
http://www.facebook.com/share.php?u=http://www.microsoftpressstore.com/title/9780735626706
http://twitter.com/?status=RT: download a free sample chapter http://www.microsoftpressstore.com/title/9780735626706
https://plusone.google.com/share?url=http://www.microsoftpressstore.com/title/9780735626706
http://www.linkedin.com/shareArticle?mini=true&url=http://www.microsoftpressstore.com/title/9780735626706
http://www.stumbleupon.com/submit?url=http://www.microsoftpressstore.com/title/9780735626706/Free-Sample-Chapter

● ● ● ● ● ● ● ● ● ● ●

How to access
your CD files

Microsoft Press

The print edition of this book includes a CD. To access the
CD files, go to http://aka.ms/626706/files, and look for the
Downloads tab.

Note: Use a desktop web browser, as files may not be
accessible from all ereader devices.

Questions? Please contact: mspinput@microsoft.com

Microsoft® Visual C#® 2010
Step by Step

John Sharp

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2010 by John Sharp

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2009939912

Printed and bound in the United States of America.

ISBN: 978-0-7356-2670-6

5 6 7 8 9 10 11 12 13 QGT 7 6 5 4 3 2

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly
at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, Excel, IntelliSense, Internet Explorer, Jscript, MS, MSDN, SQL Server, Visual Basic, Visual
C#, Visual C++, Visual Studio, Win32, Windows, and Windows Vista are either registered trademarks or trademarks of
the Microsoft group of companies. Other product and company names mentioned herein may be the trademarks of their
respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted
herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, logo,
person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any express,
statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will be held
liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ben Ryan
Developmental Editor: Devon Musgrave
Project Editor: Rosemary Caperton
Editorial Production: Waypoint Press, www.waypointpress.com
Technical Reviewer: Per Blomqvist; Technical Review services provided by Content Master, a member of
		 CM Group, Ltd.
Cover: Tom Draper Design

Body Part No. X16-81630								

										 [2012-10-12]

		 iii

Contents at a Glance

Part I	 Introducing Microsoft Visual C# and Microsoft
Visual Studio 2010

	 1	 Welcome to C# . . 3
	 2	 Working with Variables, Operators, and Expressions 27
	 3	 Writing Methods and Applying Scope . 47
	 4	 Using Decision Statements . 73
	 5	 Using Compound Assignment and Iteration Statements 91
	 6	 Managing Errors and Exceptions . . 109

Part II	 Understanding the C# Language
	 7	 Creating and Managing Classes and Objects 129
	 8	 Understanding Values and References . 151
	 9	 Creating Value Types with Enumerations and Structures 173
	 10	 Using Arrays and Collections . 191
	 11	 Understanding Parameter Arrays . 219
	 12	 Working with Inheritance . . 231
	 13	 Creating Interfaces and Defining Abstract Classes 253
	 14	 Using Garbage Collection and Resource Management 279

Part III	 Creating Components
	 15	 Implementing Properties to Access Fields 295
	 16	 Using Indexers . 315
	 17	 Interrupting Program Flow and Handling Events 329
	 18	 Introducing Generics . 353
	 19	 Enumerating Collections . . 381
	 20	 Querying In-Memory Data by Using Query Expressions 395
	 21	 Operator Overloading . . 419

iv	 Contents at a Glance

Part IV	Building Windows Presentation Foundation
Applications

	 22	 Introducing Windows Presentation Foundation 443
	 23	 Gathering User Input . . 477
	 24	 Performing Validation . 509

Part V	 Managing Data
	 25	 Querying Information in a Database . 535
	 26	 Displaying and Editing Data by Using the Entity

Framework and Data Binding . 565

Part VI	Building Professional Solutions with
Visual Studio 2010

	 27	 Introducing the Task Parallel Library . 599
	 28	 Performing Parallel Data Access . 649
	 29	 Creating and Using a Web Service . 683

Appendix
	 	 Interoperating with Dynamic Languages 717

		 v

Table of Contents
Acknowledgments . xvii

Introduction . xix

Part I	 Introducing Microsoft Visual C# and Microsoft
Visual Studio 2010

	 1	 Welcome to C# . . 3
Beginning Programming with the Visual Studio 2010 Environment 3

Writing Your First Program . 8

Using Namespaces . 14

Creating a Graphical Application . 17

Chapter 1 Quick Reference . 26

	 2	 Working with Variables, Operators, and Expressions 27
Understanding Statements . 27

Using Identifiers . 28

Identifying Keywords . 28

Using Variables . 29

Naming Variables . 30

Declaring Variables . 30

Working with Primitive Data Types . 31

Unassigned Local Variables . 32

Displaying Primitive Data Type Values . 32

Using Arithmetic Operators . 36

Operators and Types . 37

Examining Arithmetic Operators . 38

Controlling Precedence . 41

Using Associativity to Evaluate Expressions . 42

Associativity and the Assignment Operator . . 42

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

vi	 Table of Contents

Incrementing and Decrementing Variables . 43

Prefix and Postfix . 44

Declaring Implicitly Typed Local Variables . 45

Chapter 2 Quick Reference . 46

	 3	 Writing Methods and Applying Scope . 47
Creating Methods . 47

Declaring a Method . 48

Returning Data from a Method . 49

Calling Methods . 51

Specifying the Method Call Syntax . 51

Applying Scope . 53

Defining Local Scope . 54

Defining Class Scope . 54

Overloading Methods . 55

Writing Methods . 56

Using Optional Parameters and Named Arguments . 64

Defining Optional Parameters . 65

Passing Named Arguments . . 66

Resolving Ambiguities with Optional Parameters and
Named Arguments . 66

Chapter 3 Quick Reference . 72

	 4	 Using Decision Statements . 73
Declaring Boolean Variables . 73

Using Boolean Operators . 74

Understanding Equality and Relational Operators 74

Understanding Conditional Logical Operators . 75

Short-Circuiting . . 76

Summarizing Operator Precedence and Associativity 76

Using if Statements to Make Decisions . 77

Understanding if Statement Syntax . 77

Using Blocks to Group Statements . 78

Cascading if Statements . 79

Using switch Statements . 84

Understanding switch Statement Syntax . 85

Following the switch Statement Rules . 86

Chapter 4 Quick Reference . 89

	 Table of Contents	 vii

	 5	 Using Compound Assignment and Iteration Statements 91
Using Compound Assignment Operators . . 91

Writing while Statements . . 92

Writing for Statements . 97

Understanding for Statement Scope . 98

Writing do Statements . 99

Chapter 5 Quick Reference . 108

	 6	 Managing Errors and Exceptions . . 109
Coping with Errors . 109

Trying Code and Catching Exceptions . . 110

Unhandled Exceptions . 111

Using Multiple catch Handlers . 112

Catching Multiple Exceptions . 113

Using Checked and Unchecked Integer Arithmetic . 118

Writing Checked Statements . 118

Writing Checked Expressions . 119

Throwing Exceptions . 121

Using a finally Block . 124

Chapter 6 Quick Reference . 126

Part II	 Understanding the C# Language

	 7	 Creating and Managing Classes and Objects 129
Understanding Classification . . 129

The Purpose of Encapsulation . . 130

Defining and Using a Class . 130

Controlling Accessibility . . 132

Working with Constructors . 133

Overloading Constructors . 134

Understanding static Methods and Data . 142

Creating a Shared Field . 143

Creating a static Field by Using the const Keyword 144

Static Classes . 144

Anonymous Classes . 147

Chapter 7 Quick Reference . 149

viii	 Table of Contents

	 8	 Understanding Values and References . 151
Copying Value Type Variables and Classes . 151

Understanding Null Values and Nullable Types . . 156

Using Nullable Types . 157

Understanding the Properties of Nullable Types 158

Using ref and out Parameters . 159

Creating ref Parameters . 159

Creating out Parameters . 160

How Computer Memory Is Organized . 162

Using the Stack and the Heap . 164

The System.Object Class . 165

Boxing . 165

Unboxing . 166

Casting Data Safely . 168

The is Operator . 168

The as Operator . 169

Chapter 8 Quick Reference . 171

	 9	 Creating Value Types with Enumerations and Structures 173
Working with Enumerations . 173

Declaring an Enumeration . . 173

Using an Enumeration . 174

Choosing Enumeration Literal Values . 175

Choosing an Enumeration’s Underlying Type . 176

Working with Structures . 178

Declaring a Structure . 180

Understanding Structure and Class Differences 181

Declaring Structure Variables . 182

Understanding Structure Initialization . 183

Copying Structure Variables . 187

Chapter 9 Quick Reference . 190

	 10	 Using Arrays and Collections . 191
What Is an Array? . 191

Declaring Array Variables . 191

Creating an Array Instance . 192

Initializing Array Variables . 193

	 Table of Contents	 ix

Creating an Implicitly Typed Array . . 194

Accessing an Individual Array Element . 195

Iterating Through an Array . 195

Copying Arrays . 197

Using Multidimensional Arrays . . 198

Using Arrays to Play Cards . 199

What Are Collection Classes? . 206

The ArrayList Collection Class . . 208

The Queue Collection Class . . 210

The Stack Collection Class . 210

The Hashtable Collection Class . . 211

The SortedList Collection Class . 213

Using Collection Initializers . 214

Comparing Arrays and Collections . 214

Using Collection Classes to Play Cards . 214

Chapter 10 Quick Reference . 218

	 11	 Understanding Parameter Arrays . 219
Using Array Arguments . 220

Declaring a params Array . 221

Using params object[] . 223

Using a params Array . 224

Comparing Parameters Arrays and Optional Parameters 226

Chapter 11 Quick Reference . 229

	 12	 Working with Inheritance . . 231
What Is Inheritance? . 231

Using Inheritance . 232

Calling Base Class Constructors . 234

Assigning Classes . 235

Declaring new Methods . . 237

Declaring Virtual Methods . 238

Declaring override Methods . 239

Understanding protected Access . 242

Understanding Extension Methods . 247

Chapter 12 Quick Reference . 251

x	 Table of Contents

	 13	 Creating Interfaces and Defining Abstract Classes 253
Understanding Interfaces . 253

Defining an Interface . 254

Implementing an Interface . 255

Referencing a Class Through Its Interface . 256

Working with Multiple Interfaces . . 257

Explicitly Implementing an Interface . . 257

Interface Restrictions . 259

Defining and Using Interfaces . 259

Abstract Classes . 269

Abstract Methods . 270

Sealed Classes . 271

Sealed Methods . 271

Implementing and Using an Abstract Class . 272

Chapter 13 Quick Reference . 277

	 14	 Using Garbage Collection and Resource Management 279
The Life and Times of an Object . . 279

Writing Destructors . 280

Why Use the Garbage Collector? . 282

How Does the Garbage Collector Work? . 283

Recommendations . 284

Resource Management . 284

Disposal Methods . 285

Exception-Safe Disposal . . 285

The using Statement . . 286

Calling the Dispose Method from a Destructor . 288

Implementing Exception-Safe Disposal . . 289

Chapter 14 Quick Reference . 292

Part III	 Creating Components

	 15	 Implementing Properties to Access Fields 295
Implementing Encapsulation by Using Methods . . 296

What Are Properties? . 297

Using Properties . 299

Read-Only Properties . . 300

	 Table of Contents	 xi

Write-Only Properties . 300

Property Accessibility . 301

Understanding the Property Restrictions . 302

Declaring Interface Properties . 304

Using Properties in a Windows Application . 305

Generating Automatic Properties . 307

Initializing Objects by Using Properties . 308

Chapter 15 Quick Reference . 313

	 16	 Using Indexers . 315
What Is an Indexer? . 315

An Example That Doesn’t Use Indexers . 315

The Same Example Using Indexers . 317

Understanding Indexer Accessors . 319

Comparing Indexers and Arrays . . 320

Indexers in Interfaces . 322

Using Indexers in a Windows Application . 323

Chapter 16 Quick Reference . 328

	 17	 Interrupting Program Flow and Handling Events 329
Declaring and Using Delegates . 329

The Automated Factory Scenario . . 330

Implementing the Factory Without Using Delegates 330

Implementing the Factory by Using a Delegate 331

Using Delegates . 333

Lambda Expressions and Delegates . . 338

Creating a Method Adapter . 339

Using a Lambda Expression as an Adapter . 339

The Form of Lambda Expressions . 340

Enabling Notifications with Events . . 342

Declaring an Event . 342

Subscribing to an Event . 343

Unsubscribing from an Event . 344

Raising an Event . 344

Understanding WPF User Interface Events . 345

Using Events . . 346

Chapter 17 Quick Reference . 350

xii	 Table of Contents

	 18	 Introducing Generics . 353
The Problem with objects . . 353

The Generics Solution . 355

Generics vs. Generalized Classes . 357

Generics and Constraints . . 358

Creating a Generic Class . 358

The Theory of Binary Trees . 358

Building a Binary Tree Class by Using Generics . 361

Creating a Generic Method . . 370

Defining a Generic Method to Build a Binary Tree 371

Variance and Generic Interfaces . 373

Covariant Interfaces . 375

Contravariant Interfaces . 377

Chapter 18 Quick Reference . 379

	 19	 Enumerating Collections . . 381
Enumerating the Elements in a Collection . 381

Manually Implementing an Enumerator . 383

Implementing the IEnumerable Interface . 387

Implementing an Enumerator by Using an Iterator . 389

A Simple Iterator . 389

Defining an Enumerator for the Tree<TItem> Class
by Using an Iterator . 391

Chapter 19 Quick Reference . 394

	 20	 Querying In-Memory Data by Using Query Expressions 395
What Is Language Integrated Query? . 395

Using LINQ in a C# Application . 396

Selecting Data . 398

Filtering Data . 400

Ordering, Grouping, and Aggregating Data . 401

Joining Data . . 404

Using Query Operators . 405

Querying Data in Tree<TItem> Objects . 407

LINQ and Deferred Evaluation . 412

Chapter 20 Quick Reference . 416

	 Table of Contents	 xiii

	 21	 Operator Overloading . . 419
Understanding Operators . 419

Operator Constraints . 420

Overloaded Operators . 420

Creating Symmetric Operators . 422

Understanding Compound Assignment Evaluation . 424

Declaring Increment and Decrement Operators . 425

Comparing Operators in Structures and Classes . 426

Defining Operator Pairs . 426

Implementing Operators . 427

Understanding Conversion Operators . 434

Providing Built-in Conversions . 434

Implementing User-Defined Conversion Operators 435

Creating Symmetric Operators, Revisited . 436

Writing Conversion Operators . 437

Chapter 21 Quick Reference . 440

Part IV	Building Windows Presentation Foundation
Applications

	 22	 Introducing Windows Presentation Foundation 443
Creating a WPF Application . 443

Building the WPF Application . . 444

Adding Controls to the Form . 458

Using WPF Controls . 458

Changing Properties Dynamically . 466

Handling Events in a WPF Form . 470

Processing Events in Windows Forms . 471

Chapter 22 Quick Reference . 476

	 23	 Gathering User Input . . 477
Menu Guidelines and Style . 477

Menus and Menu Events . 478

Creating a Menu . 478

Handling Menu Events . . 484

Shortcut Menus . 491

Creating Shortcut Menus . 491

xiv	 Table of Contents

Windows Common Dialog Boxes . 495

Using the SaveFileDialog Class . 495

Improving Responsiveness in a WPF Application . 498

Chapter 23 Quick Reference . 508

	 24	 Performing Validation . 509
Validating Data . 509

Strategies for Validating User Input . . 509

An Example—Order Tickets for Events . 510

Performing Validation by Using Data Binding . . 511

Changing the Point at Which Validation Occurs 527

Chapter 24 Quick Reference . 531

Part V	 Managing Data

	 25	 Querying Information in a Database . 535
Querying a Database by Using ADO.NET . 535

The Northwind Database . 536

Creating the Database . 536

Using ADO.NET to Query Order Information . 538

Querying a Database by Using LINQ to SQL . 549

Defining an Entity Class . 549

Creating and Running a LINQ to SQL Query . 551

Deferred and Immediate Fetching . . 553

Joining Tables and Creating Relationships . 554

Deferred and Immediate Fetching Revisited . 558

Defining a Custom DataContext Class . 559

Using LINQ to SQL to Query Order Information 560

Chapter 25 Quick Reference . 564

	 26	 Displaying and Editing Data by Using the Entity
Framework and Data Binding . 565

Using Data Binding with the Entity Framework . 566

Using Data Binding to Modify Data . . 583

Updating Existing Data . 583

Handling Conflicting Updates . 584

Adding and Deleting Data . 587

Chapter 26 Quick Reference . 596

	 Table of Contents	 xv

Part VI	Building Professional Solutions with
Visual Studio 2010

	 27	 Introducing the Task Parallel Library . 599
Why Perform Multitasking by Using Parallel Processing? 600

The Rise of the Multicore Processor . 601

Implementing Multitasking in a Desktop Application 602

Tasks, Threads, and the ThreadPool . 603

Creating, Running, and Controlling Tasks . . 604

Using the Task Class to Implement Parallelism . 608

Abstracting Tasks by Using the Parallel Class . . 617

Returning a Value from a Task . . 624

Using Tasks and User Interface Threads Together . . 628

Canceling Tasks and Handling Exceptions . 632

The Mechanics of Cooperative Cancellation . 633

Handling Task Exceptions by Using the AggregateException Class . . . 641

Using Continuations with Canceled and Faulted Tasks 645

Chapter 27 Quick Reference . 646

	 28	 Performing Parallel Data Access . 649
Using PLINQ to Parallelize Declarative Data Access . 650

Using PLINQ to Improve Performance While Iterating Through a
Collection . 650

Specifying Options for a PLINQ Query . 655

Canceling a PLINQ Query . 656

Synchronizing Concurrent Imperative Data Access . 656

Locking Data . 659

Synchronization Primitives in the Task Parallel Library 661

Cancellation and the Synchronization Primitives 668

The Concurrent Collection Classes . . 668

Using a Concurrent Collection and a Lock to Implement
Thread-Safe Data Access . 670

Chapter 28 Quick Reference . 681

xvi	 Table of Contents

	 29	 Creating and Using a Web Service . 683
What Is a Web Service? . 684

The Role of Windows Communication Foundation 684

Web Service Architectures . . 684

SOAP Web Services . 685

REST Web Services . 687

Building Web Services . 688

Creating the ProductInformation SOAP Web Service 689

SOAP Web Services, Clients, and Proxies . 697

Consuming the ProductInformation SOAP Web Service 698

Creating the ProductDetails REST Web Service 704

Consuming the ProductDetails REST Web Service 711

Chapter 29 Quick Reference . 715

Appendix

	 	 Interoperating with Dynamic Languages 717

Index	 . 727

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

		 xvii

Acknowledgments
An oft-repeated fable is that the workmen who paint the Forth Railway Bridge, a large
Victorian cantilever structure that spans the Firth of Forth just north of Edinburgh, have a
job for life. According to the myth, it takes them several years to paint it from one end to
the other, and when they have finished they have to start over again. I am not sure whether
this is due to the ferocity of the Scottish weather, or the sensitivity of the paint that is used,
although my daughter insists it is simply that the members of Edinburgh City Council have
yet to decide on a color scheme that they really like for the bridge. I sometimes feel that this
book has similar attributes. No sooner have I completed an edition and seen it published,
then Microsoft announces another cool update for Visual Studio and C#, and my friends at
Microsoft Press contact me and say, “What are your plans for the next edition?” However,
unlike painting the Forth Railway Bridge, working on a new edition of this text is always an
enjoyable task with a lot more scope for inventiveness than trying to work out new ways
to hold a paint brush. There is always something novel to learn and innovative technology
to play with. In this edition, I cover the new features of C# 4.0 and the .NET Framework 4.0,
which developers will find invaluable for building applications that can take advantage of the
increasingly powerful hardware now becoming available. Hence, although this work appears
to be a never-ending task, it is always fruitful and pleasurable.

A large part of the enjoyment when working on a project such as this is the opportunity to
collaborate with a highly motivated group of talented people within Microsoft Press, the
developers at Microsoft working on Visual Studio 2010, and the people who review each
chapter and make suggestions for various improvements. I would especially like to single out
Rosemary Caperton and Stephen Sagman who have worked tirelessly to keep the project
on track, to Per Blomqvist who reviewed (and corrected) each chapter, and to Roger LeBlanc
who had the thankless task of copy-editing the manuscript and converting my prose into
English. I must also make special mention of Michael Blome who provided me with early
access to software and answered the many questions that I had concerning the Task Parallal
Library. Several members of Content Master were kept gainfully employed reviewing and
testing the code for the exercises—thanks Mike Sumsion, Chris Cully, James Millar, and Louisa
Perry. Of course, I must additionally thank Jon Jagger who co-authored the first edition of
this book with me back in 2001.

Last but by no means least, I must thank my family. My wife Diana is a wonderful source of
inspiration. When writing Chapter 28 on the Task Parallel Library I had a mental block and

had to ask her how she would explain Barrier methods. She looked at me quizzically, and
gave a reply that although anatomically correct if I was in a doctor’s surgery, indicated that
either I had not phrased the question very carefully or that she had completely misunder-
stood what I was asking! James has now grown up and will soon have to learn what real work
entails if he is to keep Diana and myself in the manner to which we would like to become
accustomed in our dotage. Francesca has also grown up, and seems to have refined a
strategy for getting all she wants without doing anything other than looking at me with wide,
bright eyes, and smiling.

Finally, “Up the Gills!”

—John Sharp

		 xix

Introduction
Microsoft Visual C# is a powerful but simple language aimed primarily at developers creating
applications by using the Microsoft .NET Framework. It inherits many of the best features of
C++ and Microsoft Visual Basic, but few of the inconsistencies and anachronisms, resulting
in a cleaner and more logical language. C# 1.0 made its public debut in 2001. The advent of
C# 2.0 with Visual Studio 2005 saw several important new features added to the language,
including Generics, Iterators, and anonymous methods. C# 3.0 which was released with
Visual Studio 2008, added extension methods, lambda expressions, and most famously of
all, the Language Integrated Query facility, or LINQ. The latest incarnation of the language,
C# 4.0, provides further enhancements that improve its interoperability with other languages
and technologies. These features include support for named and optional arguments, the
dynamic type which indicates that the language runtime should implement late binding for
an object, and variance which resolves some issues in the way in which generic interfaces
are defined. C# 4.0 takes advantage of the latest version of the .NET Framework, also version
4.0. There are many additions to the .NET Framework in this release, but arguably the most
significant are the classes and types that constitute the Task Parallel Library (TPL). Using the
TPL, you can now build highly scalable applications that can take full advantage of multi-core
processors quickly and easily. The support for Web services and Windows Communication
Foundation (WCF) has also been extended; you can now build services that follow the REST
model as well as the more traditional SOAP scheme.

The development environment provided by Microsoft Visual Studio 2010 makes all these
powerful features easy to use, and the many new wizards and enhancements included in
Visual Studio 2010 can greatly improve your productivity as a developer.

Who This Book Is For
This book assumes that you are a developer who wants to learn the fundamentals of
programming with C# by using Visual Studio 2010 and the .NET Framework version 4.0. In
this book, you will learn the features of the C# language, and then use them to build applica-
tions running on the Microsoft Windows operating system. By the time you complete this
book, you will have a thorough understanding of C# and will have used it to build Windows
Presentation Foundation applications, access Microsoft SQL Server databases by using ADO.
NET and LINQ, build responsive and scalable applications by using the TPL, and create REST
and SOAP Web services by using WCF.

xx	 Introduction

Finding Your Best Starting Point in This Book
This book is designed to help you build skills in a number of essential areas. You can use this
book if you are new to programming or if you are switching from another programming lan-
guage such as C, C++, Java, or Visual Basic. Use the following table to find your best starting
point.

If you are Follow these steps

New to object-oriented
programming

	 1. 	 Install the practice files as described in the next
section, “Installing and Using the Practice Files.”

	 2. 	 Work through the chapters in Parts I, II, and III
sequentially.

	 3. 	Complete Parts IV, V, and VI as your level of
experience and interest dictates.

Familiar with
procedural
programming
languages such as C,
but new to C#

	 1. 	 Install the practice files as described in the next
section, “Installing and Using the Practice Files.”
Skim the first five chapters to get an overview of
C# and Visual Studio 2010, and then concentrate
on Chapters 6 through 21.

	 2. 	Complete Parts IV, and V, and VI as your level of
experience and interest dictates.

Migrating from an
object-oriented
language such as C++,
or Java

	 1. 	 Install the practice files as described in the next
section, “Installing and Using the Practice Files.”

	 2. 	Skim the first seven chapters to get an overview
of C# and Visual Studio 2010, and then concen-
trate on Chapters 8 through 21.

	 3. 	For information about building Windows
applications and using a database, read Parts IV
and V.

	 4. 	For information about building scalable
applications and Web services, read Part VI.

	 Introduction	 xxi

If you are Follow these steps

Switching from Visual
Basic 6

	 1. 	 Install the practice files as described in the next
section, “Installing and Using the Practice Files.”

	 2. 	Work through the chapters in Parts I, II, and III
sequentially.

	 3. 	For information about building Windows
applications, read Part IV.

	 4. 	For information about accessing a database, read
Part V.

	 5. 	For information about building scalable
applications and Web services, read Part VI.

	 6. 	Read the Quick Reference sections at the end of
the chapters for information about specific C#
and Visual Studio 2010 constructs.

Referencing the book
after working through
the exercises

	 1. 	Use the index or the Table of Contents to find
information about particular subjects.

	 2. 	Read the Quick Reference sections at the end of
each chapter to find a brief review of the syntax
and techniques presented in the chapter.

Conventions and Features in This Book
This book presents information using conventions designed to make the information read-
able and easy to follow. Before you start, read the following list, which explains conventions
you’ll see throughout the book and points out helpful features that you might want to use.

Conventions
n	 Each exercise is a series of tasks. Each task is presented as a series of numbered steps

(1, 2, and so on). A round bullet (•) indicates an exercise that has only one step.

n	 Notes labeled “tip” provide additional information or alternative methods for
completing a step successfully.

n	 Notes labeled “important” alert you to information you need to check before
continuing.

n	 Text that you type appears in bold.

xxii	 Introduction

n	 A plus sign (+) between two key names means that you must press those keys at the
same time. For example, “Press Alt+Tab” means that you hold down the Alt key while
you press the Tab key.

Other Features
n	 Sidebars throughout the book provide more in-depth information about the exercise.

The sidebars might contain background information, design tips, or features related to
the information being discussed.

n	 Each chapter ends with a Quick Reference section. The Quick Reference section
contains quick reminders of how to perform the tasks you learned in the chapter.

Prerelease Software
This book was written and tested against Visual Studio 2010 Beta 2. We did review and test
our examples against the final release of the software. However, you might find minor differ-
ences between the production release and the examples, text, and screenshots in this book.

Hardware and Software Requirements
You’ll need the following hardware and software to complete the practice exercises in this
book:

n	 Microsoft Windows 7 Home Premium, Windows 7 Professional, Windows 7 Enterprise,
or Windows 7 Ultimate. The exercises will also run using Microsoft Windows Vista with
Service Pack 2 or later.

n	 Microsoft Visual Studio 2010 Standard, Visual Studio 2010 Professional, or Microsoft
Visual C# 2010 Express and Microsoft Visual Web Developer 2010 Express.

n	 Microsoft SQL Server 2008 Express (this is provided with all editions of Visual Studio
2010, Visual C# 2010 Express, and Visual Web Developer 2010 Express).

n	 1.6 GHz processor, or faster. Chapters 27 and 28 require a dual-core or better
processor.

n	 1 GB for x32 processor, 2 GB for an x64 processor, of available, physical RAM.

n	 Video (1024 ×768 or higher resolution) monitor with at least 256 colors.

n	 CD-ROM or DVD-ROM drive.

n	 Microsoft mouse or compatible pointing device

You will also need to have Administrator access to your computer to configure SQL Server
2008 Express Edition.

	 Introduction	 xxiii

Code Samples
The companion CD inside this book contains the code samples that you’ll use as you perform
the exercises. By using the code samples, you won’t waste time creating files that aren’t rel-
evant to the exercise. The files and the step-by-step instructions in the lessons also let you
learn by doing, which is an easy and effective way to acquire and remember new skills.

Installing the Code Samples
Follow these steps to install the code samples and required software on your computer so
that you can use them with the exercises.

	 1.	 Remove the companion CD from the package inside this book and insert it into your
CD-ROM drive.

Note  An end user license agreement should open automatically. If this agreement does not
appear, open My Computer on the desktop or Start menu, double-click the icon for your
CD-ROM drive, and then double-click StartCD.exe.

	 2.	 Review the end user license agreement. If you accept the terms, select the accept
option and then click Next.

A menu will appear with options related to the book.

	 3.	 Click Install Code Samples.

	 4.	 Follow the instructions that appear.

The code samples are installed to the following location on your computer:

Documents\Microsoft Press\Visual CSharp Step By Step

Using the Code Samples
Each chapter in this book explains when and how to use any code samples for that chapter.
When it’s time to use a code sample, the book will list the instructions for how to open the
files.

For those of you who like to know all the details, here’s a list of the code sample Visual Studio
2010 projects and solutions, grouped by the folders where you can find them. In many cases,
the exercises provide starter files and completed versions of the same projects which you can
use as a reference. The completed projects are stored in folders with the suffix “- Complete”.

xxiv	 Introduction

Project Description

Chapter 1

TextHello This project gets you started. It steps through the creation of
a simple program that displays a text-based greeting.

WPFHello This project displays the greeting in a window by using
Windows Presentation Foundation.

Chapter 2

PrimitiveDataTypes This project demonstrates how to declare variables by using
each of the primitive types, how to assign values to these
variables, and how to display their values in a window.

MathsOperators This program introduces the arithmetic operators (+ – * / %).

Chapter 3

Methods In this project, you’ll re-examine the code in the previous
project and investigate how it uses methods to structure the
code.

DailyRate This project walks you through writing your own methods,
running the methods, and stepping through the method
calls by using the Visual Studio 2010 debugger.

DailyRate Using Optional
Parameters

This project shows you how to define a method that takes
optional parameters, and call the method by using named
arguments.

Chapter 4

Selection This project shows how to use a cascading if statement
to implement complex logic, such as comparing the
equivalence of two dates.

SwitchStatement This simple program uses a switch statement to convert
characters into their XML representations.

Chapter 5

WhileStatement This project demonstrates a while statement that reads the
contents of a source file one line at a time and displays each
line in a text box on a form.

DoStatement This project uses a do statement to convert a decimal num-
ber to its octal representation.

	 Introduction	 xxv

Project Description

Chapter 6

MathsOperators This project revisits the MathsOperators project from
Chapter 2, “Working with Variables, Operators, and
Expressions,” and shows how various unhandled exceptions
can make the program fail. The try and catch keywords then
make the application more robust so that it no longer fails.

Chapter 7

Classes This project covers the basics of defining your own classes,
complete with public constructors, methods, and private
fields. It also shows how to create class instances by using
the new keyword and how to define static methods and
fields.

Chapter 8

Parameters This program investigates the difference between value
parameters and reference parameters. It demonstrates how
to use the ref and out keywords.

Chapter 9

StructsAndEnums This project defines a struct type to represent a calendar
date.

Chapter 10

Cards Using Arrays This project shows how to use arrays to model hands of
cards in a card game.

Cards Using Collections This project shows how to restructure the card game
program to use collections rather than arrays.

Chapter 11

ParamsArrays This project demonstrates how to use the params keyword
to create a single method that can accept any number of int
arguments.

Chapter 12

Vehicles This project creates a simple hierarchy of vehicle classes
by using inheritance. It also demonstrates how to define a
virtual method.

ExtensionMethod This project shows how to create an extension method for
the int type, providing a method that converts an integer
value from base 10 to a different number base.

xxvi	 Introduction

Project Description

Chapter 13

Drawing Using Interfaces This project implements part of a graphical drawing pack-
age. The project uses interfaces to define the methods that
drawing shapes expose and implement.

Drawing This project extends the Drawing Using Interfaces project to
factor common functionality for shape objects into abstract
classes.

Chapter 14

UsingStatement This project revisits a small piece of code from Chapter 5,
“Using Compound Assignment and Iteration Statements”
and reveals that it is not exception-safe. It shows you how to
make the code exception-safe with a using statement.

Chapter 15

WindowProperties This project presents a simple Windows application that uses
several properties to display the size of its main window. The
display updates automatically as the user resizes the window.

AutomaticProperties This project shows how to create automatic properties for a
class, and use them to initialize instances of the class.

Chapter 16

Indexers This project uses two indexers: one to look up a person’s
phone number when given a name, and the other to look up
a person’s name when given a phone number.

Chapter 17

Clock Using Delegates This project displays a World clock showing the local time as
well as the times in London, New York, and Tokyo. The appli-
cation uses delegates to start and stop the clock displays.

Clock Using Events This version of the World clock application uses events to
start and stop the clock display.

Chapter 18

BinaryTree This solution shows you how to use Generics to build a type-
safe structure that can contain elements of any type.

BuildTree This project demonstrates how to use Generics to implement
a typesafe method that can take parameters of any type.

BinaryTreeTest This project is a test harness that creates instances of the
Tree type defined in the BinaryTree project.

	 Introduction	 xxvii

Project Description

Chapter 19

BinaryTree This project shows you how to implement the generic
IEnumerator<T> interface to create an enumerator for the
generic Tree class.

IteratorBinaryTree This solution uses an Iterator to generate an enumerator for
the generic Tree class.

EnumeratorTest This project is a test harness that tests the enumerator and
iterator for the Tree class.

Chapter 20

QueryBinaryTree This project shows how to use LINQ queries to retrieve data
from a binary tree object.

Chapter 21

ComplexNumbers This project defines a new type that models complex num-
bers, and implements common operators for this type.

Chapter 22

BellRingers This project is a Windows Presentation Foundation applica-
tion demonstrating how to define styles and use basic WPF
controls.

Chapter 23

BellRingers This project is an extension of the application created in
Chapter 22, “Introducing Windows Presentation Foundation,”
but with drop-down and pop-up menus added to the user
interface.

Chapter 24

OrderTickets This project demonstrates how to implement business rules
for validating user input in a WPF application, using custom-
er order information as an example.

Chapter 25

ReportOrders This project shows how to access a database by using ADO.
NET code. The application retrieves information from the
Orders table in the Northwind database.

LINQOrders This project shows how to use LINQ to SQL to access a data-
base and retrieve information from the Orders table in the
Northwind database.

xxviii	 Introduction

Project Description

Chapter 26

Suppliers This project demonstrates how to use data binding with a
WPF application to display and format data retrieved from
a database in controls on a WPF form. The application also
enables the user to modify information in the Products table
in the Northwind database.

Chapter 27

GraphDemo This project generates and displays a complex graph on a
WPF form. It uses a single thread to perform the calculations.

GraphDemo Using Tasks This version of the GraphDemo project creates multiple tasks
to perform the calculations for the graph in parallel.

GraphDemo Using Tasks
that Return Results

This is an extended version of the GraphDemo Using Tasks
project that shows how to return data from a task.

GraphDemo Using the
Parallel Class

This version of the GraphDemo project uses the Parallel class
to abstract out the process of creating and managing tasks.

GraphDemo Canceling Tasks This project shows how to implement cancelation to halt
tasks in a controlled manner before they have completed

ParallelLoop This application provides an example showing when you
should not use the Parallel class to create and run tasks.

Chapter 28

CalculatePI This project uses a statistical sampling algorithm to calculate
an approximation for PI. It uses parallel tasks.

PLINQ This project shows some examples of using PLINQ to query
data by using parallel tasks.

	 Introduction	 xxix

Project Description

Chapter 29

ProductInformationService This project implements a SOAP Web service built by using
WCF. The Web service exposes a method that returns pricing
information for products from the Northwind database.

ProductDetailsService This projects implements a REST Web service built by using
WCF. The Web service provides a method that returns the
details of a specified product from the Northwind database.

ProductDetailsContracts This project contains the service and data contracts imple-
mented by the ProductDetailsService Web service.

ProductClient This project shows how to create a WPF application that
consumes a Web service. It shows how to invoke the
Web methods in the ProductInformationService and
ProductDetailsService Web services.

Uninstalling the Code Samples
Follow these steps to remove the code samples from your computer.

	 1.	 In Control Panel, under Programs, click Uninstall a program.

	 2.	 From the list of currently installed programs, select Microsoft Visual C# 2010 Step By
Step.

	 3.	 Click Uninstall.

	 4.	 Follow the instructions that appear to remove the code samples.

xxx	 Introduction

Find Additional Content Online
As new or updated material becomes available that complements your book, it will be
posted online on the Microsoft Press Online Developer Tools Web site. The type of material
you might find includes updates to book content, articles, links to companion content, errata,
sample chapters, and more. This Web site is available at www.microsoft.com/learning/
books/online/developer, and is updated periodically.

Digital Content for Digital Book Readers: If you bought a digital-only edition of this book, you can
enjoy select content from the print edition’s companion CD.
Visit http://www.microsoftpressstore.com/title/9780735626706 to get your downloadable content. This content
is always up-to-date and available to all readers.

Support for This Book
Every effort has been made to ensure the accuracy of this book and the contents of the
companion CD. As corrections or changes are collected, they will be added to a Microsoft
Knowledge Base article.

Microsoft Press provides support for books and companion CDs at the following Web site:

http://www.microsoft.com/learning/support/books/.

Questions and Comments
If you have comments, questions, or ideas regarding the book or the companion CD, or
questions that are not answered by visiting the sites above, please send them to Microsoft
Press via e-mail to

mspinput@microsoft.com.

Please note that Microsoft software product support is not offered through the
above address.

http://www.microsoftpressstore.com/title/9780735626706

Microsoft Visual C# 2010 Step by Step

		 1

Part I

Introducing Microsoft Visual C#
and Microsoft Visual Studio 2010

In this part:

Welcome to C# . 3

Working with Variables, Operators, and Expressions . 27

Writing Methods and Applying Scope . 47

Using Decision Statements . 73

Using Compound Assignment and Iteration Statements . 91

Managing Errors and Exceptions . . 109

	 	 3

Chapter 1

Welcome to C#
After completing this chapter, you will be able to:

n	 Use the Microsoft Visual Studio 2010 programming environment.

n	 Create a C# console application.

n	 Explain the purpose of namespaces.

n	 Create a simple graphical C# application.

Microsoft Visual C# is Microsoft’s powerful component-oriented language. C# plays an
important role in the architecture of the Microsoft .NET Framework, and some people have
compared it to the role that C played in the development of UNIX. If you already know a
language such as C, C++, or Java, you’ll find the syntax of C# reassuringly familiar. If you are
used to programming in other languages, you should soon be able to pick up the syntax and
feel of C#; you just need to learn to put the braces and semicolons in the right place. I hope
this is just the book to help you!

In Part I, you’ll learn the fundamentals of C#. You’ll discover how to declare variables and how
to use arithmetic operators such as the plus sign (+) and minus sign (–) to manipulate the
values in variables. You’ll see how to write methods and pass arguments to methods. You’ll
also learn how to use selection statements such as if and iteration statements such as while.
Finally, you’ll understand how C# uses exceptions to handle errors in a graceful, easy-to-use
manner. These topics form the core of C#, and from this solid foundation, you’ll progress to
more advanced features in Part II through Part VI.

Beginning Programming with the Visual Studio 2010
Environment

Visual Studio 2010 is a tool-rich programming environment containing the functionality that
you need to create large or small C# projects. You can even construct projects that seam-
lessly combine modules written by using different programming languages such as C++,
Visual Basic, and F#. In the first exercise, you will open the Visual Studio 2010 programming
environment and learn how to create a console application.

Note  A console application is an application that runs in a command prompt window rather
than providing a graphical user interface.

4	 Part I  Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

Create a console application in Visual Studio 2010

n	 If you are using Visual Studio 2010 Standard or Visual Studio 2010 Professional, perform
the following operations to start Visual Studio 2010:

	 1.	 On the Microsoft Windows task bar, click the Start button, point to All Programs,
and then point to the Microsoft Visual Studio 2010 program group.

	 2.	 In the Microsoft Visual Studio 2010 program group, click Microsoft Visual Studio
2010.

Visual Studio 2010 starts, like this:

Note  If this is the first time you have run Visual Studio 2010, you might see a dialog box
prompting you to choose your default development environment settings. Visual Studio
2010 can tailor itself according to your preferred development language. The various
dialog boxes and tools in the integrated development environment (IDE) will have their
default selections set for the language you choose. Select Visual C# Development Settings
from the list, and then click the Start Visual Studio button. After a short delay, the Visual
Studio 2010 IDE appears.

	 Chapter 1  Welcome to C#	 5

n	 If you are using Visual C# 2010 Express, on the Microsoft Windows task bar, click the
Start button, point to All Programs, and then click Microsoft Visual C# 2010 Express.

Visual C# 2010 Express starts, like this:

Note  To avoid repetition, throughout this book I simply state, “Start Visual Studio” when
you need to open Visual Studio 2010 Standard, Visual Studio 2010 Professional, or Visual
C# 2010 Express. Additionally, unless explicitly stated, all references to Visual Studio 2010
apply to Visual Studio 2010 Standard, Visual Studio 2010 Professional, and Visual C#
2010 Express.

n	 If you are using Visual Studio 2010 Standard or Visual Studio 2010 Professional, perform
the following tasks to create a new console application:

	 1.	 On the File menu, point to New, and then click Project.

	 	 The New Project dialog box opens. This dialog box lists the templates that you
can use as a starting point for building an application. The dialog box categorizes
templates according to the programming language you are using and the type
of application.

	 2.	 In the left pane, under Installed Templates, click Visual C#. In the middle
pane, verify that the combo box at the top of the pane displays the text .NET
Framework 4.0, and then click the Console Application icon. You might need to
scroll the middle pane to see the Console Application icon.

6	 Part I  Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

	 3.	 In the Location field, type C:\Users\YourName\Documents\Microsoft Press\
Visual CSharp Step By Step\Chapter 1. Replace the text YourName in this path
with your Windows user name.

Note  To save space throughout the rest of this book, I will simply refer to the path
“C:\Users\YourName\Documents” as your Documents folder.

Tip  If the folder you specify does not exist, Visual Studio 2010 creates it for you.

	 4.	 In the Name field, type TextHello.

	 5.	 Ensure that the Create directory for solution check box is selected, and then
click OK.

n	 If you are using Visual C# 2010 Express, perform the following tasks to create a new
console application:

	 1.	 On the File menu, click New Project.

	 2.	 In the New Project dialog box, in the middle pane click the Console Application
icon.

	 3.	 In the Name field, type TextHello.

	 Chapter 1  Welcome to C#	 7

	 4.	 Click OK.

	 	 Visual C# 2010 Express saves solutions to the C:\Users\YourName\Documents
\Visual Studio\Projects folder by default. You can specify an alternative location
when you save the solution.

	 5.	 On the File menu, click Save TextHello As.

	 6.	 In the Save Project dialog box, in the Location field specify the Microsoft Press\
Visual CSharp Step By Step\Chapter 1 folder under your Documents folder.

	 7.	 Click Save.

Visual Studio creates the project using the Console Application template and displays the
starter code for the project, like this:

The menu bar at the top of the screen provides access to the features you’ll use in the
programming environment. You can use the keyboard or the mouse to access the menus and
commands exactly as you can in all Windows-based programs. The toolbar is located beneath
the menu bar and provides button shortcuts to run the most frequently used commands.

The Code and Text Editor pane occupying the main part of the IDE displays the contents of
source files. In a multifile project, when you edit more than one file, each source file has its
own tab labeled with the name of the source file. You can click the tab to bring the named
source file to the foreground in the Code and Text Editor window. The Solution Explorer pane
(on the right side of the dialog box) displays the names of the files associated with the proj-
ect, among other items. You can also double-click a file name in the Solution Explorer pane to
bring that source file to the foreground in the Code and Text Editor window.

8	 Part I  Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

Before writing the code, examine the files listed in Solution Explorer, which Visual Studio 2010
has created as part of your project:

n	 Solution ‘TextHello’  This is the top-level solution file, of which there is one per appli-
cation. If you use Windows Explorer to look at your Documents\Microsoft Press\Visual
CSharp Step By Step\Chapter 1\TextHello folder, you’ll see that the actual name of this
file is TextHello.sln. Each solution file contains references to one or more project files.

n	 TextHello  This is the C# project file. Each project file references one or more files
containing the source code and other items for the project. All the source code in a sin-
gle project must be written in the same programming language. In Windows Explorer,
this file is actually called TextHello.csproj, and it is stored in the \Microsoft Press\Visual
CSharp Step By Step\Chapter 1\TextHello\TextHello folder under your Documents
folder.

n	 Properties  This is a folder in the TextHello project. If you expand it, you will see that
it contains a file called AssemblyInfo.cs. AssemblyInfo.cs is a special file that you can
use to add attributes to a program, such as the name of the author, the date the pro-
gram was written, and so on. You can specify additional attributes to modify the way in
which the program runs. Learning how to use these attributes is outside the scope of
this book.

n	 References  This is a folder that contains references to compiled code that your ap-
plication can use. When code is compiled, it is converted into an assembly and given a
unique name. Developers use assemblies to package useful bits of code they have writ-
ten so that they can distribute it to other developers who might want to use the code in
their applications. Many of the features that you will be using when writing applications
using this book make use of assemblies provided by Microsoft with Visual Studio 2010.

n	 Program.cs  This is a C# source file and is the one currently displayed in the Code
and Text Editor window when the project is first created. You will write your code for
the console application in this file. It also contains some code that Visual Studio 2010
provides automatically, which you will examine shortly.

Writing Your First Program
The Program.cs file defines a class called Program that contains a method called Main. All
methods must be defined inside a class. You will learn more about classes in Chapter 7,
“Creating and Managing Classes and Objects.” The Main method is special—it designates
the program’s entry point. It must be a static method. (You will look at methods in detail in
Chapter 3, “Writing Methods and Applying Scope,” and Chapter 7 describes static methods.)

	 Chapter 1  Welcome to C#	 9

Important  C# is a case-sensitive language. You must spell Main with a capital M.

In the following exercises, you write the code to display the message “Hello World” in
the console; you build and run your Hello World console application; and you learn how
namespaces are used to partition code elements.

Write the code by using Microsoft IntelliSense

	 1.	 In the Code and Text Editor window displaying the Program.cs file, place the cursor in
the Main method immediately after the opening brace, {, and then press Enter to cre-
ate a new line. On the new line, type the word Console, which is the name of a built-
in class. As you type the letter C at the start of the word Console, an IntelliSense list
appears. This list contains all of the C# keywords and data types that are valid in this
context. You can either continue typing or scroll through the list and double-click the
Console item with the mouse. Alternatively, after you have typed Con, the IntelliSense
list automatically homes in on the Console item and you can press the Tab or Enter key
to select it.

Main should look like this:

static void Main(string[] args)

{

 Console

}

Note  Console is a built-in class that contains the methods for displaying messages on the
screen and getting input from the keyboard.

	 2.	 Type a period immediately after Console. Another IntelliSense list appears, displaying
the methods, properties, and fields of the Console class.

	 3.	 Scroll down through the list, select WriteLine, and then press Enter. Alternatively, you
can continue typing the characters W, r, i, t, e, L until WriteLine is selected, and then
press Enter.

The IntelliSense list closes, and the word WriteLine is added to the source file. Main
should now look like this:

static void Main(string[] args)

{

 Console.WriteLine

}

	 4.	 Type an opening parenthesis, (. Another IntelliSense tip appears.

This tip displays the parameters that the WriteLine method can take. In fact, WriteLine is
an overloaded method, meaning that the Console class contains more than one method

10	 Part I  Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

named WriteLine—it actually provides 19 different versions of this method. Each ver-
sion of the WriteLine method can be used to output different types of data. (Chapter 3
describes overloaded methods in more detail.) Main should now look like this:

static void Main(string[] args)

{

 Console.WriteLine(

}

Tip  You can click the up and down arrows in the tip to scroll through the different
overloads of WriteLine.

	 5.	 Type a closing parenthesis,) followed by a semicolon, ;.

Main should now look like this:

static void Main(string[] args)

{

 Console.WriteLine();

}

	 6.	 Move the cursor, and type the string “Hello World”, including the quotation marks,
between the left and right parentheses following the WriteLine method.

Main should now look like this:

static void Main(string[] args)

{

 Console.WriteLine("Hello World");

}

Tip  Get into the habit of typing matched character pairs, such as (and) and { and },
before filling in their contents. It’s easy to forget the closing character if you wait until after
you’ve entered the contents.

IntelliSense Icons
When you type a period after the name of a class, IntelliSense displays the name of
every member of that class. To the left of each member name is an icon that depicts
the type of member. Common icons and their types include the following:

Icon Meaning
method (discussed in Chapter 3)

property (discussed in Chapter 15, “Implementing Properties to Access Fields”)

	 Chapter 1  Welcome to C#	 11

Icon Meaning
class (discussed in Chapter 7)

struct (discussed in Chapter 9, “Creating Value Types with Enumerations and
Structures”)

enum (discussed in Chapter 9)

interface (discussed in Chapter 13, “Creating Interfaces and Defining Abstract
Classes”)

delegate (discussed in Chapter 17, “Interrupting Program Flow and Handling
Events”)

extension method (discussed in Chapter 12, “Working with Inheritance”)

You will also see other IntelliSense icons appear as you type code in different contexts.

Note  You will frequently see lines of code containing two forward slashes followed by ordinary
text. These are comments. They are ignored by the compiler but are very useful for developers
because they help document what a program is actually doing. For example:

Console.ReadLine(); // Wait for the user to press the Enter key

The compiler skips all text from the two slashes to the end of the line. You can also add multiline
comments that start with a forward slash followed by an asterisk (/*). The compiler skips every-
thing until it finds an asterisk followed by a forward slash sequence (*/), which could be many
lines lower down. You are actively encouraged to document your code with as many meaningful
comments as necessary.

Build and run the console application

	 1.	 On the Build menu, click Build Solution.

This action compiles the C# code, resulting in a program that you can run. The Output
window appears below the Code and Text Editor window.

Tip  If the Output window does not appear, on the View menu, click Output to display it.

12	 Part I  Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

In the Output window, you should see messages similar to the following indicating how
the program is being compiled:

------ Build started: Project: TextHello, Configuration: Debug x86 ----

CopyFilesToOutputDirectory:

 TextHello -> C:\Users\John\My Documents\Microsoft Press\Visual CSharp Step By Step\

Chapter 1\TextHello\TextHello\bin\Debug\TextHello.exe

========== Build: 1 succeeded or up-to-date, 0 failed, 0 skipped ========

If you have made some mistakes, they will appear in the Error List window. The
following image shows what happens if you forget to type the closing quotation
marks after the text Hello World in the WriteLine statement. Notice that a single
mistake can sometimes cause multiple compiler errors.

Tip  You can double-click an item in the Error List window, and the cursor will be placed
on the line that caused the error. You should also notice that Visual Studio displays a wavy
red line under any lines of code that will not compile when you enter them.

If you have followed the previous instructions carefully, there should be no errors or
warnings, and the program should build successfully.

Tip  There is no need to save the file explicitly before building because the Build Solution
command automatically saves the file.

An asterisk after the file name in the tab above the Code and Text Editor window indicates
that the file has been changed since it was last saved.

	 Chapter 1  Welcome to C#	 13

	 2.	 If you are using Visual C# 2010 Express, on the Tools menu, point to Settings, and then
click Expert Settings. This setting enables some options in Visual C# 2010 Express that
do not appear by default.

	 3.	 On the Debug menu, click Start Without Debugging. (If you are using Visual C# 2010
Express and this command is not available, make sure that you selected Expert Settings
in step 2.)

A command window opens, and the program runs. The message “Hello World”
appears, and then the program waits for you to press any key, as shown in the
following graphic:

Note  The prompt “Press any key to continue . . .” is generated by Visual Studio; you did
not write any code to do this. If you run the program by using the Start Debugging com-
mand on the Debug menu, the application runs, but the command window closes immedi-
ately without waiting for you to press a key.

	 4.	 Ensure that the command window displaying the program’s output has the focus, and
then press Enter.

The command window closes, and you return to the Visual Studio 2010 programming
environment.

	 5.	 In Solution Explorer, click the TextHello project (not the solution), and then click the
Show All Files toolbar button on the Solution Explorer toolbar—this is the second left-
most button on the toolbar in the Solution Explorer window.

Show All Files

14	 Part I  Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

Entries named bin and obj appear above the Program.cs file. These entries corre-
spond directly to folders named bin and obj in the project folder (Microsoft Press\
Visual CSharp Step By Step\Chapter 1\TextHello\TextHello). Visual Studio creates these
folders when you build your application, and they contain the executable version of the
program together with some other files used to build and debug the application.

	 6.	 In Solution Explorer, expand the bin entry.

Another folder named Debug appears. (Note: You might also see a folder called
Release.)

	 7.	 In Solution Explorer, expand the Debug folder.

Four more items appear, named TextHello.exe, TextHello.pdb, TextHello.vshost.exe, and
TextHello.vshost.exe.manifest.

The file TextHello.exe is the compiled program, and it is this file that runs when you
click Start Without Debugging on the Debug menu. The other files contain information
that is used by Visual Studio 2010 if you run your program in Debug mode (when you
click Start Debugging on the Debug menu).

Using Namespaces
The example you have seen so far is a very small program. However, small programs can
soon grow into much bigger programs. As a program grows, two issues arise. First, it is
harder to understand and maintain big programs than it is to understand and maintain
smaller programs. Second, more code usually means more names, more methods, and more
classes. As the number of names increases, so does the likelihood of the project build failing
because two or more names clash (especially when a program also uses third-party libraries
written by developers who have also used a variety of names).

In the past, programmers tried to solve the name-clashing problem by prefixing names with
some sort of qualifier (or set of qualifiers). This solution is not a good one because it’s not
scalable; names become longer, and you spend less time writing software and more time
typing (there is a difference) and reading and rereading incomprehensibly long names.

Namespaces help solve this problem by creating a named container for other identifiers, such
as classes. Two classes with the same name will not be confused with each other if they live in
different namespaces. You can create a class named Greeting inside the namespace named
TextHello, like this:

namespace TextHello

{

 class Greeting

 {

 ...

 }

}

	 Chapter 1  Welcome to C#	 15

You can then refer to the Greeting class as TextHello.Greeting in your programs. If another
developer also creates a Greeting class in a different namespace, such as NewNamespace,
and installs it on your computer, your programs will still work as expected because they are
using the TextHello.Greeting class. If you want to refer to the other developer’s Greeting class,
you must specify it as NewNamespace.Greeting.

It is good practice to define all your classes in namespaces, and the Visual Studio 2010
environment follows this recommendation by using the name of your project as the top-level
namespace. The .NET Framework class library also adheres to this recommendation; every
class in the .NET Framework lives inside a namespace. For example, the Console class lives
inside the System namespace. This means that its full name is actually System.Console.

Of course, if you had to write the full name of a class every time you used it, the situation
would be no better than prefixing qualifiers or even just naming the class with some globally
unique name such SystemConsole and not bothering with a namespace. Fortunately, you
can solve this problem with a using directive in your programs. If you return to the TextHello
program in Visual Studio 2010 and look at the file Program.cs in the Code and Text Editor
window, you will notice the following statements at the top of the file:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

A using statement brings a namespace into scope. In subsequent code in the same file, you
no longer have to explicitly qualify objects with the namespace to which they belong. The
four namespaces shown contain classes that are used so often that Visual Studio 2010 au-
tomatically adds these using statements every time you create a new project. You can add
further using directives to the top of a source file.

The following exercise demonstrates the concept of namespaces in more depth.

Try longhand names

	 1.	 In the Code and Text Editor window displaying the Program.cs file, comment out the
first using directive at the top of the file, like this:

//using System;

	 2.	 On the Build menu, click Build Solution.

The build fails, and the Error List window displays the following error message:

The name ’Console’ does not exist in the current context.

	 3.	 In the Error List window, double-click the error message.

The identifier that caused the error is highlighted in the Program.cs source file.

16	 Part I  Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

	 4.	 In the Code and Text Editor window, edit the Main method to use the fully qualified
name System.Console. When you type System, the names of all the items in the System
namespace are displayed by IntelliSense.

Main should look like this:

static void Main(string[] args)

{

 System.Console.WriteLine("Hello World");

}

	 5.	 On the Build menu, click Build Solution.

The build should succeed this time. If it doesn’t, make sure that Main is exactly as it
appears in the preceding code, and then try building again.

	 6.	 Run the application to make sure it still works by clicking Start Without Debugging on
the Debug menu.

Namespaces and Assemblies
A using statement simply brings the items in a namespace into scope and frees you
from having to fully qualify the names of classes in your code. Classes are compiled into
assemblies. An assembly is a file that usually has the .dll file name extension, although
strictly speaking, executable programs with the .exe file name extension are also
assemblies.

An assembly can contain many classes. The classes that the .NET Framework class li-
brary comprises, such as System.Console, are provided in assemblies that are installed
on your computer together with Visual Studio. You will find that the .NET Framework
class library contains many thousands of classes. If they were all held in the same as-
sembly, the assembly would be huge and difficult to maintain. (If Microsoft updated a
single method in a single class, it would have to distribute the entire class library to all
developers!)

For this reason, the .NET Framework class library is split into a number of assemblies,
partitioned by the functional area to which the classes they contain relate. For ex-
ample, there is a “core” assembly that contains all the common classes, such as System.
Console, and there are further assemblies that contain classes for manipulating da-
tabases, accessing Web services, building graphical user interfaces, and so on. If you
want to make use of a class in an assembly, you must add to your project a reference to
that assembly. You can then add using statements to your code that bring the items in
namespaces in that assembly into scope.

You should note that there is not necessarily a 1:1 equivalence between an assembly
and a namespace; a single assembly can contain classes for multiple namespaces, and a
single namespace can span multiple assemblies. This all sounds very confusing at first,
but you will soon get used to it.

	 Chapter 1  Welcome to C#	 17

When you use Visual Studio to create an application, the template you select auto-
matically includes references to the appropriate assemblies. For example, in Solution
Explorer for the TextHello project, expand the References folder. You will see that a
Console application automatically includes references to assemblies called Microsoft.
CSharp, System, System.Core, System.Data, System.Data.DataExtensions, System.Xml,
and System.Xml.Linq. You can add references for additional assemblies to a project by
right-clicking the References folder and clicking Add Reference—you will perform this
task in later exercises.

Creating a Graphical Application
So far, you have used Visual Studio 2010 to create and run a basic Console application. The
Visual Studio 2010 programming environment also contains everything you need to create
graphical Windows-based applications. You can design the forms-based user interface of
a Windows application interactively. Visual Studio 2010 then generates the program state-
ments to implement the user interface you’ve designed.

Visual Studio 2010 provides you with two views of a graphical application: the design view
and the code view. You use the Code and Text Editor window to modify and maintain the
code and logic for a graphical application, and you use the Design View window to lay out
your user interface. You can switch between the two views whenever you want.

In the following set of exercises, you’ll learn how to create a graphical application by using
Visual Studio 2010. This program will display a simple form containing a text box where you
can enter your name and a button that displays a personalized greeting in a message box
when you click the button.

Note  Visual Studio 2010 provides two templates for building graphical applications—the
Windows Forms Application template and the WPF Application template. Windows Forms
is a technology that first appeared with the .NET Framework version 1.0. WPF, or Windows
Presentation Foundation, is an enhanced technology that first appeared with the .NET Framework
version 3.0. It provides many additional features and capabilities over Windows Forms, and you
should consider using it in preference to Windows Forms for all new development.

Create a graphical application in Visual Studio 2010

n	 If you are using Visual Studio 2010 Standard or Visual Studio 2010 Professional, perform
the following operations to create a new graphical application:

	 1.	 On the File menu, point to New, and then click Project.

The New Project dialog box opens.

18	 Part I  Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

	 2.	 In the left pane, under Installed Templates, click Visual C#.

	 3.	 In the middle pane, click the WPF Application icon.

	 4.	 Ensure that the Location field refers to the \Microsoft Press\Visual CSharp Step By
Step\Chapter 1 folder under your Documents folder.

	 5.	 In the Name field, type WPFHello.

	 6.	 In the Solution field, ensure that Create new solution is selected.

This action creates a new solution for holding the project. The alternative, Add to
Solution, adds the project to the TextHello solution.

	 7.	 Click OK.

n	 If you are using Visual C# 2010 Express, perform the following tasks to create a new
graphical application:

	 1.	 On the File menu, click New Project.

	 2.	 If the New Project message box appears, click Save to save your changes to
the TextHello project. In the Save Project dialog box, verify that the Location
field is set to Microsoft Press\Visual CSharp Step By Step\Chapter 1 under your
Documents folder, and then click Save.

	 3.	 In the New Project dialog box, click the WPF Application icon.

	 4.	 In the Name field, type WPFHello.

	 5.	 Click OK.

Visual Studio 2010 closes your current application and creates the new WPF application.
It displays an empty WPF form in the Design View window, together with another win-
dow containing an XAML description of the form, as shown in the following graphic:

	 Chapter 1  Welcome to C#	 19

Tip  Close the Output and Error List windows to provide more space for displaying the
Design View window.

XAML stands for Extensible Application Markup Language and is an XML-like language used
by WPF applications to define the layout of a form and its contents. If you have knowledge of
XML, XAML should look familiar. You can actually define a WPF form completely by writing
an XAML description if you don’t like using the Design View window of Visual Studio or if you
don’t have access to Visual Studio; Microsoft provides a XAML editor called XAMLPad that is
installed with the Windows Software Development Kit (SDK).

In the following exercise, you use the Design View window to add three controls to the
Windows form and examine some of the C# code automatically generated by Visual Studio
2010 to implement these controls.

Create the user interface

	 1.	 Click the Toolbox tab that appears to the left of the form in the Design View window.

The Toolbox appears, partially obscuring the form, and displays the various components
and controls that you can place on a Windows form. (If the Toolbox tab is not visible,
on the View menu, click Toolbox.) Expand the Common WPF Controls section. This sec-
tion displays a list of controls that are used by most WPF applications. The All Controls
section displays a more extensive list of controls.

	 2.	 In the Common WPF Controls section, click Label, and then drag the label control onto
the visible part of the form.

A label control is added to the form (you will move it to its correct location in a
moment), and the Toolbox disappears from view.

Tip  If you want the Toolbox to remain visible but not to hide any part of the form, click
the Auto Hide button to the right in the Toolbox title bar. (It looks like a pin.) The Toolbox
appears permanently on the left side of the Visual Studio 2010 window, and the Design
View window shrinks to accommodate it. (You might lose a lot of space if you have a
low-resolution screen.) Clicking the Auto Hide button once more causes the Toolbox to
disappear again.

	 3.	 The label control on the form is probably not exactly where you want it. You can click
and drag the controls you have added to a form to reposition them. Using this tech-
nique, move the label control so that it is positioned toward the upper left corner of
the form. (The exact placement is not critical for this application.)

20	 Part I  Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

Note  The XAML description of the form in the lower pane now includes the label con-
trol, together with properties such as its location on the form, governed by the Margin
property. The Margin property consists of four numbers indicating the distance of each
edge of the label from the edges of the form. If you move the control around the form, the
value of the Margin property changes. If the form is resized, the controls anchored to the
form’s edges that move are resized to preserve their margin values. You can prevent this
by setting the Margin values to zero. You learn more about the Margin and also the Height
and Width properties of WPF controls in Chapter 22, “Introducing Windows Presentation
Foundation.”

	 4.	 On the View menu, click Properties Window.

If it was not already displayed, the Properties window appears on the lower right side
of the screen, under Solution Explorer. You can specify the properties of controls by us-
ing the XAML pane under the Design View window. However, the Properties window
provides a more convenient way for you to modify the properties for items on a form,
as well as other items in a project. It is context sensitive in that it displays the proper-
ties for the currently selected item. If you click the title bar of the form displayed in the
Design View window, you can see that the Properties window displays the properties for
the form itself. If you click the label control, the window displays the properties for the
label instead. If you click anywhere else on the form, the Properties window displays the
properties for a mysterious item called a grid. A grid acts as a container for items on a
WPF form, and you can use the grid, among other things, to indicate how items on the
form should be aligned and grouped together.

	 5.	 Click the label control on the form. In the Properties window, locate the FontSize
property. Change the FontSize property to 20, and then in the Design View window
click the title bar of the form.

The size of the text in the label changes.

	 6.	 In the XAML pane below the Design View window, examine the text that defines the
label control. If you scroll to the end of the line, you should see the text FontSize=“20”.
Any changes that you make by using the Properties window are automatically reflected
in the XAML definitions and vice versa.

Overtype the value of the FontSize property in the XAML pane, and change it back to
12. The size of the text in the label in the Design View window changes back.

	 7.	 In the XAML pane, examine the other properties of the label control.

The properties that are listed in the XAML pane are only the ones that do not have
default values. If you modify any property values by using the Properties Window, they
appear as part of the label definition in the XAML pane.

	 8.	 Change the value of the Content property from Label to Please enter your name.

Notice that the text displayed in the label on the form changes, although the label is
too small to display it correctly.

	 Chapter 1  Welcome to C#	 21

	 9.	 In the Design View window, click the label control. Place the mouse over the right edge
of the label control. It should change into a double-headed arrow to indicate that you
can use the mouse to resize the control. Click the mouse and drag the right edge of the
label control further to the right, until you can see the complete text for the label.

	 10.	 Click the form in the Design View window, and then display the Toolbox again.

	 11.	 In the Toolbox, click and drag the TextBox control onto the form. Move the text box
control so that it is directly underneath the label control.

Tip  When you drag a control on a form, alignment indicators appear automatically when
the control becomes aligned vertically or horizontally with other controls. This gives you a
quick visual cue for making sure that controls are lined up neatly.

	 12.	 While the text box control is selected, in the Properties window, change the value of the
Name property displayed at the top of the window to userName.

Note  You will learn more about naming conventions for controls and variables in
Chapter 2, “Working with Variables, Operators, and Expressions.”

	 13.	 Display the Toolbox again, and then click and drag a Button control onto the form.
Place the button control to the right of the text box control on the form so that the
bottom of the button is aligned horizontally with the bottom of the text box.

	 14.	 Using the Properties window, change the Name property of the button control to ok.
And change the Content property from Button to OK. Verify that the caption of the
button control on the form changes.

	 15.	 Click the title bar of the MainWindow.xaml form in the Design View window. In the
Properties window, change the Title property to Hello.

	 16.	 In the Design View window, notice that a resize handle (a small square) appears on the
lower right corner of the form when it is selected. Move the mouse pointer over the
resize handle. When the pointer changes to a diagonal double-headed arrow, click and
drag the pointer to resize the form. Stop dragging and release the mouse button when
the spacing around the controls is roughly equal.

Important  Click the title bar of the form and not the outline of the grid inside the form
before resizing it. If you select the grid, you will modify the layout of the controls on the
form but not the size of the form itself.

The form should now look similar to the following figure.

22	 Part I  Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

	 17.	 On the Build menu, click Build Solution, and verify that the project builds successfully.

	 18.	 On the Debug menu, click Start Without Debugging.

The application should run and display your form. You can type your name in the text
box and click OK, but nothing happens yet. You need to add some code to process the
Click event for the OK button, which is what you will do next.

	 19.	 Click the Close button (the X in the upper-right corner of the form) to close the form
and return to Visual Studio.

You have managed to create a graphical application without writing a single line of C# code.
It does not do much yet (you will have to write some code soon), but Visual Studio actually
generates a lot of code for you that handles routine tasks that all graphical applications must
perform, such as starting up and displaying a form. Before adding your own code to the
application, it helps to have an understanding of what Visual Studio has generated for you.

In Solution Explorer, expand the MainWindow.xaml node. The file MainWindow.xaml.cs
appears. Double-click the file MainWindow.xaml.cs. The code for the form is displayed in the
Code and Text Editor window. It looks like this:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Windows;

using System.Windows.Controls;

using System.Windows.Data;

	 Chapter 1  Welcome to C#	 23

using System.Windows.Documents;

using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Imaging;

using System.Windows.Navigation;

using System.Windows.Shapes;

namespace WPFHello

{

 /// <summary>

 /// Interaction logic for MainWindow.xaml

 /// </summary>

 public partial class MainWindow : Window

 {

 public MainWindow()

 {

 InitializeComponent();

 }

 }

}

In addition to a good number of using statements bringing into scope some namespaces
that most WPF applications use, the file contains the definition of a class called MainWindow
but not much else. There is a little bit of code for the MainWindow class known as a con-
structor that calls a method called InitializeComponent, but that is all. (A constructor is a
special method with the same name as the class. It is executed when an instance of the class
is created and can contain code to initialize the instance. You will learn about constructors
in Chapter 7.) In fact, the application contains a lot more code, but most of it is generated
automatically based on the XAML description of the form, and it is hidden from you. This
hidden code performs operations such as creating and displaying the form, and creating and
positioning the various controls on the form.

The purpose of the code that you can see in this class is so that you can add your own
methods to handle the logic for your application, such as determining what happens when
the user clicks the OK button.

Tip  You can also display the C# code file for a WPF form by right-clicking anywhere in the
Design View window and then clicking View Code.

At this point, you might be wondering where the Main method is and how the form gets
displayed when the application runs; remember that Main defines the point at which the pro-
gram starts. In Solution Explorer, you should notice another source file called App.xaml. If you
double-click this file, the XAML description of this item appears. One property in the XAML

24	 Part I  Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

code is called StartupUri, and it refers to the MainWindow.xaml file as shown in bold in the
following code example:

<Application x:Class="WPFHello.App"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com.winfx/2006/xaml"

 StartupUri="MainWindow.xaml">

 <Application.Resources>

 </Application.Resources>

</Application>

If you click the Design tab at the bottom of the XAML pane, the Design View window for App.
xaml appears and displays the text “Intentionally left blank. The document root element is
not supported by the visual designer”. This occurs because you cannot use the Design View
window to modify the App.xaml file. Click the XAML tab to return to the XAML pane.

If you expand the App.xaml node in Solution Explorer, you will see that there is also an
App.xaml.cs file. If you double-click this file, you will find it contains the following code:

using System;

using System.Collections.Generic;

using System.Configuration;

using System.Data;

using System.Linq;

using System.Windows;

namespace WPFHello

{

 /// <summary>

 /// Interaction logic for App.xaml

 /// </summary>

 public partial class App : Application

 {

 }

}

Once again, there are a number of using statements but not a lot else, not even a Main
method. In fact, Main is there, but it is also hidden. The code for Main is generated based on
the settings in the App.xaml file; in particular, Main will create and display the form specified
by the StartupUri property. If you want to display a different form, you edit the App.xaml file.

The time has come to write some code for yourself!

Write the code for the OK button

	 1.	 Click the MainWindow.xaml tab above the Code and Text Editor window to display
MainWindow in the Design View window.

	 Chapter 1  Welcome to C#	 25

	 2.	 Double-click the OK button on the form.

The MainWindow.xaml.cs file appears in the Code and Text Editor window, but a new
method has been added called ok_Click. Visual Studio automatically generates code to
call this method whenever the user clicks the OK button. This is an example of an event.
You will learn much more about how events work as you progress through this book.

	 3.	 Add the following code shown in bold to the ok_Click method:

void ok_Click(object sender, RoutedEventArgs e)

{

 MessageBox.Show("Hello " + userName.Text);

}

This is the code that will run when the user clicks the OK button. Do not worry too
much about the syntax of this code just yet (just make sure you copy it exactly as
shown) because you will learn all about methods in Chapter 3. The interesting part is
the MessageBox.Show statement. This statement displays a message box containing
the text “Hello” with whatever name the user typed into the username text box on the
appended form.

	 4.	 Click the MainWindow.xaml tab above the Code and Text Editor window to display
MainWindow in the Design View window again.

	 5.	 In the lower pane displaying the XAML description of the form, examine the Button
element, but be careful not to change anything. Notice that it contains an element
called Click that refers to the ok_Click method:

<Button Height="23" … Click="ok_Click" />

	 6.	 On the Debug menu, click Start Without Debugging.

	 7.	 When the form appears, type your name in the text box and then click OK. A message
box appears, welcoming you by name:

	 8.	 Click OK in the message box.

The message box closes.

	 9.	 Close the form.

26	 Part I  Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

In this chapter, you have seen how to use Visual Studio 2010 to create, build, and run applica-
tions. You have created a console application that displays its output in a console window,
and you have created a WPF application with a simple graphical user interface.

n	 If you want to continue to the next chapter

Keep Visual Studio 2010 running, and turn to Chapter 2.

n	 If you want to exit Visual Studio 2010 now

On the File menu, click Exit. If you see a Save dialog box, click Yes and save the project.

Chapter 1 Quick Reference
To Do this

Create a new console application using
Visual Studio 2010 Standard or Professional

On the File menu, point to New, and then click Project to open
the New Project dialog box. In the left pane, under Installed
Templates, click Visual C#. In the middle pane, click Console
Application. Specify a directory for the project files in the
Location box. Type a name for the project. Click OK.

Create a new console application using
Visual C# 2010 Express

On the File menu, click New Project to open the New Project
dialog box. For the template, select Console Application.
Choose a name for the project. Click OK.

Create a new graphical application using
Visual Studio 2010 Standard or Professional

On the File menu, point to New, and then click Project to open
the New Project dialog box. In the left pane, under Installed
Templates, click Visual C#. In the middle pane, click WPF
Application. Specify a directory for the project files in the
Location box. Type a name for the project. Click OK.

Create a new graphical application using
Visual C# 2010 Express

On the File menu, click New Project to open the New Project
dialog box. For the template, select WPF Application. Choose a
name for the project. Click OK.

Build the application On the Build menu, click Build Solution.

Run the application On the Debug menu, click Start Without Debugging.

		 599

Chapter 27

Introducing the Task Parallel Library
After completing the chapter, you will be able to

n	 Describe the benefits that implementing parallel operations in an application can bring.

n	 Explain how the Task Parallel Library provides an optimal platform for implementing
applications that can take advantage of multiple processor cores.

n	 Use the Task class to create and run parallel operations in an application.

n	 Use the Parallel class to parallelize some common programming constructs.

n	 Use tasks with threads to improve responsiveness and throughput in graphical user
interface (GUI) applications.

n	 Cancel long-running tasks, and handle exceptions raised by parallel operations.

You have now seen how to use Microsoft Visual C# to build applications that provide a
graphical user interface and that can manage data held in a database. These are common
features of most modern systems. However, as technology has advanced so have the require-
ments of users, and the applications that enable them to perform their day-to-day opera-
tions need to provide ever-more sophisticated solutions. In the final part of this book, you
will look at some of the advanced features introduced with the .NET Framework 4.0. In par-
ticular, in this chapter you will see how to improve concurrency in an application by using the
Task Parallel Library. In the next chapter, you will see how the parallel extensions provided
with the .NET Framework can be used in conjunction with Language Integrated Query (LINQ)
to improve the throughput of data access operations. And in the final chapter, you will meet
Windows Communication Foundation for building distributed solutions that can incorporate
services running on multiple computers. As a bonus, the appendix (provided on the CD) de-
scribes how to use the Dynamic Language Runtime to build C# applications and components
that can interoperate with services built by using other languages that operate outside of the
structure provided by the .NET Framework, such as Python and Ruby.

In the bulk of the preceding chapters in this book, you learned how to use C# to write
programs that run in a single-threaded manner. By “single-threaded,” I mean that at any
one point in time, a program has been executing a single instruction. This might not always
be the most efficient approach for an application to take. For example, you saw in Chapter
23, “Gathering User Input,” that if your program is waiting for the user to click a button on
a Windows Presentation Foundation (WPF) form, there might be other work that it can per-
form while it is waiting. However, if a single-threaded program has to perform a lengthy, pro-
cessor-intensive calculation, it cannot respond to the user typing in data on a form or clicking
a menu item. To the user, the application appears to have frozen. Only when the calculation

600	 Part VI  Building Professional Solutions with Visual Studio 2010

has completed does the user interface start responding again. Applications that can perform
multiple tasks at the same time can make far better use of the resources available on a com-
puter, can run more quickly, and can be more responsive. Additionally, some individual tasks
might run more quickly if you can divide them into parallel paths of execution that can run
concurrently. In Chapter 23, you saw how WPF can take advantage of threads to improve re-
sponsiveness in a graphical user interface. In this chapter, you will learn how to use the Task
Parallel Library to implement a more generic form of multitasking in your programs that can
apply to computationally intensive applications and not just those concerned with managing
user interfaces.

Why Perform Multitasking by Using Parallel Processing?
As mentioned in the introduction, there are two principle reasons why you might want to
perform multitasking in an application:

n	 To improve responsiveness  You can give the user of an application the impression
that the program is performing more than one task at a time by dividing the program
up into concurrent threads of execution and allowing each thread to run in turn for
a short period of time. This is the conventional co-operative model that many expe-
rienced Windows developers are familiar with. However, it is not true multitasking
because the processor is shared between threads, and the co-operative nature of this
approach requires that the code executed by each thread behaves in an appropriate
manner. If one thread dominates the CPU and resources available at the expense of
other threads, the advantages of this approach are lost. It is sometimes difficult to write
well-behaved applications that follow this model consistently.

n	 To improve scalability  You can improve scalability by making efficient use of the
processing resources available and using these resources to reduce the time required
to execute parts of an application. A developer can determine which parts of an ap-
plication can be performed in parallel and arrange for them to be run concurrently.
As more computing resources are added, more tasks can be run in parallel. Until re-
cently, this model was suitable only for systems that either had multiple CPUs or were
able to spread the processing across different computers networked together. In both
cases, you had to use a model that arranged for coordination between parallel tasks.
Microsoft provides a specialized version of Windows called High Performance Compute
(HPC) Server 2008, which enables an organization to build clusters of servers that can
distribute and execute tasks in parallel. Developers can use the Microsoft implemen-
tation of the Message Passing Interface (MPI), a well-known language-independent
communications protocol, to build applications based on parallel tasks that coordinate
and cooperate with each other by sending messages. Solutions based on Windows
HPC Server 2008 and MPI are ideal for large-scale, compute-bound engineering and
scientific applications, but they are expensive for smaller scale, desktop systems.

	 Chapter 27  Introducing the Task Parallel Library	 601

From these descriptions, you might be tempted to conclude that the most cost-effective
way to build multitasking solutions for desktop applications is to use the cooperative multi-
threaded approach. However, the multithreaded approach was simply intended as a mecha-
nism to provide responsiveness—to enable computers with a single processor to ensure that
each task got a fair share of the processor. It is not well-suited for multiprocessor machines
because it is not designed to distribute the load across processors and, consequently, does
not scale well. While desktop machines with multiple processors were expensive (and con-
sequently relatively rare), this was not an issue. However, this situation is changing, as I will
briefly explain.

The Rise of the Multicore Processor
Ten years ago, the cost of a decent personal computer was in the range of $500 to $1000.
Today, a decent personal computer still costs about the same, even after ten years of price
inflation. The specification of a typical PC these days is likely to include a processor running
at a speed of between 2 GHz and 3 GHz, 500 GB of hard disk storage, 4 GB of RAM, high-
speed and high-resolution graphics, and a rewritable DVD drive. Ten years ago, the processor
speed for a typical machine was between 500 MHz and 1 GHz, 80 GB was a big hard drive,
Windows ran quite happily with 256 MB or less of RAM, and rewritable CD drives cost well
over $100. (Rewritable DVD drives were rare and extremely expensive.) This is the joy of tech-
nological progress: ever faster and more powerful hardware at cheaper and cheaper prices.

This is not a new trend. In 1965, Gordon E. Moore, co-founder of Intel, wrote a paper titled
“Cramming more components onto integrated circuits,” which discussed how the increasing
miniaturization of components enabled more transistors to be embedded on a silicon chip,
and how the falling costs of production as the technology became more accessible would
lead economics to dictate squeezing as many as 65,000 components onto a single chip by
1975. Moore’s observations lead to the dictum frequently referred to as “Moore’s Law,” which
basically states that the number of transistors that can be placed inexpensively on an inte-
grated circuit will increase exponentially, doubling approximately every two years. (Actually,
Gordon Moore was more optimistic than this initially, postulating that the volume of transis-
tors was likely to double every year, but he later modified his calculations.) The ability to pack
transistors together led to the ability to pass data between them more quickly. This meant we
could expect to see chip manufacturers produce faster and more powerful microprocessors
at an almost unrelenting pace, enabling software developers to write ever more complicated
software that would run more quickly.

Moore’s Law concerning the miniaturization of electronic components still holds, even after
more than 40 years. However, physics has started to intervene. There comes a limit when it is
not possible transmit signals between transistors on a single chip any more quickly, no matter
how small or densely packed they are. To a software developer, the most noticeable result of

602	 Part VI  Building Professional Solutions with Visual Studio 2010

this limitation is that processors have stopped getting faster. Six years ago, a fast processor
ran at 3 GHz. Today, a fast processor still runs at 3 GHz.

The limit to the speed at which processors can transmit data between components has
caused chip companies to look at alternative mechanisms for increasing the amount of work
a processor can do. The result is that most modern processors now have two or more proces-
sor cores. Effectively, chip manufacturers have put multiple processors on the same chip and
added the necessary logic to enable them to communicate and coordinate with each other.
Dual-core processors (two cores) and quad-core processors (four cores) are now common.
Chips with 8, 16, 32, and 64 cores are available, and the price of these is expected to fall
sharply in the near future. So, although processors have stopped speeding up, you can now
expect to get more of them on a single chip.

What does this mean to a developer writing C# applications?

In the days before multicore processors, a single-threaded application could be sped up
simply by running it on a faster processor. With multicore processors, this is no longer the
case. A single-threaded application will run at the same speed on a single-core, dual-core,
or quad-core processor that all have the same clock frequency. The difference is that on a
dual-core processor, one of the processor cores will be sitting around idle, and on a quad-
core processor, three of the cores will be simply ticking over waiting for work. To make the
best use of multicore processors, you need to write your applications to take advantage of
multitasking.

Implementing Multitasking in a Desktop Application
Multitasking is the ability to do more than one thing at the same time. It is one of those
concepts that is easy to describe but that, until recently, has been difficult to implement.

In the optimal scenario, an application running on a multicore processor performs as many
concurrent tasks as there are processor cores available, keeping each of the cores busy.
However, there are many issues you have to consider to implement concurrency, including
the following:

n	 How can you divide an application into a set of concurrent operations?

n	 How can you arrange for a set of operations to execute concurrently, on multiple
processors?

n	 How can you ensure that you attempt to perform only as many concurrent operations
as there are processors available?

n	 If an operation is blocked (such as while it is waiting for I/O to complete), how can
you detect this and arrange for the processor to run a different operation rather than
sit idle?

	 Chapter 27  Introducing the Task Parallel Library	 603

n	 How can you determine when one or more concurrent operations have completed?

n	 How can you synchronize access to shared data to ensure that two or more concurrent
operations do not inadvertently corrupt each other’s data?

To an application developer, the first question is a matter of application design. The
remaining questions depend on the programmatic infrastructure—Microsoft provides the
Task Parallel Library (TPL) to help address these issues.

In Chapter 28, “Performing Parallel Data Access,” you will see how some query-oriented
problems have naturally parallel solutions, and how you can use the ParallelEnumerable type
of PLINQ to parallelize query operations. However, sometimes you need a more imperative
approach for more generalized situations. The TPL contains a series of types and operations
that enable you to more explicitly specify how you want to divide an application into a set of
parallel tasks.

Tasks, Threads, and the ThreadPool
The most important type in the TPL is the Task class. The Task class is an abstraction of a
concurrent operation. You create a Task object to run a block of code. You can instantiate
multiple Task objects and start them running in parallel if sufficient processors or processor
cores are available.

Note  From now on, I will use the term “processor” to refer to either a single-core processor or a
single processor core on a multicore processor.

Internally, the TPL implements tasks and schedules them for execution by using Thread
objects and the ThreadPool class. Multithreading and thread pools have been available
with the .NET Framework since version 1.0, and you can use the Thread class in the System.
Threading namespace directly in your code. However, the TPL provides an additional degree
of abstraction that enables you to easily distinguish between the degree of parallelization in
an application (the tasks) and the units of parallelization (the threads). On a single-processor
computer, these items are usually the same. However, on a computer with multiple proces-
sors or with a multicore processor, they are different. If you design a program based directly
on threads, you will find that your application might not scale very well; the program will
use the number of threads you explicitly create, and the operating system will schedule only
that number of threads. This can lead to overloading and poor response time if the number
of threads greatly exceeds the number of available processors, or to inefficiency and poor
throughput if the number of threads is less than the number of processors.

The TPL optimizes the number of threads required to implement a set of concurrent tasks
and schedules them efficiently according to the number of available processors. The TPL uses
a set of threads provided by the .NET Framework, called the ThreadPool, and implements

604	 Part VI  Building Professional Solutions with Visual Studio 2010

a queuing mechanism to distribute the workload across these threads. When a program
creates a Task object, the task is added to a global queue. When a thread becomes available,
the task is removed from the global queue and is executed by that thread. The ThreadPool
implements a number of optimizations and uses a work-stealing algorithm to ensure that
threads are scheduled efficiently.

Note  The ThreadPool was available in previous editions of the .NET Framework, but it has been
enhanced significantly in the .NET Framework 4.0 to support Tasks.

You should note that the number of threads created by the .NET Framework to handle your
tasks is not necessarily the same as the number of processors. Depending on the nature
of the workload, one or more processors might be busy performing high-priority work for
other applications and services. Consequently, the optimal number of threads for your ap-
plication might be less than the number of processors in the machine. Alternatively, one or
more threads in an application might be waiting for long-running memory access, I/O, or a
network operation to complete, leaving the corresponding processors free. In this case, the
optimal number of threads might be more than the number of available processors. The .NET
Framework follows an iterative strategy, known as a hill-climbing algorithm, to dynamically
determine the ideal number of threads for the current workload.

The important point is that all you have to do in your code is divide your application into
tasks that can be run in parallel. The .NET Framework takes responsibility for creating the
appropriate number of threads based on the processor architecture and workload of your
computer, associating your tasks with these threads and arranging for them to be run ef-
ficiently. It does not matter if you divide your work into too many tasks because the .NET
Framework will attempt to run only as many concurrent threads as is practical; in fact, you are
encouraged to overpartition your work because this will help to ensure that your application
scales if you move it onto a computer that has more processors available.

Creating, Running, and Controlling Tasks
The Task object and the other types in the TPL reside in the System.Threading.Tasks
namespace. You can create Task objects by using the Task constructor. The Task construc-
tor is overloaded, but all versions expect you to provide an Action delegate as a parameter.
Remember from Chapter 23 that an Action delegate references a method that does not
return a value. A task object uses this delegate to run the method when it is scheduled.
The following example creates a Task object that uses a delegate to run the method called

	 Chapter 27  Introducing the Task Parallel Library	 605

doWork (you can also use an anonymous method or a lambda expression, as shown by the
code in the comments):

Task task = new Task(new Action(doWork));

// Task task = new Task(delegate { this.doWork(); });

// Task task = new Task(() => { this.doWork(); });

...

private void doWork()

{

 // The task runs this code when it is started

 ...

}

Note  In many cases, you can let the compiler infer the Action delegate type itself and simply
specify the method to run. For example, you can rephrase the first example just shown as follows:

Task task = new Task(doWork);

The delegate inference rules implemented by the compiler apply not just to the Action type, but
anywhere you can use a delegate. You will see many more examples throughout the remainder
of this book.

The default Action type references a method that takes no parameters. Other overloads of
the Task constructor take an Action<object> parameter representing a delegate that refers to
a method that takes a single object parameter. These overloads enable you to pass data into
the method run by the task. The following code shows an example:

Action<object> action;

action = doWorkWithObject;

object parameterData = ...;

Task task = new Task(action, parameterData);

...

private void doWorkWithObject(object o)

{

 ...

}

After you create a Task object, you can set it running by using the Start method, like this:

Task task = new Task(...);

task.Start();

The Start method is also overloaded, and you can optionally specify a TaskScheduler object
to control the degree of concurrency and other scheduling options. It is recommended that
you use the default TaskScheduler object built into the .NET Framework, or you can define
your own custom TaskScheduler class if you want to take more control over the way in which
tasks are queued and scheduled. The details of how to do this are beyond the scope of

606	 Part VI  Building Professional Solutions with Visual Studio 2010

this book, but if you require more information look at the description of the TaskScheduler
abstract class in the .NET Framework Class Library documentation provided with Visual
Studio.

You can obtain a reference to the default TaskScheduler object by using the static Default
property of the TaskScheduler class. The TaskScheduler class also provides the static Current
property, which returns a reference to the TaskScheduler object currently used. (This
TaskScheduler object is used if you do not explicitly specify a scheduler.) A task can provide
hints to the default TaskScheduler about how to schedule and run the task if you specify a
value from the TaskCreationOptions enumeration in the Task constructor. For more informa-
tion about the TaskCreationOptions enumeration, consult the documentation describing the
.NET Framework Class Library provided with Visual Studio.

When the method run by the task completes, the task finishes, and the thread used to run
the task can be recycled to execute another task.

Normally, the scheduler arranges to perform tasks in parallel wherever possible, but you can
also arrange for tasks to be scheduled serially by creating a continuation. You create a contin-
uation by calling the ContinueWith method of a Task object. When the action performed by
the Task object completes, the scheduler automatically creates a new Task object to run the
action specified by the ContinueWith method. The method specified by the continuation ex-
pects a Task parameter, and the scheduler passes in a reference to the task that completed to
the method. The value returned by ContinueWith is a reference to the new Task object. The
following code example creates a Task object that runs the doWork method and specifies a
continuation that runs the doMoreWork method in a new task when the first task completes:

Task task = new Task(doWork);

task.Start();

Task newTask = task.ContinueWith(doMoreWork);

...

private void doWork()

{

 // The task runs this code when it is started

 ...

}

...

private void doMoreWork(Task task)

{

 // The continuation runs this code when doWork completes

 ...

}

The ContinueWith method is heavily overloaded, and you can provide a number
of parameters that specify additional items, such as the TaskScheduler to use and a
TaskContinuationOptions value. The TaskContinuationOptions type is an enumeration that

	 Chapter 27  Introducing the Task Parallel Library	 607

contains a superset of the values in the TaskCreationOptions enumeration. The additional
values available include

n	 NotOnCanceled and OnlyOnCanceled  The NotOnCanceled option specifies that the
continuation should run only if the previous action completes and is not canceled, and
the OnlyOnCanceled option specifies that the continuation should run only if the previ-
ous action is canceled. The section “Canceling Tasks and Handling Exceptions” later in
this chapter describes how to cancel a task.

n	 NotOnFaulted and OnlyOnFaulted  The NotOnFaulted option indicates that the
continuation should run only if the previous action completes and does not throw an
unhandled exception. The OnlyOnFaulted option causes the continuation to run only if
the previous action throws an unhandled exception. The section “Canceling Tasks and
Handling Exceptions” provides more information on how to manage exceptions in a
task.

n	 NotOnRanToCompletion and OnlyOnRanToCompletion  The NotOnRanToCompletion
option specifies that the continuation should run only if the previous action does
not complete successfully; it must either be canceled or throw an exception.
OnlyOnRanToCompletion causes the continuation to run only if the previous action
completes successfully.

The following code example shows how to add a continuation to a task that runs only if the
initial action does not throw an unhandled exception:

Task task = new Task(doWork);

task.ContinueWith(doMoreWork, TaskContinuationOptions.NotOnFaulted);

task.Start();

If you commonly use the same set of TaskCreationOptions values and the same TaskScheduler
object, you can use a TaskFactory object to create and run a task in a single step. The con-
structor for the TaskFactory class enables you to specify the task scheduler, task creation
options, and task continuation options that tasks constructed by this factory should use. The
TaskFactory class provides the StartNew method to create and run a Task object. Like the
Start method of the Task class, the StartNew method is overloaded, but all of them expect a
reference to a method that the task should run.

The following code shows an example that creates and runs two tasks using the same task
factory:

TaskScheduler scheduler = TaskScheduler.Current;

TaskFactory taskFactory = new TaskFactory(scheduler, TaskCreationOptions.None,

 TaskContinuationOptions.NotOnFaulted);

Task task = taskFactory.StartNew(doWork);

Task task2 = taskFactory.StartNew(doMoreWork);

608	 Part VI  Building Professional Solutions with Visual Studio 2010

Even if you do not currently specify any particular task creation options and you use the
default task scheduler, you should still consider using a TaskFactory object; it ensures con-
sistency, and you will have less code to modify to ensure that all tasks run in the same man-
ner if you need to customize this process in the future. The Task class exposes the default
TaskFactory used by the TPL through the static Factory property. You can use it like this:

Task task = Task.Factory.StartNew(doWork);

A common requirement of applications that invoke operations in parallel is to synchronize
tasks. The Task class provides the Wait method, which implements a simple task coordination
method. It enables you to suspend execution of the current thread until the specified task
completes, like this:

task2.Wait(); // Wait at this point until task2 completes

You can wait for a set of tasks by using the static WaitAll, and WaitAny methods of the Task
class. Both methods take a params array containing a set of Task objects. The WaitAll method
waits until all specified tasks have completed, and WaitAny stops until at least one of the
specified tasks has finished. You use them like this:

Task.WaitAll(task, task2); // Wait for both task and task2 to complete

Task.WaitAny(task, task2); // Wait for either of task or task2 to complete

Using the Task Class to Implement Parallelism
In the next exercise, you will use the Task class to parallelize processor-intensive code in an
application, and you will see how this parallelization reduces the time taken for the applica-
tion to run by spreading the computations across multiple processor cores.

The application, called GraphDemo, comprises a WPF form that uses an Image control to
display a graph. The application plots the points for the graph by performing a complex
calculation.

Note  The exercises in this chapter are intended to run on a computer with a multicore
processor. If you have only a single-core CPU, you will not observe the same effects. Also, you
should not start any additional programs or services between exercises because these might
affect the results that you see.

	 Chapter 27  Introducing the Task Parallel Library	 609

Examine and run the GraphDemo single-threaded application

	 1.	 Start Microsoft Visual Studio 2010 if it is not already running.

	 2.	 Open the GraphDemo solution, located in the \Microsoft Press\Visual CSharp Step By
Step\Chapter 27\GraphDemo folder in your Documents folder.

	 3.	 In Solution Explorer, in the GraphDemo project, double-click the file GraphWindow.
xaml to display the form in the Design View window.

		 The form contains the following controls:

n	 An Image control called graphImage. This image control displays the graph
rendered by the application.

n	 A Button control called plotButton. The user clicks this button to generate the
data for the graph and display it in the graphImage control.

n	 A Label control called duration. The application displays the time taken to
generate and render the data for the graph in this label.

	 4.	 In Solution Explorer, expand GraphWindow.xaml, and then double-click GraphWindow.
xaml.cs to display the code for the form in the Code and Text Editor window.

The form uses a System.Windows.Media.Imaging.WriteableBitmap object called
graphBitmap to render the graph. The variables pixelWidth and pixelHeight specify the
horizontal and vertical resolution, respectively, for the WriteableBitmap object; the
variables dpiX and dpiY specify the horizontal and vertical density, respectively, of the
image in dots per inch:

public partial class GraphWindow : Window

{

 private static long availableMemorySize = 0;

 private int pixelWidth = 0;

 private int pixelHeight = 0;

 private double dpiX = 96.0;

 private double dpiY = 96.0;

 private WriteableBitmap graphBitmap = null;

 …

}

	 5.	 Examine the GraphWindow constructor. It looks like this:

public GraphWindow()

{

 InitializeComponent();

 PerformanceCounter memCounter = new PerformanceCounter("Memory", "Available

Bytes");

 availableMemorySize = Convert.ToUInt64(memCounter.NextValue());

 this.pixelWidth = (int)availablePhysicalMemory / 20000;

 if (this.pixelWidth < 0 || this.pixelWidth > 15000)

 this.pixelWidth = 15000;

610	 Part VI  Building Professional Solutions with Visual Studio 2010

 this.pixelHeight = (int)availablePhysicalMemory / 40000;

 if (this.pixelHeight < 0 || this.pixelHeight > 7500)

 this.pixelHeight = 7500;

}

To avoid presenting you with code that exhausts the memory available on your
computer and generates OutOfMemory exceptions, this application creates a
PerformanceCounter object to query the amount of available physical memory on the
computer. It then uses this information to determine appropriate values for the pixel-
Width and pixelHeight variables. The more available memory you have on your com-
puter, the bigger the values generated for pixelWidth and pixelHeight (subject to the
limits of 15,000 and 7500 for each of these variables, respectively) and the more you
will see the benefits of using the TPL as the exercises in this chapter proceed. However,
if you find that the application still generates OutOfMemory exceptions, increase
the divisors (20,000 and 40,000) used for generating the values of pixelWidth and
pixelHeight.

If you have a lot of memory, the values calculated for pixelWidth and pixelHeight
might overflow. In this case, they will contain negative values and the application will
fail with an exception later on. The code in the constructor checks this case and sets the
pixelWidth and pixelHeight fields to a pair of useful values that enable the application to
run correctly in this situation.

	 6.	 Examine the code for the plotButton_Click method:

private void plotButton_Click(object sender, RoutedEventArgs e)

{

 if (graphBitmap == null)

 {

 graphBitmap = new WriteableBitmap(pixelWidth, pixelHeight, dpiX, dpiY,

PixelFormats.Gray8, null);

 }

 int bytesPerPixel = (graphBitmap.Format.BitsPerPixel + 7) / 8;

 int stride = bytesPerPixel * graphBitmap.PixelWidth;

 int dataSize = stride * graphBitmap.PixelHeight;

 byte [] data = new byte[dataSize];

 Stopwatch watch = Stopwatch.StartNew();

 generateGraphData(data);

 duration.Content = string.Format("Duration (ms): {0}", watch.ElapsedMilliseconds);

 graphBitmap.WritePixels(

 new Int32Rect(0, 0, graphBitmap.PixelWidth, graphBitmap.PixelHeight),

 data, stride, 0);

 graphImage.Source = graphBitmap;

}

	 Chapter 27  Introducing the Task Parallel Library	 611

This method runs when the user clicks the plotButton button. The code instantiates
the graphBitmap object if it has not already been created by the user clicking the
plotButton button previously, and it specifies that each pixel represents a shade of gray,
with 8 bits per pixel. This method uses the following variables and methods:

n	 The bytesPerPixel variable calculates the number of bytes required to hold each
pixel. (The WriteableBitmap type supports a range of pixel formats, with up to
128 bits per pixel for full-color images.)

n	 The stride variable contains the vertical distance, in bytes, between adjacent pixels
in the WriteableBitmap object.

n	 The dataSize variable calculates the number of bytes required to hold the data for
the WriteableBitmap object. This variable is used to initialize the data array with
the appropriate size.

n	 The data byte array holds the data for the graph.

n	 The watch variable is a System.Diagnostics.Stopwatch object. The StopWatch type
is useful for timing operations. The static StartNew method of the StopWatch type
creates a new instance of a StopWatch object and starts it running. You can query
the running time of a StopWatch object by examining the ElapsedMilliseconds
property.

n	 The generateGraphData method populates the data array with the data for
the graph to be displayed by the WriteableBitmap object. You will examine this
method in the next step.

n	 The WritePixels method of the WriteableBitmap class copies the data from a byte
array to a bitmap for rendering. This method takes an Int32Rect parameter that
specifies the area in the WriteableBitmap object to populate, the data to be used
to copy to the WriteableBitmap object, the vertical distance between adjacent
pixels in the WriteableBitmap object, and an offset into the WriteableBitmap
object to start writing the data to.

Note  You can use the WritePixels method to selectively overwrite information in a
WriteableBitmap object. In this example, the code overwrites the entire contents. For more
information about the WriteableBitmap class, consult the .NET Framework Class Library
documentation installed with Visual Studio 2010.

n	 The Source property of an Image control specifies the data that the Image control
should render. This example sets the Source property to the WriteableBitmap
object.

612	 Part VI  Building Professional Solutions with Visual Studio 2010

	 7.	 Examine the code for the generateGraphData method:

private void generateGraphData(byte[] data)

{

 int a = pixelWidth / 2;

 int b = a * a;

 int c = pixelHeight / 2;

 for (int x = 0; x < a; x ++)

 {

 int s = x * x;

 double p = Math.Sqrt(b - s);

 for (double i = -p; i < p; i += 3)

 {

 double r = Math.Sqrt(s + i * i) / a;

 double q = (r - 1) * Math.Sin(24 * r);

 double y = i / 3 + (q * c);

 plotXY(data, (int)(-x + (pixelWidth / 2)), (int)(y + (pixelHeight / 2)));

 plotXY(data, (int)(x + (pixelWidth / 2)), (int)(y + (pixelHeight / 2)));

 }

 }

}

This method performs a series of calculations to plot the points for a rather complex
graph. (The actual calculation is unimportant—it just generates a graph that looks at-
tractive!) As it calculates each point, it calls the plotXY method to set the appropriate
bytes in the data array that correspond to these points. The points for the graph are
reflected around the X axis, so the plotXY method is called twice for each calculation:
once for the positive value of the X coordinate, and once for the negative value.

	 8.	 Examine the plotXY method:

private void plotXY(byte[] data, int x, int y)

{

 data[x + y * pixelWidth] = 0xFF;

}

This is a simple method that sets the appropriate byte in the data array that corre-
sponds to X and Y coordinates passed in as parameters. The value 0xFF indicates that
the corresponding pixel should be set to white when the graph is rendered. Any pixels
left unset are displayed as black.

	 9.	 On the Debug menu, click Start Without Debugging to build and run the application.

	 10.	 When the Graph Demo window appears, click Plot Graph, and wait.

Please be patient. The application takes several seconds to generate and display the
graph. The following image shows the graph. Note the value in the Duration (ms) label
in the following figure. In this case, the application took 4478 milliseconds (ms) to plot
the graph.

	 Chapter 27  Introducing the Task Parallel Library	 613

Note  The application was run on a computer with 2 GB of memory and an Intel® Core 2
Duo Desktop Processor E6600 running at 2.40 GHz. Your times might vary if you are using
a different processor or a different amount of memory. Additionally, you might notice that
it seems to take longer initially to display the graph than the reported time. This is because
of the time taken to initialize the data structures required to actually display the graph as
part of the WritePixels method of the graphBitmap control rather than the time taken to
calculate the data for the graph. Subsequent runs do not have this overhead.

	 11.	 Click Plot Graph again, and take note of the time taken. Repeat this action several times
to get an average value.

	 12.	 On the desktop, right-click an empty area of the taskbar, and then in the pop-up menu
click Start Task Manager.

Note  Under Windows Vista, the command in the pop-up menu is called Task Manager.

	 13.	 In the Windows Task Manager, click the Performance tab.

	 14.	 Return to the Graph Demo window and then click Plot Graph.

	 15.	 In the Windows Task Manager, note the maximum value for the CPU usage while the
graph is being generated. Your results will vary, but on a dual-core processor the CPU
utilization will probably be somewhere around 50–55 percent, as shown in the follow-
ing image. On a quad-core machine, the CPU utilization will likely be below 30 percent.

614	 Part VI  Building Professional Solutions with Visual Studio 2010

	 16.	 Return to the Graph Demo window, and click Plot Graph again. Note the value for the
CPU usage in the Windows Task Manager. Repeat this action several times to get an
average value.

	 17.	 Close the Graph Demo window, and minimize the Windows Task Manager.

You now have a baseline for the time the application takes to perform its calculations.
However, it is clear from the CPU usage displayed by the Windows Task Manager that the
application is not making full use of the processing resources available. On a dual-core ma-
chine, it is using just over half of the CPU power, and on a quad-core machine it is employing
a little over a quarter of the CPU. This phenomenon occurs because the application is single-
threaded, and in a Windows application, a single thread can occupy only a single core on a
multicore processor. To spread the load over all the available cores, you need to divide the
application into tasks and arrange for each task to be executed by a separate thread running
on a different core.

Modify the GraphDemo application to use parallel threads

	 1.	 Return to the Visual Studio 2010, and display the GraphWindow.xaml.cs file in the Code
and Text Editor window if it is not already open.

	 2.	 Examine the generateGraphData method.

	 Chapter 27  Introducing the Task Parallel Library	 615

If you think about it carefully, the purpose of this method is to populate the items in
the data array. It iterates through the array by using the outer for loop based on the x
loop control variable, highlighted in bold here:

private void generateGraphData(byte[] data)

{

 int a = pixelWidth / 2;

 int b = a * a;

 int c = pixelHeight / 2;

 for (int x = 0; x < a; x ++)

 {

 int s = x * x;

 double p = Math.Sqrt(b - s);

 for (double i = -p; i < p; i += 3)

 {

 double r = Math.Sqrt(s + i * i) / a;

 double q = (r - 1) * Math.Sin(24 * r);

 double y = i / 3 + (q * c);

 plotXY(data, (int)(-x + (pixelWidth / 2)), (int)(y + (pixelHeight / 2)));

 plotXY(data, (int)(x + (pixelWidth / 2)), (int)(y + (pixelHeight / 2)));

 }

 }

}

The calculation performed by one iteration of this loop is independent of the calcula-
tions performed by the other iterations. Therefore, it makes sense to partition the work
performed by this loop and run different iterations on a separate processor.

	 3.	 Modify the definition of the generateGraphData method to take two additional int pa-
rameters called partitionStart and partitionEnd, as shown in bold here:

private void generateGraphData(byte[] data, int partitionStart, int partitionEnd)

{

 ...

}

	 4.	 In the generateGraphData method, change the outer for loop to iterate between the
values of partitionStart and partitionEnd, as shown in bold here:

private void generateGraphData(byte[] data, int partitionStart, int partitionEnd)

{

 ...

 for (int x = partitionStart; x < partitionEnd; x ++)

 {

 ...

 }

}

616	 Part VI  Building Professional Solutions with Visual Studio 2010

	 5.	 In the Code and Text Editor window, add the following using statement to the list at the
top of the GraphWindow.xaml.cs file:

using System.Threading.Tasks;

	 6.	 In the plotButton_Click method, comment out the statement that calls the
generateGraphData method and add the statement shown next in bold that creates a
Task object by using the default TaskFactory object and starts it running:

...

Stopwatch watch = Stopwatch.StartNew();

// generateGraphData(data);

Task first = Task.Factory.StartNew(() => generateGraphData(data, 0, pixelWidth / 4));

...

The task runs the code specified by the lambda expression. The values for the
partitionStart and partitionEnd parameters indicate that the Task object calculates the
data for the first half of the graph. (The data for the complete graph consists of points
plotted for the values between 0 and pixelWidth / 2.)

	 7.	 Add another statement that creates and runs a second Task object on another thread,
as shown in bold here:

...

Task first = Task.Factory.StartNew(() => generateGraphData(data, 0, pixelWidth / 4));

Task second = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth / 4,

pixelWidth / 2));

...

This Task object invokes the generateGraph method and calculates the data for the
values between pixelWidth / 4 and pixelWidth / 2.

	 8.	 Add the following statement that waits for both Task objects to complete their work
before continuing:

Task.WaitAll(first, second);

	 9.	 On the Debug menu, click Start Without Debugging to build and run the application.

	 10.	 Display the Windows Task Manager, and click the Performance tab if it is not currently
displayed.

	 11.	 Return to the Graph Demo window, and click Plot Graph. In the Windows Task Manager,
note the maximum value for the CPU usage while the graph is being generated. When
the graph appears in the Graph Demo window, record the time taken to generate the
graph. Repeat this action several times to get an average value.

	 12.	 Close the Graph Demo window, and minimize the Windows Task Manager.

This time you should see that the application runs significantly quicker than previ-
ously. On my computer, the time dropped to 2682 milliseconds—a reduction in time of
about 40 percent. Additionally, you should see that the application uses more cores of

	 Chapter 27  Introducing the Task Parallel Library	 617

the CPU. On a dual-core machine, the CPU usage peaked at 100 percent. If you have a
quad-core computer, the CPU utilization will not be as high. This is because two of the
cores will not be occupied. To rectify this and reduce the time further, add two further
Task objects and divide the work into four chunks in the plotButton_Click method, as
shown in bold here:

...

Task first = Task.Factory.StartNew(() => generateGraphData(data, 0, pixelWidth / 8));

Task second = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth / 8,

pixelWidth / 4));

Task third = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth / 4,

pixelWidth * 3 / 8));

Task fourth = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth * 3 / 8,

pixelWidth / 2));

Task.WaitAll(first, second, third, fourth);

...

If you have only a dual-core processor, you can still try this modification, and you
should still notice a beneficial effect on the time. This is primarily because of efficiencies
in the TPL and the algorithms in the .NET Framework optimizing the way in which the
threads for each task are scheduled.

Abstracting Tasks by Using the Parallel Class
By using the Task class, you have complete control over the number of tasks your applica-
tion creates. However, you had to modify the design of the application to accommodate
the use of Task objects. You also had to add code to synchronize operations; the applica-
tion can render the graph only when all the tasks have completed. In a complex application,
synchronization of tasks can become a nontrivial process and it is easy to make mistakes.

The Parallel class in the TPL enables you to parallelize some common programming
constructs without requiring that you redesign an application. Internally, the Parallel class
creates its own set of Task objects, and it synchronizes these tasks automatically when they
have completed. The Parallel class is located in the System.Threading.Tasks namespace and
provides a small set of static methods you can use to indicate that code should be run in
parallel if possible. These methods are as follows:

n	 Parallel.For  You can use this method in place of a C# for statement. It defines a loop
in which iterations can run in parallel by using tasks. This method is heavily overloaded
(there are nine variations), but the general principle is the same for each; you specify a
start value, an end value, and a reference to a method that takes an integer parameter.
The method is executed for every value between the start value and one below the
end value specified, and the parameter is populated with an integer that specifies the
current value. For example, consider the following simple for loop that performs each
iteration in sequence:

618	 Part VI  Building Professional Solutions with Visual Studio 2010

for (int x = 0; x < 100; x++)

{

 // Perform loop processing

}

Depending on the processing performed by the body of the loop, you might be able to
replace this loop with a Parallel.For construct that can perform iterations in parallel, like
this:

Parallel.For(0, 100, performLoopProcessing);

...

private void performLoopProcessing(int x)

{

 // Perform loop processing

}

The overloads of the Parallel.For method enable you to provide local data that is
private to each thread, specify various options for creating the tasks run by the For
method, and create a ParallelLoopState object that can be used to pass state informa-
tion to other concurrent iterations of the loop. (Using a ParallelLoopState object is
described later in this chapter.)

n	 Parallel.ForEach<T>  You can use this method in place of a C# foreach statement.
Like the For method, ForEach defines a loop in which iterations can run in parallel. You
specify a collection that implements the IEnumerable<T> generic interface and a refer-
ence to a method that takes a single parameter of type T. The method is executed for
each item in the collection, and the item is passed as the parameter to the method.
Overloads are available that enable you to provide private local thread data and specify
options for creating the tasks run by the ForEach method.

n	 Parallel.Invoke  You can use this method to execute a set of parameterless method
calls as parallel tasks. You specify a list of delegated method calls (or lambda expres-
sions) that take no parameters and do not return values. Each method call can be run
on a separate thread, in any order. For example, the following code makes a series of
method calls:

doWork();

doMoreWork();

doYetMoreWork();

You can replace these statements with the following code, which invokes these meth-
ods by using a series of tasks:

Parallel.Invoke(

 doWork,

 doMoreWork,

 doYetMoreWork

);

You should bear in mind that the .NET Framework determines the actual degree of
parallelism appropriate for the environment and workload of the computer. For example, if

	 Chapter 27  Introducing the Task Parallel Library	 619

you use Parallel.For to implement a loop that performs 1000 iterations, the .NET Framework
does not necessarily create 1000 concurrent tasks (unless you have an exceptionally power-
ful processor with 1000 cores). Instead, the .NET Framework creates what it considers to be
the optimal number of tasks that balances the available resources against the requirement to
keep the processors occupied. A single task might perform multiple iterations, and the tasks
coordinate with each other to determine which iterations each task will perform. An impor-
tant consequence of this is that you cannot guarantee the order in which the iterations are
executed, so you must ensure there are no dependencies between iterations; otherwise, you
might get unexpected results, as you will see later in this chapter.

In the next exercise, you will return to the original version of the GraphData application and
use the Parallel class to perform operations concurrently.

Use the Parallel class to parallelize operations in the GraphData application

	 1.	 Using Visual Studio 2010, open the GraphDemo solution, located in the \Microsoft
Press\Visual CSharp Step By Step\Chapter 27\GraphDemo Using the Parallel Class folder
in your Documents folder.

This is a copy of the original GraphDemo application. It does not use tasks yet.

	 2.	 In Solution Explorer, in the GraphDemo project, expand the GraphWindow.xaml node,
and then double-click GraphWindow.xaml.cs to display the code for the form in the
Code and Text Editor window.

	 3.	 Add the following using statement to the list at the top of the file:

using System.Threading.Tasks;

	 4.	 Locate the generateGraphData method. It looks like this:

private void generateGraphData(byte[] data)

{

 int a = pixelWidth / 2;

 int b = a * a;

 int c = pixelHeight / 2;

 for (int x = 0; x < a; x++)

 {

 int s = x * x;

 double p = Math.Sqrt(b - s);

 for (double i = -p; i < p; i += 3)

 {

 double r = Math.Sqrt(s + i * i) / a;

 double q = (r - 1) * Math.Sin(24 * r);

 double y = i / 3 + (q * c);

 plotXY(data, (int)(-x + (pixelWidth / 2)), (int)(y + (pixelHeight / 2)));

 plotXY(data, (int)(x + (pixelWidth / 2)), (int)(y + (pixelHeight / 2)));

 }

 }

}

620	 Part VI  Building Professional Solutions with Visual Studio 2010

The outer for loop that iterates through values of the integer variable x is a prime
candidate for parallelization. You might also consider the inner loop based on the
variable i, but this loop takes more effort to parallelize because of the type of i. (The
methods in the Parallel class expect the control variable to be an integer.) Additionally,
if you have nested loops such as occur in this code, it is good practice to parallelize the
outer loops first and then test to see whether the performance of the application is suf-
ficient. If it is not, work your way through nested loops and parallelize them working
from outer to inner loops, testing the performance after modifying each one. You will
find that in many cases parallelizing outer loops has the most effect on performance,
while the effects of modifying inner loops becomes more marginal.

	 5.	 Move the code in the body of the for loop, and create a new private void method
called calculateData with this code. The calculateData method should take an integer
parameter called x and a byte array called data. Also, move the statements that declare
the local variables a, b, and c from the generateGraphData method to the start of the
calculateData method. The following code shows the generateGraphData method with
this code removed and the calculateData method (do not try and compile this code
yet):

private void generateGraphData(byte[] data)

{

 for (int x = 0; x < a; x++)

 {

 }

}

private void calculateData(int x, byte[] data)

{

 int a = pixelWidth / 2;

 int b = a * a;

 int c = pixelHeight / 2;

 int s = x * x;

 double p = Math.Sqrt(b - s);

 for (double i = -p; i < p; i += 3)

 {

 double r = Math.Sqrt(s + i * i) / a;

 double q = (r - 1) * Math.Sin(24 * r);

 double y = i / 3 + (q * c);

 plotXY(data, (int)(-x + (pixelWidth / 2)), (int)(y + (pixelHeight / 2)));

 plotXY(data, (int)(x + (pixelWidth / 2)), (int)(y + (pixelHeight / 2)));

 }

}

	 6.	 In the generateGraphData method, change the for loop to a statement that calls the
static Parallel.For method, as shown in bold here:

private void generateGraphData(byte[] data)

{

 Parallel.For (0, pixelWidth / 2, (int x) => { calculateData(x, data); });

}

	 Chapter 27  Introducing the Task Parallel Library	 621

This code is the parallel equivalent of the original for loop. It iterates through the val-
ues from 0 to pixelWidth / 2 – 1 inclusive. Each invocation runs by using a task. (Each
task might run more than one iteration.) The Parallel.For method finishes only when all
the tasks it has created complete their work. Remember that the Parallel.For method
expects the final parameter to be a method that takes a single integer parameter. It
calls this method passing the current loop index as the parameter. In this example, the
calculateData method does not match the required signature because it takes two pa-
rameters: an integer and a byte array. For this reason, the code uses a lambda expres-
sion to define an anonymous method that has the appropriate signature and that acts
as an adapter that calls the calculateData method with the correct parameters.

	 7.	 On the Debug menu, click Start Without Debugging to build and run the application.

	 8.	 Display the Windows Task Manager, and click the Performance tab if it is not currently
displayed.

	 9.	 Return to the Graph Demo window, and click Plot Graph. In the Windows Task Manager,
note the maximum value for the CPU usage while the graph is being generated. When
the graph appears in the Graph Demo window, record the time taken to generate the
graph. Repeat this action several times to get an average value.

	 10.	 Close the Graph Demo window, and minimize the Windows Task Manager.

You should notice that the application runs at a comparable speed to the previous
version that used Task objects (and possibly slightly faster, depending on the number of
CPUs you have available), and that the CPU usage peaks at 100 percent.

When Not to Use the Parallel Class
You should be aware that despite appearances and the best efforts of the Visual Studio
development team at Microsoft, the Parallel class is not magic; you cannot use it without
due consideration and just expect your applications to suddenly run significantly faster and
produce the same results. The purpose of the Parallel class is to parallelize compute-bound,
independent areas of your code.

The key phrases in the previous paragraph are compute-bound and independent. If your code
is not compute-bound, parallelizing it might not improve performance. The next exercise
shows you that you should be careful in how you determine when to use the Parallel.Invoke
construct to perform method calls in parallel.

Determine when to use Parallel.Invoke

	 1.	 Return to Visual Studio 2010, and display the GraphWindow.xaml.cs file in the Code and
Text Editor window if it is not already open.

	 2.	 Examine the calculateData method.

622	 Part VI  Building Professional Solutions with Visual Studio 2010

The inner for loop contains the following statements:

plotXY(data, (int)(-x + (pixelWidth / 2)), (int)(y + (pixelHeight / 2)));

plotXY(data, (int)(x + (pixelWidth / 2)), (int)(y + (pixelHeight / 2)));

These two statements set the bytes in the data array that correspond to the points
specified by the two parameters passed in. Remember that the points for the graph are
reflected around the X axis, so the plotXY method is called for the positive value of the
X coordinate and also for the negative value. These two statements look like good can-
didates for parallelization because it does not matter which one runs first, and they set
different bytes in the data array.

	 3.	 Modify these two statements, and wrap them in a Parallel.Invoke method call, as shown
next. Notice that both calls are now wrapped in lambda expressions, and that the semi-
colon at the end of the first call to plotXY is replaced with a comma and the semi-colon
at the end of the second call to plotXY has been removed because these statements are
now a list of parameters:

Parallel.Invoke(

 () => plotXY(data, (int)(-x + (pixelWidth / 2)), (int)(y + (pixelHeight / 2))),

 () => plotXY(data, (int)(x + (pixelWidth / 2)), (int)(y + (pixelHeight / 2)))

);

	 4.	 On the Debug menu, click Start Without Debugging to build and run the application.

	 5.	 In the Graph Demo window, click Plot Graph. Record the time taken to generate the
graph. Repeat this action several times to get an average value.

You should find, possibly unexpectedly, that the application takes significantly longer to
run. It might be up to 20 times slower than it was previously.

	 6.	 Close the Graph Demo window.

The questions you are probably asking at this point are, “What went wrong? Why did the
application slow down so much?” The answer lies in the plotXY method. If you take another
look at this method, you will see that it is very simple:

private void plotXY(byte[] data, int x, int y)

{

 data[x + y * pixelWidth] = 0xFF;

}

There is very little in this method that takes any time to run, and it is definitely not a com-
pute-bound piece of code. In fact, it is so simple that the overhead of creating a task, run-
ning this task on a separate thread, and waiting for the task to complete is much greater than
the cost of running this method directly. The additional overhead might account for only a
few milliseconds each time the method is called, but you should bear in mind the number
of times that this method runs; the method call is located in a nested loop and is executed
thousands of times, so all of these small overhead costs add up. The general rule is to use

	 Chapter 27  Introducing the Task Parallel Library	 623

Parallel.Invoke only when it is worthwhile. Reserve Parallel.Invoke for operations that are
computationally intensive.

As mentioned earlier in this chapter, the other key consideration for using the Parallel class
is that operations should be independent. For example, if you attempt to use Parallel.For to
parallelize a loop in which iterations are not independent, the results will be unpredictable.
To see what I mean, look at the following program:

using System;

using System.Threading;

using System.Threading.Tasks;

namespace ParallelLoop

{

 class Program

 {

 private static int accumulator = 0;

 static void Main(string[] args)

 {

 for (int i = 0; i < 100; i++)

 {

 AddToAccumulator(i);

 }

 Console.WriteLine("Accumulator is {0}", accumulator);

 }

 private static void AddToAccumulator(int data)

 {

 if ((accumulator % 2) == 0)

 {

 accumulator += data;

 }

 else

 {

 accumulator -= data;

 }

 }

 }

}

This program iterates through the values from 0 to 99 and calls the AddToAccumulator
method with each value in turn. The AddToAccumulator method examines the current
value of the accumulator variable, and if it is even it adds the value of the parameter to the
accumulator variable; otherwise, it subtracts the value of the parameter. At the end of the
program, the result is displayed. You can find this application in the ParallelLoop solution,
located in the \Microsoft Press\Visual CSharp Step By Step\Chapter 27\ParallelLoop folder in
your Documents folder. If you run this program, the value output should be –100.

624	 Part VI  Building Professional Solutions with Visual Studio 2010

To increase the degree of parallelism in this simple application, you might be tempted to
replace the for loop in the Main method with Parallel.For, like this:

static void Main(string[] args)

{

 Parallel.For (0, 100, AddToAccumulator);

 Console.WriteLine("Accumulator is {0}", accumulator);

}

However, there is no guarantee that the tasks created to run the various invocations of
the AddToAccumulator method will execute in any specific sequence. (The code is also not
thread-safe because multiple threads running the tasks might attempt to modify the ac-
cumulator variable concurrently.) The value calculated by the AddToAccumulator method
depends on the sequence being maintained, so the result of this modification is that the
application might now generate different values each time it runs. In this simple case, you
might not actually see any difference in the value calculated because the AddToAccumulator
method runs very quickly and the .NET Framework might elect to run each invocation se-
quentially by using the same thread. However, if you make the following change shown in
bold to the AddToAccumulator method, you will get different results:

private static void AddToAccumulator(int data)

{

 if ((accumulator % 2) == 0)

 {

 accumulator += data;

 Thread.Sleep(10); // wait for 10 milliseconds

 }

 else

 {

 accumulator -= data;

 }

}

The Thread.Sleep method simply causes the current thread to wait for the specified period of
time. This modification simulates the thread, performing additional processing and affects
the way in which the .NET Framework schedules the tasks, which now run on different
threads resulting in a different sequence.

The general rule is to use Parallel.For and Parallel.ForEach only if you can guarantee that each
iteration of the loop is independent, and test your code thoroughly. A similar consideration
applies to Parallel.Invoke; use this construct to make method calls only if they are indepen-
dent and the application does not depend on them being run in a particular sequence.

Returning a Value from a Task
So far, all the examples you have seen use a Task object to run code that performs a piece
of work but does not return a value. However, you might also want to run a method that

	 Chapter 27  Introducing the Task Parallel Library	 625

calculates a result. The TPL includes a generic variant of the Task class, Task<TResult>, that
you can use for this purpose.

You create and run a Task<TResult> object in a similar way as a Task object. The main dif-
ference is that the method run by the Task<TResult> object returns a value, and you specify
the type of this return value as the type parameter, T, of the Task object. For example, the
method calculateValue shown in the following code example returns an integer value. To
invoke this method by using a task, you create a Task<int> object and then call the Start
method. You obtain the value returned by the method by querying the Result property of
the Task<int> object. If the task has not finished running the method and the result is not
yet available, the Result property blocks the caller. What this means is that you don’t have to
perform any synchronization yourself, and you know that when the Result property returns a
value the task has completed its work.

Task<int> calculateValueTask = new Task<int>(() => calculateValue(...));

calculateValueTask.Start(); // Invoke the calculateValue method

...

int calculatedData = calculateValueTask.Result; // Block until calculateValueTask completes

...

private int calculateValue(...)

{

 int someValue;

 // Perform calculation and populate someValue

 ...

 return someValue;

}

Of course, you can also use the StartNew method of a TaskFactory object to create a
Task<TResult> object and start it running. The next code example shows how to use
the default TaskFactory for a Task<int> object to create and run a task that invokes the
calculateValue method:

Task<int> calculateValueTask = Task<int>.Factory.StartNew(() => calculateValue(...));

...

To simplify your code a little (and to support tasks that return anonymous types), the
TaskFactory class provides generic overloads of the StartNew method and can infer the type
returned by the method run by a task. Additionally, the Task<TResult> class inherits from the
Task class. This means that you can rewrite the previous example like this:

Task calculateValueTask = Task.Factory.StartNew(() => calculateValue(...));

...

The next exercise gives a more detailed example. In this exercise, you will restructure
the GraphDemo application to use a Task<TResult> object. Although this exercise seems
a little academic, you might find the technique that it demonstrates useful in many real-
world situations.

626	 Part VI  Building Professional Solutions with Visual Studio 2010

Modify the GraphDemo application to use a Task<TResult> object

	 1.	 Using Visual Studio 2010, open the GraphDemo solution, located in the \Microsoft
Press\Visual CSharp Step By Step\Chapter 27\GraphDemo Using Tasks that Return
Results folder in your Documents folder.

This is a copy of the GraphDemo application that creates a set of four tasks that you
saw in an earlier exercise.

	 2.	 In Solution Explorer, in the GraphDemo project, expand the GraphWindow.xaml node,
and then double-click GraphWindow.xaml.cs to display the code for the form in the
Code and Text Editor window.

	 3.	 Locate the plotButton_Click method. This is the method that runs when the user clicks
the Plot Graph button on the form. Currently, it creates a set of Task objects to perform
the various calculations required and generate the data for the graph, and it waits for
these Task objects to complete before displaying the results in the Image control on the
form.

	 4.	 Underneath the plotButton_Click method, add a new method called getDataForGraph.
This method should take an integer parameter called dataSize and return a byte array,
as shown in the following code:

private byte[] getDataForGraph(int dataSize)

{

}

You will add code to this method to generate the data for the graph in a byte array and
return this array to the caller. The dataSize parameter specifies the size of the array.

	 5.	 Move the statement that creates the data array from the plotButton_Click method to
the getDataForGraph method as shown here in bold:

private byte[] getDataForGraph(int dataSize)

{

 byte[] data = new byte[dataSize];

}

	 6.	 Move the code that creates, runs, and waits for the Task objects that populate the data
array from the plotButton_Click method to the getDataForGraph method, and add a
return statement to the end of the method that passes the data array back to the caller.
The completed code for the getDataForGraph method should look like this:

private byte[] getDataForGraph(int dataSize)

{

 byte[] data = new byte[dataSize];

 Task first = Task.Factory.StartNew(() => generateGraphData(data, 0, pixelWidth /

8));

 Task second = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth / 8,

pixelWidth / 4));

 Task third = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth / 4,

	 Chapter 27  Introducing the Task Parallel Library	 627

pixelWidth * 3 / 8));

 Task fourth = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth * 3 /

8, pixelWidth / 2));

 Task.WaitAll(first, second, third, fourth);

 return data;

}

Tip  You can replace the code that creates the tasks and waits for them to complete with
the following Parallel.Invoke construct:

Parallel.Invoke(

 () => generateGraphData(data, 0, pixelWidth / 8),

 () => generateGraphData(data, pixelWidth / 8, pixelWidth / 4),

 () => generateGraphData(data, pixelWidth / 4, pixelWidth * 3 / 8),

 () => generateGraphData(data, pixelWidth * 3 / 8, pixelWidth / 2)

);

	 7.	 In the plotButton_Click method, after the statement that creates the Stopwatch
variable used to time the tasks, add the statement shown next in bold that cre-
ates a Task<byte[]> object called getDataTask and uses this object to run the
getDataForGraph method. This method returns a byte array, so the type of the task is
Task<byte []>. The StartNew method call references a lambda expression that invokes
the getDataForGraph method and passes the dataSize variable as the parameter to this
method.

private void plotButton_Click(object sender, RoutedEventArgs e)

{

 ...

 Stopwatch watch = Stopwatch.StartNew();

 Task<byte[]> getDataTask = Task<byte[]>.Factory.StartNew(() =>

getDataForGraph(dataSize));

 ...

}

	 8.	 After creating and starting the Task<byte []> object, add the following statements
shown in bold that examine the Result property to retrieve the data array returned by
the getDataForGraph method into a local byte array variable called data. Remember
that the Result property blocks the caller until the task has completed, so you do not
need to explicitly wait for the task to finish.

private void plotButton_Click(object sender, RoutedEventArgs e)

{

 ...

 Task<byte[]> getDataTask = Task<byte[]>.Factory.StartNew(() =>

getDataForGraph(dataSize));

 byte[] data = getDataTask.Result;

 ...

}

628	 Part VI  Building Professional Solutions with Visual Studio 2010

Note  It might seem a little strange to create a task and then immediately wait for it to
complete before doing anything else because it only adds overhead to the application.
However, in the next section, you will see why this approach has been adopted.

	 9.	 Verify that the completed code for the plotButton_Click method looks like this:

private void plotButton_Click(object sender, RoutedEventArgs e)

{

 if (graphBitmap == null)

 {

 graphBitmap = new WriteableBitmap(pixelWidth, pixelHeight, dpiX, dpiY,

PixelFormats.Gray8, null);

 }

 int bytesPerPixel = (graphBitmap.Format.BitsPerPixel + 7) / 8;

 int stride = bytesPerPixel * pixelWidth;

 int dataSize = stride * pixelHeight;

 Stopwatch watch = Stopwatch.StartNew();

 Task<byte[]> getDataTask = Task<byte[]>.Factory.StartNew(() =>

getDataForGraph(dataSize));

 byte[] data = getDataTask.Result;

 duration.Content = string.Format("Duration (ms): {0}", watch.ElapsedMilliseconds);

 graphBitmap.WritePixels(new Int32Rect(0, 0, pixelWidth, pixelHeight), data,

stride, 0);

 graphImage.Source = graphBitmap;

}

	 10.	 On the Debug menu, click Start Without Debugging to build and run the application.

	 11.	 In the Graph Demo window, click Plot Graph. Verify that the graph is generated as
before and that the time taken is similar to that seen previously. (The time reported
might be marginally slower because the data array is now created by the task, whereas
previously it was created before the task started running.)

	 12.	 Close the Graph Demo window.

Using Tasks and User Interface Threads Together
The section “Why Perform Multitasking by Using Parallel Processing?” at the start of this
chapter highlighted the two principal reasons for using multitasking in an application—to
improve throughput and increase responsiveness. The TPL can certainly assist in improving
throughput, but you need to be aware that using the TPL alone is not the complete solu-
tion to improving responsiveness, especially in an application that provides a graphical user
interface. In the GraphDemo application used as the basis for the exercises in this chapter,
although the time taken to generate the data for the graph is reduced by the effective use
of tasks, the application itself exhibits the classic symptoms of many GUIs that perform pro-
cessor-intensive computations—it is not responsive to user input while these computations

	 Chapter 27  Introducing the Task Parallel Library	 629

are being performed. For example, if you run the GraphDemo application from the previous
exercise, click Plot Graph, and then try and move the Graph Demo window by clicking and
dragging the title bar, you will find that it does not move until after the various tasks used to
generate the graph have completed and the graph is displayed.

In a professional application, you should ensure that users can still use your application even
if parts of it are busy performing other tasks. This is where you need to use threads as well as
tasks.

In Chapter 23, you saw how the items that constitute the graphical user interface in a WPF
application all run on the same user interface (UI) thread. This is to ensure consistency and
safety, and it prevents two or more threads from potentially corrupting the internal data
structures used by WPF to render the user interface. Remember also that you can use the
WPF Dispatcher object to queue requests for the UI thread, and these requests can update
the user interface. The next exercise revisits the Dispatcher object and shows how you can
use it to implement a responsive solution in conjunction with tasks that ensure the best
available throughput.

Improve responsiveness in the GraphDemo application

	 1.	 Return to Visual Studio 2010, and display the GraphWindow.xaml.cs file in the Code and
Text Editor window if it is not already open.

	 2.	 Add a new method called doPlotButtonWork below the plotButton_Click method. This
method should take no parameters and not return a result. In the next few steps, you
will move the code that creates and runs the tasks that generate the data for the graph
to this method, and you will run this method on a separate thread, leaving the UI
thread free to manage user input.

private void doPlotButtonWork()

{

}

	 3.	 Move all the code except for the if statement that creates the graphBitmap object
from the plotButton_Click method to the doPlotButtonWork method. Note that some
of these statements attempt to access user interface items; you will modify these
statements to use the Dispatcher object later in this exercise. The plotButton_Click and
doPlotButtonWork methods should look like this:

private void plotButton_Click(object sender, RoutedEventArgs e)

{

 if (graphBitmap == null)

 {

 graphBitmap = new WriteableBitmap(pixelWidth, pixelHeight, dpiX, dpiY,

PixelFormats.Gray8, null);

 }

}

630	 Part VI  Building Professional Solutions with Visual Studio 2010

private void doPlotButtonWork()

{

 int bytesPerPixel = (graphBitmap.Format.BitsPerPixel + 7) / 8;

 int stride = bytesPerPixel * pixelWidth;

 int dataSize = stride * pixelHeight;

 Stopwatch watch = Stopwatch.StartNew();

 Task<byte[]> getDataTask = Task<byte[]>.Factory.StartNew(() =>

getDataForGraph(dataSize));

 byte[] data = getDataTask.Result;

 duration.Content = string.Format("Duration (ms): {0}", watch.ElapsedMilliseconds);

 graphBitmap.WritePixels(new Int32Rect(0, 0, pixelWidth, pixelHeight), data,

stride, 0);

 graphImage.Source = graphBitmap;

}

	 4.	 In the plotButton_Click method, after the if block, create an Action delegate called
doPlotButtonWorkAction that references the doPlotButtonWork method, as shown here
in bold:

private void plotButton_Click(object sender, RoutedEventArgs e)

{

 ...

 Action doPlotButtonWorkAction = new Action(doPlotButtonWork);

}

	 5.	 Call the BeginInvoke method on the doPlotButtonWorkAction delegate. The BeginInvoke
method of the Action type executes the method associated with the delegate (in this
case, the doPlotButtonWork method) on a new thread.

Note  The Action type also provides the Invoke method, which runs the delegated meth-
od on the current thread. This behavior is not what we want in this case because it blocks
the user interface and prevents it from being able to respond while the method is running.

The BeginInvoke method takes parameters you can use to arrange notification when
the method finishes, as well as any data to pass to the delegated method. In this ex-
ample, you do not need to be notified when the method completes and the method
does not take any parameters, so specify a null value for these parameters as shown in
bold here:

private void plotButton_Click(object sender, RoutedEventArgs e)

{

 ...

 Action doPlotButtonWorkAction = new Action(doPlotButtonWork);

 doPlotButtonWorkAction.BeginInvoke(null, null);

}

	 Chapter 27  Introducing the Task Parallel Library	 631

The code will compile at this point, but if you try and run it, it will not work correctly
when you click Plot Graph. This is because several statements in the doPlotButtonWork
method attempt to access user interface items, and this method is not running on
the UI thread. You met this issue in Chapter 23, and you also saw the solution at that
time—use the Dispatcher object for the UI thread to access UI elements. The following
steps amend these statements to use the Dispatcher object to access the user interface
items from the correct thread.

	 6.	 Add the following using statement to the list at the top of the file:

using System.Windows.Threading;

The DispatcherPriority enumeration is held in this namespace. You will use this enumer-
ation when you schedule code to run on the UI thread by using the Dispatcher object.

	 7.	 At the start of the doPlotButtonWork method, examine the statement that initializes the
bytesPerPixel variable:

private void doPlotButtonWork()

{

 int bytesPerPixel = (graphBitmap.Format.BitsPerPixel + 7) / 8;

 ...

}

This statement references the graphBitmap object, which belongs to the UI thread. You
can access this object only from code running on the UI thread. Change this statement
to initialize the bytesPerPixel variable to zero, and add a statement to call the Invoke
method of the Dispatcher object, as shown in bold here:

private void doPlotButtonWork()

{

 int bytesPerPixel = 0;

 plotButton.Dispatcher.Invoke(new Action(() =>

 { bytesPerPixel = (graphBitmap.Format.BitsPerPixel + 7) / 8; }),

 DispatcherPriority.ApplicationIdle);

 ...

}

Recall from Chapter 23 that you can access the Dispatcher object through the
Dispatcher property of any UI element. This code uses the plotButton button. The
Invoke method expects a delegate and an optional dispatcher priority. In this case,
the delegate references a lambda expression. The code in this expression runs on the
UI thread. The DispatcherPriority parameter indicates that this statement should run
only when the application is idle and there is nothing else more important going on in
the user interface (such as the user clicking a button, typing some text, or moving the
window).

632	 Part VI  Building Professional Solutions with Visual Studio 2010

	 8.	 Examine the final three statements in the doPlotButtonWork method. They look like
this:

private void doPlotButtonWork()

{

 ...

 duration.Content = string.Format("Duration (ms): {0}", watch.ElapsedMilliseconds);

 graphBitmap.WritePixels(new Int32Rect(0, 0, pixelWidth, pixelHeight), data,

stride, 0);

 graphImage.Source = graphBitmap;

}

These statements reference the duration, graphBitmap, and graphImage objects, which
are all part of the user interface. Consequently, you must change these statements to
run on the UI thread.

	 9.	 Modify these statements, and run them by using the Dispatcher.Invoke method, as
shown in bold here:

private void doPlotButtonWork()

{

 ...

 plotButton.Dispatcher.Invoke(new Action(() =>

 {

 duration.Content = string.Format("Duration (ms): {0}", watch.

ElapsedMilliseconds);

 graphBitmap.WritePixels(new Int32Rect(0, 0, pixelWidth, pixelHeight), data,

stride, 0);

 graphImage.Source = graphBitmap;

 }), DispatcherPriority.ApplicationIdle);

}

This code converts the statements into a lambda expression wrapped in an Action
delegate, and then invokes this delegate by using the Dispatcher object.

	 10.	 On the Debug menu, click Start Without Debugging to build and run the application.

	 11.	 In the Graph Demo window, click Plot Graph and before the graph appears quickly
drag the window to another location on the screen. You should find that the window
responds immediately and does not wait for the graph to appear first.

	 12.	 Close the Graph Demo window.

Canceling Tasks and Handling Exceptions
Another common requirement of applications that perform long-running operations is the
ability to stop those operations if necessary. However, you should not simply abort a task be-
cause this could leave the data in your application in an indeterminate state. Instead, the TPL
implements a cooperative cancellation strategy. Cooperative cancellation enables a task to

	 Chapter 27  Introducing the Task Parallel Library	 633

select a convenient point at which to stop processing and also enables it to undo any work it
has performed prior to cancellation if necessary.

The Mechanics of Cooperative Cancellation
Cooperative cancellation is based on the notion of a cancellation token. A cancellation token
is a structure that represents a request to cancel one or more tasks. The method that a task
runs should include a System.Threading.CancellationToken parameter. An application that
wants to cancel the task sets the Boolean IsCancellationRequested property of this parameter
to true. The method running in the task can query this property at various points during its
processing. If this property is set to true at any point, it knows that the application has re-
quested that the task be canceled. Also, the method knows what work it has done so far, so
it can undo any changes if necessary and then finish. Alternatively, the method can simply
ignore the request and continue running if it does not want to cancel the task.

Tip  You should examine the cancellation token in a task frequently, but not so frequently that
you adversely impact the performance of the task. If possible, you should aim to check for
cancellation at least every 10 milliseconds, but no more frequently than every millisecond.

An application obtains a CancellationToken by creating a System.Threading.
CancellationTokenSource object and querying the Token property of this object. The appli-
cation can then pass this CancellationToken object as a parameter to any methods started
by tasks that the application creates and runs. If the application needs to cancel the tasks,
it calls the Cancel method of the CancellationTokenSource object. This method sets the
IsCancellationRequested property of the CancellationToken passed to all the tasks.

The following code example shows how to create a cancellation token and use it to cancel a
task. The initiateTasks method instantiates the cancellationTokenSource variable and obtains
a reference to the CancellationToken object available through this variable. The code then
creates and runs a task that executes the doWork method. Later on, the code calls the Cancel
method of the cancellation token source, which sets the cancellation token. The doWork
method queries the IsCancellationRequested property of the cancellation token. If the
property is set the method terminates; otherwise, it continues running.

public class MyApplication

{

 ...

 // Method that creates and manages a task

 private void initiateTasks()

 {

 // Create the cancellation token source and obtain a cancellation token

 CancellationTokenSource cancellationTokenSource = new CancellationTokenSource();

 CancellationToken cancellationToken = cancellationToken.Token;

634	 Part VI  Building Professional Solutions with Visual Studio 2010

 // Create a task and start it running the doWork method

 Task myTask = Task.Factory.StartNew(() => doWork(cancellationToken));

 ...

 if (...)

 {

 // Cancel the task

 cancellationTokenSource.Cancel();

 }

 ...

 }

 // Method run by the task

 private void doWork(CancellationToken token)

 {

 ...

 // If the application has set the cancellation token, finish processing

 if (token.IsCancellationRequested)

 {

 // Tidy up and finish

 ...

 return;

 }

 // If the task has not been canceled, continue running as normal

 ...

 }

}

As well as providing a high degree of control over the cancellation processing, this approach
is scalable across any number of tasks. You can start multiple tasks and pass the same
CancellationToken object to each of them. If you call Cancel on the CancellationTokenSource
object, each task will see that the IsCancellationRequested property has been set and can
react accordingly.

You can also register a callback method with the cancellation token by using the
Register method. When an application invokes the Cancel method of the corresponding
CancellationTokenSource object, this callback runs. However, you cannot guarantee when this
method executes; it might be before or after the tasks have performed their own cancellation
processing, or even during that process.

...

cancellationToken,Register(doAdditionalWork);

...

private void doAdditionalWork()

{

 // Perform additional cancellation processing

}

In the next exercise, you will add cancellation functionality to the GraphDemo application.

	 Chapter 27  Introducing the Task Parallel Library	 635

Add cancellation functionality to the GraphDemo application

	 1.	 Using Visual Studio 2010, open the GraphDemo solution, located in the \Microsoft
Press\Visual CSharp Step By Step\Chapter 27\GraphDemo Canceling Tasks folder in
your Documents folder.

This is a completed copy of the GraphDemo application from the previous exercise that
uses tasks and threads to improve responsiveness.

	 2.	 In Solution Explorer, in the GraphDemo project, double-click GraphWindow.xaml to
display the form in the Design View window.

	 3.	 From the Toolbox, add a Button control to the form under the duration label. Align the
button horizontally with the plotButton button. In the Properties window, change the
Name property of the new button to cancelButton, and change the Content property
to Cancel.

The amended form should look like the following image.

	 4.	 Double-click the Cancel button to create a Click event handling method called
cancelButton_Click.

	 5.	 In the GraphWindow.xaml.cs file, locate the getDataForGraph method. This method
creates the tasks used by the application and waits for them to complete. Move the
declaration of the Task variables to the class level for the GraphWindow class as shown
in bold in the following code, and then modify the getDataForGraph method to
instantiate these variables:

public partial class GraphWindow : Window

{

 ...

 private Task first, second, third, fourth;

 ...

 private byte[] getDataForGraph(int dataSize)

636	 Part VI  Building Professional Solutions with Visual Studio 2010

 {

 byte[] data = new byte[dataSize];

 first = Task.Factory.StartNew(() => generateGraphData(data, 0, pixelWidth /

8));

 second = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth / 8,

pixelWidth / 4));

 third = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth / 4,

pixelWidth * 3 / 8));

 fourth = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth * 3 /

8, pixelWidth / 2));

 Task.WaitAll(first, second, third, fourth);

 return data;

 }

}

	 6.	 Add the following using statement to the list at the top of the file:

using System.Threading;

The types used by cooperative cancellation live in this namespace.

	 7.	 Add a CancellationTokenSource member called tokenSource to the GraphWindow class,
and initialize it to null, as shown here in bold:

public class GraphWindow : Window

{

 ...

 private Task first, second, third, fourth;

 private CancellationTokenSource tokenSource = null;

 ...

}

	 8.	 Find the generateGraphData method, and add a CancellationToken parameter called
token to the method definition:

private void generateGraphData(byte[] data, int partitionStart, int partitionEnd,

CancellationToken token)

{

 ...

}

	 9.	 In the generateGraphData method, at the start of the inner for loop, add the code
shown next in bold to check whether cancellation has been requested. If so, return
from the method; otherwise, continue calculating values and plotting the graph.

private void generateGraphData(byte[] data, int partitionStart, int partitionEnd,

CancellationToken token)

{

 int a = pixelWidth / 2;

 int b = a * a;

 int c = pixelHeight / 2;

 for (int x = partitionStart; x < partitionEnd; x ++)

 {

 int s = x * x;

	 Chapter 27  Introducing the Task Parallel Library	 637

 double p = Math.Sqrt(b - s);

 for (double i = -p; i < p; i += 3)

 {

 if (token.IsCancellationRequested)

 {

 return;

 }

 double r = Math.Sqrt(s + i * i) / a;

 double q = (r - 1) * Math.Sin(24 * r);

 double y = i / 3 + (q * c);

 plotXY(data, (int)(-x + (pixelWidth / 2)), (int)(y + (pixelHeight / 2)));

 plotXY(data, (int)(x + (pixelWidth / 2)), (int)(y + (pixelHeight / 2)));

 }

 }

}

	 10.	 In the getDataForGraph method, add the following statements shown in bold that in-
stantiate the tokenSource variable and retrieve the CancellationToken object into a vari-
able called token:

private byte[] getDataForGraph(int dataSize)

{

 byte[] data = new byte[dataSize];

 tokenSource = new CancellationTokenSource();

 CancellationToken token = tokenSource.Token;

 ...

}

	 11.	 Modify the statements that create and run the four tasks, and pass the token variable as
the final parameter to the generateGraphData method:

first = Task.Factory.StartNew(() => generateGraphData(data, 0, pixelWidth / 8,

token));

second = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth / 8,

pixelWidth / 4, token));

third = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth / 4, pixelWidth

* 3 / 8, token));

fourth = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth * 3 / 8,

pixelWidth / 2, token));

	 12.	 In the cancelButton_Click method, add the code shown here in bold:

private void cancelButton_Click(object sender, RoutedEventArgs e)

{

 if (tokenSource != null)

 {

 tokenSource.Cancel();

 }

}

This code checks that the tokenSource variable has been instantiated; if it has been, the
code invokes the Cancel method on this variable.

	 13.	 On the Debug menu, click Start Without Debugging to build and run the application.

638	 Part VI  Building Professional Solutions with Visual Studio 2010

	 14.	 In the GraphDemo window, click Plot Graph, and verify that the graph appears as it did
before.

	 15.	 Click Plot Graph again, and then quickly click Cancel.

If you are quick and click Cancel before the data for the graph is generated, this ac-
tion causes the methods being run by the tasks to return. The data is not complete, so
the graph appears with holes, as shown in the following figure. (The size of the holes
depends on how quickly you clicked Cancel.)

	 16.	 Close the GraphDemo window, and return to Visual Studio.

You can determine whether a task completed or was canceled by examining the Status prop-
erty of the Task object. The Status property contains a value from the System.Threading.Tasks.
TaskStatus enumeration. The following list describes some of the status values that you might
commonly encounter (there are others):

n	 Created  This is the initial state of a task. It has been created but has not yet been
scheduled to run.

n	 WaitingToRun  The task has been scheduled but has not yet started to run.

n	 Running  The task is currently being executed by a thread.

n	 RanToCompletion  The task completed successfully without any unhandled exceptions.

n	 Canceled  The task was canceled before it could start running, or it acknowledged
cancellation and completed without throwing an exception.

n	 Faulted  The task terminated because of an exception.

	 Chapter 27  Introducing the Task Parallel Library	 639

In the next exercise, you will attempt to report the status of each task so that you can see
when they have completed or have been canceled.

Canceling a Parallel For or ForEach Loop
The Parallel.For and Parallel.ForEach methods don’t provide you with direct access to
the Task objects that have been created. Indeed, you don’t even know how many tasks
are running—the .NET Framework uses its own heuristics to work out the optimal num-
ber to use based on the resources available and the current workload of the computer.

If you want to stop the Parallel.For or Parallel.ForEach method early, you must use a
ParallelLoopState object. The method you specify as the body of the loop must include
an additional ParallelLoopState parameter. The TPL creates a ParallelLoopState object
and passes it as this parameter into the method. The TPL uses this object to hold infor-
mation about each method invocation. The method can call the Stop method of this
object to indicate that the TPL should not attempt to perform any iterations beyond
those that have already started and finished. The following example shows the Parallel.
For method calling the doLoopWork method for each iteration. The doLoopWork meth-
od examines the iteration variable; if it is greater than 600, the method calls the Stop
method of the ParallelLoopState parameter. This causes the Parallel.For method to stop
running further iterations of the loop. (Iterations currently running might continue to
completion.)

Note  Remember that the iterations in a Parallel.For loop are not run in a specific
sequence. Consequently, canceling the loop when the iteration variable has the value
600 does not guarantee that the previous 599 iterations have already run. Equally, some
iterations with values greater than 600 might already have completed.

Parallel.For(0, 1000, doLoopWork);

...

private void doLoopWork(int i, ParallelLoopState p)

{

 ...

 if (i > 600)

 {

 p.Stop();

 }

}

640	 Part VI  Building Professional Solutions with Visual Studio 2010

Display the status of each task

	 1.	 In Visual Studio, in the Code and Text Editor window, find the getDataForGraph method.

	 2.	 Add the following code shown in bold to this method. These statements generate a
string that contains the status of each task after they have finished running, and they
display a message box containing this string.

private byte[] getDataForGraph(int dataSize)

{

 ...

 Task.WaitAll(first, second, third, fourth);

 String message = String.Format("Status of tasks is {0}, {1}, {2}, {3}",

 first.Status, second.Status, third.Status, fourth.Status);

 MessageBox.Show(message);

 return data;

}

	 3.	 On the Debug menu, click Start Without Debugging.

	 4.	 In the GraphDemo window, click Plot Graph but do not click Cancel. Verify that
the following message box appears, which reports that the status of the tasks is
RanToCompletion (four times), and then click OK. Note that the graph appears only
after you have clicked OK.

	 5.	 In the GraphDemo window, click Plot Graph again and then quickly click Cancel.

Surprisingly, the message box that appears still reports the status of each task as
RanToCompletion, even though the graph appears with holes. This is because although
you sent a cancellation request to each task by using the cancellation token, the
methods they were running simply returned. The .NET Framework runtime does not
know whether the tasks were actually canceled or whether they were allowed to run to
completion and simply ignored the cancellation requests.

	 6.	 Close the GraphDemo window, and return to Visual Studio.

So how do you indicate that a task has been canceled rather than allowed to run to
completion? The answer lies in the CancellationToken object passed as a parameter to the
method that the task is running. The CancellationToken class provides a method called
ThrowIfCancellationRequested. This method tests the IsCancellationRequested property of a

	 Chapter 27  Introducing the Task Parallel Library	 641

cancellation token; if it is true, the method throws an OperationCanceledException exception
and aborts the method that the task is running.

The application that started the thread should be prepared to catch and handle this
exception, but this leads to another question. If a task terminates by throwing an ex-
ception, it actually reverts to the Faulted state. This is true, even if the exception is an
OperationCanceledException exception. A task enters the Canceled state only if it is canceled
without throwing an exception. So how does a task throw an OperationCanceledException
without it being treated as an exception?

The answer lies in the task itself. For a task to recognize that an OperationCanceledException
is the result of canceling the task in a controlled manner and not just an exception caused
by other circumstances, it has to know that the operation has actually been canceled. It can
do this only if it can examine the cancellation token. You passed this token as a parameter
to the method run by the task, but the task does not actually look at any of these para-
meters. (It considers them to be the business of the method and is not concerned with them.)
Instead, you specify the cancellation token when you create the task, either as a parameter
to the Task constructor or as a parameter to the StartNew method of the TaskFactory object
you are using to create and run tasks. The following code shows an example based on the
GraphDemo application. Notice how the token parameter is passed to the generateGraph-
Data method (as before), but also as a separate parameter to the StartNew method:

Task first = null;

tokenSource = new CancellationTokenSource();

CancellationToken token = tokenSource.Token;

...

first = Task.Factory.StartNew(() => generateGraphData(data, 0, pixelWidth / 8, token),

token);

Now when the method being run by the task throws an OperationCanceledException excep-
tion, the infrastructure behind the task examines the CancellationToken. If it indicates that the
task has been canceled, the infrastructure handles the OperationCanceledException excep-
tion, acknowledges the cancelation, and sets the status of the task to Canceled. The infra-
structure then throws a TaskCanceledException, which your application should be prepared to
catch. This is what you will do in the next exercise, but before you do that you need to learn a
little more about how tasks raise exceptions and how you should handle them.

Handling Task Exceptions by Using the AggregateException
Class
You have seen throughout this book that exception handling is an important element in any
commercial application. The exception handling constructs you have met so far are straight-
forward to use, and if you use them carefully it is a simple matter to trap an exception and
determine which piece of code raised it. However, when you start dividing work into multiple

642	 Part VI  Building Professional Solutions with Visual Studio 2010

concurrent tasks, tracking and handling exceptions becomes a more complex problem. The
issue is that different tasks might each generate their own exceptions, and you need a way
to catch and handle multiple exceptions that might be thrown concurrently. This is where the
AggregateException class comes in.

An AggregateException acts as a wrapper for a collection of exceptions. Each of the
exceptions in the collection might be thrown by different tasks. In your application, you can
catch the AggregateException exception and then iterate through this collection and perform
any necessary processing. To help you, the AggregateException class provides the Handle
method. The Handle method takes a Func<Exception, bool> delegate that references a meth-
od. The referenced method takes an Exception object as its parameter and returns a Boolean
value. When you call Handle, the referenced method runs for each exception in the collection
in the AggregateException object. The referenced method can examine the exception and
take the appropriate action. If the referenced method handles the exception, it should return
true. If not, it should return false. When the Handle method completes, any unhandled excep-
tions are bundled together into a new AggregateException and this exception is thrown; a
subsequent outer exception handler can then catch this exception and process it.

In the next exercise, you will see how to catch an AggregateException and use it to handle the
TaskCanceledException exception thrown when a task is canceled.

Acknowledge cancellation, and handle the AggregateException exception

	 1.	 In Visual Studio, display the GraphWindow.xaml file in the Design View window.

	 2.	 From the Toolbox, add a Label control to the form underneath the cancelButton button.
Align the left edge of the Label control with the left edge of the cancelButton button.

	 3.	 Using the Properties window, change the Name property of the Label control to status,
and remove the value in the Content property.

	 4.	 Return to the Code and Text Editor window displaying the GraphWindow.xaml.cs file,
and add the following method below the getDataForGraph method:

private bool handleException(Exception e)

{

 if (e is TaskCanceledException)

 {

 plotButton.Dispatcher.Invoke(new Action(() =>

 {

 status.Content = "Tasks Canceled";

 }), DispatcherPriority.ApplicationIdle);

 return true;

 }

 else

 {

 return false;

 }

}

	 Chapter 27  Introducing the Task Parallel Library	 643

This method examines the Exception object passed in as a parameter; if it is a
TaskCanceledException object, the method displays the text “Tasks Canceled” in the
status label on the form and returns true to indicate that it has handled the exception;
otherwise, it returns false.

	 5.	 In the getDataForGraph method, modify the statements that create and run the tasks
and specify the CancellationToken object as the second parameter to the StartNew
method, as shown in bold in the following code:

private byte[] getDataForGraph(int dataSize)

{

 byte[] data = new byte[dataSize];

 tokenSource = new CancellationTokenSource();

 CancellationToken token = tokenSource.Token;

 ...

 first = Task.Factory.StartNew(() => generateGraphData(data, 0, pixelWidth / 8,

token), token);

 second = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth / 8,

pixelWidth / 4, token), token);

 third = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth / 4,

pixelWidth * 3 / 8, token), token);

 fourth = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth * 3 / 8,

pixelWidth / 2, token), token);

 Task.WaitAll(first, second, third, fourth);

 ...

}

	 6.	 Add a try block around the statements that create and run the tasks, and wait for
them to complete. If the wait is successful, display the text “Tasks Completed” in the
status label on the form by using the Dispatcher.Invoke method. Add a catch block that
handles the AggregateException exception. In this exception handler, call the Handle
method of the AggregateException object and pass a reference to the handleException
method. The code shown next in bold highlights the changes you should make:

private byte[] getDataForGraph(int dataSize)

{

 byte[] data = new byte[dataSize];

 tokenSource = new CancellationTokenSource();

 CancellationToken token = tokenSource.Token;

 try

 {

 first = Task.Factory.StartNew(() => generateGraphData(data, 0, pixelWidth / 8,

token), token);

 second = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth / 8,

pixelWidth / 4, token), token);

 third = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth / 4,

pixelWidth * 3 / 8, token), token);

 fourth = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth * 3 /

8, pixelWidth / 2, token), token);

 Task.WaitAll(first, second, third, fourth);

644	 Part VI  Building Professional Solutions with Visual Studio 2010

 plotButton.Dispatcher.Invoke(new Action(() =>

 {

 status.Content = "Tasks Completed";

 }), DispatcherPriority.ApplicationIdle);

 }

 catch (AggregateException ae)

 {

 ae.Handle(handleException);

 }

 String message = String.Format("Status of tasks is {0}, {1}, {2}, {3}",

 first.Status, second.Status, third.Status, fourth.Status);

 MessageBox.Show(message);

 return data;

}

	 7.	 In the generateDataForGraph method, replace the if statement that examines the
IsCancellationProperty of the CancellationToken object with code that calls the
ThrowIfCancellationRequested method, as shown here in bold:

private void generateDataForGraph(byte[] data, int partitionStart, int partitionEnd,

CancellationToken token)

{

 ...

 for (int x = partitionStart; x < partitionEnd; x++);

 {

 ...

 for (double i = -p; I < p; i += 3)

 {

 token.ThrowIfCancellationRequested();

 ...

 }

 }

 ...

}

	 8.	 On the Debug menu, click Start Without Debugging.

	 9.	 In the Graph Demo window, click Plot Graph and verify that the status of every task is
reported as RanToCompletion, the graph is generated, and the status label displays the
message “Tasks Completed”.

	 10.	 Click Plot Graph again, and then quickly click Cancel. If you are quick, the status of one
or more tasks should be reported as Canceled, the status label should display the text
“Tasks Canceled”, and the graph should be displayed with holes. If you are not quick
enough, repeat this step to try again!

	 11.	 Close the Graph Demo window, and return to Visual Studio.

	 Chapter 27  Introducing the Task Parallel Library	 645

Using Continuations with Canceled and Faulted Tasks
If you need to perform additional work when a task is canceled or raises an unhandled
exception, remember that you can use the ContinueWith method with the appropriate
TaskContinuationOptions value. For example, the following code creates a task that runs the
method doWork. If the task is canceled, the ContinueWith method specifies that another task
should be created and run the method doCancellationWork. This method can perform some
simple logging or tidying up. If the task is not canceled, the continuation does not run.

Task task = new Task(doWork);

task.ContinueWith(doCancellationWork, TaskContinuationOptions.OnlyOnCanceled);

task.Start();

...

private void doWork()

{

 // The task runs this code when it is started

 ...

}

...

private void doCancellationWork(Task task)

{

 // The task runs this code when doWork completes

 ...

}

Similarly, you can specify the value TaskContinuationOptions.OnlyOnFaulted to specify a
continuation that runs if the original method run by the task raises an unhandled exception.

In this chapter, you learned why it is important to write applications that can scale across
multiple processors and processor cores. You saw how to use the Task Parallel Library to run
operations in parallel, and how to synchronize concurrent operations and wait for them to
complete. You learned how to use the Parallel class to parallelize some common program-
ming constructs, and you also saw when it is inappropriate to parallelize code. You used tasks
and threads together in a graphical user interface to improve responsiveness and through-
put, and you saw how to cancel tasks in a clean and controlled manner.

n	 If you want to continue to the next chapter

Keep Visual Studio 2010 running, and turn to Chapter 28.

n	 If you want to exit Visual Studio 2010 now

On the File menu, click Exit. If you see a Save dialog box, click Yes and save the project.

646	 Part VI  Building Professional Solutions with Visual Studio 2010

Chapter 27 Quick Reference
To Do this

Create a task and run it Either use the StartNew method of a TaskFactory object to create and run
the task in a single step:

Task task = taskFactory.StartNew(doWork());

...

private void doWork()

{

 // The task runs this code when it is started

 ...

}

Or create a new Task object that references a method to run and call the
Start method:

Task task = new Task(doWork);

task.Start();

Wait for a task to finish Call the Wait method of the Task object:

Task task = ...;

...

task.Wait();

Wait for several tasks to finish Call the static WaitAll method of the Task class, and specify the tasks to
wait for:

Task task1 = ...;

Task task2 = ...;

Task task3 = ...;

Task task4 = ...;

...

Task.WaitAll(task1, task2, task3, task4);

Specify a method to run in a new
task when a task has completed

Call the ContinueWith method of the task, and specify the method as a
continuation:

Task task = new Task(doWork);

task.ContinueWith(doMoreWork,

 TaskContinuationOptions.NotOnFaulted);

Return a value from a task Use a Task<TResult> object to run a method, where the type parameter T
specifies the type of the return value of the method. Use the Result prop-
erty of the task to wait for the task to complete and return the value:

Task<int> calculateValueTask = new Task<int>(() =>

calculateValue(...));

calculateValueTask.Start(); // Invoke the calculateValue method

...

int calculatedData = calculateValueTask.Result; // Block until

calculateValueTask completes

	 Chapter 27  Introducing the Task Parallel Library	 647

To Do this

Perform loop iterations and state-
ment sequences by using parallel
tasks

Use the Parallel.For and Parallel.ForEach methods to perform loop itera-
tions by using tasks:

Parallel.For(0, 100, performLoopProcessing);

...

private void performLoopProcessing(int x)

{

 // Perform loop processing

}

Use the Parallel.Invoke method to perform concurrent method calls by
using separate tasks:

Parallel.Invoke(

 doWork,

 doMoreWork,

 doYetMoreWork

);

Handle exceptions raised by one or
more tasks

Catch the AggregateException exception. Use the Handle method to spec-
ify a method that can handle each exception in the AggregateException
object. If the exception-handling method handles the exception, return
true; otherwise, return false:

try

{

 Task task = Task.Factory.StartNew(...);

 ...

}

catch (AggregateException ae)

{

 ae.Handle(new Func<Exception, bool> (handleException));

}

...

private bool handleException(Exception e)

{

 if (e is TaskCanceledException)

 {

 ...

 return true;

 }

 else

 {

 return false;

 }

}

648	 Part VI  Building Professional Solutions with Visual Studio 2010

To Do this

Support cancellation in a task Implement cooperative cancellation by creating a
CancellationTokenSource object and using a CancellationToken pa-
rameter in the method run by the task. In the task method, call the
ThrowIfCancellationRequested method of the CancellationToken param-
eter to throw an OperationCanceledException exception and terminate
the task:

private void generateGraphData(..., CancellationToken token)

{

 ...

 token.ThrowIfCancellationRequested();

 ...

}

		 727

Index

Symbols
–= compound assignment

operator, 92, 332, 344
+= compound assignment

operator, 92, 331, 343
? modifier, 157, 171, 174
–– operator, 44, 425
* operator, 36, 170
*= operator, 92
/= operator, 92
%= operator, 37, 92
++ operator, 43, 425

A
About Box windows template,

488
about event methods, 488–489
abstract classes, 232, 253,

269–271
creating, 272–274, 277

abstract keyword, 270, 276, 277
abstract methods, 270–271, 277
access, protected, 242
accessibility

of fields and methods,
132–133

 of properties, 301
access keys for menu items, 480
accessors, get and set, 298
Action delegates, 604–605

creating, 508
invoking, 632

Action type, 630
add_Click method, 472
AddCount method, 664
AddExtension property, 496
addition operator, 36

precedence of, 41, 77
Add method, 208, 214, 217, 587
<Add New Event> command,

476
AddObject method, 596
AddParticipant method, 666
addValues method, 50, 52
Add Window command, 457
Administrator privileges, for

exercises, 535–537

ADO.NET, 535
connecting to databases with,

564
LINQ to SQL and, 549
querying databases with,

535–548, 564
ADO.NET class library, 535
ADO.NET Entity Data Model

template, 566, 569, 596
ADO.NET Entity Framework,

566–583
AggregateException class,

642–644
Handle method, 642

AggregateException exceptions,
647

AggregateException handler,
642–644

anchor points of controls,
447–448

AND (&) operator, 316
anonymous classes, 147–148
anonymous methods, 341
anonymous types in arrays,

194–195, 197
APIs, 300
App.config (application

configuration) file, 8, 573
connection strings, storing in,

572, 573
ApplicationException exceptions,

517
Application objects, 457
application programming

interfaces, 330
applications

building, 26
multitasking in, 602–628
parallelization in, 603
responsiveness of, 498–507
running, 26

Application.xaml.cs files, 24
App.xaml files, code in, 24
ArgumentException class, 220
ArgumentException exceptions,

205, 225
argumentList, 51
ArgumentOutOfRangeException

class, 121
arguments

in methods, 52
modifying, 159–162
named, ambiguities with,

66–71

omitting, 66
passing to methods, 159
positional, 66

arithmetic operations, 36–43
results type, 37

arithmetic operators
checked and unchecked, 119
precedence, 41–42
using, 38–41

array arguments, 220–226
array elements

accessing, 195, 218
types of, 192

array indexes, 195, 218
integer types for, 201

array instances
copying, 197–198
creating, 192–193, 218

ArrayList class, 208–209, 217
number of elements in, 209

arrays, 191–206
associative, 212
card playing application,

199–206
cells in, 198
vs. collections, 214
copying, 197–198
implicitly typed, 194–195
initializing elements of, 218
inserting elements, 208
of int variables, 207
iterating through, 195–197,

218
keys arrays, 212, 213
length of, 218
multidimensional, 198–199
of objects, 207
params arrays, 219–220
removing elements from, 208
resizing, 208
size of, 192–193
zero-length arrays, 223

array variables
declaring, 191–192, 218
initializing, 193–194
naming conventions, 192

as operator, 169, 236
AsOrdered method, 655
AsParallel method, 650, 681

specifying, 652
assemblies, 361

definition of, 16
namespaces and, 16
uses of, 8

728	

AssemblyInfo.cs files, 8
assignment operator (=), 31,

74, 91
precedence and associativity

of, 42, 77
assignment operators,

compound, 91–98
assignment statements, 91

for anonymous classes, 148
Association attribute, 555
associative arrays, 212
associativity, 42

of assignment operator, 42
of Boolean operators, 76–77

asterisk (*) operator, 36
at (@) symbol, 542
attributes, class, 523
automatic properties, 307, 310

B
background threads

access to controls, 508
copying data to, 502–504
for long-running operations,

499–502
performing operations on,

508
BackgroundWorker class, 504
backslash (\), 88
Barrier class, 666–667
Barrier constructors, specifying

delegates for, 667
Barrier objects, 681
base class constructors, calling,

234–235, 251
base classes, 232–234. See

also inheritance
preventing class use as, 271–

272, 277
protected class members of,

242
base keyword, 234, 239
BeginInvoke method, 630
BellRingers project, 444–476

application GUI, 444
binary operators, 419
binary trees

building using generics, 361
creating generic classes, 371
datum, 358
enumerators, 383
iComparable interface, 362

inserting a node, 362
node, 358
sorting data, 359
subtrees, 358
theory of, 358
TreeEnumerator class, 383
walking, 384

Binding elements, for
associating control
properties with control
properties, 513

BindingExpression class
HasError property, 529–530,

532
UpdateSource method, 529

BindingExpression objects, 532
creating, 529

Binding objects, 526
BindingOperations class

GetBinding method, 526
binding paths, 519
binding sources, 518

specifying, 531, 577
Binding.ValidationRules

elements, 532
child elements, 516

bin folder, 13
Black.Hole method, 223
BlockingCollection<T> class, 669
BlockingCollection<T> objects,

670
blocking mechanisms of

synchronization primitives,
663–665

blocks of statements, 78–79
braces in, 98

bool data type, 32, 74
Boolean expressions

creating, 89
declaring, 73–74
in if statements, 78
in while statements, 93

Boolean operators, 74–77
precedence and associativity,

76–77
short-circuiting, 76

Boolean variables, declaring, 89
bool keyword, 89
bound objects, references to,

526
bound properties,

BindingExpression object
of, 532

boxing, 165–166
braces

in class definitions, 130
for grouping statements,

78–79, 93, 98
Breakpoints icon, 103
break statements, 85

for breaking out of loops, 99
fall-through, preventing, 86
in switch statements, 87

Build Solution command, 11, 12
ButtonBase class, 345
Button class, 345
button controls

adding, 21
anchoring, 447
Click event handlers, 471–474
mouse over behaviors,

456–457
Width and Height properties,

449
Button.Resources property,

451–452

C
C#

case-sensitivity, 9
COM interoperability, 64
compiling code, 11
IntelliSense and, 9
layout style, 28
matched character pairs, 10
role in .NET, 3

calculateClick method, 52–53
callback methods, registering,

634
camelCase, 30, 133

for method names, 48
CanBeNull parameter, 550
Canceled task state, 638, 641
CancelEventArgs class, 475
cancellation, 632–645

of PLINQ queries, 656
synchronization primitives

and, 668
CancellationToken objects, 633

specifying, 643, 656
ThrowIfCancellationRequested

method, 640–641
cancellation tokens, 633

creating, 633–634
examining, 641

AssemblyInfo.cs files

		 729

cancellation tokens (continued)
specifying, 668, 681
for wait operations, 668

CancellationTokenSource objects
Cancel method, 668

cascading if statements, 79–80,
84

case, use in identifier names, 30
case keyword, 85
case labels, 85

fall-through and, 86
rules of use, 86

casting data, 167–171, 175
catch handlers, 110

multiple, 112–113
order of execution, 114
syntax of, 111
writing, 117, 126

catch keyword, 110
cells in arrays, 198
Change Data Source dialog box,

569–570
change tracking, 584
character codes, 102
characters, reading streams of,

95
char data type, 32, 542
check box controls, 458

adding, 460
initializing, 476
IsChecked property, 473

checked expressions, 119–120
checked keyword, 126,
checked statements, 118
Choose Data Source dialog box,

569–570
Circle class, 130–131

NumCircles field, 143–144
C# keywords. See also keywords

IntelliSense lists of, 9
.NET equivalents, 179

Class attribute, 445
classes, 129

abstract classes, 232, 269–274
accessibility of fields and

methods, 132–142
anonymous classes, 147–148
in assemblies, 16
attributes of, 523
base classes, 232–234
body of, 131
classification and, 129–130

collection classes, 206–217,
668–670

constructors for, 133–134. See
also constructors

declaring, 149
defining, 130–132
definition of, 132
derived classes, 232–234
encapsulation in, 130
generic classes, 358–370
inheriting from interfaces,

255–256
instances of, assigning, 131
interfaces, implementing,

261–266
method keyword

combinations, 276
modeling entities with,

513–515
with multiple interfaces, 257
naming conventions, 133
new, adding, 243
partial classes, 136
referencing through

interfaces, 256–257
sealed classes, 232, 271–277
static classes, 144–145
vs. structures, 181–182,

188–190
testing, 266–269

class hierarchies, defining,
242–247

classification, 129–130
inheritance and, 231–232

class keyword, 130, 149
class libraries, 361
class members drop-down list

box, 34
class methods, 144
class scope, defining, 54–55
class types, copying, 151–156
clear_Click method, 471
clearName_Click method, 492
Click event handlers, 471–474

for menu items, 485–487
Click events, 25, 345
Clone method, 198
Closing event handler, 474–476
CLS (Common Language

Specification), 30
code. See also execution flow

compiled, 8, 14
compiling, 11

compute-bound, 621–623
error-handling, separating

out, 110
exception safe, 289–292
refactoring, 60, 270
trying, 110–117
in WPF forms, viewing, 476

Code and Text Editor pane, 7
keywords in, 29

code duplication, 269–270
code views, 17
collection classes, 206–217

ArrayList class, 208–209
card playing implentation,

214–217
Queue class, 210
SortedList class, 213
Stack class, 210–211
thread-safe, 668–670

Collection Editor: Items dialog
box, 480, 481

collection initializers, 214
collections

vs. arrays, 214
counting number of rows, 406
enumerable, 381
enumerating elements,

381–389
GetEnumerator methods, 382
IEnumerable interface, 382
iterating through, 218,

650–655
iterators, 389
join operator, 407
limiting number of items in,

669–670
number of items in, 218
producers and consumers of,

669
thread-safe, 678–679
of unordered items, 669

Collect method, 283
Colors enumeration, 268
Column attribute, 550, 564
combo box controls, 458

adding, 460
populating, 476

Command class, 542
Command objects, 542
command prompt windows,

opening, 538
CommandText property, 542,

564

CommandText property

730	

commenting out a block of
code, 414

comments, 11
multiline comments, 11

common dialog boxes, 495–498
modal, 496
SaveFileDialog class, 495–498

Common Dialog classes, 94
Common Language

Specification (CLS), 30
Compare method, 84, 377
CompareTo method, 362
comparing strings, 378
comparing two objects, 377
compiled code, 14

references to, 8
compiler

comments and, 11
method call resolution, 66–71,
226–228

compiler errors, 12–13
compiling code, 11, 14
complex numbers, 428
Complex objects, 432
Component Object

Model (COM) and C#
interoperability, 64

CompositeType class, 691
compound addition operator,

108
compound assignment

operators, 91–92, 424
compound subtraction

operator, 108
computer memory. See memory
Concurrency Mode property,

585
ConcurrentBag<T> class, 669,

678–679
overhead of, 679

ConcurrentDictionary<TKey,
TValue> class, 669

concurrent imperative data
access, 656–680

ConcurrentQueue<T> class, 669
ConcurrentStack<T> class, 669
concurrent tasks

synchronizing access to
resources, 659

unpredictable performance
of, 656–659

concurrent threads, 600. See
also multitasking; threads

conditional AND operator,
precedence and
associativity of, 77

conditional logical operators, 75
short-circuiting, 76

conditional OR operator,
precedence and
associativity of, 77

Connection class, 539
connection pooling, 547
Connection Properties dialog

box, 569–570
Connection property, 564
ConnectionString property, 540,

564
connection strings, 559, 562,

564
building, 540
for DataContext constructor,

551–552
storing, 572

Console Application icon, 5, 6
console applications

assembly references in, 16
creating, 8–14, 26
definition of, 3
Visual Studio-created files,

8–9
Console Application template, 7
Console class, 9
Console.WriteLine method, 186,

219, 224
calling, 137–138

Console.Write method, 58
const keyword, 144
constraints, with generics, 358
constructed types, 357
constructors, 133–134

base class constructors,
234–235

calling, 149
declaring, 149
default, 133–134, 135
definition of, 23
initializing fields with, 139
initializing objects with, 279
order of definition, 135
overloading, 134–135
private, 134
shortcut menu code in,

493–494
for structures, 183, 185
writing, 137–140

consumers, 669
Content property, 20, 459, 469
ContextMenu elements, 491

adding, 508
ContextMenu property, 494
context menus. See shortcut

menus
continuations, 606–608, 645,

646
Continue button (Debug

toolbar), 63
continue statements, 100
ContinueWith method, 606, 645,

646
contravariance, 377
Control class Setter elements,

456
controls

adding to forms, 459–461, 476
aligning, 460
alignment indicators, 21
anchor points, 447
Content property, 469
displaying, 40
focus, validation and, 509,

518, 527
IsChecked property, 476
layout properties of, 461–464
Name property, 452
properties, modifying, 20
properties, setting, 449, 476
removing from forms, 459
repositioning, 19
resetting to default values,

466–470
resizing, 21
Resources elements, 452
style of, 451–457, 464–466
TargetType attribute, 454–456
text properties, 457
ToolTip property of, 532
WPF controls, 458–459
z-order of, 451

conversion operators, 434, 435
writing, 437

ConvertBack method, 523, 524
converter classes, 578

creating, 523–525
for data binding, 522

converter methods, 522–523
creating, 523–525

Convert method, 578

commenting out a block of code

		 731

cooperative cancellation,
632–637

copying
reference and value type

variables, 189
structure variables, 187

Copy method, 198
CopyTo method, 197
CountdownEvent objects, 681
Count method, 403
Count property, 209, 218
covariance, 376
covarient interfaces, 375
C# project files, 8
CreateDatabase method, 551
Created task state, 638
CREATE TABLE statements, 549
CreateXXX method, 587, 596
cross-checking data, 509–510
cross-platform interoperability,

685
C# source file (Program.cs), 8
.csproj suffix, 33
CurrentCount property, 663
cursors (current set of rows),

544

D
dangling references, 282
data

aggregating, 401
counting number of rows, 406
Count method, 403
Distinct method, 406
encapsulation of, 130
filtering, 400
GroupBy method, 402
Grouping, 401
group operator, 406
joining, 404
locking, 659–661
Max method, 403
Min method, 403
OrderBy, 402
OrderByDescending, 402
orderby operator, 406
querying, 395–417
selecting, 398
ThenByDescending, 402
validation of, 509–532

data access
concurrent imperative,

656–680

thread-safe, 670–682
database applications

data bindings, establishing,
579–582

retrieving information,
579–582

user interface for, 574–579
database connections

closing, 545–547, 553
connection pooling, 547
creating, 569–570
logic for, 572
opening, 540

database queries
ADO.NET for, 564
deferred, 557–558
immediate evaluation of,

553–554
iterating through, 552
LINQ to Entities for, 582–583
LINQ to SQL for, 564

databases
access errors, 539
adding and deleting data,

587–594, 596
concurrent connections, 547
connecting to, 538–540, 564
creating, 536–538
data type mapping, 550
disconnecting from, 545–547
entity data models, 565
fetching and displaying data,

543–544, 551–553
granting access to, 567–568
locked data, 544
mapping layer, 565
new, creating, 551
null values in, 547–548, 550,

564
prompting users for

information, 541–543, 562
querying, 541–543
querying, with ADO.NET,

535–548
querying, with LINQ to SQL,

549–564
referential integrity errors,

588
saving changes to, 584–586,

594–596
saving user information, 562
updating data, 583–596
Windows Authentication

access, 540, 541

database tables
Column attribute, 550
deleting rows in, 588, 596
entity classes, relationships

between, 551–552
entity data models for,

568–572
joining, 554–558
many-to-one relationships,

555–556
modifying information in, 596
new, creating, 551
null values in, 550
one-to-many relationships,

556–558
primary keys, 550
querying, 541–543
retrieving data from, 579–582
retrieving single rows, 553
Table attribute, 550
underlying type of columns,

550
data binding

binding control properties
to control properties, 513,
525–526, 531

binding control properties to
object properties, 531

binding controls to class
properties, 515

binding sources, 518, 531
binding WPF controls to data

sources, 580
converter classes, 522–525
Entity Framework, using with,

579–582
existing data, updating with,

583–584
fetching and displaying data

with, 579–583
modifying data with, 583–596
for validation, 511–527

DataContext classes, 551–552
accessing database tables

with, 562–564
custom, 559–560

DataContext objects, 551–553
creating, 564

DataContext property, 577, 596
of parent controls, 580

DataContract attribute, 691
DataLoadOptions class

LoadWith method, 558
DataMember attribute, 691

DataMember attribute

732	

data provider classes for ADO.
NET, 539

data providers, 535–536
data sets, partitioning, 650
data sources, joining, 654
DataTemplate, 576
data types

bool data type, 32, 74
char data type, 32, 542
data type mapping, 550
DateTime data type, 81, 84
decimal data type, 31
double data type, 31
of enumerations, 176
float data type, 31
IntelliSense lists of, 9
long data type, 31
operators and, 37–38
primitive data types, 31–36,

86, 118
Queue data type, 354
thread-safe, 678

data validation, 509–532
dateCompare method, 81, 82
DatePicker controls

adding, 460
default shortcut menu for, 492

dates, comparing, 80–83, 84
DateTime data type, 81, 84
DateTimePicker controls, 458

SelectedDate property, 81
DbType parameter, 550
Debug folder, 13
debugger

stepping through methods
with, 61–63

variables, checking values in,
62–63

Debug toolbar, 61
displaying, 61, 72

decimal data type, 31
declaration statements, 30–31
decrement operators, 425

–– operator, 44
++ operator, 92

default constructors, 133–135
in static classes, 144
structures and, 181, 184–185
writing, 138

DefaultExt property, 496
default keyword, 85
deferred fetching, 553–554,

558–559
defining operator pairs, 426

Definite Assignment Rule, 32
Delegate class, 506
delegates, 329

advantages, 332
attaching to events, 345
calling automatically, 342
declaring, 331
defining, 331
DoWorkEventHandler

delegate, 504
initializing with a single,

specific method, 331
invoking, 332
lambda expressions, 338
matching shapes, 331
scenario for using, 330
using, 333

DeleteObject method, 589, 596
delimiters, 88
Dequeue method, 354
derived classes, 232–234. See

also inheritance
base class constructors,

calling, 234–235, 251
creating, 251

deserialization, 691
design views, 17
Design View window, 19

cached information in, 579
working in, 19–22
WPF forms in, 445

desktop applications. See also
applications

multitasking in, 602–628
destructors

calling, 292
Dispose method, calling from,

288–289
recommendations on, 284
timing of execution, 283
writing, 280–282, 292

detach.sql script, 567
dialog boxes, common,

495–498
dictionaries, creating, 669
Dictionary class, 356
DictionaryEntry class, 212, 213
Dictionary<TKey, TValue>

collection class, thread-safe
version, 669

Dispatcher.Invoke method, 632
Dispatcher objects, 505–507

Invoke method, 506

responsiveness, improving
with, 629, 631–632

DispatcherPriority enumeration,
507, 631

disposal methods, 285
exception-safe, 285–286,

289–292
writing, 292

Dispose method, 287
calling from destructors,

288–289
Distinct method, 406
DivideByZeroException

exceptions, 123
division operator, 36

precedence of, 41
.dll file name extension, 16
DockPanel controls, adding,

479, 508
documenting code, 11
Document Outline window,

39–40
documents, definition of, 477
Documents folder, 6
do statements, 99–108

stepping through, 103–107
syntax of, 99

dot notation, 134
dot operator (.), 280
double data type, 31
double.Parse method, 58
double quotation marks (“), 88
DoWork event, subscribing to,

504
DoWorkEventHandler delegates,

504
drawingCanvas_

MouseLeftButtonDown
method, 267

drawingCanvas_
MouseRightButtonDown
method, 268

DrawingPadWindow class, 267
Drawing project, 260–262
dual-core processors, 602
duplication in code, 269–270
DynamicResource keyword, 454

E
ElementName tag, 531
else keyword, 77, 78
encapsulation, 130, 146

golden rule, 296

data provider classes for ADO.NET

		 733

encapsulation (continued)
public fields, 297
violations of, 242

Enqueue method, 354
Enterprise Services, 684
EnterReadLock method, 665
EnterWriteLock method, 665
entities

adding, 587
deleting, 588
modeling, 129

entity classes
code for, 572
creating, with Entity

Framework, 596
database tables, relationships

between, 551–552
defining, 549–551, 560–562,

564
EntityCollection<Product>

property, 577
generation of, 571
inheritance from, 572
modifying properties of,

571–572
naming conventions, 556
table relationships, defining

in, 554–555
EntityCollection<Product>

property, 577, 580
entity data models, 565

generating, 568–572
Entity Data Model Wizard,

569–571
Entity Framework, 565

adding and deleting data
with, 587–588, 596

application user interfaces,
creating, 574–579

data binding, using with,
566–583

entity classes, creating, 596
fetching and displaying data,

579–582
LoadProperty<T> method, 581
mapping layer and, 565
optimistic concurrency,

584–585
retrieving data from tables

with, 581
updating data with, 583–596

EntityObject class Concurrency
Mode property, 585

entity objects

binding properties of controls
to, 566–583

displaying data from, 596
modifying, 583

EntityRef<TEntity> types,
555–556

EntitySet<Product> types, 556
EntitySet<TEntity> types,

555–556
enumerable collections, 381
enumerating collections, 381
enumerations, 173–178

converting to strings, 522
declaring, 173–174, 176–178,

190
integer values for, 175
literal names, 174
literal values, 175
nullable versions of, 174
syntax of, 173–174
underlying type of, 176
using, 174–175

enumeration variables, 174
assigning to values, 190
converting to strings, 174
declaring, 190
mathematical operations on,

177–178
enumerator objects, 382
enumerators

Current property, 382
iterators, 389
manually implementing, 383
MoveNext method, 382
Reset method, 382
yield keyword, 390

enum keyword, 173, 190
enum types, 173–178
equality (==) operator, 74

precedence and associativity
of, 77

Equal method, 431
equal sign (=) operator, 42. See

also assignment operator
(=)

Equals method, 432
error information, displaying,

518–519, 532
Error List window, 12
errors

dealing with, 109
exceptions. See exceptions
marking of, 12
text descriptions of, 111

errorStyle style, 525

escape character (\), 88
EventArgs argument, 346
event handlers

for about events, 488
for Closing events, 474–476
for menu actions, 508
long-running, simulating,

498–499
for new events, 485–486
for save events, 487–488
testing, 489–490
in WPF applications, 470–476

event methods, 471
for menu items, 508
naming, 472
removing, 472
writing, 476

events, 342–344
attaching delegates, 345
declaring, 342
EventArgs argument, 346
menu events, handling,

484–491
null checks, 344
raising, 344
sender argument, 346
sources, 342
subscribers, 342
subscribing, 343
vs. triggers, 456
unsubscribing, 344
using a single method, 346
waiting for, 661, 681
WPF user interface, 345

event sources, 342
Example class, 289
exception handling, 110

for tasks, 641–644
Exception inheritance hierarchy,

113
catching, 126,

exception objects, 121
examining, 111–112, 642–643

exceptions, 109
AggregateException

exceptions, 647
ApplicationException

exceptions, 517
ArgumentException

exceptions, 205, 225
catching, 110–117, 126
catching all, 123, 124, 126
DivideByZeroException

exceptions, 123
examining, 111–112

exceptions

734	

exceptions (continued)
execution flow and, 111, 113,

124
FormatException exceptions,

110, 111
handler execution order, 114
handling, 110
inheritance hierarchies, 113
InvalidCastException

exceptions, 167
InvalidOperationException

exceptions, 122, 501, 553
NotImplementedException

exceptions, 202, 263
NullReferenceException

exceptions, 344
OperationCanceledException

exceptions, 641, 668
OptimisticConcurrency-

Exception exceptions, 586,
587

OutOfMemoryException
exceptions, 164, 199

OverflowException exceptions,
111, 118, 120

SqlException exceptions,
539–540, 562

throwing, 121–126
unhandled, 111–112, 115,

124–125
UpdateException exceptions,

588
to validation rules, detecting,

516–519
viewing code causing, 116

exception safe code, 289–292
ExceptionValidationRule

elements, 516
exclusive locks, 661
ExecuteReader method, 543

calling, 564
overloading of, 548

execution
multitasking, 602–628
parallel processing, 600–601,

608–617, 676–678
single-threaded, 599

execution flow, exceptions and,
111, 113, 124

Exit command, Click event
handler for, 486

ExitReadLock method, 665
ExitWriteLock method, 665

expressions, comparing values
of, 89

Extensible Application Markup
Language (XAML), 19–20,
445

extensible programming
frameworks, building, 253

extension methods, 247–251
creating, 248–250
Single method, 553
syntax of, 248

Extract Method command, 60

F
F5 key, 63
F10 key, 62
F11 key, 62
failures. See errors; exceptions
fall-through, stopping, 86
Faulted task state, 638, 641
fetching, 543–545

deferred, 553–554, 558
immediate, 558
with SqlDataReader objects,

564
fields, 54–55, 129

definition of, 131
inheritance of, 234–235
initializing, 133, 139, 140
naming conventions, 133
shared fields, 143–144
static and nonstatic, 143–144.

See also static fields
FileInfo class, 94

OpenText method, 95
fileName parameter, 500
FileName property, 496
file names, asterisks by, 12
files, closing, 96
finalization, 284

order of, 283, 284
Finalize method, compiler-

generated, 282
finally blocks, 124–126

database connection close
statements in, 545

disposal methods in, 285–286
execution flow and, 125

firehose cursors, 544
first-in, first-out (FIFO)

mechanisms, 210
float data type, 31

floating-point arithmetic, 119
focus of controls, validation and,

509, 518, 527
FontFamily property, 457
FontSize property, 20, 457
FontWeight property, 457
foreach statements, 196, 381

for database queries, 553,
556–558

iterating arrays with, 204
iterating database queries

with, 552
iterating database tables with,

563
iterating param arrays with,

225
iterating zero-length arrays

with, 223
FormatException catch handler,

110–113, 120
FormatException exceptions,

110, 111
Format method, 186
format strings, 60
forms. See also WPF forms

resize handles, 21
for statements, 97–99, 108

iterating arrays with, 196
omitting parts of, 97–98
scope of, 98–99
syntax of, 97

forward slash (/) operator, 36
freachable queue, 284
F type suffix, 34
fully qualified names, 15
Func<T> generic type, 506

G
garbage collection, 156–157,

280
destructors, 280–282
guarantees of, 282–283
invoking, 283, 292
timing of, 283

garbage collector, functionality
of, 283–284

GC class
Collect method, 283
SuppressFinalize method, 289

generalized class, 357
Generate Method Stub Wizard,

57–60, 72

exceptions (continued)

		 735

generic classes, 358–370
generic interfaces

contravariant, 377
covariant, 375
variance, 373–379

generic methods, 370–373
constraints, 371
parameters, 371

generics, 355–380
binary trees, 358
binary trees, building, 361
constraints, 358
creating, 358–370
multiple type parameters, 356
purpose, 353
type parameters, 356
vs. generalized classes, 357

geometric algorithm, 670–672
get accessors, 299

for database queries, 555–556
GetBinding method, 526
get blocks, 298
GetEnumerator method, 382
GetInt32 method, 544
GetPosition method, 267
GetString method, 544
GetTable<TEntity> method, 552
GetXXX methods, 544, 564
global methods, 48
goto statements, 87
graphical applications

creating, 17–26
views of, 17

Grid controls, in WPF forms, 40
Grid panels, 446

controls, placing, 447
in WPF applications, 446

GridView controls, display
characteristics, 578

GroupBox controls, 469
adding, 460

GroupBy method, 402
group operator, 406

H
Handle method, 642, 647
HasError property, 529

testing, 530
Hashtable class, 215
Hashtable object, SortedList

collection objects in, 215
HasValue property, 158
Header attribute, 480

heap memory, 163–164
allocations from, 279
returning memory to, 280

hiding methods, 237–238
High Performance Compute

(HPC) Server 2008, 600
hill-climbing algorithm, 604
HorizontalAlignment property,

447–448
Hungarian notation, 30
Hypertext Transfer Protocol

(HTTP), 684

I
IColor interface, 260–261

implementing, 261–266
IComparable interface, 255, 362
identifiers, 28–29

naming, 237–238
overloaded, 55–65
reserved, 28
scope of, 54

IDisposable interface, 287
IDraw interface, 260–261

implementing, 261–266
IEnumerable interface, 382, 549

implementing, 387
IEnumerable objects, joining,

654
if statements, 77–84, 89

block statements, 78–79
Boolean expressions in, 78
cascading, 79–80, 84
syntax, 77–78
writing, 80–83

image controls, adding,
449–451

Image.Source property, 450
Implement Interface Explicitly

command, 262–263
implicitly typed variables, 45–46
increment (++) operator, 44,

92, 425
indexers, 315–322

accessors, 319
vs. arrays, 320
calling, 326
in combined read/write

context, 319
defining, 318
example with and without,

315

explicit interface
implementation syntax, 323

in interfaces, 322
operators with ints, 316
syntax, 315
virtual implementations, 322
in a Windows application, 323
writing, 324

inequality (!=) operator, 74
inheritance, 231–232

abstract classes and, 269–271
base class constructors,

calling, 234–235, 251
classes, assigning, 235–236
class hierarchy, creating,

242–247
implementing, 274–276
implicitly public, 233
menu items, 483
new method, declaring,

237–238
override methods,declaring,

239–240
protected access, 242
using, 232–247
virtual methods, declaring,

238–239, 251
InitialDirectory property, 496
initialization

of array variables, 193–194
of derived classes, 234–235
of fields, 133, 139, 140
of structures, 183–184

InitializeComponent method, 23
INotifyPropertyChanged

interface, 572
INotifyPropertyChanging

interface, 572
input validation, 509–510
Insert method, 208, 366
instance methods

definition of, 140
writing and calling, 140–142

instances
of classes, assigning, 131
of WPF forms, 489

instnwnd.sql script, 538, 549,
567

Int32.Parse method, 37
int arguments, summing,

224–226
integer arithmetic, checked and

unchecked, 118–120, 126

integer arithmetic, checked and unchecked

736	

integer arithmetic algorithm,
102

integer division, 39
integers, converting string

values to, 40, 46,
integer types, enumerations

based on, 176
IntelliSense, 9–10

icons, 10, 11
tips, scrolling through, 10

interface keyword, 254, 272, 277
interface properties, 304
interfaces, 253–269

declaring, 277
defining, 254–255, 260–261
explicitly implemented,

257–259
implementing, 255–256,

261–266, 277
inheriting from, 253, 255–256
method keyword

combinations, 276
multiple, 257
naming conventions, 255
referencing classes through,

256–257
restrictions of, 259
rules for use, 255

int.MaxValue property, 118
int.MinValue property, 118
int parameters, passing, 154
int.Parse method, 40, 110, 116,

179
int type, 31

fixed size of, 118
int? type, 158
int values

arithmetic operations on,
38–41

minimums, finding, 220–221
int variable type, 31
InvalidCastException exceptions,

167
InvalidOperationException catch

handler, 123
InvalidOperationException

exceptions, 122, 501, 553
invariant interfaces, 375
Invoke method, 506–508

calling, 505
IProducerConsumerCollection<T>

class, 669
IsChecked property, 473, 476

nullability, 504

IsDBNull method, 548, 564
is operator, 168–169
IsPrimaryKey parameter, 550
IsSynchronizedWithCurrentItem

property, 576, 577
IsThreeState property (CheckBox

control), 458
ItemsSource property, 577
ItemTemplate property, 577
iteration statements, 91
iterators, 389
IValueConverter interface,

522–523
ConvertBack method, 524–525
Convert method, 524

J
JavaScript Object Notation

(JSON), 688
Join method, 404

parameters, 404
joins, 404, 554–558

of data sources, 654
JSON (JavaScript Object

Notation), 688

K
key presses, examining,

588–589
Key property, 213
keys arrays, 212

sorted, 213
key/value pairs, 356

as anonymous types, 214
in Hashtables, 212
in SortedLists, 213

keywords, 28–29
abstract keyword, 270, 276,

277
base keyword, 234, 239
bool keyword, 89
case keyword, 85
catch keyword, 110
checked keyword, 126
class keyword, 130, 149
const keyword, 144
default keyword, 85
DynamicResource keyword,

454
else keyword, 77, 78
enum keyword, 173, 190
get and set keywords, 298

IntelliSense lists of, 9
interface keyword, 254, 272,

277
lock keyword, 659	
method keyword

combinations, 276
.NET equivalents, 179
new keyword, 131, 218, 238,

276
object keyword, 165
out keyword, 160–161, 376
override keyword, 239, 240,

272, 276
params keyword, 219, 221,

222
partial keyword, 136
private keyword, 132, 145,

242, 276
protected keyword, 242, 276
public keyword, 132, 242, 276
ref keyword, 159
return keyword, 49
sealed keyword, 271, 272, 276,

277
set keyword, 298
static keyword, 143, 145, 149
StaticResource keyword, 454
string keyword, 152
struct keyword, 180, 190
this keyword, 139–140, 146,

248
try keyword, 110
unchecked keyword, 118–119
unsafe keyword, 170
var keyword, 45, 148
virtual keyword, 239, 240, 251,

272, 276
void keyword, 48, 49, 51
yield keyword, 390

Knuth, Donald E., 358

L
label controls

adding, 19, 459
properties, modifying, 20

Lambda Calculus, 340
lambda expressions

and delegates, 338–342
for anonymous delegates,

501, 507
anonymous methods, 341
as adapters, 339
body, 341

integer arithmetic algorithm

		 737

lambda expressions (continued)
forms, 340
method parameters specified

as, 553
syntax, 340
variables, 341

Language Integrated Query
(LINQ), 395

All method, 407
Any method, 407
BinaryTree objects, 407
deferred evaluation, 412
defining an enumerable

collection, 412
equi-joins, 407
extension methods, 412
filtering data, 400
generic vs. nongeneric

methods, 415
Intersect method, 407
joining data, 404
Join method, 404
OrderBy method, 401
query operators, 405
selecting data, 398
Select method, 398
Skip method, 407
Take method, 407
Union method, 407
using, 396
Where method, 401

last-in, first-out (LIFO)
mechanisms, 210–211

layout panels, 446
z-order of controls, 451

left-shift (<<) operator, 316
Length property, 195–196, 218
LINQ. See Language Integrated

Query (LINQ)
LINQ queries, 649

parallelizing, 651–655, 681
LINQ to Entities, 566

querying data with, 573–574
LINQ to SQL, 535, 549–564

DataContext class, custom,
559–560

data type mapping, 561
deferred fetching, 553–554,

558–559
extensions to, 565
joins, 554–558
new databases and tables,

creating, 551

querying databases with,
551–553, 560–564

table relationships, 554–558
list box controls, 459

adding, 461
populating, 476

List<Object> objects, 378
List<T> generic collection class,

378
ListView controls

for accepting user input, 590
display options, 578
View element, 577

LoadProperty<T> method, 581
LoadWith method, 558–559
local scope, defining, 54
Locals window, 104–106
local variables, 54

displaying information about,
104

locking, 659–661. See
also synchronization
primitives

overhead of, 661
serializing method calls with,

679–680
lock keyword, 659
lock statements, 659–661, 681
logical operators

logical AND operator (&&),
75, 89

logical OR operator (||), 75, 89
short-circuiting, 76

long data type, 31
long-running operations

canceling, 632–645
dividing into parallel tasks,

614–617
measuring processing time,

612–614
parallelizing with Parallel

class, 619–621
responsiveness, improving

with Dispatcher object,
629–632

long-running tasks
executing on multiple threads,

499–502
simulating, 498–499

looping statements, 108
breaking out of, 99
continuing, 100
do statements, 99–107
for statements, 97–99

while statements, 92–96,
97–99

loops
independent iterations, 624
parallelizing, 618–621, 623,

647
LostFocus event, 509

M
Main method, 8

for console applications, 9
for graphical applications,

23–24
MainWindow class, 23
MainWindow constructors,

shortcut menu code in,
493–494

MainWindow.xaml.cs file, code
for, 22–23

ManualResetEventSlim class,
661–682

ManualResetEventSlim objects,
681

Margin property, 20, 447–448,
479

MARS (multiple active result
sets), 545

matched character pairs, 10
Math class, 131

Sqrt method, 141, 143
Math.PI field, 131
MathsOperators program code,

39–41
memory

allocation for new objects,
279–280

for arrays, 191
for class types, 151
for Hashtables, 212
heap memory, 163–164, 279,

280
organization of, 162–164
reclaiming, 279. See

also garbage collection
stack memory, 163–164, 178,

669
for value types, 151
for variables of class types,

131
Menu controls, 477, 478

adding, 479, 508
MenuItem elements, 480

Menu controls

738	

menu events, handling,
484–491

MenuItem_Click methods, 485
MenuItem elements, 480, 481

Header attribute, 480
nested, 483

MenuItem objects, 508
menu items

about items, 488–489
access keys for, 480
child items, 481
Click events, 485–487
naming, 481, 485
text styling, 483
types of, 483–484
WPF controls as, 484

menus, 477–478
cascading, 483
creating, 478–484, 508
DockPanel controls, adding

to, 479
separator bars in, 481, 508
shortcut menus, 491–494

MergeOption property, 584
MessageBox.Show statement, 25
Message Passing Interface

(MPI), 600
Message property, 111, 117
method adapters, 339
method calls

examining, 52–53
memory required for, 163
optional paramters vs.

parameter lists, 227–229
parallelizing, 618
parentheses in, 51
serializing, 679–680
syntax of, 51–53

method completion, notification
of, 630

methodName, 48, 51
methods, 129

abstract methods, 270–271
anonymous methods, 341
arguments, 52. See

also arguments
bodies of, 47
calling, 51, 53, 72
constructors, 134–135
creating, 47–53
declaring, 48–49, 72
encapsulation of, 130
event methods, 471
examining, 50–51
exiting, 49

extension methods, 247–251
global, 48
hard-coded values for, 468
hiding, 237–238
implementations of, 239–241
in interfaces, 254–255
keyword combinations for,

276
length of, 51
naming, 47, 133
optional parameters for,

65–66, 68–72, 226
overloaded methods, 9
overloading, 55–56, 219
override methods, 239–240
overriding, 272
parameter arrays and, 227,

229
returning data from, 49–51,

72
return types, 48, 72
scope of, 54–55
sealed methods, 271–272
sharing information between,

54–55
statements in, 27
static (noninstance) methods,

142. See also static methods
stepping in and out of, 61–63,

72
virtual methods, 238–239,

240–241
wizard generation of, 57–60
writing, 56–63

method signatures, 237
Microsoft Message Queue

(MSMQ), 684
Microsoft .NET Framework. See

.NET Framework
Microsoft SQL Server 2008

Express, 535. See also SQL
Server

Microsoft Visual C#. See C#
Microsoft.Win32 namespace,

495
Microsoft Windows

Presentation Foundation.
See WPF applications

Min method, 220, 221
minus sign (–) operator, 36
modal dialog boxes, 496
Monitor class, 660
Moore, Gordon E., 601
Moore’s Law, 601

MouseButtonEventArgs
parameter, 267

MoveNext method, 382
MPI (Message Passing

Interface), 600
MSMQ (Microsoft Message

Queue), 684
multicore processors, 601–602
multidimensional arrays,

198–199
params keyword and, 221

multiline comments, 11
multiple active result sets

(MARS), 545
multiplication operator, 36

precedence of, 41, 77
multitasking

considerations for, 602–603
definition of, 602
implementing, 602–628
reasons for, 600–601

mutlithreaded approach,
600–601

N
name-clashing problems, 14
“The name ’Console’ does not

exist in the current context”
error, 15

named arguments, 66
ambiguities with, 66–71

named parameters, 72
passing, 66

Name parameter, 550
Name property, 21, 452
namespaces, 14–17

assemblies and, 16
bringing into scope, 15

naming conventions
for array variables, 192
for entity classes, 556
for fields and methods, 133
for identifiers, 237–238
for interfaces, 255
for nonpublic identifiers, 133

narrowing conversions, 435
.NET common language

runtime, 330
.NET Framework, 330

hill-climbing algorithm, 604
LINQ extensions, 650
mutlithreading, 603
parallelism, determining, 604,

617–619, 624, 639

menu events, handling,

		 739

.NET Framework (continued)
synchronization primitives,

660
TaskScheduler object, 605
thread pools, 603–604

.NET Framework class library
classes in, 16
namespaces in, 15

.NET Framework Remoting, 684
<New Event Handler>

command, 472, 485, 492
new keyword, 131, 218, 238, 276

for anonymous classes, 147
for array instances, 192
for constructors, 149

newline character (‘\n’), 95
new method, declaring, 237–238
new operator, functionality of,

279–280
New Project dialog box, 5, 6
Next method of SystemRandom,

193
nondefault constructors, 134
nonpublic identifiers, 133
Northwind database, 536

creating, 536–538
detaching from user instance,

567–568
Orders table, 560–562
resetting, 538
Suppliers application, 575,

582–584, 595–596
Suppliers table, 554

Northwind Traders, 536
notification of method

completion, 630
NotImplementedException

exceptions, 202, 263
NotOnCanceled option, 607
NotOnFaulted option, 607
NotOnRanToCompletion option,

607
NOT (~) operator, 316
NOT operator (!), 74
nullable types, 156–159

properties of, 158–159
Value property, 158–159

nullable values, 122
nullable variables

assigning expressions to, 158
testing, 157
updating, 159

NullReferenceException
exceptions, 344

null values, 156–159, 171
in databases, 547, 548, 564
in database table columns,

550
numbers, converting to strings,

100–103
NumCircles field, 143–144

O
OASIS (Organization for the

Advancement of Structured
Information Standards), 686

ObjectContext class, 572
Refresh method, 584

ObjectContext objects
caching of data, 583
change tracking, 584

objectCount field, 145
Object.Finalize method,

overriding, 281–282
object initializers, 310
object keyword, 165
ObjectQuery<T> objects,

database queries based on,
582–583

objects
assigning, 235–236
binding to properties of, 531
creating, 131, 137–140,

279–280
definition of, 132
destruction of, 280, 282–283
disadvantages, 353
initializing using properties,

308
life of, 279–284
locking, 659–661
member access, 280
in memory, updating,

583–584
memory for, 163
reachable and unreachable,

284
references to, 280
referencing through

interfcaes, 256
ObjectSet collections

AddObject method, 596
DeleteObject method, 596
deleting entities from, 588

ObjectSet<T> collection class,
576

ObjectStateEntry class, 586

object type, 59, 207
obj folder, 13
octal notation, converting

numbers to, 100–103
okayClick method, 345
ok_Click method, 25
OnlyOnCanceled option, 607
OnlyOnFaulted option, 607
OnlyOnRanToCompletion

option, 607
Open dialog box, 94
Open File dialog box, 498
OpenFileDialog class, 94, 495
openFileDialogFileOk method,

94
openFileDialog objects, 94
Open method, calling, 564
OpenText method, 95
operands, 36
OperationCanceledException

exceptions, 641, 668
OperationContract attribute,

691
operations, independent,

623–624
operations, long-running

canceling, 632–645
dividing into parallel tasks,

614–617
measuring processing time,

612–614
parallelizing with Parallel

class, 619–621
responsiveness, improving

with Dispatcher object,
629–632

operators, 419–440
-- operator, 44, 425
-= operator, 92, 332, 344
+ operator, 419
++ operator, 43, 44, 92, 425
+= operator, 92, 331, 343
*= operator, 92
/= operator, 92
addition operator, 36, 41, 77
AND (&) operator, 316
arithmetic operators, 38–42,

119
as operator, 169, 236
assignment operator (=), 31,

42, 74, 77, 91–98
associativity and, 42, 419
asterisk (*) operator, 36, 170
binary operators, 419

operators

740	

operators (continued)
bitwise, 317
Boolean operators, 74–77
comparing in structures and

classes, 426
complex numbers, 428
compound addition operator,

108
compound assignment

operators, 91–92, 424
compound subtraction

operator, 108
conditional logical operators,

75–77
constraints, 420
conversion operators, 434,

435, 437
data types and, 37–38
decrement operators, 44, 92,

425
division operator, 36, 41
dot operator (.), 280, 420
equality (==) operator, 74, 77,

431
forward slash (/) operator, 36
fundamentals, 419–424
group operator, 406
implementing, 427–433
increment (++) operator, 43,

44, 92, 425
inequality (!=) operator, 74
is operator, 168–169
join operator, 407
language interoperability, 424
left-shift (<<) operator, 316
logical AND operator (&&),

75, 89
logical OR operator (||), 75, 89
multiplication operator, 36,

41, 77, 419
multiplicity, 420
new operator, 279–280
NOT (~) operator, 316
NOT operator (!), 74
operands, 420
operator pairs, 426
operator+, 423
OR (|) operator, 316
orderby operator, 406
overloading, 420
percent sign (%) operator,

37, 92
postfix forms, 44–45
precedence, 41–42, 419

prefix forms, 44–45
primary operators, 76
public operators, 421
query operators, 405
relational operators, 74, 77
remainder (modulus) operator,

37
short-circuiting, 76
simulating [], 420
static operators, 421
symmetric operators, 422, 436
unary operators, 44, 76, 419
user-defined conversion, 435
XOR (̂) operator, 316

optimistic concurrency, 584–585
OptimisticConcurrencyException

exceptions, 586, 587
OptimisticConcurrencyException

handler, 594, 596
optional parameters, 64–65

ambiguities with, 66–71
defining, 65–66, 68–69, 72
vs. parameter arrays, 226–229

OrderByDescending method,
402

OrderBy method, 401
orderby operator, 406
Organization for the

Advancement of Structured
Information Standards
(OASIS), 686

original implementations (of
methods), 239–241

OR (|) operator, 316
OtherKey parameter, 555
out keyword, 160–161, 376
out modifier, params arrays and,

222
OutOfMemoryException

exceptions, 164
multidimensional arrays and,

199
out parameters, 159–162
Output icon, 103, 104
Output window (Visual Studio

2010), 11
overflow checking, 118, 119
OverflowException handler, 120
OverflowException exceptions,

111, 118, 120
overloaded methods, 9, 55–56
overloading, 219

ambiguous, 222
constructors, 134–135

optional parameters and,
64–65

override keyword, 239, 240, 272,
276

override methods, declaring,
239–240

overriding methods, 239
sealed methods and, 271–272

OverwritePrompt property, 496

P
panel controls

DockPanel controls, 479, 481,
508

Grid panels, 446, 447
layout panels, 446
StackPanels, 446, 460, 476
WrapPanels, 446
z-order, 451

paralellization of LINQ queries,
650–656

Parallel class
abstracting tasks with,

617–624
for independent operations,

621, 623–624
Parallel.ForEach<T> method,

618
Parallel.For method, 617, 618,

620–621, 624, 639, 647
Parallel.Invoke method, 618,

621–624, 627
when to use, 621

ParallelEnumerable objects, 655
Parallel.For construct, 657–658
Parallel.ForEach method, 647

canceling, 639
when to use, 624

Parallel.ForEach<T> method,
618

Parallel.For method, 617, 618,
620–621, 647

canceling, 639
when to use, 624

Parallel.Invoke method, 618, 627
when to use, 621–624

Parallel LINQ, 649–655
ParallelLoopState objects, 618,

639
parallel operations

scheduling, 656
unpredictable performance

of, 656–659

operators (continued)

		 741

parallel processing, 676–678
benefits of, 600–601
implementing with Task class,

608–617
ParallelQuery class

AsOrdered method, 655
WithCancellation method,

656, 681
WithExecutionMode method,

655
ParallelQuery objects, 650, 654
parallel tasks, 600, 647
parameter arrays, 219, 221–222

declaring, 221–222
vs. optional parameters,

226–229
type object, 223, 229
writing, 224–226

parameterList, 48
parameters

aliases to arguments, 159–160
default values for, 65–66
method types, 152
named, 72
naming, 59
optional, 64–65, 72
optional, ambiguities with,

66–71
optional, defining, 65–66
passing, 66
reference types, 152–156, 159
types of, specifying, 48

params arrays. See parameter
arrays

params keyword, 219, 221
overloading methods and,

222
params methods, priority of,

222
params object [], 223
parentheses

in Boolean expressions, 75, 93
in if statements, 78
operator precedence and, 41

Parse method, 53, 101
partial classes, 136
partial interfaces, 136
partial keyword, 136
partial structs, 136
ParticipantCount property, 666
ParticipantsRemaining property,

666
partitioning data, 650
PascalCase naming scheme, 133

Pass.Value method, 154–155
Password parameter, 541
Path tag, 531
percent sign (%) operator, 37
performance

of concurrent collection
classes, 670

improving with PLINQ,
650–655

suspending and resuming
threads and, 660

pessimistic concurrency, 585
physical memory. See also

memory
querying amount of, 610

Plain Old XML (POX), 688
PLINQ (Parallel LINQ), 649

improving performance with,
650–655

PLINQ queries
cancellation of, 681
parallelism options for,

655–656
plus sign (+) operator, 36
pointers, 169–170
polymorphic methods, rules for

use, 240
polymorphism

testing, 246
virtual methods and, 240–241

pop-up menus. See shortcut
menus

postfix form, operators, 44–45
POX (Plain Old XML), 688
precedence, 419

of Boolean operators, 76–77
controlling, 41–42
overriding, 46

prefix form, operators, 44–45
Press any key to continue

prompt, 13
primary keys, database tables,

550
primary operators, precedence

and associativity of, 76
primitive data types, 31–36

displaying values of, 32–33
fixed size of, 118
switch statements on, 86
using in code, 33–34

private fields, 132–133, 242, 298
adding, 139

private keyword, 132, 145, 242,
276

private methods, 132–133
private qualifier, 58
private static fields, writing, 145
PrivilegeLevel enumeration, 521

adding, 520
problem reporting, configuring,

115
processors

multicore, 601–602
quad-core, 602
spinning, 651

producers, 669
Program class, 8
Program.cs file, 8
program entry points, 8
ProgressChanged event, 504
project attributes, adding, 8
project files, 8
project properties, setting, 118
projects, searching in, 34
properties, 297–314

accessibility, 301
automatic, 307, 310
binding to control properties,

525–526, 531
binding to object properties,

531
declarations, 298
declaration syntax, 297
explicit implementations, 305
get and set keywords, 298
get block, 297
initializing objects, 308
interface, 304
object initializers, 310
private, 301
protected, 301
public, 298, 301
read context, 299
read-only, 300
read/write context, 299
reasons for defining, 307
restrictions, 302
security, 301
set block, 297
static, 300
using, 299
using appropriately, 303
virtual implementations, 304
Windows applications, 305
write context, 299
write-only, 300

Properties folder, 8

Properties folder

742	

Properties window, 449
displaying, 20

property declaration syntax,
297

protected access, 242
protected class members, access

to, 242
protected keyword, 242, 276
pseudorandom number

generator, 193
public fields, 132–133, 242
public identifiers, naming

conventions for, 133
public keyword, 132, 242, 276
public methods, 132–133
public operators, 421
public/private naming

conventions, 298
public properties, 298
public static methods, writing,

146

Q
quad-core processors, 602
querying data, 395–417
query operators, 405
question mark (?) modifier for

nullable values, 157
Queue class, 210
Queue data type, 354
queues, 353

creating, 669
Queue<T> class, thread-safe

version, 669
Quick Find command, 34

R
radio button controls, 469

adding, 461
initializing, 476
mutually exclusive, 461, 476

RanToCompletion task state, 638
reader.ReadLine method, 95
ReaderWriterLockSlim class,

665–682
reading resources, 665–666
ReadLine method, 58
read locks, 661, 665
Read method, 543
readonly fields, 200
read-only properties, 300

recursive data structures, 358
refactoring code, 60, 270
reference parameters

out and ref modifiers for, 162
using, 153–156

references, adding, 16
References folder, 8
reference types, 151

arrays. See arrays
destructors for, 281
heap, creation in, 163
Object class, 165

reference variables, 280
copying, 171, 189
initializing, 156–157
null values, 157

referential integrity errors, 588
ref keyword, 159
ref modifier, params arrays and,

222
ref parameters, 159–162

passing arguments to, 171
Refresh method, 584, 596

calling, 586
RefreshMode enumeration, 586
Register method, 634
relational databases. See

also databases
null values in, 547

relational operations, 401
relational operators, 74

precedence and associativity
of, 77

Release folder, 14
Release method, 681
remainder (modulus) operator,

37
validity of, 38

Remove method, 208
RemoveParticipant method, 666
Representational State Transfer

(REST), 684, 688
requests to Dispatcher object,

505–507
resize handles, 21
Reset method, 466–470

calling, 486
resource management, 284–289

database connections, 545
multitasking and, 600
releasing resources, 292

resource pools, access control,
663–664

resources

reading, 665–666
writing to, 665–666

Resources elements, 452
responsiveness, application

improving, 600. See
also multitasking

improving with Dispatcher
object, 629–632

threads and, 498–507, 507
REST model, 684, 688
result = clause, 51
Result property, 646
results, return order of, 655
result text box, 117
return keyword, 49
return statements, 49–50, 141

fall-through, preventing with,
86

returnType, 48
RoutedEventArgs object, 345
RoutedEventHandler, 345
Run as administrator command,

536
run method, 56
Running task state, 638
runtime, query parallelization,

655
Run To Cursor command, 61,

103
RunWorkerAsync method, 504
RunWorkerCompleted event,

504

S
saveChanges_Click method, 594
SaveChanges method, 587

calling, 583–584, 596
failure of, 584

save event handlers, 487
Save File dialog box, 496, 497
SaveFileDialog class, 495–498,

508
save operations, status bar

updates on, 505–507
scalability, improving, 600. See

also multitasking
scope

applying, 53–56
defining, 54
of for statements, 98–99
of static resources, 454
of styles, 453

ScreenTips

Properties window

		 743

in debugger, 62
ScreenTips (continued)

for variables, 31
sealed classes, 232, 271–277

creating, 277
sealed keyword, 271, 272, 276,

277
sealed methods, 271–272
security, hard coding user

names and passwords and,
541

SelectedDate property, 81
nullability, 504

Select method, 398
type parameters, 399

semantics, 27
semaphores, 661
SemaphoreSlim class, 663–682
SemaphoreSlim objects, 681
semicolons

in do statements, 99
in for statements, 98
syntax rules for, 27

Separator elements, 481, 508
serialization, 691

of method calls, 679–680
ServiceContract attribute, 691
set accessors, 298, 299

for database queries, 555–556
set keyword, 298
Setter elements, 456
Shape class, 273
shared fields, 143–144
shared resources, exclusive

access to, 681
Shift+F11 (Step Out), 62
short-circuiting, 76
shortcut menus, 491–494

adding in code, 493–494
associating with forms and

controls, 493–494, 508
creating, 491–495, 508
creating dynamically, 508
for DatePicker controls, 492
dissassociating from WPF

forms, 494
for text box controls, 491–492

Show All Files command
(Solution Explorer), 13

ShowDialog method, 489, 496,
592

showDoubleValue method, 36
showFloatValue method, 34
showIntValue method, 35

showResult method, 50, 53
SignalAndWait method, 666
Simple Object Access Protocol.

See SOAP (Simple Object
Access Protocol), 684

Single method, 553
single quotation marks (‘), 88
single-threaded execution, 599.

See also multithreading
single-threaded operations,

672–676
Sleep method, 499
.sln suffix, 33
SOAP (Simple Object Access

Protocol), 684–688
role, 685
security, 686
talking, methods, 697
Web services, 685

Solution Explorer, accessing
code in, 34

Solution Explorer pane, 7
solution files

file names, 33
top-level, 8

SortedList class, 213
SortedList collection objects in

Hashtables, 215
sorting data with binary trees,

359
source code, 8
source files, viewing, 7
Source property, 611
spinning, 651, 660

threads, 661
SpinWait operations, 651
Split method, 653
sqlcmd utility, 537
SqlCommand objects, creating,

542, 564
SQL Configuration Manager

tool, 537
SqlConnection objects, creating,

539, 564
SqlConnectionStringBuilder class,

540
SqlConnectionStringBuilder

objects, 540, 562
SqlDataReader class, 543, 544
SqlDataReader objects, 543

closing, 545
creating, 564
fetching data with, 564
reading data with, 544

SqlException exceptions, 539–
540, 562

SQL injection attacks, 543
SqlParameter objects, 542–543
SQL SELECT statements, 546,

553
SQL Server

logging in, 537
multiple active result sets, 545
starting, 537

SQL Server authentication, 541
SQL Server databases. See

also databases
granting access to, 567–568

SQL Server Express user
instance, 567

SQL UPDATE commands,
583–584

Sqrt method, 141, 142
declaration of, 143

square brackets in array
declarations, 191

Stack class, 210–211
stack memory, 163–164

pushing, popping, and
querying items on, 669

strucures on, 178
StackPanel controls, 446, 476

adding, 460
Stack<T> class, thread-safe

version, 669
Start Debugging command, 13
Start method, 501, 605
StartNew method, 625, 646
StartupUri property, 24–25, 457
Start Without Debugging

command, 13
StateEntries property, 586
statements, 27–28

running iterations of, 108. See
also looping statements

semantics, 27
syntax, 27

statement sequences,
performing, 647

static classes, 144–145, 248
static fields, 143–144

const keyword for, 144
declaring, 149
writing, 145

static keyword, 143, 145, 149
static methods, 142–148

calling, 149
declaring, 149

static methods

744	

static methods (continued)
extension methods, 248
writing, 146

static operators, 421
static properties, 300
StaticResource keyword, 454
static resources, scoping rules,

454
static variables, 144
status bar, displaying save

operation status in, 505–507
StatusBar controls, adding, 505
Status property, 638
Step Into button (Debug

toolbar), 61–63
Step Out button (Debug

toolbar), 62–63
Step Over button (Debug

toolbar), 62–63
stepping into methods, 61–63
stepping out of methods, 61–63
StopWatch type, 611
Storage parameter, 555
StreamWriter objects, creating,

487
StringBuilder objects, 473, 474
String class Split method, 653
String.Format method, 473, 578
string keyword, 152
strings

appending to other strings, 92
converting enumerations to,

174–175
converting to enumerations,

522
definition of, 34
format strings, 60
formatting arguments as, 186
splitting into arrays, 653

string types, 32, 152, 474
string values

concatenating, 37, 40
converting to integers, 46,
converting to int values, 101

string variables, storing data
in, 101

struct keyword, 180, 190
StructsAndEnums namespace,

176
structure constructors, 183
structures, 178–190

arrays of, 194
vs. classes, 181–182, 188–190
declaring, 180

inheritance hierarchy for, 232
inheriting from interfaces,

255–256
initialization of, 183–187
instance fields in, 181–182
operators for, 180
private fields in, 180
sealed nature of, 271
types of, 178–179
using, 184–187

structure types, declaring, 190
structure variables

copying, 187
declaring, 182, 190
initializing, 190
nullable versions of, 182

Style property, 452
styles

scope of, 453
of WPF form controls, 451–

457, 464–466
Style tags TargetType attribute,

454–456
<Style.Triggers> element, 456
subscribers, 342
subtraction operator, 36

precedence of, 41
switch statements, 84–89

break statements in, 87
fall-through rules, 86–87
rules of use, 86–87
syntax, 85
writing, 87–89

symmetric operators, 422, 436
synchronization of threads, 666,

681
synchronization primitives

cancellation and, 668
in TPL, 661–667

synchronized access, 659
syntax rules, 27

for identifiers, 28
for statements, 27

System.Array class, 195
System.Collections.Concurrent

namespace, 668
System.Collections.Generic

namespace, 377
System.Collections.IEnumerable

interface, 381
System.Collections namespace,

206
System.ComponentModel

namespace, 504

System.Data.Linq assembly, 560
System.Data namespace, 539
System.Data.Objects.

DataClasses.EntityObject
class, 572

System.Data.Objects.
DataClasses.StructuralObject
class, 572

System.Data.SqlClient
namespace, 539

SystemException inheritance
hierarchy, 113

System.GC.Collect method, 283,
292

System.IComparable interface,
362

System.Math class Sqrt method,
141

System.Object class, 165
classes derived from, 233–234

System.Random class, 193
System.Runtime.Serialization

namespace, 691
System.ServiceModel

namespace, 691
System.ServiceModel.Web

namespace, 691
System.Threading.

CancellationToken
parameter, 633

System.Threading.Monitor class,
660

System.Threading namespace,
603

synchronization primitives in,
660

System.Threading.Tasks
namespace, 604, 617

System.ValueType class, 232
System.Windows.Data

namespace, 523
System.Windows namespace,

443

T
Table attribute, 550, 564
Table collections, 553, 558

creating, 564
tables. See database tables
Table<TEntity> collections as

public members, 559
Table<TEntity> types, 552
TargetType attribute, 454–456

static methods (continued)

		 745

Task<byte[]> objects, creating,
627

Task class, 603
parallelism, implementing

with, 608–617
WaitAll method, 646
Wait method, 608

Task constructors, 604–605
overloads of, 605

TaskContinuationOptions type,
606–607, 645

TaskCreationOptions
enumeration, 606

TaskFactory class, 607–608
TaskFactory objects, 607–608

StartNew method, 625, 646
Task objects

ContinueWith method, 606
creating, 604–605, 616, 646
multiple, 603
running, 605–606
Start method, 646
Status property, 638
Wait method, 646

Task Parallel Library. See TPL
(Task Parallel Library)

tasks, 603–604
aborting, 632
abstracting, 617–624
canceling, 632–645
cancellation tokens, 633
continuations of, 606–608,

645, 646
coordinating, 649
creating, running, controlling,

604–608, 646
exceptions handling, 641–644,

647
parallel, 600, 647
returning values from, 624–

628, 646
scheduling, 606–607
status of, 638, 640, 644
synchronizing, 608, 615–617
user interface threads and,

628–632
waiting for, 616, 646

Tasks, 507
TaskScheduler class, 606
TaskScheduler objects, 605
Task<TResult> objects, 625–628,

646
TEntity type parameter, 552
TestIfTrue method, 651

text box controls
adding, 21, 455, 459–460
binding to class properties,

515–518
default shortcut menu for, 491
shortcut menu for, 491–492

text boxes
clearing, 101
displaying items in, 34–35

text editing, shortcut menu for,
491

Text property, setting, 34–35
TextReader class, 95

disposal method of, 285
text strings. See also strings

converting to integers, 40
ThenByDescending method, 402
ThenBy method, 402
theory of binary trees, 358
ThisKey parameter, 555
this keyword, 139–140, 146, 248

with indexers, 318
Thread class, 499

Start method, 501
thread-local storage (TLS), 661
Thread objects, 603

creating new, 501
referencing methods in, 508

ThreadPool class, 603
thread pools, 603
threads, 603–604

background threads, 502–504
blocking, 663–664
concurrent, 600
definition of, 283, 499
halting execution of, 666–667
locking data, 659–661
multiple, 499–500
object access restrictions, 502
optimal number of, 604
parallel, 614–617
reading resources, 665
resource pools, accessing,

663–664
scheduling, 603–604
sleeping, 659–660
spinning the processor, 660
suspending, 661–662
synchronizing, 651, 666, 681
waiting for events, 661–662
wrapper for, 504
writing to resources, 665

thread-safe collection classes,
668–670

Thread.Sleep method, 624
Thread.SpinWait method, 660
ThreadStatic attribute, 661
ThrowIfCancellationRequested

method, 640–641
throw statements, 126,

fall-through, preventing with,
86

writing, 122
Ticket Ordering application

binding text box control to
class property, 515–518

converter class and methods,
creating, 523–525

displaying number of tickets,
512–514

examining, 511–512
privilege level and number of

tickets, validating, 520–522
TicketOrder class with

validation logic, 514–515
tilde (~) modifier, 281, 292
Title property, 21, 496
TKey, 357
ToArray method, for retrieving

data, 553–554, 558
ToList method, for retrieving

data, 553–554, 558–559
Toolbox

All Controls section, 19
Common WPF Controls

section, 19
displaying, 19

ToolTip property, error
messages as, 518–519, 532

top-level namespaces, 15
top-level solution files, 8
ToString method, 41, 175, 185

implementation of, 238–239
of structures, 178–179

TPL (Task Parallel Library), 603
cancellation strategy, 632–645
locking techniques, 661
Parallel class, 617–624
synchronization primitives in,

661–667
Task class, 603. See also Task

class
thread-safe collection classes

and interfaces, 668
thread scheduling, 603–604

TResult type parameter, 399
triggers, 456

triggers

746	

try blocks, 110
writing, 116

try/catch statement blocks,
writing, 114–118

try keyword, 110
TSource type parameter, 399
TValue, 357
type checking, inheritance and,

235
type parameters, 356

out keyword, 376
types, extending, 248
type-specific versions of a

generic class, 357
“Type ‘typename’ already

defines a member called X
with the same parameter
types” error, 65

U
unary operators, 44, 419

precedence and associativity
of, 76

unassigned variables, 32, 73
unboxing, 166–168
unchecked block statements,

119
unchecked expressions, 119
unchecked keyword, 118–119
underscores, syntax rules for,

28, 30
unhandled exceptions, 111–112,

123
catching, 124–125
reporting, 115

unsafe code, 170
unsafe keyword, 170
UpdateException exceptions,

588
UpdateException handler,

594–595
update operations, database

conflicting updates, 584–587,
596

performing, 583–584
UpdateSource method, 529

calling, 532
UpdateSourceTrigger property,

528
defering validation with, 532

Use dynamic ports property, 690
user data, validation of, 509–532

User ID parameter, 541
user input

key presses, 588–589
responsiveness to, 628–629

user instance of SQL Server
Express, 567

detaching from, 567–568
user interfaces, Microsoft

guidelines for, 478
user interface threads

copying data from, 502–505
running methods on behalf of

other threads, 505–507
tasks and, 628–632

using directives, 286
using statements, 15, 16

data connection close
statements in, 546

for resource management,
286–288

syntax of, 286
writing, 289–292

utility methods, 142

V
ValidateNames property, 496
validation

with data binding, 511–532
explicit, 528–531
input validation, 509–510
programmatic control of, 532
testing, 526–527, 530–531
timing of, 518, 527–531

Validation.HasError property
detecting changes to, 532
trigger for, 518

validation rules, 510
adding, 511–518
exceptions to, detecting,

518–519
specifying, 516

ValidationRules elements, 516
ValueConversion attribute, 523
value parameters

out and ref modifiers for, 162
using, 153–156

Value property, 158, 159
values

boxing, 165–166
comparing, 89
returning from tasks, 625–628
unboxing, 166–168

values arrays, 212
value types, 171

copying, 151–156
destruction of, 279
nullable, 157–158
numerations, 173–178
stack, creation in, 163
structures, 178–190

value type variables, 299
copying, 171, 189

variables, 29–31
assigning values to, 31
checking values in debugger,

62–63
of class types, 131
copying contents into

reference types, 153
declaring, 46,
decrementing, 43–44, 46, 92,

108
implicitly typed, 45–46, 148
incrementing, 43–44, 46, 92,

108
initializing, 53
initializing to same value, 46,
in methods, 53
naming, 29, 30
naming conventions, 30
qualifying as parameters,

139–140
scope of, 53
ScreenTips on, 31
types of, inferring, 45
unassigned, 32, 73
value of, changing, 46
values assigned to, 45
value types, 171, 189, 299

variadic methods, 219
Variant type, 45
var keyword, 45

for implicitly typed variables,
148

VerticalAlignment property,
447–448

View Code command, 33, 476
virtual keyword, 239, 240, 251,

272, 276
virtual methods

declaring, 238–239, 251
polymorphism and, 240–241

virtual property
implementations, 304

try blocks

		 747

Visual C# 2010 Express, 4. See
also Visual Studio 2010

console applications, creating,
6–8

default development
environment settings, 5

graphical applications,
creating, 18

save location, specifying, 539
starting, 4

Visual Studio 2010
auto-generated code, 22–23
Code and Text Editor pane, 7
coding error display, 12
default development

environment settings, 4
Entity Framework, 565. See

also Entity Framework
Error List window, 12
files created by, 8–9
menu bar, 7
Output window, 11
programming environment,

3–8
Solution Explorer pane, 7
starting, 4
toolbar, 7

Visual Studio 2010 Professional,
4. See also Visual Studio 2010

console applications, creating,
5–6

graphical applications,
creating, 17

Visual Studio 2010 Standard, 4.
See also Visual Studio 2010

console applications, creating,
5–6

graphical applications,
creating, 17

Visual Studio Just-In-Time
Debugger dialog box, 115

void keyword, 48, 49, 51

W
WaitAll method, 608, 646
WaitAny method, 608
WaitingToRun task state, 638
Wait method, 608, 646, 661,

681
wait operations

cancellation tokens for, 668
CurrentCount property, 663

WCF (Windows Communication
Foundation), 684

Web methods, 685
Web service architectures, 684
Web services, 683–716

addressing, 687
architectures, 684
building, 688
consuming, 711
creating using REST, 704
creating using SOAP, 689
defined, 684
invoking, 711
load balancing, 687
nonfunctional requirements,

686
policy, 687
Representational State

Transfer (REST), 684, 687
routing, 687
security, 686
Service.svc file, 695
Simple Object Access Protocol

(SOAP), 684, 685
SOAP vs. REST, 688
Web.config file, 695
Web methods, 685
Web Services Description

Language (WSDL), 686
Windows Communication

Foundation, 684
WS-Addressing specification,

687
WS-Policy specification, 687
WS-Security specification, 686

Web Services Description
Language (WSDL), 686

Where method, 401
while statements, 92–96, 108

syntax of, 92–93
termination of, 93
writing, 93–96

white space, 28
widening conversions, 434
Window_Closing method,

474–476
Window_Loaded method, 579
window resources, adding to

shortcut menus, 491
Window.Resources element,

453–454, 515
Windows Authentication for

database access, 540, 541

Windows common dialog
boxes, 495–498

Windows Communication
Foundation (WCF), 684

Windows Forms, 17
Windows Forms Application

template, 17
Windows Open dialog box,

displaying, 94
Windows Presentation

Foundation (WPF), 17. See
also WPF applications; WPF
controls; WPF forms

WithCancellation method, 656,
681

WithDegreeOfParallelism
method, 655

WithExecutionMode method,
655

workload, optimal number of
threads for, 604

WPF applications
anchor points of controls,

447–448
background images, adding,

449–451
building, 444–458
Closing events, 474–476
code, viewing, 476
controls, adding, 458–470
controls, resetting to default

values, 466–470
creating, 443–445, 476
database information,

displaying in, 574–579
events, handling, 470–476,

476
forms, adding, 457
functionality of, 457–460
Grid panels, 446
layout panels, 446
long-running event handlers,

simulating, 498–499
menu controls, 477–508
properties, changing

dynamically, 466–470
properties, setting, 476
responsiveness, improving,

498–507
style for controls, 451–457
text properties, 457
thread safety, 502

WPF applications

748	

WPF applications (continued)
updating and reloading forms,

471
validation rules, 510
XAML definition of, 445

WPF Application template, 17,
445, 476

WPF cache, refreshing, 579
WPF controls. See also controls

binding to data sources, 580
displaying entity data in, 596
as menu items, 484
shortcut menus for, 491

WPF forms, 457
code, displaying, 23
displaying, 489, 592
Document Outline window,

39–40
instances of, 489
shortcut menus,

dissassociating from, 494
XAML in, 19–20

WPF user interface events, 345

WPF windows, compiling, 452
WrapPanels, 446
WrappedInt class, 156
WrappedInt objects, passing as

arguments, 154–156
WrappedInt variables, declaring,

155
WriteableBitmap class, 611
WriteableBitmap type, 611
WriteLine method, 9, 219

overloading, 55–56
overloads of, 224

write locks, 661, 665
write-only properties, 300
writing to resources, 665–666
WS-Addressing specification,

687
WSDL (Web Services

Description Language), 686.
See also SOAP (Simple Object
Access Protocol)

WS-Policy specification, 687
WS-Security specification, 686

WS-* specifications, 687

X
XAML (Extensible Application

Markup Language) in WPF
forms, 19–20, 445

XML, 684
XML namespace declaration,

515
XML namespaces, 445
xmlns attributes, 445
XOR (̂) operator, 316

Y
yield keyword, 390

Z
ZIndex property, 451
z-order of controls, 451

WPF applications (continued)

About the Author
John Sharp is a principal technologist at Content Master,
part of CM Group Ltd, a technical authoring and con-
sulting company. An expert on developing applications
by using the Microsoft .NET Framework and other tech-
nologies, John has produced numerous tutorials, white
papers, and presentations on distributed systems, SOA
and Web services, the C# language, and interoperability
issues. John has helped to develop a large number of
courses for Microsoft Training (he co-wrote the first C#
programming course for them) and he is also the author
of several popular books, including Microsoft Windows
Communication Foundation Step by Step.

MS_Visual_C#_2010_SBS.indb 750 7/29/11 3:55 PM

	Cover
	Table of Contents
	Ch. 1
	Ch. 27
	Index

