
http://www.facebook.com/share.php?u=http://www.microsoftpressstore.com/title/9780735626379
http://twitter.com/?status=RT: download a free sample chapter http://www.microsoftpressstore.com/title/9780735626379
https://plusone.google.com/share?url=http://www.microsoftpressstore.com/title/9780735626379
http://www.linkedin.com/shareArticle?mini=true&url=http://www.microsoftpressstore.com/title/9780735626379
http://www.stumbleupon.com/submit?url=http://www.microsoftpressstore.com/title/9780735626379/Free-Sample-Chapter

● ● ● ● ● ● ● ● ● ● ●

How to access
your CD files

Microsoft Press

The print edition of this book includes a CD. To access the
CD files, go to http://aka.ms/626379/files, and look for the
Downloads tab.

Note: Use a desktop web browser, as files may not be
accessible from all ereader devices.

Questions? Please contact: mspinput@microsoft.com

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2009 by Matthew Stoecker and Steve Stein

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2008940503

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 4 3 2 1 0 9

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor mation about
international editions, contact your local Microsoft Corporation offi ce or contact Microsoft Press International directly at
fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to tkinput@microsoft.com.

Microsoft, Microsoft Press, Access, ActiveX, Authenticode, MS, MSDN, SQL Server, Visual Basic, Visual C#, Visual Studio,
Windows, Windows Server, and Windows Vista are either registered trademarks or trademarks of the Microsoft group of
companies. Other product and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted
herein are fi ctitious. No association with any real company, organization, product, domain name, e-mail address, logo,
person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ken Jones
Developmental Editor: Laura Sackerman
Project Editor: Maureen Zimmerman
Editorial Production: nSight, Inc.
Technical Reviewer: Kurt Meyer; Technical Review services provided by Content Master, a member of CM Group, Ltd.
Cover: Tom Draper Design

Body Part No. X15-32081

Contents at a Glance

Introduction xix

 CHAPTER 1 Windows Forms and the User Interface 1

CHAPTER 2 Confi guring Controls and Creating the

User Interface 45

CHAPTER 3 Advanced Windows Forms Controls 85

CHAPTER 4 Tool Strips, Menus, and Events 133

CHAPTER 5 Confi guring Connections and Connecting

to Data 181

CHAPTER 6 Working with Data in a Connected Environment 233

CHAPTER 7 Create, Add, Delete, and Edit Data in

a Disconnected Environment 341

CHAPTER 8 Implementing Data-Bound Controls 421

CHAPTER 9 Working with XML 453

CHAPTER 10 Printing in Windows Forms 495

CHAPTER 11 Advanced Topics in Windows Forms 531

CHAPTER 12 Enhancing Usability 565

CHAPTER 13 Asynchronous Programming Techniques 597

CHAPTER 14 Creating Windows Forms Controls 629

CHAPTER 15 Deployment 667

Glossary 693

Answers 697

Index 747

http://www.facebook.com/share.php?u=http://www.microsoftpressstore.com/title/9780735626379

v

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our

books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Contents

 Introduction

Hardware Requirements . xxi

Software Requirements . xxii

Using the CD and DVD . xxii

How to Install the Practice Tests xxiii

How to Use the Practice Tests xxiii

How to Uninstall the Practice Tests xxiv

Microsoft Certifi ed Professional Program . xxv

Technical Support . xxv

Evaluation Edition Software Support . xxvi

 Chapter 1 Windows Forms and the User Interface 1

Before You Begin . 2

Lesson 1: Adding and Confi guring Windows Forms 3

Overview of Windows Forms 3

Adding Forms to Your Project 4

Properties of Windows Forms 5

Modifying the Look and Feel of the Form 8

Creating Nonrectangular Windows Forms 14

Lesson Summary 18

Lesson Review 18

Lesson 2: Managing Control Layout with Container Controls 22

Overview of Container Controls 22

vi Contents

The GroupBox Control 25

The Panel Control 26

The FlowLayoutPanel Control 26

The TableLayoutPanel Control 28

The TabControl Control 32

The SplitContainer Control 33

Lesson Summary 38

Lesson Review 38

Chapter Review . 41

Chapter Summary 41

Key Terms 41

Case Scenarios 41

Suggested Practices . 42

Add a Windows Form to a Project at Design Time 42

Confi gure a Windows Form to Control Accessibility,

Appearance, Behavior, Confi guration, Data, Design,

Focus, Layout, Style, and Other Functionalities 42

Manage Control Layout on a Windows Form 43

Take a Practice Test . 43

Chapter 2 Confi guring Controls and Creating the

User Interface 45

Before You Begin .46

Lesson 1: Confi guring Controls in Windows Forms 47

Overview of Controls 47

Confi guring Controls at Design Time 49

Modifying Control Properties at Design Time 53

Best Practices for User Interface Design 58

Lesson Summary 60

Lesson Review 61

Lesson 2: Creating and Confi guring Command and Text

Display Controls . 62

The Button Control 62

The Label Control 67

The LinkLabel Control 67

viiContents

Lesson Summary 71

Lesson Review 71

Lesson 3: Creating and Confi guring Text Edit Controls 73

The TextBox Control 73

The MaskedTextBox Control 75

Lesson Summary 79

Lesson Review 80

Chapter Review . 81

Chapter Summary 81

Key Terms 82

Case Scenarios 82

Suggested Practices . 83

Add and Confi gure a Windows Forms Control 83

Take a Practice Test .84

Chapter 3 Advanced Windows Forms Controls 85

Before You Begin . 86

Lesson 1: Creating and Confi guring List-Display Controls 87

Overview of List-Based Controls 87

ListBox Control 87

ComboBox Control 88

CheckedListBox Control 89

Adding Items to and Removing Items from a

List-Based Control 90

The ListView Control 98

TreeView Control 100

NumericUpDown Control 103

DomainUpDown Control 104

Lesson Summary 106

Lesson Review 107

Lesson 2: Creating and Confi guring Value-Setting,

Date-Setting, and Image-Display Controls .108

Value-Setting Controls 108

The CheckBox Control 108

viii Contents

The RadioButton Control 110

The TrackBar Control 111

Choosing Dates and Times 112

DateTimePicker Control 112

MonthCalendar Control 112

Working with Images 114

PictureBox Control 114

ImageList Component 115

Lesson Summary 118

Lesson Review 119

Lesson 3: Confi guring the WebBrowser Control and

the NotifyIcon Component and Creating Access Keys121

The WebBrowser Control 121

The NotifyIcon Component 123

Creating Access Keys 125

Lesson Summary 126

Lesson Review 127

Chapter Review .128

Chapter Summary 128

Key Terms 129

Case Scenarios 129

Suggested Practices .130

Take a Practice Test .131

Chapter 4 Tool Strips, Menus, and Events 133

Before You Begin .134

Lesson 1: Confi guring Tool Strips .135

Overview of the ToolStrip Control 135

Tool Strip Items 138

Displaying Images on Tool Strip Items 140

The ToolStripContainer 141

Merging Tool Strips 141

Lesson Summary 145

Lesson Review 145

ixContents

Lesson 2: Creating and Confi guring Menus .147

Overview of the MenuStrip Control 147

Creating Menu Strips and Tool Strip Menu Items 149

Adding Enhancements to Menus 152

Moving Items Between Menus 155

Disabling, Hiding, and Deleting Menu Items 156

Merging Menus 157

Switching Between MenuStrip Controls Programmatically 158

Context Menus and the ContextMenuStrip Control 158

Lesson Summary 162

Lesson Review 162

Lesson 3: Using Events and Event Handlers .164

Overview of Events 164

Creating Event Handlers in the Designer 165

Managing Mouse and Keyboard Events 167

Creating Event Handlers at Run Time 172

Overriding Methods in the Code Editor 172

Lesson Summary 175

Lesson Review 175

Chapter Review .177

Chapter Summary 177

Key Terms 177

Case Scenarios 178

Suggested Practices .179

Take a Practice Test .179

Chapter 5 Confi guring Connections and Connecting

to Data 181

Before You Begin .183

Lesson 1: Creating and Confi guring Connection Objects184

What Is a Connection Object? 184

Creating Connections in Server Explorer 185

Creating Connections Using Data Wizards 185

Creating Connection Objects Programmatically 185

x Contents

Lesson Summary 193

Lesson Review 194

Lesson 2: Connecting to Data Using Connection Objects 195

Opening and Closing Data Connections 195

Connection Events 195

Lesson Summary 206

Lesson Review 206

Lesson 3: Working with Connection Pools .208

What Is Connection Pooling? 208

Controlling Connection Pooling Options 208

Confi guring Connections to Use Connection Pooling 210

Lesson Summary 213

Lesson Review 213

Lesson 4: Handling Connection Errors .214

Lesson Summary 218

Lesson Review 218

Lesson 5: Enumerating the Available SQL Servers on a Network219

Lesson Summary 221

Lesson Review 221

Lesson 6: Securing Sensitive Connection String Data223

Securing Data in Confi guration Files 224

Lesson Summary 228

Lesson Review 229

Chapter Review .230

Chapter Summary 230

Key Terms 230

Case Scenarios 231

Suggested Practices .231

Take a Practice Test .232

Chapter 6 Working with Data in a Connected Environment 233

Before You Begin .234

Lesson 1: Creating and Executing Command Objects235

xiContents

What Are Command Objects? 235

Creating and Confi guring Command Objects 237

Creating SQL Commands (SQL Statements) with

the Query Designer 241

Lesson Summary 253

Lesson Review 253

Lesson 2: Working with Parameters in SQL Commands255

What Are Parameters and Why Should I Use Them? 255

Types of Parameters 256

Creating Parameters 256

Adding Parameters to Command Objects 257

Lesson Summary 273

Lesson Review 273

Lesson 3: Saving and Retrieving BLOB Values in a Database275

Working with BLOBs 275

Lesson Summary 289

Lesson Review 289

Lesson 4: Performing Bulk Copy Operations .291

Why Perform Bulk Copies? 291

Lesson Summary 301

Lesson Review 302

Lesson 5: Performing Transactions by Using the

Transaction Object .303

What Is a Transaction? 303

How to Create Transactions 303

Setting the Isolation Level of a Transaction 304

Enlisting in a Distributed Transaction 305

Lesson Summary 310

Lesson Review 311

Lesson 6: Querying Data by Using LINQ .312

What Is LINQ? 312

LINQ Queries 313

Lesson Summary 336

Lesson Review 336

xii Contents

Chapter Review .338

Chapter Summary 338

Key Terms 338

Case Scenarios 338

Suggested Practices .339

Take a Practice Test .340

Chapter 7 Create, Add, Delete, and Edit Data in

a Disconnected Environment 341

Before You Begin .342

Lesson 1: Creating DataSet Objects .343

DataSet Objects 343

Creating DataSet Objects Programmatically 344

Lesson Summary 358

Lesson Review 358

Lesson 2: Creating DataTable Objects .360

How to Create DataTable Objects 360

How to Add a DataTable to a DataSet 361

How to Create Expression Columns in DataTable Objects 361

How to Create Autoincrementing Columns

in DataTable Objects 362

How to Add Constraints to a DataTable 363

Lesson Summary 368

Lesson Review 368

Lesson 3: Creating DataAdapter Objects .370

What Is a DataAdapter? 370

How to Create DataAdapter Objects 371

DataAdapter Commands 371

Generating Typed DataSet Objects from

DataAdapter Objects 373

Resolving Confl icts Between a DataSet and a

Database Using the DataAdapter 373

Performing Batch Operations Using DataAdapter Objects 375

Lesson Summary 383

Lesson Review 384

xiiiContents

Lesson 4: Working with Data in DataTable Objects385

Adding Data to a DataTable 385

Editing Data in a DataTable 386

Deleting Data in a DataTable 386

Maintaining Changes to DataRow Objects 386

Accepting and Rejecting Changes to a DataTable 387

DataTable Events 387

Row Errors 388

Lesson Summary 397

Lesson Review 397

Lesson 5: Working with XML in DataSet Objects .399

Writing a DataSet as XML Data 399

Writing DataSet Schema Information as XML Schema 400

Loading a DataSet from an XML Stream or Document 400

Loading DataSet Schema Information from an XML

Stream or Document 400

Synchronizing a DataSet with an XmlDataDocument 401

Performing an XPath Query on a DataSet 401

Lesson Summary 406

Lesson Review 406

Lesson 6: Creating and Using DataView Objects .408

Creating DataView Objects 408

Sorting and Filtering Data Using a DataView 409

Viewing Data Using a DataView 409

Modifying the Data in a DataView 410

Searching Data in a DataView 410

Navigating Related Data in a DataView 411

Working with DataView Events 411

Setting the DataTable Object’s Default Table Views

Using a DataViewManager 411

Lesson Summary 416

Lesson Review 417

Chapter Review .418

Chapter Summary 418

Key Terms 419

xiv Contents

Case Scenarios 419

Suggested Practices 420

Take a Practice Test .420

Chapter 8 Implementing Data-Bound Controls 421

Before You Begin .422

Lesson 1: Creating a Data-Bound Form with the

Data Sources Wizard .423

What Does the Wizard Create? 423

Lesson Summary 427

Lesson Review 427

Lesson 2: Implementing Data-Bound Controls .429

Binding Controls to Data 429

Lesson Summary 436

Lesson Review 436

Lesson 3: Working with the DataGridView . 438

Displaying a Dataset in the DataGridView Control 438

Confi guring DataGridView Columns 439

Adding Tables and Columns to a DataGridView 440

Deleting Columns in the DataGridView 440

Determining the Clicked Cell in a DataGridView 441

Validating Input in the DataGridView 441

Format a DataGridView Using Styles 443

Format a DataGridView Control by Using Custom Painting 443

Lesson Summary 448

Lesson Review 449

Chapter Review .450

Chapter Summary 450

Key Terms 451

Case Scenarios 451

Suggested Practices .451

Take a Practice Test .452

xvContents

Chapter 9 Working with XML 453

Before You Begin .454

Lesson 1: Reading and Writing XML with the XmlReader

and XmlWriter Classes. .455

The XmlReader Class 455

Writing XML with the XmlWriter Class 465

Lesson Summary 472

Lesson Review 472

Lesson 2: Managing XML with the XML Document Object Model 476

The XmlDocument Class 476

Lesson Summary 488

Lesson Review 489

Chapter Review .491

Chapter Summary 491

Key Terms 491

Case Scenarios 491

Suggested Practices .492

Take a Practice Test .493

Chapter 10 Printing in Windows Forms 495

Before You Begin .496

Lesson 1: Managing the Print Process by Using

Print Dialog Boxes .497

The PrinterSettings Class 497

The PrintDialog Component 497

The PageSetupDialog Component 500

The PrintPreviewDialog Component 501

Lesson Summary 504

Lesson Review 504

Lesson 2: Constructing Print Documents .506

The PrintDocument Component 506

Printing Graphics 508

xvi Contents

Printing Text 511

Notifying the User When Printing Is Complete 513

Security and Printing 513

Lesson Summary 516

Lesson Review 517

Lesson 3: Creating a Customized PrintPreview Component519

The PrintPreviewControl 519

Lesson Summary 525

Lesson Review 525

Chapter Review .527

Chapter Summary 527

Key Terms 527

Case Scenarios 528

Suggested Practices .528

Take a Practice Test .529

Chapter 11 Advanced Topics in Windows Forms 531

Before You Begin .532

Lesson 1: Implementing Drag-and-Drop Functionality 533

Implementing Drag-and-Drop Functionality 533

Lesson Summary 541

Lesson Review 541

Lesson 2: Implementing Globalization and Localization

for a Windows Forms Application .543

Globalization and Localization 543

Lesson Summary 551

Lesson Review 551

Lesson 3: Implementing MDI Forms .553

MDI Applications 553

Lesson Summary 559

Lesson Review 559

Chapter Review .561

Chapter Summary 561

Key Terms 562

xviiContents

Case Scenarios 562

Suggested Practices .563

Take a Practice Test .563

Chapter 12 Enhancing Usability 565

Before You Begin .566

Lesson 1: Implementing Accessibility .567

Creating Accessible Applications 567

Lesson Summary 572

Lesson Review 572

Lesson 2: Using User Assistance Controls and Components 573

User Assistance Controls and Components 573

Lesson Summary 590

Lesson Review 591

Chapter Review .593

Chapter Summary 593

Key Terms 593

Case Scenarios 594

Suggested Practices .594

Take a Practice Test .595

Chapter 13 Asynchronous Programming Techniques 597

Before You Begin .598

Lesson 1: Managing a Background Process with the

BackgroundWorker Component .599

Running a Background Process 600

Lesson Summary 609

Lesson Review 609

Lesson 2: Implementing Asynchronous Methods 611

Using Delegates 611

Creating Process Threads 615

Lesson Summary 623

Lesson Review 623

xviii Contents

Chapter Review .625

Chapter Summary 625

Key Terms 625

Case Scenarios 626

Suggested Practices .626

Take a Practice Test .627

Chapter 14 Creating Windows Forms Controls 629

Before You Begin .630

Lesson 1: Creating Composite Controls .631

Introduction to Composite Controls 631

Lesson Summary 639

Lesson Review 640

Lesson 2: Creating Custom Controls .641

Overview of Custom Controls 641

Lesson Summary 649

Lesson Review 649

Lesson 3: Creating Extended Controls and Dialog Boxes 650

Custom Dialog Boxes 650

Creating Extended Controls 653

Adding a WPF User Control to Your Windows Form Project 656

Lesson Summary 661

Lesson Review 661

Chapter Review .663

Chapter Summary 663

Key Terms 663

Case Scenarios 664

Suggested Practices .665

Take a Practice Test .665

Chapter 15 Deployment 667

Before You Begin .668

Lesson 1: Deploying Applications with ClickOnce669

xixContents

Overview of ClickOnce 669

Lesson Summary 674

Lesson Review 674

Lesson 2: Creating Setup Projects for Deployment676

Setup Projects 676

Lesson Summary 686

Lesson Review 687

Chapter Review .689

Chapter Summary 689

Key Terms 689

Case Scenarios 690

Suggested Practices .690

Take a Practice Test .691

Glossary 693

Answers 697

Index 747

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our

books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

xxi

 Introduction

 This training kit is designed for developers who plan to take Microsoft Certifi ed Technol-

ogy Specialist (MCTS) exam 70-505, as well as for developers who need to know how to

develop Microsoft Windows–based applications using the Microsoft .NET Framework 3.5.

We assume that before you begin using this kit you have a working knowledge of Windows,

Microsoft Visual Studio, and Microsoft Visual Basic or C#.

 By using this training kit, you’ll learn how to do the following:

Q Create a user interface (UI) for a Windows Forms application by using standard

controls.

Q Integrate data in a Windows Forms application.

Q Implement printing and reporting functionality in a Windows Forms application.

Q Enhance usability.

Q Implement asynchronous programming techniques to improve the user experience.

Q Develop Windows Forms controls.

Q Confi gure and deploy applications.

 Hardware Requirements

 The following hardware is required to complete the practice exercises:

Q Computer with a 1.6 GHz or faster processor

Q 384 MB of RAM or more (786 MB of RAM or more for Windows Vista)

Q 2.2 GB of available hard disk space

Q DVD-ROM drive

Q 1024 x 768 or higher resolution display with 256 colors

Q Keyboard and Microsoft mouse or compatible pointing device

xxii Introduction

 Software Requirements

 The following software is required to complete the practice exercises:

Q One of the following operating systems:

•• Windows XP with Service Pack 2

 •• Windows XP Professional x64 Edition (WOW)

•• Windows Server 2003 with Service Pack 1

•• Windows Server 2003, x64 Editions (WOW)

•• Windows Server 2003 R2

•• Windows Server 2003 R2, x64 Editions (WOW)

•• Microsoft Windows Vista (all editions except Starter Edition)

Q Microsoft Visual Studio 2008. (A 90-day evaluation edition of Visual Studio 2008 Pro-

fessional Edition is included on DVD with this book.)

 Using the CD and DVD

 A companion CD and an evaluation software DVD are included with this training kit. The

companion CD contains the following:

Q Practice tests You can reinforce your understanding of how to create .NET Frame-

work 3.5 applications by using electronic practice tests that you customize to meet

your needs from the pool of Lesson Review questions in this book. Or you can practice

for the 70-505 certifi cation exam by using tests created from a pool of 200 realistic

exam questions, which is enough to give you many different practice exams to ensure

that you’re prepared.

Q Code Each chapter in this book includes sample fi les associated with the lab exercises

at the end of every lesson. For some exercises, you will be instructed to open a project

prior to starting the exercise. For other exercises, you will create a project on your own.

In either case, you can reference a completed project on the CD in the event you expe-

rience a problem following the exercise.

Q An eBook An electronic version (eBook) of this book is included for times when you

don’t want to carry the printed book with you. The eBook is in Portable Document

Format (PDF), and you can view it by using Adobe Acrobat or Adobe Reader. You can

also use it to cut and paste code as you work through the exercises.

 The evaluation software DVD contains a 90-day evaluation edition of Visual Studio 2008

Professional Edition, in case you want to use it with this book.

xxiiiIntroduction

How to Install the Practice Tests
 To install the practice test software from the companion CD to your hard disk, do the

following:

 1. Insert the companion CD into your CD drive, and accept the license agreement. A CD

menu appears.

 NOTE IF THE CD MENU DOESN’T APPEAR

 If the CD menu or the license agreement doesn’t appear, AutoRun might be disabled on

your computer. Refer to the Readme.txt fi le on the CD-ROM for alternate installation

instructions.

 2. Click the Practice Tests item and follow the instructions on the screen.

How to Use the Practice Tests
To start the practice test software, follow these steps:

 1. Click Start/All Programs/Microsoft Press Training Kit Exam Prep. A window appears that

shows all the Microsoft Press training kit exam prep suites installed on your computer.

 2. Double-click the lesson review or practice test you want to use.

NOTE LESSON REVIEWS VS. PRACTICE TESTS

 Select the (70-505) Microsoft .NET Framework 3.5–Windows-Based Client Develop-

ment Foundation lesson review to use the questions from the “Lesson Review” sections

of this book. Select the (70-505) Microsoft .NET Framework 3.5–Windows-Based Client

Development practice test to use a pool of 200 questions similar to those in the 70-505

certifi cation exam.

 Lesson Review Options

When you start a lesson review, the Custom Mode dialog box appears so that you can con-

fi gure your test. You can click OK to accept the defaults, or you can customize the number of

questions you want, how the practice test software works, which exam objectives you want

the questions to relate to, and whether you want your lesson review to be timed. If you’re

retaking a test, you can select whether you want to see all the questions again or only those

questions you missed or didn’t answer.

NOTE IF THE CD MENU DOESN’T APPEAR

If the CD menu or the license agreement doesn’t appear, AutoRun might be disabled on

your computer. Refer to the Readme.txt fi le on the CD-ROM for alternate installation

instructions.

NOTE LESSON REVIEWS VS. PRACTICE TESTS

Select the (70-505) Microsoft .NET Framework 3.5–Windows-Based Client Develop-

ment Foundation lesson review to use the questions from the “Lesson Review” sections w

of this book. Select the (70-505) Microsoft .NET Framework 3.5–Windows-Based Client

Development practice test to use a pool of 200 questions similar to those in the 70-505t

certifi cation exam.

xxiv Introduction

 After you click OK, your lesson review starts.

Q To take the test, answer the questions and use the Next, Previous, and Go To buttons

to move from question to question.

Q After you answer an individual question, if you want to see which answers are

correct—along with an explanation of each correct answer—click Explanation.

Q If you’d rather wait until the end of the test to see how you did, answer all the ques-

tions and then click Score Test. You’ll see a summary of the exam objectives you chose

and the percentage of questions you got right overall and per objective. You can print

a copy of your test, review your answers, or retake the test.

 Practice Test Options

 When you start a practice test, you choose whether to take the test in Certifi cation Mode,

Study Mode, or Custom Mode.

Q Certifi cation Mode Closely resembles the experience of taking a certifi cation exam.

The test has a set number of questions, it’s timed, and you can’t pause and restart the

timer.

Q Study Mode Creates an untimed test in which you can review the correct answers

and the explanations after you answer each question.

Q Custom Mode Gives you full control over the test options so that you can customize

them as you like.

 In all modes, the user interface you see when taking the test is basically the same but

with different options enabled or disabled, depending on the mode. The main options are

discussed in the previous section, “Lesson Review Options.”

 When you review your answer to an individual practice test question, a “References” sec-

tion is provided that lists where in the training kit you can fi nd the information that relates to

that question and provides links to other sources of information. After you click Test Results

to score your entire practice test, you can click the Learning Plan tab to see a list of references

for every objective.

 How to Uninstall the Practice Tests
 To uninstall the practice test software for a training kit, use the Add Or Remove Programs

option (for Windows XP) or the Programs and Features option (for Windows Vista) in Win-

dows Control Panel.

xxvIntroduction

Microsoft Certifi ed Professional Program

The Microsoft certifi cations provide the best method to prove your command of cur-

rent Microsoft products and technologies. The exams and corresponding certifi cations are

developed to validate your mastery of critical competencies as you design and develop, or

implement and support, solutions with Microsoft products and technologies. Computer

professionals who become Microsoft-certifi ed are recognized as experts and are sought after

industry-wide. Certifi cation brings a variety of benefi ts to the individual and to employers and

organizations.

MORE INFO ALL THE MICROSOFT CERTIFICATIONS

For a full list of Microsoft certifi cations, go to www.microsoft.com/learning/mcp

/default.asp.

Technical Support

Every effort has been made to ensure the accuracy of this book and the contents of the com-

panion CD. If you have comments, questions, or ideas regarding this book or the companion

CD, please send them to Microsoft Press by using either of the following methods:

E-mail:

• tkinput@microsoft.com

Postal Mail:

• Microsoft Press

 Attn: MCTS Self-Paced Training Kit (Exam 70-505): Microsoft .NET Framework 3.5—

 Windows Forms Application Development, Editor

 One Microsoft Way

 Redmond, WA 98052–6399

For additional support information regarding this book and the CD-ROM (including

answers to commonly asked questions about installation and use), visit the Microsoft Press

Technical Support Web site at www.microsoft.com/learning/support/books/. To connect

directly to the Microsoft Knowledge Base and enter a query, visit http://www.microsoftpressstore.com
/title9780735626379. For support information regarding Microsoft software, please con-

nect to http://support.microsoft.com.

MORE INFO ALL THE MICROSOFT CERTIFICATIONS

For a full list of Microsoft certifi cations, go to www.microsoft.com/learning/mcp

/default.asp.

http://www.microsoftpressstore.com/title9780735626379
http://www.microsoftpressstore.com/title9780735626379

 Evaluation Edition Software Support

 The 90-day evaluation edition provided with this training kit is not the full retail product and

is provided only for the purposes of training and evaluation. Microsoft and Microsoft Techni-

cal Support do not support this evaluation edition.

 Information about any issues relating to the use of this evaluation edition with this training

kit is posted to the Support section of the Microsoft Press Web site (www.microsoft.com

/learning/support/books/). For information about ordering the full version of any Microsoft

software, please call Microsoft Sales at (800) 426-9400 or visit www.microsoft.com.

 CHAPTER 3 85

 C H A P T E R 3

 Advanced Windows Forms
Controls

 This chapter continues where Chapter 2, “Confi guring Controls and Creating the User

Interface,” left off, with an in-depth examination of Windows Forms controls. In this

chapter, you will learn how to create and confi gure controls for displaying lists, setting val-

ues and dates, displaying images, browsing the Web, and notifying the user of background

processes. You will also learn how to create access keys for controls without using the Label

control as shown in Chapter 2.

 Exam objectives in this chapter:

Q Add and confi gure a Windows Forms control.

Q Provide a list of options on a Windows Form by using a ListBox control, a Combo-

Box control, or a CheckedListBox control.

Q Confi gure the layout and functionality of a Windows Form to display a list of

items.

Q Implement value-setting controls on a Windows Form.

Q Confi gure a WebBrowser control.

Q Add and confi gure date-setting controls on a Windows Form.

Q Display images by using Windows Forms controls.

Q Confi gure the NotifyIcon component.

Q Create access keys for Windows Forms controls.

 Lessons in this chapter:

Q Creating and Confi guring List-Display Controls 87

Q Creating and Confi guring Value-Setting, Date-Setting, and

Image-Display Controls 108

Q Confi guring the WebBrowser Control and the NotifyIcon

Component and Creating Access Keys 121

 86 CHAPTER 3 Advanced Windows Forms Controls

Before You Begin

To complete the lessons in this chapter, you must have:

Q A computer that meets or exceeds the minimum hardware requirements listed in the

“Introduction” at the beginning of the book .

Q Microsoft Visual Studio installed on your computer .

Q An understanding of Microsoft Visual Basic or C# syntax and familiarity with the .NET

Framework .

Q Have a good understanding of Windows Forms, how to add controls to forms, and

how to use the Visual Studio Integrated Development Interface (IDE) .

 REAL WORLD

Matt Stoecker

 When I am creating a user interface (UI), the large variety of controls that are

available for use dramatically streamlines the UI creation process. Built-in

controls for displaying lists and images and setting dates and other values allow me

to spend less time on UI coding tasks and more time developing the application’s

custom functionality.

REAL WORLD

Matt Stoecker

When I am creating a user interface (UI), the large variety of controls that are

available for use dramatically streamlines the UI creation process. Built-in

controls for displaying lists and images and setting dates and other values allow me

to spend less time on UI coding tasks and more time developing the application’s

custom functionality.

 Lesson 1: Creating and Confi guring List-Display Controls CHAPTER 3 87

Lesson 1: Creating and Confi guring List-Display
Controls

A common scenario in user interface design is to present lists of data to users and to allow

them to select items from that list. Visual Studio provides several list-based controls that

allow a variety of presentation options. In this lesson, you will learn about the basic list-based

controls, such as the ListBox, ComboBox, and CheckedListBox, as well as more specialized list-

based controls, such as ListView, TreeView, NumericUpDown, and DomainUpDown. You will

learn how to display lists and select items from lists.

After this lesson, you will be able to:

Q Programmatically determine which item in a list appears in a given position.

Q Add or remove items from a list of items in a list-based control.

Q Bind a list-based control to a data source.

Q Sort list data.

Q Display data in a drop-down combo box.

Q Select one or more items from a predefi ned list.

Q Use the ListView control to display a list of items with icons.

Q Use the TreeView control to display a list of items in a hierarchical view.

Q Confi gure the DomainUpDown control to display a list of strings.

Q Confi gure the NumericUpDown control to display a list of numbers.

 Estimated lesson time: 60 minutes

 Overview of List-Based Controls
 The basic list-based controls are the ListBox, ComboBox, and CheckedListBox controls.

Although differing somewhat in appearance and functionality, each of these controls orga-

nizes and presents lists of data in the same way, and each contains an Items collection that

organizes the items contained in one of these controls.

 The Items collection is basically a collection of objects. Although these objects are often

strings, they do not have to be. If a collection does contain a string, however, the string repre-

sentation of the object is displayed in the control.

 ListBox Control
 The ListBox control is the simplest of the list-based controls. It serves primarily to display a

simple list of items in an easy-to-navigate user interface. Users can select one or more items.

Table 3-1 describes the important properties of the ListBox control.

After this lesson, you will be able to:

Q Programmatically determine which item in a list appears in a given position.

Q Add or remove items from a list of items in a list-based control.

Q Bind a list-based control to a data source.

Q Sort list data.

Q Display data in a drop-down combo box.

Q Select one or more items from a predefi ned list.

Q Use the ListView control to display a list of items with icons.w

Q Use the TreeView control to display a list of items in a hierarchical view.w

Q Confi gure the DomainUpDown control to display a list of strings.

Q Confi gure the NumericUpDown control to display a list of numbers.

Estimated lesson time: 60 minutes

 88 CHAPTER 3 Advanced Windows Forms Controls

 TABLE 3-1 Important Properties of the ListBox Control

 PROPERTY DESCRIPTION

 DataSource Sets the source for data binding in this control.

 DisplayMember Represents the data member that is displayed in this control.

 FormatString Specifi es a formatting string that will be used to format the entries

in the control if FormattingEnabled is set to True.

 FormattingEnabled Determines whether the entries in the control are formatted using

the FormatString.

 Items Returns the collection of items contained in this control.

 MultiColumn Indicates whether this item shows multiple columns of items or

only a single item.

 SelectedIndex Gets the index of the selected item or, if the SelectionMode prop-

erty is set to MultiSimple or MutilExtended, returns the index to

any selected item.

 SelectedIndices Returns a collection of all selected indexes.

 SelectedItem Returns the selected item or, if the SelectionMode property is set

to MultiSimple or MultiExtended, returns the index to any selected

item.

 SelectedItems Returns a collection of all selected items.

 SelectedValue In a data-bound control, returns the value associated with the

selected item. If the control is not data-bound, or, if the Value-

Member is not set, this property returns the ToString value of the

selected item.

 SelectionMode Determines how many items can be selected in a ListBox. Can

be set to None, One, MultiSimple, or MultiExtended. MultiSimple

allows the selection of multiple objects, and MultiExtended allows

the use of the Shift and Ctrl keys when making multiple selections.

 ValueMember Indicates the data member that will provide the values for the

ListBox.

 ComboBox Control
 The ComboBox control is similar to the ListBox control, but, in addition to allowing the user to

select items from a list, it provides a space for a user to type an entry as well as select items

from a list. Additionally, you can confi gure the ComboBox either to display a list of options or

to provide a drop-down list of options. Table 3-2 describes the important properties of the

ComboBox control.

 Lesson 1: Creating and Confi guring List-Display Controls CHAPTER 3 89

 TABLE 3-2 Important Properties of the ComboBox Control

 PROPERTY DESCRIPTION

 DataSource Sets the source for data binding in this control.

 DisplayMember Represents the data member that is displayed in this control.

 DropDownHeight Sets the maximum height for the drop-down box.

 DropDownStyle Determines the style of the combo box. Can be set to Simple,

which is similar to a ListBox; DropDown, which is the default; or

DropDownList, which is similar to DropDown but does not allow

the user to type a new value.

 DropDownWidth Sets the width of the drop-down section of the combo box.

 FormatString Specifi es a formatting string that will be used to format the

entries in the control if FormattingEnabled is set to True.

 FormattingEnabled Determines whether the entries in the control are formatted

using the FormatString.

 Items Returns the collection of items contained in this control.

 SelectedIndex Gets the index of the selected item.

 SelectedItem Returns the selected item.

 SelectedValue In a data-bound control, returns the value associated with the

selected item. If the control is not data-bound, or, if the Value-

Member is not set, this property returns the ToString value of the

selected item.

 ValueMember Indicates the data member that will provide the values for the

ComboBox.

 CheckedListBox Control
 The CheckedListBox displays a list of items to users and allows them to select multiple items

by checking boxes that are displayed next to the items. Any number of items can be checked,

but only one item can be selected at a time. You can retrieve a collection that represents the

checked items by accessing the CheckedItems collection, and you can get a collection of the

checked indexes by accessing the CheckedIndices collection. Table 3-3 describes the impor-

tant properties of the CheckedListBox control.

 90 CHAPTER 3 Advanced Windows Forms Controls

 TABLE 3-3 Important Properties of the CheckedListBox Control

 PROPERTY DESCRIPTION

 CheckedIndices Returns a collection that represents all of the checked indexes

 CheckedItems Returns a collection that exposes all of the checked items in the

control

 FormatString Specifi es a formatting string that will be used to format the entries

in the control if FormattingEnabled is set to True

 FormattingEnabled Determines whether the entries in the control are formatted using

the FormatString

 Items Returns the collection of items contained in this control

 MultiColumn Indicates whether this control shows multiple columns of items or

only a single item

 SelectedIndex Gets the index of the selected item, or, if the SelectionMode

property is set to MultiSimple or MultiExtended, it can return any

selected index

 SelectedItem Returns the selected item, or, if the SelectionMode property is set to

MultiSimple or MultiExtended, it can return any selected item

 You can set an item to be checked or unchecked by calling the SetItemChecked method, as

shown below:

 ' VB

CheckedListBox.SetItemChecked(0, True)

// C#

checkedListBox.SetItemChecked(0, true);

 Likewise, you can use the SetItemCheckState method to set the CheckState of an item:

 ' VB

CheckedListBox.SetItemCheckState(0, CheckState.Indeterminate)

// C#

checkedListBox.SetItemCheckState(0, CheckState.Indeterminate);

 Adding Items to and Removing Items from a List-Based
Control
 You can add items to or remove items from a list-based control through either the Designer

at design time or code at run time.

 To add items to a list-based control at design time, you select the control in the Designer

and then, in the Properties window, select the Items property. The String Collection Editor

 Lesson 1: Creating and Confi guring List-Display Controls CHAPTER 3 91

(shown in Figure 3-1) opens. All of the items currently contained in the control are shown.

Items can then be added to or removed from this list.

 FIGURE 3-1 The String Collection Editor

 You can also use code to programmatically add and remove items from the control at run

time. To add an item, you use the Items.Add method, as shown in the following code example:

 ' VB

ListBox1.Items.Add("This string will be added to the list")

// C#

listBox1.Items.Add("This string will be added to the list");

 If you have several items to add at once, you can use the AddRange method to add an ar-

ray of items to the control, as shown here:

 ' VB

ListBox1.Items.AddRange(New String() {"Item1", "Item2", "Item3"})

// C#

listBox1.Items.AddRange(new String[] {"Item1", "Item2", "Item3"});

 You can use the Items.Insert method to add an item to a specifi c index in the list. The index

of items is a zero-based index, so the fi rst item in the control is at index 0. When you add an

item to an index that is already occupied by an item, that item and any items beneath it are

shifted down one index. The following code shows how to insert an item to be third in the

displayed list, assuming that the ListBox1 control is already populated with several items:

 ' VB

ListBox1.Items.Insert(2, "This item will be third")

// C#

listBox1.Items.Insert(2, "This item will be third");

 You can use the Items.Remove method to remove an item from the list. This method

requires a reference to the object that you want to remove from the items collection. Note

 92 CHAPTER 3 Advanced Windows Forms Controls

that if your control contains a collection of objects that are not strings, you will need to pass a

reference to the object itself to remove it, not just to the string representation that appears in

the control. The following example demonstrates the Items.Remove method:

 ' VB

ListBox1.Items.Remove("This string will be removed")

// C#

listbox1.Items.Remove("This string will be removed");

 If you do not know the actual item that you want to remove at run time but have the

index of the item you want to remove, you can use the Items.RemoveAt method. This method

removes the item at a given index and adjusts the indexes of the other items accordingly. The

Items.RemoveAt method is demonstrated in the following code example:

' VB

' Removes the third item in the list

ListBox1.Items.RemoveAt(2)

// C#

// Removes the third item in the list

listBox1.Items.RemoveAt(2);

 To remove all items from a list-based control, you can use the Items.Clear method, as

shown here:

 ' VB

ListBox1.Items.Clear()

// C#

listBox1.Items.Clear();

 Determining Where an Item Appears in a List

 If you want to determine where an item appears in a list programmatically, you can do so by

using the Items.IndexOf method. This method takes the item you want to fi nd as an argument

and returns an integer that represents the index of that item. If the item is not found in the

Items collection, the IndexOf method returns -1. An example of the IndexOf method is shown

here:

 ' VB

Dim anIndex As Integer

anIndex = ListBox1.Items.IndexOf("A String")

// C#

int anIndex;

anIndex = listBox1.Items.IndexOf("A String");

 Lesson 1: Creating and Confi guring List-Display Controls CHAPTER 3 93

 You can also programmatically determine the index of an item that has been selected by

the user by using the SelectedIndex property. The SelectedIndex property returns the item that

has been selected in the user interface at run time. If more than one item has been selected,

the SelectedIndex property can return any of the selected items. The SelectedIndex property is

demonstrated here:

 ' VB

Dim anIndex As Integer

anIndex = ListBox1.SelectedIndex

// C#

int anIndex;

anIndex = listBox1.SelectedIndex;

 In controls where the SelectionMode property is set to MultiSimple or MultiExtended, you

can return all of the selected indexes by using the SelectedIndices property, as shown in the

following example:

 ' VB

For Each i As Integer In ListBox1.SelectedIndices

 Console.WriteLine(ListBox1.Items(i).ToString)

Next

// C#

foreach (int i in listBox1.SelectedIndices)

{

 Console.WriteLine(listBox1.Items[i].ToString());

}

 Binding List-Based Controls to Data Sources

 You will frequently want to expose data to the user in list-based controls. You can bind ListBox

controls and ComboBox controls (but not CheckedListBox controls) to a data source by using

the DataSource, DisplayMember, and ValueMember properties to bind a list-based control to

a column of data in a data table.

 Add a data source to your project. Adding data sources to your project is covered in detail

in Chapter 5, “Confi guring Connections and Connecting to Data.”

 TO BIND A LIST-BASED CONTROL TO A DATA SOURCE

 1. In the Designer, select the list-based control that you want to bind to a data source.

 2. In the Properties window, click the DataSource property to open the data source

confi guration interface, as shown in Figure 3-2. Set the DataSource property to a table

contained in one of the data sources in your project.

 94 CHAPTER 3 Advanced Windows Forms Controls

 FIGURE 3-2 Setting the DataSource property

 3. In the Properties window, click the DisplayMember property. Visual Studio displays the

columns in the selected table. This is the column whose rows will be displayed in the

control.

 4. In the Properties window, click the ValueMember property. Choose a column name in

the interface to bind the control to. This is the column whose members will provide the

value that is returned from the selected index in the control.

 The DataSource property indicates the data source (usually a data table) that the data in

the control is drawn from. The DisplayMember property represents the column of data in the

data source that is displayed to the user in the control. The ValueMember property allows you

to designate an additional column of values to be represented in the control. For example,

you might set the DisplayMember property to the Products column to display a list of prod-

ucts to the user but set the ValueMember to a ProductsCode column that returns a

numeric code for each product. In this instance, whenever an item is selected, the Selected-

Item property returns the item displayed in the ListBox, and the SelectedValue property

returns the corresponding item from the ProductsCode column.

 Lesson 1: Creating and Confi guring List-Display Controls CHAPTER 3 95

 Sorting in List-Based Controls

 You can sort the objects displayed in a list-based control by setting the Sorted property to

True, as shown here:

 ' VB

ListBox1.Sorted = True

// C#

listBox1.Sorted = true;

 Sorting data at the data source will be covered in Chapter 7, “Create, Add, Delete, and Edit

Data in a Disconnected Environment.”

 Setting a Format for Items Displayed in a List-Based Control

 You can format the items that you display in a list-based control. For example, if you are

displaying a list of monetary values, you can format them all as currency and they will be

displayed in the currency format that is appropriate to the culture the application is running

under.

 You can set a format for a list-based control by setting the FormatString property at design

time. Selecting and clicking the FormatString property in the Properties window launches the

Format String Dialog dialog box, shown in Figure 3-3.

FIGURE 3-3 The Format String Dialog dialog box

 The FormattingEnabled property determines whether to use the formatting indicated by

the FormatString. When the FormattingEnabled property is set to True, the entries in the con-

trol are displayed in the format indicated by the FormatString property.

 96 CHAPTER 3 Advanced Windows Forms Controls

 CUSTOM FORMAT STRINGS

If the preset format strings do not provide the correct format for an item, you can create a

custom format string. Table 3-4 describes the characters that you can use to create a custom

format string.

 TABLE 3-4 Custom Format String Characters

 CHARACTER DESCRIPTION

 0 Zero placeholder. If the value being formatted has a digit in the position

where the ‘0’ appears in the format string, then that digit is copied to the

result string. The position of the left-most ‘0’ before the decimal point and

the right-most ‘0’ after the decimal point determines the range of digits

that are always present in the result string. Note that the “00” specifi er

causes the value to be rounded to the nearest digit preceding the decimal,

where rounding away from zero is always used. For example, formatting

34.5 with “00” would result in the value 35.

 # Digit placeholder. If the value being formatted has a digit in the position

where the ‘#’ appears in the format string, then that digit is copied to the

result string. Otherwise, nothing is stored in that position in the result

string. Note that this specifi er never displays the ‘0’ character if it is not a

signifi cant digit, even if ‘0’ is the only digit in the string. It will display the ‘0’

character if it is a signifi cant digit in the number being displayed. The “##”

format string causes the value to be rounded to the nearest digit preceding

the decimal, where rounding away from zero is always used. For example,

formatting 34.5 with “##” would result in the value 35.

 . Decimal separator. The fi rst ‘.’ character determines the location of the

fi rst decimal separator in the formatted value. Additional ‘.’ characters are

ignored. Note that the actual character used will be the decimal separator

determined by the current locale.

 , Thousands separator and scaling. First, if the format string contains a

‘,’ character between two digit placeholders (0 or #) and to the left of

the decimal point (if one is present), then the output will have thousand

separators inserted between each group of three digits to the left of the

decimal separator. The actual character used as the decimal separator in

the result string is determined by the NumberGroupSeparator property of

the current NumberFormatInfo that controls formatting.

If the format string contains one or more ‘,’ characters immediately to the

left of the decimal point, then the number will be divided by the number

of ‘,’ characters multiplied by 1000 before it is formatted. For example, the

format string “0,” will represent 100 million as simply 100.

 % Percentage placeholder. The presence of the % symbol causes the number

represented to be multiplied by 100 before formatting. The % symbol

appears in the place that it occurs in the format string.

 Lesson 1: Creating and Confi guring List-Display Controls CHAPTER 3 97

 CHARACTER DESCRIPTION

 E0, E+0, E-0,

e0, e+0, e-0

Scientifi c notation. If any of the strings “E”, “E+”, “E-”, “e”, “e+”, or “e-” are

present in the format string and are followed immediately by at least one

‘0’ character, then the number is formatted using scientifi c notation with

an ‘E’ or ‘e’ inserted between the number and the exponent. The number

of ‘0’ characters following the scientifi c notation indicator determines

the minimum number of digits to output for the exponent. The “E+” and

“e+” formats indicate that a sign character (plus or minus) should always

precede the exponent. The “E”, “E-”, “e”, or “e-” formats indicate that a sign

character should precede only negative exponents.

 \ Escape character. In C# this character is used to indicate that the character

immediately following the ‘\’ is to be interpreted as an escape sequence. In

Visual Basic this character has no effect.

 “ABC”, ‘ABC’ Literal strings. Characters enclosed in ” or ‘’ are displayed as literal strings in

the formatted string.

 ; Section separator. The ‘;’ character is used to separate sections for posi-

tive, negative, and zero numbers in the format string. You can provide up

to three sections in a format string, each containing its own format. These

sections should be separated by ‘;’ characters and will be applied to posi-

tive, negative, and zero numbers, respectively.

 Other

Characters

Other characters in the format string are represented as literal strings.

 Selecting Items in a List-Based Control

 You can programmatically select items in a list-based control by using the SelectedItem or

SelectedIndex property. You can select an item in a list-based control as shown in the follow-

ing example:

 ' VB

ListBox1.SelectedItem = "This item will be selected"

// C#

listBox1.SelectedItem = "This item will be selected";

 If the SelectedItem property is set to an item that is not contained in the control, there is

no effect, and no item is selected.

 If the control allows multiple selections, you can select multiple items by setting the

Selected Item property multiple times if the SelectionMode property is set to MultiSimple or

MultiExtended (which is supported only by the ListBox control). Once selected, an item

remains selected until unselected by the user. An example is shown here:

 ' VB

ListBox1.SelectedItem = "This item will be selected"

 98 CHAPTER 3 Advanced Windows Forms Controls

ListBox1.SelectedItem = "This item will be selected too"

// C#

listBox1.SelectedItem = "This item will be selected";

listBox1.SelectedItem = "This item will be selected too";

 The SelectedIndex property functions in a way similar to the SelectedItem property, except

that it is an Integer type that corresponds to the sequential item in the list. You can select an

item in the control by setting the SelectedIndex property to the corresponding index, and

you can select multiple items by setting the property multiple times in succession. The main

difference between the behavior of the SelectedItem property and the SelectedIndex property

is that the SelectedIndex property throws an exception if an attempt is made to set it to a

nonexistent index.

 The ListView Control
 The ListView control allows you to view lists of items with optional associated icons in the

manner of Windows Explorer. Using the ListView control, you can display items with large

associated icons, small associated icons, or additional details about the item. Table 3-5 shows

important properties of the ListView control.

 TABLE 3-5 Important Properties of the ListView Control

 PROPERTY DESCRIPTION

 Columns Contains the collection of columns to be displayed when the View

property is set to Details

 Groups Contains an optional collection of groups that can be used to catego-

rize the items contained in the Items collection

 Items A collection of ListViewItems that is displayed in the ListView control

 LargeImageList The ImageList component from which images for ListViewItems are

drawn when the View property is set to LargeIcon

 ShowGroups Determines whether the groups contained in the Groups collection

are shown

 SmallImageList The ImageList component from which images for ListViewItems are

drawn when the View property is set to SmallIcon

 View Indicates the manner in which ListView items are displayed

 Lesson 1: Creating and Confi guring List-Display Controls CHAPTER 3 99

 The most important property in the ListView control is the Items property. This property

contains a collection of ListViewItem objects. Unlike the list-based controls examined earlier,

ListViewItems are specifi c objects that contain additional information about the item being

displayed, such as icons that are shown in the control. Table 3-6 shows important properties

of the ListViewItem class.

 TABLE 3-6 Important Properties of the ListViewItem Class

 PROPERTY DESCRIPTION

 Group The group, if any, in the ListView control’s Groups collection that this

ListView Item belongs to.

 ImageIndex The index, if any, of the image to be used for this item when the View prop-

erty is set to LargeIcon or SmallIcon. If the ImageIndex property is set, the

ImageKey property is set to “.”

 ImageKey The key of the image, if any, to be used for this item when the View prop-

erty is set to LargeIcon or SmallIcon. If the ImageKey property is set, the

ImageIndex property is set to -1.

 SubItems Contains the subitems that will be shown when the View property is set

to Details. These items should correspond to the columns in the ListView

control’s Columns collection.

 Text The text that is shown in the ListView property.

 You can add ListViewItems to the ListView and edit the properties of individual ListView-

Items by clicking the Items property of the ListView control to open the ListView Item Collec-

tion Editor, shown in Figure 3-4.

 The ListView control organizes the images associated with the ListViewItems in ImageList

objects that are exposed in the SmallImageList and LargeImageList properties. The ImageList

class will be discussed in greater detail in Lesson 2, “Creating and Confi guring Value-Setting,

Date-Setting, and Image-Display Controls” of this chapter. You can set the images associated

with a particular ListViewItem by setting either the ImageIndex or ImageKey property of each

ListViewItem. The View property determines if the ListView items are shown with large images,

with small images, or in a view that exposes the subitems of the ListViewItems.

 100 CHAPTER 3 Advanced Windows Forms Controls

 FIGURE 3-4 The ListViewItem Collection Editor

 TO DISPLAY A LIST OF ITEMS WITH ICONS IN A LISTVIEW CONTROL

 1. In the Designer, drag an ImageList control from the Toolbox to a design surface that

already contains a ListView control.

 2. In the Properties window, click the Images property of the ImageList to add images to

the Images collection.

 3. In the Designer, select the ListView control. In the Properties window, set the Small-

ImageList, LargeImageList, or both to the ImageList object.

 4. In the Properties window, click Items to add ListViewItems to the ListView. In the

ListViewItem Collection Editor, set either the ImageIndex or the ImageKey property for

each ListViewItem to the appropriate image in the ImageList. Also, set any other prop-

erties, such as Text, at this point.

 5. In the Designer, select the ListView control. In the Properties window, set the View

property to either LargeIcon or SmallIcon.

 TreeView Control
 The TreeView control allows you to display a list of objects in a hierarchical manner. Each

object in the TreeView control represents an instance of the TreeNode class, which contains

information about the location of the node within the TreeView control. Nodes contain-

ing child nodes in the TreeView control can be collapsed and expanded. Figure 3-5 shows a

TreeView control in a form.

 Lesson 1: Creating and Confi guring List-Display Controls CHAPTER 3 101

 FIGURE 3-5 The TreeView control

 The primary property of the TreeView control is the Nodes property. This property contains

the collection of TreeNodes that comprise the root objects in the TreeView. Each individual

TreeNode object contains its own collection of TreeNodes that represent child nodes of that

node. Table 3-7 describes some of the important properties of the TreeNode class.

 TABLE 3-7 Important Properties of the TreeNode Class

 PROPERTY DESCRIPTION

 FirstNode Returns the fi rst node in the current group of child nodes.

 LastNode Returns the last node in the current group of child nodes.

 NextNode Returns the next sibling tree node.

 NextVisibleNode Returns the next visible node.

 Nodes Returns the collection of child nodes belonging to this node.

 Parent Returns the parent node of the current node. If the current node

is a root node in the TreeView, accessing this property will return

null.

 PrevNode Returns the previous sibling tree node.

 PrevVisibleNode Returns the previous visible node.

 TreeView Returns a reference to the TreeView control that the TreeNode is

contained in.

 Adding and Removing Nodes from the TreeView Controls

 At design time you can add nodes to a TreeView control by clicking the Nodes property in the

Properties window to display the TreeNode Editor (shown in Figure 3-6). You can add new

root nodes or new child nodes and set the properties of each TreeNode.

 102 CHAPTER 3 Advanced Windows Forms Controls

 FIGURE 3-6 The TreeNode Editor

 At run time, you can create new TreeNode objects and add them as root nodes to the

TreeView control or add them as child nodes to another TreeNode. For both of these proce-

dures, you use the Nodes.Add method, as shown here:

 ' VB

Dim aNode As New TreeNode("New Node")

' Add a child node to the new node

aNode.Nodes.Add(New TreeNode("New Child"))

' Adds aNode and its child As a new root node in a TreeView control named TreeView1

TreeView1.Nodes.Add(aNode)

' Adds a second child node to the first node in TreeView1

TreeView1.Nodes(0).Nodes.Add(New TreeNode("Second Child"))

// C#

TreeNode aNode = new TreeNode("New Node");

// Add a child node to the new node

aNode.Nodes.Add(new TreeNode("New Child"));

// Adds aNode and its child as a new root node in a TreeView control named TreeView1

treeView1.Nodes.Add(aNode);

// Adds a second child node to the first node in TreeView1

treeView1.Nodes[0].Nodes.Add(new TreeNode("Second Child"));

 You can remove nodes from the Nodes collection by using the Remove and RemoveAt

methods. The Remove method takes a reference to a particular node as a parameter and

removes it from the collection if it exists in the collection. If the specifi ed node does not exist

in the collection, this method call is ignored. The RemoveAt method removes the node at a

specifi ed index. If the specifi ed index is not present in the nodes collection, an Argument-

OutOfRange exception is thrown. The following example demonstrates the Remove and

RemoveAt methods:

 Lesson 1: Creating and Confi guring List-Display Controls CHAPTER 3 103

 ' VB

' Removes the node named aNode from the collection

TreeView1.Nodes.Remove(aNode)

' Removes the node at index 3 from the collection.

TreeView1.Nodes.RemoveAt(3)

// C#

// Removes the node named aNode from the collection

treeView1.Nodes.Remove(aNode);

// Removes the node at index 3 from the collection.

treeView1.Nodes.RemoveAt(3);

 Expanding and Collapsing Nodes

 The TreeView control presents a hierarchical view of nodes that can be expanded or collapsed

to reveal or hide the child nodes as appropriate. You can expand or collapse child nodes

programmatically at run time by using the Expand and Collapse methods, as shown in the

following example:

 ' VB

' Expands the child nodes of a TreeNode named aNode

aNode.Expand()

' Collapses the child nodes of a TreeNode named aNode

aNode.Collapse()

// C#

// Expands the child nodes of a TreeNode named aNode

aNode.Expand();

// Collapses the child nodes of a TreeNode named aNode

aNode.Collapse();

 NumericUpDown Control
 The NumericUpDown control allows you to set a range of numbers that a user can browse

and select. A range of numbers is presented in the control, and the user can click the up and

down arrows to increase or decrease the number. Table 3-8 shows important properties of

the NumericUpDown control.

 TABLE 3-8 Important Properties of the NumericUpDown Control

 PROPERTY DESCRIPTION

 Hexadecimal Indicates whether the numeric value will be shown in hexadecimal

 Increment Gets or sets the amount to increment or decrement with each

button click

 Maximum Indicates the maximum value for the control

 104 CHAPTER 3 Advanced Windows Forms Controls

 PROPERTY DESCRIPTION

 Minimum Indicates the minimum value for the control

 ThousandsSeparator Indicates whether the culture-appropriate thousands separator

will be used when displaying values greater than 1000

 Value Gets or sets the current value of the control

 TO CONFIGURE THE NUMERICUPDOWN CONTROL

 1. Set the Minimum property to the minimum numeric value for the control.

 2. Set the Maximum property to the maximum numeric value for the control.

 3. Set the Increment property to the amount you want to increment and decrement with

each arrow button click.

 4. If desired, set the Value property to a default value.

 DomainUpDown Control
 The DomainUpDown control is similar to the NumericUpDown control in that it allows users to

browse a specifi ed series of data and set a value for the control. Instead of browsing numeric

values, however, the DomainUpDown control allows the user to browse a collection of preset

strings. Table 3-9 describes the important properties of the DomainUpDown control.

 TABLE 3-9 Important Properties of the DomainUpDown Control

 PROPERTY DESCRIPTION

 Items Contains the collection of strings that are displayed in the DomainUpDown

control

 ReadOnly Indicates whether the user can alter the Text of the control

 Text Gets or sets the text of the control

 The Items collection contains the strings that are displayed in the DomainUpDown control.

You can add strings by clicking the Items property in the Properties window to display the

String Collection Editor. When ReadOnly is set to False, the user can choose to type a string

in the DomainUpDown control instead of choosing one of the strings. Note that strings typed

by the user are not added to the Items collection. Also note that the Text property defi nes the

default value for the control, not the Items collection.

 Lesson 1: Creating and Confi guring List-Display Controls CHAPTER 3 105

Quick Check

 1. What is the purpose of the TreeView control?

 2. What is the purpose of a ListView control and when would you use one?

Quick Check Answers

 1. The TreeView control allows you to display a list of data in a hierarchically related

manner.

 2. The ListView control provides a highly confi gurable control that allows you to

display lists of data in a variety of ways. You can use a ListView control when you

want to provide different options to the user for the display of list data, such as

providing icons or details about the data.

 LAB The Adventure Works Ski Instructor Reservation Form

Over the next two labs, you will use what you have learned in this lesson and the next to add

functionality to a simple application designed to reserve ski instructors. In this lab, you will

add a ComboBox that allows the user to select the mountain they want to ski on, a ListView

control to select a ski instructor, and a NumericUpDown control to select the length of the

lesson.

EXERCISE 1 The Ski Instructor Reservation Form

 1. In Visual Studio, open the partial solution for Lesson 1, “Creating and Confi guring List-

Display Controls.” This solution can be installed from the companion CD.

 2. In Form1, beneath the Name TextBox, add a Label control and a ComboBox control. Set

the Text of the Label control to Choose Ski Run.

 3. Set the DropDownStyle property of the ComboBox to DropDownList.

 4. Add the following items to the ComboBox Items property: Camelback, Powder Point,

and The Plunge.

 5. Add a Label control and a NumericUpDown control to the form. Set the Text property

of the Label to Lesson Length.

 6. Set the Minimum property of the NumericUpDown control to 1 and the Maximum

property to 3.

 7. Add a Label control and a ListView control to the form. Set the Text property of the

Label control to Choose Instructor.

 8. In the Properties window, set the View property of the ListView control to SmallIcon. In

Lesson 2, “Creating and Confi guring Value-Setting, Date-Setting, and Image-Display

Controls,” you will associate the items in this list with images.

Quick Check

1. What is the purpose of the TreeView control?w

2. What is the purpose of a ListView control and when would you use one?w

Quick Check Answers

1. The TreeView control allows you to display a list of data in a hierarchically related w

manner.

2. The ListView control provides a highly confi gurable control that allows you tow

display lists of data in a variety of ways. You can use a ListView control when you w

want to provide different options to the user for the display of list data, such as

providing icons or details about the data.

Q

 106 CHAPTER 3 Advanced Windows Forms Controls

 9. In the Properties window, click the Items property to add four ListViewItems to the

ListView. In the ListViewItem Collection Editor, set their Text properties to Sandy, Jack,

Libby, and Christa.

 10. Add a Button control to the form and set the Text property to Make Reservation.

 11. In the Designer, double-click the button and add the following code to the Button_

Click event handler:

 ' VB

If ListView1.SelectedItems.Count > 0 Then

 MsgBox("Your reservation with " & listView1.SelectedItems(0).Text & _

 " is confirmed.")

End If

// C#

if (listView1.SelectedItems.Count > 0)

{

 MessageBox.Show("Your reservation with " + listView1.SelectedItems[0].Text +

 " is confirmed.");

}

 12. Press F5 to test your application.

 Lesson Summary
Q List-based controls are used to organize and present lists of information to the user.

The ListBox, ComboBox, and CheckedListBox controls organize items through the Items

property and share many common methods and properties.

Q The ListBox control allows you to display a selection of items to the user and enables

the user to select one or more items from that list.

Q The ComboBox control can appear similar to a ListBox control or as a drop-down list.

You can require the user to select from a list or choose to allow them to type an entry

that is not present in the list.

Q The CheckedListBox control allows you to display a list of items with a check box beside

each one, enabling the user to check as many items as desired. Although multiple

items can be checked, only one item can be selected in the CheckedListBox at any time.

Q The ListView control allows specialized displays of lists of items. Items can be displayed

in association with icons that are provided by an ImageList component or with addi-

tional columns of subitems.

Q The TreeView control allows you to display lists of items in a hierarchical format. Each

node contains a collection of child nodes, which can themselves have child nodes.

Nodes can be expanded or collapsed.

 Lesson 1: Creating and Confi guring List-Display Controls CHAPTER 3 107

Q The NumericUpDown control allows the user to click up or down arrows to select a

numeric value. The DomainUpDown control allows the user to click up or down arrows

to select from a preselected set of options.

Lesson Review
You can use the following questions to test your knowledge of the information in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. Which of the following properties and methods can be used to fi nd the index of a

selected item in a ListBox control? (Choose all that apply.)

A. ListBox.IndexOf

B. ListBox.SelectedIndex

C. ListBox.SelectedIndices

D. ListBox.Select

 2. Which of the following methods cannot be used to add an item to the Items collection

of a ComboBox, ListBox, or CheckedListBox control?

 A. Items.Add

 B. Items.Insert

C. Items.AddRange

D. Items.Contains

 3. Which of the following is NOT a valid setting for the View property of the ListView

control?

A. LargeIcon

B. Details

C. Tree

D. SmallIcon

NOTE ANSWERSE

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 108 CHAPTER 3 Advanced Windows Forms Controls

Lesson 2: Creating and Confi guring Value-Setting,
Date-Setting, and Image-Display Controls

Allowing users to select or choose from a set of options, to set dates, and to work with images

are common scenarios for user interface design. In this lesson, you will learn to use value-

setting controls, such as CheckBox, RadioButton, and TrackBar, and date-setting controls,

such as DateTimePicker and MonthCalendar. You will also learn to work with images using the

ImageList component and the PictureBox control.

After this lesson, you will be able to:

Q Set two or more mutually exclusive options in the user interface using a

RadioButton.

Q Use the CheckBox control to indicate whether a condition is on or off.

Q Allow navigation through a large amount of information or visually adjust a

numeric setting using a TrackBar.

Q Allow the user to select a single item from a list of dates or times using the Date-

TimePicker control.

Q Present an intuitive graphical interface for users to view and set date information

using the MonthCalendar.

Q Add images to or remove images from the ImageList component.

Q Display graphics using the PictureBox control.

Estimated lesson time: 45 minutes

Value-Setting Controls
Value-setting controls allow the user to set values or pick options from a preset list in the user

interface. The CheckBox control allows a user to select or clear particular options in a non-

exclusive manner, while the RadioButton allows you to present a range of options to the user,

only one of which can be selected. The TrackBar control allows the user to rapidly set a value

in a graphical interface.

The CheckBox Control
The CheckBox control is a very familiar control to users. It allows the user to mark a check box

next to a label to indicate acceptance or rejection of the option presented. CheckBox controls

function in a nonexclusive manner—you can have multiple CheckBox controls on a single

form, and any combination of them can be checked or cleared at a single time. Table 3-10

shows important properties of the CheckBox control.

After this lesson, you will be able to:

Q Set two or more mutually exclusive options in the user interface using a

RadioButton.

Q Use the CheckBox control to indicate whether a condition is on or off.x

Q Allow navigation through a large amount of information or visually adjust a

numeric setting using a TrackBar.rr

Q Allow the user to select a single item from a list of dates or times using the Date-

TimePicker control.r

Q Present an intuitive graphical interface for users to view and set date information

using the MonthCalendar.rr

Q Add images to or remove images from the ImageList component.t

Q Display graphics using the PictureBox control.x

Estimated lesson time: 45 minutes

 Lesson 2: Creating and Confi guring Value-Setting, Date-Setting, and Image-Display Controls CHAPTER 3 109

 TABLE 3-10 Important Properties of the CheckBox Control

 PROPERTY DESCRIPTION

 AutoCheck Determines whether the CheckBox is automatically checked when the

text is clicked.

 Checked Gets or sets whether the CheckBox is checked.

 CheckState Returns the CheckState of the control. Possible values for this property

are Checked, Unchecked, and Indeterminate.

 Text The text displayed next to the check box.

 ThreeState Determines whether the CheckBox control allows two check states or

three.

 The most common use for the CheckBox control is to allow the user to make a binary deci-

sion about an option by either checking the box or not checking it. Typically, the check box is

used for nonexclusive options—that is, checking a particular check box usually does not affect

the state of other text boxes. Figure 3-7 shows an example of a hypothetical pizza order form.

Radio buttons are used to choose between the exclusive options Pizza or Calzone, and Check-

Box controls are used to select toppings for the pizza or calzone that is selected.

 FIGURE 3-7 Example of CheckBox and RadioButton controls

 You can programmatically determine if a CheckBox control is checked by accessing the

Checked property. This property returns True if the control is checked and False if the control

is cleared or indeterminate.

 A less common use for the CheckBox is to allow the user to choose among three settings:

Checked, Unchecked, or Indeterminate. This can be useful to indicate to the user that a con-

scious decision must be made for each option rather than simply setting a default option. You

enable three-state CheckBox controls by setting the ThreeState property to True. This allows

the user to cycle through the three states, rather than just the two, for the check box. You can

determine the state of the check box by accessing the CheckState property.

 Note that you can set the CheckState property to Indeterminate at design time even if

you set the ThreeState property to False. This causes the CheckBox controls to start in the

 110 CHAPTER 3 Advanced Windows Forms Controls

indeterminate state, but once the user makes a selection, the CheckBox must be either

checked or cleared. In this case the user is not allowed to reset the check box to indeterminate.

 The RadioButton Control
 The RadioButton control is used to present exclusive options to the user. The hypothetical

pizza order form in Figure 3-7 demonstrates the use of RadioButton controls, allowing the

user to choose either a pizza or a calzone, but not both. Table 3-11 shows important proper-

ties of the RadioButton control.

 TABLE 3-11 Important Properties of the RadioButton Control

 PROPERTY DESCRIPTION

 CHECKED Indicates whether the RadioButton is selected

 Text The text displayed next to the radio button

 You can determine if a particular RadioButton is selected by accessing the Checked prop-

erty, which returns True if selected.

 All RadioButton controls in a given container control are exclusive of one another. That

means that if one RadioButton control is selected, the others will all be cleared. This has the

net effect of allowing the user to choose only one of a group of options.

 If you want to have several exclusive groups of RadioButton controls, the most common

method is to group them in a GroupBox control. Each group of RadioButton controls in a

particular GroupBox will be exclusive of one another but unaffected by other RadioButton

controls in other GroupBox containers. An example of RadioButton controls in GroupBox con-

tainers is shown in Figure 3-8.

 FIGURE 3-8 Example of grouped RadioButton controls

 Lesson 2: Creating and Confi guring Value-Setting, Date-Setting, and Image-Display Controls CHAPTER 3 111

 The TrackBar Control
 The TrackBar control provides a simple interface that allows the user to set a value from

a predetermined range of values by graphically manipulating a slider with the mouse or

keyboard commands. This allows the user to rapidly set a value from a potentially very large

range. Table 3-12 shows important properties of the TrackBar control.

 TABLE 3-12 Important Properties of the TrackBar Control

 PROPERTY DESCRIPTION

LargeChange The number of positions the slider moves in response to mouse

clicks or the Page Up and Page Down keys

 Maximum The maximum value for the TrackBar

 Minimum The minimum value for the TrackBar

 SmallChange The number of positions the slider moves in response to arrow

key keystrokes

 TickFrequency The number of positions between tick marks on the TrackBar

 TickStyle Indicates where ticks appear on the TrackBar

 Value The value returned by the TrackBar

 The Trackbar control is shown in Figure 3.9.

 FIGURE 3-9 The TrackBar control

 The TrackBar control can return an integer value in any range between the values of the

Minimum and Maximum properties. The user can set this value by manipulating the graphical

slider on the track bar. Clicking the control or using the Page Up and Page Down keys while

the control is selected causes the value to change by the increment set in the LargeChange

property. Using the arrow keys while the control is selected causes the value to change by the

increment set in the SmallChange property. The user can also grab the slider with the mouse

and adjust it to whatever value is needed. The Value property indicates the current value of

the track bar.

 112 CHAPTER 3 Advanced Windows Forms Controls

 Choosing Dates and Times
 User interfaces frequently require that the user be allowed to set a date or time. For example,

an application that allowed a user to make a reservation would require that a date for the res-

ervation be entered. Visual Studio provides two controls that enable date and time choosing:

the DateTimePicker and the MonthCalendar.

 DateTimePicker Control
 The DateTimePicker control allows the user to set a date, a time, or both, in an easy-to-

 understand graphical interface. The interface is similar to a ComboBox control. The user can

click the drop-down box to display a calendar interface that allows the user to choose a day

from a calendar or type a time into the text area in the DateTimePicker. The chosen day or

time is then displayed in the text area of the DateTimePicker, and the Value property is set to

the chosen DateTime. Table 3-13 shows important properties of the DateTimePicker control.

 TABLE 3-13 Important Properties of the DateTimePicker Control

 PROPERTY DESCRIPTION

 CustomFormat The custom DateTime format to be used when the Format property is

set to Custom.

 Format Sets the format for the DateTime format that is displayed in the

DateTimePicker. Can be set to Long, which displays the value in long

date format; Short, which displays the value in short date format; Time,

which displays the time only; or Custom, which uses the custom Date-

Time format indicated by the CustomFormat property.

 MaxDate The maximum DateTime value the DateTimePicker will accept.

 MinDate The minimum DateTime value the DateTimePicker will accept.

 Value The DateTime value that the DateTimePicker is currently set to.

 When the Format property is set to Long or Short, only the date is displayed and the date

can be set only through the graphical interface. When the Format property is set to Time,

the user can type a new time value into the text area of the DateTimePicker. The user can still

choose a day through the drop-down interface. Although this day is refl ected in the Value

property, it is not displayed when the Format property is set to Time.

 MonthCalendar Control
 The MonthCalendar control is a highly confi gurable control that allows the user to select a

range of dates in a highly intuitive interface. Table 3-14 shows the important properties of the

MonthCalendar control.

 Lesson 2: Creating and Confi guring Value-Setting, Date-Setting, and Image-Display Controls CHAPTER 3 113

 TABLE 3-14 Important Properties of the MonthCalendar Control

 PROPERTY DESCRIPTION

 AnnuallyBoldedDates Contains an array of dates and times that will appear bold

every year

 BoldedDates Contains an array of dates and times that will appear bold

 FirstDayOfWeek Determines which day of the week is set as the fi rst day of the

week in the MonthCalendar control

 MaxDate Sets the maximum date that can be chosen in the MonthCalendar

 MinDate Sets the minimum date that can be chosen in the MonthCalendar

 MaxSelectionCount Sets the maximum number of days that can be selected in the

MonthCalendar

 MonthlyBoldedDates Contains an array of dates and times that will appear bold every

month in the MonthCalendar

 SelectionEnd Indicates the ending date and time of the SelectionRange

property

 SelectionRange Contains the range of dates selected by the user

 SelectionStart Indicates the starting date and time of the SelectionRange

property

 The user can select a single date by clicking a date in the MonthCalendar or a continuous

range of dates by holding down the Shift key while clicking the starting date and the ending

date. The range of dates selected cannot be a greater number of days than the MaxSelection-

Count property indicates.

 At run time you can retrieve the selected dates by accessing the SelectionStart and Selec-

tionEnd properties, which expose the Start and End properties of the SelectionRange prop-

erty. The following example demonstrates how to access the SelectionStart and SelectionEnd

properties:

 ' VB

MsgBox("Your vacation starts on " & _

 MonthCalendar1.SelectionStart.ToLongDateString & _

 " and ends on " & MonthCalendar1.SelectionEnd.ToLongDateString)

// C#

MessageBox.Show("Your vacation starts on " +

 monthCalendar1.SelectionStart.ToLongDateString() + " and ends on " +

 monthCalendar1.SelectionEnd.ToLongDateString());

 114 CHAPTER 3 Advanced Windows Forms Controls

 Working with Images
 Images allow you to liven up your user interface as well as provide important information to

the user. Visual Studio contains several components and controls that facilitate the display of

images. The PictureBox control is an all-around control that displays pictures in different for-

mats. The ImageList manages and organizes a collection of images and can be used to display

images in ListView or to organize images for other controls.

 PictureBox Control
 The PictureBox control is the basic control used for displaying images in the user interface.

The PictureBox control can display pictures in a variety of formats, including .bmp, .jpg, .gif,

metafi les, and icons. You can display images that are present in application resource fi les or

compiled into the application, or you can load images from a Web or disk address. Table 3-15

describes important properties of the PictureBox control.

 TABLE 3-15 Important Properties of the PictureBox Control

 PROPERTY DESCRIPTION

 ErrorImage The image that will be displayed if the selected image fails to load

 Image The image to be loaded in the PictureBox

 ImageLocation A Web or disk address to load the image from

 InitialImage The image to be displayed in the PictureBox while the image is loading

 SizeMode Determines how the control handles image placement and sizing

 You can set the Image property at design time by clicking it in the Properties window,

which opens the Select Resource dialog box, shown in Figure 3-10.

 You can select an image resource that is already present in a project resource fi le by

selecting the Project Resource File radio button and selecting the .resx fi le that contains the

image. Or you can import a new image into a resource fi le by clicking the Import button and

navigating to the image you want to import. The selected image is added to the selected

.resx fi le. You can also import the image as a local resource by selecting the Local Resource

radio button and clicking the Import button to browse to the image you want to import.

Importing an image as a local resource makes it available only to the PictureBox control and

unavailable to the rest of the application.

 Instead of loading an image from a resource, you can specify a URL from which to load an

image by setting the ImageLocation property. When the ImageLocation property is set, the

image is loaded from the specifi ed address and the Image property is set to that image.

 Lesson 2: Creating and Confi guring Value-Setting, Date-Setting, and Image-Display Controls CHAPTER 3 115

 FIGURE 3-10 The Select Resource dialog box

 At run time you can set the Image property to an instance of an image, as shown in the

following example:

' VB

Dim anImage As New System.Drawing.Bitmap("C:\anImage.bmp")

PictureBox1.Image = anImage

// C#

System.Drawing.Bitmap anImage = new

 System.Drawing.Bitmap(@"C:\anImage.bmp");

pictureBox1.Image = anImage;

 ImageList Component
 The ImageList component is not a control as such, but it is a component that allows you to

organize groups of images. Although it has no visual representation itself, it can supply images

to other controls, such as a ListView, or serve as a repository for images to be loaded into a

picture box. You can set the size and color depth for the images and iterate through them as

you would a collection. Table 3-16 shows important properties of the ImageList component.

TABLE 3-16 Important Properties of the ImageList Component

 PROPERTY DESCRIPTION

 ColorDepth Sets the color depth for the images contained in the ImageList component

 Images The collection of images organized by the ImageList component

 ImageSize Sets the size for the images contained in the ImageList control

 116 CHAPTER 3 Advanced Windows Forms Controls

 You can add new items to the ImageList control by clicking the Images property in the

Properties window. This opens the Images Collection Editor, shown in Figure 3-11.

FIGURE 3-11 The Image Collection Editor

 You can use the Images Collection Editor to add or remove images. You can also use it to

change their order. Once you have added images to the ImageList component, you can set

the color depth for each image by setting the ColorDepth property and you can set all of the

images to a specifi ed size by setting the ImageSize property.

 At run time you can access the images contained in the ImageList by means of the Images

collection, as shown in the following example:

 ' VB

PictureBox1.Image = ImageList1.Images(0)

// C#

pictureBox1.Image = imageList1.Images[0];

 You can use ImageList components to provide images to other controls in your user

interface. Several controls, such as Button, CheckBox, RadioButton, and others, host ImageList,

ImageKey, and ImageIndex properties. You can provide images from an ImageList component

to these controls by setting these properties.

 TO PROVIDE AN IMAGE TO A CONTROL FROM AN IMAGELIST COMPONENT

 1. Set the ImageList property of the control to the ImageList component that hosts the

image you want to provide.

 2. Set either the ImageIndex property or the ImageKey property to the appropriate image

in the ImageList.

 Lesson 2: Creating and Confi guring Value-Setting, Date-Setting, and Image-Display Controls CHAPTER 3 117

Quick Check

 1. What is the difference between how a RadioButton control and a CheckBox con-

trol are used?

 2. What is the purpose of an ImageList control and how is it used?

Quick Check Answers

 1. Radio buttons allow the user to choose a single option from a set of mutually

exclusive options. Checkbox controls allow the user to select multiple options,

usually without regard to whether any other options in the group are selected.

 2. An ImageList control is used to organize a set of related images. An ImageList

is generally used to provide images to the controls on a form. You can set the

ImageList property of the controls on a form to an instance of the ImageList and

then set either the ImageIndex or the ImageKey property to specify the image.

LAB Adventure Works Ski Instructor Reservation Form

In this lab, you will build on the solution you created in the lab in Lesson 1. You will add a

group of CheckBox controls to allow the user to indicate required ski rental equipment, a

group of RadioButton controls to allow the user to indicate his or her ski skill level, and an

ImageList component to integrate with the ListView control so the user will be able to see

faces to go with the names.

 EXERCISE 1 Adding to the Ski Instructor Reservation Form

 1. Open the solution you completed in Lesson 1 or open the Lesson 1 completed solution

from the CD.

 2. Open Form1 in Design view. Drag a GroupBox onto the form. Set the Text property of

the GroupBox to Rental Equipment.

 3. Drag three CheckBox controls into the GroupBox. Set the Text properties of the Check-

Box controls to Skis, Poles, and Boots.

 4. Drag a GroupBox onto the form. Set the Text property of the GroupBox to Skill Level.

 5. Drag three RadioButton controls into the GroupBox. Set the Text properties of the

RadioButton controls to Beginner, Intermediate, and Advanced.

 6. Drag a Label control and a DateTimePicker control onto the form. Set the Text property

of the Label to Select Lesson Time.

 7. Set the Format property of the DateTimePicker to Time.

 8. Drag an ImageList component from the Toolbox onto the form.

 9. In the Properties window, set the ImageSize property of the ImageList component to

32,32 and set the ColorDepth property to Depth16Bit.

Quick Check

1. What is the difference between how a RadioButton control and a CheckBox con-x

trol are used?

2. What is the purpose of an ImageList control and how is it used?t

Quick Check Answers

1. Radio buttons allow the user to choose a single option from a set of mutually

exclusive options. Checkbox controls allow the user to select multiple options,x

usually without regard to whether any other options in the group are selected.

2. An ImageList control is used to organize a set of related images. An t ImageList

is generally used to provide images to the controls on a form. You can set the

ImageList property of the controls on a form to an instance of thet ImageList andt

then set either the ImageIndex or thex ImageKey property to specify the image.y

Q

 118 CHAPTER 3 Advanced Windows Forms Controls

 10. In the Properties window, click Images to add four images to the ImageList component.

You will fi nd sample images on the Companion CD in the Images subfolder of the Code

folder.

 11. In the Designer, select the ListView control. In the Properties window, set the Small-

ImageList property to ImageList1.

 12. In the Properties window, click Items to open the ListViewItem Collection Editor. In the

ListViewItem Collection Editor, set the ImageIndex property for ListViewItems 0,1,2,

and 3 to 0,1,2, and 3, respectively. Images should now display next to the icons in the

ListView control.

 13. Press F5 to build and test your application.

 Lesson Summary
Q The CheckBox control allows users to select options nonexclusively. You can use groups

of CheckBox controls to allow the user to select multiple options.

Q The RadioButton control allows you to present a group of exclusive options to the user.

You can use groups of RadioButton controls to present a list of options, only one of

which can be chosen.

Q The TrackBar control allows the user to rapidly and graphically set a numeric value by

adjusting a slider with mouse or keyboard commands.

Q The DateTimePicker control allows the user to set a date or time. When set to Time

format, times can be typed into the DateTimePicker. Days can be chosen from the

drop-down calendar interface.

Q The MonthCalendar control is a highly confi gurable control that allows the user to

select a range of dates from an intuitive user interface. You can confi gure bold dates

and set the maximum length of the date range to be selected by the user.

Q The PictureBox control is an all-purpose control for displaying images in the user inter-

face. It can display images in a variety of formats. The ImageList component organizes

a collection of images and can set images to a common size and color depth.

 Lesson 2: Creating and Confi guring Value-Setting, Date-Setting, and Image-Display Controls CHAPTER 3 119

Lesson Review
The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. Which of the following are possible values for the Checked property of a CheckBox

control? (Choose all that apply.)

A. Checked

B. False

C. Indeterminate

D. Unchecked

E. True

F. NotChecked

 2. You are designing an application that asks the user to select a period ranging from

one day to seven days in a given month. Which of the following confi gurations for a

MonthCalendar control are best choices to facilitate this functionality? (Choose all that

apply.)

A. Set the MaxSelectionCount property to 7.

 B. Set the SelectionRange property to the fi rst and last days of the month in question.

C. Set the MaxDate property to the last day of the month in question.

D. Set the MinDate property to the fi rst day of the month in question.

 3. Which of the following code examples correctly associates an image from an ImageList

component with a Button control? Assume an ImageList component named ImageList1

and a Button control named Button1. (Choose all that apply.)

A. ' VB

Button1.Image = ImageList1

// C#

button1.Image = imageList1;

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 120 CHAPTER 3 Advanced Windows Forms Controls

 B. ' VB

Button1.ImageList = ImageList1

Button1.ImageKey = ImageList1.Images(0)

// C#

button1.ImageList1 = imageList1;

button1.ImageKey = imageList1.Images(0);

 C. ' VB

Button1.ImageList = ImageList1

Button1.ImageIndex = 0

// C#

button1.ImageList = imageList1;

button1.ImageIndex = 0;

 D. ' VB

Button1.ImageList = ImageList1

Button1.ImageKey = "myImage"

// C#

button1.ImageList = imageList1;

button1.ImageKey = "myImage";

Lesson 3: Confi guring the WebBrowser Control and
the NotifyIcon Component and Creating Access Keys

Visual Studio provides several ways to extend the user interface. The WebBrowser control pro-

vides an all-purpose control for viewing HTML fi les and loading content from the World Wide

Web. The NotifyIcon component allows you to notify users when processes are running in the

background, and access keys provide additional options to the user for navigating between

controls.

After this lesson, you will be able to:

Q Confi gure properties and use methods of the WebBrowser control.

Q Add application icons to the task bar with NotifyIcon.

Q Associate a context menu with a NotifyIcon component.

Q Create an access key for a control.

 Estimated lesson time: 30 minutes

 The WebBrowser Control
 The WebBrowser control provides all of the functionality required to load and display HTML

pages and other fi le types, as well as the functionality needed to navigate to locations on the

World Wide Web. You can confi gure the WebBrowser to expose online help for your applica-

tion, to load and print documents, or to display fi les in a variety of formats. Table 3-17 shows

important properties of the WebBrowser control.

 TABLE 3-17 Important Properties of the WebBrowser Control

 PROPERTY DESCRIPTION

 AllowWebBrowserDrop Determines if documents dropped into the WebBrowser

control are automatically opened

 CanGoBack Returns whether the WebBrowser control is able to navi-

gate backward

 CanGoForward Returns whether the WebBrowser control is able to navi-

gate forward

 Document Returns the current HTML document in the WebBrowser

control

 DocumentStream Returns the stream associated with the current document

 DocumentText Returns a string representation of the current document

 DocumentTitle Returns the title of the current document

After this lesson, you will be able to:

Q Confi gure properties and use methods of the WebBrowser control.r

Q Add application icons to the task bar with NotifyIcon.

Q Associate a context menu with a NotifyIcon component.

Q Create an access key for a control.

Estimated lesson time: 30 minutes

 Lesson 3: Confi guring the WebBrowser Control and the NotifyIcon Component and Creating Access Keys CHAPTER 3 121

 122 CHAPTER 3 Advanced Windows Forms Controls

 PROPERTY DESCRIPTION

 DocumentType Returns the type of the current document

 IsOffl ine Returns whether the system is offl ine

 IsWebBrowserContextMenu-

Enabled

Determines if the standard Microsoft Internet Explorer

context menu is enabled for the WebBrowser

 ScriptErrorsSuppressed Determines whether script errors that occur in the docu-

ment are suppressed or shown in a dialog box

 ScrollBarsEnabled Determines whether scrollbars are enabled for the control

 URL Gets or sets the URL for the current document

 WebBrowserShortcutsEnabled Gets or sets whether standard Internet Explorer keyboard

shortcuts are enabled for the WebBrowser

The WebBrowser control also contains a variety of methods that enable navigation within

the WebBrowser. Table 3-18 describes important methods of the WebBrowser control.

 TABLE 3-18 Important Methods of the WebBrowser Control

 METHOD DESCRIPTION

 GoBack Navigates to the previous page in the navigation history if

one is available

 GoForward Navigates to the next page in the navigation history if one

is available

 GoHome Navigates to the browser’s home page

 GoSearch Navigates to the browser’s search page

 Navigate Navigates to the specifi ed URL

 Print Prints the current document

 ShowPageSetupDialog Displays the Internet Explorer page setup dialog box

 ShowPrintDialog Displays the Internet Explorer print dialog box

 ShowPrintPreviewDialog Displays the Internet Explorer print preview dialog box

 ShowPropertiesDialog Displays the Internet Explorer properties dialog box

 ShowSaveAsDialog Displays the Internet Explorer Save As dialog box if the

document is of a type other than an HTML page

 Stop Cancels any pending navigation and stops any dynamic

page elements

 Navigating the Web with the WebBrowser Control

 The WebBrowser control provides methods that enable navigation of the Web in your

application. The primary method for navigation is the Navigate method. This method takes a

string argument that indicates the URL for the document to be loaded into the WebBrowser

control. The following example demonstrates the Navigate method:

' VB

WebBrowser1.Navigate("www. Microsoft.com")

// C#

webBrowser1.Navigate("www. Microsoft.com");

 Once navigation is complete, the WebBrowser control raises the DocumentCompleted

event. By handling this event, you can execute code after the document has loaded.

 You can use other methods of the WebBrowser control to access your document history.

The GoBack method navigates to the previous page in the document history, and the GoFor-

ward method navigates to the next page in the document history. If no page is available in

the document history, there is no effect.

 Working with Documents in the WebBrowser Control

 You can also use the Navigate method to load other documents into the WebBrowser control.

The following example demonstrates how to load a Microsoft Offi ce Word document into the

WebBrowser control:

 ' VB

WebBrowser1.Navigate("C:\Test.doc")

// C#

webBrowser1.Navigate(@"C:\Test.doc");

 When working with documents in the WebBrowser control, you can allow the user to save

the document by using the ShowSaveAsDialog method. This method displays the Save As

dialog box and allows the user to choose a format to save the document.

 You can also use the WebBrowser control for printing documents. You can call the

ShowPrintDialog and ShowPrintPreview methods to enable printing of the document. These

methods show the Print dialog box and the Print Preview dialog box, respectively, and allow

the user to continue on to printing the document.

 The NotifyIcon Component
 The NotifyIcon component is not a control but a component that represents an icon that

appears in the system tray. The NotifyIcon component is usually used with applications that

run in the background. They can provide information about the program execution by dis-

playing balloon tips, and you can associate a ContextMenuStrip with the NotifyIcon to allow

 Lesson 3: Confi guring the WebBrowser Control and the NotifyIcon Component and Creating Access Keys CHAPTER 3 123

 124 CHAPTER 3 Advanced Windows Forms Controls

the user to execute commands from a context menu. Table 3-19 shows important properties

of the NotifyIcon component.

 TABLE 3-19 Important Properties of the NotifyIcon Component

 PROPERTY DESCRIPTION

 BallonTipIcon The icon that will be shown in the balloon tip. This property can be

set to None, which displays no icon, or to Info, Warning, or Error.

 BalloonTipText Sets the text that is displayed in the balloon tip.

 BalloonTipTitle Sets the title of the balloon tip.

 ContextMenuStrip Gets or sets the ContextMenuStrip associated with the NotifyIcon.

 Icon The icon that is shown in the system tray.

 Text The text that is shown when the user’s mouse rests on the icon in

the system tray.

 Visible Indicates whether the icon is visible in the system tray.

 To display a NotifyIcon in the system tray, you must set the Icon property to the icon you

want to display and set the Visible property to True. You can add icons to your project by cre-

ating a new instance of the System.Drawing.Icon class or by adding existing icon fi les to your

project by choosing Add Existing Item from the Project menu.

 The NotifyIcon component contains properties that govern the display of the balloon tip.

You can use the balloon tip to display information to the user. You can set the Icon, Text, and

Title of the balloon tip by setting the BalloonTipIcon, BalloonTipText, and

BalloonTipTitle properties, respectively. After the appropriate properties are set, you can dis-

play the balloon tip by calling the ShowBalloonTip method. The ShowBalloonTip method takes

a parameter that indicates the number of seconds that the balloon tip is shown. Following is

an example of the ShowBalloonTip method:

 ' VB

NotifyIcon1.ShowBalloonTip(12)

// C#

notifyIcon1.ShowBalloonTip(12);

 You can associate a ContextMenuStrip with the NotifyIcon component to allow users to

execute commands from the menu by right-clicking the icon. You can associate a Context-

MenuStrip with the NotifyIcon component by clicking the ContextMenuStrip property in the

Properties window and setting the property to a ContextMenuStrip in your solution. Creating

ContextMenuStrips will be discussed in detail in Chapter 4, “ToolStrips, Menus, and Events.”

Creating Access Keys
Access keys enable the user to move the focus to a particular control by pressing the Alt key

and the access key you have defi ned for a particular control. In Chapter 2 you learned how

to use a Label control to create an access key for another control. The following procedure

describes how to create access keys for individual controls.

NOTE CREATING AN ACCESS KEY FOR A CONTROL

To create an access key for a control with this procedure, the control must be capable of

receiving the focus, it must have a Text property, and it must have a UseMnemonic prop-

erty. If the control you want to create an access key for can receive the focus but does not

have a UseMnemonic property, use the procedure described in Chapter 2. If the control

cannot receive the focus, you cannot create an access key for it by any procedure.

TO CREATE AN ACCESS KEY FOR A CONTROL

 1. Set the Text property to the text you want the control to display.

 2. In the Text property, prepend the letter that you want to make the access key with the

ampersand (&) symbol.

 3. In the Properties window, set the UseMnemonic property to True. The letter preceded

by the ampersand symbol appears underlined, and at run time the user is able to shift

the focus to the control by pressing the Alt key along with the underlined key.

Quick Check

Q What is the purpose of access keys?

Quick Check Answer

Q Access keys allow you to provide keyboard shortcuts that move the focus to

the control that the access key is associated with.

LAB Creating a Web Browser

In this lab, you will create a limited but functional Web browser. You will add controls to facili-

tate backward and forward navigation, as well as allowing a user to type a URL and navigate

to the specifi ed location.

EXERCISE 1 Creating a Web Browser

 1. In Visual Studio, start a new Windows Forms project.

 2. In the Properties window for Form1, set the Size property to 600;400.

 3. From the Toolbox, drag a SplitContainer onto the form.

NOTE CREATING AN ACCESS KEY FOR A CONTROL

To create an access key for a control with this procedure, the control must be capable of

receiving the focus, it must have a Text property, and it must have a t UseMnemonic prop-c

erty. If the control you want to create an access key for can receive the focus but does not

have a UseMnemonic property, use the procedure described in Chapter 2. If the control c

cannot receive the focus, you cannot create an access key for it by any procedure.

Quick Check

Q What is the purpose of access keys?

Quick Check Answer

Q Access keys allow you to provide keyboard shortcuts that move the focus to

the control that the access key is associated with.

Q

 Lesson 3: Confi guring the WebBrowser Control and the NotifyIcon Component and Creating Access Keys CHAPTER 3 125

 126 CHAPTER 3 Advanced Windows Forms Controls

 4. From the Toolbox, drag a WebBrowser control onto Panel2.

 5. From the Toolbox, drag three Button controls and a TextBox control onto Panel1.

 6. Set the Text property of the Button controls to &Back, &Forward, and &Navigate.

 7. Set the UseMnemonic property of each Button control to True.

 8. Select the SplitContainer. In the Properties window, set the Orientation property to

Horizontal and adjust the size of Panel1 so that just the buttons are showing. Set the

FixedPanel property to Panel1.

 9. In the Designer, double-click the Back button to open the Button_Click event handler

for this button. Add the following line of code:

 ' VB

WebBrowser1.GoBack()

// C#

webBrowser1.GoBack();

 10. In the Designer, double-click the Forward button to open the Button_Click event han-

dler for this button. Add the following line of code:

 ' VB

WebBrowser1.GoForward()

// C#

webBrowser1.GoForward();

 11. In the Designer, double-click the Navigate button to open the Button_Click event han-

dler for this button. Add the following line of code:

 ' VB

WebBrowser1.Navigate(TextBox1.Text)

// C#

webBrowser1.Navigate(textBox1.Text);

 12. Press F5 to build and test your application.

 Lesson Summary
Q The WebBrowser control encapsulates all of the functionality necessary to access the

Internet and load a variety of document types. It contains methods that facilitate navi-

gation of the World Wide Web and the fi le system.

Q The NotifyIcon component allows you to set an icon in the system tray and provide

notifi cations to users regarding processes running in the background. You can display

messages to the user through balloon tips and enable commands by associating a

ContextMenuStrip with the NotifyIcon.

Q You can use the Text and UseMnemonic properties to defi ne access keys for controls

that can receive the focus. Only controls that are capable of receiving the focus can

have access keys defi ned for them. If a control can receive the focus but does not have

Text or UseMnemonic properties, you can defi ne an access key with a Label control, as

described in Chapter 2.

Lesson Review
The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. Which of the following methods can be used to print the current document in a Web-

Browser control? (Choose all that apply.)

A. WebBrowser.Print

B. WebBrowser.ShowPrintDialog

C. WebBrowser.ShowPrintPreviewDialog

D. WebBrowser.ShowPropertiesDialog

 2. You are designing an application that runs in the background and want to enable the

application to notify the user when a severe error occurs. Which of the following prop-

erties of the NotifyIcon component can facilitate this functionality? (Choose all that

apply.)

A. BalloonTipIcon

B. BalloonTipText

C. BalloonTipTitle

D. Text

 3. Which of the following are required to create an access key for a control without using

an associated label? (Choose all that apply.)

 A. The Enabled property must be set to True.

 B. The control must have a Text property.

 C. The UseMnemonic property must be set to True.

 D. The control must be of a type that is able to receive the focus.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 Lesson 3: Confi guring the WebBrowser Control and the NotifyIcon Component and Creating Access Keys CHAPTER 3 127

 128 CHAPTER 3 Advanced Windows Forms Controls

 Chapter Review

 To further practice and reinforce the skills you learned in this chapter, you can perform the

following tasks:

Q Review the chapter summary.

Q Review the list of key terms introduced in this chapter.

Q Complete the case scenarios. These scenarios set up real-world situations involving the

topics of this chapter and ask you to create a solution.

Q Complete the suggested practices.

Q Take a practice test.

 Chapter Summary
Q List-based controls are used to organize and present lists of information to the user.

Basic list-based controls, such as ListBox, ComboBox, and CheckedListBox, organize their

contents in the Items property, which exposes common methods for adding, removing,

and otherwise manipulating contained items.

Q Specialized list-based controls, such as ListView and TreeView, are designed to fi ll

specifi c roles. The ListView control allows you to display icons and other information

about its contained members. The TreeView control displays contained members in a

hierarchical tree display that the user can expand or collapse as needed.

Q Value-setting controls allow the user to set a value through the user interface. Check-

Box and RadioButton controls set Boolean values for their Checked property, allowing

the user to choose yes or no to a set of presented options.

Q The ImageList component organizes images and makes them available to controls in

the application. Controls that expose an ImageList property can reference a given

image list and display contained images.

Q The WebBrowser control is an all-purpose control for browsing the Web and fi le sys-

tem. It allows you to work with a variety of document types and contains methods that

facilitate navigation, printing, and saving documents.

Q The NotifyIcon component can display information about a process that is running in

the background. You can display information by setting the BalloonTip properties and

showing the balloon tip. You can expose commands to the user by associating a

ContextMenuStrip with the NotifyIcon component.

Q You can use the Text and UseMnemonic properties to designate access keys for a

control. Any control that can receive the focus and has Text and UseMnemonic proper-

ties can defi ne its own access key. If a control can receive the focus but does not have

Text or UseMnemonic properties, you can defi ne an access key using a Label control as

shown in Chapter 2.

 Chapter Review CHAPTER 3 129

 Key Terms
 Do you know what these key terms mean? You can check your answers by looking up the

terms in the glossary at the end of the book.

Q access keys

Q list

Q list-based control

Q value-setting control

 Case Scenarios
 In the following case scenarios, you will apply what you’ve learned about how to use controls

to design user interfaces. You can fi nd answers to these questions in the “Answers” section at

the end of this book.

 Case Scenario 1: Incorporating List-Based Controls into the User

Interface

 Humongous Insurance has grown so large that it needs some help keeping track of its

employees. You have been put on the team that will design the new human resources appli-

cation. Other developers will supply a programmatic representation of the organization chart

and a database of information about the employees. Your job is to create a user interface

that allows the user to browse the organization chart and allows additional information about

each employee to be displayed in the user interface.

 QUESTIONS

 Answer the following questions for your manager:

 1. What is your suggested control layout for the user interface? How will you be able to

display the organization chart in a compact, easy-to-browse format?

 2. How can we display photos of our employees as part of this application?

 Case Scenario 2: Working with Files and Background Processes

 As part of its document backup plan, Humongous Insurance has created an automated

program that reads its electronic documents in a variety of different formats (such as .doc,

.txt, and .htm), saves them to a backup location, and prints a hard copy on a high-throughput

printer. For the most part, this application works fi ne without user interaction and displays no

user interface. Occasionally, however, a problem occurs with a document that requires user

intervention. You have been put in charge of designing the user interface for the rare occa-

sions that do arise.

 130 CHAPTER 3 Advanced Windows Forms Controls

TECHNICAL REQUIREMENTS

Q The user interface must display only when there is a problem and cannot be launched

without action by a user.

Q The user must be able to examine the document and manually save and print it.

 QUESTIONS

 Answer the following questions for your manager:

 1. How can we warn the user of a problem without displaying the user interface at all

times? How will we allow the user to launch a user interface when there is a problem?

 2. When there is a problem, how can we design the user interface so that the user is able

to examine, print, and save individual fi les?

 Suggested Practices

 To master the Add and Confi gure a Windows Forms Control exam objective, complete the

following practices, as well as the practices in Chapter 2.

Q Practice 1 Build an application that duplicates the functionality of Windows Explorer.

You should be able to display a directory tree in one pane and fi les in a particular

directory in another pane.

Q Practice 2 Build an application that acts like an appointment book. It should allow

the user to choose a date and time, add information about the appointment, track and

display details about the appointment, and visually display to the user on a Month-

Calendar control what days have appointments set.

Q Practice 3 Expand the Web browser you created in Lesson 3, “Confi guring the Web-

Browser Control and the NotifyIcon Component and Creating Access Keys,” to disable

the Back and Forward buttons if webBrowser1.CanGoBack or webBrowser1.CanGo-

Forward are False. You can do this by handling the WebBrowser.CanGoBackChanged

and WebBrowser.CanGoForwardChanged events. Also, allow the user to navigate to a

page by typing an address in the TextBox control and pressing Enter.

 Take a Practice Test CHAPTER 3 131

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you can test

yourself on just the content covered in this chapter, or you can test yourself on all the 70-505

certifi cation exam content. You can set up the test so that it closely simulates the experience

of taking a certifi cation exam, or you can set it up in study mode so that you can look at the

correct answers and explanations after you answer each question.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see the “How to Use the Practice

Tests” section in this book’s Introduction.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see the “How to Use the Practice

Tests” section in this book’s Introduction.

 CHAPTER 5 181

 C H A P T E R 5

 Confi guring Connections and
Connecting to Data

 Typically, most real-world applications use databases as a store for the data in that

application. For example, inventory systems, contact management systems, and airline

reservation systems store data in a database and then retrieve the necessary records into

the application as needed. In other words, the data that an application uses is stored in

a database external to the actual application, and it is retrieved into the application as

required by the program.

 When creating applications that work with data, the Microsoft .NET Framework pro-

vides many classes that aid in the process. The classes that you use for common data tasks,

such as communicating, storing, fetching, and updating data, are all located in the System.

Data namespace. The classes in the System.Data namespace make up the core data access

objects in the .NET Framework. These data access classes are collectively known as ADO.

NET.

 Before you can begin working with data in an application, you must fi rst establish and

open a connection to communicate with the desired data source. This chapter describes

how to create the various connection objects that are used to connect applications to dif-

ferent data sources and sets the basis for working with data in the following chapters. After

learning to establish connections to databases in this chapter, we will move on to Chapter 6,

“Working with Data in a Connected Environment,” which provides instructions for running

queries, saving data, and creating database objects directly between your application and

a database. Chapter 7, “Create, Add, Delete, and Edit Data in a Disconnected Environment,”

describes how to create DataSet and DataTable objects that allow you to temporarily store

data while the data is being used in a running application. Finally, Chapter 8, “Implementing

Data-Bound Controls,” provides information on binding data to be displayed and worked

with in Windows Forms controls.

 Typically, data sources are relational databases like Microsoft SQL Server and Oracle, but

you can also connect to data in fi les such as Microsoft Offi ce Access (.mdb) and SQL Server

(.mdf) database fi les. The connection object you use is based on the type of data source

your application needs to communicate with.

 182 CHAPTER 5 Confi guring Connections and Connecting to Data

 Exam objectives in this chapter:

Q Manage connections and transactions.

Q Confi gure a connection to a database using the Data Source Confi guration Wizard.

Q Confi gure a connection to a database using Server Explorer.

Q Confi gure a connection to a database using the Connection class.

Q Connect to a database using specifi c database connection objects.

Q Enumerate instances of SQL Server.

Q Open an ADO.NET connection to a database.

Q Close an ADO.NET connection to a database by using the Close method of the

connection object.

Q Protect access to the connection details of a data source.

Q Create a connection designed for reuse in a connection pool.

Q Control a connection pool by confi guring ConnectionString values based on

database type.

Q Use the Connection events to detect database information.

Q Handle exceptions when connecting to a database.

 Lessons in this chapter:

Q Creating and Confi guring Connection Objects 184

Q Connecting to Data Using Connection Objects 195

Q Working with Connection Pools 208

Q Handling Connection Errors 214

Q Enumerating the Available SQL Servers on a Network 219

Q Securing Sensitive Connection String Data 223

 Before You Begin CHAPTER 5 183

Before You Begin

To complete the lessons in this chapter, you must have:

Q A computer that meets or exceeds the minimum hardware requirements listed in the

“Introduction” at the beginning of the book.

Q Microsoft Visual Studio 2008 Professional Edition installed on your computer.

Q An understanding of Microsoft Visual Basic or C# syntax and familiarity with the .NET

Framework.

Q A basic understanding of relational databases.

Q Available data sources, including SQL Server 2005 or later (SQL Server 2005 Express

Edition or later is acceptable), the Northwind sample database for SQL Server, and the

Nwind.mdb Access database fi le. Directions for setting up the sample databases are

located in the Setting up Sample Databases Read Me fi le on the companion CD.

 REAL WORLD

Steve Stein

 At a previous employer, I was responsible for extracting data from an arcane

proprietary database that was virtually impossible to connect to directly.

As a result, time-consuming reports were periodically generated that were then

imported into a workable database management system for further processing.

Thinking back, I realize how much easier life would have been if I had been able to

spin up a connection object and communicate directly with the data source with-

out the need for the intermediary process of creating reports and exporting and

importing data.

REAL WORLD

Steve Stein

At a previous employer, I was responsible for extracting data from an arcane

proprietary database that was virtually impossible to connect to directly.

As a result, time-consuming reports were periodically generated that were then

imported into a workable database management system for further processing.

Thinking back, I realize how much easier life would have been if I had been able to

spin up a connection object and communicate directly with the data source with-

out the need for the intermediary process of creating reports and exporting and

importing data.

 184 CHAPTER 5 Confi guring Connections and Connecting to Data

Lesson 1: Creating and Confi guring Connection
Objects

This lesson describes the two ways to create and confi gure connection objects:

Q Through a user interface (UI), using the Add Connection dialog box

Q Programmatically, by handcrafting the objects in code

Whether you choose to create connections through the UI or programmatically, the result

is the same—a confi gured connection object ready to open a connection and communicate

with your data source. For this lesson, we will focus only on creating connection objects as

opposed to actually connecting and communicating with a data source. In Lesson 2, “Con-

necting to Data Using Connection Objects,” we will move on to the next level to open the

connection and retrieve information from the data source.

After this lesson, you will be able to:

Q Confi gure a connection to a database using the Server Explorer.

Q Confi gure a connection to a database using the Data Source Confi guration

Wizard.

Q Confi gure a connection to a database using the Connection class.

Q Connect to a database using specifi c database connection objects.

Estimated lesson time: 30 minutes

What Is a Connection Object?
A connection object is simply a representation of an open connection to a data source. The

easiest way to describe a connection object is, fi rst, to explain what a connection object is

not! A connection object does not fetch or update data, it does not execute queries, and it

does not contain the results of queries. It is merely the pipeline through which commands and

queries send their SQL statements and receive results. Although connection objects typically

can be thought of as the place where you set your connection string, they have additional

methods for working with the connection, such as methods that open and close connections,

as well as methods for working with connection pools and transactions. Essentially, connec-

tion objects provide a conduit for sending commands to a database and retrieving data and

information into your application, as shown in Figure 5-1.

After this lesson, you will be able to:

Q Confi gure a connection to a database using the Server Explorer.

Q Confi gure a connection to a database using the Data Source Confi guration

Wizard.

Q Confi gure a connection to a database using the Connection class.

Q Connect to a database using specifi c database connection objects.

Estimated lesson time: 30 minutes

 Lesson 1: Creating and Confi guring Connection Objects CHAPTER 5 185

Information from

the data source

and returned data

Database

Command and

queries

Connection Object

 FIGURE 5-1 Connection objects are your application’s communication pipeline to a database

 Creating Connections in Server Explorer
 To simplify the process of creating applications that access data, Visual Studio provides the

Server Explorer window as a central location to manage data connections independent of any

actual projects. In other words, you can create data connections in Server Explorer and access

them in any project. Data connections created in Server Explorer are user-specifi c settings in

Visual Studio that display the connections each time you open Visual Studio (instead of creat-

ing connections as part of developing a specifi c application that stores them in that applica-

tion). Of course, you can create data connections as part of the development process from

within an open project, but that is covered in the next section.

 Creating Connections Using Data Wizards
 Visual Studio provides a few wizards that simplify the process of creating applications that

access data and that create data connections as a result of completing the wizards. The main

wizard for bringing data into an application is the Data Source Confi guration Wizard. When

you run the Data Source Confi guration Wizard and select the database path, you end up with

a confi gured connection object ready to use in your application. In addition to creating a

confi gured connection object, the Data Source Confi guration Wizard allows you to select the

database objects you want to use in your application.

 Creating Connection Objects Programmatically
 When you do not want to use the visual tools previously described and need to create your

connections manually, it is easy to create connection objects in code programmatically. The

fi rst step is to decide which type of connection object to create. The choice is fairly simple

because it depends on the back-end data source your application needs to communicate with.

 Table 5-1 lists the primary connection objects available in ADO.NET and the data sources

they are designed to access.

 186 CHAPTER 5 Confi guring Connections and Connecting to Data

 TABLE 5-1 Connection Objects

 NAME TARGET DATA SOURCE

 SqlConnection SQL Server 7.0 and later databases

 OleDbConnection OLE DB data sources (such as Offi ce Access databases through

Jet 4.0)

 OdbcConnection Open database connectivity (ODBC) data sources such as a

Data Source Name (DSN) as defi ned in the ODBC Data Source

Administrator dialog box

 OracleConnection Oracle 7.3, 8i, or 9i databases

 The properties, methods, and events associated with the connection objects in this table

vary because each connection object is designed to effi ciently connect and interact with its

respective data sources. However, each connection object contains the same base properties,

methods, and events that are inherited from the System.Data.Common.DbConnection class.

 Table 5-2 lists the properties common to all connection objects.

 TABLE 5-2 Connection Properties

 NAME DESCRIPTION

 ConnectionString Gets or sets the string used to open the connection.

 ConnectionTimeout Read only. Gets the time to wait while establishing a connection

before terminating the attempt and generating an error.

 Database Read only. Gets the name of the current database after a connec-

tion is opened or the database name specifi ed in the connection

string before the connection is opened.

 DataSource Read only. Gets the name of the database server to which it is

connected.

 ServerVersion Read only. Gets a string that represents the version of the server

to which the object is connected.

 State Read only. Gets a combination of System.Data.ConnectionState

values that describes the state of the connection.

 Table 5-3 lists the methods common to all connection objects.

 Lesson 1: Creating and Confi guring Connection Objects CHAPTER 5 187

 TABLE 5-3 Connection Methods

 NAME DESCRIPTION

 BeginDbTransaction Starts a database transaction.

 BeginTransaction Starts a database transaction.

 ChangeDatabase Changes the current database for an open connection.

 Close Closes the connection to the database. This is the preferred

method of closing any open connection.

 CreateCommand Creates and returns a System.Data.Common.DbCommand object

associated with the current connection.

 CreateDbCommand Creates and returns a System.Data.Common.DbCommand object

associated with the current connection.

 EnlistTransaction Enlists in the specifi ed transaction as a distributed transaction.

 GetSchema Returns schema information for the data source of this System.

Data.Common.DbConnection class.

 New Initializes a new instance of the System.Data.Common.DbConnec-

tion class.

 OnStateChange Raises the System.Data.Common.DbConnection.StateChange event.

 Open Opens a database connection with the settings specifi ed by the

System.Data.Common.DbConnection.ConnectionString.

 Table 5-4 lists the events common to all connection objects.

 TABLE 5-4 Connection Events

 NAME DESCRIPTION

 StateChange Occurs when the state of the connection changes

 InfoMessage Occurs when the server returns a warning or informational message

 To create connections programmatically using the four primary data providers, you start

by instantiating a new connection object and setting its ConnectionString property that you

will use to open the connection.

 188 CHAPTER 5 Confi guring Connections and Connecting to Data

NOTE SYSTEM.DATA.ORACLECLIENT REFERENCE

By default, Microsoft Windows applications in Visual Studio are created with references

to the System.Data.SqlClient, System.Data.OleDb, and System.Data.Odbc namespaces, so

these are immediately available to be coded against and appear in IntelliSense with no

further action. By default, a reference to the System.Data.OracleClient namespace is not

included and must be added to your application to create OracleConnection objects.

 Creating SQL Server Connection Objects in Code

You create SqlConnection objects with the New keyword. You can instantiate the connec-

tion and set the connection string in the same call, or you can assign the connection string

to the SqlConnection.ConnectionString property after instantiating the connection. Be sure to

replace ServerName and DatabaseName with valid values for your environment. To eliminate

the need to qualify the objects fully in code, add an Imports System.Data.SqlClient statement

(Visual Basic) or using System.Data.SqlClient; statement (C#) to the top of your code fi le. Use

the WithEvents keyword (in Visual Basic) or create event handlers in C# if your application

needs to respond to the connection objects events.

' VB

 Private WithEvents ConnectionToSql As New SqlConnection _

 ("Data Source=ServerName;Initial Catalog=DatabaseName;Integrated Security=True")

// C#

SqlConnection ConnectionToSql = new SqlConnection

 ("Data Source=ServerName;Initial Catalog=DatabaseName;Integrated Security=True");

Creating OLE DB Connection Objects in Code

You create OleDbConnection objects with the New keyword. You can instantiate the connec-

tion and set the connection string in the same call, or you can assign the connection string to

the OleDbConnection.ConnectionString property after instantiating the connection. Be sure to

replace the data source with a valid path if you are connecting to an Offi ce Access database,

or replace the connection string with a valid connection string for the OLE DB data source

you want to connect to. To eliminate the need to fully qualify the objects in code, add an

Imports System.Data.OleDb statement (Visual Basic) or using System.Data.OleDb; statement

(C#) to the top of your code fi le.

' VB

Private WithEvents ConnectionToOleDb As New System.Data.OleDb.OleDbConnection _

 ("Provider= Microsoft.Jet.OLEDB.4.0;Data Source=""Nwind.mdb"";Persist Security

Info=False")

NOTE SYSTEM.DATA.ORACLECLIENT REFERENCET

By default, Microsoft Windows applications in Visual Studio are created with references

to the System.Data.SqlClient, System.Data.OleDb, and System.Data.Odbc namespaces, soc

these are immediately available to be coded against and appear in IntelliSense with no

further action. By default, a reference to the System.Data.OracleClient namespace is nott

included and must be added to your application to create OracleConnection objects.

 Lesson 1: Creating and Confi guring Connection Objects CHAPTER 5 189

// C#

System.Data.OleDb.OleDbConnection ConnectionToOleDb = new System.Data.OleDb.

OleDbConnection

 ("Provider= Microsoft.Jet.OLEDB.4.0;Data Source=\"Nwind.mdb";Persist Security

Info=False");

 Creating ODBC Connection Objects in Code

 You create OdbcConnection objects with the New keyword. You can instantiate the connec-

tion and set the connection string in the same call, or you can assign the connection string

to the OdbcConnection.ConnectionString property after instantiating the connection. Be sure

to replace the connection string with a valid connection string for the ODBC data source you

want to connect to. To eliminate the need to qualify the objects fully in code, add an Imports

System.Data.Odbc statement (Visual Basic) or using System.Data.Odbc; statement (C#) to the

top of your code fi le.

 ' VB

 Private WithEvents ConnectionToOdbc As New OdbcConnection _

 ("Dsn=MS Access Database;dbq=C:\Nwind.mdb;defaultdir=C:\DataSources;" & _

 "driverid=281;fil=MS Access;maxbuffersize=2048;pagetimeout=5;uid=admin")

// C#

OdbcConnection ConnectionToOdbc = new OdbcConnection

 ("Dsn=MS Access Database;dbq=C:\\DataSources;" +

 "driverid=281;fil=MS Access;maxbuffersize=2048;pagetimeout=5;uid=admin");

 Creating Oracle Connection Objects in Code

 You create OracleConnection objects with the New keyword. You can instantiate the connec-

tion and set the connection string in the same call, or you can assign the connection string to

the OracleConnection.ConnectionString property after instantiating the connection. Be sure to

replace the connection string with a valid one for the Oracle database you want to connect

to. To eliminate the need to qualify the objects fully in code, add an Imports System.Data.

OracleClient statement (Visual Basic) or using System.Data.OracleClient; statement (C#) to the

top of your code fi le.

 ' VB

 Private WithEvents ConnectionToOracle As New OracleConnection _

 ("Data Source=Oracle8i;Integrated Security=yes")

// C#

private OracleConnection ConnectionToOracle = new OracleConnection

 ("Data Source=Oracle8i;Integrated Security=yes");

 190 CHAPTER 5 Confi guring Connections and Connecting to Data

LAB Creating New Data Connections

In this lab you will practice creating new Data Connections in Server Explorer and using the

Data Source Confi guration Wizard.

EXERCISE 1 Creating Connections in Server Explorer

 The following steps describe how to create a Data Connection (a connection to a database) in

Server Explorer:

 1. If the Server Explorer window is not visible, select Server Explorer from the View menu.

 2. Right-click the Data Connections node and select Add Connection.

 The fi rst time you add a connection in Visual Studio, the Choose Data Source dialog

box opens.

 NOTE ADD CONNECTION DIALOG BOX

 If the Add Connection dialog box opens instead of the Choose Data Source dialog box,

click the Change button located at the top of the Add Connection dialog box.

 The Choose Data Source dialog box (or the similar Change Data Source dialog box) is

where you select the data source you want to connect to, as well as the data pro-

vider to use for the connection. Notice how the proper data provider is automatically

populated when you select different data sources. You can choose any valid provider

you want for any selected data source, but Visual Studio automatically selects the most

appropriate data provider based on the selected data source.

 For the fi rst connection, we’ll create a connection to the Northwind Traders sample

database in SQL Server.

 3. Select Microsoft SQL Server for the data source and click OK.

 The Add Connection dialog box now appears with Microsoft SQL Server as the

selected data source.

 NOTE .NET FRAMEWORK DATA PROVIDERS

 The .NET Framework Data Provider for SQL Server is designed to connect to SQL Server

7 and later versions. When connecting to SQL Server 6 or earlier, select the <other>

data source and select the .NET Framework Data Provider for OLE DB. Then, in the Add

Connection dialog box, select the Microsoft OLE DB Provider for SQL Server.

 4. Type the name of your SQL Server in the server name area.

 5. Select the appropriate method of authentication to access your SQL Server.

 6. Choose the Select Or Enter A Database Name option and select the Northwind data-

base from the drop-down list.

NOTE ADD CONNECTION DIALOG BOXE

If the Add Connection dialog box opens instead of the Choose Data Source dialog box,

click the Change button located at the top of the Add Connection dialog box.

NOTE .NET FRAMEWORK DATA PROVIDERS

The .NET Framework Data Provider for SQL Server is designed to connect to SQL Server

7 and later versions. When connecting to SQL Server 6 or earlier, select the <other>

data source and select the .NET Framework Data Provider for OLE DB. Then, in the Add

Connection dialog box, select the Microsoft OLE DB Provider for SQL Server.

 Lesson 1: Creating and Confi guring Connection Objects CHAPTER 5 191

 7. You can verify the connection is valid by clicking Test Connection and then clicking OK

to close the dialog box and create the connection in Server Explorer.

After creating the connection, the Properties window provides information related to

the connection, as well as information related to the actual database you are con-

nected to.

 8. Select the connection you just created in the Server Explorer window to view the avail-

able information in the properties window.

 NOTE CONNECTION PROPERTIES

 The available properties are based on the type of data source you are connected to as

well as the state of the connection. If the connection is closed, you might see only a

small list of properties made up of the connection string used to connect to the data-

base, the specifi c .NET Framework data provider used by the connection, and the state

of the connection. To view additional properties, it is necessary to open the connection

by expanding the Connection node in Server Explorer. Once open, the connection pro-

vides additional properties, such as the database owner, whether the database is case

sensitive, and the type of database and version number.

 EXERCISE 2 Creating Connections Using the Data Source Confi guration Wizard

 To create data connections using the Data Source Confi guration Wizard, perform the follow-

ing steps:

 1. Create a Windows Forms application.

 2. Select Add New Data Source from the Data menu.

 3. The default data source type is Database, so just click Next.

 4. The Choose Your Data Connection page of the wizard is where you create your con-

nection object.

 NOTE AVAILABLE CONNECTIONS

 The drop-down list is populated with the connections already available in Server

Explorer. If you completed the previous section and created a data connection to the

Northwind database, it will be available in this drop-down list.

 5. For this exercise we will create a new connection, so click the New Connection button

to open the Add Connection dialog box.

 NOTE ADD CONNECTION DIALOG BOX

 Just like adding a new connection to Server Explorer, you use the Add Connection dia-

log box to create the connection. Basically, when creating new connections through the

UI, whether using one of the data wizards or Server Explorer, the Add Connection dialog

box is always used.

NOTE CONNECTION PROPERTIES

The available properties are based on the type of data source you are connected to as

well as the state of the connection. If the connection is closed, you might see only a

small list of properties made up of the connection string used to connect to the data-

base, the specifi c .NET Framework data provider used by the connection, and the state

of the connection. To view additional properties, it is necessary to open the connection

by expanding the Connection node in Server Explorer. Once open, the connection pro-

vides additional properties, such as the database owner, whether the database is case

sensitive, and the type of database and version number.

NOTE AVAILABLE CONNECTIONS

The drop-down list is populated with the connections already available in Server

Explorer. If you completed the previous section and created a data connection to the

Northwind database, it will be available in this drop-down list.d

NOTE ADD CONNECTION DIALOG BOX

Just like adding a new connection to Server Explorer, you use the Add Connection dia-

log box to create the connection. Basically, when creating new connections through the

UI, whether using one of the data wizards or Server Explorer, the Add Connection dialog

box is always used.

 192 CHAPTER 5 Confi guring Connections and Connecting to Data

 6. Type the name of your SQL server in the server name area.

 7. Select the appropriate method of authentication to access your SQL server.

 8. Choose the Select Or Enter A Database Name option and select the Northwind data-

base from the drop-down list.

 9. You can verify that the connection is valid by clicking Test Connection and then click-

ing OK to close the dialog box.

NOTE INCLUDING SENSITIVE DATA

If your connection uses SQL authentication and requires a user name and password to

connect to your database, the option to include or exclude sensitive data in the connec-

tion string is enabled. By default, the connection string does not include sensitive data,

and you need to provide this information in your application when you attempt to open

the connection and connect to the database. You can select the option to include sensi-

tive data in the connection string, but this is not considered best practice because users

who have access to the connection string might be able to view the password. Using

Integrated Security is the recommended option.

At this point in the wizard, you have successfully created your data connection and can

view the connection string by expanding the Connection string node. To add the con-

nection to your project, fi nish the wizard by completing the following steps.

 10. Click Next. You are presented with the option of saving the Connection string in

the application confi guration fi le as well as providing a name for the connection. By

default, the selection is set to save the connection; this is probably a good idea for

most applications. Saving your connection in the application confi guration fi le would

be advantageous if, after deployment, you wanted to point to a different data source.

Then you (or a systems administrator) could easily modify the confi guration setting

rather than having to change the connection string in code and recompile and rede-

ploy the application. Once a connection string is saved to the application confi gura-

tion fi le, you can access and modify it using the Project Designer. Open the Project

Designer by clicking the My Project toolbar button (VB) or the Properties toolbar but-

ton (C#) in Solution Explorer. After the Project Designer opens, click the Settings tab to

access the connection strings stored in your application.

 11. The Choose Your Database Objects page of the wizard allows you to select the Tables,

Views, Stored Procedures, and so on to be used in your application. For this lesson,

expand the Tables node and select the Customers and Orders tables.

 12. Click Finish. A typed dataset with the connection object defi ned in the wizard is added

to your project.

Now that you’ve completed the wizard, let’s take a look at where the connection is and

what it contains. The connection created as a result of running the wizard is located within

NOTE INCLUDING SENSITIVE DATA

If your connection uses SQL authentication and requires a user name and password to

connect to your database, the option to include or exclude sensitive data in the connec-

tion string is enabled. By default, the connection string does not include sensitive data,

and you need to provide this information in your application when you attempt to open

the connection and connect to the database. You can select the option to include sensi-

tive data in the connection string, but this is not considered best practice because users

who have access to the connection string might be able to view the password. Using

Integrated Security is the recommended option.

 Lesson 1: Creating and Confi guring Connection Objects CHAPTER 5 193

the designer-generated dataset code fi le. To view the actual connection object, open the

dataset in the Dataset Designer by double-clicking the dataset object in Solution Explorer.

(The Dataset object is the NorthwindDataSet.xsd node.) Select the title bar of a TableAdapter

on the design surface (for example, select CustomersTableAdapter). The connection informa-

tion is available in the Properties window, where you can expand the node and see the name,

modifi er, and connection string.

NOTE CONNECTIONSTRING PROPERTY

The ConnectionString property displays the connection string saved in the application

confi guration fi le. Modifying the connection string here in the Properties window is the

same as editing the connection string in the Settings fi le and affects all connections that

reference that setting.

Quick Check

 1. How do I decide which connection object I need to create?

 2. What is the minimum information required to create a connection object?

Quick Check Answers

 1. Choose a connection object by selecting the .NET Framework Data Provider that is

designed to work best with your particular data source.

 2. At the least, you need to know the valid connection string that you can use to connect

to your data source.

 Lesson Summary
Q Connection objects provide two-way communication between your application and a

data source.

Q Connection objects can be added to Server Explorer, where they can then be easily

incorporated into future projects.

Q To create connection objects, you must have a valid connection string and the proper

credentials to access the data source.

Q Connection objects can be created either through the UI or programmatically, depend-

ing on user preference and development style.

Q There are four primary connection objects, one for each of the .NET Framework Data

Providers.

NOTE CONNECTIONSTRING PROPERTY

The ConnectionString property displays the connection string saved in the application

confi guration fi le. Modifying the connection string here in the Properties window is the

same as editing the connection string in the Settings fi le and affects all connections that

reference that setting.

Quick Check

1. How do I decide which connection object I need to create?

2. What is the minimum information required to create a connection object?

Quick Check Answers

1. Choose a connection object by selecting the .NET Framework Data Provider that is

designed to work best with your particular data source.

2. At the least, you need to know the valid connection string that you can use to connect

to your data source.

Q

 194 CHAPTER 5 Confi guring Connections and Connecting to Data

Lesson Review
The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. Where is the connection object located that was created as a result of running the

Data Source Confi guration Wizard?

 A. In the application confi guration fi le

B. In the Data Sources window

C. In the designer-generated dataset code fi le

D. In the generated form code

 2. When should you use the OleDbConnection object? (Choose all that apply.)

 A. When connecting to an Oracle database

B. When connecting to an Offi ce Access database

C. When connecting to SQL Server 6.x or later

D. When connecting to SQL Server 2000

E. When connecting to SQL Server 2000

 3. What user interface component is used to create connections?

 A. The Data Source Confi guration Wizard

B. The Server Explorer window

C. The Add Connection dialog box

D. The Properties window

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 Lesson 2: Connecting to Data Using Connection Objects CHAPTER 5 195

Lesson 2: Connecting to Data Using Connection
Objects

Now that you have learned how to create connection objects using the primary .NET data

providers, let’s start using them and actually connect to some data sources. This lesson will

explain how to use a connection object and open a connection to a data source. After open-

ing the connection, you will verify that the connection is opened by examining the Connec-

tionState property. Once you verify that the connection state is opened, you will also cause

the InfoMessage event to fi re and display the message returned by the data source.

After this lesson, you will be able to:

Q Open an ADO.NET connection to a database.

Q Close an ADO.NET connection to a database by using the Close method of the

connection object.

Q Use the connection events to detect database information.

Estimated lesson time: 45 minutes

Opening and Closing Data Connections
Open and close connections using the appropriately named Open and Close methods. To

open a connection to a database, the connection object must contain a connection string

that points to a valid data source, as well as enough information to pass the appropriate

credentials to the data source. When connections are opened and closed, you can keep an

eye on the state of the connection by responding to the StateChange event. The following

example shows how to open and close connections and how to update the text in a label in

reaction to the StateChange event. We will also demonstrate how you can use the InfoMes-

sage event to provide informational messages from a data source to the application. And,

fi nally, we will demonstrate how the connection object can provide information about the

data source by retrieving metadata (for example, the server version number) from an open

connection.

Connection Events
Connection objects provide the StateChanged and InfoMessage events to provide information

to your application regarding the status of the database and information pertaining to com-

mands executed using a specifi c connection object.

Q StateChanged event This event is raised when the current state of the database

changes from Open to Closed.

After this lesson, you will be able to:

Q Open an ADO.NET connection to a database.

Q Close an ADO.NET connection to a database by using the Close method of the

connection object.

Q Use the connection events to detect database information.

Estimated lesson time: 45 minutes

 196 CHAPTER 5 Confi guring Connections and Connecting to Data

Q InfoMessage event In addition to monitoring the state of a connection, each connec-

tion object provides an InfoMessage event that is raised when warnings or messages

are returned from the server. Informational messages are typically provided when

low-severity errors are returned by the data source that the connection object is con-

nected to. For example, SQL Server errors with a severity of 10 or less are provided to

the InfoMessage event.

NOTE SEVERITY LEVELS

Each error message in SQL Server has an associated severity level. The severity level, as its

name implies, provides a clue to the type of error being returned. Severity levels range

from 0 through 25. Errors with severity levels between 0 and 19 can typically be handled

without user intervention, but errors with severity levels between 20 and 25 typically cause

your connection to close. For more information on SQL Server errors and severity levels,

see the Error Message Severity Levels topic in the SQL Books Online.

LAB Practice Opening and Closing Data Connections

In this lab you will practice working with connection objects by opening and closing connec-

tions and displaying connection information to the user.

EXERCISE 1 Opening and Closing Data Connections

To demonstrate working with connection objects, perform the following steps:

 1. Create a new Windows application and name it DataConnections.

 2. Because Windows applications are not created with a reference to the System.Data.

OracleClient namespace, from the Project menu, select the Add Reference command,

locate the System.Data.OracleClient component, and click OK.

 3. Add 12 buttons to the form, setting the Name and Text properties as shown in

Table 5-5.

NOTE SIMILAR CONNECTIONS

No matter which connection objects you use, the methods for opening and closing,

handling events, and so on, are the same. Feel free to only set up the example using the

connection object for the provider you are interested in working with.

NOTE SEVERITY LEVELS

Each error message in SQL Server has an associated severity level. The severity level, as its

name implies, provides a clue to the type of error being returned. Severity levels range

from 0 through 25. Errors with severity levels between 0 and 19 can typically be handled

without user intervention, but errors with severity levels between 20 and 25 typically cause

your connection to close. For more information on SQL Server errors and severity levels,

see the Error Message Severity Levels topic in the SQL Books Online.

NOTE SIMILAR CONNECTIONS

No matter which connection objects you use, the methods for opening and closing,

handling events, and so on, are the same. Feel free to only set up the example using the

connection object for the provider you are interested in working with.

 Lesson 2: Connecting to Data Using Connection Objects CHAPTER 5 197

 TABLE 5-5 Button Settings for Data Connections Form

 NAME PROPERTY TEXT PROPERTY

 OpenSqlButton Open SQL

 OpenOleDbButton Open OLE DB

 OpenOdbcButton Open ODBC

 OpenOracleButton Open Oracle

 CloseSqlButton Close SQL

 CloseOleDbButton Close OLE DB

 CloseOdbcButton Close ODBC

 CloseOracleButton Close Oracle

 GetSqlInfoButton Get SQL Info

 GetOleDbInfoButton Get OLE DB Info

 GetOdbcInfoButton Get ODBC Info

 GetOracleInfoButton Get Oracle Info

 4. Add four labels to the form, setting the Name and Text properties as shown in Table

5-6.

 TABLE 5-6 Label Settings for Data Connections Form

 NAME PROPERTY TEXT PROPERTY

 SqlConnectionStateLabel Closed

 OleDbConnectionStateLabel Closed

 OdbcConnectionStateLabel Closed

 OracleConnectionStateLabel Closed

 Arrange the controls so the form layout looks similar to Figure 5-2.

 To create the connection objects for this lesson, you will take the code examples from

Lesson 1, “Creating and Confi guring Connection Objects,” and add them to your form

as follows.

 198 CHAPTER 5 Confi guring Connections and Connecting to Data

FIGURE 5-2 Form with controls arranged in preparation for creating connection objects

 5. Open the form you just created in code view.

 6. Add the code to create all four connection objects so that you end up with code that

looks like the following:

IMPORTANT CONNECTION STRINGS

Be sure to modify the connection strings to point to your specifi c server and database

for each provider.

' VB

Imports System.Data.SqlClient

Imports System.Data.OleDb

Imports System.Data.Odbc

Imports System.Data.OracleClient

Public Class Form1

 ' Declare the connection objects for the four data providers

 Private WithEvents ConnectionToSql As New SqlConnection(_

 "Data Source=.\sqlexpress;Initial Catalog=Northwind;Integrated

Security=True")

 Private WithEvents ConnectionToOleDb As New _

 System.Data.OleDb.OleDbConnection(_

 "Provider= Microsoft.Jet.OLEDB.4.0;Data Source=""C:\DataSources\Nwind.

mdb"";" & _

 "Persist Security Info=False")

 Private WithEvents ConnectionToOdbc As New OdbcConnection(_

 "Dsn=MS Access Database;dbq=C:DataSources\Nwind.mdb;defaultdir=C:\

DataSources;" & _

 "driverid=281;fil=MS Access;maxbuffersize=2048;pagetimeout=5;uid=admin")

 Private WithEvents ConnectionToOracle As New OracleConnection("Data

Source=MyOracleDB;Integrated Security=yes;")

End Class

IMPORTANT CONNECTION STRINGS

Be sure to modify the connection strings to point to your specifi c server and database

for each provider.

 Lesson 2: Connecting to Data Using Connection Objects CHAPTER 5 199

// C#

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System. Windows.Forms;

using System.Data.SqlClient;

using System.Data.OleDb;

using System.Data.Odbc;

using System.Data.OracleClient;

namespace DataConnections

{

 public partial class Form1 : Form

 {

 public Form1()

 {

 InitializeComponent();

 }

 // Declare the connection objects for the four data providers

 private SqlConnection ConnectionToSql = new SqlConnection(

 "Data Source=.\\sqlexpress;Initial Catalog=Northwind;Integrated

Security=True");

 private OleDbConnection ConnectionToOleDb = new

 System.Data.OleDb.OleDbConnection(

 "Provider= Microsoft.Jet.OLEDB.4.0;Data Source=C:\\DataSources\\

Nwind.mdb");

 private OdbcConnection ConnectionToOdbc = new OdbcConnection(

 "Dsn=MS Access Database;dbq=C:\\DataSources\\Nwind.mdb;" +

 "defaultdir=C:\\DataSources;driverid=281;fil=MS

Access;maxbuffersize=2048;" +

 "pagetimeout=5;uid=admin");

 private OracleConnection ConnectionToOracle = new OracleConnection(

 "Data Source=MyOracleDB;Integrated Security=yes;");

 }

}

 To open connections to a database, use the connection object’s Open method. To

demonstrate this, you will call the Open method for each connection when the open

buttons are clicked.

 200 CHAPTER 5 Confi guring Connections and Connecting to Data

 7. Create event handlers for the open buttons for each provider and add the following

code, which opens the connection to the database when the open buttons are clicked:

 ' VB

Private Sub OpenSqlServerButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles OpenSqlServerButton.Click

 ConnectionToSql.Open()

End Sub

Private Sub OpenOleDbButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles OpenOleDbButton.Click

 ConnectionToOleDb.Open()

End Sub

Private Sub OpenOdbcButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles OpenOdbcButton.Click

 ConnectionToOdbc.Open()

End Sub

Private Sub OpenOracleButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles OpenOracleButton.Click

 ConnectionToOracle.Open()

End Sub

// C#

private void OpenSqlServerButton_Click(object sender, EventArgs e)

{

 ConnectionToSql.Open();

}

private void OpenOleDbButton_Click(object sender, EventArgs e)

{

 ConnectionToOleDb.Open();

}

private void OpenOdbcButton_Click(object sender, EventArgs e)

{

 ConnectionToOdbc.Open();

}

private void OpenOracleButton_Click(object sender, EventArgs e)

{

 ConnectionToOracle.Open();

}

 To close database connections, use the connection object’s Close method. Technically,

you can also call the Dispose method of the connection object to close the connection,

but the preferred technique is to call the Close method. It is worth noting that calling the

Close method also rolls back all pending transactions and releases the connection back

 Lesson 2: Connecting to Data Using Connection Objects CHAPTER 5 201

to the connection pool. To implement this, create event handlers for the close buttons

for each provider and add code to call the Close method to the body of the handler.

 8. Add the Close methods into the event handlers to close the connection to the data-

base when the close buttons are clicked.

 ' VB

Private Sub CloseSqlButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles CloseSqlButton.Click

 ConnectionToSql.Close()

End Sub

Private Sub CloseOleDbButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles CloseOleDbButton.Click

 ConnectionToOleDb.Close()

End Sub

Private Sub CloseOdbcButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles CloseOdbcButton.Click

 ConnectionToOdbc.Close()

End Sub

Private Sub CloseOracleButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles CloseOracleButton.Click

 ConnectionToOracle.Close()

End Sub

// C#

private void CloseSqlButton_Click(object sender, EventArgs e)

{

 ConnectionToSql.Close();

}

private void CloseOleDbButton_Click(object sender, EventArgs e)

{

 ConnectionToOleDb.Close();

}

private void CloseOdbcButton_Click(object sender, EventArgs e)

{

 ConnectionToOdbc.Close();

}

private void CloseOracleButton_Click(object sender, EventArgs e)

{

 ConnectionToOracle.Close();

}

 202 CHAPTER 5 Confi guring Connections and Connecting to Data

 When the state of a connection changes, the value in the CurrentState property of the

connection object is updated to refl ect the connection’s current state. When you are

opening and closing a connection, you can inspect the value in this property to verify

that the connection is actually opening and closing. Each connection object raises a

StateChange event that you can respond to in order to monitor the state of the con-

nection. To populate the connection-state labels, we need to create event handlers

for the StateChange events for each provider. Inside the StateChange event handlers,

add code that updates the connection-state labels with the value of the connection’s

 CurrentState property, which is provided as an event argument.

 9. Add the following code to the form, which updates the connection-state label values

whenever the current state of a connection changes. Create the form load handler for

C# so you can add the StateChange event handlers.

 ' VB

Private Sub ConnectionToSql_StateChange(ByVal sender As Object, _

 ByVal e As System.Data.StateChangeEventArgs) _

 Handles ConnectionToSql.StateChange

 SqlConnectionStateLabel.Text = e.CurrentState.ToString

End Sub

Private Sub ConnectionToOleDb_StateChange(ByVal sender As Object, _

 ByVal e As System.Data.StateChangeEventArgs) _

 Handles ConnectionToOleDb.StateChange

 OleDbConnectionStateLabel.Text = e.CurrentState.ToString

End Sub

Private Sub ConnectionToOdbc_StateChange(ByVal sender As Object, _

 ByVal e As System.Data.StateChangeEventArgs) _

 Handles ConnectionToOdbc.StateChange

 OdbcConnectionStateLabel.Text = e.CurrentState.ToString

End Sub

Private Sub ConnectionToOracle_StateChange(ByVal sender As Object, _

 ByVal e As System.Data.StateChangeEventArgs) _

 Handles ConnectionToOracle.StateChange

 OracleConnectionStateLabel.Text = e.CurrentState.ToString

End Sub

// C#

private void Form1_Load(object sender, EventArgs e)

{

 ConnectionToSql.StateChange += new

 System.Data.StateChangeEventHandler(this.ConnectionToSql_StateChange);

 ConnectionToOleDb.StateChange += new

 System.Data.StateChangeEventHandler(this.ConnectionToOleDb_StateChange);

 Lesson 2: Connecting to Data Using Connection Objects CHAPTER 5 203

 ConnectionToOdbc.StateChange += new

 System.Data.StateChangeEventHandler(this.ConnectionToOdbc_StateChange);

 ConnectionToOracle.StateChange += new

 System.Data.StateChangeEventHandler(this.ConnectionToOracle_StateChange);

}

private void ConnectionToSql_StateChange(object sender,

 StateChangeEventArgs e)

{

 SqlConnectionStateLabel.Text = e.CurrentState.ToString();

}

private void ConnectionToOleDb_StateChange(object sender,

 StateChangeEventArgs e)

{

 OleDbConnectionStateLabel.Text = e.CurrentState.ToString();

}

private void ConnectionToOdbc_StateChange(object sender,

 StateChangeEventArgs e)

{

 OdbcConnectionStateLabel.Text = e.CurrentState.ToString();

}

private void ConnectionToOracle_StateChange(object sender,

 StateChangeEventArgs e)

{

 OracleConnectionStateLabel.Text = e.CurrentState.ToString();

}

 10. Press F5 to run the application and test the form to see the functionality you have so

far.

 11. When the form opens, click the Open SQL button and verify that the connection-state

label changes to show that the connection is now open.

 12. Click the Close SQL button and verify that the connection-state label changes to refl ect

the current state of the connection, which is now closed.

 To demonstrate use of the InfoMessage event, you need to create an event handler to

process the message. To eliminate the need to create a database object that throws

an error with a low severity, you can take advantage of a feature built into the SqlCon-

nection object that allows you to capture errors with severities up to severity level 16

by setting the connection object’s FireInfoMessageEventOnUserErrors property to True

before executing a method that will force an error to be thrown.

 13. Add the following code, which will handle the click event for GetSqlInfoButton and the

SqlConnection object’s InfoMessage event.

 204 CHAPTER 5 Confi guring Connections and Connecting to Data

 Upon examination of the code in the button-click event, you can see that you are

going to change the database on the connection to an invalid name, which will raise

an error with severity level 11 and cause the InfoMessage event to fi re. When the event

fi res, the code in the InfoMessage event handler opens a message box displaying the

error.

 ' VB

Private Sub GetSqlInfoButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles GetSqlInfoButton.Click

 ConnectionToSql.FireInfoMessageEventOnUserErrors = True

 ConnectionToSql.ChangeDatabase("Northwind1")

End Sub

Private Sub ConnectionToSql_InfoMessage(ByVal sender As Object, _

 ByVal e As System.Data.SqlClient.SqlInfoMessageEventArgs) _

 Handles ConnectionToSql.InfoMessage

 MsgBox(e.Message)

End Sub

// C#

// Add this line of code into the form load handler to hook up the InfoMessage

handler.

ConnectionToSql.InfoMessage += new

 System.Data.SqlClient.SqlInfoMessageEventHandler(this.ConnectionToSql_

InfoMessage);

private void GetSqlInfoButton_Click(object sender, EventArgs e)

{

 ConnectionToSql.FireInfoMessageEventOnUserErrors = true;

 ConnectionToSql.ChangeDatabase("Northwind1");

}

private void ConnectionToSql_InfoMessage(object sender,

 SqlInfoMessageEventArgs e)

{

 MessageBox.Show(e.Message);

}

 In addition to the previous types of information available from connection objects, you

can also return some metadata from the data source you are connected to. In Lesson 1,

“Creating and Confi guring Connection Objects,” we examined the connection prop-

erties in the Properties window for the connections available in Server Explorer. This

information is available at run time from the connection object as well. As an example,

add a few more lines of code to your application and implement the Get Info buttons

 Lesson 2: Connecting to Data Using Connection Objects CHAPTER 5 205

of the remaining connections to return the server versions of the data sources they are

connected to.

 14. Add the following code to the bottom of the form:

 ' VB

Private Sub GetOleDbInfoButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles GetOleDbInfoButton.Click

 MsgBox(ConnectionToOleDb.ServerVersion.ToString, "Server Version")

End Sub

Private Sub GetOdbcInfoButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles GetOdbcInfoButton.Click

 MsgBox(ConnectionToOdbc.ServerVersion.ToString, "Server Version")

End Sub

Private Sub GetOracleInfoButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles GetOracleInfoButton.Click

 MsgBox(ConnectionToOracle.ServerVersion.ToString, "Server Version")

End Sub

// C#

private void GetOleDbInfoButton_Click(object sender, EventArgs e)

{

 MessageBox.Show(ConnectionToOleDb.ServerVersion.ToString(), "Server Version");

}

private void GetOdbcInfoButton_Click(object sender, EventArgs e)

{

 MessageBox.Show(ConnectionToOdbc.ServerVersion.ToString(), "Server Version");

}

private void GetOracleInfoButton_Click(object sender, EventArgs e)

{

 MessageBox.Show(ConnectionToOracle.ServerVersion.ToString(), "Server

Version");

}

 Now let’s run the application one more time to check out the additional functional-

ity and verify that the info message and metadata is available from the connection

objects.

 15. Press F5 to run the application.

 16. Click the Open SQL button to open the connection to the SQL server and update the

connection-state label.

 17. Click the Get SQL Info button to change the database to the invalid Northwind1 data-

base and raise the InfoMessage event that will display in the message box.

 206 CHAPTER 5 Confi guring Connections and Connecting to Data

IMPORTANT POSSIBLE INVALID OPERATION EXCEPTION

The connection must be open or an Invalid Operation exception is thrown and the Info-

Message event does not fi re.

 18. Click the Close SQL button to close the connection to SQL Server and update the

connection-state label.

 19. Click the Open OLE DB button to open the connection to the OLE DB data source and

update the connection-state label.

 20. Click the Get OLE DB Info button to retrieve the server version of the OLE DB data

source.

 21. Click the Close OLE DB button to close the connection and update the connection-

state label.

 22. Save the application.

IMPORTANT SAVE THE APPLICATION

Save this application because you will use it in Lesson 4, “Handling Connection Errors.”

Lesson Summary
Q Open connections by calling the Open method of a connection object.

Q Close connections by calling the Close method of a connection object.

Q Determine whether a connection is opened or closed by monitoring the StateChanged

event.

Q Use the InfoMessage event to process any warnings or informational messages that are

returned from the server.

 Lesson Review
 The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

 NOTE ANSWERS

 Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

IMPORTANT POSSIBLE INVALID OPERATION EXCEPTION

The connection must be open or an Invalid Operation exception is thrown and the Info-

Message event does not fi re.

IMPORTANT SAVE THE APPLICATION

Save this application because you will use it in Lesson 4, “Handling Connection Errors.”

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 Lesson 2: Connecting to Data Using Connection Objects CHAPTER 5 207

 1. What is the minimal information needed by a connection string to open a connection

to a SQL Server 2000 or SQL Server 2005 database? (Choose all that apply.)

 A. A valid data source

 B. A valid provider name

 C. A valid fi lepath

 D. Appropriate credentials or Integrated Security settings

 2. What happens when you call the Close method of a connection object? (Choose all

that apply.)

 A. The connection is destroyed.

 B. The connection is returned to the connection pool.

 C. The StateChange event is fi red.

 D. All noncommitted pending transactions are rolled back.

 3. What types of information does the InfoMessage event typically expose?

 A. Information regarding the current state of a connection

 B. High-severity SQL Server errors (severity 17 and above)

 C. Low-severity SQL Server errors (severity 10 and below)

 D. Network errors that are encountered when attempting to open a connection

 208 CHAPTER 5 Confi guring Connections and Connecting to Data

Lesson 3: Working with Connection Pools

This lesson explains what connection pooling is and how to control connection pooling

options when creating and confi guring connection objects.

After this lesson, you will be able to:

Q Confi gure a connection for connection pooling by confi guring connection string

values.

Estimated lesson time: 30 minutes

What Is Connection Pooling?
Connection pooling allows you to reuse existing connections so you don’t have to continu-

ously create and dispose of connections that have the same confi guration. In other words,

opening and closing connections that use the same connection string and credentials can

reuse a connection that is available in the pool. Typical applications use the same connection

objects to continuously fetch and update data from a database. Connection pooling provides

a much higher level of performance by eliminating the need for the database to constantly

create and dispose of connections.

Connection pools are separated by process, application domain, and connection string.

For connection strings that use Integrated Security, a separate pool is created for each unique

identity.

Controlling Connection Pooling Options
When you create ADO.NET connection objects, connection pooling is enabled by default.

You can control connection pooling behavior (or disable pooling altogether) by setting con-

nection string keywords specifi c to connection pooling. For example, to specifi cally disable

connection pooling, you set Pooling=False in your connection string. Table 5-7 provides a list

of connection string keywords that you can use to control how a specifi c connection interacts

with the connection pool. Not all keywords are available for every provider. For example, the

OLE DB provider controls connection pooling (also known as resource or session pooling)

based on the value set for the OLE DB Services keyword in the connection string.

After this lesson, you will be able to:

Q Confi gure a connection for connection pooling by confi guring connection string

values.

Estimated lesson time: 30 minutes

 Lesson 3: Working with Connection Pools CHAPTER 5 209

 TABLE 5-7 Connection Pooling Connection String Keywords

 NAME DEFAULT DESCRIPTION

 Connection

Lifetime

0 When a connection is returned to the pool, if its creation

time was longer than x seconds ago, with x being the value

of this property, then the connection is destroyed. Values

are in seconds, and a value of 0 indicates the maximum con-

nection timeout.

 Connection

Reset

True Determines whether the database connection is reset when

being drawn from the pool. For SQL Server 7.0, setting to

False avoids making an additional server round trip when

obtaining a connection, but the connection state, such as

database context, is not being reset.

 Enlist True If you want to use a connection as part of a transaction, you

can set this to True and the pooler will automatically enlist

the connection in the creation thread’s current transaction

context.

 Load Balance

Timeout

0 The minimum number of seconds for the connection to live

in the connection pool before being destroyed.

 Max Pool Size 100 The maximum number of connections allowed in the pool

for this specifi c connection string. In other words, if your

application continuously connects to the database, you

might need to increase the Max Pool Size. For example, if

your application has many users who all use the same con-

nection string and you might need more than 100 connec-

tions, you would want to increase the Max Pool Size. This

might happen when many users are accessing the database

server using a common client or Web page.

 Min Pool Size 0 The minimum number of connections allowed in the pool.

 Pooling True When true, the SqlConnection object is drawn from the

appropriate pool or, if it is required, is created and added to

the appropriate pool. Recognized values are True, False, Yes,

and No.

 In addition to connection string properties that control connection pooling behavior, there

are also methods available on connection objects that can affect the pool as well. You typi-

cally use the available methods when you are closing connections in your application and you

know they will not be used again. This clears the connection pool by disposing of the connec-

tions instead of returning them to the pool when they are closed. Any connections that are

already in the pool and open will be disposed of the next time they are closed. Table 5-8 lists

the available methods for interacting with connection pools.

 210 CHAPTER 5 Confi guring Connections and Connecting to Data

 TABLE 5-8 Connection Pooling Specific Methods

 NAME OBJECT DESCRIPTION

 ClearAllPools SqlConnection and

OracleConnection

Empties all connection pools for a specifi c

provider

 ClearPool SqlConnection and

OracleConnection

Empties the connection pool associated

with the specifi ed connection

 ReleaseObjectPool OleDbConnection and

OdbcConnection

Indicates that the object pool can be

released when the last underlying connec-

tion is released

 Confi guring Connections to Use Connection Pooling
 By default, all .NET Framework Data Providers available in ADO.NET have connection pooling

turned on, but the level of control available for working with connection pooling varies based

on the provider being used.

 Confi guring Connection Pooling with SQL Server Connections

 By default, the SqlConnection object automatically uses connection pooling. Each time you

call SqlConnection.Open with a unique connection string, a new pool is created. You control

connection pooling behavior by setting the connection pool keywords in the connection

string, as described earlier in Table 5-7. For example, consider a connection where you want

to set the minimum pool size. By assigning a value greater than zero to the Min Pool Size

keyword, you ensure that the pool is not destroyed until after the application ends. To set the

minimum pool size to 5, use a connection string similar to the following:

 Data Source=SqlServerName;Initial Catalog=DatabaseName;

 Integrated Security=True;Min Pool Size=5

 The minimum pool size is 0 by default, which means that each connection needs to be

created and initialized as it is requested. By increasing the minimum pool size in the connec-

tion string, the indicated number of connections are created immediately and are then ready

to use, which can reduce the time it takes to establish the connection on those initial connec-

tions.

 Confi guring Connection Pooling with OLE DB Connections

 The OLE DB connection object (OleDbConnection) automatically pools connections through

the use of OLE DB session pooling. You control how OLE DB connections use pooling by add-

ing an OLE DB Services keyword to the connection string and setting its value based on the

combination of services you want to enable or disable for the connection.

 The following connection strings explicitly enable connection pooling by setting the OLE

DB Services keyword to -1.

 Lesson 3: Working with Connection Pools CHAPTER 5 211

 OLE DB connection string for an Offi ce Access database (assumes the Nwind.mdb fi le

exists in the following path: C:\DataSources\Nwind.mdb):

 Provider= Microsoft.Jet.OLEDB.4.0;Data Source=C:\DataSources\Nwind.mdb;

 OLE DB Services=-1

 OLE DB Connection for a SQL Server database (replace ServerName and DatabaseName

with valid values for your data source):

 Provider=SQLOLEDB;Data Source=ServerName;OLE DB Services=-1;

 Integrated Security=SSPI;Initial Catalog=DatabaseName

 The following connection strings disable connection pooling and automatic transaction

enlistment by setting the OLE DB Services keyword to -4:

 Provider= Microsoft.Jet.OLEDB.4.0;Data Source=C:\DataSources\Nwind.mdb;OLE DB Services=-4

 Table 5-9 lists the OLE DB Services values to set in an OLE DB connection string.

 TABLE 5-9 OLE DB Connection String Settings for OLE DB Services

 OLE DB SERVICE

CONNECTION STRING

KEYWORD/VALUE

 All services on “OLE DB Services = -1;”

 All services except Pooling and AutoEnlistment of trans-

actions

“OLE DB Services = -4;”

 All services except Client Cursor “OLE DB Services = -5;”

 All services except Pooling, AutoEnlistment, and Client

Cursor

“OLE DB Services = -8;”

 No services (all services disabled) “OLE DB Services = 0;”

 Confi guring Connection Pooling with ODBC Connections

 To enable or disable connection pooling for connections that use the ODBC connection

object (OdbcConnection), you must use the ODBC Data Source Administrator dialog box in

 Windows.

 ACCESSING THE ODBC DATA SOURCE ADMINISTRATOR DIALOG BOX

 Access the ODBC Data Source Administrator dialog box by performing the following steps:

 1. In the Administrative Tools folder on your Start menu, open Data Sources (ODBC).

 2. Click the Connection Pooling tab.

 3. Double-click the driver from the list of available ODBC drivers that you want to set

connection pooling options for.

 212 CHAPTER 5 Confi guring Connections and Connecting to Data

 4. In the Set Connection Pooling Attributes dialog box, select the option to either pool

connections or not pool connections. If you select the option to pool connections, you

can also set the number of seconds for unused connections to remain in the pool (the

connection lifetime).

 5. Click OK to save the settings and repeat for other drivers if desired.

IMPORTANT ODBC SETTINGS

The settings for a particular ODBC driver are in effect for all applications/connections

that use that particular driver.

Confi guring Connection Pooling with Oracle Connections

Connections that use the .NET Framework Data Provider for Oracle automatically use connec-

tion pooling by default. You can control how the connection uses pooling by setting connec-

tion string keywords.

Table 5-10 describes the connection string keywords available for altering connection

pooling activities.

TABLE 5-10 Oracle Connection String Settings for Connection Pooling

NAME DEFAULT DESCRIPTION

Connection

Lifetime

0 When a connection is returned to the pool, its creation

time is compared with the current time and the connec-

tion is destroyed if that time span exceeds the value speci-

fi ed. Values are in seconds and a value of 0 indicates the

maximum connection timeout.

 Enlist True When true, the pooler automatically enlists the connec-

tion in the creation thread’s current transaction context.

Recognized values are True, False, Yes, and No.

 Max Pool Size 100 The maximum number of connections allowed in the pool.

 Min Pool Size 0 The minimum number of connections allowed in the pool.

 Pooling True When true, the OracleConnection object is drawn from the

appropriate pool or, if it is required, is created and added

to the appropriate pool.

IMPORTANT ODBC SETTINGS

The settings for a particular ODBC driver are in effect for all applications/connections

that use that particular driver.

 Lesson 3: Working with Connection Pools CHAPTER 5 213

Lesson Summary
Q Connection pooling is enabled by default.

Q Connection pooling options are set in the connection string except for the ODBC pro-

vider, which uses the ODBC Data Source Administrator dialog box in Windows.

Lesson Review
The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of this book.

 1. What determines the connection pool that a connection should use? (Choose all that

apply.)

A. A connection string

B. The identity or credentials of the user opening the connection

C. The database being connected to

D. The connection object used to connect to the database

 2. What are the recommended techniques for enabling connection pooling on for a SQL

Server 2000 or SQL Server 2005 database? (Choose all that apply.)

 A. Setting the OLE DB Services connection string keyword to -4

B. Opening a connection and not explicitly disabling pooling

C. Setting the connection string keyword Pooling = True in the connection string

 D. Using the Connection Pooling tab of the ODBC Data Source Administrator dialog

box

 3. How do I explicitly turn on connection pooling for an OLE DB data source?

 A. By setting the OLE DB Services connection string keyword to 0

 B. By setting the OLE DB Services connection string keyword to -4

 C. By setting the OLE DB Services connection string keyword to -1

 D. By setting the OLE DB Services connection string keyword to -7

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of this book.

 214 CHAPTER 5 Confi guring Connections and Connecting to Data

Lesson 4: Handling Connection Errors

This lesson explains how to handle errors that are thrown while you are working with SQL

Server. ADO.NET provides two classes specifi cally for processing errors: the SqlException class

and the SqlError class. Let’s see how to work with these classes and how to catch and handle

errors that might be returned from the data source.

After this lesson, you will be able to:

Q Handle exceptions when connecting to a database.

Q Use the SqlException class to detect connection errors.

Q Use the SqlError class to detect connection errors.

Estimated lesson time: 20 minutes

When SQL Server returns a warning or an error, the .NET Framework Data Provider for SQL

Server creates and throws a SqlException that you can catch in your application to deal with

the problem. When SqlException is thrown, inspect the SqlException.Errors property to access

the collection of errors that is returned from the SQL server. The SqlException.Errors property

is a SqlErrorCollection class (a collection of SqlError classes) that always contains at least one

SqlError object.

MORE INFO SQL SERVER ERRORS

SqlConnection remains open for messages with a severity level of 19 and below, but it typi-

cally closes automatically when the severity is 20 or greater.

LAB Handling Database Connection Errors

In this lab you will practice catching a SqlException in your application.

 EXERCISE 1 Handling Database Connection Errors

 In this lab you will practice working with database connection errors (specifi cally, the

SqlException and SqlError objects) in your application. To do this, let’s create a Windows

application.

 1. Create a new Windows application and name it HandlingConnectionErrors.

 2. Add three buttons to the form and set the following properties:

Button1:

Q Name = GoodConnectButton

Q Text = Connect (valid connection string)

After this lesson, you will be able to:

Q Handle exceptions when connecting to a database.

Q Use the SqlException class to detect connection errors.

Q Use the SqlError class to detect connection errors.r

Estimated lesson time: 20 minutes

MORE INFO SQL SERVER ERRORS

SqlConnection remains open for messages with a severity level of 19 and below, but it typi-

cally closes automatically when the severity is 20 or greater.

 Lesson 4: Handling Connection Errors CHAPTER 5 215

 Button2:

 Q Name = ConnectToInvalidUserButton

 Q Text = Connect to invalid user

Button3:

 Q Name = ConnectToInvalidDatabaseButton

 Q Text = Connect to invalid database

 3. Double-click each button to create the button click event handlers and switch to code

view.

 4. Add an Imports statement (using in C#) for the System.Data.SqlClient namespace.

 5. The following code creates a new connection based on the connection string passed

into it, attempts to open the connection, and then displays any errors it encounters.

Add this code below the button click event handlers:

 ' VB

Private Sub ConnectToDatabase(ByVal connectionString As String)

 Dim connection As New SqlConnection(connectionString)

 Try

 connection.Open()

 Catch ex As SqlException

 Dim errorMessage As String = ""

 ' Iterate through all errors returned

 ' You can check the error numbers to handle specific errors

 For Each ConnectionError As SqlError In ex.Errors

 errorMessage += ConnectionError.Message & " (error: " & _

 ConnectionError.Number.ToString & ")" & Environment.NewLine

 If ConnectionError.Number = 18452 Then

 MessageBox.Show(_

 "Invalid Login Detected, please provide valid credentials!")

 End If

 Next

 MessageBox.Show(errorMessage)

 Finally

 connection.Close()

 End Try

End Sub

// C#

private void ConnectToDatabase(string connectionString)

{

 SqlConnection connection = new SqlConnection(connectionString);

 216 CHAPTER 5 Confi guring Connections and Connecting to Data

 try

 {

 connection.Open();

 }

 catch (SqlException ex)

 {

 string errorMessage = "";

 // Iterate through all errors returned

 // You can check the error numbers to handle specific errors

 foreach (SqlError ConnectionError in ex.Errors)

 {

 errorMessage += ConnectionError.Message + " (error: " +

 ConnectionError.Number.ToString() + ")" + Environment.NewLine;

 if (ConnectionError.Number == 18452)

 {

 MessageBox.Show(

 "Invalid Login Detected, please provide valid credentials!");

 }

 }

 MessageBox.Show(errorMessage);

 }

 finally

 {

 connection.Close();

 }

}

 6. Add the following code so the three button click event handlers look like the following:

 ' VB

Private Sub GoodConnectButton_Click _

 (ByVal sender As System.Object, ByVal e As System.EventArgs) _

 Handles GoodConnectButton.Click

 ' This is a valid connection string

 Dim GoodConnection As String = _

 "Data Source=.\sqlexpress;Initial Catalog=Northwind;Integrated

Security=True;"

 ConnectToDatabase(GoodConnection)

End Sub

Private Sub ConnectToInvalidUserButton_Click _

 (ByVal sender As System.Object, ByVal e As System.EventArgs) _

 Handles ConnectToInvalidUserButton.Click

 ' This connection string has invalid credentials

 Dim InvalidUserConnection As String = _

 Lesson 4: Handling Connection Errors CHAPTER 5 217

 "Data Source=.\sqlexpress;Initial Catalog=Northwind;User ID = InvalidUser"

 ConnectToDatabase(InvalidUserConnection)

End Sub

Private Sub ConnectToInvalidDatabaseButton_Click _

 (ByVal sender As System.Object, ByVal e As System.EventArgs) _

 Handles ConnectToInvalidDatabaseButton.Click

 ' This connection string has an invalid/unavailable database

 Dim InvalidDatabaseConnection As String = _

 "Data Source=.\sqlexpress;Initial Catalog=InvalidDatabase;" & _

 “Integrated Security=True"

 ConnectToDatabase(InvalidDatabaseConnection)

End Sub

// C#

private void GoodConnectButton_Click(object sender, EventArgs e)

{

 // This is a valid connection string

 String GoodConnection =

 "Data Source=.\\sqlexpress;Initial Catalog=Northwind;Integrated

Security=True";

 ConnectToDatabase(GoodConnection);

}

private void ConnectToInvalidUserButton_Click(object sender, EventArgs e)

{

 // This connection string has invalid credentials

 String InvalidUserConnection =

 "Data Source=.\\sqlexpress;Initial Catalog=Northwind;User ID =

InvalidUser";

 ConnectToDatabase(InvalidUserConnection);

}

private void ConnectToInvalidDatabaseButton_Click(object sender, EventArgs e)

{

 // This connection string has an invalid/unavailable database

 String InvalidDatabaseConnection =

 "Data Source=.\\sqlexpress;Initial Catalog=InvalidDatabase;" +

 “Integrated Security=True";

 ConnectToDatabase(InvalidDatabaseConnection);

}

 7. Run the application.

 8. Click the Connect button. No errors should be raised.

 218 CHAPTER 5 Confi guring Connections and Connecting to Data

 9. Click the Connect To Invalid User button. The code to catch the specifi c login error

(error 18452) is executed.

 10. Click the Connect To Invalid Database button. You can see that an error was raised and

is displayed in the message box.

Lesson Summary
Q A SqlException object is created when an error is detected on the SQL server.

Q Every instance of a SqlException exception contains at least one SqlError warning that

contains the actual error information from the server.

Lesson Review
The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. What types of errors will cause a SqlConnection object to close? (Choose all that apply.)

 A. Errors wth a severity level of 1 through 9

 B. Errors wth a severity level of 10 through 19

 C. Errors wth a severity level of 20 through 29

 D. Errors wth a severity level of 30 or greater

 2. What property contains the actual error message returned by SQL Server? (Choose all

that apply.)

 A. SqlException.Source

 B. SqlException.Message

 C. SqlError.Class

 D. SqlError.Message

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 Lesson 5: Enumerating the Available SQL Servers on a Network CHAPTER 5 219

Lesson 5: Enumerating the Available SQL Servers on a
Network

This lesson describes how to return a list of visible SQL Server instances on a network compa-

rable to the Server Name drop-down list in the Add Connection dialog box.

After this lesson, you will be able to:

Q Enumerate through instances of SQL Server.

Estimated lesson time: 20 minutes

The .NET Framework offers applications a way to discover SQL Server instances on a

network so your programs can process this information when necessary. To retrieve the list

of available SQL Servers, use the Instance property of the SqlDataSourceEnumerator class and

call the GetDataSources method. The GetDataSources method returns a DataTable that con-

tains information for each SQL server that is visible on the network. The returned data table

contains the columns listed in Table 5-11.

TABLE 5-11 DataTable Schema Returned by the GetDataSources Method

COLUMN NAME DESCRIPTION

ServerName Name of the SQL server containing the visible instance

InstanceName Name of the server instance, or empty for servers running

default instances

IsClustered Indicates whether the server is part of a cluster

Version The version number of the SQL server

Why Do Only Some or No SQL Servers Appear in My Grid?

Depending on how your network or even your individual machine is set up, the list of avail-

able servers might or might not be complete. In addition to things such as network traf-

fi c and timeout issues, the way your network implements security can cause servers to be

hidden from the returned list as well. If you are running SQL Server 2005, a service named

SQL Browser needs to be running for you to see SQL Server instances. And even if your SQL

Browser service is running, your fi rewall might be blocking the request for SQL information.

The fi rewall is likely to be blocking communication requests through port 1433, which is the

After this lesson, you will be able to:

Q Enumerate through instances of SQL Server.

Estimated lesson time: 20 minutes

 220 CHAPTER 5 Confi guring Connections and Connecting to Data

default port that SQL Server default instances are set up to use. There are obvious security

implications concerning turning on the SQL Browser service as well as enabling communica-

tions through specifi c ports through your fi rewall, but these are beyond the scope of this

book. A good resource is the “SQL Browser Service” section of SQL Server 2005 Books Online,

and I encourage you to read that before changing any settings on your fi rewall or SQL Server

confi guration.

LAB Returning the List of Visible SQL Servers

In this lab you will practice enumerating the SQL Servers on your network.

EXERCISE 1 Enumerating the SQL Servers on a Network

To demonstrate how to retrieve the list of visible SQL servers, let’s create a small application

to display the information returned from the GetDataSources method in a DataGridView.

 1. Create a new Windows application named SqlServerEnumerator.

 2. Add a DataGridView to the form and name it VisibleSqlServers.

NOTE DATAGRIDVIEW

The DataGridView is the control typically used for displaying data. The DataGridView is

discussed in more detail in Chapter 8.

 3. Add a Button control below the grid and set its Name property to GetDataSources-

Button.

 4. Set the Button’s Text property to Get Visible Servers.

 5. Double-click the Get Visible Servers button to create the Click handler and switch to

code view.

 6. Add code so that the handler looks like the following:

 ' VB

Dim instance As System.Data.Sql.SqlDataSourceEnumerator = _

 System.Data.Sql.SqlDataSourceEnumerator.Instance

VisibleSqlServers.DataSource = instance.GetDataSources

// C#

System.Data.Sql.SqlDataSourceEnumerator instance =

 System.Data.Sql.SqlDataSourceEnumerator.Instance;

VisibleSqlServers.DataSource = instance.GetDataSources();

 Now run the application and click the Get Visible Servers button. All visible SQL servers

on your network appear in the grid, looking similar to Figure 5-3.

NOTE DATAGRIDVIEW

The DataGridView is the control typically used for displaying data. Thew DataGridView is w

discussed in more detail in Chapter 8.

 Lesson 5: Enumerating the Available SQL Servers on a Network CHAPTER 5 221

FIGURE 5-3 Grid showing all visible SQL servers on your network

Lesson Summary
Q You can use the SqlDataSourceEnumerator object to return a list of visible SQL servers

on a network.

Q The list of servers returned might not be complete, due to factors such as fi rewall set-

tings and protocol confi gurations on the SQL Server services.

Lesson Review
The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of this book.

 1. What object is used to return the list of visible SQL Servers?

 A. VisibleSqlServers

 B. GetDataSources

 C. SqlDataSourceEnumerator

 D. ServerName

 2. What factors can cause SQL servers to be invisible on the network? (Choose all that

apply.)

A. The computer’s fi rewall settings

 B. The amount of network traffi c

C. The availability of the SQL Browser service

D. The Visibility property of the SQL Server

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of this book.

 222 CHAPTER 5 Confi guring Connections and Connecting to Data

 3. Which of the following pieces of information is available through the SqlServerEnu-

merator object? (Choose all that apply.)

 A. The name of the SQL server

 B. The number of databases currently on the server

 C. The version number of the server

 D. The instance name for servers that are not running default instances

 Lesson 6: Securing Sensitive Connection String Data CHAPTER 5 223

Lesson 6: Securing Sensitive Connection String Data

Because of the sensitive nature of most data in real-world scenarios, it is extremely important

to protect your servers and databases from unauthorized access. To ensure limited access to

your data source, it is a best practice to secure information like user IDs, data source names,

and, of course, passwords. Storing this type of information as plain text is not recommended

because of the obvious security risk. It is also worth noting that plain text saved in compiled

applications is easily decompiled, rendering your data accessible by persons with question-

able intent.

After this lesson, you will able to:

Q Protect access to a data source’s connection details.

 Estimated lesson time: 45 minutes

 REAL WORLD

 Steve Stein

 In another of my previous jobs (okay, I’ve had a few!), I took a position as a system

administrator for a local mortgage company. My fi rst task was to get familiar with

the infrastructure of their company network. I immediately realized that basically

every employee was set up with an administrator account and had access to the

entire network. Although this story isn’t specifi c to securing connection strings, it

does provide insight into how important it is to lock down your sensitive data!

 The suggested method of implementing security in applications that access data is to use

 Windows Authentication (also known as Integrated Security). To further protect sensitive con-

nection information when using Integrated Security, it is also recommended that you set the

Persist Security Information keyword to False in the connection string. This ensures that the

credentials used to open the connection are discarded and not stored where someone might

be able to retrieve them.

Table 5-12 provides the key/value pairs to set in the connection string for implementing

Integrated Security in the four .NET Framework Data Providers.

After this lesson, you will able to:

Q Protect access to a data source’s connection details.

Estimated lesson time: 45 minutes

REAL WORLD

Steve Stein

In another of my previous jobs (okay, I’ve had a few!), I took a position as a system

administrator for a local mortgage company. My fi rst task was to get familiar with

the infrastructure of their company network. I immediately realized that basically

every employee was set up with an administrator account and had access to the

entire network. Although this story isn’t specifi c to securing connection strings, it

does provide insight into how important it is to lock down your sensitive data!

 224 CHAPTER 5 Confi guring Connections and Connecting to Data

 TABLE 5-12 Connection String Keywords for Turning On Integrated Security

 DATA PROVIDER KEY/VALUE PAIR

 SqlClient Integrated Security=True

 SqlClient and OleDb Integrated Security=SSPI

 Odbc Trusted_Connection=Yes

 OracleClient Integrated Security=Yes

 As stated earlier, if you absolutely must use a connection string that contains sensitive

information, do not store the connection string in the compiled application. As an alternative,

you can use the application confi guration fi le (app.confi g). The app.confi g fi le stores connec-

tion strings as Extensible Markup Language (XML), and your application gets its connection

information by querying this fi le at run time (as opposed to compiling the connection string

into the application itself). By default, the application confi guration fi le stores its information

unencrypted, as shown in Figure 5-4.

 FIGURE 5-4 An unencrypted configuration file

 Securing Data in Confi guration Files
 Now that you’ve moved your sensitive connection string data out of the compiled application

and into the application’s confi guration fi le, the connection string is still unencrypted and can

be read by anyone with permission to open the confi guration fi le. Therefore, you still need

a way to prevent unauthorized personnel from viewing the connection information if they

somehow gain access to your confi guration fi le. The suggested method of securing confi gura-

tion fi les is to encrypt the sections that contain sensitive information, as shown in Figure 5-5.

 Lesson 6: Securing Sensitive Connection String Data CHAPTER 5 225

 FIGURE 5-5 An encrypted configuration file

 The suggested approach to encrypting confi guration data is to use a protected-

 confi guration provider. Two protected-confi guration providers are available in the .NET

Framework, as well as a base class that you can use to implement your own if the two avail-

able providers are not suffi cient for your application.

 LAB Securing a Confi guration File

 In this lab you will practice encrypting and decrypting a confi guration fi le.

 EXERCISE 1 Encrypting and Decrypting a Confi guration File

 In this lesson you will see how to use the DpapiProtectedConfi gurationProvider to encrypt

and decrypt the ConnectionStrings section of the app.confi g fi le.

 1. Create a new Windows Application and name it SecuringConnectionStrings.

 2. Add a reference to the System.Confi guration namespace.

 3. Add two buttons to the form, setting the Name and Text properties to the following:

 NAME PROPERTY TEXT PROPERTY

 EncryptButton Encrypt

 DecryptButton Decrypt

 4. Create a data source and add a connection string to the application confi guration fi le

by running the Data Source Confi guration Wizard.

 5. Create event handlers for the button-click events.

 226 CHAPTER 5 Confi guring Connections and Connecting to Data

 6. Switch to code view and paste the following code into the editor:

 The following code locates the connection string setting in the application’s confi gura-

tion fi le. The connection string setting is marked for encryption by calling the Protect-

Section method. Setting the ForceSave property to True ensures the confi guration fi le is

saved whether changes are made or not; and the Confi guration.Save call saves the fi le

once it has been encrypted.

 ' VB

Imports System

Imports System.Configuration

Public Class Form1

 Private Sub EncryptConnectionString()

 ' Get the configuration file

 Dim config As System.Configuration.Configuration = _

 ConfigurationManager.OpenExeConfiguration(ConfigurationUserLevel.None)

 ' Create the provider name

 Dim provider As String = _

 "DataProtectionConfigurationProvider"

 ' Encrypt the ConnectionStrings

 Dim connStrings As ConfigurationSection = _

 config.ConnectionStrings

 connStrings.SectionInformation.ProtectSection(provider)

 connStrings.SectionInformation.ForceSave = True

 config.Save(ConfigurationSaveMode.Full)

 End Sub

 Private Sub DecryptConnectionString()

 ' Get the configuration file

 Dim config As System.Configuration.Configuration = _

 ConfigurationManager.OpenExeConfiguration(ConfigurationUserLevel.None)

 ' Decrypt the ConnectionStrings

 Dim connStrings As ConfigurationSection = _

 config.ConnectionStrings

 connStrings.SectionInformation.UnprotectSection()

 connStrings.SectionInformation.ForceSave = True

 config.Save(ConfigurationSaveMode.Full)

 End Sub

 Private Sub EncryptButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles EncryptButton.Click

 EncryptConnectionString()

 End Sub

 Lesson 6: Securing Sensitive Connection String Data CHAPTER 5 227

 Private Sub DecryptButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles DecryptButton.Click

 DecryptConnectionString()

 End Sub

End Class

// C#

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System. Windows.Forms;

using System.Configuration;

namespace SecuringConnectionStrings

{

 public partial class Form1 : Form

 {

 public Form1()

 {

 InitializeComponent();

 }

 private void EncryptConnectionString()

 {

 // Get the configuration file

 System.Configuration.Configuration config =

 ConfigurationManager.OpenExeConfiguration(ConfigurationUserLevel.

None);

 // Create the provider name

 string provider = "DataProtectionConfigurationProvider";

 //Encrypt the connectionStrings

 ConfigurationSection connstrings = config.ConnectionStrings;

 connstrings.SectionInformation.ProtectSection(provider);

 connstrings.SectionInformation.ForceSave = true;

 config.Save(ConfigurationSaveMode.Full);

 }

 private void DecryptConnectionString()

 {

 //Get the configuration file

 System.Configuration.Configuration config =

 228 CHAPTER 5 Confi guring Connections and Connecting to Data

 ConfigurationManager.OpenExeConfiguration(ConfigurationUserLevel.

None);

 // Decrypt the connectionStrings

 ConfigurationSection connstrings = config.ConnectionStrings;

 connstrings.SectionInformation.UnprotectSection();

 connstrings.SectionInformation.ForceSave = true;

 config.Save(ConfigurationSaveMode.Full);

 }

 private void EncryptButton_Click(object sender, EventArgs e)

 {

 EncryptConnectionString();

 }

 private void DecryptButton_Click(object sender, EventArgs e)

 {

 DecryptConnectionString();

 }

 }

}

 7. Run the application and click the Encrypt button.

 8. While the application is running, navigate to the project’s folder and locate the con-

fi guration fi le (SecuringConnectionStrings.vshost.exe.confi g).

 9. Open the fi le and verify that the ConnectionStrings section is encrypted.

 10. Go back to the form and click the Decrypt button.

 11. Reopen the .confi g fi le and notice that the connection string has reverted back to plain

text.

 Lesson Summary
Q Windows Authentication (also called Integrated Security) is the suggested method for

connecting to data securely.

Q Store connection strings that contain sensitive information in the application confi gu-

ration fi le and encrypt all settings that contain confi dential information.

 Lesson 6: Securing Sensitive Connection String Data CHAPTER 5 229

Lesson Review
The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of this book.

 1. What is the connection string’s key/value pair for using Windows Authentication in SQL

Server 2000 and SQL Server 2005? (Choose all that apply.)

 A. Integrated Security = yes

B. Integrated Security =SSPI

C. Integrated Security = True

D. Trusted_Connection = Yes

 2. If you must use a user name and password to connect to a database, where should you

store the sensitive information?

 A. Compiled in the application

B. In an encrypted application confi guration fi le

C. In a resource fi le deployed with the application

 D. In the registry

 3. What is the recommended method for securing sensitive connection string

information?

A. Encrypting the data in the application confi guration fi le

B. Using a code obfuscator

C. Using Integrated Security (Windows Authentication)

D. Querying the user for his or her credentials at run time

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of this book.

 230 CHAPTER 5 Confi guring Connections and Connecting to Data

 Chapter Review

 To further practice and reinforce the skills you learned in this chapter, you can perform the

following tasks:

Q Review the chapter summary.

Q Complete the case scenarios. These scenarios set up real-world situations involving the

topics of this chapter and ask you to create a solution.

Q Complete the additional practices.

Q Take a practice test.

 Chapter Summary
Q You create connection objects by setting a valid connection string and enabling com-

munication between your application and a data source. ADO.NET provides four pri-

mary connection objects that you can use to connect to almost any standard database.

Q Connection objects contain several properties, methods, and events that are used for

opening and closing connections to a data source, providing information on the cur-

rent state of the connection and surfacing warnings and informational messages from

a data source.

Q Connection objects enable connection pooling by default. By setting connection–

pooling specifi c connection string keywords, you can control how connections interact

with the connection pool.

Q By wrapping connection calls in a try-catch block, you can process errors returned

from SQL Server by using the SqlException and SqlError classes.

Q By using Windows Authentication and application confi guration fi les, you can protect

sensitive information such as passwords in your programs.

 Key Terms
 Do you know what these key terms mean? You can check your answers by looking up the

terms in the glossary at the end of the book.

Q connection object

Q connection pool

Q connection string

Q encryption

Q Integrated Security

 Suggested Practices CHAPTER 5 231

 Case Scenarios
 In the following case scenarios, you will apply what you’ve learned about confi guring con-

nections and connecting to data. You can fi nd answers to these questions in the “Answers”

section at the end of this book.

 Case Scenario 1: Troubleshooting a SQL Connection

 You just landed a sweet job at the Alpine Ski House and have been assigned to maintain the

application that keeps track of inventory in the ski rental hut. The client application connects

to a SQL Server database where the inventory data is stored. You decide to test the applica-

tion before the season begins, and the fi rst time you run the application and try to check

inventory you get an unhandled exception originating from the SQL server.

 How can you modify the application so that users can better identify and troubleshoot

connection problems?

 Case Scenario 2: Securing Sensitive Data

 You are working as an application developer at Contoso Pharmaceuticals and have been

asked to rewrite their in-house research and development application. The fi rst thing you

notice is that they store user name and password information in plain text within the applica-

tion code base.

 Create a list of suggested remedies to present to upper management.

 Suggested Practices

 To gain further knowledge on the subject of working with connections, complete the follow-

ing practices.

Q Practice 1 Create an application that targets different databases, which can be

selected when the application starts.

Q Practice 2 Design a reusable block of code that can be used to handle SQL Server

errors of any severity.

Q Practice 3 Create a component that writes to a log every time a connection to a

database is opened.

 232 CHAPTER 5 Confi guring Connections and Connecting to Data

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you can test

yourself on just the content covered in this chapter, or you can test yourself on all the 70-505

certifi cation exam content. You can set up the test so that it closely simulates the experience

of taking a certifi cation exam, or you can set it up in study mode so that you can look at the

correct answers and explanations after you answer each question.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see the “How to Use the Practice

Tests” section in this book’s Introduction.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see the “How to Use the Practice

Tests” section in this book’s Introduction.

	Cover
	Copyright page

	Contents at a Glance
	Contents
	Introduction
	Hardware Requirements
	Software Requirements
	Using the CD and DVD
	How to Install the Practice Tests
	How to Use the Practice Tests
	How to Uninstall the Practice Tests

	Microsoft Certified Professional Program
	Technical Support
	Evaluation Edition Software Support

	Chapter 3: Advanced Windows Forms Controls
	Before You Begin
	Lesson 1: Creating and Configuring List-Display Controls
	Overview of List-Based Controls
	ListBox Control
	ComboBox Control
	CheckedListBox Control
	Adding Items to and Removing Items from a List-Based Control
	The ListView Control
	TreeView Control
	NumericUpDown Control
	DomainUpDown Control
	Lesson Summary
	Lesson Review

	Lesson 2: Creating and Configuring Value-Setting, Date-Setting, and Image-Display Controls
	Value-Setting Controls
	The CheckBox Control
	The RadioButton Control
	The TrackBar Control
	Choosing Dates and Times
	DateTimePicker Control
	MonthCalendar Control
	Working with Images
	PictureBox Control
	ImageList Component
	Lesson Summary
	Lesson Review

	Lesson 3: Configuring the WebBrowser Control and the NotifyIcon Component and Creating Access Keys
	The WebBrowser Control
	The NotifyIcon Component
	Creating Access Keys
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenarios

	Suggested Practices
	Take a Practice Test

	Chapter 5: Configuring Connections and Connecting to Data
	Before You Begin
	Lesson 1: Creating and Configuring Connection Objects
	What Is a Connection Object?
	Creating Connections in Server Explorer
	Creating Connections Using Data Wizards
	Creating Connection Objects Programmatically
	Lesson Summary
	Lesson Review

	Lesson 2: Connecting to Data Using Connection Objects
	Opening and Closing Data Connections
	Connection Events
	Lesson Summary
	Lesson Review

	Lesson 3: Working with Connection Pools
	What Is Connection Pooling?
	Controlling Connection Pooling Options
	Configuring Connections to Use Connection Pooling
	Lesson Summary
	Lesson Review

	Lesson 4: Handling Connection Errors
	Lesson Summary
	Lesson Review

	Lesson 5: Enumerating the Available SQL Servers on a Network
	Lesson Summary
	Lesson Review

	Lesson 6: Securing Sensitive Connection String Data
	Securing Data in Configuration Files
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenarios

	Suggested Practices
	Take a Practice Test

