Configuring Windows 7

Ian McLean and Orin Thomas

SELF-PACED Training Kit
How to access your CD files

The print edition of this book includes a CD. To access the CD files, go to http://aka.ms/627086/files, and look for the Downloads tab.

Note: Use a desktop web browser, as files may not be accessible from all ereader devices.

Questions? Please contact: mspininput@microsoft.com

Microsoft Press
MCTS Self-Paced Training Kit (Exam 70-680): Configuring Windows® 7

Ian McLean
Orin Thomas
It’s unusual to dedicate a book to one of its authors, but when Orin Thomas agreed to be my writing partner it was my lucky day. Orin is the most competent and capable professional I have ever come across. Not only can he do things, he can write about them too. He’s my peer reviewer as well as my co-author and his reviews are both informative and ruthless, for which I’m eternally grateful. He is always ready and willing to step in with assistance if I am having any sort of problem. Orin, please keep tearing my text to shreds. By the way I’ll do the same for you given the opportunity. I appreciate working with a true professional.

—Ian McLean

To all of you who are beginning your certification journey, I hope that you find your journey as rewarding, as useful, and as fulfilling as I have found my own. Good luck on your Windows 7 exam!

—Orin Thomas
Contents at a Glance

Introduction xxiii

CHAPTER 1	Install, Migrate, or Upgrade to Windows 7	1
CHAPTER 2	Configuring System Images	53
CHAPTER 3	Deploying System Images	113
CHAPTER 4	Managing Devices and Disks	195
CHAPTER 5	Managing Applications	255
CHAPTER 6	Network Settings	297
CHAPTER 7	Windows Firewall and Remote Management	381
CHAPTER 8	BranchCache and Resource Sharing	421
CHAPTER 9	Authentication and Account Control	477
CHAPTER 10	DirectAccess and VPN Connections	513
CHAPTER 11	BitLocker and Mobility Options	553
CHAPTER 12	Windows Update and Windows Internet Explorer	599
CHAPTER 13	Monitoring and Performance	647
CHAPTER 14	Recovery and Backup	729

Answers 783

Glossary 843

Index 847
Contents

Introduction

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Setup Instructions</td>
<td>xxiv</td>
</tr>
<tr>
<td>Hardware Requirements</td>
<td>xxiv</td>
</tr>
<tr>
<td>Using the DVD</td>
<td>xxv</td>
</tr>
<tr>
<td>How to Install the Practice Tests</td>
<td>xxv</td>
</tr>
<tr>
<td>How to Use the Practice Tests</td>
<td>xxvi</td>
</tr>
<tr>
<td>How to Uninstall the Practice Tests</td>
<td>xxvii</td>
</tr>
<tr>
<td>Microsoft Certified Professional Program</td>
<td>xxvii</td>
</tr>
<tr>
<td>Technical Support</td>
<td>xxvii</td>
</tr>
</tbody>
</table>

Chapter 1 Install, Migrate, or Upgrade to Windows 7

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before You Begin</td>
<td>2</td>
</tr>
<tr>
<td>Lesson 1: Installing Windows 7</td>
<td>3</td>
</tr>
<tr>
<td>Windows 7 Editions</td>
<td>3</td>
</tr>
<tr>
<td>Windows 7 Hardware Requirements</td>
<td>5</td>
</tr>
<tr>
<td>Preparing the Windows 7 Installation Source</td>
<td>6</td>
</tr>
<tr>
<td>Installing Windows 7</td>
<td>9</td>
</tr>
<tr>
<td>Lesson Summary</td>
<td>22</td>
</tr>
<tr>
<td>Lesson Review</td>
<td>23</td>
</tr>
<tr>
<td>Lesson 2: Upgrading to Windows 7</td>
<td>25</td>
</tr>
<tr>
<td>Upgrading from Windows 7 Editions</td>
<td>25</td>
</tr>
<tr>
<td>Upgrading from Windows Vista</td>
<td>26</td>
</tr>
<tr>
<td>Migrating from Windows XP</td>
<td>29</td>
</tr>
<tr>
<td>Lesson Summary</td>
<td>32</td>
</tr>
<tr>
<td>Lesson Review</td>
<td>32</td>
</tr>
</tbody>
</table>

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning resources for you. To participate in a brief online survey, please visit:

Chapter 2 Configuring System Images 53

Before You Begin .. 54

Lesson 1: Capturing System Images 56
 Installing and Using the Windows Automated
 Installation Toolkit ... 56
 Using the Windows Preinstallation Environment 58
 Creating a Reference Image .. 58
 Distributing an Image to Many Computers 72
 Using the Deployment Image Servicing and Management Tool 75
 Using Sysprep to Prepare a Windows 7 Installation 77
 Lesson Summary ... 86
 Lesson Review ... 87

Lesson 2: Managing Virtual Hard Disk Files 89
 Using Native VHDS in Windows 7 89
 Using the Windows Image to Virtual Hard Disk Tool 94
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using the Offline Virtual Machine Servicing Tool to Update a VHD</td>
<td>96</td>
</tr>
<tr>
<td>Deploying to an Online VHD Using Windows Deployment Services</td>
<td>98</td>
</tr>
<tr>
<td>Lesson Review</td>
<td>108</td>
</tr>
<tr>
<td>Chapter Review</td>
<td>110</td>
</tr>
<tr>
<td>Chapter Summary</td>
<td>110</td>
</tr>
<tr>
<td>Key Terms</td>
<td>110</td>
</tr>
<tr>
<td>Case Scenarios</td>
<td>111</td>
</tr>
<tr>
<td>Case Scenario 1: Generating a System Image</td>
<td>111</td>
</tr>
<tr>
<td>Case Scenario 2: Working with VHDs</td>
<td>111</td>
</tr>
<tr>
<td>Suggested Practices</td>
<td>111</td>
</tr>
<tr>
<td>Use Windows SIM and Sysprep</td>
<td>112</td>
</tr>
<tr>
<td>Work with VHDs</td>
<td>112</td>
</tr>
<tr>
<td>Take a Practice Test</td>
<td>112</td>
</tr>
<tr>
<td>Chapter 3 Deploying System Images</td>
<td>113</td>
</tr>
<tr>
<td>Before You Begin</td>
<td>114</td>
</tr>
<tr>
<td>Lesson 1: Managing a System Image Before Deployment</td>
<td>116</td>
</tr>
<tr>
<td>Using DISM WIM Commands and Mounting an Image</td>
<td>116</td>
</tr>
<tr>
<td>Servicing Drivers, Applications, Patches, Packages, and Features</td>
<td>123</td>
</tr>
<tr>
<td>Servicing Windows PE Images</td>
<td>135</td>
</tr>
<tr>
<td>Unattended Servicing Command-Line Options</td>
<td>137</td>
</tr>
<tr>
<td>Lesson Summary</td>
<td>143</td>
</tr>
<tr>
<td>Lesson Review</td>
<td>144</td>
</tr>
<tr>
<td>Lesson 2: Deploying Images</td>
<td>146</td>
</tr>
<tr>
<td>Using the Microsoft Deployment Toolkit</td>
<td>146</td>
</tr>
<tr>
<td>Managing and Distributing Images with MDT 2010</td>
<td>151</td>
</tr>
<tr>
<td>Deploying Images with WDS</td>
<td>169</td>
</tr>
<tr>
<td>Using SCCM 2007</td>
<td>175</td>
</tr>
<tr>
<td>Installing an Image Manually</td>
<td>180</td>
</tr>
</tbody>
</table>
Chapter 4 Managing Devices and Disks 195

Before You Begin..196

Lesson 1: Managing Device Drivers and Devices197
 Using Device Manager to View Device Information 197
 Installing Devices and Managing Device Drivers 203
Lesson Summary 226
Lesson Review 226

Lesson 2: Managing Disks ..228
 Disk Maintenance 228
 Changing Disk Type and Partition Style 235
 Managing Disk Volumes 240
Lesson Summary 248
Lesson Review 249

Chapter Review ..251
Chapter Summary..251
Key Terms ...251

Case Scenarios...252
 Case Scenario 1: Enforcing a Driver Signing Policy 252
 Case Scenario 2: Managing Disks 252
Chapter 5 Managing Applications 255

Before You Begin 256

Lesson 1: Application Compatibility 257
 Configuring Compatibility Options 257
 The Application Compatibility Toolkit 260
 Application Compatibility Diagnostics Policies 264
 Windows XP Mode for Windows 7 265
 Lesson Summary 269
 Lesson Review 269

Lesson 2: Managing AppLocker and Software Restriction Policies 271
 Software Restriction Policies 271
 AppLocker Application Control Policies 276
 Lesson Summary 290
 Lesson Review 290

Chapter Review 293

Chapter Summary 293

Key Terms .. 293

Case Scenarios 294
 Case Scenario 1: Configuring Application Compatibility at Fabrikam 294
 Case Scenario 2: Restricting Applications at Contoso 294

Suggested Practices 295
 Configure Application Compatibility 295
 Configure Application Restrictions 295

Take a Practice Test 296
Chapter 6 Network Settings 297

Before You Begin .. 298

Lesson 1: Configuring IPv4 300
 Introduction to IPv4 Addressing 301
 Connecting to a Network 307
 Troubleshooting Network Connectivity 311
 Lesson Summary 325
 Lesson Review 326

Lesson 2: Configuring IPv6 328
 Analyzing the IPv6 Address Structure 328
 The Advantages of IPv6 333
 Implementing IPv4-to-IPv6 Compatibility 334
 Configuring IPv6 Connectivity 338
 Lesson Summary 345
 Lesson Review 346

Lesson 3: Network Configuration 348
 Connecting to a Network 348
 Managing Network Connections 362
 Troubleshooting Wireless Networks 363
 Configuring Wireless Network Security 367
 Windows 7 Printing Enhancements 368
 Lesson Summary 373
 Lesson Review 373

Chapter Review .. 376

Chapter Summary ... 376

Key Terms .. 376

Case Scenarios .. 377
 Case Scenario 1: Implementing IPv4 Connectivity 377
 Case Scenario 2: Implementing IPv6 Connectivity 377
 Case Scenario 3: Using Laptop Computers Running Windows 7 on Wireless Networks 377

Suggested Practices 378
 Configure IPv4 378
Chapter 7 Windows Firewall and Remote Management 381
Before You Begin ... 382
Lesson 1: Managing Windows Firewall 383
Windows Firewall ... 383
Windows Firewall with Advanced Security 389
Lesson Summary ... 399
Lesson Review ... 400
Lesson 2: Windows 7 Remote Management 402
Remote Desktop .. 402
Remote Assistance .. 405
Windows Remote Management Service 408
Lesson Summary ... 415
Lesson Review ... 415
Chapter Review ... 418
Chapter Summary .. 418
Key Terms ... 418
Case Scenarios ... 418
Case Scenario 1: University Client Firewalls 419
Case Scenario 2: Antarctic Desktop Support 419
Suggested Practices .. 419
Configure Windows Firewall .. 420
Configure Remote Management ... 420
Take a Practice Test .. 420

Chapter 8 BranchCache and Resource Sharing 421
Before You Begin ... 422
Lesson 1: Sharing Resources .. 423
Network And Sharing Center ... 423
HomeGroups .. 425
Lesson 1: Managing User Account Control 479
 User Account Control (UAC) ... 479
 UAC Settings .. 480
 User Account Control Policies .. 482
 Secpol and Local Security Policy .. 487
 Lesson Summary .. 490
 Lesson Review .. 491

Lesson 2: Windows 7 Authentication and Authorization 493
 Credential Manager ... 493
 Using Runas to Run Programs as Another User 495
 Configuring User Rights .. 496
 Smart Cards .. 497
 Account Policies ... 499
 Resolving Authentication Issues .. 500
 Managing Certificates .. 502
 Lesson Summary .. 507
 Lesson Review ... 508

Chapter Review .. 510
Chapter Summary .. 510
Key Terms .. 510
Case Scenarios ... 511
 Case Scenario 1: User Account Control at Coho Vineyard 511
 Case Scenario 2: Resolving Password Problems at Wingtip Toys
 ... 511
Suggested Practices .. 512
 Configure User Account Control (UAC) 512
 Configure Authentication and Authorization 512
Take a Practice Test .. 512

Chapter 10 DirectAccess and VPN Connections 513

Before You Begin .. 514
Lesson 1: Managing DirectAccess ... 515
 Understanding DirectAccess ... 515
 The DirectAccess Process .. 516
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DirectAccess Client Configuration</td>
<td>517</td>
</tr>
<tr>
<td>Configuring the DirectAccess server</td>
<td>521</td>
</tr>
<tr>
<td>Lesson Summary</td>
<td>527</td>
</tr>
<tr>
<td>Lesson Review</td>
<td>527</td>
</tr>
<tr>
<td>Lesson 2: Remote Connections</td>
<td>530</td>
</tr>
<tr>
<td>Virtual Private Networks</td>
<td>530</td>
</tr>
<tr>
<td>VPN Authentication Protocols</td>
<td>533</td>
</tr>
<tr>
<td>VPN Reconnect</td>
<td>535</td>
</tr>
<tr>
<td>NAP Remediation</td>
<td>536</td>
</tr>
<tr>
<td>Remote Desktop and Application Publishing</td>
<td>537</td>
</tr>
<tr>
<td>Dialup Connections</td>
<td>540</td>
</tr>
<tr>
<td>Configuring Windows 7 to Accept Incoming Connections</td>
<td>541</td>
</tr>
<tr>
<td>Auditing Remote Connections</td>
<td>544</td>
</tr>
<tr>
<td>Lesson Summary</td>
<td>547</td>
</tr>
<tr>
<td>Lesson Review</td>
<td>548</td>
</tr>
<tr>
<td>Chapter Review</td>
<td>550</td>
</tr>
<tr>
<td>Chapter Summary</td>
<td>550</td>
</tr>
<tr>
<td>Key Terms</td>
<td>550</td>
</tr>
<tr>
<td>Case Scenarios</td>
<td>550</td>
</tr>
<tr>
<td>Case Scenario 1: Wingtip Toys DirectAccess</td>
<td>551</td>
</tr>
<tr>
<td>Case Scenario 2: Remote Access at Tailspin Toys</td>
<td>551</td>
</tr>
<tr>
<td>Suggested Practices</td>
<td>551</td>
</tr>
<tr>
<td>Configure DirectAccess</td>
<td>552</td>
</tr>
<tr>
<td>Configure Remote Connections</td>
<td>552</td>
</tr>
<tr>
<td>Take a Practice Test</td>
<td>552</td>
</tr>
</tbody>
</table>

Chapter 11 BitLocker and Mobility Options 553

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before You Begin</td>
<td>554</td>
</tr>
<tr>
<td>Lesson 1: Managing BitLocker</td>
<td>555</td>
</tr>
<tr>
<td>BitLocker</td>
<td>555</td>
</tr>
<tr>
<td>BitLocker To Go</td>
<td>564</td>
</tr>
<tr>
<td>Lesson Summary</td>
<td>571</td>
</tr>
<tr>
<td>Lesson Review</td>
<td>572</td>
</tr>
</tbody>
</table>
Chapter 12 Windows Update and Windows Internet Explorer 599

Before You Begin ... 600

Lesson 1: Updating Windows 7 .. 601
 Configuring Windows Update ... 601
 Action Center ... 609
 Understanding Windows Server Update Services 610
 Windows Update Policies .. 612
 Microsoft Baseline Security Analyzer 616
 Lesson Summary ... 619
 Lesson Review ... 620

Lesson 2: Configuring Internet Explorer 622
 Internet Explorer Compatibility View 622
 Configuring Security Settings .. 623
 SmartScreen Filter .. 626
 Managing InPrivate Mode .. 627
 Add-Ons and Search Providers .. 630
 Pop-Up Blocker .. 632
 Configuring SSL Certificates .. 633
Lesson Summary ... 640
Lesson Review ... 641
Chapter Review .. 643
Chapter Summary ... 643
Key Terms ... 643
Case Scenarios .. 643
 Case Scenario 1: Windows Update at Contoso.......... 644
 Case Scenario 2: Internet Explorer at Wingtip Toys.... 644
Suggested Practices .. 645
 Configure Updates to Windows 7 645
 Configure Internet Explorer 645
Take a Practice Test 646

Chapter 13 Monitoring and Performance 647

Before You Begin .. 648
Lesson 1: Monitoring Systems 649
 Performance Monitoring and Reporting 649
 Tracking System Reliability, Stability, and Overall
 Performance .. 658
 Using the Action Center 661
 Using System Tools to Investigate Processes and Services
 Logging and Forwarding Events and Event Subscriptions 673
 Lesson Summary ... 686
 Lesson Review ... 686
Lesson 2: Configuring Performance Settings 689
 Obtaining System Information Using WMI 689
 Using the System Configuration Tool 705
 Using the Services Console 707
 Configuring Performance Options 709
 Configuring Hard Disk Write Caching 711
 Troubleshooting Performance Problems with Event Viewer
 Using Task Manager to Configure Processes 712
 Configuring Networking Performance 715
 Windows Performance Analysis Tools 717
Chapter 14 Recovery and Backup

Before You Begin ... 730

Lesson 1: Backup ... 731
 Scheduling Backups with the Backup And Restore Console 731
 Implementing System Image Backups 739
 Lesson Summary 743
 Lesson Review 743

Lesson 2: System Recovery ... 746
 Performing a System Restore 746
 Advanced Boot Options and System Recovery Options 750
 Windows 7 Boot Options 754
 Rolling Back Drivers 755
 Lesson Summary 760
 Lesson Review 760

Lesson 3: Recovering Files and Folders 762
 Restoring Damaged or Deleted Files by Using Previous Versions 762
 Configuring System Protection and Disk Usage 769
Acknowledgments

Writing a book is always a team effort, and we have the advantage of an excellent team working hard behind the scenes and, unlike the authors, never seeing their names on the front cover. We are grateful to Ken Jones, our acquisitions editor, for his continued faith in us whenever a new project comes along, to Laura Sackerman, our developmental editor, who guides us through the initial stages and helps us out with any problems regarding, for example, new templates, and to Heather Stafford, who performs a function close to our hearts—she draws up our contract.

Possibly the key person in the entire team is the project editor, who holds the whole team together. We had worked with the indefatigable and highly competent Rosemary Caperton before and were very pleased to work with her again. We were also pleased that Rozanne Whalen was available as our technical reviewer, and was there to point out any slips we made and to question our assumptions. Rozanne is unfailingly polite, which doesn’t stop her being very sharp indeed.

Adherence to standards of layout and literacy is vital to the quality of a book and to the reader experience. We are grateful for the considerable contribution made by our copyeditor, Susan McClung; our editorial proofreader, Nicole Schlutz; our indexer, Maureen Johnson; and last but definitely not least, Ashley Schneider, the S4Carlisle project editor, who pulls it all together.

Few creatures are as antisocial as an author in mid-book, and we are both lucky to have understanding and supportive wives. So, many thanks, Oksana and Anne. You are an essential and much-valued part of the team.

—Orin and Ian
Introduction

This training kit is designed for IT professionals who operate in enterprise environments that use Windows 7 as a desktop operating system. You should have at least one year of experience in the IT field, as well as experience implementing and administering any Windows client operating system in a networked environment.

You should be able to install, deploy, and upgrade to Windows 7, including ensuring hardware and software compatibility. Additionally, you should be able to configure preinstallation and postinstallation system settings, Windows security features, network connectivity applications included with Windows 7, and mobile computing. You should also be able to maintain systems, including monitoring for and resolving performance and reliability issues and have a basic understanding of Windows PowerShell syntax.

By using this training kit, you will learn how to do the following:

- Install, upgrade, and migrate to Windows 7.
- Deploy Windows 7.
- Configure hardware and applications.
- Configure network connectivity.
- Configure access to resources.
- Configure mobile computing.
- Monitor and maintain systems that run Windows 7.
- Configure backup and recovery options.
Lab Setup Instructions

The exercises in this training kit require a minimum of two client computers or virtual machines running Windows 7 Enterprise or Ultimate editions. Instructions for configuring the first of these computers are given in Chapter 1, “Install, Migrate, or Upgrade to Windows 7.” Instructions for configuring the second of these computers are given in Chapter 6, “Network Settings.” You need an additional hard disk (internal or external), formatted using the NTFS file system, installed on the first of these computers.

All computers must be physically connected to the same network. We recommend that you use an isolated network that is not part of your production network to do the practices in this book. To minimize the time and expense of configuring physical computers, we recommend you use virtual machines. To run computers as virtual machines within Windows, you can use Hyper-V, or third-party virtual machine software.

Hardware Requirements

You can complete almost all the practice exercises in this book using virtual machines rather than real hardware. The minimum and recommended hardware requirements for Windows 7 are listed in Table 1.

<table>
<thead>
<tr>
<th>HARDWARE COMPONENT</th>
<th>MINIMUM REQUIREMENTS</th>
<th>RECOMMENDED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>1 GHz 32-bit (x86) or 64-bit (x64) processor</td>
<td>2 GHz or faster</td>
</tr>
<tr>
<td>RAM</td>
<td>1 GB</td>
<td>2 GB</td>
</tr>
<tr>
<td>Disk space</td>
<td>40 GB</td>
<td>60 GB</td>
</tr>
<tr>
<td>Graphics adapter</td>
<td>Supports DirectX 9 graphics</td>
<td>As minimum requirement, but with 256 MB of graphics memory</td>
</tr>
<tr>
<td></td>
<td>Has a Windows Display Driver Model (WDDM) driver</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pixel Shader 2.0 hardware</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32 bits per pixel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>128 MB graphics memory</td>
<td></td>
</tr>
</tbody>
</table>
If you intend to implement two virtual machines on the same computer (which is recommended), a higher specification will enhance your user experience. In particular, a computer with 4 GB RAM and 60 GB available disk space can host all the virtual machines specified for all the practice exercises in this book.

Using the DVD

The companion DVD included with this training kit contains the following:

- **Practice tests** You can reinforce your understanding of how to configure Windows 7 by using electronic practice tests you customize to meet your needs from the pool of Lesson Review questions in this book. Or you can practice for the 70-680 certification exam by using tests created from a pool of 200 realistic exam questions, which give you many practice exams to ensure that you are prepared.

- **An eBook** An electronic version (eBook) of this book is included for when you do not want to carry the printed book with you. The eBook is in Portable Document Format (PDF), and you can view it by using Adobe Acrobat or Adobe Reader.

- **Sample chapters** Sample chapters from other Microsoft Press titles on Windows Server 2008. These chapters are in PDF format.

Digital Content for Digital Book Readers: If you bought a digital-only edition of this book, you can enjoy select content from the print edition’s companion DVD. Visit http://www.microsoftpressstore.com/title/9780735627086 to get your downloadable content.

How to Install the Practice Tests

To install the practice test software from the companion DVD to your hard disk, do the following:

1. Insert the companion DVD into your DVD drive and accept the license agreement. A DVD menu appears.

NOTE IF THE DVD MENU DOES NOT APPEAR

If the DVD menu or the license agreement does not appear, AutoRun might be disabled on your computer. Refer to the Readme.txt file on the DVD-ROM for alternate installation instructions.

2. Click Practice Tests and follow the instructions on the screen.
How to Use the Practice Tests

To start the practice test software, follow these steps:

1. Click Start, click All Programs, and then select Microsoft Press Training Kit Exam Prep. A window appears that shows all the Microsoft Press training kit exam prep suites installed on your computer.

2. Double-click the lesson review or practice test you want to use.

NOTE LESSON REVIEWS VERSUS PRACTICE TESTS

Select the (70-680) Windows 7, Configuring *lesson review* to use the questions from the “Lesson Review” sections of this book. Select (70-680) Windows 7, Configuring *practice test* to use a pool of 200 questions similar to those that appear on the 70-680 certification exam.

Lesson Review Options

When you start a lesson review, the Custom Mode dialog box appears so that you can configure your test. You can click OK to accept the defaults, or you can customize the number of questions you want, how the practice test software works, which exam objectives you want the questions to relate to, and whether you want your lesson review to be timed. If you are retaking a test, you can select whether you want to see all the questions again or only the questions you missed or did not answer.

After you click OK, your lesson review starts.

- **Article I** To take the test, answer the questions and use the Next and Previous buttons to move from question to question.

- **Article II** After you answer an individual question, if you want to see which answers are correct—along with an explanation of each correct answer—click Explanation.

- **Article III** If you prefer to wait until the end of the test to see how you did, answer all the questions and then click Score Test. You will see a summary of the exam objectives you chose and the percentage of questions you got right, both overall and per objective. You can print a copy of your test, review your answers, or retake the test.

Practice Test Options

When you start a practice test, you choose whether to take the test in Certification Mode, Study Mode, or Custom Mode:

- **Certification Mode** Closely resembles the experience of taking a certification exam. The test has a set number of questions. It is timed, and you cannot pause and restart the timer.

- **Study Mode** Creates an untimed test during which you can review the correct answers and the explanations after you answer each question.
- **Custom Mode** Gives you full control over the test options so that you can customize them as you like. In all modes, the user interface when you are taking the test is basically the same but with different options enabled or disabled depending on the mode. The main options are discussed in the previous section, “Lesson Review Options.”

When you review your answer to an individual practice test question, a “References” section is provided that lists where in the training kit you can find the information that relates to that question and provides links to other sources of information. After you click Test Results to score your entire practice test, you can click the Learning Plan tab to see a list of references for every objective.

How to Uninstall the Practice Tests

To uninstall the practice test software for a training kit, use the Program And Features option in Control Panel.

Microsoft Certified Professional Program

The Microsoft certifications provide the best method to prove your command of current Microsoft products and technologies. The exams and corresponding certifications are developed to validate your mastery of critical competencies as you design and develop, or implement and support, solutions with Microsoft products and technologies. Computer professionals who become Microsoft-certified are recognized as experts and are sought after industry-wide. Certification brings a variety of benefits to the individual and to employers and organizations.

MORE INFO ALL THE MICROSOFT CERTIFICATIONS

Technical Support

Every effort has been made to ensure the accuracy of this book and the contents of the companion DVD. If you have comments, questions, or ideas regarding this book or the companion DVD, please send them to Microsoft Press:

- **E-mail**
 - mspininput@microsoft.com

For additional support information regarding this book and the DVD-ROM (including answers to commonly asked questions about installation and use), visit the Microsoft Press Technical Support Web site at http://www.microsoft.com/learning/support/books/. To connect directly to the Microsoft Knowledge Base and enter a query, visit http://support.microsoft.com/search/. For support information regarding Microsoft software, connect to http://support.microsoft.com.
People in the workplace rarely create documents that only they access. This is because organizational data is generally useful only when it is shared among people in the organization. People generally spend countless hours creating and formatting documents in Microsoft Office Word because they expect other people to read those documents. They write documents to explain ideas or to transmit data to other people because, generally, it is not necessary to write a document to explain something to yourself. The first part of this chapter looks at the methods you can use to share data stored on computers running Windows 7. This includes the simplified technique of sharing data through HomeGroups and the more complex technique of configuring shared folders. The second part of this chapter looks at how you can restrict the sharing of data, ensuring that only the people who should be able to view that data are actually able to view it. You can do this by applying file and folder permissions restricting who can access the data and by using encryption to ensure that data is encoded so that only specific people can decode it. The final part of this chapter looks at how you can speed up data access for people that are located in small branch offices in larger organizations through a new Windows 7 feature named BranchCache.

Exam objectives in this chapter:
- Configure shared resources.
- Configure file and folder access.
- Configure BranchCache.

Lessons in this chapter:
- Lesson 1: Sharing Resources 423
- Lesson 2: Folder and File Access 442
- Lesson 3: Managing BranchCache 461
Before You Begin

To complete the exercises in the practices in this chapter, you need to have done the following:

- Installed Windows 7 on a stand-alone client PC named Canberra, as described in Chapter 1, “Install, Migrate, or Upgrade to Windows 7.”

REAL WORLD

Orin Thomas

Although file and folder sharing at the client rather than the server level can be quite useful for small businesses that do not have the resources to deploy a dedicated file server, I’ve found that if people are not paying attention, shared folders on client computers can cause a lot of problems. Perhaps this is because people think about shared folders on a server and shared folders on a client computer quite differently. When you have a file server, people are very aware that files saved in that location will be visible to other people in the organization. When you deploy file servers, it is relatively simple to set up file shares on the basis of group membership, and people remember that a file that should be visible only to managers gets put in the Managers shared folder. Sure, you can do this with client computers, but it generally takes more effort to configure different shares with specific permissions on each client computer. It takes even more effort to get the people that actually use these computers to remember how permissions actually work.

A colleague of mine had to deal with a meltdown that occurred at one client he worked for because a manager had saved performance reviews to a local folder that was visible to everyone on the network. Although there had been a specific shared folder set up that did limit document access to the administrative assistant and the company director, the manager hadn’t paid attention when this was explained to him. He worked off the assumption that no one else would see the reviews because he told only his administrative assistant and the company’s director that the documents were present in the shared folder.

Shared printers can cause similar problems. In many small businesses, the people who run the company get the best hardware. The person that ends up with the most fully featured printer gets it because she is the person who owns the company and signs the purchase orders. The printer ends up shared so that the people who might use features such as automatic double-sided printing and collation can actually do so. The downside to this is that these people have to keep going across to the senior staff member’s work space to retrieve their printing. At one organization I know, several people had to be given keys to the boss’s office so they could access their printing when he was away on business. Rather than move the printer to a more public location, the boss ended up authorizing the purchase of another printer.
Lesson 1: Sharing Resources

Most home networks and very small businesses do not need a dedicated file and print server. There are usually only a few computers, and the number of files that people need to share is minimal. When you do not have access to a dedicated file and print server, you can use the resource sharing options included in Windows 7 to share files, folders, and printers. Windows 7 includes a new feature named HomeGroups, which simplifies the process of sharing files and printers on small networks where Active Directory Domain Services (AD DS) is not present.

After this lesson, you will be able to:
- Configure HomeGroup settings.
- Configure sharing settings using Network And Sharing Center.
- Share folders.
- Manage printer permissions.

Estimated lesson time: 40 minutes

Network And Sharing Center

You can use the Network And Sharing Center, displayed in Figure 8-1, to configure HomeGroup and advanced sharing options. You can use Network And Sharing Center to determine which networks the computer is currently joined to and the network designation assigned to those networks. You can use this tool to reset the designation assigned to an existing network. For example, you can change a Work network to a Home network by clicking the Work Network item under the network name and then clicking the Home Network option in the Set Network Location dialog box. You will learn more about the HomeGroup sharing options later in this lesson.

You can access the Advanced Sharing Settings dialog box by clicking the Change Advanced Sharing Settings item in Network And Sharing Center. You can use this dialog box, shown in Figure 8-2, to configure the sharing options for each different network profile. Because network profiles apply on a per-network interface basis, this means that different sharing options apply on a per-interface basis when a client running Windows 7 connects to multiple networks; for example, when you connect to a home network using a wireless network adapter and to an organizational network using DirectAccess.
FIGURE 8-1 Network And Sharing Center

FIGURE 8-2 Advanced Sharing Settings
The sharing options that you can enable, disable, or configure using Advanced Sharing Settings are as follows:

- **Network Discovery**
 Network Discovery allows the client running Windows 7 to locate other computers and devices on the network. It also makes the client visible to other computers on the network. Disabling Network Discovery does not turn off other forms of sharing.

- **File And Printer Sharing**
 This setting enables files and printers to be shared with other clients on the network.

- **Public Folder Sharing**
 Enabling this setting allows network users read and write access to a public folder location. If you disable this folder, users can read and write data only to shared folders to which they have appropriate permissions.

- **Media Streaming**
 When you enable this setting, users on the network are able to access pictures, music, and videos hosted on the client running Windows 7. The client is also able to locate pictures, music, and videos hosted on other clients running Windows 7 on the network.

- **File Sharing Connections**
 This option allows you to choose between protecting file-sharing connections using 128-bit encryption or 40- or 56-bit encryption. You would choose the 40- or 56-bit encryption option for devices that do not support 128-bit encryption.

- **Password Protected Sharing**
 Enabling this option means that only users who have accounts configured locally on the client running Windows 7 are able to access shared resources. To allow users that do not have local accounts access to shared resources, you must disable this option.

- **HomeGroup Connections**
 This option decides how authentication works for connections to HomeGroup resources. If all computers in the HomeGroup have the same user name and passwords configured, you can set this option to allow Windows to manage HomeGroup connections. If different user accounts and passwords are present, you should configure the option to use user accounts and passwords to connect to other computers. This option is available only in the Home/Work network profile.

HomeGroups

HomeGroups are a simple method through which you can share resources on a home network. You can use HomeGroups only on networks that you have designated as Home networks. You cannot create a HomeGroup on a domain network, but you can join an existing HomeGroup, as shown in Figure 8-3, if one is detected. For example, you could join an existing HomeGroup when you are using your client running Windows 7 on your home network, but where you also have a connection to your organization’s domain network through DirectAccess.
HomeGroups are visible as a separate node in Windows Explorer. Windows 7 displays HomeGroups by user name and computer name. This is because each user on a client running Windows 7 will share different resources with the network depending on their individual sharing settings. Figure 8-4 shows the Don_Hall (CANBERRA) and Kim_Akers (CANBERRA) HomeGroups. The Kim_Akers (CANBERRA) HomeGroup includes a custom library named Scientific Data. You will create and share this custom library in the practice at the end of this lesson.
Although only users with Administrative privileges are able to enable the HomeGroup, each standard user can choose which of their libraries to share with the HomeGroup. For example, Kim_Akers can choose to share her Documents, Music, Pictures, and Videos libraries, whereas Don_Hall may choose to share only his Documents library. Users do not need to be logged on for their HomeGroups to be available to other users on the network. Each user’s HomeGroup share is available so long as the computer that hosts it is turned on and connected to the home network.

If a HomeGroup is present on the network, the details are displayed when you open the HomeGroup item in the Network And Sharing Center.

To join a HomeGroup if one already exists on your network, perform the following steps:

1. Open the HomeGroup item from the Network And Sharing Center.
2. If a HomeGroup is detected on another computer, the details of this HomeGroup are displayed. Contact the person who configured the HomeGroup and then click Join Now.
3. On the Join A HomeGroup page, shown in Figure 8-5, select which items you want to share with the other computers that are members of the HomeGroup, and click Next.

![Figure 8-5 Share items with HomeGroup](image)

4. Enter the HomeGroup password that you have acquired from the person who created the HomeGroup. Once the password has been accepted, you have joined the HomeGroup.

To leave the HomeGroup, open the HomeGroup item in the Network And Sharing Center and then click Leave.
Shared Folders

Shared folders allow you to share data stored on your computer with other users on your network. You can share individual folders by right-clicking the folder you wish to share, choosing Properties, and then clicking the Sharing tab of the folder’s properties, as shown in Figure 8-6. This page provides two different sharing options: Share and Advanced Sharing. You can use shared folders when you cannot use HomeGroups, such as when you want to share resources on a Work network.

![File Sharing dialog box](image)

FIGURE 8-6 Sharing tab of folder properties

Clicking Share brings up the File Sharing dialog box, shown in Figure 8-7. You can use this dialog box to set share permissions for local user accounts, the Everyone group, or the HomeGroup. When you connect a client running Windows 7 to a domain, you can also specify domain user accounts and groups. You cannot use this dialog box to specify local groups. The user account that you use to share the folder with is assigned the Owner permission automatically. It is also possible to assign the Read/Write permissions, which allows users to add files, delete files, and modify files in the shared folder, and the Read permission, which allows users to access files in the shared folder but not modify or delete them.

Clicking Advanced Sharing brings up the Advanced Sharing dialog box, shown in Figure 8-8. This dialog box allows you to limit the number of users who are able to access the share. Use this when you need to restrict the number of people that are connected to a share for performance reasons. Clicking Permissions allows you to configure permissions for local groups, local users, domain groups, or domain users.
As you can see in Figure 8-9, these permissions have different names from those that are available from the basic File Sharing dialog box but allow you to do the same things. The Read permission allows a user or group to access a file or folder but does not allow modification or deletion. The Change permission includes the read permission but also allows you to add files, delete files, and modify files in the shared folder. This permission is equivalent to the Read/Write permission in the basic File Sharing dialog box. The Full Control permission includes all the rights conferred by the Change and Read permissions. It also
allows the user assigned that permission to modify the permissions of other users. Full Control is equivalent to the basic sharing Owner permission, though unlike basic sharing, where there can only be one user assigned the Owner permission, you can assign the Full Control permission to users and groups.

FIGURE 8-9 Advanced permissions

Clicking Caching on the Advanced Sharing dialog box allows you to access the Offline Settings dialog box, as shown in Figure 8-10. Offline settings determine whether programs and files hosted on the shared folder are available when the user, or the computer hosting them, is not available to the network. You will learn more about offline settings in Chapter 11, “BitLocker and Mobility Options.”

FIGURE 8-10 Shared folder offline settings
You can manage all shared folders on a client running Windows 7 centrally using the Shared Folders node of the Computer Management console. The Shares node, shown in Figure 8-11, displays all shared folders on the computer. The Sessions node provides details on which remote users currently are connected to shared folders, where they are connecting from and how long they have been connected. The Open Files node displays the folders and files that remote users are accessing. You can edit the properties of an existing share by right-clicking it within this console and selecting properties. You can create a shared folder by right-clicking the Shares node and then clicking New Share. This starts the Create A Shared Folder Wizard. You use this wizard to create a shared folder in a practice exercise at the end of this lesson.

The Net Share command allows for management of shared folders from the command line. You can script this command to automate the creation of shared folders on clients running Windows 7. To create a shared folder, use the command:

```
net share sharename=drive:path
```

To assign permissions when creating the shared folder, use the command:

```
net share sharename=[path] /grant:user,[Read/Change/Full]
```

(for example `net share tempus=c:\temp /grant:Bob,Change`)

You can also use the Net Share command to configure caching options as well as limit the number of users that can connect to the shared folder. You can view the properties of a shared folder by running the command

```
net share sharename
```

as shown in Figure 8-12. You can view the properties of all shared folders, including which directories are associated with particular folders, by using the Net Share command without any options.
Share permissions and NTFS permissions are combined when determining what access a remote user has to files. You will learn about NTFS permissions and combined permissions in Lesson 2, “Folder and File Access.”

Quick Check
- Which tool can you use to determine which files and folders that users are accessing remotely on a client running Windows 7 configured with shared folders?

Quick Check Answer
- You can use the Shared Folders\Open Files node to determine which files and folders are being accessed remotely on a client running Windows 7.

Libraries
A library is a virtualized collection of folders. This means that a library is not a folder that you can locate on the hard disk that contain subfolders but is a collection of links to existing folders. If you navigate to the Libraries folder from the command prompt, you will see that it contains files with the extension library-ms, as shown in Figure 8-13. These files are the collection of folder links and each one of them is a separate library.

Libraries allow you to collect folders that exist in many different locations locally and on the network into a single location when viewed from within Windows Explorer. For example, you can configure the Documents library so that it includes document folders located on other computers in the HomeGroup as well as folders located on the computer’s hard disk drive. Libraries do not have to be limited to a certain type of file, though it is usually better to restrict them to a specific type of content as a means of simplifying navigation.
You can add folders to an existing library by editing that library’s properties and clicking Include A Folder, as shown in Figure 8-14. You can use the same Properties page to remove existing folders from a library. You can create a new library by navigating to the Libraries folder and clicking New Library. You will create a new library in the practice exercise at the end of this lesson.

FIGURE 8-14 Library locations
Sharing Printers

Shared printers allow users on the network to send documents to a printer that is connected to a computer running Windows 7. To share a printer, enable printer sharing in HomeGroup or in Advanced Sharing Settings and then locate the printer within Devices And Printers. Right-click the printer that you wish to share, click Printer Properties, click the Sharing tab, and then enable Share This Printer, as shown in Figure 8-15. If you are going to be sharing a printer with computers running previous versions of Microsoft Windows, you can add the drivers for the printer using Additional Drivers. When you add additional drivers, other computers on the network that do not have the printer drivers installed are able to download them from the computer that is sharing the printer.

![Printer Sharing Options](image)

FIGURE 8-15 Printer sharing options

When you share a printer, the Everyone group is assigned the Print permission by default, as shown in Figure 8-16. This means that all members of the HomeGroup or any user that is a member of the domain in a domain environment can send print jobs to the printer. If several people use the printer, you may wish to assign one of the other available permissions to allow better printer management. The available permissions are:

- **Print** This permission allows a user to print to the printer and rearrange the documents that they have submitted to the printer.
- **Manage This Printer** Users assigned the Manage This Printer permission can pause and restart the printer, change spooler settings, adjust printer permissions, change printer properties, and share a printer.
- **Manage Documents**
 This permission allows users or groups to pause, resume, restart, cancel, or reorder the documents submitted by users that are in the current print queue.

![Printer sharing properties](image)

FIGURE 8-16 Printer sharing properties

MORE INFO
MANAGE PRINTER PERMISSIONS

To learn more about managing printer permissions, consult the following page on TechNet:

EXAM TIP

Remember what permissions to assign a group to allow them to manage their own documents, but not to manage other documents submitted to a shared printer.

PRACTICE
Sharing Resources

Rather than deploying a dedicated file server, many small businesses use shared folders hosted off workstations as a method of sharing documents. In this practice, you configure Windows 7 to share data using the built-in HomeGroup functionality as well as sharing through the creation of dedicated shared folders.
EXERCISE 1 Configuring Libraries and HomeGroup Settings

In this exercise, you create a new library and then share it. You also modify the HomeGroup password from the one created during setup to one that is easier for other users of the HomeGroup to remember.

1. Log on to computer Canberra using the Kim_Akers user account.
2. Using Windows Explorer, create the C:\Data, C:\Moredata, and the C:\Evenmoredata folders.
3. Click Start. In the Search Programs And Files text box, type Libraries. On the Start menu, click Libraries. This opens the Libraries virtual folder, as shown in Figure 8-17.

![Figure 8-17 The Libraries virtual folder](image)

4. Click the New Library item. This creates a new library. Name the library Scientific_Data.
5. Right-click the Scientific_Data folder and then choose Properties. This opens the Scientific_Data Properties dialog box. Click Include A Folder, navigate to and select the C:\Data folder, and click Include Folder. Repeat this step for the C:\Moredata and C:\Evenmoredata folders.
6. Verify that the Scientific_Data Properties dialog box matches Figure 8-18, and then click OK.
7. Right-click the Scientific_Data library, choose Share With, and then click HomeGroup (Read).
8. If you are presented with the File Sharing dialog box, shown in Figure 8-19, click Yes, Share The Items.
9. Click Start. In the Search Programs And Files text box, type HomeGroup. In the Start menu, click the HomeGroup item. This opens the HomeGroup control panel.

10. Click the Change The Password item. On the Change Your HomeGroup Password dialog box, click Change The Password.
11. On the Type A New Password For Your HomeGroup page, enter the password `P@ssw0rd` and then click Next.

12. Verify that your HomeGroup password settings match those shown in Figure 8-20, and then click Finish.

![Change Your Homegroup Password](image)

FIGURE 8-20 HomeGroup password changed

EXERCISE 2 Advanced Folder Sharing

In this exercise, you share a folder using the Create A Shared Folder Wizard. You would use this method to share a folder when you connect your computer to a Domain network. When you connect your computer to a domain network, you cannot use the HomeGroup functionality of Windows 7, though it is possible to share libraries directly.

1. If necessary, log on to the Canberra computer using the Kim_Akers user account.

2. Open an elevated command prompt and issue the following commands:
   ```
   Net localgroup Management /add
   Net localgroup Secretariat /add
   Mkdir c:\shared_folder
   ```

3. Type `exit` to close the elevated command prompt.

4. Click Start. In the Search Programs And Files text box, type `Computer Management`. In the Start menu, click Computer Management. This opens the Computer Management console.

5. Expand the System Tools\Shared Folders node. Right-click the Shares node and then choose New Share. This starts the Create A Shared Folder Wizard. Click Next.

6. In the Folder Path: text box, type `c:\shared_folder`, as shown in Figure 8-21, and then click Next.
7. In the Name, Description, And Settings page, accept the default settings, and then click Next.

8. On the Shared Folder Permissions page, select Customize Permissions and then click Custom.

9. On the Share Permissions tab, select the Everyone group and then click Remove. Click Add. In the Select Users Or Groups dialog box, type Management; Secretariat and then click OK.

10. Configure the Secretariat group with the Read (Allow) permission. Configure the Management group with the Change (Allow) permission, as shown in Figure 8-22. Click OK.

FIGURE 8-21 Specifying a shared folder path

FIGURE 8-22 Custom share permissions
11. Click Finish twice to close the Create A Shared Folder Wizard.

12. From an elevated command prompt, issue the command `net share shared_folder` to verify that the Management group is assigned the Change permission and the Secretariat group has been assigned the Read permission.

Lesson Summary

- HomeGroups can be used on networks that have the Home network location designation. They make it easier to share resources in environments without AD DS.
- Libraries are collections of folders. You can share libraries with the HomeGroup.
- Shared folders allow individual folders to be shared. Sharing options for folders are more detailed than for Libraries.
- You can manage shared folders through the Computer Management console, Windows Explorer, and the Net Share command. The Computer Management console allows for the centralized administration of shared folders.
- The Read printer permission allows users to control their own documents. The Manage Documents permission allows users to manage all documents submitted to the printer. The Manage Printers printer permission allows users to control printer settings and configure printer permissions.

Lesson Review

You can use the following questions to test your knowledge of the information in Lesson 1, “Sharing Resources.” The questions are also available on the companion DVD if you prefer to review them in electronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incorrect are located in the “Answers” section at the end of the book.

1. You are responsible for maintaining a computer running Windows 7 Enterprise that is used in a university laboratory and is hooked up to four different scientific instruments. Each of these instruments outputs its data to a directory named Data. Each instrument’s data directory is located on a different volume on the computer’s hard disk drive. You want to share this data with other computers in the laboratory through the common HomeGroup. Which of the following should you do? (Choose all that apply; each answer forms part of a complete solution.)

 - A. Share each Data folder.
 - B. Create a library named Sci_Data.
 - C. Add each instrument’s separate Data folder to the Sci_Data library.
 - D. Share the Sci_Data library.
2. You do consulting work for a small business. This small business has a single color laser printer. This printer is shared off the administrative assistant’s client running Windows 7. The administrative assistant is not a member of the local Administrators group. You want to allow the administrative assistant to reorder jobs in the print queue and delete them if necessary. The administrative assistant should be able to do this to any documents in the queue. The administrative assistant should not be able to reconfigure printer permissions. Which of the following should you do to accomplish this goal?

A. Assign the administrative assistant the Print permission.
B. Assign the administrative assistant the Manage This Printer permission.
C. Assign the administrative assistant the Manage Documents permission.
D. Add the administrative assistant’s account to the Power Users group.

3. Which of the following tools can you use to determine which shared folders a client running Windows 7 hosts and the local folders that are associated with those shares? (Choose all that apply.)

A. The Net Share command
B. The Computer Management console
C. Libraries
D. Network And Sharing Center

4. You have created a local group on a client running Windows 7 named Accounting. Which of the following share permissions should you assign to the accounting group to ensure that users are able to add, modify, and delete files located in the Accounting shared folder without giving members of the group the ability to modify shared folder permissions?

A. Read
B. Change
C. Full Control
D. Owner

5. Which of the following Advanced Sharing Settings options should you configure to ensure that shared resources on a client running Windows 7 are visible to all other computers in the HomeGroup?

A. Public Folder Sharing
B. File Sharing Connections
C. Password Protected Sharing
D. Network Discovery
Lesson 2: Folder and File Access

In many Windows 7 deployments, multiple people have to use the same computer. When multiple people use the same computer and store their files locally, it becomes necessary to ensure that some form of security exists so that one user is able to look at another user’s files only if he has the appropriate permissions. Windows 7 allows you to do this through file and folder permissions, as well as encryption through Encrypting File System (EFS).

After this lesson, you will be able to:
- Configure file and folder permissions.
- Resolve effective permissions issues.
- Encrypt files and folders.

Estimated lesson time: 40 minutes

File and Folder Permissions

You can apply NTFS file and folder permissions to individual user accounts or groups. NTFS file and folder permissions determine access rights to files and folders. These access rights apply whether the user logs on directly to the client running Windows 7 or is accessing the client running Windows 7 over the network. You can set file and folder permissions only to files and folders hosted on NTFS volumes. It is not possible to set file and folder permissions to files and folders hosted on FAT or FAT32 volumes.

There are six standard permissions that can be assigned to a file or a folder. These permissions include the following:
- **Full Control** When applied to folders, allows the reading, writing, changing, and deletion of files and subfolders. When applied to a file, permits reading, writing, changing, and deletion of the file. Allows modification of permissions on files and folders.
- **Modify** When applied to folders, allows the reading, writing, changing, and deletion of files and subfolders. When applied to a file, permits reading, writing, changing, and deletion of the file. Does not allow the modification of permissions on files and folders.
- **Read & Execute** When applied to folders, allows the content of the folder to be accessed and executed. When applied to a file, allows the file to be accessed and executed.
- **List Folder Contents** Can be applied only to folders, allows the contents of the folder to be viewed.
- **Read** When applied to folders, allows content to be accessed. When applied to a file, allows the contents to be accessed. Differs from Read & Execute in that it does not allow files to be executed.
- **Write** When applied to folders, allows adding of files and subfolders. When applied to a file, allows a user to modify, but not delete, a file.
You can assign these permissions to a user or group by viewing a folder’s properties and clicking the Security tab. You can configure permissions with the Allow or Deny setting, or provide no setting. Deny permissions always override Allow permissions. If a user is not explicitly assigned an Allow permission, she cannot perform that function.

Figure 8-23 shows that the user Kim Akers has the Read & Execute (Allow), List Folder Contents (Allow), and Read (Allow) permissions for the Temp folder. Other permissions, such as Modify, have been assigned no setting. Unless the Modify (Allow) permission is assigned through membership in another group, Kim Akers is unable to modify files in the Temp folder.

![Folder Properties](image)

FIGURE 8-23 Standard permissions

When you set the Allow permissions for some permission types, other Allow permissions are included automatically. For example, if you set the Read & Execute (Allow) permission, Windows automatically sets the List Folder Contents (Allow) and Read (Allow) permissions. Similarly, a Deny permission for one permission type can also apply to other permission types. The permissions that also apply when you assign a particular type of permission are included in Table 8-1.

TABLE 8-1 Included Permissions

<table>
<thead>
<tr>
<th>PERMISSION</th>
<th>INCLUDED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Control</td>
<td>Full Control, Modify, Read & Execute, List Folder Contents, Read, Write</td>
</tr>
<tr>
<td>Modify</td>
<td>Modify, Read & Execute, List Folder Contents, Read, Write</td>
</tr>
<tr>
<td>Read & Execute</td>
<td>Read & Execute, List Folder Contents, Read</td>
</tr>
<tr>
<td>List Folder Contents</td>
<td>List Folder Contents</td>
</tr>
<tr>
<td>Read</td>
<td>Read</td>
</tr>
<tr>
<td>Write</td>
<td>Write</td>
</tr>
</tbody>
</table>
Quick Check

1. Which additional permissions are assigned when you assign the Modify (Allow) permission?

2. Which permission should you assign when you want to allow a user to modify the contents of a file, but not delete that file?

Quick Check Answers

1. When you assign the Modify (Allow) permission, Windows also assigns the Read & Execute (Allow), List Folder Contents (Allow), Read (Allow), and Write (Allow) permissions automatically.

2. The Write permission allows a user to modify the contents of a file, but not delete it.

Special Permissions

The six NTFS permissions are actually collections of special permissions. This is why other permissions are included automatically when you assign permissions such as Modify and Read & Execute. The collection of special permissions that are assigned when you assign the Read & Execute permission include all the special permissions that make up the List Folder Contents and Read permissions. The six NTFS permissions are adequate for the majority of situations. If you encounter an unusual situation where you want more granular permissions, you can modify the special permissions. This is done by clicking the Advanced button on the Security tab of a file or folder’s properties, clicking Change Permissions, and then clicking Edit. The Permissions Entry dialog box is shown in Figure 8-24.

![Permission Entry dialog box](image-url)
The special permissions that make up each of the six NTFS permissions is shown in Table 8-2. The List Folder Contents special permission applies only to folders and does not apply to individual files. Special permissions are included here for the sake of completeness and are unlikely to be addressed directly by the 70-680 exam.

TABLE 8-2 Special Permissions and NTFS Permissions

<table>
<thead>
<tr>
<th>SPECIAL PERMISSION</th>
<th>FULL CONTROL</th>
<th>MODIFY</th>
<th>READ & EXECUTE</th>
<th>LIST FOLDER CONTENTS</th>
<th>READ</th>
<th>WRITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traverse Folder/Execute File</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>List Folder/Read Data</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Read Attributes</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Read Extended Attributes</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Create Files/Write Data</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Create Folders/Append Data</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write Attributes</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write Extended Attributes</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete Subfolders and Files</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Read Permissions</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Change Permissions</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Take Ownership</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inheriting Permissions

Newly created files and folders inherit the permissions that are assigned to the folder in which they are created. For example, if you have a folder named Alpha that has the Modify (Allow) permission assigned to the Development group, any files or folders that you create in folder Alpha also have the Modify (Allow) permission assigned to the Development group by default.
It is possible to override a file or folder's inherited permissions by editing the permissions, clicking Advanced, clicking Change Permissions, and then clearing the Include Inheritable Permissions From This Object’s Parent option, as shown in Figure 8-25. When you clear the Include Inheritable Permissions From This Object’s Parent option, you have the option of copying the existing permissions so that they apply to the object or removing all inherited permissions. When you edit the Advanced Security settings for a folder, you have the option of replacing the permissions of all existing child objects.

![Advanced Security Settings for New folder](image)

FIGURE 8-25 Permissions inheritance settings

Configuring Permissions with Icacls

Icacls is a command-line utility that you can use to configure and view the NTFS permissions of files and folders on a computer running Windows 7. To use Icacls to view the permissions assigned to a specific file or folder, use the command `Icacls File_or_Folder`. You can use the syntax `Icacls file_or_folder /grant user_or_group:permission`. You can use the `/deny` option to set Deny rather than Allow. The NTFS permissions you can assign are:

- F (Full Control)
- M (Modify)
- RX (Read and Execute)
- R (Read)
- W (Write)
For example, to assign the Kim_Akers user account the Modify NTFS permission on the C:\Accounting folder, issue the command

```
Icacls.exe c:\accounting /grant Kim_Akers:(OI)M
```

To assign the Kim_Akers user account the Read & Execute (Deny) permission to the C:\Research folder, issue the command

```
Icacls.exe c:\research /deny Kim_Akers:(OI)RX
```

Icacls can be used to save permissions assigned to files and folders and to restore them. To save all NTFS permissions C:\Test directory and all its subdirectories to a file named Permissions, issue the command

```
Icacls c:\test\* /save permissions /t
```

You can restore permissions using the /restore option. You can use the ability to save and restore permissions when copying files and folders to different volumes. You will use Icacls to assign permissions in the practice at the end of this lesson.

MORE INFO Icacls

Determining Effective Permissions

When a user is a member of multiple groups and those groups are all assigned different permissions to the same folder, it can be difficult to determine the user’s effective permission. Permissions are cumulative, and Deny permissions override Allow permissions. This can become very complicated when different groups have multiple Allow permissions. If you do not take a user’s group memberships into account, you may miss something important when attempting to figure out the actual permissions that apply to them.

You can use the Effective Permissions tool to calculate a user or group’s effective permissions on a file or folder. The Effective Permissions tool analyzes a user’s permissions as well as the permissions of all the groups to which the user’s account belongs to determine what special permissions the user has to the object in question. To access the Effective Permissions tool, click the Advanced button located on the Security tab of the target file or folder’s properties and select the Effective Permissions tab. Click Select, as shown in Figure 8-26, to choose the group or user for which you wish to determine effective permissions. You will determine the effective permissions of a user in the practice exercise at the end of this lesson.
Copying and Moving Files

Permissions work differently depending on whether you copy a file, move it to a different location on the same volume, or move the file to a different volume. The same inheritance rules that apply to copying or moving files also apply to copying or moving folders.

When you copy a file from one folder to another, the file inherits the permissions of the destination folder. This rule applies whether you are copying between folders on the same volume or folders on different volumes. For example, if you have assigned members of the Research group the Write (Deny) permission on folder Alpha and have assigned the same group the Modify (Allow) permission on folder Beta, members of the Research group have the Modify (Allow) permission on any file copied from folder Alpha to folder Beta. The rules that apply to copying files apply to copying folders. When you copy a folder from one parent folder to another, the folder and all that folder’s contents inherit the permissions assigned to the destination folder.

Moving files from one folder to another works differently, depending on whether you are moving from one folder to another on the same volume, or from a folder on one volume to a folder on another. When you move a file between folders on the same volume, the file retains its original permissions. For example, if you have assigned members of the Research group the Write (Deny) permission on folder Alpha and have assigned the same group the Modify (Allow) permission on folder Beta and you move a file from folder Alpha to folder Beta, the file retains its original Write (Deny) permission for the Research group. The same applies if you move a folder. The folder and its contents retain their original permissions when moved to a new location on the same volume.
When you move a file from a folder on one volume to a folder on another volume, the file behaves the same way that it does when you copy it and inherits the permissions of the destination folder. The same applies to a folder. If you move a folder from one volume to another, that folder and all its contents inherit the permissions assigned to the destination folder.

Robocopy.exe is a command-line utility that is included with Windows 7 that allows you to copy files while retaining their existing NTFS permissions. You can also use Robocopy.exe to move files from one volume to another while allowing them to retain their permissions. You should consider Robocopy.exe to be an exception to the normal rules of copying and moving files. In an exam situation, you should assume that the normal rules apply unless the question mentions Robocopy.exe. To use Robocopy.exe to copy all files and folders from the folder name C:\Example\ to the folder D:\Destination, use the command

```
Robocopy.exe c:\example d:\destination /copyall /e
```

NOTE MOVING TO FAT VOLUMES

If you move a file or folder to a volume formatted with the FAT or FAT32 file system, all NTFS permissions are lost.

Combined Share and NTFS Permissions

When a user accesses a file hosted on a shared folder, both the share permissions, which you learned about in Lesson 1, and the NTFS permissions apply. The most restrictive permission of the share and the NTFS permissions apply. For example, if a group is assigned the Read permission at the Share level and the Modify permission through file and folder permissions, the user has only Read access to files and folders when connecting to the shared folder over the network. Similarly, if a user has Full Control access at the share level and Read access assigned to the folder through NTFS permissions, the user has only Read access and is unable to modify or delete files and folders hosted on the share.

Configuring Auditing

Auditing allows you to monitor which users and groups access specific files and folders. You most likely do not want to monitor who accesses every document in your organization; you are most likely to use auditing only on sensitive documents. For example, you would use auditing to track who accessed the spreadsheet containing employee salaries, but you would not use auditing to track who accessed the break room cleanup roster. Auditing can tell you who opened a document, who modified a document, and who tried to open a document and failed. You can audit the use of any of the special permissions listed in Table 8-2. You can perform auditing only on volumes that are formatted using the NTFS file system.

The audit policies in Windows 7 allow a greater degree of granularity in tracking audit events compared to the audit policies in previous versions of Windows. For example, in Windows XP, you could audit nine broad event categories: in Windows 7, there are 53 different event categories. This allows you to be more specific about the types of events you
audit. To configure auditing to track which users access specific files and folders on clients running Windows 7, do the following:

1. Open the Local Group Policy Editor and navigate to the Computer Configuration\Windows Settings\Security Settings\Local Policies\Security Options node and set the Audit: Force Audit Policy Subcategory Settings (Windows Vista Or Later) To Override Audit Policy Category Settings policy to Enabled.

2. In the Local Group Policy Editor, navigate to the Computer Configuration\Windows Settings\Security Settings\Advanced Audit Policy Configuration\System Audit Policies – Local Group Policy Object\Object Access Node and set the Audit File System policy, as shown in Figure 8-27.

3. Edit the properties of the file or folder that you wish to audit. On the Security tab, click Advanced, then click the Auditing tab, and then click Continue to elevate privileges.

4. Click Add and add the groups for which you want to audit access. If you want to audit the access of all users, select the Everyone group. Once you have selected the security group, you must select which of the special privileges you want to Audit. Figure 8-28 shows an auditing configuration to track successful file reads, writes, and deletes.

5. Auditing events will now be written to the Security log, which can be accessed using Event Viewer.
Lesson 2: Folder and File Access

Chapter 8

More Info Advanced Audit Policy

To learn more about the advanced auditing options that are available in Windows 7, consult the following TechNet Step-by-Step guide: http://technet.microsoft.com/en-us/library/dd408940(WS.10).aspx.

Quick Check

- If you move a folder to a new location on the same volume, do the folder and its contents retain their original NTFS permissions?

Quick Check Answer

- Yes. When files or folders are moved to a new location on the same volume, they retain all their original NTFS permissions.

Encrypting File System

Encrypting File System (EFS), a technology available in the Professional, Enterprise, and Ultimate editions of Windows 7, allows for the encryption of individual files and folders. EFS differs from BitLocker To Go because BitLocker enables the encryption of full volumes and does not work directly at the file and folder level. For example, you can use BitLocker to encrypt a universal serial bus (USB) flash drive after you connect it to a client running
Windows 7, and all the files and folders hosted on that drive will be encrypted because the volume hosting them is encrypted. However, assuming that permissions are not configured restrictively, any files stored on that flash drive can be read by any user of that client running Windows 7 as the volume is encrypted to the client running Windows 7 and not any particular user of that client. EFS allows you to encrypt the files and folders stored on that USB flash drive to specific user accounts on the client running Windows 7. EFS encryption works so that even if a user has read access to a file, they cannot actually open the file unless they have the appropriate encryption certificate. You will learn more about BitLocker in Chapter 11.

EFS uses a process known as public key encryption. In public key encryption, a user has two keys: a public key, also known as a certificate, and a private key. The public key is kept in the computer’s store and accessible to everyone. Users can use the public key to encrypt data. The private key is kept in the user’s private certificate store and can only be used by the user. The private key decrypts data which has been encrypted using the public key. The first time a user encrypts a file on a computer running Windows 7, the computer creates an EFS certificate and private key.

You can use EFS only to encrypt files that are stored on volumes formatted with the NTFS file system. Because most USB flash drives come with volumes formatted using FAT32, this means that you need to format them with the NTFS file system prior to being able to use them to store EFS encrypted files and folders. When you encrypt a file or a folder, Windows Explorer displays it with green text rather than the standard black text.

When you encrypt a folder, Windows encrypts all files that you copy to that folder, and all new files that you create in that folder. EFS is not compatible with the file and folder compression feature of Windows 7. When you encrypt a file stored in a compressed folder, the file is decompressed prior to encryption and remains uncompressed while in its encrypted state. If you copy an encrypted file to a compressed folder, the file remains encrypted. If you move a compressed file to an encrypted folder, the file decompresses and encrypts. If you copy an EFS encrypted file or folder to a FAT32 volume, Windows 7 automatically decrypts the file when it is written to the destination volume.

You can use EFS to encrypt individual files to multiple users. When you do this, only users that the file is encrypted to are able to read the file contents. Even if other users have the appropriate NTFS permissions to open the file, they are unable to access the file’s contents.
because they are encrypted. You are able to encrypt a file to another user only if that user has an EFS certificate in the computer’s store. If you want to encrypt a file to another user and are unable to locate their certificate, you need to get her to log on to the computer and encrypt a file. Once she does this, her EFS certificate is published to the computer store and you are able to use it to encrypt files to their account.

Although EFS allows you to encrypt individual files to multiple user accounts, it does not allow you to encrypt folders to multiple user accounts. It is also not possible to encrypt files to a group, only to multiple, but separate, individual users.

NOTE EFS IN DOMAIN ENVIRONMENTS

Active Directory Certificate Services allows the centralized management of EFS certificates in a domain environment. Because the 70-680 exam is primarily concerned with the client running Windows 7, so you will not need to be familiar with integrating EFS with AD DS.

EFS Recovery

Recovery Agents are certificates that allow the restoration of EFS encrypted files. When a recovery agent has been specified using local policies, all EFS encrypted files can be recovered using the recovery agent private key. You should specify a recovery agent before you allow users to encrypt files on a client running Windows 7. You can recover all files that users encrypt after the creation of a recovery agent using the recovery agent’s private key. You are not able to decrypt files that were encrypted before a recovery agent certificate was specified.

You create an EFS recovery agent by performing the following steps:

1. Log on to the client running Windows 7 using the first account created, which is the default administrator account.
2. Open a command prompt and issue the command

 Cipher.exe /r:recoveryagent

3. This creates two files: Recoveryagent.cer and Recoveryagent.pfx. Cipher.exe prompts you to specify a password when creating Recoveryagent.pfx.
4. Open the Local Group Policy Editor and navigate to the \Computer Configuration\Windows Settings\Security Settings\Public Key Policies\Encrypting File System node. Right-click this node and then click Add Data Recovery Agent. Specify the location of Recoveryagent.cer to specify this certificate as the recovery agent.
5. To recover files, use the certificates console to import Recoveryagent.pfx. This is the recovery agent’s private key. Keep it safe because it can be used to open any encrypted file on the client running Windows 7.

You can import the recovery agent to another computer running Windows 7 if you want to recover files encrypted on the first computer. You can also recover files on another computer running Windows 7 if you have exported the EFS keys from the original computer and imported them on the new computer. You can use the Certificates console to import and export EFS keys. You can also use Cipher.exe to back up EFS keys.
EFS and HomeGroups
Sharing EFS-encrypted files in HomeGroup environments can be complicated because it requires that each computer in the HomeGroup has the same EFS certificates. In domain environments, it is possible to handle EFS certificates centrally through AD DS and Active Directory Certificate Services. No such central facility exists in HomeGroup environments. Even if users have the same local account names and passwords on each computer in the HomeGroup, each computer generates a unique EFS certificate pair.

If you want to share files encrypted using EFS amongst computers in a HomeGroup, get each user in the HomeGroup to encrypt a file on one computer and then get him to export their EFS keys to a removable USB flash drive using either the Certificates console or the Cipher.exe command. The keys should then be imported on the other computers running Windows 7 in the HomeGroup.

PRACTICE Encryption and Permissions

Although the EFS feature is included with several previous versions of Windows, not every user knows how to encrypt a file. Even experienced administrators have trouble remembering when NTFS permissions applied to files remain and when they are inherited in file move and copy scenarios. In this practice, you learn how to encrypt files and demonstrate to yourself how NTFS permissions are influenced during copy and move procedures.

EXERCISE 1 Encrypting a Single File to Multiple Users
In this exercise, you create a text document and then encrypt it to two different user accounts. Because it is possible to encrypt a document to a user account only if that user account has an existing EFS certificate, the exercise requires you to encrypt a document using two different user accounts before you can encrypt a single document to both users.

1. Log on to computer Canberra with the Kim_Akers user account.
2. Open the Control Panel and then click Add Or Remove User Accounts.
3. On the Manage Accounts page, click Create A New Account. Enter the account name Jeff_Phillips, select Standard User, and then click Create Account.
4. On the Manage Accounts page, click the Jeff_Phillips account and then click Create A Password. Enter the password P@ssw0rd twice, and enter the page number of this page in the book as the password hint. Click Create Password. Close the Control Panel.
5. Right-click the Desktop, click New, and then click Folder. Name the folder Encryption and open it.
7. Right-click Encrypt.txt and then choose Properties. On the General tab of the Encrypt. txt Properties dialog box, click Advanced. In the Advanced Attributes dialog box, select the Encrypt Contents To Secure Data check box, as shown in Figure 8-29. Click OK and then click Apply.
8. In the Encryption Warning dialog box, select the Encrypt The File Only check box and then click OK. The file is now encrypted.

10. In the Windows Security dialog box, shown in Figure 8-30, verify that the only certificate present is the one belonging to Kim_Akers. Click OK.

11. On the Start menu, click the arrow next to Shut Down and then choose Switch User.

12. Log on using the Jeff_Phillips user account.

13. Using the Jeff_Phillips user account, perform steps 5 through 8 and then click OK to close the text file’s Properties dialog box.
14. Log off as Jeff_Phillips and resume the Kim_Akers session. The User Access To Encrypt.txt dialog box should still be present on the screen because you switched to the other account and left the existing session active in memory.

15. In the User Access To Encrypt.txt dialog box, click Add. Verify that there are two encryption certificates present in the Windows Security dialog box. Click the Jeff_Phillips certificate, as shown in Figure 8-31, and then click OK.

![Windows Security dialog box](image)

FIGURE 8-31 Additional EFS certificate available

16. Click OK three times to close the Properties dialog box.

EXERCISE 2 Exploring File and Folder Permissions

In this exercise, you explore how file and folder permissions vary when you copy and move files between two folders. You use the Icacls and Effective Permissions tools during this exercise.

1. If you have not done so already, log on to Canberra using the Kim_Akers user account.

2. Open an elevated command prompt and issue the following commands:

   ```
   net localgroup Research /add
   net localgroup Accounting /add
   net localgroup Research Jeff_Phillips /Add
   net localgroup Accounting Jeff_Phillips /Add
   mkdir c:\source
   mkdir c:\destination
   icacls c:\source /grant Research:(OI)(CI)M
   icacls c:\destination /grant Accounting:(OI)(CI)RX
   icacls c:\destination /deny Jeff_Phillips:(OI)(CI)W
   ```
3. Open the C:\Source directory in Windows Explorer. Right-click within the folder and create two new text files named Alpha and Beta.

4. Right-click Alpha and then choose Properties. Click the Security tab and then click the Research group. Verify that the permissions are assigned as shown in Figure 8-32. Perform the same actions on Beta.txt to verify that permissions are set identically.

5. From the command prompt, issue the following commands:

 copy c:\source\alpha.txt c:\destination
 move c:\source\beta.txt c:\destination

6. View the properties of the file C:\Destination\Alpha.txt and compare it to the properties of C:\Destination\Beta.txt. Note that the permissions assigned to Beta.txt are the same as those prior to the move, but that the permissions of Alpha.txt have changed when the file is copied, specifically the Research and Accounting group permissions and the permissions for user Jeff_Phillips, as shown in Figure 8-33.

7. Edit the properties of file Alpha, click the Security tab, and then click Jeff_Phillips. Note that the Jeff_Phillips account is assigned only the Write (Deny) permission.

8. Click Advanced. In the Advanced Security Settings dialog box, click the Effective Permissions tab.
9. Click Select. This opens the Select User Or Group dialog box. Enter the name Jeff_Phillips and then click OK. Review the effective permissions of the Jeff_Phillips user account, as shown in Figure 8-34. The permissions differ from those assigned to the user account because of permissions assigned through group membership.
Lesson Summary

- The Icacls.exe utility can be used to manage NTFS permissions from the command line. You can use this utility to back up and restore current permissions settings.
- There are six basic NTFS permissions: Read, Write, List Folder Contents, Read & Execute, Modify, and Full Control. A Deny permission always overrides an Allow permission.
- You can use the Effective Permissions tool to calculate a user’s effective permissions to a file or folder when she is a member of multiple groups that are assigned permission to the same resource.
- The most restrictive permission applies when attempting to determine the result of Share and NTFS permissions.
- Auditing allows you to record which files and folders have been accessed.
- When a file is copied, it inherits the permissions of the folder it is copied to. When a file is moved within the same volume, it retains the same permissions. When a file is moved to another volume, it inherits the permissions of the folder it is copied to.
- When you encrypt a file, it generates an EFS certificate and private key. You can encrypt a file to another user’s account only if that user has an existing EFS certificate.

Lesson Review

You can use the following questions to test your knowledge of the information in Lesson 2, “Folder and File Access.” The questions are also available on the companion DVD if you prefer to review them in electronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incorrect are located in the “Answers” section at the end of the book.

1. You are logged on to a computer running Windows 7 Enterprise that you share with Jeff Phillips. You want to store some files on an NTFS-formatted USB flash drive that both you and Jeff can access. You want to encrypt these files but do not want to use BitLocker To Go. You are able to encrypt the files, but when you try to add Jeff, you do not see his certificate listed. Which of the following should you do to allow you to use EFS to encrypt files to both your and Jeff’s accounts?

 A. Get Jeff to change his password.
 B. Get Jeff to encrypt a file on the computer.
 C. Give Jeff write permission to the files.
 D. Let Jeff take ownership of the files.
2. Which of the following permissions are also set when you apply the Read & Execute (Deny) NTFS permission? (Choose all that apply.)
 A. List Folder Contents (Deny)
 B. Read (Deny)
 C. Modify (Deny)
 D. Write (Deny)

3. Jeff_Phillips’s user account is a member of four separate security groups that are each assigned different permissions to a folder on a client running Windows 7. Which of the following tools can you use to determine Jeff’s permissions to a file hosted in that folder?
 A. Robocopy
 B. Icacls
 C. Cipher
 D. The Effective Permissions tool

4. The contents of the directory C:\Source are encrypted using EFS. The directory D:\Destination is compressed. Volumes C and D are both NTFS volumes. Which of the following happens when you use Windows Explorer to move a file named Example.txt from C:\Source to D:\Destination? (Choose all that apply; each answer forms part of a complete solution.)
 A. Example.txt remains encrypted
 B. Example.txt becomes compressed
 C. Example.txt retains its original NTFS permissions
 D. Example.txt inherits the NTFS permissions of the D:\destination folder

5. You want to have a record of which user accounts are used to access documents in a sensitive folder on a computer running Windows 7 Enterprise. Which of the following should you do to accomplish this goal?
 A. Configure EFS
 B. Configure auditing
 C. Configure NTFS permissions
 D. Configure BranchCache
Lesson 3: Managing BranchCache

BranchCache is a technology that is new to Windows 7 and Windows Server 2008 R2 that speeds up branch office access to files and Web sites hosted on servers across WAN links. BranchCache works by caching content hosted on remote servers in a cache on the local area network (LAN). Rather than retrieving content across the slower WAN link, clients check the locally hosted cache to see if a copy of the data they are requesting is present. If it is present, and certain conditions are met, the client uses the cached copy. If the requested data is not preset, the data is retrieved across the WAN link, stored in the local cache, and then accessed by the client. The advantage of BranchCache is that it stops the same file being transmitted multiple times across the WAN link and speeds up local access.

After this lesson, you will be able to:

- Use Group Policy to configure BranchCache settings.
- Use Netsh to configure BranchCache settings.
- Understand the difference between BranchCache distributed cache mode and hosted mode.

Estimated lesson time: 40 minutes

BranchCache Concepts

BranchCache is a feature that speeds up branch office access to files hosted on remote networks by using a local cache. Depending on which BranchCache mode is used, that cache is either hosted on a server running Windows Server 2008 R2 or in a distributed manner among clients running Windows 7 on the branch office network. The BranchCache feature is available only on computers running Windows 7 Enterprise and Ultimate editions. BranchCache can cache only data hosted on Windows Server 2008 R2 file and Web servers. You cannot use BranchCache to speed up access to data hosted on servers running Windows Server 2008, Windows Server 2003, or Windows Server 2003 R2.

BranchCache becomes active when the round-trip latency to a compatible server exceeds 80 milliseconds. Several checks occur when a client running Windows 7 uses BranchCache:

- The client checks if the server hosting the requested data supports BranchCache.
- The client checks if the round-trip latency exceeds the threshold value.
- The client checks the cache on the branch office LAN to determine whether the requested data is already cached.
 - If the data is cached already, a check is made to see if the data is up to date and whether the client has permission to access it.
 - If the data is not already cached, the data is retrieved from the server and placed in the cache on the branch office LAN.
Cache modes determine how the branch office cache functions. BranchCache can operate in one of two modes: Hosted Cache mode or Distributed Cache mode. You will learn about these modes during the rest of this lesson.

Hosted Cache Mode

Hosted Cache mode uses a centralized local cache that is hosted on a branch office server running Windows Server 2008 R2. You can enable the hosted cache server functionality on a server running Windows Server 2008 R2 that you use for other functions without a significant impact on performance. This is because if you found that files hosted at another location across the WAN were being accessed so frequently that there was a performance impact, you would use a solution like Distributed File System (DFS) to replicate them to the branch office instead of using BranchCache. The advantage of Hosted Cache mode over Distributed Cache mode is that the cache is centralized and always available. Parts of the distributed cache become unavailable when the clients hosting them shut down. You will learn more about Distributed Cache mode later in this lesson.

Hosted Cache mode requires a computer running Windows Server 2008 R2 be present and configured properly in each branch office. You must configure each BranchCache client with the address of the BranchCache host server running Windows Server 2008 R2.

When setting up the Hosted Cache mode server, it is necessary to do the following:

- Install the BranchCache feature.
- Install an Secure Sockets Layer (SSL) certificate where the subject name is set to the fully qualified domain name (FQDN) of the hosted cache server. This involves importing the SSL certificate into the Local Computer’s certificate store, making note of the certificate thumbprint, and then binding the certificate using the command `netsh http add sslcert iport=0.0.0.0:443 certhash=<thumbprint> APPID={d673f5ee-a714-454d-8de2-492e4c1bd8f8}`
- Ensure that all clients trust the certificate authority that issued the SSL certificate installed on the hosted cache server.

Hosted Cache mode is not appropriate for organizations that do not have their own Active Directory Certificate Services infrastructure or do not have the resources to deploy a dedicated server running Windows Server 2008 R2 to each branch office.

MORE INFO CONFIGURING HOSTED CACHE SERVERS

Distributed Cache Mode

Distributed Cache mode uses peer caching to host the branch office cache among clients running Windows 7 on the branch office network. This means that each Distributed Cache mode client hosts part of the cache, but no single client hosts all the cache. When a client running Windows 7 retrieves content over the WAN, it places that content into its own cache. If another BranchCache client running Windows 7 attempts to access the same content, it is able to access that content directly from the first client rather than having to retrieve it over the WAN link. When it accesses the file from its peer, it also copies that file into its own cache.

The advantage of distributed cache mode is that you can deploy it without having to deploy a server running Windows Server 2008 R2 locally in each branch office. The drawback of Distributed Cache mode is that the contents of the cache available on the branch office LAN depend on which clients are currently online. If a client needs a file that is held in the cache of a computer that is shut down, the client needs to retrieve the file from the host server across the WAN.

Quick Check

- Which BranchCache mode should you use if there are no servers running Windows Server 2008 R2 at your branch office?

Quick Check Answer

- You should use Distributed Cache mode. Hosted Cache mode requires a server running Windows Server 2008 R2 on the LAN.

Configuring BranchCache Clients Running Windows 7

Configuring Windows 7 as a BranchCache client involves enabling BranchCache, selecting either Hosted Cache mode or Distributed Cache mode, and then configuring the client firewall to allow BranchCache traffic. You can configure BranchCache either using Group Policy or by using the Netsh command-line utility. The firewall rules that you configure depend on whether you are using Hosted Cache or Distributed Cache mode. You can use predefined firewall rules or manually create them based on protocol and port. The required firewall rules are as follows:

- The BranchCache – Content Retrieval (Uses HTTP) predefined rule. If this rule is not available, create rules that allow inbound and outbound traffic on TCP port 80. This rule is required for both Hosted Cache and Distributed Cache mode. You can create this rule using Windows Firewall With Advanced Security, as shown in Figure 8-35.
The BranchCache – Peer-Discovery (Uses WSD) predefined rule. If this rule is not available, create rules that allow inbound and outbound traffic on UDP port 3702. This rule is only required when using Distributed Cache mode.

The BranchCache – Hosted Cache Client (HTTPS-Out) predefined rule. If this rule is not available, configure a rule that allows outbound traffic on TCP port 443. This rule is required only when using Hosted Cache mode.

You need to configure the firewall rules only when you configure BranchCache using Group Policy. When you configure BranchCache using Netsh, the appropriate firewall rules are set up automatically, as shown in Figure 8-36.

![Figure 8-35 Predefined BranchCache firewall rule](image)

![Figure 8-36 Firewall rules automatically configured](image)
Configuring BranchCache Using Group Policy

BranchCache can be configured using Netsh or through Group Policy. You are more likely to use Group Policy when you want to apply the same settings to a large number of computers. To configure BranchCache on clients running Windows 7 using Group Policy, open the Local Group Policy Editor and navigate to the Computer Configuration\Administrative Templates\Network\BranchCache node. As Figure 8-37 shows, there are five BranchCache-related policies.

![Local Group Policy Editor]

These policies have the following functions:

- **Turn On BranchCache** This policy enables BranchCache and configures the BranchCache service to start manually. Windows starts the service when you make an attempt to access data on a compatible remote server that exceeds the round-trip latency threshold.

- **Set BranchCache Distributed Cache Mode** This policy sets the client to use Distributed Cache mode. For this policy to work, you must also have enabled the Turn On BranchCache policy.

- **Set BranchCache Hosted Cache Mode** This policy sets the client to use Hosted Cache mode. When configuring this policy, as shown in Figure 8-38, it is necessary to specify the location of the host cache server by FQDN. The SSL certificate installed on the server must match the FQDN and the client must trust the issuing certificate authority. For this policy to work, you must also enable the Turn On BranchCache policy.

- **Configure BranchCache For Network Files** This policy allows you to specify the round-trip latency value that triggers the use of BranchCache. If you do not configure this policy, the default value is 80 milliseconds. You only need to configure this policy if the default value of 80 milliseconds is inappropriate for your organization's network environment.

- **Set Percentage Of Disk Space Used For Client Computer Cache** This policy allows you to set a custom amount of total disk space the computer uses to store BranchCache files. Other clients on the branch office network are able to access this content if the Distributed Cache mode is used. If you do not enable this policy, the cache size defaults to 5% of the total disk space of the client computer.
You can use Netsh in the BranchCache context to configure and diagnose problems with BranchCache. There are several options that you can configure using Netsh, such as the local caching option, that are not available when you configure BranchCache using Group Policy. Another advantage of using Netsh to configure BranchCache is that it automatically enables the relevant firewall rules for each caching mode. When you use Group Policy to enable BranchCache, you must also configure appropriate firewall rules. You learned about these firewall rules earlier in this lesson.

You must run all Netsh BranchCache configuration commands, except for the show status command, from an elevated command prompt. You can use the following commands to configure BranchCache:

- **Netsh BranchCache reset** This command resets the current BranchCache configuration, disabling and stopping the service, resetting the registry defaults, deleting any cache files, and setting the service start type to Manual. This command also disables any configured BranchCache firewall rules.

- **Netsh BranchCache show status** This command displays the current service mode, including whether that service mode is configured using Group Policy, and displays the current status of the BranchCache service.

- **Netsh BranchCache set service mode=distributed** This command sets the client to use the Distributed Cache mode, starts the BranchCache service, and changes the
startup type to Manual. It also enables the BranchCache - Content Retrieval (Uses HTTP) and BranchCache – Peer Discovery (Use WSD) firewall rules.

- **Netsh BranchCache set service mode=local** This command sets the client to use the local cache mode, starts the BranchCache service, and changes the startup type to Manual. It does not enable any firewall rules. When you set the local caching mode, the client stores files retrieved over the WAN in a local cache but does not share the contents of that cache with any other clients on the branch office network. It is only possible to set this mode using Netsh.

- **Netsh BranchCache set service mode=hostedclient location=hostedserver** This command sets the client to use the Hosted Cache mode, specifies the location of the hosted cache server, starts the BranchCache service, and changes its startup type to Manual. It also enables the BranchCache - Content Retrieval (Uses HTTP) and BranchCache – Hosted Cache Client (Uses HTTPS) firewall rules.

- **Netsh BranchCache set cachesize** This policy allows you to set the size of the local cache. You can do this as a percentage of hard disk space or by specifying a number of bytes.

- **Netsh BranchCache set localcache** This policy allows you to set the location of the local cache.

Configuration settings applied using Group Policy override settings applied using *Netsh*.

Verifying the State of the BranchCache Service

You can verify the state of the BranchCache service, which must be operational for BranchCache to function, using the Services console. You can open this console by typing `services.msc` into the Search Programs And Files box on the Start menu. To view the properties of the service, double-click the BranchCache service. Verify that the service is started and the startup type is set to Manual, as shown in Figure 8-39.

![BranchCache Properties (Local Computer)](image)

FIGURE 8-39 BranchCache service status
Configuring File and Web Servers Running Windows Server 2008 R2

BranchCache works only when retrieving data hosted on Web and file servers running Windows Server 2008 R2. To configure a server to support BranchCache, perform the following steps:

1. Install the BranchCache feature on the server running Windows Server 2008 R2 using the Add Features Wizard, as shown in Figure 8-40. The Web server role of Windows Server 2008 R2 automatically uses BranchCache after you install the BranchCache feature.

 ![Add Features Wizard](image)

 FIGURE 8-40 Installing the BranchCache feature on Windows Server 2008 R2

2. When adding the File Server Role, ensure that you add the BranchCache For Network Files Role service, as shown in Figure 8-41.

3. Edit the Computer Configuration\Administrative Templates\Network\Lanman Server\Hash Publication for BranchCache policy. Enable the policy and select one of the following options:
 - Allow Hash Publication Only For Shared Folders On Which BranchCache Is Enabled
 - Allow Hash Publication For All Shared Folders
If you choose to enable BranchCache only on selected shared folders, use the Share And Storage Management console on the file server running Windows Server 2008 R2 to edit the properties of the share that you want to use with BranchCache, and then click Advanced. In the Advanced dialog box, enable BranchCache, as shown in Figure 8-42.

FIGURE 8-42 Enabling BranchCache on each share
MORE INFO CONFIGURING SERVERS TO SUPPORT BRANCHCACHE

EXAM TIP

Remember the syntax of the `netsh branchcache set service` command and that it configures the BranchCache service and firewall rules automatically.

PRACTICE BranchCache Configuration

BranchCache can use the Distributed Cache mode to share a cache of remote files and Web server data among clients running Windows 7 on a branch office network. Distributed Cache mode can be configured using Group Policy or by using the `Netsh` command-line utility.

EXERCISE Configuring BranchCache

In this exercise, you use the `Netsh` command-line utility to configure the BranchCache client settings of a computer running Windows 7. To complete this practice, perform the following steps:

1. Log on to computer Canberra using the Kim_Akers user account.
2. Open an elevated command prompt.
3. Issue the following command:
   ```
   Netsh BranchCache show status
   ```
4. Verify that the service mode is set to disabled and the current status of the service is stopped.
5. Issue the following command:
   ```
   Netsh BranchCache set service mode=distributed
   ```
6. Verify that the status message indicates that two firewall rules have been enabled and the service startup type has been set to Manual.
7. Issue the following command:
   ```
   Netsh BranchCache show status
   ```
8. Verify that the service mode is set to Distributed Caching and the current status of the service is running.
9. Issue the following command:
   ```
   Netsh BranchCache set cachesize size=25 percent=True
   ```
10. Issue the following command:

 `Netsh BranchCache show localcache`

11. Verify that the maximum cache size is set to 25% of hard disk.
12. Issue the following command:

 `Netsh BranchCache reset`

Lesson Summary

- **BranchCache** is a technology that allows files hosted on remote file servers running Windows Server 2008 R2 to be cached on a branch office network.
- Only Windows 7 Enterprise and Ultimate editions support BranchCache.
- Distributed Cache mode shares the cache among clients running Windows 7.
- Hosted Cache mode requires that a specially configured server running Windows Server 2008 R2 be present on the branch office network.
- When you enable Distributed Cache mode or Hosted Cache mode using `Netsh`, the BranchCache service and firewall rules are configured automatically.

Lesson Review

You can use the following questions to test your knowledge of the information in Lesson 3, “Managing BranchCache.” The questions are also available on the companion DVD if you prefer to review them in electronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incorrect are located in the “Answers” section at the end of the book.

1. You want to use BranchCache’s hosted cache mode in your organization’s branch offices. You have enabled BranchCache on your organization’s head office servers. Which of the following steps must you take to accomplish this goal? (Choose all that apply; each answer forms part of a complete solution.)

 A. Deploy at least one server running Windows Server 2008 R2 to each branch office.
 B. Upgrade all branch office client computers to Windows 7 Enterprise.
 C. Upgrade all branch office client computers to Windows 7 Professional.
 D. Deploy at least one Windows Server 2008 Read-Only Domain Controller (RODC) to each branch office.
2. Which of the following tools can you use to configure a group of clients running Windows 7 to use BranchCache in peer caching mode? (Choose all that apply.)
 A. Net share
 B. Netsh
 C. Ipconfig
 D. Local Group Policy Editor

3. You have two computers running Windows 7 Ultimate at one of your organization’s branch office locations. All servers in this branch office use Windows Server 2008 R2. You want to configure one of these computers to cache content that it retrieves from a file server running Windows Server 2008 R2 located on the head office network. This file server has the name *fs-alpha.contoso.internal*. The data hosted on this file server is sensitive. The computer you are configuring should not provide cached content to the other computer running Windows 7 Ultimate on the network. Which of the following commands would you use to configure this computer?
 A. netsh branchcache set service disabled
 B. netsh branchcache set service mode=distributed
 C. netsh branchcache set service mode=local
 D. netsh branchcache set service mode=hostedclient location=fs-alpha.contoso.internal

4. You want to configure clients running Windows 7 Enterprise in a branch office to use BranchCache in Hosted Cache mode. A server running Windows Server 2008 R2 named branch-1.contoso.internal functions as the host on the LAN. Which of the following commands, issued from an elevated command prompt, should you use to configure the clients running Windows 7?
 A. netsh branchcache set service mode=distributed
 B. netsh branchcache set service mode=local
 C. netsh branchcache set service mode=hostedserver clientauthentication=domain
 D. netsh branchcache set service mode=hostedclient location=branch-1.contoso.internal

5. You want to configure clients running Windows 7 Enterprise in a branch office to use BranchCache only if the round-trip network latency when attempting to access files hosted over the WAN exceeds 120 ms. Which of the following policies should you configure to accomplish your goal?
 A. Configure BranchCache For Network Files
 B. Set Percentage Of Disk Space Used For Client Computer Cache
 C. Set BranchCache Distributed Cache Mode
 D. Set BranchCache Hosted Cache Mode
Chapter Review

To further practice and reinforce the skills you learned in this chapter, you can perform the following tasks:

- Review the chapter summary.
- Review the list of key terms introduced in this chapter.
- Complete the case scenarios. These scenarios set up real-world situations involving the topics of this chapter and ask you to create a solution.
- Complete the suggested practices.
- Take a practice test.

Chapter Summary

- HomeGroups allow for the sharing of resources on home networks.
- You can manage shared folders centrally using the Computer Management console.
- Libraries are virtual collections of folders that host similar content.
- NTFS permissions determine which files a user or group can access on a computer.
- Print permissions determine what rights a user has to manage a printer or documents.
- BranchCache is a technology that speeds up branch office access to files in remote locations through the caching of previously accessed files on the branch office network.

Key Terms

Do you know what these key terms mean? You can check your answers by looking up the terms in the glossary at the end of the book.

- BranchCache
- Encrypting File System (EFS)
- HomeGroup
- library

Case Scenarios

In the following case scenarios, you apply what you’ve learned about subjects covered in this chapter. You can find answers to these questions in the “Answers” section at the end of this book.
Case Scenario 1: Permissions and Encryption

A computer running Windows 7 Enterprise named Waverley has two NTFS-formatted volumes, volume C and volume D. The folder C:\Share is shared and has 15 subfolders and hundreds of files. Many of these folders have unique NTFS permissions. You want to move this folder so that it is hosted on volume D because volume C is running out of space. One of the users of computer Waverley will be changing to computer Warrandyte. This user has copied a large number of EFS-encrypted files onto a NTFS-formatted USB flash device.

With these facts in mind, answer the following questions:

1. What steps can you take so that the user is able to read the encrypted files on the USB flash device on computer Warrandyte?
2. What steps can you take to ensure that it is possible to recover all files that are encrypted in future?
3. What steps can you take to move the shared folder to volume D?

Case Scenario 2: Configuring Contoso Branch Offices

You are trying to make the use of WAN bandwidth between Contoso’s head office in Melbourne and branch offices in Wangaratta and Traralgon more efficient. All client computers at Contoso have Windows 7 Enterprise installed. Users turn their computers on and off during the day. If possible, you want to store any BranchCache data so that it is always available. There is a Windows Server 2008 R2 RODC at the Traralgon site named rodc.traralgon.contoso.internal, and there is a Windows Server 2008 RODC named rodc.wangaratta.contoso.internal at the Wangaratta site. You do not plan on upgrading any server operating systems in the near future.

With these facts in mind, answer the following questions:

1. Which BranchCache mode should you use at the Wangaratta branch office?
2. Which BranchCache mode should you use at the Traralgon branch office?
3. What steps do you need to take to prepare server rodc.traralgon.contoso.internal to support BranchCache?

Suggested Practices

To help you master the exam objectives presented in this chapter, complete the following tasks.

Configure Shared Resources

Perform this practice when logged on to computer Canberra with the Kim_Akers user account.
- Configure a shared printer. Create a local group named PrinterManagers and assign the Manage Printers permission to this group.

Configure File and Folder Access

Perform both of these practices when logged on to computer Canberra with the Kim_Akers user account.

- **Practice 1** Use Gpedit.msc and Cipher.exe to configure and assign an EFS recovery agent certificate.

- **Practice 2** Create a file named Gamma.txt. Use Icacls.exe to assign the Modify (Deny) permission to the file. Use Robocopy.exe to copy Gamma.txt to a new folder while retaining its original permissions.

Configure BranchCache

Perform this practice when logged on to computer Canberra with the Kim_Akers user account.

- Configure computer Canberra using the *Netsh* command to use local caching only.

Take a Practice Test

The practice tests on this book’s companion DVD offer many options. For example, you can test yourself on just one exam objective, or you can test yourself on all the 70-680 certification exam content. You can set up the test so that it closely simulates the experience of taking a certification exam, or you can set it up in study mode so that you can look at the correct answers and explanations after you answer each question.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see the section entitled “How to Use the Practice Tests,” in the Introduction to this book.
This chapter looks at monitoring resources and performance on a computer running Windows 7. It considers the various tools that tell you what resources are available on a computer and report problems encountered in using a resource. The chapter discusses performance monitoring, establishing baselines and logs, and determining where bottlenecks might occur before they happen. It looks at checking the potential of the computer to perform resource-intensive tasks and how to capture both local events and events on other computers.

Sometimes services, processes, and applications encounter problems and the chapter considers how you can deal with them. Sometimes the tools provided by the operating system are not exactly what you require, and the chapter looks at how you can create standard scripts to address any problems you encounter without requiring a high level of programming expertise.

You need to manage and configure services, configure page files and memory cache, configure services, manage processes, configure your desktop, and, if necessary, change your boot environment. The chapter discusses all these requirements.

Exam objectives in this chapter:

- Monitor systems.
- Configure performance settings.

Lessons in this chapter:

- Lesson 1: Monitoring Systems 649
- Lesson 2: Configuring Performance Settings 689
Before You Begin

To complete the exercises in the practices in this chapter, you need to have done the following:

- Installed the Windows 7 operating system on a stand-alone client PC, as described in Chapter 1, “Install, Migrate, or Upgrade to Windows 7.” You need Internet access to complete the exercises.
- Optionally installed Windows 7 on a second PC, as described in Chapter 6, “Network Settings.” A second computer is not required for the practice exercises but will enable you to complete the suggested practices at the end of this chapter.
- If you have two physical computers that are not otherwise on the same network, you need to connect their Ethernet ports with a crossover cable or by using an Ethernet switch.
- You need a universal serial bus (USB) flash memory device with at least 200 MB usable free space, or a second internal or external hard disk.
- The computer you use for the practice exercises (Canberra) needs to have an optical drive that can write to DVD-ROM.

REAL WORLD

Ian McLean

You can usually justify a server upgrade to management, even though many managers don’t know what a server is.

There aren’t many servers. With virtualization, they are fewer than ever before. They are mysterious black boxes that do incomprehensible things. If the network administrator says the servers need an upgrade, the expense probably isn’t huge in the general scheme of things.

Senior managers may not typically be technically aware (when you find one that is, it can be scary) but they are emphatically not fools, especially where money is concerned. You can justify extra cash to upgrade half a dozen servers. When it comes to upgrading 500 workstations, it’s a different ball game.

So gathering performance statistics about your workstations is just as important as gathering them about your servers. You can have the fastest servers on the market, but if your client computers aren’t up to the job, you have a poorly performing network. Even the thinnest of thin clients have bottlenecks, especially when it comes to network resource.

You will need to upgrade your hardware, if not right now, then in a year or two. Start preparing your case. Ensure that you have defined sensible baselines. Keep track of the small but cumulative performance drops as your equipment ages and user expectations increase. Start preparing a good case right now for the upgrades you need in the future. Don’t wait for tomorrow, or else tomorrow somebody else might be doing your job.
Lesson 1: Monitoring Systems

As an IT professional with at least one year’s experience, you will have come across some of, if not all, the tools and utilities described in this lesson. Windows 7 offers tools to measure performance, set baselines, identify bottlenecks, display resources, measure system stability and reliability, and so on.

It is sometimes not easy to select the right tool for the job. Often you can use several tools to obtain the same information or carry out the same configuration, but one of them does it more efficiently than the others. It is relatively straightforward to use one or more tools to gather information about a computer system. Interpreting that information may be more difficult. This lesson attempts to split the various tools into different functional groups and describe how the tools in each group complement each other.

After this lesson, you will be able to:

- Use performance tools to view real-time performance data, collect data in Data Collector Sets (DCSs), and generate reports that identify actual or potential resource bottlenecks.
- Examine failures and potential problems related to software installations and other significant system changes.
- Gather event subscriptions from source computers and store them on a destination computer.
- Access the Windows Experience Index and choose computer software based on that index.

Estimated lesson time: 50 minutes

Performance Monitoring and Reporting

Monitoring performance data and comparing it to established baselines is crucial to determining the health of your client computers, as is examining events in the event logs. Many events are informational, but you should not ignore them because of that. Your skill and experience as an administrator must determine what you should address and what you can safely ignore. You should never ignore warning and error events that indicate real and immediate problems.

As an IT professional, you probably have experience with Windows performance tools such as Performance Monitor and the Reports tool. You might not be familiar with DCSs that use performance counters to generate performance logs and can, in turn, be read by Performance Monitor and the Reports tool. DCSs provide a replacement for Performance Logs and Alerts in earlier operating systems.

Your aim is to monitor and improve performance, identify potential bottlenecks, and upgrade the appropriate resources. You especially want to identify sources of critical performance problems that could make a computer unacceptably slow or completely unusable.
Performance Monitor

In Windows 7, you can open Performance Monitor by accessing Control Panel, specifying All Control Panel Items, selecting Performance Information And Tools, clicking Advanced Tools in the Performance Information And Tools window, and clicking Open Performance Monitor. However it is easier to type `perfmon` in the Start menu search box (or at a command prompt). The Performance dialog box lets you access Performance Monitor, DCSs, and the Reports tool. Select Performance Monitor on the tree pane.

You can add counters by clicking the green + button on the Performance Monitor toolbar, expanding the object (such as Memory), selecting the counter, and clicking Add. You can specify whether you want to display a single instance of a counter or a total of all instances. For example, if a computer has more than one CPU, you could select a counter that monitors the usage of a single CPU or a counter that monitors total CPU usage. Figure 13-1 shows Performance Monitor displaying real-time data.

![Performance Monitor displaying real-time data](image)

FIGURE 13-1 Performance Monitor displaying real-time data

Each line on the graph appears in a different color. To make it easier to view a specific graph, select its counter and press Ctrl+H. The selected counter appears bold and in black on the graph. To change the appearance and refresh rate of the chart, right-click Performance Monitor and then select Properties. The five tabs of the Performance Monitor Properties dialog box provide access to different configuration options, as follows:
General In the Graph Elements group, you can adjust the Sample Every box to change how frequently the graph updates. You can also specify whether the Legend, Value Bar, and Toolbar are displayed and whether the Report and Histogram views show Default, Maximum, Minimum, Average, or Current values. Figure 13-2 shows the General tab.

![Performance Monitor Properties](image)

FIGURE 13-2 The General tab of Performance Monitor Properties

Source On this tab, you can choose whether to display current activity in real time or show log files that you have saved using a DCS.

Data On this tab, in the Counters list, select the counter that you want to configure and adjust Color, Width, and Style.

Graph By default, Performance Monitor begins overwriting graphed counter values on the left portion of the chart after the specified duration is reached. If you want to record counter values over a long period of time, you likely want to see the chart scroll from right to left. To do this, select the Scroll style. You can also select one of the following chart types by clicking the Change Graph Type button on the toolbar or by pressing Ctrl+G:

- **Line** This is the default setting and shows values as lines on the chart.
- **Histogram** This shows a bar graph with the current, maximum, minimum, or average counter values displayed. If you have a large number of counters, a histogram is easier to read than a line chart.
- **Report** This lists the current, maximum, minimum, or average counter values in a text report.

Appearance If you keep multiple Performance Monitor windows open simultaneously, you can use this tab to change the color of the background or other elements.
Quick Check

1. On which tab of the Performance Monitor Properties dialog box can you specify how often the graphs update?

2. Which rights does a user need to be able to monitor performance data remotely?

Quick Check Answers

1. On the General tab, in the Graph Elements group, you can adjust the Sample Every box to change how frequently the graph updates.

2. At a minimum, the user’s account must be a member of the Performance Log Users group and the Event Log Readers group on the remote computer.

Data Collector Sets

Data collector sets (DCSs) gather system information, including configuration settings and performance data, and store it in a data file. You can use Performance Monitor to examine the data file and analyze detailed performance data, or you can generate a report that summarizes this information.

Windows 7 includes the following built-in DCSs:

- **System Performance** You can use this DCS when troubleshooting a slow computer or intermittent performance problems. It logs processor, disk, memory, and network performance (Internet Protocol versions 4 and 6) counters and kernel trace data.

- **System Diagnostics** You can use this DCS when troubleshooting reliability problems such as problematic hardware, driver failures, or STOP errors. It logs all the information included in the System Performance DCS, plus detailed system information.

 Figure 13-3 shows some of the counters included in the System Diagnostics data set.

To use a DCS, right-click it and then select Start. The System Performance DCS has a default overall duration of 1 minute. The System Diagnostics DCS collector set has a default overall duration of 10 minutes. To stop a DCS manually, right-click it and then click **Stop**.

After running a DCS, you can view a summary of the data that it has gathered in the *Performance Monitor\Reports* node. To view the most recent report for a DCS, right-click the DCS and then click **Latest Report**. You can then view the report by accessing it in the *Reports* node, as shown in Figure 13-4.

You can also add performance counter alerts to DCSs. This enables you to monitor and detect an alert, which you can then use to start a batch file, send you an e-mail, or call you on a pager. For example, if you configured an alert to trigger when free space on a logical volume falls below 30 percent, you could add this to a DCS and use it to trigger a batch file that archives the data on the volume.
Lesson 1: Monitoring Systems

CHAPTER 13

FIGURE 13-3 Counters included in the System Diagnostics data set

FIGURE 13-4 Accessing a report for the System Diagnostics data set
Data logging uses a large amount of system resources, and performance log files can become very large. To minimize the performance impact of performance data logging, log the minimum amount of information you require. For example, use System Performance instead of System Diagnostics whenever possible because System Performance includes fewer counters.

Creating a Data Collector Set

If you have a performance problem or want to analyze and possibly improve the performance of a client computer, you can use DCSs to gather performance data and compare it against your baselines. The following high-level procedure creates a custom DCS:

1. In the Performance Monitor console (not the Performance Monitor tool that you can access from the console), expand Data Collector Sets, right-click User Defined, select New, and then select Data Collector Set. This starts the Create New Data Collector Set Wizard.
2. On the Create New Data Collector Set page, specify a name for the set. Ensure that Create From A Template (Recommended) is selected. Click Next.
3. On the Which Template Would You Like To Use? page, choose from one of the standard templates (Basic, System Diagnostics, or System Performance). Click Next.
4. On the Where Would You Like The Data To Be Saved? page, click Next to accept the default location for the data.
5. On the Create The Data Collector Set page, leave Run As set to the default to create and run the DCS using the logged-on user’s credentials. Alternatively, click Change and specify alternative administrative credentials.
6. Select one of the following three options, and then click Finish:
 - Open Properties For This Data Collector Set
 - Start This Data Collector Set Now
 - Save And Close

Custom DCSs are located under the User Defined node within Data Collector Sets. You can schedule when a DCS runs and configure its stop conditions. You can also start a DCS manually by right-clicking it and selecting Start.

MORE INFO CREATING DCSs

Customizing Data Collector Sets

A custom DCS logs only the performance data defined in the template that you choose. To add your own data sources to a DCS, you must update it after you create it.
To add a performance data source (such as a performance counter) to a DCS, right-click the DCS, select New, and then select Data Collector. The Create New Data Collector Wizard opens. On the What Type Of Data Collector Would You Like To Create? page, specify the data collector name, select the type, and then click Next. You can choose from the following types of data collectors:

- **Performance Counter Data Collector** This type of data collector enables you to collect performance statistics over long periods of time for later analysis. You can use it to set baselines and analyze trends.
- **Event Trace Data Collector** This type of data collector enables you to collect information about system events and activities.
- **Configuration Data Collector** This type of data collector stores information about registry keys, Windows Management Instrumentation (WMI) management paths, and the system state.
- **Performance Counter Alert** This type of data collector (sometimes termed an Alert data connector) enables you to configure an alert that is generated when a particular performance counter exceeds or drops below a specific threshold value.

You can add as many data collectors to a DCS as you need. To edit a data collector, select it in the Data Collector Sets\User Defined node. In the Details pane, right-click the data collector and click Properties.

MORE INFO DCS PROPERTIES

If a DCS includes performance counters, you can view the counter values in Performance Monitor by right-clicking the report, clicking View, and then clicking Performance Monitor. Performance Monitor then displays the data logged by the DCS rather than real-time data.

Creating Data Collectors from the Command Prompt

You can create data collectors from an elevated command prompt by using the *Logman* utility. For example, you can use the following commands to create the various types of data collector listed in the previous section:

- **Logman create counter** This command creates a Performance Counter data collector. For example, the `logman create counter my_perf_log -c "\Processor(_Total)\% Processor Time"` command creates a counter called `my_perf_log` that records values for the `% Processor Time` counter in the Processor\(_\)Total counter instance.
- **Logman create trace** This command creates an Event Trace data collector. For example, the `logman create trace my_trace_log -o c:\trace_log_file` command creates an event trace data collector called `my_trace_log` and outputs the results to the `C:\trace_log_file` location.
Logman create cfg This command creates a Configuration data collector. For example, the `Logman create cfg my_cfg_log –reg HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\` command creates a configuration data collector called `my_cfg_log` using the `HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion` registry key.

Logman create alert This command creates an Alert data collector. For example, the `logman create alert my_alert -th "\Processor(_Total)\% Processor Time>90"` command creates an alert called `my_alert` that fires when the `% Processor Time` performance counter in the `Processor(_Total)` counter instance exceeds a value of 90.

You can also use the `Logman` utility to query data collector output; for example, the `logman query "my_perf_log"` command lists the data collectors contained in the `my_perf_log` DCS. You can start and stop DCSs, for example, by using the commands `logman start my_perf_log` and `logman stop my_perf_log`. You can delete a DCS, for example, by using the command `logman delete my_perf_log`, and you can use `logman update` to update a performance counter, a trace counter, an alert, or a configuration. `Logman` enables you to export the information in DCSs to and import information from an XML file.

MORE INFO LOGMAN

Generating a System Diagnostics Report

When you create and use a DCS, you generate a report that is placed in User Defined Reports in the Reports tool in the Performance Tools console. However, the Reports tool also contains a system diagnostic report, sometimes known as a computer health check (although the term health check is more commonly used on server rather than client computers).

A system diagnostics report gives you details about the status of hardware resources, system response times, and processes on the local computer, along with system information and configuration data. You would generate a system diagnostics report if you were looking for ways to maximize performance and streamline system operation. You need to be a member of the local Administrators group or equivalent to generate a system diagnostics report.

If you use the Performance Tools console to look at the system diagnostics report, you see a copy of that report the last time it was compiled. To generate and display a system diagnostic report that is completely up to date, enter the following into the Search box on the Start menu:

```
perfmon /report
```

If you prefer, you can instead enter `perfmon.exe /report` in an elevated command prompt. Whatever method you choose, the command generates a diagnostics report (this typically takes 60 seconds) and displays it in the Resource and Performance Monitor, as shown in Figure 13-5. You can scroll down the report and expand any of its sections.
Lesson 1: Monitoring Systems

For example, expanding the failed basic system check called Hardware Device And Driver Checks in the Resource and Performance Monitor results in the screen shown in Figure 13-6, which indicates there are problems with three of the Plug and Play (PnP) devices.

![Figure 13-5 System diagnostics report in the Resource and Performance Monitor](image1)

FIGURE 13-5 System diagnostics report in the Resource and Performance Monitor

![Figure 13-6 Displaying the basic system check for Hardware Device And Driver Checks](image2)

FIGURE 13-6 Displaying the basic system check for Hardware Device And Driver Checks
You can expand Performance, Software Configuration, Hardware Configuration, CPU, Network, Disk, Memory, and Report Statistics. For example, expanding Software Configuration lets you access more information, as shown in Figure 13-7, although no faults or warnings are displayed in this screen shot. If a fault was detected, you can explore further by expanding any of the nodes marked with a + symbol.

FIGURE 13-7 Expanding Software Configuration in Resource and Performance Monitor

Expanding Report Statistics lets you access computer information, files, and processed events and discover Payload GUIDs, as shown in Figure 13-8.

Tracking System Reliability, Stability, and Overall Performance

Windows 7 offers several tools to assess system reliability and stability. Reliability Monitor keeps a record of software changes and updates and lets you correlate system changes with
Crashes and reboots; the Action Center monitors your computer and reports problems with security, maintenance, and related services; and the Windows Experience Index measures the capability of your computer's hardware and software configuration and expresses this as a base score.

Reliability Monitor

Reliability Monitor tracks a computer’s stability. Computers that have no reboots or failures are considered stable and can (eventually) achieve the maximum system stability index of 10. The more reboots and failures that occur on a computer, the lower the system stability becomes. The minimum index value is zero. The system stability index is not an exact measure of reliability because, sometimes, installing a new service pack or update requires a reboot, which initially lowers the index value but ultimately makes a system more reliable than it was before. However, Reliability Monitor provides valuable information about what system changes were made before a problem occurred. The easiest way to open Reliability Monitor is to type `perfmon /rel` in the Start menu Search box and click View Reliability History.

You can use Reliability Monitor to diagnose intermittent problems. For example, if you install an application that causes the operating system to fail intermittently, it is difficult to correlate the failures with the application installation. Figure 13-9 shows how Reliability Monitor...
Monitor can be used to indicate that Windows and application failures and a video hardware error occurred on the Canberra computer on June 22 following an update of a video driver on June 21. If you obtained this result on a test network, you might consider obtaining more information before updating the driver on your production network.

![Reliability Monitor](image)

FIGURE 13-9 Reliability Monitor

The Stability Index

The stability index is based on data collected over the lifetime of a system. Each day in the stability chart is associated with a graph point showing its stability index rating. The stability index is a weighted measurement calculated from the number of failures seen over a rolling historical period. The index value is calculated over the preceding 28 days, although the results for considerably more days can be displayed.

Recent failures are weighted more heavily than past failures so that improvement over time is reflected in an ascending stability index when a reliability issue has been resolved. Days when the computer is turned off or is in a sleep or hibernate state are not included when calculating the stability index.

If there is not enough data to calculate a steady stability index, the line on the graph is dotted. For example, until Reliability Monitor has 28 days of data, the stability index is
displayed as a dotted line, indicating that it has not yet established a valid baseline. When enough data has been recorded to generate a steady stability index, the line is solid. If there are any significant changes to the system time, an information icon appears on the graph for each day on which the system time was adjusted.

Reliability Monitor maintains up to a year of history for stability and reliability events. The Stability Chart displays a rolling graph organized by date.

Quick Check
- What would a stability index of 10 indicate?

Quick Check Answer
- The maximum value of the stability index is 10. This value indicates that the computer has been stable over the previous 28 days with no failures or reboots. It also indicates that no software updates and service packs that require a reboot have been applied during that time.

The Stability Chart

The Stability Chart in Reliability Monitor displays a graph of the stability index on a day-to-day basis. Rows in the lower half of the chart track reliability events that either contribute to the stability measurement for the system or provide related information about software installation and removal. When one or more reliability events of each type are detected, an icon appears in the column for that date.

For software installs and uninstalls an information icon indicates a successful event and a warning icon indicates a failure. For all other reliability event types, an error icon indicates a failure. If more than 30 days of data are available, you can use the left and right arrow keys on the keyboard to find dates outside the visible range.

Using the Action Center

The Action Center, available under System And Security in Control Panel, monitors your computer and reports problems with security, maintenance, and related settings that help indicate your computer’s overall performance. It notifies users if there is a problem with the network firewall, antivirus, anti-spyware, or Windows Update on their computers running Windows 7. When the status of a monitored item changes (for example, your antivirus software becomes out of date), Action Center notifies you with a message in the notification area on the taskbar. The status of the item in Action Center changes color to reflect the severity of the message, and Action Center recommends an action. The Action Center is shown in Figure 13-10.
If you prefer to keep track of an item yourself and you do not want to see notifications about its status, you can turn off notifications for the item in the Change Action Center Settings dialog box, shown in Figure 13-11.

![The Change Action Center Settings dialog box]

Figure 13-11 The Change Action Center Settings dialog box
When you clear the check box for an item on the Change Action Center Settings dialog box, you no longer receive any messages and do not see the item's status in Action Center. Microsoft recommends checking the status of all items listed because that can help warn you about security issues.

The Windows Experience Index

From Action Center, you can archive messages and view the messages you have archived. You can click a link to change User Account Control (UAC) settings, as described in Chapter 9, “Authentication and Account Control.” However, the link in the Action Center that best measures the computer’s current performance level is to the Windows Experience Index in the Performance Information And Tools dialog box, as shown in Figure 13-12.

![The Windows Experience Index](image)

FIGURE 13-12 The Windows Experience Index

The Windows Experience Index measures the capability of your computer’s hardware and software configuration and expresses this as a base score. A higher base score generally means that your computer will perform better and faster especially when performing resource-intensive tasks.

Each hardware feature receives an individual subscore and the base score is determined by the lowest subscore. The base score is not an average of the combined subscores. However, the subscores can give you a view of how the features that are most important to you will perform and can help you decide which features to upgrade. Remember that if you are not
interested in gaming and very high-quality three-dimensional graphics, you might purchase a computer that has very adequate processor, memory, and hard disk resources but has a lower-cost graphics hardware device. Such a computer is adequate for your purposes but does not have a high base score.

While bearing this in mind, you can use the base score as at least a rough guide when you are selecting software to run on your computer. For example, if your computer has a base score of 3.3, then you would be wise to purchase only software packages that require a base score of 3 or lower. Interactive games applications are a good example of the type of software package that require a high Windows Experience Index.

The scores range from 1.0 to 7.9. The Windows Experience Index is designed to accommodate advances in computer technology. As hardware speed and performance improve, higher score ranges will be enabled. The standards for each level of the index generally stay the same. However, in some cases, new tests might be developed that can result in lower scores. If you have replaced or upgraded hardware on your computer, you need to recalculate the Windows Experience Index.

Using System Tools to Investigate Processes and Services

As an IT professional, you probably have used Task Manager and accessed Resource Manager from that tool, although you may not be aware of the Resource Manager enhancements that Windows 7 provides. Process Explorer is a downloadable advanced system tool that offers many of the features of Task Manager and Resource Manager and you can use this tool to investigate resource usage, handles, and dynamic-link library (DLL) files.

Task Manager

If an application stops responding, Windows 7 tries to find the problem and fix it automatically. Alternatively, if the system seems to have crashed completely and Windows 7 has not resolved the problem, you can end the application by opening Task Manager and accessing the Applications tab.

The Performance tab in Task Manager provides details about how a computer is using system resources—for example, RAM and CPU. As shown in Figure 13-13, the Performance tab has four graphs. The first two show the percentage of CPU resource that the system is using, both at the moment and for the past few minutes. A high percentage usage over a significant period indicates that programs or processes require a lot of CPU resources. This can affect computer performance. If the percentage appears frozen at or near 100 percent, a program might not be responding. If the CPU Usage History graph is split, the computer either has multiple CPUs, a single dual-core CPU, or both.

If processor usage is consistently high—say 80 percent or higher for a significant period—you should consider installing a second processor or replacing the current processor even if the Windows Experience Index subscore does not identify the processor as a resource bottleneck. However, before you do so, it is worth capturing processor usage data by using Performance Monitor rather than relying on snapshots obtained by using Task Manager.
The next two graphs display how much RAM is being used, both at the moment and for the past few minutes. The percentage of memory being used is listed at the bottom of the Task Manager window. If memory use appears to be consistently high or slows your computer’s performance noticeably, try reducing the number of programs that are open at one time (or encourage users you support to close any applications they are not currently using). If the problem persists, you might need to install more RAM or implement ReadyBoost.

Three tables below the graphs list various details about memory and resource usage. In the Physical Memory (MB) table, Total is the amount of RAM installed on your computer, Cached refers to the amount of physical memory used recently for system resources, and Free is the amount of memory that is currently unused and available.

In the Kernel Memory (MB) table, Paged refers to the amount of virtual memory the kernel is using; Nonpaged is the amount of RAM memory used by the kernel.

The System table has five fields: Handles, Threads, Processes, Up Time, and Page File. Handles are pointers that refer to system elements. They include (but are not limited to) files, registry keys, events, or directories. Lesson 2, “Configuring Performance Settings,” discusses page file configuration.

If you need more information about how memory and CPU resources are being used, click Resource Monitor. This displays the Resource Monitor, which is discussed later in this lesson. You require elevated privileges to access Resource Monitor.

You can determine how much memory an individual process uses by selecting the Task Manager Processes tab. As shown in Figure 13-14, the Memory (Private Working Set) column is selected by default. A private working set indicates the amount of memory a process is using that other processes cannot share. This information can be useful in identifying
a “leaky” application—an application which, if left open, uses more and more memory resource and does not release memory resource that it is no longer using.

You can click View, click Select Columns, and then select a memory value to view other memory usage details on the Processes tab. You can use the Task Manager Processes tab to end a process, to end a process tree (which stops the process and all processes on which it depends), and to set process priority. To change the priority of a process, right-click the process and click Set Priority. You can choose Realtime, High, Above Normal, Normal, Below Normal, or Low.

The Task Manager Services tab shows which services are running and which are stopped. You can stop or start a service or go to a process that depends on that service. If you want more details about or more control over the services available on a computer, you can click Services to access the Services administrative tool. You require elevated privileges to use the Services tool.

The Task Manager Networking tab lets you view network usage. The Users tab tells you what users are connected to the computer and lets you disconnect a user. The Applications tab shows you the running applications and (as previously stated) enables you to close a crashed application.

Quick Check

You want to change the priority of a process on a computer. How do you do this?

Quick Check Answer

Open Task Manager. In the Processes tab, right-click the process and click Set Priority. You can choose Realtime, High, Above Normal, Normal, Below Normal, or Low.
EXAM TIP
In Windows 7, you right-click a process and click Set Priority to observe or configure its priority level. In Windows Vista, you click Select Priority. Examiners often test this sort of change to determine whether candidates have properly studied the new operating system or whether they are relying on their experience with the previous one.

Resource Monitor
Windows 7 offers an enhanced version of the Resource Monitor tool. Windows 7 Resource Monitor allows you to view information about hardware and software resource use in real time. You can filter the results according to the processes or services that you want to monitor. You can also use Resource Monitor to start, stop, suspend, and resume processes and services, and to troubleshoot unresponsive applications. You can start Resource Monitor from the Performance tab of Task Manager or by entering resmon in the Search box on the Start menu.

Resource Monitor always starts in the same location and with the same display options as the previous session. You can save your display state at any time and then open the configuration file to use the saved settings. However, filtering selections are not saved as part of the configuration settings.

Resource Monitor includes five tabs: Overview, CPU, Memory, Disk, and Network. The Overview tab, shown in Figure 13-15, displays basic system resource usage information. The other tabs display information about each specific resource. If you have filtered results on one tab, only resources used by the selected processes or services are displayed on the other tabs. Filtered results are denoted by an orange bar below the title bar of each table.

FIGURE 13-15 The Resource Monitor Overview tab
Each tab in Resource Monitor includes multiple tables that provide detailed information about the resource featured on that tab. The first table displayed is always the key table, and it contains a complete list of processes using the resource included on that tab. For example, the key table on the Overview tab contains a complete list of processes running on the system.

You can filter the detailed data in tables other than the key table by one or more processes or services. To filter, select the check box in the key table next to each process or service that you want to highlight. To stop filtering for a single process or service, clear its check box. To stop filtering altogether, clear the check box next to Image in the key table. If you have filtered results, the resources used by the selected processes or services are shown in the graphs as an orange line.

You can change the size of the graphs by clicking Views and selecting a different graph size. You can hide the chart pane by clicking the arrow at the top of the pane. To view definitions of data displayed in the tables, move the mouse pointer over the column title about which you want more information.

For example, to identify the network address that a process is connected to, click the Network tab and then click the title bar of TCP Connections to expand the table. Locate the process whose network connection you want to identify. You can then determine the Remote Address and Remote Port columns to see which network address and port the process is connected to. Figure 13-16 shows the System process is currently connected to IPv4 addresses 192.168.123.138 and 192.168.123.176, both on port 445.

![Resource Monitor](Image)

FIGURE 13-16 Identifying network addresses that a process is connected to
On the Memory tab, shown in Figure 13-17, you can review the memory available to programs. Available memory is the combined total of standby memory and free memory. Free memory includes zero page memory.

FIGURE 13-17 The Resource Monitor Memory tab

Resource Monitor displays real-time information about all the processes running on your system. If you want to view only the data related to selected processes, you can filter the detailed results by selecting the check boxes next to the names of the processes you want to monitor in any of the tabs. Selected processes are moved to the top of the Image column. After you have selected at least one process for filtering, the Associated Handles and Associated Modules tables on the CPU tab contain data related to your selection. Tables that contain only filtered results include an orange information bar below the title bar of the table.

Resource Monitor allows you to end or suspend processes and start, stop, or restart services. You should use Resource Monitor to end a process only if you are unable to close the program by normal means. If an open program is associated with the process, it closes immediately and you lose any unsaved data. If you end a system process, this might result in system instability and data loss.

To end a process, right-click the executable name of the process that you want to end in the Image column of the key table of any Resource Monitor tab and click End Process. To end all processes dependent on the selected process, click End Process Tree. To resume a process, right-click the executable name of the program that you want to resume, and then click Resume Process.
To stop, start, or restart a service using Resource Monitor access the CPU tab and click the title bar of Services to expand the table. In Name, right-click the service that you want to change, and then click Stop Service, Start Service, or Restart Service.

Applications that are not responding might be waiting for other processes to finish, or for system resources to become available. Resource Monitor allows you to view a process wait chain, and to end processes that are preventing a program from working properly.

A process that is not responding appears as a red entry in the CPU table of the Overview tab and in the Processes table of the CPU tab. To view the process wait chain, right-click the executable name of the process you want to analyze in the Image column on the key table of any Resource Monitor tab and click Analyze Wait Chain.

If the process is running normally and is not waiting for any other processes, no wait chain information is displayed. If, on the other hand, the process is waiting for another process, a tree organized by dependency on other processes is displayed. If a wait chain tree is displayed, you can end one or more of the processes in the tree by selecting the check boxes next to the process names and clicking End Process.

Handles (as stated previously in this section) are pointers that refer to system elements. They include (but are not limited to) files, registry keys, events, or directories. Modules are helper files or programs. They include (but are not limited to) DLL files.

To use Resource Monitor to view all handles and modules associated with a process, in the Image column of the CPU tab, select the check box next to the name of the process for which you want to see associated handles and modules. Selected processes move to the top of the column. Click the title bars of the Associated Handles and Associated Modules tables to expand them. An orange bar below the title bar of each table shows the processes you have selected. Review the results in the detail tables.

If you need to identify the processes that use a handle, click the Search Handles box in the title bar of the Associated Handles table. Type the name of the handle you want to search for, and then click Search. For example, searching for c:\windows returns all handles with c:\windows as part of the handle name. The search string is not case sensitive, and wildcards are not supported.

Process Explorer

Process Explorer is not part of Windows 7, but you can download it at http://technet.microsoft.com/en-us/sysinternals/bb896653.aspx, expand the archive into a folder (such as C:\ProcessExplorer), and start it by entering c:\processexplorer\procexp.exe in the Search box on the Start menu. Process Explorer tells you which program has a particular file or directory open and displays information about which handles and DLLs processes have opened or loaded. You can use either Process Explorer or Resource Monitor to determine which applications are responsible for activity on your hard disk, including which files and folders are being accessed.

When it opens, Process Explorer displays a list of the currently active processes, as shown in Figure 13-18. You can toggle the lower pane on and off and select to view handles or DLLs.
In Handle mode, you can see the handles that the process selected in the top window has opened. The Process Explorer search capability discovers which processes have particular handles opened or DLLs loaded.

FIGURE 13-18 Process Explorer opening page

MORE INFO ADVANCED SYSTEM TOOLS AND COMMAND-LINE UTILITIES

For more information about advanced system tools for Windows, including their corresponding command-line utilities, see http://technet.microsoft.com/en-us/sysinternals/default.aspx.

Process Explorer includes a toolbar and mini-graphs for CPU, memory, and I/O history. The mini-graphs show history of system activity, and resting the mouse over a point on a graph displays the associated time and the process information. For example, the tooltip for the mini-CPU graph shows the process that was the largest consumer of CPU. Clicking on any of the mini-graphs opens the System Information screen, as shown in Figure 13-19. Difference highlighting helps you see what items change between refreshes. Items—including processes, DLLs, and handles—that exit or are closed show in red and new items show in green.

System Information graphs display the CPU usage history of the system, committed virtual memory usage, and I/O throughput history. Red in the CPU usage graph indicates CPU usage in kernel mode, whereas green is the sum of kernel-mode and user-mode execution. When Committed Virtual Memory reaches the system Commit Limit, applications and the system become unstable. The Commit Limit is the sum of most of the physical memory and the sizes of any paging files. In the I/O graph, the blue line indicates total I/O traffic, which is the sum of all process I/O reads and writes between refreshes, and the pink line shows write traffic.
CHAPTER 13 Monitoring and Performance

FIGURE 13-19 Process Explorer System Information screen

You can reorder columns in Process Explorer by dragging them to their new position. To select which columns of data you want visible in each of the views and the status bar, click Select Columns on the View menu or right-click a column header and click Select Columns. You can save a column configuration and its associated settings by clicking Save Column Set on the View menu.

On the Options menu, you can choose to have Process Explorer open instead of Task Manager whenever Task Manager is started, or you can ensure that the Processor Explorer window is always on top and always visible. You can specify that only one instance of Process Explorer is open at any one time.

NOTE THE VIEWING ADVANCED DETAILS IN SYSTEM INFORMATION OPTION

The View Advanced Details In System Information option, available when you click Advanced Tools in The Performance Information And Tools dialog box, provides detailed information about system configuration. It does not, however, directly address performance issues. The dialog box in which this information is presented is called System Information. Take care to distinguish between this dialog box, which is provided in Windows 7, and the System Information feature of Process Explorer, which is a downloadable tool.
Logging and Forwarding Events and Event Subscriptions

As an experienced IT professional, you almost certainly have used Event Viewer and event logs, and this section discusses these tools only briefly before going on to event forwarding and event subscriptions, with which you might be less familiar.

Details about event subscriptions can be found in the Subscriptions tab of the event log Properties dialog box. The General tab of this dialog box gives details such as current log size, maximum log size, and the action to take when maximum log size is reached. The easiest way to start Event Viewer is to enter `eventvwr` in the Start menu Search box.

Event Viewer displays event logs, which are files that record significant events on a computer—for example, when a user logs on or when a program encounters an error. You will find the details in event logs helpful when troubleshooting problems. The events recorded fall into the following categories:

- Critical
- Error
- Warning
- Information

The security log contains two more event categories, Audit Success and Audit Failure, that are used for auditing purposes.

Event Viewer tracks information in several different logs. Windows logs include the following:

- **Application** Stores program events. Events are classified as error, warning, or information, depending on the severity of the event. The critical error classification is not used in the Application log.
- **Security** Stores security-related audit events that can be successful or failed. For example, the security log will record an audit success if a user trying to log on to the computer was successful.
- **System** Stores system events that are logged by Windows 7 and system services. System events are classified as critical, error, warning, or information.
- **Forwarded Events** Stores events that are forwarded by other computers.

Custom Views

You can create custom views by clicking Create Custom View on the Event Viewer Action menu, specifying the source logs or events and filtering by level, time logged, event ID, task category, keywords, user, or computer. You are unlikely to specify all these criteria, but this facility enables you to refine your search to where you think a problem might be occurring rather than searching through a very large number of events. Figure 13-20 shows a custom view specification.
A filter is not persistent. If you set up a filter to view specific information in an event log, you need to configure the same filter again the next time you want to see the same information. Custom views are persistent, which means you can access them whenever you open Event Viewer. You can save a filter as a custom view so it becomes persistent and you do not need to configure it for each use. The Action menu also allows you to import custom views from another source and to connect to another computer. You need to have an administrator-level account on that computer.

Applications and Services Logs

Event Viewer provides a number of Applications and Services logs. These include logs for programs that run on the computer and detailed logs that store information about specific Windows services. For example, these logs can include the following:

- Hardware Events
- Internet Explorer
- Key Management Service
- Media Center
- A large number of Microsoft Windows logs
- Microsoft Office Diagnosis
- Microsoft Office Sessions
- Windows PowerShell
Attaching Tasks to Events

Sometimes you want to be notified by e-mail if a particular event occurs, or you might want a specified program to start, such as one that activates a pager. Typically, you might want an event in the Security log—such as a failed logon, or a successful logon by a user who should not be able to log on to a particular computer—to trigger this action. To implement this functionality, you attach a task to the event so that you receive a notification.

To do this, open Event Viewer and navigate to the log that contains the event about which you want to be notified. Typically, this would be the Security log in Windows logs, but you can implement this in other Windows logs or in Applications and Services logs if you want to. You click the event and click Action, click the event and go to the Actions pane, or right-click the event. You then select Attach Task To This Event.

This opens the Create A Basic Task Wizard. You name and describe the task and then click Next. The next screen summarizes the event, and you can check that you have chosen the correct event before clicking Next. The next screen gives you the option of starting a program, sending an e-mail, or specifying a message. When you make your choice and click Next, you configure the task. For example, if you want to send an e-mail, you would specify source address, destination address, subject, task, attachment (if required), and Simple Mail Transfer Protocol (SMTP) server. You click Next and then click Finish.

Using Network Diagnostics with Event Viewer

When you run Windows Network Diagnostics, as described in Chapter 6, any problem found, along with solution or solutions, is displayed in the Network Diagnostics dialog box. If, however, more detailed information about the problem and potential solutions is available, Windows 7 saves this in one or more event logs. You can use the information in the event logs to analyze connectivity problems or help interpret the conclusions.

You can filter for network diagnostics and Transmission Control Protocol/Internet Protocol (TCP/IP) events by specifying (for example) Tcpip and Tcipv6 event sources and capturing events from these sources in a custom view.

If Network Diagnostics identifies a problem with a wireless network, it saves information in the event logs as either helper class events or informational events. Helper class events provide a summary of the diagnostics results and repeat information displayed in the Network Diagnostics dialog box. They can also provide additional information for troubleshooting, such as details about the connection that was diagnosed, diagnostics results, and the capabilities of the wireless network and the adapter being diagnosed.

Informational events can include information about the connection that was diagnosed, the wireless network settings on the computer and the network, visible networks and routers or access points in range at the time of diagnosis, the computer’s preferred wireless network list, connection history, and connection statistics—for example, packet statistics and roaming history. They also summarize connection attempts, list their status, and tell you what phases of the connection failed or did not start.
Event Forwarding and Event Subscriptions

Event forwarding enables you to transfer events that match specific criteria to an administrative (or collector) computer. This enables you to manage events centrally. A single *event log* on the collector computer holds important events from computers anywhere in your organization. You do not need to connect to the local event logs on individual computers.

Event forwarding uses Hypertext Transfer Protocol (HTTP) or, if you need to provide an additional encryption and authentication layer for greater security, Hypertext Transfer Protocol Secure (HTTPS) to send events from a source computer to a collector computer. Because event forwarding uses the same protocols that you use to browse Web sites, it works through most firewalls and proxy servers. Event forwarding traffic is encrypted whether it uses HTTP or HTTPS.

To use event forwarding, you must configure both the source and collector computers. On both computers, start the Windows Remote Management (WinRM) and the Windows Event Collector services. On the source computer, configure a Windows Firewall exception for the HTTP protocol. You might also need to create a Windows Firewall exception on the collector computer, depending on the delivery optimization technique you choose.

You can configure collector-initiated or source-initiated subscriptions. In collector-initiated subscriptions, the collector computer retrieves events from the computer that generated the event. You would use a collector-initiated subscription when you have a limited number of source computers and these are already identified. In this type of subscription, you configure each computer manually.

Subscriptions

In a source-initiated subscription (sometimes termed a *source computer–initiated subscription*), the computer on which an event is generated (the source computer) sends the event to the collector computer. You would use a source-initiated subscription when you have a large number of source computers and you configure these computers through Group Policy.

In a source-initiated subscription, you can add additional source computers after the subscription is established and you do not need to know immediately which computers in your network are to be source computers. In collector-initiated subscriptions, the collector computer retrieves events from one or more source computers. Collector-initiated subscriptions are typically used in small networks. In source-initiated subscriptions, the source computers forward events to the collector computer. Enterprise networks use source-initiated subscriptions.

NOTE FORWARDING COMPUTERS

Much of the literature on this subject uses the term *forwarding computer* rather than *source computer*, sometimes inaccurately. In collector-initiated subscriptions, the collector computer retrieves events from the source computer. The source computer does not forward events. Only in source-initiated subscriptions does the source computer forward events and can accurately be called a forwarding computer. To prevent confusion, the term *source computer*, rather than *forwarding computer*, is used throughout this chapter.

In a collector-initiated subscription, you first manually configure one or more source computers and the collector computer. When the source computers and the collector computer are configured, you can create an *event subscription* to determine what events should be transferred.

Configuring a Collector-Initiated Subscription

To configure a computer running Windows 7 so that a collector computer can retrieve events from it, open an elevated command prompt and use the `Winrm` (Windows Remote Management) command-line tool to configure the WinRM service by entering the following command:

```
winrm quickconfig
```

You can abbreviate this to `winrm qc`. Windows displays a message similar to that shown in Figure 13-21. The changes that must be made depend on how the operating system is configured. You enter `Y` to make these changes. Note that if any of your network connection types is set to public, you must set it to private for this command to work.

![Figure 13-21 Configuring the WinRM service](image)

Next, add the computer account of the collector computer to the local Event Log Readers group or the local Administrators group on the source computer. You can do this by using the Local Users And Groups MMC snap-in or by entering a net command in an elevated command prompt.
You can add the collector computer account to the local Administrators group or the Event Log Readers group on the source computer. If you do not require the collector computer to retrieve events in Security Event logs, it is considered best practice to use the Event Log Readers group. However, if you do need to transfer Security Event log information, you must use the local Administrators group.

By default, the Local Users And Groups MMC snap-in does not permit you to add computer accounts. You must click the Object Types button in the Select Users, Computers, Or Groups dialog box and select the Computers check box. You can then add computer accounts.

To configure a computer running Windows 7 to collect events, open an elevated command prompt and enter the following command to configure the Windows Event Collector service:

```
wecutil qc
```

When you have configured the source and collector computers, you next configure the event subscription by specifying what events the collector computer needs to retrieve and the event sources (specifically the source computers) from which it must retrieve them.

Exam Tip

Distinguish between **Winrm** and **Wecutil**. **Winrm** is used to configure WinRM and is typically used on the source computer. **Wecutil** is used to configure the Windows Event Collector service and is typically used on the collector computer.

Configuring a Source-Initiated Subscription

Source-initiated subscriptions are typically used in enterprise networks in which you can use Group Policy to configure a number of source computers. To configure a source-initiated subscription, you configure the collector computer manually and then use Group Policy to configure the source computers. When the collector computer and source computers are configured, you can create an event subscription to determine which events are forwarded.

Source-initiated subscriptions (sometimes termed **source computer–initiated subscriptions**) enable you to configure a subscription on a collector computer without defining the event source computers. You can then set up multiple remote event source computers by using Group Policy to forward events to the event collector computer. By contrast, in the collector-initiated subscription model, you must define all the event sources in the event subscription.

To configure the collector computer in a source-initiated subscription, you need to use command-line commands entered in an elevated command prompt. If the collector and source computers are in the same domain, you must create an event subscription Extensible Markup Language (XML) file (called, for example, Subscription.xml) on the collector computer, open an elevated command prompt on that computer, and configure WinRM by entering the following command:

```
winrm qc -q
```
Configure the Event Collector service on the same computer by entering the following command:

```
wecutil qc -q
```

Create a source-initiated subscription on the collector computer by entering the following command:

```
wecutil cs configuration.xml
```

To configure a source computer to use a source-initiated subscription, you first configure WinRM on that computer by entering the following command:

```
winrm qc -q
```

You then use Group Policy to add the address of the event collector computer to the SubscriptionManager setting. From an elevated command prompt, start Group Policy by entering the following command:

```
%SYSTEMROOT%\System32\gpedit.msc
```

In Local Group Policy Editor, under Computer Configuration, expand Administrative Templates, expand Windows Components, and select Event Forwarding. Note that you do not have this option if you have already configured your computer as a collector computer.

Right-click the SubscriptionManager setting and select Properties. Enable the SubscriptionManager setting and then click Show. Add at least one setting that specifies the event collector computer. The SubscriptionManager Properties window contains an Explain tab that describes the syntax for the setting.

After the SubscriptionManager setting has been added, run the following command to ensure that the policy is applied:

```
gpupdate /force
```

Creating an Event Subscription

To receive events transferred from a source computer to a collector computer, you must create one or more event subscriptions. Before setting up a subscription, configure both the collector and source computers as previously described. To create a subscription on a collector computer, perform the following procedure:

1. In Event Viewer, right-click Subscriptions and select Create Subscription.
2. If prompted, click Yes to configure the Windows Event Collector Service to start automatically.
3. In the Subscription Properties dialog box shown in Figure 13-22, type a name for the subscription. You can also type a description if you want.
4. Select and configure the type of subscription you want to create—Collector Initiated or Source Computer Initiated. Specify Computers or Computer Groups.
5. Click the Select Events button in the Subscription Properties dialog box to open the Query Filter dialog box. Use this dialog box to define the criteria that forwarded events must match. Then click OK.

6. If you want, you can click the Advanced button in the Subscription Properties dialog box to open the Advanced Subscription Settings dialog box. You can configure three types of subscriptions: Normal, Minimize Bandwidth, and Minimize Latency.

NOTE SPECIFYING THE ACCOUNT THE SUBSCRIPTION USES

Use the Advanced Subscription Settings dialog box to configure the account the subscription uses. Whether you use the default Machine Account setting or specify a user, you must ensure that the account is a member of the source computer’s Event Log Readers group (or, if you are collecting Security Event log information, the local Administrators group).

7. Click OK in the Subscription Properties dialog box to create the subscription.

PRACTICE Using Performance Monitor to Generate a Snapshot of Disk Performance Data

In this practice, you take a snapshot of performance data on your Canberra computer. You then view this data in graph, histogram, and report format. You will probably obtain different results from the Canberra computer in your practice network. Before you carry out this practice, connect a second storage device, such as a second hard disk or USB flash memory, to your computer.
EXERCISE 1 Add and Monitor Disk Counters

In this exercise, you add counters that enable you to monitor the performance of your system (C:) hard disk volume. If you have additional volumes on a single hard disk or additional hard disks on your system, you can extend the exercise to monitor them as well.

NOTE DISKPERF

Both logical and physical disk performance counters are enabled on demand by default on Windows 7. The Diskperf command still exists, and you can use it to enable or disable disk counters forcibly for older applications that use ioctl_disk_performance to retrieve raw counters.

MORE INFO THE IOCTL_DISK_PERFORMANCE FILE

For more information about ioctl_disk_performance, see http://msdn.microsoft.com/en-us/library/ms804569.aspx. Note, however, that this is an older feature and is unlikely to be tested in the 70-680 examination.

A bottleneck affecting disk usage and speed has a significant impact on a computer’s overall performance. To add counters that monitor disk performance, perform the following procedure:

1. Log on to the Canberra computer using the Kim_Akers account.
2. Open Performance Monitor.
3. In Performance Monitor, click the Add button (the green + symbol).
4. In the Add Counters dialog box, ensure that Local Computer is selected in the Select Counters From Computer drop-down list.
5. Select the Show Description check box.
6. Select any counters currently listed in the Added Counters pane and click Remove.
7. In the Counter Selection pane, expand LogicalDisk and select % Free Space. In the Instances Of Dialog Box pane, select C:, as shown in Figure 13-23. The LogicalDisk\% Free Space counter measures the percentage of free space on the selected logical disk drive. If this falls below 15 percent, you risk running out of free space for the operating system to store critical files.
8. Click Add to add this counter.
9. In the Counter Selection pane, expand PhysicalDisk and select % Idle Time. In the Instances Of Dialog Box pane, select C:, as shown in Figure 13-24. This counter measures the percentage of time the disk was idle during the sample interval. If this value falls below 20 percent, the disk system is said to be saturated, and you should consider installing a faster disk system.
10. Click Add to add this counter.
Selecting the Logical Disk \% Free Space Counter for the C: drive

FIGURE 13-23

Selecting the Physical Disk \% Idle Time Counter for the C: drive

FIGURE 13-24
11. Use the same technique to add the C: instance of the PhysicalDisk\Avg. Disk Sec/Read counter. This counter measures the average time in seconds to read data from the disk. If the value is larger than 25 milliseconds (ms), the disk system is experiencing latency (delay) when reading from the disk. In this case, consider installing a faster disk system.

12. Use the same technique to add the C: instance of the PhysicalDisk\Avg. Disk Sec/Write counter. This counter measures the average time in seconds to write data to the disk. If the value is larger than 25 ms, the disk system is experiencing latency (delay) when writing to the disk. In this case, consider installing a faster disk system.

MORE INFO PHYSICALDISK\% DISK TIME COUNTER

Because the value in the PhysicalDisk\% Disk Time counter can exceed 100 percent, many administrators prefer to use PhysicalDisk\% Idle Time, PhysicalDisk\Avg. Disk Sec/Read, and PhysicalDisk\Avg. Disk Sec/Write counters to obtain a more accurate indication of hard disk usage. For more information about the PhysicalDisk\% Disk Time counter, see http://support.microsoft.com/kb/310067.

13. Use the same technique to add the C: instance of the PhysicalDisk\Avg. Disk Queue Length counter. This counter indicates how many I/O operations are waiting for the hard drive to become available. If the value of this counter is larger than twice the number of spindles in a disk array the physical disk itself might be the bottleneck.

14. Use the same technique to add the Memory\Cache Bytes counter. This counter indicates the amount of memory being used for the file system cache. There might be a disk bottleneck if this value is greater than 300 MB.

15. Check that the Add Counters dialog box shows the same counters and instances as Figure 13-25. Click OK.

NOTE COUNTER INCLUDED BY DEFAULT

The Processor\%Processor Time counter is included by default and you do not need to add it. It does not appear in the list in Figure 13-25, but you can see it in the line graph, histogram, and report views shown in Exercise 2.

EXERCISE 2 Set Performance Monitor Properties and Monitor Disk Performance

In this exercise, you set the sample interval and duration, read data from, and write data to the disk volume you are monitoring. You view the results in line, histogram, and report formats. Perform this exercise immediately after Exercise 1.

1. In the Performance Monitor Action pane, click More Actions and then click Properties.

2. On the General tab of the Performance Monitor Properties dialog box, in the Graph Elements section, change the Sample Every value to 5 and the Duration value to 300. Click OK.
3. Copy a file or folder (about 100 MB in size) from your C: drive to your attached storage device.

4. Copy a file or folder (about 100 MB in size) from your attached storage device to your C: drive.

5. View the line graph in Performance Monitor, as shown in Figure 13-26. This might not easily provide the information you are looking for.

![Figure 13-25 Counters and instances added](image1)

FIGURE 13-25 Counters and instances added

![Figure 13-26 Performance Monitor line graph view](image2)

FIGURE 13-26 Performance Monitor line graph view
6. In the Change Graph drop-down list, select Histogram Bar. View the histogram in Performance Monitor, as shown in Figure 13-27.

![Performance Monitor histogram view](image)

FIGURE 13-27 Performance Monitor histogram view

7. In the Change Graph drop-down list, select Report. View the Report in Performance Monitor, as shown in Figure 13-28.

![Performance Monitor report view](image)

FIGURE 13-28 Performance Monitor report view
8. Analyze the counter values in light of the information given about each counter in Exercise 1. The results shown in the screen shots indicate that adequate free space remains on the C: volume and no problem occurred when copying a fairly large file or folder. Cache memory usage was significant, but this is normal and acceptable in this operation. The results you obtain are likely to be different.

NOTE FILE CACHING

To obtain meaningful results, Exercise 2 asked you to obtain line, histogram, and report views for the same copying operations. Had you been asked to repeat the copy operations to obtain the histogram and report views, the results would have been different. This is because Windows 7 would have cached the file or folder after the first copy and the subsequent results would have reflected only the impact of writing the file to disk and retrieving it from RAM. Using the tools is relatively straightforward; interpreting the results sometimes is not.

Lesson Summary

- You can use Performance Monitor to view performance data in real time or performance counter values captured in DCSs. A system diagnostics report gives you details about the status of hardware resources, system response times, and processes on the local computer, along with system information and configuration data.
- Reliability Monitor tracks a computer’s stability. It can also tell you when events that could affect stability (such as the installation of a software application) occurred and whether any restarts were required after these events. Action Center monitors your computer and reports problems with security, maintenance, and related settings. The Windows Experience Index indicates the suitability of your current computer hardware for running resource-intensive applications.
- Task Manager gives you a snapshot of resource usage and lets you manage applications, service, and protocols. Resource Monitor allows you to view information about hardware and software resource use in real time. Process Explorer performs the same functions as Task Manager but gives you additional controls and more detailed system information.
- Event Viewer lets you access and filter event logs and create custom views. You can attach tasks to events and configure event forwarding and event subscriptions so that a central computer can store events generated on one or more source computers.

Lesson Review

You can use the following questions to test your knowledge of the information in Lesson 1, “Monitoring Systems.” The questions are also available on the companion DVD if you prefer to review them in electronic form.
Lesson 1: Monitoring Systems

Chapter 13

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incorrect are located in the “Answers” section at the end of the book.

1. You have upgraded the hardware on a computer so that it can run an application that requires a large amount of processor resource. You use the Windows Experience Index tool to generate a new base score. The subscores for each feature are as follows:

- Processor 5.1
- Physical Memory (RAM) 3.3
- Graphics 3.6
- Gaming Graphics 2.3
- Primary Hard Disk 5.3

Based on these figures, what is the Windows Experience Index base score?

A. 2.3
B. 3.9
C. 5.1
D. 4.4

2. A client running Windows 7 is experiencing intermittent performance problems. You suspect the problems might be caused by an application that you recently installed but you have forgotten exactly when you did this. Which tool or feature would you use to determine when the application was installed?

A. Reliability Monitor
B. Action Center
C. DCSs
D. Performance Monitor

3. Which of the following types of information are stored in Reliability Monitor? (Choose all that apply; each correct answer presents part of a complete solution.)

A. An application failed and needs to be restarted.
B. A Windows error occurred and the system was rebooted.
C. An application was uninstalled.
D. A service was stopped.
E. A device driver failed.

4. You are configuring a client running Windows 7 named Canberra to retrieve events from a computer running Windows 7 named Aberdeen. Both computers are on the same workgroup. Which of the following commands would you run on the collector computer to configure the Event Collector service?

A. wecutil qc
B. winrm qc
5. You want to use Performance Monitor to display performance data captured in a DCS. You open the tool and access the Performance Monitor Properties dialog box. On which tab can you choose whether to display current activity in real time or log files that you have saved using a DCS?

A. General
B. Source
C. Data
D. Graph
E. Appearance
Lesson 2: Configuring Performance Settings

This lesson looks at configurations that can affect the performance of your computer and the tools that Windows 7 provides to display and reconfigure performance settings and resolve performance issues. If you do not like the tools provided, you can use Windows Management Instrumentation (WMI) scripts to write your own.

Many factors affect performance, such as the appearance of your screen or your browser window, the services and processes that are running on your computer, and the priorities and processor affinity that you assign to various processes. Performance is affected by your cache and page file settings, by the services and applications that start automatically or run even when not required, and by what processes are running and the amount of resources each consumes.

After this lesson you will be able to:

- Use a variety of Windows tools to inspect and configure settings that affect Windows 7 performance.
- Write WMI scripts that return system information and use the WMI tools.
- Troubleshoot performance issues.

Estimated lesson time: 45 minutes

Obtaining System Information Using WMI

WMI lets you access system management information and is designed to work across networks. It provides a consistent model of the managed environment and a WMI class for each manageable resource. A WMI class is a description of the properties of a managed resource and the actions that WMI can perform to manage that resource. A managed resource is any object (computer hardware, computer software, service, or user account) that can be managed by using WMI.

To use WMI, you write scripts that use the WMI scripting library. This library lets you work with WMI classes that correspond to managed resources. You can use this approach to manage resources such as disk drives, event logs, and installed software.

You can use Windows Script Host (WSH), Microsoft Visual Basic Scripting Edition (VBScript), Microsoft JScript, or scripting languages such as ActivePerl to write WMI scripts that automate the management of aspects of your network. Typically, Windows Management Instrumentation (WMI) files have .vbs extensions.

You can write scripts to manage event logs, file systems, printers, processes, registry settings, scheduled tasks, security, services, shared folders, and so on. You can create WMI-based scripts to manage network services, such as the Domain Name System (DNS), and to manage client-side network settings, such as whether a computer is configured with static
Internet Protocol version 4 (IPv4) address settings or whether it obtains these settings from a Dynamic Host Configuration Protocol (DHCP) server. WMI scripts can monitor and respond to entries in an event log, modifications to the file system or the registry, and other real-time operating system changes.

A WMI script works with WMI classes, which are representations of physical features or services on a computer. Each class can contain one or more objects or instances and the objects have attributes. You can display the value of each attribute or pass this on to another routine for analysis.

Typically, you type WMI scripts using a text editor such as Microsoft Notepad and save them as .vbs files in a directory (for example, C:\WMI_Scripts) that you have created for this purpose. Be wary of using word processing software such as Microsoft Office Word for this process. Word processing software often uses different styles of quotation marks for different fonts (to cite one example), and this can cause syntax errors. You can run WMI scripts from an elevated command prompt by using the Cscript utility, and you can create batch files that run scripts at scheduled intervals or when triggered by an event.

For example, the following WMI script accesses instances of the Win32_Battery class (there is only one) and prints out the value of the EstimatedChargeRemaining attribute. The code looks more complex than it actually is. You can substitute other WMI classes and find the values of their attributes by substituting the class and the attributes in this routine.

```
strComputer = "."
Set objSWbemServices = GetObject("winmgmts:\" & strComputer
Set colSWbemObjectSet = objSWbemServices.InstancesOf("Win32_Battery")
For Each objSWbemObject In colSWbemObjectSet
Wscript.Echo "Remaining Charge: " & objSWbemObject.EstimatedChargeRemaining & " percent."
Next
```

Figure 13-29 shows the output from this script file, saved as Battery.vbs in the C:\WMI_Scripts folder. Note that if you run this script on a desktop computer, it should complete without error, but it does not give an output.

![Estimated battery charge remaining read by a WMI script](image-url)
You can substitute other WIM classes and find the values of their attributes by substituting the class and the attributes in the previous script. For example, `FreePhysicalMemory` is an attribute of objects in the `Win32_OperatingSystem` class (typically, there would be only one object in this class). The following WMI script outputs the free physical memory on a computer in kilobytes:

```vbs
strComputer = "."
Set objSWbemServices = GetObject("winmgmts:\" & strComputer & ")
Set colSWbemObjectSet = objSWbemServices.InstancesOf ("Win32_OperatingSystem")
For Each objSWbemObject In colSWbemObjectSet
Wscript.Echo "Free physical memory: " & objSWbemObject.FreePhysicalMemory & " KB."
Next
```

Figure 13-30 shows the output from this script file, saved as Memory.vbs in the C:\WMI_Scripts folder.

![Free physical memory read by a WMI script](image)

FIGURE 13-30 Free physical memory read by a WMI script

MORE INFO LIST OF WMI CLASSES

WARNING WMI CLASSES

If you use a WMI class, ensure that Windows 7 supports it. For example, the class `Win32_LogicalMemoryConfiguration` is deprecated and not supported. If you specify this class and run your script on a computer running Windows 7, this generates a 0x80041010 error.
You can write scripts that manage WMI classes that contain a number of objects. For example, the *Win32_Services* class contains all the services that run on a computer. The following script lists all these services:

```vbscript
strComputer = "."
Set objSWbemServices = GetObject("winmgmts:\" & strComputer
Set colSWbemObjectSet = objSWbemServices.InstancesOf ("Win32_Service")
For Each objSWbemObject In colSWbemObjectSet
Wscript.Echo "Display Name: " & objSWbemObject.DisplayName & vbCrLf
Next
```

You can expand the previous script to determine the state (started or stopped) and the start mode for each service as follows:

```vbscript
strComputer = "."
Set objSWbemServices = GetObject("winmgmts:\" & strComputer
Set colSWbemObjectSet = objSWbemServices.InstancesOf ("Win32_Service")
For Each objSWbemObject In colSWbemObjectSet
Next
```

Figure 13-31 shows some of the output from the preceding script.

![Figure 13-31 Determining the state and start mode of each service](image)

You use WMI to administer managed resources. These include the computer system, Active Directory Domain Services (AD DS), disks, peripheral devices, event logs, files, folders, file systems, networking features, operating system subsystems, performance counters, printers, processes, registry settings, security, services, shared folders, users and groups, Windows Installer, device drivers, Simple Network Management Protocol (SNMP) management information base (MIB) data, and so on.
When you write scripts that interact with WMI-managed resources, the term *instance* is used to refer to the managed resource in the script. For example, the following script returns the drive letter for each logical disk drive on your computer:

```vbs
strComputer = "."
Set objSWbemServices = GetObject("winmgmts:\" & strComputer
Set colSWbemObjectSet = objSWbemServices.InstancesOf("Win32_LogicalDisk")
For Each objSWbemObject In colSWbemObjectSet
Wscript.Echo objSWbemObject.DeviceID
Next
```

You can prompt for input in a WMI script and store this in a variable. For example, the following (partial) script prompts the user for a password and stores it in the string variable `strPassword`, which could, for example, be used with the *Connect.Server* function to connect to a server on the network:

```vbs
strComputer = "."
Wscript.StdOut.Write "Please enter the administrator password: "
strPassword = Wscript.StdIn.ReadLine
```

The next script is a more complete routine that you can adapt for your own purposes. It uses the *inputbox* function to prompt for a computer name and then uses the *MsgBox* function to display information about that computer's printers, processes, and processor. The code is not significantly more complex than the previous examples—you are simply displaying the values of object attributes—but using the built-in functions gives the script a professional feel:

```vbs
computer = inputbox("What computer do you want to check? (Press Enter if this computer)","Computer")
set WMI = GetObject("WinMgmts://" & computer)
If computer="" then computer = "this computer"
List = ""
Set objs = WMI.InstancesOf("Win32_Printer")
For each obj in objs
List = List & obj.Caption & ", "
Next
List=Left(List, Len(List)-2)
MsgBox List,64,"Printers on " & computer

List = ""
Set objs = WMI.InstancesOf("Win32_Process")
For each obj in objs
List = List & obj.Description & ", "
Next
List=Left(List, Len(List)-2)
MsgBox List,64,"Processes on " & computer
```
List = ""
set objs = WMI.InstancesOf("Win32_Processor")
For each obj in objs
 List = List & obj.Description & ",
Next
List=Left(List, Len(List)-2)
MsgBox List,64,"Processor on " & computer

Note that if you specify the Aberdeen computer when you run this script on Canberra, you need to ensure the \Canberra\Kim_Akers account has administrator rights on Aberdeen. Only a local administrator can run a WMI script on a computer, although if you have the appropriate rights, running WMI scripts on remote computers is straightforward. The script is possibly more relevant to an enterprise environment where Domain and Enterprise Admins have rights on every machine. Also, ensure that the firewalls are not blocking the information. Figure 13-32 shows the list of processes on Canberra displayed in a message box.

![Processes on this computer](image)

FIGURE 13-32 Processes on this computer (Canberra)

WMI consists of three primary features: the Common Information Model Object Manager (CIMOM), also known as the WMI service; the Common Information Model (CIM) repository, also known as the WMI repository; and WMI providers. Together, these features provide an infrastructure through which configuration and management data is defined, exposed, accessed, and retrieved.

WMI Providers

WMI providers, such as Win32 and the built-in Event Log provider, act as intermediaries between the CIMOM and a managed resource. Providers request information from and send instructions to WMI-managed resources on behalf of applications and scripts. Providers expose the managed resource to the WMI infrastructure using a standards-based access model, communicate with their respective managed resources by using the native application programming interfaces (APIs) of the managed resource, and communicate with the CIMOM.
by using WMI programming interfaces. Windows 7 introduces additional providers for Windows PowerShell and virtualization.

To create an application that manages Windows subsystems, you typically use the Win32 APIs. Without WMI, you would need to call these APIs yourself. Unfortunately, Win32 APIs cannot be called from a script, and you would need to use a programming language such as C++ or Microsoft Visual Basic. Writing C++ or Virtual Basic code is typically much more difficult than writing a script.

When you use WMI providers, you do not have to worry about calling the Win32 APIs because WMI does that for you. Also, you do not have to worry about differences between various APIs because you use a standard set of WMI commands and WMI translates those commands into commands that the APIs understand.

WMI providers are generally implemented as DLLs in the SystemRoot\System32\Wbem directory. The built-in providers, also known as standard providers, supply data and management functions from well-known operating system sources, such as the Win32 subsystem, event logs, performance counters, and the registry.

The CIMOM

The CIMOM handles the interaction between consumers and providers. It acts as the WMI information broker and all WMI requests and data flow through the CIMOM. When you write a WMI script, the script is directed to the CIMOM. However, the CIMOM does not directly handle your request. For example, suppose that you request a list of all the services installed on a computer. The CIMOM does not actually retrieve the list of services for you. Instead, it locates the appropriate WMI provider and asks the provider to retrieve the list. When the list has been retrieved, the CIMOM returns the information to you.

The WMI Service

The WMI service (Winmgmt.exe) implements the CIMOM on Windows 7. You can start and stop it from an elevated command prompt like any other service (for example, net stop winmgmt). Be aware, however, that if you stop the WMI service, this also stops the Security Center and IP Helper services. If the WMI service is stopped and you run a script or an application that requires WMI, the service automatically restarts.

The CIM Repository

Management applications, administrative tools, and scripts make requests to the CIMOM to retrieve data, subscribe to events, or to perform some other management-related task. The CIMOM retrieves the provider and class information necessary to service consumer requests from the CIM repository. The CIMOM uses the information obtained from the CIM repository to hand off consumer requests to the appropriate WMI provider.

The CIM repository holds the schema, also called the object repository or class store, which defines all data exposed by WMI. The schema is similar to the AD DS schema and is built on the concept of classes. A class is a blueprint of a WMI-manageable resource. However, unlike
AD DS classes, CIM classes typically represent dynamic resources. Instances of resources are not stored in the CIM repository but are dynamically retrieved by a provider based on a consumer request. This means that the term repository is somewhat misleading. Although the CIM is a repository and is capable of storing static data, its primary role is storing the blueprints for managed resources.

The operational state for most WMI-managed resources changes frequently (for example, all the events in all event logs on a computer) and is read on demand to ensure that the most up-to-date information is retrieved. This can sometimes cause queries to run slowly if a lot of information needs to be retrieved, but this is preferable to using the computer resource that would be required to maintain an up-to-date repository of frequently changing data.

CIM Classes

CIM classes are organized hierarchically and child classes inherit from parent classes. The Distributed Management Task Force (DMTF) maintains the set of core and common base classes from which system and application software developers derive and create system-specific or application-specific extension classes. Classes are grouped into namespaces, logical groups representing a specific area of management. CIM classes include both properties and methods. Properties describe the configuration and state of a WMI-managed resource; methods are executable functions that perform actions on the WMI-managed resource associated with the corresponding class.

MORE INFO DMTF

For more information about the Distributed Management Task Force, visit the DMTF home page at http://www.dmtf.org/home/.

WMI Consumers

A WMI consumer can be a script, an enterprise management application, a Web-based application, or some other administrative tool that accesses and controls management information available through the WMI infrastructure. For example, the script listed earlier that discovered and listed the logical disk drives on your computer is a WMI consumer. An application can be both a WMI provider and a WMI consumer (for example, Microsoft Application Center and Microsoft Operations Manager).

WMI Scripting Library

The WMI scripting library provides the set of automation objects through which scripting languages such as VBScript access the WMI infrastructure. The WMI scripting library is implemented in a single automation feature named Wbemdisp.dll that is stored in the SystemRoot\System32\Wbem directory. The Automation objects in the WMI scripting library provide a consistent and uniform scripting model for WMI-managed resources.
It is important to distinguish between managed resource class definitions and automation objects. Managed resource class definitions reside in the CIM repository (Cim.rep) and provide the blueprints for the computer resources exposed through WMI. A general-purpose set of automation objects reside in the WMI scripting library and scripts can use these objects to authenticate and connect to WMI. After you obtain an instance of a WMI-managed resource using the WMI scripting library, you can access the methods and properties defined by the class definition of the managed resource.

Variable Naming Convention

WMI scripts typically follow a consistent convention when naming variables. Each variable is named according to the automation object name in the WMI scripting library and is prefaced with `obj` (to indicate an object reference) or `col` (to indicate a collection object reference). For example, a variable that references an object called `SWbemServices` is named `objSWbemServices`; a variable that references an object called `SWbemObject` is named `objSWbemObject`; and a variable that references an object called `SWbemObjectSet` is named `colSWbemObjectSet`.

This convention is not mandatory, but it helps you understand the type of WMI object that you are working with in a WMI script. Following a consistent naming convention makes your code easier to read and to maintain, especially if you are not the person doing the maintenance.

The WMI Administrative Tools

The WMI Administrative Tools include the following:

- **WMI Common Information Model (CIM) Studio** Enables you to view and edit classes, properties, qualifiers, and instances in a CIM repository; run selected methods; and generate and compile Managed Object Format (MOF) files.

- **WMI Object Browser** Enables you to view objects, edit property values and qualifiers, and run methods.

- **WMI Event Registration Tool** Enables you to configure permanent event consumers, and to create or view instances of event consumers, filters, bindings, and timer system classes.

- **WMI Event Viewer** Displays events for all instances of registered consumers.
WMI CIM Studio

WMI CIM Studio is designed primarily for use by developers, particularly those who are writing providers. It assists developers to create WMI classes in the CIM repository. WMI CIM Studio uses a Web interface to display information and relies on a collection of ActiveX features installed on the system when it runs for the first time. The tool enables developers to:

- Connect to a chosen system and browse the CIM repository in any namespace available
- Search for classes by their name, by their descriptions, or by property names
- Review the properties, methods, and associations related to a given class
- See the instances available for a given class of the examined system
- Perform queries in the WMI Query Language (WQL)
- Generate an MOF file based on selected classes
- Compile an MOF file to load it in the CIM repository

WMI CIM Studio also provides wizards for generating and compiling MOF files and for generating framework provider code. When you start WMI CIM Studio from the WMI Tools menu, you first need to click the Information bar and permit ActiveX tools to run. You then select a namespace in the Connect To Namespace dialog box or use the default namespace Root\CIMV2. Figure 13-33 shows the WMI CIM Studio tool.

![WMI CIM Studio](image)

FIGURE 13-33 WMI CIM Studio
WMI CIM Studio contains a Class Explorer and a Class Viewer. When you select classes in the Class Explorer, their details appear in the Class Viewer. WMI CIM Studio wizards generate and compile MOF files.

You can use WMI CIM Studio to view the class inheritance tree for any namespace in your system or on a network by specifying the namespace path in the Classes In box, by clicking the Classes In arrow and selecting the namespace in the history list, or by browsing to a namespace.

You can search for a specific class in the namespace by clicking Search For Class in Class Explorer. In the Search For Class dialog box, select one or more check boxes under Search Options to select the type of search to perform: by class name, class description, or property name. Enter the full or partial text value to use for this search, and click Go. The results of the search appear in the Search Results pane. Click the class to view and then click OK. This displays the chosen class in Class Explorer.

You can display the properties of a class by selecting the class in Class Explorer and then clicking the Properties tab in Class Viewer. Symbols (for example, a key represents a key property) let you identify the following information about a class:

- Key properties
- System properties
- Inherited properties
- Writable properties
- The values contained in property arrays

WMI CIM Studio lets you display instances of an existing class by accessing a table of all instances of the class and viewing the associations of an instance. You can also define and display custom views of instances. You can add and delete class definitions in Class Explorer, and you can modify class definitions by adding, editing, or deleting properties, qualifiers, and methods. You can add and delete instances of a class.

You can execute regular methods on instances in WMI CIM Studio if the instances are implemented and not disabled. Click the class in Class Viewer and click Instances. Right-click the instance you want to work with and select Go To Object. Click the Methods tab in Class Viewer, right-click the method, and select Execute Method. The Parameters column shows the parameters defined for the method and their default values. Before executing the method, you can configure the parameters by editing their values.

The WQL Query Builder lets you write, save, and execute WQL queries. To use this feature, click the WQL Query symbol in Class Viewer. The MOF Generator Wizard in Class Explorer enables you to generate an MOF file for class definitions and instances from an existing repository. Typically, you run this wizard when you have created a new class or when you want to export existing repository information to another computer. You can compile the MOF file into a repository—importing any class definitions or instances from the MOF file into the current repository—by using the MOF Compiler Wizard. This wizard checks the syntax of an MOF file and creates binary MOF files.
WMI Object Browser

Unlike WMI CIM Studio, the WMI Object Browser is designed for use by system managers. This tool enables you to display the object tree for a CIM repository, view object details, edit object information, and run selected methods. You start WMI Object Browser from the WMI Tools menu and you need to click the Information bar and enable ActiveX controls. You can select a namespace or accept the default.

WMI Object Browser contains an Object Explorer and an Object Viewer. When you select objects in the Object Explorer, their details appear in the Object Viewer. Figure 13-34 shows the WMI Object Browser.

![WMI Object Browser](image)

FIGURE 13-34 The WMI Object Browser

The left pane of the WMI Object Browser contains the Object Explorer, which shows the object tree for the current namespace (by default, the Root\CIMV2 namespace on the local computer). You can select a different local namespace or a namespace on a remote computer. The Object Explorer shows a hierarchy of the instances that are found in the selected namespace and any instance in the namespace can be selected as the root of the tree.

The tree shows regular objects and grouping nodes. Grouping nodes are not objects themselves but instead are used to organize objects. The symbols next to the names indicate the type of object or node. Resting the mouse over an object in the tree displays the object’s path, which identifies the object in the namespace.
Lesson 2: Configuring Performance Settings

The right pane of WMI Object Browser shows the Object Viewer. You can select the Properties, Methods, or Associations tab for an object. Figure 13-35 displays the Associations tab. The Object Viewer displays the title of the current view above the tabs. For a single object, the title is the object path of the instance currently displayed. For a multiple-object table, the title describes the group of objects currently displayed.

![WMI Object Browser Associations tab](image)

FIGURE 13-35 WMI Object Browser Associations tab

WMI Object Browser enables you to do the following:

- Display the object tree contained in a specified CIM repository.
- Reroot the object tree.
- Display properties, methods, and associations for a selected object.
- Display instances of grouped objects.
- Display property and object qualifiers.
- Execute methods on a selected object.
- Edit property values and object and property qualifiers.

You can view the object tree for any namespace in your system or on a network by entering the namespace path in the Objects In box or selecting it in the history list. You can also browse for a namespace or right-click the object whose namespace you want to display and click Go To Namespace. The root of the namespace can be changed temporarily in a session or permanently through the schema.

When you select a grouping node in the Object Explorer, the Object Viewer displays an instance table showing all objects in the namespace that belong to the selected group and
the common properties of those objects. You can also display the details for any individual instance from the instance table by right-clicking the instance and clicking Go To Object. This displays the object's Properties tab. From the Properties tab, you can double-click a property to display property qualifiers. When the Properties tab is selected, you can right-click anywhere in the Object Viewer grid and select Object Qualifiers. Selecting the Properties tab also enables you to edit the Value field of properties that are not read-only. To return to the instance table, reselect the grouping node.

From the Methods tab in the Object Viewer, you can right-click a method and select Execute Method. The Method Parameters window displays the parameters used when executing the selected method. The Parameters column shows the parameters defined for this method and their default values. You can configure parameters by editing the values in this table before you execute the method.

WMI Event Registration

The WMI Event Registration tool is designed primarily for developers. It provides a graphical interface for what you can also accomplish programmatically. You need to install Windows Management and create a repository of classes on the target computer before you can use the WMI Event Registration Tool. You can do this by compiling an MOF file in the system directory where the WMI Core is installed. To compile the MOF file, type the following at the command-line prompt:

```
mofcomp <filename>.mof
```

However, by default, the WMI Event Registration tool uses the Eviewer.mof file found in the WMI Tools directory. This file is compiled automatically when Windows Management first starts, so the WMI Event Viewer consumer is registered as a permanent event consumer by default and you can open the WMI Event Registration tool and investigate its features.

MORE INFO COMPILING MOF FILES

You can find out more about compiling MOF files by downloading the Windows 7 Platform software development kit (SDK) and accessing the “Mofcomp” topic in the Windows Management Instrumentation (WMI) section. However, this topic is beyond the scope of this book and the 70-680 examination.

You start the WMI Event Registration Tool from the WMI Tools menu and need to allow blocked ActiveX content on the Information bar and specify a root, as with the other tools. From the drop-down menu near the top-left of the WMI Event Registration Tool, you can select Filters, Consumers, or Timers. Double-clicking an item in the left pane opens the View Class Properties dialog box, as shown in Figure 13-36. This lets you access the Properties, Methods, and Associations tabs.
Lesson 2: Configuring Performance Settings

CHAPTER 13

The WMI Event Registration tool enables you to create, display, and modify the event consumers, filters, and timers for a given namespace and any bindings between filters and consumers. You can use the tool to do the following:

- View properties of the defined consumer, filter, and timer system classes and instances
- Add or delete event consumer instances
- Add or delete event filter instances
- Add or delete event timer instances
- Edit instance properties
- Register consumers for events by binding consumer and filters

WMI Event Viewer

WMI Event Viewer is a permanent event consumer that lets you sort and view the details of events generated in WMI by Windows Management or by event providers. Event objects are forwarded to any consumers registered for these types of events. You can register WMI Event Viewer for any event filters and view incoming events that match the filters.

You can open WMI Event Viewer from the WMI Tools menu. However, as a permanent event consumer, it is started automatically by WMI whenever an event occurs that needs to be forwarded to it. To register WMI Event Viewer for different types of events, you use the
WMI Event Registration Tool. This tool can be started either independently from the WMI Tools menu or from WMI Event Viewer tool by clicking the Register For Events control, as shown in Figure 13-37.

Figure 13-37 The Register For Events control in WMI Event Viewer

WMI Event Viewer enables you to carry out the following tasks:

- View Windows Management–generated events and event information, such as the event’s date and time, class, point of origin, and description
- View event instance properties
- Start the WMI Event Registration Tool
- Clear the display

The Eviewer.mof file, installed in the WMI Tools directory along with WMI Event Viewer, contains the classes and instances required to declare and register the WMI Event Viewer Consumer Provider with the WMI event subsystem. This MOF file is compiled automatically when the Windows Management Service is first started, so that the WMI Event Viewer consumer is registered as a permanent event consumer by default.

All permanent event consumers, including WMI Event Viewer, require specific distributed component object model (DCOM) permissions to start automatically on a remote computer for a registered event. To set the DCOM launch permissions for WMI Event Viewer so you can monitor events on a remote computer, carry out the following procedure:

1. Run the Dcomcnfg.exe program from an elevated command prompt on the remote computer.
2. On the Applications tab of the Distributed COM Configuration Properties dialog box, select WMI Event Viewer, as shown in Figure 13-38, and click Properties.
4. Click Add.
5. In the Add Users And Groups dialog box, type **Everyone**.

6. Click Add. Ensure that all permissions check boxes are selected and then click OK. Note that WMI Event Viewer enables users and event consumers to access event information. It is not a configuration tool. Therefore, there are no security implications to setting these permissions.

Using the System Configuration Tool

You open System Configuration (MSConfig) by entering **msconfig** in the Start menu Search box, the Run box, or the command prompt. The principal purpose of this tool is to troubleshoot the Windows startup process. MSConfig modifies which programs run at startup, edits configuration files, and enables you to control Windows services and access Windows Performance and Troubleshooting tools.

You can use the System Configuration tool to configure Windows 7 to perform a diagnostic startup that loads a minimum set of drivers, programs, and services. Figure 13-39 shows the General tab of the System Configuration tool, on which you can specify Normal Setup or Diagnostic Setup. You can also customize a Selective Setup and control whether to load System Services and Startup Items. You can select the System Services and Startup Items to load and start on the Services and Startup tabs, respectively, in the System Configuration tool.

It is a good idea to look carefully at the list of programs on the Startup tab. Some software packages—for example, software that detects viruses and other malware—should run at startup and continue to run unless you have a reason to disable them. Other software packages, particularly third-party software, install themselves so that they run at startup whether they need to or not. The more unnecessary programs you have running, the slower your computer goes.
FIGURE 13-39 The General tab of System Configuration

Services are more difficult to manage than packages because of service dependencies. You might see that a service you have never heard of before runs at startup and decide to change its startup type, only to find that half a dozen essential services all depend on the one that is no longer running. The System Configuration tool lets you experiment with a computer on your test network before making changes to production computers.

NOTE DISABLING SERVICES WITH MSCONFIG

Although you can use MSConfig to disable services, this does not change the current state of the service. For example, you can use MSConfig to disable the running Diagnostic Policy service, but the service remains running until you reboot the computer.

The Boot tab of the System Configuration tool lets you specify the source of your boot files and, if desired, make that source the default. For example, in the Boot tab shown in Figure 13-40, the computer is dual-boot, with operating systems on both the C: and D: volumes. It can also boot into Windows 7 Ultimate from a virtual hard drive (VHD). On the Boot tab, you can specify the timeout, which is how long the boot system waits for instructions before booting from its default source.

You can specify Safe Boot and the type of Safe Boot to use (Minimal, Alternate Shell, Active Directory Repair, or Network). You can specify a No-Graphical User Interface (GUI) boot, or, if you are having problems with a video driver, specify a boot that uses the Base Video (lowest-resolution and color-depth) driver. You can require a Boot Log and Operating System (OS) Information. You can use reconfigured boot settings only once or make them permanent.

Clicking Advanced on the Boot tab lets you specify a Debug Port and Baud Rate for remote debugging and the Number Of Processors and Maximum Memory available to the boot process.
On the Startup tab, you can disable automatic startup for an application by clearing the check box beside the item. You can disable automatic startup for all items by clicking Disable All. This does not prevent the software from running—it merely stops it from starting automatically when the computer boots. The Services tab works in much the same way, in that you can disable or enable automatic startup of a single service or of all services. You can also determine what third-party services are running by selecting the Hide All Microsoft Services check box.

The Tools tab performs a very useful function. Not only are all the available tools listed, but you can enable any tool from this tab. This is often easier than trying to remember or deduce the tool’s place in the Control Panel hierarchy, whether the tool is a Microsoft Management Console (MMC) snap-in, or what file you need to access from the command prompt to start the tool. The tab also lists the file and file path for the application that runs each tool.

EXAM TIP
You can use either Task Manager or the Services Console to start and stop services on a computer running Windows 7 without rebooting the computer.

Using the Services Console
The Services console, an MMC snap-in, lists the same services as does the Services tab of the System Configuration tool, but it provides more information about each service and more service management options. For example, the Services console tells you the service startup type (not just whether or not it is running) and the logon details.
You can access the Services console by entering `services.msc` in the Search box on the Start menu, in the Run box, or in a command-prompt window.

When you right-click a service in the Services console, you can start it, stop it, restart it, pause it, and resume it. You can access the Properties dialog box for the service and select the General, Log On, Recovery, and Dependencies tabs.

The General tab lets you specify the startup type. This can be Automatic, Automatic (Delayed Start) Manual, or Disabled. You should consider the following when specifying the startup type:

- If a service is configured as Automatic, it starts at boot time. Some services also automatically stop when no longer required. However, if you find that you do not need a service, configure its start type as Manual or Disabled.
- If a service is configured as Automatic (Delayed Start), it starts just after boot time. Configuring this setting can result in a faster boot, but if you need the service to be up and running when you boot, configure it as Automatic. If, on the other hand, you do not need a service, configure its start type as Manual or Disabled.
- Manual mode allows Windows 7 to start a service when needed. In practice, some services do not start up when required in Manual mode. If you find that you need a service, configure it as Automatic.
- If you configure a service as Disabled, it does not start even if needed. Unless you have a very good reason for disabling a service, configure its startup type as Manual instead.

The General tab, shown in Figure 13-41, also tells you whether a service is currently started, lets you start or stop it (as appropriate), and specifies the start parameters.

![IP Helper Properties (Local Computer)](image)

FIGURE 13-41 The General tab of the Service Properties dialog box
The Logon tab typically specifies that the service logs on with a Local System account. You can specify another account if you need to do so, typically a local Administrator account on the computer on which the service is running.

The Recovery tab specifies the actions that you take if a service fails. You can specify actions for the first failure, the second failure, and subsequent failures.

If you click Run A Program, you need to type the full path for the program that you want to run. Programs or scripts that you specify should not require user input. If you click Restart The Computer, you need to specify how long the computer waits before restarting. You can also create a message to send automatically to remote users before the computer restarts.

If you select Enable Actions For Stops With Errors, you can trigger the recovery actions when service stops with an error.

The Dependencies tab lists the services, system drivers, and load order groups that a service depends on. If a service is not running when you expect it to be, you might have disabled another service that it depends on.

Configuring Performance Options

The Performance Options tool is a Windows 7 Performance And Analysis tool that you can access by clicking Advanced Tools on the Performance Information And Tools dialog box and then clicking Adjust The Appearance And Performance Of Windows.

The Visual Effects tab of this tool is shown in Figure 13-42. You can let Windows decide what is best for your computer, adjust for best appearance, adjust for best performance, or select Custom and specify the appearance settings for your computer manually. If you select Custom, you can choose which visual effects to turn off, one by one. There are 18 visual effects that you can control, such as whether shadows are displayed under screen icons or under the mouse pointer.

![The Visual Effects tab of the Performance Options tool](image)

FIGURE 13-42 The Visual Effects tab of the Performance Options tool
On the Advanced tab, you can adjust for the best performance of programs or background services. If your computer is running applications (as a typical workstation does), you would specify Adjust For Best Performance Of Programs. On a server that is functioning as a Web server (for example), you would specify Adjust For Best Performance Of Background Services.

On the same tab, you can adjust page file settings. A page file is an area of disk space that can be used as paged virtual memory when running memory-intensive operations (such as print spooling) or if the system RAM is not adequate to cope with the demands of applications that are running. You can allow Windows 7 to manage memory paging (the default), as shown in Figure 13-43, or you can manually specify virtual memory allocation. If RAM is a serious bottleneck on your computer or you are running some extremely memory-intensive applications, you might want to specify memory-paging settings manually. Otherwise, you should accept the defaults.

Data Execution Prevention (DEP) helps prevent damage to your computer from viruses and other security threats. Malware attacks your operating system by attempting to execute code from the sections of a computer’s memory reserved for Windows 7 and other authorized programs. DEP helps to protect your computer by monitoring programs and ensuring that they use computer memory safely. If DEP detects a program on your computer that attempts to use memory incorrectly, it closes the program and notifies you.

The Data Execution Prevention tab on the Performance Options tool lets you choose whether to turn on DEP for essential Windows programs and services only (the default) or to turn on DEP for all programs and services except those that you specify. For example, in a test environment where application developers are testing applications that could inadvertently
cause security problems on the computer, you would choose to enforce DEP for all programs and services and possibly specify only those in which you have complete confidence as exceptions.

Configuring Hard Disk Write Caching

Write caching uses high-speed volatile RAM to collect write commands sent to data storage devices and cache them until the slower storage media (either physical disks or flash memory) can deal with them. You can manage write caching on the Policies tab of the device’s Properties dialog box that you access from Device Manager.

For USB flash memory devices (for example), you can specify the Quick Removal option, as shown in Figure 13-44. This option is typically the best choice for devices that you are likely to remove from the system frequently, such as USB flash drives, memory cards, or other externally attached storage devices.

![USB Device Properties](image)

FIGURE 13-44 The Quick Removal option for removable storage

When you select the Quick Removal option, Windows 7 manages commands sent to the device using write-through caching. In write-through caching, the device operates on write commands as if there were no cache. The cache may still provide a small performance benefit, but the emphasis is on treating the data as safely as possible. The main benefit is that you can remove the storage device from the system quickly without risking data loss. For example, if a flash drive were to be accidentally pulled out of its port, the data being written to it is much less likely to be lost if the Quick Removal option is specified.

You should select the Better Performance option for devices that you intend to remove from the system infrequently. If you choose this option and the device is disconnected from...
the system before all the data is written to it (for example, if you remove a USB flash drive), you could lose data.

If you select Enable Write Caching On This Device (the default) on a hard disk, this improves system performance but a power outage or system failure might result in data loss. By default, Windows 7 employs cache flushing and periodically instructs the storage device to transfer all data waiting in the cache to the storage media. If you select Turn Off Windows Write Cache Flushing On The Device, these periodic data transfer commands are inhibited. Not all hard disk devices support this feature. Figure 13-45 shows the Policies tab for a hard disk.

FIGURE 13-45 The Policies tab for a hard disk

If high data transfer performance is your main objective, you should select the Better Performance option for removable storage and select Enable Write Caching On The Device for hard disks. These are the defaults if the system hardware and storage device support these features. However, if your system or power source has known issues with sustaining power, you should not use these settings. In general, it is best to use the Safe Removal applet before you remove any external storage device from your system.

Troubleshooting Performance Problems with Event Viewer

As an IT professional, you sometimes are required to view details of software and hardware problems affecting Windows performance to troubleshoot these problems. You can view event logs in Event Viewer, as described in Lesson 1 of this chapter, and filter by event type. The events you are looking for are mostly found in the Operational container under Diagnostic-Performance, which you access by expanding Microsoft and then Windows in the Event Viewer tree pane.
However, there is a more straightforward method of accessing this information. Click the Performance Information And Tools item of Control Panel. Click Advanced Tools in this dialog box, and then click View Performance Details In Event Log. This opens Event Viewer and displays the events in the Operational container, as shown in Figure 13-46. Examining a critical error shows that, for example, the Canberra computer had a problem during the boot process.

![Event Viewer](image)

Figure 13-46 Viewing performance diagnostic events in the Operational container

NOTE DEVICE DRIVERS

If a device is not working properly, then this has an effect on performance that is often catastrophic. You need to ensure that (in general) the latest device drivers are installed for all your devices. The exception is when a new device driver does not work as well as its predecessor, in which case you need to roll back to the old device driver. Chapter 4, “Managing Devices and Disks,” discusses this topic in detail.

NOTE POWER PLANS

Power plans and configuring power settings are mentioned in the examination objectives covered in this chapter. However, Chapter 11, ”BitLocker and Mobility Options,” discusses these topics in depth, and there is no point duplicating that material here.
Using Task Manager to Configure Processes

Lesson 1 described how you use Task Manager to close failed applications and manage services. You can also use the tool to configure the processes that implement services. If a process is particularly significant and should be allocated more resources, you can set a higher priority for that process. If a process is using too many resources, or if the speed at which a process works is unimportant, you can assign it a lower priority and hence free resources for other processes.

If your computer has more than one processor, you can configure the affinity of your processes to use a particular processor. By default, processes that install on a multiprocessor computer are set to use whatever processor is available. If an additional processor is added retrospectively to a computer, however, processes might require configuration so they can use that processor. For example, if Task Manager or Performance Monitor counters show that one processor on a dual-processor computer is heavily used and the other is not, you should change the affinity so resource-intensive processes use both processors. You also have the option of changing the affinity of some processes so that they use only the second processor.

To determine what process or processes are used by a service, right-click the service in the Services tab of Task Manager and click Go To Process. This selects the Processes tab and highlights the relevant process. To change the priority of a process, right-click the process and click Set Priority. As shown in Figure 13-47, you can choose one of six priority levels. Do not select Realtime, though—this could seriously affect the operation of other processes on your computer.

To determine the affinity of a process and change it if necessary, right-click the process and click Set Affinity. You cannot change the affinity of certain system processes, and you
cannot change affinity if the computer has only one processor. Otherwise, the Processor Affinity dialog box appears, as shown in Figure 13-48, and you can configure process affinity.

FIGURE 13-48 The Processor Affinity dialog box

Configuring Networking Performance

Networking performance on an enterprise network depends upon a large number of factors, such as the type of Ethernet or wireless connections used, the speed of switches and routers, the number of devices on a network, and so on. However, in a small network, users tend to define networking performance by the speed of connection to other computers on the network (if they are transferring files) and the performance of their Internet connections.

Configuring Internet Options can have a significant effect on networking performance and on computer performance in general. As an IT professional, you are aware that temporary Internet files can take up a considerable amount of disk space and should be deleted on a regular basis. You know that users with excessively large mailboxes can experience lengthy logon times, especially when they are downloading their profiles from a central server in the enterprise environment. These however, are matters that involve user training rather than configuration.

The Internet Options dialog box offers configuration options that can affect networking performance. You can access this dialog box from Network And Internet on Control Panel or from your browser. On the General tab, you can delete temporary Internet files and other downloaded information such as Web form information. However, in the context of networking performance settings, the most significant tab in the dialog box is the Advanced tab, shown in Figure 13-49.
The Internet Options Advanced tab

The Advanced tab enables you to configure Accessibility, Browsing, International, Multimedia, Printing, and Security settings. Some of these have little or no impact on performance, whereas others can affect performance considerably. Typically, for example, Accessibility features would not be considered a performance issue, but if large font or caret browsing is set for a user that does not need them, then the perceived performance for that user is reduced.

The Browsing settings can impinge on performance. For example, if you do not disable script debugging and display notifications about script errors, the user's browsing experience slows down. These settings are useful if you are debugging a new Web site that runs scripts but are inappropriate for the standard user. Even the simplest setting, such as choosing to always underline links, can slow browsing on a slow or heavily used site.

If you are accessing sites that provide multimedia files for either streaming or downloading you can choose (for example) whether to play sounds and animations, automatically resize images, or use smart image dithering. In general effects that enhance the user's multimedia experience often also slow down site access and browsing.

The more secure a site is, the slower it tends to be because of additional security checks. Typically, this is something you and your users need to accept. You should not reduce security merely to shorten access times. Nevertheless, it is probably not necessary to warn users whenever they browse from an HTTPS secure site to an insecure HTTP site.
Windows Performance Analysis Tools

Windows performance analysis tools analyze a wide range of performance problems including application start times, boot issues, deferred procedure calls (DPCs), interrupt service requests (ISRs), system responsiveness issues, application resource usage, and interrupt storms.

These tools ship with the Microsoft Windows SDK for Windows Server 2008 and .NET Framework 3.5, which you can download at http://www.microsoft.com/downloads/details.aspx?FamilyId=F26B1AA4-741A-433A-9BE5-FA919850BDBF&displaylang=en (although it is probably easier to go to the Microsoft Download Center at http://www.microsoft.com/downloads and search for it). This SDK provides documentation, samples, header files, libraries, and tools to develop applications for Windows XP; Windows Server 2003; Windows Vista; Windows Server 2008; Windows Server 2008 R2; Windows 7; and .NET Framework versions 2.0, 3.0, and 3.5. You download and install the SDK in the practice later in this lesson.

The WPT is released as an MSI installer (one per architecture) and contains the Performance Analyzer tool suite, consisting of the following tools:

- **The Trace Capture, Processing, and Command-Line Analysis tool (Xperf.exe)** This tool captures traces, processes them for use on a computer, and supports command-line (action-based) trace analysis.

- **The Visual Trace Analysis tool (Xperfview.exe)** This tool presents trace content in the form of interactive graphs and summary tables.

- **The On/Off Transition Trace Capture tool (Xbootmgr.exe)** This tool automates on/off state transitions and captures traces during these transitions.

The Trace Capture, Processing, and Command-Line Analysis Tool

Xperf.exe is a command-line tool that provides the following features:

- Event Tracing for Windows (ETW) trace control
- ETW trace merging and enhancements by including other events
- Executable image and symbol identification
- Trace dump capabilities
- Support for post-processing
This tool manages the end-to-end operations that are needed to generate a trace file for analysis. You use Xperf.exe in the practice later in this lesson.

Xperf.exe enables events in the operating system by using groups and flags. These flags enable and disable events from providers in various parts of the operating system. For example, flags can direct the kernel, services, and applications to one or more trace files by using log sessions with custom configurations. You can then merge all traces into a single aggregate trace file that is referred to as a merged trace file.

When Xperf generates this file, it collects additional information from the operating system and adds it to the aggregate trace. You can process the merged trace file on any supported operating system without reference to the system that generated the trace. You can then use Performance Analyzer (Xperfview.exe) to analyze the merged file, you can post-process the merged file into a text file, or you can use actions to do other types of processing. Actions produce summarized outputs that are specific to an area of interest, such as boot, shutdown, suspend, and resume operations, or to a type of system event, such as sampled profile, context switches, DPCs and ISRs, disk I/O, registry accesses, file accesses, or system configuration.

The Visual Trace Analysis Tool

The Visual Trace Analysis tool, or Performance Analyzer, is used to view the information from a single trace file generated by Xperf.exe. You can use the following command to start Performance Analyzer:

```bash
xperf file.etl
```

Xperf.exe forwards the file name to Performance Analyzer, which then opens and displays the data in the file. You can also run Performance Analyzer directly by entering `xperfview` in the Search box on the Start menu, the Run command box, or the command prompt. A Performance Analyzer trace is displayed in the practice later in this lesson.

The On/Off Transition Trace Capture Tool

Xbootmgr.exe collects information during the on/off transition phases of Windows 7. You can capture data during any of the following phases:

- Boot
- Shutdown
- Sleep and resume
- Hibernate and resume

After issuing a trace command, the test computer resets within 5 seconds.

The On/Off Transition Trace Capture tool can automate a reboot cycle during which the computer running Windows 7 is shut down and rebooted multiple times. You can analyze the captured data by using the Xperf.exe and Xperfview.exe tools.
EXERCISE 1 Downloading and Installing the SDK

In this exercise, you download and install the SDK. The exercise gives a direct link to the SDK download file, but you might find it easier to browse to this link. Perform the following steps:

1. Log on to the Canberra computer with the Kim_Akers account.
2. Insert a blank recordable DVD-ROM into your optical drive. Close the Autoplay box.
4. Click Download.
5. In the File Download box, click Open. The download takes some time.
6. If prompted, click Allow to close the Internet Explorer Security dialog box.
7. In the Windows Disc Image Burner, select Verify The Disc After Burning, and then click Burn.
8. When you have burned and verified the DVD-ROM, it ejects automatically. Close the Windows Disc Image Burner. Insert the DVD-ROM into the optical drive.
9. In the Autoplay box, click Run Setup.exe.
10. If prompted, click Yes to clear the User Account Control (UAC) dialog box.
12. Read the License terms, select I Agree, and then click Next.
13. Click Next to accept the Folder defaults.
14. Click Next to accept the Installation Options defaults.
15. Click Next to start the Installation.
16. Click Finish when installation completes. Read the SDK release notes.

EXERCISE 2 Installing the Windows Performance Toolkit

In this exercise, you install the 32-bit version of the Windows Performance Toolkit. If your computer is running a 64-bit operating system, choose Xperf_64.msi instead of Xperf_86.msi. You need to have installed the SDK in Exercise 1 before you attempt this exercise.

1. If necessary, log on to the Canberra computer with the Kim_Akers account.
2. Open My Computer and navigate to C:\Program Files\Microsoft SDKs\Windows\v6.1\Bin.

4. Accept the License Agreement. Click Next.

5. Click Typical and then click Install.

6. If prompted, click Yes to clear the UAC dialog box.

7. Click Finish when setup completes.

EXERCISE 3 Using Xperf.exe to Generate Traces

In this exercise, you use the Trace Capture, Processing, and Command-Line Analysis Tool (Xperf.exe) to generate a kernel trace and a user trace. You combine the traces and process the results into a text file. You need to have completed Exercises 1 and 2 before you attempt this exercise.

1. If necessary, log on to the Canberra computer with the Kim_Akers account.

2. Open an elevated command prompt.

3. Start the kernel trace. The kernel session does not need a specified name because its name is unique. The groups Base and Network are enabled on the kernel provider. The trace is collected in a file called Kernel.etl. To accomplish this, enter the following command:

   ```
   xperf -on Base+Network -f kernel.etl
   ```

4. Start a user trace named UserTrace and enable the provider’s Microsoft-Windows-Firewall to it. This trace is collected in a file called User.etl. To accomplish this task, enter the following command:

   ```
   xperf -start UserTrace -on Microsoft-Windows-Firewall -f user.etl
   ```

5. Stop the UserTrace session so the user-mode provider no longer produces events to this session. To accomplish this, enter the following command:

   ```
   xperf -stop UserTrace
   ```

6. Stop the kernel session. To accomplish this, enter the following command:

   ```
   xperf -stop
   ```

7. Merge the user and kernel traces into a single trace called Single.etl. To accomplish this, enter the following command:

   ```
   xperf -merge user.etl kernel.etl single.etl
   ```

8. Process the binary trace file Single.etl into a text file called C:\Mytrace.txt. To accomplish this, enter the following command:

   ```
   xperf -i single.etl -o c:\mytrace.txt -a dumper
   ```

 Figure 13-50 shows the Xperf commands used in this procedure. Note that there was a problem loading a DLL associated with the On/Off Transition Trace Capture Tool, but this tool was not used so the procedure completed satisfactorily. Figure 13-51 shows a portion of
the text file that was created. Figure 13-52 shows the combined trace (Single.eti) displayed in
the Performance Analyzer.

![Image of command prompt showing Xperf commands]

FIGURE 13-50 Xperf commands used to capture and merge traces

![Image of text editor showing trace information]

FIGURE 13-51 Trace information captured in a text file

Lesson Summary

- You can write WMI scripts to customize the system information you retrieve from
 a computer and generate your own performance-measuring tools.

- The System Configuration Tool modifies which programs run at startup, edits
 configuration files, and enables you to control Windows services and access Windows
 Performance and Troubleshooting tools. The Services console lets you manage and
 configure services and gives you more options than either the Services tab of Task
 Manager or the Services tab of the System Configuration tool.
The Performance Options tool lets you configure visual effects and specify whether the system is adjusted for best performance of applications or background services. It lets you configure page file (virtual memory) settings and DEP.

The Windows Performance Analysis tools, downloaded as part of the Windows Server 2008 SDK, analyze a wide range of performance problems including application start times, boot issues, DPCs, ISRs, system responsiveness issues, application resource usage, and interrupt storms.

Lesson Review

You can use the following questions to test your knowledge of the information in Lesson 2, “Configuring Performance Settings.” The questions are also available on the companion DVD if you prefer to review them in electronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incorrect are located in the “Answers” section at the end of the book.
1. What WMI tool do you use to view Windows Management–generated events and event information, such as the event’s date and time, class, point of origin, and description?
 A. WMI CIM Studio
 B. WMI Object Browser
 C. WMI Event Registration Tool
 D. WMI Event Viewer

2. Which Windows Performance Analysis tool captures user and kernel traces and can merge them to form a combined trace?
 A. Performance Analyzer
 B. On/Off Transition Trace Capture
 C. Trace Capture, Processing, and Command-Line Analysis
 D. Visual Trace Analysis

3. Which tool provided by Windows 7 helps you determine which applications are responsible for activity on your hard disk, including which files and folders are being accessed?
 A. Process Explorer
 B. Resource Monitor
 C. Task Manager
 D. Windows Experience Index

4. A number of processor-intensive applications have been performing slowly on your computer. As a result, you add a second processor. This does not solve your problem, however, and you examine processor usage with Task Manager and Performance Monitor. You deduce that several key processes are using only the original processor. How do you ensure that these processes use whatever processor is available?
 A. Configure Process Affinity on the Processes tab of Task Manager.
 B. Configure Process Priority on the Processes tab of Task Manager.
 C. Select Adjust For Best Performance Of Programs on the Advanced tab of the Performance Options tool.
 D. Reconfigure Virtual Memory settings on the Advanced tab of the Performance Options tool.

5. Your computer is configured to dual-boot between Windows Vista Professional and Windows 7 Enterprise. Currently, it boots into Windows Vista by default. You want to specify Windows 7 as the startup default operating system and configure how Windows 7 reacts in the event of a system failure. You boot the computer into Windows 7. What tool do you use to accomplish your goal?
 A. The Services console
 B. Performance Options
 C. Task Manager
 D. System Configuration
Chapter Review

To further practice and reinforce the skills you learned in this chapter, you can perform the following tasks:

- Review the chapter summary.
- Review the list of key terms introduced in this chapter.
- Complete the case scenarios. These scenarios set up real-world situations involving the topics of this chapter and ask you to create a solution.
- Complete the suggested practices.
- Take a practice test.

Chapter Summary

- Windows 7 tools such as Performance Monitor, Reliability Monitor, the Action Center, and the Windows Reliability Index let you gauge whether your computer is performing as it should, whether it needs more resources to do what you want it to do, and where performance bottlenecks are occurring.
- Tools such as Task Manager give you a snapshot of how your computer is currently performing, whereas event logs can store historical events in addition to warning you when problems occur, and DCSs can hold both current and historical counter values so you can compare a computer’s performance with how it was performing at a specified past time.
- Tools specific to measuring and troubleshooting computer performance include WMI scripts, the System Configuration tool, the Services console, the Performance Options tool, and the Windows Performance Analysis tools.

Key Terms

Do you know what these key terms mean? You can check your answers by looking up the terms in the glossary at the end of the book.

- Data Collector Set (DCS)
- event forwarding
- event log
- event subscription
- performance counter
Case Scenarios

In the following case scenarios, you will apply what you’ve learned about network settings. You can find answers to these questions in the “Answers” section at the end of this book.

Case Scenario 1: Using Data Collector Sets and Event Forwarding

James Seymour is an IT professional administering the production network at Tailspin Toys. Recently, users have been experiencing intermittent performance problems when accessing a file server running Windows Server 2008 R2 from their computers running Windows 7. James checks resource usage on the file server by using Task Manager but sees no indication of excessive processor, memory, disk, or network resource usage. He needs to monitor these resources over a period of time rather than look at a real-time snapshot, and to monitor resources both when the performance problems are occurring and when they are not. From his computer running Windows 7, James opens Performance Monitor and connects to the file server.

With these facts in mind, answer the following questions:

1. How does James generate performance logs that help him analyze disk, network, processor, and memory resource usage on the server, both when problems are occurring and when performance is normal?

2. James knows roughly when problems started to occur. How can he check what applications were installed or upgraded at that time?

3. Recently, a number of your users have had problems downloading files and e-mail because the space on their local disks had reached a critical limit. James needs to create a proactive method of identifying low disk space problems on computers running Windows 7 on the Tailspin Toys network so he can ask his desktop support technicians to free disk space on client computers before critical limits are reached. How does he monitor client computers for low disk space events?

Case Scenario 2: Troubleshooting Performance Issues on a Client Computer

James is troubleshooting performance issues on a client running Windows 7 at Wingtip Toys. This is normally a desktop support job, but the computer belongs to the CEO, so James needs to do the job himself and come up with some quick solutions.

With these facts in mind, answer the following questions:

1. James runs Task Manager and finds that one of the two processors on the computer is heavily used whereas the second is hardly used at all. He checks the records and finds that one of his team had installed the second processor retrospectively because the
CEO had heard that another processor would improve performance on her computer. How does James ensure the processor resource is properly used?

2. James needs to quickly scan events in the event logs that are specifically related to performance. He knows he can create filters and custom views, but this would take time, and he needs answers now. How does James quickly access the appropriate events?

3. The CEO has a habit of pulling her USB flash memory device out of her computer without using the Safe Removal applet, especially when she is in a hurry. She has previously lost data on the USB device, but when a CEO loses data, it is (of course) the fault of technical support, not the CEO. How should James minimize the risk of data loss on the USB device?

Suggested Practices

To help you master the exam objectives presented in this chapter, complete the following tasks.

Use the Performance Monitoring Tools

- **Practice 1** Look at the standard DCSs available and experiment with creating your own. DCSs provide a powerful method of managing current and historical performance on your computer, and the only way to become comfortable with them is to use them.

- **Practice 2** It is part of any IT professional’s job not only to carry out the tasks required to keep computer and network equipment performing efficiently, but also to report on these tasks to colleagues and to management. You will be judged on the clarity and relevance of your reports, and they will be a factor in your budget allocation. Learn to generate good reports.

Manage Event Logging

- This topic often seems complex at first, but it becomes clearer when you have practiced configuring subscriptions and forwarding events. You can do this initially with only two computers on your test network. Become proficient before you need to do it on a production network.

Write WMI Scripts

- Sample WMI scripts can be found on the Internet and in textbooks in your organization’s library. The easiest way to learn scripting (or any other type of programming) is to understand and adapt other people’s scripts before you try to write your own from scratch.
Take a Practice Test

The practice tests on this book’s companion DVD offer many options. For example, you can test yourself on just one exam objective, or you can test yourself on all the 70-680 certification exam content. You can set up the test so that it closely simulates the experience of taking a certification exam, or you can set it up in study mode so that you can look at the correct answers and explanations after you answer each question.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see the section entitled “How to Use the Practice Tests,” in the Introduction to this book.
Symbols and Numbers

- .bat files, 279
- .cmd files, 279
- .com files, 274, 278
- .js files, 279
- .ocx files, 279–80
- .ps1 files, 279
- .swm files, 95
- .vbs files, 274, 279
- .xml migration files, 40
- .zip files, 735, 738–39
- 16-bit components, installation, 263
- 32-bit platforms
 - images, cross-architecture tools, 71
 - servicing images, 75
- 64-bit platforms
 - images, cross-architecture tools, 71
 - servicing images, 75
- 6to4, 335, 337, 516, 519
- 6to4 Relay Name, 518

A

- Accelerators, 631
- access control lists (ACL), 39
- Account Is Locked Out, 501
- Account Lockout Duration, 499
- account lockout policies, 499–501
- Account Lockout Threshold, 500
- ACL (access control lists), 39
- ACT (Application Compatibility Toolkit), 260–64
- Action Center, 609–10, 661–64
- Action package, 139
- activation, resetting, 82

Active Directory Certificate Services, 454, 520, 533.
 See also certificates
Active Directory Domain Services (AD DS), 385, 454, 559
Active Directory Security Group Discovery, 176
Active Directory System Discovery, 176
Active Directory System Group Discovery, 176
Active Directory User Discovery, 176
Active Directory Users and Computers, 103–04
ActiveX, 625
AD DS (Active Directory Domain Services), 385, 454, 559
AD DS servers, 103
ad hoc networks, 350, 360, 371–73
Add Application Wizard, 127
Add Features Wizard, DirectAccess, 522
Add Features Wizard, Windows Server 2008, 468
Add Hardware Wizard, 206
Add Printer Wizard, 369
Add-Drivers, 124
Additional Data, 734
addresses
IPv4, configuring addressing, 301–07
 connecting to network, 307–11
 overview, 300–01
 practice, configuring, 321–24
 troubleshooting, 311–21
IPv6, configuring address structure, 328–32
 advantages of IPv6, 333–34
 connectivity, 338–43
IPv4 compatibility, 334–37
 practice, configuring IPv6 connectivity, 343–45
network connections, Windows Firewall, 385
Admin Approval mode, 480, 482–83
Admin Approval Mode for Built-In Administrator Account, 482–83
administrative rights and privileges backup, 737
case scenario, UAC and passwords, 511
compatibility modes, 260, 265
User Account Control (UAC) overview, 479–80
 policies, 482–87
 practice, configuring, 488–90
Secpol and Local Security Policy, 487–88
settings, 480–82
verification of, 205
Windows Installer rules, 278
administrator passwords, wireless networks, 367
Administrators group, 496
Advanced Boot Options, 750–53
Advanced Encryption Standard (AES), 358–60
Advanced Recovery Methods, 748–49
Advanced Sharing dialog box, 428
Advanced Sharing Settings, 312, 350, 423, 434
AES (Advanced Encryption Standard), 358–60
aggregation, route, 333
alerts, performance counters, 652
Allow Access To BitLocker-Protected Removable Data Drives, 565
Allow Log On Through Remote Desktop Services, 496
Allow UIAccess Applications To Prompt For Elevation Without Using Secure Desktop, 486–87
Analyze Disk, 230
answer file
booting to audit file, 83
building, 59–64
creating, 139–40
package installation, 131
reference installation, building, 65–66
settings, saving, 64–65
Sysprep, 80–81
Unattended.xml, 127, 137–40
anti-spyware, 661–64
antivirus, 661–64
anycast, 329, 332
API (application programming interface), compatibility, 262
APIPA (Automatic Private Internet Protocol), 300, 305, 307
AppData, 734
Application Compatibility Diagnostics policies, 264–65
Application Compatibility Toolkit (ACT), 260–64
application control policies. See AppLocker
Application Identity Service, 277
application programming interface (API), compatibility, 262
application settings, 40
applications
event logs, 674
performance, 717
RemoteApp, 539–40
system restore, 747
applications, managing. See also AppLocker
adding, MDT, 164–66
Application Compatibility Diagnostics policies, 264–65
Application Compatibility Toolkit (ACT), 260–64
case scenarios, 294–95
compatibility, configuring options, 257–60
inventories, 175–76
overview, 255
practice, compatibility, 267–69
practice, restricting applications, 286–89
servicing, 125–27
Software Restriction Policies, 271–76
WIM images, 120
Windows XP Mode, 265–66
AppLocker
application control policies, overview, 276–77
auditing, 285–86
configuring exceptions, 283
practice, restricting applications, 286–89
rules, 277–83
Software Restriction Policies, 271–76
architecture, cross-architecture tools, 71
auditing
AppLocker, 285–86
audit mode, booting to, 83
auditSystem, configuration pass, 80
auditUser, configuration pass, 80–81
remote connections, 544
Security event log, 673–80
shared resources, 449–51
authentication
certificates, managing, 502–04
Credential Manager, 493–95
practice, managing credentials, 504–07
resolving authentication issues, 500–01
Runas, 495–96
smart cards, 497–99
user rights, 496–97
Auto-Add policy, 99, 103–04
auto-connect, wireless networks, 368
Automated.xml, 138
automatic backups, 736–39
Automatic Private Internet Protocol (APIPA), 300, 305, 307
Automatic Updates, 613
Automatically Fix File System Errors, 233
Automatically Generate Rules wizard, 283
Autounattend.xml, 71
availability, 243–45
B
Background Intelligent Transfer Service (BITS), 150
background services, 710
backup. See also Backup and Restore console; recovery, data case scenarios, 779–80
Credential Manager, 493–95
practice, configuring file and folder backup, 741–43
scheduling, 731–39
System Image backups, 739–41
thick images, 150
Backup and Restore console Restore My files, 763
scheduling backups, 731–39
System Image backups, 739–41
Volume Shadow Copy Service (VSS), 766
Backup Operators group, 497
Backup Set folder, 738
BackupGlobalCatalog, 740
backward compatibility, 117, 497
bandwidth, USB host controller, 203
authorizing
account policies, 499–500
case scenario, UAC and passwords, 511
certificates, managing, 502–04
Credential Manager, 493–95
practice, managing credentials, 504–07
resolving authentication issues, 500–01
Runas, 495–96
smart cards, 497–99
user rights, 496–97
Auto-Add policy, 99, 103–04
auto-connect, wireless networks, 368
Automated.xml, 138
automatic backups, 736–39
Automatic Private Internet Protocol (APIPA), 300, 305, 307
Automatic Updates, 613
Automatically Fix File System Errors, 233
Automatically Generate Rules wizard, 283
Autounattend.xml, 71
availability, 243–45
basic disks, 241–42, 248
basic partitions, 235
battery power, 582–89
BCD (Boot Configuration Data), 754–55
BCDBoot, 71, 173
BCDEdit, 93–94, 148, 173, 754–55
Behavior of the Elevation Prompt for Administrators in Admin Approval Mode, 483
Behavior of the Elevation Prompt for Standard Users, 485
binary notation, 302
Biometric authentication, 498
BIOS, Windows XP Mode, 265–66
BitLocker
BitLocker To Go, 564–67
data recovery agents (DRA), 559–61
enabling, 561–63
Encrypting File System (EFS) and, 451–52
modes, 556–57
offline migrations, 42–43
overview, 555–56
practice, BitLocker To Go, 568–71
TPM chip, 557
BITS (Background Intelligent Transfer Service), 150
Block rules, 277–78
Blog accelerator, 631
Bluetooth, 356
Boot Configuration Data (BCD), 148, 754–55
boot images
WDS, 74, 100–01, 170
Windows PE, 116
bootable media. See also booting
discover images, 171–72
dual-boot installations, 14–19
LTI bootable media, configuring, 168–69
operating system packages, servicing, 127–30
practice, creating Windows PE boot DVD, 84–86
task sequence, deploy to VHD, 159–61
VHD, 90, 93
WIM2VHD, 94–96
Windows boot options, 754–55
Windows PE, 66–68
booting. See also bootable media
audit mode or Windows Welcome, 83
boot environment, 556, 566–67
boot options, 754–55
boot time filtering, 384
Bootmgr.exe, 754–55
performance, 717
System Configuration (MSConfig), 705–07
target computers, manually, 173–74
Xbootmgr.exe, 718
BranchCache
configuring clients, 463–67
Distributed Cache Mode, 463
Hosted Cache mode, 462
overview, 461–62
practice, BranchCache configuration, 470–71
vs transparent caching, 577
Windows Server 2008, 468–70
broadcast address, 303
broadcast traffic, 333
Browsing settings, 716
bus-powered hubs, 202
cabinet (.cab) files, 127–28
caching
BranchCache
configuring clients, 463–67
Distributed Cache Mode, 463
Hosted Cache mode, 462
overview, 461–62
practice, BranchCache configuration, 470–71
Windows Server 2008, 468–70
negative, 314–15
neighbor cache, 341
offline files, 574–82
Offline Settings, 430
shared folder options, 431
transparent caching, 577
write caching, configuring, 711–12
capture images, WDS, 74, 100, 172
case scenarios
application compatibility, 294
applications, restricting, 294–95
backup and restore, 779
deploying an image, 191–92
driver signing policy, 252
installing Windows 7, 49
Internet Explorer, 644–45
IPv4 connectivity, 377
IPv6 connectivity, 377
managing disk volumes, 252
offline files, 596–97
passwords, problem resolution, 511
performance monitoring, 725–26
remote access, 550–51
remote management, 419
shared resources, 474
system and configuration issues, 779–80
system image, generating, 111
User Account Control (UAC), 511
VHDs, working with, 111
Windows Firewall, 419
wireless networks, 377–78
Catalogs folder, 739–40
CD-ROM
backups, 736
bootable Windows PE, 66–68
Removable Disk policies, 234–35
cell phones, 233–35, 540
cellular modems, 360
certificate authority (CA)
device drivers, 215–19
DirectAccess, 520
SSL certificates, configuring, 633–36
User Account Control (UAC), 485–87
Windows Firewall with Advanced Security (WFAS), 393
wireless adapter security, 359–60
certificates
certificate of authenticity (COA), 82
certificate rules, 277, 276
certificate store, device drivers, 215–19
Credential Manager, 493
data recovery agents (DRA), 559
DirectAccess, 520
EFS and HomeGroups, 454
Encrypting File System (EFS), 452
errors, 635
Group Policy, 521
Internet Explorer, revocation checks, 626
managing, 502–04
Recovery Agents, 453
smart cards, 497–99
SSL certificates, configuring, 633–36
VPN authentication protocols, 533
Certificates Console (Certmgr.msc), 502–04
Challenge Authentication Protocol (CHAP), 533
Change Adapter Settings, 316
Change Advanced Sharing Settings, 350
CHAP (Challenge Authentication Protocol), 533
Check For Updates, 601–02
Choose How BitLocker-Protected Removable Drives Can Be Recovered, 566
CIDR notation, 303
CIM (Common Information Model) classes, 696
CIM (Common Information Model) repository, 694–96
CIMOM (Common Information Model Object Manager), 694–95
Cipher.exe, 453, 502–04
Class Explorer, 699
class store, 695–96
Class Viewer, 699
client computers. See also system images, configuring backups, VHDS, 89
discovery, 176
images, distributing, 72–75
installing, small numbers, 66
IP configurations, 308
IP settings, 314
network share, deploying, 69–71
operating system packages, servicing, 127–30
pre-staging, 103–04
remote management case scenarios, 419
practice, remote management options, 411–15
Remote Assistance, 405–08
Remote Desktop, 402–04
Windows Remote Management, 408–10
Client for Microsoft Networks, 362
client-side rendering (CSR), 369
COA (certificate of authenticity), 82
colors, 259, 369
COM objects, policies, 265
Command Prompt, 752
command-line tools
BCDEdit, 93–94, 148, 173, 754–55
BitLocker, Manage-bde.exe, 567
Cipher.exe, 453, 502–04
Defrag, 231–32
Deployment Image Servicing and Management Tool (DISM), 56–58, 75–77, 116–23, 125, 128, 137–40
Diskpart, VHDS, create and attach, 91
Driver Verifier Monitor, 214–15
Icacls, 446–47
Ipconfig, 301
IPv6 connectivity, 338–43
More Info, 671
Net Share, 431
Netstat, 319–21
PEimg.exe (Windows PE), 116
Ping, 312–15
power configuration, 587–89
Robocopy.exe, 449
Runas, 495–96
Secedit.exe, 487–88
Sysprep, 77–84
Unattend.xml answer files, 137–40
USMT (User State Migration Tool), 39–42
Wbadmin, 739
WDSUTIL, 99
WIM2VHD, 94–96
WinRS (Windows Remote Shell), 409–10
common criteria mode, 497
Common Information Model (CIM) repository, 694–96
Common Information Model Object Manager (CIMOM), 694–95
Compatibility Administrator, 261–62
compatibility fix, defined, 262
compatibility modes, defined, 262
compatibility, applications
Application Compatibility Diagnostics policies, 264–65
Application Compatibility Toolkit (ACT), 260–64
backwards compatibility, 117, 497
case scenarios, 294–95
configuring, 257–60
practice, Windows 7 compatibility, 267–69
Windows XP modes, 265–66
complete PC backup, 740
complete recovery, 749–50
compressed (.zip) files, 735, 738–39
compressed folders, 452
compressed migration stores, 42
compression, backup, 730
computer health check, 656–58
Cone NATs, 337. See also NAT
(Network Address Translation) Config.xml, 40
Configuration Manager 2007, 163, 176–77, 179
configuration passes, Windows Setup, 79–80
Configure Schedule, 230
Configure Use of Passwords For Removable Data Drives, 565
Configure Use Of Smart Cards On Removable Data Drives, 564
configuring. See also configuring, system images
application compatibility, 257–60
BranchCache, configuring clients, 463–67
default operating systems, dual-boot, 17–19
deployment points, 166–68
device installation policies, 207–08
DirectAccess, client configuration, 517–21
event subscriptions, 677–79
firewall exceptions, 387–88
HomeGroup settings, 435–38
Hosted Cache servers, 462
international settings, 131–33
Internet Explorer add-ons and search providers, 630–32
case scenario, 644–45
Compatibility View, 622–23
InPrivate Mode, 627–30
pop-up blocker, 632–33
practice, InPrivate Mode and add-ons, 636–40
security settings, 623–26
SmartScreen filter, 626–27
SSL certificates, configuring, 633–36
IPv4 addressing, 301–07
connecting to network, 307–11
overview, 300–01
practice, configuring network connectivity, 321–24
troubleshooting connectivity, 311–21
IPv6
address structure, 328–32
advantages of IPv6, 333–34
connectivity, 338–43
IPv4 compatibility, 334–37
practice, configuring IPv6 connectivity, 343–45
LTI bootable media, 168–69
networking performance, 715–16
performance settings
Consent, UAC, 484
Contacts, 734
Content Retrieval rule, 463
Control Use of BitLocker On Removable Drives, 564
Convert To Dynamic Disk, 237
copying files, 448–449
CopyCMD, 66–68
Core Networking Inbound Rules, 317–18
Core Networking Outbound Rules, 317–18
Create A Basic Task Wizard, 675
Create A Password Reset Disk, 500
Create A Shared Folder Wizard, 431
Create New Data Collector Wizard, 655
creating
answer files, Windows SIM, 81, 139–40
bootable DVD-ROM, 58
bootable Windows PE medium, 66–68
capture image, 100, 172
Data Collector Sets, 654
data collectors from command prompt, 655–56
discover images, WDS, 171–72
disk volumes, 241
distribution share, 139, 152–53
event subscriptions, 679–80
images, 75
mirrored volume (RAID-1), 243
power plan, custom, 586
practice
configuring IPv6 connectivity, 343–45
creating ad hoc network, 371–73
wireless networks
managing, 356–57
security, 367–68
technologies, 361
troubleshooting, 363–67
consent, UAC, 484
creating
ad hoc network, 371–73
wireless networks
managing, 356–57
security, 367–68
technologies, 361
troubleshooting, 363–67
consent, UAC, 484
Contacts, 734
Content Retrieval rule, 463
Control Use of BitLocker On Removable Drives, 564
Convert To Dynamic Disk, 237
copying files, 448–449
CopyCMD, 66–68
Core Networking Inbound Rules, 317–18
Core Networking Outbound Rules, 317–18
Create A Basic Task Wizard, 675
Create A Password Reset Disk, 500
Create A Shared Folder Wizard, 431
Create New Data Collector Wizard, 655
creating
answer files, Windows SIM, 81, 139–40
bootable DVD-ROM, 58
bootable Windows PE medium, 66–68
capture image, 100, 172
Data Collector Sets, 654
data collectors from command prompt, 655–56
discover images, WDS, 171–72
disk volumes, 241
distribution share, 139, 152–53
event subscriptions, 679–80
images, 75
mirrored volume (RAID-1), 243
power plan, custom, 586
practice
configuring IPv6 connectivity, 343–45
creating ad hoc network, 371–73
wireless networks
managing, 356–57
security, 367–68
technologies, 361
troubleshooting, 363–67
consent, UAC, 484
creating
Credential Manager

- WDS, discover image, 101
- Windows Firewall with Advanced Security (WFAS) rules, 389–91
- Credential Manager, 493–95
- credentials, 484, 495–96, 504–07, 737
- cross-architecture tools, 71
- Cryptographic Operators group, 497
- Cscript, 94
- CSR (client-side rendering), 369
- D
- Data Collector Sets (DCS), 649, 652–58, 725
- data confidentiality protocol, 531
- Data Execution Prevention (DEP), 710–11
- data integrity protocol, 531
- data origin authentication protocol, 531
- data recovery agents (DRA), 559–61
- data-collection packages, 261
- DCOM (distributed component object model), 704
- DCS (Data Collector Sets), 649, 652–58, 725
- DDNS (Dynamic Domain Name Service), 305
- debugging.
 See also troubleshooting boot configuration data, 754–55
 network statistics, 319–21
 operating system on VHD, 95
- Debugging Mode, 751–52
- default gateway, 304–05, 392
- Default Local Users Group, 497
- default rules, 272, 277
- deferred procedure calls (DPC), 717
- defragmenting disks, 230–32
- deleting volumes, 246
- deletion, files and folders, 442–43
- Deny Write Access To Removable Drives Not Protected By BitLocker, 565
- DEP (Date Execution Prevention), 710–11
- deploying. See also deploying, system images; Deployment Image Servicing and Management Tool (DISM)
 network share, 69–71
 updates, 161–63, 611
- WDS, online VHD deployment, 98–104
- Windows 7, More Info, 71
- deploying, system images applications, servicing, 125–27
 case scenarios, 191–92
- DISM WIM commands, 116–23
 drivers, servicing, 123–25
 images, distributing, 72–75
 international settings, 131–33
 manual installations, 180–81
- Microsoft Deployment Toolkit overview, 146–51
- Microsoft Deployment Toolkit (MDT) applications, adding, 164–66
 deployment points, 166–68
 device drivers, adding, 154–55
 distribution shares, creating, 152–53
 language packs, 164
 LTI bootable media, 168–69
 managing and distributing images, overview, 151–52
 offline files, updating, 163–64
 operating system image, adding, 153–54
 program folders, 148
 task sequences, 155–61
 updates, adding, 161–63
 Windows PE options, configuring, 168
 operating system packages, servicing, 127–30
 package installation, 131
 practice downloading, installing and configuring MDT 2010, 181–87
 mounting offline image and installing language packs, 140–43
- SCCM 2007, 175–80
- unattended servicing, command-line, 137–40
- WDS, 169–75
- Windows editions, managing, 133–35
- Windows PE images, servicing, 135–36
- Deployment Image Servicing and Management Tool (DISM) applications, servicing, 125
 description, 57
 operating system packages, servicing, 128
 overview, 75–77
- system images, configuring and modifying, 56–58
- unattended servicing, command-line, 137–40
- WIM commands, mounting an image, 116–23
- Deployment Workbench, 73, 148–51, 164–66
- Designated Files Types, 274
- desktop, 259
- backup, 734
- migrating user profile data, 34
- Secure Desktop, 480, 483–84, 486–87
- Desktop Background Settings, 585
- Detect Application Failures, 265
- Detect Application Install Failures, 265
- Detect Applications Unable to Launch Installers Under UAC, 265
- Device Installation Settings, 204
- Device Manager, 197–203, 209
- devices and drivers
 Application Compatibility Manager, 261
 case scenario, signing policy, 252
 configuring installation policies, 207–08
 conflict resolution, 210–14
 driver signing and digital signatures, 215–19
- Driver Verifier Monitor, 214–15
- File Signature Verification, 218–19
- installation, overview, 203–04
- installing non-PnP devices, 206
- installing, Windows Update, 204–06
- Link-layer Topology Discovery Mapper I/O driver, 362
- out-of-box, 66
- plug and play, persisting, 81
- practice, configuring policy and driver search, 220–25
- printers, sharing, 434
- staging, 205
- System Diagnostics, 652
- updates, 209
- wireless, connections to WAP, 349
- working with device drivers, 208–10
Direct Access

case scenarios, 550–51
client configuration, 517–21
HomeGroups, 425
overview, 513, 515–17
practice, configuring with Netsh, 526–27
server, configuring, 521–26
troubleshooting, 519–21

DirectAccess Management
Console, 522

Directory Services Restore Mode, 751

DirectX Diagnostic (DXdiag), 217–18

Disable Automatic Restart On
System Failure, 751

Disable Driver Signal
Enforcement, 751

Disable Driver Signature
Enforcement, 216–17

Disconnect If A Remote Desktop
Services Session, 498
discover image, WDS, 74, 101, 171–72

Discovery methods, 176

Disk Cleanup, 228–29

Disk Management tool
basic disk and dynamic disks,
conversion, 237–38
creating disk volumes, 241–42
deleting volumes, 246
partitions, working with, 235–36
reactivating dynamic disks, 240
resizing volumes, 245–46
spanned volumes, creating, 241
striped volumes, creating, 242
VHD, attaching and detaching, 91
VHDs, native, 89
disk steps, 178

Diskpart
basic disk and dynamic disks,
conversion, 237–38
creating volumes, 241–43, 245
deleting volumes, 246
format volumes, creating, 71
network share, deploying, 69–71
partitioning disks, 236
reactivating dynamic disks, 240
resizing volumes, 245–46
spanned volumes, creating, 242
striped volumes, creating, 243
VHD, create and attach, 91
VHDs, native, 89
disks. See also Disk Management
tool; Diskpart
backup storage, 733, 736
basic and dynamic disks, 236–38
case scenario, managing, 252
dynamic disks, 95, 240–42, 248
external hard disks, 36, 230–32, 711–12, 733
fixed disks, 95
floppy disks, 234–35
maintenance, 228–35
managing disk volumes, 240–46
MBR disks, 235, 241
moving, 239
partitions, working with, 235–36
performance monitoring, 652
policies, 233–35
practice, configuring policy and
disk conversion, 247–48
reactivating dynamic disks, 240
system restore, 748
usage, 769–71

DISM (Deployment Image Servicing
and Management Tool)
applications, servicing, 125
description, 57
operating system packages,
servicing, 128
overview, 75–77
system images, configuring
and modifying, 56–58
unattended servicing,
command-line, 137–40
WIM commands, mounting
an image, 116–23
display, 259–60, 583, 586, 709
Distributed Cache mode, 462
Distributed COM Users
group, 497
distributed component object
model (DCOM), 704
Distributed Management Task Force
(DMTF), 696
distribution share, 139, 146, 149,
152–53, 184–87
DLLs (dynamic link libraries), 263,
273–74, 279–80, 670
DMTF (Distributed Management
Task Force), 696

Do Not Allow Write Access To
Drives Configured in Another
Organization, 565

Domain Name System (DNS)
IPv4, configuring, 300
managing, 689–90
network services, 304–06
servers, adding IPv6
addresses, 340
servers, ping test, 314
WDS, 169
Windows Firewall with Advanced
Security (WFAS), 392

Domain Networks, 385
dotted decimal notation, 302
Downloads folder, 734
downloads, multimedia, 716
downloads, updates, 613
DRA (data recovery agents), 559–61
drive letters, 239
Driver Details, 210

Driver Verifier Monitor, 214–15
drivers, device
adding, Microsoft Deployment
Toolkit (MDT), 154–55
case scenario, enforcing signing
policy, 252
information about, 122
keyboard drivers, 133
managing, 75
Microsoft Deployment
Toolkit, 146
out-of-box, 66, 121–23
plug and play, persisting, 81
printers, sharing, 434
rolling back drivers, 755–56
servicing, 123–25
smart cards, 498
System Diagnostics, 652
updates, 209
WIM images, 120
Windows PE images, 135
dual-boot installations, 14–19
dummy restore, 762

DVD-ROM
backup, 733, 736
bootable, 58, 66–68, 168–69
deployment points, 166
discover images, 171–72
Install.wim file mounting, 119
installation source, preparation,
6–7
practice, creating Windows PE
boot DVD, 84–86
Removable Disk policies, 234–35
DXdiag (DirectX Diagnostic), 217–18
Dynamic Configuration Protocol (DHCP), 169
dynamic disks, 95, 240–42, 248
Dynamic Domain Name Service (DDNS), 305
Dynamic Host Configuration Protocol (DHCP), 300, 304–07, 392
dynamic link libraries (DLLs), 263, 273–74, 279–80, 670
dynamic partitions, 235

E
EAP (Extensible Authentication Protocol), 359, 532
Easy Connect, 406–07
Easy Transfer Cable, 36
device drivers, 393
duration, 394
editions, 338
edition-family images, 133
Effective Permissions, 447
EFS (Encrypting File System), 451–54, 501–04, 556, 735
El Torito boot sector file, 68
e-mail data, 34–39
Enable Boot Logging, 750
Enable Client Side Targeting, 611
Enable Low Resolution Video, 751
Encrypting File System (EFS), 451–54, 493, 501–04, 556, 735
Emotet, 67
encryption. See also Encrypting File System (EFS)
backup and, 730
BitLocker
BitLocker To Go, 564–67
data recovery agents (DRA), 559–61
enabling, 561–63
modes, 556–57
overview, 555–56
practice, BitLocker To Go, 568–71
TPM chip, 557
event forwarding, 676
File Sharing Connections, 425
internal wireless adapters, 357–60
Network Security Key, 355
offline files, 577
payload encryption, 333
Recovery Agents, 453
shared resources
preliminary, 473
practice, encryption and permissions, 454–58
SSL certificates, configuring, 633–36
virtual private networks (VPNs), 531–32
Windows Firewall with Advanced Security (WFAS), 393–94
wireless networks, 367
energy use, 199, 202, 582–89
Enforce Password History, 499
Enforcement Properties, 273–74
errors, hard disk, 232–33
errors, STOP, 652
Ethernet, 319–21, 349–52
ETW (Event Tracing for Windows), 717
Event Log Readers group, 497, 677
event subscriptions, 676–77
Event Tracing for Windows (ETW), 717
Event Viewer, 712–13
events
AppLocker audit event log, 285
auditing, 449–51
logging and forwarding, 673–80, 689–90, 725
performance monitoring and reporting, 649–58
troubleshooting performance, 712–13
WMI Event Registration, 702–03
WMI Event Viewer, 703–05
Everyone group, 428–32
exceptions, 383, 387–88, 409
Exclude Files From Being Cached Policy, 578
executive ORing (XORing), 335
executable files
AppLocker rules, 278
Program Compatibility troubleshooter, 258
Removable Disk policies, 234–35
Software Restriction Policies, 274
Experience Index, 663–64
exporting
boot image, WDS, 102
firewall configuration, 394–95
security files, 487–88
Extensible Markup Language (XML)
files, 740
extension headers, 333
external hard disks, 36, 230–32, 711–12, 733
failover protection, 127–30, 243–45
failures, monitoring, 658–60
FAT file system, 7, 442, 449, 452, 565, 733–34, 771
fault tolerance, 242
Favorites folder, 734
Feature IDs, 138
feature properties, 138
File and Printer Sharing, 362, 425
file extensions, Software Restriction Policies, 274
file hash, defined, 281–82
file logging (profiling), 136
File Sharing Connections, 425
File Sharing dialog box, 428
File Signature Verification (Sigverif), 218–19
file-based storage, 71
files
backup, 735–39
case scenario, migrating user data, 49–50
corrupted, 121
device drivers, 210
disk cleanup, 228–29
managing, 689–90
migrating user profile data, 34
offline files, 574–82
path rules, 274, 282
practice
configuring file and folder backup, 741–43
migrating user data, 49–50
recovering renamed files, 771–75
restoring damaged or deleted files, 762–69
restoring user profiles, 767–69
sharing. See also virtual private networks (VPN)
auditing, configuring, 449–51
BranchCache, configuring clients, 463–67
BranchCache, Distributed Cache mode, 463
networking, configuring, 715–16
overview, 649–58
Performance Options, 709–11
practice, Performance Monitor, 680–86
practice, Windows performance analysis tools, 719–21
Process Explorer, 670–72
reliability, stability and performance, 658–61
Resource Monitor, 667–70
Task Manager, 664–67, 714–15
troubleshooting, 712–13
Windows Performance Analysis Toolkit (WPT), 717–18
WMI Administrative Tools, 697–705
WMI consumers, 696
WMI providers, 694–95
WMI scripting library, 696–97
WMI Service, 695
WMI, CIMOM, 695
WMI, overview, 689–94
write caching, configuring, 711–12
power configurations, 582–89
practice, configuring access policy and disk conversion, 247–48
RAM requirements, Windows XP Mode, 265–66
System Configuration (MSConfig), 705–07
Windows 7 requirements, 5–6
Windows 7 Upgrade Advisor, 27
Windows Memory Diagnostic, 752
Hardware Abstraction Layer (HAL), 93
Harware Resource, Msinfo32, 212
hash rules, 256, 272, 275, 279, 281–82
header size, 333
Heartbeat Discovery, 176
help-desk, remote access, 405–08
hexadecimal notation, 302
hibernate mode, 402–03, 613, 718
hibernation files, 228–29
hibernation mode, 583, 586
hidden devices, 198
High Performance power plan, 582–89
Home or Work (Private) Networks, 385, 423–25
HomeGroup, 434–38, 454
HomeGroup Connections, 425–27
Hosted Cache Client, 464
hotfix patches, 95
HTTP (Hypertext Transfer Protocol), 177, 676
HTTPS (Hypertext Transfer Protocol Secure), 177, 676
hybrid images, 151
hybrid network, 349
hybrid sleep mode, 584, 586
Hypertext Transfer Protocol (HTTP), 177, 676
Hypertext Transfer Protocol Secure (HTTPS), 177, 676
Hyper-V, 89–90
HTTP (Hypertext Transfer Protocol), 177, 676
HTTPS (Hypertext Transfer Protocol Secure), 177, 676
hybrid images, 151
hybrid network, 349
hybrid sleep mode, 584, 586
Hypertext Transfer Protocol (HTTP), 177, 676
Hypertext Transfer Protocol Secure (HTTPS), 177, 676
Hyper-V, 89–90
IANA (Internet Assigned Numbers Authority), 306–07
Icacls, 446–47
ICMP (Internet Control Message Protocol), 312–15
ICMPv4 Echo Requests, 317
ICMPv4 protocols, 320
ICMPv6 Echo Requests, 317, 341
ICMPv6 protocols, 320
ICMPv6 traffic, 526
ICS, 304–07, 323–24
ID Attribute, 138
IEEE 802.11i standard, 358–60
IKEv2 protocol, 530, 532, 535
image steps, 178
images, system case scenario, generating system images, 111
configuring Deployment Image Servicing and Management Tool (DISM), 75–77
distributing, 72–75
Offline Machine Servicing Tool, 96–98
overview, 53
practice, creating bootable VHD, 105–08
practice, creating WIM image, 84–86
pre-staging client computers, 103–04
reference image, creating, 58–72
Sysprep, 77–84
VHDs, native, 89–94
WDS images, 74–75
WDS, online VHD deployment, 98–104
Windows Automated Installation Kit (Windows AIK), 56–58
Windows Image to Virtual Hard Disk Tool (WIM2VHD), 94–96
Windows Imaging (WIM), 71–72
Windows Preinstallation Environment (WinPE), 58
information about, 117–18
ImageX
booting from VHD, 93
description, 57
images, information about, 118
images, mounting, 117, 119
network share, image storage, 68–69
system images, capturing, 56–58
Wimscript.ini, 68
Windows PE images, 135
Important Updates, 602
importing, firewall configuration, 394–95
inbound traffic, 385, 389–91, 395, 463–64
informational events, 675
inheritance, permissions, 445–46, 448–49
Initialize Disk Wizard, 236
InPrivate Filtering, 631
InPrivate Mode, 627–30
input locale, 132–33
input/output range resources, 200
install images, WDS, 74, 100–02, 170–71
install pending, 131
Install Software Updates, task sequence, 177
Install Software, task sequence, 177
installing case scenario, Windows 7 installation, 49
device drivers, 197, 207–08, 210
DVD-ROMs, 119
failures, 265
installers, launching, 265
Offline Virtual Machine Servicing Tool, 97
packages, considerations, 131
post-installation tasks, 139
practice clean installation, performing, 19–22
downloading, installing and configuring MDT 2010, 181–87
Windows AIK, 84–86
reference computer, 65–66
LAB deployment point

Setup Analysis Tool, 263
source preparation, 6–9
Sysprep, 77–84
update files, manually, 608
WDS, 169
Windows 7, 9–19
Windows Automated Installation Kit (Windows AIK), 56–58
Windows Easy Transfer, 36
Interactive Logon
Require Smart Card, 498
Smart Card Removal Behavior, 498
interfaces, IPv6, 340–41
interfaces, Windows Firewall, 385
interference, wireless connections, 364–65
internal hard disks, 230–32, 731
internal network resources, 526
internal private networks, 305
international settings, 75, 120, 122, 131–33
International Settings Configuration Tool (Intlcfg.exe), 116
Internet. See also addresses;
Internet Explorer
connection sharing, 307
files temporary, Disk Cleanup, 228–29
private IPv4 addresses, 306–07
Remote Desktop connections, 403
security settings, 609
Internet and Corporate Access message, 519
Internet Assigned Numbers Authority (IANA), 306–07
Internet Control Message Protocol (ICMP), 312–15, 384
Internet Explorer. See also Internet add-ons and search providers,
630–32
case scenario, 644–45
certificate errors, 635
compatibility test tool, 262
Compatibility View, 622–23
InPrivate Mode, 627–30
pop-up blocker, 632–33
practice, InPrivate Mode and add-ons, 636–40
security settings, 623–26
SmartScreen Filter, 626–27
SSL certificates, configuring, 633–36
zone rules, 276
Internet Options, configuring, 715–16
Internet Protocol (IP) addresses, 392
Internet Protocol Security (IPSec) connection rules and policies, 342, 394
cryptography, 497
DirectAccess, 515–16
IPv6, advantages of, 333
Windows Firewall, 384
Internet Protocol Version 4 (TCP/IPv4), 362
Internet Protocol Version 6 (TCP/IPv6), 340–41, 362
Internet Protocol-Hypertext Protocol Secure (IP-HTTPS), 516
Internet zone rules, 276
internetwork, 315
interrupt request (IRQ), 200, 717
interrupt storms, 717
Intlcfg, 75
intranets, 276, 331–32
Intra-Site Automatic Tunneling Addressing Protocol (ISATAP), 337
invalid logon attempts, 500
invitations, Remote Assistance, 406–07
IP addresses, static, 368
IP configuration, troubleshooting, 312–15
IP routing statistics, 319–21
IP Security Policies Management console, 342
Ipconfig, 301, 313, 338–39
IP-HTTPS, 516, 521
IP-HTTPS State, 518
IPSec (Internet Protocol Security) connection rules and policies, 342, 394
cryptography, 497
DirectAccess, 515–16
IPv6, advantages of, 333
Windows Firewall, 384
IPv4 addressing, 301–07
case scenario, IPv4 connectivity, 377
configuring
connecting to network, 307–11
overview, 300–01
practice, configuring network connectivity, 321–24
troubleshooting connectivity, 311–21
DirectAccess, 515–16, 519
network statistics, 319–21
Remote Desktop connections, 403
Windows Firewall with Advanced Security (WFAS), 392
IPv6 address structure, 328–32
advantages of, 333–34
case scenario, IPv6 connectivity, 377
connectivity, 338–43
IPv4 compatibility, 334–37
network statistics, 319–21
practice, configuring IPv6 connectivity, 343–45
Remote Desktop connections, 403
Windows Firewall with Advanced Security (WFAS), 392
IPv6 neighbor Discovery (ND), 333
IPv6 reverse lookup zone, 334
ipv6.arpa, 334
ISATAP (Intra-Site Automatic Tunneling Addressing Protocol), 337
isolation rules, 393

J

Join Domain or Workgroup, task sequence, 178

K

Kerberos V5 protocol, 393
kernel debugging, 751
Kernel Memory, 665
kernel mode drivers, 263
kernel trace data, 652
Key Management Service (KMS), 82
keyboard layout, 132–33
keys
encryption, 556–57
Network Security Key, 355
recovery key, 560, 562
startup keys, 557, 562
Windows Firewall with Advanced Security (WFAS), 393
Knowledge Base ID, 604–06

L

L2TP/IPsec, 515, 530–31, 535
LAB deployment point, 168
LAN (local area network), 305–06
Language ID, 138
language packs, 120, 122, 132–33, 135, 140–43, 164, 191
laptop computers.
 See also wireless connections
case scenario, offline files, 596–97
dialup connections, 540
loss of, 555
offline files, 574–82
power configurations, 582–89
shared folders, configuring, 580–81
Sync Center, 578–80
transparent caching, 577
Last Known Good Configuration, 751, 753, 755–56
Layer 2 Tunneling Protocol/Internet Protocol Security
(L2TP/IPsec), 515
LDM (Logical Disk Manager), 236
legacy hardware, 206
libraries
dynamic link libraries (DLLs), 263, 273–74, 279–80, 670
sharing, 432–33, 435–38
WMI scripting library, 696–97
license product key, 82
Link-layer Topology Discovery
Mapper I/O Driver, 362
Link-layer Topology Discovery
Responder, 362
link-local addresses, 330–32
Links folder, 734
list items, 139
Lite Touch Installation (LTI), 73, 147, 168–69
LoadState, 41
Local and Internet Access
message, 519
local area network (LAN), 305–06
Local Group Policy Editor, 208, 233–35, 449–51
Local Intranet, security settings, 623–24
Local Security Policy, 487–88
Local Subnet, 392
LocalAccountTokenFilterPolicy, 409
location-aware printing, 370
Lock Workstation, 498
lockout policies, accounts, 499–500
loctl_disk_performance
files, 681
logging
 events, logging and forwarding, 673–80, 689–90, 725
 managing, 75
 Sysprep, 83–84
Logical Disk Manager (LDM), 236
Logman, 655–56
logs
 Credential Manager, 493–95
 Remote Desktop, 402–03
loopback address, 332
LTI (Lite Touch Installation), 73, 147, 168–69
M
MAC (media access control), 305–06, 334, 367
Machine OOBE, 64
maintenance tasks, disks, 228–35
MAK (Multiple Activation Keys), 82
malware
 See User Account Control (UAC)
Manage Add-Ons, 632
Manage File Encryption Certificates, 502–04
Manage Wireless Networks, 357
Manage-bde.exe, 567
Managed Object Format (.mof), 179
managing
 applications
 Application Compatibility Diagnostics policies, 264–65
 Application Compatibility Toolkit (ACT), 260–64
 AppLocker control policies, overview, 276–77
 AppLocker rules, 277–83
 AppLocker, auditing, 285–86
 AppLocker, configuring exceptions, 283
case scenarios, 294–95
compatibility, configuring options, 257–60
executable rules, 278
overview, 255
practice, compatibility, 267–69
practice, restricting applications, 286–89
Software Restriction Policies, 271–76
Windows XP Mode, 265–66
BitLocker
 BitLocker To Go, 564–67
data recovery agents (DRA), 559–61
enabling, 561–63
modes, 556–57
overview, 555–56
practice, BitLocker To Go, 568–71
TPM chip, 557
certificates, 502–04
devices
 configuring installation policies, 207–08
 Device Manager, 197–203
driver signing and digital signatures, 215–19
Driver Verifier Monitor, 214–15
File Signature Verification, 218–19
installing non-PnP devices, 206
installing, Windows Update, 204–06
overview, 203–04
practice, configuring policy and driver search, 220–25
resolving conflicts, 210–14
staging device drivers, 205
working with drivers, 208–10
DirectAccess
 case scenarios, 550
 client configuration, 517–21
 overview, 515–17
 practice, configuring with Netsh, 526–27
 server, configuring, 521–26
troubleshooting, 519–21
disks
 basic and dynamic disks, 236–38
case scenario, managing disk volumes, 252
disk volumes, 240–46
maintenance, 228–35
moving, 239
partitions, working with, 235–36
practice, configuring policy and disk conversion, 247–48
reactivating dynamic disks, 240
Internet Explorer, InPrivate Mode, 627–30
performance
 CIM Classes, 696
 CIM Repository, 695–96
 WMI Administrative Tools, 697–705
 WMI consumers, 696
 WMI providers, 694–95
Microsoft Update, application servicing

- WMI scripting library, 696–97
- WMI Service, 695
- WMI, CIMOM, 695
- WMI, overview, 689–94
- practice, managing credentials, 504–07
- printers, 434
- remote management
- BCDEdit, 754–55
- case scenarios, 419
- practice, remote management options, 411–15
- Remote Assistance, 405–08
- Remote Desktop, 402–04
- Windows Remote Management, 408–10
- shared resources
- BranchCache, 461–62
- BranchCache, configuring clients, 463–67
- BranchCache, Distributed Cache mode, 463
- BranchCache, Hosted Cache mode, 462
- BranchCache, Windows Server 2008, 468–70
- folders, 431
- practice, BranchCache configuration, 470–71
- system image deployment
- applications, adding, 164–66
- applications, servicing, 125–27
- case scenarios, 191–92
- deployment points, 166–68
- device drivers, adding, 154–55
- DISM WIM commands, 116–23
- distribution share, creating, 152–53
- drivers, servicing, 123–25
- international settings, 131–33
- language packs, 164
- LTI bootable media, 168–69
- managing and distributing images, overview, 151–52
- manual installations, 180–81
- MDT (Microsoft Deployment Toolkit), overview, 146–51
- offline files, updating, 163–64
- operating system image, adding, 153–54
- operating system packages, servicing, 127–30
- package installation, 131
- practice, downloading, installing and configuring MDT 2010, 181–87
- practice, mounting offline image and installing language packs, 140–43
- SCCM 2007, 175–80
- task sequences, 155–61
- unattended servicing, command-line, 137–40
- updates, adding, 161–63
- WDS, 169–75
- Windows editions, managing, 133–35
- Windows PE, 135–36, 168
- User Account Control (UAC), 479–80, 482–90
- user profiles
- migrating user profile data, 34
- practice, migrating user data, 43–46
- User State Migration Tool (USMT), 39–42
- Windows Easy Transfer, 35–39
- virtual hard disk files
- case scenario, working with VHD, 111
- native VHDs, using, 89–94
- Offline Virtual Machine Servicing Tool, 96–98
- practice, creating bootable VHD, 105–08
- pre-staging client computers, 103–04
- WDS, online VHD deployment, 98–104
- Windows Image to Virtual Hard Disk Tool (WIM2VHD), 94–96
- Windows Firewall with Advanced Security (WFAS)
- overview, 389–95
- practice, configuring, 395–98
- wireless networks, 356–57
- map accelerator, 631
- Maximum Password Age, 499
- MBR disks, 235, 241
- MBSA (Microsoft Baseline Security Analyzer), 616
- MDT (Microsoft Deployment Toolkit)
- applications, adding, 164–66
- deployment points, 166–68
- distribution share, creating, 152–53
- language packs, 164
- LTI bootable media, 168–69
- managing and distributing images, overview, 151–52
- map accelerator, 631
- Maximum Password Age, 499
- MBR disks, 235, 241
- MBSA (Microsoft Baseline Security Analyzer), 616
- MDT (Microsoft Deployment Toolkit)
- applications, adding, 164–66
- deployment points, 166–68
- distribution share, creating, 152–53
- language packs, 164
- LTI bootable media, 168–69
- manually installing, 151–52
- offline files, updating, 163–64
- operating system image, adding, 153–54
- operating system packages, servicing, 127–30
- package installation, 131
- practice, downloading, installing and configuring MDT 2010, 181–87
- practice, mounting offline image and installing language packs, 140–43
- SCCM 2007, 175–80
- task sequences, 155–61
- unattended servicing, command-line, 137–40
- updates, adding, 161–63
- WDS, 169–75
- Windows editions, managing, 133–35
- Windows PE, 135–36, 168
- User Account Control (UAC), 479–80, 482–90
- user profiles
- migrating user profile data, 34
- practice, migrating user data, 43–46
- User State Migration Tool (USMT), 39–42
- Windows Easy Transfer, 35–39
- virtual hard disk files
- case scenario, working with VHD, 111
- native VHDs, using, 89–94
- Offline Virtual Machine Servicing Tool, 96–98
- practice, creating bootable VHD, 105–08
- pre-staging client computers, 103–04
- WDS, online VHD deployment, 98–104
- Windows Image to Virtual Hard Disk Tool (WIM2VHD), 94–96
- Windows Firewall with Advanced Security (WFAS)
- overview, 389–95
- practice, configuring, 395–98
- wireless networks, 356–57
- map accelerator, 631
- Maximum Password Age, 499
- MBR disks, 235, 241
- MBSA (Microsoft Baseline Security Analyzer), 616
- MDT (Microsoft Deployment Toolkit)
- applications, adding, 164–66
- deployment points, 166–68
- distribution share, creating, 152–53
- language packs, 164
- LTI bootable media, 168–69
- managing and distributing images, overview, 151–52
- offline files, updating, 163–64
- operating system image, adding, 153–54
- overview, 146–51
- SCCM, integrating, 179–80
- task sequences, 155–61
- updates, adding, 161–63
- Windows PE options, configuring, 168
- media access control (MAC), 305–06, 334, 367
- Media Streaming, 425
- Mediald file, 740
- memory, 5–6, 200, 652, 664–67, 752
- memory cards, 711–12
- messages, 208, 519, 609–10
- Action Center, 661–64
- Microsoft Baseline Security Analyzer (MBSA), 616
- Microsoft Challenge Handshake Authentication Protocol (MS-CHAPv2), 533
- Microsoft Data Protection Manager, 89
- Microsoft Deployment Toolkit (MDT), 73
- applications, adding, 164–66
- deployment points, 166–68
- distribution share, creating, 152–53
- language packs, 164
- LTI bootable media, 168–69
- managing and distributing images, overview, 151–52
- offline files, updating, 163–64
- operating system image, adding, 153–54
- overview, 146–51
- SCCM, integrating, 179–80
- task sequences, 155–61
- updates, adding, 161–63
- Windows PE options, configuring, 168
- Microsoft Hyper-V Server, 97
- Microsoft Protected EAP (PEAP), 532–33
- Microsoft Secured Password (EAP-MSCHAP v2), 532
- Microsoft Smart Card or Other Certificate, 532–33
- Microsoft Update, application servicing, 125
Microsoft Virtual PC, 265
Microsoft-Windows-Security-Licensing (SLC), 82
MigApp.xml, 40
MigDocs.xml, 40
migration
case scenario, migrating user data, 49–50
from Windows Vista, 26
from Windows XP, 29–30
practice, migrating user data, 43–46
store types, 42
user profile data, 34
Windows Easy Transfer, 37–39
MigUser.xml, 40
Minimum Password Age, 499
Minimum Password Length, 499
mirrored volumes, 237, 239, 243
MOBIKE, 535
mobile devices. See also virtual
private networks (VPN)
case scenario, offline files, 596–97
offline files, 574–82
shared folders, configuring, 580–81
Sync Center, 578–80
transparent caching, 577
mobile phone networks, 360
mobility
offline files, 574–82
power configurations, 582–89
shared folders, configuring, 580–81
Sync Center, 578–80
transparent caching, 577
modems, 403, 540–43
modules, 670
MOF Generator Wizard, 699
monitoring systems
Action Center, 661–64
events, logging and forwarding, 673–80
performance monitoring and reporting, 649–58
case scenarios, 725–26
CIM Classes, 696
CIM Repository, 695–96
CIMOM, 695
networking, configuring, 715–16
Performance Options, 709–11
practice, Performance Monitor, 680–86
practice, Windows performance analysis tools, 719–21
troubleshooting, 712–13
Windows Performance Analysis Toolkit (WPT), 717–18
WMI Administrative Tools, 697–705
WMI consumers, 696
WMI providers, 694–95
WMI scripting library, 696–97
WMI Service, 695
WMI overview, 689–94
write caching, configuring, 711–12
Process Explorer, 670–72
reliability, stability and performance, 658–61
Resource Monitor, 667–70
Services console, 707–09
System Configuration (MSConfig), 705–07
Task Manager, 215, 664–67, 714–15
More Info
ACT, 261, 264
advanced system tools and command-line utilities, 671
answer files, 65, 81
AppLocker auditing, 286
audit mode and Sysprep, 64
audit mode, booting to, 83
audit policy, advanced, 451
BCD boot options, 755
BCD WMI interface, 755
BCDBoot, 71, 174
BCDEdit, 94
Biometrics, 498
BitLocker, 556
BitLocker DRAs, 561
Bluetooth, 356
configuration pass, 139
custom commands and scripts, adding, 140
Data Collector Sets, 654–55
Default Local Users Group, 497
deployment, 67, 99
DirectAccess, 519, 521
DirectAccess Executive Overview, 516
Disable Driver Signature Enforcement, 217
diskpart, 174, 246
Distributed Management Task Force (DMTF), 696
driver store and staging, 206
Driver Verifier Monitor, 215
EAP, 359
El Torito boot sector file, 68
Encrypting File System (EFS), 452
external resolution, 349
files and settings, rerouting, 41
global unicast addresses, 330
Hosted Cache servers, configuring, 462
Icacls, 447
images, creating, 75
internal vs. external resolution, 305
Internet connection sharing, 307
Internet Explorer enhanced security, 626
IPv6 addressing, 330
LoadState, 41
locl_disk_performance files, 681
Logman, 656
managing images with WDS, 103
MDT (Microsoft Deployment Toolkit), 148
Microsoft Baseline Security Analyzer (MBSA), 616
Microsoft-Windows-Security-Licensing-SLC, 82
migration, 40, 42–43
MOF files, compiling, 702
NAP, 537
Netsh, 341
Network Address Translation (NAT), 306
network bridges, 313
Offline Virtual Machine Servicing Tool and SCVMM, 164
Peer Name Resolution Protocol, 334
PhysicalDisk %Disk Time counter, 683
PnPUtil, 224
power management, 584
Powercfg.exe, 588
pre-staging client computers, 104
printer permissions, 432
smart cards, 499
Software Restriction Policies, 276
subnetting and supernetting, 303
860
N

NAP (Network Access Protection), 536–37, 609–10
NAT (Network Address Translation), 305–06, 337, 393, 403
negative caching, 314–15
neighbor cache, 341
Net Share command, 431
NetBIOS, 310, 409
netbook computers, 7
Netsh
BranchCache, configuring clients, 463–67
DirectAccess, 519
IPv4 configuring, 310–11
IPv6 configuring, 340–41
IPv6 to IPv4 compatibility, 337
practice, configuring DirectAccess, 526–27
Windows Firewall, 388
Windows Firewall with Advanced Security (WFAS), 395
Windows Update, 608
wireless networks, 352–56
Network And Sharing Center
ad hoc networks, 360
collection interfaces, 362
dialup connections, 540
HomeGroups, 427
ICS clients, adding, 308
Internet connections, 350
Network Location Awareness (NLA), 385
sharing resources, 423–25
virtual private networks (VPNs), 530–31
Windows Network Diagnostics, 316
wireless networks, 356
network bridges, 313, 363
Network Configuration Operators group, 497
Network Diagnostics, 675
Network Discovery, 176, 425
Network Level Authentication, 403–04
Network Location Awareness (NLA), 385–87
network migration method, 36
Network Printer Installation Wizard, 369
Network Security Key, 355
network share
as installation source, 8–9
capturing installation images, 68–69
deployment, 69–71
network-based installation, 99
networks. See also offline files
ad hoc networks, 360
backup storage, 733
case scenario
IPv4 connectivity, 377
IPv6 connectivity, 377
wireless networks, 377–78
connectivity
managing connections, 362–63
overview, 348–50
setting up connections, 350–52
internal wireless adapter security, 357–60
IPv4, configuring
addressing, 301–07
connecting to network, 307–11
overview, 300–01
practice, configuring, 321–24
troubleshooting, 311–21
IPv6, configuring
addresses, 328–32
advantages of IPv6, 333–34
connectivity, 338–43
IPv4 compatibility, 334–37
practice, configuring IPv6 connectivity, 343–45
managing, 689–90
Network Location Awareness, 385–87
network services, 304–06
network type, selecting, 14
performance monitoring, 652,
715–16
practice, creating ad hoc network, 371–73
printing enhancements, 368–70
wireless, 675
wireless computers, adding, 352–56
wireless networks
managing, 356–57
security, 367–68
technologies, 361
troubleshooting, 363–67
zone rules, 276
New Application Wizard, 165–66
New Connection Security Rule Wizard, 393–94
New Deployment Point Wizard, 166–68
New Driver Wizard, 154–55
New Inbound (or Outbound) Rule Wizard, 389–91
New OS Wizard, 153
New Task Sequence Wizard, 177
NFTS permissions, 432
NLA (Network Location Awareness), 385–87
Notify Blocked Drivers, 265
NTFS files, 169, 442, 449, 733
NTFS permissions, 442, 449, 556
NTFS-formatted removable devices, 565
NTLMv2, 393

outbound traffic, 385, 389–91, 395, 463–64
out-of-box device drivers, 66, 121–23
Out-of-Box Experience (OOB), 94, 134
overlapping networks, 364

P
Package Manager (Pkgmgr.exe), 75, 116
packages, 75, 122, 131, 135
page files settings, 710
PAP (Password Authentication Protocol), 533
parameters, WIM2VHD, 94–95
partitions
basic and dynamic disks, 236–38
disks, working with, 235–36
network share deployment, 69
Password Authentication Protocol, 533
Password Must Meet Complexity Requirements, 499
Password Protected Sharing, 425
password reset disk, 500
passwords
account policies, 499–500
case scenario, UAC and passwords, 511
Credential Manager, 493–95
HomeGroup Connections, 425
on wakeup, 585
practice, managing credentials, 504–07
recovery passwords, 559–60
remote access, 409–10
Remote Assistance, 407
removable data drives, 565
resolving authentication issues, 500–01
Runas, 495–96
smart cards, 497–99
VPN authentication protocols, 533
wireless networks, 367
patches, 95, 125–27
path rules, 272, 274
Pathping tool, 315, 338
PCI Express, 586
PEAP (Microsoft Protected EAP), 532–33
Peer Name Resolution Protocol (PNRP), 334, 406–07
Peer-Discovery, 464
peer-to-peer environments, 334
PEimg, 75
pending computers, 99
performance
Action Center, 661–64
booting from VHD, 93
case scenarios, 725–26
defragmenting disks, 230–32
events, logging and forwarding, 673–80
monitoring and reporting, 649–58
network statistics, 319–21
networks, configuring, 715–16
Offline Virtual Machine Servicing Tool, 97
practice, Performance Monitor, 680–86
practice, Windows performance analysis tools, 719–21
Process Explorer, 670–72
reliability, stability and performance, 658–61
Resource Monitor, 667–70
Services console, 707–09
troubleshooting, 712–13
Windows Performance Analysis Toolkit (WPT), 717–18
WMI
CIM Classes, 696
CIM Repository, 695–96
CIMOM, 695
overview, 689–94
providers, 694–95
WMI Administrative Tools, 697–705
WMI consumers, 696
WMI scripting library, 696–97
WMI Service, 695
write caching, configuring, 711–12
Process Explorer

printers, 434–35
Removable Disk policies, 234–35
script rules, 279
shared folders, 428–32
shared resources, 454–58, 474
personal identification number (PIN), 556–57
Personal mode, 359–60
phishing, 626
physical machines, image deployment, 89
Physical Memory, 665
pictures, 425
PID (process ID), 320
PIN (personal identification number), 556–57
Ping, 312–15, 317–19, 338
PIV standard, 498
Pkgmgr.exe, 75
plug and play (PnP) devices, 81, 197–203
PNRP (Peer Name Resolution Protocol), 334
Point-to-Point Tunneling Protocol (PPTP), 515, 530–31, 535, 541–42
policies. See also Group Policy accelerators, 632
account lockout policies, 501
Application Compatibility Diagnostics policies, 264–65
AppLocker auditing, 285–86
configuring exceptions, 283
practice, restricting applications, 286–89
rules, 277–83
auditing remote connections, 544
Auto-Add, 99, 103–04
BitLocker DRAs, 559–60
BitLocker To Go, 564–66
BranchCache, configuring clients, 463–67
case scenario
restricting applications, 294–95
case scenario, driver signing policy, 252
device drivers, 205, 207–08, 216, 220–25
DirectAccess, 517–26
disk policies, 233–35
event subscriptions, 678–79
InPrivate, 629–30
IPSec, 342
location-aware printing, 370
offline files, 577–78
power settings, 587
practice
access policy and converting a disk, 247–48
BitLocker To Go, 568–71
remote access, 409
Remote Desktop Gateway, 538–39
smart cards, 498
Software Restriction Policies, 271–76
updates, 611
User Account Control (UAC), 482–87
user rights, 496–97
Windows Update, 612–16
write caching, configuring, 711–12
pop-up blocker, 632–33
portable computers case scenario, offline files, 596–97
dialup connections, 540
loss of, 555
offline files, 574–82
power configurations, 582–89
shared folders, configuring, 580–81
Sync Center, 578–80
transparent caching, 577
port-based authentication, 358–60
ports, 319–21, 384, 387–89
power allocation, 202, 582–92
Power Management, 199
Power Users group, 497
PowerShell, 163–64, 408–10, 414–15
PPTP (Point-to-Point Tunneling Protocol), 515, 530–31, 535, 541–42
practice
backup, configuring file and folder, 741–43
BitLocker To Go, 568–71
BranchCache configuration, 470–71
clean installation, performing, 19–22
compatibility, 267–69
credentials, managing, 504–07
device drivers, configuring policy and driver search, 220–25
DirectAccess, configuring with Netsh, 526–27
disks, access policy and covertion, 247–48
Internet Explorer, InPrivate Mode and add-ons, 636–40
MDT 2010, downloading, installing and configuring, 181–87
migrating user data, 43–46
mounting offline image and installing language packs, 140–43
Performance Monitor, 680–86
power plans, managing, 589–92
recovering renamed files, 771–75
remote connections, configuring, 545–47
remote management options, 411–15
shared resources, encryption and permissions, 454–58
sharing resources, 435–40
system protection and restore, 756–60
upgrading to Windows 7, 30–31
User Account Control (UAC), configuring, 488–90
VHD, bootable, 105–08
Windows Firewall, 395–98
Windows performance analysis tools, 719–21
Windows Update, configuring, 617–19
precedence, 272, 274
preferred wireless networks, 356–57
pre-shared key (PSK) mode, 359–60
Print Management MMC snap-in, 369
printers, 370, 434–35, 689–90
printing, Windows 7 enhancements, 368–70
private addresses, 306–07
private intranets, 331–32
private keys, 452
private networks, 305–06
privileges
case scenario, UAC and passwords, 511
elevation of, 479–80
User Account Control (UAC) overview, 479–80
preferences, 482–87
practice, configuring, 488–90
Secpol and Local Security Policy, 487–88
settings, 480–82
virtual private networks (VPNs), 530
Problem Devices, 212
Process Explorer, 267–69, 670–72
process ID (PID), 320
Processor Power Management, 586
processors, 5–6, 265–66, 652, 664–67
product keys, 82, 133–34
Program Compatibility troubleshooter, 257–58, 265
Program Files, 279, 486–87
Programs and Features, 387–88
prompts, UAC, 483–84
Protected Mode, Internet Explorer, 624
Provide The Unique Identifiers For Your Organization Policy, 565
proxy servers, 607–08
PSK (pre-shared key) mode, 359–60
public addresses, 306–07
Public Folder Sharing setting, 425
public key encryption, 452
Public Networks, 385
publisher rules, 280–81
PXE-compliant clients, 147
PXE-enabled computers, 173

Q
Quality of Service (QoS), 333, 362
Quick Fix Engineering (QFE), 95

R
RADIUS (Remote Authentication Dial In User Service), 358–60
RAID-5 volumes, 237, 239, 243–45
RAM, 265–66, 664–67, 752
RAMdisk mode, 135
read
performance, 244
permissions, 442–43
removable devices, 565
Removable Disks policies, 234–35
shared folders, 428–32
Read/Write image, 120
Read/Write permissions, 428–32
read-only images, 119
real-time traffic, 333
reboots, monitoring, 658–60
Recommended Updates, 602
Recovery Agents, 453
recovery key, 560, 562
recovery passwords, 559–60
recovery, data. See also backup
Advanced Boot Options, 750–53
BitLocker protected drives, 566–67
boot options, 754–55
case scenarios, 779–80
file copying and, 730
practice, recovering renamed files, 771–75
previous versions of files, 766
renamed and deleted files, 765–66
restoring damaged or deleted files, 762–69
system protection and disk usage, configuring, 769–71
user profiles, restoring, 767–69
Volume Shadow Copy Service (VSS), 766
recovery, system, 755–60
Recycle Bin, 228–29, 735, 765–66
Redirect, 333
Reduced Functionality Mode (RFM), 82
reference computers, 59, 65–66
registry, 486, 689–90, 730, 746–50
registry keys, 263
Reliability Monitor, 214, 658–60
Remember My Credentials, 493
Remote Assistance, 405–08
Remote Authentication Dial In User Service (RADIUS), 358–60
remote computers, Device Manager, 198
remote connections auditing, 544
case scenarios, 550–51
dialup connections, 540–43
practice, configuring remote connections, 545–47
Remote Desktop, 537–40
virtual private networks (VPNs) incoming connections, accepting, 541–43
NAP remediation, 536–37
overview, 530–32
VPN Reconnect, 535–36
Remote Desktop, 402–04, 411–13, 496, 537–40
Remote Desktop Services, 498
Remote Desktop Users group, 404, 496–97
remote management case scenarios, 418–19
practice, remote management options, 411–15
Remote Assistance, 405–08
Remote Desktop, 402–04
Windows Remote Management, 408–10
RemoteApp, 539–40
removable devices. See also USB (universal serial bus) devices
booting target drives, 173
data drives, 564–66
deployment points, 166
disk policies, 233–35
partioning, 236
policies about, 208
practice, write access, 247–48
Repair Your Computer, 746
replay protection protocol, 531
Replicator group, 497
reports. See resources, performance monitoring and reporting
Res.rwm files, 99
Reset Account Lockout Counter After, 500
resetting user account passwords, 500
resizing volumes, 245–46
Resource Monitor, 667–70
resources
Device Manager, 200
hardware, Msinfo32, 212
performance monitoring and reporting
Action Center, 661–64
case scenarios, 725–26
CIM Classes, 696
events, logging and forwarding, 673–80
networking, configuring, 715–16
overview, 649–58
Performance Options, 709–11
practice, Performance Monitor, 680–86
practice, Windows performance analysis tools, 719–21
Process Explorer, 670–72
reliability, stability and performance, 658–61
Resource Monitor, 667–70
Task Manager, 215, 664–67, 714–15
troubleshooting, 712–13
Windows Performance Analysis Toolkit (WPT), 717–18
WMI Administrative Tools, 697–705
WMI consumers, 696
WMI providers, 694–95
WMI scripting library, 696–97
WMI Service, 695
WMI, CIMOM, 695
WMI, overview, 689–94
sharing. See also virtual private networks (VPN)
auditing, configuring, 449–51
BranchCache, configuring clients, 463–67
BranchCache, Distributed Cache mode, 463
BranchCache, Hosted Cache mode, 462
BranchCache, overview, 461–62
BranchCache, Windows Server 2008, 468–70
case scenarios, 474
DirectAccess, 526
Encrypting File System (EFS), 451–54
file and folder permissions, 442–49
libraries, 432–33
Network And Sharing Center, 423–25
practice, BranchCache configuration, 470–71
practice, encryption and permissions, 454–58
practice, sharing, 435–40
printers, 434–35
shared folders, 428–32
System Configuration (MSConfig), 705–07
usage monitoring, 215
Restart Computer, task sequence, 178
restore, 493–95, 746–50, 758, 762–69
Restore Files Wizard, 763, 767–69
Restore My Files, 763
Restore Settings, 770
Restore Vault, 495
Restricted Sites, 276, 624
resume, 718
reverse lookup, 334
roaming profiles, 767
Robocopy.exe, 449
roll backs, 28, 197, 208, 612
Route, command-line tool, 338
Router Discovery, 333
routers
edge devices, 393
site-local addresses, 331–32
SOHO, Windows Firewall and, 387
subnets and supernets, 303–04
switching between WAPs, 363–64
routing table, IPv6, 333
Rule Creation Wizard, 281–82
rule scope, 392–93
rules, 383, 386
Run All Administrators In Admin Approval Mode, 486
Run Command Line, task sequence, 177
RunSynchronous, 81
Safe Mode, 747, 750
Same Service Set Identifier (SSID), 365–68
Saved Games, 734
caling, 259
ScanState, 41
SCCM 2007, 163, 175–80
scheduled tasks, 689–90
scratch space, 136
creen resolution, 259
scripts AppLocker, script rules, 279
Cscript, 94
Deployment Workbench, 148
More Info, 140
network share deployment, 70 rules for, 279
WMI scripting library, 696–97
SCSI (Small Computer System Interface)
defragmenting disks, 232
SCVMM (System Center Virtual Machine Manager), 97–98, 128, 147, 163
search providers, 630–32
Searches folders, 734
Secedit.exe, 487–88
Secpol, 487–88
Secure Desktop, 480, 483–84, 486–87
Secure Socket Tunneling Protocol (SSTP), 515, 530–31, 535
Secure Sockets Layer (SSL), 531, 626, 633–36
security. See also remote
management; updates;
User Account Control (UAC)
Action Center, 661–64
AppLocker
auditing, 285–86
configuring exceptions, 283
rules, 277–83
backup, 737
BitLocker
BitLocker To Go, 564–67
data recovery agents (DRA), 559–61
enabling, 561–63
modes, 556–57
overview, 555–56
practice, BitLocker To Go, 568–71
TPM chip, 557
case scenario, restriction
applications, 294–95
device drivers, 205
DirectAccess, 517–19
disk policies, 233–35
events, logging and forwarding, 673–80
internal wireless adapters, 357–60
Internet Explorer settings, 623–26
IPv6, advantages of, 333
managing, 689–90
mobility
case scenario, offline files, 596–97
offline files, 574–82
shared folders, 428–32
Sync Center, 578–80
transparent caching, 577
network performance and, 716
Network Security Key, 355
operating system image, adding, 153
patches, offline images, 127
practice, restricting applications, 286–89
pre-staging client computers, 104
public and private addresses, 306
SCCM 2007, 175–76
shared resources
configuring auditing, 449–51
Encrypting File System (EFS), 451–54
file and folder permissions, 442–49
practice, encryption and permissions, 454–58
Software Restriction Policies, 271–76
updates, adding with MDT, 161–63
Security Center

case scenario
IPv4 connectivity, 377
IPv6 connectivity, 377
wireless networks, 377–78
connectivity
managing connections, 362–63
overview, 348–50
setting up connections, 350–52
internal wireless adapter security, 357–60
IPv4
addressing, 301–07
connecting to network, 307–11
overview, 300–01
practice, configuring IPv6
 connectivity, 343–45
practice, creating ad hoc network, 371–73
prerequisites, 368–70
wireless computers, adding, 352–56
wireless networks
managing, 356–57
security, 367–68
wireless technologies, 361
troubleshooting, 363–67
Setup Analysis Tool, 263
setup log files, 228–29
shadow copies, 762–69
share permissions, 432
sharing media, 586
sharing resources. See also virtual private networks (VPN)
auditing, configuring, 449–51
BranchCache, configuring clients, 463–67
BranchCache, Distributed Cache mode, 463
BranchCache, Hosted Cache mode, 462
BranchCache, overview, 461–62
BranchCache, Windows Server
 2008, 468–70
case scenarios, 474
DirectAccess, 526
EFS and HomeGroups, 454
EFS recovery, 453
Encrypting File System (EFS), 451–54
file and folder permissions, 442–49
folders, 428–32, 580–81, 689–90
libraries, 432–33
Network And Sharing Center, 423–25
practice
BranchCache configuration, 470–71
cryptography and permissions, 454–58
sharing resources, 435–40
printers, 434–35
shim, defined, 262
shutdown, 403, 583, 612, 718
SHVs (Security Health Validators), 536
side-by-side migrations, 29
signing, drivers, 215–19
Sigverif (File Signature Verification), 218–19
single instance storage, 72
site IDs, 339
site-local addresses, 331–32
SkipReam, 82
SKU (Stock-Keeping Unit), 94
sleep mode, 402–03, 583, 586–87, 718
Small Computer System Interface (SCSI), 232
small office/home office
spanned partitions, 235, 237
spanned volumes, 239, 241–42
specialize, configuration pass, 80
split WIM, 95
SQL Server, 147
SSID, 353–54, 365–68
SSL (Secure Sockets Layer), 531, 626, 633–36
Virtual Private Networks (VPNs), 531–33, 536, 544
Windows Firewall, 383–88, 395–98, 419
Windows Firewall with Advanced Security (WFAS), 389–98, 419
wireless networks, 356–57, 365–68
Security Center, 537, 609–10
Security Health Validators (SHVs), 536
Security Levels, 272
Security Template, 487–88
self-powered hubs, 202
Serial Advanced Technology Attachment (SATA) disks, 232
server message block (SMB), 177
server-to-server rules, 394
service set identifier (SSID), 353–54
Services console, 707–09
services, event logs, 674
servicing jobs, 163–64
Set Network Location, 423
Set Task Sequence Variable, 178
settings. See also settings, network
Action Center, 662–63
Advanced Sharing Settings, 423, 434
answer file, 59, 64–65
devices, 197, 199
file copying and recovery, 730
international, 75, 131–33
Internets Explorer security, 623–26
migrating user profile data, 34, 37–39
Offline Settings, 430
performance
CIM Classes, 696
CIM Repository, 695–96
Performance Options, 709–11
WMI Administrative Tools, 697–705
WMI consumers, 696
WMI providers, 694–95
WMI scripting library, 696–97
WMI, CIMOM, 695
WMI, overview, 689–94
power configurations, 582–89
system restore, 746–50
time and date, 13
User Account Control (UAC), 480–82
user, compatibility modes, 260
Windows Firewall, 388
Windows PE images, 135
settings, network. See also settings
ad hoc networks, 360
Task Sequence Editor

SSTP (Secure Socket Tunneling Protocol), 515, 530–31, 535
Stability Chart, 661
Stability Index, 660–61
staging device drivers, 205
standard providers, 695
Standard User Analyzer, 263–64
Start Windows Normally, 751
startup keys, 557, 562
StartUp Repair, 751
stateful address configuration, 331
stateless address configuration, 331–32
static IP addresses, 368
statistics, network, 319–21
stealth, 384
Stock-Keeping Unit (SKU), 3, 94
STOP errors, 652
storage. See also disks; removable devices; USB (universal serial bus) devices
backup, 733, 736
defragmenting disks, 230–32
file-based, 71
ImageX, 68–69
migration store types, 42
requirements, 5–6
write caching, configuring, 711–12
Store Passwords Using Reversible Encryption, 499
streaming multimedia, 716
stress tests, device drivers, 215
striped partitions, 235, 237
striped volumes, 239, 242–45
subnet address, 303
subnet masks, 300
subnets, 302–04
subscriptions, event, 676–77
supernetting, 303–04
Switch To The Secure Desktop When Prompting For Elevation, 486
Switch User, 403
Sync Center, 575, 578–80
synchronization, offline files, 574–82
Sysprep, 64, 77–84, 172
sysprep/generalize command, 79
System and Security, 661–64, 731–39
System Center Virtual Machine Manager (SCVMM), 97–98, 128, 147, 163
System Check, 563
system cleanup, 78
System Configuration (MSConfig), 705–07
system diagnostics report, 656–58
System Diagnostics, DCS, 652
system files, backup and restore, 735, 747
System Image Recovery, 752
System Image, backup and restore, 733–34, 739–41, 749–50
system images, configuring. See also system images, deploying
case scenario, generating system images, 111
Deployment Image Servicing and Management Tool (DISM), 75–77
distributing images, 72–75
international settings, 131–33
Offline Virtual Machine Servicing Tool, 96–98
operating system packages, servicing, 127–30
overview, 53
practice, creating bootable VHD, 105–08
practice, creating WIM image, 84–86
pre-staging client computers, 103–04
reference image, creating, 58–72
Sysprep, 77–84
VHDs, native, 89–94
WDS images, 74–75
WDS, online VHD deployment, 98–104
Windows Automated Installation Kit (Windows AIK), 56–58
Windows Image to Virtual Hard Disk Tool (WIM2VHD), 94–96
Windows Preinstallation Environment (WinPE), 58
system images, deploying. See also system images, configuring
applications, servicing, 125–27
case scenarios, 191–92
DISM WIM commands, 116–23
drivers, servicing, 123–25
manual installations, 180–81
MTD (Microsoft Deployment Toolkit) applications, adding, 164–66
deployment points, 166–68
device drivers, adding, 154–55
distribution shares, creating, 152–53
language packs, 164
LTI bootable media, 168–69
managing and distributing images, overview, 151–52
offline files, updating, 163–64
operating system image, adding, 153–54
overview, 146–51
program folders, 148
task sequences, 155–61
updates, adding, 161–63
Windows PE options, 168
package installation, 168
practice, downloading, installing and configuring MDT 2010, 181–87
practice, mounting offline image and installing language packs, 140–43
SCCM 2007, 175–80
unattended servicing, command-line, 137–40
WDS, 169–75
Windows editions, managing, 133–35
Windows PE images, servicing, 135–36
System Information (Msinfo32), 212–14
system settings. See settings; settings, network
target path, 135–36
Task Manager, 215, 664–67, 714–15
Task Sequence Editor, 156, 177–79
IPv4 network connectivity, 311–21
IPv6 connectivity, 342–43
Program Compatibility, 257–58
System Configuration (MSCONFIG), 705–07
System Performance, DCS, 652
wireless networks, 363–67
Trusted Platform Module (TPM), 556–57, 564
Trusted Publishers certificate store, 215–19
Trusted Root CA Certification Authorities, 216
Trusted Sites, 276, 624
trusts, 409, 485–86
tunnel rules, 394
Tzutil, 133

UAC (User Account Control)
Action Center, 609
application compatibility, 265
case scenario, UAC and passwords, 511
overview, 479–80
policies, 482–87
practice, configuring, 488–90
Remote Assistance, 405
Secpol and Local Security Policy, 487–88
settings, 480–82
UDP (User Datagram Protocol), 320, 335, 384
UIAccess Applications, 486–87
Unattend.xml, 94
unattended answer files, 134
unattended installations, 59, 80–81, 83
Unattended.xml answer files, 127, 137–40
unblocking, 317
uncompressed migration stores, 42
universal serial bus (USB) devices as installation source, 7–8
backup storage, 733, 736
BitLocker, 563–64
booting target drives, 173
data migration, 36
defragmenting, 230–32
deployment points, 166
dialup connections, 540
discover images, 171–72
Encrypting File System (EFS), 451–52
network connections, 350–52
password reset disks, 500
policies, 208, 233–35
power settings, 586
practice, write access, 247–48
security and, 555
write caching, configuring, 711–12
unspecified address, 332
Update Driver, 208–09
updates
Action Center, 609–10
adding, MDT (Microsoft Deployment Toolkit), 161–63
applications, servicing, 125–27
case scenarios, 644
device drivers, 197, 208
DirectAccess, 515
images, WDS, 102–03
Microsoft Baseline Security Analyzer (MBSA), 616
offline files, 163–64
Offline Virtual Machine Servicing Tool, 96
overview, 610–12
Windows Update
Action Center, 661–64
application compatibility, 265
configuring, 601–08
device drivers, installing, 204–06
policies, 612–16
practice, configuring, 617–19
smart cards, 498
upgrades
from Windows 7 Editions, 25–26
from Windows Vista, 26–28
practice, upgrading to Windows 7, 30–31
Windows image, 75
USB (universal serial bus) devices as installation source, 7–8
backup storage, 733, 736
BitLocker, 563–64
booting target drives, 173
data migration, 36
defragmenting, 230–32
deployment points, 166
dialup connections, 540
discover images, 171–72
disk policies, 233–35
Encrypting File System (EFS), 451–52
password reset disks, 500
policies, 208
power settings, 586
practice, write access, 247–48
security and, 555
write caching, configuring, 711–12
USB controllers, 203, 350–52
USB hubs, power allocation, 202
User Account Control (UAC) Action Center, 609
application compatibility, 265
case scenario, UAC and passwords, 511
overview, 479–80
policies, 482–87
practice, configuring, 488–90
Remote Assistance, 405
Secpol and Local Security Policy, 487–88
settings, 480–82
user accounts
data recovery agent (DRA) accounts, 559
HomeGroup Connections, 425
shared folders, 428–32
User Datagram Protocol (UDP), 320, 335, 384
User Defined Reports, 656
User Interface Accessibility (UIAccess), 486–87
user messages, 208
user names, 425, 493–95, 497–99
user profiles
backup, 735
case scenario, migrating user data, 49–50
migrating user profile data, 34, 37–39
migration, Windows AIK, 56–58
practice, migrating user data, 43–46
restoring, 767–69
Windows Easy Transfer, 35–39
user rights, 496–97, 530
user settings, compatibility modes, 260
User State Migration Tool (USMT), 39–42, 56–58
user state steps, 178
users
Remote Desktop Users group, 404
Runas, 495–96
V
validation, 64–65, 205, 485–86, 536
verification, 205
VHD. See virtual hard disks (VHDs)
video playback settings, 586
video, recovery options, 751
video, sharing, 425
View Certificates, 633
View Update History, 604
virtual hard disks (VHDs)
attaching and detaching, 91
backup storage, 733, 736
BitLocker recovery, 566–67
boot entry, adding, 93–94
booting from, 93
case scenario, working with VHDs, 111
defragmenting, 230–32
dual-boot installations, 17–19
image creation, Windows PE, 67
LTI bootable media, 168–69
native, using, 89–94
network share, image storage, 68–69
offline files, updating, 163–64
Offline Virtual Machine Servicing Tool, 96–98
operating system packages, servicing, 127–30
overview, 513
practice, creating bootable VHD, 105–08
pre-staging client computers, 103–04
System Image backups, 739–41
task sequence, deploy to VHD, 159–61
updates related to, 53
WDS, online VHD deployment, 98–104
WIM2VHD, 94–96
virtual machines, image deployment, 89
Virtual PC, 89–90
virtual private networks (VPN)
auditing, 544
authentication protocols, 533
case scenarios, 550–51
DirectAccess
client configuration, 517–21
overview, 515–17
practice, configuring with Netsh, 526–27
server, configuring, 521–26
troubleshooting, 519–21
incoming connections, accepting, 541–43
NAP remediation, 536–37
overview, 530–32
practice, configuring remote connections, 545–47
Remote Desktop connections, 403
VPN Reconnect, 532, 535–36
wireless networks, 356
Virtual Server, 89–90, 97
volume licenses, 82
Volume Shadow Copy Service (VSS), 766
volume status, 239
volumes, disk
case scenario, managing, 252
deleting, 246
managing, 240–46
resizing, 245–46
VPN (virtual private networks). See virtual private networks (VPN)
VPN Reconnect, 532, 535–36
VSS (Volume Shadow Copy Service), 766
W
Wake on LAN, 402–03
wake timers, 586
wakeup, 585
WAN (wide area networks), 349, 577
WAP, 304–07, 312, 363–64
Wbadmin, 739
WCS (Windows Color System), 369
WDS (Windows Deployment Services)
as installation source, 9
image deployment, 153, 169–75
MMC snap-in
boot image, adding, 101
capture image, creating, 100
discover image, creating, 101
exporting image, 102
images, 74–75
install image, adding, 101–02
overview, 99
upgrading an image, 102–03
online VHD deployment, 98–104
WDSUTIL, 99, 102–04, 174–75
Web Proxy Auto Detect (WPAD), 608
web sites, certificate errors, 635
WEP (Wireless Equivalent Privacy), 357–60, 367
WFAS (Windows Firewall with Advanced Security), 317–19
wide area network (WAN), 349, 577
Wi-Fi Protected Access (WPA), 357–60
wildcards, 274
WIM (Windows Imaging)
command options, 75
image mounting, 116–23
imaging format, 71–72
mounted images, information about, 119–21
practice, creating WIM image, 84–86
WIM2VHD (Windows Image to Virtual Hard Disk Tool), 94–96
Wimscript.ini, 68, 71
Windows 2000, compatibility modes, 258
Windows 7
activation, resetting, 82
automated installations, Windows AIK, 56–58
editions, overview, 3
Enterprise, 5, 93, 96, 276–77, 403–04, 451–52, 461, 517, 564, 574, 734
hardware requirements, 5–6
Home Basic, 4
Home Premium, 4
installation source, preparing, 6–9
installing, 9–19
migrating from Windows XP, 29–30
practice, performing clean installation, 19–22
practice, upgrading to Windows 7, 30–31
Professional, 403–04, 451–52, 574
Starter, 4
Ultimate, 5, 93, 96, 276–77, 403–04, 451–52, 461, 517, 564, 574, 734
upgrading from Windows 7 Editions, 25–26
upgrading from Windows Vista, 26–28
Windows 7 Professional, 4
Windows 7 Upgrade Advisor, 27
Windows 95, compatibility modes, 258
Windows 98, compatibility modes, 258
Windows AIK (Windows Automated Installation Kit)
BCDboot, 173
installing and using, 56–58
MDT (Microsoft Deployment Toolkit), 147
mounting images, 116
practice, installing, 84–86
USMT (User State Migration Tool), 39–42
VHDs, native, 90
Windows boot manager (Bootmgr.exe), 754–55
Windows Color System (WCS), 369
Windows DDNS, 331–32
Windows Deployment Services (WDS)
as installation source, 9
MMC snap-in
boot image, adding, 101
capture image, creating, 100
discover image, creating, 101
exporting image, 102
images, 74–75
install image, adding, 101–02
overview, 99
upgrading an image, 102–03
online VHD deployment, 98–104
Windows Deployment Services Image Capture Wizard, 74, 173
Windows Deployment tools, 90
Windows Deployment Wizard, 168
Windows Event Collector, 676
Windows Experience Index, 663–64
Windows Firewall
allowing programs, 387–88
case scenario, 419
event forwarding, 676
Network Location Awareness, 385–87
network settings, configuring, 317–19
overview, 383–88
Ping commands, 341
practice, configuring, 395–98
Windows Firewall with Advanced Security (WFAS)
case scenario, 419
DirectAccess, 526
network settings, configuring, 317–19
overview, 383–88
Windows folders, 279, 486
Windows Image to Virtual Hard Disk Tool (WIM2VHD), 94–96
Windows Installer (.msi), 123, 125–27, 276, 278
Windows Internet Naming Service (WINS), 310, 392
Windows Memory Diagnostic, 752
Windows Network Diagnostic tool, 315–16, 675
Windows NT, 258
Windows operating system loader (Winload.exe), 754–55
Windows PE
boot images, 116
bootable medium, creating, 66–68
capture image, WDS, 74
configuration passes, 79
configuring options, 168
configuration passes, 79
feature settings, 62
images, creating, 56–58
images, servicing, 135–36
MDT (Microsoft Deployment Toolkit), 148
network share, image storage, 68–69
practice, creating boot DVD, 84–86
profiing tool, 135
system images, capturing, 58
Windows AIK tools, 58
Windows Performance Analysis Toolkit (WPT), 717–18
Windows PowerShell, 163–64, 408–10, 414–15
Windows Preinstallation Environment (WinPE). See Windows PE
Windows RE (Recovery Environment), 749–50, 752
Windows Recovery Environment (Windows RE), 749–50, 752
Windows Remote Assistance, 405–08, 486–87
Windows Remote Management (WinRM), 408–10, 676–77
Windows Resource Protection (WRP), 263
Windows resume loader (Winresume.exe), 754–55
Windows Server 2003, 96, 175, 259, 271–76, 461
Windows Server 2008
backward compatibility, 117
BranchCache, 461, 468–70
change and configuration management, 175
DirectAccess, 522
discover image, creating, 171
MDT (Microsoft Deployment Toolkit), 73, 147
Offline Virtual Machine Servicing Tool, 96
Offline Virtual Machine Servicing Tool, 96
remote files, 163
Offline Virtual Machine Servicing Tool, 96
overview, 610–12
Windows Setup, 79–80
Windows SIM (Windows System Image Manager), 57, 60, 81, 138–39
Windows System 32 folders, 486–87
Windows Task Scheduler, 739
Windows Update
Action Center, 661–64
case scenario, 644
configuring, 601–08
device drivers, installing, 204–06
policies, 612–16
practice, configuring, 617–19
smart cards, 498
Windows Update Stand-alone Installer (.msu), 127–28
Windows User State Migration Toolkit (USMT), 147
Windows Vault, 493–95
Windows Virtual PC, 387–88, 735
Windows Vista
backward compatibility, 117
BitLocker, 564
compatibility modes, 259
connection security and IPSec, 394
deploying to VHD, 159–61
DirectAccess, 517
migrating user profile data, 34, 39
practice, upgrading to Windows 7, 30–31
Remote Assistance, 406
Remote Desktop, 403–04
servicing, 75
Software Restriction Policies, 271–76
Teredo address, 335–36
Windows Server and Certificate Services, 215–19
Windows Server Backup, 89
Windows Server Update Services (WSUS)
adding updates, 163
application servicing, 125
NAP remediation, 537
Remote Desktop, 403–04
ScanState, 41
Software Restriction Policies, 271–76
Windows Easy Transfer, 35–39
Windows XP Mode, 265–66
Windows Image Backup folder, 740
Winload.exe, 754–55
WinPE (Windows Preinstallation Environment)
boot images, 116
bootable medium, creating, 66–68
capture image, WDS, 74
configuration passes, 79
configuring options, 168
feature settings, 62
images, creating, 56–58
MDT, 148
network share, image storage, 68–69
practice, creating boot DVD, 84–86
profiing tool, 135
system images, capturing, 58
Windows AIK tools, 58
Winresume.exe, 754–55
WinRM (Windows Remote Management), 408–10, 676–77
wipe-and-load migrations, 30
Wired Equivalent Privacy (WEP), 357–60, 367
wireless adapter settings, 585
wireless connections
backward compatibility, 117
case scenario, wireless networks, 377–78
IPv4 network connections, 309
networks, 349, 352–56, 361, 675
security, 357–60, 367–68
troubleshooting, 363–67
Wireless Network Setup Wizard, 355
wireless devices, 349
Wireless Network Properties, 355, 364, 367
Wizards
Add Application Wizard, 127
Add Features, DirectAccess, 522
Add Features, Windows Server 2008, 468
Add Hardware Wizard, 206
Add Printer Wizard, 369
Automatically Generate Rules, 283
certificate management, 502
Create A Basic Task Wizard, 675
Create A Shared Folder Wizard, 431
Create New Data Collector Wizard, 655
Forgotten Password Wizard, 500
Initialize Disk Wizard, 236
MOF Generator Wizard, 699
Network Printer Installation Wizard, 369
New Application Wizard, 165–66
New Connection Security Rule Wizard, 393–94
New Deployment Point Wizard, 166–68
New Driver Wizard, 154–55
New Inbound (or Outbound) Rule Wizard, 389–91
New OS Wizard, 153
New Task Sequence Wizard, 177
Restore Files Wizard, 763, 767–69
Rule Creation Wizard, 281–82
System Restore Wizard, 746–47
Windows Deployment Services Image Capture Wizard, 74, 173
Windows Deployment Wizard, 168
Wireless Network Setup Wizard, 355
WMI
CIM Classes, 696
CIM Repository, 695–96
CIM Studio, 697–99
Event Registration, 702–03
Event Viewer, 703–05
Object Browser, 700–02
overview, 689–94
providers, 694
repository, 694
Service, 694
WMI Administrative Tools, 697–705
WMI consumers, 696
WMI providers, 694–95
WMI scripting library, 696–97
WMI Service, 695
WPA encryption, 367
WPA2 certifications, 358–60
WPA2-Enterprise, 359
WPAD (Web Proxy Auto Detect), 608
WPA-Enterprise, 359
WPT (Windows Performance Analysis Toolkit), 717–18
WQL Query Builder, 699
write performance, 244
permissions, 442–43
practice, access to USB devices, 247–48
Removable Disk policies, 234–35
removable drives, 565
removable media, 233–35, 565
User Account Controls (UAC), 486
write caching, configuring, 711–12
WRP (Windows Resource Protection), 263
WSUS (Windows Server Update Services), 610–12
adding updates, 163
application servicing, 125
NAP remediation, 537
offline files, updating, 163
Offline Virtual Machine Servicing Tool, 96

X
Xbootmgr.exe, 717–18
XML Paper Specification (XPS), 368
XORing (exclusive ORing), 335
Xper.exe, 717–18
Xperfview.exe, 718

Z
Zero Touch Installation (ZTI), 73, 147
zone ID, 341
zone rules, 272
IAN MCLEAN, MCSE, MCITP, MCT, has over 40 years of experience in industry, commerce, and education. He started his career as an electronics engineer before going into distance learning and then education as a university professor. Currently, he runs his own consultancy company. Ian has written more than 20 books and many papers and technical articles. He has been working with Microsoft operating systems since 1997.

ORIN THOMAS, is an author and an MCT. He has written more than a dozen certification textbooks for Microsoft Press. He holds many certifications, including several MCSE and MCITP credentials. He is the convener of the Melbourne Security and Infrastructure Interchange and a Microsoft Security MVP. He lives in Melbourne, Australia, with his wife and son and enjoys traveling around the world speaking at technical conferences like Tech.ED.
System Requirements

We recommend that you use a test workstation to complete the exercises in each lab. The following are the minimum system requirements your computer needs to meet to complete the practice exercises in this book. For more information, see the Introduction.

Hardware Requirements

You can complete almost all practice exercises in this book using virtual machines rather than real workstation hardware. The following hardware is required to complete the lab exercises:

- Personal computer with minimum 1GHz (x86) or 1.4GHz (x64) processor (2GHz or faster recommended).
- 1 GB of RAM or more (2 GB recommended; 4 GB enables you to host all the virtual machines specified for all the practice exercises in the book.)
- 40 GB hard disk space of which 15 GB is available (40 GB free hard disk space recommended; 60 GB enables you to host all the virtual machines specified for all the practice exercises in the book.)
- DVD-ROM drive
- A graphics adapter that supports DirectX 9 graphics, has a Windows Display Driver Model (WDDM) driver, supports Pixel Shader 2.0 hardware and 32 bits per pixel, and has 128 MB graphics memory. (256 MB graphics memory recommended.)
- Keyboard and Microsoft mouse or compatible pointing device
- 1 GB or larger USB storage device.

Software Requirements

- Windows 7 Enterprise or Ultimate.
- To perform the practice exercises in Chapter 6, "Network Settings," you need an additional Windows 7 Workstation. (This can be a virtual machine.)
- To perform the optional exercises in Chapter 14, “Recovery and Backup,” you need an additional hard disk formatted with the NTFS filing system. This hard disk can be internal or external and should have at least 20 GB free hard disk space.

To minimize the time and expense of configuring physical computers, we recommend that you use virtual machines. To run computers as virtual machines within Windows, you can use Microsoft Virtual PC 2007. You can download Virtual PC 2007 for free from http://www.microsoft.com/windows/downloads/virtualpc/default.mspx.