
http://www.facebook.com/share.php?u=http://www.microsoftpressstore.com/title/9780735627185
http://twitter.com/?status=RT: download a free sample chapter http://www.microsoftpressstore.com/title/9780735627185
https://plusone.google.com/share?url=http://www.microsoftpressstore.com/title/9780735627185
http://www.linkedin.com/shareArticle?mini=true&url=http://www.microsoftpressstore.com/title/9780735627185
http://www.stumbleupon.com/submit?url=http://www.microsoftpressstore.com/title/9780735627185/Free-Sample-Chapter


Programming  
Windows® Identity 
Foundation

Vittorio Bertocci



PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2011 by Vittorio Bertocci

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means 
without the written permission of the publisher.

Library of Congress Control Number: 2010933007

Printed and bound in the United States of America.

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information about 
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly 
at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/
EN-US.aspx are trademarks of the Microsoft group of companies.  All other marks are property of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events 
depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, 
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any 
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will 
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ben Ryan
Developmental Editor: Devon Musgrave
Project Editor: Rosemary Caperton
Editorial Production: Waypoint Press (www.waypointpress.com)
Technical Reviewer: Peter Kron; Technical Review services provided by Content Master, a member of CM Group, Ltd.
Cover: Tom Draper Design

Body Part No. X17-09958



To Iwona, moja kochanie





	 	 v

Contents at a Glance

Part I	 Windows Identity Foundation for Everybody
	 1	 Claims-Based Identity .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3
	 2	 Core ASP.NET Programming  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 23

Part II	 Windows Identity Foundation for Identity 
Developers

	 3 	 WIF Processing Pipeline in ASP.NET .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 51
	 4 	 Advanced ASP.NET Programming .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 95
	 5 	 WIF and WCF  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 145
	 6 	 WIF and Windows Azure  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 185
	 7 	 The Road Ahead . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 215





	 	 vii

Table of Contents
Foreword  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  xi

Acknowledgments  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  xiii

Introduction .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . xvii

Part I	 Windows Identity Foundation for Everybody
	 1	 Claims-Based Identity .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3

What Is Claims-Based Identity? .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3
Traditional Approaches to Authentication  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4
Decoupling Applications from the Mechanics of  
Identity and Access .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8

WIF Programming Model .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 15
An API for Claims-Based Identity  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 16
WIF’s Essential Behavior  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 16
IClaimsIdentity and IClaimsPrincipal  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  18

Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 21

	 2	 Core ASP.NET Programming  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 23
Externalizing Authentication .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 24

WIF Basic Anatomy: What You Get Out of the Box .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 24
Our First Example: Outsourcing Web Site Authentication  
to an STS  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 25

Authorization and Customization .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 33
ASP.NET Roles and Authorization Compatibility  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  36
Claims and Customization  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 37
A First Look at <microsoft.identityModel>  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  39
Basic Claims-Based Authorization . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 41

Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  46

Microsoft is interested in hearing your feedback so we can continually improve our books and learning  
resources for you. To participate in a brief online survey, please visit: 

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!



viii	 Table of Contents

Part II	 Windows Identity Foundation for Identity 
Developers

	 3 	 WIF Processing Pipeline in ASP.NET .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 51
Using Windows Identity Foundation .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 52
WS-Federation: Protocol, Tokens, Metadata . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  54

WS-Federation .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 55
The Web Browser Sign-in Flow .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 57
A Closer Look to Security Tokens  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  62
Metadata Documents .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  69

How WIF Implements WS-Federation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  72
The WIF Sign-in Flow . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 74

WIF Configuration and Main Classes  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  82
A Second Look at <microsoft.identityModel> . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  82
Notable Classes  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  90

Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  94

	 4 	 Advanced ASP.NET Programming .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 95
More About Externalizing Authentication  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  96

Identity Providers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Federation Providers .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  99
The WIF STS Template .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  102

Single Sign-on, Single Sign-out, and Sessions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  112
Single Sign-on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Single Sign-out .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  115
More About Sessions . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  122

Federation .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  126
Transforming Claims .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  129
Pass-Through Claims .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  134
Modifying Claims and Injecting New Claims  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  135
Home Realm Discovery .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  135
Step-up Authentication, Multiple Credential Types,  
and Similar Scenarios . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  140



	 Table of Contents	 ix

Claims Processing at the RP .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  141
Authorization .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  142
Authentication and Claims Processing .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  142

Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  143

	 5 	 WIF and WCF  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 145
The Basics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  146

Passive vs. Active  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  146
Canonical Scenario . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  154
Custom TokenHandlers .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  163
Object Model and Activation . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  167

Client-Side Features . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  170
Delegation and Trusted Subsystems . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  170
Taking Control of Token Requests  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  179

Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  184

	 6 	 WIF and Windows Azure  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 185
The Basics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  186

Packages and Config Files  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  187
The WIF Runtime Assembly and Windows Azure . . . . . . . . . . . . . . . . 188
Windows Azure and X.509 Certificates  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  188

Web Roles .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  190
Sessions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  191
Endpoint Identity and Trust Management  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  192

WCF Roles .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  195
Service Metadata .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  195
Sessions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  196
Tracing and Diagnostics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  201

WIF and ACS .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  204
Custom STS in the Cloud  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  205

Dynamic Metadata Generation .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  205
RP Management . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  213

Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  213



x	 Table of Contents

	 7 	 The Road Ahead . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 215
New Scenarios and Technologies  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  215

ASP.NET MVC .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  216
Silverlight . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  223
SAML Protocol  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  229
Web Identities and REST .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  230

Conclusion . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  239

	 	 Index  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 241

Microsoft is interested in hearing your feedback so we can continually improve our books and learning  
resources for you. To participate in a brief online survey, please visit: 

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!



	 	 xi

Foreword
A few years ago, I was sitting at a table playing a game of poker with a few colleagues from 
Microsoft who had all been involved at various times in the development of Web Services 
Enhancements for Microsoft .NET (WSE). Don Box, Mark Fussell, Kirill Gavrylyuk, and I played 
the hands while showman extraordinaire Doug Purdy engaged us with lively banter and 
more than a few questions about the product—all of this in front of the cameras at the 
MSDN studios.

We had each selected a person from the field to play for; someone whom we each 
thought had made a significant contribution to the success of WSE but hadn’t been a direct 
member of the product team itself. If we won, then our nominee would get a prize, a token 
of our appreciation for the work that he or she had done. My selection was a guy called 
Vittorio Bertocci who was working for Microsoft in Italy at the time. I’d never met Vittorio, 
nor even seen a photo of him, but he was a prolific poster on our internal discussion list, 
clearly understood the key security concepts for the product including the WS-* protocols, 
and had even crafted an extension to enable Reliable Messaging despite some of the crude 
extensibility we had in place at the time. Vittorio was someone worth playing for but, 
unfortunately, I didn’t win.

Time passed, the Windows Communication Foundation (WCF) superseded WSE, and I moved 
to become the Architect for the Identity and Access team tasked with building a Security 
Token Service for Windows Server. One day, out of the blue, I got an e-mail from Vittorio 
to say that he’d moved to Redmond to take on a Platform Evangelist role and asking if we 
could meet up. Of course I said yes, but what I couldn’t have anticipated was that mane of 
jet-black hair....

Vittorio was deeply interested in the work that we were doing to enable a claims-based 
programming model for .NET, on top of which we planned to build the second version of our 
security token service. Over time, these ideas became the “Geneva” wave of products and 
were finally birthed as the Windows Identity Foundation and Active Directory Federation 
Services 2.0.

Throughout several years of product development, Vittorio became not only a remarkable 
spokesperson for the products but a key source of feedback on our work, both from the 
customers and partners that he met with and from his own direct efforts to use the product. 
He was instrumental in encouraging me, and the product team, to take on the last-minute 
task of making WIF run in Windows Azure just in time for PDC 2009 and the product release. 
Watching Vittorio present a session on WIF is a pleasure—his depth of knowledge and his 
creative presentation skills allow him to deliver the message on an increasingly important 
topic despite the fact that it is too frequently tainted with the dryness of the “security” label.



xii	 Foreword

Within the pages of this book, you’ll learn how to use the Windows Identity Foundation from 
someone who is not only a great teacher but is also deeply familiar with the concepts be-
hind the technology itself and who has worked directly with the product team, and myself 
personally, on a very close basis over the course of the last four to five years.

Vittorio takes you through the terminology and key concepts, and explains the integration 
of WIF with ASP.NET, Windows Communication Foundation, and Windows Azure, culminat-
ing in a speculative look ahead at the scenarios that the product might tackle in a future 
release. I encourage you, the reader, to think deeply about the concepts here and how you 
will manage identity in the applications that you go on to build; it’s a topic that is becoming 
increasingly important to both enterprises and the Web community.

Finally, I want to thank Vittorio for his enthusiasm, support, and tireless energy over the 
years. I have but one final request of him: please get a haircut.

Hervey Wilson
Architect, AppFabric Access Control Service

Microsoft, Redmond
July 2010



	 	 xiii

Acknowledgments
You create the world of the dream. We bring the subject into that dream and fill it 
with their subconscious.

				    —Cobb in “Inception”, Christopher Nolan, 2010

Some time ago, a friend asked me what the point was of writing a book when I already have 
a well-read blog. There are many excellent answers to that question, from the extra reach 
that a book has to the advantages of reading without having to constantly fight the op-
portunity costs of not following a link. My favorite answer, however, is that whereas a blog is 
a one-man operation, a book is the result of the contribution of many people and its value 
for the reader is proportionally higher. It might be my name on the cover, but the reality 
is that I stand on the shoulders of many fine people, who I want to acknowledge here. I’ve 
been working with identity for the last 8 years or so, interacting with an incredible amount of 
people; hence, I am pretty sure I’ll forget somebody. I apologize in advance.

Peter Kron is a Principal Software Developer Engineer on the WIF team, and the official 
technical editor of this book. Without his patience, thoroughness, and deep knowledge of 
WIF, this would have been a much inferior book.

Hervey Wilson is the Architect of the Access Control service. He led the Web Services 
Enhancements (WSE) team, and he happens to be the one who envisioned Windows Identity 
Foundation. I’ve been working with Hervey since 2002, well before I moved to Redmond. At 
the time, I was still using his WSE for securing solutions for Italian customers. If you believe 
what Malcom Gladwell says in his book Outliers: The Story of Success (Little, Brown and Co., 
2008), that you need 10,000 hours of practice for becoming real good at something, nobody 
contributed more than Hervey to my professional growth in the field of Identity. I am very 
honored he agreed to write the foreword for this book. Thanks, man!

The crew at Microsoft Press has been outstanding, chopping into manageable chunks my 
long “Itanglish” sentences without changing the meaning and working around my abysmal 
delays and crazy schedule. (In the last year alone, I handed a boarding pass to smiling ladies 
55 times.) Specifically, thanks go to Ben Ryan and Gerry O’Brien for having trust in me and 
the book, to Devon Musgrave for bootstrapping the project, and to Rosemary Caperton 
for running the project. Steve Sagman of Waypoint Press led a fantastic production team: 
Roger LeBlanc as Copy Editor, Thomas Speeches as Proofreader, and Audrey Marr as 
Illustrator. Special thanks to Audrey for working on really challenging illustrations: you can 
pull out the needles from my doll now!  

Stuart Kwan, Group Program Manager for WIF, and Conrad Bayer, GM for the Identity and 
Access division, have been great partners and supported this project from the very start.



xiv	 Acknowledgments

I did most of the writing at night, on weekends, and during vacation time, but at times 
the book did impact my day job. James Conard and Neil Hutson, Senior Directors in the 
Developer and Platform Evangelism group and my direct management chain, have been very 
patient and supportive of the effort. 

Justine Smith and Brjann Brekkan, from the Business Group of the Identity and Access 
Division, have been incredibly helpful on activities that ultimately had an impact on the 
sample code discussed here.

Todd West, at the time with the WIF test team, is one of the most gifted Web services 
developers I’ve ever met. Most of the guidance regarding WIF and Windows Azure in this 
book and out there is the result of his work.

My good friend Caleb Baker, Program Manager on the WIF team, is a never-ending source 
of insights and useful discussions. He is also the owner of the WIF and Silverlight integration. 
The Silverlight code samples are all based on his work.

Together with Hervey, the original WSE team merged with WIF too. I had a chance to 
tap their brains countless times. Thanks to Sidd Shenoy, Govind Ramanathan, Vick 
Mukherjee, HongMei Ge, and Keith Ballinger. 

The entire WIF team contributed to this book. Here I’ll call a few people out to give you 
a feeling for the quality of their work. Daniel Wu was of great help on sessions; Brent 
Schmaltz was key for helping me understand the inner workings of WIF and WCF; Vani Nori 
and Vick devised the way of using WIF with MVC; Junaid Tisekar was key for starting the 
work with WIF and OAuth 2.0; Shiung Yong was instrumental in figuring out some parts of 
the WIF pipeline in the early days of WIF. 

Many others in the identity product team contributed through the years: thanks to Jan 
Alexander, Vijay Gajjala, Arun Nanda, Marc Goodner, Mike Jones, Craig Wittenberg, 
Don Schmidt, Ruchi Bhargava, Sesha Mani, Matt Steele, and Sam Devasahayam.

My teammates in the Windows Azure platform evangelism team played a key role in 
keeping me on my toes, and they’re simply awesome to hang out with. Thanks to Ryan 
Dunn, David Aiken, Nigel Watling, and Zach Owen. Please delete all the pictures you 
saved!

The guys at Southworks, the company that helped me with practically all the identity 
samples and labs in the last two years, are fantastic to work with. Many thanks to Matias 
Woloski, Pablo Damiani, Tim Osborn, Johnny Halife, and many others.

Conversations about identity with Gianpaolo Carraro and Eugenio Pace were extremely 
valuable, especially the ones related to the P&P guide on claims-based identity led by 
Eugenio.



	 Acknowledgments	 xv

Donovan Follette has been the ADFS evangelist for a long time, sharing with me the pains 
and the joys of the claims-based identity renaissance at PDC08. Even if now he is all cozy 
in his new Office role, I cannot forget his incredible contribution to bringing identity to the 
community.

Of course, we would not be even discussing this if Kim Cameron had not driven the 
conversation on the identity metasystem and claims-based identity with the entire industry. 
Thank you, Kim!

My wife, Iwona Bialynicka-Birula, deserves special thanks. She accepted and supported 
this crazy initiative no matter what, whether it meant skipping beach time while in Maui or 
coping with insurance agents and contractors after our house got flooded. Without her, 
not only would you not be holding this book in your hands, I don’t know what I would do…. 
Thank you, darling. I promise: no more books for some time!

Finally, I want to thank you: the readers of my blog, who followed faithfully my ramblings for 
seven years without asking too often about the weird blog name; the participants of the WIF 
workshops in Belgium, UK, Germany, Singapore, Melbourne, and Redmond, who put up so 
nicely with my “sexy” accent; and the attendees of the many sessions I gave at events all over 
the world in the last five years. Without your questions, your critiques, your comments, your 
compliments, and your longing for understanding, I would have never found the motivation 
to do this and the other things I do for evangelizing identity. This book is for you. 



	 	 xvii

Introduction
It has been said that every problem in Computer Science can be solved by adding a level of 
indirection. 

You don’t have to go far to find examples of successful applications of that principle. Before 
the introduction of the concept of driver, programs had to be rewritten every time one 
changed something as simple as the monitor. Before the introduction of TCP/IP, programs 
targeting a token ring network environment had to be rewritten if the network protocol 
changed.  Drivers and TCP/IP helped to free application developers from the need to worry 
about unnecessary details, presenting them with a generic façade while leaving the nitty-
gritty details to the underlying infrastructure. In addition to making the developer profession 
a happier one, the approach led to more robust and long-lived software for the benefit of 
everybody.

For various historical reasons, authentication and identity management practices never really 
followed the same route of monitors and network cards. Adding “authentication” to your 
software today still largely means messing with the code of the application itself, writing 
logic that takes care in detail of low level tasks such as verifying username and passwords 
against an account store, juggling with X509 certificates or similar. When you are spared from 
handling things at such low level, which usually means that you took a strong dependency on 
your infrastructure and your application will be unmovable without substantial rewriting: just 
like a program from the pre-drivers era.

As you will learn in the first chapters of this book, claims-based identity is changing all this. 

Without going too much into details, claims are the means to add that extra level of 
indirection that eluded the identity world so far. The introduction of open protocols enjoying 
wide industry consensus & support, the converge toward the idea of a meta-system for 
identity, the success of metadata formats which can automate many tedious and error-prone 
tasks created the perfect storm that generated the practices collectively known as claims-
based identity. Claims are paving the way for identity and access management to be pushed 
outside of applications and down in the infrastructure, freeing developers from the need 
to handle it explicitly while enhancing solutions with welcome extra advantages (such as 
cross-platform interoperability out of the box).

I have spent full four years working almost exclusively on claims-based architectures with 
customers and product teams here in Redmond; the model is sound, and it invariably delivers 
significant improvements against any other authentication system. However, until recently, 
actually implementing systems according to the model was a painful experience, since it 
required writing large amounts of custom code that would handle protocols, cryptography, 
and similar low level aspects.



xviii	 Introduction

This all changed when, in October 2008, Microsoft announced the “Geneva” wave of 
claims-aware beta products: among those there was Windows Identity Foundation, the 
protagonist of the book you are holding, which was finally released in November 2009.

Windows Identity Foundation (WIF) is Microsoft’s stack for claims-based identity 
programming. It is a new foundational technology which helps .NET developers to take 
advantage of the claims based approach for handing authentication, authorization, custom-
ization and in general any identity-related task without the need to write any low-level code.

True to the claims-based identity promise, you can decide to use WIF to externalize all 
identity and access control logic from your applications: Visual Studio will make it a breeze, 
and you will not be required to know any detail about the underlying security protocols. If 
you want to take finer control of the authentication and authorization process, however, WIF 
offers you a powerful and flexible programming model that will give you complete access to 
all aspects of the identity management pipeline.

This book will show you how to use Windows Identity Foundation for handling 
authentication, authorization and identity-driven customization of your .NET applications. 

Although the text will often be task-oriented, especially for the novice part of the book, the 
ultimate goal will always be to help you understanding the claims based approach and the 
pattern that is most appropriate for the problem at hand. 

Who Is This Book For?
Part I of the book is for the ASP.NET developer who wants to take advantage of claims-based 
identity without having to become a security expert. Although there are no requirements 
about pre-existing security knowledge, you do need to have hands-on ASP.NET program-
ming knowledge to proficiently read Part I.

In Part II I shift gear pretty dramatically, assuming that you are an experienced .NET 
developer who knows about ASP.NET pipeline, Forms authentication, X.509 certificates, LINQ 
syntax and the like. I often try to add sidebars which introduce the topic if you know little 
about it but you want to follow the text anyway, but reality is that without concrete, hands-
on knowledge of the .NET Framework (and specifically C#) Part II could be hard to navigate. I 
also assume that you are motivated to invest energy on understanding the “why”s of identity 
and security.

Identity is an enabling technology, which is never found in isolation but always as a 
component and enhancement of other technologies and scenarios. This book discusses 
how to apply WIF with a variety of technologies and products, and of course cannot afford 
providing introductions for everything: in order to be able to apply the guidance in the 
various chapters you’ll need to be proficient in the corresponding technology. The good 
news is that the chapters are reasonably decoupled from each other, so that you don’t need 



	 Introduction	 xix

to be a WCF expert for appreciating the chapters about ASP.NET. Chapter 3 and Chapter 4 
require you to be familiar with ASP.NET and its extensibility model. Chapter 5 is for experi-
enced WCF developers. Chapter 6 requires you to be familiar with Windows Azure and its 
programming model. Chapter 7 sweeps on a number of different technologies, including 
Silverlight and ASP.NET MVC Framework, and expects you to be at ease with terminology 
and usage.

The bottom line is that in order to fully take advantage of the book you need to be an expert 
.NET and Web developer. On the other hand, the book contains a lot of architectural patterns 
and explanations which could easily be applied to products on other platforms: hence if you 
are an architect that can stomach patterns explanations intertwined with code commentary, 
chances are that you’ll find this book a good reference on how claims-based identity solves 
various canonical problems in the identity and access space.

System Requirements
You’ll need the following software and hardware to build and run the code samples for 
this book:

■	 Microsoft® Windows 7; Windows Server 2003 Service Pack 2; Windows Server 2008 R2; 
Windows Server 2008 Service Pack 2; Windows Vista

■	 Windows Identity Foundation 1.0 runtime

■	 Windows Identity Foundation SDK 4.0

■	 Microsoft® Internet Information Services (IIS) 7.5, 7.0 or 6.0 

■	 Microsoft® .NET Framework 4.0 

■	 Visual Studio 2010

■	 1.6-GHz Pentium or compatible processor

■	 1 GB RAM for x86 

■	 2 GB RAM for x64 

■	 An additional 512 MB RAM if running in a virtual machine 

■	 DirectX 9–capable video card that runs at 1024 × 768 or higher display resolution 

■	 5400-RPM hard drive (with 3 GB of available hard disk space)

■	 DVD-ROM drive

■	 Microsoft mouse or compatible pointing device

■	 Approximately 78 MB of available hard disk space to install the code samples



xx	 Introduction

Note that the WIF runtime and the WIF SDK 3.5 are compatible with Visual Studio 2008 and 
the .NET Framework 3.5 SP2. The March 2010 version of the Identity Training Kit contains 
most of the samples of the book in a form that is compatible with VS 2008 and the .NET 
Framework 3.5, however please note that the code in the text refers to VS 2010 and there are 
small differences here and there.

Code Samples
The code samples for this book are available for download here: 

http://www.microsoftpressstore.com/title/9780735627185.

Click the download link and follow the instructions to save the code samples to your local 
hard drive. 

The code samples used in this book are mostly from the Identity Developer Training Kit, a 
collection of hands-on labs, presentations, and instructional videos, which is meant to help 
developers learn Microsoft’s identity technologies. It is a self-extracting .EXE. Every lab has its 
own setup, which will take care of most prerequisites for you. Please follow the instructions 
on the Welcome page.

Producing the Identity Developer Training Kit is one of the things I do during my day job. 
Whereas in the book I highlight code snippets to help you understand the technology, in 
the Identity Developer Training Kit documentation I give step-by-step instructions. Feel 
free to combine the two approaches as you ramp up your knowledge of Windows Identity 
Foundation.

The Identity Developer Training Kit is a living deliverable; every time there is a new ver-
sion of a product I update it accordingly. However, I want to make sure that the code 
samples referenced in the book will not break. For that reason, I am including in the book 
code sample archive the current version of the training kit, June 2010, which will always be 
available, even if I keep updating the training kit in its original download location.

Errata and Book Support
We’ve made every effort to ensure the accuracy of this book and its companion content. If 
you do find an error, please report it on our Microsoft Press site.

	 1.	

	 2.	 In the Search box, enter the book’s ISBN or title.

	 3.	 Select your book from the search results.

	 4.	

	 5.	 Click View/Submit Errata.

Go to 

On your book’s catalog page, find the Errata & Updates tab

http://www.microsoftpressstore.com/title/9780735627185


	 Introduction	 xxi

You’ll find additional information and services for your book on its catalog page. If you need 
additional support, please e-mail Microsoft Press Book Support at mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the addresses 
above.

We Want to Hear from You
At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable 
asset. Please tell us what you think of this book at: 

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in advance 
for your input! 

Stay in Touch
Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress. 





	 	 3

Chapter 1

Claims-Based Identity
In this chapter:
What Is Claims-Based Identity? .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3
WIF Programming Model .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 15
Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 21

Microsoft Windows Identity Foundation (WIF) enables you to apply the principles of 
claims-based identity when securing your Microsoft .NET application. Claims-based identity 
is so important that I want to make sure you understand it well before I formally introduce 
Windows Identity Foundation. 

Claims-based identity is a natural way of dealing with identity and access control. However, 
the old ways of doing this are well established, so before delving into the new approach, it’s 
useful to describe and challenge the classic assumptions about authentication and authoriza-
tion. Once you have a clear understanding of some of the issues with traditional approaches, 
I’ll introduce the basic principles of claims-based identity—I’ll say enough to enable you to 
proficiently use Windows Identity Foundation for the most common scenarios. This chapter 
contains some simplifications that will get you going without overloading you with infor-
mation. For a more thorough coverage of the subject, refer to Part II, “Windows Identity 
Foundation for Identity Developers.”

Finally, we’ll take our initial look at how WIF implements the mechanisms of claims-based 
identity and how you, the developer, can access the main elements exposed by its object 
model.

After reading this chapter, you’ll be able to describe how claims-based identity works and 
how to take advantage of it in solutions to common problems. Furthermore, you’ll be able to 
define Windows Identity Foundation and recognize its main elements.

What Is Claims-Based Identity?

Note  If you already know about claims, feel free to skip ahead to the “WIF Programming 
Model” section. If you are in a big hurry, I offer you the following summary of this section before 
you skip to the next section: Claims-based identity allows you to outsource identity and access 
management to external entities. 



4	 Part I  Windows Identity Foundation for Everybody

The problem of recognizing people and granting access rights to them is one of the oldest 
in the history of computer science, and it has its roots in identity and access problems we all 
experience every day as we go through our lives.

Although we can classify almost all the solutions to the problem in relatively few categories, 
an incredible number of solutions tailored specifically to solve this or that problem exists. 
From the innumerable ways of handling user names and passwords to the most exotic 
hardware-based cryptography solutions, the panorama of identity and access meth-
ods creates a sequence of systems that are almost never compatible, each with different 
advantages, disadvantages, tradeoffs, and so on.

From the developer perspective, this status quo is bad news: this diversity forces you to 
continually relearn how to do the same thing with different APIs, exposes you to details 
of the security mechanisms that you’d rather not be responsible for, and subjects you to 
software that is brittle and difficult to maintain.

What you need is a way to secure your applications without having to work directly at the 
security mechanism level: an abstraction layer, which would allow you to express your secu-
rity requirements (the “what”) without getting caught in the specifics of how to make that 
happen (the “how”). If your specialty is designing user experiences for Microsoft ASP.NET, you 
should be allowed to focus your effort on that aspect of the solution and not be forced to 
become an expert in security (beyond the basic, secure-coding best practices, of course—all 
developers need to know those). 

If you need a good reference on secure coding best practices, I highly recommend Writing 
Secure Code, Second Edition, by Michael Howard and David LeBlanc (Microsoft Press, 2002).

What we collectively call “claims-based identity” provides that layer of abstraction and helps 
you avoid the shortcomings of traditional solutions. Claims-based identity makes it possible 
to have technologies such as Windows Identity Foundation, which enables you to secure 
systems without being required to understand the fine details of the security mechanisms 
involved. 

Traditional Approaches to Authentication
Before we go any further, let me be absolutely clear on a key point: this book does not 
suggest that traditional approaches to authentication and authorization are not secure or 
somehow bad per se. In fact, they usually do very well in solving the problem they have been 
designed to tackle. The issues arise when you have to deal with changes or you need differ-
ent systems to work together. Because a single system can’t solve all problems, you are often 
forced to re-perform the same task with different APIs to accommodate even small changes 
in your requirements.



	 Chapter 1  Claims-Based Identity	 5

It’s beyond the scope of this book to give an exhaustive list of authentication systems and 
their characteristics; fortunately, that won’t be necessary for making our point. In this section 
I’ll briefly examine the built-in mechanisms offered by the .NET Framework and provide some 
examples of how they might not always offer a complete solution.

IPrincipal and IIdentity
Managing identity and access requires you to acquire information about the current user so 
that you can make informed decisions about the user’s identity claims and what actions by 
the user should be allowed or denied.

In a .NET application the user in the current context is represented by an IIdentity, a simple 
interface that provides basic information about the user and how the user was authenticated:

public interface IIdentity 
{ 
    // Properties 
    string AuthenticationType { get; } 
    bool IsAuthenticated { get; } 
    string Name { get; } 
}

IIdentity lives inside IPrincipal, another interface that contains more information about 
the user (such as whether he belongs to a certain security group) that can be used in 
authorization decisions:

public interface IPrinicipal 
{ 
    // Methods 
    bool IsInRole(string role); 
    // Properties 
    IIdentity Identity { get; } 
}

You can always reach the current IPrincipal in the code of your .NET application: in 
ASP.NET, you will find it in HttpContext.Current.User, and in general, you’ll find it in 
Thread.CurrentPrincipal.

IPrincipal and IIdentity, as they exist out of the box, do provide some good decoupling 
from how the authentication actually happened. They do not force you to deal with the 
details of how the system came to know how the information about the user was acquired. 
If your users are allowed to perform a certain action only if they are administrators, you 
can write Thread.CurrentPrincipal.IsInRole(“Administrators”) without having to change your 
code according to the authentication method. The framework uses different extensions 
of IPrincipal—WindowsPrincipal, GenericPrincipal, or your own custom class—to accom-
modate the specific mechanism, and you can always cast  from IPrincipal to one of those 



6	 Part I  Windows Identity Foundation for Everybody

classes if you need to access the extra functionalities they provide. However, in general, using 
IPrincipal directly makes your code more resilient to changes.

Unfortunately, the preceding discussion is just a tiny part of what you need to know about 
.NET security if you want to implement a real system.

Populating IPrincipal
Most of the information you need to know about the user is in IPrincipal, but how do you get 
that information in there? The values in IPrincipal are the result of a successful authentication: 
before being able to take advantage of the approach, you have to worry about making the 
authentication step happen. That is where things might start getting confusing if you don’t 
want to invest a lot in security know-how.

When I joined Microsoft in 2001, my background was mainly in scientific visualization and 
with Silicon Graphics; I knew nothing about Microsoft technologies. One of the first projects 
I worked on was a line-of-business application for a customer’s intranet. Today I can say I’ve 
had my fair share of experience with .NET and authentication, but I can still recall the confu-
sion I experienced back then. Let’s take a look at some concrete examples of using IPrincipal.

Up until the release of Microsoft Visual Studio 2008, if you created a Web site from the 
template, the default authentication mode was Windows. That means that the application 
expects Internet Information Services (IIS) to take care of authenticating the user. However, if 
you inspect the IPrincipal in such an application you will find it largely empty. This is because 
the Web application has anonymous authentication enabled in IIS by default, so no attempt 
to authenticate the user is made. This is the first breach in the abstraction: you have to leave 
your development environment, go to the IIS console, disable anonymous authentication, 
and explicitly enable Windows authentication. (You could do this directly by modifying the 
web.config file of the application in Microsoft Visual Studio, but going through IIS is still the 
most common approach in my experience.)

After you adjust the IIS authentication types, you’re good to go, at least as long as you 
remain within the boundaries of the intranet. If you are developing on your domain-joined 
laptop and you decide to burn some midnight oil at home working on your application, 
don’t be surprised if your calls to IsInRole now fail. Without the network infrastructure readily 
available, the names of the groups to which the user belongs cannot be resolved. As you can 
imagine, the same thing happens if the application is moved to a hoster, to the cloud, or in 
general away from your company’s network environment.

In fact, you’ll encounter precious few cases in which you enjoy the luxury of having 
authentication taken care of by the infrastructure. If the users you want to authenticate live 
outside of your directory, you are normally forced to take the matter into your own hands 
and use authentication APIs. That usually means configuring your ASP.NET application to use 



	 Chapter 1  Claims-Based Identity	 7

Forms authentication, perhaps creating and populating a users and roles store according to 
the schema imposed by sqlMembershipProvider, implementing your own MembershipProvider 
if your scenario cannot fit what is available out of the box, and so on.

There’s more: not everything can be solved by providing a custom user store. Often, your 
users are already provisioned in an existing store but that store is not under your direct 
control. (Think about employees of business partners, suppliers, and customers.) Store dupli-
cation is sometimes an option, but it normally brings more problems than the ones it solves. 
ASP.NET provides mechanisms for extending Forms authentication to those cases, but they 
require you to learn even more security and, above all, they are not guaranteed to work with 
other platforms.

If you’ve dealt with security issues in the past, you can certainly relate to what I’ve just 
described. If you haven’t, don’t worry if you didn’t understand everything in the last couple 
of paragraphs. You can still understand that you need to learn a lot to add authentication 
capabilities to your application, despite ASP.NET providing you with helper classes, tooling, 
and models. If you’re not interested in becoming a security expert, you would probably 
rather spend your time and energy on something else.

Here’s one last note before moving on. When using Forms authentication, you do need 
to write extra code for taking care of authentication, but in the end you can still use the 
IPrincipal abstraction. (The user’s information is copied from a FormsIdentity object into a 
GenericPrincipal.) This might induce you to think that all you need is better tooling to handle 
authentication and that the abstraction is already the right one. You’re on the right track, 
but this is not the case if you stick with the current idea of authentication. Imagine a case in 
which you want authentication to happen using radically different credentials, such as a client 
Secure Sockets Layer (SSL) certificate, but those credentials do not map to existing Windows 
users. In the traditional case, you have to directly inspect the request for the incoming X.509 
certificate and learn new concepts (subject, thumbprint, and so on) to perform the same task 
you already know how to do with other APIs. 

The problem here is not with how ASP.NET handles authentication: it is systemic, and you’d 
have the same issues with any other general-purpose technology. By the way, if you consider 
how to handle identity and access with Microsoft Windows Communication Foundation 
(WCF), you have to learn yet another model, one that is largely incompatible with what we 
have seen so far and with its own range of APIs and exceptions.

When you can rely on infrastructure, like in the Windows Authentication example, you do 
fine: most details are handled by Windows, and all that’s left for you is deciding what to do 
with the user information. When you can’t rely on the infrastructure, as in the generic case, 
you can observe a consistent issue across all cases: you are burdened with the responsibil-
ity of driving the mechanics of authentication, and that often means dealing with complex 
issues. As I’ve already stressed, the gamut of all authentication options is wide, diverse, and 



8	 Part I  Windows Identity Foundation for Everybody

constantly evolving. Tooling can help you only so far, and it is doomed to be obsolete as 
soon as a new authentication scheme emerges. 

What should developers do? Are we doomed to operate in an infinite arms race between 
authentication systems and the APIs supporting them? 

Decoupling Applications from the Mechanics of Identity 
and Access
Once upon a time, developers were forced to handle hardware components directly in their 
applications. If you wanted to print a line, you needed to know how to make that happen 
with the specific hardware of the printer model in use in the environment of your customer.

Those days are fortunately long gone. Today’s software takes advantage of the available 
hardware via device drivers. A device driver is a program that acts as an intermediary be-
tween a given device and the software that wants to use it. All drivers have one logical 
layer, which exposes a generic representation of the device and the functionalities that are 
common to the device class and reveals no details about the specific hardware of a given 
device. The logical layer is the layer with which the higher level software interacts—for 
example, “print this string.” The driver contains a physical layer too, which is tailored to the 
specific hardware of a given device. The physical layer takes care of translating the high-
level commands from the logical layer to the hardware-specific instructions required by the 
exact device model being used—for example, “put this byte array in that register,” “add the 
following delimiter,” “push the following instructions in the stack,” and so forth.

If you want to print from your .NET application, you just call some method on PrintDocument, 
which will eventually take advantage of the local drivers and make that happen for you. Who 
cares about which printer model will actually be available at run time? 

Doesn’t this scenario sound awfully familiar? Managing hardware directly from applications 
is similar to the problem of dealing with authentication and authorization from applications’ 
code: there are too many (difficult!) details to handle, and results are too inflexible and vul-
nerable to changes. The hardware problem was solved by the introduction of device drivers; 
there is reason to believe that a similar approach can solve the access management problem, 
too.

Although an operating system provides an environment conducive to the creation of 
a thriving driver ecosystem, the identity and access problem space presents its own 
challenges—for example, authentication technologies and protocols belong to many dif-
ferent owners, the ways in which resources and services are accessed is constantly changing 
and is fragmented in many different segments, different uses imply dramatically different 
usability and security requirements, users and data are often sealed in inaccessible silos, and 



	 Chapter 1  Claims-Based Identity	 9

so on. The chances of a level of indirection spontaneously emerging from that chaos are 
practically zero.

With the inflationary growth of distributed systems and online businesses, in the last 
few years the increasing need for interoperable protocols that could tear down the walls 
between silos became clear. The big players in the IT industry got together and agreed 
on a set of common protocols that would support interoperable communications across 
different platforms. Some examples of those protocols are SOAP, WS-Security, WS-Trust, 
WS-Federation, Security Assertion Markup Language (SAML), and in more recent times, 
OpenID, OAuth, and other open protocols. Don’t worry if you don’t recognize some or 
any of those names. What is important here is that the emergence of common protocols, 
combined with the extra attention that the security aspects commanded in their redaction, 
finally created the conditions for introducing the missing logical layer in identity and access 
management. It is that extra layer that will make it possible to isolate applications and their 
developers from the gory details of authentication and authorization mechanics. In this part, 
I am not going to go into the details of what those protocols are or how they work; instead, I 
will concentrate on the scenarios that they enable and how to take advantage of them.

Now that you’ve gained some perspective on why today’s approaches are less than ideal, it is 
time to focus on how you can move beyond them.

Authentication and Authorization in Real Life
Imagining what should be in the logical layer of a printer driver is easy. After all, you have a 
good idea of what a printer is supposed to do and how you’d like to take advantage of it in 
your code. Now that you know it is possible to create a logical layer for identity, do you know 
what it should look like? Which kind of API should you offer to developers?

We have been handling low-level details for so long that it may be hard to see the bigger 
picture. A useful exercise is to step back and spend a moment analyzing how identity is 
actually used for authorization in the real world, and see if what you learn can be of help in 
designing your new identity layer. Let’s look at an easy example.

Imagine you are going to a movie theater to see a documentary film. Consider the following 
facts:

	 1.	 The documentary contains scenes that are not suitable for a young and impression-
able audience; therefore, the clerk at the box office asks you for a picture ID so that he 
can verify whether you are old enough to watch the film. You reach for your wallet and 
extract your driver’s license, and in so doing you realize that it is expired.

	 2.	 Resigned to missing the first show, you walk to a nearby office of the Department of 
Licensing (DOL). At the DOL, you hand over your old driver’s license and ask to get a 
new one. 



10	 Part I  Windows Identity Foundation for Everybody

	 3.	 The clerk takes a good look at you to see whether you look like the photo on record. 
Perhaps he asks you to read a few letters from an eye test chart. When he’s satisfied 
that you are who you claim to be, he hands you your new driver’s license.

	 4.	 You go back to the movie theater and present your new driver’s license to the clerk. 
The clerk, now satisfied that you are old enough to watch the movie, issues you a ticket 
for the next show. 

Figure 1-1 shows a diagram of the transaction just described. 

FIGURE 1-1 One identity transaction taking place in real life

This is certainly not rocket science. We go through similar interactions all the time, from 
when we board a plane to when we deal with our insurance companies. Yet, the story 
contains precious clues about how we can add our missing identity layer. 

Let’s consider things from the perspective of the box-office clerk. The clerk regulates access 
to the movie, actually authorizing (or blocking) viewers from acquiring a ticket. The question 
that the clerk needs to answer is, “Is this person older than X?” Here comes the interesting 
part: the box-office clerk does not verify your age directly. How could he? Instead, he relies 
on the verification that somebody else already did. In this case, the DOL certified your birth 
date in its driver’s license document. The box-office clerk trusts the DOL to tell the truth 
about your age. The DOL is a recognized government institution, and it has a solid business 
need to know a person’s correct age because it is relevant to that person’s ability to drive. 
The outcome of the interaction would be different if you presented the box-office clerk a 
sticky note on which you scribbled your age. In such a transaction, you are not a trustworthy 
source. (Unless the clerk knows you personally, he must assume bias on your part—that is, 
you could lie in order to get into the movie theater.)



	 Chapter 1  Claims-Based Identity	 11

Note that in this scenario you presented a driver’s license as proof of age, but from the clerk’s 
point of view not much would have changed if you had used your passport or any other 
document as long as the institution issuing it is known and trusted by the box office clerk. 

One last thought before drawing our parallel to software: the box-office clerk does not know 
which procedure the DOL clerk followed for issuing you a driver’s license, how the DOL 
verified your identity, which things he verified, and how he verified them. He does not need 
to know these things because once he decides he trusts the DOL to certify age correctly, 
he’ll believe in whatever birth date appears on a valid driver’s license with the picture of 
the bearer.

Let’s summarize our observations in this scenario:

■	 The box-office clerk does not verify the customer’s age directly, but relies on a trusted 
party (the DOL) to do so and finds the result in a document (the driver’s license).

■	 The box-office clerk is not tied to a particular document format or source. As long as 
the issuer is trusted and the format is recognized, the clerk will accept the document.

■	 The box-office clerk does not know or care about the details of how the customer has 
been identified by the document issuer.

This sounds quite efficient. In fact, similar transactions have been successfully taking place for 
the last few thousand years of civilization. It’s high time that we learn how to take advantage 
of such transactions in our software solutions as well.

Claims-Based Identity: A Logical Layer for Identity
The transaction described in the preceding section, including the various roles that the actors 
played in it, can be generalized in one of the most universal patterns in identity and access 
and forms the basis of claims-based identity. The pattern does not impose any specific tech-
nology, although it does assume the presence of certain capabilities, and it contains all the 
indications you need for defining your logical identity layer. 

Let’s try to extract from the story a generic pattern describing a generic authentication and 
authorization system. Pay close attention for the next few paragraphs. Once you understand 
this pattern, it is yours forever. It will provide you with the key for dealing with most of the 
scenarios you encounter in implementing identity-based transactions. 

Entities  Figure 1-2 shows the main entities that play a role in most identity-based 
transactions.



12	 Part I  Windows Identity Foundation for Everybody

Relying PartySubject

Security
Token

Claim

Identity Provider

FIGURE 1-2  The main entities in claims-based identity

Let’s say that our system includes a user, which in literature is often referred to as a subject, 
and the application the user wants to access. In our earlier example, the subject was the 
moviegoer; in the general case, a subject can be pretty much anything that needs to be 
identified, from an actual user to the application identities of unattended processes.

The application can be a Web site, a Web service, or in general any software that has a 
need to authenticate and authorize users. In identity jargon, it is called a relying party, often 
abbreviated as RP. In our earlier example, the RP is the combination of the box-office clerk 
and movie theater.

The system might include one or more identity providers (IPs). An IP is an entity that knows 
about subjects. It knows how to authenticate them, like the DOL in the example knew how 
to compare the customer’s face to its picture archives; it knows facts about the customer, like 
the DOL knows about the birth date of every licensed driver in its region. An identity pro-
vider is an abstract role, but it requires concrete components: directories, user repositories, 
and authentication systems are all examples of parts often used by an identity provider to 
perform its function.

We assume that a subject has standard ways of authenticating with an IP and receiving 
in return the necessary user information (like the birth date in the example) for a specific 
identity transaction. We call that user information claims.

The magical word “claim” finally comes out. A claim is a statement about a subject made by 
an entity. The statement can be literally anything that can be associated with a subject, from 
attributes such as birth date to the fact that the subject belongs to a certain security group. A 
claim is distinct from a simple attribute by the fact that a claim is always associated with the 
entity that issued it. This is an important distinction: it provides you with a criterion for decid-
ing if you want to believe that the assertion applies to the subject. Recall the example of the 
birth date printed on the driver’s license versus a birth date scribbled on a sticky note: the 
clerk believes the former but not the latter because of the entities backing the assertion.



	 Chapter 1  Claims-Based Identity	 13

Claims travel across the nodes of distributed systems in security tokens, which are XML or 
binary fragments constructed according to some security standard. Tokens are digitally 
signed, which means that they cannot be tampered with and that they can always be traced 
back to the IP that issued them (which provides a nice mechanism for associating token 
content with its issuer, as required by the definition of claims).

Flow  Claims are the currency of identity systems: they are what describe the subject in 
the current context, what the IP produces, and what the RP consumes. Here’s how the 
transaction unfolds. 

Well before your transaction starts, the RP publishes a document, often called a policy, in 
which it advertises its security requirements: things such as which security protocols the RP 
understands and similar information. This is analogous to the box office hanging up a sign 
that says, “Be ready to show your driver’s license or your passport to the clerk.” The most 
important part of the RP policy is the list of the identity providers it trusts. This is equivalent 
to another sign at the box office specifying, “Drivers’ licenses from U.S. states only; passports 
from Schengen Treaty countries only.”

Again, before the transaction starts, the IP publishes an analogous policy document that 
advertises its own security requirements. This document provides instructions on how to 
ask the IP to issue a security token. In literature, you will often find that IPs offer their token 
issuance services via a special flavor of Web services, called STS (Security Token Service). 
You’ll read more (MUCH more) about STS throughout the book. 

Figure 1-3 summarizes the steps of the canonical identity transaction.

Identity Provider

Relying PartySubject

Security
Token

2

3

1
4

STS
Policy

Policy

5

FIGURE 1-3  The flow of the canonical transaction in claims-based identity

Here’s a description of that flow:



14	 Part I  Windows Identity Foundation for Everybody

	 1.	 The subject wants to access the RP application. It does that via an agent of some sort 
(a browser, a rich client, and so on). The subject begins by reading the RP policy. In so 
doing, it learns which identity providers the RP trusts, which kind of claims are required, 
and which security protocols should be used.

	 2.	 The subject chooses one of the IPs that the RP trust and inspects its policy to find out 
which security protocol is required. Then it sends a request to the IP to issue a token 
that matches the RP requirements. This process is the equivalent of going to the DOL 
and asking for a document containing a birth date. In so doing, the subject is required 
to provide some credentials in order to be recognized by the IP. The details of the 
protocol used are described in the IP policy. 

	 3.	 The IP processes the request; if it finds the request to be satisfactory, it retrieves the 
values of the requested claims, sending them back to the subject in the form of a 
security token.

	 4.	 The subject receives the security token from the IP and sends it together with his first 
request to the RP application.

	 5.	 The RP application examines the incoming token and verifies that it matches all the 
requirements (coming from one trusted IP, in the expected format, not having been 
tampered with, containing the right set of claims, and so on). If everything looks as 
expected, the RP grants access to the subject.

This sequence of steps could describe a user buying something online and presenting to 
the Web merchant a credit score from a financial institution; it could describe the user of a 
Windows Presentation Foundation (WPF) application accessing a Web service on the local 
intranet by presenting a group membership claim issued from the domain controller; it could 
describe pretty much any identity transaction if you assign the subject, RP, and IP roles in the 
right way.

The abstraction layer we were searching for  The pattern we’ve been discussing describes a 
generic identity transaction. Without going into detail about the actual protocols and tech-
nologies involved, we can say that it just makes assumptions about what capabilities those 
technologies should have, such as the capability of exposing policies.

The model is profoundly different from what we have observed in classic approaches: 
whereas a traditional application takes care of authentication more or less directly, here the 
RP outsources it entirely to a third party, the identity provider. The details of how authenti-
cation happens are no longer a concern of the application developer; all you need to do is 
configure your application to redirect users to the intended identity providers and be able 
to process the security tokens they issue. Although you can use many different protocols 
for obtaining and using a security token, the abstract idea of claims and security tokens is 



	 Chapter 1  Claims-Based Identity	 15

nonspecific enough to allow you to create a generic programming model for representing 
users and the outcome of authentication operations without exceptions. 

Those changes in perspective finally eliminate the systemic flaw that prevented us from 
eradicating from the application code the explicit handling of identity without relying on 
demanding infrastructure. All that’s left to do is for platform and developer tools providers to 
take advantage of the claims-based identity model in their products.

Note  The model is extremely expressive. In fact, you can easily use it for representing 
traditional scenarios too. If the IP and the RP are the same entity, you are back to the case in 
which the application itself takes care of handling authentication. The important difference in 
the implementation is that both code and architecture will show that this is just a special case 
of a more generic scenario. Therefore, the decoupling will be respected and changes will be 
accommodated gracefully.

WIF Programming Model
Microsoft has been among the most enthusiastic promoters of the claims-based identity 
model. It should come as no surprise that it has also been one of the first to integrate it in its 
product offerings. For example, Active Directory Federation Services 2 (ADFS2) is a Windows 
Server role that, among other things, enables your Active Directory instance to act as an 
identity provider and issue claims for your user accounts.

Windows Identity Foundation (WIF) is a set of classes and tools, an extension to the .NET 
Framework, that enables you to use claims-based identity when developing ASP.NET or 
WCF applications. It is seamlessly integrated with the core .NET Framework classes and in 
Visual Studio so that you can keep using the tools and techniques you are familiar with for 
developing your applications, while reaping the advantages of the new model when it comes 
to identity.

In this section, I will introduce the basics of Windows Identity Foundation: how it exposes 
claims-based identity principles to developers, some fundamental considerations about its 
structure, and the essential programming surface every developer should be aware of.



16	 Part I  Windows Identity Foundation for Everybody

An API for Claims-Based Identity
In the previous section, you learned about claims-based identity. If you had to expose it as 
a programming model so that an application developer could take advantage of it, what 
requirements would you follow? Here is my wish list:

■	 Make claims available to the developer in a clear, consistent, and protocol-independent 
fashion.

■	 Take care of all (or nearly all) authentication, authorization, and protocol handling 
outside of the code of the application, away from the eyes of the developer.

■	 Minimize the need to change the code when changes at deployment time occur. Drive 
as much of the application’s behavior as possible via configuration.

■	 Provide a way to easily configure applications to rely on external identity providers for 
authentication.

■	 Provide a way for applications to easily advertise their requirements via policy.

■	 Organize everything in a pluggable architecture that can support multiple protocols 
and isolate the developer from the details of the deployment (on premises and cloud, 
ASP.NET and WCF, and so on).

■	 Respect as much as possible existing code and practices, maximizing the amount of old 
code that will still work in the new model while offering incremental advantages with 
the new APIs.

As you’ll see time and time again throughout the book, WIF satisfies all these criteria.

WIF’s Essential Behavior
Earlier in the text, I wrote that Part I of the book will show you how to take advantage of WIF 
in your applications without the need to become a security expert, and I intend to keep that 
promise. Here I’ll start with a simplified description of how WIF works, covering the essential 
points for allowing you to use the product. Part I will be about ASP.NET applications, and I’ll 
stick with discussing scenarios that can be tackled by using WIF tooling alone. I’ll omit the 
details that have no immediate use. You can refer to Part II of the book if you want to know 
the whole story. 

WIF allows you to externalize authentication and authorization by configuring your 
application to rely on an identity provider to perform some or all those functions for you. 
How does it do that in practice?

Figure 1-4 shows a simplified diagram of how WIF handles authentication in the 	
ASP.NET case.



	 Chapter 1  Claims-Based Identity	 17

Identity Provider

ApplicationSubject

2

3
1

5

4

WIF

Claims
Browser

STS

FIGURE 1-4  A simplified diagram of how Windows Identity Foundation takes care of handling authentication 
for an ASP.NET application

The idea is extremely simple and closely mimics the canonical claims-based identity pattern: 

	 1.	 WIF sits in front of your application in the ASP.NET pipeline. When an unauthenticated 
user requests a page, it redirects the browser to the identity provider pages. 

	 2.	 Here the IP authenticates the user in whatever way it chooses (perhaps by showing 
a page with user name and password, using Kerberos, or in some other way). Then it 
manufactures a token with the required claims and sends it back. 

	 3.	 The browser posts the token it got from the IP to the application, where WIF again 
intercepts the request.

	 4.	 If the token satisfies the requirements of the application (that is, it comes from the right 
IP, contains the right claims, and so on), the user is considered authenticated. WIF then 
drops a cookie, and a session is established. 

	 5.	 The claims in the incoming token are made available to the application code, and the 
control is passed to the application. 

As long as the session cookie is valid, the subsequent requests won’t need to go through the 
same flow because the user will be considered to be authenticated.

You are not supposed to know it yet, but the preceding flow unfolds according to the 
WS-Federation protocol specification: most of the magic is done by two HTTP modules: 
WSFederationAuthenticationModule (WSFAM) and SessionAuthenticationModule.



18	 Part I  Windows Identity Foundation for Everybody

The whole trick of using WIF in your application boils down to the following tasks:

	 1.	 Configure the application so that the WIF HTTP modules sit in the ASP.NET pipeline in 
front of it.

	 2.	 Configure the WIF modules so that they refer to the intended IPs, use the right 
protocols, protect the planned resources of the application, and in general enforce all 
the desired application policies.

	 3.	 Access claim values from the application code whenever there is a need in the 
application logic to make a decision driven by user identity attributes.

The good news is that in many cases steps 1 and 2 can be performed via Visual Studio 
tooling. There is a handy wizard that walks you through the process of choosing an identity 
provider, offers you various options, and informs you about the kind of claims you can get 
about the user from the specific IP you are referring to. The wizard translates all the prefer-
ences you expressed via point and click in the web.config settings. The next time you press 
F5, your application will already apply the new authentication strategy. Congratulations, your 
application is now claims-aware.

The good news keep coming; performing step 3 is simple and perfectly in line with what 
.NET developers are already accustomed to doing when handling user attributes.

IClaimsIdentity and IClaimsPrincipal
Remember IIdentity and IPrincipal as a means of decoupling the application code from the 
authentication method? It worked pretty well until we found an authentication style (client 
certificates) that broke the model. Now that authentication is no longer a concern of the 
application, we can confidently revisit the approach and apply it for exposing new informa-
tion (claims) by leveraging a familiar model.

WIF provides two extensions to IIdentity and IPrincipal, IClaimsIdentity and IClaimsPrincipal, 
respectively—which are used to make the claims processed in the WIF pipeline available to 
the application code. The instances live in the usual HttpContext.Current.User property in 
ASP.NET applications. You can use them as is with the usual IIdentity and IPrincipal program-
ming model, or you can cast them to the correct interface and take advantage of the new 
functionalities. 

Let’s take a quick look at the members of the new interfaces. Note that the list for now is by 
no means exhaustive and highlights only properties that will be useful in basic scenarios.



	 Chapter 1  Claims-Based Identity	 19

IClaimsPrincipal is defined as follows:

public interface IClaimsPrincipal : IPrincipal 
{ 
    // ... 
 
    // Properties 
    ClaimsIdentityCollection Identities { get; } 
}

Because IClaimsPrincipal is an extension of IPrincipal, all the usual functionalities (such as 
IsInRole) are supported. As you’ll see in Chapter 2, “Core ASP.NET Programming,” this use-
ful property extends to other ASP.NET features that take advantage of IPrincipal roles—for 
example, access conditions expressed via the <authorization> element still work.

The only noteworthy news is the Identities collection, which is in fact a list of IClaimsIdentity. 
Let’s take a look at the definition of IClaimsIdentity:

public interface IClaimsIdentity : IIdentity 
{ 
    // ...   
    ClaimCollection Claims { get; } 
 }

Here I stripped out most of the IClaimsIdentity members (because I’ll have a chance to 
introduce them all as you proceed though the book), but I left in the most important one, 
the list of claims associated with the current user. What does a Claim look like?

public class Claim 
{ 
    // ... 
    // Properties 
    public virtual string ClaimType { get; } 
    public virtual string Issuer { get; } 
    public virtual IClaimsIdentity Subject { get; } 
    public virtual string Value { get; } 
}

Once again, many members have been stripped out for the sake of clarity. The properties 
shown are self-explanatory:

■	 ClaimType  Represents the type of the claim: birth date, role, and group membership 
are all good examples. WIF comes with a number of constants representing names of 
claim types in common use; however, you can easily define your own types if you need 
to. The typical claim type is represented with a URI.

■	 Value  Specifies, as you can imagine, the value of the claim. It is always a string, 
although it can represent a value of a different CLR type. (Birth date is a good example.)



20	 Part I  Windows Identity Foundation for Everybody

■	 Issuer  Indicates the name of the IP that issued the current claim.

■	 Subject  Points to the IClaimsIdentity to which the current Claim belongs, which is a 
representation of the identity of the subject to which the claim refers to.

If you understand what a claim is, and if you have any type of identity card in your wallet, the 
properties just described are intuitive and easy to use. Let’s look at one easy example.

Suppose that you are working on one application that has been configured with WIF to use 
claims-based identity. Let’s say that authentication takes place at the very beginning of the 
session, so that during the execution you can always assume the user is authenticated. At a 
certain point in your code, you need to send an e-mail notification to your user. Therefore, 
you need to retrieve her e-mail address. Here there’s how you do it with WIF:

IClaimsIdentity identity = Thread.CurrentPrincipal.Identity as IClaimsIdentity; 
string Email = (from c in identity.Claims 
             where c.ClaimType == System.IdentityModel.Claims.ClaimTypes.Email 
             select c.Value).SingleOrDefault();

The first line retrieves the current IClaimsIdentity from the current principal of the thread, 
exactly as it would if you wanted to work with the classic .NET IIdentity—the only difference 
is the downcast to IClaimsPrincipal.

The second line uses LINQ for retrieving the e-mail address from the current claim collection. 
The query is very intuitive: you search for all the claims whose type corresponds to the well-
known Email claim type, and you return the value of the first occurrence you find. For the 
e-mail case, it is reasonable to expect that there will be only one occurrence in the collection, 
However, this is not true in the general case. Just think of how many group claims would be 
generated for any given Windows user; thus, the standard way of retrieving a claims value 
must take into account that there might be multiple claims of the same type in the current 
IClaimsIdentity.

Nothing in the code shown indicates which protocol or credential types have been used for 
authenticating the user. That means you are free to make any changes in the way in which 
users authenticate, without having to change anything in your code. Relying on one IP for 
handling user authentication and using open protocols delivers true separation of concerns; 
therefore, making those changes is also very easy.

Relying on claims for getting information about the user mitigates the need for maintaining 
attribute stores, where the data can become stale or be compromised. As you can observe, 
the code shown in this section does not contain any call to a local database that could be 
broken by routine changes or that could become a problem if the application is moved to an 
external host that cannot access local resources. In the age of the cloud, the importance of 
being able to move applications around cannot be overestimated.



	 Chapter 1  Claims-Based Identity	 21

Finally, the two lines of code shown earlier will work with any kind of .NET program, 	
ASP.NET or WCF. The way in which WIF snaps to the two different hosting models and 
pipelines is different. I will describe how it does this in detail in Part II; however, from the 
perspective of the application developer, nothing changes. The tooling operates its magic 
for configuring the application to externalize authentication. All you need to know is how to 
mine the results with a consistent API without worrying about underlying protocols, hosting 
model, or location.

It would appear that adding one extra layer of indirection worked. We finally found an API 
that can secure your applications without forcing you to take care of the details. 

Summary
Traditional approaches to adding identity and access management functionality to 
applications all have the same issues: they require the developer to take matters into his own 
hands, calling for specialized security knowledge, or they heavily rely on the features of the 
underlying infrastructure. This situation has led to a proliferation of APIs and techniques, 
forcing developers to continually re-learn how to perform the same task with different APIs. 
The resulting software is brittle, difficult to maintain, and resistant to change. In this chapter, 
I gave some concrete examples of how this systemic flaw in the approach to adding identity 
and access management affects development, even development in .NET. 

Claims-based identity is an approach that changes the way we think about authentication 
and authorization, adding a logical representation of identity transactions and identifying 
the roles that every entity plays. By adding that further level of indirection, claims-based 
identity created the basis for the decoupling of the programming model and the details of 
deploy-time systems. In the chapter, I described the basics of claims-based identity and you 
learned how it can be used to model a wide variety of scenarios.

Windows Identity Foundation is one set of .NET classes and tools that helps developers to 
secure applications by following the principles of claims-based identity. This chapter intro-
duced the essential programming surface exposed by WIF, and it demonstrated how WIF 
does not suffer from the issues I mentioned for traditional approaches.

In the next chapter, I will show how to take advantage of WIF for performing authentication, 
authorization and identity-driven customization in a variety of common Web scenarios. 





	 	 95

Chapter 4

Advanced ASP.NET Programming
In this chapter:
More About Externalizing Authentication . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 96
Single Sign-on, Single Sign-out, and Sessions . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 112
Federation .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 126
Claims Processing at the RP .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 141
Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 143

Now that most technicalities are out of the way, we can focus on intended usage of the 
product for addressing a wider range of scenarios. 

This chapter resumes the architectural considerations that drove Part I of the book, “Windows 
Identity Foundation for Everybody,” by tackling more complex situations. I’ll assume you 
are now familiar with the flow described in Chapter 3, “WIF Processing Pipeline in ASP.NET.” 
I’ll give you concrete indications about how to customize the default behavior of Windows 
Identity Foundation (WIF) to obtain the desired effect for every given scenario.

Using claims-based identity in your application is, for the most part, the art of choosing 
who to outsource authentication to and providing just the right amount of information for 
influencing the process. This chapter will not exhaust all the possible ways you can customize 
WIF—far from it. However, it will equip you with the principles you need to confidently 
explore new scenarios on your own.

The first section, “More About Externalizing Authentication,” takes a deeper look at the 
entities to which you can outsource authentication for your application. I’ll go beyond the 
simplifications offered so far, introducing the idea of multiple provider types. A lot of the 
discussion will be at the architectural level, helping you with the design choices in your 
solutions. However, hardcore coders should not fear! The section also dives deep into the 
Security Token Service (STS) project template that comes with the WIF SDK. Although in real 
scenarios you’ll rarely need to create a custom STS, given that more often than not you’ll rely 
on off-the-shelf products such as Active Directory Federation Services 2.0 (ADFS 2.0), you’ll 
find it useful to see a concrete example of how the architectural considerations mentioned 
are reflected in code.

The “Single Sign-on, Single Sign-out, and Sessions” section explores techniques that reduce 
the need for users to explicitly enter their credentials when visiting affiliated Web sites and 



96	 Part II  Windows Identity Foundation for Identity Developers

shows how to clean up multiple sessions at once. One specific case, sessions with sliding 
validity, is the occasion for a deeper look at how WIF handles sessions.

The “Federation” section dissects the pattern that is most widely used for handling access 
across multiple organizations. I’ll cover more in depth the use of STSes for processing claims, 
and we’ll tackle the problem of deciding who should authenticate the user when there are 
many identity providers (IPs) to choose from (something known as the home realm discovery 
problem). The solutions to those problems can be easily generalized to any situation in which 
the relying party (RP)—which was discussed in Chapter 3—needs to communicate options to 
the IP. I’ll demonstrate that with another example: the explicit request for a certain 	
authentication level.

The “Claims Processing at the RP” section closes the chapter by describing how to use 
Windows Identity Foundation for preprocessing the claims received from the identity 
provider. I’ll briefly revisit the claims-based authorization flow—introduced in minimal terms 
in Chapter 2, “Core ASP.NET programming.” Then I’ll show you how to filter and enrich the 
IClaimsPrincipal before the application code gains access to it.

After you read this chapter, you’ll be able to make informed decisions about the identity 
management architecture of your solutions. You’ll know what it takes to implement such 
decisions in ASP.NET. You’ll have concrete experience using the WIF extensibility model for 
solving a range of classic identity management scenarios. That experience will help you to 
devise your own WIF-based solutions. Once again, I’ll give you practical code indications 
about the ASP.NET case, but the general principles introduced here can be applied more 
broadly, often to the WCF services case and even on non-Microsoft platforms.

More About Externalizing Authentication
Until now, I have described situations in which the application relies on only one external 
entity—what I defined as the identity provider, or IP. Although this is an accurate representa-
tion of a particular common scenario, the general case can be a bit more complicated. Not 
only might you have to accept identities from multiple identity providers, identity providers 
are not the only entities you can outsource authentication to! 

So far, the role played by the entity within a transaction (the identity provider) has been 
conflated with the instrument used to perform the function (the STS). The purpose of this 
section is to help you better understand the separation between the two by providing 
more details about the nature of the identity provider, introducing a new role known 
as the federation provider, and studying how those high-level functions reflect on the 
implementation of the associated STS. 



	 Chapter 4  Advanced ASP.NET Programming	 97

Identity Providers
Being an identity provider is a role, a job if you will. You know from Chapter 1, “Claims-Based 
Identity,” that an IP “knows about subjects.” In fact, all the thinking behind the idea of IP is 
just good service orientation applied to identity. 

The standard example of a concrete identity provider is one built on top of a directory, just as 
ADFS 2.0 is built on top of Active Directory. In this scenario, there’s an entity that is capable 
of authenticating users and making assertions about them, and all you are doing is making 
that capability reusable to a wider audience by slapping a standard façade (the STS) in front 
of it. The use of standards when exposing the STS is simply a way of maximizing the audience 
and increasing reusability. Here’s an example: Although a SharePoint instance on an intranet 
can take advantage of Active Directory authentication capabilities directly via Kerberos, 
that is not the case for a SharePoint instance living outside the corporate boundaries and 
hosted by a different company. Exposing the authentication capabilities of Active Directory 
via ADFS 2.0 makes it possible to reuse identities with the SharePoint instance in the second 
scenario, removing the platform and location constraints. WIF is just machinery that enables 
your application to take advantage of the same mechanism. It is worthwhile to point out that 
SharePoint 2010 is, in fact, based on WIF.

Another advantage of wrapping the actual authentication behind a standard interface is 
that you are now isolated from its implementation details. The IP could be a façade for a 
directory, a membership provider–based site, or an entirely custom solution on an arbitrary 
platform; as long as its STS exposes the authentication functionality through standards, 
applications can use it without ties or dependencies outside of the established contract. 
Who cares if the connection string to the membership database changes, or even if there 
is a membership database in the first place? All you need to know is the address of the STS 
metadata.

Those characteristics of the IP role tell you quite a lot about what to expect regarding the 
structure of the STS exposed by one IP. 

Note  In literature, you’ll often find that one STS used by one IP can be defined as an “IP-STS.” 
In a short, you’ll see how this can sometimes be useful for disambiguating the function the STS 
offers.

In the WS-Federation Sign-in flow, described in Chapter 3, you saw that the details of how 
the STS authenticates the request for security tokens is a private matter between the STS and 
the user. Now you know that such a system has to be something that allows the STS to look 
up user information from some store—so that it can be extracted and packaged in the form 
of claims. Notable examples are the ones in which the STS leverages the same authentication 
methods of the resource it is wrapping. If the IP is a façade for Active Directory and the user 



98	 Part II  Windows Identity Foundation for Identity Developers

is on the intranet, the STS might very well be hosted on one ASPX page that is configured in 
Internet Information Services (IIS) to leverage Windows native authentication. If the source 
is a membership database, the STS site will be protected via a membership provider, and so 
on. The claim value’s retrieval logic in the STS will use whatever moniker the authentication 
scheme offers for looking up claim values, but the authentication will often be performed by 
the infrastructure hosting the STS rather than the STS code itself.

Nothing prevents one IP from exposing more than one STS endpoint to accommodate 
multiple consumption models. For example, the same IP might be listening for Kerberos 
authenticated requests from the intranet and X.509 secured calls on an endpoint available 
on the Internet; the IP might expose further endpoints, both for browser-based requestors 
via WS-Federation and SAMLP or for active requestors via WS-Trust; and so on. This process 
offers another insight into how one IP is structured: authentication and claims issuance logic 
should communicate but remain separate so that multiple STS endpoints scenarios are han-
dled with little or no duplication. As you’ll see later in the section, the WIF STS programming 
model is consistent with that consideration.

An IP will actively manage the list of the RPs it is willing to issue a token for. This is not only 
a matter of ensuring that claims are transmitted exclusively to intended recipients, but also a 
practical necessity. Especially in the passive case, in which token requests are usually simple, 
the IP decides what list of claims will be included in a token according to the RP the token is 
being issued for. (“Passive case” is mainly another way to say that you use a browser. You’ll 
know everything about it after reading Chapter 5, “WIF and WCF.”) Such a list is established 
when the RP is provisioned in the IP’s allow list. Just like WIF enables one application to es-
tablish a trust relationship with an IP by consuming its metadata via the Federation Utility 
Wizard, IP software such as ADFS 2.0 includes wizards that can consume the application 
metadata and automatically provision the RP entry in its allow list.

Note  In computer science as in other disciplines, an allow list is a list of entities that are 
approved to do something or to be recipients of some action. For example, if your company 
network has an allow list of Web sites, that means you can browse only on those sites and no 
other. Conversely, having a blacklist of Web sites means that you can browse everywhere but on 
those. An IP normally maintains an allow list of RPs it is willing to issue a token for: any request 
for a recipient not in the  allow list is refused. The ADFS 2.0 UI describes that as Relying Party 
Trust. I am not very fond of that use of “trust,” which in this context has a special meaning (be-
lieving that the claims issued by a given IP about a subject are true), but your mileage may vary.

The IP also keeps track of the certificate associated with the RP, both for ensuring that the 
RP has a strong endpoint identity (exposed via HTTPS) and for encrypting the token with the 
correct key if confidentiality is required.



	 Chapter 4  Advanced ASP.NET Programming	 99

Nonauditing STS
There are situations, especially in the area of e-government, in which the user would 
like to keep private the identity of the RP he is using. For example, a citizen might 
want to use a token issued by a government IP proving his age, but at the same time 
he would like to maintain his privacy about what kind of sites (for example, liquor 
merchants) he is using the token for.

Technically, the scenario is possible, although setting up such functionality would 
introduce some limitations. For example, not knowing the identity of the RP, the IP 
would not know the associated X.509 certificate and that would make it impossible 
to encrypt the issued token. Also, some protocols handle the scenario better than 
others. Although the WS-Federation specification allows for specifying which claims 
should be included in the requested token, most implementations expect the list of 
claims required by one RP to be established a priori, which is of course of no help if the 
identity of the RP is not known. Things can be a little easier with WS-Trust, as you’ll see 
in the next chapter.

In the business world, the most common scenario requires the IP to have a preexisting 
relationship with the RP before issuing tokens for it; therefore, off-the-shelf products 
such as ADFS 2.0 normally mandate it.

The scenario described so far—one application outsourcing authentication to one identity 
provider—is common, and none of the further details about IPs I gave here invalidate it. 
However, sometimes the planets do not align the way you’d like, and for some reason simple 
direct outsourcing to one IP does not solve the problem.

Federation Providers
Let’s consider for a moment the matter of handling multiple identity providers. Imagine 
being a developer for a financial institution. Let’s say you are writing a corporate banking 
application, which allows companies to handle the salary payment process for their work-
force. This is clearly one case in which you need to trust multiple identity providers—namely, 
all the companies who access your financial institution for managing payments.

From what you have seen so far, you know only one way of handling the situation: adding 
multiple FederatedPassiveSignIn controls to your application entry page, each of them 
pointing to a different identity provider. Although the approach works, it can hardly be 
called a full externalization of identity management because provisioning and deprovisioning 
identity providers forces you to change the application code. Things get worse when you 
have one entire portfolio of applications to make available to a list of multiple identity 
providers—having to reapply the trick mentioned previously for every application rapidly 



100	 Part II  Windows Identity Foundation for Identity Developers

becomes unsustainable as the number of apps and IPs goes up. This clearly indicates the 
need to factor out IP relationship management from the application responsibilities.

Another common issue you might encounter has to do with the ability of your application to 
understand claims as issued by one identity provider. Here is why:

■	 Sometimes you might have simple format issues. For example, the users you are 
interested in might come from another country and their IP might use claim URIs 
containing locale-specific terms your application does not understand. (An English 
application might need to know the name of the current user and expect it in an 	
http://claims/name format, while an Italian IP might send the desired information in the 
http://claims/nome claim format.) 

■	 Sometimes the information will need some processing before being fed to your 
application. For example, an IP might offer a birth date claim, but your application 
might be forbidden from receiving personally identifiable information (PII). All you 
require here is a simple Boolean value indicating if the user is below or above a certain 
threshold age. Although the information is clearly available to the IP, it might not be 
offered as a claim. 

■	 Finally, you might need to integrate the claims received from the IP with further 
information that the IP does not know. For example, you might be an online book shop 
accepting users from a partner IP. The IP can provide you with name and shipping 
address claims, but it cannot provide you with the last 10 books the user bought from 
your store. That is data that belongs to you, and you have the responsibility of making 
it available in the form of claims if you want to offer to your developers a consistent 
way of consuming identity information.

What is needed here is a means of doing some preprocessing—some kind of intermediary 
that can massage the claims and make them more digestible for the application.

The standard solution to these issues is the introduction of a new role in identity transactions, 
which goes by the name of Federation Provider (FP).

A Federation Provider is a claims transformer; it is an entity that accepts tokens in input—
kind of like an RP does—and issues tokens that are (usually) the result of some kind of 
processing of the input claims. An FP offers its token manipulation capabilities exactly like an 
IP, by exposing STS endpoints. The main difference is that, whereas one IP usually expects re-
quests for security tokens secured by user credentials that will be used for looking up claims, 
the FP expects requests to be secured with an issued token that will be used as input for the 
claims transformation process. In the IP case, the issued token contains the claims describing 
the authenticated user; in the FP case, the issued token is the result of the processing applied 
to the token received in the request. Given the fact that an FP exposes one STS, applications 
can use it for externalizing authentication in exactly the same way as you have seen they 
do with IPs. WIF’s Federation Utility Wizard does not distinguish between IPs and FPs—all it 
needs is an STS and its metadata.



	 Chapter 4  Advanced ASP.NET Programming	 101

The reason that it’s known as the Federation Provider is that enabling federation is the 
primary purpose that led to the emergence of this role. In a nutshell, here’s how that works. 
Imagine company A is a manufacturer that has a number of line-of-business (LOB) applica-
tions for its own employees, including applications for supply management, inventory, and 
other usual stuff. Company B is a retailer that sells the products manufactured by A. To im-
prove the efficiency of their collaboration, A and B decide to enter into a federation agree-
ment: certain B employees will have access to certain A applications. Instead of having every 
A application add the B identity provider and having the B IP provision every application as a 
recognized RP, A exposes a Federation Provider.

The B IP will provision the A FP just like any other RP, associating to the relationship the list of 
claims that B decides to share with A about its users. All of the A applications that need to be 
accessible will enter into a trust relationship with the A FP, outsourcing their authentication 
management to its STS. Figure 4-1 shows the trust relationships and the sign-in flow.

Browser

IP-STS

APP

1

23 4

6

7

Trust

Trust

R-STS

5

IP FP

B A

A

AB

B

FIGURE 4-1  The authentication flow in a federation relationship between two organizations

The flow goes as follows:

	 1	 One employee of B navigates to one application in A.

	 2	 The user is not authenticated because the application will accept only users presenting 
tokens issued by the A FP. The application redirects the user to the A FP.

	 3	 Again, the user is not authenticated. The A FP will accept only users presenting tokens 
issued by the B IP. The application redirects the user to the B IP.

	 4	 The user lands on the B IP, where authentication will take place according to the modes 
decided by B. The user gets a token from the B IP.

	 5	 The user gets back to the A FP and presents the token from the B IP.



102	 Part II  Windows Identity Foundation for Identity Developers

	 6	 The A FP processes the token according to the application’s needs—some claims 
might be reissued verbatim as they were received from B; others might be somehow 
processed; still others might be produced and added anew. The A FP packages the 
results of the processing in the form of claims and issues the new token to the user.

	 7	 The user gets back to the application and presents the token from the A FP; the 
application authenticates the call by examining the token from A FP. 

The main advantage of using an FP in a federation scenario is obvious: you now have a single 
place where you can manage your relationship, defining its terms (such as which claims you 
should receive). The applications are decoupled from those details. Because the FP knows 
about both the incoming claims (because it is on point for handling the relationships) and the 
claims needed by the application (because it is part of the organization, it knows about which 
claim types are available and their semantics), applications can effectively trust it to handle 
authentication on their behalf even if the actual user credentials verification takes place 
elsewhere. The process can be iterated. For example, you can have an FP trusting another FP, 
which in turn trusts an IP, although that does not happen too often in practice.

The WIF STS Template
Outsourcing authentication to one external STS makes life much easier for the application 
developer, at the price of relinquishing control of a key system function to the STS itself. 
Although relinquishing control of the mechanics of authentication is sweet, as I’ve been 
pointing out through the entire book, the STS you choose better be good, or else. Here’s 
what I mean by “good” in this case:

■	 An STS must be secure  A compromised STS is an absolute catastrophe because it 
can abuse your application’s trust by misrepresenting the user privileges.

■	 An STS must be available  If the STS endpoint is down, as a consequence of peak 
traffic or any other reason, your application is unreachable: no token, no party.

■	 An STS must be high-performing  Every time a user begins a session with your 
application, the STS comes into play. Bad performance is extremely visible, can 
become a source of frustration for users, and even pile up to compromise the 	
system’s availability.

■	 An STS must be manageable  If you own the STS, whether it used as an IP or FP, 
you’ll need to manage many aspects of its activities and life cycle, such as the logic 
used for retrieving claim values, provisioning of recognized RPs, establishment of trust 
relationships with the IP of federated partners, management of signing and encryp-
tion keys, auditing of the issuing activities, and management of multiple endpoints for 
different credential types and protocols. The list goes on and on.



	 Chapter 4  Advanced ASP.NET Programming	 103

In other words, running an STS is serious business: don’t let anybody convince you otherwise. 
An endpoint that understands WS-Federation, WS-Trust, or SAMLP requests and can issue a 
token accordingly technically fits the definition of “STS,” but protocol capabilities alone can’t 
help with any of the requirements just mentioned.

This is why in the vast majority of real-world scenarios it is wise to rely on off-the-shelf STS 
products, such as ADFS 2.0. Those products host STS endpoints and advanced management 
features that simplify both small and large maintenance operations that running an IP or an 
FP (or both) entails. Let’s take ADFS 2.0 as an example: ADFS 2.0 is a true Windows server 
role—tried, stressed, and tested just like any other Windows server feature.

The Windows Identity Foundation SDK makes the generation of an STS deceivingly simple 
by offering Microsoft Visual Studio templates for both ASP.NET Web sites and WCF services 
projects that implement a bare-bones STS endpoint (for WS-Federation and WS-Trust, re-
spectively). The Generate New STS option in the Add STS Reference Wizard just instantiates 
one of those templates in the current solution. Those test STSes are an incredibly useful tool 
for testing applications, thanks to the near absence of infrastructure requirements (ADFS 2.0 
requires a working Active Directory instance, SQL Server, Windows Server 2008 R2, and so 
on) and instantaneous creation. As somebody who had to write STSes from scratch with WCF 
in the past (a long and messy business), I am delighted by how easy it is to generate a test 
STS with WIF. For the same reason, such test STSes are consistently used in WIF samples and 
courseware. This book is no exception.

Why do I say “deceivingly simple”? Because of all the requirements I listed earlier. WIF can 
certainly be used to build an enterprise-class STS—it has been used for building ADFS 2.0 
itself. However, between the STS template offered by the WIF SDK and ADFS 2.0, there are 
many, many man-years of design, enormous amounts of development and testing, tons of 
assumptions and default choices, brutal fuzzing, relentless stressing, and so on. The fact that 
the STS template gives you back a token does not mean it can be used as is in a real-life sys-
tem. People regularly underestimate the effort required for building a viable STS, an error of 
judgment that can result in serious issues. That is why I always discourage the creation of cus-
tom STSes unless it’s absolutely necessary, and there’s not a lot of detailed guidance on that.

Now that I’ve got the disclaimer out of the way: this chapter will use a lot of custom STSes. 
Taking a peek inside an STS is a powerful educational tool that can help you understand 
scenarios end to end. Being able to put together test STSes can help you simulate complex 
setups before committing resources to them. Finally, you’ll likely encounter situations in 
which setting up a custom STS is the way to go—for example, if your user credentials are 
not stored in Active Directory. The guidance here is absolutely not enough for handling the 
task—that would involve teaching how to build secure, scalable, manageable, and perform-
ing services, which is well beyond the scope of this text—but it can be a starting point for 
understanding the token issuance model offered by WIF.



104	 Part II  Windows Identity Foundation for Identity Developers

The rest of the section describes the STS template for ASP.NET offered by WIF SDK 4.0. As 
you read through this section, I suggest you go back to the simple example you created in 
Chapter 2 and put breakpoints on the parts of the STS project being discussed. Every time 
something is not too clear, try a test run in the debugger to get a better sense of what’s 
going on.

Structure of the STS ASP.NET Project Template
The ASP.NET Security Token Service Web Site template, as WIF SDK 4.0 names it, can be 
found in the C# Web sites templates list in Visual Studio. As mentioned, this is also the 
template that is used by the Add STS Reference Wizard for generating an STS project within 
an existing solution. Figure 4-2 shows the list of templates installed by the WIF SDK 4.0.

FIGURE 4-2  The templates installed by WIF SDK 4.0, with the template used for creating an ASP.NET STS 
highlighted

The STS Web site is typically created on the local IIS. Although it is possible to use the plain 
HTTP binding, in general the STS Web site will be created on an HTTPS endpoint.

Note  Using HTTP in this case is normally a really bad idea. Even if you encrypt the tokens you 
issue, and even if the RP can take steps for mitigating the risk of accepting stolen tokens, the 
reality is that using plain HTTP on browser-based scenarios makes you vulnerable to man-in-	
the-middle and other attacks. In Chapter 5, you’ll have a chance to dig deeper into the topic.



	 Chapter 4  Advanced ASP.NET Programming	 105

IIS vs. Visual Studio Built-in Web Server
Visual Studio allows you to develop Web sites without requiring the presence of IIS on 
your development machine. Visual Studio offers a built-in Web server, called the 	
ASP.NET Development Server, which can be used to render pages directly from the 
file system.

Although you can get WIF to work on Web sites running on the ASP.NET Development 
Server, there are limitations (for example, the built-in Web server does not support 
HTTPS) and complications (for example, the dynamically assigned ports change the site 
URIs and thus force changes in the configuration). Because of this, it’s just simpler to 
use IIS.

Similar considerations led me to use Web site projects rather than Web application 
ones. Web application development starts on the file system and requires extra steps 
for hosting (and debugging) the application in IIS. Furthermore, at the time of this 
writing, Fedutil.exe is not a big friend of the dynamic ports system featured by ASP.NET 
Development Server. The Add STS Reference Wizard will not always work as expected 
when launched on a Web application project.

Figure 4-3 shows the structure of the STS project.

FIGURE 4-3  The ASP.NET STS project structure

That is the structure of a minimal Web site protected via Forms authentication, containing 
the classic Login.aspx and Default.aspx pages. The web.config file is minimal, containing prac-
tically nothing specific to WIF apart from the reference to its assembly and a few values in 
the <appSettings>. The Web site is configured to use Forms Authentication. As you saw in the 
first example in Chapter 2, Login.aspx does not actually verify any credentials and represents 



106	 Part II  Windows Identity Foundation for Identity Developers

just a pro-forma authentication page: the page will just create the authentication cookie and 
start a session regardless of the credentials entered in the UI. 

The hands-on lab Web Sites and Identity (C:\IdentityTrainingKit2010\Labs\
WebSitesAndIdentity\Source\Ex1-ClaimEnableASPNET) exercise 2, shows how to use an 
existing Membership store for authenticating calls to the STS, and how to source claim values 
from a Role provider.

All this emphasizes what I mentioned earlier about the separation between the STS functions 
and the authentication mechanism: here Forms authentication is the method of choice, but 
it is independent from what WIF does for implementing the token-issuing functionality. The 
authentication system could be easily substituted with Windows integrated authentication 
or whatever else, as long as it takes care of authenticating the user before giving access to 
Default.aspx. 

Note  An obvious observation is that the STS template generates an IP-STS, something that 
authenticates users and issues tokens describing them. It is not hard to transform it into an 
R-STS: you can just run the Add STS Reference Wizard on the STS project itself, and that will be 
enough for excluding the current Forms authentication settings and externalize authentication 
to the second STS of your choosing. However, that would change only the way authentication is 
handled, not the way claims are generated: an R-STS transforms incoming claims, but the default 
template implementation does not do that. At the end of the section, I’ll discuss what you need 
to change for modifying the claim issuance criteria as well. 

The Default.aspx page represents the STS endpoint, and it takes care of instantiating and 
executing the token-issuing logic in the context of an ASP.NET request. The page itself 
does not contain much. What we are interested in is the Page_PreRender handler in 
Default.aspx.cs:

public partial class _Default : Page 
{  /// <summary> 
  /// Performs WS-Federation Passive Protocol processing.  
  /// </summary> 
  protected void Page_PreRender( object sender, EventArgs e ) 
  { 
    string action = Request.QueryString[WSFederationConstants.Parameters.Action]; 
 
    try 
    { 
      if ( action == WSFederationConstants.Actions.SignIn ) 
      { 
        // Process signin request. 
        SignInRequestMessage requestMessage =  
          (SignInRequestMessage)WSFederationMessage.CreateFromUri( Request.Url ); 
        if ( User != null && User.Identity != null && User.Identity.IsAuthenticated ) 
        { 



	 Chapter 4  Advanced ASP.NET Programming	 107

         SecurityTokenService sts = 
         new CustomSecurityTokenService( CustomSecurityTokenServiceConfiguration.Current ); 
         SignInResponseMessage responseMessage = 
            FederatedPassiveSecurityTokenServiceOperations.ProcessSignInRequest 
             (requestMessage, User, sts ); 
          FederatedPassiveSecurityTokenServiceOperations.ProcessSignInResponse 
             (responseMessage, Response ); 
        } 
        else 
        { 
          throw new UnauthorizedAccessException(); 
        } 
      } 
      else if ( action == WSFederationConstants.Actions.SignOut ) 
      { 
        // Ignore the rest for now 
        // ...  
      
  } 
}

This code is the STS counterpart of the WS-Federation processing logic that WIF provides for 
RPs, as studied in Chapter 3. Whereas the RP generates the request for a security token and 
validates it, the STS listens to those requests and issues tokens according to the 	
WS-Federation protocol. Here’s a quick explanation of what the method does:

■	 The handler inspects the request QueryString for the WS-Federation action parameter, 
wa. Let’s focus on the case in which wa is present and has the value wsignin1.0, which 
indicates a request for a token. (We’ll explore the sign-out case later in the chapter.)

■	 The code creates a new SignInRequestMessage from the request—that is, a name-value 
collection that surfaces the various WS-Federation parameters as properties.

■	 Do you have a non-empty IPrincipal? Is the current user authenticated? If it isn’t, an 
UnauthorizedAccessException is thrown and the user is redirected to the login page. If it 
is, the following must take place:

❑	 Get an instance of SecurityTokenService by retrieving an instance of a subclass, 
CustomSecurityTokenService. This class contains the core STS logic, as you’ll see in 
a moment.

❑	 The new STS instance, along with the incoming SignInRequestMessage and 
the user’s IPrincipal, is fed to FederatedPassiveSecurityTokenServiceOperations.
ProcessSignInRequest, where it will be used for issuing the token and producing a 
suitable SignInResponseMessage.

❑	 Finally, FederatedPassiveSecurityTokenServiceOperations.ProcessSignInResponse 
writes the SignInResponseMessage in the response stream, which will be 
eventually forwarded to the RP and processed as you saw in Chapter 3.



108	 Part II  Windows Identity Foundation for Identity Developers

There are a lot of classes with long names, but in the end the code shown earlier just feeds 
the authenticated user and the request to a custom SecurityTokenService class and sends back 
the result. The STS project features an App_Code folder, which contains all the classes the STS 
needs, including the CustomSecurityTokenService class; all you need to do is take a look at 
what happens there.

The Redirect Exception in the STS Template in Visual Studio 2010
At the time of this writing, the ASP.NET STS template exhibits a small issue with 
Visual Studio 2010. At the end of the Page_PreRender method, there is a catch clause 
that handles generic Exceptions and re-throws them after having added a message. 
Unfortunately, the code described earlier contains at least a redirect, which throws an 
exception. Normally, you would not see it, but the re-throw makes Visual Studio stop 
at the unhandled exception. There are various workarounds for this issue. You could 
catch ThreadAbortException and ignore it. You could just press F5 again, and the appli-
cation will move forward without issues. You could comment that line in the template. 
You could start without debugging. I do not suggest disabling the Visual Studio default 
behavior of stopping at unhandled exceptions unless you know very well what you are 
doing.

STS Classes and Methods in App_Code
The Common.cs file is not very interesting; it’s just a bunch of constants. CertificateUtil.cs is not 
that remarkable either; it’s a helper class for retrieving X.509 certificates from the Windows 
stores, although there is an interesting piece of trivia for it. WIF uses that code, instead of the 
classic X509Certificate2Collection.Find because the latter does not call Reset on the certifi-
cates it opened.

CustomSecurityTokenServiceConfiguration, as the name implies, takes care of storing some 
key configuration settings for the STS: the name, the certificate that should be used for 
signing tokens, serializers for the various protocols, and so on. The most important setting it 
stores is the type of the custom SecurityTokenService itself.

Finally, we get to the very heart of the STS: the class in CustomSecurityToken.cs. The code 
generated by the template has the purpose of doing the bare minimum for obtaining a 
working STS; hence, I won’t analyze it too closely here, except for pointing out some notable 
behavior. Rather, I’ll use it as a base for telling you about the more general model that you 
have to follow when developing a custom STS in WIF. Note that the considerations about 
SecurityTokenService apply both to ASP.NET and WCF STSes.

SecurityTokenService  In WIF, a custom STS is always a subclass of SecurityTokenService, and 
the ASP.NET template is no exception. The claims-issuance process is represented by a series 



	 Chapter 4  Advanced ASP.NET Programming	 109

of SecurityTokenService methods, which are invoked following a precise syntax that leads the 
form request validation to emit the token bits. Complete coverage of that sequence is be-
yond the scope of this book; however, here I’ll list the main methods you should know about:

❑	 ValidateRequest  This method takes in a RequestSecurityToken and verifies that it is 
in a request that can be handled by the current implementation. For example, it checks 
that the required token type is known. SecurityTokenService provides an implementa-
tion of ValidateRequest. You should override it only if you are adding or subtracting 
from the default STS capabilities. There are also few things taking place in GetScope 
that could perhaps be done in ValidateRequest. I’ll point those out as we encounter 
them.

❑	 GetScope  GetScope is an abstract method in SecurityTokenService that must be 
overridden in any concrete implementation. It takes as input the IClaimsPrincipal of the 
caller and the current RequestSecurityToken.

The purpose of GetScope is to validate and establish some key parameters that will 
influence the token-issuance process. Those parameters are saved in one instance 
of Scope, which is returned by GetScope and will cascade through all the subsequent 
methods in the token-issuance sequence. Here are the main questions that GetScope 
answers:

❑	 Which certificate should be used for signing the issued token? Although 
a signing certificate has already been identified in the configuration class, 
GetScope should confirm that certificate (as done by the template implementa-
tion) or override it with custom criteria—for example, if something in the request 
influences which certificate should be used.

❑	 Is the intended token destination a recognized RP? As discussed earlier, 
normally an STS issues tokens only to the RP URIs that have been explicitly 
provisioned. If the incoming wtrealm (available in RequestSecurityToken 
via the property AppliesTo) does not correspond to a known RP, an 
InvalidRequestException should be thrown. 

Note  The template implementation of GetScope performs the check against a 
hard-coded list. One could argue that a validation check would belong to the 
ValidateRequest method, but the item about encryption that follows shows how GetScope 
would need to query an RP settings database anyway.

If the AppliesTo value is valid, it is fed into the Scope object. It will be needed for 
the AudienceRestriction element of the issued token, which in turn will be vali-
dated by WIF against the <audienceURI> config element on the RP.

❑	 Should the issued token be encrypted? If yes, with which certificate? The STS 
configuration should specify whether the token should be encrypted. If it should 



110	 Part II  Windows Identity Foundation for Identity Developers

be, the same store that was used for establishing whether the RP was valid should 
also carry information about which encryption certificate should be used. The 
template uses a value from config.

❑	 To which address should the token be returned? The template assumes that 
wtrealm—that is, the AppliesTo value—is both the identifier of the RP and its 
network-addressable URI. As a result, GetScope assigns the value of AppliesTo to 
the ReplyToAddress property of the Scope object.

Important  Although in many cases it is true that AppliesTo contains the network 
addressable endpoint of one RP, that does not always hold. Sometimes wtrealm will be a 
logical identifier for the application rather than a network address, and the actual address 
to which the token should be returned will be different. A way of handling this is by 
sending the actual address in the request via the wreply parameter, and then assigning 
it to Scope.ReplyToAddress (from RequestSecurityToken.ReplyTo). ReplyTo addresses 
should always be thoroughly validated because supporting wreply opens your STS up 
to redirect attacks.

Note  ADFS 2.0 does not handle wreply.

When the Scope is ready, a number of lower level token-issuance preparation 
steps take place. You can influence those if you want to, but I won’t go into 
further details here. After those steps are completed, it is finally time to work 
with claims.

❑	 GetOutputClaimsIdentity  This method takes as input the IClaimsPrincipal of the 
caller, the RequestSecurityToken, and the Scope. It returns an IClaimsIdentity, which con-
tains the claims that should be issued in the token for the caller. Note that at this point 
the IClaimsPrincipal of the caller is a representation of the IPrincipal obtained from 
the STS caller via Forms authentication. This should not be confused with the output 
IClaimsPrincipal created by the STS, which will be available at the RP after successful 
sign-in.

This is perhaps the least realistic of the implementations in the STS template. It returns 
two hard-coded claims, Name and Role, regardless of the targeted RP or the caller 
(the only concession being the value of the Name claim, extracted from the incoming 
principal):

protected override IClaimsIdentity GetOutputClaimsIdentity 
   (IClaimsPrincipal principal, RequestSecurityToken request, Scope scope ) 
  { 
    if ( principal == null ) 
    { 
      throw new ArgumentNullException( "principal" ); 
    } 



	 Chapter 4  Advanced ASP.NET Programming	 111

 
    ClaimsIdentity outputIdentity = new ClaimsIdentity(); 
 
    // Issue custom claims. 
    // TODO: Change the claims below to issue custom claims required by your 
application. 
    // Update the application's configuration file too to reflect new claims 
requirement. 
 
    outputIdentity.Claims.Add( new Claim( System.IdentityModel.Claims.ClaimTypes.Name, 
principal.Identity.Name ) ); 
    outputIdentity.Claims.Add( new Claim( ClaimTypes.Role, "Manager" ) ); 
 
    return outputIdentity; 
  }

In a more realistic setting, your GetOutputClaimsIdentity implementation would need 
to make some decisions about the outgoing IClaimsIdentity. These are the questions it 
will need to answer:

❑	 Given the current request, which claim types should be included? The list of 
claims that should be issued is often established per RP, at provisioning time. That 
is especially common for WS-Federation scenarios, and some products will go as 
far as implementing that tactic for the WS-Trust case as well. 

Note  ADFS 2.0 uses that approach in every case. The list of claims to issue is always 
established on the basis of the RP for which the token is being issued.

Chances are that the list of claims to use will be available in the same store you 
used in GetScope for retrieving the RP URI and encryption certificate.

WS-Trust (and WS-Federation, via wreq or wreqptr parameters) supports request-
ing a specific list of claims for every request. Although that requires more work, 
which probably includes checking on an RP-bound list if the required claims are 
allowed for that given RP, there are many advantages to the approach. Apart 
from minimal disclosure and privacy considerations, possibly a bit out of scope 
here, one obvious advantage is that this can help keep the token size under con-
trol. A token representing a Windows identity can have many group claims. If for 
a given transaction the group claim is not required, being able to exclude it can 
dramatically shrink the resulting token. 

If you want to support requests that specify the required claims, you’ll find that 
list in the RequestSecurityToken.Claims collection.

❑	 Given the current principal, which claim values should be assigned? 
Together with the request authentication method, this is the question that 
determines whether your STS is an IP-STS or an R-STS. 



112	 Part II  Windows Identity Foundation for Identity Developers

One IP-STS uses some claims of the incoming IClaimsPrincipal for looking up the 
caller in one or more attribute stores, from where the STS will retrieve the values 
to assign to the established claim types. That’s the direct descendent of using 
a user name for looking up attributes in a profile store; in fact, it can take place 
in exactly the same way if you have a user name claim. Of course, you are not 
limited to it—you can use any claim you like.

One R-STS processes the claims in the incoming IClaimsPrincipal in arbitrary ways, 
storing the results in other claims in the outgoing IClaimsIdentity. Note that the 
STS can also just copy some claims from the incoming token to the outgoing one 
without modification, and it can even add new claims in the same way the IP-STS 
does. I’ll show some examples of this later, during the federation and home-realm 
discovery discussions.

ADFS 2.0 offers a management UI, where administrators can specify how to 
source or transform claims. The mappings can be specified via a simple UI or via 
a SQL-like language that is especially well suited for claims issuance. In your own 
STS, you can embed the corresponding code directly in GetOutputClaimsIdentity, 
or you can develop a mechanism for driving its behavior from outside.

Metadata
You know about metadata from Chapter 3. If you need to change something in the metadata 
document of one RP, you can simply edit it. Perhaps that’s not the greatest fun you’ll have, 
but it is feasible.

Doing the same for one STS is out of the question because an STS metadata document must 
always be signed. The WIF SDK has one example showing how to use the WIF API for gener-
ating a metadata document programmatically. It’s not rocket science, just a lot of serializa-
tion. Generating the document has the advantage of keeping it automatically updated if you 
play your cards well and read things from the config. It also has another advantage of grant-
ing you better control of complicated situations, such as cases in which on the same Web site 
you expose both WS-Federation and WS-Trust endpoints. 

Any dynamic content generation mechanism will do. My favorite is exposing a WCF service 
and hiding the .svc extension with some IIS URL rewriting.

Single Sign-on, Single Sign-out, and Sessions
In this section, I’ll formalize some of the session-related concepts I’ve been hinting at so far. 
Namely, I’ll help you explore how WIF can reduce the number of times a user is prompted 
for credentials when browsing Web sites that are somehow related to each other. I’ll show 
you how you can sign out a user from multiple Web sites at once, making sure no dangling 



	 Chapter 4  Advanced ASP.NET Programming	 113

sessions are still open. Finally, I’ll share a few tricks you can use for tweaking the way in which 
WIF handles sessions.

Single Sign-on
In Chapter 3, I illustrated the dance that WS-Federation prescribes for signing in a relying 
party and how the WIF object model implements that. Let’s move the scenario a little further 
by supposing that you want to model the case in which the user visits more than one RP 
application.

If the RPs have absolutely nothing in common, there is not much to be said: every RP session 
will have its own independent story. But what happens if, for example, two RPs trust the same 
STS? Things get more interesting. Figure 4-4 briefly revisits the sign-in sequence, showing the 
user signing in the first RP application, named A.

STS

STS A

5

A

3

5
1

2
3 4

FIGURE 4-4  The user signs in the RP named A, and in so doing it receives session cookies both from 
the STS and A

By now, you know the drill: 

	 1.	 The user sends a GET for a page on A.

	 2.	 The user is redirected to the STS.

	 3.	 The user is authenticated by whatever system the STS chooses and obtains a session 
cookie.

	 4.	 The user gets back a token.

	 5.	 The user sends the token to A and gets back a session cookie. 

Here step 3 is especially interesting: In Figure 4-4, I assumed the authentication method 
picked by the STS involves the creation of a session with the STS site itself. That’s a reason-
able assumption because that’s precisely the case with common authentication methods 



114	 Part II  Windows Identity Foundation for Identity Developers

such as Kerberos (which leverages the session that the user created from her workstation 
at login time) or Forms authentication (which drops a session cookie, just like the WIF STS 
template does). If that is the case, at the end of the sign-in sequence the user’s machine will 
have two cookies: one representing the session with A, created by WIF, and one representing 
the session with the STS. Starting from that situation, let’s now look at Figure 4-5 to see what 
happens when the user signs in with B, another RP, that trusts the same STS.

STS

B

4 A

1

2

3

4
STS A

B

FIGURE 4-5  The user signs in to the RP named B, and the existing session with the STS allows the user to sign 
in without being prompted for the STS credentials

The flow starts as usual, the user requests a page from B (step 1, as shown in Figure 4-5) and 
gets redirected to the STS to obtain a token (step 2). However, this time the user is already 
authenticated with the STS site because there is an active session represented by the STS 
cookie. This means the request for the STS page—say, Default.aspx if you are in the WIF STS 
template case—leads straight to execution of the SecurityTokenService issuing sequence 
without showing to the user any UI for credential gathering. The token is issued silently 	
(step 3) and forwarded to B (step 4) according to the usual sequence. From the moment the 
user clicks on the link to B and the browser displays the requested page from B, only some 
flickering of the address bar in the browser will give away the fact that some authentication 
took place under the hood. That’s pretty much what Single Sign-on (SSO) means: the user 
went through the experience of signing in only once, and from that moment on the system is 
able to gain access to further RPs without prompting the user for credentials again.

SSO is an all-time favorite for end users. Using a single set of credentials for different Web 
sites without being reproached for it? Typing stuff only once? Count me in! This is also 
something that greatly pleases system administrators, because reducing the number of 
credentials to manage eases the administrative burden, lowers the probability that users will 
reuse the same password in different Web sites, and so on.



	 Chapter 4  Advanced ASP.NET Programming	 115

Note  By now, you can certainly see the fundamental difference between authenticating with 
an STS only once, and silently obtaining tokens for multiple Web sites after that single credential 
gathering moment and reusing the same credentials across multiple Web sites (each handling 
their own authentication). Whereas the first approach minimizes the chances of passwords being 
stolen, the second maximizes it.

You’ll find that although most uninitiated people will not understand most of the stuff I 
covered in this book, everybody will have a clear, intuitive understanding and appreciation 
of SSO. Perhaps not surprisingly, SSO became the Holy Grail of the industry long before the 
emergence of claims-based identity, and as of today a lot of people think that the ultimate 
goal of identity management should be universal SSO.

The good news? As long as the STS creates a session in its authentication method, having 
SSO across Web site RPs protected via WIF is something that works right out of the box. 
There’s no arcane WS-Federation trick here, just good old cookies and a bit of trust 
management.

The hands-on lab ASP.NET Membership Provider and Federation (c:\IdentityTrainingKit2010\
Labs\MembershipAndFederation) demonstrates how you can easily obtain SSO across Web 
sites using WIF. In fact, it shows how it is enough to add a page to an existing Web site, without 
modifying anything else, to add IP capabilities to it. The scenario in the lab modifies a Web site 
secured via the Membership provider, but this pattern can be applied to any authentication 
system.

Single Sign-out
In one of those rare instances in which building is easier than destroying, you are about to 
discover that Single Sign-out is somewhat harder to implement than Single Sign-on.

Single Sign-out, or SSOut, takes place when the termination of one session with a specific RP 
triggers the cleanup of state and other sessions across the same über session. In other words, 
signing out from one Web site cascades through all the Web sites that were part of the SSO 
club and signs out from them as well.

Note  The basic idea of SSOut is readily understood and can be easily experienced even outside 
federated scenarios: the sign-out option of Live ID, which (at the time of this writing) throws you 
out at once from all the Web sites accepting Live ID you’ve been signing in to, is a good example 
of that. However, in literature “Single Sign-out” is almost always used as a synonym of “federated 
sign-out” and is expected to behave as specified by WS-Federation or SAMLP.



116	 Part II  Windows Identity Foundation for Identity Developers

The mechanics of SSOut are not very straightforward, especially because the outcome of the 
entire process relies on all the entities involved receiving messages and complying. Both of 
those things are hard to enforce without reliable messaging or transactions; hence, the entire 
thing ends up being a “make your best effort” attempt. This state of affairs was well known 
to the authors of the WS-Federation specification, who were not especially prescriptive in 
describing the messages and mechanisms used for implementing SSOut. WIF does support 
SSOut out of the box for RPs, but the STS template is not especially thorough in implement-
ing all its details. In this section, I’ll clue you in to the things you need to add for achieving 
more complete support.

Signing Out from One RP
Before getting into the details of how to handle signing out from multiple Web sites, let’s see 
what it takes to sign out from just one.

What keeps a user session alive, apart from the sheer Forms authentication machinery? First 
of all, it’s the existence (and validity) of the session cookie generated at sign-on time. The 
default name used by WIF for that cookie is FedAuth, with an additional FedAuth1…FedAuthn 
if the size of the SessionSecurityToken requires multiple cookies. You can easily take care 
of that yourself—it’s just a matter of calling FormsAuthentication.SignOut and deleting the 
session cookie (by hand or via SessionAuthenticationModule.DeleteSessionTokenCookie).

Second, it’s the session with the STS. If you delete the session with the RP but the user still 
has a valid session with the STS, she will still have access to the RP. The first unauthenticated 
GET elicits the usual redirect to the STS, and a valid session means that the user will be issued 
a new token without even being prompted for credentials.

The RP cannot directly change the STS session. In fact, it is not even supposed to know how 
that session (if any) is implemented to begin with! Luckily, WS-Federation defines a way for 
the RP to ask the STS to sign out the current principal. It will be up to the STS to decide what 
specific steps that entails in the context of its own implementation. 

The mechanism that WS-Federation uses for signing out is straightforward: you are supposed 
to do a GET of the STS endpoint page with the parameter wa=wsignout1.0 and a wreply in-
dicating where you want the browser to be redirected after the sign out is done. Once again, 
this is something you could do yourself; but why bother, when there is something that can 
take care of both the RP session cleanup and sending the sign-out message to the STS? That 
something is FederatedPassiveSignInStatus, an ASP.NET control that comes with WIF.

FederatedPassiveSignInStatus, as the name implies, can be used for easily displaying on your 
Web site the current state of the session. Drag it on any page, and its appearance will change 
according to whether you have a valid session in place. If you do, by default the control 
appears as a hyperlink with the text “Sign Out.” Clicking that link results in the current RP 
session being cleaned up. If the control property SignOutAction is set to FederatedSignOut, 



	 Chapter 4  Advanced ASP.NET Programming	 117

the control takes care of sending the wsignout1.0 message to the STS indicated in the 
SessionSecurityToken. Handy, isn’t it? That’s my favorite way of implementing sign out with 
WIF—it’s easy and painless. 

Warning  FederatedPassiveSignInStatus has a property, SignOutPageUrl, that indicates the 
page the browser should return to after the sign-out is done. In practice, it’s the wreply in the 
wsignout1.0 message. If you leave the property blank, WIF sets wreply to your wtrealm and 
appends “login.aspx” to it. Chances are that your Web site does not contain a login page be-
cause you are using an STS. If that’s the case, you might get an error at the next successful au-
thentication. The bottom line is this: make sure you add a meaningful value to SignOutPageUrl.

The WIF STS Template and wsignout1.0
In the description of the WIF STS template, I purposefully omitted the code that takes 
care of signing out. Now that you know what an STS is supposed to do in response to a 
wsignout1.0 message, I can get back to it and complete the description of the template. 
The following code shows the missing branch:

else if ( action == WSFederationConstants.Actions.SignOut ) 
      { 
        // Process signout request. 
        SignOutRequestMessage requestMessage =  
         (SignOutRequestMessage)WSFederationMessage.CreateFromUri( Request.Url ); 
        FederatedPassiveSecurityTokenServiceOperations.ProcessSignOutRequest( 
          requestMessage, User, requestMessage.Reply, Response ); 
      }

SignOutRequestMessage is analogous to SignInRequestMessage, in that it’s just a 
dictionary of querystring values. FederatedPassiveSecurityTokenServiceOperations.
ProcessSignOutRequest is not all that glamorous either, I’m afraid. It just signs out from 
the Form authentication session, deletes the WIF session token (if there is any—the STS 
template does not include SessionAuthenticationManager by default) and redirects to 
the address indicated by wreply.

Signing Out from Multiple RPs
From the perspective of the RP from which the user is signing out, cleaning up its own ses-
sion and sending wsignout1.0 to the STS is all that is needed for closing the games. If there 
are other RPs with which the user still entertains an active session, it is responsibility of the 
STS to propagate the sign-out to them as well.

All that is left to do is for the other RPs to get rid of their sessions. Note that the STS already 
eliminated its own session with the user; hence, there is no risk of silent re-issuing after the 
other RPs do their cleanup.



118	 Part II  Windows Identity Foundation for Identity Developers

Once again, WS-Federation provides a mechanism for that. I won’t go into the details 
here—it suffices to say that one way of requesting a cleanup to one RP is simply by doing a 
GET request on the RP and including in the query string the action wa=wsignoutcleanup1.0. 
You could specify an address via wreply to return to after the cleanup is done, but things 
can get problematic here. What if you have three RPs that need to clean up their sessions? 
If you are relying on the browser to perform the necessary GETs, you’d have to chain the 
requests. In addition to being complicated, this is a very brittle approach because some-
thing going wrong with one RP would jeopardize the chance of sending cleanup requests 
to all the subsequent RPs in the list. The STS can avoid using the browser and send the GET 
requests directly, but again, this is not very straightforward. For those reasons and others, 
the presence of a wreply is optional in wsignoutcleanup1.0 messages; it is acceptable to re-
turn something from the RP that somehow indicates the outcome of the operation. There’s 
more: the cleanup operation is required to be idempotent—that is, you should be able to call 
the same operation multiple times without affecting the outcome or raising errors. This al-
lows you to retry the operation if you think something went wrong, without worrying about 
creating error situations. 

Now for some good news: RPs secured via WIF handle wsignoutcleanup1.0 messages out of 
the box. The WSFAM looks out for those messages in its AuthenticateRequest handler. If the 
incoming message has a wsignoutcleanup1.0 action, WSFAM promptly deletes the session 
cookie and drops the corresponding token from the cache. 

What sets apart the cleanup from all other actions I’ve described so far is that it might not 
end with a redirect. If the message contains a wreply, WSFAM dutifully returns a 302 message 
to the indicated location; if it doesn’t, it will return an image or .gif of a green check mark.

Returning the bits of one image upon successful cleanup is part of a clever strategy for 
working around the “chaining of sign-out redirects” problem described earlier. After the STS 
successfully clears its own session, it can return a page containing an <img> element for 
each RP whose session is up for cleanup. If the src value of the <img> elements is of the form 
https://RPAddress/Default.aspx?wa=wsignoutcleanup1.0, just rendering the list of images in 
the browser sends as many cleanup messages to the RPs in the list. Every successful cleanup 
sends back the image of the green check box, which the STS page can use for confirming 
that the sign-out actually took place for a given RP. Failure to render the image might be an 
indication that something went wrong with the cleanup operations.

All of the preceding activity relies on the fact that the STS will keep track of the RPs for which 
it issued a token in the context of one federated session. At sign-out time, the STS needs to 
remember the address of all RPs in order to generate the correct cleanup URIs for the src of 
the images collection in the sign-out page. The STS can use whatever state-preserving mech-
anism its owner sees fit. In my samples, I usually keep the list of RP URIs in a protected cookie 
because it requires zero state-management code on the server. 



	 Chapter 4  Advanced ASP.NET Programming	 119

Did you get lost in all the back and forth required by the SSOut process? Let’s take a look 
at one example. Figure 4-6 illustrates the Single Sign-out message flow across two Web 
sites and a common STS, together with what happens to the client’s cookie collection as the 
sequence progresses.

WebSiteA WebSiteB STS
ST

SA
SP

XA
U

TH

Ss
oS

es
sio

ns

ST
SA

SP
XA

U
TH

Ss
oS

es
sio

ns

ST
SA

SP
XA

U
TH

Ss
oS

es
sio

ns

STS

STS

WebSiteABrowser

POST /WebSiteA/ HTTP/1.1
..
Cookie: FedAuth
__EVENTTARGET=ctl00%24FederatedPassive
SignInStatus1%24signoutLink&…

HTTP/1.1 302 Found
Location: 
https://STS/?wa=wsignout1.0&wreply=https%3a%2
f%2fWebSiteA%2fDefault.aspx
...
Set-Cookie: FedAuth=; expires=Fri, 18-Jun-2010
05:47:03 GMT; path=/SSOWebSiteA/

GET 
/STS/?wa=wsignout1.0&wreply=https%3a%2f%
2fWebSiteA%2fDefault.aspx  HTTP/1.1
..
Cookie: .STSASPXAUTH … SsoSessions

HTTP/1.1 200 OK
…
Set-Cookie: .STSASPXAUTH=; expires=…; path=/; HttpOnly
Set-Cookie: SsoSessions=; expires=… path=/
<html>...<body>
<form method="POST" action=" /?wa=wsignout1.0&wreply=…">
You are now signed out of the following sites:
     <div id="SignoutLinks">
      <p><a href='https://WebSiteA/'>WebSiteA/</a> 
          <img src='https://WebSiteA/?wa=wsignoutcleanup1.0'/> </p>
      <p><a href='https://WebSiteB/'>WebSiteB/</a>
          <img src='https://WebSiteB/?wa=wsignoutcleanup1.0/></p>
     </div></form>
</body>..</html>

GET / WebSiteB/?wa=wsignoutcleanup1.0 HTTP/1.1
Cookie: FedAuth=…

1

2

3

4

5

6

WebSiteB

GET / WebSiteA/?wa=wsignoutcleanup1.0 HTTP/1.1

HTTP/1.1 200 OK
Content-Type: image/gif
...
GIF89a

HTTP/1.1 200 OK
Content-Type: image/gif
Set-Cookie: FedAuth=; expires=…;
path=/SSOWebSiteB/
...
GIF89a

WebSiteA WebSiteB STS

WebSiteA WebSiteB STS

ST
SA

SP
XA

U
TH

Ss
oS

es
sio

ns

WebSiteA WebSiteB STS

WebSiteA WebSiteB STS

Fe
dA

ut
h

Fe
dA

ut
h

Fe
dA

ut
h

ST
SA

SP
XA

U
TH

Ss
oS

es
sio

ns

Fe
dA

ut
h

FIGURE 4-6  A Single Sign-out process taking place as described in WS-Federation



120	 Part II  Windows Identity Foundation for Identity Developers

Let’s examine every step. In the beginning, the user is signed in to WebSiteA and WebSiteB 
via tokens obtained from STS, and his browser is currently on WebSiteA. His cookie collec-
tion contains a FedAuth session cookie for each RP and one Forms authentication cookie 
(STSASPXAUTH) with STS. It also has an SsoSessions cookie with STS, which contains the list of 
RPs for which the STS issued a token in the context of its STSASPXAUTH session. Here’s how 
the process unfolds:

	 1.	 The user clicks on a FederatedSignInStatus control instance on WebSiteA, triggering 
a POST in the authenticated session described by WebSiteA’s FedAuth cookie. The 
SignOutAction property of the control is set to FederatedPassiveSignOut.

	 2.	 WebSiteA receives the request for signing out. As a result, it destroys its own session 
(by cleaning FedAuth from the WebSiteA cookie collection on the client) and redirects 
the browser to send a sign-out message to the STS that originated the current session.

	 3.	 The browser follows the redirect, sending to the STS the sign-out message, along with 
the session cookie STSASPXAUTH and the cookie containing the list of RPs with whom 
the user might still entertain active sessions.

	 4.	 The STS reacts by cleaning up all its cookies and sends back a page that contains 
images whose src URIs are in fact cleanup messages for all the RPs listed in the 
SsoSessions cookie—that is, WebSiteA and WebSiteB.

	 5.	 The browser renders the first image, pointing to WebSiteA. Hence, it sends a GET for 
its source, which in fact delivers a cleanup message. WebSiteA already cleaned up its 
session because it was the originator of the Single Sign-out sequence. If the STS had 
known this, it could have avoided adding WebSiteA to the list of cleanup RPs; however, 
nothing bad happens, thanks to the idempotency requirements of wssignoutcleanup1.0 
messages. WebSiteA simply returns the bits of the GIF indicating that cleanup success-
fully took place.

	 6.	 The browser renders the image, pointing to WebSiteB. WebSiteB receives the cleanup 
message and reacts by deleting its own FedAuth cookie and returning the bits of the 
GIF of the check mark as expected. At this point, all the sessions have been cleaned up: 
the Single Sign-out concluded successfully, and the user can see on the STS page the 
list of Web sites he has been signed out from.

Once you get the hang of it, it’s really not that hard. One of the things I like best about this 
approach is that it allows you to herd the behavior of multiple Web sites without knowing 
any detail. Some sites could be hosted on your intranet, others could be hosted in the cloud, 
or sites could be running on different stacks and operating systems, but as long as they all 
speak via WS-Federation and share a common, trusted ground, the right thing just happens.



	 Chapter 4  Advanced ASP.NET Programming	 121

The WIF STS Template and Single Sign-out
As you saw earlier, the STS template handles wssignout1.0 messages. However, it does 
not propagate them via wssignoutcleanup1.0 to the other RPs in the session, nor does 
it contain any mechanism for keeping track of the RPs in the current session at issuance 
time. The sample discussed here offers such a mechanism in the SingleSignOnManager 
class. It is a façade for a collection of RP URIs saved in a cookie, which gets updated 
with the RP address every time the STS issues a token (in GetOutputClaimsIdentity) 
and that can be looked up when it’s time to send cleanup messages. That is just one 
example—you can use any equivalent mechanism. Once you have that capability, 
enhancing the STS template code to support SSOut is easy. Consider the following 
modified version of the sign-out branch in the Default.asp.cs code:

else if ( action == WSFederationConstants.Actions.SignOut )   
      {   
        // Process signout request.   
        SignOutRequestMessage requestMessage =  
          (SignOutRequestMessage)WSFederationMessage.CreateFromUri( Request.Url );   
           
        FederatedPassiveSecurityTokenServiceOperations.ProcessSignOutRequest(  
           requestMessage, User, /*requestMessage.Reply*/ null, Response );   
        // new   
        string[] signedInUrls = SingleSignOnManager.SignOut();   
        lblSignoutText.Visible = true;   
        foreach (string url in signedInUrls)   
        {   
          SignoutLinks.Controls.Add( 
            new LiteralControl(String.Format( 
             "<p><a href='{0}'>{0}</a>&nbsp;<img src='{0}?wa=wsignoutcleanup1.0'  
              title='Signout request: {0}?wa=wsignoutcleanup1.0'/></p>," url)));   
        }   
      }  

The changes are straightforward. The call to ProcessSignOutRequest does not redirect 
to wreply, because after it cleaned up its own session there’s still work to do that would 
not be done if it redirected as in the default case. After cleaning its own session, the 
STS prepares the UI for the sign-out by turning on the visibility of a sign-out message 
(here, in a label). The call to SingleSignOutManager returns the list of all the RPs whose 
session should be cleaned up. The foreach that appears below that uses that list for 
generating and appending to the page as many images as needed, which will dispatch 
the cleanup message once they are rendered.



122	 Part II  Windows Identity Foundation for Identity Developers

More About Sessions
I briefly touched on the topic of sessions at the end of Chapter 3, where I showed you how 
you can keep the size of the session cookie independent from the dimension of its originat-
ing token by saving a reference to session state stored on the server side. The WIF program-
ming model goes well beyond that, granting you complete control over how sessions are 
handled. Here I’d like to explore with you two notable examples of that principle in action: 
sliding sessions and network load-balancer-friendly sessions.

Sliding Sessions
By default, WIF creates SessionSecurityTokens whose validity is based on the validity of the 
incoming token. You can overrule that behavior without writing any code, by adding to the 
<microsoft.identityModel> element in the web.config file something like the following:

<securityTokenHandlers> 
    <add type="Microsoft.IdentityModel.Tokens.SessionSecurityTokenHandler,  
               Microsoft.IdentityModel, Version=3.5.0.0, Culture=neutral,  
               PublicKeyToken=31bf3856ad364e35"> 
      <sessionTokenRequirement lifetime="0:02" /> 
    </add> 
</securityTokenHandlers>

Note  The lifetime property can restrict only the validity expressed by the token to begin with. In 
the preceding code snippet, I set the lifetime to 2 minutes, but if the incoming security token was 
valid for just 1 minute, the session token would have 1 minute of validity. If you want to increase 
the validity beyond what the initial token specified, you need to do so in code (by subclassing 
SessionSecurityTokenHandler or by handling SessionSecurityTokenReceived).

Now, let’s say that you want to implement a more sophisticated behavior. For example, 
you want to keep the session alive indefinitely as long as the user is actively working with 
the pages. However, you want to terminate the session if you do not detect user activity in 
the past 2 minutes, regardless of the fact that the initial token would still be valid. This is a 
common requirement for Web sites that reveal personally identifiable information (PII) or 
give control to banking operations. Those are cases in which you want to ensure that the 
user is actually in front of the machine and the pages are not abandoned to the mercy (or 
mercenary instincts) of bystanders.

In Chapter 3, I hinted at this scenario, suggesting that it could be solved by subclassing the 
SessionAuthenticationModule. That is the right strategy if you expect to reuse this function-
ality over and over again across multiple applications, given that it neatly packages it in a 
class you can include in your code base. In fact, SharePoint 2010 offers sliding sessions and 
implements those precisely in that way. If, instead, this is an improvement you need to apply 



	 Chapter 4  Advanced ASP.NET Programming	 123

only occasionally, or you own just one application, you can obtain the same effect simply by 
handling the SessionSecurityTokenReceived event. Take a look at the following code:

<%@ Application Language=”C#” %>   
<%@ Import Namespace=”Microsoft.IdentityModel.Web” %>   
<%@ Import Namespace=”Microsoft.IdentityModel.Tokens” %>   
   
<script runat=”server”>   
   
  void SessionAuthenticationModule_SessionSecurityTokenReceived 
       (object sender, SessionSecurityTokenReceivedEventArgs e)   
  {       
    DateTime now = DateTime.UtcNow;   
    DateTime validFrom = e.SessionToken.ValidFrom;   
    DateTime validTo = e.SessionToken.ValidTo;   
    double halfSpan = (validTo – validFrom).TotalMinutes / 2;   
    if ( validFrom.AddMinutes( halfSpan ) < now && now < validTo )   
    {   
      SessionAuthenticationModule sam = sender as SessionAuthenticationModule;   
      e.SessionToken = sam.CreateSessionSecurityToken(e.SessionToken.ClaimsPrincipal, 
e.SessionToken.Context,   
         now, now.AddMinutes(2), e.SessionToken.IsPersistent);   
      e.ReissueCookie = true;   
    }   
  }   
  //...

As you certainly guessed, this is a fragment of the global.asax file of the RP application. 
SessionSecurityTokenReceived gets called as soon as the session cookie is deserialized 
(or resolved from the cache if you are in session mode). Here you verify whether you 
are within the second half of the validity window of the session token. If you are, you 
extend the validity to another 2 minutes, starting now. That change takes place on the 
in-memory instance of the SessionSecurityToken. Setting ReissueToken to true instructs the 
SessionAuthenticationModule to persist the new settings in the cookie after the execution 
leaves SessionSecurityTokenReceived. Let’s say that the token is valid between 10:00 a.m. and 
10:02 a.m. If the current time falls between 10:01 a.m. and 10:02 a.m.—say, 10:01:15—the 
code sets the new validity boundaries to go from 10:01:15 to 10:03:15 and saves those in the 
session cookie.

Note  This is the same heuristic that FormsAuthentication uses for sliding expiration. Why renew 
the session only during the second half of the validity interval? Well, writing the cookie is not for 
free. This is just a heuristic for reducing the times at which the session gets refreshed, but you 
can certainly choose to apply different strategies.

If the current time is outside the validity interval, this implementation of 
SessionSecurityTokenReceived will have no effect. The SessionAuthenticationModule will take 
care of handling the expired session right after. Note that an expired session does not elicit 
any explicit sign-out process. If you recall the discussion about SSO and SSOut just a few 



124	 Part II  Windows Identity Foundation for Identity Developers

pages earlier, you’ll realize that if the STS session outlives the RP session the user will just 
silently re-obtain the authentication token and renew the session without even realizing 
anything happened.

Sessions and Network Load Balancers
By default, session cookies written by WIF are protected via DPAPI, taking advantage of the 
RP’s machine key. Such cookies are completely opaque to the client and anybody else who 
does not have access to that specific machine key.

This works well when all the requests in the context of a user session are aimed at the same 
machine. But what happens when the RP is hosted on multiple machines—for example, in a 
load-balanced environment? A session cookie might be created on one machine and sent to 
a different machine at the next postback. Unless the two machines share the same machine 
key and use it for encrypting the cookie instead of taking advantage of the DPAPI Encryption 
key, a cookie originated from machine A will be unreadable from machine B.

There are various solutions to the situation. One obvious one is using sticky sessions—that is, 
guaranteeing that a session beginning with machine A keeps referring to A for all subsequent 
requests. I am not a big fan of that solution because it dampens the advantages of using a 
load-balanced environment. Furthermore, you might not always have a say in the matter—
for example, if you are hosting your applications on a third-party infrastructure (such as 
Windows Azure), your control of the environment will be limited.

Another solution is to synchronize the machine keys of every machine and use those for 
encrypting cookies. I like this better than using sticky sessions, but there is an approach I like 
even better. More often than not, your RP application will use Secure Sockets Layer (SSL), 
which means you need to make the certificate and corresponding private key available on 
every node. It makes perfect sense to use the same cryptographic material for securing the 
cookie in a load-balancer-friendly way.

WIF makes the process of applying the aforementioned strategy in ASP.NET applications 
trivial. The following code illustrates how it can be done:

public class Global : System.Web.HttpApplication   
{   
  //...   
    void OnServiceConfigurationCreated(object sender, ServiceConfigurationCreatedEventArgs 
e)   
    {   
      //   
      // Use the <serviceCertificate> to protect the cookies that are   
      // sent to the client.   
      //   
      List<CookieTransform> sessionTransforms =    
        new List<CookieTransform>(new CookieTransform[] {   
          new DeflateCookieTransform(),    



	 Chapter 4  Advanced ASP.NET Programming	 125

          new RsaEncryptionCookieTransform(e.ServiceConfiguration.ServiceCertificate),   
          new RsaSignatureCookieTransform(e.ServiceConfiguration.ServiceCertificate)  });   
      SessionSecurityTokenHandler sessionHandler = new   
SessionSecurityTokenHandler(sessionTransforms.AsReadOnly());   
   
    e.ServiceConfiguration.SecurityTokenHandlers.AddOrReplace(sessionHandler);   
    }   
 
 
    protected void Application_Start(object sender, EventArgs e)   
    {   
      FederatedAuthentication.ServiceConfigurationCreated += OnServiceConfigurationCreated;   
    }  

Instead of using the usual inline approach, this time I am showing you the code-behind 
file global.asax.cs. OnServiceConfigurationCreated is—Surprise! Surprise!—a handler for 
the ServiceConfigurationCreated event and fires just after WIF reads the configuration. If 
you make changes here, you have the guarantee that they will already be applied from the 
request coming in. 

Note  Contrary to what various samples out there would lead you to believe, 
OnServiceConfigurationCreated is pretty much the only WIF event handler that should be 
associated to its event in Application_Start. This has to do with the way (and the number of times) 
ASP.NET invokes the handlers though the application lifetime.

The code is self-explanatory. It creates a new list of CookieTransform transformations, which 
takes care of cookie compression, encryption, and signature. The last two take advantage of 
the RsaxxxxCookieTransform, taking in input the certificate defined for the RP in the 
web.config file. 

Note  Why do you sign the cookie? Wouldn’t it be enough to encrypt it? If you use the RP 
certificate, encryption would not be enough. Remember, the RP certificate is a public key. If you 
just encrypt it, a crafty client can just discard the session cookie, create a new one with super-
privileges in the claims, and encrypt it with the RP certificate. The RP would not be able to tell 
the difference. Adding the signature successfully prevents this attack because it requires a private 
key, which is not available to the client or anybody else but the RP itself.

The new transformations list is assigned to a new SessionSecurityTokenHandler instance, 
which is then used for overriding the existing session handler. From this point on, all session 
cookies will be handled using the new strategy. That’s it! As long as you remember to add an 
entry for the service certificate in the RP configuration, you’ve got network load balancing 
(NLB)–friendly sessions without having to resort to compromises such as sticky sessions. 



126	 Part II  Windows Identity Foundation for Identity Developers

Federation
At the beginning of the chapter, I introduced the Federation Provider and discussed some 
of the advantages that the IP-FP-RP pattern offers. The temptation to expand the architec-
tural considerations about this important pattern is strong; however, here I want to keep 
the focus on WIF and give you a concrete coding example. There are many good high-level 
introductions to the topic you can refer to.

For a good introduction to the subject, refer to A Guide to Claims-Based Identity and Access 
Control by Dominick Baier, Vittorio Bertocci, Keith Brown, Matias Woloski, and Eugenio Pace 
(Microsoft Press, 2010).

WIF does not really care if the STS used by the RP is an IP-STS or an R-STS. Both types look 
the same in their metadata description and, despite the differences in the sequence that 
ultimately lead to that, they both issue a token as requested. It helps to see this in action in a 
concrete example.

Note  As usual, in a realistic scenario you can expect the R-STS to be provided by one ADFS 2.0 
instance playing the FP role. Once again, for educational purposes, I’ll take advantage of custom 
STSes here.

Do you recall the first example we explored in Chapter 2? It was a classic RP-IP scenario, 
but it is very easy to transform it into a toy federation sample. Just right-click on the 
BasicWebSite_STS project in Solution Explorer, select the Add STS Reference entry, and use 
the wizard for creating yet another new STS project in the current solution. 

Note  The Add STS Reference Wizard adds an <httpModules> element in the <system.web> 
section of BasicWebSite_STS config, which does not play well with the IIS integrated pipeline. You 
might have to comment out that <httpModules> entry.

Figure 4-7 shows the new solution layout.



	 Chapter 4  Advanced ASP.NET Programming	 127

FIGURE 4-7  BasicWebSite trusts BasicWebSite_STS, which in turn trusts BasicWebSite_STS_STS

Nothing changed for the RP, BasicWebSite, which is still outsourcing authentication to 
BasicWebSite_STS. BasicWebSite_STS was an IP-STS when we started, because it was an 
unmodified instance of the WIF STS template. After the wizard configured it to outsource 
authentication to BasicWebSite_STS_STS, however, BasicWebSite_STS became an R-STS; 
therefore, its login.aspx page will not be used anymore. If you run the solution you’ll observe 
the browser being redirected from BasicWebSite to BasicWebSite_STS, which will redirect 
right away to BasicWebSite_STS_STS, which will finally show its own login.aspx page. After 
you click Submit on the login form, the flow will go through the chain in the opposite order: 
BasicWebSite_STS_STS will issue a token that will be used for signing in BasicWebSite_STS, 
which in turn will issue a new token that will be used for signing in BasicWebSite. Figure 4-8 
summarizes the sign-in flow.



128	 Part II  Windows Identity Foundation for Identity Developers

Browser

BasicWebSite_STS_STS

BasicWebSite
1

23 4
6

7

Trust

Trust

BasicWebSite_STS

5A

5

FIGURE 4-8  The authentication flow linking BasicWebSite, BasicWebSite _STS, and BasicWebSite_STS_STS

	 1	 The user requests a page from BasicWebSite.

	 2	 Because the user is not authenticated, he is redirected to BasicWebSite_STS for 
authentication.

	 3	 BasicWebSite_STS itself outsources authentication to BasicWebSite_STS_STS; hence, it 
redirects the request accordingly

	 4	 Once the user successfully authenticates with BasicWebSite_STS_STS, he gets back a 
token.

	 5	 The user gets redirected back to BasicWebSite_STS, which validates the token from 
BasicWebSite_STS_STS and considers the user authenticated thanks to it.

	 6	 BasicWebSite_STS issues a token to the user, as requested.

	 7	 The user gets back to BasicWebSite with the token obtained from BasicWebSite_STS as 
required, and the authenticated session starts.

Convoluted? A bit, perhaps. On the upside, BasicWebSite is now completely isolated from 
the actual identity provider—changes in the IP will not affect the RP. If you have multiple 
RPs, you can now have them all trust the same R-STS, which will take care of enforcing any 
changes in the relationship with the IP (or IPs, as I’ll show in a moment) without requiring any 
ad-hoc intervention on the RP code or configuration itself. Pretty handy!



	 Chapter 4  Advanced ASP.NET Programming	 129

Transforming Claims
The example in the preceding section modified the authentication flow to conform to the 
federation pattern, but it didn’t really change the way in which BasicWebSite_STS processes 
claims. With its hard-coded claims entries, the default WIF STS template behavior mimics that 
of an IP-STS; whereas in its new FP role, BasicWebSite_STS is expected to process the incom-
ing claims (in this case, from BasicWebSite_STS_STS). If you want to change BasicWebSite_STS 
into a proper R-STS, you need to modify the GetOutputClaimsIdentity method of the 
CustomSecurityTokenService class. 

As you already know, in GetOutputClaimsIdentity the incoming claims are available in the 
IClaimsPrincipal principal parameter. You can pretty much do anything you want with the 
incoming claims, but I find it useful to classify the possible actions into three (non-exhaustive) 
categories: pass-through, modification, and injection of new claims. They are represented in 
step 5a of Figure 4-8. Here is a simple example of a GetOutputClaimsIdentity implementation 
that features all three methods:

  protected override IClaimsIdentity GetOutputClaimsIdentity 
    (IClaimsPrincipal principal, RequestSecurityToken request, Scope scope ) 
  { 
    if ( null == principal ) 
    { 
      throw new ArgumentNullException( "principal" ); 
    } 
 
    ClaimsIdentity outputIdentity = new ClaimsIdentity(); 
 
    IClaimsIdentity incomingIdentity = (IClaimsIdentity)principal.Identity; 
 
    // Pass-through 
    Claim nname = (from c in incomingIdentity.Claims 
             where c.ClaimType == ClaimTypes.Name 
             select c).Single(); 
    Claim nnnm = new Claim(ClaimTypes.Name, nname.Value, ClaimValueTypes.String, nname.
OriginalIssuer); 
    outputIdentity.Claims.Add(nnnm); 
 
    // Modified 
    string rrole = (from c in incomingIdentity.Claims 
            where c.ClaimType == ClaimTypes.Role 
            select c.Value).Single(); 
    outputIdentity.Claims.Add(new Claim(ClaimTypes.Role, "Transformed " + rrole)); 
 
    // New 
    outputIdentity.Claims.Add(new Claim("http://maseghepensu.it/hairlength",  
                                        "a value", ClaimValueTypes.Double)); 
 
    return outputIdentity; 
  }



130	 Part II  Windows Identity Foundation for Identity Developers

Before going into the details of how the various transformations work, it is finally time to take 
a deeper look at that Claim class we’ve been using without giving it too much thought so far. 
Here are the various properties of the class and some methods of interest:

public class Claim 
{ 
  // Methods 
   
  public virtual Claim Copy(); 
  public virtual void SetSubject(IClaimsIdentity subject); 
  // Properties 
 
  public virtual string ClaimType { get; } 
  public virtual string Issuer { get; } 
  public virtual string OriginalIssuer { get; } 
  public virtual IDictionary<string, string> Properties { get; } 
  public virtual IClaimsIdentity Subject { get; } 
  public virtual string Value { get; } 
  public virtual string ValueType { get; } 
}

One thing that immediately grabs your attention is that all properties of Claim are read-only: 
after the class has been created, the values cannot be changed. The only exception is the 
subject to which the Claim instance is referring to: SetSubject will change the value of the 
Subject property to a new IClaimsIdentity.

You are already familiar with Value and ClaimType because I’ve been using those throughout 
the entire book. ValueType is more interesting. It allows you to specify a type for the claim 
value, which the claim consumer can use to deserialize the claim in a common language 
runtime (CLR) type (or whatever type system your programming stack requires if you are 
not in .NET) other than the default string. That is a key enabler for applying complex logic to 
claims. Without knowing that DateOfBirth should be deserialized in a DateTime, you’ll find 
it difficult to verify whether it is below or above a given threshold. Note that the ValueType 
is just one indication: the Value returned by the claim is always a string regardless of the 
ValueType. You’ll have to call the appropriate Parse method (or similar) yourself.

The Properties dictionary is used for carrying extra information about the claim itself 
when the protocol requires it. For example, in SAML2 you might have properties such as 
SamlAttributeDisplayName assigned to a claim. 

Note  The WIF token handlers will not serialize the properties. If you want them to travel, you’ll 
have to take care of that yourself.

The Issuer property is a string representing the token issuer from which the claim has been 
extracted. The string itself comes from the mapping that IssuerNameRegistry makes between 
the certificate used for signing the token and the friendly name assigned to the associated 
issuer. The OriginalIssuer property records the first issuer that produced this claim in the fed-
eration chain. I’ve included more details about this in the “Pass-Through Claims” section.



	 Chapter 4  Advanced ASP.NET Programming	 131

Claim Types and Value Constants
WIF offers two collections of string constants that gather most of the known claim 
type URIs. One is Microsoft.IdentityModel.Protocols.WSIdentity.WSIdentityConstants.
ClaimTypes (which is almost the same as the WCF collection System.IdentityModel.
Claims.ClaimTypes); the other is Microsoft.IdentityModel.Claims.ClaimTypes (which is a 
superset of the first one). For your reference, the content of Microsoft.IdentityModel.
Claims.ClaimTypes is listed next. Note that some popular claim types (such as Group) 
are kept in the Prip subtype and are often overlooked. Prip stands for WS-Federation 
Passive Requestor Interoperability Profile, which is a specific subset of WS-Federation 
used during early multivendor interoperability tests.

public static class ClaimTypes 
{ 
    // Fields 
    public const string Actor = 
      "http://schemas.xmlsoap.org/ws/2009/09/identity/claims/actor";
    public const string Anonymous = 
      "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/anonymous";
    public const string Authentication = 
      "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/authentication";
    public const string AuthenticationInstant = 
      "http://schemas.microsoft.com/ws/2008/06/identity/claims/authenticationinstant";
    public const string AuthenticationMethod = 
      "http://schemas.microsoft.com/ws/2008/06/identity/claims/authenticationmethod";
    public const string AuthorizationDecision = 
      "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/authorizationdecision";
    public const string ClaimType2005Namespace = 
      "http://schemas.xmlsoap.org/ws/2005/05/identity/claims"; 
    public const string ClaimType2009Namespace = 
      "http://schemas.xmlsoap.org/ws/2009/09/identity/claims"; 
    public const string ClaimTypeNamespace = 
      "http://schemas.microsoft.com/ws/2008/06/identity/claims"; 
    public const string CookiePath = 
      "http://schemas.microsoft.com/ws/2008/06/identity/claims/cookiepath";
    public const string Country = 
      "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/country";
    public const string DateOfBirth = 
      "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/dateofbirth";
    public const string DenyOnlyPrimaryGroupSid = 
      "http://schemas.microsoft.com/ws/2008/06/identity/claims/
denyonlyprimarygroupsid";
    public const string DenyOnlyPrimarySid = 
      "http://schemas.microsoft.com/ws/2008/06/identity/claims/denyonlyprimarysid";
    public const string DenyOnlySid = 
      "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/denyonlysid";
    public const string Dns = 
      "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/dns";
    public const string Dsa = 
      "http://schemas.microsoft.com/ws/2008/06/identity/claims/dsa";



132	 Part II  Windows Identity Foundation for Identity Developers

    public const string Email = 
      "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress";
    public const string Expiration = 
      "http://schemas.microsoft.com/ws/2008/06/identity/claims/expiration";
    public const string Expired = 
      "http://schemas.microsoft.com/ws/2008/06/identity/claims/expired";
    public const string Gender = 
      "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/gender";
    public const string GivenName = 
      "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/givenname";
    public const string GroupSid = 
      "http://schemas.microsoft.com/ws/2008/06/identity/claims/groupsid";
    public const string Hash = 
      "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/hash";
    public const string HomePhone = 
      "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/homephone";
    public const string IsPersistent = 
      "http://schemas.microsoft.com/ws/2008/06/identity/claims/ispersistent";
    public const string Locality = 
      "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/locality";
    public const string MobilePhone = 
      "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/mobilephone";
    public const string Name = 
      "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name";
    public const string NameIdentifier = 
      "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/nameidentifier";
    public const string OtherPhone = 
      "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/otherphone";
    public const string PostalCode = 
      "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/postalcode";
    public const string PPID = 
      "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/
privatepersonalidentifier";
    public const string PrimaryGroupSid = 
      "http://schemas.microsoft.com/ws/2008/06/identity/claims/primarygroupsid";
    public const string PrimarySid = 
      "http://schemas.microsoft.com/ws/2008/06/identity/claims/primarysid";
    public const string Role = 
      "http://schemas.microsoft.com/ws/2008/06/identity/claims/role";
    public const string Rsa = 
      "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/rsa";
    public const string SerialNumber = 
      "http://schemas.microsoft.com/ws/2008/06/identity/claims/serialnumber";
    public const string Sid = 
      "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/sid";
    public const string Spn = 
      "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/spn";
    public const string StateOrProvince = 
      "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/stateorprovince";
    public const string StreetAddress = 
      "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/streetaddress";
    public const string Surname = 
      "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/surname";



	 Chapter 4  Advanced ASP.NET Programming	 133

    public const string System = 
      "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/system";
    public const string Thumbprint = 
      "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/thumbprint";
    public const string Upn = 
      "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/upn";
    public const string Uri = 
      "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/uri";
    public const string UserData = 
      "http://schemas.microsoft.com/ws/2008/06/identity/claims/userdata";
    public const string Version = 
      "http://schemas.microsoft.com/ws/2008/06/identity/claims/version";
    public const string Webpage = 
      "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/webpage";
    public const string WindowsAccountName = 
      "http://schemas.microsoft.com/ws/2008/06/identity/claims/windowsaccountname";
    public const string X500DistinguishedName = 
      "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/x500distinguishedname";
 
    // Nested Types 
    public static class Prip 
    { 
        // Fields 
        public const string ClaimTypeNamespace = "http://schemas.xmlsoap.org/claims"; 
        public const string CommonName = "http://schemas.xmlsoap.org/claims/
CommonName"; 
        public const string Email = "http://schemas.xmlsoap.org/claims/EmailAddress"; 
        public const string Group = "http://schemas.xmlsoap.org/claims/Group"; 
        public const string Upn = "http://schemas.xmlsoap.org/claims/UPN"; 
    } 
}

You can, of course, create your own claim types. However, I suggest that before doing 
so you take a look at the Information Card Foundation Web site, which (among other 
things) gathers all the known and emergent claim types from the community. The 
direct address is http://informationcard.net/resources/claim-catalog. 

WIF also offers various constants representing common types of claim values:

public static class ClaimValueTypes 
{ 
    // Fields 
    public const string Base64Binary = "http://www.w3.org/2001/XMLSchema#base64Binary"; 
    public const string Boolean = "http://www.w3.org/2001/XMLSchema#boolean"; 
    public const string Date = "http://www.w3.org/2001/XMLSchema#date"; 
    public const string Datetime = "http://www.w3.org/2001/XMLSchema#dateTime"; 
    public const string DaytimeDuration = "http://www.w3.org/TR/2002/WD-xquery-
operators-20020816#dayTimeDuration"; 
    public const string Double = "http://www.w3.org/2001/XMLSchema#double"; 
    public const string DsaKeyValue = "http://www.w3.org/2000/09/xmldsig#DSAKeyValue"; 
    public const string HexBinary = "http://www.w3.org/2001/XMLSchema#hexBinary"; 
    public const string Integer = "http://www.w3.org/2001/XMLSchema#integer"; 



134	 Part II  Windows Identity Foundation for Identity Developers

    public const string KeyInfo = "http://www.w3.org/2000/09/xmldsig#KeyInfo";
    public const string Rfc822Name = "urn:oasis:names:tc:xacml:1.0:data-
type:rfc822Name"; 
    public const string RsaKeyValue = "http://www.w3.org/2000/09/xmldsig#RSAKeyValue"; 
    public const string String = "http://www.w3.org/2001/XMLSchema#string"; 
    public const string Time = "http://www.w3.org/2001/XMLSchema#time"; 
    public const string X500Name = "urn:oasis:names:tc:xacml:1.0:data-type:x500Name"; 
    private const string Xacml10Namespace = "urn:oasis:names:tc:xacml:1.0"; 
    private const string XmlSchemaNamespace = "http://www.w3.org/2001/XMLSchema"; 
    private const string XmlSignatureConstantsNamespace =  
     "http://www.w3.org/2000/09/xmldsig#"; 
    private const string XQueryOperatorsNameSpace =  
     "http://www.w3.org/TR/2002/WD-xquery-operators-20020816"; 
    public const string YearMonthDuration =  
     "http://www.w3.org/TR/2002/WD-xquery-operators-20020816#yearMonthDuration"; 
}

The types are represented according to W3C and OASIS type URIs, but the mapping to 
CLR types is obvious most of the time. 

Now that you understand a bit better how the Claim class works, let’s resume the discussion 
about the claim transformations.

Pass-Through Claims
One of the most common transformations you’ll want to apply to your claims is…no 
transformation at all. Sometimes the IP directly issues the claims the RP needs; hence, you 
have to make sure that those claims are reissued as-is by the R-STS. 

Although the claim type and value come straight from the incoming values, the fact that the 
new claim is issued in a token signed by the R-STS makes the R-STS itself the asserting party 
and shadows the original issuer. The R-STS might even be accepting tokens from multiple 
issuers, which would complicate things further. There could be situations in which know-
ing the actual origin of the claim could change the way in which the information it carries is 
processed; therefore, it is important to somehow let the RP know which IP issued the claim 
in the first place. This is done by setting the OriginalIssuer property of the outgoing claim to 
the OriginalIssuer carried by the claim you are re-issuing. Here are the relevant lines from the 
GetOutputClaimsIdentity implementation shown earlier:

// Pass-through 
    Claim nname = (from c in incomingIdentity.Claims 
             where c.ClaimType == ClaimTypes.Name 
             select c).Single(); 
    Claim nnnm = new Claim(ClaimTypes.Name, nname.Value, ClaimValueTypes.String, "," nname.
OriginalIssuer); 
    outputIdentity.Claims.Add(nnnm);



	 Chapter 4  Advanced ASP.NET Programming	 135

In this example, the claim to be reissued is the Name claim. The code retrieves it from the 
incoming principal, and then it just creates a new claim that copies everything from the origi-
nal except for the issuer. (Here the issuer parameter is left empty because it is going to be 
overridden with the current R-STS, anyway.) That snippet is designed to surface to you the 
use of OriginalIssuer, but in fact you can use a more compact form using Copy as shown here: 

// Pass-through 
    Claim nname = (from c in incomingIdentity.Claims 
             where c.ClaimType == ClaimTypes.Name 
             select c).Single(); 
    Claim nnnm = nname.Copy(); 
    outputIdentity.Claims.Add(nnnm);

Modifying Claims and Injecting New Claims
The distinction between modifying claims and injecting new claims is a bit philosophical, 
because from the code perspective the two transformations are the same. 

Modifying a claim means producing a new claim by processing or combining the value of 
one or more incoming claims, according to arbitrary logic. An excellent example of that is 
given by the ADFS 2.0 claims-transformation language, which allows administrators to specify 
transformations without writing any explicit code. Of course, in GetOutputClaimsIdentity you 
can literally write whatever logic you want.

Injecting new claims usually entails looking up new information about the incoming 
subject—information that was not available to the IP but that the RP needs. A classic example 
is the buyer’s profile: imagine that the user is one employee, the IP is the user’s employer, 
and the RP is some kind of online shop. The R-STS might maintain information such as the 
last 10 items the user bought, data that the employer does not keep track of and that should 
be injected by the resource organization—for example, in the R-STS. The challenge here 
can be choosing which incoming claims should be used for uniquely identifying the cur-
rent user and looking up his data in the R-STS profile store. Whereas the IP has one strong 
incentive to have such a unique identifier—because that is usually needed in order to apply 
the mechanics of the authentication method of choice—the R-STS does not have a similar 
requirement per se. The claims chosen should be unique, at least in the context of the current 
R-STS, and stable enough to be reusable across multiple transactions. The e-mail claim is a 
good example, but of course it’s not a perfect one because e-mail addresses do change from 
time to time—think of the situation where interns become full-time employees and similar 
events. 

Home Realm Discovery
One of the great advantages of federation is the possibility of handling multiple identity 
providers without having to change anything in the RP itself. The Federation Providers can 



136	 Part II  Windows Identity Foundation for Identity Developers

take care of all the trust relationships. Extending the audience of the application without pay-
ing any complexity price is great; however, the sheer possibility of using more than one IP 
does introduce a new problem: when an unauthenticated user shows up, which IP should she 
ultimately authenticate with? In the trivial federation case examined so far, the one with one 
FP and one IP, the answer is obvious: the redirect chain crawls all the way to the IP and back. 
When you have more than one IP, however, how does the R-STS decide if the redirect should 
go to IP A or IP B?

The problem of deciding which IP should authenticate the user is well known in literature, 
and it goes under the name of Home Realm Discovery (HRD). The HRD problem has many 
solutions, although as of today they are mostly ad hoc and what works in one given scenario 
might not be suitable for another. For example, one classic solution (offered out of the box 
by ADFS 2.0) asks the R-STS to show a Web page in which the user can pick his own realm 
among the list of all trusted IPs. This is often a good solution, but there are situations in 
which it is not advisable to reveal the list of all trusted IPs. Furthermore, sometimes asking 
the user to make a choice is inconvenient or unacceptable, in which case the IP selection 
should be done silently according to some criteria.

WS-Federation provides a parameter that can be useful in handling HRD: whr. It is meant to 
carry the address (or the urn: identifier) of the home realm. An R-STS receiving a wsignin1.0 
message that includes whr will consider whr content to be the IP-STS of the requestor and 
will drive the sequence accordingly. (See Figure 4-9.)

Browser

IP-STS A

APP

1

2
3 4

6

7

Trust

Trust

R-STS

IP-STS B

Trust

WHR=http://A

5

FIGURE 4-9  The Home Realm Discovery problem



	 Chapter 4  Advanced ASP.NET Programming	 137

	 1	 The user requests a page from App.

	 2	 Because the user is not authenticated; instead, he is redirected to R-STS for authenti-
cation. The sign-in message includes a new parameter, whr, which indicates A as the 
home realm for the request.

	 3	 R-STS redirects the request to A.

	 4	 Once the user successfully authenticates with A, he gets back a token.

	 5	 The user gets redirected back to R-STS, which validates the token from A and considers 
the user authenticated thanks to it.

	 6	 R-STS issues a token to the user, as requested.

	 7	 The user gets back to App with the token obtained from R-STS as required, and the 
authenticated session starts.

Who injects the whr value in the authentication flow? There are at least two possibilities:

■	 The requestor  You can imagine a scenario in which the administrator of the 
organization of IP A gives to all users a link to the RP that already contains the whr 
parameter preselecting IP A. That is a handy technique, which eliminated the HRD 
problem at its root. Unfortunately, this is not guaranteed to work: this system requires 
the RP to understand (or at least preserve in the redirect to the R-STS) the whr param-
eter, but WS-Federation does not mandate this to the RP. In fact, RPs implemented via 
WIF do not support this behavior out of the box (although it’s not especially hard to 
add it).

■	 The RP  The RP itself could inject whr in the message to the R-STS. Imagine the case 
in which the RP is one specific instance of a multitenant application. In that case, the 
whr might be one of the parameters that personalize the instance for a given tenant. 
WIF supports this specific setup on the RP, by allowing you to specify the attribute 
homeRealm in the <federatedAuthentication/wsFederation> element of the WIF con-
figuration. The value of homeRealm will be sent via whr to the R-STS. However, the WIF 
STS template project knows nothing about whr and will just ignore it. Once again, it is 
not hard to add some handling logic.

The R-STS is the recipient of whr. If the execution reaches the FP without having added a whr, 
it is up to the R-STS to make a decision on the basis of anything else that is available in the 
specific situation and can help decide which IP should be chosen.

Let’s once again set up a hypothetical solution in Visual Studio so that you can gain hands-on 
experience with the flow the scenario entails.

If you still have the solution we used for showing how federation works, right-click on 
BasicWebSite_STS, and again use the Add STS Reference Wizard to outsource its authentica-
tion to a new STS. Visual Studio will call the new STS BasicWebSite_STS_STS1. The current 
situation is described in Figure 4-10.



138	 Part II  Windows Identity Foundation for Identity Developers

FIGURE 4-10  The sample solution showing how to handle HRD

BasicWebSite trusts BasicWebSite_STS, the R-STS of the scenario. BasicWebSite_STS now 
trusts BasicWebSite_STS_STS1 because with the latest add STS reference, its former 
trust relationship with BasicWebSite_STS_STS has been overridden. The goal here is to 
establish a mechanism that allows the flow to switch between the two IPs in the scenario 
(BasicWebSite_STS_STS and BasicWebSite_STS_STS1) dynamically.

Note  With all those STSes looking alike, things might become hard to follow. A good trick for 
always knowing what is going on is assigning different colors to the background of the login.aspx 
pages of the various STS projects.

The easiest thing to accomplish in the scenario is enabling the RP BasicWebSite to express a 
preference for one IP via whr. As mentioned earlier, this can be done easily via configuration:

<federatedAuthentication> 
        <wsFederation passiveRedirectEnabled=”true”  
                      issuer=”https://localhost/BasicWebSite_STS/”  
                      realm=”https://localhost/BasicWebSite/”  
                      homeRealm=”https://localhost/BasicWebSite_STS_STS/”
                      requireHttps=”true” /> 
        <cookieHandler requireSsl=”true” /> 
      </federatedAuthentication>

The value of homeRealm establishes that BasicWebSite_STS_STS should be used for 
authentication, which is contrary to what the WIF configuration of BasicWebSite_STS currently 
says. That way, it will be obvious whether the system successfully overrides the static settings.

Note  As is usually the case for the parameters in <wsFederation>, you can do something to the 
same effect by using the PassiveFederationSignInControl and its properties. From now on, I’ll omit 
this note, assuming that in similar situations you’ll know that the control alternative is available. 

The next step is making the WIF STS template understand whr. It is actually simple—it is 
mainly a matter of intercepting the redirect to the IP and forcing it to go whenever the whr 



	 Chapter 4  Advanced ASP.NET Programming	 139

decides. Add to the BasicWebSite_STS project a global.asax file. Here you can handle the 
WSFAM RedirectingToIdentityProvider event as follows:

<%@ Application Language=”C#” %> 
<%@ Import Namespace=”Microsoft.IdentityModel.Web” %> 
 
<script runat=”server”> 
    void WSFederationAuthenticationModule_RedirectingToIdentityProvider 
     (object sender, RedirectingToIdentityProviderEventArgs e) 
    { 
        string a = HttpContext.Current.Request.QueryString[“whr”]; 
        if (a != null) 
        { 
            e.SignInRequestMessage.BaseUri = new Uri(a); 
        } 
    }

The code could not be easier. It verifies whether there is a whr parameter in the query string, 
and if it there is one, it assigns it to the BaseUri in the SignInRequestMessage, overwriting 
whatever value the BasicWebSite_STS configuration had put in there. As soon as the handler 
returns, the WSFAM will redirect the sign-in message to the whr—in this case, 
BasicWebSite_STS_STS. And that is exactly as you wanted it.

Note  The code here assumes that whr carries a network-addressable URI, but per the 
WS-Federation specification this might not be the case. If the URI is an urn identifier, 
BasicWebSite_STS should look up the actual address in some mapping store.

Having to specify the home realm in the RP configuration might be too static a behav-
ior for many occasions. Fortunately, the RedirectingToIdentityProvider event can be easily 
handled on the RP as well, implementing any dynamic behavior. For example, you can think 
of maintaining a table of IP ranges where requests might come from, and map them to the 
corresponding IP addresses. For the sake of simplicity, here I’ll show you how to implement 
the approach when it is the requestor that sends the whr up front in its first request to the RP.

If you add a global.asax file to BasicWebSite, almost exactly the same code as shown earlier 
will give you the desired effect:

<%@ Application Language=”C#” %> 
<%@ Import Namespace=”Microsoft.IdentityModel.Web” %> 
 
<script runat=”server”> 
    void WSFederationAuthenticationModule_RedirectingToIdentityProvider 
            (object sender, RedirectingToIdentityProviderEventArgs e) 
    { 
        string a = HttpContext.Current.Request.QueryString[“whr”]; 
        if (a != null) 
        { 
            e.SignInRequestMessage.HomeRealm = a;
        } 
    }



140	 Part II  Windows Identity Foundation for Identity Developers

The code here intercepts the execution right before sending back the redirect to the R-STS, 
and if the original request contained whr it ensures that it will be propagated to the R-STS 
as well. That means you can delete the homeRealm attribute in the BasicWebSite config, 
because now you have the ability to express whr directly at request time.

Important  Keep in mind that all the samples here aim to help you understand the problem, 
but they do not constitute complete solutions. Handling HRD in practice is not just a matter 
of complying with the protocol. Instead, it presents various challenges with manageability and 
maintenance aspects that are beyond the scope of this book and are best addressed by using 
packaged server-grade products such as ADFS 2.0.

Step-up Authentication, Multiple Credential Types, and 
Similar Scenarios
The trick of using RedirectingToIdentityProvider for steering the request to the STS has many 
applications that go beyond the HRD problem examined earlier.

One eminent example of this shows up every time the RP needs to communicate some kind 
of preference about the authentication process the IP should use when issuing tokens to 
users. It’s great that claims-based identity decouples the RP from the authentication respon-
sibilities, but there are situations in which the value of the operation imposes certain guar-
antees about the strength of the authentication. Imagine a banking Web site or a medical 
records Web site that gives access to certain operations only if the user is authenticated with 
a high-assurance method such as X.509 certificates or similar.

As you’ve grown to expect, WS-Federation has a parameter for that: wauth. It is supposed to 
be attached to wsignin1.0 messages to communicate to the STS the authentication method 
preference. Usually, the STS uses that for performing internal redirects to one endpoint that 
is secured with the corresponding authentication technique, or something to that effect (for 
example, wiring custom HttpHandlers or similar low-level tricks).

Important  I won’t go into the details here of how an STS should handle wauth, mainly because 
it would do so by leveraging the authentication infrastructures rather than WIF APIs. The main 
thing to remember on the STS side is that a token will advertise the authentication method that 
led to its own issuance by the presence of the claim of type ClaimTypes.Authentication.

Each RP has its own criteria for assigning a value to wauth. Sometimes it is a blanket property 
for the entire Web site—in which case, it is expressed directly in <wsFederation> in the au-
thenticationType attribute. At other times, the user is given the chance of selecting (directly 
or indirectly) from among multiple credential types. In yet another situation, there might be 
logic that silently establishes whether the current authentication level is enough for accessing 
the requested resource, or whether the system should step up to a higher level of assurance 



	 Chapter 4  Advanced ASP.NET Programming	 141

and re-authenticate the user accordingly. The last two cases call for a dynamic assignment of 
wauth, which is when reusing what you learned about whr and RedirectingToIdentityProvider 
comes in handy for wauth too.

Authentication Methods
WIF offers handy constants representing common authentication methods. Once 
again, they are grouped in multiple collections: Microsoft.IdentityModel.Claims.
AuthenticationMethods and Microsoft.IdentityModel.Tokens.Saml11.Saml11Constants+
AuthenticationMethods (shown next). The SDK samples use the first one, whereas the 
second one is used when communicating with ADFS (though in that case, it boils down 
to Password, TlsClientString, and WindowsString). In fact, the values in the following 
AuthenticationMethods are only used in the on-the-wire format specified by SAML. In 
the general case you won’t need them.

public static class AuthenticationMethods 
{ 
    // Fields 
    public const string HardwareTokenString = "URI:urn:oasis:names:tc:SAML:1.0:am: 
HardwareToken"; 
    public const string KerberosString = "urn:ietf:rfc:1510"; 
    public const string PasswordString = "urn:oasis:names:tc:SAML:1.0:am:password"; 
    public const string PgpString = "urn:oasis:names:tc:SAML:1.0:am:PGP"; 
    public const string SecureRemotePasswordString = "urn:ietf:rfc:2945"; 
    public const string SignatureString = "urn:ietf:rfc:3075"; 
    public const string SpkiString = "urn:oasis:names:tc:SAML:1.0:am:SPKI"; 
    public const string TlsClientString = "urn:ietf:rfc:2246"; 
    public const string UnspecifiedString = "urn:oasis:names:tc:SAML:1.0:am: 
unspecified"; 
    public const string WindowsString = "urn:federation:authentication:windows"; 
    public const string X509String = "urn:oasis:names:tc:SAML:1.0:am:X509-PKI"; 
    public const string XkmsString = "urn:oasis:names:tc:SAML:1.0:am:XKMS"; 
}

The WS-Federation specification lists yet a different set of wst:AuthenticationType 
values, but to be fair it explicitly states that those types are optional.

Claims Processing at the RP
In this final section of the chapter, I cover some of the things you can do with claims at the 
last minute, when they are already in the RP pipeline and are about to hit the application 
code.

There is not a whole lot of coding required, especially considering that I already covered 
ClaimsAuthorizationManager in detail in Chapter 2. This section attempts to give you an idea 
of the intended usage of those extension points and inspire you to take advantage of them 
in your scenarios.



142	 Part II  Windows Identity Foundation for Identity Developers

Authorization
Claims authorization is a fascinating subject that probably deserves an entire book of its own. 
One thing that puts off the various Role-Based Access Control (RBAC) aficionados is that 
there is so much freedom and so many ways of doing things. For example, take the coarse 
form of authorization that can be implemented by simply refusing to issue a token. You 
can set up rules at the IP that prevent from obtaining a token all the users that are already 
known not to be authorized to access the application they are asking for. That is feasible for 
all the situations in which the IP knows enough to make a decision—for example, in cases 
like Customer Relationship Management (CRM) online, in which users need to be explicitly 
invited before having access, even when there’s a federation in place.

Another obvious place for enforcing authorization is in the R-STS, which might deny tokens 
on the basis of some cross-organizational considerations. For example, the R-STS used by one 
independent software vendor (ISV) for managing access to its application portfolio might 
keep track of how many concurrent users are currently holding active sessions and refuse to 
issue a new token if that would exceed the number of licenses bought by the IP organization.

The enforcement point that is the closest to traditional authorization systems is the RP itself, 
which is where ClaimsAuthorizationManager is positioned. There are intrinsic advantages to 
enforcing authorization here. The resources are well known. For example, if the RP is a docu-
ment management system, the life cycle of documents themselves is under the control of 
the RP, which can easily manage permissions as well; whereas others (such as the R-STS, or 
worse still, the IP) would need to be synchronized. Another advantage is the availability of 
the call itself, although that’s easier to see with Web services than with Web sites. If you want 
to authorize the user to make a purchase according to a spending-limit claim, you need both 
the claim value and the amount of the proposed purchase: one STS would only see the claim 
value, as the body of a call plays no part in RST/RSTR exchanges.

The absolute flexibility offered by ClaimsAuthorizationManager is both its greatest strength 
and biggest weakness. Claims-based authorization is really powerful, but at the time of this 
writing there are no out-of-the-box implementations of ClaimsAuthorizationManager or 
tools and official policy formats for it. You can do everything with it, but you are required to 
write your own code.

Authentication and Claims Processing
Sometimes it just makes sense to do some claims processing at the RP side. Perhaps you 
need to make available to the application code information about the user that is known to 
the RP but not to the R-STS, such as in the case of a user profile specific to the application. 
Or maybe there are claims you need to see only once, at the beginning of the session, but 
that you prefer not to make available to the application code.



	 Chapter 4  Advanced ASP.NET Programming	 143

For doing any of these things, WIF offers you a specific hook in the RP pipeline, which 
you can leverage by providing your own claims-manipulation logic wrapped in a cus-
tom ClaimsAuthenticationManager class. ClaimsAuthenticationManager works a lot like 
ClaimsAuthorizationManager: you provide your logic by overriding one method (here it’s 
Authenticate), and you add your class in the pipeline by adding in the WIF config the element 
<claimsAuthenticationManager type=”CustomClaimsAuthnMgr”/>. 

In your implementation of Authenticate, you can do whatever you want with the principal, 
including deleting claims, adding claims, or even using a custom IClaimsPrincipal 
implementation. Here is a super-simple example of ClaimsAuthenticationManager:

public class CustomClaimsAuthnMgr: ClaimsAuthenticationManager  
{ 
  public override IClaimsPrincipal Authenticate(string resourceName, IClaimsPrincipal 
incomingPrincipal) 
  { 
 //If the identity is not authenticated yet, keep this principal and let it redirect to the 
STS 
    if (!incomingPrincipal.Identity.IsAuthenticated) 
    { 
      return incomingPrincipal; 
    } 
    ((IClaimsIdentity)incomingPrincipal.Identity).Claims.Add( 
      new Claim(ClaimTypes.Country,"Saturn,"ClaimValueTypes.String,"LOCAL AUTHORITY")); 
    return incomingPrincipal; 
  } 
}

In this case, the code simply adds an extra claim to the principal. Note that the issuer is 
assigned to “LOCAL AUTHORITY.” You can use pretty much anything you want here, but you 
should really avoid using an existing issuer identifier because it is equivalent to pretending to 
be a legitimate issuer. 

Summary
Wow, that was an intense chapter! I hope you had as much fun reading it as I had writing it.

This chapter took a much more concrete approach to WIF programming, leveraging the 
programming model knowledge you acquired in Chapter 3 to tackle many important 
problems and scenarios you might encounter when securing ASP.NET applications.

You learned about the distinction between identity providers and Federation Providers, 
acquiring familiarity with the WIF STS template in the process.

You finally saw applied in practice the sign-in flow studied in Chapter 3, applying it to the 
case of multiple Web sites and discovering how the underlying structure makes SSO possible. 
You had a chance to learn how Single Sign-out works, and how to use WIF for implementing 



144	 Part II  Windows Identity Foundation for Identity Developers

it in a few lines of code. We explored one case of exotic session management, in which the 
validity is driven by user activity rather than fixed expiration times.

The classic federation case and home realm discovery are now very concrete scenarios for 
you, and you know what it takes for dealing with them in various situations. In the process of 
learning this, you also gained familiarity with WIF’s object model for claims.

Finally, you had a chance to tie up a few loose ends regarding the use of 
ClaimsAuthenticationManager and ClaimsAuthorizationManager for processing claims once 
they have already reached the RP.

If you develop for the ASP.NET platform, this chapter should have equipped you with all 
the knowledge you need for tackling the most common problems and then some. For 
anything not explicitly covered here, you should now be able to investigate and solve issues 
on your own.

In the next chapter, I’ll turn to Web services and explore how WIF and WCF can work 
together to create safer applications while delivering a killer development experience.



	 	 241

Index

Symbols
<applicationService>, 86
<audienceURI>, 85
<authorization> element in the <system.web> 

block, 36
<behavior> element, 157
<certificateValidation>, 89
<certificateValidator>, 89
<ClaimsAuthenticationManager>, 87
<ClaimsAuthorizationManager>, 87
<cookieHandler>, 85, 88
<federatedAuthentication>, 85, 87
<issuerNameRegistry>, 86
<issuerTokenResolver>, 89
<maximumClockSkew>, 88
<microsoft.identityModel>, 82, 84, 155
overview, 39
<service> elements, 84

<microsoft.identityModel/Service> structure, 86
.NET applications

IIdentity, 5
IPrincipal, 5

.NET Framework
authentication mechanisms, 5
compatibility with Windows Identity 
Foundation, 24–47

.NET security
iPrincipal, 6
traditional approaches, 4

<policy> elements, 43
<protocolMapping> element, 157
<saml:Assertion>, 66
<saml:Conditions>, 66
<saml:SubjectConfirmation>, 67
<securityTokenHandlers>, 89
<serviceTokenResolver>, 89
<wsFederation>, 85, 88
parameters, 88
Issuer, 85
passiveRedirectEnabled, 85
realm, 85
requireHttps, 85

A
access grants, 237
ACS. See AppFabric Access Control Service
ActAs
STS support, 177
tokens, 176

ActAs approach, 173
Action collection, 42
active clients, 56, 148
holder-of-key confirmation method, 151
message-based security, 150
message-level security options, 150

Active Directory Federation Services 2.0, 15, 32, 
57

active STS endpoints, 209
active systems, 146
Actor property, 176
Add STS Reference, 26
ADFS2. See Active Directory Federation Services 2
Adobe Flash, 147
anonymous authentication, 6
App_Code, 108
App_Code folder, 108
AppFabric Access Control Service (ACS), 204
ASP.NET, 52
authorization, 36
HttpModules, 73
integration with WIF, 52
roles and authorization compatibility, 36
WIF processing pipeline, 58

ASP.NET Development Server, 105
ASP.NET membership provider, 35
ASP.NET MVC framework, 216

AccountController class, 217
Authorize, 217
flow, 216–240
HttpModules, 218
login, 219
LogOnCommon, 221
logout, 220
project template, 217
web.config, adding WIF, 218
WIF integration solutions, 216–240

ASP.NET Security Token Service Web Site 
template, 104



242	

ASP.NET STS. See STS
ASP.NET Web sites, linking to an STS, 26
audience verification, 193
AuthenticateRequest event, 75, 76, 78
authentication
advantages of a standard interface, 97
externalizing, 16, 24–47
generic system, 11
methods in WIF, 141
.NET Framework, 5
real-world, 9
step-up, 140
traditional approaches, 4

authentication APIs, 6
authentication level verification of tokens, 64
authentication modes
anonymous, 6
Forms, 7
Windows, 6

authorization, 33–46
caching user data, 34
claims, 142
groups and roles, 35
IsInRole, 36
real-world, 9
traditional approaches, 34

AuthorizeRequest event, 75, 77
Azure. See Windows Azure

B
bearer tokens, 65, 147
blacklists, 98
bootstrap tokens, 172–184
browser-based passive systems vs. active 

systems, 147

C
CAM. See ClaimsAuthorizationModule
CanReadKeyIdentifier/CanWriteKeyIdentifier, 93
CanReadToken, 93
CanValidateToken property, 93
CanWriteToken property, 93
CheckAccess method, 42
Claim class, 130
claims, 12
ADFS 2.0 claims-transformation language, 135
ADFS 2.0 management UI, 112
vs. attribute, 12
authorization, 142

customizing UI, 37
hard-coded, 110
Information Card Foundation Web site, 133
injecting new, 129, 135
modification, 129, 135
Name, 110
pass-through, 129, 134
processing at the RP, 141–142
processing using Federation Providers, 100
Role, 110
transforming, 100, 129
types, 111, 133
types and value constants, 131

ClaimsAuthenticationManager, 92, 143
ClaimsAuthorizationManager, 42, 142
ClaimsAuthorizationModule, 73, 92
claims-based authorization, 142
claims-based identity, 3–21
advantages, 4
as a logical layer, 11
need for, 4

claims-based security, 147
claims object model, 146–184
ClaimsTypesRequested, 70
ClaimType, 72
ClaimType property, 19
ClaimTypesOffered, 72
ClaimTypesRequested, 72
classes, 90
client-side features, 170–184
client-to-STS communications, 180
cloud, 185–213
communicating across silos, 55
communication protocols and languages, 55
config elements, 40
ConfigurationBasedIssuerNameRegistry class, 86
confirmation method, 147
CookieHandler, 94
CORBA, 55
cracking a token, 151
CreateChannelActingAs, 175, 176
CreateChannelOnBehalfOf, 175
CreateChannelWithIssuedToken, 183
CreateToken, 93
cryptographic operations, 147
CSDEF extension, 189
CSPKG file, 187
customizing UI based on claims, 37
CustomSecurityTokenService, 107
CustomSecurityTokenServiceConfiguration, 108

ASP.NET STS



		  243

D
delegation, 176
DevFabric, 187–213
digital signatures for tokens, 63
dynamic metadata generation, 205

E
encrypting tokens, 63
EndRequest event, 75, 77
end-to-end security, 150
enforcing authorization at the RP, 142
Esposito, Dino, 73
externalizing authentication, 16
advantages, 39

F
FederatedAuthentication, 40
FederatedPassiveSignInStatus, 116
federation
providers, 101
relationships, 101
scenarios, 102

federation metadata documents, 28
FederationPassiveSignIn control, 81
federation provider role of IPs, 96
Federation Providers, 99
outsourcing functions, 204

federation relationships, authentication flows, 101
federation scenarios, 102
Federation Utility Wizard, 26
creating a new STS project, 28
No STS option, 28
Using an existing STS, 28

FedUtil.exe, 26, 39
default configuration, 82

Forms authentication, 7, 114
FormsIdentity objects, 7
FP. See Federation Providers
Full Trust mode, 188

G
Generate New STS option, 103
generic identity transaction, 14
GenericPrincipal extension, 5, 7
GetOutputClaimsIdentity implementation, 111
GetScope method, 109
GetTokenTypeIdentifiers method, 93

H
holder-of-key confirmation method, 151, 153
holder of key tokens, 65
homeRealm, 137
Home Realm Discovery, 136
Howard, Michael, 4
HRD. See Home Realm Discovery
HTML5, 147
HttpContext.Current.User, 5
HttpModules
ASP.NET, 73
ClaimsAuthorizationModule, 73
SessionAuthenticationModule, 72
WIF sign-in flow, 74
WSFederationAuthenticationModule, 72

HttpModules pipeline, 74

I
IClaimsIdentity, 18, 37, 110

Actor property, 176
ClaimType property, 19
Issuer property, 19
Subject property, 20
Value property, 19

IClaimsPrincipal, 18, 37, 110
identity providers, 12, 97
allow list of RPs, 98
federation provider role, 96
multiple, 99
multiple STS endpoints, 98
roles, 96
specifying, 32
standard example, 97
unknown RP identity, 99

IIdentity, 5
IIdentity extensions, 18
IIS7, 84
IIS authentication types, 6
Information Card Foundation Web site, 133
intended audience of tokens, 63
Internet Information Services
vs. ASP.NET Development Server, 105

Internet Information Services (IIS) authentication, 
6

IP. See identity providers
IP-FP-RP pattern, 126
IPrincipal, 5
extensions, 5
populating, 6

IP-STS, 97, 106, 111

IP-STS



244	

IsInRole, 6
issued tokens, 64, 100
Issue method, 149
IssuerNameRegistry, 94
Issuer property, 20

J
JavaScript, 147

K
Kerberos, 97, 114
constrained delegation, 171–184

Kerberos tokens, 65
keying strategies, 191

L
LeBlanc, David, 4
lifetime property, 122
logical identity layer, 11
logical layer of identity, 11

M
man-in-the-middle attacks, 151
MembershipProvider, 7
MembershipUserNameSecurityTokenHandler, 93
message-based security, 150
end-to-end security, 150
nonrepudiation applied to single messages, 150
properties, 150
vs. transport security, 150

metadata, 112
dynamic generation in the cloud, 205
generating documents programmatically, 112

metadata documents, 69
Microsoft Excel, 148
Microsoft.IdentityModel.Claims namespace, 41
Microsoft.IdentityModel.dll, 24
Microsoft Outlook, 148
Microsoft Silverlight, 147
Microsoft Visual Studio, 6
default authentication mode, 6
Windows Azure templates, 187–213

Microsoft Windows Communication Foundation, 
7

Microsoft Word, 148
multiple identity providers, 96
multiple RP applications, 113
multitenant applications, 137

N
named <microsoft.identityModel/Service> 

sections, 199
NASCAR problem, 232
network load balanced (NLB) environments, 191
network load balancing (NLB)–friendly sessions, 

125
nonrepudiation, 150

O
OASIS Identity Metasystem Interoperability 

Technical Committee, 228
OAuth 2.0 protocol, 233
Authorization Server role, 234
Client role, 234
implementation for WIF, 238
profiles, 235
Protected Resource role, 234
Resource Server role, 234
WS-Trust integration, 237

OAuth WRAP, 204, 234
OnBehalfOf, 174
OpenID
implementing in WIF, 232
OpenID moniker, 232
OpenID provider (OP), 232

outsourcing FP functions, 204

P
Page_PreRender handler, 106
passive clients, 56, 147
HTTPS security option, 150

PassiveRequestorEndpoint, 70, 72
passive systems vs. active, 146–184
pass-through claims, 134
personally identifiable information, 122
PFX (Personal Information Exchange) format, 189
PII. See personally identifiable information
policies, 13
PostAuthenticateRequest event, 76
primitive tokens, 65
Principal, 42
processing pipeline in ASP.NET, 58
proof of possession, 153
proof token, 153
protocol transition STS, 204

R
RBAC. See Role-Based Access Security

IsInRole



		  245

ReadToken, 93
redirect-based protection vs. login page, 80
RedirectingToIdentityProvider event, 139
relying party, 12
endpoint identity, 192
load-balanced environments, 124

Relying Party Trust, 98
remote services, 148
Request for Security Token Response (RSTR), 149
Request for Security Token (RST), 149
RequestSecurityToken, 183
RequestSecurityToken.Claims collection, 111
RequestSecurityTokenResponse, 183
Resource collection, 42
REST, 55, 230
restricting resources and actions, 33
REST service, 205
REST Web services, 204
rich clients, 148
rich stacks, 147
Role-Based Access Control, 142
Role-Based Access Security, 35
role-based authorization, 36
RoleDescriptor, 70, 72
roles, 35
RP. See relying party
RST. See Request for Security Token
RSTR. See Request for Security Token Response
R-STS, 111

S
SAM. See SessionAuthenticationModule
SAML 2.0 protocol, 229–230
WIF integration, 229

Saml2SecurityTokenHandler, 93
Saml2TokenHandler, 93
Saml11SecurityTokenHandler, 93
Saml11TokenHandler, 93
SAML tokens, 66
Secure Sockets Layer (SSL) certificates, 7
securing Microsoft .NET applications, 3
Security Assertion Markup Language protocol, 55
SecurityTokenCacheKey class, 191
SecurityTokenHandler class, 93, 168
security tokens, 13, 62
authentication level verification, 64
bearer, 65
claims, 64
descriptor, 66
deserializing, 62
digital signatures, 63

duplication, 63
encryption and decryption, 63
expiration, 63
format, 62, 64
holder of key, 65
integrity, 63
intended audience, 63
issued, 64
Kerberos, 65
primitive, 65
SAML format, 64
structure, 64
subelements, 66
trusted source, 63
Username, 65
validity period, 63
verifying, 62
WS-* specification definition, 64
X.509, 65

SecurityTokenService, 107, 108
SecurityTokenServiceEndpoint element, 72
SecurityTokenServiceType, 72
SecurityTokenVisualizerControl sample ASP.NET 

control, 68
serializing and deserializing tokens, 93
SessionAuthenticationModule, 72, 91
sessions, 122, 191
keeping alive, 116
lifetime property, 122
network load balancers, 124
session tokens, 122
single sign-in, 112
single sign-out, 115
sliding, 122
state, 116
sticky, 124

SessionSecurityTokenCookieSerializer, 191
SessionSecurityTokenHandler, 93, 192
SessionSecurityTokens, 93, 122
SharePoint 2010, 97
sign-in, 57
WF-Federation sequence, 58
WS-Federation sequence, 58

sign-in flow in WIF, 74
signing in. See Single Sign-in
signing in across multiple Web sites, 230
signing out. See Single Sign-out
SignInRequestMessage, 107
Silverlight, 223

DisplayToken, 228
making claims available to applications, 227
WIF integration, 224

Silverlight



246	

Simple Object Access Protocol (SOAP) Web 
services, 55

Simple Web Tokens (SWTs), 204, 236
Single Sign-in, 113
Single Sign-out, 115
cleanup, 117
multiple RPs, 117
one RP, 116
WIF STS template, 121

sliding sessions, 122
smartcards, 152
sqlMembershipProvider, 7
SSO. See Single Sign-on
SSOut, 115. See Single Sign-out
step-up authentication, 140
STS
active endpoints, 209
adding references, 32
ADFS 2.0, 103
ASP.NET Web site linkage, 26
autogenerated, 32
availability, 102
building viable, 103
classes and methods in App_Code, 108
configuration settings, 108
criteria for "good", 102
custom, 103
difficulty of running, 103
generating a test STS, 28
hosted endpoints, 103
hosting in Windows Azure, 205
multiple endpoint scenarios, 98
nonauditing, 99
off-the-shelf products, 103
performance, 102
project structure, 105
protocol transition, 204
R-STS, 106
security, 102
selecting, 28
separation from authentication mechanism, 106
template, 102
user name and password authentication for a 
Web service, 164

STS authentication page, 30
STS template, 102
for WCF, 158
redirect exception, 108
Single Sign-out, 121
signing out code, 117
structure, 104
wsignout1.0, 117

subclassing, 54
Subject property, 20
subjects, 12
Sun Metro, 231
SvcTraceViewer.exe utility, 203
SvcUtil, 162
SWTs. See Simple Web Tokens

T
TargetScopes, 70
Thread.CurrentPrincipal, 5
Thread.CurrentPrincipal.IsInRole(“Administrators”), 

5
token handler classes, 93
token handlers collection, 89
TokenResolvers, 94
tokens. See also security tokens
authentication level verification, 64
authentication tokens for service calls, 180
bearer, 65
bootstrap, 172–184
certificates, 109
claims, 64
deserializing, 62
destinations, 109
digital signatures, 63
duplication, 63
encryption and decryption, 63, 109
expiration, 63
format, 62, 64
holder of key, 65
integrity, 63
intended audience, 63
issuance process parameters, 109
issued tokens, 64, 100
Kerberos, 65
primitive, 65
processing using Federation Providers, 100
proof, 153
required type validation, 109
SAML format, 64
serializing and deserializing, 93
signatures, 190
size, 111
structure, 64
subelements, 66
trusted source, 63
Username, 65
validity period, 63
verifying, 62
well formed, 62

Simple Object Access Protocol (SOAP) Web services



		  247

tokens (continued)
WS-* specification definition, 64
X.509, 65

TokenType property, 93
token validation settings, 89
token validity, 62
trace listeners, 202
transport security vs. message-based security, 150
troubleshooting code execution in the cloud, 201
TrustChannel, 238
trusted IPs, 63
trusted subsystems, 170
TurboTax, 148
Twitter, 148

U
username and password authentication scenario 

using WIF within WCF, 167
Username tokens, 65
users. See subjects

V
ValidateRequest method, 109
ValidateToken, 93
validity period of tokens, 63
value constants and Claim types, 131
Value property, 19
verifying security tokens, 62

W
wa parameter, 59, 61
wauth parameter, 61
wauth parameter in WS-Federation, 140
WCF, 145–184
claims, 162
client-side features, 170–184
configuration, 156, 161
configuring a service to use WIF, 168
cookie mode, 196
delegation, 175–184
finding claim information, 169
REST service, 205
similiarities with ASP.NET, 146–184
testing services tool, 159
user name and password authentication with 
WIF, 164

WCF security model vs. WIF model, 167
WIF STS template, 158

WCF role in Windows Azure, 195–203

WCF Service template, 154
WcfTestClient.exe, 159
wct parameter, 60, 61
wctx parameter, 61
Web applications, 147
Web authentication protocols, 232
Web browser sign-in, 57
web.config file, 6, 53, 82, 155
Web Identities, 230
Web protocols
vs. WS-*, 231

Web Resource Authorization Protocol, 234
WebRole.cs file, 191
Web roles, 190
Web servers
ASP.NET Development Server, 105
IIS vs. Visual Studio built-in Web server, 105

Web services, 146–184
invoking, 149
security policies, 149

Web services in a load-balanced environment, 
196

Web site authentication, 57
whr parameter, 61
whr parameter in WS-Federation, 136
WIF. See also Windows Identity Foundation
ASP.NET MVC framework, 216–223
authentication methods, 141
<authorization> elements, 37
classes, 90
client-side features with WCF, 170–184
config elements, 40
configuration, 82
delegation, 175–184
extending, 216
HttpModules, 72
IsInRole integration, 36
main classes, 82
OAuth 2.0, 238
processing pipeline in ASP.NET, 58
runtime assemblies, 188
SAML protocol or token format, 69
serving events, 53
sign-in flow, 74
sign out implementation, 117
subclassing, 54
supported protocols, 57
using the SDK tools, 53
Web browser sign-in, 57
Web site authentication, 57

WIF Runtime, 24–47
installing, 24

WIF Runtime



248	

WIF SDK, 24
differences between versions, 25
installing, 25

WIF SDK STS template. See STS template
WIF sign-in flow

AuthenticateRequest event, 75
AuthorizeRequest event, 75
EndRequest event, 75
PostAuthenticateRequest event, 75

WIF Software Development Kit. See WIF SDK
WIF STS template, 102
WIF STS Template
for WCF, 158

WIF-WCF pipeline integration, 168
Windows authentication, 6
Windows Azure, 185–213
AppFabric Access Control Service (ACS), 204
CSPKG file, 187–213
DevFabric, 187–213, 192
diagnostics, 201
environments, 192
Full Trust mode, 188
global assembly cache (GAC), 188
hosting an STS, 205
local simulation environment, 187–213
Production Environment, 192
Roles, 188
sessions, 191
sessions in a load-balanced environment, 196
Staging Environment, 192
trace listeners, 202
tracing, 201
Visual Studio templates, 187–213
WCF role, 195
Web role, 190
WIF and passive federation, 191
WIF Runtime Assembly, 188
X.509 certificates, 188

Windows CardSpace, 228
Windows Communication Foundation, 52, 

145–184
integration with WIF, 52

Windows Identity Foundation
compatibility with .NET Framework, 24–47
definition, 15
four main uses, 52
integration with ASP.NET or Windows 
Communication Foundation, 52

IsInRole integration, 36
purpose, 16
WIF Runtime, 24–47
WIF SDK, 24
WS-Federation implementation, 72

Windows Presentation Foundation, 14
 extension, 5

Windows Server roles, 15
WRAP. See Web Resource Authorization Protocol
wreply parameter, 61
wresult parameter, 60, 61
WriteToken, 93
Writing Secure Code, 4
WS-*, 55
vs. SAML-P, 57
vs. Web protocols, 231

WS-* capable clients, 56
WSFAM, 72
WSFAM events, 90
WS-Federation, 55, 56
audience verification, 193
implementation in WIF, 72
metadata document compatibility, 70
parameters, 59
sign-in sequence, 58
Single Sign-out process, 119
wa parameter, 59, 61
wauth parameter, 61
wct parameter, 60, 61
wctx parameter, 61
whr parameter, 61, 136
wreply parameter, 61
wresult parameter, 60, 61
wtrealm parameter, 59, 61

WS-Federation 1.2 specification, 56
WSFederationAuthenticationModule, 72
WS-<function>, 55
wsignin1.0, 61
wsignout1.0, 61, 117
WS-Security, 148
signing and encrypting mechanisms, 150

WS-Trust, 148
flow and use of keys, 152
intergrating with OAuth 2.0, 237
invoking Web services, 149

WSTrustChannel, 180
WSTrustServiceContract class, 159
wtrealm, 110
wtrealm parameter, 59, 61

X
X.509
certificate, 7, 65, 152, 188
tokens, 65

X509CertificateValidator class, 89
X509SecurityTokenHandler, 93
XAP files, 225

WIF SDK



Vittorio Bertocci
Vittorio Bertocci is a Senior Architect Evangelist in Developer 
and Platform Evangelism (DPE) and a key member of the 
extended engineering team that produces Microsoft’s 
claims-based platform components (for example, Windows 
Identity Foundation and ADFS 2.0). He is responsible for 
identity evangelism for the .NET developer community and 
drove initiatives such as the Identity Developer Training Kit 
(http://go.microsoft.com/fwlink/?LinkId=148795) and the 
IdElement show (http://channel9.msdn.com/shows/identity/ )
on Channel 9.

Vittorio holds a master degree in Computer Science, and 
he began his career doing research on computational 
geometry and scientific visualization. In 2001, he Joined 
Microsoft Italy, where he immediately focused on the .NET 

platform and the nascent field of Web services security, becoming a reference at the national 
and European level.

In 2005, Vittorio moved to Redmond, where he helped to launch the .NET Framework 3.5 by 
working with Fortune 100 and Global 100 companies on cutting-edge SOA projects based on 
WCF, WF, and CardSpace. He became more and more focused on identity themes, eventually 
undertaking his current mission of evangelizing claims-based identity into mainstream use. 

In the last five years, this mission has led him to speak about identity in 23 countries and 
4 continents. Vittorio is a regular speaker at conferences such as Microsoft PDC, TechEd 
USA, TechEd Europe, TechEd Australia, TechEd New Zealand, TechEd Japan, TechDays Belux, 
Gartner Summit, European Identity Conference, IDWorld, OreDev, NDC, IASA, Basta and 
many others. 

Vittorio is a published author, both in the academic and industry worlds, and has written 
many articles and papers. He is co-author of A Guide to Claims-Based Identity and Access 
Control (Microsoft Press, 2010) and Understanding Windows CardSpace (Addison-Wesley, 
2008). He is a prominent authority/blogger on identity, Windows Azure, .NET development, 
and related topics, and he shares his thoughts at www.CloudIdentity.net.

Vittorio lives in the lush, green city of Redmond with his wife, Iwona. He doesn’t mind the 
gray skies too much, but every time he has half a chance he flies to some beach place, be it 
Hawaii or Camogli, his home town in Italy.



Stay in touch!
To subscribe to the Microsoft Press® Book Connection Newsletter—for news on upcoming 
books, events, and special offers—please visit: 

What do  
you think of  
this book?
We want to hear from you! 
To participate in a brief online survey, please visit: 

Tell us how well this book meets your needs—what works effectively, and what we can 	
do better. Your feedback will help us continually improve our books and learning 
resources for you.   

Thank you in advance for your input!

microsoft.com/learning/booksurvey 

microsoft.com/learning/books/newsletter 


	Cover 
	Copyright page


	Table of Contents

	Foreword
	Acknowledgments
	Chapter 1:
Claims-Based Identity
	What Is Claims-Based Identity?
	Traditional Approaches to Authentication
	Decoupling Applications from the Mechanics of Identity and Access

	WIF Programming Model
	An API for Claims-Based Identity
	WIF’s Essential Behavior
	IClaimsIdentity and IClaimsPrincipal

	Summary

	Chapter 4:
Advanced ASP.NET Programming
	More About Externalizing Authentication
	Identity Providers
	Federation Providers
	The WIF STS Template

	Single Sign-on, Single Sign-out, and Sessions
	Single Sign-on
	Single Sign-out
	More About Sessions

	Federation
	Transforming Claims
	Pass-Through Claims
	Modifying Claims and Injecting New Claims
	Home Realm Discovery
	Step-up Authentication, Multiple Credential Types, and Similar Scenarios

	Claims Processing at the RP
	Authorization
	Authentication and Claims Processing

	Summary

	Index




