 23, 99, 91} 
    Dim thisYearScores = New List(Of Integer) From {93, 78, 23, 99, 90} 
    txtLog.WriteLine(lastYearScores.SequenceEqual(thisYearScores)) 
    lastYearScores(4) = 90 
    txtLog.WriteLine(lastYearScores.SequenceEqual(thisYearScores)) 
    thisYearScores.Add(85) 
    txtLog.WriteLine(lastYearScores.SequenceEqual(thisYearScores)) 
    lastYearScores.Add(85) 
    txtLog.WriteLine(lastYearScores.SequenceEqual(thisYearScores)) 
    lastYearScores.Add(75) 
    txtLog.WriteLine(lastYearScores.SequenceEqual(thisYearScores)) 
End Sub

Sample of C# Code

private void sequenceEqualToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    var lastYearScores = new List<int>{ 93, 78, 23, 99, 91 }; 
    var thisYearScores = new List<int>{ 93, 78, 23, 99, 90 }; 
    txtLog.WriteLine(lastYearScores.SequenceEqual(thisYearScores)); 
    lastYearScores[4] = 90; 
    txtLog.WriteLine(lastYearScores.SequenceEqual(thisYearScores)); 
    thisYearScores.Add(85); 
    txtLog.WriteLine(lastYearScores.SequenceEqual(thisYearScores)); 
    lastYearScores.Add(85); 
    txtLog.WriteLine(lastYearScores.SequenceEqual(thisYearScores)); 
    lastYearScores.Add(75); 
    txtLog.WriteLine(lastYearScores.SequenceEqual(thisYearScores)); 
}

The result:

False
True 
False 
True 
False

Single
The Single extension method should be used when you have a collection of one element and 
want to convert the generic IEnumerable interface to the single element. If the sequence con-
tains more than one element or no elements, an exception is thrown. The following example 



	186	 CHAPTER 3	 Introducing LINQ

code queries to retrieve the car with VIN HIJ123 and then uses the Single extension method 
to convert IEnumerable to the single Car.

Sample of Visual Basic Code

Private Sub singleToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) Handles singleToolStripMenuItem.Click 
    Dim cars = GetCars() 
    Dim myCar As Car = cars.Where(Function(c) c.VIN = "HIJ123").Single() 
    txtLog.WriteLine("Car VIN:{0}, Make:{1}, Model:{2}", _ 
        myCar.VIN, myCar.Make, myCar.Model) 
End Sub

Sample of C# Code

private void singleToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    var cars = GetCars(); 
    Car myCar = cars.Where(c => c.VIN == "HIJ123").Single(); 
    txtLog.WriteLine("Car VIN:{0}, Make:{1}, Model:{2}", 
        myCar.VIN, myCar.Make, myCar.Model); 
}

The result:

Car VIN:HIJ123, Make:VW, Model:Bug

SingleOrDefault
The SingleOrDefault extension method works like the Single extension method except 
that it doesn’t throw an exception if no elements are in the sequence. It still throws an 
InvalidOperationException if more than one element exists in the sequence. The following 
sample code attempts to locate a car with an invalid VIN, so no elements exist in the se-
quence; therefore, the myCar variable will be Nothing (C# null).

Sample of Visual Basic Code

Private Sub singleOrDefaultToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) Handles singleOrDefaultToolStripMenuItem.Click 
    Dim cars = GetCars() 
    Dim myCar = cars.Where(Function(c) c.VIN = "XXXXXX").SingleOrDefault() 
    txtLog.WriteLine(myCar Is Nothing) 
End Sub

Sample of C# Code

private void singleOrDefaultToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    var cars = GetCars(); 
    Car myCar = cars.Where(c => c.VIN == "XXXXXX").SingleOrDefault(); 
    txtLog.WriteLine(myCar == null); 
}

The result:

True



	 Lesson 1: Understanding LINQ	 CHAPTER 3	 187

Skip
The Skip extension method ignores, or jumps over, elements in the source sequence. This 
method, when combined with the Take extension method, typically produces paged result-
sets to the GUI. The following sample code demonstrates the use of the Skip extension 
method when sorting scores and then skipping over the lowest score to display the rest of the 
scores.

Sample of Visual Basic Code

Private Sub skipToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) Handles skipToolStripMenuItem.Click 
    Dim scores = {88, 56, 23, 99, 65, 93, 78, 23, 99, 90} 
    For Each score In scores.OrderBy(Function(i) i).Skip(1) 
        txtLog.WriteLine(score) 
    Next 
End Sub

Sample of C# Code

private void skipToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    int[] scores = { 88, 56, 23, 99, 65, 93, 78, 23, 99, 90 }; 
    foreach (var score in scores.OrderBy(i=>i).Skip(1)) 
    { 
        txtLog.WriteLine(score); 
    } 
}

The result:

56
65 
78 
88 
90 
93 
99 
99

In this example, the score of 23 is missing because the Skip method jumped over that ele-
ment.

SkipWhile
The SkipWhile extension method is similar to the Skip method except SkipWhile accepts a 
predicate that takes an element of the collection and returns a Boolean value to determine 
when to stop skipping over. The following example code skips over the scores as long as the 
score is less than 80.

Sample of Visual Basic Code

Private Sub skipWhileToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) Handles skipWhileToolStripMenuItem.Click 
    Dim scores = {88, 56, 23, 99, 65, 93, 78, 23, 99, 90} 
    For Each score In scores.OrderBy(Function(i) i).SkipWhile(Function(s) s < 80) 



 188 CHAPTER 3 Introducing LINQ

        txtLog.WriteLine(score)
    Next
End Sub 

 Sample of C# Code 

 private void skipWhileToolStripMenuItem_Click(object sender, EventArgs e)
{
    int[] scores = { 88, 56, 23, 99, 65, 93, 78, 23, 99, 90 };
    foreach (var score in scores.OrderBy(i => i).SkipWhile(s => s < 80))
    {
        txtLog.WriteLine(score);
    }
} 

 The result: 

 88
90
93
99
99 

 Note that if the scores were not sorted, the Skip method would not skip over any elements 
because the fi rst element (88) is greater than 80. 

 SUM 
 The Sum extension method is an aggregate function that can loop over the source sequence 
and calculate a total sum based on the lambda expression passed into this method to select 
the property to be summed. If the sequence is IEnumerable of a numeric type, Sum can be 
executed without a lambda expression. The following example code displays the sum of all 
the scores. 

 Sample of Visual Basic Code 

 Private Sub sumToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) Handles sumToolStripMenuItem.Click
    Dim scores = {88, 56, 23, 99, 65, 93, 78, 99, 90}
    txtLog.WriteLine(scores.Sum())
End Sub 

 Sample of C# Code 

 private void sumToolStripMenuItem_Click(object sender, EventArgs e)
{
    int[] scores = { 88, 56, 23, 99, 65, 93, 78, 99, 90 };
    txtLog.WriteLine(scores.Sum());
} 

 The result: 

 714 



	 Lesson 1: Understanding LINQ	 CHAPTER 3	 189

Take
The Take extension method retrieves a portion of the sequence. You can specify how many 
elements you want with this method. It is commonly used with the Skip method to provide 
paging ability for data being displayed in the GUI. If you try to take more elements than are 
available, the Take method gracefully returns whatever it can without throwing an exception. 
The following code sample starts with a collection of integers called scores, sorts the collec-
tion, skips three elements, and then takes two elements.

Sample of Visual Basic Code

Private Sub takeToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) Handles takeToolStripMenuItem.Click 
    Dim scores = {88, 56, 23, 99, 65, 93, 78, 23, 99, 90} 
    For Each item In scores.OrderBy(Function(i) i).Skip(3).Take(2) 
        txtLog.WriteLine(item) 
    Next 
End Sub

Sample of C# Code

private void takeToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    int[] scores = { 88, 56, 23, 99, 65, 93, 78, 23, 99, 90 }; 
    foreach (var item in scores.OrderBy(i => i).Skip(3).Take(2)) 
    { 
        txtLog.WriteLine(item); 
    } 
}

The results:

65
78

TakeWhile
Just as the SkipWhile extension method enables you to skip while the provided predicate 
returns true, the TakeWhile extension method enables you to retrieve elements from your 
sequence as long as the provided predicate returns true. 

Sample of Visual Basic Code

Private Sub takeWhileToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) Handles takeWhileToolStripMenuItem.Click 
    Dim scores = {88, 56, 23, 99, 65, 93, 78, 23, 99, 90} 
    For Each item In scores.OrderBy(Function(i) i).TakeWhile(Function(s) s < 80) 
        txtLog.WriteLine(item) 
    Next 
End Sub

Sample of C# Code

private void takeWhileToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    int[] scores = { 88, 56, 23, 99, 65, 93, 78, 23, 99, 90 }; 



	190	 CHAPTER 3	 Introducing LINQ

    foreach (var item in scores.OrderBy(i => i).TakeWhile(s => s < 80)) 
    { 
        txtLog.WriteLine(item); 
    } 
}

The result:

23
23 
56 
65 
78

ToArray
The ToArray extension method executes the deferred query and converts the result to a con-
crete array of the original sequence item’s type. The following code creates a query to retrieve 
the even scores and converts the deferred query to an array of integers called evenScores. The 
third score is changed to two (even) and, when the even scores are displayed, the two is not in 
the array.

Sample of Visual Basic Code

Private Sub toArrayToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) Handles toArrayToolStripMenuItem.Click 
    Dim scores = {88, 56, 23, 99, 65, 93, 78, 23, 99, 90} 
    Dim evenScores = scores.Where(Function(s) s Mod 2 = 0).ToArray() 
    scores(2) = 2 
    For Each item In evenScores 
        txtLog.WriteLine(item) 
    Next 
End Sub

Sample of C# Code

private void toArrayToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    int[] scores = { 88, 56, 23, 99, 65, 93, 78, 23, 99, 90 }; 
    var evenScores = scores.Where(s => s % 2 == 0).ToArray(); 
    scores[2] = 2; 
    foreach (var item in evenScores) 
    { 
        txtLog.WriteLine(item); 
    } 
}

The result:

88
56 
78 
90



	 Lesson 1: Understanding LINQ	 CHAPTER 3	 191

ToDictionary
The ToDictionary extension method executes the deferred query and converts the result to a 
dictionary with a key type inferred from the return type of the lambda passed as a parameter. 
The item associated with a dictionary entry is the value from the enumeration that computes 
the key. 

The following code creates a query to retrieve the cars and converts them to a dictionary 
of cars with the string VIN used as the lookup key and assigns the dictionary to a carsByVin 
variable. The car with a VIN of HIJ123 is retrieved and displayed.

Sample of Visual Basic Code

Private Sub toDictionaryToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) Handles toDictionaryToolStripMenuItem.Click 
    Dim cars = GetCars() 
    Dim carsByVin = cars.ToDictionary(Function(c) c.VIN) 
    Dim myCar = carsByVin("HIJ123") 
    txtLog.WriteLine("Car VIN:{0}, Make:{1}, Model:{2} Year:{3}", _ 
        myCar.VIN, myCar.Make, myCar.Model, myCar.Year) 
End Sub

Sample of C# Code

private void toDictionaryToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    var cars = GetCars(); 
    var carsByVin = cars.ToDictionary(c=>c.VIN); 
    Car myCar = carsByVin["HIJ123"]; 
    txtLog.WriteLine("Car VIN:{0}, Make:{1}, Model:{2} Year:{3}", 
        myCar.VIN, myCar.Make, myCar.Model, myCar.Year); 
}

The result:

Car VIN:HIJ123, Make:VW, Model:Bug Year:1956

ToList
The ToList extension method executes the deferred query and stores each item in a List<T> 
where T is the same type as the original sequence. The following code creates a query to re-
trieve the even scores and converts the deferred query to a list of integers called evenScores. 
The third score is changed to two (even) and, when the even scores are displayed, the two is 
not in the list.

Sample of Visual Basic Code

Private Sub toListToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) Handles toListToolStripMenuItem.Click 
    Dim scores = {88, 56, 23, 99, 65, 93, 78, 23, 99, 90} 
    Dim evenScores = scores.Where(Function(s) s Mod 2 = 0).ToList() 
    scores(2) = 2 
    For Each item In evenScores 
        txtLog.WriteLine(item) 
    Next 
End Sub



	192	 CHAPTER 3	 Introducing LINQ

Sample of C# Code

private void toListToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    int[] scores = { 88, 56, 23, 99, 65, 93, 78, 23, 99, 90 }; 
    var evenScores = scores.Where(s => s % 2 == 0).ToList(); 
    scores[2] = 2; 
    foreach (var item in evenScores) 
    { 
        txtLog.WriteLine(item); 
    } 
}

The result:

88
56 
78 
90

ToLookup
The ToLookup extension method returns ILookup<TKey, TElement>—that is, a sequence of 
IGrouping<TKey, TElement> objects. This interface specifies that the grouping object exposes 
a Key property that represents the grouping value. This method creates a new collection 
object, thus providing a frozen view. Changing the original source collection will not affect 
this collection. The following code sample groups cars by the Make property. After ToLookup 
is called, the original collection is cleared, but it has no impact on the collection produced by 
the ToLookup method.

Sample of Visual Basic Code

Private Sub toLookupToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) Handles toLookupToolStripMenuItem.Click 
    Dim cars = GetCars() 
    Dim query = cars.ToLookup(Function(c) c.Make) 
    cars.Clear() 
    For Each group As IGrouping(Of String, Car) In query 
        txtLog.WriteLine("Key:{0}", group.Key) 
        For Each c In group 
            txtLog.WriteLine("Car VIN:{0} Make:{1}", c.VIN, c.Make) 
        Next 
    Next 
End Sub

Sample of C# Code

private void toLookupToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    var cars = GetCars(); 
    var query = cars.ToLookup(c => c.Make); 
    cars.Clear(); 
    foreach (IGrouping<string, Car> group in query) 
    { 
        txtLog.WriteLine("Key:{0}", group.Key); 
        foreach (Car c in group) 



	 Lesson 1: Understanding LINQ	 CHAPTER 3	 193

        { 
            txtLog.WriteLine("Car VIN:{0} Make:{1}", c.VIN, c.Make); 
        } 
    } 
}

The result:

Key:Ford
Car VIN:ABC123 Make:Ford 
Car VIN:DEF456 Make:Ford 
Key:BMW 
Car VIN:DEF123 Make:BMW 
Key:Audi 
Car VIN:ABC456 Make:Audi 
Key:VW 
Car VIN:HIJ123 Make:VW

Because there are two Fords, they are grouped together. The GroupBy extension method 
provides the same result except that GroupBy is a deferred query, and ToLookup executes 
the query immediately to return a frozen sequence that won’t change even if the original 
sequence is updated.

Union
Sometimes, you want to combine two collections and work with the result. Be careful; this 
might not be the correct solution. You might want to use the Concat extension method, which 
fulfills the requirements of this scenario. The Union extension method combines the elements 
from two sequences but outputs the distinct elements. That is, it filters out duplicates. This is 
equivalent to executing Concat and then Distinct. The following code example combines two 
integer arrays by using the Union method and then sorts the result.

Sample of Visual Basic Code

Private Sub unionToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) Handles unionToolStripMenuItem.Click 
    Dim lastYearScores = {88, 56, 23, 99, 65, 56} 
    Dim thisYearScores = {93, 78, 23, 99, 90, 99} 
    Dim allScores = lastYearScores.Union(thisYearScores) 
    For Each item In allScores.OrderBy(Function(s) s) 
        txtLog.WriteLine(item) 
    Next 
End Sub

Sample of C# Code

private void unionToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    int[] lastYearScores = { 88, 56, 23, 99, 65, 56 }; 
    int[] thisYearScores = { 93, 78, 23, 99, 90, 99 }; 
    var allScores = lastYearScores.Union(thisYearScores); 
    foreach (var item in allScores.OrderBy(s=>s)) 
    { 
        txtLog.WriteLine(item); 
    } 
}



	194	 CHAPTER 3	 Introducing LINQ

The result:

23
56 
65 
78 
88 
90 
93 
99

Where
The Where extension method enables you to filter a source sequence. This method ac-

cepts a predicate lambda expression. When working with relational databases, this extension 
method typically translates to a SQL WHERE clause. The following sample code demonstrates 
the use of the Where method with a sequence of cars that are filtered on Make being equal 
to Ford.

Sample of Visual Basic Code

Private Sub whereToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) Handles whereToolStripMenuItem.Click 
    Dim cars = GetCars() 
    For Each myCar In cars.Where(Function(c) c.Make = "Ford") 
        txtLog.WriteLine("Car VIN:{0}, Make:{1}, Model:{2} Year:{3}", _ 
            myCar.VIN, myCar.Make, myCar.Model, myCar.Year) 
    Next 
End Sub

Sample of C# Code

private void whereToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    var cars = GetCars(); 
    foreach (var myCar in cars.Where(c => c.Make == "Ford")) 
    { 
        txtLog.WriteLine("Car VIN:{0}, Make:{1}, Model:{2} Year:{3}", 
            myCar.VIN, myCar.Make, myCar.Model, myCar.Year); 
    } 
}

The result:

Car VIN:ABC123, Make:Ford, Model:F-250 Year:2000
Car VIN:DEF456, Make:Ford, Model:F-150 Year:1998

Zip
The Zip extension method merges two sequences. This is neither Union nor Concat because 
the resulting element count is equal to the minimum count of the two sequences. Element 1 
of sequence 1 is mated to element 1 of sequence 2, and you provide a lambda expression to 
define which kind of output to create based on this mating. Element 2 of sequence 1 is then 
mated to element 2 of sequence 2 and so on until one of the sequences runs out of elements.



	 Lesson 1: Understanding LINQ	 CHAPTER 3	 195

The following sample code starts with a number sequence, using a starting value of 1 and 
an ending value of 1000. The second sequence is a collection of Car objects. The Zip exten-
sion method produces an output collection of anonymous objects that contain the index 
number and the car.

Sample of Visual Basic Code

Private Sub zipToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) Handles zipToolStripMenuItem.Click 
    Dim numbers = Enumerable.Range(1, 1000) 
    Dim cars = GetCars() 
    Dim zip = numbers.Zip(cars, _ 
            Function(i, c) New With {.Number = i, .CarMake = c.Make}) 
    For Each item In zip 
        txtLog.WriteLine("Number:{0} CarMake:{1}", item.Number, item.CarMake) 
    Next 
End Sub

Sample of C# Code

private void zipToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    var numbers = Enumerable.Range(1, 1000); 
    var cars = GetCars(); 
    var zip = numbers.Zip(cars, (i, c) => new {  
                Number = i, CarMake = c.Make }); 
    foreach (var item in zip) 
    { 
        txtLog.WriteLine("Number:{0} CarMake:{1}", item.Number, item.CarMake); 
    } 
}

The result:

Number:1 CarMake:Ford
Number:2 CarMake:BMW 
Number:3 CarMake:Audi 
Number:4 CarMake:VW 
Number:5 CarMake:Ford

The ending range of 1000 on the first sequence was somewhat arbitrary but is noticeably 
higher than the quantity of Car objects in the second sequence. When the second sequence 
ran out of elements, the Zip method stopped producing output. If the ending range of the 
first sequence was set to 3, only three elements would be output because the first sequence 
would run out of elements.

Practice	 Working with LINQ-Enabling Features

In this practice, you create a simple Vehicle Web application with a vehicles collection that 
is a generic list of Vehicle. This list will be populated with some vehicles to use object initial-
izers, collection initializers, implicitly typed local variables, query extension methods, lambda 
expressions, and anonymous types.



	196	 CHAPTER 3	 Introducing LINQ

This practice is intended to focus on the features that have been defined in this lesson, so 
the GUI will be minimal. 

If you encounter a problem completing an exercise, the completed projects can be in-
stalled from the Code folder on the companion CD.

Exercise  Create a Web Application with a GUI

In this exercise, you create a Web Application project and add controls to the main Web form 
to create the graphical user interface.

	 1.	 In Visual Studio .NET 2010, choose File | New | Project. 

	 2.	 Select your desired programming language and then select the ASP.NET Web 
Application template. For the project name, enter VehicleProject. Be sure to select a 
desired location for this project. 

	 3.	 For the solution name, enter VehicleSolution. Be sure Create Directory For Solution is 
selected and then click OK. 

After Visual Studio .NET creates the project, the home page, Default.aspx, will be 
displayed.

Note  Missing the Prompt for the Location

If you don’t see a prompt for the location, it’s because your Visual Studio .NET settings, 
set up to enable you to abort the project, automatically remove all files from your hard 
drive. To select a location, simply choose File | Save All after the project has been cre-
ated. To change this setting, choose Tools | Options | Projects And Solutions | Save New 
Projects When Created. When this option is selected, you are prompted for a location 
when you create the project.

There are two content tags, one called HeaderContent and one called BodyContent. 
The BodyContent tag currently has default markup to display a welcome message and 
help link. 

	 4.	 If you haven’t seen this Web Application template before, choose Debug | Start 
Debugging to build and run this Web application so that you can see the default tem-
plate. After running the application, go back to the Default.aspx markup.

	 5.	 Delete the markup that’s in the BodyContent tag.

	 6.	 Populate the BodyContent tag with the following markup, which will display filter and 
sort criteria and provide an execute button and a grid to display vehicles.

ASPX Markup

<asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent">
    <asp:Label ID="lblVin" runat="server" Width="100px" Text="VIN: "></asp:Label> 
    <asp:TextBox ID="txtVin" runat="server"></asp:TextBox> 
    <br /> 
    <asp:Label ID="lblMake" runat="server" Width="100px" Text="Make: "></



	 Lesson 1: Understanding LINQ	 CHAPTER 3	 197

asp:Label> 
    <asp:TextBox ID="txtMake" runat="server"></asp:TextBox> 
    <br /> 
    <asp:Label ID="lblModel" runat="server" Width="100px" Text="Model: "></
asp:Label> 
    <asp:TextBox ID="txtModel" runat="server"></asp:TextBox> 
    <br /> 
    <asp:Label ID="lblYear" runat="server" Width="100px" Text="Year: "></
asp:Label> 
    <asp:DropDownList ID="ddlYear" runat="server"> 
        <asp:ListItem Text="All Years" Value="0" /> 
        <asp:ListItem Text="> 1995" Value="1995" /> 
        <asp:ListItem Text="> 2000" Value="2000" /> 
        <asp:ListItem Text="> 2005" Value="2005" /> 
    </asp:DropDownList> 
    <br /> 
    <asp:Label ID="lblCost" runat="server" Width="100px" Text="Cost: "></
asp:Label> 
    <asp:DropDownList ID="ddlCost" runat="server"> 
        <asp:ListItem Text="Any Cost" Value="0" /> 
        <asp:ListItem Text="> 5000" Value="5000" /> 
        <asp:ListItem Text="> 20000" Value="20000" /> 
    </asp:DropDownList> 
    <br /> 
    <asp:Label ID="lblSort" runat="server" Width="100px" Text="Sort Order: "></
asp:Label> 
    <asp:DropDownList ID="ddlSort" runat="server"> 
        <asp:ListItem Text="" /> 
        <asp:ListItem Text="VIN" /> 
        <asp:ListItem Text="Make" /> 
        <asp:ListItem Text="Model" /> 
        <asp:ListItem Text="Year" /> 
        <asp:ListItem Text="Cost" /> 
    </asp:DropDownList> 
    <br /> 
    <br /> 
    <asp:Button ID="btnExecute" runat="server" Text="Execute" /> 
    <br /> 
    <asp:GridView ID="gvVehicles" runat="server"> 
    </asp:GridView> 
</asp:Content>

If you click the Design tab (bottom left), you should see the rendered screen as shown 
in Figure 3-5.



	198	 CHAPTER 3	 Introducing LINQ

Figure 3-5  This is the rendered screen showing filter and sort settings.

	 7.	 Right-click the Design or Markup window and click View Code. This takes you to the 
code-behind page. There is already a Page_Load event handler method.

	 8.	 Before adding code to the Page_Load method, you must add some classes to the proj-
ect. In Solution Explorer, right-click the VehicleProject icon, click Add, and then click 
Class. Name the class Vehicle and click Add. Add the following code to this class.

Sample of Visual Basic Code

Public Class Vehicle
    Public Property VIN As String 
    Public Property Make As String 
    Public Property Model As String 
    Public Property Year As Integer 
    Public Property Cost As Decimal 
End Class

Sample of C# Code

public class Vehicle
{ 
    public string VIN { get; set; } 
    public string Make { get; set; } 
    public string Model { get; set; } 
    public int Year { get; set; } 
    public decimal Cost { get; set; } 
}



	 Lesson 1: Understanding LINQ	 CHAPTER 3	 199

	 9.	 Add another class, named Car, that inherits from Vehicle, as shown in the following 
code sample:

Sample of Visual Basic Code

Public Class Car
    Inherits Vehicle 
End Class

Sample of C# Code

public class Car : Vehicle
{ 
}

	 10.	 Add another class, named Truck, that inherits from Vehicle, as shown in the following 
code sample:

Sample of Visual Basic Code

Public Class Truck
    Inherits Vehicle 
End Class

Sample of C# Code

public class Truck : Vehicle
{ 
}

	 11.	 Add another class, named Boat, that inherits from Vehicle, as shown in the following 
code sample:

Sample of Visual Basic Code

Public Class Boat
    Inherits Vehicle 
End Class

Sample of C# Code

public class Boat : Vehicle
{ 
}

	 12.	 Above Page_Load (at the class level), add code to declare a variable called vehicles 
and instantiate it as a new List Of Vehicles. Your code should look like the following 
sample.

Sample of Visual Basic Code

Private Shared Vehicles As New List(Of Vehicle)

Sample of C# Code

private List<Vehicle> vehicles = new List<Vehicle>();



	200	 CHAPTER 3	 Introducing LINQ

	 13.	 In the Page_Load method, add code to create a generic list of Vehicle. Populate the 
list with ten vehicles, which will give you something with which to experiment in this 
practice. The Page_Load method should look like the following example:

Sample of Visual Basic Code

Protected Sub Page_Load(ByVal sender As Object, _
            ByVal e As System.EventArgs) Handles Me.Load 
    If (Vehicles.Count = 0) Then 
        Vehicles.Add(New Truck With {.VIN = "AAA123", .Make = "Ford", _ 
                        .Model = "F-250", .Cost = 2000, .Year = 1998}) 
        Vehicles.Add(New Truck With {.VIN = "ZZZ123", .Make = "Ford", _ 
                        .Model = "F-150", .Cost = 10000, .Year = 2005}) 
        Vehicles.Add(New Car With {.VIN = "FFF123", .Make = "VW", _ 
                        .Model = "Bug", .Cost = 2500, .Year = 1997}) 
        Vehicles.Add(New Boat With {.VIN = "LLL123", .Make = "SeaRay", _ 
                        .Model = "Signature", .Cost = 12000, .Year = 1995}) 
        Vehicles.Add(New Car With {.VIN = "CCC123", .Make = "BMW", _ 
                        .Model = "Z-3", .Cost = 21000, .Year = 2005}) 
        Vehicles.Add(New Car With {.VIN = "EEE123", .Make = "Ford", _ 
                        .Model = "Focus", .Cost = 15000, .Year = 2008}) 
        Vehicles.Add(New Boat With {.VIN = "QQQ123", .Make = "ChrisCraft", _ 
                        .Model = "BowRider", .Cost = 102000, .Year = 1945}) 
        Vehicles.Add(New Truck With {.VIN = "PPP123", .Make = "Ford", _ 
                        .Model = "F-250", .Cost = 1000, .Year = 1980}) 
        Vehicles.Add(New Car With {.VIN = "TTT123", .Make = "Dodge", _ 
                        .Model = "Viper", .Cost = 95000, .Year = 2007}) 
        Vehicles.Add(New Car With {.VIN = "DDD123", .Make = "Mazda", _ 
                        .Model = "Miata", .Cost = 20000, .Year = 2005}) 
    End If 
End Sub

Sample of C# Code

protected void Page_Load(object sender, EventArgs e)
{ 
    if (vehicles.Count == 0)  
    { 
        vehicles.Add(new Truck  {VIN = "AAA123", Make = "Ford",  
                       Model = "F-250", Cost = 2000, Year = 1998}); 
        vehicles.Add(new Truck  {VIN = "ZZZ123", Make = "Ford",  
                       Model = "F-150", Cost = 10000, Year = 2005}); 
        vehicles.Add(new Car  {VIN = "FFF123", Make = "VW",  
                       Model = "Bug", Cost = 2500, Year = 1997}); 
        vehicles.Add(new Boat  {VIN = "LLL123", Make = "SeaRay",  
                       Model = "Signature", Cost = 12000, Year = 1995}); 
        vehicles.Add(new Car  {VIN = "CCC123", Make = "BMW",  
                       Model = "Z-3", Cost = 21000, Year = 2005}); 
        vehicles.Add(new Car  {VIN = "EEE123", Make = "Ford",  
                       Model = "Focus", Cost = 15000, Year = 2008}); 
        vehicles.Add(new Boat  {VIN = "QQQ123", Make = "ChrisCraft",  
                       Model = "BowRider", Cost = 102000, Year = 1945}); 
        vehicles.Add(new Truck  {VIN = "PPP123", Make = "Ford",  
                       Model = "F-250", Cost = 1000, Year = 1980}); 
        vehicles.Add(new Car  {VIN = "TTT123", Make = "Dodge",  
                       Model = "Viper", Cost = 95000, Year = 2007}); 



	 Lesson 1: Understanding LINQ	 CHAPTER 3	 201

        vehicles.Add(new Car  {VIN = "DDD123", Make = "Mazda",  
                       Model = "Miata", Cost = 20000, Year = 2005}); 
    } 
}

	 14.	 Under the code you just added into the Page_Load method, insert code to filter the list 
of vehicles based on the data input. Use method chaining to create one statement that 
puts together all the filtering, as shown in the following code sample:

Sample of Visual Basic Code

Dim result = Vehicles _
        .Where(Function(v) v.VIN.StartsWith(txtVin.Text)) _ 
        .Where(Function(v) v.Make.StartsWith(txtMake.Text)) _ 
        .Where(Function(v) v.Model.StartsWith(txtModel.Text)) _ 
        .Where(Function(v) v.Cost > Decimal.Parse(ddlCost.SelectedValue)) _ 
        .Where(Function(v) v.Year > Integer.Parse(ddlYear.SelectedValue))

Sample of C# Code

var result = vehicles
    .Where(v => v.VIN.StartsWith(txtVin.Text)) 
    .Where(v => v.Make.StartsWith(txtMake.Text)) 
    .Where(v => v.Model.StartsWith(txtModel.Text)) 
    .Where(v => v.Cost > Decimal.Parse(ddlCost.SelectedValue)) 
    .Where(v => v.Year > int.Parse(ddlYear.SelectedValue));

	 15.	 Under the code you just added into the Page_Load method, add code to perform a 
sort of the results. This code calls a SetOrder method that will be created in the next 
step. You code should look like the following:

Sample of Visual Basic Code

result = SetOrder(ddlSort.SelectedValue, result)

Sample of C# Code

result = SetOrder(ddlSort.SelectedValue, result);

	 16.	 Add the SetOrder method, which has code to add an OrderBy query extension meth-
od based on the selection passed into this method. Your code should look like the 
following:

Sample of Visual Basic Code

Private Function SetOrder(ByVal order As String, _
        ByVal query As IEnumerable(Of Vehicle)) As IEnumerable(Of Vehicle) 
    Select Case order 
        Case "VIN" 
            Return query.OrderBy(Function(v) v.VIN) 
        Case "Make" 
            Return query.OrderBy(Function(v) v.Make) 
        Case "Model" 
            Return query.OrderBy(Function(v) v.Model) 
        Case "Year" 
            Return query.OrderBy(Function(v) v.Year) 
        Case "Cost" 
            Return query.OrderBy(Function(v) v.Cost) 



	202	 CHAPTER 3	 Introducing LINQ

        Case Else 
            Return query 
    End Select 
End Function

Sample of C# Code

private IEnumerable<Vehicle> SetOrder(string order,
        IEnumerable<Vehicle> query) 
{ 
    switch (order) 
    { 
        case "VIN": 
            return query.OrderBy(v => v.VIN); 
        case "Make": 
            return query.OrderBy(v => v.Make); 
        case "Model": 
            return query.OrderBy(v => v.Model); 
        case "Year": 
            return query.OrderBy(v => v.Year); 
        case "Cost": 
            return query.OrderBy(v => v.Cost); 
        default: 
            return query; 
    } 
}

	 17.	 Finally, add code into the bottom of the Page_Load method to select an anonymous 
type that includes an index and all the properties in the Vehicle class and bind the 
result to gvVehicles. You code should look like the following example:

Sample of Visual Basic Code

gvVehicles.DataSource = result.Select(Function(v, i) New With
    {.Index = i, v.VIN, v.Make, v.Model, v.Year, v.Cost}) 
gvVehicles.DataBind()

Sample of C# Code

gvVehicles.DataSource = result.Select((v, i)=> new 
    {Index = i, v.VIN, v.Make, v.Model, v.Year, v.Cost}); 
gvVehicles.DataBind();

	 18.	 Choose Build | Build Solution to build the application. If you have errors, you can 
double-click the error to go to the error line and correct.

	 19.	 Choose Debug | Start Debugging to run the application. When the application starts, 
you should see a Web page with your GUI controls that enables you to specify filter 
and sort criteria. If you type the letter F into the Make text box and click Execute, the 
grid will be populated only with items that begin with F. If you set the sort order and 
click the Execute button again, you will see the sorted results.



	 Lesson 1: Understanding LINQ	 CHAPTER 3	 203

Lesson Summary
This lesson provided detailed information about the features that comprise LINQ.

■	 Object initializers enable you to initialize public properties and fields without creating 
an explicit constructor.

■	 Implicitly typed local variables enable you to declare a variable without specifying its 
type, and the compiler will infer the type for you.

■	 In many cases, using implicitly typed local variables is an option, but, when working 
with anonymous types, it’s a requirement.

■	 Anonymous types enable you to create a type inline. This enables you to group data 
without creating a class.

■	 Lambda expressions provide a much more abbreviated syntax than a method or 
anonymous method and can be used wherever a delegate is expected.

■	 Extension methods enable you to add methods to a type even when you don’t have 
the source code for the type.

■	 Extension methods enable you to create concrete methods on interfaces; that is, all 
types that implement the interface will get these methods.

■	 Query extension methods are extension methods primarily implemented on the ge-
neric IEnumerable interface.

■	 The Enumerable class contains the query extension methods and static methods called 
Empty, Range, and Repeat.

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 1, 
“Understanding LINQ.” The questions are also available on the companion CD if you prefer to 
review them in electronic form.

Note A nswers

Answers to these questions and explanations of why each answer choice is correct or incor-
rect are located in the “Answers” section at the end of the book. 

	 1.	 To which of the following types can you add an extension method? (Each correct an-
swer presents a complete solution. Choose five.)

	 A.	 Class

	 B.	 Structure (C# struct)

	 C.	 Module (C# static class)

	 D.	 Enum

	 E.	 Interface

	 F.	 Delegate



	204	 CHAPTER 3	 Introducing LINQ

	 2.	 You want to page through an element sequence, displaying ten elements at a time, 
until you reach the end of the sequence. Which query extension method can you use 
to accomplish this? (Each correct answer presents part of a complete solution. Choose 
two.)

	 A.	 Skip

	 B.	 Except

	 C.	 SelectMany

	 D.	 Take

	 3.	 You have executed the Where query extension method on your collection, and it 
returned IEnumerable of Car, but you want to assign this to a variable whose type is 
List Of Car. How can you convert the IEnumerable of Car to List Of Car?

	 A.	 Use CType (C# cast).

	 B.	 It can’t be done.

	 C.	 Use the ToList() query extension method.

	 D.	 Just make the assignment.



	 Lesson 2: Using LINQ Queries	 CHAPTER 3	 205

Lesson 2: Using LINQ Queries

The previous sections covered object initializers, implicitly typed local variables, anonymous 
types, lambda expressions, and extension methods. These features were created to support 
the implementation of LINQ. Now that you’ve seen all these, look at how LINQ is language 
integrated. 

After this lesson, you will be able to:
■	 Identify the LINQ keywords.
■	 Create a LINQ query that provides filtering.
■	 Create a LINQ query that provides sorted results.
■	 Create a LINQ query to perform an inner join on two element sequences.
■	 Create a LINQ query to perform an outer join on two element sequences.
■	 Implement grouping and aggregation in a LINQ query.
■	 Create a LINQ query that defines addition loop variables using the let keyword.
■	 Create a LINQ query that implements paging.

Estimated lesson time: 60 minutes

Syntax-Based and Method-Based Queries
For basic queries, using LINQ in Visual Basic or C# is very easy and intuitive because both lan-
guages provide keywords that map directly to features that have been added through exten-
sion methods. The benefit is that you can write typed queries in a very SQL-like way, getting 
IntelliSense support all along the way.

In the following scenario, your schedule contains a list of days when you are busy, and you 
want to find out whether you are busy on a specific day. The following code demonstrates the 
implementation of a LINQ query to discover this.

Sample of Visual Basic Code

Private Function GetDates() As List(Of DateTime)
   Return New List(Of DateTime) From 
                       { 
                          New DateTime(11, 1, 1), 
                          New DateTime(11, 2, 5), 
                          New DateTime(11, 3, 3), 
                          New DateTime(11, 1, 3), 
                          New DateTime(11, 1, 2), 
                          New DateTime(11, 5, 4), 
                          New DateTime(11, 2, 2), 
                          New DateTime(11, 7, 5), 
                          New DateTime(11, 6, 30), 
                          New DateTime(11, 10, 14), 
                          New DateTime(11, 11, 22), 



	206	 CHAPTER 3	 Introducing LINQ

                          New DateTime(11, 12, 1), 
                          New DateTime(11, 5, 22), 
                          New DateTime(11, 6, 7), 
                          New DateTime(11, 1, 4) 
                       } 
End Function 
Private Sub BasicQueriesToolStripMenuItem_Click( _ 
        ByVal sender As System.Object, _ 
        ByVal e As System.EventArgs) _ 
        Handles BasicQueriesToolStripMenuItem.Click 
 
    Dim schedule = GetDates() 
    Dim areYouAvailable = new DateTime(11, 7, 10) 
 
    Dim busy = From d In schedule 
                   Where d = areYouAvailable 
                   Select d 
 
    For Each busyDate In busy 
        txtLog.WriteLine("Sorry, but I am busy on {0:MM/dd/yy}", busyDate) 
    Next 
End Sub

Sample of C# Code

private List<DateTime> GetDates()
{ 
    return new List<DateTime> 
                    {  
                     new DateTime(11, 1, 1), 
                     new DateTime(11, 2, 5), 
                     new DateTime(11, 3, 3), 
                     new DateTime(11, 1, 3), 
                     new DateTime(11, 1, 2), 
                     new DateTime(11, 5, 4), 
                     new DateTime(11, 2, 2), 
                     new DateTime(11, 7, 5), 
                     new DateTime(11, 6, 30), 
                     new DateTime(11, 10, 14), 
                     new DateTime(11, 11, 22), 
                     new DateTime(11, 12, 1), 
                     new DateTime(11, 5, 22), 
                     new DateTime(11, 6, 7), 
                     new DateTime(11, 1, 4) 
                    }; 
} 
private void basicLINQToolStripMenuItem_Click(object sender, EventArgs e) 
{ 
    var schedule = GetDates(); 
    var areYouAvailable = new DateTime(11,7, 5); 
 
    var busy = from d in schedule 
               where d == areYouAvailable 
               select d; 
 
    foreach(var busyDate in busy) 



	 Lesson 2: Using LINQ Queries	 CHAPTER 3	 207

    { 
        txtLog.WriteLine("Sorry, but I am busy on {0:MM/dd/yy}", busyDate); 
    } 
}

In the sample code, a LINQ query filtered the data, which returned an 
IEnumerable<DateTime> object as the result. Is there a simpler way to perform this query? 
You could argue that using the Where extension method would save some coding and would 
be simpler, as shown in this method-based code sample:

Sample of Visual Basic Code

Private Sub MethodbasedQueryToolStripMenuItem_Click( _
       ByVal sender As System.Object, _ 
       ByVal e As System.EventArgs) _ 
       Handles MethodbasedQueryToolStripMenuItem.Click 
 
   Dim schedule = GetDates() 
   Dim areYouAvailable = New DateTime(11,7,5)  
 
   For Each busyDate In schedule.Where(Function(d) d = areYouAvailable) 
       txtLog.WriteLine("Sorry, but I am busy on {0:MM/dd/yy}", busyDate) 
   Next 
End Sub

Sample of C# Code

private void methodbasedQueryToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    var schedule = GetDates(); 
    var areYouAvailable = new DateTime(11,7,5); 
 
    foreach (var busyDate in schedule.Where(d=>d==areYouAvailable)) 
    { 
        txtLog.WriteLine("Sorry, but I am busy on {0:MM/dd/yy}", busyDate); 
    } 
}

This example eliminates the LINQ query and adds the Where extension method in the 
loop. This code block is smaller and more concise, but which is more readable? Decide for 
yourself. For a small query such as this, the extension method might be fine, but for larger 
queries, you probably will find it better to use the LINQ query. Performance is the same be-
cause both queries do the same thing.

Only a small subset of the query extension methods map to language keywords, so typi-
cally you will find yourself mixing LINQ queries with extension methods, as shown in the 
following rewrite of the previous examples:

Sample of Visual Basic Code

Private Sub MixingLINQAndMethodsToolStripMenuItem_Click( _
        ByVal sender As System.Object, _ 
        ByVal e As System.EventArgs) _ 
        Handles MixingLINQAndMethodsToolStripMenuItem.Click 
    Dim schedule = GetDates() 



	208	 CHAPTER 3	 Introducing LINQ

    Dim areYouAvailable = New DateTime(11, 7, 5)  
 
    Dim count = (From d In schedule 
                   Where d = areYouAvailable 
                   Select d).Count() 
 
    If count > 0 Then 
      txtLog.WriteLine("Sorry, but I am busy on {0:MM/dd/yy}", areYouAvailable) 
    Else 
      txtLog.WriteLine("Yay! I am available on {0:MM/dd/yy}", areYouAvailable) 
    End If 
End Sub

Sample of C# Code

private void mixingLINQAndMethodsToolStripMenuItem_Click(
    object sender, EventArgs e) 
{ 
    var schedule = GetDates(); 
    var areYouAvailable = new DateTime(11, 7, 5);  
 
    var count = (from d in schedule 
               where d == areYouAvailable 
               select d).Count(); 
    if (count > 0) 
        txtLog.WriteLine("Sorry, but I am busy on {0:MM/dd/yy}",  
            areYouAvailable); 
    else 
        txtLog.WriteLine("Yay! I am available on {0:MM/dd/yy}",  
            areYouAvailable); 
}

In the previous example, the Count extension method eliminates the foreach loop. In this 
example, an if/then/else statement is added to show availability. Also, parentheses are added 
to place the call to the Count method after the select clause.

LINQ Keywords
The LINQ-provided keywords can make your LINQ queries look clean and simple. Table 3-1 
provides the list of available keywords, with a short description of each. Many of these key-
words are covered in more detail in this section.

Table 3-1  Visual Basic and C# LINQ Keywords

Keyword Description

from Specifies a data source and a range variable

where Filters source elements based on one or more Boolean 
expressions

select Specifies the type and shape the elements in the returned se-
quence have when the query is executed



	 Lesson 2: Using LINQ Queries	 CHAPTER 3	 209

group Groups query results according to a specified key value

into Provides an identifier that can serve as a reference to the results 
of a join, group, or select clause

orderby

(Visual Basic: Order By)

Sorts query results in ascending or descending order

join Joins two data sources based on an equality comparison be-
tween two specified matching criteria

let Introduces a range variable to store subexpression results in a 
query expression

in Contextual keyword in a from or join clause to specify the data 
source

on Contextual keyword in a join clause to specify the join criteria

equals Contextual keyword in a join clause to join two sources

by Contextual keyword in a group clause to specify the grouping 
criteria

ascending Contextual keyword in an orderby clause

descending Contextual keyword in an orderby clause

In addition to the keywords listed in Table 3-1, the Visual Basic team provided keywords 
that C# did not implement. These keywords are shown in Table 3-2 with a short description of 
each.

Table 3-2  Visual Basic Keywords That Are Not Implemented in C#

Keyword Description

Distinct Filters duplicate elements

Skip/Skip While Jumps over elements before returning results

Take/Take While Provides a means to limit how many elements will be retrieved

Aggregate Includes aggregate functions in your queries

Into Contextual keyword in the Aggregate clause that specifies what to 
do with the result of the aggregate

All Contextual keyword in the Aggregate clause that determines 
whether all elements meet the specified criterion

Any Contextual keyword in the Aggregate clause that determines 
whether any of the elements meet the specified criterion

Average Contextual keyword in the Aggregate clause that calculates the 
average value



	210	 CHAPTER 3	 Introducing LINQ

Count Contextual keyword in the Aggregate clause that provides the 
count of elements that meet the specified criterion

Group Contextual keyword in the Aggregate clause that provides access 
to the results of a group by or group join clause

LongCount Contextual keyword in the Aggregate clause that provides the 
count (as long) of elements that meet the specified criterion

Max Contextual keyword in the Aggregate clause that provides the 
maximum value

Min Contextual keyword in the Aggregate clause that provides the 
minimum value

Sum Contextual keyword in the Aggregate clause that provides the sum 
of the elements

All the query extension methods are available in both languages even if there isn’t a lan-
guage keyword mapping to the query extension method.

Projections
Projections enable you to transform the output of your LINQ query by using named or 
anonymouns types. The following code example demonstrates projections in a LINQ query by 
using anonymous types.

Sample of Visual Basic Code

Private Sub LINQProjectionsToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) Handles LINQProjectionsToolStripMenuItem.Click 
 
    Dim cars = GetCars() 
    Dim vinsAndMakes = From c In cars 
        Select New With 
                      { 
                          c.VIN, 
                          .CarModel = c.Make 
                      } 
    For Each item In vinsAndMakes 
        txtLog.WriteLine("VIN:{0} Make:{1}", item.VIN, item.CarModel) 
    Next 
End Sub

Sample of C# Code

private void lINQProjectionsToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    var cars = GetCars(); 
    var vinsAndMakes = from c in cars 
                       select new { c.VIN, CarModel = c.Model }; 
    foreach (var item in vinsAndMakes) 
    { 
        txtLog.WriteLine("VIN:{0} Make:{1}", item.VIN, item.CarModel); 



	 Lesson 2: Using LINQ Queries	 CHAPTER 3	 211

    } 
}

Using the Let Keyword to Help with Projections
You can use the let keyword to create a temporary variable within the LINQ query. Think of 
the let keyword as a variant of the select keyword used within the query. The following code 
sample shows how the let keyword can help with filtering and shaping the data.

Sample of Visual Basic Code

Private Sub LINQLetToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) Handles LINQLetToolStripMenuItem.Click 
    Dim cars = GetCars() 
    Dim vinsAndMakes = From c In cars 
                       Let makeModel = c.Make & " " & c.Model 
                       Where makeModel.Contains("B") 
                       Select New With 
                                      { 
                                          c.VIN, 
                                          .MakeModel = makeModel 
                                      } 
For Each item In vinsAndMakes 
    txtLog.WriteLine("VIN:{0} Make and Model:{1}", item.VIN, item.MakeModel) 
    Next 
End Sub

Sample of C# Code

private void lINQLetToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    var cars = GetCars(); 
    var vinsAndMakes = from c in cars 
                       let makeModel = c.Make + " " + c.Model 
                       where makeModel.Contains('B') 
                       select new { c.VIN, MakeModel=makeModel }; 
    foreach (var item in vinsAndMakes) 
    { 
      txtLog.WriteLine("VIN:{0} Make and Model:{1}", item.VIN, item.MakeModel); 
    } 
}

The result:

VIN:DEF123 Make and Model:BMW Z-3
VIN:HIJ123 Make and Model:VW Bug

Specifying a Filter
Both C# and Visual Basic have the where keyword that maps directly to the Where query 
extension method. You can specify a predicate (an expression that evaluates to a Boolean 
value) to determine the elements to be returned. The following code sample demonstrates 
the where clause with a yearRange variable being used as a parameter into the query.



	212	 CHAPTER 3	 Introducing LINQ

Sample of Visual Basic Code

Private Sub LINQWhereToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) Handles LINQWhereToolStripMenuItem.Click 
    Dim yearRange = 2000 
    Dim cars = GetCars() 
    Dim oldCars = From c In cars 
                  Where c.Year < yearRange 
                  Select c 
 
    For Each myCar In oldCars 
        txtLog.WriteLine("Car VIN:{0}, Make:{1}, Model:{2} Year:{3}", 
            myCar.VIN, myCar.Make, myCar.Model, myCar.Year) 
    Next 
End Sub

Sample of C# Code

private void lINQWhereToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    int yearRange = 2000; 
    var cars = GetCars(); 
    var oldCars = from c in cars 
                  where c.Year < yearRange 
                  select c; 
    foreach (var myCar in oldCars) 
    { 
        txtLog.WriteLine("Car VIN:{0}, Make:{1}, Model:{2} Year:{3}", 
            myCar.VIN, myCar.Make, myCar.Model, myCar.Year); 
    } 
}

The result:

Car VIN:HIJ123, Make:VW, Model:Bug Year:1956
Car VIN:DEF456, Make:Ford, Model:F-150 Year:1998

Specifying a Sort Order
It’s very easy to sort using a LINQ query. The orderby keyword enables you to sort in as-
cending or descending order. In addition, you can sort on multiple properties to perform a 
compound sort. The following code sample shows the sorting of cars by Make ascending and 
then by Model descending.

Sample of Visual Basic Code

Private Sub LINQSortToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) Handles LINQSortToolStripMenuItem.Click 
    Dim cars = GetCars() 
    Dim sorted = From c In cars 
                  Order By c.Make Ascending, c.Model Descending 
                  Select c 
 
    For Each myCar In sorted 
        txtLog.WriteLine("Car VIN:{0}, Make:{1}, Model:{2} Year:{3}", 
            myCar.VIN, myCar.Make, myCar.Model, myCar.Year) 



	 Lesson 2: Using LINQ Queries	 CHAPTER 3	 213

    Next 
End Sub

Sample of C# Code

private void lINQSortToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    var cars = GetCars(); 
    var sorted = from c in cars 
                 orderby c.Make ascending, c.Model descending 
                 select c; 
    foreach (var myCar in sorted) 
    { 
        txtLog.WriteLine("Car VIN:{0}, Make:{1}, Model:{2} Year:{3}", 
            myCar.VIN, myCar.Make, myCar.Model, myCar.Year); 
    } 
}

The result:

Car VIN:ABC456, Make:Audi, Model:TT Year:2008
Car VIN:DEF123, Make:BMW, Model:Z-3 Year:2005 
Car VIN:ABC123, Make:Ford, Model:F-250 Year:2000 
Car VIN:DEF456, Make:Ford, Model:F-150 Year:1998 
Car VIN:HIJ123, Make:VW, Model:Bug Year:1956

Paging
The ability to look at data one page at a time is always a requirement when a large amount of 
data is being retrieved. LINQ simplifies this task with the Skip and Take extension methods. In 
addition, Visual Basic offers these query extension methods as keywords. 

The following code example retrieves 25 rows of data and then provides paging capabili-
ties to enable paging ten rows at a time.

exam tip

For the exam, be sure that you fully understand how to perform paging.

Sample of Visual Basic Code

Private Sub LINQPagingToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) Handles LINQPagingToolStripMenuItem.Click 
    Dim pageSize = 10 
 
    'create 5 copies of the cars - total 25 rows 
    Dim cars = Enumerable.Range(1, 5) _ 
            .SelectMany(Function(i) GetCars() _ 
                .Select(Function(c) New With _ 
                    {.BatchNumber = i, c.VIN, c.Make, c.Model, c.Year})) 
 
    'calculate page count 
    Dim pageCount = (cars.Count() / pageSize) 
    If (pageCount * pageSize < cars.Count()) Then pageCount += 1 
 



 214 CHAPTER 3 Introducing LINQ

    For i = 0 To pageCount – 1
        txtLog.WriteLine("-----Printing Page {0}------", i)
        'Dim currentPage = cars.Skip(i * pageSize).Take(pageSize)
        Dim currentPage = From c In cars
                          Skip (i * pageSize)
                          Take pageSize
                          Select c
        For Each myCar In currentPage
            txtLog.WriteLine("#{0} Car VIN:{1}, Make:{2}, Model:{3} Year:{4}", _
              myCar.BatchNumber, myCar.VIN, myCar.Make, myCar.Model, myCar.Year)
        Next
    Next
End Sub 

 Sample of C# Code 

 private void lINQPagingToolStripMenuItem_Click(object sender, EventArgs e)
{
    int pageSize = 10;

    //create 5 copies of the cars - total 25 rows
    var cars = Enumerable.Range(1,5)
        .SelectMany(i=>GetCars()
            .Select(c=>(new {BatchNumber=i, c.VIN, c.Make, c.Model, c.Year})));

    //calculate page count
    int pageCount = (cars.Count() / pageSize);
    if (pageCount * pageSize < cars.Count()) pageCount++;

    for(int i=0; i < pageCount; i++)
    {
        txtLog.WriteLine("-----Printing Page {0}------", i);
        var currentPage = cars.Skip(i * pageSize).Take(pageSize);

        foreach (var myCar in currentPage)
        {
            txtLog.WriteLine("#{0} Car VIN:{1}, Make:{2}, Model:{3} Year:{4}",
             myCar.BatchNumber, myCar.VIN, myCar.Make, myCar.Model, myCar.Year);
        }
    }
} 

 The result: 

 -----Printing Page 0------
#1 Car VIN:ABC123, Make:Ford, Model:F-250 Year:2000
#1 Car VIN:DEF123, Make:BMW, Model:Z-3 Year:2005
#1 Car VIN:ABC456, Make:Audi, Model:TT Year:2008
#1 Car VIN:HIJ123, Make:VW, Model:Bug Year:1956
#1 Car VIN:DEF456, Make:Ford, Model:F-150 Year:1998
#2 Car VIN:ABC123, Make:Ford, Model:F-250 Year:2000
#2 Car VIN:DEF123, Make:BMW, Model:Z-3 Year:2005
#2 Car VIN:ABC456, Make:Audi, Model:TT Year:2008
#2 Car VIN:HIJ123, Make:VW, Model:Bug Year:1956
#2 Car VIN:DEF456, Make:Ford, Model:F-150 Year:1998
-----Printing Page 1------



	 Lesson 2: Using LINQ Queries	 CHAPTER 3	 215

#3 Car VIN:ABC123, Make:Ford, Model:F-250 Year:2000 
#3 Car VIN:DEF123, Make:BMW, Model:Z-3 Year:2005 
#3 Car VIN:ABC456, Make:Audi, Model:TT Year:2008 
#3 Car VIN:HIJ123, Make:VW, Model:Bug Year:1956 
#3 Car VIN:DEF456, Make:Ford, Model:F-150 Year:1998 
#4 Car VIN:ABC123, Make:Ford, Model:F-250 Year:2000 
#4 Car VIN:DEF123, Make:BMW, Model:Z-3 Year:2005 
#4 Car VIN:ABC456, Make:Audi, Model:TT Year:2008 
#4 Car VIN:HIJ123, Make:VW, Model:Bug Year:1956 
#4 Car VIN:DEF456, Make:Ford, Model:F-150 Year:1998 
-----Printing Page 2------ 
#5 Car VIN:ABC123, Make:Ford, Model:F-250 Year:2000 
#5 Car VIN:DEF123, Make:BMW, Model:Z-3 Year:2005 
#5 Car VIN:ABC456, Make:Audi, Model:TT Year:2008 
#5 Car VIN:HIJ123, Make:VW, Model:Bug Year:1956 
#5 Car VIN:DEF456, Make:Ford, Model:F-150 Year:1998

This code sample starts by defining the page size as 10. Five copies of the cars are then 
created, which yields 25 cars. The five copies are created by using the Enumerable class to 
generate a range of values, 1 to 5. Each of these values is used with the SelectMany query 
extension method to create a copy of the cars. Calculating the page count is accomplished 
by dividing the count of the cars by the page size, but if there is a remainder, the page count 
is incremented. Finally, a for loop creates a query for each of the pages and then prints the 
current page.

In the Visual Basic example, the query for the page was written first to match the C# ver-
sion, but that code is commented out and the query is rewritten using the Visual Basic Skip 
and Take keywords.

Joins
When working with databases, you commonly want to combine data from multiple tables 
to produce a merged result set. LINQ enables you to join two generic IEnumerable element 
sources, even if these sources are not from a database. There are three types of joins: inner 
joins, outer joins, and cross joins. Inner joins and outer joins typically match on a foreign key 
in a child source matching to a unique key in a parent source. This section examines these join 
types.

Inner Joins
Inner joins produce output only if there is a match between both join sources. In the follow-
ing code sample, a collection of cars is joined to a collection of repairs, based on the VIN of 
the car. The resulting output combines some of the car information with some of the repair 
information.

Sample of Visual Basic Code

Public Class Repair
    Public Property VIN() As String 
    Public Property Desc() As String 
    Public Property Cost As Decimal 



	216	 CHAPTER 3	 Introducing LINQ

End Class 
 
Private Function GetRepairs() As List(Of Repair) 
    Return New List(Of Repair) From 
    { 
     New Repair With {.VIN = "ABC123", .Desc = "Change Oil", .Cost = 29.99}, 
     New Repair With {.VIN = "DEF123", .Desc = "Rotate Tires", .Cost = 19.99}, 
     New Repair With {.VIN = "HIJ123", .Desc = "Replace Brakes", .Cost = 200}, 
     New Repair With {.VIN = "DEF456", .Desc = "Alignment", .Cost = 30}, 
     New Repair With {.VIN = "ABC123", .Desc = "Fix Flat Tire", .Cost = 15}, 
     New Repair With {.VIN = "DEF123", .Desc = "Fix Windshield", .Cost = 420}, 
     New Repair With {.VIN = "ABC123", .Desc = "Replace Wipers", .Cost = 20}, 
     New Repair With {.VIN = "HIJ123", .Desc = "Replace Tires", .Cost = 1000}, 
     New Repair With {.VIN = "DEF456", .Desc = "Change Oil", .Cost = 30} 
    } 
End Function 
 
Private Sub LINQInnerJoinToolStripMenuItem_Click( _ 
        ByVal sender As System.Object, _ 
        ByVal e As System.EventArgs) _ 
        Handles LINQInnerJoinToolStripMenuItem.Click 
    Dim cars = GetCars() 
    Dim repairs = GetRepairs() 
 
    Dim carsWithRepairs = From c In cars 
                          Join r In repairs 
                          On c.VIN Equals r.VIN 
                          Order By c.VIN, r.Cost 
                          Select New With 
                              { 
                                  c.VIN, 
                                  c.Make, 
                                  r.Desc, 
                                  r.Cost 
                              } 
 
    For Each item In carsWithRepairs 
        txtLog.WriteLine("Car VIN:{0}, Make:{1}, Description:{2} Cost:{3:C}", 
           item.VIN, item.Make, item.Desc, item.Cost) 
    Next 
End Sub

Sample of C# Code

public class Repair
{ 
    public string VIN { get; set; } 
    public string Desc { get; set; } 
    public decimal Cost { get; set; } 
} 
 
private List<Repair> GetRepairs() 
{ 
    return new List<Repair> 
    { 
        new Repair {VIN = "ABC123", Desc = "Change Oil", Cost = 29.99m}, 



	 Lesson 2: Using LINQ Queries	 CHAPTER 3	 217

        new Repair {VIN = "DEF123", Desc = "Rotate Tires",  Cost =19.99m}, 
        new Repair {VIN = "HIJ123", Desc = "Replace Brakes",   Cost = 200}, 
        new Repair {VIN = "DEF456", Desc = "Alignment", Cost = 30}, 
        new Repair {VIN = "ABC123", Desc = "Fix Flat Tire", Cost = 15}, 
        new Repair {VIN = "DEF123", Desc = "Fix Windshield",  Cost =420}, 
        new Repair {VIN = "ABC123", Desc = "Replace Wipers", Cost = 20}, 
        new Repair {VIN = "HIJ123", Desc = "Replace Tires",   Cost = 1000}, 
        new Repair {VIN = "DEF456", Desc = "Change Oil", Cost = 30} 
    }; 
} 
 
private void lINQInnerJoinToolStripMenuItem_Click(object sender, EventArgs e) 
{ 
    var cars = GetCars(); 
    var repairs = GetRepairs(); 
 
    var carsWithRepairs = from c in cars 
                          join r in repairs 
                          on c.VIN equals r.VIN 
                          orderby c.VIN, r.Cost 
                          select new 
                          { 
                              c.VIN, 
                              c.Make, 
                              r.Desc, 
                              r.Cost 
                          }; 
    foreach (var item in carsWithRepairs) 
    { 
        txtLog.WriteLine("Car VIN:{0}, Make:{1}, Description:{2} Cost:{3:C}", 
           item.VIN, item.Make, item.Desc, item.Cost); 
    } 
}

The result:

Car VIN:ABC123, Make:Ford, Description:Fix Flat Tire Cost:$15.00
Car VIN:ABC123, Make:Ford, Description:Replace Wipers Cost:$20.00 
Car VIN:ABC123, Make:Ford, Description:Change Oil Cost:$29.99 
Car VIN:DEF123, Make:BMW, Description:Rotate Tires Cost:$19.99 
Car VIN:DEF123, Make:BMW, Description:Fix Windshield Cost:$420.00 
Car VIN:DEF456, Make:Ford, Description:Alignment Cost:$30.00 
Car VIN:DEF456, Make:Ford, Description:Change Oil Cost:$30.00 
Car VIN:HIJ123, Make:VW, Description:Replace Brakes Cost:$200.00 
Car VIN:HIJ123, Make:VW, Description:Replace Tires Cost:$1,000.00

This example shows the creation of the Repair class and the creation of a GetRepairs meth-
od that returns a generic list of Repair objects. Next is the creation of a cars variable popu-
lated with Car objects and a repairs variable populated with Repair objects. A carsWithRepairs 
variable is created, and the LINQ query is assigned to it. The LINQ query defines an outer 
element source in the from clause and then defines an inner element source using the join 
clause. The join clause must be immediately followed by the on clause that defines the linking 
between the two sources. Also, when joining the two sources, you must use the equals key-
word, not the equals sign. If you need to perform a join on multiple keys, use the Visual Basic 



 218 CHAPTER 3 Introducing LINQ

And keyword. In C#, you need to construct an anonymous type for each side of the equals. 
The LINQ query is sorting by the VIN of the car and the cost of the repair, and the returned 
elements are of an anonymous type that contains data from each element source. 

 When looking at the result of this query, the car with the VIN of ABC456 had no repairs, so 
there was no output for this car. If you want all cars to be in the output even if the car has no 
repairs, you must perform an outer join. 

 Another way to perform an inner join is to use the Join query extension method, which was 
covered earlier in this chapter. 

 Outer Joins 
 Outer joins produce output for every element in the outer source even if there is no match to 
the inner source. To perform an outer join by using a LINQ query, use the into clause with the 
join clause (Visual Basic Group Join). The into clause creates an identifi er that can serve as a 
reference to the results of a join, group, or select clause. In this scenario, the into clause refer-
ences the join and is assigned to the variable temp. The inner variable rep is out of scope, but 
a new from clause is provided to get the variable r, which references a repair, from temp. The 
DefaultIfEmpty method assigns null to r if no match can be made to a repair. 

 Sample of Visual Basic Code 

 Private Sub LINQOuterJoinToolStripMenuItem_Click( _
         ByVal sender As System.Object, _
         ByVal e As System.EventArgs) _
         Handles LINQOuterJoinToolStripMenuItem.Click
    Dim cars = GetCars()
    Dim repairs = GetRepairs()

    Dim carsWithRepairs = From c In cars
                          Group Join rep In repairs
                          On c.VIN Equals rep.VIN Into temp = Group
                             From r In temp.DefaultIfEmpty()
                          Order By c.VIN, If(r Is Nothing, 0, r.Cost)
                          Select New With
                              {
                                  c.VIN,
                                  c.Make,
                                  .Desc = If(r Is Nothing, _
                                              "***No Repairs***", r.Desc),
                                  .Cost = If(r Is Nothing, _
                                             0, r.Cost)
                              }
    For Each item In carsWithRepairs
    txtLog.WriteLine("Car VIN:{0}, Make:{1}, Description:{2} Cost:{3:C}",
           item.VIN, item.Make, item.Desc, item.Cost)
    Next
End Sub 

 Sample of C# Code 

 private void lINQOuterJoinToolStripMenuItem_Click(object sender, EventArgs e)
{



 Lesson 2: Using LINQ Queries CHAPTER 3 219

    var cars = GetCars();
    var repairs = GetRepairs();

    var carsWithRepairs = from c in cars
                          join rep in repairs
                          on c.VIN equals rep.VIN into temp
                             from r in temp.DefaultIfEmpty()
                          orderby c.VIN, r==null?0:r.Cost
                          select new
                          {
                              c.VIN,
                              c.Make,
                              Desc = r==null?"***No Repairs***":r.Desc,
                               Cost = r==null?0:r.Cost
                          };
    foreach (var item in carsWithRepairs)
    {
        txtLog.WriteLine("Car VIN:{0}, Make:{1}, Description:{2} Cost:{3:C}",
          item.VIN, item.Make, item.Desc, item.Cost);
    }
} 

 The result: 

 Car VIN:ABC123, Make:Ford, Description:Fix Flat Tire Cost:$15.00
Car VIN:ABC123, Make:Ford, Description:Replace Wipers Cost:$20.00
Car VIN:ABC123, Make:Ford, Description:Change Oil Cost:$29.99
Car VIN:ABC456, Make:Audi, Description:***No Repairs*** Cost:$0.00
Car VIN:DEF123, Make:BMW, Description:Rotate Tires Cost:$19.99
Car VIN:DEF123, Make:BMW, Description:Fix Windshield Cost:$420.00
Car VIN:DEF456, Make:Ford, Description:Alignment Cost:$30.00
Car VIN:DEF456, Make:Ford, Description:Change Oil Cost:$30.00
Car VIN:HIJ123, Make:VW, Description:Replace Brakes Cost:$200.00
Car VIN:HIJ123, Make:VW, Description:Replace Tires Cost:$1,000.00 

 The car with VIN = ABC456 is included in the result, even though it has no repairs. Another 
way to perform a left outer join is to use the GroupJoin query extension method, discussed 
earlier in this chapter. 

 Cross Joins 
 A cross join is a Cartesian product between two element sources. A Cartesian product will join 
each record in the outer element source with all elements in the inner source. No join keys are 
required with this type of join. Cross joins are accomplished by using the from clause multiple 
times without providing any link between element sources. This is often done by mistake. 

 In the following code sample, there is a colors element source and a cars element source. 
The colors source represents the available paint colors, and the cars source represents the cars 
that exist. The desired outcome is to combine the colors with the cars to show every combi-
nation of car and color available. 

 Sample of Visual Basic Code 

 Private Sub LINQCrossJoinToolStripMenuItem_Click( _
        ByVal sender As System.Object, _



	220	 CHAPTER 3	 Introducing LINQ

        ByVal e As System.EventArgs) _ 
        Handles LINQCrossJoinToolStripMenuItem.Click 
    Dim cars = GetCars() 
    Dim colors() = {"Red", "Yellow", "Blue", "Green"} 
 
    Dim carsWithRepairs = From car In cars 
                          From color In colors 
                          Order By car.VIN, color 
                          Select New With 
                              { 
                                  car.VIN, 
                                  car.Make, 
                                  car.Model, 
                                  .Color = color 
                              } 
    For Each item In carsWithRepairs 
        txtLog.WriteLine("Car VIN:{0}, Make:{1}, Model:{2} Color:{3}", 
           item.VIN, item.Make, item.Model, item.Color) 
    Next 
End Sub

Sample of C# Code

private void lINQCrossJoinToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    var cars = GetCars(); 
    var colors = new string[]{"Red","Yellow","Blue","Green" }; 
 
    var carsWithRepairs = from car in cars 
                          from color in colors 
                          orderby car.VIN, color 
                          select new 
                          { 
                              car.VIN, 
                              car.Make, 
                              car.Model, 
                              Color=color 
                          }; 
    foreach (var item in carsWithRepairs) 
    { 
        txtLog.WriteLine("Car VIN:{0}, Make:{1}, Model:{2} Color:{3}", 
           item.VIN, item.Make, item.Model, item.Color); 
    } 
}

The result:

Car VIN:ABC123, Make:Ford, Model:F-250 Color:Blue
Car VIN:ABC123, Make:Ford, Model:F-250 Color:Green 
Car VIN:ABC123, Make:Ford, Model:F-250 Color:Red 
Car VIN:ABC123, Make:Ford, Model:F-250 Color:Yellow 
Car VIN:ABC456, Make:Audi, Model:TT Color:Blue 
Car VIN:ABC456, Make:Audi, Model:TT Color:Green 
Car VIN:ABC456, Make:Audi, Model:TT Color:Red 
Car VIN:ABC456, Make:Audi, Model:TT Color:Yellow 
Car VIN:DEF123, Make:BMW, Model:Z-3 Color:Blue 
Car VIN:DEF123, Make:BMW, Model:Z-3 Color:Green 



	 Lesson 2: Using LINQ Queries	 CHAPTER 3	 221

Car VIN:DEF123, Make:BMW, Model:Z-3 Color:Red 
Car VIN:DEF123, Make:BMW, Model:Z-3 Color:Yellow 
Car VIN:DEF456, Make:Ford, Model:F-150 Color:Blue 
Car VIN:DEF456, Make:Ford, Model:F-150 Color:Green 
Car VIN:DEF456, Make:Ford, Model:F-150 Color:Red 
Car VIN:DEF456, Make:Ford, Model:F-150 Color:Yellow 
Car VIN:HIJ123, Make:VW, Model:Bug Color:Blue 
Car VIN:HIJ123, Make:VW, Model:Bug Color:Green 
Car VIN:HIJ123, Make:VW, Model:Bug Color:Red 
Car VIN:HIJ123, Make:VW, Model:Bug Color:Yellow

The cross join produces an output for each combination of inputs, which means that the 
output count is the first input’s count one multiplied by the second input’s count.

Another way to implement a cross join is to use the SelectMany query extension method, 
covered earlier in this chapter.

Grouping and Aggregation
You will often want to calculate an aggregation such as the total cost of your repairs for each 
of your cars. LINQ enables you to calculate aggregates for each item by using the group by 
clause. The following code example demonstrates the use of the group by clause with the Sum 
aggregate function to output the VIN and the total cost of repairs.

Sample of Visual Basic Code

Private Sub LINQGroupByToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) Handles LINQGroupByToolStripMenuItem.Click 
    Dim repairs = From r In GetRepairs() 
                  Group By VIN = r.VIN 
                  Into grouped = Group, TotalCost = Sum(r.Cost) 
 
    For Each item In repairs 
        txtLog.WriteLine("Car VIN:{0}, TotalCost:{1:C}", 
           item.VIN, item.TotalCost) 
    Next 
End Sub

Sample of C# Code

private void lINQGroupByToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    var repairs = from r in GetRepairs() 
                  group r by r.VIN into grouped 
                  select new 
                  { 
                      VIN = grouped.Key, 
                      TotalCost = grouped.Sum(c => c.Cost) 
                  }; 
    foreach (var item in repairs) 
    { 
        txtLog.WriteLine("Car VIN:{0}, Total Cost:{1:C}", 
           item.VIN, item.TotalCost); 
    } 
}



	222	 CHAPTER 3	 Introducing LINQ

The result:

Car VIN:ABC123, Total Cost:$64.99
Car VIN:DEF123, Total Cost:$439.99 
Car VIN:HIJ123, Total Cost:$1,200.00 
Car VIN:DEF456, Total Cost:$60.00

This query produced the total cost for the repairs for each car that had repairs, but one car 
had no repairs, so it’s not listed. To list all the cars, you must left join the cars to the repairs 
and then calculate the sum of the repairs. Also, you might want to add the make of the car 
to the output and include cars that have no repairs. This requires you to perform a join and 
group on multiple properties. The following example shows how you can achieve the result.

Sample of Visual Basic Code

Private Sub LINQGroupBy2ToolStripMenuItem_Click( _
        ByVal sender As System.Object, _ 
        ByVal e As System.EventArgs) _ 
        Handles LINQGroupBy2ToolStripMenuItem.Click 
    Dim cars = GetCars() 
    Dim repairs = GetRepairs() 
 
    Dim carsWithRepairs = From c In cars 
                          Group c By Key = New With {c.VIN, c.Make} 
                          Into grouped = Group 
                          Group Join r In repairs On Key.VIN Equals r.VIN 
                          Into joined = Group 
                          Select New With 
                                { 
                                 .VIN = Key.VIN, 
                                 .Make = Key.Make, 
                                 .TotalCost = joined.Sum(Function(x) x.Cost) 
                                } 
    For Each item In carsWithRepairs 
        txtLog.WriteLine("Car VIN:{0}, Make:{1}, Total Cost:{2:C}", _ 
          item.VIN, item.Make, item.TotalCost) 
    Next 
End Sub

Sample of C# Code

private void lINQGroupBy2ToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    var cars = GetCars(); 
    var repairs = GetRepairs(); 
 
    var carsWithRepairs = from c in cars 
                          join rep in repairs 
                          on c.VIN equals rep.VIN into temp 
                          from r in temp.DefaultIfEmpty() 
                          group r by new { c.VIN, c.Make } into grouped 
                          select new 
                          { 
                              VIN = grouped.Key.VIN, 
                              Make = grouped.Key.Make, 
                              TotalCost =  



	 Lesson 2: Using LINQ Queries	 CHAPTER 3	 223

                                grouped.Sum(c => c == null ? 0 : c.Cost) 
                          }; 
    foreach (var item in carsWithRepairs) 
    { 
        txtLog.WriteLine("Car VIN:{0}, Make:{1}, Total Cost:{2:C}", 
           item.VIN, item.Make, item.TotalCost); 
    } 
}

The result:

Car VIN:ABC123, Make:Ford, Total Cost:$64.99
Car VIN:DEF123, Make:BMW, Total Cost:$439.99 
Car VIN:ABC456, Make:Audi, Total Cost:$0.00 
Car VIN:HIJ123, Make:VW, Total Cost:$1,200.00 
Car VIN:DEF456, Make:Ford, Total Cost:$60.00

Parallel LINQ (PLINQ)
Parallel LINQ, also known as PLINQ, is a parallel implementation of LINQ to objects. PLINQ 
implements all the LINQ query extension methods and has additional operators for parallel 
operations. The degree of concurrency for PLINQ queries is based on the capabilities of the 
computer running the query.

In many, but not all, scenarios, PLINQ can provide a significant increase in speed by us-
ing all available CPUs or CPU cores. A PLINQ query can provide performance gains when 
you have CPU-intensive operations that can be paralleled, or divided, across each CPU or 
CPU core. The more computationally expensive the work is, the greater the opportunity for 
performance gain. For example, if the workload takes 100 milliseconds to execute, a sequen-
tial query over 400 elements will take 40 seconds to complete the work, whereas a parallel 
query on a computer with eight cores might take only 5 seconds. This yields a speedup of 35 
seconds.

One problem with Windows applications is that when you try to update a con-
trol on your form from a thread other than the thread that created the control, an 
InvalidOperationException is thrown with the message, “Cross-thread operation not valid: 
Control ‘txtLog’ accessed from a thread other than the thread it was created on.” To work with 
threading, update in a thread-safe way the following extension method for TextBox to the 
TextBoxHelper class.

Sample of Visual Basic Code

<Extension()> _
Public Sub WriteLine(ByVal txt As TextBox, _ 
                     ByVal format As String, _ 
                     ByVal ParamArray parms As Object()) 
    Dim line As String = String.Format((format & Environment.NewLine), parms) 
    If txt.InvokeRequired Then 
        txt.BeginInvoke(New Action(Of String)(AddressOf txt.AppendText), _ 
                        New Object() {line}) 
    Else 
        txt.AppendText(line) 



	224	 CHAPTER 3	 Introducing LINQ

    End If 
End Sub

Sample of C# Code

public static void WriteLine(this TextBox txt, 
               string format, params object[] parms) 
{ 
    string line = string.Format(format + Environment.NewLine, parms); 
    if (txt.InvokeRequired) 
    { 
        txt.BeginInvoke((Action<string>)txt.AppendText, line); 
    } 
    else 
    { 
        txt.AppendText(line); 
    } 
}

You use the Invoke or BeginInvoke method on the TextBox class to marshal the callback to 
the thread that was used to create the UI control. The BeginInvoke method posts an internal 
dedicated Windows message to the UI thread message queue and returns immediately, which 
helps avoid thread deadlock situations.

This extension method checks the TextBox object to see whether marshaling is required. If 
marshaling is required (i.e., when the calling thread is not the one used to create the TextBox 
object), the BeginInvoke method is executed. If marshaling is not required, the AppendText 
method is called directly on the TextBox object. The BeginInvoke method takes Delegate as 
a parameter, so txt.AppendText is cast to an action of String, a general-purpose delegate 
that exists in the framework, which represents a call to a method that takes a string param-
eter. Now that there is a thread-safe way to display information into the TextBox class, the 
AsParallel example can be performed without risking threading-related exceptions.

AsParallel Extension Method
The AsParallel extension method divides work onto each processor or processor core. The 
following code sample starts a stopwatch in the System.Diagnostics namespace to show you 
the elapsed time when completed, and then the Enumerable class produces a sequence of 
integers, from 1 to 10. The AsParallel method call is added to the source. This causes the 
iterations to be spread across the available processor and processor cores. Then a LINQ 
query retrieves all the even numbers, but in the LINQ query, the where clause is calling a 
Compute method, which has a one-second delay using the Thread class, which is in the 
System.Threading namespace. Finally, a foreach loop displays the results.

Sample of Visual Basic Code

Private Sub AsParallelToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) _ 
        Handles AsParallelToolStripMenuItem.Click 
    Dim sw As New Stopwatch 
    sw.Start() 



	 Lesson 2: Using LINQ Queries	 CHAPTER 3	 225

    Dim source = Enumerable.Range(1, 10).AsParallel() 
    Dim evenNums = From num In source 
                   Where Compute(num) Mod 2 = 0 
                   Select num 
    For Each ev In evenNums 
        txtLog.WriteLine("{0} on Thread {1}", _ 
            New Object() {ev, Thread.CurrentThread.GetHashCode}) 
    Next 
    sw.Stop() 
    txtLog.WriteLine("Done {0}", New Object() {sw.Elapsed}) 
End Sub 
 
Public Function Compute(ByVal num As Integer) As Integer 
    txtLog.WriteLine("Computing {0} on Thread {1}", _ 
        New Object() {num, Thread.CurrentThread.GetHashCode}) 
    Thread.Sleep(1000) 
    Return num 
End Function

Sample of C# Code

private void asParallelToolStripMenuItem_Click(
    object sender, EventArgs e) 
{ 
    Stopwatch sw = new Stopwatch(); 
    sw.Start(); 
    var source = Enumerable.Range(1, 10).AsParallel(); 
    var evenNums = from num in source 
                   where Compute(num) % 2 == 0 
                   select num; 
    foreach (var ev in evenNums) 
    { 
        txtLog.WriteLine("{0} on Thread {1}", ev,  
            Thread.CurrentThread.GetHashCode()); 
    } 
    sw.Stop(); 
    txtLog.WriteLine("Done {0}", sw.Elapsed); 
} 
 
public int Compute(int num) 
{ 
    txtLog.WriteLine("Computing {0} on Thread {1}", num,  
        Thread.CurrentThread.GetHashCode()); 
    Thread.Sleep(1000); 
    return num; 
}

AsEnumerable results, showing even numbers, total time, and computing method:

6 on Thread 10
2 on Thread 10 
4 on Thread 10 
8 on Thread 10 
10 on Thread 10 
Done 00:00:05.0393262 
Computing 1 on Thread 12 



	226	 CHAPTER 3	 Introducing LINQ

Computing 2 on Thread 11 
Computing 3 on Thread 12 
Computing 4 on Thread 11 
Computing 5 on Thread 11 
Computing 6 on Thread 12 
Computing 7 on Thread 12 
Computing 8 on Thread 11 
Computing 9 on Thread 12 
Computing 10 on Thread 11

The output from the Compute calls always shows after the foreach (Visual Basic For Each) 
loop output because BeginInvoke marshalls calls to the UI thread for execution when the 
UI thread is available. The foreach loop is running on the UI thread, so the thread is busy 
until the loop completes. The results are not ordered. Your result will vary as well, and, in 
some cases, the results might be ordered. In the example, you can see that the foreach loop 
displayed the even numbers, using the main thread of the application, which was thread 10 
on this computer. The Compute method was executed on a different thread, but the thread 
is either 11 or 12 because this is a two-core processor. Although the Compute method has a 
one-second delay, it took five seconds to execute because only two threads were allocated, 
one for each core.

In an effort to get a clearer picture of PLINQ, the writing to a TextBox has been replaced 
in the following code. Instead of using TextBox, Debug.WriteLine is used, which removes the 
requirement to marshall calls back to the UI thread.

Sample of Visual Basic Code

Private Sub AsParallel2ToolStripMenuItem_Click( _
   ByVal sender As System.Object, ByVal e As System.EventArgs) _ 
   Handles AsParallel2ToolStripMenuItem.Click 
   Dim sw As New Stopwatch 
   sw.Start() 
   Dim source = Enumerable.Range(1, 10).AsParallel() 
   Dim evenNums = From num In source 
                  Where Compute2(num) Mod 2 = 0 
                  Select num 
   For Each ev In evenNums 
      Debug.WriteLine(String.Format("{0} on Thread {1}", _ 
          New Object() {ev, Thread.CurrentThread.GetHashCode})) 
   Next 
   sw.Stop() 
   Debug.WriteLine(String.Format("Done {0}", New Object() {sw.Elapsed})) 
End Sub

Sample of C# Code

private void asParallel2ToolStripMenuItem_Click(
   object sender, EventArgs e) 
{ 
   Stopwatch sw = new Stopwatch(); 
   sw.Start(); 
   var source = Enumerable.Range(1, 10).AsParallel(); 
   var evenNums = from num in source 



	 Lesson 2: Using LINQ Queries	 CHAPTER 3	 227

                  where Compute2(num) % 2 == 0 
                  select num; 
   foreach (var ev in evenNums) 
   { 
      Debug.WriteLine(string.Format("{0} on Thread {1}", ev, 
         Thread.CurrentThread.GetHashCode())); 
   } 
   sw.Stop(); 
   Debug.WriteLine(string.Format("Done {0}", sw.Elapsed)); 
} 
 
public int Compute2(int num) 
{ 
   Debug.WriteLine(string.Format("Computing {0} on Thread {1}", num, 
      Thread.CurrentThread.GetHashCode())); 
   Thread.Sleep(1000); 
   return num; 
}

The result:

Computing 2 on Thread 10
Computing 1 on Thread 6 
Computing 3 on Thread 10 
Computing 4 on Thread 6 
Computing 5 on Thread 10 
Computing 6 on Thread 6 
Computing 7 on Thread 10 
Computing 8 on Thread 6 
Computing 9 on Thread 10 
Computing 10 on Thread 6 
2 on Thread 9 
4 on Thread 9 
6 on Thread 9 
8 on Thread 9 
10 on Thread 9 
Done 00:00:05.0632071

The result, which is in the Visual Studio .NET Output window, shows that there is no wait-
ing for the UI thread. Once again, your result will vary based on your hardware configuration. 

ForAll Extension Method
When the query is iterated by using a foreach (Visual Basic For Each) loop, each iteration is 
synchronized in the same thread, to be treated one after the other in the order of the se-
quence. If you just want to perform each iteration in parallel, without any specific order, use 
the ForAll method. It has the same effect as performing each iteration in a different thread. 
Analyze this technique to verify that you get the performance gain you expect. The following 
example shows the use of the ForAll method instead of the For Each (C# foreach) loop.

Sample of Visual Basic Code

Private Sub ForAllToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) _ 



	228	 CHAPTER 3	 Introducing LINQ

        Handles ForAllToolStripMenuItem.Click 
    Dim sw As New Stopwatch 
    sw.Start() 
    Dim source = Enumerable.Range(1, 10).AsParallel() 
    Dim evenNums = From num In source 
                   Where Compute2(num) Mod 2 = 0 
                   Select num 
    evenNums.ForAll(Sub(ev) Debug.WriteLine(string.Format( 
                           "{0} on Thread {1}", ev, _ 
                          Thread.CurrentThread.GetHashCode()))) 
    sw.Stop() 
    Debug.WriteLine((string.Format("Done {0}", New Object() {sw.Elapsed})) 
End Sub

Sample of C# Code

private void forAllToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    Stopwatch sw = new Stopwatch(); 
    sw.Start(); 
    var source = Enumerable.Range(1, 10).AsParallel(); 
    var evenNums = from num in source 
                   where Compute(num) % 2 == 0 
                   select num; 
    evenNums.ForAll(ev => Debug.WriteLine(string.Format( 
                      "{0} on Thread {1}", ev,  
                      Thread.CurrentThread.GetHashCode()))); 
    sw.Stop(); 
    Debug.WriteLine(string.Format("Done {0}", sw.Elapsed)); 
}

ForAll result, showing even numbers, total time, and computing method:

Computing 1 on Thread 9
Computing 2 on Thread 10 
Computing 3 on Thread 9 
2 on Thread 10 
Computing 4 on Thread 10 
Computing 5 on Thread 9 
4 on Thread 10 
Computing 6 on Thread 10 
Computing 7 on Thread 9 
6 on Thread 10 
Computing 8 on Thread 10 
Computing 9 on Thread 9 
8 on Thread 10 
Computing 10 on Thread 10 
10 on Thread 10
Done 00:00:05.0556551

Like the previous example, the results are not guaranteed to be ordered, and there is no 
attempt to put the results in a particular order. This technique can give you better perfor-
mance as long as this behavior is acceptable. 



	 Lesson 2: Using LINQ Queries	 CHAPTER 3	 229

AsOrdered Extension Method
Sometimes, you must maintain the order in your query, but you still want parallel execution. 
Although this will come at a cost, it’s doable by using the AsOrdered extension method. The 
following example shows how you can add this method call right after the AsParallel method 
to maintain order.

Sample of Visual Basic Code

Private Sub AsOrderedToolStripMenuItem_Click(ByVal sender As System.Object, _
        ByVal e As System.EventArgs) _ 
        Handles AsOrderedToolStripMenuItem.Click 
    Dim sw As New Stopwatch 
    sw.Start() 
    Dim source = Enumerable.Range(1, 10).AsParallel().AsOrdered()
    Dim evenNums = From num In source 
                   Where Compute2(num) Mod 2 = 0 
                   Select num 
    evenNums.ForAll(Sub(ev) Debug.WriteLine(string.Format( 
                          "{0} on Thread {1}", ev, _ 
                          Thread.CurrentThread.GetHashCode()))) 
    sw.Stop() 
    Debug.WriteLine(string.Format("Done {0}", New Object() {sw.Elapsed})) 
End Sub

Sample of C# Code

private void asOrderedToolStripMenuItem_Click(object sender, EventArgs e)
{ 
    Stopwatch sw = new Stopwatch(); 
    sw.Start(); 
    var source = Enumerable.Range(1, 10).AsParallel().AsOrdered();
    var evenNums = from num in source 
                   where Compute2(num) % 2 == 0 
                   select num; 
 
    evenNums.ForAll(ev => Debug.WriteLine(string.Format( 
                      "{0} on Thread {1}", ev,  
                      Thread.CurrentThread.GetHashCode()))); 
    sw.Stop(); 
    Debug.WriteLine(string.Format("Done {0}", sw.Elapsed)); 
}

AsOrdered result, showing even numbers, total time, and computing method:

Computing 2 on Thread 11
Computing 1 on Thread 10 
2 on Thread 11 
Computing 4 on Thread 11 
Computing 3 on Thread 10 
4 on Thread 11 
Computing 6 on Thread 11 
Computing 5 on Thread 10 
6 on Thread 11 
Computing 8 on Thread 11 
Computing 7 on Thread 10 
8 on Thread 11 



	230	 CHAPTER 3	 Introducing LINQ

Computing 9 on Thread 11 
Computing 10 on Thread 10 
10 on Thread 10 
Done 00:00:05.2374586

The results are ordered, at least for the even numbers, which is what the AsOrdered exten-
sion method is guaranteeing.

Practice	 Working with Disconnected Data Classes

In this practice, you convert the Web application from Lesson 1 to use LINQ queries instead of 
query extension methods. The result of this practice functions the same way, but you will see 
how using LINQ queries can improve readability.

If you encounter a problem completing an exercise, the completed projects can be in-
stalled from the Code folder on the companion CD.

Exercise 1  Converting from Query Extension Methods to LINQ Queries

In this exercise, you modify the Web application you created in Lesson 1 to use LINQ queries.

	 1.	 In Visual Studio .NET 2010, choose File | Open | Project. Open the project from Lesson 
1 or locate and open the solution in the Begin folder for this lesson.

	 2.	 In Solution Explorer, right-click the Default.aspx file and select View Code to open the 
code-behind file containing the code from Lesson 1.

	 3.	 In the Page_Load method, locate the statement that contains all the Where method 
calls as follows:

Sample of Visual Basic Code

Dim result = Vehicles _
        .Where(Function(v) v.VIN.StartsWith(txtVin.Text)) _ 
        .Where(Function(v) v.Make.StartsWith(txtMake.Text)) _ 
        .Where(Function(v) v.Model.StartsWith(txtModel.Text)) _ 
        .Where(Function(v) v.Cost > Decimal.Parse(ddlCost.SelectedValue)) _ 
        .Where(Function(v) v.Year > Integer.Parse(ddlYear.SelectedValue))

Sample of C# Code

var result = vehicles
    .Where(v => v.VIN.StartsWith(txtVin.Text)) 
    .Where(v => v.Make.StartsWith(txtMake.Text)) 
    .Where(v => v.Model.StartsWith(txtModel.Text)) 
    .Where(v => v.Cost > Decimal.Parse(ddlCost.SelectedValue)) 
    .Where(v => v.Year > int.Parse(ddlYear.SelectedValue));

	 4.	 Convert the previous code to use a LINQ query. Your code should look like the 
following:

Sample of Visual Basic Code

Dim result = From v In Vehicles
             Where v.VIN.StartsWith(txtVin.Text) _ 
             And v.Make.StartsWith(txtMake.Text) _ 



	 Lesson 2: Using LINQ Queries	 CHAPTER 3	 231

             And v.Model.StartsWith(txtModel.Text) _ 
             And v.Cost > Decimal.Parse(ddlCost.SelectedValue) _ 
             And v.Year > Integer.Parse(ddlYear.SelectedValue) _ 
             Select v

Sample of C# Code

var result = from v in vehicles
             where v.VIN.StartsWith(txtVin.Text) 
             &&    v.Make.StartsWith(txtMake.Text) 
             &&    v.Model.StartsWith(txtModel.Text) 
             &&    v.Cost > Decimal.Parse(ddlCost.SelectedValue) 
             &&    v.Year > int.Parse(ddlYear.SelectedValue) 
             select v;

Behind the scenes, these queries do the same thing as the previous code, which imple-
mented many Where calls by using method chaining.

	 5.	 Locate the SetOrder method. Replace the code in this method to use LINQ expressions. 
Your code should look like the following:

Sample of Visual Basic Code

Private Function SetOrder(ByVal order As String, _
        ByVal query As IEnumerable(Of Vehicle)) As IEnumerable(Of Vehicle) 
    Select Case order 
        Case "VIN" 
            Return From v In query Order By v.VIN Select v 
        Case "Make" 
            Return From v In query Order By v.Make Select v 
        Case "Model" 
            Return From v In query Order By v.Model Select v 
        Case "Year" 
            Return From v In query Order By v.Year Select v 
        Case "Cost" 
            Return From v In query Order By v.Cost Select v 
        Case Else 
            Return query 
    End Select

End Function

Sample of C# Code

private IEnumerable<Vehicle> SetOrder(string order,
        IEnumerable<Vehicle> query) 
{ 
    switch (order) 
    { 
        case "VIN": 
            return from v in query orderby v.VIN select v; 
        case "Make": 
            return from v in query orderby v.Make select v;  
        case "Model": 
            return from v in query orderby v.Model select v; 
        case "Year": 
            return from v in query orderby v.Year select v;  
        case "Cost": 



 232 CHAPTER 3 Introducing LINQ

            return from v in query orderby v.Cost select v; 
        default:
            return query;
    }
} 

 6.  Locate the data-binding code. This code uses the Select query extension method to 
instantiate an anonymous type, which is then bound to the grid as follows: 

 Sample of Visual Basic Code 

 gvVehicles.DataSource = result.Select(Function(v, i) New With
                {.Index = i, v.VIN, v.Make, v.Model, v.Year, v.Cost})
gvVehicles.DataBind() 

 Sample of C# Code 

 gvVehicles.DataSource = result.Select((v, i)=> new
    {Index = i, v.VIN, v.Make, v.Model, v.Year, v.Cost});
gvVehicles.DataBind(); 

 Can you convert the previous code to a LINQ query? The LINQ select keyword doesn’t 
support the index parameter value this code uses. You could spend time trying to fi nd 
a way to convert this code, but it’s better to leave this code as is. 

 7.  Choose Build | Build Solution to build the application. If you have errors, you can 
double-click the error to go to the error line and correct. 

 8.  Choose Debug | Start Debugging to run the application. 

 When the application starts, you should see a Web page with your GUI controls that 
enables you to specify fi lter and sort criteria. If you type the letter F into the Make 
text box and click Execute, the grid will be populated only with items that begin with 
F. If you set the sort order and click the Execute button again, you will see the sorted 
results. 

 Lesson Summary 
 This lesson provided an introductions to LINQ.  

■  You can use LINQ queries to provide a typed method of querying any generic 
 IEnumerable object. 

■  LINQ queries can be more readable than using query extension methods. 

■  Not all query extension methods map to LINQ keywords, so you might still be required 
to use query extension methods with your LINQ queries. 

■  Although the Select query extension method maps to the LINQ select keyword, the 
LINQ select keyword doesn’t support the index parameter the Select query extension 
method has. 

■  LINQ queries enable you to fi lter, project, sort, join, group, and aggregate. 

■  PLINQ provides a parallel implementation of LINQ that can increase the performance 
of LINQ queries. 



	 Lesson 2: Using LINQ Queries	 CHAPTER 3	 233

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 2, 
“Using LINQ Queries.” The questions are also available on the companion CD if you prefer to 
review them in electronic form.

Note A nswers

Answers to these questions and explanations of why each answer choice is correct or incor-
rect are located in the “Answers” section at the end of the book. 

	 1.	 Given the following LINQ query:

from c in cars join r in repairs on c.VIN equals r.VIN …

what kind of join does this perform?

	 A.	 Cross join

	 B.	 Left outer join

	 C.	 Right outer join

	 D.	 Inner join

	 2.	 In a LINQ query that starts with:

from o in orderItems

The orderItems collection is a collection of OrderItem with properties called UnitPrice, 
Discount, and Quantity. You want the query to filter out OrderItem objects whose 
totalPrice (UnitPrice * Quantity * Discount) result is less than 100. You want to sort by 
totalPrice, and you want to include the total price in your select clause. Which keyword 
can you use to create a totalPrice result within the LINQ query so you don’t have to 
repeat the formula three times?

	 A.	 let

	 B.	 on

	 C.	 into

	 D.	 by



	234	 CHAPTER 3	 Introducing LINQ

Case Scenarios

In the following case scenarios, you will apply what you’ve learned about LINQ as discussed 
in this chapter. You can find answers to these questions in the “Answers” section at the end of 
this book. 

Case Scenario 1: Fibonacci Sequence
You were recently challenged to create an expression to produce the Fibonacci sequence for a 
predetermined quantity of iterations. An example of the Fibonacci sequence is:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

The sequence starts with 0 and 1, known as the seed values. The next number is always the 
sum of the previous two numbers, so 0 + 1 = 1 to get the third element, 1 + 1 = 2 to get the 
fourth element, 2 + 1 = 3 for the fifth element, 3 + 2 = 5 for the sixth element, and so on.

Answer the following questions regarding the implementation of the Fibonacci sequence.

	 1.	 Can you write an expression using a LINQ query or query extension methods that will 
produce Fibonacci numbers for a predetermined quantity of iterations?

	 2.	 Instead of producing Fibonacci numbers for a predetermined quantity of iterations, 
how about producing Fibonacci numbers until you reach a desired maximum value?

Case Scenario 2: Sorting and Filtering Data
In your application, you are using a collection of Customer, a collection of Order, and a col-
lection of OrderItem. Table 3-3 shows the properties of each of the classes. The total price for 
OrderItem is Quantity * Price * Discount. The Order amount is the sum of the total price of the 
order items. The max Quantity value is the maximum quantity of products purchased for a 
customer.

You must write a LINQ query that produces a generic IEnumerable result that contains 
CustomerID, Name, OrderAmount, and MaxQuantity. You produce this data only for orders 
whose amount is greater than $1,000. You want to sort by OrderAmount descending.

Table 3-3  Classes with Corresponding Properties

Customer Order OrderItem

CustomerID OrderID OrderItemID

Name CustomerID OrderID

Address OrderDate ProductID

City RequiredDate Quantity

State ShippedDate Price

Discount



	 Take a Practice Test	 CHAPTER 3	 235

	 1.	 Can you produce a LINQ query that solves this problem?

	 2.	 Can you produce a solution to this problem by using query extension methods?

Suggested Practices

To help you successfully master the exam objectives presented in this chapter, complete the 
following tasks.

Create Query with Extension Methods
You should create at least one application that uses the LINQ and query extension methods. 
This can be accomplished by completing the practices at the end of Lesson 1 and Lesson 2 or 
by completing the following Practice 1.

■	 Practice 1  Create an application that requires you to collect data into at least two 
generic collections in which the objects in these collections are related. This could 
be movies that have actors, artists who record music, or people who have vehicles. 
Add query extension methods to perform inner joins of these collections and retrieve 
results.

■	 Practice 2  Complete Practice 1 and then add query extension methods to perform 
outer joins and group by with aggregations.

Create LINQ Queries
You should create at least one application that uses the LINQ and query extension methods. 
This can be accomplished by completing the practices at the end of Lesson 1 and Lesson 2 or 
by completing the following Practice 1.

■	 Practice 1  Create an application that requires you to collect data into at least two 
generic collections in which the objects in these collections are related. This could be 
movies that have actors, artists who record music, or people who have vehicles. Add 
LINQ queries to perform inner joins of these collections and retrieve results.

■	 Practice 2  Complete Practice 1 and then add query LINQ queries to perform outer 
joins and group by with aggregations.

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you can test 
yourself on just the lesson review content, or you can test yourself on all the 70-516 certifica-
tion exam content. You can set up the test so that it closely simulates the experience of taking 



	236	 CHAPTER 3	 Introducing LINQ

a certification exam, or you can set it up in study mode so that you can look at the correct 
answers and explanations after you answer each question.

More Info P ractice tests

For details about all the practice test options available, see the “How to Use the Practice 
Tests” section in this book’s introduction.





623

Index

Symbols and Numbers
& (ampersand), 470
() (precedence grouping), 474
.NET DataProvider for SqlServer/@ symbol, 76
\ (backslashes), 76, 554

A
AcceptChanges extension method, 406
add operator, 474
Added state, 405, 435–436
Administrators group, 557
ADO.NET connected classes. See also specific classes

about, 3, 63, 65
IDisposable interface and, 67

ADO.NET data provider, 379–380
ADO.NET Data Services. See WCF Data Services
ADO.NET disconnected classes. See also specific classes

about, 3
practice exercises, 52–57, 230–232

ADO.NET Entity Data Model. See Entity Data Model
ADO.NET entity framework. See Entity Framework
Advanced Encryption Standard (AES), 540
AES (Advanced Encryption Standard), 540
Aggregate keyword (Visual Basic), 209
aggregating

LINQ queries, 219–223
LINQ to SQL queries, 267–268
LINQ to XML queries, 334–335

All extension method, 164
All keyword (Visual Basic), 209
ampersand (&), 470
and (logical and) operator, 474
And keyword (Visual Basic), 218

Anonymous authentication, 592
anonymous types, 154–155, 210
Any extension method, 165
Any keyword (Visual Basic), 209
App.config file

connection information, 411
storing connection strings in, 75, 427

ascending keyword (LINQ), 209
AsEnumerable extension method, 165–166, 423
ASMX web services, 468
AsOrdered extension method, 229–230
ASP.NET applications. See web applications
ASP.NET websites, deployment for, 590–591
AsParallel extension method, 166, 224–227
AsQueryable extension method, 166–167, 470
assemblies, embedding resources in, 380
AssociationAttribute class, 247
associations. See also relationships

adding, 370
Dependent Key property, 370
keys and relationships, 374–375
mapping scenarios, 366
Principal Key property, 370
Referential Constraint settings, 370

AssociationSet class, 366
asymmetric cryptography

about, 545–548
digital signatures and, 552

at (@) symbol, 76
Atom Publishing protocol, 459, 486
AttributeMappingSource class, 248
authentication, deployment and, 592
automatic numbering for primary key columns, 7
automatic synchronization exercise, 109–118, 137–139
Average extension method, 167
Average keyword (Visual Basic), 209



624

Entity Framework and, 388–391
navigation properties, 370
OnPropertyChanged event, 435
OnPropertyChanging event, 435
overriding proposed names, 241
POCO, 409, 412–413
proxy, 483

client applications
adding, 482–488
binding with DataServiceCollection, 484–486
interceptors and, 488
referencing WCF Data Services, 483–484
specifying payload formats, 486–487

Close method versus using block, 67
Code First model

about, 365–366
implementing, 367–372

collection initializers, 151–152
collection type, 429
collections

Clear method, 406
MULTISET, 430
POCO classes and, 412

column constraints, 4
ColumnAttribute class, 245
CommandBehavior.SequentialAccess method, 428
commands, preventing exceptions, 521–523
complex types

adding properties, 385
creating, 385–386
defined, 364, 385
inheritance and, 386
mapping scenarios, 366
modifying, 385
working with, 385–386

ComplexObject class, 385
Concat extension method, 168
concat() function, 475
conceptual models

Code Generation Strategy setting, 371
Connection String setting, 371
Database Generation Workflow setting, 371
Database Schema Name setting, 371
DDL Generation Template setting, 372
Entity Container Access setting, 372
Entity Container Name setting, 372
examining, 373–374
general properties, 371–372

B
backslashes (\\), 76, 554
base 64 encoding, 537–539
Basic authentication, 592
BCP.exe (SQL Server Bulk Copy Program), 93
binary data

deserializing DataSet object, 46
serializing DataSet object, 44–46

BinaryFormatter object, 45–46
BinaryXml files, 46
binding. See data binding
bit-flag enumeration, 17
bitwise OR operator, 17
by keyword (LINQ), 209

C
caching objects, 277–278
Caesar Cipher, 539
Cartesian product, 219
cascade-delete operations, 285, 439–441
case scenarios

clustered servers, 141
connection pooling, 141
daily imports process, 141
data synchronization, 578
Entity Framework, 456
exposing data, 500
Fibonacci sequence, 234
object-oriented data access, 293
object-relational mapping, 456
sorting and filtering data, 60, 234
traveling sales team, 60
XML web service, 357

Cast extension method, 167
ceiling() function, 476
change tracking, 277–279, 560
Changed event, 322
ChangeInterceptorAttribute class, 488
Changing event, 322
ciphertext, defined, 541
classes

changing namespaces for, 372
CreateObjectName method, 435
entity, 407, 435
Entity Data Model Generator, 435

backslashes (\\)



625

implementing encrypted properties, 77
LINQ to SQL considerations, 249–250
ObjectContext class, 379–380
practice exercise, 557–558
sample ODBC, 68–69
sample OLEDB, 69
sample SQL Server, 72–73
storing encrypted, 76–77, 555
storing in configuration file, 75
TrustServerCertificate setting, 554

connections
Close method, 67
closing, 66–67
database, 249–256, 376–384
encrypting, 554–556
handling exceptions, 523–527
opening, 66–67, 427
preventing exceptions, 521–523

ConnectionStrings collection, 75
constraints

creating, 25
defined, 4
foreign key, 25, 285
primary key, 25

Contains extension method, 169
ContextUtil class, 131
controls

data binding properties, 51–52
DataBind method, 52

conversion operators
XAttribute class, 322, 334
XElement class, 327

Convert class, 538
Copy Website tool, 590–591
Count extension method, 169, 208
$count keyword, 472
count keyword (query options), 472
Count keyword (Visual Basic), 210
CREATEREF function, 432
cross joins, 219–221
CRUD operations, 365, 459
Crypto API, 545
cryptography. See also encryption

about, 537
asymmetric, 545–548, 552
digital signatures, 552–554
encoding vs. encryption, 537–539
hashing functions, 549–550

Lazy Loading Enabled setting, 372
Mapping Details window, 374
mapping scenarios, 365–366
Metadata Artifact Processing setting, 372
Namespace setting, 372
Pluralize New Objects setting, 372
POCO example, 410
Transform Related Text Templates On Save  
setting, 372
Validate On Build setting, 372

Conceptual Schema Definition Language (CSDL) files, 
364, 401, 593
concurrency models

about, 121
isolation levels and, 121–123

configuration files
encrypting, 554–556
practice exercise, 557–558
storing connection strings, 75–77
viewing connection string settings, 249

Configuration Manager, 588–589
ConfigurationManager class, 75, 555
Configure Data Synchronization screen, 563
conflict detection, 561
connected classes. See also specific classes

about, 3, 63, 65
IDisposable interface and, 67

connection pooling
abiding by rules, 78
about, 77
case scenarios, 141
clearing pools, 79
client-side considerations, 78
Connection Timeout setting, 79
creating groups, 78
exceeding pool size, 79
Load Balancing Timeout setting, 79
Max Pool Size setting, 79
Pooling setting, 79
removing connection, 78
turning off, 79

connection strings
configuring ODBC, 68
configuring OLEDB, 69
configuring SQL Server, 70–72
connection pooling and, 77–79
Encrypt setting, 554
ESQL support, 427

cryptography



626

DataColumn object
adding objects to create schema, 4–6
AllowDBNull property, 5–6, 25
AutoIncrement property, 7
AutoIncrementSeed property, 7
AutoIncrementStep property, 7
Caption property, 5–6
ColumnMapping property, 35, 38
DataType property, 5–6
foreign key constraints, 25
MaxLength property, 5–6
Unique property, 5–6

DataContext class
AcceptChanges method, 529
adding entities, 282–283
Base Class property, 248
caching objects and, 277–278
CommandTimeout property, 522
Connection property, 250
dbml files and, 240
DeleteAllOnSubmit method, 283
DeleteOnSubmit method, 283, 285
deleting entities, 283–285
examining, 247–249
InsertAllOnSubmit method, 282
InsertOnSubmit method, 282–283
LINQ to SQL support, 364
Log property, 252, 505–506
mappingSource field, 248
modifying existing entities, 280–282
Serialization Mode property, 248
Serialization property, 244
stored procedures and, 285–286
SubmitChanges method, 278, 281, 283, 285–286, 
529
tracking changes and, 277–278
viewing properties, 247

DataContractAttribute class, 244
DataDirectory class, 74
DataGrid class, 484, 565
DataMemberAttribute class, 246
DataRelation object

connecting tables with, 23–24
creating primary/foreign key constraints, 25
DataSet object and, 20
Nested property, 39

DataRow object
AcceptChanges method, 10, 13

symmetric, 539–545
CryptoStream object, 543, 545
CSDL (Conceptual Schema Definition Language) files, 
364, 401, 593
CspParameters class, 548
curly braces, 486

D
data binding

DataBind method, 52
DataMember property, 51
DataServiceCollection class, 484–486
DataSource property, 51
DisplayMember property, 51–52
in ASP.NET applications, 51–52
in Windows Forms applications, 51–53
in WPF applications, 52
ItemsSource property, 52
ValueMember property, 51–52

Data Definition Language (DDL), 85, 370
Data Encryption Standard (DES), 540
Data Manipulation Language (DML), 85
data models. See modeling data
data prioritization, 561
Data Protection API (DPAPI), 555
data retrieval

practice exercise, 445–453
with ObjectContext, 376

data services. See WCF Data Services
data source name (DSN), 68
data synchronization

case scenario, 578
Microsoft Sync Framework, 560–567
practice exercises, 109–118, 137–139, 567, 599

DataAdapter object, 13
database connections

managing with Entity Framework, 376–384
managing with LINQ to SQL, 249–256

database design, practice exercise, 415–418
Database First model

about, 365–366
implementing, 372

database locking, 121
Database Markup Language (DBML) files, 240, 364
DatabaseAttribute class, 248

CryptoStream object



627

practice exercise, 29–31
RemotingFormat property, 45
serializing as binary object, 44–46
serializing as DiffGram, 42
serializing as XML, 37–41
WriteXml method, 37

DataSource Configuration Wizard, 564
DataTable class

about, 4
AcceptChanges method, 13
adding data to data table, 8–9
adding DataColumn objects to create schema, 4–6
automatic numbering for primary key columns, 7
changing DataRow state, 13
Clone method, 16
connecting tables with DataRelation objects, 23–24
Copy method, 16
creating DataRow objects, 8
creating primary key columns, 6
creating primary/foreign key constraints, 25
DataSet object and, 20
DeleteRow method, 10
deserializing, 34–37
enumerating data table, 14–15
exception handling example, 527
exporting DataView object to, 19–20
GetChanges method, 13
handling specialized types, 48–50
ImportRow method, 8, 16
Load method, 90
LoadDataRow method, 8
looping through data, 47–48
managing multiple copies of data, 11–12
Merge method, 27
NewRow method, 9
practice exercise, 29–31
PrimaryKey property, 6
RejectChanges method, 13
RemotingFormat property, 46
resetting DataRow state, 13
Rows property, 8
serializing, 34–37
setting DataRow state to deleted, 14
TableName property, 35
viewing DataRow state, 9–10
WriteXml method, 34

DataTableReader class
looping through data, 47–48

BeginEdit method, 11
cascading deletes/updates, 26
changing state, 13
creating, 8
creating primary/foreign key constraints, 25
Delete method, 14
EndEdit method, 11
HasVersion method, 12
importing, 16
looping through data, 47–48
RejectChanges method, 14
resetting state, 13
RowState property, 9–10, 97
SetAdded method, 13
SetModified method, 13
viewing state, 9–10

DataRowCollection class, 8
DataRowState enumeration, 9–10
DataRowVersion enumeration, 11–12, 42
DataService class

about, 464
InitializeService method, 464
IQueryable interface, 465

DataServiceCollection class, 484–486
DataServiceConfiguration class

SetEntitySetAccessRule method, 464
SetServiceOperationAccessRule method, 465, 470

DataServiceContext class
about, 484
payload formats, 486
SaveChanges method, 484–485

DataServiceException exception, 488
DataServiceKeyAttribute class, 462
DataSet Editor tool, 22
DataSet object

about, 20–21
AcceptChanges method, 13
cascading deletes/updates, 26
combining data, 27–28
connecting tables, 23–24
CreateDataReader method, 47
creating foreign key constraints, 25
creating primary key constraints, 25
creating schema, 20
creating typed class, 22
DataSetName property, 38
deserializing from binary data, 46
deserializing from XML, 43–44
Merge method, 27–28

DataTableReader class



628

DbConnectionOptions class, 74
DbConnectionStringBuilder class, 66
DbDataAdapter class

about, 66, 95–96
DeleteCommand property, 95, 97
Fill method, 96
InsertCommand property, 95, 97
SelectCommand property, 95, 97
Update method, 97
UpdateBatchSize property, 99
UpdateCommand property, 95, 97

DbDataAdapter Configuration Wizard, 97
DbDataPermission class, 66
DbDataReader class

about, 48, 66, 89–91
creating objects, 88
EntityCommand object and, 427
Read method, 90

DbException class, 105
DBML (Database Markup Language) files, 240, 364
DbParameter class, 66, 86–87
DbParameterCollection class, 66
DbProviderFactory class, 101–133
DbTransaction class, 66, 124–125
DDL (Data Definition Language), 85, 370
debug visualizers, LINQ to SQL, 252
Debug.WriteLine method, 226
decryption, 548
DefaultIfEmpty extension method, 170, 218
deferred execution for LINQ queries, 147–149
DefiningQuery element, 366
delegated transactions, 132
delete statement

DataContext object and, 285–286
mapping stored procedure, 243
ToBeDeleted state and, 279

DELETE verb (HTTP), 461
Deleted state, 279, 406, 435
deleting entities, 283–285, 438–441
DependencyProperty class, 52
deploying applications

creating deployment package, 589–590
Entity Framework metadata and, 593–595
for ASP.NET websites, 590–591
packaging and publishing from Visual Studio .NET, 
582
practice exercise, 595–597
Silverlight considerations, 592

NextResult method, 47
Read method, 47

DataView object
AllowDelete property, 17
AllowEdit property, 17
AllowNew property, 17
as index, 17
enumerating data view, 18–19
exporting, 19–20
RowFilter property, 17
RowStateFilter property, 17
Sort property, 17
Table property, 19
ToTable method, 19

DataViewRowState enumeration, 17–18
date and time functions, 476
day() function, 476
DB2 provider, 65
DbCommand class

about, 66, 85–86
CommandText property, 85–86
CommandTimeout property, 522
CommandType property, 85–86
Connection property, 85
DbDataAdapter object and, 97
DbParameter object and, 86–87
EntityCommand class and, 427
ExecuteNonQuery method, 87
ExecuteReader method, 88
ExecuteScalar method, 89

DbCommandBuilder class, 66, 97
DbConnection class

about, 66
BeginTransaction method, 124–125
Close method, 67
closing connections, 66–67
configuring ODBC connection strings, 68
configuring OLEDB connection strings, 69
configuring SQL Server connection strings, 70–72
ConnectionString property, 67
CreateCommand method, 85
creating object, 86
hierarchy overview, 66
Open method, 78
opening connections, 66–67
sample ODBC connection strings, 68–69
sample OLEDB connection strings, 69
sample SQL Server connection strings, 72–73

DataView object



629

Database First model and, 372
editing, 400
Lazy Loading Enabled property, 383
Model Browser window and, 385
model-defined functions, 413–415
POCO classes and, 409
Self-Tracking Entity Generator, 405
setting up delete rules, 439
stored procedures and, 441

ElementAt extension method, 172, 423
ElementAtOrDefault extension method, 171, 423
Empty static method, 164
encoding

base 64 encoding, 537–539
encryption comparison, 537–539

encryption. See also cryptography
encoding comparison, 537–539
for configuration files, 554–556
for connections, 554–556
padding, 545
practice exercise, 557–558
properties supporting, 77
RSA algorithm, 76, 545, 547, 555
SQL Server communication and, 76
storing connection strings, 76–77, 555

endswith() function, 475
Enterprise Administrators group, 557
entities. See also POCO entities

AcceptChanges extension method, 406
adding to DataContext, 282–283
adding to ObjectContext, 435–437
attaching to ObjectContext, 437–438
cascading deletes, 439–441
complex types and, 386
Delay Loaded property, 254
deleting, 283–285, 438–439
eager loading, 477
Entity Set Name property, 371
examining, 244–247
executing simple queries for, 471
life cycles of, 278–280
mapping scenarios, 365, 388
MarkAs extension method, 405
MarkAsAdded extension method, 405
MarkAsDeleted extension method, 406
MarkAsModified extension method, 406
MarkAsUnchanged extension method, 406
modifying existing, 280–282, 434–435

specifying database options, 585–588
specifying transformations, 588–589
WCF Data Services, 583–590
web applications, 583–585

DEREF function, 431
DES (Data Encryption Standard), 540
descending keyword (LINQ), 209
deserializing

DataSet object, 37–48
DataTable object, 34–37

Detached state, 435–436
DiffGram, 42
Digest authentication, 592
digital certificates, 76
digital signatures, 552–554
disconnected classes. See also specific classes

about, 3
practice exercises, 52–57, 230–232

Distinct extension method, 170
Distinct keyword (Visual Basic), 209
Distributed Transaction Coordinator (DTC), 123, 
133–134
distributed transactions

about, 123
creating, 134–137
viewing, 133
working with, 130–133

div (division) operator, 474
DML (Data Manipulation Language), 85
Domain Administrators group, 557
DPAPI (Data Protection API), 555
DpapiProtectedConfigurationProvider class, 76, 555
DSN (data source name), 68
DTC (Distributed Transaction Coordinator), 123, 
133–134

E
eager loading

entity support, 477
explicit loading comparison, 382–384
lazy loading comparison, 254–256, 382–384

EDMX (Entity Data Model) files
about, 364, 593
Code First model and, 367
Code Generation Strategy property, 404
Custom Tool property, 409–410

entities



630

adding, 369
Base Type, 368
Concurrency Mode, 368
Default Value, 369
Documentation, 368–369
Entity Key, 369
Entity Set Name, 368
Getter, 369
Name, 368–369
navigation properties, 370, 477
Nullable, 369
Setter, 369
StoreGeneratedPattern, 369

entity sets, 432–433, 471
Entity SQL. See ESQL (Entity SQL)
Entity type, 429
EntityClient class, 379
EntityClient provider

about, 362, 364
connection strings and, 379
EntityCommand object and, 427
ESQL support, 426

EntityCollection class, 435
EntityCommand class, 426–428
EntityConnection object, 427
EntityConnectionStringBuilder class, 427
EntityObject class, 385, 403–404, 407
EntityObject Generator, 403–404
EntitySet collections, 426
EntitySetRights enumeration, 464–465
EntityState enumeration, 381, 435
Enumerable class

about, 164
All extension method, 164
Any extension method, 165
AsEnumerable extension method, 165–166
AsParallel extension method, 166, 224–227
AsQueryable extension method, 166–167
Average extension method, 167
Cast extension method, 167
Concat extension method, 168
Contains extension method, 169
Count extension method, 169, 208
DefaultIfEmpty extension method, 170, 218
Distinct extension method, 170
ElementAt extension method, 172
ElementAtOrDefault extension method, 171
Empty static method, 164

retrieving top number of, 473
self-tracking, 405–407
setting query result order for, 472
skipping in queries, 473
StartTracking extension method, 405
StopTracking extension method, 405
stored procedures and, 243

entity classes, 407, 435
Entity Data Model

adding, 399, 468
Code First model and, 367
Database First model and, 372
entity sets and, 432–433
file types supported, 364
modeling data, 365–375
setting up delete rules, 439
types supported, 429

Entity Data Model files. See EDMX (Entity Data 
Model) files
Entity Data Model Generator, 435
Entity Data Model Wizard

accessing, 410, 468
implementing Code First model, 367
implementing Database First model, 372

Entity Framework
accessing SQL generated by, 509–511
architecture overview, 361–362
case scenario, 456
complex types and, 385–386
deploying metadata, 593–595
EntityObject generator, 403–404
EntityObject Generator, 403–404
LINQ to SQL comparison, 363–365
managing database connections, 376–384
mapping stored procedures, 386–388
modeling data, 365–375
Object Services layer, 362, 364–365
partial classes and methods, 388–391
POCO entities, 407–409
Self-Tracking Entity Generator, 405–407
TPC inheritance, 364–365, 398–402
TPH inheritance, 364–365, 391–395
TPT inheritance, 364–365, 396–398
types of development models, 365–373
updating database schema, 403

entity properties
Abstract, 368
Access, 368

entity classes



631

opening connections, 427
query builder methods, 433
REF function, 431
ROW function, 429

Except extension method, 172
exception handling

about, 521
for commands, 521–523
for connections, 521–527
for queries, 523–527
practice exercise, 532–535
when submitting changes, 527–531

$expand keyword, 477
expand keyword (query options), 477
explicit loading, 382–384
explicit transactions

about, 123
creating with DbTransaction object, 124–125
creating with T-SQL, 123

exporting DataView object, 19–20
extension methods, 158–162. See also query extension 
methods

F
Federal Information Processing Standard (FIPS), 540
Fibonacci sequence, 234
File Transfer Protocol (FTP), 591
$filter keyword

about, 474
date and time functions supporting, 476
math functions supporting, 476–477
operators supporting, 474
string functions supporting, 475

filter keyword (query options)
about, 474
date and time functions supporting, 476
math functions supporting, 476–477
operators supporting, 474
string functions supporting, 475

filtering data
$filter keyword, 474–477
case scenarios, 60, 234
differences in query execution, 423
let keyword and, 211
LINQ to SQL queries, 260–261
queries and, 474–477

Except extension method, 172
First extension method, 173
FirstOrDefault extension method, 173
GroupBy extension method, 174
GroupJoin extension method, 175, 218–219
Intersect extension method, 176
Join extension method, 176, 218
Last extension method, 177
LastOrDefault extension method, 178
LongCount extension method, 178
Max extension method, 179
Min extension method, 179
OfType extension method, 180
OrderBy extension method, 180
OrderByDescending extension method, 180
Range static method, 164
Repeat static method, 164
Reverse extension method, 181
Select extension method, 182–183
SelectMany extension method, 183–184, 215, 221
SequenceEqual extension method, 185
Single extension method, 185
SingleOrDefault extension method, 186
Skip extension method, 187, 213
SkipWhile extension method, 187
static methods, 164
Sum extension method, 188
Take extension method, 189, 213
TakeWhile extension method, 189
ThenBy extension method, 180
ThenByDescending extension method, 180
ToArray extension method, 190
ToDictionary extension method, 191
ToList extension method, 191
ToLookup extension method, 192–193
Union extension method, 193–194
Where extension method, 194, 207, 211
Zip extension method, 194–195

eq (equality) operator, 474
equals keyword (LINQ), 209, 217
ESQL (Entity SQL)

about, 362, 364, 425–426
CREATEREF function, 432
DEREF function, 431
entity sets and, 432–433
EntityCommand class, 426–428
MULTISET collections, 430
ObjectQuery class, 426, 428–429

filtering data



632

LINQ to SQL queries, 264

H
handling exceptions. See exception handling
hashing

about, 549–550
digital signatures and, 552–554
salted, 550–552

helper classes, 159–161
horizontal partitioning in conceptual models, 365
hour() function, 476
HTTP verbs, 461, 469

I
IBindingList interface, 51
IBindingListView interface, 51
IBM DB2, 363
IComparer interface, 423
ICryptoTransform interface, 543
IDataParameterCollection interface, 66
IDataReader interface

about, 47, 66
performance considerations, 95
SqlBulkCopy class and, 94

IDataRecord interface, 66
IDbCommand interface, 66
IDbConnection interface, 66
IDbDataAdapter interface, 66
IDbDataParameter interface, 66
IDbTransaction interface, 66, 286
identity tracking service, 279
IDisposable interface, 67, 382, 406
IEntityWithChangeTracker interface, 407
IEntityWithKey interface, 407
IEntityWithRelationships interface, 407
IEnumerable interface

about, 51
extension methods, 162–195
GetEnumerator method, 147
LINQ queries and, 145
service operations and, 469
stored procedures and, 242

IEnumerator interface
Current property, 147

specifying filters, 211
FIPS 140-1 standard, 540
FIPS 197 standard, 541
First extension method, 173, 423
FirstOrDefault extension method, 173, 334, 423
floor() function, 476
For Each keyword (Visual Basic), 226
for keyword (LINQ), 215
ForAll extension method, 227–228
foreach keyword (LINQ), 224, 226
foreign key constraints

creating, 25
DataColumn object, 25
ON DELETE CASCADE option, 285

foreign keys, setting properties, 407
ForeignKeyConstraint class, 26
from clause (LINQ), 146, 217, 219
from keyword (LINQ), 208
FTP (File Transfer Protocol), 591
FunctionImport element, 366
functions

date and time, 476
hashing, 549–550
math, 476–477
string, 475
type, 477

G
GAC (Global Assembly Cache), 105, 590
Generate Database Wizard, 403
Generate SQL Scripts window, 563
GET verb (HTTP), 461, 469
getFilePath helper method, 301
Global Assembly Cache (GAC), 105, 590
group by clause (LINQ), 221
group keyword (LINQ), 209
Group keyword (Visual Basic), 210
GroupBy extension method, 174, 423
grouping

differences in query execution, 423
LINQ queries, 219–223
LINQ to SQL queries, 267–268

GroupJoin extension method
about, 175
differences in query execution, 423
LINQ queries, 218–219

FIPS 140-1 standard



633

null complex type property, 386
updating controls, 223

IOrderedEnumerable interface, 147
IPOCO, 407
IPromotableSinglePhaseNotification interface, 132–133
IQueryable interface

DataService class and, 465
LINQ to Entities queries and, 509
ObjectQuery class and, 421
Provider property, 149
service operations and, 469

IsOf() function, 477
isolation levels (transactions)

about, 121–123
setting, 125–126

it keyword, 433
ITransactionPromoter interface, 132
IV (initialization vector), 541
IXmlSerializable interface

GetSchema method, 325
ReadXml method, 325
WriteXml method, 325

J
join clause (LINQ), 217–218
Join extension method, 176, 218, 423
join keyword (LINQ), 209
joins

about, 215
Association Set Name setting, 374
cross, 219–221
differences in query execution, 423
Documentation setting, 374
End1 Multiplicity setting, 375
End1 Navigation Property setting, 375
End1 OnDelete setting, 375
inner, 215–218, 262–264
LINQ to XML queries and, 335–336
outer, 218–219, 264–267

JSON format, 486–487

K
key exchange

asymmetric cryptography, 545–548
symmetric cryptography, 539–545

MoveNext method, 147
Reset method, 147

IEqualityComparer interface, 423
IIS (Internet Information Server), 583–584, 590, 592
IL (Intermediate Language), 280
IList interface, 51
IListSource interface, 51
implicit transactions, 123
importing DataRow objects, 16
in keyword (LINQ), 209
Include extension method, 383, 441
indexes, 17
indexof() function, 475
inheritance

complex types and, 386
DataService class, 464
DataServiceContext class, 484
implementing in Entity Framework, 391–407
LINQ to SQL vs. Entity Framework, 364
TPC, 364–365, 398–402
TPH, 364–365, 391–395
TPT, 364–365, 396–398

initialization vector (IV), 541
initializers

collection, 151–152
object, 150–153

inline methods, 158
inner joins

LINQ queries, 215–218
LINQ to SQL queries, 262–264

INotifyCollectionChanged interface, 484
INotifyPropertyChanged interface, 244
INotifyPropertyChanging interface, 244, 281
insert statement, 243, 279, 286
instrumentation, implementing, 505
Int32 type, 429
interceptors, 488
Intermediate Language (IL), 280
Internet Information Server (IIS), 583–584, 590, 592
Intersect extension method, 176
into clause (LINQ), 218
into keyword (LINQ), 209
Into keyword (Visual Basic), 209
InvalidConstraintException exception, 26
InvalidOperationException exception

adding performance counter categories, 513
calling methods multiple times, 128
exceeding pool size, 79
executing multiple commands, 91

key exchange



634

practice exercises, 230–232, 270–275, 287–291
projections and, 210–211
returning list of colors in sorted order, 145–147
specifying filters, 211
specifying sort order, 212
syntax-based, 205–208

LINQ to Entities
about, 362
CRUD operations, 365
differences in query execution, 422–425
model-defined functions, 413–415
query support, 388–389, 421–425

LINQ to Objects, 335
LINQ to SQL

about, 239
caching objects, 277–278
cascade-delete operations, 285
connecting to databases, 249–250
debug visualizers, 252
eager loading, 254–256
Entity Framework comparison, 363–365
examining designer output, 243–249
inheritance and, 364
lazy loading, 254–256
logging queries, 505–509
managing database connections, 249–256
modeling data, 239–243
practice exercises, 256–257, 516–519
SQL generated by, 505–509
SQL Server support, 250–253, 363
tracking changes, 277–278

LINQ to SQL queries
adding entities to DataContext, 282–283
aggregating, 267–268
basic queries with filter and sort, 260–261
deleting entities, 283–285
grouping, 267–268
inner joins, 262–264
life cycle of entities, 278–280
modifying existing entities, 280–282
outer joins, 264–267
paging, 268–270
practice exercises, 270–275, 287–291
projections, 261–262
sending to SQL Server, 250–253
stored procedures and, 285–286
submitting changes, 286

keywords
LINQ-provided, 208–209, 211
retrieving properties from queries, 472
Visual Basic supported, 209–210, 215, 218

L
lambda expressions, 156–158
Language Integrated Query. See LINQ (Language 
Integrated Query)
Last extension method, 177, 423
LastOrDefault extension method, 178, 423
lazy loading

eager loading comparison, 254–256, 382–384
explicit loading comparison, 382–384
POCO considerations, 413
self-tracking entities and, 407

le (less than or equal to) operator, 474
least privilege, principle of, 556
length() function, 475
let keyword (LINQ), 209, 211
Lightweight Transaction Manager (LTM), 131
LINQ (Language Integrated Query). See also PLINQ 
(Parallel LINQ)

about, 143
anonymous types, 154–155
deferred execution, 147–149
example, 145–147
extension methods, 158–162
lambda expressions, 156–158
local variable declarations, 153–154
object initializers, 150–153
query extension methods, 162–195

LINQ expressions
from clause, 146
order by clause, 147
select clause, 146–147, 152–153
where clause, 147

LINQ providers, 149
LINQ queries. See also query extension methods

aggregating, 219–223
deferred execution, 147–149
grouping, 219–223
joins, 215–221
keywords in, 208–211
method-based, 205–208
paging and, 213–215

keywords



635

marshaling, defined, 224
Match locator attribute, 589
materialization, defined, 422
math functions, 476–477
Max extension method, 179
Max keyword (Visual Basic), 210
memory usage, ObjectContext class, 382
MemoryStream object, 543, 545
metadata, deploying, 593–595
method-based query syntax. See query extension 
methods
methods

accessing stored procedures as, 242
Entity Framework and, 388–391
extension, 158–162
service operations, 469
static, 160, 164

Microsoft Sync Framework
about, 560
change tracking, 560
conflict detection, 561
data prioritization, 561
implementing, 562–566
version considerations, 567

Microsoft Sync Services, 567
Microsoft Visual Studio .NET. See Visual Studio .NET
Microsoft.SqlServer.Types.dll assembly, 106
Min extension method, 179
Min keyword (Visual Basic), 210
minute() function, 476
MissingSchemaAction enumeration, 28
mod (modulus) operator, 474
Model Browser window, 385
model-defined functions, 413–415
modeling data

Entity Framework, 365–375
LINQ to SQL, 239–243
POCO entities, 413–415

Modified state, 405, 435, 438
month() function, 476
moveBytes helper method, 543, 545
MSL (Mapping Specification Language) files, 364, 593
mul (multiplication) operator, 474
Multiple Active Result Sets (MARS), 91–92
MULTISET collection, 430
music tracker practice exercise, 415–418
MySql provider, 65

LINQ to XML
practice exercise, 350–355
transforming XML, 344–351
using XDocument classes, 328–333
XDocument family overview, 320–328

LINQ to XML queries
aggregating, 334–335
implementing, 333–334
joins, 335–336
namespaces and, 336–338

LinqToSqlTraceWriter class, 506
ListChanged event, 247
Load extension method, 384
LoadOption enumeration, 8, 90
local variable declarations, 153–154
logging queries, 505–511
LongCount extension method, 178
LongCount keyword (Visual Basic), 210
loop variables, 146
lt (less than) operator, 474
LTM (Lightweight Transaction Manager), 131

M
mapping

associations, 366
complex types, 366
conceptual models, 365–366
entities, 365, 388
Entity Framework scenarios, 365–366
LINQ to SQL vs. Entity Framework, 364
object-relational, 391, 456
queries, 366
stored procedures, 242–243, 386–388

Mapping Details window
assigning stored procedures, 388
keys and relationships, 374
mapping entity properties, 441
TPH example, 393

Mapping Specification Language (MSL) files, 364, 593
MappingType enumeration, 35, 38
MarkAs extension method, 405
MarkAsAdded extension method, 405
MarkAsDeleted extension method, 406
MarkAsModified extension method, 406
MarkAsUnchanged extension method, 406
MARS (Multiple Active Result Sets), 91–92

MySql provider



636

DataServiceContext class and, 484
DeleteObject method, 438
deleting entities, 438–439
Detach method, 381
DetectChanges method, 438
Dispose method, 382
Entity Framework support, 364
life cycle of, 382
LINQ to Entities queries, 421
modifying existing entities, 434–435
ObjectStateManager property, 381
retrieving data with, 376
SaveChanges method, 381, 386, 434, 436
self-tracking entities and, 406
Self-Tracking Entity Generator, 405–407
stored procedures and, 441
storing information and, 380–381
submitting changes in transactions, 441–444

ObjectQuery class
Entity Framework support, 364
ESQL support, 426, 428–429
LINQ to Entities support, 421
query builder methods, 433
ToTraceString method, 509–510, 512

object-relational mapping (ORM), 391, 456
objects

caching, 277–278
life cycles of, 278–280
one-way navigability, 412
schemas and, 4–6
storing information about, 380–381
transforming XML to, 344–347

ObjectSet class
AddObject method, 435
Attach method, 437
DeleteObject method, 438

ObjectStateEntry class
about, 380
CurrentValues property, 380
Entity property, 380
EntityKey property, 380
EntitySet property, 380
GetModifiedProperties method, 381
IsRelationship property, 380
ObjectStateManager property, 380
OriginalValues property, 380
RelationshipManager property, 381
State property, 381

N
namespaces

changing for generated classes, 372
LINQ to XML support, 336–338

National Institute of Standards and Technology (NIST), 
540
navigation properties

classes and, 370
complex types and, 386
entities and, 370, 477
reference, 407
relationships and, 375
retrieving data via, 472

ne (not equals) operator, 474
Negotiate authentication, 592
NIST (National Institute of Standards and Technology), 
540
nominal types, 429
not (logical not) operator, 474
NotSupportedException exception, 423
NTLM authentication, 592
NumberOfPooledConnections counter, 79

O
OAEP (Optimal Asymmetric Encryption Padding), 546
object initializers, 150–153
Object Services layer (Entity Framework)

about, 362, 364
CRUD operations, 365

ObjectContext class
AcceptAllChanges method, 531
adding entities to, 435–437
AddObject method, 435
AddToXxx method, 435
ApplyChanges method, 407
Attach method, 437
attaching entities to, 437–438
AttachTo method, 437
cascading deletes, 439–441
CommandTimeout property, 523
connection strings, 379–380
CreateObject method, 435
creating custom, 410
data providers and, 379–380
database connections, 377–379

namespaces



637

LINQ queries, 218–219
LINQ to SQL queries, 264–267

Output window, 508

P
packaging

creating deployment package, 589–590
Visual Studio .NET support, 582

padding encryption, 545
paging

differences in query execution, 423
LINQ to SQL queries, 268–270

Parallel LINQ. See PLINQ (Parallel LINQ)
parsing XmlDocument objects, 302–303
Pascal casing, 240
passwords, hashing and, 549–552
payload formats, 486–487
performance

deferred execution and, 148
IDataReader interface and, 95
implementing instrumentation, 505
LINQ to SQL vs. Entity Framework, 364
logging queries, 505–511
PLINQ considerations, 223

performance counters, 512–515
Performance Monitor utility, 512–515
PerformanceCounterCategoryType enumeration, 514
PLINQ (Parallel LINQ)

about, 223–224
AsOrdered extension method, 229–230
AsParallel extension method, 224–227
ForAll extension method, 227–228

POCO classes
about, 409
usage considerations, 412–413

POCO entities
about, 407–409
attaching entities, 438
creating, 435
getting started with, 410–412
model-defined functions, 413–415
usage considerations, 412–413

PossiblyModified state, 279
POST verb (HTTP), 461, 469
PreserveCurrentValue enumeration, 90
primary key constraints, 25

ObjectStateManager class, 381
ObservableCollection class, 484
OCA (occasionally connected application)

about, 560
change tracking, 560
conflict detection, 561

OData (Open Data) protocol
about, 461
CRUD operations, 459
Data Services and, 459, 471
date and time functions, 476
math functions, 476–477
string functions, 475
type functions, 477
usage considerations, 460

Odbc provider
about, 65
configuring connection strings, 68
sample connection strings, 68–69

OfType extension method, 180
OleDb provider

about, 65
configuring connection strings, 69
DbParameter object and, 87
sample connection strings, 69

on keyword (LINQ), 209
OnPropertyChanged event, 435
OnPropertyChanging event, 435
OnXxxChanged partial method, 390
OnXxxChanging partial method, 390
Open Data protocol. See OData (Open Data) protocol
operators

bitwise OR, 17
conversion, 322, 327, 334
LINQ queries, 422
supporting $filter expression, 474
Union, 168

Optimal Asymmetric Encryption Padding (OAEP), 546
or (logical or) operator, 474
Oracle provider, 65, 363
order by clause (LINQ), 147
OrderBy extension method, 180, 423
orderby keyword (LINQ), 209, 212
$orderby keyword, 472
orderby keyword (query options), 472
OrderByDescending extension method, 180, 423
ORM (object-relational mapping), 391, 456
outer joins

primary key constraints



638

Q
qe (greater than or equal to) operator, 474
qt (greater than) operator, 474
queries

connection timeouts, 521
date and time functions, 476
differences in execution, 422–425
eager loading of entities, 477
Entity Framework, 364
ESQL support, 433
exception handling, 523–527
LINQ, 145–149, 205–223, 230–232, 270–275
LINQ to Entities, 388–389, 421–425
LINQ to SQL, 250–253, 260–275, 278–291, 364
LINQ to XML, 333–338
logging, 505–511
mapping scenarios, 366
math functions, 476–477
retrieving properties from, 472
retrieving top number of entities, 473
setting result order, 472
skipping over entities, 473
string functions, 475
type functions, 477
WCF Data Services, 471–477
working with filters, 474–477

query expression syntax. See LINQ to Entities
query extension methods

about, 162–164
All, 164
Any, 165
AsEnumerable, 165–166
AsOrdered, 229–230
AsParallel, 166, 224–227
AsQueryable, 166–167
Average, 167
Cast, 167
Concat, 168
Contains, 169
Count, 169, 208
DefaultIfEmpty, 170, 218
Distinct, 170
ElementAt, 172
ElementAtOrDefault, 171
Empty static method, 164
Enumerable class and, 164–195
Except, 172

primary keys
automatic numbering for, 7
cascading deletes and, 439
creating, 6
viewing in data model, 241

primitive types, 429, 469
principle of least privilege, 556
prioritizing data, 561
process ID, connection pooling and, 78
projections

about, 152, 210
anonymous types and, 155, 210
differences in query execution, 423
let keyword and, 211
LINQ to SQL queries, 261–262

properties. See also entity properties; navigation 
properties

complex types, 385
conceptual models, 371–372
connection strings, 77
data binding, 51–52
encrypted, 77
foreign keys, 407
OnPropertyChanged event, 435
OnPropertyChanging event, 435
OnXxxChanged method, 390
OnXxxChanging method, 390
retrieving from queries, 472
viewing, 247

Properties window
Entity Framework example, 374
LINQ to SQL example, 241, 254
Package/Publish SQL tab, 585–588
Package/Publish Web tab, 583–585

PropertyChanged event, 244
PropertyChanging event, 244, 280
protecting data. See cryptography
provider classes. See connected classes
proxy classes, 483
public static methods, 160
Publish Web dialog box, 584
Publish Website tool, 591
publishing from Visual Studio .NET, 582
PUT verb (HTTP), 461

primary keys



639

R
random number generation, 550
Range static method, 164
range variables, 147
RecurseNodes method, 303
REF function, 431
ref type, 429
reference navigation properties, 407
Relationship type, 429
relationships. See also associations

Association Set Name setting, 374
Documentation setting, 374
End1 Multiplicity setting, 375
End1 Navigation Property setting, 375
End1 OnDelete setting, 375
End1 Role Name setting, 375
End2 Multiplicity setting, 375
End2 Navigation Property setting, 375
End2 OnDelete setting, 375
End2 Role Name setting, 375
keys and, 374–375
Name setting, 375
Referential Constraint setting, 375

Repeat static method, 164
replace() function, 475
representational state transfer (REST), 459
resources, embedding in assemblies, 380
REST (representational state transfer), 459
retrieving data

practice exercise, 445–453
with ObjectContext, 376

Reverse extension method, 181, 423
Rfc2898DeriveBytes class

about, 541–542
GetBytes method, 542

Rijndael algorithm, 541
RijndaelManaged class

about, 541
CreateDecryptor method, 545
CreateEncryptor method, 543
IV property, 542
Key property, 542

RNGCryptoServiceProvider class, 550
round() function, 476
ROW function, 429
row type, 429
ROW_NUMBER function, 270

First, 173
FirstOrDefault, 173
ForAll, 227–228
GroupBy, 174
GroupJoin, 175, 218–219
Intersect, 176
Join, 176, 218
keywords and, 210
Last, 177
LastOrDefault, 178
LINQ to SQL queries and, 262, 264
LongCount, 178
Max, 179
Min, 179
OfType, 180
OrderBy, 180
OrderByDescending, 180
paging and, 213–215
PLINQ support, 223
practice exercise, 230–232
Range static method, 164
Repeat static method, 164
Reverse, 181
Select, 182–183
SelectMany, 183–184, 215, 221
SequenceEqual, 185
Single, 185
SingleOrDefault, 186
Skip, 187, 213
SkipWhile, 187
static methods, 164
Sum, 188
Take, 189, 213
TakeWhile, 189
ThenBy, 180
ThenByDescending, 180
ToArray, 190
ToDictionary, 191
ToList, 191
ToLookup, 192–193
Union, 193–194
Where, 194, 207, 211
Zip, 194–195

QueryInterceptorAttribute class, 488

ROW_NUMBER function



640

viewing databases, 371
service operations

about, 469–470
WebGet attribute, 469
WebInvoke attribute, 469

service references, 483–484
Service window, 483
ServicedComponent class, 130–131
ServiceOperationRights enumeration, 465, 470
SET TRANSACTION ISOLATION LEVEL command (SQL), 
125
SetAttributes transform attribute, 589
Setup and Deployment Setup Wizard, 582
SHA-1 algorithm, 551
SHA-256 algorithm, 551
SHA256Managed class

about, 551
ComputeHash method, 551

Silverlight applications, 592
Simple Mail Transfer Protocol (SMTP), 537
Single extension method, 185, 423
single transactions, 123
SingleOrDefault extension method, 186, 423
Skip extension method

about, 187
paging operations and, 213, 268, 423

$skip keyword, 473
skip keyword (query options), 473
Skip keyword (Visual Basic), 209, 215
SkipWhile extension method, 187, 423
SkipWhile keyword (Visual Basic), 209
SMTP (Simple Mail Transfer Protocol), 537
Solution Explorer

examining model, 241
generating models from databases, 239

sorting data
case scenarios, 60, 234
differences in query execution, 423
LINQ to SQL queries, 260–261
returning list of colors, 145–147
specifying sort order, 212

specialized types, handling, 48–50
SQL (Structured Query Language). See also ESQL (Entity 
SQL); LINQ to SQL

DbCommand object and, 85
generated by Entity Framework, 509–511
implicit transactions and, 123

RowUpdated event handler, 99
RSA encryption algorithm

about, 545
code sample, 547
configuration files and, 555
storing connection strings, 76

RSACryptoServiceProvider class
DecryptValue method, 545
EncryptValue method, 545
instantiating, 548
SignData method, 553
VerifyData method, 553

RsaProtectedConfigurationProvider class, 76, 555
Rule enumeration, 26

S
salted hashes, 550–552
SaveChangesOption enumeration, 485
schemas

DataSet object, 20
DataTable object, 4
nominal types and, 429
updating, 403

Scroll event, 268
second() function, 476
security. See cryptography; encryption
select clause (LINQ), 146–147, 152–153
Select extension method, 182–183, 423
$select keyword, 472
select keyword (LINQ), 208, 211
select keyword (query options), 472
SelectMany extension method

about, 183–184
calculating page count, 215
implementing cross joins, 221
projection support, 423

self-tracking entities, 405–407
Self-Tracking Entity Generator, 405–407
SequenceEqual extension method, 185
SerializationFormat enumeration, 45
serializing

DataSet object, 37–48
DataTable object, 34–37

Server Explorer
connecting databases, 249
dragging tables from, 240

RowUpdated event handler



641

SqlParameterCollection class, 66
SqlPermission class, 66
SqlTransaction class, 66, 126
SSDL (Store Schema Definition Language) files, 364, 
401, 593
startswith() function, 475
StartTracking extension method, 405
states

changing, 13
ObjectContext and, 382, 435
resetting, 13
setting to deleted, 14
storing information about, 380–381
viewing, 9–10

static methods, 160, 164
StopTracking extension method, 405
Store Schema Definition Language (SSDL) files, 364, 
401, 593
stored procedures

calling, 425
DataContext class and, 285–286
Delete property, 243
exposing as function imports, 468
Insert property, 243
mapping, 242–243, 366, 386–388
ObjectContext class and, 441
SET FMTONLY ON option, 242
Update property, 243

storing connection strings
encrypted, 76–77, 555
in configuration file, 75–77

storing information about objects/states, 380–381
Stream object, 543
StreamWriter object, 252, 505
string functions, 475
String type, 429
StringBuilder object, 15
StringWriter object, 252
StructuralObject class, 385
Structured Query Language. See SQL (Structured Query 
Language)
sub (subtraction) operator, 474
substring() function, 475
substringof() function, 475
Sum aggregate function, 221
Sum extension method, 188
Sum keyword (Visual Basic), 210
symmetric cryptography, 539–545

SET TRANSACTION ISOLATION LEVEL  
command, 125
WHERE clause, 17

SQL Azure, 363
SQL Express, 73, 249
SQL Profiler tool, 99
SQL Server

about, 65
attaching local database files, 73
configuring connection strings, 70–72
DbParameter object and, 87
encrypted communications, 76, 554
LINQ to SQL support, 250–253, 363
ROW_NUMBER function, 270
sample connection strings, 72–73
setting isolation levels, 125
tracking changes, 561
transaction isolation levels, 121–123
user-defined types, 105–108
viewing update commands, 99

SQL Server Bulk Copy Program, 93
SQL Server Compact, 562
SQL Server Enterprise Manager, 93
SQL Server Profiler tool, 253
SqlBulkCopy class

about, 93–95
WriteToServer method, 94

SqlCeClientSyncProvider class, 566
SqlClientFactory class, 103
SQLCLR, 105
SqlCommand class

about, 66
exception handling, 525–527
Transaction property, 125

SqlCommandBuilder class, 66
SqlConnection class

about, 66–67
creating object, 125
exception handling, 525–527
LINQ to SQL support, 249
Open method, 133
practice exercise, 80–83

SqlConnectionStringBuilder class, 66
SqlDataAdapter class, 66
SqlDataReader class, 66
SqlDelegatedTransaction class, 133
SqlException exception, 521
SqlParameter class, 66

symmetric cryptography



642

TakeWhile extension method, 189, 423
TakeWhile keyword (Visual Basic), 209
text, transforming XML to, 347–348
TextBox class

AppendText method, 224
BeginInvoke method, 224
Invoke method, 224

TextWriter object, 252, 505
ThenBy extension method, 180, 423
ThenByDescending extension method, 180, 423
Thread class, 224
thread safety, ObjectContext and, 382
time and date functions, 476
ToArray extension method, 190
ToBeDeleted state, 279
ToBeInserted state, 279
ToBeUpdated state, 279–280
ToDictionary extension method, 191
ToHexString helper method, 552
ToList extension method, 149, 191, 383
ToLookup extension method, 192–193
tolower() function, 475
$top keyword, 473
top keyword (query options), 473
toupper() function, 475
TPC (Table per Concrete Class)

about, 364
implementing inheritance, 398–402
inheritance hierarchy, 365

TPH (Table per Class Hierarchy)
about, 364
implementing inheritance, 391–395
inheritance hierarchy, 365

TPT (Table per Type)
about, 364
implementing inheritance, 396–398
inheritance hierarchy, 365

Trace class
Close method, 506
Flush method, 506
Write method, 506
WriteLine method, 506

TRACE compiler constant, 508
tracing, practice exercise, 516–519
tracking changes, 277–279, 560
Transaction class

Current property, 132
hierarchy overview, 126

SyncDirection enumeration, 566
Synchronization Services for ADO.NET, 562
synchronizing data

case scenario, 578
Microsoft Sync Framework, 560–567
practice exercises, 109–118, 137–139, 567, 599

Sysbase SqlAnywhere, 363
System.Configuration namespace, 81
System.Configuration.dll assembly, 555
System.Core.dll assembly, 164
System.Data namespace, 3, 65, 81
System.Data.dll assembly, 3, 133, 297
System.Data.EntityClient namespace, 427
System.Data.Objects namespace, 362, 380
System.Data.Objects.DataClasses namespace, 362
System.Data.Services.Client.dll assembly, 462
System.Data.Services.Common namespace, 462
System.Diagnostics namespace, 506, 508, 513
System.EnterpriseServices namespace, 130
System.Linq namespace, 164
System.Security.Cryptography namespace, 537
System.Threading namespace, 224
System.Transactions namespace, 120, 126–129, 131
System.Xml.dll assembly, 297
System.Xml.Linq.dll assembly, 320

T
T4 Code Generation, 403, 412
Table class, 249
Table per Class Hierarchy (TPH)

about, 364
implementing inheritance, 391–395
inheritance hierarchy, 365

Table per Concrete Class (TPC)
about, 364
implementing inheritance, 398–402
inheritance hierarchy, 365

Table per Type (TPT)
about, 364
implementing inheritance, 396–398
inheritance hierarchy, 365

TableAttribute class, 244
Take extension method

about, 189
paging operations and, 213, 268, 423

Take keyword (Visual Basic), 209, 215

SyncDirection enumeration



643

Union operator, 168
Universal Data Link (UDL) files, 69
universal data links, 69
UnsupportedException exception, 545
Untracked state, 279
untyped data sets, 22
update statement, 243, 279, 286
user ID, connection pooling and, 78
user-defined types (UDTs), 105–108
using block

Close method vs., 67
exception handling, 525–527
ObjectContext class and, 382

V
$value keyword, 472
value keyword (query options), 472
variables

loop, 146
range, 147

vehicle identification number (VIN), 6
VersionNotFound exception, 11
VIN (vehicle identification number), 6
Visual Basic keywords, 209–210, 218
Visual Studio .NET

about, 403
creating transform files, 588
FTP support, 591
packaging and publishing from, 582

W
W3C (World Wide Web Consortium), 296
WCF Data Services

about, 459, 461
accessing data service, 471
accessing database data, 468–470
adding client applications, 482–488
adding data service, 469
binding with DataServiceCollection, 484–486
configuring, 464–468
creating data service, 462–464
deploying applications, 583–590
OData protocol, 459–461, 471
practice exercises, 478–479, 595–597

TransactionOptions object
IsolationLevel property, 129
TimeOut property, 129

transactions
about, 120
concurrency models, 121
creating with DbTransaction object, 124–125
creating with TransactionScope class, 127–128
creating with T-SQL, 123
database locking, 121
delegated, 132
distributed, 123, 130–137
exception handling, 527–531
isolation levels, 121–123, 125–126
practice exercise, 137–139
setting options, 129
single, 123
submitting changes in, 286, 441–444
types of transactions, 123

TransactionScope class
Complete method, 128
creating transactions, 127–128, 132
hierarchy overview, 126
setting transaction options, 129

TransactionScopeOption enumeration, 129
Transact-SQL, 366
transformations

specifying in Web.config file, 588–589
XML, 344–351

transient types, 429
trim() function, 475
TrueBinary files, 45–46
try/catch block, 523–526
T-SQL, 123
type functions, 477
typed data sets, 22

U
UDL (Universal Data Link) files, 69
UDTs (user-defined types), 105–108
Unchanged state

about, 279
DataContext object and, 286, 405
ObjectContext object and, 436, 438

UnicodeEncoding class, 543
Union extension method, 193–194

WCF Data Services



644

class hierarchy, 320
conversion operators, 322, 334
EmptySequence property, 322
IsNameSpaceDeclaration property, 322
Name property, 322
NextAttribute property, 322
NodeType property, 322
PreviousAttribute property, 322
Remove method, 323
SetValue method, 323
ToString method, 323
Value property, 322

XCData class, 320
XComment class, 320
XContainer class

about, 324
Add method, 324
AddFirst method, 324
class hierarchy, 320
CreateWriter method, 325
DescendantNodes method, 325
Descendants method, 325
Element method, 325
Elements method, 325
FirstNode property, 324
LastNode property, 324
Nodes method, 325
RemoveNodes method, 325
ReplaceNodes method, 325

XDeclaration class, 320
XDocument class

about, 327
class hierarchy, 320
Declaration property, 327
DocumentType property, 328
implementing LINQ to XML queries, 333
Load method, 328, 334
NodeType property, 328
Parse method, 328
practice exercise, 339–342
Root property, 328
Save method, 328
transforming XML to objects, 345
WriteTo method, 328
XML namespaces and, 338

XElement class
about, 325
AncestorsAndSelf method, 326

querying data, 471–477
referencing, 483–484
Silverlight considerations, 592

WCF services
Data Services and, 459
proxy type considerations, 406
serializing classes, 244

WcfDataServicesLibrary web application, 462, 482
web applications

adding WCF data service, 462
data binding in, 51–52
deploying, 583–585
practice exercises, 196–202, 230–232, 478–479
storing connection strings in, 76–77, 555
WcfDataServicesLibrary, 462, 482

Web Forms applications, 51–52
Web.config file

encrypting, 77, 556
Silverlight considerations, 592
specifying transformations, 588–589
storing connection strings, 76–77, 555

WebClient class, 486–487
where clause (LINQ), 147, 252
WHERE clause (SQL), 17, 282
Where extension method

about, 194
filter support, 211, 423
LINQ query operators and, 422
method-based queries and, 207

where keyword (LINQ), 208, 211
Windows Communication Foundation. See WCF Data 
Services; WCF services
Windows Event Log, 509
Windows Forms applications, 51–53
Windows Performance Monitor utility, 512–515
WITH statement, 425
World Wide Web Consortium (W3C), 296
WPF (Windows Presentation Foundation)

data binding in, 52
data grid, 251
LINQ queries and, 250
practice exercise, 489–498

X
XAttribute class

about, 322

WCF services



645

InsertBefore method, 298
Load method, 298
LoadXml method, 298
Normalize method, 298
parsing object, 302–303
practice exercise, 309–313
PrependChild method, 299
ReadNode method, 299
RemoveAll method, 299
RemoveChild method, 299
ReplaceChild method, 299
Save method, 299
searching object, 304–306
SelectNodes method, 299, 305
SelectSingleNode method, 299, 304
WriteContentsTo method, 299
WriteTo method, 299

XmlElement class, 299
XmlNamedNodeMap class, 299
XmlReader class

about, 306–308
practice exercise, 314–317

XmlReadMode enumeration, 43–44
XmlTextReader class, 306
XmlWriteMode enumeration, 36, 40–42
XNamespace class, 320
XNode class

about, 323
AddAfterSelf method, 323
AddBeforeSelf method, 323
Ancestors method, 323
class hierarchy, 320
CompareDocumentOrder method, 323
CreateReader method, 323
DeepEquals method, 323
DocumentOrderComparer property, 323
ElementsAfterSelf method, 324
ElementsBeforeSelf method, 324
EqualityComparer property, 323
IsAfter method, 324
IsBefore method, 324
NextNode property, 323
NodeAfterSelf method, 324
NodeBeforeSelf method, 324
PreviousNode property, 323
ReadFrom method, 324
Remove method, 324
ReplaceWith method, 324

Attribute method, 326
Attributes method, 326
class hierarchy, 320
conversion operators, 327
DescendantNodesAndSelf method, 326
DescendantsAndSelf method, 326
EmptySequence property, 325
FirstAttribute property, 325
GetDefaultNamespace method, 326
GetNamespaceOfPrefix method, 326
GetPrefixOfNamespace method, 327
HasAttributes property, 325
HasElements property, 326
implementing LINQ to XML queries, 333
IsEmpty property, 326
LastAttribute property, 326
Load method, 327
Name property, 325–326
NodeType property, 326
Parse method, 327
RemoveAll method, 327
RemoveAttributes method, 327
ReplaceAll method, 327
ReplaceAttributes method, 327
Save method, 327
SetElementValue method, 327
SetValue method, 327
Value property, 326
WriteTo method, 327

XML data
editing, 401
serializing/deserializing DataSet objects, 37–48
serializing/deserializing DataTable objects, 34–37
transforming, 344–351

XML namespaces, 336–338
XML schema definition (XSD), 22
XmlDataDocument class, 297
XmlDocument class

about, 297
CloneNode method, 298
CreateAttribute method, 299
CreateElement method, 299
CreateNode method, 298
creating object, 299–301
GetElementByID method, 298
GetElementsByTagName method, 298, 304
ImportNode method, 298
InsertAfter method, 298

XNode class



646

ToString method, 324
WriteTo method, 324

XObject class
about, 321
AddAnnotation method, 321
Annotation method, 321
Annotations method, 321
BaseUri property, 321
Changed event, 322
Changing event, 322
class hierarchy, 320
Document property, 321
NodeType property, 321
Parent property, 321
RemoveAnnotations method, 322

XPath query language, 296, 305
XSD (XML schema definition), 22
XText class, 320

Y
year() function, 476

Z
Zip extension method, 194–195

XObject class



647

About the Author

Glenn Johnson is a professional trainer, consul-
tant, and developer whose experience spans over 20 
years. As a consultant and developer, he has worked 
on many large projects, most of them in the insur-
ance industry. Glenn’s strengths are with Microsoft 
products, such as ASP.NET, MVC, Silverlight, WPF, WCF, 
and Microsoft SQL Server, using C#, Visual Basic, and 
T-SQL. This is yet one more of many .NET books that 

Glenn has authored; he also develops courseware and teaches classes in many countries on 
Microsoft ASP.NET, Visual Basic 2010, C#, and the .NET Framework. 

Glenn holds the following Microsoft Certifications: MCT, MCPD, MCTS, MCAD, MCSD, 
MCDBA, MCP + Site Building, MCSE + Internet, MCP + Internet, and MCSE. You can find 
Glenn’s website at http://GJTT.com.


	Contents
	Introduction
	System Requirements
	Code Samples
	Using the CD
	Acknowledgments
	Support & Feedback

	Chapter 3: Introducing LINQ
	Lesson 1: Understanding LINQ
	A LINQ Example
	Deferred Execution
	LINQ Providers
	Features That Make Up LINQ

	Lesson 2: Using LINQ Queries
	Syntax-Based and Method-Based Queries
	LINQ Keywords
	Projections
	Using the Let Keyword to Help with Projections
	Specifying a Filter
	Specifying a Sort Order
	Paging
	Joins
	Grouping and Aggregation
	Parallel LINQ (PLINQ)


	Index



