
http://www.facebook.com/share.php?u=http://www.microsoftpressstore.com/title/9780735626461
http://twitter.com/?status=RT: download a free sample chapter http://www.microsoftpressstore.com/title/9780735626461
https://plusone.google.com/share?url=http://www.microsoftpressstore.com/title/9780735626461
http://www.linkedin.com/shareArticle?mini=true&url=http://www.microsoftpressstore.com/title/9780735626461
http://www.stumbleupon.com/submit?url=http://www.microsoftpressstore.com/title/9780735626461/Free-Sample-Chapter

● ● ● ● ● ● ● ● ● ● ●

How to access
your CD files

Microsoft Press

The print edition of this book includes a CD. To access the
CD files, go to http://aka.ms/626461/files, and look for the
Downloads tab.

Note: Use a desktop web browser, as files may not be
accessible from all ereader devices.

Questions? Please contact: mspinput@microsoft.com

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2010 by Ed Wilson

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2009938599

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 WCT 4 3 2 1 0 9

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly at
fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to msinput@microsoft.com.

Microsoft, Microsoft Press, Access, Active Accessibility, Active Directory, ActiveX, Authenticode, Excel, Expression,
Forefront, Groove, Hyper-V, IntelliSense, Internet Explorer, MSDN, OneNote, Outlook, ReadyBoost, Segoe, SharePoint,
Silverlight, SQL Server, Visual Basic, Visual SourceSafe, Visual Studio, Win32, Windows, Windows Media, Windows
NT, Windows PowerShell, Windows Server, and Windows Vista are either registered trademarks or trademarks of the
Microsoft group of companies. Other product and company names mentioned herein may be the trademarks of their
respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Martin DelRe
Developmental Editor: Karen Szall
Project Editor: Melissa von Tschudi-Sutton
Editorial Production: Custom Editorial Productions, Inc.
Technical Reviewer: Randall Galloway; Technical Review services provided by Content Master, a member of
CM Group, Ltd.
Cover: Tom Draper Design

Body Part No. X16-38608

This book is dedicated to Teresa Wilson, my best friend,
life companion, inspiration, and wife. You made me so happy
when you said yes.

Contents at a Glance

Acknowledgments	 xvii
Introduction	 xix
About the Companion Media	 xxv

Part I	 Introduction

Chapter 1	 Assessing the Scripting Environment	 3

Chapter 2	 Survey of Windows PowerShell Capabilities	 27

Chapter 3	 Survey of Active Directory Capabilities	 65

Chapter 4	 User Management	 99

Part II	 PLanning

Chapter 5	 Identifying Scripting Opportunities	 133

Chapter 6	 Configuring the Script Environment	 167

Chapter 7	 Avoiding Scripting Pitfalls	 207

Chapter 8	 Tracking Scripting Opportunities	 253

Part III	D esigning

Chapter 9	 Designing Functions	 293

Chapter 10	 Designing Help for Scripts	 331

Chapter 11	 Planning for Modules	 373

Chapter 12	 Handling Input and Output	 407

Chapter 13	 Handling Errors	 461

Part iv	 testing and Deploying

Chapter 14	 Testing Scripts	 499

Chapter 15	 Running Scripts	 543

Part V	Op timizing

Chapter 16	 Logging Results	 577

Chapter 17	 Troubleshooting Scripts	 601

Appendix A	 635
Appendix B	 647
Appendix C	 651
Appendix D	 655
Appendix E	 693
Appendix F	 697

Index	 699

vii

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Contents
Acknowledgments	 xvii
Introduction	 xix
About the Companion Media	 xxv

Part I	 Introduction

Chapter 1	 Assessing the Scripting Environment	 3

Why Use Windows PowerShell 2.0?. 3

Comparison with Windows PowerShell 1.0 . 4

Backward Compatibility	 4

Using the Version Tag	 4

New Features of Windows PowerShell 2.0. 8

New cmdlets	 9

Modified cmdlets	 12

Architectural Changes	 14

Comparing Windows PowerShell 2.0 to VBScript. 16

The Learning Curve	 17

Component Object Model (COM) Support	 18

Comparing Windows PowerShell 2.0 to the Command Shell	 21

Deployment Requirements for Windows PowerShell 2.0 22

.NET Framework	 22

Service Dependencies	 23

Deploying Windows PowerShell 2.0 . 23

Where to Deploy Windows PowerShell 2.0	 24

How Do You Anticipate Using Windows PowerShell 2.0?	 24

Additional Resources. 25

viii Contents

Chapter 2	 Survey of Windows PowerShell Capabilities	 27

Using the Interactive Command Line. 27

The Easiest cmdlets	 30

The Most Important cmdlets	 31

Grouping and Sorting Output	 36

Saving Output to Files	 38

Working with WMI. 38

Obtaining Information from Classes	 41

Finding WMI Classes	 42

Setting Properties	 43

Calling Methods	 45

Working with Instances	 46

Working with Events	 47

Working Remotely . 48

Using –computer	 48

Creating a Remote Interactive Session	 63

Running a Remote Command	 63

Additional Resources. 64

Chapter 3	 Survey of Active Directory Capabilities	 65

Creating Users, Groups, and Organizational Units. 66

Creating Objects. 67

Creating a User Account	 69

Creating a Group	 69

Creating a Computer Account	 69

Deriving the Create Object Pattern. 75

Modifying the Variables	 75

Constant vs. Read-Only Variables	 76

Creating a Utility Script	 76

Using CSV Files to Create Multiple Objects	 77

Testing a Script	 81

Configuring the Connection to the Database. 81

Using ADO.NET	 82

Using ADO COM Objects	 86

ixContents

Modifying Properties. 88

Using Excel to Update Attributes	 89

Making the Connection	 91

Reading the Data	 92

Making the Changes	 93

Closing the Connection	 94

Additional Resources. 97

Chapter 4	 User Management	 99

Examining the Active Directory Schema. 99

Querying Active Directory. .110

Using ADO	 112

Using Directory Searcher	 117

Using [ADSISearcher]	 120

Performing Account Management. 123

Locating Disabled User Accounts	 123

Moving Objects 	 125

Searching for Missing Values in Active Directory	 127

Additional Resources. 130

Part II	 PLanning

Chapter 5	 Identifying Scripting Opportunities	 133

Automating Routine Tasks. 133

Automation Interface	 133

Using RegRead to Read the Registry	 134

Structured Requirements. 138

Security Requirements	 138

.NET Framework Version Requirements	 154

Operating System Requirements	 158

Application Requirements	 162

Snap-in Requirements	 164

Additional Resources. 165

x Contents

Chapter 6	 Configuring the Script Environment	 167

Configuring a Profile . 167

Creating Aliases	 168

Creating Functions	 172

Passing Multiple Parameters	 176

Creating Variables	 181

Creating PSDrives	 188

Enabling Scripting	 194

Creating a Profile. 196

Choosing the Correct Profile	 197

Creating Other Profiles	 199

Accessing Functions in Other Scripts. 202

Creating a Function Library 	 203

Using an Include File	 204

Additional Resources. 206

Chapter 7	 Avoiding Scripting Pitfalls	 207

Lack of cmdlet Support. 207

Complicated Constructors. 209

Version Compatibility Issues. 211

Trapping the Operating System Version	 217

Lack of WMI Support. 220

Working with Objects and Namespaces. 220

Listing WMI Providers . 224

Working with WMI Classes. 225

Changing Settings	 229

Modifying Values Through the Registry	 232

Lack of .NET Framework Support. 238

Use of Static Methods and Properties	 238

Version Dependencies	 241

Lack of COM Support	 241

Lack of External Application Support	 248

Additional Resources. 252

xiContents

Chapter 8	 Tracking Scripting Opportunities	 253

Evaluating the Need for the Script. 253

Reading a Text File	 254

Export Command History	 259

Fan-out Commands	 261

Query Active Directory	 265

Just Use the Command Line	 272

Calculating the Benefit from the Script. 276

Repeatability	 277

Documentability	 280

Adaptability	 281

Script Collaboration. 285

Windows SharePoint Services	 286

Microsoft Office Groove	 288

Live Mesh	 288

Additional Resources. 290

Part III	D esigning

Chapter 9	 Designing Functions	 293

Understanding Functions . 293

Using Functions to Provide Ease of Code Reuse. 301

Using Two Input Parameters	 304

Using a Type Constraint	 309

Using More than Two Input Parameters. 311

Using Functions to Encapsulate Business Logic. 313

Using Functions to Provide Ease of Modification. 315

Understanding Filters. 324

Additional Resources. 328

xii Contents

Chapter 10	 Designing Help for Scripts	 331

Adding Help Documentation to a Script with
Single-Line Comments. 331

Using the Here-String for Multiple-Line Comments. 335

Constructing a Here-String	 336

An Example: Adding Comments to a Registry Script	 337

Retrieving Comments by Using Here-Strings	 345

Using Multiple-Line Comment Tags in Windows PowerShell 2.0. 355

Creating Multiple-Line Comments with Comment Tags	 355

Creating Single-Line Comments with Comment Tags	 356

The 13 Rules for Writing Effective Comments . 357

Update Documentation When a Script Is Updated	 357

Add Comments During the Development Process	 358

Write for an International Audience	 359

Consistent Header Information	 360

Document Prerequisites	 361

Document Deficiencies	 362

Avoid Useless Information	 364

Document the Reason for the Code	 365

Use of One-Line Comments	 365

Avoid End-of-Line Comments	 366

Document Nested Structures	 367

Use a Standard Set of Keywords	 368

Document the Strange and Bizarre	 369

Additional Resources. 372

Chapter 11	 Planning for Modules	 373

Locating and Loading Modules. 375

Listing Available Modules	 376

Loading Modules	 379

Installing Modules. 381

Creating a User’s Modules Folder	 382

Working with the $ModulePath Variable	 387

Creating a Module Drive	 389

xiiiContents

Including Functions by Dot-Sourcing. 391

Adding Help for Functions . 397

Using a Here-String for Help	 398

Using Help Function Tags to Produce Help	 400

Additional Resources. 406

Chapter 12	 Handling Input and Output	 407

Choosing the Best Input Method. 408

Reading from the Command Line	 408

Using the Param Statement	 416

Working with Passwords as Input	 429

Working with Connection Strings as Input	 437

Prompting for Input. 439

Choosing the Best Output Method. 440

Output to the Screen	 440

Output to File	 445

Splitting the Output to Both the Screen and the File	 447

Output to E-Mail	 451

Output from Functions	 451

Additional Resources. 459

Chapter 13	 Handling Errors	 461

Handling Missing Parameters. 462

Creating a Default Value for the Parameter	 462

Making the Parameter Mandatory	 464

Limiting Choices. 465

Using PromptForChoice to Limit Selections	 465

Using Ping to Identify Accessible Computers	 466

Using the −contains Operator to Examine the
 Contents of an Array	 469

Using the −contains Operator to Test for Properties	 471

Handling Missing Rights . 474

Attempting and Failing	 474

Checking for Rights and Exiting Gracefully	 476

xiv Contents

Handling Missing WMI Providers. 477

Incorrect Data Types. 487

Out of Bounds Errors. 492

Using a Boundary Checking Function	 493

Placing Limits on the Parameter	 494

Additional Resources. 495

Part iv	 testing and Deploying

Chapter 14	 Testing Scripts	 499

Using Basic Syntax Checking Techniques. 499

Looking for Errors	 504

Running the Script	 507

Documenting What You Did	 508

Conducting Performance Testing of Scripts. 512

Using the Store and Forward Approach	 513

Using the Windows PowerShell Pipeline	 515

Evaluating the Performance of Different Versions of a Script	 518

Using Standard Parameters. 528

Using the debug Parameter	 528

Using the –whatif Parameter	 531

Using Start-Transcript to Produce a Log. 536

Advanced Script Testing. .537

Additional Resources. 541

Chapter 15	 Running Scripts	 543

 Selecting the Appropriate Script Execution Policy. 543

The Purpose of Script Execution Policies	 544

Understanding the Different Script Execution Policies	 544

Understanding the Internet Zone	 546

Deploying the Script Execution Policy . 548

Modifying the Registry	 548

Using the Set-ExecutionPolicy cmdlet	 549

xvContents

Using Group Policy to Deploy the Script Execution Policy	 553

Understanding Code Signing. 556

Logon Scripts. 557

What to Include in Logon Scripts	 558

Methods of Calling the Logon Scripts	 560

Script Folder. 561

Deployed Locally	 561

MSI Package Deployed Locally 	 561

Stand-Alone Scripts . 561

Diagnostics	 562

Reporting and Auditing	 562

Help Desk Scripts . 562

Avoid Editing	 562

Provide a Good Level of Help Interaction	 563

Why Version Control?. 565

Avoid Introducing Errors	 567

Enable Accurate Troubleshooting	 567

Track Changes	 567

Maintain a Master Listing	 568

Maintain Compatibility with Other Scripts	 568

Internal Version Number in the Comments	 568

Version Control Software	 572

Additional Resources. 574

Part V	Op timizing

Chapter 16	 Logging Results	 577

Logging to a Text File. 577

Designing a Logging Approach	 578

Text Location	 586

Networked Log Files	 590

Logging to the Event Log. 595

Using the Application Log	 597

Creating a Custom Event Log	 597

xvi Contents

Logging to the Registry. 598

Additional Resources. 600

Chapter 17	 Troubleshooting Scripts	 601

Using the Set-PSDebug cmdlet . 601

Tracing the Script	 601

Stepping Through the Script	 606

Enabling StrictMode	 612

Debugging Scripts . 615

Setting Breakpoints	 616

Responding to Breakpoints	 626

Listing Breakpoints	 628

Enabling and Disabling Breakpoints	 629

Deleting Breakpoints	 631

Additional Resources. 633

Appendix A	 635
Appendix B	 647
Appendix C	 651
Appendix D	 655
Appendix E	 693
Appendix F	 697

Index	 699

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

xvii

Acknowledgments

It always seems that I am sideswiped when working on a book project. At the
outset of a project, I think, “I know this subject pretty well. This should be easy.”

Then I begin the outline and am confronted with my ignorance of the subject. I
have worked on this book for more than 14 months—the longest of any of my
eight books. Luckily, I have been aided in the project by nearly one hundred
people, each of whom has expressed enthusiastic support for a project that they
all acknowledged was both vitally needed and critically important.

The outline: At least once a month, I receive an e-mail, phone call, instant
message, comment on Facebook, or tweet that asks me how I go about writing a
book. I cannot even call my own brother without discussing the book-writing pro-
cess: he is finishing his first book (on baseball). So what does this have to do with
the outline? Well, I always begin with an outline. This particular outline took me
more than one month to write. I had significant help in the development of the
outline from Jeffrey Snover, James Brundage, Marco Shaw, Bill Mell, Jit Banerjie,
Chris Bellée, and Pete Christensen.

The sidebars: One of the cool things about a Best Practices book is the sidebars.
Sidebars are short text pieces that are written by well-known industry experts as
well as members of the Windows PowerShell product group. I have been extremely
fortunate to have developers, test engineers, architects, field engineers, network
administrators, and consultants contribute sidebars for this book. They wrote
because they believed in the value of creating a book on best practices and not
because it was their job or because they were otherwise compensated. These
contributors are current and former employees of Microsoft. Some are Microsoft
MVPs, and others will probably become Microsoft MVPs in the future. Some are
moderators for the Official Scripting Guys forum, and others are moderators for
other scripting forums. I even rounded up a few former Microsoft Scripting Guys.
In every case, my colleagues were happy to supply a sidebar. I enjoyed reading
the sidebars as much as I am sure you will enjoy them.

The following people provided assistance, suggestions, and/or contributions
to sidebars for the book: Alexander Riedel, Andrew Willett, Andy Schneider, Ben
Pearce, Bill Mell, Bill Stewart, Brandon Shell, Chris Bellée, Clint Huffman, Dan
Harman, Daniele Muscetta, Dave Schwinn, Dean Tsaltas, Don Jones, Enrique
Cedeno, Georges Maheu, Hal Rottenberg, James Brundage, James Craig Burley,
James Turner, Jeffrey Hicks, Jeffrey Snover, Juan Carlos Ruiz Lopez, Keith Hill, Lee
Holmes, Luís Canastreiro, Osama Sajid, Peter Costantini, Rahul Verma, Richard
Norman, Richard Siddaway, Vasily Gusev, Alex K. Angelopoulos, David Zazzo,

xviii Acknowledgments

Glenn Seagraves, Joel Bennett, Marco Shaw, Oisín Grehan, Pete Christensen, and
Thomas Lee.

Special mention goes to Melissa von Tschudi-Sutton for all of her patience
and guidance. During the writing of this book, I went from traveling every week
(with a significant amount of international travel to Australia, Canada, Germany,
Denmark, Portugal, and Mexico) to my current position as the Microsoft Scripting
Guy. This change caused some disruption to my work schedule. Additionally, this
project also saw a nearly two-month hiatus due to a surgery-inducing accident
that I suffered in my woodworking shop. Throughout all of these changes, Melissa
was a real trouper, and I could not have asked for a more understanding editor.
She was awesome!

Randall Galloway, who is a Microsoft Technical Account manager and my
technical editor on this book, was great. He went beyond the call of duty by even
responding to style and grammar questions posed by Jan Clavey, who was my
copy editor. Rose Marie Kuebbing and Megan Smith-Creed, who were project
managers for this book, also contributed in significant ways to keeping the book
on schedule. As the content development manager, Karen Szall did a wonderful
job of helping me quickly come up to speed on all of the new features of a Best
Practices book. I extend a hearty “well done” to all of you!

Windows PowerShell 2.0 Best Practices would not exist without the tireless
efforts of my agent and friend, Claudette Moore, of the Moore Literary Agency.
Claudette is amazing! That she can navigate all of the intricacies of a book con-
tract and negotiate with editors and publishers while still keeping her sanity is
truly an art form. Martin DelRe, my acquisitions editor from Microsoft Press, is
a staunch supporter of scripting technology and makes me feel as if my book is
the most important book to be published this year. His personal attention to the
project is truly appreciated.

My biggest acknowledgment, however, must go to Teresa Wilson, who is my
number one editor, critic, and fan. Nothing I write—whether an e-mail to John
Merril (my manager at Microsoft), a Hey Scripting Guy! article, or a book for
Microsoft Press—leaves our house without her careful scrutiny. She has read every
word of every book that I have ever written. Incidentally, she is an accounting type
of person and not a script guru or a wordsmith, even though she is sometimes
referred to as “the scripting wife” in some of my Hey Scripting Guy! articles.

Even with all of this help from my friends and colleagues, I am absolutely
certain that there will be a few errors in this book. All of those belong to me.

xix

Introduction

One of the great things about being the Microsoft Scripting Guy is the interac-
tion I have with customers—people who are using Windows PowerShell

to manage enterprise networks of every size and description: pure Microsoft
networks, heterogeneous networks, and even networks running software that is
obsolete and no longer supported. Within all of these interactions with customers
runs a common thread: “How can I more efficiently manage my network?”

Windows PowerShell is the Microsoft answer to the question of more effective
and efficient network management. At TechEd 2009 in Los Angeles, the Windows
PowerShell sessions were the most heavily attended of all of the sessions offered.
While I was manning the Microsoft Scripting Guys booth, nearly all of the ques-
tions I received were about Windows PowerShell. My Friday afternoon talk on
using Windows PowerShell to manage the Windows 7 desktop saw the highest
attendance of any session offered during that time slot. Quite frankly, I was sur-
prised that anyone attended because the convention center was a scant 15 miles
from Disneyland. I felt like I was competing with Mickey Mouse for the attendees’
attention after a week of sessions.

Why I Wrote This Book
“Windows administrators do not script.” I have heard this truism for years. Prior to
becoming the Microsoft Scripting Guy, I delivered workshops to Microsoft Premier
Customers around the world on VBScript, Windows Management Instrumentation
(WMI), and Windows PowerShell. Because these workshops were so popular, I had
to train other instructors to assist with the demand for training. These scripting
workshops were the highest-rated workshops offered through Microsoft Premier
Services. There is definitely a demand and an interest in scripting. Over the years,
the questions we fielded began to repeat themselves: “What is the best way to
do this?” or “What is the best way to do that?” The scripting instructors formed a
work group as we researched answers to these common questions. At one point,
we discussed the creation of a scripting Best Practices workshop, and much of that
work has been incorporated into this book.

On Form and Function
To a very large extent, the use of your script will dictate the form that it takes. Will
all of the best practices in this book apply to every script that you write? No. The
goal of administrative scripting is to do work, and anything that enables you to

xx Introduction

efficiently accomplish your task is probably acceptable. However, there is a point
when a quickly hobbled-together script can be more trouble than it is worth,
particularly if it introduces security concerns or reliability issues.

Several benefits can be derived from following best practices. The first is that
a well-crafted script will be easier to understand. If it is easier to read and under-
stand, it will be easier to modify when the time comes to add capability to the
script. If a problem arises with the script, it will also be easier to troubleshoot.

For Whom Is This Book?
Windows PowerShell 2.0 Best Practices is aimed at experienced IT professionals
including IT architects, engineers, administrators, and support professionals who
are working in large organizations and in the enterprise. IT pros who work in
smaller companies would also benefit from most of the guidelines concerning
the structuring of code, many of the tips and tricks, and much of the “how to”
sections regarding common everyday problems. The audience is expected to have
obtained the level of Windows PowerShell understanding presented in Microsoft
Windows PowerShell Step by Step (Microsoft Press, 2007). The audience is assumed
to know and understand the basics of Windows PowerShell: fundamental looping
constructs, basic decision-making code blocks, and a rudimentary understand-
ing of the use of cmdlets, which is the type of information they would obtain in a
three-day class. In this book, there are two level-setting chapters as well as refer-
ences back to topics covered in more detail in Microsoft Windows PowerShell Step
by Step. This book is a 300-level book, but the planning and managing section will
be very useful to IT managers seeking guidance on establishing scripting proce-
dures for an enterprise organization.

How Is This Book Organized?
This book is organized into five sections as listed here:

n	 Part I: Introduction

n	 Part II: Planning

n	 Part III: Designing

n	 Part IV: Testing and Deploying

n	 Part V: Optimizing

The first four chapters introduce many of the new features of Windows
PowerShell 2.0. In Chapter 1, I cover a variety of the new cmdlets that are intro-
duced in Windows PowerShell 2.0 as well as best practices for deploying Windows
PowerShell 2.0 to different portions of the network. In Chapter 2, I discuss the new

xxiIntroduction

WMI features in Windows PowerShell 2.0 and provide tips for incorporating these
features into a management strategy for your network. Chapters 3 and 4 cover
Active Directory.

I begin the planning section of the book in Chapter 5 by identifying scripting
opportunities. Here I talk about the different types of technology available to the
scripter. In Chapters 6 and 7, I present best practices for configuring the scripting
environment and avoiding scripting pitfalls. Chapter 8 concludes the planning
section by discussing best practices for engendering scripting collaboration within
the corporate IT environment.

In the section about design, I go into a great amount of detail about functions
and help. There are significant new features in Windows PowerShell 2.0 that will
ratchet your enterprise scripts to a new level of functionality. Chapter 11 covers
modules, which are another new Windows PowerShell 2.0 feature that provides
the ability to store, share, and deploy functions and other program elements in
an easy-to-reuse manner. Because there are so many methods to get data into
and out of a Windows PowerShell script, I provide some guidelines to help you
determine the best methodology for your particular application. You cannot
always predict what the environment will be when your script is run. Therefore, in
Chapter 13, I discuss best practices for handling errors.

Of course, many errors can be avoided if a script is thoroughly tested prior to
deployment, so I’ve included a section on testing and deploying. Script testing is
discussed in Chapter 14, including the types of tests to run and the type of envi-
ronment to use for your script testing. In Chapter 15, I discuss best practices for
running scripts. Here I talk about working with the script execution policy, code
signing, and other topics that are often confusing.

In the final section of the book, I cover optimization. In Chapter 16, I present
different options for implementing logging in your script. I conclude Windows
PowerShell 2.0 Best Practices with Chapter 17, where I cover the new troubleshoot-
ing and debugging tools included in Windows PowerShell 2.0. There are many
choices for you to use, and I provide quite a bit of guidance, tips, and best prac-
tices to effectively troubleshoot a Windows PowerShell script.

Note  Sidebars are provided by individuals in the industry as examples

for informational purposes only and may not represent the views of their

employers. No warranties, express, implied, or statutory, are made as to the

information provided in sidebars.

xxii Introduction

What This Book Is Not
In Windows PowerShell 2.0 Best Practices, I assume that you have a basic under-
standing of Windows PowerShell. While I go to great lengths to explain the new
features of Windows PowerShell 2.0, I do not always devote the same detail to
the features of Windows PowerShell 1.0. Even though I think you can learn to use
Windows PowerShell from reading this book, it is not a comprehensive text, nor
is it a tutorial or even a Windows PowerShell reference book. The organization of
the book, while appropriate for dealing with Windows PowerShell best practices,
is not optimal for learning Windows PowerShell from scratch. I therefore recom-
mend the following books as either prereading prior to approaching this book or,
at a minimum, as supplemental reading while you are perusing this book:

n	 Microsoft Windows PowerShell Step by Step (Microsoft Press, 2007)

n	 Windows PowerShell Scripting Guide (Microsoft Press, 2008)

Digital Content for Digital Book Readers  If you bought a digital-

only edition of this book, you can enjoy select content from the print edition’s

companion media. Visit http://www.microsoftpressstore.com/title9780735626461 to get

your downloadable content. This content is always up to date and available to

all readers.

System Requirements
This book is designed to be used with the following software:

n	 Windows XP or later

n	 512 MB of RAM

n	 P4 processor or higher

n	 100 MB of available disk space

n	 Internet Explorer 6.0 or later

n	 Windows PowerShell 2.0 or later

The following list details the minimum system requirements needed to run the
companion media provided with this book:

n	 Windows XP, with the latest service pack installed and the latest updates
from Microsoft Update Service

n	 CD-ROM drive

n	 Display monitor capable of 1024 × 768 resolution

http://www.microsoftpressstore.com/title9780735626461

xxiiiIntroduction

n	 Microsoft Mouse or compatible pointing device

n	 Adobe Reader for viewing the eBook (Adobe Reader is available as a
download at http://www.adobe.com.)

Support for This Book
Every effort has been made to ensure the accuracy of this book. As corrections or
changes are collected, they will be added to a Microsoft Knowledge Base article
accessible via the Microsoft Help and Support site. Microsoft Press provides sup-
port for books, including instructions for finding Knowledge Base articles, at the
following Web site: http://www.microsoft.com/learning/support/books/.

If you have questions regarding the book that are not answered by visiting the
site above or viewing a Knowledge Base article, send them to Microsoft Press via
e-mail to mspinput@microsoft.com. Please note that Microsoft software product
support is not offered through these addresses.

We Want to Hear from You
We welcome your feedback about this book. Please share your comments and
ideas via the following short survey: http://www.microsoft.com/learning/booksurvey.
Your participation will help Microsoft Press create books that better meet your
needs and your standards.

Note  We hope that you will give us detailed feedback via our survey. If

you have questions about our publishing program, upcoming titles, or

Microsoft Press in general, we encourage you to interact with us via Twitter at

http://twitter.com/MicrosoftPress. For support issues, use only the e-mail

address shown above.

xxv

About the Companion Media

On this book’s companion media, I include all of the scripts that are discussed
in the book. The scripts are stored in folders that correspond to the chapters

in the book. There is also a folder named Extras that contains extra scripts that I
wrote while working on the chapters.

Writing extra scripts has become a tradition for me throughout all of the five
scripting books that I have written. Some of these are simply modifications of the
scripts in the chapters, while others are scripts that I wrote for fun that I wanted to
share. You will also find some planning templates and other tools that might be
useful to you as you develop your corporate scripting standards. Last but certainly
not least, you will find a document that contains a summary of the best practices
from this book. It is my sincere hope that this document will become a quick ref-
erence that you can use to refer to the best practices for scripting when you have
a question while writing a script.

		 	 207

C H A P T E R 7

Avoiding Scripting Pitfalls
n	 Lack of cmdlet Support  207

n	 Complicated Constructors  209

n	 Version Compatibility Issues  211

n	 Lack of WMI Support  220

n	 Working with Objects and Namespaces  220

n	 Listing WMI Providers  224

n	 Working with WMI Classes  225

n	 Lack of .NET Framework Support  238

n	 Additional Resources  252

Knowing what you should not script is as important as knowing what you should
script. There are times when creating a Windows PowerShell script is not the best

approach to a problem due to the lack of support in a particular technology or to project
complexity. In this chapter, you will be introduced to some of the red flags that signal
danger for a potential script project.

Lack of cmdlet Support

It is no secret that cmdlet support is what makes working with Windows PowerShell so
easy. If you need to check the status of the bits service, the easiest method is to use the
Get-Service cmdlet as shown here.

Get-Service –name bits

To find information about the explorer process, you can use the Get-Process cmdlet
as shown here.

Get-Process -Name explorer

If you need to stop a process, you can easily use the Stop-Process cmdlet as shown here.

Stop-Process -Name notepad

	208	 CHAPTER 7	 Avoiding Scripting Pitfalls

You can even check the status of services on a remote computer by using the
–computername switch from the Get-Service cmdlet as shown here.

Get-Service -Name bits -ComputerName vista

Important  If you are working in a cross-domain scenario in which authentication is

required, you will not be able to use Get-Service or Get-Process because those cmdlets

do not have a −credential parameter. You need to use one of the remoting cmdlets, such as

Invoke-Command, which allows you to supply an authentication context.

You can check the BIOS information on a local computer and save the information to a
comma-separated value file with just a few lines of code. An example of such a script is the
ExportBiosToCsv.ps1 script.

ExportBiosToCsv.ps1

$path = "c:\fso\bios.csv"

Get-WmiObject -Class win32_bios |

Select-Object -property name, version |

Export-CSV -path $path –noTypeInformation

Without cmdlet support for selecting objects and exporting them to a CSV file format,
you might be tempted to use filesystemobject from Microsoft VBScript fame. If you take that
approach, the script will be twice as long and not nearly as readable. An example of a script
using filesystemobject is the FSOBiosToCsv.ps1 script.

FSOBiosToCsv.ps1

$path = "c:\fso\bios1.csv"

$bios = Get-WmiObject -Class win32_bios

$csv = "Name,Version`r`n"

$csv +=$bios.name + "," + $bios.version

$fso = new-object -comobject scripting.filesystemobject

$file = $fso.CreateTextFile($path,$true)

$file.write($csv)

$file.close()

Clearly, the ability to use built-in cmdlets is a major strength of Windows PowerShell. One
problem with Windows Server 2008 R2 and Windows PowerShell 2.0 is the number of cmdlets
that exist, which is similar to the problem experienced by Windows Exchange Server admin-
istrators. Because there are so many cmdlets, it is difficult to know where to begin. A quick
perusal of the Microsoft Exchange Team’s blog and some of the Exchange forums reveals that
the problem is not writing scripts, but finding the one cmdlet of the hundreds of possible can-
didates that performs the specific task at hand. If you factor in community-developed cmdlets
and third-party software company cmdlet offerings, you have a potential environment that
encompasses thousands of cmdlets.

	 Complicated Constructors	 CHAPTER 7	 209

Luckily, the Windows PowerShell team has a plan to address this situation—standard
naming conventions. The Get-Help, Get-Command, and Get-Member cmdlets were discussed
in Chapter 1, “Assessing the Scripting Environment,” but they merit mention here. If you are
unaware of a specific cmdlet feature or even the existence of a cmdlet, you are forced to
implement a workaround that causes additional work or that might mask hidden mistakes.
Given the choice between a prebaked cmdlet and a create-your-own solution, the prebaked
cmdlet should be used in almost all cases. Therefore, instead of assuming that a cmdlet or
feature does not exist, you should spend time using Get-Help, Get-Command, and Get-Member
before embarking on a lengthy development effort. In this chapter, you will examine some of
the potential pitfalls that can develop when you do not use cmdlets.

Complicated Constructors

If you do not have support from cmdlets when developing an idea for a script, this indicates
that there may be a better way to do something and should cause you to at least consider
your alternatives.

In the GetRandomObject.ps1 script, a function named GetRandomObject is created. This
function takes two input parameters: one named $in that holds an array of objects and the
other named $count that controls how many items are randomly selected from the input
object.

The New-Object cmdlet is used to create an instance of the System.Random Microsoft .NET
Framework class. The new instance of the class is created by using the default constructor (no
seed value supplied) and is stored in the $rnd variable.

A for . . . next loop is used to loop through the collection—once for each selection desired.
The next method of the System.Random class is used to choose a random number that resides
between the number 1 and the maximum number of items in the input object. The random
number is used to locate an item in the array by using the index so that the selection of the
item from the input object can take place. The GetRandomObject.ps1 script is shown here.

GetRandomObject.ps1

Function GetRandomObject($in,$count)

{

 $rnd = New-Object system.random

 for($i = 1 ; $i -le $count; $i ++)

 {

 $in[$rnd.Next(1,$a.length)]

 } #end for

} #end GetRandomObject

*** entry point ***

$a = 1,2,3,4,5,6,7,8,9

$count = 3

GetRandomObject -in $a -count $count

	210	 CHAPTER 7	 Avoiding Scripting Pitfalls

While there is nothing inherently wrong with the GetRandomObject.ps1 script, you can use
the Get-Random cmdlet when working with Windows PowerShell 2.0 to accomplish essentially
the same objective as shown here.

$a = 1,2,3,4,5,6,7,8,9

Get-Random -InputObject $a -Count 3

Clearly, by using the native Get-Random cmdlet, you can save yourself a great deal of time
and trouble. The only reason to use the GetRandomObject.ps1 script is that it works with both
Windows PowerShell 1.0 and PowerShell 2.0.

One advantage of using a cmdlet is that you can trust it will be implemented correctly. At
times, .NET Framework classes have rather complicated constructors that are used to govern
the way the instance of a class is created. A mistake that is made when passing a value for one
of these constructors does not always mean that an error is generated. It is entirely possible
that the code will appear to work correctly, and it can therefore be very difficult to spot the
problem.

An example of this type of error is shown in the BadGetRandomObject.ps1 script in which
an integer is passed to the constructor for the System.Random .NET Framework class. The
problem is that every time the script is run, the same random number is generated. While
this particular bad implementation is rather trivial, it illustrates that the potential exists for
logic errors that often require detailed knowledge of the utilized .NET Framework classes to
troubleshoot.

BadGetRandomObject.ps1

Function GetRandomObject($in,$count,$seed)

{

 $rnd = New-Object system.random($seed)

 for($i = 1 ; $i -le $count; $i ++)

 {

 $in[$rnd.Next(1,$a.length)]

 } #end for

} #end GetRandomObject

*** entry point ***

$a = 1,2,3,4,5,6,7,8,9

$count = 3

GetRandomObject -in $a -count $count -seed 5

The System.Random information is contained in MSDN, but it is easy to overlook some
small detail because there is so much documentation and some of the classes are very com-
plicated. When the overlooked detail does not cause a run-time error and the script appears
to work properly, then you have a potentially embarrassing situation at best.

	 Version Compatibility Issues	 CHAPTER 7	 211

Version Compatibility Issues

While the Internet is a great source of information, it can often lead to confusion rather than
clarity. When you locate a source of information, it may not be updated to include the current
version of the operating system. This update situation is worsening due to a variety of com-
plicating factors such as User Account Control (UAC), Windows Firewall, and other security
factors that have so many different configuration settings that it can be unclear whether an
apparent failure is due to a change in the operating system or to an actual error in the code.
As an example, suppose that you decide to use the WIN32_Volume Windows Management
Instrumentation (WMI) class to determine information about your disk drives. First, you need
to realize that the WMI class does not exist on any operating system older than Microsoft
Windows Server 2003; it is a bit surprising that the class does not exist on Windows XP. When
you try the following command on Windows Vista, however, it generates an error.

Get-WmiObject -Class win32_volume -Filter "Name = 'c:\'"

The first suspect when dealing with Windows Vista and later versions is user rights. You
open the Windows PowerShell console as an administrator and try the code again; it fails. You
then wonder whether the error is caused by the differences between expanding quotes and
literal quotes. After contemplation, you decide to write the filter to take advantage of literal
strings. The problem is that you have to escape the quotes, which involves more work, but it
is worth the effort if it works. So, you come up with the following code that, unfortunately,
also fails when it is run.

Get-WmiObject -Class win32_volume -Filter 'Name = ''c:\'''

This time, you decide to actually read the error message. Here is the error that was pro-
duced by the previous command.

Get-WmiObject : Invalid query

At line:1 char:14

+ Get-WmiObject <<<< -Class win32_volume -Filter "Name = 'c:\' "

 + CategoryInfo : InvalidOperation: (:) [Get-WmiObject],

 ManagementException

 + FullyQualifiedErrorId : GetWMIManagementException,

 Microsoft.PowerShell.Commands.GetWmiObjectCommand

You focus on the line that says invalid operation and decide that perhaps the backslash is a
special character. When this is the problem, you need to escape the backslash; therefore, you
decide to use the escape character to make one more attempt. Here is the code you create.

Get-WmiObject -Class win32_volume -Filter "Name = 'c:`\' "

Even though this is a good idea, the code still does not work and once again generates an
error as shown here.

Get-WmiObject : Invalid query

At line:1 char:14

	212	 CHAPTER 7	 Avoiding Scripting Pitfalls

+ Get-WmiObject <<<< -Class win32_volume -Filter "Name = 'c:`\' "

 + CategoryInfo : InvalidOperation: (:) [Get-WmiObject],

 ManagementException

 + FullyQualifiedErrorId : GetWMIManagementException,

 Microsoft.PowerShell.Commands.GetWmiObjectCommand

Next, you search to determine whether you have rights to run the query. (I know that you
are running the console with Administrator rights, but some processes deny access even to
the Administrator, so it is best to check.) The easiest way to check your rights is to perform the
WMI query and omit the −filter parameter as shown here.

Get-WmiObject -Class win32_volume

This command runs without generating an error. You may assume that you cannot filter
the WMI class at all and decide that the class is a bit weird. You may decide to write a differ-
ent filter and see whether it will accept the syntax of a new filter, such as the following line of
code.

Get-WmiObject -Class win32_volume -Filter "DriveLetter = 'c:'"

The previous command rewards you with an output similar to the one shown here.

PS C:\> Get-WmiObject -Class win32_volume -Filter "DriveLetter = 'c:'"

__GENUS : 2

__CLASS : Win32_Volume

__SUPERCLASS : CIM_StorageVolume

__DYNASTY : CIM_ManagedSystemElement

__RELPATH : Win32_Volume.DeviceID="\\\\?\\Volume{5a4a2fe5-70

 f0-11dd-b4ad-806e6f6e6963}\\"

__PROPERTY_COUNT : 44

__DERIVATION : {CIM_StorageVolume, CIM_StorageExtent, CIM_Logic

 alDevice, CIM_LogicalElement...}

__SERVER : MRED1

__NAMESPACE : root\cimv2

__PATH : \\MRED1\root\cimv2:Win32_Volume.DeviceID="\\\\?\

 \Volume{5a4a2fe5-70f0-11dd-b4ad-806e6f6e6963}\\"

Access :

Automount : True

Availability :

BlockSize : 4096

BootVolume : True

Capacity : 158391595008

Caption : C:\

Compressed : False

ConfigManagerErrorCode :

ConfigManagerUserConfig :

	 Version Compatibility Issues	 CHAPTER 7	 213

CreationClassName :

Description :

DeviceID : \\?\Volume{5a4a2fe5-70f0-11dd-b4ad-806e6f6e6963}

 \

DirtyBitSet :

DriveLetter : C:

DriveType : 3

ErrorCleared :

ErrorDescription :

ErrorMethodology :

FileSystem : NTFS

FreeSpace : 23077511168

IndexingEnabled : True

InstallDate :

Label :

LastErrorCode :

MaximumFileNameLength : 255

Name : C:\

NumberOfBlocks :

PageFilePresent : False

PNPDeviceID :

PowerManagementCapabilities :

PowerManagementSupported :

Purpose :

QuotasEnabled :

QuotasIncomplete :

QuotasRebuilding :

SerialNumber : 1893548344

Status :

StatusInfo :

SupportsDiskQuotas : True

SupportsFileBasedCompression : True

SystemCreationClassName :

SystemName : MRED1

SystemVolume : False

Note  When working with scripting, network administrators and consultants often use

workarounds because our job is to “make things work.” Sometimes, Scripting Guys end up

using workarounds as well. After all, my job is to write a daily Hey Scripting Guy! column,

which means that I have a deadline every day of the week. Concerning the previous

Win32_Volume WMI class example, I always use the DriveLetter property when performing

the WMI query. Years ago, after several hours of experimentation with this example, I

determined that perhaps the name property was broken and therefore avoided using it

when performing demonstrations when I was teaching classes. Luckily, no student ever

asked me why I use DriveLetter instead of the name property in any of my queries!

	214	 CHAPTER 7	 Avoiding Scripting Pitfalls

If you return to the error message generated by the earlier queries, the InvalidOperation
CategoryInfo field might cause you to reconsider the backslash. Your earlier attempts to
escape the backslash were on the right track. The problem revolves around the strange mix-
ture of the WMI Query Language (WQL) syntax and Windows PowerShell syntax. The −filter
parameter is definitely Windows PowerShell syntax, but you must supply a string that con-
forms to WQL dialect inside this parameter. This is why you use the equal sign for an operator
instead of the Windows PowerShell –eq operator when you are inside the quotation marks
of the −filter parameter. To escape the backslash in the WQL syntax, you must use another
backslash as found in C or C++ syntax. The following code filters out the drive based on the
name of the drive.

Get-WmiObject -Class win32_volume -Filter "Name = 'c:\\'"

Important  Use of the backslash to escape another backslash is a frustrating factor when

using WMI. While our documentation in MSDN is improving, we still have a way to go in this

arena. Because this WMI class does not behave as you might expect, I have filed a documen-

tation bug for the name property of the Win32_Volume class. The result will be an addi-

tional note added to the description of the property. I have since found a few more places

where the backslash is used as an escape character, and I will file bugs on them as well.

As a best practice, you can write a script to return the WMI information from the
WIN32_Volume class and hide the escape details from the user. An example of such a script
is the GetVolume.ps1 script. The script accepts two command-line parameters: –drive and
–computer. The drive is supplied as a drive letter followed by a colon. By default, the script
returns information from the C: drive on the local computer. In the Get-Volume function,
the –drive value is concatenated with the double backslash and is then submitted to the
Get-WmiObject cmdlet. One interesting aspect is the use of single quotes around the $drive
variable. Remember that, inside the −filter parameter, the script uses WQL syntax and not
Windows PowerShell syntax. The single quote is simply a single quote, and you do not need
to worry about the difference between an expanding or a literal quotation. The GetVolume.ps1
script is shown here.

GetVolume.ps1

Param($drive = "C:", $computer = "localhost")

Function Get-Volume($drive, $computer)

{

 $drive += "\\"

 Get-WmiObject -Class Win32_Volume -computerName $computer `

 -filter "Name = '$drive'"

}

Get-Volume -Drive $drive -Computer $computer

	 Version Compatibility Issues	 CHAPTER 7	 215

If you need to work in a cross-domain situation, you need to pass credentials to the
remote computer. The Get-WmiObject cmdlet contains the −credential parameter that can be
used in just such a situation. Because the Get-WmiObject cmdlet uses WMI in the background,
the problem is that you are not allowed to pass credentials for a local connection. Local WMI
scripts always run in the context of the calling user—that is, the one who is actually launching
the script. This means that you cannot use the −credential parameter for a local script to allow
a nonprivileged user to run the script with administrator rights. You can use the −credential
parameter with remote connections. In addition, you are not allowed to have the −credential
parameter in the Get-WmiObject cmdlet and leave it blank or null because this also generates
an error. The solution is to check whether the script is running against the local computer; if
it is, use the Get-Volume function from the previous script. If it is working remotely, the script
should use a different function that supplies the −credential parameter as shown in the
GetVolumeWithCredentials.ps1 script.

GetVolumeWithCredentials.ps1

Param(

 $drive = "C:",

 $computer = "localhost",

 $credential

)

Function Get-Volume($drive, $computer)

{

 $drive += "\\"

 Get-WmiObject -Class Win32_Volume -computerName $computer `

 -filter "Name = '$drive'"

} #end Get-Volume

Function Get-VolumeCredential($drive, $computer,$credential)

{

 $drive += "\\"

 Get-WmiObject -Class Win32_Volume -computerName $computer `

 -filter "Name = '$drive'" -credential $credential

} #end Get-VolumeCredential

*** Entry point to script

If($computer -eq "localhost" -AND $credential)

 { "Cannot use credential for local connection" ; exit }

Elseif ($computer -ne "localhost" -AND $credential)

 {

 Get-VolumeCredential -Drive $drive -Computer $computer `

 -Credential $credential

 }

Else

 { Get-Volume -Drive $drive -Computer $computer }

	216	 CHAPTER 7	 Avoiding Scripting Pitfalls

Inside Track

Choosing the Right Script Methodology

Luis Canastreiro, Premier Field Engineer
Microsoft Corporation, Portugal

When I am writing a script, often there are many ways of accomplishing the

same task. If I am writing a VBScript, for example, I prefer to use a Compo-

nent Object Model (COM) object rather than shelling out and calling an external

executable because COM is native to VBScript. The same principle holds when I am

writing a Windows PowerShell script. I prefer to use the .NET Framework classes if a

Windows PowerShell cmdlet is not available because PowerShell is built on the .NET

Framework.

Of course, my number-one preference is to use a cmdlet if it is available to me

because a cmdlet will hide the complexity of dealing directly with the .NET

Framework. By this I mean that there are some .NET Framework classes that at first

glance appear to be simple. However, when you begin to use them, you realize that

they contain complicated constructors. If you are not an expert with that particular

class, you can make a mistake that will not be realized until after much testing. If a

cmdlet offers the required features and if it solves my problem, then the cmdlet is

my first choice.

As an example, there are several ways to read and write to the registry. You can use

the regread and regwrite VBScript methods, the stdRegProv WMI class, the .NET

Framework classes, or even various command-line utilities to gain access to the

registry. My favorite method of working with the registry is to use the Windows

PowerShell registry provider and the various *-item and *-itemproperty cmdlets.

These cmdlets are very easy to use, and I only need to open the Windows PowerShell

shell to accomplish everything I need to do with these cmdlets.

When I am writing a new script, I always like to create small generic functions, which

offer a number of advantages. These functions make it easy for me to test the script

while I am in the process of writing it. I only need to call the function or functions

on which I am working. I can leave the other code unfinished if I need to test it

later. The functions are easy to reuse or to improve as time goes by. I run the script

by creating a main function whose primary purpose is to initialize the environment

and manage the global flow of the script by calling the appropriate functions at the

proper time.

	 Version Compatibility Issues	 CHAPTER 7	 217

Trapping the Operating System Version
Given the differences between the various versions of the Windows operating system, it is
a best practice to check the version of the operating system prior to executing the script if
you know that there could be version compatibility issues. There are several different meth-
ods to check version compatibility. In Chapter 5, “Identifying Scripting Opportunities,” you
used the System.Environment .NET Framework class to check the operating system version
in the GetOsVersionFunction.ps1 script. While it is true that you can use remoting to ob-
tain information from this class remotely, you can also achieve similar results by using the
Win32_OperatingSystem WMI class. The advantage of this approach is that WMI automatically
remotes.

The GetVersion.ps1 script accepts a single command-line parameter, $computer, and is
set by default to the localhost computer. The entry point to the script passes the value of
the $computer variable and a reference type $osv variable to the Get-OSVersion function.
Inside the Get-OSVersion function, the Get-WMIObject cmdlet is first used to query the
Win32_OperatingSystem WMI class from the computer that is targeted by the $computer
variable. The resulting management object is stored in the $os variable.

The Switch statement is used to evaluate the version property of the Win32_OperatingSystem
class. If the value of the version property is equal to 5.1.2600, the Value property of the $osv refer-
ence type variable is set equal to “xp”. This type of logic is repeated for the value 5.1.3790,
which is the build number for the Windows 2003 server.

A problem arises if the version number is 6.0.6001 because both Windows Vista and
Windows Server 2008 have the same build number. This is why the script stores the entire
Win32_OperatingSystem management object in the $os variable instead of retrieving only the
version attribute. The ProductType property can be used to distinguish between a workstation
and a server. The possible values for the ProductType property are shown in Table 7-1.

Table 7-1  Win32_OperatingSystem ProductType Values and Associated Meanings

Value Meaning

1 Workstation

2 Domain controller

3 Server

Once the version of the operating system is detected, then a single word or number rep-
resenting the operating system is assigned to the Value property of the reference variable. In
the GetVersion.ps1 script, this value is displayed at the console. The complete GetVersion.ps1
script is shown here.

	218	 CHAPTER 7	 Avoiding Scripting Pitfalls

GetVersion.ps1

Param($computer = "localhost")

Function Get-OSVersion($computer,[ref]$osv)

{

 $os = Get-WmiObject -class Win32_OperatingSystem `

 -computerName $computer

 Switch ($os.Version)

 {

 "5.1.2600" { $osv.value = "xp" }

 "5.1.3790" { $osv.value = "2003" }

 "6.0.6001"

 {

 If($os.ProductType -eq 1)

 {

 $osv.value = "Vista"

 } #end if

 Else

 {

 $osv.value = "2008"

 } #end else

 } #end 6001

 DEFAULT { "Version not listed" }

 } #end switch

} #end Get-OSVersion

*** entry point to script ***

$osv = $null

Get-OSVersion -computer $computer -osv ([ref]$osv)

$osv

The GetVersion.ps1 script returns a single word to indicate the version of the operating
system. You can use this script from the command line to quickly check the operating system
version as shown here.

PS C:\bp> .\GetVersion.ps1

Vista

PS C:\bp> .\GetVersion.ps1 -c berlin

2008

PS C:\bp> .\GetVersion.ps1 -c lisbon

xp

	 Version Compatibility Issues	 CHAPTER 7	 219

The GetVersion.ps1 script is written as a function to permit easy inclusion into other scripts,
which allows you to perform the operating system version check and then decide whether
you want to continue processing the script. An example of this approach is shown in the
GetVersionGetVolume.ps1 script.

GetVersionGetVolume.ps1

Param($drive = "C:", $computer = "localhost")

Function Get-OSVersion($computer,[ref]$osv)

{

 $os = Get-WmiObject -class Win32_OperatingSystem `

 -computerName $computer

Switch ($os.Version)

 {

 "5.1.2600" { $osv.value = "xp" }

 "5.1.3790" { $osv.value = "2003" }

 "6.0.6001"

 {

 If($os.ProductType -eq 1)

 {

 $osv.value = "Vista"

 } #end if

 Else

 {

 $osv.value = "2008"

 } #end else

 } #end 6001

 DEFAULT { "Version not listed" }

 } #end switch

} #end Get-OSVersion

Function Get-Volume($drive, $computer)

{

 $drive += "\\"

 Get-WmiObject -Class Win32_Volume -computerName $computer `

 -filter "Name = '$drive'"

} #end Get-Volume

*** entry point to script ***

$osv = $null

Get-OSVersion -computer $computer -osv ([ref]$osv)

if($osv -eq "xp") { "Script does not run on XP" ; exit }

Get-Volume -Drive $drive -Computer $computer

	220	 CHAPTER 7	 Avoiding Scripting Pitfalls

Lack of WMI Support

Windows Management Instrumentation has been in existence since the days of Microsoft
Windows NT 4.0. In the years since its introduction, every new version of Windows has added
WMI classes and, at times, additional methods to existing WMI classes. One advantage of
WMI is its relatively consistent approach to working with software and hardware. Another ad-
vantage of WMI is that it is a well-understood technology, and numerous examples of scripts
can be found on the Internet. With improved support for WMI in Windows PowerShell 2.0,
there is very little that cannot be accomplished via PowerShell that can be done from inside
VBScript. Before you look at some of the issues in working with WMI from Windows PowerShell,
let's review some basic WMI concepts.

WMI is sometimes referred to as a hierarchical namespace—so named because the layers
build on one another like a Lightweight Directory Access Protocol (LDAP) directory used in
Active Directory or the file system structure on your hard disk drive. Although it is true that
WMI is a hierarchical namespace, the term doesn’t really convey its richness. The WMI model
contains three sections: resources, infrastructure, and consumers. The use of these compo-
nents is found in the following list:

n	 WMI resources  Resources include anything that can be accessed by using WMI:
the file system, networked components, event logs, files, folders, disks, Active Directory,
and so on.

n	 WMI infrastructure  The infrastructure is composed of three parts: the WMI service,
WMI repository, and WMI providers. Of these parts, WMI providers are most impor-
tant because they provide the means for WMI to gather needed information.

n	 WMI consumers  A consumer “consumes” the data from WMI. A consumer can be
a VBScript, an enterprise management software package, or some other tool or utility
that executes WMI queries.

Working with Objects and Namespaces

Let’s return to the idea of a namespace introduced in the last section. You can think of a
namespace as a way to organize or collect data related to similar items. Visualize an old-
fashioned filing cabinet. Each drawer can represent a particular namespace. Inside each
drawer are hanging folders that collect information related to a subset of what the drawer
actually holds. For example, there is a drawer at home in my filing cabinet that is reserved
for information related to my woodworking tools. Inside of this particular drawer are hang-
ing folders for my table saw, my planer, my joiner, my dust collector, and so on. In the folder
for the table saw is information about the motor, the blades, and the various accessories I
purchased for the saw (such as an over-arm blade guard).

	 Working with Objects and Namespaces	 CHAPTER 7	 221

The WMI namespace is organized in a similar fashion. The namespaces are the file cabinets.
The providers are drawers in the file cabinet. The folders in the drawers of the file cabinet are
the WMI classes. These namespaces are shown in Figure 7-1.

Figure 7-1  WMI namespaces on Windows Vista

Namespaces contain objects, and these objects contain properties that you can manipu-
late. Let’s use a WMI command to illustrate how the WMI namespace is organized. The
Get-WmiObject cmdlet is used to make the connection into the WMI. The class argument is
used to specify the __Namespace class, and the namespace argument is used to specify the
level in the WMI namespace hierarchy. The Get-WmiObject line of code is shown here.

Get-WmiObject –class __Namespace -namespace root |

Select-Object –property name

When the previous code is run, the following result appears on a Windows Vista computer.

name

subscription

DEFAULT

MicrosoftDfs

CIMV2

Cli

nap

SECURITY

SecurityCenter2

RSOP

WMI

	222	 CHAPTER 7	 Avoiding Scripting Pitfalls

directory

Policy

ServiceModel

SecurityCenter

Microsoft

aspnet

You can use the RecursiveWMINameSpaceListing.ps1 script to get an idea of the number
and variety of WMI namespaces that exist on your computer, which is a great way to explore
and learn about WMI. The entire contents of the RecursiveWMINameSpaceListing.ps1 script is
shown here.

RecursiveWMINameSpaceListing.ps1

Function Get-WmiNameSpace($namespace, $computer)

{

 Get-WmiObject -class __NameSpace -computer $computer `

 -namespace $namespace -ErrorAction "SilentlyContinue" |

 Foreach-Object `

 -Process `

 {

 $subns = Join-Path -Path $_.__namespace -ChildPath $_.name

 $subns

 $script:i ++

 Get-WmiNameSpace -namespace $subNS -computer $computer

 }

} #end Get-WmiNameSpace

*** Entry Point ***

$script:i = 0

$namespace = "root"

$computer = "LocalHost"

"Obtaining WMI Namespaces from $computer ..."

Get-WmiNameSpace -namespace $namespace -computer $computer

"There are $script:i namespaces on $computer"

The output from the RecursiveWMINameSpaceListing.ps1 script is shown here from the
same Windows Vista computer that produced the earlier namespace listing. You can see that
there is a rather intricate hierarchy of namespaces that exists on a modern operating system.

Obtaining WMI Namespaces from LocalHost ...

ROOT\subscription

ROOT\subscription\ms_409

ROOT\DEFAULT

ROOT\DEFAULT\ms_409

ROOT\MicrosoftDfs

ROOT\MicrosoftDfs\ms_409

	 Working with Objects and Namespaces	 CHAPTER 7	 223

ROOT\CIMV2

ROOT\CIMV2\Security

ROOT\CIMV2\Security\MicrosoftTpm

ROOT\CIMV2\ms_409

ROOT\CIMV2\TerminalServices

ROOT\CIMV2\TerminalServices\ms_409

ROOT\CIMV2\Applications

ROOT\CIMV2\Applications\Games

ROOT\Cli

ROOT\Cli\MS_409

ROOT\nap

ROOT\SECURITY

ROOT\SecurityCenter2

ROOT\RSOP

ROOT\RSOP\User

ROOT\RSOP\User\S_1_5_21_540299044_341859138_929407116_1133

ROOT\RSOP\User\S_1_5_21_540299044_341859138_929407116_1129

ROOT\RSOP\User\S_1_5_21_540299044_341859138_929407116_1118

ROOT\RSOP\User\S_1_5_21_918056312_2952985149_2686913973_500

ROOT\RSOP\User\S_1_5_21_135816822_1724403450_2350888535_500

ROOT\RSOP\User\ms_409

ROOT\RSOP\User\S_1_5_21_540299044_341859138_929407116_500

ROOT\RSOP\Computer

ROOT\RSOP\Computer\ms_409

ROOT\WMI

ROOT\WMI\ms_409

ROOT\directory

ROOT\directory\LDAP

ROOT\directory\LDAP\ms_409

ROOT\Policy

ROOT\Policy\ms_409

ROOT\ServiceModel

ROOT\SecurityCenter

ROOT\Microsoft

ROOT\Microsoft\HomeNet

ROOT\aspnet

There are 42 namespaces on LocalHost

So, what does all of this mean? It means that, on a Windows Vista machine, there are
dozens of different namespaces from which you can pull information about your computer.
Understanding that the different namespaces exist is the first step to begin navigating in
WMI to find the information you need. Often, students and people who are new to Windows
PowerShell work on a WMI script to make the script perform a certain action, which is a great
way to learn scripting. However, what they often do not know is which namespace they need
to connect to so that they can accomplish their task. When I tell them which namespace to
work with, they sometimes reply, “It is fine for you, but how do I know that the such and such

	224	 CHAPTER 7	 Avoiding Scripting Pitfalls

namespace even exists?” By using the RecursiveWMINameSpaceListing.ps1 script, you can
easily generate a list of namespaces installed on a particular machine and, armed with that
information, search MSDN to find out information about those namespaces. Or, if you like to
explore, you can move on to the next topic: WMI providers.

Listing WMI Providers

Understanding the namespace assists the network administrator with judiciously applying WMI
scripting to his or her network duties. However, as mentioned earlier, to access information
via WMI, you must have access to a WMI provider. Once the provider is implemented, you
can gain access to the information that is made available. If you want to know which classes
are supported by the RouteProvider, you can click the Filter button and select RouteProvider
as shown in Figure 7-2.

On the companion media  Two Microsoft Office Excel spreadsheets with all of

the providers and their associated classes from Windows XP and Windows Server

2003 are in the Job Aids folder on the companion media.

Figure 7-2  The WMIProviders spreadsheet lists classes supported by provider name.

Providers in WMI are all based on a template class or on a system class named __provider.
With this information, you can look for instances of the __provider class and obtain a list of all
providers that reside in your WMI namespace, which is exactly what the GetWMIProviders.ps1
script accomplishes.

	 Working with WMI Classes	 CHAPTER 7	 225

The GetWMIProviders.ps1 script begins by assigning the string “root\cimv2” to the
$wmiNS variable. This value is used with the Get-WmiObject cmdlet to specify where the WMI
query takes place. It should be noted that the WMI root\cimv2 namespace is the default WMI
namespace on every Windows operating system since Microsoft Windows 2000.

The Get-WmiObject cmdlet is used to query WMI. The class provider is used to limit the
WMI query to the __provider class. The namespace argument tells the Get-WmiObject cmdlet
to look only in the root\cimv2 WMI namespace. The array of objects returned from the
Get-WmiObject cmdlet is pipelined into the Sort-Object cmdlet, where the listing of objects is
alphabetized based on the name property. Once this process is complete, the reorganized ob-
jects are then passed to the Format-List cmdlet where the name of each provider is printed.
The complete Get-WmiProviders.ps1 script is shown here.

Get-WmiProviders.ps1

Function Get-WmiProviders(

 $namespace="root\cimv2",

 $computer="localhost"

)

{

 Get-WmiObject -class __Provider -namespace $namespace `

 -computername $computer |

 Sort-Object -property Name |

 Select-Object -property Name

} #end Get-WmiProviders

Get-WmiProviders

Working with WMI Classes

In addition to working with namespaces, the inquisitive network administrator will also want
to explore the concept of classes. In WMI parlance, there are core classes, common classes,
and dynamic classes. Core classes represent managed objects that apply to all areas of man-
agement. These classes provide a basic vocabulary for analyzing and describing managed
systems. Two examples of core classes are parameters and the System.Security class. Common
classes are extensions to the core classes and represent managed objects that apply to specif-
ic management areas. However, common classes are independent of a particular implemen-
tation or technology. CIM_UnitaryComputerSystem is an example of a common class. Core
and common classes are not used as often by network administrators because they serve as
templates from which other classes are derived.

Therefore, many of the classes stored in root\cimv2 are abstract classes and are used as
templates. However, a few classes in root\cimv2 are dynamic classes that are used to retrieve
actual information. What is important to remember about dynamic classes is that instances

	226	 CHAPTER 7	 Avoiding Scripting Pitfalls

of a dynamic class are generated by a provider and are therefore more likely to retrieve “live”
data from the system.

To produce a simple listing of WMI classes, you can use the Get-WMIObject cmdlet and
specify the list argument as shown here.

Get-WmiObject –list

A partial output from the previous command is shown here.

Win32_TSGeneralSetting Win32_TSPermissionsSetting

Win32_TSClientSetting Win32_TSEnvironmentSetting

Win32_TSNetworkAdapterListSetting Win32_TSLogonSetting

Win32_TSSessionSetting Win32_DisplayConfiguration

Win32_COMSetting Win32_ClassicCOMClassSetting

Win32_DCOMApplicationSetting Win32_MSIResource

Win32_ServiceControl Win32_Property

Notes from the Field

Working with Services

Clint Huffman, Senior Premier Field Engineer (PFE)
Microsoft Corporation

I travel a great deal, and, unfortunately, the battery life on my laptop isn’t spectacu-

lar. Therefore, I’ve spent a fair amount of time discovering which services on my

computer are consuming the I/O on my hard drive—most likely the largest con-

sumer of battery power other than my monitor. I identified numerous services that I

wouldn’t need on a flight such as antivirus software, Windows Search, the Offline Files

service, ReadyBoost, and so on. Because I was stopping and starting these services

quite often, I decided to script the services.

WMI is a powerful object model that allows scripting languages, such as VBScript

and Windows PowerShell, to perform tasks that were once only available to hard-

ened C++ developers. Furthermore, far less code is needed to perform these tasks

when scripting them makes automation relatively easy.

So, to begin this script, I need to select the correct services. WMI uses a SQL-like

syntax named WMI Query Language (WQL); it is not named SQL syntax because

WQL has some odd quirks that are specific to WMI. Now, I want my WQL query to

return the Windows services that I identified earlier as users of frequent disk I/O

such as the Offline Files service, the ReadyBoost service, my antivirus services that

begin with “Microsoft ForeFront” (Microsoft Forefront Client Security Antimalware

Service and Microsoft Forefront Client Security State Assessment Service), and lastly,

my personal file indexer, Windows Search.

	 Working with WMI Classes	 CHAPTER 7	 227

$WQL = "SELECT Name, State, Caption FROM Win32_Service WHERE Caption LIKE

'Microsoft ForeFront%' OR Name = 'WSearch' OR Caption = 'Offline Files'

OR Caption = 'ReadyBoost'"

Get-WmiObject -Query $WQL

In my case, this script returns the following services as:

Offline Files

ReadyBoost

Microsoft Forefront Client Security Antimalware Service

Microsoft Forefront Client Security State Assessment Service

Windows Search

The Caption property is the text you see when you bring up Control Panel, Services,

and the name property is the short name of the service that you might be more

familiar with when using the command-line tool “Net Start” and “Net Stop.” Finally,

the State property tells me whether the service is running.

The WHERE clause allows me to limit the information that is returned. For example,

if I don’t use the WHERE clause, I receive all of the services as objects. This is nice if

you want to know what services are on a computer, but it’s not helpful when you

simply want to shut down a few of them. For more information about WQL, go to

“Querying with WQL” at http://msdn.microsoft.com/en-us/library/aa392902.aspx.

Because the Query parameter always returns a collection object, I need to enumer-

ate the Query parameter to work with each item individually. This process is similar

to receiving a package in the mail in a large cardboard box: before I can use what’s

inside, I need to open the package first. This is the point in the process in which the

Foreach flow control statement is used. The Foreach statement allows me to work

with one item at a time (for example, a service), which is similar to taking one item

out of the cardboard box at a time. In this case, I have the Get-WmiObject cmdlet’s

return values go into a variable named $CollectionOfServices (my cardboard box).

Next, I use the Foreach statement to work with each service, whereby the $Service

variable becomes each service object in turn. The following code is the same as the

previous code but with the addition of a Foreach loop.

$WQL = "SELECT Name, State, Caption FROM Win32_Service WHERE Caption LIKE

'Microsoft ForeFront%' OR Name = 'WSearch' OR Caption = 'Offline Files'

OR Caption = 'ReadyBoost'"

$CollectionOfServices = Get-WmiObject -Query $WQL

Foreach ($Service in $CollectionOfServices)

{

	 $Service.Caption

}

Now that I can select specific services that I want to shut down, let’s actually shut

them down. I can do this by using the StopService() method as follows:

	228	 CHAPTER 7	 Avoiding Scripting Pitfalls

$WQL = "SELECT Name, State, Caption FROM Win32_Service WHERE Caption LIKE

'Microsoft ForeFront%' OR Name = 'WSearch' OR Caption = 'Offline Files'

OR Caption = 'ReadyBoost'"

$CollectionOfServices = Get-WmiObject -Query $WQL

Foreach ($Service in $CollectionOfServices)

{

	 $Service.Caption

	 $Service.StopService()

}

If my services don’t actually stop, it is most likely because I don’t have administrator

rights to my customer or, if I am on Windows Vista, I need to run the script in an

elevated Windows PowerShell command prompt. To make an elevated Windows

PowerShell command prompt, right-click on the PowerShell icon, select Run As

Administrator, and then try the script again.

Great! My unnecessary services are stopped. However, sometimes the services can

be a bit tenacious and start up again the first chance they get. How do I hold them

down? By setting them to disabled. How do I do that? By using the ChangeStartMode()

method with the argument/parameter of “Disabled” as follows:

$WQL = "SELECT Name, State, Caption FROM Win32_Service WHERE Caption LIKE

'Microsoft ForeFront%' OR Name = 'WSearch' OR Caption = 'Offline Files'

OR Caption = 'ReadyBoost'"

$CollectionOfServices = Get-WmiObject -Query $WQL

Foreach ($Service in $CollectionOfServices)

{

	 $Service.Caption

	 $Service.StopService()

	 $Service.ChangeStartMode("Disabled")

}

Now we’re talking! Those pesky services are down for the count.

I’ve had my fun, my flight is over, and now I need to connect to my corporate

network. Corporate policy does not allow me to connect unless my antivirus service

is running. No problem. Two slight modifications to the script and the services are

running again as follows:

$WQL = "SELECT Name, State, Caption FROM Win32_Service WHERE Caption LIKE

'Microsoft ForeFront%' OR Name = 'WSearch' OR Caption = 'Offline Files'

OR Caption = 'ReadyBoost'"

$CollectionOfServices = Get-WmiObject -Query $WQL

Foreach ($Service in $CollectionOfServices)

{

	 $Service.Caption

	 $Service.StartService()

	 Working with WMI Classes	 CHAPTER 7	 229

	 $Service.ChangeStartMode("Automatic")

}

I replaced the StopService() method with StartService() and replaced the argument

of the ChangeStartMode() method to “Automatic.”

You might be thinking that this procedure is all well and good for your laptop battery,

but what about doing massive restarts of services? Well, a great modification that

you can make to the script is to run it against remote servers. For example, let’s

assume that you need to restart the services in a farm of 10 Web servers. You can

simply modify the script slightly by adding the –ComputerName argument.

$WQL = "SELECT Name, State, Caption FROM Win32_Service WHERE Caption LIKE

'Microsoft ForeFront%' OR Name = 'WSearch' OR Caption = 'Offline Files'

OR Caption = 'ReadyBoost'"

$CollectionOfServices = Get-WmiObject -Query $WQL -ComputerName

demoserver

Foreach ($Service in $CollectionOfServices)

{

	 $Service.Caption

	 $Service.StartService()

	 $Service.ChangeStartMode("Automatic")

}

These scripts have served me well, and I hope they help you too.

Changing Settings
For all of the benefits of using WMI, there are still many frustrating limitations. While WMI is
good at retrieving information, it is not always very good at changing that information. The
following example illustrates this point. The Win32_Desktop WMI class provides information
about desktop settings as shown here.

PS C:\> Get-WmiObject Win32_Desktop

__GENUS : 2

__CLASS : Win32_Desktop

__SUPERCLASS : CIM_Setting

__DYNASTY : CIM_Setting

__RELPATH : Win32_Desktop.Name="NT AUTHORITY\\SYSTEM"

__PROPERTY_COUNT : 21

__DERIVATION : {CIM_Setting}

__SERVER : MRED1

__NAMESPACE : root\cimv2

	230	 CHAPTER 7	 Avoiding Scripting Pitfalls

__PATH : \\MRED1\root\cimv2:Win32_Desktop.Name="NT AUTHORITY\\SY

 STEM"

BorderWidth : 1

Caption :

CoolSwitch :

CursorBlinkRate : 500

Description :

DragFullWindows : True

GridGranularity :

IconSpacing :

IconTitleFaceName : Segoe UI

IconTitleSize : 9

IconTitleWrap : True

Name : NT AUTHORITY\SYSTEM

Pattern : (None)

ScreenSaverActive : True

ScreenSaverExecutable : C:\Windows\system32\logon.scr

ScreenSaverSecure : True

ScreenSaverTimeout : 600

SettingID :

Wallpaper :

WallpaperStretched : False

WallpaperTiled :

As you can see from the properties and values that are returned from the Get-WmiObject
cmdlet, much of the information is valuable. Items such as screen saver time-out values and
secure screen saver are routine concerns to many network administrators. While it is true
that these values can, and in most cases should, be set via Group Policy, there are times
when network administrators want the ability to change these values via script. If you use
the Get-Member cmdlet to examine the properties of the Win32_Desktop WMI class, you are
greeted with the following information.

PS C:\> Get-WmiObject Win32_Desktop | Get-Member

 TypeName: System.Management.ManagementObject#root\cimv2\Win32_Desktop

Name MemberType Definition

---- ---------- ----------

BorderWidth Property System.UInt32 BorderWidth {get;set;}

Caption Property System.String Caption {get;set;}

CoolSwitch Property System.Boolean CoolSwitch {get;set;}

CursorBlinkRate Property System.UInt32 CursorBlinkRate {get;set;}

Description Property System.String Description {get;set;}

DragFullWindows Property System.Boolean DragFullWindows {get;set;}

GridGranularity Property System.UInt32 GridGranularity {get;set;}

IconSpacing Property System.UInt32 IconSpacing {get;set;}

IconTitleFaceName Property System.String IconTitleFaceName {get;set;}

IconTitleSize Property System.UInt32 IconTitleSize {get;set;}

	 Working with WMI Classes	 CHAPTER 7	 231

IconTitleWrap Property System.Boolean IconTitleWrap {get;set;}

Name Property System.String Name {get;set;}

Pattern Property System.String Pattern {get;set;}

ScreenSaverActive Property System.Boolean ScreenSaverActive {get;set;}

ScreenSaverExecutable Property System.String ScreenSaverExecutable {get;...

ScreenSaverSecure Property System.Boolean ScreenSaverSecure {get;set;}

ScreenSaverTimeout Property System.UInt32 ScreenSaverTimeout {get;set;}

SettingID Property System.String SettingID {get;set;}

Wallpaper Property System.String Wallpaper {get;set;}

WallpaperStretched Property System.Boolean WallpaperStretched {get;set;}

WallpaperTiled Property System.Boolean WallpaperTiled {get;set;}

__CLASS Property System.String __CLASS {get;set;}

__DERIVATION Property System.String[] __DERIVATION {get;set;}

__DYNASTY Property System.String __DYNASTY {get;set;}

__GENUS Property System.Int32 __GENUS {get;set;}

__NAMESPACE Property System.String __NAMESPACE {get;set;}

__PATH Property System.String __PATH {get;set;}

__PROPERTY_COUNT Property System.Int32 __PROPERTY_COUNT {get;set;}

__RELPATH Property System.String __RELPATH {get;set;}

__SERVER Property System.String __SERVER {get;set;}

__SUPERCLASS Property System.String __SUPERCLASS {get;set;}

ConvertFromDateTime ScriptMethod System.Object ConvertFromDateTime();

ConvertToDateTime ScriptMethod System.Object ConvertToDateTime();

When you use the −filter parameter to obtain a specific instance of the Win32_Desktop
WMI class and store it in a variable, you can then directly access the properties of the class.
In this example, you need to escape the backslash that is used as a separator between NT
Authority and System as shown here.

PS C:\> $desktop = Get-WmiObject Win32_Desktop -Filter `

>> "name = 'NT AUTHORITY\\SYSTEM'"

Once you have access to a specific instance of the WMI class, you can then assign a new
value for the ScreenSaverTimeout parameter. As shown here, the value is updated immediately.

PS C:\> $Desktop.ScreenSaverTimeout = 300

PS C:\> $Desktop.ScreenSaverTimeout

300

However, if you resubmit the WMI query, you see that the ScreenSaverTimeout property
is not updated. The get:set that is reported by the Get-Member cmdlet is related to the copy
of the object that is returned by the WMI query and not to the actual instance of the object
represented by the WMI class as shown here.

PS C:\> $desktop = Get-WmiObject Win32_Desktop -Filter `

>> "name = 'NT AUTHORITY\\SYSTEM'"

>>

PS C:\> $Desktop.ScreenSaverTimeout

600

	232	 CHAPTER 7	 Avoiding Scripting Pitfalls

Modifying Values Through the Registry
The GetSetScreenSaverTimeOut.ps1 script uses a single parameter named debug. This param-
eter is a switched parameter, which means that it only performs a function when it is present.
The script prints detailed information when you run the script with the debug switch, such as
letting you know which function is currently being called as shown in Figure 7-3.

Figure 7-3  Detailed debug information is easily obtained when the script implements a debug parameter.

To create a command-line parameter, you can use the Param statement as shown here.

Param([switch]$debug)

Following the Param statement, which needs to be the first noncommented line of code
in the script, the Get-RegistryValue function is created. In this code, the $in variable is passed
by reference, which means that the function assigns a new value to the variable. This value is
used outside of the function that assigns the value to it. To pass the variable by reference, you
need to convert the $in variable to a reference type; you can use the [ref] type to perform
this conversion. Therefore, you need to create the $in variable prior to calling the function
because you cannot cast the variable to a reference type if it does not exist as shown here.

Function Get-RegistryValue([ref]$in)

Now you come to the first Write-Debug cmdlet. To write the debug information to the con-
sole prompt, the script uses the Write-Debug cmdlet. The Write-Debug cmdlet automatically
formats the text with yellow and black colors (this is configurable, however), and it only writes
text to the console if you tell it to do so. By default, Write-Debug does not print anything
to the console, which means that you do not need to remove the Write-Debug statements
prior to deploying the script. The $DebugPreference automatic variable is used to control the
behavior of the Write-Debug cmdlet. By default, $DebugPreference is set to SilentlyContinue
so that when it encounters a Write-Debug cmdlet, Windows PowerShell either skips over the
cmdlet or silently continues to the next line. You can configure the $DebugPreference variable
with one of four values defined in the System.Management.Automation.ActionPreference
enumeration class. To see the possible enumeration values, you can either look for them on
MSDN or use the GetNames static method from the System.Enum .NET Framework class as
shown here.

	 Working with WMI Classes	 CHAPTER 7	 233

PS C:\> [enum]::GetNames("System.Management.Automation.ActionPreference")

SilentlyContinue

Stop

Continue

Inquire

The Write-Debug cmdlet is used to print the value of the name property from the System.
Management.Automation.ScriptInfo object. The System.Management.Automation.ScriptInfo
object is obtained by querying the MyCommand property of the System.Management.
Automation.InvocationInfo class. A System.Management.Automation.InvocationInfo object is
returned when you query the $MyInvocation automatic variable. The properties of
System.Management.Automation.InvocationInfo are shown in Table 7-2.

Table 7-2  Properties of the System.Management.Automation.InvocationInfo Class

Property Definition

BoundParameters System.Collections.Generic.Dictionary`2[[System.String, mscorlib,
Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089],[System.Object, mscorlib,
Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089]] BoundParameters {get;}

CommandOrigin System.Management.Automation.CommandOrigin
CommandOrigin {get;}

ExpectingInput System.Boolean ExpectingInput {get;}

InvocationName System.String InvocationName {get;}

Line System.String Line {get;}

MyCommand System.Management.Automation.CommandInfo MyCommand {get;}

OffsetInLine System.Int32 OffsetInLine {get;}

PipelineLength System.Int32 PipelineLength {get;}

PipelinePosition System.Int32 PipelinePosition {get;}

PositionMessage System.String PositionMessage {get;}

ScriptLineNumber System.Int32 ScriptLineNumber {get;}

ScriptName System.String ScriptName {get;}

UnboundArguments System.Collections.Generic.List`1[[System.Object, mscorlib,
Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089]] UnboundArguments {get;}

The Write-Debug commands can be modified to include any of the properties you deem
helpful to aid in troubleshooting. These properties become even more helpful when you are
working with the System.Management.Automation.ScriptInfo object, whose properties are
shown in Table 7-3.

	234	 CHAPTER 7	 Avoiding Scripting Pitfalls

Table 7-3  Properties of the System.Management.Automation.ScriptInfo Object

Property Definition

CommandType System.Management.Automation.CommandTypes CommandType {get;}

Definition System.String Definition {get;}

Module System.Management.Automation.PSModuleInfo Module {get;}

ModuleName System.String ModuleName {get;}

Name System.String Name {get;}

Parameters System.Collections.Generic.Dictionary`2[[System.String,
mscorlib,Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089],
[System.Management.Automation.ParameterMetadata,
System.Management.Automation, Version=1.0.0.0,
Culture=neutral, PublicKeyToken=31bf3856ad364e35]] Parameters {get;}

ParameterSets System.Collections.ObjectModel.ReadOnlyCollection`1
[[System.Management.Automation.CommandParameterSetInfo,
System.Management.Automation, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35]] ParameterSets {get;}

ScriptBlock System.Management.Automation.ScriptBlock ScriptBlock {get;}

Visibility System.Management.Automation.SessionStateEntryVisibility Visibility
{get;set;}

The Write-Debug command is shown here.

{

Write-Debug $MyInvocation.MyCommand.name

To use the $in reference type variable, you must assign the data to the Value property of
the variable. The Get-ItemProperty cmdlet creates a custom Windows PowerShell object. As
you can see here, a number of properties are contained in the custom object.

PS C:\> $swValue = Get-ItemProperty -Path HKCU:\Scripting\Stopwatch

PS C:\> $swValue

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\Scripting\

Stopwatch

PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\Scripting

PSChildName : Stopwatch

PSDrive : HKCU

PSProvider : Microsoft.PowerShell.Core\Registry

PreviousCommand : 00:00:00.3153793

You do not have to use the intermediate variable to obtain the previous Value property.
You can use parentheses and query the property directly. Although this may be a bit confus-
ing, it is certainly a valid syntax as shown here.

	 Working with WMI Classes	 CHAPTER 7	 235

PS C:\> (Get-ItemProperty -Path HKCU:\Scripting\Stopwatch).PreviousCommand

00:00:00.3153793

Once you have the custom object, you can query the name property and assign it to the
Value property of the $in reference type variable as shown here.

 $in.value = (Get-ItemProperty -path $path -name $name).$name

} #end Get-RegistryValue

Next, the Set-RegistryValue function is created. This function accepts an input variable
named $value. As in the previous function, you first use the Write-Debug cmdlet to print the
name of the function. Then, the Set-ItemProperty cmdlet is used to assign the value to the
registry. This new value was passed when the function was called and is contained in the
$value variable as shown here.

Function Set-RegistryValue($value)

{

 Write-Debug $MyInvocation.MyCommand.name

 Set-ItemProperty -Path $path -name $name -value $value

} #end Get-RegistryValue

Once the registry is updated via the Set-RegistryValue function, it is time to provide feed-
back to the user via the Write-Feedback function. The Write-Debug cmdlet is used to print
debug information stating that the script is in the Set-RegistryValue function. This information
is displayed only when the script is run with the –debug switch. The next line of the script is
always used to display feedback. One interesting item is the subexpression, which is used to
force the evaluation of the Value property to return the reference type object. This may seem
a bit confusing until you understand that there are two types of string characters in Windows
PowerShell. The first is a literal string, which is represented with single quotation marks. In a
literal string, what you see is what you get and a variable is not expanded inside single quota-
tion marks as shown here.

PS C:\> $a = "this is a string"

PS C:\> 'This is what is in $a'

This is what is in $a

When you use an expanding string, which is represented by double quotation marks, the
value of the variable is expanded and printed as shown here.

PS C:\> $a = "this is a string"

PS C:\> "This is what is in $a"

This is what is in this is a string

While frustrating at first, the expanding string behavior can be used to your advantage
to avoid concatenation of strings and variables. Once you are aware of the two strings, you
can use the backtick character to suppress variable expansion when desired and proceed as
follows:

	236	 CHAPTER 7	 Avoiding Scripting Pitfalls

PS C:\> $a = "this is a string"

PS C:\> "This is what is in `$a: $a"

This is what is in $a: this is a string

If you do not have expanding strings, you need to concatenate the output as shown here.

PS C:\> $a = "this is a string"

PS C:\> 'This is what is in $a: ' + $a

This is what is in $a: this is a string

So what does the expanding string behavior have to do with your code? When an object
is expanded in an expanding string, it tells you the name of the object. If you want to see the
value, you need to create a subexpression by placing the object in smooth parentheses and
placing a dollar sign in front of it. This action forces evaluation of the object and returns the
default property to the command line as shown here.

Function Write-Feedback($in)

{

 Write-Debug $MyInvocation.MyCommand.name

"The $name is set to $($in)"

} #end Write-Feedback

Next, the script checks to determine whether the $debug variable exists. If the $debug
variable exists, it means the script was launched with the –debug switch. If this is the case, the
script changes the value of the $debugPreference automatic variable from SilentlyContinue to
continue. This action causes the debug statements created by the Write-Debug cmdlet to be
emitted to the command line as shown here.

if($debug) { $DebugPreference = "continue" }

Now it is time to initialize several variables. The first variable is the path to the desktop
settings, and the next variable is the name of the registry key to change. These two variables
are shown here.

$path = 'HKCU:\Control Panel\Desktop'

$name = 'ScreenSaveTimeOut'

The last two variables that need to be initialized are the $in variable and the value assigned
to the screen saver time-out as shown here.

$in = $null

$value = 600

The remainder of the script calls the functions in correct order. The first function called
is the Get-RegistryValue function, which obtains the current value of the screen saver time-
out. The Write_Feedback function is called to print the value of the screen saver time-out.
Next, the Set-RegistryValue function is called, which updates the screen saver time-out. The
Get-RegistryValue function is then called to obtain the registry value, and it is displayed with
the Write-Feedback function as shown here.

	 Working with WMI Classes	 CHAPTER 7	 237

Get-RegistryValue([ref]$in)

Write-Feedback($in)

Set-RegistryValue($value)

Get-RegistryValue([ref]$in)

Write-Feedback($in)

The completed GetSetScreenSaverTimeOut.ps1 is shown here.

GetSetScreenSaverTimeOut.ps1

Param([switch]$debug)

Function Get-RegistryValue([ref]$in)

{

 Write-Debug $MyInvocation.MyCommand.name

 $in.value = (Get-ItemProperty -path $path -name $name).$name

} #end Get-RegistryValue

Function Set-RegistryValue($value)

{

 Write-Debug $MyInvocation.MyCommand.name

 Set-ItemProperty -Path $path -name $name -value $value

} #end Get-RegistryValue

Function Write-Feedback($in)

{

 Write-Debug $MyInvocation.MyCommand.name

 "The $name is set to $($in)"

} #end Write-Feedback

*** Entry Point ***

if($debug) { $DebugPreference = "continue" }

$path = 'HKCU:\Control Panel\Desktop'

$name = 'ScreenSaveTimeOut'

$in = $null

$value = 600

Get-RegistryValue([ref]$in)

Write-Feedback($in)

Set-RegistryValue($value)

Get-RegistryValue([ref]$in)

Write-Feedback($in)

	238	 CHAPTER 7	 Avoiding Scripting Pitfalls

Lack of .NET Framework Support

The ability to work with the .NET Framework from within Windows PowerShell is very excit-
ing. Because Windows PowerShell itself is a .NET Framework application, access to the .NET
Framework is very direct and natural. At times, the question is not what can be done with
.NET Framework classes, but rather what cannot be done. The constructors for some of the
.NET Framework classes can be both confusing and complicated. A constructor is used to
create an instance of a class; in many cases, you must first create an instance of a class prior
to using the classes. However, sometimes you do not need a constructor at all, and these
methods are called static. There are both static methods and static properties.

Use of Static Methods and Properties
Static methods and properties are members that are always available. To use a static method,
you place the class name in square brackets and separate the method name by two colons.
An example is the tan method from the System.Math class. The tan method is used to find
the tangent of a number. As shown here, you can use the tan static method from the
System.Math class to find the tangent of a 45-degree angle.

PS C:\> [system.math]::tan(45)

1.61977519054386

When referring to System.Math, the word system is used to represent the namespace in
which the “math class” is found. In most cases, you can drop the word system if you want to
and the process will work exactly the same. When working at the command line, you may
want to save some typing and drop the word system, but I consider it to be a best practice to
always include the word system in a script. If you drop the word system, the command looks
like the following code.

PS C:\> [math]::tan(45)

1.61977519054386

You can use the Get-Member cmdlet with the static switched parameter to obtain the
members of the System.Math .NET Framework class. To do this, the command looks like the
following example.

[math] | Get-Member –static

The static members of the System.Math class are shown in Table 7-4. These static methods
are very important because you can perform most of the functionality from the class by using
them. For example, there is no tan function built into Windows PowerShell. If you want the
tangent of an angle, you must use either the static methods from System.Math or write your
own tangent function. This occurs by design. To perform these mathematical computations,
you need to use the .NET Framework. Rather than being a liability, the .NET Framework is a
tremendous asset because it is a mature technology and is well documented.

	 Lack of .NET Framework Support	 CHAPTER 7	 239

Table 7-4  Members of the System.Math Class

Name MemberType Definition

Abs Method static System.SByte Abs(SByte value) static System.Int16
Abs(Int16 value) static System.Int32 Abs(Int32 value)
static System.Int64 Abs(Int64 value) static System.Single
Abs(Single value) static System.Double Abs(Double
value) static System.Decimal Abs(Decimal value)

Acos Method static System.Double Acos(Double d)

Asin Method static System.Double Asin(Double d)

Atan Method static System.Double Atan(Double d)

Atan2 Method static System.Double Atan2(Double y Double x)

BigMul Method static System.Int64 BigMul(Int32 a Int32 b)

Ceiling Method static System.Decimal Ceiling(Decimal d) static
System.Double Ceiling(Double a)

Cos Method static System.Double Cos(Double d)

Cosh Method static System.Double Cosh(Double value)

DivRem Method static System.Int32 DivRem(Int32 a Int32 b Int32&
result) static System.Int64 DivRem(Int64 a Int64 b
Int64& result)

Equals Method static System.Boolean Equals(Object objA Object objB)

Exp Method static System.Double Exp(Double d)

Floor Method static System.Decimal Floor(Decimal d) static
System.Double Floor(Double d)

IEEERemainder Method static System.Double IEEERemainder(Double x Double y)

Log Method static System.Double Log(Double d) static
System.Double Log(Double a Double newBase)

Log10 Method static System.Double Log10(Double d)

Max Method static System.SByte Max(SByte val1 SByte val2)
static System.Byte Max(Byte val1 Byte val2) static
System.Int16 Max(Int16 val1 Int16 val2) static
System.UInt16 Max(UInt16 val1 UInt16 val2)
static System.Int32 Max(Int32 val1 Int32 val2) static
System.UInt32 Max(UInt32 val1 UInt32 val2) static
System.Int64 Max(Int64 val1 Int64 val2) static
System.UInt64 Max(UInt64 val1 UInt64 val2) static
System.Single Max(Single val1 Single val2) static
System.Double Max(Double val1 Double val2) static
System.Decimal Max(Decimal val1 Decimal val2)

	240	 CHAPTER 7	 Avoiding Scripting Pitfalls

Name MemberType Definition

Min Method static System.SByte Min(SByte val1 SByte val2) static
System.Byte Min(Byte val1 Byte val2) static
System.Int16 Min(Int16 val1 Int16 val2) static
System.UInt16 Min(UInt16 val1 UInt16 val2) static
System.Int32 Min(Int32 val1 Int32 val2) static
System.UInt32 Min(UInt32 val1 UInt32 val2) static
System.Int64 Min(Int64 val1 Int64 val2) static
System.UInt64 Min(UInt64 val1 UInt64 val2) static
System.Single Min(Single val1 Single val2) static
System.Double Min(Double val1 Double val2) static
System.Decimal Min(Decimal val1 Decimal val2)

Pow Method static System.Double Pow(Double x Double y)

ReferenceEquals Method static System.Boolean ReferenceEquals(Object objA
Object objB)

Round Method static System.Double Round(Double a) static
System.Double Round(Double value Int32 digits) static
System.Double Round(Double value MidpointRounding
mode) static System.Double Round(Double value Int32
digits MidpointRounding mode) static System.Decimal
Round(Decimal d) static System.Decimal
Round(Decimal d Int32 decimals) static System.Decimal
Round(Decimal d MidpointRounding mode) static
System.Decimal Round(Decimal d Int32 decimals
MidpointRounding mode)

Sign Method static System.Int32 Sign(SByte value) static System.Int32
Sign(Int16 value) static System.Int32 Sign(Int32 value)
static System.Int32 Sign(Int64 value) static System.Int32
Sign(Single value) static System.Int32 Sign(Double
value) static System.Int32 Sign(Decimal value)

Sin Method static System.Double Sin(Double a)

Sinh Method static System.Double Sinh(Double value)

Sqrt Method static System.Double Sqrt(Double d)

Tan Method static System.Double Tan(Double a)

Tanh Method static System.Double Tanh(Double value)

Truncate Method static System.Decimal Truncate(Decimal d) static
System.Double Truncate(Double d)

E Property static System.Double E {get;}

PI Property static System.Double PI {get;}

	 Lack of .NET Framework Support	 CHAPTER 7	 241

Version Dependencies
One of the more interesting facets of the .NET Framework is that there always seems to be
a new version available, and, of course, between versions there are service packs. While the
.NET Framework is included in the operating system, updates to the .NET Framework are
unfortunately not included in service packs. It therefore becomes the responsibility of the
network administrators to package and deploy updates to the framework. Until the introduc-
tion of Windows PowerShell, network administrators were not keen to provide updates simply
because they did not have a vested interest in the deployment of the .NET Framework. This
behavior was not due to a lack of interest; in many cases, it was due to a lack of understand-
ing of the .NET Framework. If developers did not request updates to the .NET Framework,
then it did not get updated.

Lack of COM Support
Many very useful capabilities are packaged as Component Object Model (COM) components.
Finding these COM objects is sometimes a matter of luck. Of course, you can always read the
MSDN documentation; unfortunately, the articles do not always list the program ID that is
required to create the COM object, and this is even true in articles that refer to the scripting
interfaces. An example can be found in the Windows Media Player scripting object model.
You can work your way through the entire Software Development Kit (SDK) documentation
without discovering that the program ID is wmplayer.ocx and not player, which is used for il-
lustrative purposes. The most natural way to work with a COM object in Windows PowerShell
is to use the New-Object cmdlet, specify the −ComObject parameter, and give the parameter
the program ID. If the program ID is not forthcoming, then you have a more difficult proposi-
tion. You can search the registry and, by doing a bit of detective work, find the program ID.

An example of a COM object whose program ID is hard to find is the object with the
makecab.makecab program ID. The makecab.makecab object is used to make cabinet files,
which are highly compressed files often used by programmers to deploy software applica-
tions. There is no reason why an enterprise network administrator cannot use .cab files to
compress log files prior to transferring them across the application. The only problem is that,
while the makecab.makecab object is present in Windows XP and Windows Server 2003, it has
been removed from the operating system beginning with Windows Vista. When working with
newer operating systems, a different approach is required.

To make the script easier to use, you must first create some command-line parameters by
using the Param statement. The Param statement must be the first noncommented line in
the script. When the script is run from within the Windows PowerShell console or from within
a script editor, the command-line parameters are used to control the way in which the script
executes. In this way, the script can be run without needing to edit it each time you want to
create a .cab file from a different directory. You only need to supply a new value for the
−filepath parameter as shown here.

CreateCab.ps1 –filepath C:\fso1

	242	 CHAPTER 7	 Avoiding Scripting Pitfalls

What is good about command-line parameters is that they use partial parameter comple-
tion, which means that you only need to supply enough of the parameter for it to be unique.
Therefore, you can use command-line syntax such as the following:

CreateCab.ps1 –f c:\fso1 –p c:\fso2\bcab.cab –d

The previous syntax searches the c:\fso directory and obtains all of the files. It then creates
a cabinet file named bcab.cab in the fso2 folder of the C:\ drive. The syntax also produces
debugging information while it is running. Note that the debug parameter is a switched
parameter because debug only affects the script when it is present. This section of the
CreateCab.ps1 script is shown here.

Param(

 $filepath = "C:\fso",

 $path = "C:\fso\aCab.cab",

 [switch]$debug

)

It is now time to create the New-Cab function, which will accept two input parameters. The
first is the –path parameter, and the second is the –files parameter.

Function New-Cab($path,$files)

You can assign the makecab.makecab program ID to a variable named $makecab, which
makes the script a bit easier to read. This is also a good place to put the first Write-Debug
statement.

{

 $makecab = "makecab.makecab"

 Write-Debug "Creating Cab path is: $path"

You now need to create the COM object.

 $cab = New-Object -ComObject $makecab

A bit of error checking is in order. To do this, you can use the $? automatic variable.

 if(!$?) { $(Throw "unable to create $makecab object")}

If no errors occur during the attempt to create the makecab.makecab object, then you can
use the object contained in the $cab variable and call the createcab method.

 $cab.CreateCab($path,$false,$false,$false)

After you create the .cab file, you need to add files to it by using the Foreach statement.

 Foreach ($file in $files)

 {

 $file = $file.fullname.tostring()

 $fileName = Split-Path -path $file -leaf

	 Lack of .NET Framework Support	 CHAPTER 7	 243

After you turn the full file name into a string and remove the directory information by
using the Split-Path cmdlet, another Write-Debug statement is needed to let the user of the
script be informed of progress as shown here.

 Write-Debug "Adding from $file"

 Write-Debug "File name is $fileName"

Next, you need to add a file to the cabinet file.

 $cab.AddFile($file,$filename)

 }

 Write-Debug "Closing cab $path"

To close the cabinet file, you can use the closecab method.

 $cab.CloseCab()

} #end New-Cab

It is now time to go to the entry point of the script. First, you must determine whether the
script is being run in debug mode by looking for the presence of the $debug variable. If it is
running in debug mode, you must set the value of the $DebugPreference variable to continue,
which allows the Write-Debug statements to be printed on the screen. By default, $DebugPreference
is set to SilentlyContinue, which means that no debug statements are displayed and Windows
PowerShell skips past the Write-Debug command without taking any action as shown here.

if($debug) {$DebugPreference = "continue"}

Now, you need to obtain a collection of files by using the Get-ChildItem cmdlet.

$files = Get-ChildItem -path $filePath | Where-Object { !$_.psiscontainer }

After you have a collection of files, you can pass the collection to the New-Cab function as
shown here.

New-Cab -path $path -files $files

The completed CreateCab.ps1 script is shown here. Note: The CreateCab.ps1 script will
not run on Windows Vista and later versions due to lack of support for the makecab.makecab
COM object. An alternate method of creating .cab files is explored in the “Lack of External
Application Support” section later in the chapter.

CreateCab.ps1

Param(

 $filepath = "C:\fso",

 $path = "C:\fso\aCab.cab",

 [switch]$debug

)

Function New-Cab($path,$files)

{

 $makecab = "makecab.makecab"

 Write-Debug "Creating Cab path is: $path"

	244	 CHAPTER 7	 Avoiding Scripting Pitfalls

 $cab = New-Object -ComObject $makecab

 if(!$?) { $(Throw "unable to create $makecab object")}

 $cab.CreateCab($path,$false,$false,$false)

 Foreach ($file in $files)

 {

 $file = $file.fullname.tostring()

 $fileName = Split-Path -path $file -leaf

 Write-Debug "Adding from $file"

 Write-Debug "File name is $fileName"

 $cab.AddFile($file,$filename)

 }

 Write-Debug "Closing cab $path"

 $cab.CloseCab()

} #end New-Cab

*** entry point to script ***

if($debug) {$DebugPreference = "continue"}

$files = Get-ChildItem -path $filePath | Where-Object { !$_.psiscontainer }

New-Cab -path $path -files $files

You cannot use the makecab.makecab object to expand the cabinet file because it does
not have an expand method. You also cannot use the makecab.expandcab object because it
does not exist. Because the ability to expand a cabinet file is inherent in the Windows shell,
you can use the shell object to expand the cabinet file. To access the shell, you can use the
Shell.Application COM object.

You must first create command-line parameters. This section of the script is very similar to
the parameter section of the previous CreateCab.ps1 script. The command-line parameters
are shown here.

Param(

 $cab = "C:\fso\acab.cab",

 $destination = "C:\fso1",

 [switch]$debug

)

After you create command-line parameters, it is time to create the ConvertFrom-Cab func-
tion, which will accept two command-line parameters. The first parameter contains the .cab
file, and the second parameter contains the destination to expand the files as shown here.

Function ConvertFrom-Cab($cab,$destination)

You should now create an instance of the Shell.Application object. The Shell.Application
object is a very powerful object with a number of useful methods. The members of the
Shell.Application object are shown in Table 7-5.

	 Lack of .NET Framework Support	 CHAPTER 7	 245

Table 7-5  Members of the Shell.Application Object

Name MemberType Definition

AddToRecent Method void AddToRecent (Variant, string)

BrowseForFolder Method Folder BrowseForFolder (int, string, int, Variant)

CanStartStopService Method Variant CanStartStopService (string)

CascadeWindows Method void CascadeWindows ()

ControlPanelItem Method void ControlPanelItem (string)

EjectPC Method void EjectPC ()

Explore Method void Explore (Variant)

ExplorerPolicy Method Variant ExplorerPolicy (string)

FileRun Method void FileRun ()

FindComputer Method void FindComputer ()

FindFiles Method void FindFiles ()

FindPrinter Method void FindPrinter (string, string, string)

GetSetting Method bool GetSetting (int)

GetSystemInformation Method Variant GetSystemInformation (string)

Help Method void Help ()

IsRestricted Method int IsRestricted (string, string)

IsServiceRunning Method Variant IsServiceRunning (string)

MinimizeAll Method void MinimizeAll ()

NameSpace Method Folder NameSpace (Variant)

Open Method void Open (Variant)

RefreshMenu Method void RefreshMenu ()

ServiceStart Method Variant ServiceStart (string, Variant)

ServiceStop Method Variant ServiceStop (string, Variant)

SetTime Method void SetTime ()

ShellExecute Method void ShellExecute (string, Variant, Variant,
Variant, Variant)

ShowBrowserBar Method Variant ShowBrowserBar (string, Variant)

ShutdownWindows Method void ShutdownWindows ()

Suspend Method void Suspend ()

TileHorizontally Method void TileHorizontally ()

TileVertically Method void TileVertically ()

	246	 CHAPTER 7	 Avoiding Scripting Pitfalls

Name MemberType Definition

ToggleDesktop Method void ToggleDesktop ()

TrayProperties Method void TrayProperties ()

UndoMinimizeALL Method void UndoMinimizeALL ()

Windows Method IDispatch Windows ()

WindowsSecurity Method void WindowsSecurity ()

WindowSwitcher Method void WindowSwitcher ()

Application Property IDispatch Application () {get}

Parent Property IDispatch Parent () {get}

Because you want to use the name of the COM object more than once, it is a good prac-
tice to assign the program ID of the COM object to a variable. You can then use the string
with the New-Object cmdlet and also use it when providing feedback to the user. The line of
code that assigns the Shell.Application program ID to a string is shown here.

{

 $comObject = "Shell.Application"

It is now time to provide some feedback to the user. You can do this by using the
Write-Debug cmdlet together with a message stating that you are attempting to create the
Shell.Application object as shown here.

 Write-Debug "Creating $comObject"

After you provide debug feedback stating you are going to create the object, you can
actually create the object as shown here.

 $shell = New-Object -Comobject $comObject

Now you want to test for errors by using the $? automatic variable. The $? automatic vari-
able tells you whether the last command completed successfully. Because $? is a Boolean true/
false variable, you can use this fact to simplify the coding. You can use the not operator, !, in
conjunction with an If statement. If the variable is not true, then you can use the Throw state-
ment to raise an error and halt execution of the script. This section of the script is shown here.

 if(!$?) { $(Throw "unable to create $comObject object")}

If the script successfully creates the Shell.Application object, it is now time to provide more
feedback as shown here.

 Write-Debug "Creating source cab object for $cab"

The next step in the operation is to connect to the .cab file by using the Namespace
method from the Shell.Application object as shown here. This is another important step in
the process, so it makes sense to use another Write-Debug statement as a progress indicator
to the user.

	 Lack of .NET Framework Support	 CHAPTER 7	 247

 $sourceCab = $shell.Namespace($cab).items()

 Write-Debug "Creating destination folder object for $destination"

It is time to connect to the destination folder by using the Namespace method as shown
here. You also want to use another Write-Debug statement to let the user know the folder to
which you actually connected.

 $DestinationFolder = $shell.Namespace($destination)

 Write-Debug "Expanding $cab to $destination"

With all of that preparation out of the way, the actual command that is used to expand
the cabinet file is somewhat anticlimactic. You can use the copyhere method from the folder
object that is stored in the $destinationFolder variable. You give the reference to the .cab file
that is stored in the $sourceCab variable as the input parameter as shown here.

 $DestinationFolder.CopyHere($sourceCab)

}

The starting point to the script accomplishes two things. First, it checks for the presence
of the $debug variable. If found, it then sets the $debugPreference to continue to force
the Write-Debug cmdlet to print messages to the console window. Second, it calls the Con-
vertFrom-Cab function and passes the path to the .cab file from the −cab command-line
parameter and the destination for the expanded files from the −destination parameter as
shown here.

if($debug) { $debugPreference = "continue" }

ConvertFrom-Cab -cab $cab -destination $destination

The completed ExpandCab.ps1 script is shown here.

ExpandCab.ps1

Param(

 $cab = "C:\fso\acab.cab",

 $destination = "C:\fso1",

 [switch]$debug

)

Function ConvertFrom-Cab($cab,$destination)

{

 $comObject = "Shell.Application"

 Write-Debug "Creating $comObject"

 $shell = New-Object -Comobject $comObject

 if(!$?) { $(Throw "unable to create $comObject object")}

 Write-Debug "Creating source cab object for $cab"

 $sourceCab = $shell.Namespace($cab).items()

 Write-Debug "Creating destination folder object for $destination"

 $DestinationFolder = $shell.Namespace($destination)

 Write-Debug "Expanding $cab to $destination"

 $DestinationFolder.CopyHere($sourceCab)

}

	248	 CHAPTER 7	 Avoiding Scripting Pitfalls

*** entry point ***

if($debug) { $debugPreference = "continue" }

ConvertFrom-Cab -cab $cab -destination $destination

Lack of External Application Support
Many management features still rely on the use of command-line support; a very common
example is NETSH. Another example is the MakeCab.exe utility. The makecab.makecab COM
object was removed from Windows Vista and later versions. To create a .cab file in Windows
Vista and beyond, you need to use the MakeCab.exe utility.

First, you need to create a few command-line parameters as shown here.

Param(

 $filepath = "C:\fso",

 $path = "C:\fso1\cabfiles",

 [switch]$debug

)

Then you need to create the New-DDF function, which creates a basic .ddf file that is used
by the MakeCab.exe program to create the .cab file. The syntax for these types of files is
documented in the Microsoft Cabinet SDK on MSDN. Once you use the Function keyword to
create the New-DDF function, you can use the Join-Path cmdlet to create the file path to the
temporary .ddf file you will use. You can concatenate the drive, the folder, and the file name
together, but this might become a cumbersome and error-prone operation. As a best prac-
tice, you should always use the Join-Path cmdlet to build your file paths as shown here.

Function New-DDF($path,$filePath)

{

 $ddfFile = Join-Path -path $filePath -childpath temp.ddf

It is time to provide some feedback to the user if the script is run with the –debug switch
by using the Write-Debug cmdlet as shown here.

 Write-Debug "DDF file path is $ddfFile"

You now need to create the first portion of the .ddf file by using an expanding here-string.
The advantage of a here-string is that it allows you not to worry about escaping special char-
acters. For example, the comment character in a .ddf file is the semicolon, which is a reserved
character in Windows PowerShell. If you try to create the .ddf text without the advantage of
using the here-string, you then need to escape each of the semicolons to avoid compile-time
errors. By using an expanding here-string, you can take advantage of the expansion of vari-
ables. A here-string begins with an at sign and a quotation mark and ends with a quotation
mark and an at sign as shown here.

	 Lack of .NET Framework Support	 CHAPTER 7	 249

 $ddfHeader =@"

;*** MakeCAB Directive file

;

.OPTION EXPLICIT			

.Set CabinetNameTemplate=Cab.*.cab

.set DiskDirectory1=C:\fso1\Cabfiles

.Set MaxDiskSize=CDROM

.Set Cabinet=on

.Set Compress=on

"@

You may choose to add more feedback for the user via the Write-Debug cmdlet as shown
here.

 Write-Debug "Writing ddf file header to $ddfFile"

After providing feedback to the user, you come to the section that might cause some
problems. The .ddf file must be a pure ASCII file. By default, Windows PowerShell uses Unicode.
To ensure that you have an ASCII file, you must use the Out-File cmdlet. You can usually avoid
using Out-File by using the file redirection arrows; however, this is not one of those
occasions. Here is the syntax.

 $ddfHeader | Out-File -filepath $ddfFile -force -encoding ASCII

You probably want to provide more debug information via the Write-Debug cmdlet before
you gather your collection of files via the Get-ChildItem cmdlet as shown here.

 Write-Debug "Generating collection of files from $filePath"

 Get-ChildItem -path $filePath |

It is important to filter out folders from the collection because the MakeCab.exe utility is
not able to compress folders. To filter folders, use the Where-Object cmdlet with a not opera-
tor stating that the object is not a container as shown here.

 Where-Object { !$_.psiscontainer } |

After you filter out folders, you need to work with each individual file as it comes across
the pipeline by using the ForEach-Object cmdlet. Because ForEach-Object is a cmdlet as
opposed to a language statement, the curly brackets must be on the same line as the
ForEach-Object cmdlet name. The problem arises in that the curly brackets often get buried
within the code. As a best practice, I like to line up the curly brackets unless the command is
very short, such as in the previous Where-Object command, but this process requires the use
of the line continuation character (the backtick). I know some developers who avoid using line
continuation, but I personally think that lining up curly brackets is more important because it
makes the code easier to read. Here is the beginning of the ForEach-Object cmdlet.

 Foreach-Object `

	250	 CHAPTER 7	 Avoiding Scripting Pitfalls

Because the .dff file used by MakeCab.exe is ASCII text, you need to convert the FullName
property of the System.IO.FileInfo object returned by the Get-ChildItem cmdlet to a string. In
addition, because you may have files with spaces in their name, it makes sense to ensconce
the file FullName value in a set of quotation marks as shown here.

 {

 '"' + $_.fullname.tostring() + '"' |

You then pipeline the file names to the Out-File cmdlet, making sure to specify the ASCII
encoding, and use the −append switch to avoid overwriting everything else in the text file as
shown here.

 Out-File -filepath $ddfFile -encoding ASCII -append

 }

Now you can provide another update to the debug users and call the New-Cab function as
shown here.

 Write-Debug "ddf file is created. Calling New-Cab function"

 New-Cab($ddfFile)

} #end New-DDF

When you enter the New-Cab function, you may want to supply some information to the
user as shown here.

Function New-Cab($ddfFile)

{

 Write-Debug "Entering the New-Cab function. The DDF File is $ddfFile"

If the script is run with the −debug switch, you can use the /V parameter of the MakeCab.exe
executable to provide detailed debugging information. If the script is not run with the −debug
switch, you do not want to clutter the screen with too much information and can therefore
rely on the default verbosity of the utility as shown here.

 if($debug)

 { makecab /f $ddfFile /V3 }

 Else

 { makecab /f $ddfFile }

} #end New-Cab

The entry point to the script checks whether the $debug variable is present. If it is, the
$debugPreference automatic variable is set to continue, and debugging information is displayed
via the Write-Debug cmdlet. Once that check is performed, the New-DDF cmdlet is called with
the path and filepath values supplied to the command line as shown here.

if($debug) {$DebugPreference = "continue"}

New-DDF -path $path -filepath $filepath

The completed CreateCab2.ps1 script is shown here.

	 Lack of .NET Framework Support	 CHAPTER 7	 251

CreateCab2.ps1

Param(

 $filepath = "C:\fso",

 $path = "C:\fso1\cabfiles",

 [switch]$debug

)

Function New-DDF($path,$filePath)

{

 $ddfFile = Join-Path -path $filePath -childpath temp.ddf

 Write-Debug "DDF file path is $ddfFile"

 $ddfHeader =@"

;*** MakeCAB Directive file

;

.OPTION EXPLICIT			

.Set CabinetNameTemplate=Cab.*.cab

.set DiskDirectory1=C:\fso1\Cabfiles

.Set MaxDiskSize=CDROM

.Set Cabinet=on

.Set Compress=on

"@

 Write-Debug "Writing ddf file header to $ddfFile"

 $ddfHeader | Out-File -filepath $ddfFile -force -encoding ASCII

 Write-Debug "Generating collection of files from $filePath"

 Get-ChildItem -path $filePath |

 Where-Object { !$_.psiscontainer } |

 Foreach-Object `

 {

 '"' + $_.fullname.tostring() + '"' |

 Out-File -filepath $ddfFile -encoding ASCII -append

 }

 Write-Debug "ddf file is created. Calling New-Cab function"

 New-Cab($ddfFile)

} #end New-DDF

Function New-Cab($ddfFile)

{

 Write-Debug "Entering the New-Cab function. The DDF File is $ddfFile"

 if($debug)

 { makecab /f $ddfFile /V3 }

 Else

 { makecab /f $ddfFile }

} #end New-Cab

*** entry point to script ***

if($debug) {$DebugPreference = "continue"}

New-DDF -path $path -filepath $filepath

	252	 CHAPTER 7	 Avoiding Scripting Pitfalls

Additional Resources

n	 The TechNet Script Center at http://www.microsoft.com/technet/scriptcenter has
numerous examples of Windows PowerShell scripts that use all of the techniques
explored in this chapter.

n	 Take a look at Windows PowerShell™ Scripting Guide (Microsoft Press, 2008) for
examples of using WMI and various .NET Framework classes in Windows PowerShell.

n	 For a good WMI reference, look at Windows Scripting with WMI Self-Paced Learning
Edition (Microsoft Press, 2006).

n	 The MSDN reference library has comprehensive product documentation at
http://msdn.microsoft.com/en-us/library/default.aspx and is the authoritative
source for all Microsoft products.

n	 On the companion media, you will find all of the scripts referred to in this chapter.

		 	 331

C H A P T E R 1 0

Designing Help for Scripts
n	 Adding Help Documentation to a Script with Single-Line Comments  331

n	 Using the Here-String for Multiple-Line Comments  335

n	 Using Multiple-Line Comment Tags in Windows PowerShell 2.0  355

n	 The 13 Rules for Writing Effective Comments  357

n	 Additional Resources  372

Although well-written code is easy to understand, easy to maintain, and easy to
troubleshoot, it can still benefit from well-written help documentation. Well-written

help documentation can list assumptions that were made when the script was written,
such as the existence of a particular folder or the need to run as an administrator. It also
documents dependencies, such as relying on a particular version of the Microsoft .NET
Framework. Good documentation is a sign of a professional at work because it not only
informs the user how to get the most from your script, but it also explains how users can
modify your script or even use your functions in other scripts.

All production scripts should provide some form of help. But what is the best way to
provide that help? In this chapter, you will look at proven methods for providing custom
help in Windows PowerShell scripts.

When writing help documentation for a script, three tools are available to you. The
first tool is the traditional comment that is placed within the script—the single-line com-
ment that is available in Windows PowerShell 1.0. The second tool is the here-string. The
third tool is the multiple-line comment that is introduced in Windows PowerShell 2.0.
Once you understand how to use these tools, we will focus on the 13 rules for writing
effective comments.

Adding Help Documentation to a Script with
Single-Line Comments

Single-line comments are a great way to quickly add documentation to a script. They
have the advantage of being simple to use and easy to understand. It is a best practice
to provide illuminating information about confusing constructions or to add notes for
future work items in the script, and they can be used exclusively within your scripting

	332	 CHAPTER 10	 Designing Help for Scripts

environment. In this section, we will look at using single-line comments to add help docu-
mentation to a script.

In the CreateFileNameFromDate.ps1 script, the header section of the script uses the
comments section to explain how the script works, what it does, and the limitations of the
approach. The CreateFileNameFromDate.ps1 script is shown here.

CreateFileNameFromDate.ps1

--

NAME: CreateFileNameFromDate.ps1

AUTHOR: ed wilson, Microsoft

DATE:12/15/2008

KEYWORDS: .NET framework, io.path, get-date

file, new-item, Standard Date and Time Format Strings

regular expression, ref, pass by reference

COMMENTS: This script creates an empty text file

based upon the date-time stamp. Uses format string

to specify a sortable date. Uses getInvalidFileNameChars

method to get all the invalid characters that are not allowed

in a file name. It assumes there is a folder named fso off the

c:\ drive. If the folder does not exist, the script will fail.

--

Function GetFileName([ref]$fileName)

{

 $invalidChars = [io.path]::GetInvalidFileNamechars()

 $date = Get-Date -format s

 $fileName.value = ($date.ToString() -replace "[$invalidChars]","-") + ".txt"

}

$fileName = $null

GetFileName([ref]$fileName)

new-item -path c:\fso -name $filename -itemtype file

In general, you should always provide information on how to use your functions. Each
parameter, as well as underlying dependencies, must be explained. In addition to document-
ing the operation and dependencies of the functions, you should also include information
that will be beneficial to those who must maintain the code. You should always assume that
the person who maintains your code does not understand what the code actually does,
therefore ensuring that the documentation explains everything. In the BackUpFiles.ps1 script,
comments are added to both the header and to each function that explain the logic and
limitations of the functions as shown here.

	 Adding Help Documentation to a Script with Single-Line Comments 	 CHAPTER 10	 333

BackUpFiles.ps1

--

NAME: BackUpFiles.ps1

AUTHOR: ed wilson, Microsoft

DATE: 12/12/2008

KEYWORDS: Filesystem, get-childitem, where-object

date manipulation, regular expressions

COMMENTS: This script backs up a folder. It will

back up files that have been modified within the past

24 hours. You can change the interval, the destination,

and the source. It creates a backup folder that is named based upon

the time the script runs. If the destination folder does not exist, it

will be created. The destination folder is based upon the time the

script is run and will look like this: C:\bu\12.12.2008.1.22.51.PM.

The interval is the age in days of the files to be copied.

Function New-BackUpFolder($destinationFolder)

{

 #Receives the path to the destination folder and creates the path to

 #a child folder based upon the date / time. It then calls the New-Backup

 #function while passing the source path, destination path, and interval

 #in days.

 $dte = get-date

 #The following regular expression pattern removes white space, colon,

 #and forward slash from the date and replaces with a period to create the

 #backup folder name.

 $dte = $dte.tostring() -replace "[:\s/]", "."

 $backUpPath = "$destinationFolder" + $dte

 $null = New-Item -path $backUpPath -itemType directory

 New-Backup $dataFolder $backUpPath $backUpInterval

} #end New-BackUpFolder

Function New-Backup($dataFolder,$backUpPath,$backUpInterval)

{

 #Does a recursive copy of all files in the data folder and filters out

 #all files that have been written to within the number of days specified

 #by the interval. Writes copied files to the destination and will create

 #if the destination (including parent path) does not exist. Will overwrite

 #if destination already exists. This is unlikely, however, unless the

 #script is run twice during the same minute.

 "backing up $dataFolder... check $backUppath for your files"

 Get-Childitem -path $dataFolder -recurse |

 Where-Object { $_.LastWriteTime -ge (get-date).addDays(-$backUpInterval) } |

	334	 CHAPTER 10	 Designing Help for Scripts

 Foreach-Object { copy-item -path $_.FullName -destination $backUpPath -force }

} #end New-BackUp

*** entry point to script ***

$backUpInterval = 1

$dataFolder = "C:\fso"

$destinationFolder = "C:\BU\"

New-BackupFolder $destinationFolder

Notes from the Field

Crafting Inspired cmdlet Help

Dean Tsaltas, Microsoft Scripting Guy Emeritus

In many ways, writing cmdlet help is no different from writing any other type of

help documentation. If you want to do a really good job, you must “become your

user.” This is easier said than done, of course—especially if you are the person who

designed and implemented the cmdlets for which you are writing the help. Even

though you just created the cmdlets, you can only guess at the mysterious ways in

which some of your users will use and abuse your creations. That said, you must give

it your all. Rent the original Karate Kid and watch it for inspiration. Wax on and wax

off before hitting the keyboard. After crafting just the right sentences to convey

a concept, remember to ask yourself, “What ambiguity is left in what I just wrote?

What can my user possibly still question after reading my text?” Picture yourself

explaining the concept to your users, anticipate their questions, and answer them.

For example, suppose that your cmdlet creates some type of file and takes a name

or a full path that includes a name as a parameter. Anticipate the questions that

users will have about that parameter: how long can it be, are any characters disal-

lowed, how are quotes within quotes handled, will the resultant file include an ex-

tension or should I include the appropriate extension in the parameter value? Don’t

force your users to experiment to answer questions that you can easily anticipate

and to which you can quickly provide answers. Help them.

Next, remember that a single example is worth a thousand support calls. You should

aim high when it comes to examples. It is a best practice to brainstorm the top tasks

that you think your users will be trying to accomplish. At a minimum, you need to

include an example for each of those top tasks. Once you have established that

baseline, you should aim to provide an example that exercises each and every

cmdlet parameter set. Even if you simply mine your test cases for bland examples,

try to provide your users with a starting point. As you well know, it’s much easier

	 Using the Here-String for Multiple-Line Comments	 CHAPTER 10	 335

to manipulate a working command line and get it to do what you want than it is to

start from scratch.

It’s important to consider how your users will interact with cmdlet help. They will

see it at a command prompt one full screen at a time. Because that first screen is

like the “above-the-fold” section of a newspaper, make sure you handle any really

important issues right there in the detailed description. If you need certain privi-

leges to use the cmdlet, let your users know that information up front. If there’s an

associated provider that might be useful to them, tell your users about it early.

Don’t neglect the Related Links section of your help. It’s very easy to simply list

all of the cmdlets with the same noun, especially when you’re in a rush. Yet, are

those truly the only cmdlets that are related to the one you’re writing about? For

instance, is there another cmdlet that your users must use to generate an object

that your cmdlet can accept as a parameter value? If so, this other cmdlet also

deserves a place in the Related Links list. Again, imagine having a discussion with your

users. What other help can you suggest that they access? Also include links to this

additional help and not just to the help that is obviously related based on cmdlet

naming conventions.

My last bit of advice about writing cmdlet help is to write it as early as you can in

the development cycle and get it in the hands of some pre-alpha users to start the

feedback cycle quickly. The only way to develop excellent cmdlet help (or any other

type of technical documentation) is through iterative improvements in response

to feedback. Include numerous simple examples in the help as soon as you can.

Having someone use a cmdlet with no accompanying help is unlikely to help you

understand what information is needed by your users to get the job done. However,

providing someone with three examples will certainly elicit a user response as to

what the fourth and fifth examples should be.

Using the Here-String for Multiple-Line Comments

One method that can be used in Windows PowerShell 1.0 to allow for multiline comments
is to use a here-string. The here-string allows you to assign text without worrying about line
formatting or escaping quotation marks and other special characters. It is helpful when work-
ing with multiple lines of text because it allows you to overlook the more tedious aspects of
working with formatted text, such as escaping quotation marks. The advantage of using a
here-string to store your comments is that it then becomes rather easy to use another script
to retrieve all of the comments.

	336	 CHAPTER 10	 Designing Help for Scripts

Constructing a Here-String
An example of working with here-strings is the Demo-HereString.ps1 script. The $instructions
variable is used to hold the content of the here-string. The actual here-string itself is created
by beginning the string with the at and double quotation mark (@") symbol. The here-string
is terminated by reversing the order with the double quotation mark and the at symbol ("@).
Everything between the two tags is interpreted as a string, including special characters. The
here-string from the Demo-HereString.ps1 script is shown here.

$instructions = @"

This command line demo illustrates working with multiple lines

of text. The cool thing about using a here-string is that it allows

you to "work" with text without the need to "worry" about quoting

or other formating issues.

 It even allows you

 a sort of

 wysiwyg type of experience.

You format the data as you wish it to appear.

"@

Tradeoff

Multiple-Line Comments in Windows PowerShell 1.0

If you want to include a comment in Windows PowerShell 1.0 that spans multiple

lines, you can use multiple pound characters (#) as shown here.

This is the first line of a multiple line comment

This is the second line of the comment

This process works fine for short comments, but when you need to write a

paragraph documenting a particular feature or construction in the script, this

method becomes rather annoying because of the need to type all of the pound

characters. If one of the comment characters is inadvertently omitted, an error is

generated. Depending on the actual placement of the pound sign, the error can

be misleading and cause you to waste development time by chasing down the

errant line of code. In Windows PowerShell 2.0, you can still use the multiple pound

character approach to adding comments if desired. The advantages to doing so are

simplicity and backward compatibility with Windows PowerShell 1.0. Your code will

also be easy to read because anyone familiar with Windows PowerShell will immedi-

ately recognize the lines of code as comments.

	 Using the Here-String for Multiple-Line Comments	 CHAPTER 10	 337

The here-string is displayed by calling the variable that contains the here-string. In the
Demo-HereString.ps1 script, the response to a prompt posed by the Read-Host cmdlet is
stored in the $response variable. The Read-Host command is shown here.

$response = Read-Host -Prompt "Do you need instructions? <y / n>"

The value stored in the $response variable is then evaluated by the If statement. If the
value is equal to the letter “y,” the contents of the here-string are displayed. If the value of the
$response variable is equal to anything else that the script displays, the string displays “good
bye” and exits. This section of the script is shown here.

if ($response -eq "y") { $instructions ; exit }

else { "good bye" ; exit }

The Demo-HereString.ps1 script is seen here.

Demo-HereString.ps1

$instructions = @"

This command line demo illustrates working with multiple lines

of text. The cool thing about using a here-string is that it allows

you to "work" with text without the need to "worry" about quoting

or other formating issues.

 It even allows you

 a sort of

 wysiwyg type of experience.

You format the data as you wish it to appear.

"@

$response = Read-Host -Prompt "Do you need instructions? <y / n>"

if ($response -eq "y") { $instructions ; exit }

else { "good bye" ; exit }

An Example: Adding Comments to a Registry Script
To better demonstrate the advantages of working with here-strings, consider the following
example that employs the registry. A script named GetSetieStartPage.ps1 reads or modifies a
few values from the registry to configure the Internet Explorer start pages. The
GetSetieStartPage.ps1 script contains pertinent comments and provides a good example for
working with documentation.

With Internet Explorer 7.0, there are actually two registry keys that govern the Internet
Explorer start page. The registry key that is documented in the Tweakomatic program, avail-
able from the Microsoft Script Center, accepts a single string for the start page, which makes
sense because traditionally you can have only a single start page. For Internet Explorer 7, an
additional registry key was added to accept multiple strings (an array of strings), which in turn
gives you the ability to have multiple start pages. You can use the Windows Management

	338	 CHAPTER 10	 Designing Help for Scripts

Instrumentation (WMI) stdRegProv class to both read and edit the registry keys. The main
advantage of this technique is that it gives you the ability to edit the registry remotely.

The registry keys that are involved with the settings are shown in Figure 10-1.

Figure 10-1  Internet Explorer registry keys shown in the Registry Editor

First, you must create a few command-line parameters. Two of these are switched param-
eters, which allow you to control the way the script operates—either by obtaining information
from the registry or setting information in the registry. The last parameter is a regular param-
eter that controls the target computer. You are assigning a default value for the $computer
variable of localhost, which means that the script reads the local registry by default as shown
here.

Param([switch]$get,[switch]$set,$computer="localhost")

You now need to create the Get-ieStartPage function. The Get-ieStartPage function will be
used to retrieve the current start page settings. To create a function, you can use the Function
keyword and give it a name as shown here.

Function Get-ieStartPage()

After using the Function keyword to create the new function, you need to add some code
to the script block. First, you must create the variables to be used in the script. These are the
same types of variables that you use when using WMI to read from the registry in Microsoft

	 Using the Here-String for Multiple-Line Comments	 CHAPTER 10	 339

VBScript. You must specify the registry hive from which you plan on querying by using one of
enumeration values shown Table 10-1.

Table 10-1  WMI Registry Tree Values

Name Value

HKEY_CLASSES_ROOT 2147483648

HKEY_CURRENT_USER 2147483649

HKEY_LOCAL_MACHINE 2147483650

HKEY_USERS 2147483651

HKEY_CURRENT_CONFIG 2147483653

HKEY_DYN_DATA 2147483654

In VBScript, you often create a constant to hold the WMI registry tree values (although a
regular variable is fine if you do not change it). If you feel that you must have a constant, the
following code is the syntax you need to use.

New-Variable -Name hkcu -Value 2147483649 -Option constant

The $key variable is used to hold the path to the registry key with which you will be working.
The $property and $property2 variables are used to hold the actual properties that will control
the start pages. This section of the script is shown here.

{

 $hkcu = 2147483649

 $key = "Software\Microsoft\Internet Explorer\Main"

 $property = "Start Page"

 $property2 = "Secondary Start Pages"

You now need to use the [WMICLASS] type accelerator to create an instance of the
stdRegProv WMI class. You can hold the management object that is returned by the type
accelerator in the $wmi variable. What is a bit interesting is the path to the WMI class. It
includes both the computer name, the WMI namespace followed by a colon, and the name of
the WMI class. This syntax corresponds exactly to the Path property that is present on all WMI
classes (because it is inherited from the System abstract class) as shown in Figure 10-2. (If you
are interested in this level of detail about WMI, you can refer to Windows Scripting with WMI:
Self-Paced Learning Guide [Microsoft Press, 2006]. All of the examples are written in VBScript,
but the book applies nearly 100 percent to Windows PowerShell.)

	340	 CHAPTER 10	 Designing Help for Scripts

Figure 10-2  The WMI Path property seen in the WbemTest utility

Here is the line of code that creates an instance of the stdRegProv WMI class on the target
computer.

 $wmi = [wmiclass]"\\$computer\root\default:stdRegProv"

Next, you need to use the GetStringValue method because you want to obtain the value
of a string (it really is that simple). This step can be a bit confusing when using the stdRegProv
WMI class because of the large number of methods in this class. For each data type you want
to access, you must use a different method for both writing and reading from the registry.
This also means that you must know what data type is contained in the registry key property
value with which you want to work. The stdRegProv methods are documented in Table 10-2.

Table 10-2  stdRegProv Methods

Name Definition

CheckAccess System.Management.ManagementBaseObject
CheckAccess(System.UInt32 hDefKey, System.String
sSubKeyName, System.UInt32 uRequired)

CreateKey System.Management.ManagementBaseObject
CreateKey(System.UInt32 hDefKey, System.String sSubKeyName)

DeleteKey System.Management.ManagementBaseObject
DeleteKey(System.UInt32 hDefKey, System.String sSubKeyName)

DeleteValue System.Management.ManagementBaseObject
DeleteValue(System.UInt32 hDefKey, System.String
sSubKeyName, System.String sValueName)

	 Using the Here-String for Multiple-Line Comments	 CHAPTER 10	 341

Name Definition

EnumKey System.Management.ManagementBaseObject EnumKey
(System.UInt32 hDefKey, System.String sSubKeyName)

EnumValues System.Management.ManagementBaseObject
EnumValues(System.UInt32 hDefKey, System.String
sSubKeyName)

GetBinaryValue System.Management.ManagementBaseObject
GetBinaryValue(System.UInt32 hDefKey, System.String
sSubKeyName, System.String sValueName)

GetDWORDValue System.Management.ManagementBaseObject
GetDWORDValue(System.UInt32 hDefKey, System.String
sSubKeyName, System.String sValueName)

GetExpandedStringValue System.Management.ManagementBaseObject
GetExpandedStringValue(System.UInt32 hDefKey, System.String
sSubKeyName, System.String sValueName)

GetMultiStringValue System.Management.ManagementBaseObject
GetMultiStringValue(System.UInt32 hDefKey,
System.StringsSubKeyName, System.String sValueName)

GetStringValue System.Management.ManagementBaseObject
GetStringValue(System.UInt32 hDefKey, System.String
sSubKeyName, System.String sValueName)

SetBinaryValue System.Management.ManagementBaseObject
SetBinaryValue(System.UInt32 hDefKey, System.String
sSubKeyName, System.String sValueName, System.Byte[] uValue)

SetDWORDValue System.Management.ManagementBaseObject
SetDWORDValue(System.UInt32 hDefKey, System.String
sSubKeyName, System.String sValueName, System.UInt32 uValue)

SetExpandedStringValue System.Management.ManagementBaseObject
SetExpandedStringValue(System.UInt32 hDefKey, System.String
sSubKeyName, System.String sValueName, System.String sValue)

SetMultiStringValue System.Management.ManagementBaseObject
SetMultiStringValue(System.UInt32 hDefKey,
System.StringsSubKeyName, System.String sValueName,
System.String[] sValue)

SetStringValue System.Management.ManagementBaseObject
SetStringValue(System.UInt32 hDefKey, System.String
sSubKeyName, System.String sValueName, System.String sValue)

 The code that obtains the value of the default Internet Explorer home page is shown here.

($wmi.GetStringValue($hkcu,$key,$property)).sValue

	342	 CHAPTER 10	 Designing Help for Scripts

After obtaining the value of the string that holds the default home page, you need to
obtain the value of a multistring registry key that is used for the additional home pages. To
do this, you can use the GetMultiStringValue method. What is convenient about this method
is that the values of the array that are returned are automatically expanded, and you can
thus avoid the for … next gyrations required when performing this method call when using
VBScript. This line of code is shown here.

 ($wmi.GetMultiStringValue($hkcu,$key, $property2)).sValue

Adding comments to the closing curly brackets is a best practice that enables you to
quickly know where the function begins and ends.

Lessons Learned

Pairing a Comment with a Closing Curly Bracket

I once spent an entire train ride in Germany that went from Regensburg to

Hamburg (nearly a five-hour trip) troubleshooting a problem with a script that

occurred as the train left the central train station in Regensburg. The script was

to be used for the Windows Vista Resource Kit (Microsoft Press, 2008), and I had a

deadline to meet. The problem occurred with an edit that I made to the original

script, and I forgot to close the curly bracket. The error was particularly misleading

because it pointed to a line in the very long script that was unrelated to the issue

at hand. It was on this train ride that I learned the value of adding a comment to

closing curly brackets, which is now something that I nearly always do.

Here is the closing curly bracket and associated comment. If you always type comments
in the same pattern (for example, #end with no space), they are then easy to spot if you ever
decide to write a script to search for them.

} #end Get-ieStartPage

You now need to create a function to assign new values to the Internet Explorer start
pages. You can call the Set-ieStartPage function as shown here.

Function Set-ieStartPage()

{

You must assign some values to a large number of variables. The first four variables are the
same ones used in the previous function. (You could have made them script-level variables
and saved four lines of code in the overall script, but then the functions would not have been
stand-alone pieces of code.) The $value variable is used to hold the default home page, and
the $aryvalues variable holds an array of secondary home page URLs. This section of the code
is shown here.

	 Using the Here-String for Multiple-Line Comments	 CHAPTER 10	 343

 $hkcu = 2147483649

 $key = "Software\Microsoft\Internet Explorer\Main"

 $property = "Start Page"

 $property2 = "Secondary Start Pages"

 $value = "http://www.microsoft.com/technet/scriptcenter/default.mspx"

 $aryValues = "http://social.technet.microsoft.com/Forums/en/ITCG/threads/",

 "http://www.microsoft.com/technet/scriptcenter/resources/qanda/all.mspx"

After assigning values to variables, you can use the [WMICLASS] type accelerator to create
an instance of the stdRegProv WMI class. This same line of code is used in the Get-ieStartPage
function and is shown here.

 $wmi = [wmiclass]"\\$computer\root\default:stdRegProv"

You can now use the SetStringValue method to set the value of the string. The SetStringValue
method takes four values. The first is the numeric value representing the registry hive to
which to connect. The next is the string for the registry key. The third position holds the
property to modify, and last is a string representing the new value to assign as shown here.

 $rtn = $wmi.SetStringValue($hkcu,$key,$property,$value)

Next, you can use the SetMultiStringValue method to set the value of a multistring registry
key. This method takes an array in the fourth position. The signature of the SetMultiStringValue
method is similar to the SetStringValue signature. The only difference is that the fourth
position needs an array of strings and not a single value as shown here.

 $rtn2 = $wmi.SetMultiStringValue($hkcu,$key,$property2,$aryValues)

Now, you can print the value of the ReturnValue property. The ReturnValue property
contains the error code from the method call. A zero means that the method worked (no
runs, no errors), and anything else means that there was a problem as shown here.

 "Setting $property returned $($rtn.returnvalue)"

 "Setting $property2 returned $($rtn2.returnvalue)"

} #end Set-ieStartPage

You are now at the entry point to the script. You must first get the starting values and then
set them to the new values that you want to configure. If you want to re-query the registry to
ensure that the values took effect, you can simply call the Get-ieStartPage function again as
shown here.

if($get) {Get-ieStartpage}

if($set){Set-ieStartPage}

The complete GetSetieStartPage.ps1 script is shown here.

	344	 CHAPTER 10	 Designing Help for Scripts

GetSetieStartPage.ps1

Param([switch]$get,[switch]$set,$computer="localhost")

$Comment = @"

NAME: GetSetieStartPage.ps1

AUTHOR: ed wilson, Microsoft

DATE: 1/5/2009

KEYWORDS: stdregprov, ie, [wmiclass] type accelerator,

Hey Scripting Guy

COMMENTS: This script uses the [wmiclass] type accelerator

and the stdregprov to get the ie start pages and to set the

ie start pages. Using ie 7 or better you can have multiple

start pages.

"@ #end comment

Function Get-ieStartPage()

{

$Comment = @"

FUNCTION: Get-ieStartPage

Is used to retrieve the current settings for Internet Explorer 7 and greater.

The value of $hkcu is set to a constant value from the SDK that points

to the Hkey_Current_User. Two methods are used to read

from the registry because the start page is single valued and

the second start page’s key is multi-valued.

"@ #end comment

 $hkcu = 2147483649

 $key = "Software\Microsoft\Internet Explorer\Main"

 $property = "Start Page"

 $property2 = "Secondary Start Pages"

 $wmi = [wmiclass]"\\$computer\root\default:stdRegProv"

 ($wmi.GetStringValue($hkcu,$key,$property)).sValue

 ($wmi.GetMultiStringValue($hkcu,$key, $property2)).sValue

} #end Get-ieStartPage

Function Set-ieStartPage()

{

$Comment = @"

FUNCTION: Set-ieStartPage

Allows you to configure one or more home pages for IE 7 and greater.

The $aryValues and the $Value variables hold the various home pages.

Specify the complete URL ex: "http://www.ScriptingGuys.Com." Make sure

to include the quotation marks around each URL.

"@ #end comment

	 Using the Here-String for Multiple-Line Comments	 CHAPTER 10	 345

 $hkcu = 2147483649

 $key = "Software\Microsoft\Internet Explorer\Main"

 $property = "Start Page"

 $property2 = "Secondary Start Pages"

 $value = "http://www.microsoft.com/technet/scriptcenter/default.mspx"

 $aryValues = "http://social.technet.microsoft.com/Forums/en/ITCG/threads/",

 "http://www.microsoft.com/technet/scriptcenter/resources/qanda/all.mspx"

 $wmi = [wmiclass]"\\$computer\root\default:stdRegProv"

 $rtn = $wmi.SetStringValue($hkcu,$key,$property,$value)

 $rtn2 = $wmi.SetMultiStringValue($hkcu,$key,$property2,$aryValues)

 "Setting $property returned $($rtn.returnvalue)"

 "Setting $property2 returned $($rtn2.returnvalue)"

} #end Set-ieStartPage

*** entry point to script

if($get) {Get-ieStartpage}

if($set){Set-ieStartPage}

Retrieving Comments by Using Here-Strings
Due to the stylized nature of here-strings, you can use a script, such as
GetCommentsFromScript.ps1, to retrieve the here-strings from another script, such as
GetSetieStartPage.ps1. You are interested in obtaining three comment blocks. The first
comment block contains normal script header information: title, author, date, keywords, and
comments on the script itself. The second and third comment blocks are specifically related
to the two main functions contained in the GetSetieStartPage.ps1 script. When processed by
the GetCommentsFromScript.ps1 script, the result is automatically produced script documen-
tation. To write comments from the source file to another document, you need to open the
original script, search for your comments, and write the appropriate text to a new file.

The GetCommentsFromScript.ps1 script begins with the Param statement. The Param
statement is used to allow you to provide information to the script at run time. The advantage
of using a command-line parameter is that you do not need to open the script and edit it to
provide the path to the script whose comments you are going to copy. You are making this
parameter a mandatory parameter by assigning a default value to the $script variable. The
default value you assign uses the Throw statement to raise an error, which means that the
script will always raise an error when run unless you supply a value for the −script parameter
when you run the script.

Using Throw to Raise an Error
Use of the Throw statement is seen in the DemoThrow.ps1 script. To get past the error that
is raised by the Throw statement in the Set-Error function, you first need to set the value of
the $errorActionPreference variable to SilentlyContinue, which causes the error to not be

	346	 CHAPTER 10	 Designing Help for Scripts

displayed and allows the script to continue past the error. (This variable performs the same
action as the On Error Resume Next setting from VBScript.) The If statement is used to evalu-
ate the value of the $value variable. If there is a match, the Throw statement is encountered
and the exception is thrown.

To evaluate the error, you can use the Get-ErrorDetails function. The error count is displayed
first, and it will be incremented by one due to the error that was raised by the Throw state-
ment. You can then take the first error (the error with the index value of 0 is always the most
recent error that occurred) and send the error object to the Format-List cmdlet. You choose
all of the properties. However, the invocation information is returned as an object. Therefore,
you must query that object directly by accessing the invocation object via the Invocationinfo
property of the error object. The resulting error information is shown in Figure 10-3.

Figure 10-3  The Throw statement is used to raise an error.

The complete DemoThrow.ps1 script is shown here.

DemoThrow.ps1

Function Set-Error

{

 $errorActionPreference = "SilentlyContinue"

 "Before the throw statement: $($error.count) errors"

 $value = "bad"

 If ($value -eq "bad")

 { throw "The value is bad" }

} #end Set-Error

Function Get-ErrorDetails

{

 "After the throw statement: $($error.count) errors"

 "Error details:"

 $error[0] | Format-List -Property *

	 Using the Here-String for Multiple-Line Comments	 CHAPTER 10	 347

 "Invocation information:"

 $error[0].InvocationInfo

} #end Get-ErrorDetails

*** Entry Point to Script

Set-Error

Get-ErrorDetails

The Param statement is shown here.

Param($Script= $(throw "The path to a script is required."))

You need to create a function that creates a file name for the new text document that will
be created as a result of gleaning all of the comments from the script. To create the function,
you can use the Function keyword and follow it with the name for the function. In your case,
you can call the function Get-FileName in keeping with the spirit of the verb-noun naming
convention in Windows PowerShell. The function will take a single input parameter that is
held in the $script variable inside the function. The $script variable will hold the path to the
script to be analyzed. The entry to the Get-FileName function is shown here.

Function Get-FileName($Script)

{

Working with Temporary Folders
Next, you can obtain the path to the temporary folder on the local computer in many
different ways, including using the environmental PS drive. This example uses the static
GetTempPath method from the System.Io.Path .NET Framework class. The GetTempPath
method returns the path to the temporary folder, which is where you will store the newly
created text file. You hold the temporary folder path in the $outputPath variable as shown
here.

 $outputPath = [io.path]::GetTempPath()

You decide to name your new text file after the name of the script. To do this, you need
to separate the script name from the path in which the script is stored. You can use the
Split-Path function to perform this surgery. The −leaf parameter instructs the cmdlet to return
the script name. If you want the directory path that contains the script, you can use the −parent
parameter. You put the Split-Path cmdlet inside a pair of parentheses because you want that
operation to occur first. When the dollar sign is placed in front of the parentheses, it creates
a subexpression that executes the code and then returns the name of the script. You can use
.ps1 as the extension for your text file, but that can become a bit confusing because it is the
extension for a script. Therefore, you can simply add a .txt extension to the returned file name
and place the entire string within a pair of quotation marks.

	348	 CHAPTER 10	 Designing Help for Scripts

You can use the Join-Path cmdlet to create a new path to your output file. The new path
is composed of the temporary folder that is stored in the $outputPath variable and the file
name you created using Split-Path. You combine these elements by using the Join-Path
cmdlet. You can use string manipulation and concatenation to create the new file path, but it
is much more reliable to use the Join-Path and Split-Path cmdlets to perform these types of
operations. This section of the code is shown here.

 Join-Path -path $outputPath -child "$(Split-Path $script -leaf).txt"

} #end Get-FileName

You need to decide how to handle duplicate files. You can prompt the user by saying that
a duplicate file exists, which looks like the code shown here.

 $Response = Read-Host -Prompt "$outputFile already exists. Do you wish to delete

it <y / n>?"

 if($Response -eq "y")

 { Remove-Item $outputFile | Out-Null }

 ELSE { "Exiting now." ; exit }

You can implement some type of naming algorithm that makes a backup of the duplicate
file by renaming it with an .old extension, which looks like the code shown here.

 if(Test-Path -path "$outputFile.old") { Remove-Item -Path "$outputFile.old" }

 Rename-Item -path $outputFile -newname "$(Split-Path $outputFile -leaf).old"

You can also simply delete the previously existing file, which is what I generally choose to
do. The action you want to perform goes into the Remove-OutPutFile function. You begin the
function by using the Function keyword, specifying the name of the function, and using the
$outputFile variable for input to the function as shown here.

Function Remove-outputFile($outputFile)

{

To determine whether the file exists, you can use the Test-Path cmdlet and supply the
string contained in the $outputFile variable to the −path parameter. The Test-Path cmdlet only
returns a true or false value. When a file is not found, it returns a false value, which means that
you can use the If statement to evaluate the existence of the file. If the file is found, you can
perform the action in the script block. If the file is not found, the script block is not executed.
As shown here, the first command does not find the file, and false is returned. In the second
command, the script block is not executed because the file cannot be located.

PS C:\> Test-Path c:\missingfile.txt

False

PS C:\> if(Test-Path c:\missingfile.txt){"found file"}

PS C:\>

Inside the Remove-OutPutFile function, you can use the If statement to determine whether
the file referenced by $outputFile already exists. If it does, it is deleted by using the Remove-Item

	 Using the Here-String for Multiple-Line Comments	 CHAPTER 10	 349

cmdlet. The information that is normally returned when a file is deleted is pipelined to the
Out-Null cmdlet providing for a silent operation. This portion of the code is shown here.

 if(Test-Path -path $outputFile) { Remove-Item $outputFile | Out-Null }

} #end Remove-outputFile

After you create the name for the output file and delete any previous output files that
might be around, it is time to retrieve the comments from the script. To do this, you can
create the Get-Comments function and pass it both the $script variable and $outputFile
variable as shown here.

Function Get-Comments($Script,$outputFile)

{

Reading the Comments in the Output File
It is now time to read the text of the script. You can use the Get-Content cmdlet and provide
it with the path to the script. When you use Get-Content to read a file, the file is read one line
at a time and passed along the pipeline. If you store the result into a variable, you will have an
array. You can treat the $a variable as any other array, including obtaining the number of ele-
ments in the array via the Length property and indexing directly into the array as shown here.

PS C:\fso> $a = Get-Content -Path C:\fso\GetSetieStartPage.ps1

PS C:\fso> $a.Length

62

PS C:\fso> $a[32]

($wmi.GetMultiStringValue($hkcu,$key, $property2)).sValue

The section of the script that reads the input script and sends it along the pipeline is shown
here.

 Get-Content -path $Script |

Next, you need to look inside each line to determine whether it belongs to the comment
block. To examine each line within a pipeline, you must use the ForEach-Object cmdlet. This
cmdlet is similar to a Foreach … next statement in that it lets you work with an individual
object from within a collection one at a time. The backtick character (`) is used to continue the
command to the next line. The action you want to perform on each object as it comes across
the pipeline is contained inside a script block that is delineated with a set of curly brackets
(braces). This part of the Get-Content function is shown here.

 Foreach-Object `

 {

Once you are inside the ForEach-Object cmdlet process block, it is time to examine the
line of text. To do this, you can use the If statement. The $_ automatic variable is used to
represent the current line that is on the pipeline. You use the −match operator to perform

	350	 CHAPTER 10	 Designing Help for Scripts

a regular expression pattern match against the line of text. The −match operator returns a
Boolean value—either true or false—in response to the pattern as shown here.

PS C:\fso> '$Comment = @"' -match '^\$comment\s?=\s?@"'

True

The regular expression pattern you are using is composed of a number of special charac-
ters as shown in Table 10-3.

Table 10-3  Regular Expression Match Pattern and Meaning

Character Description

^ Match at the beginning

\ Escape character so the $ sign is treated as a literal character and not the
special character used in regular expressions

$comment Literal characters

\s? Zero or more white space characters

= Literal character

@" Literal characters

The section of code that examines the current line of text on the pipeline is shown here.

 If($_ -match '^\$comment\s?=\s?@"')

You can create a variable named $beginComment that is used to mark the beginning of
the comment block. If you make it past the −match operator, you find the beginning of the
comment block. You can set the variable equal to $true as shown here.

 {

 $beginComment = $True

 } #end if match @"

Next, you can see whether you are at the end of the comment block by once again using
the −match operator. You will look for the @" character sequence that is used to close a here-
string. If you find this sequence, you can set the $beginComment variable to false as shown
here.

 If($_ -match '"@')

 {

 $beginComment = $False

 } #end if match "@

	 Using the Here-String for Multiple-Line Comments	 CHAPTER 10	 351

After you pass the first two If statements—the first identifying the beginning of the here-
string and the second locating the end of the here-string—you now want to grab the text
that needs to be written to your comment file by setting the $beginComment variable to
true. You also want to ensure that you do not see the @" character on the line because this
designates the end of the here-string. To make this determination, you can use a compound If
statement as shown here.

 If($beginComment -AND $_ -notmatch '@"')

 {

It is now time to write the text to the output file. To do this, you can use the $_ automatic
variable, which represents the current line of text, and pipeline it to the Out-File cmdlet. The
Out-File cmdlet receives the $outputFile variable that contains the path to the comment file.
You can use the −append parameter to specify that you want to gather all of the comments
from the script into the comment file. If you do not use the −append parameter, the text file
will only contain the last comment because, by default, the Out-File cmdlet will overwrite the
contents of any previously existing file. You can then add closing curly brackets for each of
the comments that were previously opened. I consider it a best practice to add a comment
after each closing curly bracket that indicates the purpose of the brace. This procedure makes
the script much easier to read, troubleshoot, and maintain. This section of the code is shown
here.

 $_ | Out-File -FilePath $outputFile -append

 } # end if beginComment

 } #end Foreach

} #end Get-Comments

You can now create a function named Get-OutPutFile that opens the output file for you to
read. Because the temporary folder is not easy to find and because you have the path to the
file in the $outputFile variable, it makes sense to use the script to open the output file. The
Get-OutPutFile function receives a single input variable named $outputFile. When you call
the Get-OutPutFile function, you pass a variable to the function that contains the path to the
comment file that you want to open. That path is contained in the $outputFile variable. You
can pass any value to the Get-OutPutFile function. Once inside the function, the value is then
referred to by the $outputFile variable. You can even pass a string directly to the function
without even using quotation marks around the string as shown here.

Function Get-outputFile($outputFile)

{

 Notepad $outputFile

} #end Get-outputFile

Get-outputFile -outputfile C:\fso\GetSetieStartPage.ps1

	352	 CHAPTER 10	 Designing Help for Scripts

Lessons Learned

Don’t Mess with the Worker Section of the Script

If I am going to gather data to pass to a function when writing a script, I generally

like to encase the data in the same variable name that will be used both outside

and inside the function. One reason for doing this is because it follows one of my

best practices for script development: “Don't mess with the worker section of

the script.” In the Get-OutPutFile function, you are “doing work.” To change the

function in future scripts requires that you edit the string literal value, whereby

you run the risk of breaking the code because many methods have complicated

constructors. If you are also trying to pass values to the method constructors that

require escaping special characters, then the risk of making a mistake becomes even

worse.

By placing the string in a variable, you can easily edit the value of the variable. In fact, you
are set up to provide the value of the variable via the command line or to base the value on
an action performed in another function. Whenever possible, you should avoid placing string
literal values directly in the script. In the code that follows, you can use a variable to hold the
path to the file that is passed to the Get-OutPutFile function.

Function Get-outputFile($outputFile)

{

 Notepad $outputFile

} #end Get-outputFile

$outputFile = "C:\fso\GetSetieStartPage.ps1"

Get-outputFile -outputfile $outputFile

The complete Get-OutPutFile function is shown here.

Function Get-outputFile($outputFile)

{

 Notepad $outputFile

} #end Get-outputFile

Instead of typing in a string literal value for the path to the output file, the $outputFile
variable receives the path that is created by the Get-FileName function. The Get-FileName
function receives the path to the script that contains the comments to be extracted. The path
to this script comes in via the command-line parameter. When a function has a single input
parameter, you can pass it to the function by using a set of smooth parentheses. On the other
hand, if the function uses two or more input parameters, you must use the −parameter name
syntax. This line of code is shown here.

$outputFile = Get-FileName($script)

	 Using the Here-String for Multiple-Line Comments	 CHAPTER 10	 353

Next, you can call the Remove-OutPutFile function and pass it the path to the output file
that is contained in the $outputFile variable. The Remove-OutPutFile function was discussed
in the “Working with Temporary Folders” section earlier in this chapter. This line of code is
shown here.

Remove-outputFile($outputFile)

Once you are assured of the name of your output file, you can call the Get-Comments
function to retrieve comments from the script whose path is indicated by the $script variable.
The comments are written to the output file referenced by the $outputFile variable as shown
here.

Get-Comments -script $script -outputfile $outputFile

When all of the comments are written to the output file, you can finally call the
Get-OutPutFile function and pass it the path contained in the $outputFile variable. If you do
not want the comment file to be opened, you can easily comment the line out of your script
or you can delete it and the Get-OutPutFile function itself from your script. If you are inter-
ested in reviewing each file prior to saving it, leave the line of code in place. This section of
the script is shown here.

Get-outputFile($outputFile)

When the GetCommentsFromScript.ps1 script runs, nothing is emitted to the console. The
only confirmation message that the script worked is the presence of the newly created text
file displayed in Microsoft Notepad as shown in Figure 10-4.

Figure 10-4  Comments extracted from a script by the GetCommentsFromScript.ps1 script

	354	 CHAPTER 10	 Designing Help for Scripts

The complete GetCommentsFromScript.ps1 script is shown here.

GetCommentsFromScript.ps1

Param($Script= $(throw "The path to a script is required."))

Function Get-FileName($Script)

{

 $outputPath = [io.path]::GetTempPath()

 Join-Path -path $outputPath -child (Split-Path $script -leaf)

} #end Get-FileName

Function Remove-outputFile($outputFile)

{

 If(Test-Path -path $outputFile) { Remove-Item $outputFile | Out-Null }

} #end Remove-outputFile

Function Get-Comments($Script,$outputFile)

{

 Get-Content -path $Script |

 Foreach-Object `

 {

 If($_ -match '^\$comment\s?=\s?@"')

 {

 $beginComment = $True

 } #end if match @"

 If($_ -match '"@')

 {

 $beginComment = $False

 } #end if match "@

 If($beginComment -AND $_ -notmatch '@"')

 {

 $_ | Out-File -FilePath $outputFile -append

 } # end if beginComment

 } #end Foreach

} #end Get-Comments

Function Get-outputFile($outputFile)

{

 Notepad $outputFile

} #end Get-outputFile

*** Entry point to script ***

$outputFile = Get-FileName($script)

Remove-outputFile($outputFile)

Get-Comments -script $script -outputfile $outputFile

Get-outputFile($outputFile)

	 Using Multiple-Line Comment Tags in Windows PowerShell 2.0	 CHAPTER 10	 355

Using Multiple-Line Comment Tags in Windows
PowerShell 2.0

Windows PowerShell 2.0 introduces multiple-line comment tags that can be used to comment
one or more lines in a script. These comment tags work in a similar fashion to here-strings or
HTML tags in that, when you open a comment tag, you must also close the comment tag.

Creating Multiple-Line Comments with Comment Tags
The opening tag is the left angle bracket pound sign (<#), and the closing comment tag is
the pound sign right angle bracket (#>). The pattern for the use of the multiline comment is
shown here.

<# Opening comment tag

First line comment

Additional comment lines

#> Closing comment tag

The use of the multiline comment is seen in the Demo-MultilineComment.ps1 script.

Demo-MultilineComment.ps1

<#

Get-Command

Get-Help

#>

"The above is a multiline comment"

When the Demo-MultilineComment.ps1 script is run, the two cmdlets shown inside
the comment tags are not run; the only command that runs is the one outside of the
comment block, which prints a string in the console window. The output from the
Demo-MultilineComment.ps1 script is shown here.

The above is a multiline comment

Multiline comment tags do not need to be placed on individual lines. It is perfectly permis-
sible to include the commented text on the line that supplies the comment characters. The
pattern for the alternate multiline comment tag placement is shown here.

<# Opening comment tag First line comment

Additional comment lines #> Closing comment tag

The alternate multiline comment tag placement is shown in MultilineDemo2.ps1.

	356	 CHAPTER 10	 Designing Help for Scripts

MultilineDemo2.ps1

<# Get-Help

 Get-Command #>

"The above is a multiline comment"

Note A s a best practice, I prefer to place multiline comment tags on their own individual

lines. This format makes the code much easier to read, and it is easier to see where the

comment begins and ends.

Creating Single-Line Comments with Comment Tags
You can use the multiline comment syntax to comment a single line of code, with the
advantage being that you do not mix your comment characters. You can use a single
comment pattern for all of the comments in the script as shown here.

<# Opening comment tag First line comment #> Closing comment tag

An example of the single comment pattern in a script is shown in the MultilineDemo3.ps1
script.

MultilineDemo3.ps1

<# This is a single comment #>

"The above is a single comment"

When using the multiline comment pattern, it is important to keep in mind that anything
placed after the end of the closing comment tag is parsed by Windows PowerShell. Only
items placed within the multiline comment characters are commented out. However, multiline
commenting behavior is completely different from using the pound sign (#) single-line com-
ment character. It is also a foreign concept to users of VBScript who are used to the behavior
of the single quote (') comment character in which anything after the character is commented
out. A typical-use scenario that generates an error is illustrated in the following example.

<# -----------------------------

This example causes an error

#> -----------------------------

If you need to highlight your comments in the manner shown in the previous example, you
only need to change the position of the last comment tag by moving it to the end of the line
to remove the error. The modified comment is shown here.

<# ---------------------------------

This example does not cause an error

----------------------------------- #>

	 The 13 Rules for Writing Effective Comments 	 CHAPTER 10	 357

Note  No space is required between the pound sign and the following character. I prefer

to include the space between the pound sign and the following character as a concession

to readability.

The single pound sign (#) is still accepted for commenting, and there is nothing to prohibit
its use. To perform a multiline comment using the single pound sign, you simply place a
pound sign in front of each line that requires commenting. This pattern has the advantage
of familiarity and consistency of behavior. The fact that it is also backward compatible with
Windows PowerShell 1.0 is an added bonus.

First commented line

additional commented line

last commented line

The 13 Rules for Writing Effective Comments

When adding documentation to a script, it is important that you do not introduce errors. If
the comments and code do not match, there is a good chance that both are wrong. Make
sure that when you modify the script, you also modify your comments. In this way, both the
comments and the script refer to the same information.

Update Documentation When a Script Is Updated
It is easy to forget to update comments that refer to the parameters of a function when
you add additional parameters to that function. In a similar fashion, it is easy to ignore the
information contained inside the header of the script that refers to dependencies or assump-
tions within the script. Make sure that you treat both the script and the comments with the
same level of attention and importance. In the FindDisabledUserAccounts.ps1 script, the
comments in the header seem to apply to the script, but they also seem to miss the fact that
the script is using the [ADSISearcher] type accelerator. In fact, the script is a modified script
that was used to create a specific instance of the DirectoryServices.DirectorySearcher .NET
Framework class and was recently updated. However, the comments were never updated.
This oversight might make a user suspicious as to the accuracy of a perfectly useful script. The
FindDisabledUserAccounts.ps1 script is shown here.

FindDisabledUserAccounts.ps1

--

FindDisabledUserAccounts.ps1

ed wilson, 3/28/2008

Creates an instance of the DirectoryServices DirectorySearcher .NET

Framework class to search Active Directory.

Creates a filter that is LDAP syntax that gets applied to the searcher

	358	 CHAPTER 10	 Designing Help for Scripts

object. If we only look for class of user, then we also end up with

computer accounts as they are derived from user class. So we do a

compound query to also retrieve person.

We then use the findall method and retrieve all users.

Next we use the properties property and choose item to retrieve the

distinguished name of each user, and then we use the distinguished name

to perform a query and retrieve the UAC attribute, and then we do a

boolean to compare with the value of 2 which is disabled.

--

#Requires -Version 2.0

$filter = "(&(objectClass=user)(objectCategory=person))"

$users = ([adsiSearcher]$Filter).findall()

 foreach($suser in $users)

 {

 "Testing $($suser.properties.item(""distinguishedname""))"

 $user = [adsi]"LDAP://$($suser.properties.item(""distinguishedname""))"

 $uac=$user.psbase.invokeget("useraccountcontrol")

 if($uac -band 0x2)

 { write-host -foregroundcolor red "`t account is disabled" }

 ELSE

 { write-host -foregroundcolor green "`t account is not disabled" }

 } #foreach

Add Comments During the Development Process
When you are writing a script, make sure that you add the comments at the same time you
are doing the initial development. Do not wait until you have completed the script to begin
writing your comments. When you make comments after writing the script, it is very easy to
leave out details because you are now overly familiar with the script and those items that you
looked up in documentation now seem obvious. If you add the comments at the same time
that you write the script, you can then refer to these comments as you develop the script to
ensure that you maintain a consistent approach. This procedure will help with the consistency
of your variable names and writing style. The CheckForPdfAndCreateMarker.ps1 script illus-
trates this consistency problem. In reviewing the code, it seems that the script checks for PDF
files, which also seems rather obvious from the name of the script. However, why is the script
prompting to delete the files? What is the marker? The only discernable information is that I
wrote the script back in December 2008 for a Hey Scripting Guy! article. Luckily, Hey Scripting
Guy! articles explain scripts, so at least some documentation actually exists! The
CheckForPdfAndCreateMarker.ps1 script is shown here.

	 The 13 Rules for Writing Effective Comments 	 CHAPTER 10	 359

CheckForPdfAndCreateMarker.ps1

CheckForPdfAndCreateMarker.ps1

ed wilson, msft, 12/11/2008

Hey Scripting Guy! 12/29/2008

$path = "c:\fso"

$include = "*.pdf"

$name = "nopdf.txt"

if(!(Get-ChildItem -path $path -include $include -Recurse))

 {

 "No pdf was found in $path. Creating $path\$name marker file."

 New-Item -path $path -name $name -itemtype file -force |

 out-null

 } #end if not Get-Childitem

ELSE

 {

 $response = Read-Host -prompt "PDF files were found. Do you wish to delete <y>

/<n>?"

 if($response -eq "y")

 {

 "PDF files will be deleted."

 Get-ChildItem -path $path -include $include -recurse |

 Remove-Item

 } #end if response

 ELSE

 {

 "PDF files will not be deleted."

 } #end else reponse

 } #end else not Get-Childitem

Write for an International Audience
When you write comments for your script, you should attempt to write for an international
audience. You should always assume that users who are not overly familiar with the idioms of
your native language will be reading your comments. In addition, writing for an international
audience makes it easier for automated software to localize the script documentation. Key
points to keep in mind when writing for an international audience are to use a simple syntax
and to use consistent employee standard terminology. Avoid slang, acronyms, and overly
familiar language. If possible, have a colleague who is a non-native speaker review the docu-
mentation. In the SearchForWordImages.ps1 script, the comments explain what the script
does and also its limitations, such as the fact that it was only tested using Microsoft Office
Word 2007. The sentences are plainly written and do not use jargon or idioms. The
SearchForWordImages.ps1 script is shown here.

	360	 CHAPTER 10	 Designing Help for Scripts

SearchForWordImages.ps1

--

NAME: SearchForWordImages.ps1

AUTHOR: ed wilson, Microsoft

DATE: 11/4/2008

KEYWORDS: Word.Application, automation, COM

Get-Childitem -include, Foreach-Object

COMMENTS: This script searches a folder for doc and

docx files, opens them with Word and counts the

number of images embedded in the file.

It then prints out the name of each file and the

number of associated images with the file. This script requires

Word to be installed. It was tested with Word 2007. The folder must

exist or the script will fail.

--

#The folder must exist and be followed with a trailing *

$folder = "c:\fso*"

$include = "*.doc","*.docx"

$word = new-object -comobject word.application

#Makes the Word application invisible. Set to $true to see the application.

$word.visible = $false

Get-ChildItem -path $folder -include $include |

ForEach-Object `

{

 $doc = $word.documents.open($_.fullname)

 $_.name + " has " + $doc.inlineshapes.count + " images in the file"

}

#If you forget to quit Word, you will end up with multiple copies running

#at the same time.

$word.quit()

Consistent Header Information
You should include header information at the top of each script. This header information
should be displayed in a consistent manner and indeed should be part of your company’s
scripting standards. Typical information to be displayed is the title of the script, author of
the script, date the script was written, version information, and additional comments. Ver-
sion information does not need to be more extensive than the major and minor versions.
This information, as well as comments as to what was added during the revisions, is useful
for maintaining a version control for production scripts. An example of adding comments is
shown in the WriteBiosInfoToWord.ps1 script.

	 The 13 Rules for Writing Effective Comments 	 CHAPTER 10	 361

WriteBiosInfoToWord.ps1

===

NAME: WriteBiosInfoToWord.ps1

AUTHOR: ed wilson , Microsoft

DATE : 10/30/2008

EMAIL: Scripter@Microsoft.com

Version: 1.0

COMMENT: Uses the word.application object to create a new text document

uses the get-wmiobject cmdlet to query wmi

uses out-string to remove the "object nature" of the returned information

uses foreach-object cmdlet to write the data to the word document.

Hey Scripting Guy! 11/11/2008

===

$class = "Win32_Bios"

$path = "C:\fso\bios"

#The wdSaveFormat object must be saved as a reference type.

[ref]$SaveFormat = "microsoft.office.interop.word.WdSaveFormat" -as [type]

$word = New-Object -ComObject word.application

$word.visible = $true

$doc = $word.documents.add()

$selection = $word.selection

$selection.typeText("This is the bios information")

$selection.TypeParagraph()

Get-WmiObject -class $class |

Out-String |

ForEach-Object { $selection.typeText($_) }

$doc.saveas([ref] $path, [ref]$saveFormat::wdFormatDocument)

$word.quit()

Document Prerequisites
It is imperative that your comments include information about prerequisites for running the
script as well as the implementation of nonstandard programs in the script. For example, if
your script requires the use of an external program that is not part of the operating system,
you need to include checks within the script to ensure that the program is available when it
is called by the script itself. In addition to these checks, you should document the fact that
the program is a requirement for running the script. If your script makes assumptions as to
the existence of certain directories, you should make a note of this fact. Of course, your script

	362	 CHAPTER 10	 Designing Help for Scripts

should use Test-Path to make sure that the directory exists, but you should still document this
step as an important precondition for the script. An additional consideration is whether or not
you create the required directory. If the script requires an input file, you should add a comment
that indicates this requirement as well as add a comment to check for the existence of the file
prior to actually calling that file. It is also a good idea to add a comment indicating the format
of the input file because one of the most fragile aspects of a script that reads an input file is
the actual formatting of that file. The ConvertToFahrenheit_include.ps1 script illustrates adding
a note about the requirement of accessing the include file.

ConvertToFahrenheit_include.ps1

--

NAME: ConvertToFahrenheit_include.ps1

AUTHOR: ed wilson, Microsoft

DATE: 9/24/2008

EMAIL: Scripter@Microsoft.com

Version 2.0

12/1/2008 added test-path check for include file

modified the way the include file is called

KEYWORDS: Converts Celsius to Fahrenheit

COMMENTS: This script converts Celsius to Fahrenheit

It uses command line parameters and an include file.

If the ConversionFunctions.ps1 script is not available,

the script will fail.

--

Param($Celsius)

#The $includeFile variable points to the ConversionFunctions.ps1

#script. Make sure you edit the path to this script.

$includeFile = "c:\data\scriptingGuys\ConversionFunctions.ps1"

if(!(test-path -path $includeFile))

 {

 "Unable to find $includeFile"

 Exit

 }

. $includeFile

ConvertToFahrenheit($Celsius)

Document Deficiencies
If the script has a deficiency, it is imperative that this is documented. This deficiency may be
as simple as the fact that the script is still in progress, but this fact should be highlighted in
the comments section of the header to the script. It is quite common for script writers to
begin writing a script, become distracted, and then begin writing a new script, all the while
forgetting about the original script in progress. When the original script is later found, some-
one might begin to use the script and be surprised that it does not work as advertised. For

	 The 13 Rules for Writing Effective Comments 	 CHAPTER 10	 363

this reason, scripts that are in progress should always be marked accordingly. If you use a
keyword, such as in progress, then you can write a script that will find all of your work-in-
progress scripts. In addition to scripts in progress, you should also highlight any limitations
of the script. If a script runs on a local computer but will not run on a remote computer, this
fact should be added in the comment section of the header. If a script requires an extremely
long time to complete the requested action, this information should be noted. If the script
generates errors but completes its task successfully, this information should also be noted so
that the user can have confidence in the outcome of the script. A note that indicates why the
error is generated also increases the confidence of the user in the original writer. The
CmdLineArgumentsTime.ps1 script works but generates errors unless it is used in a certain
set of conditions and is called in a specific manner. The comments call out the special
conditions, and several INPROGRESS tags indicate the future work required by the script.
The CmdLineArgumentsTime.ps1 script is shown here.

CmdLineArgumentsTime.ps1

===

NAME: CmdLineArgumentsTime.ps1

AUTHOR: Ed Wilson , microsoft

DATE : 2/19/2009

EMAIL: Scripter@Microsoft.com

Version .0

KEYWORDS: Add-PSSnapin, powergadgets, Get-Date

COMMENT: The $args[0] is unnamed argument that accepts command line input.

C:\cmdLineArgumentsTime.ps1 23 52

No commas are used to separate the arguments. Will generate an error if used.

Requires powergadgets.

INPROGRESS: Add a help function to script.

===

#INPROGRESS: change unnamed arguments to a more user friendly method

[int]$inthour = $args[0]

[int]$intMinute = $args[1]

#INPROGRESS: find a better way to check for existence of powergadgets

#This causes errors to be ignored and is used when checking for PowerGadgets

$erroractionpreference = "SilentlyContinue"

#this clears all errors and is used to see if errors are present.

$error.clear()

#This command will generate an error if PowerGadgets are not installed

Get-PSSnapin *powergadgets | Out-Null

#INPROGRESS: Prompt before loading powergadgets

If ($error.count -ne 0)

{Add-PSSnapin powergadgets}

New-TimeSpan -Start (get-date) -end (get-date -Hour $inthour -Minute $intMinute) |

Out-Gauge -Value minutes -Floating -refresh 0:0:30 -mainscale_max 60

	364	 CHAPTER 10	 Designing Help for Scripts

Avoid Useless Information
Inside the code of the script itself, you should avoid comments that provide useless or
irrelevant information. Keep in mind that you are writing a script and providing documenta-
tion for the script and that such a task calls for technical writing skills, not creative writing
skills. While you might be enthralled with your code in general, the user of the script is not
interested in how difficult it was to write the script. However, it is useful to explain why you
used certain constructions instead of other forms of code writing. This information, along
with the explanation, can be useful to people who might modify the script in the future. You
should therefore add internal comments only if they will help others to understand how the
script actually works. If a comment does not add value, the comment should be omitted. The
DemoConsoleBeep.ps1 script contains numerous comments in the body of the script. However,
several of them are obvious, and others actually duplicate information from the comments
section of the header. There is nothing wrong with writing too many comments, but it can be
a bit excessive when a one-line script contains 20 lines of comments, particularly when the
script is very simple. The DemoConsoleBeep.ps1 script is shown here.

DemoConsoleBeep.ps1

--

NAME: DemoConsoleBeep.ps1

AUTHOR: ed wilson, Microsoft

DATE: 4/1/2009

KEYWORDS: Beep

COMMENTS: This script demonstrates using the console

beep. The first parameter is the frequency between

37..32767. above 7500 is barely audible. 37 is the lowest

note it will play.

The second parameter is the length of time

--

#this construction creates an array of numbers from 37 to 3200

#the % sign is an alias for Foreach-Object

#the $_ is an automatic variable that refers to the current item

#on the pipeline.

#the semicolon causes a new logical line

#the double colon is used to refer to a static method

#the $_ in the method is the number on the pipeline

#the second number is the length of time to play the beep

37..32000 | % { $_ ; [console]::beep($_ , 1) }

	 The 13 Rules for Writing Effective Comments 	 CHAPTER 10	 365

Document the Reason for the Code
While it is true that good code is readable and that a good developer is able to understand
what a script does, some developers might not understand why a script is written in a certain
manner or why a script works in a particular fashion. In the DemoConsoleBeep2.ps1 script,
extraneous comments have been removed. Essential information about the range that the
console beep will accept is included, but the redundant information is deleted. In addition,
a version history is added because significant modification to the script was made. The
DemoConsoleBeep2.ps1 script is shown here.

DemoConsoleBeep2.ps1

--

NAME: DemoConsoleBeep2.ps1

AUTHOR: ed wilson, Microsoft

DATE: 4/1/2009

VERSION 2.0

4/4/2009 cleaned up comments. Removed use of % alias. Reformatted.

KEYWORDS: Beep

COMMENTS: This script demonstrates using the console

beep. The first parameter is the frequency. Allowable range is between

37..32767. A number above 7500 is barely audible. 37 is the lowest

note the console beep will play.

The second parameter is the length of time.

--

37..32000 |

Foreach-Object { $_ ; [console]::beep($_ , 1) }

Use of One-Line Comments
You should use one-line comments that appear prior to the code that is being commented
to explain the specific purpose of variables or constants. You should also use one-line
comments to document fixes or workarounds in the code as well as to point to the reference
information explaining these fixes or workarounds. Of course, you should strive to write code
that is clear enough to not require internal comments. Do not add comments that simply
repeat what the code already states. Add comments to illuminate the code but not to elucidate
the code. The GetServicesInSvchost.ps1 script uses comments to discuss the logic of mapping
the handle property from the Win32_Process class to the ProcessID property from the
Win32_Service WMI class to reveal which services are using which instance of the Svchost
process. The GetServicesInSvchost.ps1 script is shown here.

	366	 CHAPTER 10	 Designing Help for Scripts

GetServicesInSvchost.ps1

--

NAME: GetServicesInSvchost.ps1

AUTHOR: ed wilson, Microsoft

DATE: 8/21/2008

KEYWORDS: Get-WmiObject, Format-Table,

Foreach-Object

COMMENTS: This script creates an array of WMI process

objects and retrieves the handle of each process object.

According to MSDN the handle is a process identifier. It

is also the key of the Win32_Process class. The script

then uses the handle which is the same as the processID

property from the Win32_service class to retrieve the

matches.

HSG 8/28/2008

--

$aryPid = @(Get-WmiObject win32_process -Filter "name='svchost.exe'") |

 Foreach-Object { $_.Handle }

"There are " + $arypid.length + " instances of svchost.exe running"

foreach ($i in $aryPID)

{

 Write-Host "Services running in ProcessID: $i" ;

 Get-WmiObject win32_service -Filter " processID = $i" |

 Format-Table name, state, startMode

}

Avoid End-of-Line Comments
You should avoid using end-of-line comments. The addition of such comments to your code
has a severely distracting aspect to structured logic blocks and can cause your code to be
more difficult to read and maintain. Some developers try to improve on this situation by
aligning all of the comments at a particular point within the script. While this initially looks
nice, it creates a maintenance nightmare because each time the code is modified, you run
into the potential for a line to run long and push past the alignment point of the comments.
When this occurs, it forces you to move everything over to the new position. Once you do
this a few times, you will probably realize the futility of this approach to commenting internal
code. One additional danger of using end-of-line comments when working with Windows
PowerShell is that, due to the pipelining nature of language, a single command might stretch

	 The 13 Rules for Writing Effective Comments 	 CHAPTER 10	 367

out over several lines. Each line that ends with a pipeline character continues the command
to the next line. A comment character placed after a pipeline character will break the code as
shown here, where the comment is located in the middle of a logical line of code. This code
will not work.

Get-Process | #This cmdlet obtains a listing of all processes on the computer

Select-Object –property name

A similar situation also arises when using the named parameters of the ForEach-Object
cmdlet as shown in the SearchAllComputersInDomain.ps1 script. The backtick (`) character is
used for line continuation, which allows placement of the −Begin, −Process, and −End param-
eters on individual lines. This placement makes the script easier to read and understand. If
an end-of-line comment is placed after any of the backtick characters, the script will fail. The
SearchAllComputersInDomain.ps1 script is shown here.

SearchAllComputersInDomain.ps1

$Filter = "ObjectCategory=computer"

$Searcher = New-Object System.DirectoryServices.DirectorySearcher($Filter)

$Searcher.Findall() |

Foreach-Object `

 -Begin { "Results of $Filter query: " } `

 -Process { $_.properties ; "`r"} `

 -End { [string]$Searcher.FindAll().Count + " $Filter results were found" }

Document Nested Structures
The previous discussion about end-of-line comments should not be interpreted as dismiss-
ing comments that document the placement of closing curly brackets. In general, you should
avoid creating deeply nested structures, but sometimes they cannot be avoided. The use of
end-of-line comments with closing curly brackets can greatly improve the readability and
maintainability of your script. As shown in the Get-MicrosoftUpdates.ps1 script, the closing
curly brackets are all tagged.

Get-MicrosoftUpdates.ps1

--

NAME: Get-MicrosoftUpdates.ps1

AUTHOR: ed wilson, Microsoft

DATE: 2/25/2009

KEYWORDS: Microsoft.Update.Session, com

COMMENTS: This script lists the Microsoft Updates

you can select a certain number, or you can choose

all of the updates.

HSG 3-9-2009

	368	 CHAPTER 10	 Designing Help for Scripts

--

Function Get-MicrosoftUpdates

{

 Param(

 $NumberOfUpdates,

 [switch]$all

)

 $Session = New-Object -ComObject Microsoft.Update.Session

 $Searcher = $Session.CreateUpdateSearcher()

 if($all)

 {

 $HistoryCount = $Searcher.GetTotalHistoryCount()

 $Searcher.QueryHistory(1,$HistoryCount)

 } #end if all

 Else

 {

 $Searcher.QueryHistory(1,$NumberOfUpdates)

 } #end else

} #end Get-MicrosoftUpdates

*** entry point to script ***

lists the latest update

Get-MicrosoftUpdates -NumberofUpdates 1

lists All updates

Get-MicrosoftUpdates -all

Use a Standard Set of Keywords
When adding comments that indicate bugs, defects, or work items, you should use a set
of keywords that is consistent across all scripts. This would be a good item to add to your
corporate scripting guidelines. In this way, a script can easily be developed that will search
your code for such work items. If you maintain source control, then a comment can be added
when these work items are fixed. Of course, you would also increment the version of the
script with a comment relating to the fix. In the CheckEventLog.ps1 script, the script accepts
two command-line parameters. One parameter is for the event log to query, and the other is
for the number of events to return. If the user selects the security log and is not running the
script as an administrator, an error is generated that is noted in the comment block. Because
this scenario could be a problem, the outline of a function to check for admin rights has been
added to the script as well as code to check for the log name. A number of TODO: tags are
added to the script to mark the work items. The CheckEventLog.ps1 script is shown here.

	 The 13 Rules for Writing Effective Comments 	 CHAPTER 10	 369

CheckEventLog.ps1

--

NAME: CheckEventLog.ps1

AUTHOR: ed wilson, Microsoft

DATE: 4/4/2009

KEYWORDS: Get-EventLog, Param, Function

COMMENTS: This accepts two parameters the logname

and the number of events to retrieve. If no number for

-max is supplied it retrieves the most recent entry.

The script fails if the security log is targeted and it is

not run with admin rights.

TODO: Add function to check for admin rights if

the security log is targeted.

--

Param($log,$max)

Function Get-log($log,$max)

{

 Get-EventLog -logname $log -newest $max

} #end Get-Log

#TODO: finish Get-AdminRights function

Function Get-AdminRights

{

#TODO: add code to check for administrative

#TODO: rights. If not running as an admin

#TODO: if possible add code to obtain those rights

} #end Get-AdminRights

If(-not $log) { "You must specify a log name" ; exit}

if(-not $max) { $max = 1 }

#TODO: turn on the if security log check

If($log -eq "Security") { Get-AdminRights ; exit }

Get-Log -log $log -max $max

Document the Strange and Bizarre
The last item that should be commented in your documentation is anything that looks
strange. If you use a new type of construction that you have not used previously in other
scripts, you should add a comment to the effect. A good comment should also indicate the
previous coding construction as an explanation. In general, it is not a best practice to use
code that looks strange simply to show your dexterity or because it is an elegant solution;
rather, you should strive for readable code. However, when you discover a new construction

	370	 CHAPTER 10	 Designing Help for Scripts

that is cleaner and easier to read, albeit a somewhat novel approach, you should always
add a comment to highlight this fact. If the new construction is sufficiently useful, then it
should be incorporated into your corporate scripting guidelines as a design pattern. In the
GetProcessesDisplayTempFile.ps1 script, a few unexpected items crop up. The first is the
GetTempFileName static method from the Io.Path .NET Framework class. Despite the method’s
name, GetTempFileName both creates a temporary file name as well as a temporary file itself.
The second technique is much more unusual. When the temporary file is displayed via
Notepad, the result of the operation is pipelined to the Out-Null cmdlet. This operation
effectively halts the execution of the script until the Notepad application is closed. This “trick”
does not conform to expected behavior, but it is a useful design pattern for those wanting
to remove temporary files once they have been displayed. As a result, both features of the
GetProcessDisplayTempFile.ps1 script are documented as shown here.

GetProcessesDisplayTempFile.ps1

--

NAME: GetProcessesDisplayTempFile.ps1

AUTHOR: ed wilson, Microsoft

DATE: 4/4/2009

VERSION 1.0

KEYWORDS: [io.path], GetTempFileName, out-null

COMMENTS: This script creates a temporary file,

obtains a collection of process information and writes

that to the temporary file. It then displays that file via

Notepad and then removes the temporary file when

done.

--

#This both creates the file name as well as the file itself

$tempFile = [io.path]::GetTempFileName()

Get-Process >> $tempFile

#Piping the Notepad filename to the Out-Null cmdlet halts

#the script execution

Notepad $tempFile | Out-Null

#Once the file is closed the temporary file is closed and it is

#removed

Remove-Item $tempFile

	 The 13 Rules for Writing Effective Comments 	 CHAPTER 10	 371

Inside Track

Teaching Your Scripts to Communicate

Peter Costantini, Microsoft Scripting Guy Emeritus

If code was read only by computers, we could only write 1s and 0s. Even though

developers would quickly go blind and insane, there’s a new class of computer

science majors graduating every year. Of course, the reality is that code must also

be read by humans, and programming languages have been developed to mediate

between humans and machines.

If one developer could write, debug, test, maintain, and field support calls for all

of the code for an application, then it wouldn’t be very important whether the

programming language was easy for others to understand. A brilliant loner could

decide to write in an obscure dialect of Lisp and name the variables and procedures

in Esperanto, and that would be fine as long as the code worked.

However, that programing language may not be so fine five years later. By then, the

developer’s Lisp and Esperanto are a little rusty. Suddenly a call comes in that the

now mission-critical application is crashing inexplicably and losing the firm billions

of dollars.

“What’s a few billion dollars these days? Maybe I’ll get a bonus,” I hear you mutter-

ing under your breath. Anyway, you’re not a developer: you’re a system engineer

who’s trying to use scripts to automate some of your routine tasks and to trouble-

shoot. You thought the whole point of scripting was to let you write quick and dirty

code to get a task done in a hurry.

Yes, that is a big benefit of scripting. When you first write a script to solve a prob-

lem, you’re probably not concerned about producing beautiful-looking, or even

comprehensible, code. You just want to make sure that it runs as expected and

makes the pain stop.

However, once you decide that the script is a keeper and that you’re going to run it

as a scheduled task at three every Monday morning, the equation starts to change.

At this point, like it or not, you really are a developer. Windows PowerShell is a pro-

gramming language, albeit a dynamic one, and any code that plays an ongoing role

in the functioning of your organization needs to be treated as something more than

chewing gum and baling wire.

Furthermore, regardless of your personal relationship with your scripts, you prob-

ably work as part of a team, right? Other people on your team might write scripts,

too. In any case, these people most likely have to run your scripts and figure out

what they do. You can see where I’m going with this. But if it produces a blinding

flash of insight, that’s all the better for your career and your organization.

	372	 CHAPTER 10	 Designing Help for Scripts

The goal is to make your scripts transparent. Your code—and the environment in

which it runs—should communicate to your teammates everything they need to

know to understand what your script is doing, how to use it successfully, and how

to troubleshoot it if problems arise (Murphy’s Law has many scripting corollaries).

Clarity and readability are virtues; terseness and ambiguity are not. Consistent,

descriptive variable names and white space do not make the code run any slower,

but they can make the script more readable. Begin to look at transparency as an

insurance policy against receiving a frantic call on your cell phone when you’re lying

on a beach in Puerto Vallarta sipping a margarita.

Yet, this is not just a technical and social imperative: it’s an economic one as well. IT

departments are pushing hard to become strategic assets rather than cost centers.

The sprawling skeins of code, scripts, and all that run their operations can earn

or lose figures followed by many zeros and make the difference between budget

increases and layoffs. Okay, at least this year, adding good documentation to your

scripts can make the budget cuts smaller.

Additional Resources

n	 The TechNet Script Center at http://www.microsoft.com/technet/scriptcenter contains
numerous examples of Windows PowerShell scripts, as well as some sample documen-
tation templates.

n	 Take a look at the Windows PowerShell™ Scripting Guide (Microsoft Press, 2008).

n	 The Tweakomatic can be downloaded from the TechNet Script Center at
http://www.microsoft.com/technet/scriptcenter.

n	 Refer to “How Can I Delete and Manage PDF Files?” at http://www.microsoft.com
/technet/scriptcenter/resources/qanda/dec08/hey1229.mspx.

n	 Refer to “How Can I Create a Microsoft Word Document from WMI Information?” at
http://www.microsoft.com/technet/scriptcenter/resources/qanda/nov08/hey1111.mspx.

n	 Refer to Windows Scripting with WMI: Self-Paced Learning Guide (Microsoft Press, 2006).

n	 Script documentation guidelines are discussed in the Microsoft Windows 2000 Scripting
Guide (Microsoft Press, 2003). This book is available online at http://www.microsoft.com
/technet/scriptcenter/guide/sas_sbp_mybu.mspx.

n	 On the companion media, you will find all of the scripts referred to in this chapter.

699

Index

Symbols and Numbers
$? automatic variable, 242, 246
$_ automatic variable, 22, 147, 177
$args automatic variable

count property, 414
indexing into, 412
receiving command-line input, 409
retrieving array elements, 175
supplying multiple values to, 176–177, 411–415

$localappdata environment variable, 181
$MaximumHistoryCount environment variable, 190
$modulepath variable, 387–388
$profile automatic variable, 198–199
$PSModulePath environmental variable, 389–390
$psScriptRoot environment variable, 383
.NET Framework. See Microsoft .NET Framework

A
account management. See user accounts
Active Directory. See also user management

cmdlet support, 270–271
configuring database connection, 81–87
creating computer accounts, 69–74
creating groups, 66, 69
creating objects, 67–74
creating organizational units, 66
creating user accounts, 66, 69
deriving create object pattern, 75–81
modifying properties, 88–95
overview, 65
password considerations, 541
querying, 110–123, 265–271
real-world example, 119–120
searching for missing values, 127–130

storing passwords, 432
Active Directory schema, 99–110, 432
Active Directory Users And Computers, 560
ActiveDirectorySchema class, 103–105
ActiveDirectorySchemaClass class, 106–109
ActiveX Data Object (ADO), 112–116, 133
Add-Content cmdlet, 13, 148
Add-History cmdlet, 260
Add-Member cmdlet, 588
ADO (ActiveX Data Object), 112–116, 133
ADO class, 429
ADO.NET, querying spreadsheets, 81
ADOCOM objects, 80, 86–87
ADSI (Active Directory Service Interfaces), 68–69

automating routine tasks, 133
choosing correct interface, 70–74
connection strings, 66, 68–69
creating objects, 66
modifying properties, 88
overview, 65
supported providers, 66
type accelerator, 66, 110

ADSISearcher type accelerator, 120–123, 266–269
ADsPath

assigning, 118
defined, 67
LDAP requirements, 113
modifying properties, 88
updating object attributes, 89

aliases
cmdlet examples, 42, 274, 446
creating, 168–171
creating for parameters, 421, 424
data type, 309
defined, 28
managing, 41–42
naming guidelines, 200

700

All Users profiles

two-letter, 169
utility functions, 174
verifying existence, 168

All Users profiles, 197
AllUsersAllHosts profile, 197, 199
AllUsersCurrentHost profile, 197, 200
API (Application Programming Interface), 133, 506, 523
Application class, 244–246, 526
Application log, 597
Application Programming Interface (API), 133, 506, 523
applications

scripting considerations, 162–163
support considerations, 248–250
testing, 526–527

architectural structure
overview of changes, 14
persistent connection, 15
remote command execution, 15
remote interactive session, 14–15
remote script execution, 16

arguments, positional, 297
arrays

breaking strings into, 386
examining contents, 469–471
looping, 175, 209
supplying values to $args, 411–413

attributes
configurable, 432
parameter, 418–421
updating for objects, 89–91

auditing scripts, 562
authentication, 208
Autoexec.bat file, 196
automatic variables, 182. See also specific automatic
variables
automating routine tasks, 133–137

B
Background Intelligent Transfer Service (BITS), 23
BAT file extension, 21
BITS (Background Intelligent Transfer Service), 23
boundary checking functions, 493
breakpoints

defined, 616
deleting, 631–632
disabling, 629

enabling, 629
listing, 628–629
responding to, 626–627
setting on commands, 623–624
setting on line numbers, 617
setting on variables, 618–622

business logic, encapsulating, 313–315
bypass switch, 544, 548

C
CA (certification authority), 557
Certificate Manager utility, 556
certification authority (CA), 557
change management. See version control
ChangeVue system, 574
ChoiceDescription class, 465
classes. See WMI classes
Clear-EventLog cmdlet, 10
Clear-Host cmdlet, 611
CLS command, 458
cmdlets. See also specific cmdlets

Active Directory support, 270–271
alias examples, 42, 274, 446
automating routine tasks, 133
crafting inspired help, 334–335
–credential parameter, 13
debugging support, 615
diagnostic scripts and, 562
error handling, 491–492
installing modules, 381
interactive command line, 30–36
language statements and, 249
modified, 12
naming guidelines, 209, 392–394
new, 9–12
snap-ins and, 164
support considerations, 207–209
verb usage, 294

code
reducing complexity, 517–518
reusing in functions, 301–311
reusing in scripts, 387

code-signing certificates, 544, 556
COM (Component Object Model)

automating routine tasks, 133
New-Object cmdlet, 113

701

databases

SecureString class and, 434
support considerations, 241–247
testing graphical applications, 526
Windows PowerShell support, 18–21

command line. See also command-line parameters
language statement support, 253
reading from, 408–415
usage considerations, 272–274

command shell
comparison to Windows PowerShell 2.0, 21–22
output methods, 450

command-line parameters
assigning missing values, 462
creating, 101, 185, 241, 519
detecting missing values, 462

CommandNotFoundException, 476
commands

debugging scripts, 626–627
export history, 259–261
fan-out, 261–264
importing, 260
overriding, 173–174
setting breakpoints on, 623–624

comments
adding to registry scripts, 337–343
curly brackets and, 342
help documentation, 331–332
here-strings, 335–354
internal version number, 568–571
multiple-line tags, 355–357
reading in output file, 349–354
retrieving via here-strings, 345–354
rules for writing, 357–369

common classes, 225
Component Object Model. See COM (Component
Object Model)
computer accounts, creating, 69–74
connection strings

as input methods, 437–438
components, 66
meanings, 68–69

connections
ADSI components, 66, 68–69
closing, 94–95
configuring to database, 81–87
creating computer accounts, 69
creating groups, 69
creating objects, 67

creating user accounts, 69
deriving create object pattern, 75
establishing, 91
modifying properties, 88
persistent, 15

constant variables, 76, 181
constructors, 209–210, 238
contains operator

examining array contents, 469–471
limiting choices, 465
searching strings, 143–144
testing for properties, 471–473

Continue statement, 310
conversion

secure strings for passwords, 435, 437
strings to WMI classes, 487
temperature, 202, 204

ConvertFrom-SecureString cmdlet, 435, 437
ConvertTo-Html cmdlet, 450
ConvertTo-SecureString cmdlet, 435, 437
Copy-Item cmdlet, 257, 261
core classes, 225
create method

creating computer accounts, 69–70
creating objects, 67

credentials, importing/exporting, 436–437
CSV files

as output method, 450
creating multiple objects, 77–79
Excel considerations, 80
Export-CSV cmdlet, 38

CSVDE tool, 539, 541
curly brackets, 342
current user, detecting, 139–143
Current Users profiles, 197
CurrentUserAllHosts profile, 200
CurrentUserCurrentHost profile, 197, 199–200

D
data types

alias support, 309
incorrect, 487–490
type constraints, 309–311

databases
as output method, 450
configuring connections, 81–87

702

DataReader class

DataReader class, 92–93
DCOM (Distributed Component Object Model), 483
debug parameter, 528–531
debug statement, 76, 236
debugging scripts

cmdlet support, 615
deleting breakpoints, 631–632
disabling breakpoints, 629
enabling breakpoints, 629
enabling StrictMode, 612–614
listing breakpoints, 628–629
real-world example, 615–616, 625, 630–631
responding to breakpoints, 626–627
setting breakpoints, 616–624
stepping through scripts, 606–611
tracing scripts, 601–605

deployment
.NET Framework requirements, 22–23
MSI packages, 561
process overview, 23–25
real-world example, 7–8
script execution policies, 548–553
service dependencies, 23

diagnostic scripts, 562
DirectoryEntry class, 110–112, 121, 126
DirectoryEntry type accelerator, 123
DirectorySearcher class

calling methods, 122
creating, 126
overview, 117–119, 128
querying Active Directory, 265

Disable-PSBreakpoint cmdlet, 615, 629
distinguished name, 66
Distributed Component Object Model (DCOM), 483
DNS (Domain Name System), 458
Do Until loop, 86
documentation

deficiencies in, 362
for functions, 332
for nested structures, 367
for reason for code, 365
for strange and bizarre, 369
help documentation, 331–332
prerequisites, 361
script documentability, 280–281
updating, 357
when testing scripts, 508

Documents folder, 182–184, 200

dollar sign, variable names and, 410
Domain Name System (DNS), 458
dot-sourcing, 302, 383, 391–397
DSMove.exe utility, 274
DSQuery.exe utility, 273
dynamic classes, 225
dynamic modules, 383

E
EFS (Encrypting File System), 429
e-mail

logging information to, 594
output to, 451

Enable-PSBreakpoint cmdlet, 615, 629
Encrypting File System (EFS), 429
Enter-PSSession cmdlet

–computername parameter, 63
–credential parameter, 15
remote interactive session, 14–15, 63, 275

Enum class, 153
Environment class

GetFolderPath method, 588
operating system versions, 158–159, 217
remote limitations, 160

eq operator, 170
equality operator, 463
error handling

Get-WmiObject cmdlet, 413
incorrect data types, 487–490
learning mechanisms, 491–492
limiting choices, 465–473
looking for errors, 504–506
missing parameters, 462–464
missing rights, 474–477
missing WMI providers, 477–485
nonterminating errors, 474
out-of-bound errors, 492–494
terminating errors, 474–476
Throw statement, 246, 345–347, 414

ErrorRecord class, 310
ETS (Extended Type System), 190
Event Collector service, 594
event logs

Application log, 597
calling out specific errors to, 594
creating custom, 597

703

GC (global catalog) server

logging results to, 595–598
EventLogConfiguration class, 56–57
events, WMI support, 47
Excel (Microsoft), 80, 89–91
Exit statement, 110
Exit-PSSession cmdlet, 63, 275
Export-Clixml cmdlet, 38
Export-CSV cmdlet, 38, 450
exporting credentials, 436–437
Export-ModuleMember cmdlet, 374, 384
Extended Type System (ETS), 190

F
fan-out commands, 261–264
FileInfo class, 250, 387, 441
FileSystemObject class, 18–20
filters

defined, 324
for folders, 249
function support, 324–328
search filter syntax, 266–268

folders
accessing, 182–184
checking for existing, 384
filtering, 249
script, 561
temporary, 347–349

for statement
looping through elements, 175, 253
walking through arrays, 390

ForEach cmdlet, 22, 517
Foreach statement

adding files, 242
code example, 112, 512
overview, 128
store and forward approach, 514
working with one item at a time, 227, 278

Foreach...next statement, 349
ForEach-Object cmdlet

–begin parameter, 278, 500
converting characters, 169
debugging scripts, 623
filtering folders, 249
handling arrays, 412
looping functionality, 142
overview, 349

piping results to, 260, 388, 396, 500, 515, 588
searching for missing values, 128–129
translating groups, 145

Format-List cmdlet
overview, 32
passing objects to, 225, 279, 346, 489
setting breakpoints, 619

Format-Table cmdlet
–autosize parameter, 264
fan-out commands, 263–264
selecting properties to display, 264
thread objects example, 32
–wrap parameter, 264

function library, creating, 203
functions

accessing in other scripts, 202–206
aliases for, 174
boundary checking, 493
code reuse, 301–311
creating, 172–175, 294, 296
creating parameters, 298
defined, 293
documenting, 332
ease of modification, 315–320
encapsulating business logic, 313–315
evaluating script versions, 519–521
filter support, 324–328
helper, 106
include files, 204–206
including in modules, 391–397
looping arrays, 175
multiple parameters, 311–312
naming guidelines, 392–394
output from, 451–456
overriding existing commands, 173–174
overview, 293–300, 303–304
parameters in, 296
partial parameter names, 298
populating global variables, 453–455
positional arguments, 297
return statement, 321–323
signatures of, 314
type constraints, 309–311

G
GC (global catalog) server, 66

704

Get-Acl cmdlet

Get-Acl cmdlet, 30
Get-ADOrganizationalUnit cmdlet, 274
Get-Alias cmdlet, 30, 168, 180
Get-AuthenticodeSignature cmdlet, 556
Get-ChildItem cmdlet

alias example, 42
obtaining collections, 243
obtaining listing of files, 441, 500
overview, 30
pipeline support, 515
–recurse parameter, 315, 388, 513
store and forward approach, 513

Get-Command cmdlet
–commandtype parameter, 272
–module parameter, 376
obtaining verb coverage, 294
overview, 30–31
persistent connection example, 15
usage recommendations, 209
wildcard characters, 272

Get-ComputerRestorePoint cmdlet, 30
Get-Content cmdlet

alias example, 446
creating computer names, 470
–credential parameter, 13
inspecting file contents, 446
reading comments, 349
reading text files, 254–256, 277, 408
retrieving code, 399

Get-Credential cmdlet, 436–437
Get-Culture cmdlet, 30
Get-Date cmdlet

calling iteratively, 328
displaying time stamp, 536
obtaining script end time, 579
overview, 30

Get-Event cmdlet, 10, 37
Get-EventLog cmdlet

–computername parameter, 12, 53–54
controlling output of, 442
–logname parameter, 54
–newest parameter, 57
overview, 36, 53–54, 598
–source parameter, 5

Get-ExecutionPolicy cmdlet, 195, 552
Get-Help cmdlet

code example, 512
help desk scripts and, 563

help function tags, 400–405
looping arrays, 175
more function, 172
overview, 31, 102
persistent connections, 15
scripting considerations, 162
usage recommendations, 209, 277

Get-History cmdlet, 259
Get-Host cmdlet, 15, 30
Get-HotFix cmdlet, 30
Get-Item cmdlet, 455
Get-ItemProperty cmdlet, 234
Get-Mailbox cmdlet, 450
Get-Member cmdlet

ADSI considerations, 73
examining class properties, 230
obtaining specific data, 308
output from functions, 452
overview, 31
piping results, 59
scripting considerations, 162
–static parameter, 238
usage recommendations, 209

Get-Module cmdlet
–ListAvailable parameter, 376–377, 380
listing available modules, 376–377
loading modules, 380

Get-Process cmdlet
alias example, 28
checking applications, 162
–computername parameter, 12
controlling output of, 442
output to screens, 440
overview, 30, 48–51
responding to breakpoints, 626
table view, 450
verb usage, 297
working remotely, 51

Get-PSBreakpoint cmdlet, 615, 619, 628
Get-PSCallStack cmdlet, 615, 625
Get-PSDrive cmdlet, 483
Get-PSEvent cmdlet, 47
Get-PSProvider cmdlet, 13
Get-PSSession cmdlet, 270
Get-Random cmdlet, 31, 210
Get-Service cmdlet

checking applications, 162
checking status information, 207, 277

705

importing

–computername parameter, 51, 162, 208
controlling output of, 442
–DisplayName parameter, 52
fan-out commands, 261–263
–name parameter, 52
overview, 12, 31, 51–53
responding to breakpoints, 626
table view, 450
verb usage, 297

Get-UICulture cmdlet, 31
Get-Variable cmdlet, 410
Get-Verbs cmdlet, 391
Get-WebServiceProxy cmdlet, 587
Get-WinEvent cmdlet, 55–58
Get-WmiObject cmdlet

alias example, 446
calling methods, 45
checking versions, 155
–computer parameter, 48
–computername parameter, 43, 396, 411, 417, 419,
462
–credential parameter, 13, 215
displaying property values, 472
–filter parameter, 32, 43, 155, 212, 214, 231, 318, 481
generating errors, 413
–list parameter, 42, 177
listing WMI classes, 226
namespace example, 221
–namespace parameter, 43
obtaining specific data, 307
overview, 39, 41
performance considerations, 155
piping results to, 412, 489
querying classes, 217, 278
querying WMI, 225
retrieving BIOS information, 468
retrieving instances, 315

global catalog (GC) server, 66
global variables

namespaces in, 455–456
populating, 453–455

gps command, 27
graphical applications, testing, 526–527
graphical scripting console, 4
Group Policy

configuring script execution policies, 194
deploying MSI packages, 561
deploying script execution policies, 553

Group-Object cmdlet, 36–37, 294
groups, creating, 66, 69
gwmi alias, 41

H
help desk scripts, 562–563
help documentation. See documentation
help function tags, 400–405
helper functions, 106
here-strings

constructing, 336–337
defined, 335
example, 337–343
retrieving comments, 345–354
using for help, 398–399

hierarchical namespace, 220
hives (registry trees), 135
HKEY_Classes_Root tree registry, 483
HKEY_CURRENT_USER registry tree, 280, 598
HKEY_DYN_DATA registry tree, 135
HKEY_LOCAL_MACHINE registry tree, 136
Hyper-V Manager console, 538

I
If statement

calling functions, 422
checking files, 348
checking for services, 162
checking for snap-ins, 164
evaluating values, 129, 147, 337, 348, 472
examining lines of code, 349
identifying here-strings, 351
not operator constraints, 246
pipeline support, 515
reducing code complexity, 517
using Boolean values, 471, 479

If...Else statement, 159, 162
IIS (Internet Information Services), 66
Import-Clixml cmdlet, 260
Import-CSV cmdlet, 77
importing

commands, 260
credentials, 436–437

706

Import-Module cmdlet

Import-Module cmdlet
–force parameter, 374
installing modules, 382
loading modules, 379
name validation, 377–379
overview, 270, 281
–prefix parameter, 394
–verbose parameter, 381

Import-PSSession cmdlet, 150
include files, 204–206
indexing, $args automatic variable and, 412
input methods

choosing best, 408
prompting for input, 439
reading from command line, 408–415
traditional forms, 407
using Param statement, 416–428
working with connection strings, 437–438
working with passwords as input, 429–435

instances
creating, 86, 91, 135
WMI support, 46

interactive command line
easiest cmdlets, 30–31
grouping/sorting output, 36–37
most important cmdlets, 31–36
overview, 27–29
saving output to files, 38

Internet Explorer browser, 337
Internet Information Services (IIS), 66
Internet zone, 546–548, 561
InvocationInfo class, 233
Invoke-Command cmdlet

authentication considerations, 208
–computername parameter, 63
export command history, 260
fan-out commands, 261
–filepath parameter, 16
persistent connection, 15
querying Active Directory, 270
remote command execution, 14–15, 160
remote script execution, 14, 16
–ScriptBlock parameter, 63
–session parameter, 15

Invoke-Expression cmdlet, 254, 322, 501
Invoke-WmiMethod cmdlet

calling methods, 45–46
overview, 9, 39
working remotely, 51

J
Join-Path cmdlet

building location to folders, 183
building path to registry key, 484
building path to text files, 579
creating file paths, 248, 283, 348, 387
–resolve parameter, 181

K
keyword usage, 368

L
language statements

cmdlets and, 249
using from command line, 253

LDAP (Lightweight Directory Access Protocol)
Active Directory support, 66
ADO support, 112
ADsPath requirements, 113
search filter syntax, 266–268
WMI considerations, 220

LDIFDE tool, 539
like operator, 143–144
Limit-EventLog cmdlet, 11
line numbers, setting breakpoints on, 617
LineBreak class, 619
Live Mesh, 190, 288
logging results

creating log files, 536–537
logging to event logs, 595–598
logging to registry, 598–599
logging to text files, 577–594
networked log files, 590–592
real-world example, 592–594
Start-Transcript cmdlet, 536–537
Write-Debug cmdlet, 535

logon scripts
methods of calling, 560
Set-ExecutionPolicy cmdlet, 551
what to include, 558–560

lpconfig command, 63

707

NET Framework

M
MakeCab.exe utility, 248
MamlCommandHelpInfo object, 31
ManagementClass class, 487
ManagementObject class, 396
mandatory parameters, 418–419, 464
match operator, 143–144, 349–350
Math class, 238–240
Measure-Command cmdlet

comparing script speeds, 516–517
evaluating script versions, 518–519
testing processes, 81
timing commands, 156
timing tests, 523

Measure-Object cmdlet
ensuring availability, 168–169
measuring performance, 18–19
piping results, 327
reducing code complexity, 517

methods
static, 238–250
WMI support, 45–46

Microsoft .NET Framework
automating routine tasks, 133
COM support considerations, 241–247
deployment requirements, 22–23
external application support, 248–250
identifying versions, 157
reading registry, 136
scripting considerations, 154–156
static methods and properties, 238–250
support considerations, 238–250
version dependencies, 241

Microsoft Active Accessibility (MSAA), 527
Microsoft Live Mesh, 190, 288
Microsoft Office Excel, 80, 89–91
Microsoft Office Groove, 288
Microsoft PowerShell Community Extensions (PSCX),
190, 276
Microsoft Script Center, 337
Microsoft Script Encoder, 573
Microsoft SharePoint Portal tool, 133
Microsoft System Center Operations Manager, 594
Microsoft Windows SharePoint Services, 286–287
missing data, handling, 414
missing parameters, 462–464
missing values

assigning in scripts, 462
detecting, 462
searching Active Directory for, 127–130

missing WMI providers, 477–485
module manifests, 373
modules. See also scripts

benefits, 374–375
creating, 374, 383
default directories, 375
defined, 373, 383
dot-sourcing functions, 391–397
installing, 381–390
listing available, 376–377
loading, 379–381
overview, 275–276, 383–384
using directories effectively, 375–376

Modules folder, 382–386
more function, 172–173
MSAA (Microsoft Active Accessibility), 527
MSI package, 561
multiple parameters

$args automatic variable, 176–177
in functions, 311–312
named, 178–180
passing, 176

multiple-line comments
creating with comment tags, 355
overview, 336
using here-string, 335–354

N
name validation, 377–379
namespaces

defined, 220
hierarchical, 220
in global variables, 455–456
support considerations, 220–223

naming guidelines
for aliases, 200
for cmdlets, 209, 392–394
for functions, 392–394
for snap-ins, 394
for variables, 200

NDS (Novell Directory Services), 66
nested structures, 367
NET Framework. See Microsoft .NET Framework

708

Net Use command

Net Use command, 257
NetDom utility, 133
NetSH utility, 133, 248
Network News Transfer Protocol (NNTP), 276
networked log files, 590–592
New-Alias cmdlet, 170–171
New-DDF cmdlet, 250
New-EventLog cmdlet, 11
New-Item cmdlet

creating profiles, 197, 200
creating registry keys, 598
creating variables, 181

New-Module cmdlet, 378, 383
New-ModuleManifest cmdlet, 384
New-Object cmdlet

–ComObject parameter, 21, 113, 241, 506, 527
creating classes, 523
creating instances, 86, 91, 135, 209
creating objects, 266
creating webclients, 524
testing support, 506

New-PSDrive cmdlet, 188–189, 389–390, 484
New-PSSession cmdlet, 14–15
New-Variable cmdlet

command-line considerations, 183
creating variables, 181
–description parameter, 183
–option parameter, 76
Tee-Object cmdlet and, 448
–value parameter, 182–183

New-WebServiceProxy cmdlet, 309, 523, 588
NNTP (Network News Transfer Protocol), 276
nonterminating errors, 474, 491
not operator, 246
Novell Directory Services (NDS), 66
NTAccount class, 142, 147
NTFS permissions, 429
NWCOMPAT protocol, 66

O
Object class, 411
objects

creating, 67–74
deriving create pattern, 75–81
distinguished name, 66
making changes, 93–94

support considerations, 220–223
updating attributes, 89–91

OleDbCommand class, 91
OleDbConnection class, 91, 115
OleDbDataReader class, 115–116
On Error Resume Next statement, 491
operating systems

deployment requirements, 23–24
identifying versions, 158–159, 217–219
locating directories based on, 382
scripting considerations, 158–160

organizational units (OUs), 66, 269
Out-Default cmdlet, 443–445
Out-File cmdlet

–append parameter, 351, 501
creating text files, 583–585
feedback considerations, 445
overview, 38
passing results to, 250, 351, 501–502, 591
redirection support, 278, 446
writing directly to files, 590

Out-Host cmdlet, 443–445
Out-Null cmdlet, 348, 369, 388, 390, 484
out-of-bound errors, 492–494
output files

as output method, 445–446
deleting, 348
reading comments in, 349–354
splitting output with, 447–449

output methods
output from functions, 451–456
output to e-mail, 451
output to files, 445–446
output to screens, 440–445
splitting output, 447–449
traditional forms, 407–408

Out-String cmdlet, 598
overriding commands, 173–174

P
Param statement

alias attribute, 421, 424, 427–428
assigning default values, 462–463
–computername parameter, 419
creating parameters, 101, 185, 241
creating utility scripts, 76

709

put method, modifying properties

evaluating script versions, 519
function body and, 312
looking for errors, 504–506
mandatory attribute, 418–419, 464
multiple parameter arguments, 427–428
named parameters and, 176
parameter attributes, 418–421, 427
pipeline support, 515
reading from command line, 416–418
run-time information, 345
specifying parameters to functions, 312
store and forward approach, 513
ValidatePattern attribute, 424–426
ValidateRange attribute, 423, 426–427, 494
validating parameter input, 422–427
–verbose parameter, 89

parameter tags, 419
ParameterBindingException class, 415
parameters. See also command-line parameters

creating default values, 462–463
creating for functions, 298
–debug, 528–531
in functions, 296
mandatory, 418–419, 464
missing, 462–464
multiple. See multiple parameters
partial parameter names, 298
placing limits, 494
standard, 528–534
switched, 232
using attributes, 418–421
validating input, 422–427
–whatif, 531–534

partial parameter names, 298
passwords

as input method, 429
handling inside virtual machines, 541
prompting for, 433–435, 439
script testing and, 539
storing in Active Directory, 432
storing in registry, 431
storing in scripts, 429
storing in text files, 430, 434

Path class, 347, 591
path statement, 260
pattern matching, 350
performance testing

comparing script speeds, 516–517

displaying results, 524–525
evaluating script versions, 518–525
overview, 512–513
pipeline, 515–518
reducing code complexity, 517–518
store and forward approach, 513–514
writing to logs, 524–525

permissions
checking for rights, 476
handling missing rights, 474–477
NTFS, 429

persistent connection, 15
Ping.exe tool, 59, 253, 466–468
pipeline, 513, 515–518
positional arguments, 297
PowerShell Community Extensions (PSCX), 190, 276
PrimalScript, 573
profiles

choosing correct, 197–198
creating, 196–200
creating aliases, 168–171
creating functions, 172–175
creating PSDrives, 188–189
creating variables, 181–187
enabling scripting, 194–195
multiple parameters, 176–180
overview, 190–192
storing items, 167
usage considerations, 201–202

program logic, 313
PromptForChoice method, 465–466
properties

examining for classes, 230
modifying with Active Directory, 88–95
setting for WMI, 43–45
static, 238–250
system, 279
testing for, 471–473

PSCredential class, 434, 436
PSCX (PowerShell Community Extensions), 190, 276
PSDrives, enabling, 188–189
put method, modifying properties, 88

710

querying

Q
querying

Active Directory, 110–123, 265–271
spreadsheets, 80–81
WMI, 225
WMI classes, 278

R
Random class, 209
range operator, 169
RDN (relative distinguished name)

common attribute types, 67
creating computer accounts, 70
defined, 67

RDP (Remote Desktop Protocol), 257
Read-Host cmdlet

code example, 337
prompting for passwords, 433–434, 439
testing graphical applications, 527
verb usage, 297

reading
comments in output file, 349–354
from the command line, 408–415
text files, 254–258, 277, 408

read-only variables, 76, 181
redirection operator

as output method, 445–446
logging to text files, 577
Out-File cmdlet and, 38, 278, 583

Register-WmiEvent cmdlet, 9, 39, 47
registry

creating registry keys, 280
logging results, 598–599
modifying for script execution policies, 548–549
modifying values via, 232–237
reading, 134–137
RunTimeVersion key, 134
storing passwords, 431

registry provider, 137
registry trees (hives), 135
RegRead method, 134–137
regular expression patterns, 350
relative distinguished name. See RDN (relative distin-
guished name)
relative identifiers (RIDs), 539

remote command execution
–computer parameter, 48
fan-out commands, 261–264
Get-EventLog cmdlet, 53–54
Get-Process cmdlet, 48–51
Get-Service cmdlet, 51–53
Get-WinEvent cmdlet, 55–58
overview, 15, 63
Restart-Computer cmdlet, 61
Stop-Computer cmdlet, 62
Test-Connection cmdlet, 59–61

Remote Desktop, 257–258, 538
Remote Desktop Protocol (RDP), 257
remote interactive session

cmdlet support, 275
creating, 63
overview, 14–15

remote script execution, 16
remoting, defined, 3
Remove-EventLog cmdlet, 11
Remove-Item cmdlet, 171, 281, 348
Remove-PSBreakpoint cmdlet, 615, 631
Remove-PSSession cmdlet, 270
Remove-Variable cmdlet, 183, 454
Remove-WmiObject cmdlet, 9, 39
reporting scripts, 562
Representational State Transfer (REST), 524
REST (Representational State Transfer), 524
Restart-Computer cmdlet, 61
Resultant Set of Profiles (RSOP), 200
return statement, 321–323
RFC 2254, 266
RIDs (relative identifiers), 539
RSOP (Resultant Set of Profiles), 200
running scripts

code signing, 556
deploying execution policies, 548–553
help desk scripts, 562–563
logon scripts, 551, 557–560
script folders, 561
selecting execution policies, 543–548
stand-alone scripts, 561–562
testing considerations, 507
version control, 565–572

RunTimeEnvironment class, 154
RuntimeException class, 414

711

Set-Location cmdlet

S
SAM (Security Account Manager) database, 66
SAPIEN Technologies, 573
saving output to files, 38
screen output

as output method, 440–445
splitting output with, 447–449

script execution policies
deploying, 548–553
differences in, 544–545
Group Policy support, 553
Internet zone settings, 546–548
modifying registry, 548–549
purpose, 544
selecting, 543–548
settings supported, 544–545, 554–556

script folders, 561
script modules, 383
ScriptInfo class, 233–234
scripting environment

accessing functions, 202–206
creating aliases, 168–171
creating functions, 172–175
creating PSDrives, 188–189
creating variables, 181–187
enabling scripting, 194–195
multiple parameters, 176–180
naming guidelines, 200

scripts. See also comments; modules
accessing functions, 202–206
adaptability, 281–284
assigning default values, 462
automating routine tasks, 133–138
building maintainable, 585–586
calculating benefits, 276–284
choosing right methodology, 216
collaboration considerations, 285–288
comparing speeds, 516–517
documentability, 280–281
evaluating different versions, 518–525
evaluating need for, 253–274
goals of, 372
identifying opportunities, 133
prompting for input, 439
repeatability, 277–279
safety considerations, 511–512
snap-in requirements, 164

tracking opportunities, 285
using standard parameters, 528–534
–verbose parameter, 81
worker section, 352

search filter syntax, 266–268
searching

Active Directory for missing values, 127–130
search filter syntax, 266–268
strings, 143–145

SearchResultsCollection class, 119–120, 122
SecureString class, 434–435, 437
security

detecting current user, 139–143
detecting user role, 151–154
overview, 551–552
scripting considerations, 138–154

Security Account Manager (SAM) database, 66
security identifier (SID), 140, 142, 539
SecurityIdentifier class, 141–142
select statement, 90
Select-Object cmdlet

alias example, 274
–last parameter, 57
piping results to, 441
querying Active Directory, 266

Select-String cmdlet, 449
Select-Xml cmdlet, 524
Send-MailMessage cmdlet, 450–451
Services tool, 29
services, working with, 226–229
Set-Alias cmdlet, 171
Set-AuthenticodeSignature cmdlet, 556
Set-ExecutionPolicy cmdlet

configuring policy settings, 194, 553
enabling scripting support, 389
overview, 549
using on local computer, 549–550
using via logon script, 551

SetInfo method
creating computer accounts, 69–70
creating groups, 69
creating objects, 67
creating user accounts, 69
making changes, 94
modifying properties, 88

Set-Item cmdlet, 181
Set-ItemProperty cmdlet, 235, 599
Set-Location cmdlet, 189

712

Set-PSBreakpoint cmdlet

Set-PSBreakpoint cmdlet, 615, 617, 630
Set-PSDebug cmdlet, 601–614

enabling StrictMode, 612–614
stepping through scripts, 606–611
–strict parameter, 612–613
trace levels, 601–605
tracing scripts, 601–605

Set-Service cmdlet, 12
Set-StrictMode cmdlet, 511, 613–614
Set-Variable cmdlet, 181, 183
Set-WmiInstance cmdlet, 10, 39, 45–46
Show-EventLog cmdlet, 12
SID (security identifier), 140, 142, 539
Simple Object Access Protocol (SOAP), 523
single-line comments

adding help documentation, 331–332
creating with comment tags, 356–357
writing rules for, 365

snap-ins
naming guidelines, 394
scripting considerations, 164

SOAP (Simple Object Access Protocol), 523
Sort-Object cmdlet, 36–37, 225
special characters, 148, 269
Split-Path cmdlet, 243, 347
spreadsheets

CSV file considerations, 80
querying, 80–81
updating attributes, 89–91

stand-alone scripts, 561–562
Start-PSSession alias, 63
Start-Service cmdlet, 52
Start-Transcript cmdlet, 536–537, 593
static methods, 238–250
static properties, 238–250
stdRegProv class, 337, 340–341
Stop-Computer cmdlet, 62
Stop-Process cmdlet, 207
Stop-Service cmdlet, 52
Stop-Transcript cmdlet, 593
store and forward approach, 513–514
Streams.exe utility, 546–547
String class

IsNullOrEmpty method, 94, 129
output considerations, 443
split method, 386, 389
substring method, 283
viewing properties and methods, 32

strings. See also here-strings
assigning values to variables, 487
breaking into arrays, 386
converting to WMI classes, 487
expanding, 235–236
output considerations, 443
placing in variables, 352
searching, 143–145

subroutines, defined, 293
Switch statement

calling methods, 106
code example, 465
evaluating values, 105, 108, 110, 217, 439

switched parameters, 232
syntax checking

looking for errors, 504–506
overview, 499–503
running scripts, 507

system properties, 279
System32 directory, 199
SystemException class, 310

T
Tee-Object cmdlet, 447–449, 587, 592
temperature conversion, 202, 204
temporary folders, 347–349
terminating errors, 474–476
Test-Connection cmdlet, 59–61, 424
testing scripts

advanced, 537–540
against known data, 539
APIs, 523
documenting, 508
for performance. See performance testing
for properties, 471–473
multiple paths, 508
overview, 81, 506, 534–535
REST, 524
SOAP, 523
syntax checking techniques, 499–509
using standard parameters, 528–534
Web services, 523
with Start-Script function, 536–537

Test-Path cmdlet
checking for class ID, 484
checking for existing drives, 483

713

version control

checking for existing folders, 384
choosing correct profile example, 197
logging to event logs, 598
logging to text files, 579
return values, 147, 348
updating attributes example, 90

text files
appending to logs, 580–583
as output method, 445–446
logging decision guide, 578
networked log files, 590–592
overwriting logs, 578–580
reading, 254–258, 277, 408
storing output, 586–588
storing passwords, 430, 434

Throw statement
best practices, 414
code example, 414
failing tests, 523
raising errors, 246, 345–347, 414

tracing scripts, 601–605
Trap statement, 310, 415, 474–476
troubleshooting scripts

debugging scripts, 615–632
logging support, 581
Set-PSDebug cmdlet, 601–614
version control and, 567

Trusted Internet zone, 561
Try/Catch/Finally construction, 415, 474, 491
Tweakomatic program, 337
type accelerator (ADSI)

ADSISearcher, 120–123, 266–269
DirectoryEntry, 123
establishing connections, 66
querying Active Directory, 110
WMI, 156
WMICLASS, 136, 339, 487

U
UAC (User Account Control), 138, 211, 474
UIA (User Interface Automation), 527
UNC (Universal Naming Convention), 254–256
UPN (User Principal Name), 270
use case scenario, 461
user accounts

control values, 123–124

creating, 66, 69
detecting current user, 139–143
detecting user role, 151–154
locating disabled, 123–125
moving objects, 125–126
searching for missing values, 127–130

User Interface Automation (UIA), 527
user management

examining Active Directory schema, 99–110
performing account management, 123–130
querying Active Directory, 110–123

User Principal Name (UPN), 270
userAccountControl enumeration, 123
utility scripts, creating, 76

V
variables

assigning string values, 487
constant vs. read-only, 76
creating, 181–187
dollar sign and, 410
editing, 352
global, 453–456
initializing, 236
modifying, 75
naming guidelines, 200
setting breakpoints on, 618–622

vbcrlf keyword, 148
VBScript

comparison to Windows PowerShell, 16–22
error handling, 491
filesystemobject, 208
migrating scripts, 137
regread method, 216
regwrite method, 216
subroutines and functions, 293
vbcrlf keyword, 148
wscript.echo, 76

Version class, 158
version control

accurate troubleshooting, 567
avoiding introducing errors, 567
incrementing version numbers, 570
internal control numbers in comments, 568–571
maintaining compatibility, 568
maintaining master listing, 568

714

version tags

real-world example, 566, 573–574
reasons for using, 565
software packages, 572
tracking changes, 567, 571

version tags, 4–6
versions

compatibility considerations, 4, 211–219
deleting accidentally, 571
dependency considerations, 241
evaluating script performance, 518–525
identifying, 134, 157
operating system, 158–159, 217–219

virtual machines, passwords and, 541
VistaCultureInfo class, 31
Visual SourceSafe (VSS), 572

W
WbemTest.exe tool, 477, 482
Web Service Definition Language (WSDL), 588
Web Services Description Language (WSDL), 309
Web services, testing, 523
whatif parameter, 531–534
Where-Object cmdlet

debugging scripts, 628, 632
filtering support, 177, 327
overview, 32
performance considerations, 155
piping results, 37, 162

While statement, 83, 86, 116
wildcard characters, 272
Win32_Bios class

availability, 461
missing WMI providers, 477
retrieving BIOS information, 411, 417

Win32_ComputerSystem class, 500
Win32_DefragAnalysis class, 278–279
Win32_Desktop class, 229
Win32_LogicalDisk class, 305–307, 450
Win32_OperatingSystem class, 217, 296
Win32_PingStatus class, 59–61, 466–468
Win32_Process class, 16, 33–36
Win32_Product class, 156, 482
Win32_Volume class, 211, 214, 277, 488
Win32_WmiProvider class, 480
Windows Firewall, 256

Windows Management Instrumentation. See WMI
(Windows Management Instrumentation)
Windows Management Instrumentation Tester, 477, 482
Windows PowerShell 2.0

architectural changes, 14–16
backward compatibility, 4
comparing to VBScript, 16–22
deploying, 22–25
identifying version, 134
learning curve, 17
modified cmdlets, 12
new cmdlets, 9–12
overview, 137–138
reasons to use, 3–4, 24–25
version tag, 4–8

Windows PowerShell Community Extensions (PSCX), 190
Windows Remote Management. See WinRM (Windows
Remote Management)
Windows SharePoint Services, 286–287
WindowsBuiltInRole class, 154
WindowsBuiltInRole enumeration, 152
WindowsIdentity class

detecting current user, 139–140, 145, 147
detecting user role, 151

WindowsPrincipal class, 152
WinNT protocol, 66
WinRM (Windows Remote Management), 3, 23
WMI (Windows Management Instrumentation)

adding comments to registry scripts, 338–342
automating routine tasks, 133
calling methods, 45–46
checking versions, 156
finding classes, 42–43
managing aliases, 41–42
obtaining information from classes, 41
one-line commands, 40
overview, 38–39
performance considerations, 29
querying, 225
reading registry, 135
setting properties, 43–45
support considerations, 220
working with events, 47
working with instances, 46

WMI classes
changing settings, 229–231
checking providers for, 477–485
converting strings to, 487

715

XQuery

X
XCopy utility, 381, 389
XML, as output method, 450
XPath, 459
XQuery, 459

diagnostic scripts and, 562
examining properties, 230
finding, 42–43
listing, 226
modifying values, 232–237
obtaining information from, 41
querying, 278
working with, 225–226
working with instances, 46
working with services, 226–229

WMI providers, 224–225, 477–485
WMI Query Language (WQL), 214, 226
WMICLASS type accelerator, 136, 339, 487
WQL (WMI Query Language), 214, 226
Write-Debug cmdlet

accessing debug statements, 76
best practice, 528
logging support, 535
placement examples, 242–243
providing user feedback, 248, 250
real-world example, 625
verb usage, 297
writing debug information, 232

Write-Error cmdlet, 297, 523
Write-EventLog cmdlet, 12, 597
Write-Host cmdlet

debugging scripts, 622
overview, 319
testing graphical applications, 527
using within functions, 453

Write-Verbose cmdlet, 89, 483–485
writing rules for comments

adding comments during development, 358
avoiding end-of-line comments, 366
avoiding useless information, 364
consistent header information, 360
document deficiencies, 362
document prerequisites, 361
documenting nested structures, 367
documenting reason for code, 365
documenting strange and bizarre, 369
updating documentation, 357
using one-line comments, 365
using standard set of keywords, 368
writing for international audience, 359

WSDL (Web Service Definition Language), 588
WSDL (Web Services Description Language), 309
WshShell object, 184–187

About the Author

Ed Wilson is one of the Microsoft Scripting
Guys and a well-known scripting expert. He
writes the daily Hey Scripting Guy! article for
the Scripting Guys blog on TechNet, as well as
a weekly blog posting for Microsoft Press. He
has also spoken at the TechEd technical con-
ference and at Microsoft internal TechReady

conferences. Ed is a Microsoft Certified Trainer who has delivered a popular
Windows PowerShell workshop to Microsoft Premier Customers worldwide.
He has written eight books, including five on Windows scripting, and all have
been published by Microsoft Press. He has also
contributed to nearly one dozen other books.

Ed holds more than twenty industry certifications, including Microsoft
Certified Systems Engineer (MCSE) and Certified Information Systems
Security Professional (CISSP). Prior to working for Microsoft, he was a senior
consultant for a Microsoft Gold Certified Partner and specialized in Active
Directory design and Microsoft Exchange Server implementation. In his spare
time, Ed enjoys woodworking, underwater photography, and scuba diving.

Stay in touch!
To subscribe to the Microsoft Press® Book Connection Newsletter—for news on upcoming
books, events, and special offers—please visit:

What do
you think of
this book?
We want to hear from you!

To participate in a brief online survey, please visit:

Tell us how well this book meets your needs—what works effectively, and what we can
do better. Your feedback will help us continually improve our books and learning
resources for you.

Thank you in advance for your input!

microsoft.com/learning/booksurvey

microsoft.com/learning/books/newsletter

	Cover
	Copyright Page

	Dedication
	Contents at a Glance
	Table of Contents
	Acknowledgments
	Introduction
	About the Companion Media
	Chapter 7: Avoiding Scripting Pitfalls
	Lack of cmdlet Support
	Complicated Constructors
	Version Compatibility Issues
	Trapping the Operating System Version

	Lack of WMI Support
	Working with Objects and Namespaces
	Listing WMI Providers
	Working with WMI Classes
	Changing Settings
	Modifying Values Through the Registry

	Lack of .NET Framework Support
	Use of Static Methods and Properties
	Version Dependencies
	Lack of COM Support
	Lack of External Application Support

	Additional Resources

	Chapter 10: Designing Help for Scripts
	Adding Help Documentation to a Script with Single-Line Comments
	Using the Here-String for Multiple-Line Comments
	Constructing a Here-String
	An Example: Adding Comments to a Registry Script
	Retrieving Comments by Using Here-Strings

	Using Multiple-Line Comment Tags in Windows PowerShell 2.0
	Creating Multiple-Line Comments with Comment Tags
	Creating Single-Line Comments with Comment Tags

	The 13 Rules for Writing Effective Comments
	Update Documentation When a Script Is Updated
	Add Comments During the Development Process
	Write for an International Audience
	Consistent Header Information
	Document Prerequisites
	Document Deficiencies
	Avoid Useless Information
	Document the Reason for the Code
	Use of One-Line Comments
	Avoid End-of-Line Comments
	Document Nested Structures
	Use a Standard Set of Keywords
	Document the Strange and Bizarre

	Additional Resources

	Index

