S o

7

Microsoft .NET
Framework-
Application Development
Foundation

Tralnlng Klt

http://www.facebook.com/share.php?u=http://www.microsoftpressstore.com/title/9780735626195
http://twitter.com/?status=RT: download a free sample chapter http://www.microsoftpressstore.com/title/9780735626195
https://plusone.google.com/share?url=http://www.microsoftpressstore.com/title/9780735626195
http://www.linkedin.com/shareArticle?mini=true&url=http://www.microsoftpressstore.com/title/9780735626195
http://www.stumbleupon.com/submit?url=http://www.microsoftpressstore.com/title/9780735626195/Free-Sample-Chapter

Ow 1O access
your CD files

The print edition of this book includes a CD. To access the
CD files, go to http://aka.ms/626195/files, and look for the
Downloads tab.

Note: Use a desktop web browser, as files may not be
accessible from all ereader devices.

Questions? Please contact: mspinput@microsoft.com

Microsoft Press

Additional Resources for Developers from Microsoft Press
Published and Forthcoming Titles on Microsoft® Visual Studio®

=» Visual Basic

Microsoft Visual Basic® 2008
Express Edition:

Build a Program Now!
Patrice Pelland
978-0-7356-2541-9

Microsoft Visual Basic 2008
Step by Step

Michael Halvorson
978-0-7356-2537-2

Microsoft Visual Basic 2005
Step by Step

Michael Halvorson
978-0-7356-2131-2

Programming Windows®
Services with Microsoft
Visual Basic 2008
Michael Gernaey
978-0-7356-2433-7

Programming Microsoft
Visual Basic 2005:

The Language
Francesco Balena
978-0-7356-2183-1

=» Visual C#

Microsoft Visual C#* 2008
Express Edition:

Build a Program Now!
Patrice Pelland
978-0-7356-2542-6

Microsoft XNA™ Game
Studio 2.0 Express: Learn
Programming Now!

Rob S. Miles
978-0-7356-2522-8

Microsoft Visual C# 2008
Step by Step

John Sharp
978-0-7356-2430-6

Microsoft Visual C# 2005
Step by Step

John Sharp
978-0-7356-2129-9

Programming Microsoft
Visual C# 2008:

The Language

Donis Marshall
978-0-7356-2540-2

Programming Microsoft
Visual C# 2005:

The Language

Donis Marshall
978-0-7356-2181-7

Programming Microsoft
Visual C# 2005:

The Base Class Library
Francesco Balena
978-0-7356-2308-8

CLR via C#,

Second Edition
Jeffrey Richter
978-0-7356-2163-3

=» Web Development -5

Microsoft ASPNET 3.5
Step by Step

George Shepherd
978-0-7356-2426-9

Microsoft ASPNET 2.0
Step by Step

George Shepherd
978-0-7356-2201-2

Programming Microsoft
ASPNET 3.5

Dino Esposito
978-0-7356-2527-3

Programming Microsoft
ASPNET 2.0

Core Reference

Dino Esposito
978-0-7356-2176-3

Programming Microsoft
ASPNET 2.0 Applications
Advanced Topics

Dino Esposito
978-0-7356-2177-0

=>» Data Access

Microsoft ADO.NET 2.0
Step by Step

Rebecca M. Riordan
978-0-7356-2164-0

Programming Microsoft
ADO.NET 2.0

Core Reference

David Sceppa
978-0-7356-2206-7

Programming the Microsoft
ADO.NET Entity Framework

David Sceppa
978-0-7356-2529-7

Programming Microsoft

ADO.NET 2.0 Applications

Advanced Topics
Glenn Johnson
978-0-7356-2141-1

Windows Presentation
Foundation:

A Scenario-Based Approach

Billy Hollis
978-0-7356-2418-4

3D Programming for
Windows

Charles Petzold
978-0-7356-2394-1

Microsoft Windows
Workflow Foundation
Step by Step

Kenn Scribner
978-0-7356-2335-4

Microsoft Windows

Communication Foundation

Step by Step
John Sharp
978-0-7356-2336-1

Applications = Code +
Markup: A Guide to the
Microsoft Windows
Presentation Foundation
Charles Petzold
978-0-7356-1957-9

.NET Framework

Inside Microsoft Windows
Communication Foundation
Justin Smith
978-0-7356-2306-4

=» Other

Developer Topics

Debugging Microsoft
.NET 2.0 Applications
John Robbins
978-0-7356-2202-9

I. M. Wright's “Hard Code”
Eric Brechner
978-0-7356-2435-1

The Practical Guide to
Defect Prevention
Marc McDonald, Robert
Musson, Ross Smith
978-0-7356-2253-1

Software Estimation:
Demystifying the Black Art
Steve McConnell
978-0-7356-0535-0

The Security
Development Lifecycle
Michael Howard

Steve Lipner
978-0-7356-2214-2

Code Complete,
Second Edition
Steve McConnell
978-0-7356-1967-8

Software Requirements,
Second Edition

Karl E. Wiegers
978-0-7356-1879-4

More About Software
Requirements: Thorny
Issues and Practical Advice
Karl E. Wiegers
978-0-7356-2267-8

v

microsoft.com/mspress

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2009 by Tony Northrup

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2008935429

Printed and bound in the United States of America.

123456789 QWT 321098

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly at
fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to tkinput@microsoft.com.

Microsoft, Microsoft Press, Active Directory, Internet Explorer, MS, MSDN, MS-DOS, OpenType, Outlook, SQL Server,
Visual Basic, Visual C#, Visual C++, Visual Studio, Win32, Windows, Windows NT, Windows Server, and Windows Vista
are either registered trademarks or trademarks of the Microsoft group of companies. Other product and company names
mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will be
held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ken Jones

Developmental Editor: Laura Sackerman

Project Editor: Carol Vu

Editorial Production: S4Carlisle Publishing Services

Technical Reviewer: Kurt Meyer; Technical Review services provided by Content Master, a member of CM Group, Ltd.
Cover: Tom Draper Design

Body Part No. X15-12470

In loving memory of Chelsea Knowles

About the Author

Tony Northrup

In the mid-1980s, Tony Northrup, MCTS, MCSE, CISPP, and MVP,
learned to program in BASIC on a ZX-81 personal computer built
from a kit. Later, he mastered 68000 assembly and ANSI C on the
Motorola VERSAdos operating system before beginning to write
code for MS-DOS. After a brief time with the NEXTSTEP operating
system, Tony returned to a Microsoft platform because he was
impressed by the beta version of Microsoft Windows NT 3.1.
Although he has dabbled in other operating systems, Tony has
since focused on Windows development in Microsoft Visual C++,
Microsoft Visual Basic, C#, and Perl (for automation projects). Tony now develops
almost exclusively for the NET Framework.

Tony started writing in 1997 and has since published more than a dozen technology
books on the topics of development and networking. In addition, Tony has written
dozens of articles at http://www.microsoft.com, covering topics ranging from securing
ASP.NET applications to designing firewalls to protect networks and computers. Tony
spends his spare time hiking through the woods near his Phillipston, Massachusetts,
home. He’s rarely without his camera, and in the past six years has created what might
be the largest and most popular publicly accessible database of nature and wildlife
photographs on the Internet. Tony lives with his dog, Sandi, and his cat, Sam. For more
information about Tony, visit http://www.northrup.org.

Contents at Glance

1 Framework Fundamentals i il 1

2 Input/Output e e 67

3 Searching, Modifying, and Encoding Text 97

4 Collectionsand Genericsiiiiiiiiiiiiiinnnnnn. 137

5 Serialization. i e 169

6 Graphics. . ..o e e 219

7 Threading ...t i e e 269

8 Application Domains and Services i, 315

9 Installing and Configuring Applications 359
10 Logging and Systems Management 399
11 Application Security e 447
12 Userand DataSecurityoiiiiiiiiiiiiiin i, 521
13 InteroperatingwithCOM it 603
14 Reflection i i e 631
15 Mail. . e 651
16 Globalization. i 679
AN W LS. . .ottt e et e 705
GlOSSarY . . ittt e e e e 761
e 1= G 769

Table of Contents

Acknowledgments. e Xxvii

Introduction e XXiX

1 Framework Fundamentals iiiii.L 1

Before You Begin 1

Lesson 1: Using Value Typeso oo e e 2

Built-in Value Typeso 2

How to Declare a Value Type Variable 5

How to Create User-Defined Types..........ciiiiiiiii .. 6

How to Create Enumerations i 9

Lab: Declaring and Using Value Types, .. 10

LeSSON SUMMAIY. . . ottt e e e e e e e e 13

LeSSON ReVIEW oot 14

Lesson 2: Using Common Reference Types 15

What Is a Reference Type? 15
Comparing the Behavior of Reference

and Value Typeso 15

Built-in Reference Typest 17

Strings and String Builders 17

How to Create and SOrt Arraysooiiiinniii e, 19

How to Use Streams. e 20

How to Throw and Catch Exceptions 21

Lab: Working with Reference Types. 24

Lesson SUMMary. 29

LesSON ReVIEWottt 29

Lesson 3: Constructing Classes.ovu e 32

What Is Inheritance?. 32

What s an Interface?. 34

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Table of Contents

What Are Partial Classes? 37
What Are GENEIICS?. . ..o e e e 38
EVeNtS o 43
What Are Attributes?. 46
What Is Type Forwarding? e 47
Lab: Create a Derived Class with Delegates. 48
Lesson SUMMaArY 51
LESSON REVIEW. . . .\ 52
Lesson 4: Converting Between Types 54
Conversion in Visual Basicand C# i i 54
What Are Boxing and Unboxing?t 56
How to Implement Conversion in Custom Types. 56
Lab: Safely Performing Conversions. ..., 59
LesSSON SUMMAIYot e e e e 60
LeSSON ReVIEW.t 60
Chapter ReVIEWt 62
Chapter SUMMArY e 62
Ky TermS 63
€ase SCENANIO . . o ottt 64
Case Scenario: Designing an Application. 64
Suggested Practices. 64
Manage Data in a .NET Framework Application by Using .NET
Framework System Types oot 65
Implement .NET Framework Interfaces to Cause Components
to Comply with Standard Contracts 65
Control Interactions Between .NET Framework Application
Components by Using Events and Delegates........................... 65
Take a Practice Test oo 66
2 Input/Output e 67
Before You Begino 67
Lesson 1: Working with the File System 68
Enumerating Drives. 68
Managing Filesand Folders. i 69
Monitoring the File System 70
Lab: Working with the File System 73
LeSSON SUMMATYttt e e 77

LESSON REVIEW. . . .ot 77

Table of Contents xi

Lesson 2: Reading and Writing Files and Streams.............. 79
Reading and Writing Text Files.o i 79
Reading and Writing Binary Files. o i 80
Reading and Writing Strings. 81
Using a MemoryStream. 82
Using a BufferedStream 83
Using Compressed Streamsuuiiiteiiiiiiiii i 83
Using Isolated Storage.t 85
Lab: Using Streams. oo 88
LeSSON SUMMATY.t 91
LeSSON ReVIEWo 91

Chapter ReVIEWo 93

Chapter SUMMATY.ttt e 93

Ky oM. o 93

a5 SCENAIIOS. . . oottt e e e 93
Case Scenario 1: Creatinga Log File......... ... i 93
QUESHIONS. . .o 94
Case Scenario 2: Compressing Files. i 94
QUESHIONS. . . e 94

Suggested Practicest 94
Access Files and Folders by Using the FileSystem Classes................. 94
Manage the .NET Framework Application Data by Using
Reader and Writer Classes. oo 95

Compress or Decompress Stream Information in a .NET Framework
Application and Improve the Security of Application Data by

Using Isolated Storage.t 95

Take @ Practice Test. 95
3 Searching, Modifying, and Encoding Text 97
Before You Begin 97
Lesson 1: Forming Regular EXpressions. ...t ... 98
How to Use Regular Expressions for Pattern Matching 98

How to Match Simple Text e 101

How to Match Text in Specific Locations 101

How to Extract Matched Data, 110

How to Replace Substrings Using Regular Expressions 112

How to Use Regular Expressions to Constrain String Input............... 114

Lab: Create a Regex Expression Evaluator. 115

xii Table of Contents

Lesson SUMMarY 119
LesSON ReVIEW.ot 120
Lesson 2: Encodingand Decodingttt 124
Understanding Encoding 124
Using the Encoding Class.t 126
How to Examine Supported Code Pages.ccoviviinn... 127
How to Specify the Encoding Type When Writing aFile................. 128
How to Specify the Encoding Type When Reading aFile................ 129
Lab: Read and Write an Encoded File. 130
LesSSON SUMMAIYot e e e e 130
LesSSON ReVIEW. 131
Chapter ReVIEWt 133
Chapter SUMMArY e 133
Ky TermsS 133
€aS€ SCENAIIOS . o oottt e e e 133
Case Scenario 1: Validating Input 134
Case Scenario 2: Processing Data from a Legacy Computer 135
Suggested Practices. 135

Enhance the Text-Handling Capabilities of a .NET Framework
Application, and Search, Modify, and Control Text Within a .NET

Framework Application by Using Regular Expressions 135

Take a Practice Test 136
4 Collectionsand Generics.cviiinii ittt iiiieeennn. 137
Before You Begin o 137
Lesson 1: Collections and Dictionariesoo i .. 138
Collections 138
DictioNaries. . ..ot 143

Lab: Creating a Shopping Cart ... 146
LeSSON SUMMAIYot e e e e 148
LeSSON REVIEW.t 148
Lesson 2: Generic Collections. i 150
GeNErics OVEIVIBW.ot 150
Generic SortedList<T,U> Collectiono, .. 151

Using Generics with Custom Classescooiiiiiiiiinnna... 152
Generic Queue<T> and Stack<T> Collections. 153
Generic List<T> Collection. 154

Lab: Creating a Shopping Cart with a Generic List<T>.................. 156

Table of Contents

Lesson SUMMary.ot
LessON ReVIEWottt
Chapter REVIEWottt
Chapter SUMMaAry.
Key Terms. ..o
€a5€ SCENAMIOS. . . o\ttt ettt
Case Scenario 1: Using Collections ...
QUESHIONS. . .ot
Case Scenario 2: Using Collections for Transactions.
QUESHIONS. . .ot
Suggested Practices.
Manage a Group of Associated Data in a .NET Framework
Application by Using Collections.
Improve Type Safety and Application Performance in a .NET
Framework Application by Using Generic Collections..................
Manage Data in a .NET Framework Application by Using
Specialized Collections
Take @ Practice Test.
Serialization. e
Before You Begino
Lesson 1: Serializing Objects. i
What Is Serialization?.
How to Serialize an Object
How to Deserialize an Object. i
How to Create Classes That Can Be Serialized.
Choosing a Serialization Format
How to Use SoapFormatter. i
How to Control SOAP Serialization..........
Guidelines for Serialization.
Lab: Serialize and Deserialize Objects..........,
LeSSON SUMMAIY. . . oottt e e e e e
LesSSON ReVIEWo o it
Lesson 2: XML Serialization.
Why Use XML Serialization?...........
How to Use XML to Serializean Object,
How to Use XML to Deserializean Object............................

How to Create Classes That Can Be Serialized by Using

XML Serialization

xiv

6

Table of Contents

How to Control XML Serialization. i ... 191
How to Conformtoan XML Schema 195
How to Serialize a DataSet. 196
Lab: Using XML Serialization i 197
Lesson SUMMArY e 199
LeSSON REVIEW. . . .\t e e e 200
Lesson 3: Custom Serialization. 202
How to Implement Custom Serialization.............................. 202
Responding to Serialization Events.............o i 205
How to Change Serialization Based on Context........................ 207
How to Create a Custom Formatter.......... 209
Lab: Implement Custom Serialization. 209
Lesson SUMMaArY e 211
LESSON REVIEW. . . .\ttt e 211
Chapter ReVIEW 213
Chapter SUMMaArYo 213
Key Terms ... 213
€aSE SCENAIIOS . . . et e 214
Case Scenario 1: Choosing a Serialization Technique 214
QUESHIONS . .ot 214
Case Scenario 2: Serializing Between Versions 215
QUESTIONS . .ot 215
Suggested Practices. 215
Serialize or Deserialize an Object or an Object Graph by
Using Runtime Serialization Techniques 215
Control the Serialization of an Object into XML Format by
Using the System.Xml.Serialization Namespace 216
Implement Custom Serialization Formatting by Using the
Serialization Formatter Classes i i i il 216
Take a Practice Test 217
Graphics. . ..o e e 219
Before You Begin 220
Lesson 1: Drawing Graphicsttt 221
The System.Drawing Namespaceuuuuuriiiiiiaeanaaenn.. 221
How to Specify the Location and Sizeof Controls............................ 225
How to Specify the Colorof Controls. i 226
How to Draw Lines and Shapes. ... 227

How to Customize Pens 231

Table of Contents XV

How to Fill Shapes 233

Lab: Create a Method to Drawa PieChart 235

Lesson SUMMary. 240

LeSSON ReVIEW 241

Lesson 2: Working with Images 243

The Image and Bitmap Classes. 243

How to Display Pictures. 244

How to Create and Save Pictures. i, 244

How to Use ICONS oo 246

Lab: Save a Pie ChartasaPicture 246

Lesson SUMMarY.t 247

LeSSON ReVIEW 248

Lesson 3: Formatting Text i 250

How to Add Text to Graphics. ... 250

How to Create a Font Object 250

Howto Write Text. o 251

How to Control the Formattingof Text o .. 252

Lab: Add Texttoanimage ...t 255

Lesson SUMMary.t 261

LeSSON ReVIEW 261

Chapter REVIEWottt 263

Chapter SUMMaArY. 263

Key Terms. ..o 263

€aSE SCONAMIOS.ttt t ettt e 264

Case Scenario 1: Choosing Graphics Techniques. 264

QUESHIONS. . . oo e 264

Case Scenario 2: Creating Simple Chartsot 265

QUESEIONS. . .ot 265

Suggested Practices. 266
Enhance the User Interface of a .NET Framework Application by

Using Brushes, Pens, Colors,and Fonts. 266
Enhance the User Interface of a .NET Framework Application by

Using Graphics, Images, Bitmaps, andlcons 266
Enhance the User Interface of a .NET Framework Application by

Using Shapes and Sizes.t 267

Take @ Practice Test. 267

7 Threading ... e e 269

Before You Begin 269

xvi Table of Contents

Lesson 1: Starting Multiple Threads i i i, 270
Threading OVErVIEW ot e 270

Using the ThreadPool Classccoo i 271
Understanding Foreground and Background Threads 274

Lab: Improve Performance Using Multiple Threads..................... 275
LesSSON SUMMAIYot e e e e e 276
LeSSON ReVIEW. 277
Lesson 2: Managing Threadsottt 279
Starting and Stopping Threads i i i 279
Thread State 282
Passing Data to and from Threadso 282
Synchronizing Access to RESOUICeS.o v 285
Waiting for Threads to Completeo i, 296

Lab: Manage Threadst 299
Lesson SUMMarYt 306
LeSSON REVIEW. . . .\t 306
Chapter ReVIEW 310
Chapter SUMMaArYo e e 310
Key Terms . .. 310
€aSE SCONAIIOS . . .t e e e e e e e e 311
Case Scenario 1: Print in the Background 311
QUESHIONS . oot 311

Case Scenario 2: Ensuring Integrity in a Financial Application............ 311
QUESTIONS . oo 311
Suggested PractiCes. 312
Develop Multithreaded .NET Framework Applications.................. 312

Take a Practice Test 313
8 Application Domains and Services ool 315
Before You Begin o 315
Lesson 1: Creating Application Domains i, 316
What Is an Application Domain?. it 316

The AppDomain Class e e 318

How to Create an Application Domain 322

How to Load Assemblies in an Application Domain 322

How to Unload an Application Domain............................... 323

Lab: Creating Domains and Loading Assemblies 323

Table of Contents Xvii

Lesson SUMMary. 325
Lesson ReVIEWot 325
Lesson 2: Configuring Application Domains, 327
How to Use an Application Domain to Start Assemblies with
Limited Privileges.o oo 327
How to Configure Application Domain Properties...................... 330
Lab: Control Application Domain Privileges 332
Lesson SUMMary. 333
Lesson ReVIEWot 333
Lesson 3: Creating Windows Services, 336
What Is a Windows Service?. i 336
How to Create a Service Project. i 338
How to Implementa Service i 339
How to Create an Install Project fora Service.......................... 340
How to Manage and Controla Service............o it 343
Lab: Create, Install, and Start a Service to Monitor a Web Site............ 345
LeSSON SUMMaANY. . ..ot e e 350
LeSSON ReVIEWo 351
Chapter ReVIEWo 353
Chapter SUMMAKY.ot 353
Ky oM. o 353
€as€ SCENANIOS. . . oottt e 354
Case Scenario 1: Creating a Testing Tool 354
Case Scenario 2: Monitoringa File ... i i 355
Suggested Practicest 356

Create a Unit of Isolation for the Common Language
Runtime within a .NET Framework Application by Using

Application Domainst 356

Implement, Install, and Control a Service.................. 356

Take @ Practice Test. 357

9 Installing and Configuring Applications. 359
Before You Begino 359

Lesson 1: Configuring Applications................... 360

.NET Framework Application Configuration 360

Reading Machine Configuration Settings., 366

Creating Custom Sections. i i i 368

Lab: Persistently Storing Configuration Settings........................ 373

xviii Table of Contents

Lesson SUMMarY 375
LESSON REVIEW. . . .\t e e 376
Lesson 2: Configuring the .NET Framework.o o i 378
Configuring .NET Framework Settings...........o, 378
Using the Microsoft .NET Framework 2.0
Configuration ToOl. 380
Lab: Configure a Shared Assembly, 382
Lesson SUMMarY e 383
LeSSON REVIEW. . . .t 383
Lesson 3: Installing Applicationso i 385
Creating Custom Installers. i 385
Lab: Installing Applications i 388
LesSSON SUMMAIYot e e e e 391
LeSSON ReVIEW.t 391
Chapter ReVIEWt 394
Chapter SUMMArY e 394
Ky TermS 394
a5 SCENAIIOS . o o\ttt ettt e e e 395
Case Scenario 1: Configuring an Application 395
QUESHIONS .o 395
Case Scenario 2: Installing an Application............................. 396
QUESHIONS . o 396
Suggested Practices. 396
Embed Configuration Management Functionality into a
.NET Framework Application.......... ..ol 396

Create a Custom Microsoft Windows Installer for the .NET
Framework Components by Using the System.Configuration.install
Namespace, and Configure the .NET Framework Applications by
Using Configuration Files, Environment Variables, and the .NET

Framework 2.0 Configuration Tool (MscorcfgMsc) 397

Take a Practice Testot 397

10 Logging and Systems Management 399
Before You Begin o 399

Lesson 1: Logging Application State. 401

Reading and Writing Events. 401

Logging Debugging and Trace Information........................... 405

Lab: Working with Event LOgS 409

Table of Contents Xix

Lesson SUMMary. 413
Lesson ReVIEWot 413
Lesson 2: Working with Performance Counters., 416
Monitoring Performance CouNnters 416
Adding Custom Performance Countersciiiinnnn. 419
Providing Performance CounterData............., 420
Lab: Providing Performance Data i, 421
LesSSON SUMMATY. . ..ot e 425
LeSSON ReVIEWo 426
Lesson 3: Managing CompPuULers.ttt e i e 427
Examining Processes 427
Accessing Management Information 429
Lab: Create an Alarm Clock. 436
LesSSON SUMMaANY. . ..ot 440
LeSSON ReVIEWot 440
Chapter ReVIEWo 442
Chapter SUMMATY. . ..ottt e 442
Ky oM. o 442
€ase SCENAIIOS. . . oottt et e 443
Case Scenario 1: Improving the Manageability of an Application......... 443
QUESHIONS. . .o e 443
Case Scenario 2: Collecting Information About Computers 444
QUESHIONS. . .o e e 444
Suggested Practicest 444
Manage an Event Log by Using the System.Diagnostics Namespace 444

Manage System Processes and Monitor the Performance of a
.NET Framework Application by Using the Diagnostics Functionality

of the NET Framework i 445
Debug and Trace a .NET Framework Application by Using the
System.Diagnostics Namespace ittt 445
Embed Management Information and Events into a .NET Framework
Application ... 446
Take @ Practice Test. 446
11 Application Security e 447
Before You Begin 448
Lesson 1: Understanding CAS. i 449

XX

Table of Contents

Elements of CAS. ... 450
What Is a Security Policy?. 458
How CAS Works with Operating System Security 459
How to Use the .NET Framework 2.0 Configuration Tool to
Configure CAS ..o 460
How to Use the Code Access Security Policy Tool 465
Lab: Configuring CAS 472
Lesson SUMMarY e 475
LeSSON REVIEW. . . .t 476
Lesson 2: Using Declarative Security to Protect Assemblies.................... 478
Reasons to Use CAS Assembly Declarations 478
Classes for CAS Permissions.o ittt 479
Types of Assembly Permission Declarations 482
How to Create Assembly Declarations.............. oiat. 482
Guidelines for Using Assembly Declarations. 485
Lab: Using Assembly Permission Requests., 485
LesSSON SUMMaAIYot e e e 487
LeSSON ReVIEW. 487
Lesson 3: Using Declarative and Imperative Security to Protect Methods......... 492
Types of Method Permission Requests. ..., 492
Guidelines for Using Method Permission Requests 493
Techniques for Demanding Permissionscoovviun... 494
Techniques for Limiting Permissions., 500
How to Relax Permissions and Potentially Improve
PerfOrmManCe 502
How to Call Trusted Code from Partially Trusted Code.................. 506
How to Use Permission Sets.ttt 506
Lab: Protecting Methods with CAS Demands.......................... 507
Lesson SUMMarY e 513
LeSSON REVIEW. . . .\t 514
Chapter ReVIEW 516
Chapter SUMMaArYo e 516
Key Terms ... 516
€aSE SCENAIIOS . . . e et e e e e e 517
Case Scenario 1: Explaining CASo 517
QUESHIONS . oot 517
Case Scenario 2: Customizing CAS i 518

QUESHIONS . oot 518

Table of Contents XXi

Suggested Practices 518
Implement Code Access Security to Improve the Security of a
.NET Framework Application 518
Control Permissions for Resources by Using the
System.Security.Permissions Classes. 519
Control Code Privileges by Using System.Security.Policy Classes 519
Take @ Practice Test. 520
12 Userand DataSecurity o i, 521
Before You Begin 522
Lesson 1: Authenticating and Authorizing Users. oot 523
Authentication and Authorization Overview. 523
Windowsldentity Class 525
WindowsPrincipal Class o 527
PrincipalPermission Class.ouuuuuni i 529
How to Use Declarative RBS Demands to Restrict Access
toMethods oo 530
How to Use Imperative RBS Demands to Create Applications
That Restrict Access to Portions of Their Logic 532
How to Implement Custom Usersand Roles........................... 535
Handling Authentication Exceptions in Streams........................ 543
Lab: Adding RBS to an Application.......... i 544
Lesson SUMMary. 548
Lesson ReVIEWot 550
Lesson 2: Using Access Control Lists, 552
What Is a Discretionary Access Control List? 552
What Is a Security Access Control List?. ...t 555
How to View and Configure ACLs from within an Assembly. 556
Lab: Working with DACLs and Inheritance................. 559
LeSSON SUMMaATY. . ..o e e 560
LeSSON ReVIEWot 561
Lesson 3: Encrypting and DecryptingData i, 563
Encrypting and Decrypting Data with SymmetricKeys.................. 563
Encrypting and Decrypting Data with AsymmetricKeys................. 573
Validating Data Integrity with Hashes 581
Signing Files 586
Lab: Encrypting and Decrypting Files......... o .. 590
LeSSON SUMMATY. . ..ot 594

Lesson ReVieWo 595

xxii Table of Contents

Chapter REVIEW 597
Chapter SUMMaArY o e e 597
Key Terms ... 597
€aSE SCENAIIOS . . .t e e e e e e e e 598
Case Scenario 1: Creating Custom Authentication Methods 598
Case Scenario 2: Protecting Data by Using Cryptography 600
Suggested Practices. 600
Implement a Custom Authentication Scheme by Using the
System.Security.Authentication Classes. uiiiiiinneniin. 601
Access and Modify Identity Information by Using the
System.Security.Principal Classesooiiiiiiiiii .. 601
Implement Access Control by Using the
System.Security.AccessControl Classes.c.cviieiiiiiinnenninn. 601
Encrypt, Decrypt, and Hash Data by Using the
System.Security.Cryptography Classes. 602
Take a Practice Test 602
13 Interoperating withCOM i i, 603
Before YoU Begino oo 603
Lesson 1: Using COM Components from the .NET Framework 604
How to Add a Reference to a COM Library or Type Library.............. 604
How to Import a Type Library Using the Type Library
I PO T . 605
How to Call Unmanaged DLLs Using Dllimport........................ 606
How to Use the Marshal Class., 608
How to Pass Structures 610
How to Implement Callback Functions 611
How to Create a Wrapper Class.ooiiiiiiiiiiiii e 613
Lab: Create an Instance of aCOM Object 614
Lesson SUMMArY e 615
LESSON REVIEW. . . .\ e e e 616
Lesson 2: Using .NET Types from COM Applications.......................... 618
Guidelines for Exposing .NET Types to COM Applications 618
Interoperability Attributes 619
How to Export a Type Library Using the Type Library Exporter........... 620
How to Register an Assembly i i 621
How to Map HRESULT Error Codes and Exceptions..................... 622
How to Control Marshaling i i, 623

Lab: Expose a .NET Framework Classto COM. 624

Table of Contents xxiii

Lesson SUMMary. 625

LeSSON ReVIEW 625
Chapter REVIEWottt 627
Chapter SUMMaArY. 627
Key Terms. ..o 627
CaSE SCONAMIOS.ttt t et e e 628

Case Scenario 1: Creating a .NET Framework User Interface with

COM Libraries. ... 628

QUESEIONS. . .ot e 628

Case Scenario 2: Creating a .NET Library That Can Be Accessed

from COM ..o 628

QUESHIONS. . . oo 629
Suggested Practices.t 629

Expose COM Components to the .NET Framework and the
.NET Framework Componentsto COMcciiiiiiinnn.. 629

Call Unmanaged DLL Functions within a .NET Framework Application,
and Control the Marshaling of Data in a .NET Framework Application629

Take a Practice Test. o 630
14 Reflection i 631
Before You Begin o 631
Lesson 1: Using Reflection. i 632
Reflection Overview. i 632

How to Load Assemblies. ... o 632

How to Create Instances and Call Methods. 633
Assembly Attributes. 637
Generating Types Dynamically.......... .o i i 639

Lab: Load and Run Add-Ons Dynamically 642
Lesson SUMMary. 644
Lesson ReVIEWot 644
Chapter REVIEWottt 647
Chapter SUMMaArY. e 647
Key Terms. ..o 647
€a5€ SCENAMIOS. « . o\ttt ettt 647
Case Scenario 1: Supporting Add-onso o i 648
QUESHIONS. . . ot 648

Case Scenario 2: Code-writing Code., 648

QUESHIONS. . . oo e 648

xxiv Table of Contents

Suggested Practices. 649

Implement Reflection Functionality in a .NET Framework Application,
and Create Metadata, Microsoft Intermediate Language (MSIL),

and a PE File by Using the System.Reflection.Emit Namespace........... 649

Take a Practice Test 649
15 Mail .. e 651
Before You Begin o 651
Lesson 1: Creating an E-mail Message 652
The Process of Creating and Sending an E-mail Message 652

How to Create a MailMessage Object 653

How to Attach Files 655

How to Create HTML E-mails. 656

Lab: Generate an E-mail Message. 658
LeSSON SUMMAIYottt e e e 661
LESSON REVIEW. . . .\t e e 661
Lesson 2: Sending E-mail 663
How to Send a Message. 663

How to Handle E-mail Exceptions. ..o, ... 664

How to Configure Credentials., 665

How to Configure SSL. 666

How to Send a Message Asynchronously 666

Lab: Send an E-mail Message . ..o 668
LesSSON SUMMANYttt e 673
LeSSON REVIEW.t 673
Chapter REVIEW . ..t 675
Chapter SUMMary 675
Key TermS . 675
CaSE SCENAMIO . . . et e e e 675
Case Scenario: Add E-mail Capabilities to an Existing Application 676
INTEIVIEWS . .. 676
QUESTIONS . .ot 676
Suggested PractiCes.t 677

Send Electronic Mail to a Simple Mail Transfer
Protocol (SMTP) Server for Delivery from a .NET
Framework Application. i 677

Take @ Practice Testttt 678

Table of Contents XXV

16 Globalization. i e 679
Before You Begin 679
Lesson 1: Formatting Data for Globalization.................. 680

Settingthe Culture. 680

How to Format Output for Different Cultures.......................... 682

How to Format Data Manually. 684

Sorting and Comparing Objects i 690
Performing Culture-Insensitive Comparisonscccovu.. 694

How to Build a Custom Culture i 695

Lab: Browse CUltures 697

LeSSON SUMMANY. . . oot e e 698

Lesson ReVIEWottt 699

Chapter ReVIEWo 701
Chapter SUMMArY. e e ettt et 701
Key Terms. oo 701
CaS@ SCENAMIO . .« vttt 702
Case Scenario: Supportinga New Culture 702

QUESHIONS. . oot 702
Suggested Practices. 702
Format Data Based on Culture Information. 702

Take @ Practice Test. 703
AW BTS. ottt ittt ettt e e e e e 705
GlOSSaNY. . o ettt ettt e e e 761
X . . et 769

What do you think of this book? We want to hear from youl!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Acknowledgments

The author’s name appears on the cover of a book, but I am only one member of a
much larger team. First of all, thanks to Ken Jones at Microsoft for allowing me to
update the first edition of this book. During the writing process, I worked most
closely with Carol Vu, Laura Sackerman, and Susan McClung. Carol, Laura, and Sue,
thanks for your patience with me, and for making this a great book. Kurt Meyer was
my technical reviewer, and he was far more committed to the project than any
reviewer I've worked with in the past. Each of my editors contributed significantly to
this book and I hope to work with them all in the future.

Many other people helped with this book, albeit a bit more indirectly, by keeping me
sane throughout the writing process. Lori Hendrickson introduced me to Cacique in
Costa Rica. Nisha Rajasekaran helped me buy clothes. Tara Banks, Eric Parucki, and
Stephanie Wunderlich improved my vocabulary by repeatedly beating me at Scrabble.
Chris and Diane Geggis trusted me with Remy. Jennie Lozier drank my Chardonnay.
Eric and Alyssa Faulkner, with the help of Amy Gilvary, threw an Independence Day
party (at my house, oddly). Finally, Diane and Franklin Glenn made some incredible
chocolate cake. Thanks, guys.

XXvii

Introduction

This training kit is designed for developers who plan to take Microsoft Certified Tech-
nical Specialist (MCTS) exam 70-536, as well as for developers who need to know
how to develop applications using the Microsoft .NET Framework. Before you begin
using this kit, you should have a working knowledge of Microsoft Windows and
Microsoft Visual Basic or C#.

By using this training kit, you'll learn how to do the following:

Develop applications that use system types and collections

Implement service processes, threading, and application domains to enable
application isolation and multithreading

Create and deploy manageable applications

Create classes that can be serialized to enable them to be easily stored and trans-
ferred

Create hardened applications that are resistant to attacks and restrict access
based on user and group roles

Use interoperability and reflection to leverage legacy code and communicate
with other applications

Write applications that send e-mail messages

Create applications that can be used in different regions with different languages
and cultural conventions

Draw charts and create images, and either display them as part of your applica-
tion or save them to files

Hardware Requirements

The following hardware is required to complete the practice exercises:

A computer with a 1.6 GHz or faster processor (2.2 GHz recommended)
512 megabytes (MB) of RAM or more (1 GB recommended)

2 gigabytes (GB) of available hard disk space

A DVD-ROM drive

XXix

XXX

Introduction

m 1,024 x 768 or higher resolution display with 256 or higher colors (1280 x 1024

recommended)

m A keyboard and Microsoft mouse, or compatible pointing device

Software Requirements

The following software is required to complete the practice exercises:

m One of the following operating systems, using either a 32-bit or 64-bit architecture:

o Windows XP
o Windows Server 2003

o Windows Vista

m Visual Studio 2008 (A 90-day evaluation edition of Visual Studio 2008 Profes-

sional Edition is included on DVD with this book.)

Using the CD and DVD

A companion CD and an evaluation software DVD are included with this training kit.
The companion CD contains the following:

B Practice tests You can reinforce your understanding of how to create .NET

Framework applications by using electronic practice tests you customize to meet
your needs from the pool of Lesson Review questions in this book. Or you can
practice for the 70-536 certification exam by using tests created from a pool of
200 realistic exam questions, which is enough to give you many different prac-
tice exams to ensure that you're prepared.

Code Each chapter in this book includes sample files associated with the lab
exercises at the end of every lesson. For most exercises, you will be instructed to
open a project prior to starting the exercise. For other exercises, you will create a
project on your own and be able to reference a completed project on the CD in the
event you experience a problem following the exercise. A few exercises do not
involve sample files. To install the sample files on your hard disk, run Setup.exe
in the Code folder on the companion CD. The default installation folder is
\Documents\Microsoft Press\MCTS Self-Paced Training Kit Exam 70-536_2E.

An eBook An electronic version (eBook) of this book is included for times when
you don’t want to carry the printed book with you. The eBook is in Portable Doc-
ument Format (PDF), and you can view it by using Adobe Acrobat or Adobe
Reader.

Introduction XXXi

The evaluation software DVD contains a 90-day evaluation edition of Visual Studio
2008 Professional Edition, in case you want to use it with this book.

Digital Content for Digital Book Readers: If you bought a digital-only edition of this book, you can
enjoy select content from the print edition’s companion CD.

Visit httpy//www.microsoftpressstore.comyfitle/9780735626195 to get your downloadable content. This content
is always up-to-date and available to all readers.

How to Install the Practice Tests

To install the practice test software from the companion CD to your hard disk, do the
following:

1. Insert the companion CD into your CD drive, and accept the license agreement.
A CD menu appears.

NOTE |If the CD Menu Doesn’t Appear

If the CD menu or the license agreement doesn't appear, AutoRun might be disabled on your
computer. Refer to the Readme.txt file on the CD-ROM for alternate installation instructions.

2. On the CD menu click the Practice Tests item, and follow the instructions on the
screen.

How to Use the Practice Tests

To start the practice test software, follow these steps:

1. Click Start, select All Programs, and then select Microsoft Press Training Kit
Exam Prep. A window appears that shows all the Microsoft Press training kit
exam prep suites installed on your computer.

2. Double-click the lesson review or practice test you want to use.

NOTE Lesson Reviews vs. Practice Tests

Select the (70-536) Microsoft .NET Framework—Application Development Foundation
Lesson Review to use the questions from the “Lesson Review” sections of this book. Select the
(70-536) Microsoft .NET Framework—Application Development Foundation practice test to
use a pool of questions similar to those in the 70-536 certification exam.

http://www.microsoftpressstore.com/title/9780735626195

XXXii

Introduction

Lesson Review Options

When you start a lesson review, the Custom Mode dialog box appears so that you can
configure your test. You can click OK to accept the defaults, or you can customize the
number of questions you want, how the practice test software works, which exam
objectives you want the questions to relate to, and whether you want your lesson
review to be timed. If you're retaking a test, you can select whether you want to see all
the questions again or only those questions you missed or didn’t answer.

After you click OK, your lesson review starts, as follows:

m To take the test, answer the questions and use the Next, Previous, and Go To but-
tons to move from question to question.

m After you answer an individual question, if you want to see which answers are
correct—along with an explanation of each correct answer—click Explanation.

m If you'd rather wait until the end of the test to see how you did, answer all the
questions and then click Score Test. You'll see a summary of the exam objectives
you chose and the percentage of questions you got right overall and per objective.
You can print a copy of your test, review your answers, or retake the test.

Practice Test Options

When you start a practice test, you choose whether to take the test in Certification
Mode, Study Mode, or Custom Mode, as follows:

m Certification Mode Closely resembles the experience of taking a certification
exam. The test has a set number of questions, it’s timed, and you can’t pause and
restart the timer.

m Study Mode Creates an untimed test in which you can review the correct
answers and the explanations after you answer each question.

m Custom Mode Gives you full control over the test options so that you can cus-
tomize them as you like.

In all modes, the user interface you see when taking the test is basically the same, but
with different options enabled or disabled depending on the mode. The main options
are discussed in the previous section, “Lesson Review Options.”

When you review your answer to an individual practice test question, a “References”
section is provided that lists where in the training kit you can find the information
that relates to that question and provides links to other sources of information. After

Introduction XXxiii

you click Test Results to score your entire practice test, you can click the Learning Plan
tab to see a list of references for every objective.

How to Uninstall the Practice Tests

To uninstall the practice test software for a training kit, use the Add Or Remove Programs
option in the Control Panel.

Microsoft Certified Professional Program

The Microsoft certifications provide the best method to prove your command of cur-
rent Microsoft products and technologies. The exams and corresponding certifica-
tions are developed to validate your mastery of critical competencies as you design
and develop, or implement and support, solutions with Microsoft products and tech-
nologies. Computer professionals who become Microsoft-certified are recognized as
experts and are sought after industry-wide. Certification brings a variety of benefits to
the individual and to employers and organizations.

MORE INFO All the Microsoft Certifications

For a full list of Microsoft certifications, go to www.microsoft.com/learning/mcp/default.asp.

Technical Support

Every effort has been made to ensure the accuracy of this book and the contents of the
companion CD. If you have comments, questions, or ideas regarding this book or the
companion CD, please send them to Microsoft Press by using either of the following
methods:

E-mail: tkinput@microsoft.com
Postal Mail:

Microsoft Press

Attn: MCTS Self-Paced Training Kit (Exam 70-536): Microsoft .NET Framework—
Application Development Foundation, Second Edition Editor

One Microsoft Way

Redmond, WA 98052-6399

XXXiV

Introduction

For additional support information regarding this book and the CD-ROM (including
answers to commonly asked questions about installation and use), visit the Microsoft
Press Technical Support Web site at www.microsoft.com/learning/support/books/ .
To connect directly to the Microsoft Knowledge Base and enter a query, visit
support.microsoft.com/search/. For support information regarding Microsoft software,
please connect to support.microsoft.com.

Evaluation Edition Software Support

The 90-day evaluation edition provided with this training kit is not the full retail prod-
uct and is provided only for the purposes of training and evaluation. Microsoft and
Microsoft Technical Support do not support this evaluation edition.

Information about any issues relating to the use of this evaluation edition with this
training kit is posted to the Support section of the Microsoft Press Web site
(www.microsoft.com/learning/support/books/). For information about ordering the
full version of any Microsoft software, please call Microsoft Sales at (800) 426-9400 or
visit www.microsoft.com.

Chapter 4
Collections and Generics

Developers often need to store groups of related objects. For example, an e-mail inbox
would contain a group of messages, a phone book would contain a group of phone
numbers, and an audio player would contain a group of songs.

The .NET Framework provides the System.Collections namespace to allow developers
to manage groups of objects. Different collections exist to provide performance bene-
fits in different scenarios, flexible sorting capabilities, support for different types, and
dictionaries that pair keys and values.

Exam objectives in this chapter:
m Manage a group of associated data in a .NET Framework application by using
collections.

m Improve type safety and application performance in a.NET Framework applica-
tion by using generic collections.

m Manage data in a NET Framework application by using specialized collections.

Lessons in this chapter:
m Lesson 1: Collections and Dictionaries oo .. 138

B Lesson 2: Generic Collections.o 150

Before You Begin

This book assumes that you have at least two to three years of experience developing
Web-based, Microsoft Windows-based, or distributed applications using the .NET
Framework. Candidates should have a working knowledge of Microsoft Visual Studio.
Before you begin, you should be familiar with Microsoft Visual Basic or C# and be com-
fortable with the following tasks:

m Creating console and Windows Presentation Foundation (WPF) applications in
Visual Studio using Visual Basic or C#
m Adding namespaces and system class library references to a project

m Running a project in Visual Studio, setting breakpoints, stepping through code,

and watching the values of variables
137

138 Chapter 4 Collections and Generics

Lesson 1: Collections and Dictionaries

The System.Collections and System.Collections.Specialized namespaces contain a num-
ber of classes to meet varying requirements for storing groups of related objects. To
use them most efficiently, you need to understand the benefits of each class. This les-
son describes each collection and dictionary type and shows you how to use them.

After this lesson, you will be able to:
B Use collections and choose the best collection class for different requirements
m Use dictionaries and choose the best dictionary class for different requirements
Estimated lesson time: 30 minutes

Collections

A collection is any class that allows for gathering items into lists and for iterating
through those items. The .NET Framework includes the following collection classes:

m ArrayList A simple collection that can store any type of object. ArrayList
instances expand to any required capacity.

m Queue Afirstin, firstout (FIFO) collection. You might use a Queue on a messaging
server to store messages temporarily before processing or to track customer orders
that need to be processed on a first-come, first-serve basis.

m Stack A last-in, first-out (LIFO) collection. You might use a Stack to track
changes so that the most recent change can be undone.

m StringCollection Like ArrayList, except values are strongly typed as strings, and
StringCollection does not support sorting.

m BitArray A collection of boolean values.

ArraylList

Use the ArrayList class (in the System.Collections namespace) to add objects that can
be accessed directly using a zero-based index or accessed in a series using a foreach
loop. The capacity of an ArrayList expands as required. The following example shows
how to use the ArrayList. Add method to add different types of objects to a single array,
and then access each object using a foreach loop:

' VB

Dim al As New ArrayList()

al.Add("Hello™)
al.Add("World")

Lesson 1: Collections and Dictionaries

al.Add(5)
al.Add(New FileStream("delemete", FileMode.Create))

n "

Console.WriteLine("The array has " + al.Count.ToString + " items:™)
For Each s As Object In al
Console.WriteLine(s.ToString())

Next

// C#

ArrayList al = new ArrayList(Q);

al.Add("Hel1l0");

al.Add("Worl1d");

al.Add(5);

al.Add(new FileStream("delemete", FileMode.Create));

n "

Console.WriteLine("The array has + al.Count + items:");
foreach (object s in al)

Console.WriteLine(s.ToString());
This console application displays the following:

The array has 4 items:
Hello

World

5
System.I0.FileStream

139

In practice, you generally add items of a single type to an ArrayList. This allows you to
call the Sort method to sort the objects using their IComparable implementation. You
can also use the Remove method to remove an object you previously added and use
the Insert method to add an element at the specified location in the zero-based index.

The following code sample demonstrates this:

' VB

Dim al As New ArrayList()
al.Add("Hello")
al.Add("Worl1d")
al.Add("this™)
al.Add("is™)

al.Add("a™)
al.Add("test")

al.Remove("test")
al.Insert(4, "not")

al.Sort(Q)
For Each s As Object In al

Console.WriteLine(s.ToString())
Next

140

Chapter 4 Collections and Generics

// C#

ArrayList al = new ArrayList(Q);
al.Add("Hel1lo0");
al.Add("Worl1d");
al.Add("this");

al.Add("is™);

al.Add("a");

al.Add("test");

al.Remove("test");
al.Insert(4, "not");

al.Sort(Q);

foreach (object s in al)
Console.WriteLine(s.ToString());

This code sample results in the following display. Notice that the items are sorted
alphabetically (using the string IComparable implementation) and “test” has been
removed:

A
Hello
is
not
this
World

IMPORTANT Using StringCollection

You could also use StringCollection in place of ArraylList in the previous example. However,
StringCollection does not support sorting, described next. The primary advantage of StringCollection
is that it's strongly typed for string values.

You can also create your own custom IComparer implementations to control sort
order. While the IComparable.CompareTo method controls the default sort order for a
class, IComparer.Compare can be used to provide custom sort orders. For example,
consider the following simple class, which only implements IComparer:

' VB
Public Class reverseSort
Implements IComparer
Private Function Compare(ByVal x As Object, ByVal y As Object) _
As Integer Implements IComparer.Compare
Return ((New CaseInsensitiveComparer()).Compare(y, X))
End Function
End Class

Lesson 1: Collections and Dictionaries 141

// C#

public class reverseSort : IComparer

{
int IComparer.Compare(Object x, Object y)
{

return ((new CaselnsensitiveComparer()).Compare(y, x));
}
}

Given that class, you could pass an instance of the class to the ArrayList.Sort method.
The following code sample demonstrates this and also demonstrates using the Array-
List. AddRange method, which adds each element of an array as a separate element to
the instance of ArrayList:

' VB

Dim al As New ArrayList()
al.AddRange(New String() {"Hello", "world", "this", "is", "a", "test"})

al.Sort(New reverseSort())

For Each s As Object In al
Console.WriteLine(s.ToString())
Next

// C#
ArrayList al = new ArrayList(Q);
al.AddRange(new string[] {"Hello", "world", "this", "is", "a", "test"});

al.Sort(new reverseSort());

foreach (object s in al)
Console.WriteLine(s.ToString());

This code displays the following:

world
this
test
is
Hello
A

You can also call the ArrayList.Reverse method to reverse the current order of items in
the ArrayList.

To locate a specific element, call the ArrayList.BinarySearch method and pass an
instance of the object you are searching for. BinarySearch returns the zero-based index

142

Chapter 4 Collections and Generics

of the item. For example, the following code sample displays 2 because the string
“this” is in the third position, and the first position is O:

' VB

Dim al As New ArrayList()

al.AddRange(New String() {"Hello", "world", "this", "is", "a", "test"})
Console.WriteLine(al.BinarySearch("this"))

// C#

ArrayList al = new ArrayList(Q);

al.AddRange(new string[] {"Hello", "world", "this", "is", "a", "test"});
Console.WriteLine(al.BinarySearch("this"));

Similarly, the ArrayList. Contains method returns true if the ArrayList instance contains
the specified object and false if it does not contain the object.

Queue and Stack

The Queue and Stack classes (in the System.Collections namespace) store objects that
can be retrieved and removed in a single step. Queue uses a FIFO sequence, while
Stack uses a LIFO sequence. The Queue class uses the Enqueue and Dequeue methods
to add and remove objects, while the Stack class uses Push and Pop. The following
code demonstrates the differences between the two classes:

' VB

Dim q As New Queue()
q.Enqueue("Hello")
q.Enqueue("world")
q.Enqueue("just testing")

Console.WriteLine("Queue demonstration:™)

For i As Integer = 1 To 3
Console.WriteLine(q.Dequeue() .ToString())

Next

Dim s As New Stack()
s.Push("Hello™)
s.Push("world")
s.Push("just testing")

Console.WriteLine("Stack demonstration:™)
For i As Integer = 1 To 3

Console.WriteLine(s.Pop().ToString())
Next

// C#

Queue g = new Queue();
q.Enqueue("Hell0");
q.Enqueue("world");
q.Enqueue("just testing");

Lesson 1: Collections and Dictionaries 143

Console.WritelLine("Queue demonstration:");
for (Gint i =1; i <= 3; i++)
Console.WriteLine(q.Dequeue().ToString());

Stack s = new Stack(Q);
s.Push("Hello");
s.Push("wor1d");
s.Push("just testing");

Console.WriteLine("Stack demonstration:");
for (int i = 1; i <= 3; i++)
Console.WriteLine(s.Pop().ToString());

The application produces the following output:

Queue demonstration:
Hello

world

just testing

Stack demonstration:
just testing

world

Hello

You can also use Queue.Peek and Stack.Peek to access an object without removing it
from the stack. Use Queue.Clear and Stack.Clear to remove all objects from the stack.

BitArray and BitVector32

BitArray is an array of boolean values, where each item in the array is either true or
false. While BitArray can grow to any size, BitVector32 (a structure) is limited to exactly
32 bits. If you need to store boolean values, use BitVector32 anytime you require 32 or
fewer items, and use BitArray for anything larger.

Dictionaries

Dictionaries map keys to values. For example, you might map an employee ID
number to the object that represents the employee, or you might map a product ID to
the object that represents the product. The NET Framework includes the following
dictionary classes:

m Hashtable A dictionary of name/value pairs that can be retrieved by name or
index

m SortedList A dictionary that is sorted automatically by the key

m StringDictionary A hashtable with name/value pairs implemented as strongly
typed strings

144

Chapter 4 Collections and Generics

m ListDictionary A dictionary optimized for a small list of objects with fewer than
10 items

m HybridDictionary A dictionary that uses a ListDictionary for storage when the
number of items is small and automatically switches to a Hashtable as the list grows

m NameValueCollection A dictionary of name/value pairs of strings that allows
retrieval by name or index

SortedList (in the System.Collections namespace) is a dictionary that consists of key/
value pairs. Both the key and the value can be any object. SortedList is sorted automat-
ically by the key. For example, the following code sample creates a SortedList instance
with three key/value pairs. It then displays the definitions for Queue, SortedList, and
Stack, in that order:

" VB

Dim sT As New SortedList()

s1.Add("Stack", "Represents a LIFO collection of objects.")

s1.Add("Queue", "Represents a FIFO collection of objects.")
s1.Add("SortedList", "Represents a collection of key/value pairs.")

For Each de As DictionaryEntry In sl
Console.WriteLine(de.Value)
Next

// C#

SortedList sT = new SortedList();

s1.Add("Stack", "Represents a LIFO collection of objects.");
s1.Add("Queue", "Represents a FIFO collection of objects.");
s1.Add("SortedList", "Represents a collection of key/value pairs.");

foreach (DictionaryEntry de in s1)
Console.WriteLine(de.Value);

Notice that SortedList is an array of DictionaryEntry objects. As the previous code sam-
ple demonstrates, you can access the objects you originally added to the SortedList
using the DictionaryEntry.Value property. You can access the key using the Dictionary-
Entry.Key property.

You can also access values directly by accessing the SortedList as a collection. The fol-
lowing code sample (which builds upon the previous code sample) displays the
definition for Queue twice. Queue is the first entry in the zero-based index because the
SortedList instance automatically sorted the keys alphabetically:

' VB

Console.WriteLine(s1("Queue™))
Console.WriteLine(sT1.GetByIndex(0))

Lesson 1: Collections and Dictionaries 145

// C#
Console.WriteLine(s1["Queue"]);
Console.WriteLine(s1.GetByIndex(0));

The ListDictionary class (in the System.Collections.Specialized namespace) also
provides similar functionality, and is optimized to perform best with lists of fewer
than 10 items. HybridDictionary (also in the System.Collections.Specialized namespace)
provides the same performance as ListDictionary with small lists, but it scales better
when the list is expanded.

While SortedList can take an object of any type as its value (but only strings as keys),
the StringDictionary class (in the System.Collections.Specialized namespace) provides
similar functionality, without the automatic sorting, and requires both the keys and
the values to be strings.

NameValueCollection also provides similar functionality, but it allows you to use either
a string or an integer index for the key. In addition, you can store multiple string val-
ues for a single key. The following code sample demonstrates this by displaying two
definitions for the terms stack and queue:

' VB

Dim s1 As New NameValueCollection()

s1.Add("Stack", "Represents a LIFO collection of objects.™)
sT1.Add("Stack", "A pile of pancakes.™)

s1.Add("Queue", "Represents a FIFO collection of objects.™)
s1.Add("Queue", "In England, a line.™)

sT.Add("SortedList", "Represents a collection of key/value pairs.")

For Each s As String In s1.GetValues(0)
Console.WritelLine(s)
Next

For Each s As String In s1.GetValues("Queue™)
Console.WriteLine(s)
Next

// C#

NameValueCollection s1 = new NameValueCollection();

s1.Add("Stack", "Represents a LIFO collection of objects.");
sT1.Add("Stack", "A pile of pancakes.™);

s1.Add("Queue", "Represents a FIFO collection of objects.");
s1.Add("Queue", "In England, a line.");

sT1.Add("SortedList", "Represents a collection of key/value pairs.");

foreach (string s in s1.GetValues(0))
Console.WriteLine(s);

foreach (string s in s1.GetValues("Queue"))
Console.WriteLine(s);

146 Chapter 4 Collections and Generics

Lab: Creating a Shopping Cart

In this lab, you create a simple shopping cart that can be sorted by the price of the
items.

Exercise: Using ArraylList

In this exercise, you use an ArrayList and a custom class to create a shopping cart with
basic functionality.

1.

Using Visual Studio, create a new Console Application project. Name the project
ShoppingCart.

Add a simple class to represent a shopping cart item, containing properties for
the item name and price. The following code sample shows one way to do this:

' VB

PubTic Class ShoppingCartItem
Public itemName As String
Public price As Double

Public Sub New(ByVal _itemName As String, ByVal _price As Double)
Me.1itemName = _itemName
Me.price = _price
End Sub
End Class

// C#
public class ShoppingCartItem

{
public string itemName;
public double price;

public ShoppingCartItem(string _itemName, double _price)
{

this.itemName = _itemName;
this.price = _price;

3
Add the System.Collections namespace to your project.

In the Main method create an instance of ArrayList, and then add four shopping
cart items with different names and prices. Display the items on the console
using a foreach loop. The following code sample demonstrates this:

" VB

Dim shoppingCart As New ArrayList(Q)

shoppingCart.Add(New ShoppingCartItem("Car", 5000))
shoppingCart.Add(New ShoppingCartItem("Book", 30))

Lesson 1: Collections and Dictionaries

shoppingCart.Add(New ShoppingCartItem("Phone", 80))
shoppingCart.Add(New ShoppingCartItem("Computer", 1000))

For Each sci As ShoppingCartItem In shoppingCart
Console.WriteLine(sci.itemName + ": $" + sci.price.ToString())
Next

// C#

ArraylList shoppingCart = new ArraylList(Q);
shoppingCart.Add(new ShoppingCartItem("Car", 5000));
shoppingCart.Add(new ShoppingCartItem("Book", 30));
shoppingCart.Add(new ShoppingCartItem("Phone", 80));
shoppingCart.Add(new ShoppingCartItem("Computer"”, 1000));

foreach (ShoppingCartItem sci in shoppingCart)
Console.WriteLine(sci.itemName + ": $" + sci.price.ToString());

Build and run your application and verify that it works correctly.

147

Now, implement the IComparable interface for the ShoppingCartltem class to sort
the items by price. The following code should replace the existing class defini-

tion for ShoppingCartltem:

' VB

Public Class ShoppingCartItem
Implements IComparable
Public itemName As String
Public price As Double

Public Sub New(ByVal _itemName As String, ByVal _price As Double)

Me.itemName = _itemName
Me.price = _price
End Sub

PubTlic Function CompareTo(ByVal obj As Object) _
As Integer Implements System.IComparable.CompareTo
Dim otherItem As ShoppingCartItem = _
DirectCast(obj, ShoppingCartItem)
Return Me.price.CompareTo(otherItem.price)
End Function
End Class

// C#
public class ShoppingCartItem : IComparable
{

public string itemName;

public double price;

public ShoppingCartItem(string _itemName, double _price)
{

this.itemName = _itemName;

this.price = _price;

148

Chapter 4 Collections and Generics

pubTlic int CompareTo(object obj)

{
ShoppingCartItem otherItem = (ShoppingCartItem)obj;
return this.price.CompareTo(otherItem.price);

}

Now, write code to sort the shopping cart collection from most to least expen-
sive. The simplest way is to add two lines of code just before the foreach loop:
' VB

shoppingCart.Sort()
shoppingCart.Reverse()

// C#

shoppingCart.Sort(Q);

shoppingCart.Reverse();

Build and run your application again and verify that the shopping cart is sorted
from most to least expensive.

Lesson Summary

m You can use the ArrayList, Queue, and Stack collection classes to create collec-

tions using any class. ArrayList allows you to iterate through items and sort
them. Queue provides FIFO sequencing, while Stack provides LIFO sequencing.
BitArray and BitVector32 are useful for boolean values.

Dictionaries organize instances of objects in key/value pairs. The HashTable class
can meet most of your requirements. If you want the dictionary to be sorted
automatically by the key, use the SortedDictionary class. ListDictionary is
designed to perform well with fewer than 10 items.

Lesson Review

You can use the following questions to test your knowledge of the information in
Lesson 1, “Collections and Dictionaries.” The questions are also available on the com-
panion CD if you prefer to review them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the "Answers” section at the end of the book.

Lesson 1: Collections and Dictionaries 149

1. You create an instance of the Stack class. After adding several integers to it, you
need to remove all objects from the Stack. Which method should you call?

A. Stack.Pop
B. Stack.Push
C. Stack.Clear
D. Stack.Peek
2. Youneed to create a collection to act as a shopping cart. The collection will store
multiple instances of your custom class, ShoppingCartltem. You need to be able
to sort the items according to price and time added to the shopping cart (both
properties of the ShoppingCartltem). Which class should you use for the shop-
ping cart?
A. Queue
B. ArrayList
C. Stack
D. StringCollection
3. You create an ArrayList object and add 200 instances of your custom class,

Product. When you call ArrayList.Sort, you receive an InvalidOperationException.
How should you resolve the problem? (Choose two. Each answer forms part of
the complete solution.)

A.
B.
C.
D.

Implement the IComparable interface.
Create a method named CompareTo.
Implement the IEnumerable interface.

Create a method named GetEnumerator.

150 Chapter 4 Collections and Generics

Lesson 2: Generic Collections

Collections like ArrayList, Queue, and Stack use the Object base class to allow them to
work with any type. However, accessing the collection usually requires you to cast
from the base Object type to the correct type. Not only does this make development
tedious and more error-prone, but it hurts performance.

Using generics, you can create strongly typed collections for any class, including cus-
tom classes. This simplifies development within the Visual Studio editor, helps ensure
appropriate use of types, and can improve performance by reducing the need to cast.

After this lesson, you will be able to:
B Explain why you should use generic collections
B Use the SortedList generic collection
B Use generics with custom classes
B Use the Queue and Stack collection generically
B Use the generic List collection

Estimated lesson time: 30 minutes

Generics Overview

Many of the collections in the .NET Framework support adding objects of any type,
such as ArrayList. Others, like StringCollection, are strongly typed. Strongly typed
classes are easier to develop with because the Visual Studio designer can list and
validate members automatically. In addition, you do not need to cast classes to more
specific types, and you are protected from casting to an inappropriate type.

Generics provide many of the benefits of strongly typed collections, but they can work
with any type that meets the requirements. In addition, using generics can improve per-
formance by reducing the number of casting operations required. Table 4-1 lists the most
useful generic collection classes and the corresponding nongeneric collection type.

Table 4-1 Generic Collection Classes

Generic Class Comparable Nongeneric Classes
List<T> ArrayList, StringCollection
Dictionary<T,U> Hashtable, ListDictionary, HybridDictionary,

OrderedDictionary, NameValueCollection, StringDictionary

Queue<T> Queue

Lesson 2: Generic Collections 151

Table 4-1 Generic Collection Classes

Generic Class Comparable Nongeneric Classes
Stack<T> Stack

SortedList<T,U> SortedList

Collection<T> CollectionBase

ReadOnlyCollection<T> ReadOnlyCollectionBase

Generic SortedList<TU> Collection

The following code sample creates a generic SortedList<T,U> using strings as the keys
and integers as the values. As you type this code into the Visual Studio editor, notice
that it prompts you to enter string and integer parameters for the SortedList.Add
method as if SortedList. Add were strongly typed:

' VB

Dim s1 As New SortedList(Of String, Integer)()
s1.Add("0One", 1)

s1.Add("Two", 2)

s1.Add("Three", 3)

For Each i As Integer In sl.Values
Console.WriteLine(i.ToString())
Next

// C#

SortedList<string, int> s1 = new SortedList<string,int>Q);
s1.Add("One", 1);

s1.Add("Two", 2);

s1.Add("Three", 3);

foreach (int i in sl1.Values)
Console.WriteLine(i.ToString());

In Visual Basic, specify the type arguments for the generic class using the constructor
parameters by specifying the Of keyword. In C#, specify the type arguments using
angle brackets before the constructor parameters.

Real World
Tony Northrup
You can get the job done by working with a collection that accepts objects, such

as ArrayList. However, using generics to create strongly typed collections makes
development easier in many ways. First, you won’t ever forget to cast something,

152 Chapter 4 Collections and Generics

which will reduce the number of bugs in your code (and I've had some really
odd bugs when working with the base Object class). Second, development is eas-
ier because the Visual Studio editor prompts you to provide the correct type as
you type the code. Finally, you don’t suffer the performance penalty incurred
when casting.

Using Generics with Custom Classes

You can use generics with custom classes as well. Consider the following class declaration:

VB

Public Class person

Private firstName As String
Private lastName As String

Public Sub New(ByVal _firstName As String, ByVal _TastName As String)

firstName = _firstName
TastName = _lastName
End Sub

Public Overloads Overrides Function ToString() As String
Return firstName + " " + TlastName
End Function

End Class
// C#
pubTlic class person
{
string firstName;
string lastName;
public person(string _firstName, string _TastName)
{
firstName = _firstName;
lastName = _lastName;
}
override public string ToString(Q)
{
return firstName + " " + TastName;
}
}

You can use the SortedList<T,U> generic class with the custom class exactly as you
would use it with an integer, as the following code sample demonstrates:

VB

Dim s1 As New SortedList(Of String, person)()
s1.Add("One", New person("Mark", "Hanson"))

Lesson 2: Generic Collections 153

s1.Add("Two", New person("Kim", "Akers™))
sT1.Add("Three", New person("Zsolt", "Ambrus'))

For Each p As person In sl1.Values
Console.WriteLine(p.ToString())
Next

// C#

SortedList<string, person> sl = new SortedList<string,person>(Q);
s1.Add("One", new person("Mark", "Hanson"));

sT1.Add("Two", new person("Kim", "Akers"));

s1.Add("Three", new person("Zsolt", "Ambrus™));

foreach (person p in sl.Values)
Console.WriteLine(p.ToString());

Generic Queue<T> and Stack<T> Collections

Similarly, the following code sample demonstrates using the generic versions of both
Queue and Stack with the person class:

' VB
Dim g As New Queue(Of person) ()
g.Enqueue(New person("Mark™, "Hanson"))

g.Enqueue(New person("Kim", "Akers™"))
g.Enqueue(New person("Zsolt", "Ambrus"))

Console.WriteLine("Queue demonstration:")

For i As Integer = 1 To 3
Console.WriteLine(q.Dequeue().ToString())

Next

Dim s As New Stack(Of person) ()
s.Push(New person("Mark", "Hanson"))
s.Push(New person("Kim", "Akers™))
s.Push(New person("Zsolt", "Ambrus"))

Console.WriteLine("Stack demonstration:")
For i As Integer = 1 To 3
Console.WriteLine(s.Pop().ToString())

Next

// C#

Queue<person> q = new Queue<person>();
g.Enqueue(new person("Mark", "Hanson"));
g.Enqueue(new person("Kim", "Akers"));

g-Enqueue(new person("Zsolt", "Ambrus"));

Console.WriteLine("Queue demonstration:");
for (int i =1; 1 <= 3; i+
Console.WriteLine(q.Dequeue().ToString();

154 Chapter 4 Collections and Generics

Stack<person> s = new Stack<person>();

s.Push(new person("Mark", "Hanson"));
s.Push(new person("Kim", "Akers"));
s.Push(new person("Zsolt", "Ambrus"));

Console.WriteLine("Stack demonstration:");
for (int i =1; i <= 3; i++)
Console.WriteLine(s.Pop().ToString();

Generic List<T> Collection

Some aspects of generic collections might require specific interfaces to be imple-
mented by the type you specify. For example, calling List.Sort without any parameters
requires the type to support the IComparable interface. The following code sample
expands the person class to support the IComparable interface and the required
CompareTo method and allows it to be sorted in a List<T> generic collection using the
person’s first and last name:

' VB

Public Class person
Implements IComparable
Private firstName As String
Private TastName As String

PubTic Function CompareTo(ByVal obj As Object) _
As Integer Implements System.IComparable.CompareTo
Dim otherPerson As person = DirectCast(obj, person)
If Me.lastName <> otherPerson.lastName Then
Return Me.TlastName.CompareTo(otherPerson.lastName)
Else
Return Me.firstName.CompareTo(otherPerson.firstName)
End If
End Function

Public Sub New(ByvVal _firstName As String, ByVal _TastName As String)

firstName = _firstName
TastName = _lastName
End Sub

Public Overrides Function ToString() As String
Return firstName + " " + lastName
End Function
End Class

// C#
public class person : IComparable
{

string firstName;

string lastName;

Lesson 2: Generic Collections 155

public int CompareTo(object obj)

{
person otherPerson = (person)obj;
if (this.lastName != otherPerson.lastName)
return this.lastName.CompareTo(otherPerson.lastName);
else
return this.firstName.CompareTo(otherPerson.firstName);
}
public person(string _firstName, string _lastName)
{
firstName = _firstName;
TastName = _TastName;
}
override public string ToString()
{
return firstName + " " + TastName;
}

}

After adding the IComparable interface to the person class, you now can sort it in a
generic List<T>, as the following code sample demonstrates:

' VB

Dim 1 As New List(Of person)()
1.Add(New person("Mark", "Hanson™))
1.Add(New person("Kim", "Akers"))
1.Add(New person("Zsolt", "Ambrus™))

1.Sort(Q)

For Each p As person In 1
Console.WriteLine(p.ToString())
Next

// C#

List<person> 1 = new List<person>(Q);
1.Add(new person("Mark", "Hanson"));
1.Add(new person("Kim", "Akers"));
1.Add(new person("Zsolt", "Ambrus™));

1.Sort(Q);

foreach (person p in 1)
Console.WriteLine(p.ToString());

With the IComparable interface implemented, you could also use the person class as
the key in a generic SortedList<T,U> or SortedDictionary<T,U> class.

156 Chapter 4 Collections and Generics

Lab: Creating a Shopping Cart with a Generic List<T>

In this lab, you update a simple WPF application to manage a shopping cart.

Exercise: Using List<T>

In this exercise, you update a pre-made user interface to display a list with multiple
sorting options.

1. Navigate to the <InstallHome>\ChapterO4\Lesson2\Exercisel\Partial folder
from the companion CD to your hard disk, and open either the C# version or the
Visual Basic .NET version of the solution file. Notice that a basic user interface
for the WPF application already exists.

2. This application should allow the user to add shopping cart items to a shopping
cart and display the items in the ListBox control. First, create a class declaration
for ShoppingCartitem that includes name and price properties and override the
ToString method to display both properties, as shown here:

' VB
PubTic Class ShoppingCartItem

Public itemName As String
Public price As Double

Public Sub New(ByvVal _itemName As String, ByVal _price As Double)

Me.1itemName = _itemName
Me.price = _price
End Sub

PubTlic Overrides Function ToString() As String
Return Me.itemName + ": " + Me.price.ToString("C")
End Function
End Class

// C#
public class ShoppingCartItem

{
pubTlic string itemName;
public double price;

pubTic ShoppingCartItem(string _itemName, double _price)

{
this.itemName = _itemName;
this.price = _price;
}
pubTlic override string ToString(Q)
{
return this.itemName + ": " + this.price.ToString("C");
}

Lesson 2: Generic Collections 157

Next, create an instance of a generic collection to act as the shopping cart. The
shopping cart object should be strongly typed to allow only ShoppingCartltem
instances. The following example shows how to do this with the List<T> class:

' VB
Dim shoppingCart As New List(Of ShoppingCartItem)()

// C#
List<ShoppingCartItem> shoppingCart = new List<ShoppingCartItem>();

Bind the shoppingCartList.ItemSource property to the shoppingCart. While there
are several ways to do this, the following code demonstrates how to do it from
within the Window_Loaded event handler:

' VB
shoppingCartList.ItemsSource = shoppingCart

// C#
shoppingCartList.ItemsSource = shoppingCart;

Now, add a handler for the addButton.Click event that reads the data that the user
has typed into the nameTextBox and priceTextBox, creates a new ShoppingCartltem,
adds it to the shoppingCart, and then refreshes the shoppingCartList:

' VB

Try
shoppingCart.Add(New ShoppingCartItem(nameTextBox.Text, _

Double.Parse(priceTextBox.Text)))

shoppingCartList.Items.Refresh()
nameTextBox.Clear()
priceTextBox.Clear()

Catch ex As Exception
MessageBox.Show("Please enter valid data:

End Try

+ ex.Message)

// C#
try
{
shoppingCart.Add(new ShoppingCartItem(nameTextBox.Text,
double.Parse(priceTextBox.Text)));
shoppingCartList.Items.Refresh();
nameTextBox.Clear();
priceTextBox.Clear();

}
catch (Exception ex)
{
MessageBox.Show("Please enter valid data: " + ex.Message);
}

Build and run your application. Verify that you can add items to the shopping
cart and that they are displayed in the ListBox.

158 Chapter 4 Collections and Generics

7. Now, add functionality to the ShoppingCartitem class so that you can sort the
shopping cart by price or item name, as the following code sample demonstrates:

' VB

Public Shared Function SortByName(ByVal iteml As ShoppingCartItem, _
Byval item2 As ShoppingCartItem) As Integer
Return iteml.itemName.CompareTo(item2.1itemName)

End Function

PubTic Shared Function SortByPrice(ByVal iteml As ShoppingCartItem
Byval item2 As ShoppingCartItem) As Integer
Return iteml.price.CompareTo(item2.price)

End Function

// C#

public static int SortByName(ShoppingCartItem iteml,
ShoppingCartItem 1item2)

{
return iteml.itemName.CompareTo(item2.itemName);

}

public static int SortByPrice(ShoppingCartItem iteml,
ShoppingCartItem 1item2)

{
return iteml.price.CompareTo(item2.price);

}

8. After adding those two methods, update the sortNameButton.Click and
sortPriceButton.Click event handlers to sort the shoppingCart and then refresh the
shoppingCartList as follows:

' VB

Sub sortNameButton_Click(ByVal sender As Object, _
ByVal e As RoutedEventArgs)
shoppingCart.Sort(AddressOf ShoppingCartItem.SortByName)
shoppingCartList.Items.Refresh()

End Sub

Sub sortPriceButton_Click(ByVal sender As Object, _
ByVal e As RoutedEventArgs)
shoppingCart.Sort(AddressOf ShoppingCartItem.SortByPrice)
shoppingCartList.Items.Refresh()

End Sub

// C#
private void sortNameButton_Click(object sender, RoutedEventArgs e)
{
shoppingCart.Sort(ShoppingCartItem.SortByName);
shoppingCartList.Items.Refresh();

Lesson 2: Generic Collections 159

private void sortPriceButton_Click(object sender, RoutedEventArgs e)
{
shoppingCart.Sort(ShoppingCartItem.SortByPrice);
shoppingCartList.Items.Refresh();
}
Build and run your application. Add several items to the shopping cart with dif-
ferent names and prices. Click each of the sorting buttons and verify that the

shopping cart is re-sorted.

Lesson Summary

Generic collections allow you to create strongly typed collections for any class.
The SortedList<T,U> generic collection automatically sorts items.

You can use generics with custom classes. However, to allow the collection to be
sorted without providing a comparer, the custom class must implement the
IComparable interface.

The Queue and Stack collections have both generic and nongeneric implementa-
tions.

The List<T> collection provides a generic version of ArrayList.

Lesson Review

You can use the following questions to test your knowledge of the information in
Lesson 2, “Generic Collections.” The questions are also available on the companion
CD if you prefer to review them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the "Answers” section at the end of the book.

1.

You are creating a collection that will act as a database transaction log. You need
to be able to add instances of your custom class, DBTransaction, to the collection.
If an error occurs, you need to be able to access the most recently added instance
of DBTransaction and remove it from the collection. The collection must be
strongly typed. Which class should you use?

A. HashTable
B. SortedList
C. Stack
D

Queue

160 Chapter 4 Collections and Generics

2. You are creating a custom dictionary class. You want it to be type-safe, using a
string for a key and your custom class Product as the value. Which class declara-
tion meets your requirements?

A.

' VB

PubTic Class Products2
Inherits StringDictionary

End Class

// C#

public class Products2 : StringDictionary

{1

' VB
Class Products

Inherits Dictionary(Of String, Product)
End Class

// C#

class Products : Dictionary<string, Product>

{1

' VB
Class Products

Inherits StringDictionary(Of String, Product)
End Class

// C#

class Products : StringDictionary<string, Product>

{1

' VB
Class Products

Inherits Dictionary
End Class

// C#

class Products : Dictionary

{1}
3. You create an instance of the SortedList collection, as shown here:

' VB
Dim s1 As New SortedList(Of Product, string) ()

// C#

SortedList<Product, string> s1 = new SortedList<Product, string>(Q);

Lesson 2: Generic Collections

Which declaration of the Product class works correctly?
A.

' VB

Public Class Product
Implements IComparable
Public productName As String

PubTic Sub New(ByVal _productName As String)
Me.productName = _productName
End Sub

PubTic Function CompareTo(ByVal obj As Object) As Integer _
Implements System.IComparable.CompareTo
Dim otherProduct As Product = DirectCast(obj, Product)
Return Me.productName.CompareTo(otherProduct.productName)
End Function
End Class

// C#
public class Product : IComparable

{

public string productName;

public Product(string _productName)

{
this.productName = _productName;
}
public int CompareTo(object obj)
{
Product otherProduct = (Product)obj;
return this.productName.CompareTo(otherProduct.productName);
}
}
B.
' VB

Public Class Product
PubTic productName As String

Public Sub New(ByVal _productName As String)
Me.productName = _productName
End Sub

PubTic Function CompareTo(ByVal obj As Object) As Integer _
Implements System.IComparable.CompareTo
Dim otherProduct As Product = DirectCast(obj, Product)
Return Me.productName.CompareTo(otherProduct.productName)
End Function
End Class

l6l

162 Chapter 4 Collections and Generics

// C#
public class Product
{

pubTlic string productName;

public Product(string _productName)

{
this.productName = _productName;
}
public int CompareTo(object obj)
{
Product otherProduct = (Product)obj;
return this.productName.CompareTo(otherProduct.productName);
}
}
C.
' VB

PubTic Class Product
Implements IEquatable
Public productName As String

PubTic Sub New(ByVal _productName As String)
Me.productName = _productName
End Sub

PubTic Function Equals(ByVal obj As Object) As Integer _
Implements System.IEquatable.Equals
Dim otherProduct As Product = DirectCast(obj, Product)
Return Me.productName.Equals(otherProduct.productName)
End Function
End Class

// C#
public class Product : IEquatable
{

pubTlic string productName;

public Product(string _productName)

{
this.productName = _productName;
}
pubTlic int Equals(object obj)
{
Product otherProduct = (Product)obj;
return this.productName.Equals(otherProduct.productName) ;
}

Lesson 2: Generic Collections

' VB
Public Class Product
PubTlic productName As String

PubTic Sub New(ByVal _productName As String)
Me.productName = _productName
End Sub

PubTic Function Equals(ByVal obj As Object) As Integer
Dim otherProduct As Product = DirectCast(obj, Product)
Return Me.productName.Equals(otherProduct.productName)
End Function
End Class

// C#
public class Product
{

public string productName;

public Product(string _productName)

{
this.productName = _productName;
}
public int Equals(object obj)
{
Product otherProduct = (Product)obj;
return this.productName.Equals(otherProduct.productName);
}

163

164 Chapter 4 Review

Chapter Review
To practice and reinforce the skills you learned in this chapter further, you can do the
following:
m Review the chapter summary.
m Review the list of key terms introduced in this chapter.

m Complete the case scenarios. These scenarios set up real-word situations involv-
ing the topics of this chapter and ask you to create a solution.

m Complete the suggested practices

m Take a practice test

Chapter Summary

m Collections store groups of related objects. ArrayList is a simple collection that
can store any object and supports sorting. Queue is a FIFO collection, while Stack
is a LIFO collection. Dictionaries provide key/value pairs for circumstances that
require you to access items in an array using a key.

m Whenever possible, you should use generic collections over collections that
use the Object base class. Generic collections are strongly typed and offer better
performance.

Key Terms

Do you know what these key terms mean? You can check your answers by looking up
the terms in the glossary at the end of the book.

m Collection

m Generic

Case Scenarios

In the following case scenarios you apply what you've learned about how to plan and
use collections. You can find answers to these questions in the “Answers” section at
the end of this book.

Chapter 4 Review 165

Case Scenario 1: Using Collections

You are an application developer for Contoso, Inc. You are creating a WPF application
that correlates unsolved crimes with behaviors of known convicts. You create classes
called Crime, Evidence, Convict, and Behavior.

Questions
Answer the following questions for your manager:
1. Each Crime will have multiple Evidence objects, and each Convict will have mul-
tiple Behavior objects. How can you enable this?

2. You need to be able to sort the Evidence and Behavior collections to allow inves-
tigators to identify the most relevant results. Investigators should be able to sort
the collections using multiple methods. What type of collection should you use?

3. How can you provide different sorting algorithms?

Case Scenario 2: Using Collections for Transactions

You are an application developer working for Fabrikam, Inc., a financial services com-
pany. You are creating an application that will handle financial transactions.

Your application receives incoming transactions from a Web service and must process
the transactions in the order they arrive. Each transaction can involve multiple debits
and credits. For example, transferring money from account A to account B requires a
debit from account A and a credit to account B. If any credit or debit involved in a
transaction fails, all credits and debits must be rolled back, starting with the most
recently completed transactions.

Questions
Answer the following questions for your manager:
1. Transactions might come in faster than you can process them. How can you
store the transactions and ensure that you process them in the correct sequence?

2. How can you track the debits and credits you have performed so they can be
rolled back if required?

3. Should you use generic classes?

166 Chapter 4 Review

Suggested Practices

To master the system types and collections exam objective, complete the following
tasks.

Manage a Group of Associated Data in a .NET Framework Application
by Using Collections

For this task, you should complete at least Practices 1 and 2 to gain experience using
collections. For a better understanding of the performance implications of using the
BitArray collection instead of the BitVector32 structure, complete Practice 3 as well.

m Practice 1 Create an instance of ArrayList and add several instances of your own
custom class to it. Next, sort the array in at least two different ways.

m Practice2 Create a console application that creates instances of each of the
different dictionary classes. Populate the dictionaries and access the items both
directly and by iterating through them using a foreach loop.

B Practice 3 Write a simple console application that adds 20 boolean values to an
instance of the BitArray class and then iterates through each of them using a
foreach loop. Repeat the process 100,000 times using a for loop. Time how long
the entire process takes by comparing DateTime.Now before and after the pro-
cess. Next, perform the same test using BitVector32. Determine which is faster
and whether the performance impact is significant.

Improve Type Safety and Application Performance in a .NET
Framework Application by Using Generic Collections

For this task, you should complete at least Practices 1 and 2 to gain experience using
generic collections. For a better understanding of the performance implications of
using generic collections, complete Practice 3 as well.

B Practice1 Write an application that creates an instance of each of the built-in
generic collection classes, adds items to each of the collections, and then dis-
plays them using a foreach loop.

B Practice 2 Using a custom class that you created for real-world use, create a class
that acts as a collection of your custom class objects and is derived from the
generic Dictionary<T,U> class.

Chapter 4 Review 167

B Practice 3 Write a simple console application that performs hundreds of thou-
sands of Push and Pop operations with the nongeneric and generic versions of
the Stack class. Time how long it takes for both the nongeneric and generic ver-
sions and determine whether the generic version is actually faster.

Manage Data in a .NET Framework Application by Using Specialized
Collections

For this task, you should complete at least Practice 1. For a better understanding of
the performance implications of using specialized collections, complete Practice 2
as well.

B Practice1 Write an application that creates an instance of each of the built-in
specialized collection classes, adds items to each of the collections, and then
displays them using a foreach loop.

B Practice 2 Write a simple console application that adds hundreds of thousands
of strings to an instance of the StringCollection class and then iterates through
each of them using a foreach loop. Time how long the process takes by compar-
ing DateTime.Now before and after it completes. Next, perform the same process
using the generic version of List<T>, typed for the string class. Determine which
is faster and whether the performance impact is significant.

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you
can test yourself on just the content covered in this chapter, or you can test yourself on
all the 70-536 certification exam content. You can set up the test so that it closely sim-
ulates the experience of taking a certification exam, or you can set it up in study mode
so that you can look at the correct answers and explanations after you answer each
question.

MORE INFO Practice tests

For details about all the practice test options available, see the section "How to Use the Practice
Tests," in the Introduction of this book.

Chapter 10
Logging and Systems Management

Real-world applications, especially those deployed in IT environments, must be man-
ageable. Making an application manageable involves allowing systems administra-
tors to monitor and troubleshoot the application. The .NET Framework provides the
Systems.Diagnostics namespace to allow you to write events to the event log, create
debug and trace information, and provide performance counters.

IT departments also regularly need internal tools that analyze computer status or
respond to changes in the operating system. Windows Management Instrumentation
(WMI) provides these capabilities, and the .NET Framework provides a useful WMI
interface.

Exam objectives in this chapter:
m Manage an event log by using the System.Diagnostics namespace.

m Manage system processes and monitor the performance of a .NET Framework
application by using the diagnostics functionality of the .NET Framework.

m Debug and trace a .NET Framework application by using the System.Diagnostics
namespace.

m Embed management information and events into a .NET Framework application.

Lessons in this chapter:

m Lesson 1: Logging Application State 401
m Lesson 2: Working with Performance Counters 416
m Lesson 3: Managing Computers., 427

Before You Begin

This book assumes that you have at least two to three years of experience developing
Web-based, Microsoft Windows-based, or distributed applications using the .NET
Framework. Candidates should have a working knowledge of Microsoft Visual Studio.

399

400 Chapter 10 Logging and Systems Management

Before you begin, you should be familiar with Microsoft Visual Basic or C# and be com-
fortable with the following tasks:
m Creating Console and Windows Presentation Foundation (WPF) applications in
Visual Studio using Visual Basic or C#

m Adding namespaces and system class library references to a project

m Running a project in Visual Studio

Lesson 1: Logging Application State 401

Lesson 1: Logging Application State

Systems administrators rely heavily on the Windows event log, a central repository for
information about operating system and application activities and errors. For exam-
ple, Windows adds events each time the operating system starts or shuts down. Appli-
cations typically add events when users log on or off, when users change important
settings, or when serious errors occur.

By taking advantage of the Windows event log (rather than creating a text-based log file),
you allow systems administrators to use their existing event management infrastructure.
Most enterprise IT departments have software in place to monitor event logs for impor-
tant events and forward those events to a central help desk for further processing. Using
the Windows event log saves you from writing custom code to support these capabilities.

This lesson describes how to add events, read the event log, and create custom event logs.

After this lesson, you will be able to:

B Read and write events

B Log debugging and trace information
Estimated lesson time: 45 minutes

Reading and Writing Events

Systems administrators use the Windows event log to monitor and troubleshoot the
operating system. By adding events to the event log, you can provide systems adminis-
trators with useful details about the inner workings of your application without directly
displaying the information to the user. Because many IT departments have an event
management infrastructure that aggregates events, the simple act of adding events to
the event log can allow your application to be monitored in enterprise environments.

How to View the Event Logs
Use the Event Viewer snap-in to view event logs. You can open the Event Viewer snap-
in by following these steps in Windows Vista:
1. Click Start, right-click Computer, and then click Manage. Respond to the User
Account Control (UAC) prompt if it appears.
Expand the Computer Management, System Tools, and Event Viewer nodes.

Browse the subfolders to select an event log.

402

Chapter 10 Logging and Systems Management

Recent versions of Windows include the following three event logs (among other less
frequently used event logs, depending on the version of Windows and the compo-
nents installed), located within Event Viewer\Windows Logs in Windows Vista:

m System Stores all non-security-related operating system events.

B Security Stores auditing events, including user logons and logoffs. If nonstand-
ard auditing is enabled, the Security event log can store events when users access
specific files or registry values. Applications cannot write to the Security event log.

m Application Originally intended to store all events from all applications that do
not create an application-specific event log.

How to Register an Event Source
Events always include a source, which identifies the application that generated the
event. Before you log events, you must register your application as a source.

Adding an event source requires administrative privileges. Because Windows Vista
does not run programs with administrative privileges by default, adding an event
source is best done during the setup process (which typically does have administrative
privileges).

If your application is not running as an administrator, you can register an event source
manually by following these steps:

Log on as an administrator to the application server.

Start the registry editor by running Regedit.exe.

Locate the following registry subkey:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Eventlog\
Application

Right-click the Application subkey, click New, and then click Key.

5. Type the name of your event source for the key name (for example, My Applica-
tion), and then press Enter.

6. Close the registry editor.
To create an event log source programmatically, call the static EventLog.CreateEvent-

Source method with administrative privileges. You can then create events with the
registered source. The following code sample determines whether a source already

Lesson 1: Logging Application State 403

exists and registers the event source with the Application event log if the source
does not yet exist:

Y

If Not EventlLog.SourceExists("My Application") Then

EventLog.CreateEventSource("My Application"”, "Application™)
End If

// C#
if (!'EventlLog.SourceExists("My Application"))
EventLog.CreateEventSource("My Application”, "Application™);

You can also use EventLog.CreateEventSource to create a custom event log, simply by
specifying the name. For example, the following code sample creates an event log
named My Log and registers a source named My App:

' VB

If Not EventlLog.Exists("My Log") Then

EventLog.CreateEventSource("My App", "My Log™)
End If

// C#
if (!EventLog.Exists("My Log"))

EventLog.CreateEventSource("My App", "My Log");
In the Windows Vista Event Viewer snap-in, the custom event log appears under Appli-
cations And Services Logs. Because calling EventLog. CreateEventSource requires admin-
istrative privileges, you should call it during your application’s setup procedure.

How to Log Events

Once your application is registered as a source, you can add an event by using an
instance of the EventLog class (in the System.Diagnostics namespace), defining the
EventLog.Source property, and then calling the EventLog WriteEntry method. EventLog
.WriteEntry supports the following parameters:

m message A text message that should describe the condition as thoroughly as
possible.

m type The EventLogEntryType enumeration, which can be Information, Warning,
Error, FailureAudit (used when a user is denied access to a resource), or Success-
Audit (used when a user is allowed access to a resource).

m eventlD A number that uniquely identifies the event type. Administrators might
use this to search for specific events. You can create your own application-specific
event IDs.

404

Chapter 10 Logging and Systems Management

m category A number that identifies the event category. Like the event ID, this is
application-specific.

m rawData A byte array that you can provide if you want to give administrators
more information about the event.

The following code sample adds an event to the Application event log, assuming that
the source “My Application” has already been registered with the Application event log:

' VB

Dim myLog As New EventLog("Application")

myLog.Source = "My Application”

myLog.WriteEntry("Could not connect", EventLogEntryType.Error, 1001, 1S)

// C#

EventLog myLog = new EventLog("Application™);

myLog.Source = "My Application”;

myLog.WriteEntry("Could not connect", EventLogEntryType.Error, 1001, 1);

How to Read Events

To read events, create an EventLog instance. Then, access the EventLog. Entries collection.
The following application displays all Application events to the console:

' VB

Dim myLog As New EventLog("Application")

For Each entry As EventLogEntry In myLog.Entries
Console.WriteLine(entry.Message)

Next

// C#

EventLog myLog = new EventLog("Application™);

foreach (EventLogEntry entry in myLog.Entries)
Console.WriteLine(entry.Message);

Real World
Tony Northrup

Whether you're a developer, systems administrator, or user, you've been frus-
trated by ambiguous error messages at some point. For example, I have this
error message in my Application event log: “Faulting application, version, fault-
ing module, version 0.0.0.0, fault address 0x00000000”. Good luck fixing the
problem based on that!

Lesson 1: Logging Application State 405

To avoid this frustration and to facilitate troubleshooting, good developers pro-
vide very detailed error messages. Although this is a very user-friendly practice,
it can also weaken the security of your application if you list confidential infor-
mation like usernames, passwords, or connection strings.

Logging Debugging and Trace Information

Often, during the development process, developers write messages to the console or dis-
play dialog boxes to track the application’s processes. Although this information can be
useful, you wouldn’t want it to appear in a production application. To add debug-only
code that will not run in release builds, you can use the System.Diagnostics . Debug class.

Use the static Debug.Indent method to cause all subsequent debugging output to be
indented. Use the static Debug.Unindent method to remove an indent. Set the Debug
.IndentSize property to specify the number of spaces with each indent (the default is
four), and set the Debug.IndentLevel property to specify an indentation level.

The following code sample demonstrates how to use the Debug class to mark the
beginning and end of an application. If you build this code in Visual Studio with the
build type set to Debug, you will see the Starting Application and Ending Application
messages. If you build this code with the build type set to Release, you will not see
those messages. However, you will still see the “Hello, world!” message:

'VB

Debug.Listeners.Add(New ConsoleTracelListener())
Debug.AutoFTush = True

Debug.Indent()

Debug.WriteLine("Starting application")
Console.WriteLine("Hello, world!")
Debug.WriteLine("Ending application")
Debug.Unindent()

//C#

Debug.Listeners.Add(new ConsoleTraceListener());
Debug.AutoFlush = true;

Debug.Indent();

Debug.WriteLine("Starting application");
Console.WriteLine("Hello, world!™);
Debug.WriteLine("Ending application");
Debug.Unindent();

Debug. Write and Debug. WriteLine function exactly the same as Console. Write and
Console.WriteLine. To reduce the amount of code that you need to write, the Debug

406

Chapter 10 Logging and Systems Management

class adds the Writelf and WriteLinelf methods, each of which accepts a boolean
value as the first parameter and writes the output only if the value is True.

Debug.Assert also accepts a boolean condition. In general, you should use assertions to
verify something that you know should always be true. For example, in a financial
application, you might use an assertion to verify that the due date of a bill is after the
year 2000. If an assertion fails, the Common Language Runtime (CLR) stops program
execution and displays a dialog box similar to that shown in Figure 10-1. You should
not use asserts in production applications.

Assertion Failed: Abort=CQuit, Retry=Debug, Ignore=Continue 3

.' v Due date is not after the year 2000
S Due date is 4/20/1909,

at Program.MainiString(] args)
CAUsers\tnorthrutDocumentsideleterneos-debughdebugtPrograrm.cs(
18)

at AppDormain,_nExecutefssermbly(fssembly assembly, String[] args)

at AppDomain.ExecutedssermblyiString assemblyFile, Evidence
assemblySecurity, String[] args)

at HostProc.RunUsersfssembly(

at ThreadHelper. ThreadStart_ContextiObject state)

at ExecutionContext.RuniExecution Context executionContext,
ContextCallback callback, Object state)

at ThreadHelper, ThreadStart()

Abort | Retry | Ignore |

Figure 10-1 A failed call to Debug.Assert

Debug.AutoFlush determines whether debug output is written immediately. If you
always want Debug output to be displayed immediately (the most common option),
set Debug.AutoFlush to True. If you want to store Debug output and display it all at once
(such as when an application exits), set Debug.AutoFlush to False and call Debug. Flush
to write the output.

Using Trace

The Trace class functions almost identically to the Debug class. However, calls to Trace
are executed in both Debug and Release builds. Therefore, use the Debug class to write
messages only in the Debug build, and use the Trace class to write messages regardless
of the build type. For example, consider the following code sample:

'VB

Debug.Listeners.Add(New ConsoleTraceListener())

Debug.AutoFTush = True
Debug.Indent()

Lesson 1: Logging Application State 407

Debug.WriteLine("Debug: Starting application™)
Trace.WriteLine("Trace: Starting application™)

Console.WriteLine("Hello, world!")

Debug.WriteLine("Debug: Ending application")
Trace.WriteLine("Trace: Ending application")

//C#

Debug.Listeners.Add(new ConsoleTracelListener());
Debug.AutoFlush = true;

Debug.Indent();

Debug.WriteLine("Debug: Starting application");
Trace.WriteLine("Trace: Starting application™);

Console.WriteLine("Hello, world!");

Debug.WriteLine("Debug: Ending application™);
Trace.WriteLine("Trace: Ending application");

This code sample generates the following output in a Debug build:

Debug: Starting application

Trace: Starting application
Hello, world!

Debug: Ending application

Trace: Ending application

The code sample generates the following, shorter output in a Release build. Notice
that the output is not indented because the call to Debug.Indent was not executed:
Trace: Starting application

Hello, world!
Trace: Ending application

Properties that you configure for the Debug class also apply to the Trace class. For
example, if you add a listener to the Debug class, you do not need to add the same lis-
tener to the Trace class.

Using Listeners

By default, Debug and Trace write to the Output window in Visual Studio (if you are
running the application directly from Visual Studio) because they have a default lis-
tener: DefaultTraceListener. This allows you to view trace output without directly affect-
ing the application’s user interface.

408 Chapter 10 Logging and Systems Management

If viewing debug and trace output in the Output window is not sufficient, you can also
add the following listeners to the Debug.Listeners collection:

ConsoleTraceListener Sends output to the console or the standard error stream.

TextWriterTraceListener Sends output to a text file or a stream. Use Console.Out
to write output to the console.

XmlWriterTraceListener Sends output to an Extensible Markup Language (XML)
file using a TextWriter or Stream instance. This is useful for creating log files.

EventSchemalistener Sends output to an XML schema-compliant log file. This
is useful only if you need output to comply to an existing schema.

DelimitedListTraceListener Sends output to a delimited text file. You can config-
ure the delimiter using the DelimitedListTraceLister. Delimiter property.

EventLogTraceListener Writes output to the event log. Each time output is flushed,
a separate event is generated. To avoid generating large numbers of events (and
possibly affecting performance) set Debug.AutoFlush to False.

Configuring Debugging Using a .config File

Often, it’s useful to allow users to view trace output. For example, they might be able to
use the trace output to isolate a problem or to provide detailed information to you about
the internal workings of the application in a production environment. To allow users to
enable tracing, add the <system.diagnostics> section to your application’s .config file.

The following .config file configures a console trace listener and provides instructions
for users that allow them to enable tracing selectively:

<configuration>
<system.diagnostics>
<trace autoflush="false" indentsize="4">

<listeners>
<add name="configConsolelListener"
type="System.Diagnostics.ConsoleTraceListener" />
</Tisteners>

</trace>
<switches>

<!-- This switch controls data messages. In order to receive
data trace messages, change value="0" to value="1" -->

<add name="DataMessagesSwitch" value="0" />

<!-- This switch controls general messages. In order to
receive general trace messages change the value to the
appropriate level. "1" gives error messages, "2" gives
errors and warnings, "3" gives more detailed error
information, and "4" gives verbose trace information -->

Lesson 1: Logging Application State 409

<add name="TracelLevelSwitch" value="0" />
</switches>
</system.diagnostics>
<configuration>

The following .config file directs tracing output to a text file and removes the default lis-
tener. Notice that you use the initializeData attribute when adding the listener to spec-
ify the output file—this is true for other listeners that require a filename as well:

<configuration>
<system.diagnostics>
<trace autoflush="false" indentsize="4">
<listeners>
<add name="TextTraceListener"
type="System.Diagnostics.TextWriterTraceListener"
initializeData="output.txt" />
<remove name="Default" />
</T1isteners>
</trace>
</system.diagnostics>
<configuration>

Lab: Working with Event Logs

In this lab, you will create a WPF application that adds events to a custom event log.

Exercise 1: Create an Event Log and Log an Event

In this exercise, you must create a solution that includes three projects: a WPF appli-
cation, a class derived from Installer, and a Setup project. You must create a Setup
project to add the custom event log during the setup process because the user typi-
cally has administrative credentials only during setup.

1. Use Visual Studio to create a new WPF Application project named LoggingApp
in either Visual Basic.NET or C#.

2. In the Extensible Application Markup Language (XAML) for the LoggingApp
window, add an event handler for the Loaded event. The XAML now resembles
the following;

<Window x:Class="LoggingApp.Windowl"
xmIns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xam1"
Loaded="Window_Loaded"
TitTe="Windowl" Height="300" Width="300">
<Grid>

</Grid>
</Window>

410 Chapter 10 Logging and Systems Management

3. In the code file, add the System.Diagnostics namespace. Then implement the
Loaded event handler to add an event indicating that the application has started.
Add the event to a custom event log named LoggingApp Log with a source of
LoggingApp. The following code demonstrates how to do this:

' VB

Dim myLog As New EventLog("LoggingApp Log™)

myLog.Source = "LoggingApp"

myLog.WriteEntry("LoggingApp started!", _
EventLogEntryType.Information, 1001)

// C#

EventLog myLog = new EventLog("LoggingApp Log");

myLog.Source = "LoggingApp";

myLog.WriteEntry("LoggingApp started!",
EventLogEntryType.Information, 1001);

4. Add a new project to the solution using the Class Library template, and name it
LoggingApplnstaller.

5. In the LoggingApplnstaller namespace, derive a custom class named InstallLog
from the Installer class. As described in Lesson 3 of Chapter 9, “Installing and Con-
figuring Applications,” implement the Install, Rollback, and Uninstall methods to
add and remove an event log named LoggingApp and a source named Logging
AppSource. Note that you need to add a reference to the System.Configuration
Install dynamic-link library (DLL). The following code sample demonstrates how
to write the code:

' VB

Imports System.Diagnostics

Imports System.Configuration.Install
Imports System.ComponentModel
Imports System.Collections

<RunInstaller(True)> _
Public Class InstalllLog
Inherits Installer
PubTic Sub New()
MyBase.New()
End Sub

Public Overrides Sub Commit(_
ByVal mySavedState As IDictionary)
MyBase.Commit(mySavedState)

End Sub

Public Overrides Sub Install(_
ByVal stateSaver As IDictionary)
MyBase.Install(stateSaver)

Lesson 1: Logging Application State

If Not EventLog.Exists("LoggingApp Log") Then
EventLog.CreateEventSource("LoggingApp", "LoggingApp Log")
End If
End Sub

Public Overrides Sub Uninstall(_
ByVal savedState As IDictionary)
MyBase.Uninstall(savedState)
RemovelLog ()

End Sub

Public Overrides Sub Rollback(_
ByVal savedState As IDictionary)
MyBase.Rollback(savedState)
RemovelLog ()

End Sub

Public Sub RemovelLog()

If EventlLog.Exists("LoggingApp Log") Then
EventLog.DeleteEventSource("LoggingApp")
EventLog.Delete(""LoggingApp Log")

End If

End Sub

End Class

// C#
using
using
using
using

using
using
using
using

System;
System.Collections.Generic;
System.Ling;

System.Text;

System.Diagnostics;
System.Configuration.Install;
System.ComponentModel;
System.Collections;

namespace LoggingAppInstaller

{

[RunInstaller(true)]
pubTlic class InstallLog : Installer

{

public InstallLog(Q)
: base()

public override void Commit(IDictionary mySavedState)
{
base.Commit(mySavedState);

411

412 Chapter 10 Logging and Systems Management

10.

public override void Install(IDictionary stateSaver)

{
base.Install(stateSaver);
if (!EventLog.Exists("LoggingApp Log"))
EventLog.CreateEventSource(
"LoggingApp", "LoggingApp Log");
}
public override void Uninstall(IDictionary savedState)
{
base.Uninstall(savedState);
RemovelLog(Q);
}
public override void Rollback(IDictionary savedState)
{
base.Rollback(savedState);
RemovelLog(Q);
}
public void RemovelLog()
{
if (EventLog.Exists("LoggingApp Log"))
{
EventLog.DeleteEventSource("LoggingApp™);
EventLog.Delete("LoggingApp Log");
}
}

3
Add a Setup project to your solution named LoggingApp Setup.

Right-click Application Folder in the left pane, click Add, and then click Project
Output. In the Add Project Output Group dialog box, click Primary Output for
the LoggingApp project and then click OK.

Right-click Primary Output From LoggingApp, and then click Create Shortcut
To Primary Output From LoggingApp. Name the shortcut LoggingApp and then
drag it to the User’s Programs Menu folder.

Add custom actions to the Setup Project to call the appropriate InstallLog meth-
ods. Right-click LoggingApp Setup in Solution Explorer, click View, and then
click Custom Actions.

Right-click Install and then click Add Custom Action. In the Select Item In
Project dialog box, double-click Application Folder and then click Add Output.
In the Add Project Output Group dialog box, click the Project drop-down list,
click LoggingAppInstaller, select Primary Output, and then click OK. Then, click
OK again. Accept the default name, and notice that the InstallerClass property for
the primary output is set to True.

11.

12.

13.

14.

15.

16.

17.

18.
19.

Lesson 1: Logging Application State 413

Right-click Rollback and then click Add Custom Action. In the Select Item In
Project dialog box, double-click Application Folder, click Primary Output From
LoggingApplnstaller, and then click OK.

Repeat step 11 to add the LoggingApplInstaller DLL for the Uninstall custom
action.

Build your solution. Right-click LoggingApp Setup in Solution Explorer, and
then click Build.

Open the LoggingApp Setup build destination folder and double-click LoggingApp
Setup.msi to start the installer. Accept the default settings to install the application.
If you are running Windows Vista, respond appropriately when User Account Con-
trol (UAC) prompts you for administrative credentials.

Click Start, click All Programs, and then click LoggingApp to start the program.
Then, close the window.

Open Event Viewer. In Windows Vista, you can do this by clicking Start, right-
clicking Computer, and then clicking Manage. Respond to the UAC prompt,
expand System Tools, and select Event Viewer.

Navigate to Event Viewer, Applications And Services Logs, and LoggingApp Log
to verify that the new event log exists. Notice the single event in the event log,
indicating that LoggingApp started.

Uninstall LoggingApp using the Programs And Features tool in Control Panel.
Close and reopen Event Viewer. Notice that LoggingApp Log has been removed.

Lesson Summary

m Before you can add events, you must register an event source by calling EventLog

.CreateEventSource. You can then call EventLog. WriteEntry to add events. Read
events by creating an instance of the EventLog class and accessing the EventLog
.Entries collection.

Use the Debug and Trace classes to log the internal workings of your application
for troubleshooting purposes. Debug functions only in Debug releases. Trace can
function with any release type. Users can configure listeners for Debug and Trace
using the .config files.

Lesson Review

You can use the following questions to test your knowledge of the information in
Lesson 1, “Logging Application State.” The questions are also available on the com-
panion CD if you prefer to review them in electronic form.

414

Chapter 10 Logging and Systems Management

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the "Answers” section at the end of the book.

1. You are creating a custom installer for an application that needs to add events to
the Application event log. Which of the following do you need to do during the
setup process?

A. Call EventLog.CreateEventSource
B. Call EventLog.Create

C. Call EventLog.GetEventLogs

D. Call EventLog. WriteEntry

2. Youare creating a custom tool for your IT department that analyzes failure audits
generated by the operating system. Which event log should you examine?

A. Application

B. System
C. Security
D. Setup

3. When running a Debug build of an application, you want to display a dialog box
if the result of a calculation (stored in the result integer) is less than zero. Which
of the following methods does this correctly?

A. Debug Assert(result >= 0, “Result error”)
B. Trace.Assert(result >= 0, “Result error”)

C. Debug. Writelf(result >= 0, “Result error”)
D. Trace Writelf(result >= 0, “Result error”)

4. You are creating a Console application, and you want Debug and Trace output
displayed directly to the console. Which code sample does this correctly?

A.

'VB
Debug.Listeners.Add(New DefaultTracelListener())
Debug.AutoFlush = True

//C#
Debug.Listeners.Add(new DefaultTraceListener ());
Debug.AutoFlush = true;

Lesson 1: Logging Application State

'VB
Debug.Listeners.Add(New ConsoleTracelListener())
Debug.AutoFlush = True

//C#
Debug.Listeners.Add(new ConsoleTraceListener());
Debug.AutoFTush = true;

'VB
Debug.Listeners.Add(New EventLogTraceListener())
Debug.AutoFTush = True

//C#
Debug.Listeners.Add(new EventLogTracelListener());
Debug.AutoFlush = true;

'VB
Debug.Listeners.Add(New XmlWriterTracelListener())
Debug.AutoFlush = True

//C#
Debug.Listeners.Add(new XmlWriterTracelListener());
Debug.AutoFTush = true;

415

416

Chapter 10 Logging and Systems Management

Lesson 2: Working with Performance Counters

For years, administrators have used performance counters to monitor the performance
of computers, networks, and applications. Developers have also used performance
counters to help identify bottlenecks in their application’s performance.

With the System.Diagnostics namespace in the NET Framework, you can add custom
performance counters and update the performance data from within your applica-
tion. Then, you or an administrator can monitor any aspect of your application’s per-
formance, which can be useful for performance tuning and troubleshooting.

This lesson describes how to monitor standard and custom performance counters
and how to add and update custom performance counters.

After this lesson, you will be able to:
B Monitor performance counters
B Add custom performance counters
B Provide performance counter data
Estimated lesson time: 25 minutes

Monitoring Performance Counters

Windows includes hundreds of performance counters that allow you to monitor the
operating system’s activities in real time. You can view these counters using the Per-
formance snap-in. In Windows Vista, you can access the Performance snap-in from
within the Computer Management console by following these steps:

1. Click Start, right-click Computer, and then click Manage. Respond to the UAC
prompt if it appears.

2. In the Computer Management console, expand System Tools, Reliability And
Performance, and Monitoring Tools, and then select Performance Monitor.

3. On the Performance Monitor toolbar, click the button marked with a green plus
sign to add a counter.

The Add Counters dialog box appears, as shown in Figure 10-2.

4. In the Available Counters list, expand a category name and then click a counter.
If required, select an instance and click Add.

Lesson 2: Working with Performance Counters 417

Add Counters |E|
#Available counters Added counters
Select counters from computer: Counter Parent Inst... Computer
<Local computer = -
Processor v .
Processor Performance hd
RAS Port e
RAS Total hd
ReadyBoost Cache hd
Redirector v L
Search Gatherer he
Search Gatherer Projects v [T

Instances of selected object:

<Allinstances>
o
1

- Search

[Shows description Help] [oK] [Cancel

Figure 10-2 Adding a performance counter
Repeat step 4 to add more counters.
Click OK to begin monitoring the counters in real time.

The Performance snap-in displays the values for the counters you selected.

To monitor performance counters within a program, create an instance of Performance-
Counter by specifying the performance object, counter, and (if required) the instance.
You can determine the names of these parameters, and whether an instance is required,
by using the Performance snap-in. Then call the PerformanceCounter. NextValue method
to reset the counter. Make a second call to PerformanceCounter. NextValue to retrieve the
performance data. Depending on the counter, the performance data might be averaged
over the time passed between calls to PerformanceCounter.NextValue.

The following code sample, which requires both the System.Diagnostics and System
.Threading namespaces, displays the current processor utilization averaged over a
period of 1 second:

'VB

' Create a PerformanceCounter object that measures processor time
Dim pc As New PerformanceCounter("Processor", "% Processor Time", "_Total")

418 Chapter 10 Logging and Systems Management

' Reset the performance counter
pc.NextValue()

' Wait one second
Thread.STleep(1000)

' Retrieve the processor usage over the past second
Console.WriteLine(pc.NextValue())

//C#
// Create a PerformanceCounter object that measures processor time
PerformanceCounter pc = new

PerformanceCounter("Processor", "% Processor Time", "_Total");

// Reset the performance counter
pc.NextValue(Q);

// Wait one second
Thread.STeep(1000);

// Retrieve the processor usage over the past second
Console.WriteLine(pc.NextValue());

The first call to PerformanceCounter.NextValue always returns zero; therefore, it is
always meaningless. Only subsequent calls contain useful data. The following code
illustrates this by showing the datagrams sent per second:

'VB
Dim pc As New PerformanceCounter("IPv4", "Datagrams/sec™)
For i As Integer = 0 To 9

Console.WriteLine(pc.NextValue())
Next

//C#

PerformanceCounter pc = new PerformanceCounter("IPv4", "Datagrams/sec");

for (int i = 0; i < 10; i++)
{

Console.WriteLine(pc.NextValue());
}

The output resembles the following, showing that the network interface was receiving
100 to 220 datagrams per second:

0
136.4877
213.3919
210.881
106.4458
186.9752

Lesson 2: Working with Performance Counters 419

208.2334
172.8078
127.5594
219.6767

Because the IPv4\Datagrams/sec counter is averaged over 1 second, you can query
it repeatedly and always retrieve the previous second’s average. If you queried the
Processor\% Processor Time_Total counter repeatedly, the results would resemble
the following because repeatedly querying the value results in the instantaneous uti-
lization. In the case of a computer processor, in any given instant, the processor is
either idle or fully utilized—values between 0 and 100 occur only when examining
the utilization over a period of time:

0

100
100
100
100
100
0

0

100
100

Adding Custom Performance Counters

If you want to provide performance data generated by your application, you should
create a custom performance counter category and then add the counters to that cat-
egory. You can’t add performance counters to a built-in category.

To add a custom performance counter category and a single counter, call the static
PerformanceCounterCategory.Create method. Provide the category name, a description
of the category, a name for the counter, and a description of the counter. The follow-
ing code sample demonstrates this:

'VB

PerformanceCounterCategory.Create("CategoryName", "CounterHelp", _

PerformanceCounterCategoryType.MultiInstance, "CounterName", _
"CounterHelp")

//C#

PerformanceCounterCategory.Create("CategoryName", "CounterHelp",
PerformanceCounterCategoryType.MultiInstance, "CounterName",
"CounterHelp");

Note the third parameter: the PerformanceCounterCategoryType enumeration. You
should specify SingleInstance if the counter definitely has only one instance. Specify

420 Chapter 10 Logging and Systems Management

Multilnstance if the counter might have multiple instances. For example, because
computers might have two or more processors, counters that display processor status
are always Multilnstance.

If you want to add multiple counters to a single category, create an instance of Counter-
CreationDataCollection and add multiple CounterCreationData objects to the collection.
The following code sample demonstrates this:

'VB
Dim counters As CounterCreationDataCollection = New CounterCreationDataCollection
counters.Add(New CounterCreationData("Sales", _

"Number of total sales", PerformanceCounterType.NumberOfItems64))
counters.Add(New CounterCreationData("Active Users", _

"Number of active users", PerformanceCounterType.NumberOfItems64))
counters.Add(New CounterCreationData("Sales value", _

"Total value of all sales", PerformanceCounterType.NumberOfItems64))
PerformanceCounterCategory.Create("MyApp Counters", _

"Counters describing the performance of MyApp", _

PerformanceCounterCategoryType.SingleInstance, counters)

//C#
CounterCreationDataCollection counters = new CounterCreationDataCollection();
counters.Add(new CounterCreationData("Sales",

"Number of total sales", PerformanceCounterType.NumberOfItems64));
counters.Add(new CounterCreationData("Active Users",

"Number of active users", PerformanceCounterType.NumberOfItems64));
counters.Add(new CounterCreationData ("Sales value",

"Total value of all sales", PerformanceCounterType.NumberOfItems64));
PerformanceCounterCategory.Create("MyApp Counters",

"Counters describing the performance of MyApp",

PerformanceCounterCategoryType.SingleInstance, counters);

To check whether a category already exists, use the PerformanceCounterCategory.Exists
method. To remove an existing category, call PerformanceCounterCategory.Delete.

You should add performance counters during an application’s setup process for two
reasons. First, adding performance counters requires administrative privileges. Sec-
ond, the operating system requires a few moments to refresh the list of performance
counters. Therefore, they might not be accessible the moment you add the counters.
However, the typical delay between installing an application and running the applica-
tion is generally sufficient.

Providing Performance Counter Data

After you create a custom performance counter, you can update the data as needed.
You don’t need to update it constantly—just when the value changes. Performance

Lesson 2: Working with Performance Counters 421

counter data is sampled only every 400 milliseconds, so if you update the value more
frequently than that, it won’t improve the accuracy significantly.

To update a performance counter, create a PerformanceCounter object just as you
would for reading a performance counter value. However, you must set the ReadOnly
property to false. You can do this using the overloaded PerformanceCounter construc-
tor that takes a boolean parameter, as shown here, or you can set the ReadOnly prop-
erty after creating the object:

'VB

Dim pc As PerformanceCounter = New PerformanceCounter(_
"MyApp Counters", "Sales", False)

//C#
PerformanceCounter pc = new PerformanceCounter(
"MyApp Counters", "Sales", false);

After creating the PerformanceCounter object, you can set the value directly by defining
the RawValue property. Alternatively, you can call the thread-safe Decrement, Increment,
and IncrementBy methods to adjust the value relative to the current value. The follow-
ing code sample demonstrates how to use each of these methods:
'VB
Dim pc As PerformanceCounter = New PerformanceCounter(_

"MyApp Counters", "Sales", False)
pc.Rawvalue = 7
pc.Decrement

pc.Increment
pc.IncrementBy(3)

//C#

PerformanceCounter pc = new PerformanceCounter(
"MyApp Counters", "Sales", false);

pc.RawValue = 7;

pc.Decrement();

pc.Increment();

pc.IncrementBy(3);

PerformanceCounter.Increment and PerformanceCounter.Decrement are thread-safe, but
they’re much slower than simply updating PerformanceCounter.RawValue. Therefore,
you should use PerformanceCounter.Increment and PerformanceCounter. Decrement only
when multiple threads might update the performance counter simultaneously.

Lab: Providing Performance Data

In this lab, you will create an application that provides performance data that systems
administrators can use to monitor the application’s performance.

422

Chapter 10 Logging and Systems Management

Exercise 1: Create and Update Performance Counters

In this exercise, you will create a solution that includes three projects: a WPF application,
a class derived from Installer, and a Setup project. You must create a Setup project to add
the custom performance counter during the setup process because the user typically has
administrative credentials only during setup. The application that you create will record
the number of times the user has clicked a button in a custom performance counter.

1. Use Visual Studio to create a new WPF Application project named PerfApp in
either Visual Basic .NET or C#.

2. Addasingle Label control named counterLabel and a single Button control named
counterButton to the form. Double-click counterButton to edit the Click event
handler.

3. In the code file, add the System.Diagnostics namespace. Then write code in the
counterButton.Click event handler to increment the PerfApp\Clicks counter and
display the current value in counterLabel. The following code demonstrates how
to do this:

' VB
Dim pc As New PerformanceCounter("PerfApp", "Clicks", False)

pc.Increment()
counterLabel.Content = pc.NextValue().ToString(Q)

// C#
PerformanceCounter pc = new PerformanceCounter("PerfApp", "Clicks", false);
pc.Increment();
counterLabel.Content = pc.NextValue().ToString(Q;
4. Add a new project to the solution using the Class Library template. Name the

project PerfApplnstaller.

5. In the PerfApplInstaller namespace, derive a custom class named InstallCounter
from the Installer class. As described in Lesson 3 of Chapter 9, implement the
Install, Rollback, and Uninstall methods to add and remove a performance cate-
gory named PerfApp and a counter named Clicks. You need to add a reference to
the System.Configuration.Install DLL. The following code sample demonstrates
how to write the code:

' VB

Imports System.Configuration.Install
Imports System.ComponentModel

<RunInstaller(True)> _
Public Class InstallCounter
Inherits Installer
PubTic Sub New()
MyBase.New()
End Sub

Lesson 2: Working with Performance Counters

Public Overloads Overrides Sub Commit(_
ByVal mySavedState As IDictionary)
MyBase.Commit(mySavedState)

End Sub

PubTic Overloads Overrides Sub Install(_
ByVal stateSaver As IDictionary)
MyBase.Install(stateSaver)
If Not PerformanceCounterCategory.Exists("PerfApp") Then
PerformanceCounterCategory.Create("PerfApp", _
"Counters for PerfApp", _
PerformanceCounterCategoryType.SingleInstance, _
"Clicks", "Times the user has clicked the button.")
End If
End Sub

Public Overloads Overrides Sub Uninstall(_
ByVal savedState As IDictionary)
MyBase.Uninstall(savedState)
If PerformanceCounterCategory.Exists("PerfApp") Then
PerformanceCounterCategory.Delete("PerfApp")
End If
End Sub

Public Overloads Overrides Sub Rollback(_
ByVal savedState As IDictionary)
MyBase.Rol1back(savedState)
If PerformanceCounterCategory.Exists("PerfApp") Then
PerformanceCounterCategory.Delete("PerfApp")
End If
End Sub

End Class

// C#

using System;

using System.Collections.Generic;
using System.Linq;

using System.Text;

using System.Diagnostics;

using System.Configuration.Install;
using System.ComponentModel;

using System.Collections;

namespace PerfAppInstaller

{

[RunInstaller(true)]
pubTlic class InstallCounter : Installer
{
public InstallCounter()
: base()

423

424

Chapter 10 Logging and Systems Management

10.

public override void Commit(IDictionary mySavedState)

{
base.Commit(mySavedState);
}
public override void Install(IDictionary stateSaver)
{
base.Install(stateSaver);
if (!PerformanceCounterCategory.Exists("PerfApp"))
PerformanceCounterCategory.Create("PerfApp",
"Counters for PerfApp",
PerformanceCounterCategoryType.SingleInstance,
"Clicks",
"Times the user has clicked the button.");
}
public override void Uninstall(IDictionary savedState)
{
base.Uninstall(savedState);
if (PerformanceCounterCategory.Exists("PerfApp"))
PerformanceCounterCategory.Delete("PerfApp");
}
public override void Rollback(IDictionary savedState)
{
base.Rollback(savedState);
if (PerformanceCounterCategory.Exists("PerfApp"))
PerformanceCounterCategory.Delete("PerfApp");
}

}
Add a Setup project named PerfApp Setup to your solution.

Right-click Application Folder in the left pane, click Add, and then click Project
Output. In the Add Project Output Group dialog box, click Primary Output for
the PerfApp project and click OK.

Right-click Primary Output From PerfApp and then click Create Shortcut To Pri-
mary Output From PerfApp. Name the shortcut PerfApp and then drag it to the
User’s Programs Menu folder.

Add custom actions to the Setup project to call the appropriate InstallLog methods.
Right-click PerfApp Setup in Solution Explorer, click View, and then click Custom
Actions.

Right-click Install and then click Add Custom Action. In the Select Item In
Project dialog box, double-click Application Folder and then click Add Output.
In the Add Project Output Group dialog box, click the Project drop-down list

11.

12.
13.

14.

15.

16.

17.
18.

Lesson 2: Working with Performance Counters 425

and then click PerfApplInstaller. Select Primary Output, click OK and then click
OK again. Accept the default name, and notice that the InstallerClass property
for the primary output is set to True.

Right-click Rollback and then click Add Custom Action. In the Select Item In
Project dialog box, double-click Application Folder. Click Primary Output From
PerfApplnstaller and then click OK.

Repeat step 11 to add the PerfAppInstaller DLL for the Uninstall custom action.

Build your solution. Right-click PerfApp Setup in Solution Explorer and then
click Build.

Open the PerfApp Setup build destination folder and double-click PerfApp
Setup.msi to start the installer. Accept the default settings to install the applica-
tion. If you are running Windows Vista, respond appropriately when UAC
prompts you for administrative credentials.

Open the Performance snap-in and add the PerfApp\Clicks counter to monitor it
in real time.

Leave the Performance snap-in running. Click Start, click All Programs, and then
click PerfApp to start the program. Click the button several times to increment
the counter. Notice that counterLabel displays the number of clicks and the Per-
formance snap-in shows the value in real time.

Uninstall PerfApp using the Programs And Features tool in Control Panel.

Close and reopen the Performance snap-in. Notice that the PerfApp counter cat-
egory has been removed.

Lesson Summary

m To monitor performance counters programmatically, create an instance of

PerformanceCounter. Then call the PerformanceCounter.NextValue method to
reset the counter. Make subsequent calls to PerformanceCounter.NextValue to
retrieve the performance data.

To add custom performance counters, call the static PerformanceCounterCategory
.Create method. Provide the category name, a description of the category, a name
for the counter, and a description of the counter.

To provide performance counter data, create a PerformanceCounter object and
set the ReadOnly property to false. You can then set the value directly by defining
the RawValue property or by calling the thread-safe Decrement, Increment, and
IncrementBy methods.

426 Chapter 10 Logging and Systems Management

Lesson Review

You can use the following questions to test your knowledge of the information in
Lesson 2, “Working with Performance Counters.” The questions are also available
on the companion CD if you prefer to review them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the "Answers” section at the end of the book.

1. You are creating a multithreaded application. You create an instance of Perfor-
manceCounter named pc that might be referenced from multiple threads simulta-
neously. Which of the following calls is thread-safe? (Choose all that apply.)

A.
B.
C.
D.

pc.RawValue = pc.RawValue + 32
pc.Increment()
pc.Decrement()

pc.Increment(12)

2. You want to add a performance counter category with multiple counters pro-
grammatically. Which class should you use to specify the counters?

A.

B
C.
D

PerformanceCounterCategory
CounterSample
CounterCreationDataCollection

CounterCreationData

Lesson 3: Managing Computers 427

Lesson 3: Managing Computers

Applications often need to examine aspects of a computer, such as currently running
processes and locally attached storage devices. In addition, it’s often useful to respond
to changes in the system status, such as a new process starting or a newly attached
storage device. You can use the Process class and Windows Management Instrumen-
tation (WMI) to accomplish these tasks with the .NET Framework.

After this lesson, you will be able to:

B Examine processes

B Access WMI information and respond to WMI events
Estimated lesson time: 20 minutes

Examining Processes

You can use the Process.GetProcesses static method to retrieve a list of current pro-
cesses. The following code sample lists the process ID (PID) and process name of all
processes visible to the assembly. Processes run by other users might not be visible:
i

For Each p As Process In Process.GetProcesses()

Console.WriteLine("{0}: {1}", p.Id.ToString(), p.ProcessName)
Next

// C#
foreach (Process p in Process.GetProcesses())
Console.WriteLine("{0}: {1}", p.Id, p.ProcessName);

To retrieve a specific process by ID, call Process.GetProcessByld. To retrieve a list of pro-
cesses with a specific name, call Process.GetProcessesByName. To retrieve the current
process, call Process.GetCurrentProcess.

Once you create a Process instance, you can access a list of the modules loaded by that
process using Process.Modules (if you have sufficient privileges). If you lack sufficient
privileges (which vary depending on the process), the CLR throws a Win32Exception.
The following code sample demonstrates how to list all processes and modules when
sufficient privileges are available:
' VB
For Each p As Process In Process.GetProcesses()

Console.WriteLine("{0}: {1}", p.Id.ToString(), p.ProcessName)

Try
For Each pm As ProcessModule In p.Modules

428 Chapter 10 Logging and Systems Management

Console.WriteLine(" {0}: {1}", pm.ModuleName, _
pm.ModuTleMemorySize.ToString())
Next

Catch ex As System.ComponentModel.Win32Exception

Console.WriteLine(" Unable to 1ist modules")

End Try

Next

// C#

foreach (Process p in Process.GetProcesses())

{

Console.WriteLine("{0}: {1}", p.Id.ToString(), p.ProcessName);
try

{

}

foreach (ProcessModule pm in p.Modules)
Console.WriteLine(" {0}: {1}", pm.ModuleName,
pm.ModuTleMemorySize.ToString());

catch (System.ComponentModel.Win32Exception ex)

{

3

}

Console.WriteLine(" Unable to Tist modules");

The first time you reference any Process property, the Process class retrieves and caches
values for all Process properties. Therefore, property values might be outdated. To
retrieve updated information, call the Process.Refresh method.

The following are some of the most useful Process properties:

BasePriority The priority of the process.

ExitCode After a process terminates, the instance of the Process class populates
the ExitCode and ExitTime properties. The meaning of the ExitCode property is
defined by the application, but typically zero indicates a nonerror ending, and
any nonzero value indicates the application ended with an error.

ExitTime The time the process ended.

HasExited A boolean value that is true if the process has ended.

Id The PID.

MachineName The name of the computer on which the process is running.
Modules A list of modules loaded by the process.

NonpagedMemorySize64 The amount of nonpaged memory allocated to the
process. Nonpaged memory must be stored in RAM.

Lesson 3: Managing Computers 429

m PagedMemorySize64 The amount of paged memory allocated to the process.
Paged memory can be moved to the paging file.

m ProcessName The name of the process, which is typically the same as the exe-
cutable file.

m TotalProcessorTime The total amount of processing time the process has con-
sumed.

To start a new process, call the Process.Start static method and specify the name of the
executable file. If you want to pass the process parameters (such as command-line
parameters), pass those as a second string. The following code sample shows how to
start Notepad and have it open the C:\Windows\Win.ini file:

' VB
Process.Start("Notepad.exe", "C:\windows\win.ini")

// C#

Process.Start("Notepad.exe", @"C:\windows\win.ini");

Accessing Management Information

Windows exposes a great deal of information about the computer and operating sys-
tem through WMIL. WMI information is useful when you need to examine the com-
puter to determine how to set up your application, or when creating tools for systems
management or inventory.

First, define the management scope by creating a new ManagementScope object and call-
ing ManagementScope.Connect. Typically, the management scope is \\<computer_
name>\root\cimv2. The following code sample, which requires the System.Management
namespace, demonstrates how to create the management scope:

' VB

Dim scope As New ManagementScope("\\localhost\root\cimv2")
scope.Connect()

// C#
ManagementScope scope =

new ManagementScope(@"\\Tocalhost\root\cimv2");
scope.Connect();

You also need to create a WMI Query Language (WQL) query using an instance of
ObjectQuery, which will be executed within the scope you specified. WQL is a subset of
Structured Query Language (SQL) with extensions to support WMI event notification
and other WMI-specific features. The following code sample demonstrates how to query

430

Chapter 10 Logging and Systems Management

all objects in the Win32_OperatingSystem object. However, there are many different WMI
objects. For a complete list, refer to WMI Classes at http:;//msdn.microsoft.com/en-us/
library/aa394554.aspx.

' VB
Dim query As New ObjectQuery(_
"SELECT * FROM Win32_OperatingSystem")

// C#
ObjectQuery query = new ObjectQuery(
"SELECT * FROM Win32_OperatingSystem");

With the scope and query defined, you can execute your query by creating a Manage-
mentObjectSearcher object and then calling the ManagementObjectSearcher.Get method
to create a ManagementObjectCollection object.

' VB

Dim searcher As New ManagementObjectSearcher(scope, query)
Dim queryCollection As ManagementObjectCollection = searcher.Get()

// C#
ManagementObjectSearcher searcher = new ManagementObjectSearcher(scope, query);
ManagementObjectCollection queryCollection = searcher.Get();

Alternatively, you can use the overloaded ManagementObjectSearcher constructor to
specify the query without creating separate scope or query objects, as the following
example demonstrates:

' VB
Dim searcher As New ManagementObjectSearcher(_
"SELECT * FROM Win32_LogicalDisk")
Dim queryCollection As ManagementObjectCollection = searcher.Get()

// C#
ManagementObjectSearcher searcher =
new ManagementObjectSearcher(
"SELECT * FROM Win32_LogicalDisk");
ManagementObjectCollection queryCollection = searcher.Get();

Finally, you can iterate through the ManagementObject objects in the ManagementObject-
Collection and directly access the properties. The following loop lists several properties
from the ManagementObject defined in the Win32_OperatingSystem example shown
earlier:

" VB

For Each m As ManagementObject In queryCollection

Console.WriteLine("Computer Name : {0}", m("csname"))
Console.WriteLine("Windows Directory : {0}", m("WindowsDirectory"))

Lesson 3: Managing Computers 431

Console.WriteLine("Operating System: {0}", m("Caption™))

Console.WriteLine("Version: {0}", m("Version"))

Console.WriteLine("Manufacturer : {0}", m("Manufacturer™))
Next

// C#

foreach (ManagementObject m in queryCollection)

{
Console.WriteLine("Computer Name : {0}", m["csname"]);
Console.WriteLine("Windows Directory : {0}", m["WindowsDirectory"]);
Console.WriteLine("Operating System: {0}", m["Caption"]);
Console.WriteLine("Version: {0}", m["Version"]);
Console.WriteLine("Manufacturer : {0}", m["Manufacturer"]);

}

The following code sample demonstrates how to query the local computer for oper-
ating system details:

'VB
' Perform the query
Dim searcher As New ManagementObjectSearcher(_
"SELECT * FROM Win32_OperatingSystem™)
Dim queryCollection As ManagementObjectCollection = searcher.Get()

' Display the data from the query

For Each m As ManagementObject In queryCollection
' Display the remote computer information
Console.WriteLine("Computer Name : {0}", m("csname"))
Console.WriteLine("Windows Directory : {0}", m("WindowsDirectory"))
Console.WriteLine("Operating System: {0}", m("Caption™))
Console.WriteLine("Version: {0}", m("Version™))
Console.WriteLine("Manufacturer : {0}", m("Manufacturer™))

Next

//C#
// Perform the query
ManagementObjectSearcher searcher =
new ManagementObjectSearcher(
"SELECT * FROM Win32_OperatingSystem™);
ManagementObjectCollection queryCollection = searcher.Get();

// Display the data from the query

foreach (ManagementObject m in queryCollection)

{
// Display the remote computer information
Console.WriteLine("Computer Name : {0}", m["csname"]);
Console.WriteLine("Windows Directory : {0}", m["WindowsDirectory"]);
Console.WriteLine("Operating System: {0}", m["Caption"]);
Console.WriteLine("Version: {0}", m["Version"]);
Console.WriteLine("Manufacturer : {0}", m["Manufacturer"]);

432 Chapter 10 Logging and Systems Management

Similarly, the following code lists all disks connected to the local computer:

'VB

' Create a scope to identify the computer to query

Dim scope As New ManagementScope("\\localhost\root\cimv2")
scope.Connect()

' Create a query for operating system details

Dim query As New ObjectQuery("SELECT * FROM Win32_LogicalDisk")
' Perform the query

Dim searcher As New ManagementObjectSearcher(scope, query)

Dim queryCollection As ManagementObjectCollection = searcher.Get()

' Display the data from the query
For Each m As ManagementObject In queryCollection
' Display the remote computer information
Console.WriteLine("{0} {1}", m("Name").ToString(), _
m("Description”).ToString())
Next

//C#

// Create a scope to identify the computer to query

ManagementScope scope = new ManagementScope(@"\\Tocalhost\root\cimv2");
scope.Connect();

// Create a query for operating system details
ObjectQuery query =
new ObjectQuery("SELECT * FROM Win32_LogicalDisk");

// Perform the query
ManagementObjectSearcher searcher =

new ManagementObjectSearcher(scope, query);
ManagementObjectCollection queryCollection = searcher.Get();

// Display the data from the query
foreach (ManagementObject m in queryCollection)

{
// Display the remote computer information
Console.WriteLine("{0} {1}", m["Name"].ToString(),
m["Description"].ToString());
}

Exam Tip The number of WMI Classes is immense. Fortunately, you don't have to be able to list
them for the 70-536 exam. Instead, familiarize yourself conceptually with how to write WMI queries
and retrieve the results. For a complete reference, refer to WMI Classes at
http.//msdn.microsoft.com/en-us/library/aa394554.aspx.

Lesson 3: Managing Computers 433

Waiting for WMI Events

You can also respond to WMI events, which are triggered by changes to the operating
system status by creating an instance of WqlEventQuery. To create an instance of
WqlEventQuery, pass the constructor an event class name, a query interval, and a
query condition. Then, use the WqlEventQuery to create an instance of Management-
EventWatcher.

You can then use ManagementEventWatcher to either create an event handler that will
be called (using ManagementEventWatcher.EventArrived) or wait for the next event (by
calling ManagementEventWatcher.WaitForNextEvent). If you call ManagementEvent-
Watcher.WaitForNextEvent, it returns an instance of ManagementBaseObject, which you
can use to retrieve the query-specific results.

The following code creates a WQL event query to detect a new process, waits for a
new process to start, and then displays the information about the process:

'VB
' Create event query to be notified within 1 second of a change
' in a service
Dim query As New WqlEventQuery("__InstanceCreationEvent", _
New TimeSpan(0, 0, 1), "TargetInstance isa ""Win32_Process""")

' Initialize an event watcher and subscribe to events that match this query
Dim watcher As New ManagementEventWatcher(query)

' Block until the next event occurs
Dim e As ManagementBaseObject = watcher.WaitForNextEvent()

' Display information from the event

Console.WriteLine("Process {0} has been created, path is: {1}", _
DirectCast(e("TargetInstance"), ManagementBaseObject) ("Name"), _
DirectCast(e("TargetInstance"), ManagementBaseObject) ("ExecutablePath™))

' Cancel the subscription
watcher.Stop()

//C#
// Create event query to be notified within 1 second of a change
// in a service
WglEventQuery query = new WqlEventQuery("__InstanceCreationEvent",
new TimeSpan(0, 0, 1),
"TargetInstance isa \"Win32_Process\"");

// Initialize an event watcher and subscribe to events that match this query
ManagementEventWatcher watcher = new ManagementEventWatcher(query);

// Block until the next event occurs
ManagementBaseObject e = watcher.WaitForNextEvent();

434

Chapter 10 Logging and Systems Management

// Display information from the event

Console.WriteLine("Process {0} has been created, path is: {1}",
((ManagementBaseObject)e["TargetInstance"]) ["Name"],
((ManagementBaseObject)e["TargetInstance"]) ["ExecutablePath"]);

// Cancel the subscription
watcher.Stop(Q);

Responding to WMI Events with an Event Handler

You can respond to the ManagementEventWatcher. EventArrived event to call a method
each time a WMI event occurs. Your event handler must accept two parameters: an
object parameter and an EventArrivedEventArgs parameter. EventArrivedEventArgs. New-
Event is a ManagementBaseObject that describes the event.

The following Console application demonstrates how to handle WMI events asyn-
chronously. It performs the exact same task as the previous code sample:

'VB
Sub Main(Q)
Dim watcher As ManagementEventWatcher = Nothing

Dim receiver As New EventReceiver()

' Create the watcher and register the callback.
watcher = GetWatcher(New EventArrivedEventHandler(_
AddressOf receiver.OnEventArrived))

' Watcher starts to listen to the Management Events.
watcher.Start()

' Run until the user presses a key
Console.ReadKey()
watcher.Stop()

End Sub

' Create a ManagementEventWatcher object.
Public Function GetWatcher(ByRef handler As EventArrivedEventHandler) _
As ManagementEventWatcher
' Create event query to be notified within 1 second of a change
' in a service
Dim query As New WqlEventQuery("__InstanceCreationEvent", _
New TimeSpan(0, 0, 1), "TargetInstance isa ""Win32_Process""")

' Initialize an event watcher and subscribe to events that match
' this query
Dim watcher As New ManagementEventWatcher(query)

' Attach the EventArrived property to EventArrivedEventHandler method with the required
handler to allow watcher object communicate to the application.

Lesson 3: Managing Computers

AddHandTler watcher.EventArrived, handler
Return watcher

End Function

Class EventReceiver

' Handle the event and display the ManagementBaseObject properties.
Public Sub OnEventArrived(ByVal sender As Object, _
ByVal e As EventArrivedEventArgs)
' EventArrivedEventArgs is a management event.
Dim evt As ManagementBaseObject = e.NewEvent
' Display information from the event
Console.WriteLine("Process {0} has been created, path is: {1}", _
DirectCast(evt("TargetInstance"), _
ManagementBaseObject) ("Name™), _
DirectCast(evt("TargetInstance"), _
ManagementBaseObject) ("ExecutablePath"))

End Sub
End Class
//C#
static void Main(string[] args)
{
ManagementEventWatcher watcher = null;
EventReceiver receiver = new EventReceiver();
// Create the watcher and register the callback
watcher = GetWatcher(
new EventArrivedEventHandler(receiver.OnEventArrived));
// Watcher starts to listen to the Management Events.
watcher.Start();
// Run until the user presses a key
Console.ReadKey();
watcher.Stop(Q);
}

// Create a ManagementEventWatcher object.
public static ManagementEventWatcher GetWatcher(

EventArrivedEventHandler handler)

// Create event query to be notified within 1 second of a

// change in a service

WqlEventQuery query = new WqglEventQuery("__InstanceCreationEvent",
new TimeSpan(0, 0, 1),
"TargetInstance isa \"Win32_Process\"");

// Initialize an event watcher and subscribe to events that
// match this query
ManagementEventWatcher watcher = new ManagementEventWatcher(query);

435

436 Chapter 10 Logging and Systems Management

// Attach the EventArrived property to

// EventArrivedEventHandler method with the

// required handler to allow watcher object communicate to

// the application.

watcher.EventArrived += new EventArrivedEventHandler(handler);
return watcher;

}

// Handle the event and display the ManagementBaseObject
// properties.
class EventReceiver
{
public void OnEventArrived(object sender,
EventArrivedEventArgs e)
{
// EventArrivedEventArgs is a management event.
ManagementBaseObject evt = e.NewEvent;

// Display information from the event
Console.WriteLine("Process {0} has been created, path is: {1}",
((ManagementBaseObject)
evt["TargetInstance"]) ["Name"],
((ManagementBaseObject)
evt["TargetInstance"])["ExecutablePath"]);

Lab: Create an Alarm Clock

In this lab, you create a WPF application that uses WMI events to trigger an alarm
every minute.

Exercise 1: Respond to a WMI Event

In this exercise, you create a WPF application that displays a dialog box every minute by
responding to WMI events when the value of the computer’s clock equals zero seconds.

1. Use Visual Studio to create a new WPF Application project named Alarm, in
either Visual Basic.NET or C#.

2. Inthe XAML, add handlers for the Loaded and Closing events, as shown in bold
here:

<Window x:Class="Alarm.Windowl"
xmIns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmIns:x="http://schemas.microsoft.com/winfx/2006/xam1"
Loaded="Window_Loaded"
Closing="Window_Closing"
Title="Windowl" Height="300" Width="300">

Lesson 3: Managing Computers 437

Add a reference to System.Management.dll to your project. Then add the System
.Management namespace to the code file.

In the window’s class, declare an instance of ManagementEventWatcher so that it
can be accessible from all methods in the class. You need to use this instance to
start and stop the EventArrived handler:

' VB

Class Windowl
Dim watcher As ManagementEventWatcher = Nothing

End Class
// C#
public partial class Windowl : Window
{
ManagementEventWatcher watcher = null;
}

Add a class and a method to handle the WMI query event by displaying the cur-
rent time in a dialog box. The following code sample demonstrates this:

' VB
Class EventReceiver
Public Sub OnEventArrived(ByVal sender As Object, _
ByVal e As EventArrivedEventArgs)
Dim evt As ManagementBaseObject = e.NewEvent

' Display information from the event
Dim time As String = [String].Format("{0}:{1:00}", _
DirectCast(evt("TargetInstance"), _
ManagementBaseObject) ("Hour™), _
DirectCast(evt("TargetInstance"), _
ManagementBaseObject) ("Minute™))

MessageBox.Show(time, "Current time")
End Sub
End Class

// C#

class EventReceiver

{

public void OnEventArrived(object sender, EventArrivedEventArgs e)

{

ManagementBaseObject evt = e.NewEvent;

// Display information from the event

string time = String.Format("{0}:{1:00}",
((ManagementBaseObject)evt["TargetInstance"]) ["Hour"],
((ManagementBaseObject)evt["TargetInstance"]) ["Minute"]);

MessageBox.Show(time, "Current time");

438

Chapter 10 Logging and Systems Management

6. Add a method to the Window class to create a WMI event query that is triggered
when the number of seconds on the computer’s clock is zero. This causes the
event to be triggered every minute. Then register OnEventArrived as the event
handler. The following code demonstrates this:

' VB
Public Shared Function GetWatcher(ByVal handler As _
EventArrivedEventHandler) As ManagementEventWatcher
' Create event query to be notified within 1 second of a
' change in a service
Dim query As New WqlEventQuery("__InstanceModificationEvent", _
New TimeSpan(0, 0, 1), _
"TargetInstance isa 'Win32_LocalTime' AND " + _
"TargetInstance.Second = 0")

' Initialize an event watcher and subscribe to events that
' match this query
Dim watcher As New ManagementEventWatcher(query)

' Attach the EventArrived property to EventArrivedEventHandler method
' with the required handler to allow watcher object communicate to the
application.

AddHandler watcher.EventArrived, handler

Return watcher
End Function

// C#
public static ManagementEventWatcher GetWatcher(
EventArrivedEventHandler handler)

// Create event query to be notified within 1 second of a change in a

// service

WqglEventQuery query = new WqlEventQuery("__InstanceModificationEvent",
new TimeSpan(0, 0, 1),
"TargetInstance isa 'Win32_LocalTime' AND " +
"TargetInstance.Second = 0");

// Initialize an event watcher and subscribe to events that
// match this query
ManagementEventWatcher watcher = new ManagementEventWatcher(query);

// Attach the EventArrived property to EventArrivedEventHandler method
// with the required handler to allow watcher object communicate to the
// application.

watcher.EventArrived += new EventArrivedEventHandler(handler);

return watcher;

Lesson 3: Managing Computers 439

7. Finally, handle the window’s Loaded and Closing events to start and stop the
event handler, as follows:

' VB

Private Sub Window_Loaded(ByVal sender As Object, _
ByVal e As RoutedEventArgs)
' Event Receiver is a user-defined class.
Dim receiver As New EventReceiver()

' Here, we create the watcher and register the callback with it
' in one shot.
watcher = GetWatcher(New EventArrivedEventHandler(_

AddressOf receiver.OnEventArrived))

' Watcher starts to listen to the Management Events.
watcher.Start()
End Sub

Private Sub Window_Closing(ByVal sender As Object, _
ByVal e As System.ComponentModel.CancelEventArgs)
watcher.Stop()

End Sub

// C#
private void Window_Loaded(object sender, RoutedEventArgs e)
{

// Event Receiver is a user-defined class.

EventReceiver receiver = new EventReceiver();

// Here, we create the watcher and register the callback with it
// in one shot.
watcher = GetWatcher(

new EventArrivedEventHandler(receiver.OnEventArrived));

// Watcher starts to listen to the Management Events.
watcher.Start();

private void Window_Closing(object sender,
System.ComponentModel.CancelEventArgs e)
{
watcher.Stop(Q);
}

8. Build and run the application. When the number of seconds on your computer’s
clock equals zero, the OnEventArrived method displays a dialog box showing the
current time.

440 Chapter 10

Logging and Systems Management

Lesson Summary

m You can examine processes by calling the Process. GetProcesses method. To start a

process, call Process.Start.

m Toread WMI data, first define the management scope by creating a new Manage-
mentScope object and calling ManagementScope.Connect. Then create a query
using an instance of ObjectQuery. With the scope and query defined, you can
execute your query by creating a ManagementObjectSearcher object and then call-
ing the ManagementObjectSearcher.Get method. You can also respond to WMI
events by creating an instance of WqlEventQuery. Then, use the WqlEventQuery
to create an instance of ManagementEventWatcher. You can then use Management-

EventWatcher to either create an event handler or wait for the next event.

Lesson Review

You can use the following questions to test your knowledge of the information in

Lesson 3, “Managing Computers.” The questions are also available on the compan-

ion CD if you prefer to review them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are

located in the "Answers” section at the end of the book.

1. You need to retrieve a list of all running processes. Which method should you

call?
A.
B.
C.
D.

2. You need to query WMI for a list of logical disks attached to the current com-

Process.GetProcessesByName
Process.GetCurrentProcess
Process.GetProcesses

Process.GetProcessByld

puter. Which code sample correctly runs the WMI query?

A.

' VB
Dim searcher As New ObjectQuery("SELECT * FROM Win32_LogicalDisk")
Dim query As ManagementObject = searcher.Get()

// C#
ObjectQuery searcher = new ObjectQuery("SELECT * FROM Win32_LogicalDisk");
ManagementObject query = searcher.Get();

Lesson 3: Managing Computers 441

' VB
Dim searcher As New ManagementObjectSearcher(_
"SELECT * FROM Win32_LogicalDisk")
Dim queryCollection As ManagementObjectCollection = searcher.Get()

// C#
ManagementObjectSearcher searcher =

new ManagementObjectSearcher("SELECT * FROM Win32_LogicalDisk");
ManagementObject query = searcher.Get();

' VB
Dim searcher As New ObjectQuery("SELECT * FROM Win32_LogicalDisk")
Dim queryCollection As ManagementObjectCollection = searcher.Get()

// C#
ObjectQuery searcher = new ObjectQuery("SELECT * FROM Win32_LogicalDisk");

ManagementObjectCollection queryCollection = searcher.Get();

' VB
Dim searcher As New ManagementObjectSearcher(_
"SELECT * FROM Win32_LogicalDisk")
Dim queryCollection As ManagementObjectCollection = searcher.Get()

// C#
ManagementObjectSearcher searcher =

new ManagementObjectSearcher("SELECT * FROM Win32_LogicalDisk");
ManagementObjectCollection queryCollection = searcher.Get();

3. You are creating an application that responds to WMI events to process new
event log entries. Which of the following do you need to do? (Choose all that

apply.)

A.
B.

Call the ManagementEventWatcher.Query method.
Create a ManagementEventWatcher object.

Create an event handler that accepts object and ManagementBaseObject
parameters.

Register the ManagementEventWatcher. EventArrived handler.

442 Chapter 10 Review

Chapter Review

To practice and reinforce the skills you learned in this chapter further, you can

Review the chapter summary.
Review the list of key terms introduced in this chapter.

Complete the case scenarios. These scenarios set up real-world situations involv-
ing the topics of this chapter and ask you to create a solution.

Complete the suggested practices.

Take a practice test.

Chapter Summary

Before you can add events, you must register an event source by calling Event-
Log.CreateEventSource. You can then call EventLog. WriteEntry to add events. Read
events by creating an instance of the EventLog class and accessing the EventLog
.Entries collection. Use the Debug and Trace classes to log the internal workings
of your application for troubleshooting purposes. Debug functions only in
Debug releases. Trace can function with any release type. Users can configure lis-
teners for Debug and Trace using the .config files.

To monitor performance counters programmatically, create an instance of Perfor-
manceCounter. To add custom performance counters, call the static Performance-
CounterCategory.Create method. To provide performance counter data, create a
PerformanceCounter object and set the ReadOnly property to false.

You can examine processes by calling the Process.GetProcesses method. To start a
process, call Process.Start. To read WMI data, create a ManagementScope object and
call ManagementScope.Connect. Then, create a query using an instance of
ObjectQuery. You can also respond to WMI events by creating an instance of
WqlEventQuery. Then use the WqlEventQuery to create an instance of Management-
EventWatcher. At this point, you can use ManagementEventWatcher to either create
an event handler or wait for the next event.

Key Terms

Do you know what these key terms mean? You can check your answers by looking up
the terms in the glossary at the end of the book.

Windows event log
WMI Query Language (WQL)

Chapter 10 Review 443

Case Scenarios

In the following case scenarios, you apply what you've learned about how to log appli-
cation data and manage computer systems. You can find answers to these questions
in the “Answers” section at the end of this book.

Case Scenario 1: Improving the Manageability of an Application

You are an application developer for the Graphic Design Institute. For the last year,
you and your team have been managing the first version of an internal application
named Orders. You are now identifying requirements for the second version of the
application. Your manager asks you to interview key people and then answer ques-
tions about your design choices.

Interviews

The following is a list of company personnel interviewed and their statements.

Questions

IT Manager “Orders v1 usually worked great. However, it was difficult to man-
age. Sometimes, users would complain about poor performance, and we had no
way to isolate the source of the problem. Also, it would have been helpful to
identify degrading performance proactively so we could take measures to pre-
vent it from being worse. Also, we have a new event management system, and
we need user logon and logoff events in the event log that we can collect for
security purposes.”

Development Manager “Occasionally, IT discovers what they think is a bug in
the application. Unfortunately, the only way to isolate the problem is to have
them document how to re-create it and then have one of my developers attempt
to re-create the problem with a debugger running. It would be much more useful
if we could enable a troubleshooting mode in the application to have it create a
log file while running on the end-user computer. Then, we could analyze the log
file and attempt to isolate the problem.”

Answer the following questions for your manager:

1.
2.

How can you meet the requirements outlined by the IT manager?

How can you meet the requirements outlined by the development manager?

444 Chapter 10 Review

Case Scenario 2: Collecting Information About Computers

You are an application developer working for Trey Research. Recently, an employee took
confidential data out of the organization on a USB flash drive. Now, the IT department
is requesting custom development to help them assess the storage currently attached to
their computers and new storage devices that employees might attach.

The IT manager provides you with the following requests:

m Storage inventory Create a tool that IT can distribute to every computer. The
tool should generate a list of all disks attached to the computer.

m Storage change notification Create an application that runs in the background
when users log on. If a user connects a new disk, including a USB flash drive, it
should display a warning message that the user should not remove confidential
documents from the network. Then it should log the device connection.

Questions

Answer the following questions for your manager:

1. How can you generate a list of all disks attached to the computer?

2. How can you detect when a USB flash drive is attached to the computer?

Suggested Practices

To master the “Embedding configuration, diagnostic, management, and installation fea-
tures into a .NET Framework application” exam objective, complete the following tasks.

Manage an Event Log by Using the System.Diagnostics Namespace

For this task, you should complete at least Practice 1. If you want a better understand-
ing of how events can be used in the real world and you have the resources, complete
Practices 2 and 3 as well.

m Practice1 Go through your Application event log, or other custom event logs,
and examine the events. Notice which events are the most useful for trouble-
shooting and which characteristics make them useful.

m Practice2 Configure event forwarding on computers running Windows Vista
to forward events selectively from multiple computers to a single computer.
Administrators often use event forwarding to assist in managing events.

Chapter 10 Review 445

m Practice 3 Using a real-world application that you wrote, create a custom event
log in the application’s setup. Then add events to the event log when users log
on or off or perform other tasks that might be relevant for security auditing.

Manage System Processes and Monitor the Performance of a .NET
Framework Application by Using the Diagnostics Functionality of the
.NET Framework

For this task, you should complete at least Practices 1 and 2. If you want a better
understanding of how events can be used in the real world and you have the
resources, complete Practice 3 as well.

m Practice1 Create an application that adds a custom performance counter cate-
gory with both single-instance and multi-instance counters.

m Practice 2 Use the Performance snap-in to monitor the performance of a remote
computer. Examine the Performance counters added by applications and think
about how system administrators might use the counters in a real-world
environment.

m Practice 3 Using a real-world application that you wrote, add code to the setup
procedure to establish a custom performance counter category. Then add code
to the application to populate several counters revealing internal application
metrics.

Debug and Trace a .NET Framework Application by Using the
System.Diagnostics Namespace

For this task, you should complete both practices.

m Practice 1 Using a real-world application that you developed, add debugging
and trace commands to allow you to follow the application’s execution. Use
debugging commands for information that would be useful only in a develop-
ment environment. Use trace commands when the output might be useful for
troubleshooting problems in a real-world environment.

B Practice 2 Install the application you used in Practice 1. Then update the .config
file to write trace output to a text file.

446 Chapter 10 Review

Embed Management Information and Events into a .NET Framework
Application

For this task, you should complete all three practices.
m Practice1 Create a program that displays new event log entries to the console.

B Practice 2 Create a program that displays a dialog box when a user connects a
USB flash drive.

m Practice 3 Create a program that examines all network adapters connected to a
computer and identifies the network adapter with the highest bandwidth.

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you
can test yourself on just the content covered in this chapter, or you can test yourself on
all the 70-536 certification exam content. You can set up the test so that it closely sim-
ulates the experience of taking a certification exam, or you can set it up in study mode
so that you can look at the correct answers and explanations after you answer each
question.

MORE INFO Practice tests

For details about all the practice test options available, see the section “How to Use the Practice
Tests” in the Introduction of this book.

Index

Symbols and Numbers Rijndael, 569
ret (), 100-1 SignatureAlgorithm, 576

Ea llar symbol ($),100-1, 113 symmetric algorithm classes, 566-69
O 4t 5 ar ’ Alignment, text, 254

bmp files, 244-46

all, 467, 469

AllCultures, 682

allowDefinition, 360-61
AllowPartiallyTrustedCallersAttribute, 505-6

.config files, 360-61, 373, 378-80, 408-9

.exe files, type libraries, 604-5

jpg files, 244-48

NET Framework 2.0 Software Development Kit

(SDK), 380 AlternateView, 656
NET Framéwork Conlfiguration tool, 317, 380-82 Americap Natiopal Standards Institute (ANSI), 125-26
NET Framework Configuration Tool, 460-65 }S)esffn glafppglcg}»lgro; . 610
NET Framework, configuring, 378-83 ystembe a‘:j 4 dz PN o Interch
NET remoting, 317 American Standard Code for Information Interchange
ocx files, 604-5 (ASCI), 124-26
'olb file5,60475 animations, 223, 244
'tif files ’244*46 ANSI (American National Standards Institute), 125-26
b files, 604-5 best-fit mapping, 607

SystemDefaultCharSize, 610
APIs (application programming interfaces), 604
appdir, 469
AppDomain class, 318-20, 330
AppDomain.CreateDomain, 329-30
AppDomain.Unload, 323

-?, Caspol option, 468
<assemblyBinding>, 378
<configProtectedDate>, 366
32-bit integer types, 4

AppDomainSetup, 330
A application directory, evidence, 451
Aborted, thread state, 282 application domain
AbortRequested, thread state, 282 AppDomain class, 318-20
access control entries (ACEs), 552 assemblies, loading, 322-23
calculating effective permissions, 553 case scenario, creating testing tool, 354-55
in NET Framework, 554 case scenario, monitoring a file, 355-56
lab, DACLs and inheritance, 559-60 configuring
access control lists (ACLs), 521 assemblies with limited privileges, 327-30
configuring, within assemblies, 556-59 properties, 330-32
discretionary access control lists (DACL), 552-54 creating, 322
security access control lists (SACLs), 555-56 isolated storage, 85
ACEs. See access control entries (ACEs) lab, controlling privileges, 332-33
ACLs. See access control lists (ACLs) lab, creating domains and loading assemblies, 323-25
Action, permissions, 482-85 overview, 316-18
ActivationArguments, 330 suggested practice, 356-57
ActivationContext, 319 unloading, 323
Active Directory Domain Services (AD DS), 452 Application event log, 401-4
Add, 293 application programming interfaces (APIs), 604
addfulltrust, 466 ApplicationBase, 330-31
addgroup, 466, 470 ApplicationIdentity, 319
addition ApplicationName, 330
string operators, 19 applications
structures, 6 case scenario, designing applications, 64
add-ons, supporting, 648 case scenario, managing applications, 443
AddPermission, 506-7 configuring
addresses, reference types, 15 case scenario, configuring applications, 395
AES (Advanced Encryption Standard), 566 ConfigurationSection, 371-73
AesManaged, 566 connection strings, 364-65
alarm (bell), 103 IConfigurationSectionHandler, 368-70
algorithms lab, persistently storing configuration settings,
AssemblyAlgorithmID, 637 373-75
asymmetric key encryption, 575-77 overview, 360-61
Decrypt, RSA algorithms, 577 settings, 361-64, 366-68
HashAlgorithm.Hash, 583-84 suggested practice, 396-97
hashes, data validation, 581-83 System.Configuration, 361
KeyedHashAlgorithm.Hash, 584-86 event logs, 401-4

769

ApplicationTrust

installing
case scenario, installing applications, 396
custom installers, creating, 385-87
lab, installing application, 388-91
security
assembly declarations, 482-85
assembly permission declarations, 482
assembly declarations, 478-79
case scenarios, explaining and using CAS, 518-19
Code Access Security Policy (Caspol) tool, 465-72
code groups, 455-57
configuring, 460-65
demanding permissions, 494-500
evidence, 450-51
lab, configuring CAS, 472-75
lab, protecting methods with CAS demands,
507-13
lab, using assembly permission requests, 485-86
operating system security, 459-60
overview, 447-50
performance, improving, 502-6
permission sets, 454, 506-7
permissions, 451-52, 479-81, 492-94, 500-2
security policy, 458-59
suggested practice, 519-21
trusted code, calling, 506
ApplicationTrust, 319, 330
ApplyPolicy, 320
Arabic alphabet, 126. See also globalization
ArrayList collections, 138-42, 146-48
ArrayList.Add, 138
ArrayList AddRange, 141
ArrayList.BinarySearch method, 141-42
ArrayList.Contains, 142
ArrayList.Reverse, 141
ArrayList.Sort, 141
arrays
AutoResetEvent, 296
BitArray collections, 138, 143
byte, 83-85, 580
converting from strings, encryption, 580
creating and sorting, 19
data, 17
HashAlgorithm.Hash, 583-84
KeyedHashAlgorithm.Hash, 584-86
KeySizes, 568
lab, working with, 26-27
MemoryStream, 82
XmlArray, 192
arrows, graphics, 232
ASCII characters, 103-4, 124-26
ASCIIEncoding, 126
ASP.NET, worker process, 317
AspNetHostingPermission, 479
assemblies. See also code access security (CAS); services
application domains
AppDomain class, 318-20
assemblies with limited privileges, 327-30
case scenario, creating testing tool, 354-55
case scenario, monitoring a file, 355-56
configuring properties, 330-32
creating application domains, 322
lab, controlling privileges, 332-33

lab, creating domains and loading assemblies, 323-25

loading assemblies, 322-23
overview, 316-18

suggested practice, 356-57
unloading, 323
attributes, adding, 46
dynamically loaded
attributes, 637-39
case scenario, code-writing code, 648
case scenario, supporting add-ons, 648
create instances, call methods, 633-36
generating types dynamically, 639-42
lab, load and run add-ons dynamically, 642-44
loading assemblies, 632-33
overview, 632
suggested practice, 649
evidence, 450-51
lab, compile and test permissions, 473
lab, configuring shared assemblies, 382-83
permissions, 461-62
runtime requests, 378
shared, 381
trust, full, 471
trust, increasing, 463-64
assembly cache, 381-83
Assembly Registration Tool (Regasm.exe), 621
assembly version binding policy, 381
Assembly.GetCustomAttributes, 638
Assembly.GetType, 633-36
Assembly.Load, 632
Assembly.LoadFile, 632
Assembly.LoadFrom, 633
Assembly.ReflectionOnlyLoad, 633
Assembly.ReflectionOnlyLoadFrom, 633
AssemblyAlgorithmID, 637
AssemblyBuilder, 640
AssemblyBuilder.Save, 642
AssemblyBuilderAccess.RunAndSave, 642
AssemblyBuilderAccess.Save, 642
AssemblyCompany, 637
AssemblyConfiguration, 637
AssemblyCopyright, 637
AssemblyCulture, 637
AssemblyDefaultAlias, 637
AssemblyDelaySign, 637
AssemblyDescription, 637
AssemblyFileVersion, 637
AssemblyFlags, 638
AssemblylInfo file, 637
AssemblyInformationalVersion, 638
AssemblyKeyFile, 638
AssemblyKeyName, 638
AssemblyNameFlags, 638
AssemblyProduct, 638
AssemblyTitle, 638
AssemblyTrademark, 638
AssemblyVersion, 638
Assert, permission request, 492, 497-99, 502-6
asymmetric key encryption
algorithm classes, 575-77
digital signatures, 587
exporting keys and key pairs, 577-78
key pairs, storing, 579-80
message encryption/decryption, 580-81
overview, 573-75
AsymmetricAlgorithm, 575-77
AsynchCompletedEventArgs. Error, 665
atomic operations, 293-96
attaching files, e-mail, 655

attributes
assembly CAS declarations, 479
classes, 46-47
Audit Object Access policy, 556
auditing, 555-56
Authenticated, PrincipalPermission, 530-31
authentication
case scenario, creating custom authentication
methods, 598-600
exeption handling in streams, 543-44
identity class, creating custom, 535-39
lab, adding RBS to an application, 544-48
overview, 523-25
principal class, creating custom, 539-40
PrincipalPermission class, 529-30
RBS demands
custom identities and principals, 542-43
declarative, 530-32
imperative, 532-34
suggested practice, 600-2
user privilege models, creating custom, 541-42
Windowsldentity class, 525-26
WindowsPrincipal class, 527-29
AuthenticationType, 525
AuthenticationType, Ildentity, 535
authorization
exception handling in streams, 543-44
identity class, creating custom, 535-39
lab, adding RBS to an application, 544-48
overview, 523-25
principal class, creating custom, 539-40
PrincipalPermission class, 529-30
RBS demands
custom identities and principals, 542-43
declarative, 530-32
imperative, 532-34
user privilege models, creating custom, 541-42
Windowsldentity class, 525-26
WindowsPrincipal class, 527-29
AutomationProxyAttribute, 619
AutoResetEvent array, 296

background processing
services
case scenario, creating testing tool, 354-55
case scenario, monitoring a file, 355-56
creating install projects, 340-43
creating, overview, 336-38
implementing services, 339-40
lab, web monitoring service, 345-50
managing, 343-45
service projects, creating, 338-39
suggested practice, 356-57
threading
case scenario, background printing, 311
case scenario, ensuring integrity of financial
applications, 311-12
foreground and background threads, 274
lab, managing threads, 299-305
lab, performance improvement with threads, 275-76
overview, 269-71
passing data between threads, 282-85
resource access, synchronizing, 270-96
starting and stopping threads, 279-81

C# 771

suggested practice, 312
thread states, 282
ThreadPool classes, 271-73
waiting for thread completion, 296-99
BackgroundWorker, 271
backreferences
matching, 107-8
replacing substrings, 113
backup files, 468
base class constraints, 42
BaseDirectory, 319
BasePriority, 428
bell (alarm), 103
best practices
error handling, 501-2
multithreading, 296
version compatibility, 179
BestFitMapping, 607
binary path, private, 331
binary serialization, 197-99
BinaryFormatter, 171-73, 179, 205-7
BinaryFormatter.Deserialize, 173
BinaryFormatter.Serialize, 171-72
BinaryReader, 80
BinarySearch, 141-42
BinaryWriter, 80, 573
binding, 331, 381
BindingFlags, 636
BitArray collections, 138, 143
Bitmap, 222
creating and saving pictures, 245-46
icons, 247
lab, save pie chart as picture, 247-48
overview, 243-44
Bitmap.Save, 245-46
Bitmap.SetPixel, 245-46
BitVector32, 143
BlockSize, encryption, 567
bool fOAEP, 580
boolean values
BitArray collections, 138, 143
Debug class, 405-6
boxing, 41, 56
Brush class, 222, 234-36
brushes
gradients, 234
System.Drawing, 234
System.Drawing.Brushes, 253
Brushes class, 222
BufferedStream, 83
Builder classes, 639-40
byte[] rgb, 580
byte arrays, 580
byte values, 3
bytes
BufferedStream, 83
compressed streams, 83-85
MemoryStream, 82
Unicode strings, converting, 126-27

C#
converting types, 54-55
keyword differences, 5
numeric type aliases, 4
raising events, 46

772

calculations

calculations, 3, 176-78, 553
callbacks, 44, 611-12
CallingConvention, 607
callouts, graphics, 232
carriage return, 103
CAS (code access security)
assembly declarations, 478-79, 482-86
assembly permission declarations, 482
case scenarios, explaining and using CAS, 518-19
Code Access Security Policy (Caspol) tool, 465-72
code groups, 455-57
configuring, 460-65
demanding permissions, 494-500
evidence, 450-51
lab, configuring CAS, 472-75
lab, protecting methods with CAS demands,
507-13
lab, using assembly permissions requests, 485-86
operating system security, 459-60
overview, 447-50
performance, improving, 502-6
permission classes, 479-81
permission requests, methods of, 492-94
permission sets, 454, 506-7
permissions, 451-52, 500-2
security policy, 458-59
suggested practice, 519-21
trusted code, calling, 506
case scenarios
add-ons, supporting, 648
applications, configuring, 395
applications, designing, 64
applications, improving management, 443
applications, installing, 396
authentication methods, creating custom, 598-600
background printing, 311
CAS, explaining and using, 518-19
charts, creating, 267
code-writing code, 648
collecting information about computers, 444
collections, using, 165-66
COM (Component Object Model), 628-29
compressing files, 94
cryptography, protecting data with, 600
e-mail, adding to existing applications, 675-76
file monitoring, 355-56
financial applications, ensuring integrity, 311-12
globalization, 702
graphics, choosing techniques, 266
log files, creating, 93-94
serialization, choosing a technique, 214
serializing between versions, 213-15
testing tool, creating, 354-55
validating input, 134
case-sensitivity, 109
Caspol (Code Access Security Policy) tool, 465-72
See also code access security (CAS)
Caspol.exe, 465-72
Casting, 9
casting operations
case scenario, using collections, 165-66
custom classes, 152-53
lab, creating shopping cart, List<T>, 156-59
List<T> collection, 154-56
overview, 150
Queue<T> collection, 153

SortedList<T,U> collection, 151
Stack<T> collection, 153
suggested practice, 166-67

catch block, 22-24, 530, 533

CBC (Cipher Block Chaining), 568
CBool, 55

Certificate Services, 575

Changed events, 72

Character, text formatting, 255
CharacterRange, 224

characters. See also Unicode characters

matching, 103
ranges, 106
repeated, 104

CharSet, 607
charts, 245-46. See also graphics

annotating with text, 253-54

case scenarios, creating, 267

lab, adding text to images, 259-63
lab, save pie chart as picture, 247-48

chggroup, 467,470

Chinese language, 126. See also globalization
Clnt, 55

Cipher Block Chaining (CBC), 568

cipher text, 564

CipherMode, 568

ciphers. See symmetric encryption algorithms
classes

attributes, 46-47
CAS permissions, 479-81
comparing, 35
constructing, 32
events, 43-46
generics, 38-43
interfaces, 34-37
partial classes, 37
custom, serialization, 175-79
inheritance, 32-33
isolated storage, 86
lab, creating derived class with delegates, 48-51
lab, serialize and deserialize objects, 182-85
structures vs., 9
type forwarding, 47-48
XML serialization, 191, 195-96

ClassInterfaceAttribute, 619

CleanInput, 113

Clear, shapes, 227

client applications, 364-65

Clone, 208

CLR (Common Language Runtime), 371
code access security (CAS)

assembly declarations, 478-79, 482-86

assembly permission declarations, 482

case scenarios, explaining and using CAS, 518-19
Code Access Security Policy (Caspol) tool, 465-72
code groups, 455-57

configuring, 460-65

demanding permissions, 494-500

evidence, 450-51

lab, configuring CAS, 472-75

lab, protecting methods with CAS demands, 507-13
operating system security, 459-60

overview, 447-50

performance, improving, 502-6

permission classes, 479-81

permission requests, methods of, 492-94

permission sets, 454, 5067
permissions, 451-52
permissions, limiting, 500-2
security policy, 458-59
suggested practice, 519-21
trusted code, calling, 506
Code Access Security Policy (Caspol) tool,
465-72
code groups, 328-29, 455-57
adding, 463
evidence, 450-51
Internet_Zone, 329
lab, creating, 474-75
lab, modifying, 475
Machine policy, 472
permission granting, 461-62
User policy, 472
code page, 125, 127
CodeAccessPermission, 497-99
CodeAccessPermission.Demand, 494
CodeAccessPermission.PermitOnly, 494
CodeAccessPermission.RevertAssert, 505
CodeAccessPermission.RevertPermitOnly, 494
CodeAccessSecurityAttribute, 481
codebases, 381
code-writing code, 648
collections, 137
case scenario, using, 165-66
classes of, 138-43
generics
custom classes and, 152-53
lab, creating shopping cart, List<T>, 156-59
List<T> collection, 154-56
overview, 150
Queue<T> collection, 153
SortedList<T,U> collection, 151
Stack<T> collection, 153
lab, creating a shopping cart, 146-48
suggested practice, 166-67
color, controls, 226
Color, structure, 224, 226
ColorConverter, 222
colors. See also graphics
ColorTranslator, 222
COM (Component Object Model)
NET types, 618
controlling marshaling, 623-24
error and exception mapping, 622-23
exporting type libraries, 620-21
interoperability attributes, 619
lab, exposing .NET class to COM, 624-25
register an assembly, 621-22
add library reference, 604-5
callback functions, 611-12
case scenarios, 628-29
DLLs, calling unmanaged, 606-8
lab, create instance of COM object, 614-15
Marshal class, 608-10
passing structures, 610-11
suggested practice, 629-30
Type Library Importer, 605-6
wrapper class, creating, 613-14
Commit, 385
Common Language Runtime (CLR), 371
CompareExchange, 293
CompareTo, 34

conversions 773

compatibility, version
case scenario, serializing between versions, 213-15
serialized/deserialized objects, 178-79
XML serialization, 189
Compiled, 109
Component Object Model. See COM (Component
Object Model)
compressed streams, 83-85
compressing files, case scenario, 94
CompressionMode, 85
ComRegisterFunctionAttribute, 619
ComSourcelnterfacesAttribute, 619
ComUnregisterFunctionAttribute, 619
ComVisibleAttributes, 618-19
Concat method, 18
Configuration class, 361-62
ConfigurationFile, 330
ConfigurationManager.AppSettings, 363
ConfigurationManager.ConnectionStrings, 364
ConfigurationManager.OpenMachineConfiguration, 366
ConfigurationSection, 371-73
configuring
NET Framework
assembly version binding, 381
codebases, 381
configuration tool, 380-82
lab, configuring a shared assembly, 382-83
remoting services, 382
settings, 378-80
access control lists (ACLs), 558-59
application domain properties, 330-32
applications
case scenario, 395
connection strings, 364-65
custom sections, 368-73
lab, persistently storing configuration settings, 373-75
overview, 360-61
reading machine configuration settings, 366-68
settings, 361-64
suggested practice, 396-97
System.Configuration, 361
assemblies with limited privileges, 327-30
code access security (CAS), 460-65
debugging, .config file, 408-9
e-mail credentials, 665-66
e-mail, SSL, 666
lab, configuring CAS, 472-75
connection strings, 364-65
ConnectionString, 364
ConnectionStringSettingsCollection, 364
Console.ReadKey, 11-12
Console Write, 405-6
Console WriteLine, 405-6
ConsoleTraceListener, 408
constraints, generics, 38, 42-43
constructor constraints, 42
ConstructorBuilder, 640
Constructorlnfo, 635
Context, 208
contracts, 34-37
controls
color, 226
location and size, 225-26
conversions
explicit, 54
lab, performing safely, 59-60

774

Copy, Marshal class

narrowing, 54-55

widening, 54
Copy, Marshal class, 609
copying

files, 70

objects, 35

SetShadowCopyFiles, 321

ShadowCopyFiles, 320
copyright, 244, 253-54, 257-63
CopyTo, 70
CounterCreationDataCollection, 420
counters

built-in types, 3-4

custom, adding, 419-20

data from, 420-21

lab, providing performance data, 421-25

monitoring, 416-18

permissions, 480

suggested practice, 445
Create, 70
CreateComInstanceFrom, 320
Created events, 72
CreateDecryptor, 568, 573
CreateDomain, 320, 330
CreateEncryptor, 568
CreateGraphics, 227-31
Createlnstance, 320
CreatelnstanceAndUnWrap, 320
CreatelnstanceFrom, 320
CreatelnstanceFromAndWrap, 320
CreateText, 70
creating

AppDomain, 330

application domains, 322

arrays, 19

CAS assembly declarations, 482-85

case scenario, authentication methods, custom,

598-600
case scenario, creating charts, 267

case scenario, creating testing tools, 354-55

custom classes, 35-37
custom identity classes, 535-39
custom installers, 385-87
derived class with delegates, 48-51
e-mail messages, 652
enumerations, 9-10
exception classes, custom, 32-33
files, 70
folders, 69
Font objects, 252-53
formatters, custom, 209
generic type, 39-40
interfaces, 35-37
labs creating

alarm clock, creating, 436-39

code groups and permission sets, 47475

COM object, creating instance, 614-15
custom installer, 389-91

domains and loading assemblies, 323-25

event logs, 409-13

folder with explicit permissions, 559-60

method to draw pie chart, 236-41
performance counters, 421-25
Regex expression evaluator, 115-19
service installer, 349-50

shopping cart, 146-48

shopping cart, List<T>, 156-59
SmtpClient object, 668-70
web monitoring service, 345-48
log files, case scenario, 93-94
MailMessage objects, 653-55
pictures, 245-46
principal class, custom, 539-40
service projects, 338-39
services, 336-38
services, install projects, 340-43
structures (user-defined types), 6-11
user privilege models, creating custom, 541-42
wrapper class, 613-14
CredentialCache.DefaultNetworkCredentials, 666
credentials, configuring, 665-66
CrossAppDomain, 208
CrossMachine, 208
CrossProcess, 208
Crypto Service Provider (CSP), 576
CryptoAPI key storage, 579-80
cryptography, 366
AssemblyKeyFile, 638
AssemblyKeyName, 638
asymmetric key encryption
algorithm classes, 575-77
exporting keys and key pairs, 577-78
key pairs, storing, 579-80
message encryption/decryption, 580-81
overview, 573-75
case scenario, protecting data, 600
hash evidence, 451
hashes, data validation, 581
algorithms, 581-83
keyed hashes, computing, 584-86
nonkeyed hash computations, 583-84
overview, 581
lab, encrypting/decrypting files, 590-94
signing files, 586-90
Strong Name evidence, 451
suggested practice, 600-2
symmetric key encryption
establishing, 569-70
message encryption/decryption, 571-73
overview, 563-66
symmetric algorithm classes, 566-69
System.Security.AccessControl, 556-59
CryptoStream, 568, 573
CryptoStreamMode.Read, 573
CSP (Crypto Service Provider), 576
CspParameters, 579
CStr, 55
CType, 55
culture
case scenarios, 702
culture-insensitive comparisons, 694-95
custom culture, building, 695-97
formatting data, 680-82, 684-90
formatting output, 682-84
lab, browse cultures, 697-98
sorting and comparing objects, 690-94
suggested practice, 702-3
Culturelnfo.DateTimeFormat, 684, 689-90
Culturelnfo.InvariantCulture, 694-95
Culturelnfo.NumberFormat, 684-89
Culturelnvariant, 110
CultureTypes, 681-82

currency, globalization, 683-84
CurrentCulture, 680
CurrentDomain, 319
custom classes
creating, 34-37
generic collections and, 152-53
inheritance, 32-33
lab, serialize and deserialize objects, 182-85
serialization, 175-79
custom installers, 385-87, 389-91
CustomConfigHandler, 368
Cycle structure, 9
Cyrillic alphabet, 126. See also globalization

D

DACLs (discretionary access control lists), 552-54,
556-60
data
arrays of, 17
extracting matched data, 110-12
suggested practice, 95
threads, passing between, 282-85
Data Encryption Standard (DES), 566
data retrieval. See also serialization
extracting matched data, 110-12
match simple text, 101
match special characters, 103
match text, 101-3
data transfer
serialization
case scenario, serializing between versions, 213-15
case scenarios, choosing a serialization
technique, 214
classes, custom, 175-79
deserialization, how to, 173-75
format, choosing, 179-80
lab, serialize and deserialize objects, 182-85
objects, how to, 171-72
overview, 170-71
suggested practice, 215-17
serialization, custom, 202-5
context-based changes, 207-9
events, responding to, 205-7
formatters, custom, 209
lab, implement custom serialization, 209-10
XML serialization
classes, serializing, 191
controlling, 191-94
DataSet, 196-97
lab, using XML serialization, 197-99
objects, 189-90
overview, 188-89
schemas, conforming to, 195-96
DataProtectionConfigurationProvider, 367
DataProtectionPermission, 479
DataSet, 196-97
DataSet.GetXml, 197
DataSet.ReadXml, 197
dates
built-in types, 4
culture formats, 684, 689-90
serialized data, 172
serialized/deserialized data, 174
DateSet.WriteXml, 197

demands 775

Debug class, 405-9
Debug.Assert, 406
Debug.AutoFlush, 406
Debug.Indent, 405-9
Debug.IndentLevel, 405-9
Debug.IndentSize, 405-9
Debug.Unindent, 405-9
Debug.Write, 405-6
Debug.WriteLine, 405-6
debugging
configuring, .config file, 408-9
exceptions, 24
SecurityAction.RequestOptional, 484
service applications, 336-37
suggested practice, 445
System.Diagnostics.Debug, 405-9
UlPermissions, 481
decimals, different cultures, 683-84
declarative security
CAS permissions classes, 479-81
code access security (CAS) assembly, 478-79
RBS demands, 530-32, 542-43
DeclaredOnly, binding flag, 636
decoding, 124-26
Decrement, 293, 421
Decrypt, RSA algorithms, 577
decryption
asymmetric key encryption
algorithm classes, 575-77
digital signatures, 587
exporting keys and key pairs, 577-78
key pairs, storing, 579-80
message encryption/decryption, 580-81
overview, 573-75
case scenario, protecting data, 600
hashes, data validation
algorithms, 581-83
keyed hashes, computing, 584-86
nonkeyed hash computations, 583-84
overview, 581
lab, encrypting/decrypting files, 590-94
signing files, 586-90
suggested practice, 600-2
symmetric key encryption
establishing, 569-70
message decryption, 571-73
overview, 563-66
symmetric algorithm classes, 566-69
Default, BindingFlag, 636
DefaultTraceListener, 407-8
defense-in-depth, 327
DefineDynamicAssembly, 320
DeflateStream, 85
delegates, 44
Delete, 70
Deleted events, 72
deleting files, 70
DelimitedListTraceListener, 408
DeliveryNotificationOptions, 654
Demand, permissions request, 492, 494-500, 502-6
Demand, PrincipalPermission, 530
demands
declarative RBS demands, 530-32
imperative RBS demands, 532-34
RBS demands with custom identities and principals,
542-43

776

Deny, permission request

Deny, permission request, 492, 497-502
Dequeue, 142-43
DES (Data Encryption Standard), 566
description, 470
deserialization, 173-75, 182-85, 205.
See also serialization
DEVPATH, 379
dialog boxes, 456, 480
dictionaries, 143-45
Dictionary, 38
Dictionary.Entry.Key, 144
Dictionary.Entry.Value, 144
DictionaryEntry, 144
digital rights management (DRM), 254
digital signatures, 328-29, 450-51, 576,
586-90
DirectCast, 55
DirectionRightToLeft, 254
DirectionVertical, 254
directories
application base directory, 331
application directory, evidence, 451
FileIOPermission, 480
paths, 321
Directory Services, 452
DirectorylInfo, 69
DirectoryInfo.Create, 69
DirectoryInfo.Exists, 69
DirectoryInfo.GetDirectories, 69
DirectoryInfo.GetFiles, 69
DirectoryServicesPermission, 479
DisallowApplicationBaseProbing, 331
DisallowBindingRedirects, 331
DisallowCodeDownload, 331
DisallowPublisherPolicy, 331

discretionary access control lists (DACLs), 552-54,

556-60
DisplayFormatControl, 254
DLLs (dynamic-link libraries)
application domains, 318
DllImport, 606-8
type libraries, 604-5
DNS, 452
DnsPermission, 479
DoCallBack, 320
Domain Name System (DNS), 449

domain, application. See application domain

DomainManager, 319

Double, 4

double byte character set (DBCS), 610
downloading, 331. See also threading
DP, RSAParameters, 577

DQ, RSAParameters, 577
DrawEllipse, 227

Drawlcon, 227
DrawlconUnstretched, 227
Drawlmage, 227
DrawlmageUnscaled, 227
DrawlmageUnscaledAndClipped, 227
drawings, 245-46

DrawLine, 227

DrawLines, 227

DrawPath, 227

DrawPie, 228

DrawPolygon, 228

DrawRectangle, 228

DrawString, 228

Drivelnfo objects, 68
Drivelnfo.GetDrives, 68

drives, enumerating, 68

DRM (digital rights management), 254
DSACryptoServiceProvider, 576, 587
DynamicBase, 331

DynamicDirectory, 319

dynamic-link libraries (DLLs), 318

ECMAScript, 110
EllipsisCharacter, 255
EllipsisPath, 255
EllipsisWord, 255
e-mail messages
attaching files, 655

case scenario, adding e-mail capabilities, 675-76

creating, 652
credentials, configuring, 665-66
exceptions, 664-65
HTML e-mails, 656-58
lab, generate e-mail message, 658-61
lab, sending e-mail messages, 668-73
MailMessage objects, creating, 653-55
sending messages, 663-64, 666-68
SSL, configuring, 666
suggested practice, 677
embedding images, HTML messages, 656
Emf files, 245-46
encoding, 124-26
encoding classes, 126-27
specifying type, 128-29
Encoding.GetBytes, 126-27
Encoding.GetEncodings, 127
Encrypt, RSA algorithms, 577
encryption
asymmetric key encryption
algorithm classes, 575-77
digital signatures, 587
exporting keys and key pairs, 577-78
key pairs, storing, 579-80
message encryption/decryption, 580-81
overview, 573-75
case scenario, protecting data, 600
hashes, data validation
algorithms, 581-83
keyed hashes, computing, 584-86
nonkeyed hash computations, 583-84
overview, 581
lab, encrypting/decrypting files, 590-94
signing files, 586-90
SSL, configuring, 666
suggested practice, 600-2
symmetric key encryption
establishing, 569-70
message encryption, 571-73
overview, 563-66
symmetric algorithm classes, 566-69
encryption containers, 480
encryption key, 564
endcaps, graphics, 232
Enqueue, 142-43
enterprise, 467
Enterprise security policy, 458-59

EntryPoint, 607
EnumBuilder, 640
enumerations
BindingFlags, 636
CompressionMode, 85
creating, 9-10
CultureTypes, 681-82
DeliveryNotificationOptions, 654
Demand, 494-500
FileSystemRights, 554
lab, adding to structure, 12-13
LayoutKind, 611
LinkDemand, 494-500
MailPriority, 655
PaddingMode, 568
PerformanceCounterCategoryType, 419-20
SecurityAction, 482-85, 497
SoapEnum, 181
System.Net.Mime.MediaTypeNames, 655
System.Security.Permissions.SecurityAction, 531
System.Security.SecurityZone, 328
XmlEnum, 193
environment variables, 379, 452, 479
EnvironmentPermission, 479
Equals, 17
error codes, HRESULT, 622-23
error handling, best practices, 501-2
error messages, 22-24, 404-5
errors, run-time, 38
escape, 103
event handlers, 72, 433-36
event log services, 480
event logs
applications, 401-4
debugging and trace information, 405-9
exceptions, 24
lab, working with event logs, 409-13
permissions, 452
registering event source, 402-3
Security event log, 402
security of, 449
suggested practice, 444-45
System event log, 402
event receiver, 43-44
event sender, 43-44
Event Viewer snap-in, 401-2
Event Wait handles, 556-59
EventArgs, 44-45
EventArrivedEventArgs, 434
EventArrivedEventArgs.NewEvent, 434
EventBuilder, 640
EventHandler, 44
EventLog, 403-4
EventLog.CreateEventSource, 402-3
EventLog.Source, 403—4
EventLog. WriteEntry, 403-4
EventLogPermission, 480
EventLogTraceListener, 408
events
delegates, 44
exceptions, 21-24
FileSystemWatcher, 71-73
lab, creating derived class with delegates, 48-51
lab, timer events, 50-51
lab, WML, responding to, 436-39
overview, 43-45

FieldOffset 777

raising, 45-46
responding to, 44-45
serialization, responding to, 205-7
WM, responding to, 434-36
WqlEventQuery, 433
EventSchemalListener, 408
Everything permission set, 455
evidence, 319, 328-30, 450-51
ExactSpelling, 607
exception class, custom, 32-33
Exception.HResult, 622
Exception.Message, 24
Exception.StackTrace, 24
exceptions
authentication exceptions in streams, 543-44
conversion methods, 58
e-mail, 664-65
HRESULT, 622-23
lab, working with, 27-29
MethodBody.ExceptionHandlingClauses, 635
run-time, 38
SecurityAction.RequestMinimum, 478
System.Exception, 17
System.Security.SecurityException, 530-31
ThreadAbortException, 279
ThrowExceptionForHR, 610
throwing and catching, 21-24
user authentications, 533
Exchange, 293
exclusive, 470
ExecuteAssembly, 320, 322-23, 328
ExecuteAssemblyByName, 320
execution, 467
Execution permission set, 454
Exif files, 245-46
ExitCode, 428
ExitTime, 428
explicit conversions, 54
explicit permissions, 552-53
ExplicitCapture, 109
ExportParameters, 577
Extensible Markup Language (XML). See XML
(Extensible Markup Language)
external assemblies
application domains
AppDomain class, 318-20
assemblies, 322-23, 327-30
case scenario, creating testing tool, 354-55
case scenario, monitoring a file, 355-56
configuring properties, 330-32
creating application domains, 322
lab, controlling privileges, 332-33
lab, creating domains and loading assemblies,
323-25
overview, 316-18
suggested practice, 356-57
unloading, 323
external code, calling, 327
extracting matched data, 110-12

F

FeedbackSize, encryption, 567
FieldBuilder, 640

FieldInfo, 635

FieldOffset, 610-11

778

File

File, 208
File Dialog, 452
File 10, 452
file system
enumerating drives, 68
lab, working with, 74-77
managing files and folders, 69-70
monitoring, 71-73
security of, 449
file types, graphics, 245-46
File.Copy, 70
File.CreateText, 70
File.Delete, 70
File.Move, 70
FileDialogPermission, 456, 480
FileInfo, 70
FileIOPermission, 456, 480, 505
FileIOPermissionAttribute, 495-96
files
attaching to e-mail, 655
binary, 80
BufferedStream, 83
case scenarios
compressing files, 94
case scenarios, creating log files, 93-94
compressed streams, 83-85
copying, 70
deleting, 70
dynamically generated, 321, 331
FileIOPermission, 480
isolated storage, 85-88
lab, using streams, 88-91
license, 331
MemoryStream, 82
permissions, 452, 554
signing, 586-90
suggested practice, 94-95
System.Security.AccessControl, 556-59
text, reading/writing, 79-80
FileStream, 20
FileSystemEventArgs, 72
FileSystemRights, 554
FileSystemWatcher, 71-73
FileSystemWatcher.Changed, 71-72
FileSystemWatcher.Renamed, 71-72
Fill method shapes, 234-36
filtering
exceptions, 22
spam, 654, 664-66
trigger events, filenames, 72-73
finally block, 23
financial calculations, 3
firewalls, serialized objects, 180-81
FitBlackBox, 254
FlattenHierarchy, 636
floating point numbers, 3-4
Flush, 80
folders
managing, 69-70
permissions, 452, 554
suggested practice, 94-95
System.Security.AccessControl, 556-59
Font class, 222
Font objects, creating, 252-53
FontConverter, 222, 253
FontFamily, 222, 252
form feed, 103

form.Designer.cs, 37

form.Designer.vb, 37

Format method, 18

format, data. See also culture
graphics, text in, 254-56
serialization

case scenario, serializing between versions, 213-15
case scenarios, choosing a serialization technique, 214

classes, custom, 175-79
deserialization, how to, 173-75
formats, choosing, 179-80
lab, serialize and deserialize objects, 182-85
overview, 170-71
suggested practice, 215-17
serialization, custom, 202-5
context-based changes, 207-9
events, responding to, 205-8
formatters, custom, 209
lab, implement custom serialization, 209-10
XML serialization
classes, serializing, 191
controlling, 191-94
DataSet, 196-97
lab, using XML serialization, 197-99
objects, how to deserialize, 190
objects, how to serialize, 189-90
overview, 188-89
schemas, conforming to, 195-96
FormatFlags, 254
formatter, custom, 209
Formatter, deserialization, 175
FormatterServices, 209
Formsldentity, 535-39
forward-compatibility, XML serialization, 189
forwarding, type, 47-48
FriendlyName, 319
FromXmlString, 577
full trusts, 450
FullControl, permissions, 554
FullTrust, 454
function pointer, 44

G

GAC (global assembly cache), 480, 606, 632-33
GacldentityPermission, 480
Gacutil.exe, 381
garbage collection, 15, 18
GC.Collect, 15
GDI+ (Graphical Device Interface), 222
GenerateGuidForType, 609
GeneratelV, 568
GenerateKey, 569-70
GenerateProgldForType, 609
Genericldentity, 523, 535, 541-43
GenericPrincipal, 523, 541-43
generics, 137. See also collections
case scenario, using collections, 165-66
constraints, 42-43
consuming, 40-42
creating, 39-40
custom classes and, 152-53
lab, creating shopping cart, List<T>, 156-59
List<T> collection, 154-56
overview, 38-39, 150
Queue<T> collection, 153

SortedList<T,U> collection, 151
Stack<T> collection, 153
suggested practice, 166-67
GetAnonymous, 525
GetAssemblies, 321
GetCurrent, 525
GetCurrentThreadld, 321
GetData, 321
GetExceptionForHR, 609
GetHRForException, 609
GetMethod, 633-36
GetObjectData, 175-79, 202-3, 208-9
GetPixel, 244
GetType, 17
Gif files, 245-46
Global Assembly Cache (GAC), 480, 606, 632-33
Global Assembly Cache tool, 381
globalization
case scenarios, 702
culture-insensitive comparisons, 694-95
custom culture, building, 695-97
formatting data, 680-82, 684-90
formatting output, 682-84
lab, browse cultures, 697-98
sorting and comparing objects, 690-94
suggested practice, 702-3
globally unique identifier (GUID), 46, 609
Graphical Device Interface (GDI+), 222
graphics
callouts, 232
case scenarios, choosing techniques, 266
case scenarios, creating simple charts, 267
controls, 225-26
DrawImage, 227
images, 243-44
creating and saving pictures, 245-46
displaying picture, 244-45
icons, 247
lab, create method to draw pie chart, 236-41
lab, save pie chart as picture, 247-48
lines, 227-31
overview, 221-25
pens, custom, 231-33
shapes, 227-31, 234-36
suggested practice, 268-69
text, 252
adding to graphics, 252
Font objects, creating, 252-53
formatting, 254-56
lab, adding text to images, 257-63
writing text, 253-54
Graphics class, 222
Graphics.Drawlcon, 247
Graphics.DrawlconUnstretched, 247
Graphics.Drawlmage, 245
Graphics.DrawLines, 230
Graphics.DrawPolygon, 230, 246
Graphics.DrawRectangle method, 33, 230
Graphics.DrawString, 253-56
Graphics.FillPolygon, 246
Graphics.FromlImage, 244-46
Greek alphabet, 126. See also globalization
groups
naming, 107
WindowsPrincipal queries, 528-29
GUID (globally unique identifier), 46, 609
GZipStream, 83-85

Image.FromStream 779

H

HasExited, 428

hash, 469

HashAlgorithm.ComputeHash, 583-84

HashAlgorithm.Hash array, 583-84

Hash-based Message Authentication Code

(HMAC), 582

hashes
algorithms, 581-84
AssemblyAlgorithmID, 637
evidence, 451
keyed hashes, computing, 584-86
KeyedHashAlgorithm.ComputeHash, 584-86
KeyedHashAlgorithm. Hash array, 584-86
nonkeyed hash computations, 583-84
overview, 581

Hashtable, 143

HasValue, 5

heap, 15

Hebrew alphabet, 126. See also globalization

help, 467

hexadecimal, 104

HMAC (Hash-based Message Authentication

Code), 582

HMACSHAL, 582, 585

host evidence, 451

HRESULT, 609, 622-23

HTML, 656-58. See also encoding

HTTP (Hypertext Transfer Protocol), 331

HTTPS (Hypertext Transfer Protocol Secure), 574-75

HybridDictionary, 144-45

Hypertext Transfer Protocol (HTTP), 331

Hypertext Transfer Protocol Secure (HTTPS), 574-75

ICloneable, 35

IComparable, 34-35

1Comparer, 140

Icon class, 222

Icon files, 245-46

Icon.ToBitmap, 247

IconConverter, 223
IConfigurationSectionHandler, 368-70
icons, 227, 247

IConvertible, 35, 58
ICryptoTransform, 568

1d, AppDomain, 319

1d, process, 428

identity classes, 535-39

identity permissions, 481
IDeserializationCallback, 205-7
IDeserializationCallback.OnDeserialization, 177, 205
IDirectory, 387

IDisposable, 34-35

IEquatable, 35

IFormattable, 35

IFormatter, 209

IFormatterConverter, 205

IgnoreCase, 109

IgnoreCase, BindingFlag, 636
IgnorePatternWhitespace, 109
IIdentity interface, 523, 535-39

Image class, 223, 243-44. See also images
Image FromFile, 244-45

Image. FromStream, 244

780

ImageAnimator

ImageAnimator, 223
ImageConverter, 223
ImageFormatConverter, 223
images. See also graphics
adding text, 253-54
creating and saving, 245-46
displaying, 244-45
Drawlmage, 227
HTML messages, 656
icons, 247
lab, adding text to images, 257-63
lab, save pie chart as picture, 247-48
overview, 243-44
imperative RBS demands, 532-34
Impersonate, 525
ImportParameters, 577
InAttribute, 619
Increment, 293, 421
IncrementBy, 421
inequality, string operators, 19
inheritance
creating custom classes, 32-33
lab, creating derived class with delegates,
48-51
permissions, 552-53
type inheritance hierachy, 206
InheritanceDemand, permission request, 493
InitializeLifetimeService, 321
input/output
binary files, reading/writing, 80
BufferedStream, 83
case scenarios
compressing files, 94
legacy data, processing, 134
log file, creating, 93-94
validating input, 134
compressed streams, 83-85
encoding/decoding, 124-26
code pages, examining, 127
encoding classes, using, 126-27
lab, read and write encoded file, 130
specifying encoding type, 128-29
enumerating drives, 68
isolated storage, 85-88
lab, using streams, 88-91
managing files and folders, 69-70
MemoryStream, 82
monitoring file system, 71-73
regular expressions, 98
backreferences, matching, 107-8
constraining string input, 114-15
extracting matched data, 110-12
lab, create Regex expression evaluator,
115-19
match simple text, 101
match text in specific locations, 101-3
options, 108-10
pattern matching, 98-101
replacing substrings, 112-13
special characters, matching, 103
wildcards, matching text with, 104-7
streams, 17, 20-21
strings, reading/writing, 81-82
text files, reading/writing, 79-80
Insert method, ArrayList, 139
Install method, 385

install projects, 340-43
Installer. Commit, 387
Installer.Install, 387
Installer.Rollback, 387
Installer.Uninstall, 387
installers, 385-87, 389-91
installing applications
case scenario, installing applications, 396
custom installers, creating, 385-87
lab, installing applications, 388-91
InstallUtil.exe, 341-43, 387
Instance, BindingFlag, 636
int, 56
integers
built-in types, 4
incrementing, 293-96
minimum/maximum, 6
interface constraints, 42
interfaces, creating custom classes, 34-37
Interlocked, 293-96
Intermediate language (IL), 635
Internet
default permission set, 454
FileDialogPermission, 456
security, 449
Internet Information Services Manager, 317
Internet permission set, 329, 455
Internet_Zone, 329, 455, 458
Interop, 605-8
interoperablity, XML serialization, 188
intitialization vector (IV), encryption, 567
intrusion detection, 555-56
InvalidOperationException, 665
InverseQ, RSAParameters, 577
Invoke, 633
IPrincipal interface, 523, 539-40
IPrincipal.ldentity, 539
IPrincipal.IsInRole, 539
IRemotingFormatter, 179-80
IsAnnonymous, 525
IsAuthenticated, 526
IsAuthenticated, Ildentity, 535
IsDefaultAppDomain, 321
ISerializable, 202
IsFinalizingForUnload, 321
IsGuest, 526
IsHigherThanRole, [Principal, 540
IsInAllRoles, IPrincipal, 540
IsInAnyRole, IPrincipal, 540
IsInRole, 529
IsLowerThanRole, IPrincipal, 540
1SO 8859, 125
1SO encoding, 126
isolated storage, 85-88
lab, using, 90-91
permissions, 480
suggested practice, 95
Isolated Storage File permissions, 453
IsolatedStorageException, 86
IsolatedStorageFile, 86
IsolatedStorageFileStream, 86
IsolateStorageFilePermission, 480
IsSystem, 526
IUnrestrictedPermission, 480
1V (intialization vector), encryption, 567
IXmlSerializable, 195

J

Japanese alphabet, 126. See also globalization
JIT (just-in-time) compiler, 638
Join method, 18

K

Key, encryption algorithms, 567
KeyContainerPermission, 480
keyed hash algorithms, 582, 584-86
KeyedHashAlgorithm.ComputeHash, 584-86
KeyedHashAlgorithm.Hash array, 584-86
KeyExchangeAlgorithm, 575
keys. See also asymmetric key encryption; public key
encryption; symmetric key encryption
dictionaries, 143-45
public keys, 573-75, 578, 580
registry, 453, 556-59
KeySize, encryption, 568, 570, 576
KeySizes, arrays, 568
Korean alphabet, 126. See also globalization

L

Label, 253

labs
add-ons, load and run dynamically, 642-44
alarm clock, creating, 436-39
application domain privileges, controlling, 332-33
applications, installing, 388-91
browse cultures, 697-98
CAS configuring, 472-75
CAS demands, protecting methods with, 507-13
CAS, using assembly permissions requests, 485-86
COM object, creating instance, 614-15
COM, exposing .NET Framework classes,

624-25

configuration settings, persistently storing, 373-75
conversions, 59-60
custom serialization, implementing, 209-10
DACLs and inheritance, 559-60
domains and loading assemblies, creating, 323-25
draw pie chart, create method, 236-41
e-mail message, generating, 658-61
e-mail messages, sending, 668-73
encoded file, read and write, 130
encrypting/decrypting files, 590-94
event logs, working with, 409-13
file system, working with, 74-77
performance data, providing, 421-25
performance improvement with threads, 275-76
RBS, adding to an application, 544-48
reference types, working with, 25-29
Regex expression evaluator, create, 115-19
save pie chart as picture, 247-48
serialize and deserialize objects, 182-85
shared assemblies, configuring, 382-83
shopping cart, creating, 146-48
shopping cart, creating with List<T>, 156-59
streams, using, 88-91
text, adding to images, 257-63
threads, managing, 299-305
value types, declaring and using, 10-13
web monitoring services, 345-50
XML serialization, 197-99

log files 781

languages, non-English, 126. See also encoding;
globalization
Latin alphabet, 126. See also globalization
LayoutKind enumerations, 611
LayoutKind.Auto, 611
LayoutKind.Explicit, 611
LayoutKind.Sequential, 611
legacy systems
case scenario
processing data, 135
Data Encryption Standard (DES), 566
encoding/decoding, 124-26
code pages, examining, 127
encoding classes, using, 126-27
lab, read and write encoded file, 130
specifying encoding type, 128-29
regular expressions, 98
backreferences, matching, 107-8
constraining string input, 114-15
extracting matched data, 110-12
lab, create Regex expression evaluator, 115-19
match simple text, 101
match text in specific locations, 101-3
options, 108-10
pattern matching, 98-101
replacing substrings, 112-13
special characters, matching, 103
wildcards, matching text with, 104-7
LegalBlockSizes, encryption, 568
LegalKeySizes, encryption, 568, 576
levelfinal, 471
LicenseFile, 331
line, new, 103
LineAlignment, 255
linear gradient brush, 234
LineCap, 232
LineLimit, 254-55
lines, 227-31. See also graphics
LinkDemand, permissions request, 493-500, 502-6
LinkedResource, 656
list, 467
List<T>, 154-56
listdescription, 467
ListDictionary, 144-45
ListDirectory, permissions, 554
listeners, 407-8
listfulltrust, 467
listgroups, 467
listpset, 467
lists, collections, 138-43
Load, application domains, 321
LoaderOptimizer, 331
LocalBuilder, 640
Locallntranet permission set, 455
Locallntranet zone, 454, 456, 458, 480
Locallntranet_Zone, 458
LocalService, 341
LocalSystem, 341
Location, controls, 225-26
locks
Interlocked, 293-96
Monitor, 288-90
ReaderWriterLock, 290-92
log files
applications, event logs, 401-4
case scenario, creating, 93-94

782 logic, restricting access to

debugging and trace information, 405-9 collections and generics, 137

lab, working with event logs, 409-13 dictionaries, 143-45

registering event source, 402-3 generic collections, 150

suggested practice, 444-45 generics and custom classes, 152-53
logic, restricting access to, 532-34 lab, creating a shopping cart, 146-48

lab, creating shopping cart, List<T>, 156-59
List<T> collection, 154-56

M Queue<T> collection, 153
machine, 468 SortedList<T,U> collection, 151
Machine policy, 458-59, 472 Stack<T> collection, 153
Machine.config, 360-61, 366-68, 379-80 suggested practice, 166-67
MachineName, 428 permissions, 552-53
MachineOnly, 360-61 services, lab, 350
MachineToApplication, 360-61 threads, 279-81, 209-305
MACTripleDES (Message Authentication Code XML serialization, controlling, 191-94
Triple DES), 582, 586 Marshal class, 608-10
mail Marshal.GetLastWin32Error, 608-10
attaching files, 655 MarshaleizeOf, 609
case scenario, adding e-mail capabilities, 675-76 Marshaling, 607-8, 623-24
creating e-mail messages, 652 Match.Result, 112
credentials, configuring, 665-66 matched data
exceptions, 664-65 extracting, 110-12
HTML e-mails, 656-58 simple text, 101
lab, generate e-mail message, 658-61 special characters, 103
lab, sending e-mail message, 668-73 text, 101-3
MailMessage objects, creating, 653-55 wildcards, 104-7
sending messages, 663-64, 666-68 maximum, value types, 6
SSL, configuring, 666 MD5, hash algorithms, 581
suggested practice, 677 MD5CryptoServiceProvider, 581
MailAddress, 653 MeasureTrailingSpaces, 255
MailMessage objects, 653-55 MediaTypeNames.Application.Octet, 655
MailMessage.Attachments, 655 memory
MailMessage.Bcc, 654 addresses, 4
MailMessage.Body, 653-54, 656 application domains, 316
MailMessage.Cc, 654 heap, 15
MailMessage.From, 653-54 MemoryBmp files, 245-46
MailMessage.IsBodyHtml, 656 MemoryStream, 82
MailMessage.Subject, 653-54 MemoryStreams, 20
MailMessage.To, 653-54 Message Authentication Code (MAC), 582, 586
MailPriority, 655 Message Digest 160 (MD160), 581
Main method, 368 Message Digest 5 (MD5) algorithm, 581
ManagementBaseObject, 433-34 Message Queue default permissions, 453
ManagementEventWatcher, 433 message queues, 453, 4_80
ManagementEventWatcher.EventArrived, 433-34 MessageQueuePermisspn, 480
ManagementEventWatcher.WaitForEvent, 433 messages. See also e-mail; events
ManagementObjectCollection, 430 error, 22-24, 404-5
ManagementObjectSearcher, 430 exception, 24
ManagementObjectSearcher.Get, 430 metacharacters
ManagementScope, 429 escapes, 103
ManagementScope.Connect, 429 match_lng text, 191—2
managing. See also event logs; performance counters replacing substrings, 113
applications, 382 MethodBody, 635
assembly cache, 381 MethodBody.ExceptionHandlingClauses, 635
asymmetric encryption keys, 575 MethodBody.GetILAsByteArray, 635
computers MethodBody.LocalVariables, 635
accessing information, 429-32 MethodBuilder, 640
case scenario, collecting information, 444 Methodlnfo, 633-36
case scenario, managing applications, 443 MethodInfo.GetMethodBase, 635
lab, create an alarm clock, 436-39 MethodInfo.Invoke, 633
processes, 427-29 Microsoft NET Framework 2.0 Configuration Tool, 380
WMI events, 433-36 Microsoft Intermediate Language (MSIL), 109
file system, 68 Microsoft Internet Information Services (11S) ASPNET
files and folders, 69-70 worker process, 317
objects Microsoft Message Queuing (MSMQ), 480
case scenario, using collections, 165-66 MIME (Multipurpose Internet Mail Extensions), 655

collection classes, 138-43 minimum, value types, 6

Mode, encryption, 568
Modify, permissions, 554
ModuleBuilder, 640
Modules, process, 428
Monitor class, 288-90
Monitor.Enter, 288-90
Monitor.Exit, 288-90
monitoring. See also managing
file system, 71-73
files, 355-56
performance counters, 416-18
services, 339
web monitoring services, 345-50
MoveTo, 70
moving, files, 70
MSIL (Microsoft Intermediate Language), 109
MSMQ (Microsoft Message Queuing), 480
MTAThread, 298-99
Multiline, 109
Multipurpose Internet Mail Extensions (MIME), 655
multithreading
case scenario, background printing, 311
case scenario, ensuring integrity of financial applications,
311-12
foreground and background threads, 274
lab, managing threads, 299-305
lab, performance improvement with threads, 275-76
overview, 269-71
passing data between threads, 282-85
resource access, synchronizing, 270-96
starting and stopping threads, 279-81
suggested practice, 312
thread states, 282
ThreadPool classes, 271-73
waiting for thread completion, 296-99
multiuser environments, MemoryStream, 82
mutexes, 556-59
My_Computer_Zone, 458, 509-10

N

name, 471
Name, connection strings, 364
Name, [Identity, 535
Name, PrincipalPermission, 530-31
Name, user authentication, 526
names, user, 114-15
NameValueCollection, 144-45
narrowing conversion, 54-55
Narrowing/explicit, 57
Net command, 345
network
input/output buffers, 17
serialized objects, transmission of, 180-81
NetworkServices, 341
NeutralCultures, 682
NoClip, 255
NoFontFallback, 255
NonpagedMemorySize64, 428
NonPublic, BindingFlag, 636
NonSerialized, 193
NotePad, XML serialization, 188
Nothing permission set, 454
NoWrap, 255
nullable, 5
NumberFormat.NumberDecimalSeparator, 684

objects 783

NumberFormat.NumberGroupSeparator, 684
NumberFormat.NumberGroupSizes, 684
numbers

culture formats, 684-89

floating point, 3

integers, 4, 6, 293-96

whole, 3
numeric types, 2-4

o

OAEP (Optimal Asymmetric Encryption Padding), 580
ObdcPermission, 480
Object type, 17, 56
ObjectManager, 175
ObjectQuery, 429
objects
collections and generics, 137
case scenario, using collections, 165-66
classes of, 138-43
custom classes and, 152-53
dictionaries, 143-45
lab, creating a shopping cart, 146-48
lab, creating shopping cart, List<T>, 156-59
List<T> collection, 154-56
Queue<T> collection, 153
SortedList<T,U> collection, 151
Stack<T> collection, 153
suggested practice, 166-67
conversion, formatted strings, 35
copying, 35
disposing of, 35
locking, 288-90
ManagementObjectCollection, 430
ManagementObjectSearcher, 430
ManagementObjectSearcher.Get, 430
retrieval and removal, 142-43
serialization, 170-71
case scenario, choosing a serialization
technique, 214
case scenario, serializing between versions, 213-15
classes, custom, 175-79
deserialize, how to, 173-75
format, choosing, 179-80
how to serialize, 171-72
lab, serialize and deserialize objects, 182-85
overview, 170-71
suggested practice, 215-17
serialization, custom, 202-5
context-based changes, 207-9
events, responding to, 205-7
formatters, custom, 209
lab, implement custom serialization, 209-10
SetPrincipalPolicy, 321
SetThreadPrincipal, 322
sorting, culture differences, 690-94
Startup Object list, 341
synchronization objects, 270-96
value types as, 4
window station, 337
XML serialization
classes, serializing, 191
controlling, 191-94
DataSet, 196-97
lab, using XML serialization, 197-99
objects, how to deserialize, 190

784 OleDbPermission

objects, how to serialize, 189-90 ParameterBuilder, 640

overview, 188-89 Parse, custom type conversion, 57

schemas, conforming to, 195-96 partial trusts, 450, 510-13, 566
OleDbPermission, 480 Passportldentity, 535-39

OnContinue, 339-40 passwords

OnDeserializing, 205 as encryption keys, 569-70
OnPause, 339-40 hashes, 581, 586
OnPowerEvent, 340 isolated storage, 85-88

OnSerialized, 205 services, 341
OnSerializing, 205 pattern matching, regular expressions, 98-101
OnShutdown, 340 Pen(s), 223, 228, 231-33

OnStart, 339 Pen.DashOffset, 232
OnStop, 339 Pen.DashPattern, 232
Open dialog box, 480 Pen.DashStyle, 231
OpenFileDialog, 456 Pen.EndCap, 232
operating systems Pen.StartCap, 232
FileSystemWatcher, 73 Pens, 223
role-based security, 449-50 performance. See also performance counters
security, 459-60 asymmetric algorithms, encryption, 574-75
Optimal Asymmetric Encryption Padding (OAEP), 580 boxing tips, 56
optimization, LoaderOptimization, 331 built-in types, 4
OraclePermission, 480 casting, 150, 166-67
QutAttribute, 619 FileSystemWatcher filters, 73
output/input generics and, 38

binary files, reading/writing, 80 permissions, managing, 502-6, 552-53
BufferedStream, 83 temporary strings and, 18
case scenarios threading

compressing files, 94 case scenario, background printing, 311

legacy data, processing, 134 case scenario, ensuring integrity of financial

log file, creating, 93-94 applications, 311-12

validating input, 134 foreground and background threads, 274
compressed streams, 83-85 lab, managing threads, 299-305
encoding/decoding, 124-26 lab, performance improvement with threads, 275-76

code pages, examining, 127 overview, 269-71

encoding classes, using, 126-27
lab, read and write encoded file, 130
specifying encoding type, 128-29

passing data between threads, 282-85
resource access, synchronizing, 270-96
starting and stopping threads, 279-81

enumerating drives, 68 suggested practice, 312
isolated storage, 85-88 thread states, 282
lab, using streams, 88-91 ThreadPool classes, 271-73
managing files and folders, 69-70 waiting for thread completion, 296-99
MemoryStream, 82 transmitting serialized objects, 176-77
monitoring file system, 71-73 performance counters
regular expressions, 98 custom counters, adding, 419-20
backreferences, matching, 107-8 data from, 420-21
constraining string input, 114-15 lab, providing performance data, 421-25
extracting matched data, 110-12 monitoring, 416-18
lab, create Regex expression evaluator, 115-19 permissions, 453, 480
match simple text, 101 suggested practice, 445
match text in specific locations, 101-3 Performance snap-in, 416
options, 108-10 PerformanceCounter, 417-18
pattern matching, 98-101 PerformanceCounter.NextValue, 417-18
replacing substrings, 112-13 PerformanceCounterCategory.Create, 419
special characters, matching, 103 PerformanceCounterCategoryType, 419-20
wildcards, matching text with, 104-7 PerformanceCounterPermission, 480

streams, 17, 20-21 permission sets
strings, reading/writing, 81-82 adding, 462
text files, reading/writing, 79-80 lab, creating, 474-75
using, 506-7
permissions
P AppDomain properties, 319

application domains, limiting, 327

calculating effective permissions, 553

code access security (CAS), 447-52
assembly declarations, 478-79, 482-85
assembly permission declarations, 482

P, RSAParameters, 577
Padding, encryption, 568
PaddingMode, encryption, 568
PagedMemorySize64, 429
pages, code, 125, 127

case scenarios, explaining and using CAS, 518-19
classes for, 479-81
Code Access Security Policy (Caspol) tool, 465-72
code groups, 455-57
configuring, 460-65
demanding permissions, 494-500
evidence, 450-51
lab, configuring CAS, 472-75
lab, protecting methods with CAS demands,
507-13
lab, using assembly permissions requests, 485-86
limiting permissions, 500-2
methods of permission requests, 492-94
performance, improving, 502-6
permission sets, 454, 506-7
security policy, 458-59
suggested practice, 519-21
trusted code, calling, 506
code groups, 461-62
explicit, 552-53
files and folders, 452, 554
inherited, 552-53
Internet permission set, 329
lab, creating folder with explicit permissions,
559-60
operating system security, 459-60
Windows service applications, 337
PermitOnly, permissions request, 492, 497-502
Persistence, 208
PersistKeyInCsp, 576, 579
photographs, 245-46. See also graphics; images
PictureBox, 244-45
PictureBox.BackgroundImage, 244-45
pictures. See graphics; images
PID (process ID), 427-28
pixel data, 222, 244. See also grapics
PKCS (Public Key Cryptography Standard), 580
PKI (public key infrastructure), 575
Png files, 245-46
Point, 6
Point, structure, 224-26
PointConverter, 223
pointers, 4, 15, 44
PointF, 225-26
policies
assembly version binding policy, 381
Audit Object Access policy, 556
levels, resetting, 465
LoaderOptimization, 331
Machine policy, 472
principal security policy, 530
security policy, 458-59
User policy, 458-59, 472
polling, services, 339
polymorphism, 33
Pop, 142-43
PreserveSig, 607
principal class, 539-40
PrincipalPermission, 480, 529-31, 533
PrincipalPermission (Name, Role), 533
PrincipalPermission (Name, Role, Authenticated), 533
PrincipalPermission (PermissionState), 533
PrincipalPermission.Demand, 530, 533
printers/printing, 311, 449, 453, 480.
See also threading
PrintingPermission, 480

Push 785

Priority, mail, 655
private binary path, 331
private keys, 573-75, 578
PrivateBinPath, 331
privileges
assemblies with limited privileges, 327-30
user privilege models, creating custom, 541-42
Windows service application, 337
process ID (PID), 427-28
process names, 427
Process.GetCurrentProcess, 427
Process.GetProcesses, 427-29
Process.GetProcessesByld, 427
Process.GetProcessesByName, 427
Process.Modules, 427
Process.Start, 429
processing
background
case scenario, creating testing tool, 354-55
case scenario, monitoring a file, 355-56
creating, overview, 336-38
implementing services, 339-40
lab, web monitoring service, 345-50
managing, 343-45
service projects, creating, 338-39
suggested practice, 356-57
BackgroundWorker, 271
threading
case scenario, background printing, 311
case scenario, ensuring integrity of financial
applications, 311-12
foreground and background threads, 274
lab, managing threads, 299-305
lab, performance improvement with threads,
275-76
overview, 269-71
passing data between threads, 282-85
resource access, synchronizing, 270-96
starting and stopping threads, 279-81
suggested practice, 312
thread states, 282
ThreadPool classes, 271-73
waiting for thread completion, 296-99
ProcessName, 429
processors, 429
ProglD, 619
ProgID (programmatic identifier), 609
ProgIDAttribute, 619
programmatic identifier (ProgID), 609
ProjectInstallerServiceProcessInstaller, 341
PropertyBuilder, 640
PropertylInfo, 635
ProviderName, 364-65
pub, 469
public class declarations, 181
public field, 181, 192
Public Key Cryptography Standard (PKCS), 580
public key encryption, 480, 573-78
public key infrastructure (PKI), 575
public keys, 573-75, 578
public parameter, 181, 192
public property, 181, 192
public return value, 181, 192
Public, BindingFlag, 636
publisher evidence, 451
Push, 142-43

786

Q. RSAParameters

Q

Q, RSAParameters, 577

queries
WindowsPrincipal, user groups, 528-29
WMI Query Language (WQL), 429
WqlEventQuery, 433

Queue, 38, 142-43, 153

Queue collections, 138

Queue.Clear, 143

Queue.Peek, 143

Queue<T> collection, 153

quiet, 468

R

RBS (role-based security), 449-50, 521
declarative demands, 530-32
imperative demands, 532-34
lab, adding RBS to an application, 544-48

RBS demands with custom identities and principals,

542-43
RC2 encryption standard, 567
Read, 293
Read, permissions, 554
read/reading
binary files, 80
case scenarios, creating log files, 93-94
compressed streams, 83-85
configuration settings, 361
encoding type, specifying, 129
events, 404
File 10 permissions, 452
isolated storage, 85-88
lab, encoded file, 130

lab, persistently storing configuration settings, 373-75

lab, standard text file, 88-90
locks, 290-92
machine configuration settings, 366-68
performance counter permissions, 453
strings, 81-82
text files, 20, 79-80
unmanaged memory, 609
XmlReader, 195
ReadAndExecute, permissions, 554
ReadByte, 609
Reader class, 95
ReaderWriterLock, 290-92
ReadInt16, 609
ReadInt32, 609
ReadInt64, 609
ReadIntPtr, 609
ReadXml, 195
recover, 468
Rectangle, structure, 225
RectangleConverter, 223
RectangleF, 225
reference types, 15
arrays, 19
built-in, 17
constraints, 42
exceptions, 21-24
lab, working with, 25-29
streams, 20-21
strings and string builders, 17-19
value types and, 16-17

reflection
assembly attributes, 637-39
case scenario, code-writing code, 648
case scenario, supporting add-ons, 648
classes, 46-47
create instances, call methods, 633-36
generating types dynamically, 639-42

lab, load and run add-ons dynamically, 642-44

loading assemblies, 632-33

overview, 632

permissions, 453

suggested practice, 649
ReflectionOnlyGetAssemblies, 321
ReflectionPermission, 480
Regasm.exe, 621
Regex.IsMatch, 99
Regex.Replace, 113
RegexOptions, 108-10
Region, 223
registry, 449, 453, 480
registry keys, 453, 480, 556-59
RegistryPermission, 480
regular expressions, 98

lab, creating Regex expression evaluator, 115-19

match text, 101-3
options, 108-10
pattern matching, 98-101
suggested practice, 135-36
RelativeSearchPath, 319
remgroup, 468
remote computers, authentication, 543-44
Remoting, 208, 379-80
remoting services, configuring, 382
Remove method, 139
rempset, 468
RenamedEventArgs, 72
repeated characters, 104-7
replace, search and, 17-19
ReplyTo, 654
reset, 468
resolvegroup, 468
resolveperm, 468
resources
application domains, 316
disposing of objects, 35
permissions, 554
synchronizing access to, 270-88
Interlocked, 293-96
Monitor, 288-90
ReaderWriterLock, 290-92
Restricted_Zone, 458
retrieving data. See also serialization
extracting matched data, 110-12
match special characters, 103
match text, 101-3
Rfc2898DeriveBytes, 569-70
Rfc2898DeriveBytes.GetBytes, 570
RightToLeft, 109
Rijndael algorithm, 569
RijndaelManaged, 566
RIPEMD160, hash algorithm, 581
RIPEMD160Managed, 581
Role, PrincipalPermission, 530-31
role-based security (RBS), 449-50, 521
declarative demands, 530-32
imperative demands, 532-34

lab, adding RBS to an application, 544-48
RBS demands with custom identities and principals,
542-43
Roles, IPrincipal, 539
Rollback, 385
RSACryptoServiceProvider, 576-77, 587, 589
RSACryptoServiceProvider.Decrypt, 580-81
RSACryptoServiceProvider.Encrypt, 580-81
RSACryptoServiceProvider. ExportParameters, 578
RSACryptoServiceProvider. ToXmlString, 578
RSAParameters, 577-78
Run, loading services, 337
Running, thread state, 282
runtime
assembly requests, 378
calls, 177,202-3
code access security (CAS)
assembly declarations, 478-79, 482-85
assembly permission declarations, 482
case scenarios, explaining and using CAS,
518-19
Code Access Security Policy (Caspol) tool,
465-72
code groups, 455-57
configuring, 460-65
demanding permissions, 494-500
evidence, 450-51
lab, configuring CAS, 472-75
lab, protecting methods with CAS demands,
507-13
lab, using assembly permissions requests, 485-86
limiting permissions, 500-2
operating system security, 459-60
overview, 447-50
performance, improving, 502-6
permission requests, methods of, 492-94
permission sets, 454, 506-7
permissions, 451-52
permissions classes, 479-81
security policy, 458-59
suggested practice, 519-21
trusted code, calling, 506
declarative RBS demands, 530-32
errors, 38, 175
hosts, 317
reflection
assembly attributes, 637-39
case scenario, code-writing code, 648
case scenario, supporting add-ons, 648
create instances, call methods, 633-36
generating types dynamically, 639-42
lab, load and run add-ons dynamically, 642-44
loading asssemblies, 632-33
overview, 632
suggested practice, 649
SmtpFailedRecipientException, 665

S

SACLs (security access control lists), 555-59
SaveFileDialog, 456
schemas
EventSchemalListener, 408
XML serialization, 193, 195-96
scientific calculations, 3
screen shots, 245-46

serialization 787

search
and replace, 17-19
BinarySearch, 141-42
DisallowApplicationBaseProbing, 331
secret-key encryption. See symmetric key encryption
Secure Hash Algorithm 1, 582
Secure Hash Algorithm 256, 582
Secure Hash Algorithm 384, 582
Secure Hash Algorithm 512, 582
Secure Sockets Layer (SSL), 574-75
security, 468. See also access control lists (ACLs);
authentication; authorization; code access security
(CAS); cryptography
application domains
AppDomain class, 318-20
assemblies with limited privileges, 327-30
assemblies, loading, 322-23
case scenario, creating testing tool, 354-55
case scenario, monitoring a file, 355-56
configuring properties, 330-32
creating application domains, 322
lab, controlling privileges, 332-33
overview, 316-18
suggested practice, 356-57
unloading, 323
attributes, 46
constraining string input, 114-15
data validation, serialization, 205
defense-in-depth, 327
digital signatures, 328-29
isolated storage, 85-88
lab, creating domains and loading assemblies, 323-25
regular expressions, 100
serialization, 175-79
services, 341
suggested practice, 95
Windows service applications, 337
security access control lists (SACLs), 555-59
Security event log, 402, 555-56
Security, permission, 453
SecurityAction, 482
SecurityAction.Demand, 531
SecurityAction.Deny, 493
SecurityAction.InheritanceDemand, 497
SecurityAction.PermitOnly, 493
SecurityAction.RequestMinimum, 478, 482
SecurityAction.RequestOptimal, 479
SecurityAction.RequestOptional, 482-85
SecurityAction.RequestRefuse, 482-85
SecurityPermission, 175-79, 480
SecurityPermissionFlag.Assertion, 505
SecuritySystem.Policy.PolicyException, 479
semaphores, 556-59
Serializable, 47, 175-79, 202
serialization, 169
case scenario, choosing a serialization technique, 214
case scenario, serializing between versions, 213-15
classes, custom, 175-79
context-based changes, 207-9
formatters, custom, 209
lab, implement custom serialization, 209-10
custom, 202-7
format, choosing, 179-80
lab, serialize and deserialize objects, 182-85
objects, 170-75
suggested practice, 215-17

788 SerializationEntry

XML ShowDialog, 456
classes, serializing, 191 SignatureAlgorithm, 576
controlling, 191-94 SignData, 577, 587
DataSet, 196-97 SignHash, 577, 587
lab, using XML serialization, 197-99 Singleline, 109
objects, how to deserialize, 190 single-threaded apartment (STA) thread, 298-99
objects, how to serialize, 189-90 site, 469
overview, 188-89 site evidence, 451
schemas, conforming to, 195-96 SiteldentityPermission, 481
SerializationEntry, 203 Size, structure, 225
SerializationFormatter, 175-79 SizeConverter, 223
SerializationInfo, 203 SizeF, 225
Serialized events, 205 SkipVerification, 454
Serializing events, 205 SMTP servers, 663
Service Controller default permission, 453 SmtpClient, 663, 668-70
service installer, creating, 349-50 SmtpClient.Credentials, 666
ServiceControllerPermission, 481 SmtpClient.EnableSsl, 666
Servicelnstaller, 340 SmtpClient.PickupDirectoryLocation, 664
ServiceName, 339 SmtpClient.Send, 653, 663
ServiceProcesslnstaller, 340 SmtpClient.SendAsync, 665
services SmtpClient.SendCompleted, 665
case scenario, creating testing tool, 354-55 SmtpClient. Timeout, 666-68
case scenario, monitoring a file, 355-56 SmtpClient.UseDefaultCredentials, 666
implementing, 339-40 SmtpException, 664-65
install projects, creating, 340-43 SmtpFailedRecipientException, 665
lab, web monitoring service, 345-50 SoapAttribute, 181
managing, 343-45 SoapDefaultValue, 181
permissions, 453 SoapElement, 181
service projects, creating, 338-39 SoapEnum, 181
suggested practice, 356-57 SoapFormatter, 180-81, 205-7
Windows Services, 336-38 Soaplgnore, 181
ServicesDependedOn, 341 SoapType, 181
Set command, 379 Socket Access, 453
SetAppDomainPolicy, 321 SocketPermission, 481
SetData, 321 SolidBrush, 223
SetDynamicBase, 321 Sort method, ArrayList, 139
SetLastError, 608 SortedDictionary, 38
SetPixel, 244 SortedList, 38, 143-45
SetPrincipalPolicy, 321 SortedList<T,U> collection, 151
SetShadowCopyFiles, 321 sorting
SetShadowCopyPath, 322 arrays, 19
SetThreadPrincipal, 322 culture, sorting and comparing objects, 690-94
settings IComparable, 35
NET Framework, configuring, 378-80 spam filters, 654, 664-66
application, defining, 361-63 special characters, matching, 103
application, reading, 363-64 SpecificCultures, 682
lab, persistently storing configuration settings, SQL Client default permissions, 453
373-75 SqlClientPermission, 481
machine configuration, 360-61, 366-68 SSL (Secure Sockets Layer), 574-75, 666
Setup projects, 385, 388-89 STA (single-threaded apartment) thread, 298-99
SetupInformation, 320 Stack collections, 138, 142-43
SHAL (Secure Hash Algorithm 1), 582 Stack, generics, 153
SHA1CryptoServiceProvider, 582, 589 Stack.Clear, 143
SHA256 (Secure Hash Algorithm 256), 582 Stack.Peek, 143
SHA256Managed, 582 Stack<T> collection, 153
SHA384 (Secure Hash Algorithm 384), 582 Startup Object list, 341
SHA384Managed, 582 State, 208
SHAS512 (Secure Hash Algorithm 512), 582 Static, BindingFlag, 636
SHA512Managed, 582 Stopped, thread state, 282
ShadowCopyFiles, 320 storage
shapes, 227-31, 234-36. See also graphics collections and generics, 137
shopping cart case scenario, using collections, 165-66
lab, creating, 146-48 collection classes, 138-43
lab, creating with List<T> collection, 156-59 lab, creating a shopping cart, 146-48
serialization, 178-79 lab, creating shopping cart, List<T>, 156-59

XML serialization, 194-95 List<T> collection, 154-56

overview, 150
Queue<T> collection, 153
SortedList<T,U> collection, 151
suggested practice, 166-67
CryptoAPI key storage, 579-80
dictionaries, 143-45
isolated, 85-88, 480, 483
lab, using, 90-91
serialization
case scenario, serializing between versions,
213-15
case scenarios, choosing a serialization
technique, 214
classes, custom, 175-79
deserialization, how to, 173-75
format, choosing, 179-80
lab, serialize and deserialize objects, 182-85
objects, how to, 171-72
overview, 170-71
suggested practice, 215-17
serialization, custom, 202-5
context-based changes, 207-9
events, responding to, 205-7
formatters, custom, 208-9
lab, implement custom serialization, 209-10
temporary, MemoryStream, 82
XML serialization
classes, serializing, 191
controlling, 191-94
DataSet, 196-97
lab, using XML serialization, 197-99
objects, how to serialize, 189-90
overview, 188-89
schemas, conforming to, 195-96
storage, isolated, 90-91, 480, 483
StorePermission, 481
StreamingContext, 208-9
StreamReader, 20, 23-24, 79-80
streams, 20-21
authentication exception handling, 543-44
binary files, 80
BufferedStream, 83
case scenarios
compressing files, 94
case scenarios, creating log files, 93-94
compressed, 83-85
isolated storage, 85-88
lab, using, 88-91
lab, working with, 27-29
MemoryStream, 82
suggested practice, 95
text, reading/writing, 79-80
StreamWriter, 20, 80
String.IndexOf, 693
String.Replace, 112-13
StringAlignment.Center, 254-55
StringAlignment.Far, 254-55
StringAlignment.Near, 254-55
StringBuilder, 17-19, 81-82, 633
StringBuilder.Append, 633
StringBuilder.Length, 635
StringCollection, 138, 140
StringComparison.InvariantCulture, 694-95
StringDictionary, 143, 145
StringFormat, 223, 254-56
StringReader, 81-82

System event log 789

strings
connection strings, 364-65
constraining input, 114-15
converting to arrays, encryption, 580
custom type conversion, 57
formatting, 35
lab, reformatting, 118-19
lab, working with, 26-27
reading/writing, 81-82
reference types, 17-19
substrings, replacing with regular expressions, 112-13
StringWriter, 81-82
Strong Name evidence, 451
strong names, 481, 606, 638
strongfile, 469
StrongNameldentityPermission, 481
StructLayout, 610-11
structures (structs), 6-11, 610-11
substrings, replacing, 112-13
subtraction, structure, 6
suggested practice
application domains, 356
authentication, 600-2
code access security (CAS), 519-21
collections, specialized, 167
COM (Component Object Model), 629-30
complying with standard contracts, 65
configuring applications, 396-97
controlling interactions using events and delegates,
65-66
cryptography, 600-2
Debug and Trace, 445
e-mail, 677
event logs, managing, 444-45
file and folder access, 94-95
generics, improving type safety and performance, 166-67
globalization, 702-3
managing data using collections, 166
managing data using Reader and Writer classes, 95
managing data using system types, 65
multithreaded applications, developing, 312
performance counters, 445
reflection, 649
security of stream info with isolated storage, 95
serialization, custom formatting, 216-17
serialization, runtime, 215-16
services, implement, install and control, 356-57
text handling with regular expressions, 135-36
user interface enhancements, 268-69
XML serialization, 216
Suspended, thread state, 282
SuspendRequested, thread state, 282
symbols, regular expressions, 106
symmetric encryption algorithms, 564
symmetric key encryption
algorithm classes, 566-69
establishing a symmetric key, 569-70
message encryption/decryption, 571-73
overview, 563-66
synchronizing, resources
access to, 270-88
Interlocked, 293-96
Monitor, 288-90
ReaderWriterLock, 290-92
SynLock, 288-90
System event log, 402

790

System.AppDomain

System.AppDomain, 318-20, 322-23
System.AppDomain.CurrentDomain.SetPrincipalPolicy,
530-31,533
System.ApplicationException, 22, 32-33
System.Array, 17, 19
System.Attribute, 46
System.Boolean, 4
System.Byte, 3
System.Char, 4
System.Collections, 137
collections, 138-43, 165-66
dictionaries, 143-45
generics
custom classes and, 152-53
lab, creating shopping cart, List<T>, 156-59
List<T> collection, 154-56
overview, 150
Queue<T> collection, 153
SortedList<T,U> collection, 151
Stack<T> collection, 153
lab, creating a shopping cart, 146-48
suggested practice, 166-67
System.Collections.Generic, 38
System.Configuration, 361
System.Convert, 55, 57
System.DateTime, 4
System.Decimal, 3
System.Diagnostics, 444-45
System.Diagnostics.Debug, 405-9
System.DirectoryServices, 479
System.Double, 3
System.Drawing
Brush classes, 234
controls, 225-26
filling shapes, 234-36
lab, create method to draw pie chart, 236-41
lines and shapes, 227-31
overview, 221-25
pens, 231-33
System.Drawing.Bitmap, 244
System.Drawing.Brush class, 33
System.Drawing.Brushes, 253
System.Drawing.Color, 226
System.Drawing.Drawing2D, 246
System.Drawing.Drawing2D. HatchBrush, 234
System.Drawing.Drawing2D. LinearGradientBrush, 234
System.Drawing.Drawing2D. PathGradientBrush, 234
System.Drawing.Graphics, 227-31
System.Drawing.Image, 243-46
System.Drawing.Imaging, 246
System.Drawing Imaging ImageFormat, 245-46
System.Drawing.Imaging. Metafile, 244
System.Drawing.Point, 6
System.Drawing.SolidBrush, 234
System.Drawing. TextureBrush, 234
System.Environment.MachineName, 529
System.Environment.UserDomainName, 529
System.Exception, 17
System.Globalization.CultureAndRegionInfoBuilder,
695-97
System.Globalization.Culturelnfo.GetCultures, 681-82
System.Icons, 247
System.IConvertible, 55, 57-58
System.Int16, 3
System.Int32, 3
System.Int64, 3

System.IntPtr, 4
System.10, 71-73
System.IO.IsolatedStorage, 86
System.10.Stream, 17, 20-21
System.Net.Mail, 652
System.Net.Mime.MediaTypeNames, 655
System.Net.Security.NegotiateStream, 543-44
System.Net.Security.SslStream, 543-44
System.Network.Sockets namespace, 20-21
System.Object, 4, 17, 19
System.Reflection, 46
System.Reflection. Emit, 639-42
System.Runtime.InteropServices, 606-8, 619
System.Runtime.Serialization, 179-80, 203
System.Runtime.Serialization.FormatterConverter, 205
System.SByte, 3
System.Security, 328
System.Security.AccessControl, 556-59, 601-2
System.Security.Authentication, 600-1
System.Security. Authentication.AuthenticationException,
543-44
System.Security.Authentication.InvalidCredentialException,
543-44
System.Security.CodeAccessPermission.RevertDeny, 501
System.Security.CodeAccessPermission
.RevertPermitOnly, 501
System.Security.Cryptography, 20-21, 581-83, 602
System.Security.Cryptography.AsymmetricAlgorithm,
575-77
System.Security.Cryptography.HashAlgorithm, 581-83
System.Security.Cryptography
KeyedHashAlgorithm, 582
System.Security.Cryptography.Rfc2898DeriveBytes, 569-70
System.Security.Cryptography.SymmetricAlgorithm, 567-69
System.Security.Permissions, 203, 451-52
System.Security.Permissions.SecurityAction, 531
System.Security.PermissionSet, 506-7
System.Security.Policy, 328, 450
System.Security.Policy.Evidence, 328
System.Security.Policy.Zone, 328
System.Security.Principal, 601
System.Security.Principal. Genericldentity, 541
System.Security.Principal. GenericPrincipal, 541
System.Security.Principal. WindowsBuiltInRole, 528
System.Security.Principal. Windowsldentity, 525-26
System.Security.Principal. WindowsPrincipal, 527-29
System.Security.SecurityException, 530-31
System.Security.SecurityManager.IsGranted, 499
System.Security.SecurityZone, 328
System.ServiceProcess.ServiceController, 345
System.Single, 3
System.String, 17-19
System.SystemException, 22
System.Text, 125
System.Text.Encoding, 126
System.Text.Encoding.GetEncoding, 126-27
System.Text.Encoding.Unicode.GetBytes, 580
System.Text.Encoding. Unicode.GetString, 580
System.Text.StringBuilder, 17
System.Threading, 270
System.Threading. Thread.CurrentPrincipal, 527
System.Threading. ThreadPool, 271-73
System.Timers.Timer, 339
System.UInt32, 3
System.ValueType, 2
System.Xml.Serialization, 188

System.Xml.XmlINode, 368
SystemBrushes, 224
SystemColors, 224
SystemDefault CharSize, 610
SystemFonts, 224
Systemlcons, 224
SystemMaxDBCSCharSize, 610
SystemPens, 224

T

tab, 103
TCP/IP connections, 453
temporary storage
MemoryStream, 82
Queue collections, 138
temporary values, 176-78
text. See also fonts; XML (Extensible Markup Language),
serialization
case scenario
legacy data, processing, 134
validating input, 134
displaying values as, 4
encoding/decoding, 124-26
code pages, examining, 127
encoding classes, using, 126-27
lab, read and write encoded file, 130
specifying encoding type, 128-29
exception messages, 24
files and streams, 79-80
graphics and, 252
adding text, 252
Font objects, creating, 252-53
formatting, 254-56
lab, adding text to images, 257-63
writing text, 253-54
lab, read/write, 88-90
read/write, 20
reference types, 17
regular expressions, 98
backreferences, matching, 107-8
constraining string input, 114-15
extracting matched data, 110-12
lab, create Regex expression evaluator, 115-19
match text, 101-3
options, 108-10
pattern matching, 98-101
replacing substrings, 112-13
special characters, matching, 103
wildcards, matching text with, 104-7
suggested practice, 135-36
text editors, XML serialization, 188
TextReader, 79-80
TextureBrush, 224
TextWriter, 80
TextWriterTraceListener, 408
Thread.Abort, 279
Thread.CurrentThread. CurrentCulture, 680
Thread.CurrentThread.CurrentUICulture, 681
Thread Join, 296
Thread.Priority, 281
Thread.Resume, 281
Thread.Start, 279
Thread.Suspend, 282
Thread.Suspense, 281
Thread.ThreadState, 282

transfering data 791

ThreadAbortException, 279
threading
case scenario, background printing, 311
case scenario, ensuring integrity of financial
applications, 311-12
foreground and background threads, 274
identifying threads, 321
lab, managing threads, 299-305
lab, performance improvement with threads, 275-76
overview, 269-71
passing data between threads, 282-85
resource access, synchronizing, 270-96
SetThreadPrincipal, 322
starting and stopping threads, 279-81
suggested practice, 312
thread states, 282
ThreadPool classes, 271-73
waiting for thread completion, 296-99
ThreadPool.GetAvailableThreads, 273
ThreadPool.QueueUserWorklItem, 270-73
ThreadPool.SetMaxThreads, 273
ThreadProc, 274
ThrowExceptionForHR, 610
ThrowOnUnmappableChar, 608
time
built-in types, 4
culture formats, 684, 689-90
serialized/deserialized data, 172, 174
timer event, 50-51
timestamps, 253-54
Tlbexp.exe, 620-21
Tlbimp.exe, 605-6
Token, user authentication, 526
ToolboxBitmapAttribute, 224
ToString, 17, 57
TotalProcessorTime, 429
trace, 406-9
suggested practice, 445
TextWriterTraceListener, 408
XMLWriterTraceListener, 408
transactions, using collections for, 165-66
transfering data
serialization
case scenario, serializing between versions, 213-15
case scenarios, choosing a serialization technique, 214
classes, custom, 175-79
deserialization, how to, 173-75
format, choosing, 179-80
lab, serialize and deserialize objects, 182-85
objects, how to, 171-72
overview, 170-71
suggested practice, 215-17
serialization, custom, 202-5
context-based changes, 207-9
events, responding to, 205-7
formatters, custom, 209
lab, implement custom serialization, 209-10
XML serialization
classes, serializing, 191
controlling, 191-94
DataSet, 196-97
lab, using XML serialization, 197-99
objects, how to deserialize, 190
objects, how to serialize, 189-90
overview, 188-89
schemas, conforming to, 195-96

792 transmitting data

transmitting data, 176-77, 180-81
transport address, 481
Trimming, 255

URL (Uniform Resource Locator), 576
URL evidence, 451
URL identity permission, 481
TripleDES, 567 UrlldentityPermission, 481
troubleshooting. See also event logs UseMachineKeyStore, 576-77
access control lists (ACLs), analyzing, 557-58 user, 468
exceptions, 24 User Account Control (UAC), 373
security access control lists (SACLs), 555-56 user accounts
service applications, 336-37 authenticating and authorizing
suggested practice, 445 case scenario, creating custom authentication
System.Diagnostics.Debug, 405-9 methods, 598-600
true/false values, 4 exception handling in streams, 543-44
Trusted_Zone, 458 identity class, creating custom, 535-39
trusts lab, adding RBS to an application, 544-48
AppDomain properties, 319 overview, 523-25
assemblies, 450, 463-64, 471 principal class, creating custom, 539-40
encryption algorithms, 566 PrincipalPermission class, 529-30
try block, 24, 530, 533 RBS demands with custom identities and principals,
try/catch block, 22-24, 530, 533 542-43
TryCast, 55 RBS demands, declarative, 530-32
Type class, 633-36 RBS demands, imperative, 532-34
type forwarding, 47-48 suggested practice, 600-2
Type Library Exporter, 620-21 user privilege models, custom, 541-42
Type Library Importer, 605-6 Windowsldentity class, 525-26
type library, COM types, 604-5 WindowsPrincipal class, 527-29
Type.GetConstructors, 635 user input
Type.GetField, 635 case scenario
Type.GetMembers, 636 validating input, 134
Type.GetMethod, 633-36 encoding/decoding, 124-26
Type.GetProperty, 635 code pages, examining, 127

type.Parse, 55
type.ToString, 55

type. TryParse, 55

type. TryParseExact, 55
TypeBuilder, 640
TypeConverter, 57
TypeForwardedTo, 47-48

encoding classes, using, 126-27
lab, read and write encoded file, 130
specifying encoding type, 128-29

regular expressions, 98

backreferences, matching, 107-8
constraining string input, 114-15
extracting matched data, 110-12

types lab, create Regex expression evaluator, 115-19
converting between, 54 match text, 101-3
custom types, 56-59 options, 108-10
lab, performing safely, 59-60 pattern matching, 98-101
Visual Basic and C#, 54-56 replacing substrings, 112-13
inheritance heirarchy, 206 special characters, matching, 103
suggested practice, 166-67 wildcards, matching text with, 104-7
user interface, 268-69. See also graphics
User Interface, permissions, 453
U user names, 114-15, 341
UAC (User Account Control), 373 User policy, 458-59, 472
UlPermission, 481 user privilege models, creating custom, 541-42
unboxing, 41, 56 UTE-32Encoding, 125
Unicode characters, 104, 125-26 UTF-8Encoding, 126
best-fit mapping, 607
built-in types, 4
strings, converting, 126-27 \
SystemDefaultCharSize, 610 validation, 114-15, 134, 205
UTF-16 encoding, 126 ValidKeySize, 569

UTEF-8 encoding, 126 Value, 5
Unicode UTF-32 encoding, 125 Value property, 6
UnicodeEncoding, 126 value types
Uniform Resource Locator (URL), 576 built-in, 2-4

Uninstall, 385

uninstall, services, 343
UNIX systems. See encoding
Unload, application domains, 322-23 enumerations, 9-10

Unstarted, thread state, 282 lab, declaring and using, 10-13
url, 470 lab, identifying, 25-26

constraints, 42
declaring, 4-5
displaying as text, 4

overview, 2
reference types and, 16-17
structures (user-defined types), 6-9
values, dictionaries, 144-45
variables
environment, 379, 452, 479
MethodBody.LocalVariables, 635
VerifyData, 577, 587
VerifyHash, 577, 587
version compatibility, 178-79, 213-15
vertical tab, 103
Visual Basic
converting types, 54-55
keyword difference, 5
numeric type aliases, 4
raising events, 46
Visual Studio
attributes, 46
extracting interfaces, 37
form classes, 37
implementing interfaces, 34

w

w3wp.exe, 317
WaitHandle. WaitAll, 296, 298
WaitHandle. WaitAny, 298
WaitSleepJoin, 282
watermarks, 244, 254
Web Access permissions, 453
Web applications, 360
Web authentication, 535
web monitoring services, 345-50
‘Web servers, 379-80
Web Services, 317
Web Services Description Language (WSDL), 193
web sites
.NET Framework 2.0 Software Development Kit
(SDK), 380
BackgroundWorker, 271
custom case mapping and sorting rules, 703
debugging services, 336-37
formatters, custom, 209
Global Assembly Cache tool (Gacutil.exe), 381
multithreading, best practices, 296
Reflection.Emit, 641
Regasm.exe, 622
SiteldentityPermission, 481
supported code pages, 127
Tlbexp.exe, 621
Tlbimp.exe, 606
Unicode Standard, 126
WebPermissions, 481
WMI classes, 429
XML schemas, 195-96
WebException, 665
‘WebPermission, 481
‘WebPermissionAttribute, 495-96
while loop, 79
white space, text, 109
whole numbers, 3
widening conversion, 54
Widening/implicit, 57
wildcards, matching text with, 104-7
window station, 337
Windows console applications, 360

WSDL (Web Services Description Language) 793

Windows event log, 401-4, 409-13
Windows Form class, 37
Windows Internet Explorer, 317
Windows Presentation Foundation (WPF), 219, 360-61
Windows Services
case scenario, creating testing tool, 354-55
case scenario, monitoring a file, 355-56
creating, 336-38
implementing, 339-40
install projects, 340-43
lab, web monitoring service, 345-50
managing and controlling, 343-45
service projects, 338-39
suggested practice, 356-57
Windows Vista, 373
DEVPATH, 379
Event Viewer snap-in, 401-2
Windowsldentity, 523, 525-26, 535-39
Windowsldentity.GetCurrent, 527
WindowsPrincipal, 523, 527-29
WindowsPrincipal.IsinRone, 528
Wmf files, 245-46
WMI, 429-32
events, responding to, 434-36
events, waiting for, 433
lab, responding to events, 436-39
WMI Query Language (WQL), 429
word boundary, 103
Word, text formatting, 255
words, matching, 101-3, 107
WPF (Windows Presentation Foundation), 219
WQL (WMI Query Language), 429
WqlEventQuery, 433
wrapper class, 613-14
‘Write, permissions, 555
write/writing
binary files, 80
case scenarios, creating log files, 93-94
compressed streams, 83-85
configuration settings, 361
Console.Write, 405-6
Debug messages, 406-9
encoding type, specifying, 128-29
File 10 permissions, 452
isolated storage, 85-88
lab, encoded files, 130
lab, persistently storing configuration settings,
373-75
lab, standard text file, 88-90
locks, 290-92
performance counter permissions, 453
strings, 81-82
text files, 20, 79-80
unmanaged memory, 610
Windows event log, 401-4
XmlWriter, 195
WriteByte, 610
Writelf, 405-6
‘Writelnt16, 610
WriteInt32, 610
‘WriteInt64, 610
‘WriteIntPtr, 610
WriteLinelf, 405-6
Writer class, 95
WriteXml, 195
WSDL (Web Services Description Language), 193

794

X.509 certificates

X

X.509 certificates, 481
X509 Store, 453
XML (Extensible Markup Language)
attributes, 194
configuration files, 360
elements, 194
EventSchemalListener, 408
FromXmlString, 577
serialization
classes, serializing, 191
controlling, 191-94
DataSet, 196-97
lab, using XML serialization, 197-99
objects, how to deserialize, 190
objects, how to serialize, 189-90
overview, 188-89
schemas, conforming to, 193, 195-96
SoapFormatter, 180-81
SignatureAlgorithm, 576
XMLWriterTraceListener, 408
XML Schema Definition tool (Xsd.exe), 195
XmlAnyAttribute, 192
XmlAnyElement, 192

XmlArray, 192
XmlArrayltem, 193
XmlAttribute, 193
XmlChoiceldentifier, 193
XmlElement, 192-93, 197
XmlEnum, 193

XmlIgnore, 193

XmlInclude, 193

XmlNode, 197
XmlNode.InnerText, 368
XmlReader, 195

XmlRoot, 193

XmlText, 194

XmlType, 194

XmlWriter, 195
XMILWriterTraceListener, 408
Xsd.exe (XML Schema Definition tool), 195

z

zone, 470

zone evidence, 451

zone security, 464-65, 472
ZoneldentityPermission, 481

	Cover
	Table of Contents
	Ch. 4
	Ch. 10
	Index

