
http://www.facebook.com/share.php?u=http://www.microsoftpressstore.com/title/9780735626188
http://twitter.com/?status=RT: download a free sample chapter http://www.microsoftpressstore.com/title/9780735626188
https://plusone.google.com/share?url=http://www.microsoftpressstore.com/title/9780735626188
http://www.linkedin.com/shareArticle?mini=true&url=http://www.microsoftpressstore.com/title/9780735626188
http://www.stumbleupon.com/submit?url=http://www.microsoftpressstore.com/title/9780735626188/Free-Sample-Chapter

● ● ● ● ● ● ● ● ● ● ●

How to access
your CD files

Microsoft Press

The print edition of this book includes a CD. To access the
CD files, go to http://aka.ms/626188/files, and look for the
Downloads tab.

Note: Use a desktop web browser, as files may not be
accessible from all ereader devices.

Questions? Please contact: mspinput@microsoft.com

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2009 by Hitachi Consulting

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2008940528

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 4 3 2 1 0 9

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor mation about
international editions, contact your local Microsoft Corporation offi ce or contact Microsoft Press International directly at
fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, Excel, SQL Server, Visual Basic, Visual Studio, Windows, and Windows Vista are either
registered trademarks or trademarks of the Microsoft group of companies. Other product and company names mentioned
herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted
herein are fi ctitious. No association with any real company, organization, product, domain name, e-mail address, logo,
person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ken Jones
Developmental Editor: Sally Stickney
Project Editor: Maureen Zimmerman
Editorial Production: S4Carlisle Publishing Services
Technical Reviewer: Todd Meister; Technical Review services provided by Content Master, a member of CM Group, Ltd.
Cover: Tom Draper Design

Body Part No. X14-72187

To my wife, Haruka, for her love, support,

and—above all else—patience

—Bryan C. Smith

To the three most important women in my life,

who have shaped who I am today:

my mother, Phyllis; my wife, Donna;

and my daughter, Emma Kay

—C. Ryan Clay

 v

Contents at a Glance

Part I MDX Fundamentals

 1 Welcome to MDX . 3

 2 Using the MDX Query Editor. 15

 3 Understanding Tuples . 37

 4 Working with Sets. 61

 5 Working with Expressions . 91

Part II MDX Functions

 6 Building Complex Sets . 123

 7 Performing Aggregation . 157

 8 Navigating Hierarchies. 181

 9 Working with Time . 211

Part III MDX Applications

 10 Enhancing the Cube . 239

 11 Implementing Dynamic Security . 273

 12 Building Reports . 311

vi Contents at a Glance

List of Figures
FIGURE 1-1 A conceptual illustration of a business intelligence environment 4

FIGURE 1-2 The Reseller Sales fact . 5

FIGURE 1-3 The Product and Date dimensions . 6

FIGURE 1-4 The Reseller Sales fact and associated dimensions . 6

FIGURE 1-5 The Reseller Sales and Sales Quota facts and associated dimensions 7

FIGURE 1-6 The members of the Category attribute-hierarchy . 9

FIGURE 1-7 The members of the Product Categories user-hierarchy 10

FIGURE 2-1 SQL Server Management Studio and its various sections. 17

FIGURE 2-2 The MDX Query Editor and its various sections . 21

FIGURE 2-3 Key features of the Query Editor toolbar. 21

FIGURE 3-1 A number line with a point at (3). 37

FIGURE 3-2 Two perpendicular number lines with a point at (3, 4) 38

FIGURE 3-3 Three perpendicular number lines with a point at (3, 4, 2). 38

FIGURE 3-4 The representation of the Category attribute-hierarchy as
a cube space axis . 40

FIGURE 3-5 The structure of the Chapter 3 Cube cube. 41

FIGURE 3-6 The process for completing the tuple with a missing Measures member . . 48

FIGURE 3-7 The process for completing the tuple with missing Measures,
Calendar Year, and Fiscal Year members . 49

FIGURE 3-8 The relationship between the FY 2003 members and CY 2002
and CY 2003 members . 50

FIGURE 3-9 The process for completing the tuple specifying the FY 2003 member
associated with CY 2003 in the Calendar-To-Fiscal Year user-hierarchy 52

FIGURE 3-10 The process for completing the partial tuple specifying the member
CY 2002 within the Calendar-To-Fiscal Year user-hierarchy . 55

FIGURE 3-11 The process for completing the partial tuple specifying the member
CY 2002 within the Calendar-To-Fiscal Year user-hierarchy and FY 2003 within
the Fiscal Year attribute-hierarchy . 56

FIGURE 3-12 The process for completing the partial tuple specifying overlapping
references to the FY 2003 member . 57

FIGURE 3-13 The process for completing the partial tuple specifying confl icting
overlapping members from the Calendar-To-Fiscal Year user-hierarchy
and Fiscal Year attribute-hierarchy . 58

FIGURE 4-1 The fi rst SELECT statement in this chapter and the cube space it defi nes . . . 68

FIGURE 4-2 The SELECT statement employing a WHERE clause. 69

FIGURE 5-1 The process by which the partial tuple ([Date].[Calendar Year].[CY 2003],

[Product].[Category].[Bikes & Accessories]) is completed. 101

FIGURE 5-2 The process by which the partial tuple ([Product].[Category].[Bikes])
in the expression for the calculated member Bikes & Accessories is resolved 102

 Contents at a Glance vii

FIGURE 6-1 Venn diagram representations of the union, intersection,
and exception operations. 143

FIGURE 8-1 The immediate relatives of a given member in a hierarchy (shaded) 181

FIGURE 8-2 The extended relatives of a given member within a hierarchy (shaded) . . . 189

FIGURE 8-3 The members accessed with the basic fl ags of the Descendants
function given a specifi ed member and level (shaded). 191

FIGURE 9-1 A user-hierarchy based on the standard calendar . 212

FIGURE 10-1 The Solution Explorer window for the MDX Step-by-Step project 242

FIGURE 10-2 The Cube Designer for the Step-by-Step cube. 243

FIGURE 10-3 The Calculations tab’s form view for the Step-by-Step cube 243

FIGURE 10-4 The Calculations tab’s toolbar . 244

FIGURE 12-1 The report assembled in this chapter. 312

FIGURE 12-2 The BIDS interface following the creation of the MdxReports
Report Server project . 314

FIGURE 12-3 The Report Designer for the MdxReport report item. 315

FIGURE 12-4 The Design mode interface of the Query Designer. 322

FIGURE 12-5 The Query Designer toolbar . 322

List of Tables
TABLE 2-1 Additional Hierarchies in the Step-by-Step Cube to Explore 28

TABLE 3-1 Available cell properties . 46

TABLE 4-1 Formal, short, and alias names for the fi rst fi ve axes of the
SELECT statement . 72

TABLE 5-1 Operators Supported by Analysis Services . 91

TABLE 5-2 VBA Functions Available Through Built-in Assemblies . 93

TABLE 5-3 Standard Numeric Formats . 109

TABLE 5-4 Standard Date Formats. 109

TABLE 5-5 Member Property Functions . 110

TABLE 5-6 Intrinsic Member Properties Frequently Accessed Through the
Properties Function . 110

TABLE 7-1 Records of a Fact Table Over Which an Average Is to Be Calculated 165

TABLE 8-1 Navigation Functions Accessing Immediate Relatives. 182

TABLE 8-2 Navigation Functions for Accessing Extended Relatives. 190

TABLE 8-3 Flags Available for Use with the Descendants Function 191

TABLE 8-4 Functions for Evaluating a Member’s Position within a Hierarchy 202

TABLE 8-5 Navigation Functions for Accessing Members within a Level 204

TABLE 10-1 The Basic Scripting Statements . 246

TABLE 10-2 Some Standard Properties of Cube-Scoped Calculated Members 256

TABLE 12-1 Filter Operators Supported by the Query Designer . 338

 ix

Microsoft is interested in hearing your feedback so we can continually improve our books and learning

resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

Table of Contents

Acknowledgements .xiii

Introduction . xv

Part I MDX Fundamentals

 1 Welcome to MDX . 3

The Business Intelligence Landscape . 3

The Dimensional Model . 5

Implementing the Dimensional Model . 7

The Relational Data Warehouse . 8

The Multidimensional Data Warehouse. 8

The MDX Language . 11

Chapter 1 Quick Reference. 14

 2 Using the MDX Query Editor .15

SQL Server Management Studio . 15

The MDX Query Editor . 19

Building a Simple MDX Query . 23

Exploring the Step-by-Step Cube . 25

Building a More Complex Query. 29

Chapter 2 Quick Reference. 35

 3 Understanding Tuples . 37

N-dimensional Space. 37

Cube Space . 39

Accessing Data with Tuples . 41

Understanding Cells. 43

Working with Partial Tuples . 47

Building Tuples with User-Hierarchies . 51

x Table of Contents

Understanding User-Hierarchy Translation . 51

Avoiding Reference Confl icts . 55

Member Reference Shortcuts . 59

Chapter 3 Quick Reference. 60

 4 Working with Sets. 61

Set Basics . 61

Understanding the SELECT Statement . 68

Building Sets with Functions . 72

The Members Function . 73

The Crossjoin Function . 77

Limiting Sets . 79

Working with Auto-Exists . 79

The Exists Function . 83

Chapter 4 Quick Reference. 88

 5 Working with Expressions . 91

Expression Basics . 91

Calculated Members . 94

Building Dynamic Expressions . 98

Resolving Contextual Confl icts . 103

Avoiding Infi nite Recursion . 103

Controlling Solve Order . 105

Building Complex Expressions . 109

Working with the Current Member . 109

Working with Sets in Expressions . 115

Chapter 5 Quick Reference. 117

Part II MDX Functions

 6 Building Complex Sets . 123

Assembling Ordered Sets . 123

Retrieving the First or Last Tuples of a Set. 131

Filtering Sets . 137

Combining Sets. 142

Performing Advanced Set Construction. 147

Assembling Sets with the Generate Function . 147

Assembling Sets with the Extract Function . 151

Chapter 6 Quick Reference. 153

 Table of Contents xi

 7 Performing Aggregation . 157

Performing Summation. 157

Calculating Averages . 161

Calculating Averages with the Avg Function. 162

Calculating Averages with Expressions. 165

Identifying Minimum and Maximum Values . 170

Counting Tuples in Sets. 172

Chapter 7 Quick Reference. 178

 8 Navigating Hierarchies. 181

Accessing Immediate Relatives . 181

Accessing Extended Relatives . 189

Navigating within a Level . 203

Chapter 8 Quick Reference. 208

 9 Working with Time . 211

Understanding the Time Dimension. 211

Calculating an Accumulating Total . 213

Calculating Rolling Averages . 220

Performing Period-over-Period Analysis . 222

Combining Time-Based Metrics . 229

Chapter 9 Quick Reference. 233

Part III MDX Applications

 10 Enhancing the Cube . 239

Understanding the MDX Script . 239

Constructing Calculated Members . 247

Assembling a Basic Calculated Member . 247

Setting Calculated Member Properties . 256

Assembling Named Sets . 266

Chapter 10 Quick Reference. 272

 11 Implementing Dynamic Security . 273

Understanding Dynamic Security . 273

Implementing Attribute-Hierarchy Restrictions . 285

Restricting Standard Attribute-Hierarchies . 286

Restricting Parent-Child Hierarchies . 297

Implementing Cell-Level Restrictions . 302

Chapter 11 Quick Reference. 309

xii Table of Contents

 12 Building Reports . 311

Getting Started . 311

Connecting to Analysis Services . 316

Designing the Dataset . 320

Adding Parameters to the Dataset . 329

Presenting the Data in the Report. 340

Chapter 12 Quick Reference. 351

Index . 353

Microsoft is interested in hearing your feedback so we can continually improve our books and learning

resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

 xiii

Acknowledgements

The book you hold in your hands represents the thought, time, and energy of so many more

people than those listed on the front cover. We owe all these folks our gratitude for their

support without which this book would not be possible.

To identify just a few of these people, we’d like to thank the folks at Microsoft Press for the

opportunity to work with them to address what we both perceive as an important need in

the Microsoft Business Intelligence community. To Maureen Zimmerman and her team, thank

you for your help in crafting this book and keeping things on track. To Ken Jones, thank you

for championing us at all the right times.

Thanks also goes out to the Microsoft SQL Server Analysis Services product team for serving

as a sounding board early on in the development process. Your encouragement helped us fi nd

our voice.

At Hitachi Consulting, we’re grateful for the support of Lance Baldwin and Paul Turley who

helped us get the ball rolling on this effort and provided continued support throughout the

development process. To Eric Winton, Ryan Trout, and Drew Naukam, thank you for your

 patience while we focused our energy in this direction. To Hilary Feier and Scott Cameron,

thank you for your support at critical junctures in this process. To Eric Noack, Reggie

Nitcher, Jon Moore, Andrew Alexander, and Bryan Martin, thank you for your feedback and

 encouragement on the critical chapters of this book. Finally, a big thank you goes out to Reed

Jacobson, whose MDX course provided the inspiration for this book and whose feedback was

critical in shaping our content.

Last, but by no means least, we’d like to thank our families who have quietly sacrifi ced

 alongside us as this book was brought into being. We could not have done this without you

and promise we will not do this again (for a little while, at least).

Bryan C. Smith

C. Ryan Clay

 xv

Introduction

Microsoft SQL Server Analysis Services is a powerful tool for Business Intelligence. Many

 organizations, both large and small, have adopted it to provide secure, high-performance

access to complex analytics.

MDX is the language used by Analysis Services for data access. Profi ciency with this language

is essential to the realization of your Analysis Services databases’ full potential. The innovative

and elegant model underlying the MDX language makes it a very powerful but at the same

time challenging tool for data analysis. In this book, we address this model head-on and then

guide you through various functions and applications of the MDX language.

Who This Book Is For

This book has been written based on our own experiences as well as those of numerous clients

and students. From these, we believe there are a few prerequisites to effectively learning the

MDX language.

First, you must have basic familiarity with the concepts of dimensional modeling and data

warehousing. If you do not have this knowledge, the overall purpose of Analysis Services and

the MDX language will be lost.

Second, you must have basic familiarity with Analysis Services. You do not necessarily have

to be a cube designer, but it does help to have worked with Analysis Services enough to be

comfortable with its objects and terminology. If you are relatively new to Analysis Services,

we recommend that you review Microsoft SQL Server 2008 Analysis Services Step by Step by

Scott Cameron (Microsoft Press, 2009) before proceeding with this book.

Finally, you must be able put aside the traditional notions of data access you may have

 become familiar with. Some of the folks whom we’ve seen struggle the most with MDX

have been some of the most talented users of more traditional languages such as SQL. MDX

 requires you to think about data very differently.

What This Book Is About

This book is about the core concepts and basic applications of MDX; it is not an exhaustive

text. Instead, it is intended as a primer for those relatively new to the language. Through the

discussions and exercises presented in each chapter you will be introduced to core concepts

and applications. This will provide you with a solid foundation for continued learning in

 real-world scenarios.

xvi Introduction

This book is divided into three sections, each building on the one before it. We strongly

 encourage you to read these sections in sequence to ensure that you fully grasp later

 concepts and techniques.

Part I, “MDX Fundamentals,” teaches you the fundamentals of the MDX language and the

primary query development tool you use throughout this book.

Chapter 1, “Welcome to MDX,” presents MDX as a means to deliver business value. This chapter

is critical to establishing the concepts and vocabulary we employ throughout this book.

Chapter 2, “Using the MDX Query Editor,” introduces you to the practical aspects of

 constructing and executing an MDX query using the MDX Query Editor.

Chapter 3, “Understanding Tuples,” presents the concept of tuples. Understanding tuples is

key to the successful use of the MDX language.

Chapter 4, “Working with Sets,” expands the concept of tuples to include sets. With knowledge

of tuples and sets, the MDX SELECT statement is explored.

Chapter 5, “Working with Expressions,” introduces MDX expressions. Using calculated members,

you explore expressions as a means for deriving values through Analysis Services.

Part II, “MDX Functions,” builds upon the foundation established in Part I to explore the more

frequently used MDX functions.

Chapter 6, “Building Complex Sets,” guides you through the assembly of complex sets using

a variety of MDX functions. Building just the right set is critical to retrieving the data you

need from your cubes.

Chapter 7, “Performing Aggregation,” explains the appropriate use of the MDX aggregation

functions. Thoughtful application of these functions provides access to insightful metrics.

Chapter 8, “Navigating Hierarchies,” explores the positioning of members in hierarchies and

how this can be exploited using the navigation functions.

Chapter 9, “Working with Time,” introduces you to the time-based MDX functions, through

which critical business metrics can be derived.

Part III, “MDX Applications,” uses concepts and functions explored in Parts I and II to

 implement three basic applications of the MDX language.

Chapter 10, “Enhancing the Cube,” explores the enhancement of the MDX script through

which calculated members and named sets can be incorporated into the defi nition of a cube.

Chapter 11, “Implementing Dynamic Security,” presents a few approaches to implementing

identity-driven, dynamic dimension data and cell-level security in your cube.

Chapter 12, “Building Reports,” guides you through the process of developing MDX-driven

reports in Reporting Services, Microsoft’s enterprise reporting solution.

 Introduction xvii

Conventions and Features in This Book

This book uses conventions designed to make information easily accessible. Before you start,

read the following list, which explains conventions and helpful features within the book.

Conventions

 Each chapter contains multiple exercises demonstrating concepts and functionality.

Each is presented as a series of numbered steps (1, 2, and so on) which you should

 follow in sequence to complete the exercise.

 Notes labeled “Note” provide additional information or alternative methods for

 completing a step successfully.

 Notes labeled “Important” alert you to information you need to be aware of before

continuing.

 Most exercises demonstrate concepts of the MDX language through the use of an MDX

SELECT statement. As steps progress, the SELECT statement introduced in previous

steps may be altered. These changes appear in bold.

Other Features

 Sidebars are used throughout the book to provide important information related to

an exercise or a topic. Sidebars might contain background information, supplemental

 content, or design tips or alternatives. Sidebars are also used to introduce topics

 supporting exercises.

 Each chapter ends with a Quick Reference section. The Quick Reference section

 contains quick reminders of how to perform the tasks you learned in the chapter.

System Requirements

You’ll need a computer with the following hardware and software to complete the exercises

in this book:

 Microsoft Windows Vista Home Premium edition, Windows Vista Business edition,

Windows Vista Enterprise edition, or Windows Vista Ultimate edition

 Microsoft SQL Server 2008 Developer edition or Microsoft SQL Server 2008 Evaluation

edition with Analysis Services, Database Engine Services (including Full-Text Search),

Business Intelligence Development Studio, Client Tools Connectivity, and Management

Tools installed

 CD-ROM or DVD-ROM drive to read the companion CD

 150 MB free space for sample databases and companion content

xviii Introduction

In addition to these requirements, you should be able to log on directly to this computer

with administrative rights. In addition to operation-level administrative rights, you should

have full administrative rights in the SQL Server Database Engine and Analysis Services

instances. Without these rights, you will not be able to install the sample databases or

 complete exercises in some chapters.

Samples

This book’s companion CD contains database samples against which you will perform

the chapters’ exercises. MDX, SQL, and project code samples are also provided for you to

verify your work. Instructions provided in the following sections will guide you through the

 installation of the companion CD’s content to a local drive on your computer. This content is

placed under the following path:

<Drive>:\Microsoft Press\MDX SBS

The MDX, SQL, and project code samples are provided under the Samples subfolder whereas

database samples are provided under the Setup subfolder. Additional instructions are

 provided to make the sample databases operational.

Before attempting to complete the provided instructions, please verify your computer meets

the hardware and software requirements and you have the required access described in the

preceding section, “System Requirements.”

Digital Content for Digital Book Readers: If you bought a digital-only edition of this book, you can
enjoy select content from the print edition’s companion CD.
Visit http://www.microsoftpressstore.com/title/99780735626188 to get your downloadable content. This content
is always up-to-date and available to all readers.

Installing the Samples

Install the companion CD content

 1. Insert the book’s companion CD in your computer’s CD-ROM drive. A menu screen will

appear. If AutoPlay is not enabled, run StartCD.exe at the root of the CD to display a

start menu.

 2. From the start menu, click Install Samples.

 3. Follow the instructions that appear, selecting the drive to which the samples will be

 installed. These are installed to the following location on that drive:

<Drive>:\Microsoft Press\MDX SBS

Install the companion CD content

http://www.microsoftpressstore.com/title/99780735626188

 Introduction xix

Attach the SQL Server database

 1. On the Microsoft Windows task bar, click the Start button.

 2. From the Start Menu, select All Programs and then Microsoft SQL Server 2008 to

 expose the SQL Server Management Studio shortcut.

 3. Click the SQL Server Management Studio shortcut to launch the application.

If this is the fi rst time you have run Management Studio, you may see a dialog box

 indicating the application is being confi gured for its fi rst use. This process may take a

few minutes to complete before the application is then fully launched.

Once fully launched, Management Studio presents the Connect To Server dialog box.

If you are launching Management Studio for the fi rst time on your machine, the dialog

appears as shown below. If this is not the fi rst time, selections and entries may differ.

Attach the SQL Server database

xx Introduction

 4. In the Server Type fi eld, verify Database Engine is selected.

 5. In the Server Name fi eld, type the name of your SQL Server instance. If you are connecting

to a local default instance, you can simply enter LOCALHOST for the instance name.

 6. Click Connect to establish a connection to SQL Server.

 7. Once connected, use the File menu to select Open and then File, launching the Open

File dialog box.

 8. Using the Open File dialog box, navigate to the following folder installed in previous

steps:

<Drive>:\Microsoft Press\MDX SBS\Setup\SQL Server

 9. Select the attach_db.sql fi le and click OK to open it.

 10. If needed, modify the drive letter assigned to the sample database’s .mdf fi le in the

script. By default, the script assumes this fi le is on the C: drive in the following location:

C:\Microsoft Press\MDX SBS\Setup\SQL Server\MdxStepByStep.mdf

 11. With the drive letter modifi ed as needed, select Execute from the Query menu to

 execute the script.

 12. Review the messages provided to confi rm the database was successfully attached to

SQL Server.

 13. From the File menu, select Close to close Management Studio. Select either Yes or No

if prompted to save changes to the attach_db.sql fi le.

Restore the Analysis Services database

 1. Launch SQL Server Management Studio as you did in the previous steps.

 2. In the Connect To Server dialog box, select Analysis Services for the Server Type fi eld

and enter the name of your Analysis Services instance in the Server Name fi eld. If you

are connecting to a local default instance, you can simply enter LOCALHOST for the

instance name.

 3. Click Connect to establish a connection to Analysis Services.

 4. Once connected, use the File menu to select Open and then File, launching the Open

File dialog box.

 5. Using the Open File dialog box, navigate to the following folder installed in previous steps:

<Drive>:\Microsoft Press\MDX SBS\Setup\Analysis Services

 6. Select the restore_db.xmla fi le and click OK to open it.

 7. If needed, modify the drive letter assigned to the sample database’s .abf fi le in the

script. By default, the script assumes this fi le is on the C: drive in the following location:

C:\Microsoft Press\MDX SBS\Setup\Analysis Services\MdxStepByStep.abf

Restore the Analysis Services database

 Introduction xxi

 8. With the drive letter modifi ed as needed, select Execute from the Query menu to

 execute the script.

 9. Review the messages provided to confi rm the database was successfully attached to

Analysis Services.

 10. From the File menu, select Close to close Management Studio. Select either Yes or No

if prompted to save changes to the restore_db.xmla.

Uninstalling the Samples

Drop the Analysis Services database

 1. Launch SQL Server Management Studio and connect to Analysis Services as described

in the steps for restoring the Analysis Services database.

 2. Once connected, select Open and then File from the File menu.

 3. Using the Open File dialog box, navigate to the following folder installed in previous

steps:

<Drive>:\Microsoft Press\MDX SBS\Setup\Analysis Services

 4. Select the drop_db.xmla fi le and click OK to open it.

 5. Select Execute from the Query menu to execute the script.

 6. Review the messages provided to confi rm the database was successfully dropped from

Analysis Services.

 7. From the File menu, select Close to close Management Studio.

Detach the SQL Server database

 1. Launch SQL Server Management Studio and connect to SQL Server as described in the

steps for attaching the SQL Server database.

 2. Once connected, select Open and then File from the File menu.

 3. Using the Open File dialog box, navigate to the following folder installed in previous

steps:

<Drive>:\Microsoft Press\MDX SBS\Setup\SQL Server

 4. Select the detach_db.sql fi le and click OK to open it.

 5. Select Execute from the Query menu to execute the script.

 6. Review the messages provided to confi rm the database was successfully detached from

SQL Server.

 7. From the File menu, select Close to close Management Studio.

Drop the Analysis Services database

Detach the SQL Server database

xxii Introduction

Remove the companion CD content

 1. From your computer’s Control Panel, open Add or Remove Programs.

 2. From the list of Currently Installed Programs, select Microsoft SQL Server 2008 MDX

Step by Step.

 3. Click Remove.

Important If you have not detached or dropped the sample SQL Server database, you

may be prevented from completing these steps.

 4. Follow the instructions that appear to remove the samples.

Find Additional Content Online

As new or updated material becomes available that complements your book, it will be

posted online on the Microsoft Press Online Developer Tools Web site. The type of material

you might fi nd includes updates to book content, articles, links to companion content, errata,

sample chapters, and more. This Web site is available at http://www.microsoft.com/learning/

books/online/developer, and is updated periodically.

Support for This Book

Every effort has been made to ensure the accuracy of this book and the contents of the

companion CD. As corrections or changes are collected, they will be added to a Microsoft

Knowledge Base article.

Microsoft Press provides support for books and companion CDs at the following Web site:

http://www.microsoft.com/learning/support/books/

Questions and Comments

If you have comments, questions, or ideas regarding the book or the companion CD, or

questions that are not answered by visiting the preceding site, please send them to Microsoft

Press via e-mail to:

mspinput@microsoft.com

Remove the companion CD content

 Introduction xxiii

Or via postal mail to:

Microsoft Press

Attn: Microsoft SQL Server 2008 MDX Step by Step Editor

One Microsoft Way

Redmond, WA 98052-6399

Please note that Microsoft software product support is not offered through the above

addresses.

 37

Chapter 3

Understanding Tuples

 After completing this chapter, you will be able to:

 Explain the concept of cube space

 Retrieve data from a cube using tuples

 Reference hierarchy members using a variety of syntax

 For the purpose of data access, Analysis Services presents cubes as n-dimensional spaces

 referred to as cube spaces. Within a cube space, data are made accessible through cells, each

uniquely identifi ed by a tuple.

 In this chapter, you learn how to assemble tuples to access individual cells. This is foundational

to your success with MDX.

N-dimensional Space

 To understand the concept of cube space, picture a simple number line. As you may

 remember from your school days, a number line is a line marked at regular intervals by

 integer (whole-number) values. Figure 3-1 provides an illustration of such a line.

–4 –3 –2 –1 0 1 2 3 4

FIGURE 3-1 A number line with a point at (3)

 In this illustration, a point resides along the line at the position indicated by the number 3.

This number, 3, is the point’s coordinate. When you wrap the coordinate in parentheses like so

 (3)

 you have a simple system for expressing the point’s position along the line.

 Now consider the introduction of another number line perpendicular to the one above. These

two lines defi ne a two-dimensional space, as illustrated in Figure 3-2.

 Traditionally, the horizontal line in this two-dimensional space is referred to as the x-axis and

the vertical line is referred to as the y-axis. Points within this space are identifi ed by their

 position relative to these two axes. (Axes is the plural of axis.)

 To express the position of a point, the x-coordinate and y-coordinate of the point is presented

in a comma-delimited list. In this list, the x-coordinate precedes the y-coordinate, and the

entire list is wrapped in parentheses. This double coordinate system is generically described

using the form (x, y).

38 Part I MDX Fundamentals

0 1–1–2–3–4 2 3 4

1

–1

–2

–3

–4

2

3

4

x

y

FIGURE 3-2 Two perpendicular number lines with a point at (3, 4)

 To illustrate this, consider the point in Figure 3-2. It resides at the intersection of the value 3 along

the x-axis and 4 along the y-axis. It is therefore identifi ed using the double coordinate (3, 4).

 Taking this one step further, consider the addition of a third line perpendicular to both the x

and y axes. Keeping with tradition, the newly introduced third axis is referred to as the z-axis.

The space formed by these three axes is illustrated in Figure 3-3. Together with the x and y

axes, the z-axis forms a three-dimensional space. Points within this space are represented using

a triple-coordinate system, (x, y, z). While challenging to see on paper, a point is presented in

Figure 3-3 at the position identifi ed by the triple coordinate (3, 4, 2).

1

–1

–2

–3

–4

2

3

4

1–2–3–4 2 3 4
x

–2

–3

–4

2
3

4

y

z

FIGURE 3-3 Three perpendicular number lines with a point at (3, 4, 2)

 Now add a fourth axis. The four-dimensional space created can no longer be easily visualized.

Still, points within this space can be located using a quadruple-coordinate system.

 Chapter 3 Understanding Tuples 39

 To describe the form of the quadruple-coordinate system, it’s helpful to re-label the axes

with the letter a and a numerical subscript. Using this approach, the x-axis becomes axis a1,

the y-axis becomes axis a2, the z-axis becomes axis a3, and the newly introduced fourth axis

becomes axis a4. Points within this space are then located using a quadruple-coordinate

 system of the form (a1, a2, a3, a4).

 Adding a fi fth axis makes the space even more complex, but points within this space are easily

addressed using a quintuple-coordinate system of the form (a1, a2, a3, a4, a5). A sixth axis leads to

a sextuple-coordinate system (a1, a2, a3, a4, a5, a6); a seventh axis leads to a septuple-coordinate

 system (a1, a2, a3, a4, a5, a6, a7); and an eighth axis leads to an octuple-coordinate system (a1, a2,

a3, a4, a5, a6, a7, a8).

 You could go on like this forever, and while imagining spaces such as these is a bit

 mind-blowing, locating a point within any of them is a simple matter of employing an

 appropriately sized coordinate system.

 Generically, these spaces are referred to as n-dimensional spaces. These spaces have n

 number of axes, and points within them are located using coordinate systems of the form

(a1, a2,. . .,an). These coordinate systems are generically referred to as tuples.

 Note The question of how to properly pronounce the word tuple always seems to come up.

Some folks pronounce it with a u like the one in cup. Others pronounce it like with a u like the

one in dude. We aren’t really sure which way is right and use both forms ourselves.

Cube Space

 In Analysis Services, a cube is presented as an n-dimensional space referred to as a cube

space. Each attribute-hierarchy within the dimensions of the cube forms an axis. Along each

axis, each member of the associated attribute-hierarchy, including the (All) member, occupies

a position. This translation of an attribute-hierarchy to a cube space axis is illustrated in

Figure 3-4 for the Product dimension’s Category attribute-hierarchy, fi rst described in

Chapter 1, “Welcome to MDX.”

 Measures are also assigned an axis. Although handled differently during cube design,

for the purposes of defi ning a cube space, a cube’s measures are simply members of an

 attribute-hierarchy called Measures, which belongs to the Measures dimension. One thing

that differentiates the Measures attribute-hierarchy from other attribute-hierarchies is that

it does not (and cannot) have an (All) member.

 With each traditional attribute-hierarchy and the measures of a cube translated into axes,

the cube space is defi ned. Points within the cube space can then be referenced using a tuple.

Unlike tuples in the n-dimensional spaces formed by number lines, tuples in cube spaces use

member references for coordinate values.

40 Part I MDX Fundamentals

All Products

Accessories Bikes Clothing Components

All Products

Accessories

Bikes

Clothing

Com
ponents

Level 1
Leaf Level

Level 0
(All) Level

FIGURE 3-4 The representation of the Category attribute-hierarchy as a cube space axis

Basic Member References

 You can reference a member within an attribute-hierarchy in a number of ways. The basic

member reference identifi es the member along with its associated attribute-hierarchy

and dimension using the following form:

[Dimension].[Hierarchy].[Member].

 Each of the dimension, attribute-hierarchy, and member object identifi ers within the

member reference are encapsulated in square brackets. These are separated from each

other by periods.

 The square brackets around a particular object identifi er are optional as long as the

 object identifi er:

 1. Is not one of 200+ reserved words identifi ed in SQL Server Books Online

 2. Does not start with a character other than a letter or underscore

 3. Does not otherwise contain any characters other than letters, numbers, or

underscores

 Instead of keeping up with all this, you might fi nd it easier to just consistently wrap

each identifi er in square brackets. This is a standard used throughout this book.

 Object names are used as the identifi ers for dimensions and attribute-hierarchies.

Members are a bit more complex in that they can be identifi ed by either name or key.

 A member’s name is its user-friendly label. This is what is usually presented in result

sets and browsers such as the MDX Query Editor. The following example demonstrates

a name-based reference to the member Bikes of the Product dimension’s Category

attribute-hierarchy:

[Product].[Category].[Bikes]

 Chapter 3 Understanding Tuples 41

 Member names suffer one key drawback: They are not guaranteed to be unique within

an attribute-hierarchy. This is problematic if more than one member within a hierarchy

shares the same name (which is quite common in some dimensional models). Using

key-based references resolves this problem.

 A member’s key is its unique identifi er within its associated attribute-hierarchy. Because of

its guaranteed uniqueness, a key is the most precise means of identifying a member within

an attribute-hierarchy. When identifying a member by key, the identifi er is preceded

by the ampersand character (&). The previous Bikes reference is demonstrated using its

 key-based reference:

[Product].[Category].&[1]

 This example illustrates a common issue with key-based references. If you are not aware

that the member named Bikes employs a key-value of 1, the key-based reference may

be diffi cult to interpret. This leaves you in the position of using name-based references

that may be ambiguous or key-based references that may be diffi cult to interpret. In this

book, we make use of named-based references for interpretability unless a particular

concept or ambiguity dictates we use keys. The right choice in your applications

 depends on the structure of your data.

Accessing Data with Tuples

 The MDX Step-by-Step sample database accompanying this book contains a highly simplifi ed

cube named Chapter 3 Cube. The cube consists of two dimensions—Product and Date—and

a single measure, Reseller Sales Amount. Figure 3-5 presents the structure of this cube.

FIGURE 3-5 The structure of the Chapter 3 Cube cube

 Within the Product dimension are two attribute-hierarchies, Subcategory and Category. The

Date dimension also contains two attribute-hierarchies, Fiscal Year and Calendar Year, which

together form the levels of the user-hierarchy Calendar-To-Fiscal Year.

42 Part I MDX Fundamentals

 Note The Calendar-To-Fiscal Year user-hierarchy is provided in this cube for no other purpose

than to illustrate a few critical concepts while sidestepping a few issues addressed later on.

The Calendar-To-Fiscal Year user-hierarchy is not found in the Step-by-Step cube, and such a

user- hierarchy combining fi scal year and calendar year attributes is rarely found in the real world.

Please consider this hierarchy nothing more than an educational construct.

With four traditional attribute-hierarchies plus the Measures attribute-hierarchy discussed

earlier in this chapter, the cube space formed by this cube contains a total of fi ve axes. Points

within this cube space are therefore located using a fi ve-part tuple.

For example, the point located at the intersection of the Category member Bikes, the

Subcategory member Mountain Bikes, the Calendar Year and Fiscal Year members All

Periods, and the Measures member Reseller Sales Amount is identifi ed with the following

fi ve-part tuple:

(

 [Date].[Calendar Year].[All Periods],

 [Date].[Fiscal Year].[All Periods],

 [Product].[Category].[Bikes],

 [Product].[Subcategory].[Mountain Bikes],

 [Measures].[Measures].[Reseller Sales Amount]

)

The use of this tuple to retrieve data is demonstrated in the following exercise.

Use a tuple to access a point in a cube space

 1. Open the MDX Query Editor to the MDX Step-by-Step database. If you need assistance

with this task, refer to Chapter 2, “Using the MDX Query Editor.”

 2. In the code pane, enter the following query:

SELECT

FROM [Chapter 3 Cube]

WHERE (

 [Date].[Calendar Year].[All Periods],

 [Date].[Fiscal Year].[All Periods],

 [Product].[Category].[Bikes],

 [Product].[Subcategory].[Mountain Bikes],

 [Measures].[Measures].[Reseller Sales Amount]

)

Note The line breaks and indentions used with this tuple are purely for readability.

Use a tuple to access a point in a cube space

 Chapter 3 Understanding Tuples 43

 3. Execute the query.

 The tuple is employed in the SELECT statement to retrieve data from a single point

within the cube space formed by the Chapter 3 Cube. Like tuples associated with

 number lines, this tuple used here consists of a parentheses-enclosed, comma-delimited

list of coordinate values. Each of these values consists of a basic member reference

identifying a member (by name) and its associated attribute-hierarchy and dimension.

 Since an attribute-hierarchy represents an axis in the cube space and a member reference

identifi es the attribute-hierarchy, the member reference identifi es the axis with which it is

 associated. In other words, member references are self-describing. Therefore, you don’t

need to rely on the position of a member reference (coordinate value) in the tuple to

 determine which axis it is associated with. This allows member references to be placed in

any order within a tuple without impacting the point identifi ed.

 4. Move the [Product].[Subcategory].[Mountain Bikes] member reference to the top of the

tuple:

SELECT

FROM [Chapter 3 Cube]

WHERE (

 [Product].[Subcategory].[Mountain Bikes],

 [Date].[Calendar Year].[All Periods],

 [Date].[Fiscal Year].[All Periods],

 [Product].[Category].[Bikes],

 [Measures].[Measures].[Reseller Sales Amount]

)

 5. Execute the query and verify the same value as before is returned.

Try moving around other member references within the tuple. Notice that so long as

the tuple is properly formed, the same point within the cube space is identifi ed.

Understanding Cells

 In the previous exercise, you used a tuple to locate a point within a cube space. On the surface,

it appeared that a simple value is recorded at this point, which is what is returned by the SELECT

statement. The reality is a bit more complex.

44 Part I MDX Fundamentals

 Points within cube spaces are occupied by cells. Cells are objects and as such have a

 number of properties. When cells are accessed, various properties are returned. The default

 properties returned are VALUE and FORMATTED_VALUE.

The VALUE property contains an aggregated measure value. That value is based on the

 measure aggregated against all the other attribute-hierarchy members associated with the cell.

For example, the VALUE property of the cell associated with the previously employed tuple,

repeated here for clarity, contains the aggregated value for the Reseller Sales Amount measure

limited to the Calendar Year and Fiscal Year attribute-hierarchies’ All Periods members, the

Category attribute-hierarchy’s Bikes member, and the Subcategory attribute-hierarchy’s

Mountain Bikes member:

(

 [Date].[Calendar Year].[All Periods],

 [Date].[Fiscal Year].[All Periods],

 [Product].[Category].[Bikes],

 [Product].[Subcategory].[Mountain Bikes],

 [Measures].[Measures].[Reseller Sales Amount]

)

 The FORMATTED_VALUE property contains the string representation of the VALUE property,

formatted per instructions associated with the cell at design time. The FORMATED_VALUE

is what is displayed in the results pane of the MDX Query Editor. A bit more information on

 assigning formats is provided in Chapter 5, “Working with Expressions.”

 A number of other properties can be returned with a cell. Within a SELECT statement, these

are accessed using the CELL PROPERTIES keyword as demonstrated in the following exercise.

Access cell properties

 1. If you have not already done so, open the MDX Query Editor to the MDX Step-by-Step

database.

 2. In the code pane, re-enter the last query from the previous exercise:

SELECT

FROM [Chapter 3 Cube]

WHERE (

 [Product].[Subcategory].[Mountain Bikes],

 [Date].[Calendar Year].[All Periods],

 [Date].[Fiscal Year].[All Periods],

 [Product].[Category].[Bikes],

 [Measures].[Measures].[Reseller Sales Amount]

)

 3. Execute the query to retrieve the results.

Access cell properties

 Chapter 3 Understanding Tuples 45

 4. Double-click the cell returned in the Results pane to open the Cell Properties dialog box.

 The default properties VALUE and FORMATTED_VALUE are returned with the cell. The

CELL_ORDINAL property, displayed as CellOrdinal, is also returned to indicate the

 position of the returned cell in the query’s cell set. Cell sets are discussed in Chapter 4,

“Working with Sets.”

 You can retrieve additional properties by including the CELL PROPERTIES keyword in

your query. If you use the CELL PROPERTIES keyword, the VALUE and FORMATTED_

VALUE properties are not returned unless explicitly requested. (The CELL_ORDINAL

property is always returned as it is a property of the retrieved data.)

 5. Click the OK button in the Cell Properties dialog box to close it.

 6. Modify the query to request the FORMATTED_VALUE and FORMAT_STRING cell

 properties, purposely omitting the VALUE and CELL_ORDINAL properties:

SELECT

FROM [Chapter 3 Cube]

WHERE (

 [Product].[Subcategory].[Mountain Bikes],

 [Date].[Calendar Year].[All Periods],

 [Date].[Fiscal Year].[All Periods],

 [Product].[Category].[Bikes],

 [Measures].[Measures].[Reseller Sales Amount]

)

CELL PROPERTIES FORMATTED_VALUE, FORMAT_STRING

 7. Execute the query.

46 Part I MDX Fundamentals

 8. Double-click the returned cell to open the Cell Properties dialog box.

 Notice that VALUE is omitted from the list of cell properties, but the CELL_ORDINAL

property is returned with the cell.

 9. Review the property values and then click OK to close the dialog box.

 The complete list of available cell properties and their descriptions is provided in Table 3-1.

Additional information on each property is available through SQL Server Books Online.

 TABLE 3-1 Available cell properties

 Cell Property Description

 ACTION_TYPE A bitmask indicating the type of action(s) associated with the cell.

 BACK_COLOR A bitmask indicating the background color to use when displaying the

VALUE or FORMATTED_VALUE property of the cell.

 CELL_ORDINAL The ordinal number of the cell in the cell set.

 FONT_FLAGS A bitmask indicating whether the cell’s font should be presented using italic,

bold, underline, or strikeout detailing.

 FONT_NAME The name of the font to use when displaying the VALUE or

FORMATTED_VALUE property of the cell.

 FONT_SIZE The font size to use when displaying the VALUE or FORMATTED_VALUE

 property of the cell.

 FORE_COLOR A bitmask indicating the foreground color to use when displaying the

VALUE or FORMATTED_VALUE property of the cell.

 FORMAT This is the same as the FORMAT_STRING property.

 FORMAT_STRING The format string used to create the value of FORMATTED_VALUE

property of the cell.

 FORMATTED_VALUE The character string representation of the VALUE property formatted per

the FORMAT_STRING value.

 LANGUAGE The locale against which the FORMAT_STRING will be applied.

 UPDATEABLE A value indicating whether the cell can be updated.

 VALUE The unformatted value of the cell.

Cell Property Description

 Chapter 3 Understanding Tuples 47

Working with Partial Tuples
The cube used in this chapter has a very simple structure. With only fi ve attribute-hierarchies

(including Measures), points within this cube are identifi able using a fi ve-part tuple. Imagine a

more typical cube with tens or even hundreds of attributes. Having to specify a member reference

for each attribute-hierarchy within the cube to complete a tuple would simply be overwhelming.

Thankfully, Analysis Services allows you to submit partial tuples. Within a partial tuple one or

more member references are omitted. Because a complete tuple is required to locate a point in

the cube space, Analysis Services takes responsibility for fi lling in the missing references. This is

done by applying the following rules for each missing attribute-hierarchy member reference:

 1. If the member reference is omitted, use the attribute’s default member.

 2. If the member reference is omitted and no default member is specifi ed, use the

 attribute’s (All) member.

 3. If the member reference is omitted, no default member is specifi ed, and the (All)

 member does not exist, use the attribute’s fi rst member.

In the following exercise, you put these rules to work.

Access cells in a cube using partial tuples

 1. If you have not already done so, open the MDX Query Editor to the MDX Step-by-Step

database.

 2. In the code pane, enter the following query specifying a complete tuple:

SELECT

FROM [Chapter 3 Cube]

WHERE (

 [Date].[Calendar Year].[All Periods],

 [Date].[Fiscal Year].[All Periods],

 [Product].[Category].[Bikes],

 [Product].[Subcategory].[Mountain Bikes],

 [Measures].[Measures].[Reseller Sales Amount]

)

 3. Execute the query and note the result.

 4. Now, specify a partial tuple by removing the Measures member reference:

SELECT

FROM [Chapter 3 Cube]

WHERE (

 [Date].[Calendar Year].[All Periods],

 [Date].[Fiscal Year].[All Periods],

 [Product].[Category].[Bikes],

 [Product].[Subcategory].[Mountain Bikes]

)

Access cells in a cube using partial tuples

48 Part I MDX Fundamentals

 Note Be certain to remove the comma following the Mountain Bikes member reference.

 5. Execute the query and compare the result to that of the previous query.

 With the Measures member removed, a partial tuple is submitted to Analysis

Services. Analysis Services supplies the missing Measures reference by fi rst checking

for a default member. The default member of the Measures attribute-hierarchy

is Reseller Sales Amount. That member is applied and the tuple is complete.

The process by which the tuple is completed is illustrated in Figure 3-6. Because the

completed tuple is the same tuple specifi ed in the fi rst query of this exercise, the

same cell is accessed.

Position
Partial
Tuple

Rule 1:
Default
Member

Rule 2:
(All)
Member

Rule 3:
First
Member

Completed
Tuple

Date.
Calendar
Year

Date.
Fiscal
Year

All Periods All Periods

Product.
Category Bikes Bikes

Product.
Subcategory

Mountain
Bikes

Mountain
Bikes

Measures.
Measures (omitted) Reseller

Sales Amount
Reseller
Sales Amount

All Periods All Periods

FIGURE 3-6 The process for completing the tuple with a missing Measures member

 Note The default member of the Measures attribute-hierarchy is defi ned at design time

when a default measure is assigned to the cube. In this cube, a default measure of Reseller

Sales Amount has been assigned. Had this not been explicitly assigned, the third rule

would have completed the tuple with Reseller Sales Amount, the fi rst (and only) measure in

the cube.

 Chapter 3 Understanding Tuples 49

 6. Alter the query by removing the two member references associated with the Date

dimension:

 SELECT

FROM [Chapter 3 Cube]

WHERE (

 [Product].[Category].[Bikes],

 [Product].[Subcategory].[Mountain Bikes]

)

 7. Execute the query and compare the result to that of the previous query.

 With this query, Analysis Services supplies the Measures member reference by applying

the fi rst rule. For the Date dimension’s Calendar Year and Fiscal Year attribute-hierarchies, a

default member is not defi ned so the fi rst rule does not address these omitted references.

However, an (All) member, All Periods, is defi ned for these attribute-hierarchies, so the

 second rule fi lls in the blanks. The process by which this partial tuple is completed is

 illustrated in Figure 3-7. As before, the completed tuple is the same as the tuple in the fi rst

query of this exercise so that the same cell as before is accessed.

Position
Partial
Tuple

Rule 1:
Default
Member

Rule 2:
(All)
Member

Rule 3:
First
Member

Completed
Tuple

Date.
Calendar
Year

Date.
Fiscal
Year

Product.
Category Bikes Bikes

Product.
Subcategory

Mountain
Bikes

Mountain
Bikes

Measures.
Measures

(omitted) Reseller
Sales Amount

Reseller
Sales Amount

(not available) (omitted) All Periods All Periods

(not available) (omitted) All Periods All Periods

FIGURE 3-7 The process for completing the tuple with missing Measures, Calendar Year, and Fiscal Year
members

 Now that you understand partial tuples, it should be clear what the basic query introduced

in Chapter 2 returns. This query, SELECT FROM [Step-by-Step], returns the cell associated with

50 Part I MDX Fundamentals

the partial tuple within which no member references are supplied. Analysis Services completes

each member reference using the three preceding rules and accesses the identifi ed cell.

More Member References

 Members in user-hierarchies may also be referenced using the form,

[Dimension].[Hierarchy].[Member], introduced earlier in this chapter. For example,

the calendar year 2003 member of the Calendar-To-Fiscal Year user-hierarchy can be

identifi ed as follows:

[Date].[Calendar-To-Fiscal Year].[CY 2003]

 However, because user-hierarchies are assembled from multiple attribute-hierarchies, the

member identifi er has greater opportunity to be non-unique. This is true not only when

member names are employed but also with member keys. To illustrate this, consider the

following member reference. Does it reference calendar year 2003 or fi scal year 2003?

[Date].[Calendar-To-Fiscal Year].&[2003]

 This reference is ambiguous. Both the calendar year 2003 and fi scal year 2003

 members use the number 2003 as their key. Referencing the member using the form

[Dimension].[Hierarchy].[Level].[Member] resolves this ambiguity:

[Date].[Calendar-To-Fiscal Year].[Calendar Year].&[2003]

 This new form works with both member keys and member names and is ideal when the

member identifi er is unique within a specifi ed level but not necessarily unique across

the levels of the hierarchy.

 Unfortunately, in some situations this new form of member reference is still ambiguous.

Consider the Fiscal Year members in Figure 3-8. In particular, pay attention to the two

FY 2003 members.

FIGURE 3-8 The relationship between the FY 2003 members and CY 2002 and CY 2003 members

 Chapter 3 Understanding Tuples 51

 There is one FY 2003 member in the Fiscal Year attribute-hierarchy representing the period

July 1, 2002, to June 30, 2003. Since the fi scal year 2003 straddles calendar years 2002

and 2003, two FY 2003 members (one under CY 2002 and the other under CY 2003) are

found in the user-hierarchy. Within the user-hierarchy, the FY 2003 member is presented as

two distinct members.

In this situation, the only way to differentiate between the two is to identify the Fiscal

Year member in relation to its Calendar Year parent. Here are member references

 identifying these two distinct user-hierarchy members:

[Date].[Calendar-To-Fiscal Year].[Calendar Year].[CY 2002].[FY 2003]

[Date].[Calendar-To-Fiscal Year].[Calendar Year].[CY 2003].[FY 2003]

Building Tuples with User-Hierarchies

The exercises presented thus far have built tuples exclusively using references to members

in attribute-hierarchies. You can also use user-hierarchies to assemble tuples. When a

 user-hierarchy member reference is employed, Analysis Services translates that reference into

one or more attribute-hierarchy member references to assemble a resolvable tuple.

Understanding User-Hierarchy Translation

To translate a user-hierarchy member reference into one or more attribute-hierarchy

 references, Analysis Services fi rst locates the specifi ed member within the user-hierarchy.

With this member located, that member and each member in the levels above it forming

the member’s lineage in the user-hierarchy is then known. As each level in a user-hierarchy

is derived from an attribute-hierarchy, an attribute-hierarchy reference for the specifi ed

 member and each member in its lineage is then generated. The lone exception to this is the

user-hierarchy’s (All) member, which does not map to any member in an attribute-hierarchy

and is therefore simply ignored in the translation process.

The following exercise demonstrates the process of translating user-hierarchy member

 references to attribute-hierarchy references.

Access cells with tuples containing user-hierarchies

 1. If you have not already done so, open the MDX Query Editor to the MDX Step-by-Step

database.

 2. In the code pane, enter the following query:

SELECT

FROM [Chapter 3 Cube]

WHERE (

 [Date].[Calendar-To-Fiscal Year].[Calendar Year].[CY 2003].[FY 2003]

)

Access cells with tuples containing user-hierarchies

52 Part I MDX Fundamentals

 Note When a tuple is specifi ed using a single member reference, the tuple’s parentheses

can be omitted. Parentheses are applied to the tuple in the preceding query for the

 purpose of consistency.

 3. Execute the query and note the result.

 To resolve this tuple, Analysis Services fi rst locates the FY 2003 member in the Fiscal

Year level associated with the CY 2003 member of the Calendar Year level of the

Calendar-To-Fiscal Year user-hierarchy. Analysis Services then determines the lineage

of this member, which you already know given the explicit structure of the member

 reference. Each member in the lineage is then translated into an attribute-hierarchy

reference and the tuple is completed as illustrated in Figure 3-9.

Position
Partial
Tuple

Rule 1:
Default
Member

User-
Hierarchy
Translation

Rule 2:
(All)
Member

Rule 3:
First
Member

Completed
Tuple

Date.
Calendar-To-
Fiscal Year

Date.
Calendar
Year

Date.
Fiscal
Year

Product.
Category

Product.
Subcategory

Measures.
Measures

FY 2003FY 2003

(omitted) (not available) All Products All Products

Calendar Year.
 CY 2003.
FY 2003

CY 2003CY 2003

(omitted) (not available) All Products All Products

(omitted) Reseller
Sales Amount

Reseller
Sales Amount

FIGURE 3-9 The process for completing the tuple specifying the FY 2003 member associated with CY
2003 in the Calendar-To-Fiscal Year user-hierarchy

 To verify this, you can submit the translated (partial) tuple to see that the same cell is

returned.

 Chapter 3 Understanding Tuples 53

 4. Modify the query to refl ect the translated (partial) tuple:

SELECT

FROM [Chapter 3 Cube]

WHERE (

 [Date].[Calendar Year].[CY 2003],

 [Date].[Fiscal Year].[FY 2003]

)

 5. Execute the query and compare the result to that in step 3.

 When the lineage for FY 2003 is not specifi ed in the user-hierarchy member reference,

the reference becomes ambiguous, as described in the previous sidebar “More Member

References”. Analysis Services retrieves the fi rst FY 2003 member within the Fiscal Year

level of the user-hierarchy it encounters. It then proceeds with the translation process, as

previously described.

 6. Modify the query to use an ambiguous reference to the FY 2003 member of the

Calendar-To-Fiscal Year user-hierarchy:

SELECT

FROM [Chapter 3 Cube]

WHERE (

 [Date].[Calendar-To-Fiscal Year].[Fiscal Year].[FY 2003]

)

 7. Execute the query and note the result.

 By simply removing the parent member identifi er, a different cell is accessed. Analysis

Services searches the Fiscal Year level for a member named FY 2003 and the fi rst

FY 2003 member encountered just so happens to be the member associated with the

CY 2002 member of the Calendar Year level. You can verify this by explicitly requesting

this cell and comparing its value to that of the previous query.

 8. Modify the query to refl ect the translated tuple:

SELECT

FROM [Chapter 3 Cube]

WHERE (

 [Date].[Calendar Year].[CY 2002],

 [Date].[Fiscal Year].[FY 2003]

)

54 Part I MDX Fundamentals

 9. Execute the query and compare its results to those of the previous query.

 These steps demonstrate the process by which a reference to a leaf-level member in

a user-hierarchy is translated into attribute-hierarchy references. You would expect this

 process to work the same for references to non-leaf members, and it does. When a

 reference to a non-leaf member in a user-hierarchy is made, the member is identifi ed

along with its ancestors, just as before. Descendant members, those related to the

 specifi ed member in lower levels of the hierarchy are simply ignored for the purposes

of translation.

 10. Modify the query, specifying a member from the Calendar Year level of the

 user-hierarchy:

SELECT

FROM [Chapter 3 Cube]

WHERE (

 [Date].[Calendar-To-Fiscal Year].[Calendar Year].[CY 2002]

)

 11. Execute the query.

 The CY 2002 member is located within the Calendar Year level of the Calendar-To-Fiscal Year

user-hierarchy. This is a non-leaf level. As before, the specifi ed member, CY 2002, is located.

That member and the members in its lineage, of which there are none (of any relevance),

are translated into attribute-hierarchy references. No Fiscal Year attribute-hierarchy member

reference is created, as illustrated in Figure 3-10.

 You can verify this by submitting the translated tuple and comparing its results to that

of the prior query.

 12. Modify the query to refl ect the translated tuple:

 SELECT

FROM [Chapter 3 Cube]

WHERE (

 [Date].[Calendar Year].[CY 2002]

)

 Chapter 3 Understanding Tuples 55

Position
Partial
Tuple

Rule 1:
Default
Member

User-
Hierarchy
Translation

Rule 2:
(All)
Member

Rule 3:
First
Member

Completed
Tuple

Date.
Calendar-To-
Fiscal Year

Date.
Calendar
Year

Date.
Fiscal
Year

Product.
Category

Product.
Subcategory

Measures.
Measures

CY 2002

(omitted) (not available) All Products All Products

Calendar Year.
CY 2002

CY 2002

(omitted) (not available) All Products All Products

(omitted) Reseller
Sales Amount

Reseller
Sales Amount

(omitted) (not available) All Periods All Periods

FIGURE 3-10 The process for completing the partial tuple specifying the member CY 2002 within the
Calendar-To-Fiscal Year user-hierarchy

 13. Execute the query and compare the result to those in step 11.

Avoiding Reference Confl icts

As has been mentioned, user-hierarchies are assembled from attribute-hierarchies. The

 translation process described in this chapter deconstructs a user-hierarchy member reference

into its associated attribute-hierarchy member references. But, what if a tuple already contains a

 reference to one of the attribute-hierarchies from which the user-hierarchy is derived? This creates

an opportunity for the translation to generate confl icting attribute-hierarchy references.

Access cells with tuples containing overlapping references

 1. If you have not already done so, open the MDX Query Editor to the MDX Step-by-Step

database.

 2. In the code pane, enter the following query to employ references to both the

Calendar-To-Fiscal Year user-hierarchy and Fiscal Year attribute-hierarchy:

SELECT

FROM [Chapter 3 Cube]

Access cells with tuples containing overlapping references

56 Part I MDX Fundamentals

WHERE (

 [Date].[Calendar-To-Fiscal Year].[Calendar Year].[CY 2002],

 [Date].[Fiscal Year].[FY 2003]

)

 3. Execute the query.

 The process of translation and tuple completion is illustrated in Figure 3-11.

Position
Partial
Tuple

Rule 1:
Default
Member

User-
Hierarchy
Translation

Rule 2:
(All)
Member

Rule 3:
First
Member

Completed
Tuple

Date.
Calendar-To-
Fiscal Year

Date.
Calendar
Year

Date.
Fiscal
Year

Product.
Category

Product.
Subcategory

Measures.
Measures

(omitted) (not available) All Products All Products

Calendar Year.
CY 2002

CY 2002CY 2002

(omitted) (not available) All Products All Products

(omitted) Reseller
Sales Amount

Reseller
Sales Amount

FY 2003 FY 2003

FIGURE 3-11 The process for completing the partial tuple specifying the member CY 2002 within the
Calendar-To-Fiscal Year user-hierarchy and FY 2003 within the Fiscal Year attribute-hierarchy

 Although the tuple is syntactically valid, the combination of references to an attribute-

hierarchy and a user-hierarchy based on that same attribute-hierarchy creates an

 opportunity for overlapping references following translation. In the previous query, this

was avoided. The same is not true in the next query.

 4. Modify the query to create an overlapping reference to FY 2003:

SELECT

FROM [Chapter 3 Cube]

WHERE (

 [Date].[Calendar-To-Fiscal Year].[Calendar Year].[CY 2002].[FY 2003],

 [Date].[Fiscal Year].[FY 2003]

)

 Chapter 3 Understanding Tuples 57

 5. Execute the query.

 The translation process is illustrated in Figure 3-12.

Position
Partial
Tuple

Rule 1:
Default
Member

User-
Hierarchy
Translation

Rule 2:
(All)
Member

Rule 3:
First
Member

Completed
Tuple

Date.
Calendar-To-
Fiscal Year

Date.
Calendar
Year

Date.
Fiscal
Year

FY 2003

Product.
Category

Product.
Subcategory

Measures.
Measures

FY 2003FY 2003

(omitted) (not available) All Products All Products

Calendar Year.
 CY 2002.
FY 2003

CY 2002CY 2002

(omitted) (not available) All Products All Products

(omitted) Reseller
Sales Amount

Reseller
Sales Amount

FIGURE 3-12 The process for completing the partial tuple specifying overlapping references to the
FY 2003 member

 Here, the user-hierarchy member reference is translated to Calendar Year and Fiscal Year

attribute-hierarchy references. The tuple already employs a Fiscal Year attribute-hierarchy

reference creating overlap. The overlap has a happy ending since the two Fiscal Year

 attribute-hierarchy member references are identical. Had this not been the case, the overlap

would have created a confl ict, resulting in an invalid tuple.

 6. Modify the query to create an overlapping reference with confl icting Fiscal Year members:

SELECT

FROM [Chapter 3 Cube]

WHERE (

 [Date].[Calendar-To-Fiscal Year].[Calendar Year].[CY 2002].[FY 2003],

 [Date].[Fiscal Year].[FY 2002]

)

58 Part I MDX Fundamentals

 7. Execute the query.

 In this query, the user-hierarchy member reference is translated into Calendar Year and

Fiscal Year attribute-hierarchy references. As shown in Figure 3-13, the FY 2003 member

 reference created through this process confl icts with the FY 2002 attribute-hierarchy

 member reference. The confl ict in member references results in an invalid reference to

the Fiscal Year attribute-hierarchy, which results in an empty cell being returned.

Position
Partial
Tuple

Rule 1:
Default
Member

User-
Hierarchy
Translation

Rule 2:
(All)
Member

Rule 3:
First
Member

Completed
Tuple

Date.
Calendar-To-
Fiscal Year

Date.
Calendar
Year

Date.
Fiscal
Year

Product.
Category

Product.
Subcategory

Measures.
Measures

CY 2002

(omitted) (not available) All Products All Products

Calendar Year.
 CY 2002.
FY 2003

CY 2002

(omitted) (not available) All Products All Products

(omitted) Reseller
Sales Amount

Reseller
Sales Amount

(invalid)FY 2002FY 2003

FIGURE 3-13 The process for completing the partial tuple specifying confl icting overlapping members
from the Calendar-To-Fiscal Year user-hierarchy and Fiscal Year attribute-hierarchy

 For the reason demonstrated here, it is recommended you consider the possibility of

overlap when employing references to user-hierarchies in combination with references

to the attribute-hierarchies from which they are derived.

 Note Analysis Services enforces a rule that a hierarchy can be referenced no more than

once in a given tuple. The process of translation as demonstrated in the last two queries

can result in redundant (overlapping) member references, which violates this rule without

triggering an error. When working with combinations of attribute and user-hierarchies

from a given dimension, be certain to understand which attribute-hierarchies are

 ultimately being referenced, and employ member references in a way that minimizes the

potential for overlapping member references.

 Chapter 3 Understanding Tuples 59

Member Reference Shortcuts

 The last two sidebars introduced you to three forms of member reference. These forms

 provide greater and greater degrees of precision to address various forms of ambiguity.

 However, not all member references are ambiguous. Many members are unique, whether by

name or key, across all hierarchies in a dimension. Still others are unique across all hierarchies

in all dimensions. In these situations, omitting the dimension or hierarchy identifi er in a

member reference still allows the specifi ed member to be found without ambiguity.

 Although not encouraged, Analysis Services allows you to take these shortcuts in member

 reference syntax. These shortcuts can include the omission of dimensions and hierarchy

 identifi ers, allowing tuples to be expressed using a more compact format. For example, the

fi rst tuple presented in this chapter can be expressed using the shortened form:

(

 [Calendar Year].[All Periods],

 [Fiscal Year].[All Periods],

 [Bikes],

 [Subcategory].[Mountain Bikes],

 [Reseller Sales Amount]

)

 Although this makes the tuple more compact (and therefore reduces the amount of typing

you must do), consider some important pitfalls. First, the shortened syntax is less immediately

 interpretable and may be harder to support in the long run. Second, unless directed to a specifi c

object, Analysis Services searches the various objects within the cube for matches; this results in

 noticeable performance overhead. Finally, and most important, Analysis Services discontinues

its search as soon as a match is found. If you misjudge the ambiguity of the reference, the result

of the query may not be what is expected. For this reason, we encourage you to always employ

reasonably precise references supplying at a minimum the dimension and hierarchy identifi ers

along with the member’s key or name.

 Having said that, there is one shortcut we employ throughout the remainder of this book.

Apart from the previous examples in this chapter, you rarely see a measure identifi ed using

its fully qualifi ed form. Instead, measures are almost always identifi ed using the simplifi ed

form: [Measures].[Member]. Although we refer to the Reseller Sales Amount measure as

[Measures].[Measures].[Reseller Sales Amount] earlier in this chapter to demonstrate a point

about measures as members, we now refer to this measure as [Measures].[Reseller Sales

Amount] (and all other measures with the same form).

60 Part I MDX Fundamentals

Chapter 3 Quick Reference

 To Do this

 Reference a member by name Write the member reference in the form

[Dimension].[Hierarchy].[Member Name]. For example:

[Product].[Category].[Bikes]

 Reference a member by key Write the member reference in the form

[Dimension].[Hierarchy].&[Member Key]. For example:

[Product].[Category].&[1]

 Reference a member by

name within a level of a

 user-hierarchy

Write the member reference in the form

[Dimension].[Hierarchy].[Level].[Member Name]. For example:

[Date].[Calendar-To-Fiscal Year].[Calendar Year].[CY 2003]

In some instances this member reference is ambiguous. To avoid

ambiguity, you may use a member reference that includes lineage

information, such as this:

[Date].[Calendar-To-Fiscal Year].[Calendar Year].[CY 2003].

[FY 2003]

 Reference a cell using a tuple Write a parentheses-enclosed, comma-delimited list of member

references. For example:

(

 [Date].[Calendar Year].[All Periods],

 [Product].[Category].[Bikes],

 [Product].[Subcategory].[Mountain Bikes]

)

Keep in mind user-hierarchy member references will be translated

into attribute-hierarchy member references and any missing

attribute-hierarchy member references will be supplied by Analysis

Services.

 Retrieve cell properties as part

of the query result set

Include the CELL PROPERTIES keyword in the MDX SELECT

 statement, indicating the desired cell properties. For example:

SELECT

FROM [Chapter 3 Cube]

WHERE (

 [Product].[Subcategory].[Mountain Bikes],

 [Date].[Calendar Year].[All Periods],

 [Date].[Fiscal Year].[All Periods],

 [Product].[Category].[Bikes],

 [Measures].[Measures].[Reseller Sales Amount]

)

CELL PROPERTIES FORMATTED_VALUE, FORMAT_STRING

Otherwise, do not specify the CELL PROPERTIES keyword to return

the default properties VALUE and FORMATTED_VALUE.

To Do this

 211

Chapter 9

Working with Time

 After completing this chapter, you will be able to:

 Explain the requirements for effective time-based analysis in Analysis Services

 Employ MDX functions to calculate common time-based metrics

 Combine time-based expressions to assemble complex metrics

 Time is a critical component of business analysis. Analysts interpret the state of the business

now, often in relation to what it was in the past, with the goal of understanding what it might

be in the future.

 To support this, Analysis Services provides a number of time-based MDX functions. Using

these functions, powerful metrics can be assembled. In this chapter, you learn how to employ

the time-based MDX functions to calculate some of the more frequently requested of these

metrics.

Understanding the Time Dimension

 Analysis Services has no inherent awareness of the concept of time. Although at fi rst glance

this may seem like a shortcoming of the tool, it actually affords you the fl exibility to defi ne

your time dimension in a way that refl ects how time is managed in your specifi c organization.

 At the heart of the time dimension is one or more user-hierarchies referred to as calendars.

Calendars allow you to drill down in time from higher levels of granularity, such as years, into

lower levels of granularity, such as quarters, months, and days. Figure 9-1 illustrates one such

calendar hierarchy based on the standard calendar we employ in everyday life.

 When employed against calendar hierarchies, the time-based MDX functions give the

 appearance of time awareness. However, most time-based functions are simply exploiting

the basic structure of the hierarchy to return the set or member required. In fact, SQL

Server Books Online goes so far as to provide the navigational equivalents of each of

the time-based functions. If you require slightly different functionality, you can use the

 navigational functions to implement it yourself.

212 Part II MDX Functions

All Periods All Level

Level 1
(Calendar

Year)

Level 2
(Calendar
Semester)

Level 3
(Calendar
Quarter)

Level 4
(Month)

Level 5
(Date, Leaf)

CY 2003

Q1
CY 2003

Ja
nu

ar
y

20
03

Fe
br

ua
ry

 2
00

3

M
ar

ch
 2

00
3

......January 1, 2003 December 31, 2004

Q2
CY 2003

H1
CY 2003

H2
CY 2003

...

Ap
ril

 2
00

3

M
ay

 2
00

3

Ju
ne

 2
00

3

Ju
ly

 2
00

3

Au
gu

st
 2

00
3

Se
pt

em
be

r 2
00

3

O
ct

ob
er

 2
00

3

N
ov

em
be

r 2
00

3

D
ec

em
be

r 2
00

3

Q3
CY 2003

Q4
CY 2003

CY 2004

Q1
CY 2004

Ja
nu

ar
y

20
04

Fe
br

ua
ry

 2
00

4

M
ar

ch
 2

00
4

Q2
CY 2004

H1
CY 2004

H2
CY 2004

...

Ap
ril

 2
00

4

M
ay

 2
00

4

Ju
ne

 2
00

4

Ju
ly

 2
00

4

Au
gu

st
 2

00
4

Se
pt

em
be

r 2
00

4

O
ct

ob
er

 2
00

4

N
ov

em
be

r 2
00

4

D
ec

em
be

r 2
00

4

Q3
CY 2004

Q4
CY 2004

FIGURE 9-1 A user-hierarchy based on the standard calendar

 The reliance on the calendar hierarchies for time-based functionality imposes two critical

constraints on the attributes of the time dimension. First, the members of the attributes

comprising the calendar hierarchies must be ordered in time-based sequence from the past

to the present because many time-based functions assume this order. Second, complete

sets of members for each attribute should be provided because missing members throw off

position-based navigation.

 Each of these issues is addressed through cube and ETL-layer design. As an MDX developer,

you may not have the responsibility or the access required to ensure that these are addressed

in a manner appropriate to your needs. However, if you intend to successfully make use of

the time-based functions, you must make sure those responsible for assembling the time

 dimension are aware of these issues.

Determining the Current Value

 A very common request is to return the current value of a metric. Although determining

the current value is a seemingly simple request, it can be quite challenging.

 First, you need to determine the granularity of the request. We often think of time as

continuous, but in Analysis Services time is recorded as discrete members representing

ranges of time. Between attributes, these members overlap so that the current date

member of one attribute is associated with the current month member of another and

the current quarter and year members of still others. Each of these represents quite

 different ranges of time, but each represents the current time.

 Chapter 9 Working with Time 213 213

 Once you know the grain, the next challenge is to determine which member represents

the current time. A key characteristic of any data warehouse is latency. The time it takes

for changes to data in source systems to be refl ected in the data warehouse varies

from implementation to implementation, but some degree of latency is always present.

Because of this, the data warehouse is only current as of some point in the past. Knowing

this simply shifts the challenge from identifying the member associated with the current

time to identifying the member associated with the time at which the data is current.

One technique for identifying the time at which the data is current is to employ the

VBA time functions Date, Time, or Now to retrieve the current time, and then use the

VBA date math functions DateAdd or DateDiff to adjust the time for latency. You can

then use the adjusted value or parts of it extracted by using the VBA DatePart function

to locate the current time member.

 Although effective, this technique requires certainty in the amount of latency in the

data. Try as you might, you may not be able to always accurately refl ect this in the

 calculation. Considering the potential complexity of the expression logic as well, other

 alternatives should be explored.

 A preferred alternative is to incorporate a property or attribute within the time dimension

identifying a member at an appropriately low level of granularity as current. Relationships

between attributes can then be employed to identify current time members at higher

 levels of granularity. The particulars of this design-time solution to the problem of

 identifying the current time member vary with the circumstances of your data warehouse,

but the approach allows the data warehouse to tell you how up to date it is rather than

you telling it how up to date it should be.

Calculating an Accumulating Total

 In business, metrics are quite frequently reported as accumulating totals. For example,

 consider reseller sales in the month of October. Although sales in this month alone are

 interesting and important, the accumulation of sales over the months of the year up to and

including October may be more interesting, especially if you are tracking sales against an

 annual target.

 To calculate accumulating totals, you must determine the set of time members over which a

value is to be aggregated. This is done using the PeriodsToDate function:

PeriodsToDate([Level , [Member]])PeriodsToDate([Level , [Member]])

214 Part II MDX Functions

 The PeriodsToDate function returns the set of members from the start of a given period up

to and including a specifi ed member. The Level argument identifi es the level of the hierarchy

representing the period over which the returned set should span, whereas the Member

 argument identifi es the set’s ending member. You can think of Analysis Services as starting

with the specifi ed member, navigating up to its ancestor in the specifi ed level and then back

down to the fi rst sibling of the specifi ed member under this shared ancestor. The set returned

represents the range of members between and including these two members.

 If the Member argument is not specifi ed but the Level argument is, Analysis Services infers

the current member of the hierarchy for the Member argument. If neither the Member nor

the Level argument is specifi ed, Analysis Services infers the current member of a hierarchy

in a time dimension for the Member argument and the parent level of this member for the

Level argument. For most applications of the PeriodsToDate function, you are encouraged to

 supply both arguments to ensure clarity.

Calculate year-to-date reseller sales

 1. Open the MDX Query Editor to the MDX Step-by-Step database.

 2. In the code pane, enter the following query to retrieve reseller sales for the periods to

date for the month of April 2002:

SELECT

 {([Measures].[Reseller Sales Amount])} ON COLUMNS,

 {

 PeriodsToDate(

 [Date].[Calendar].[Calendar Year],

 [Date].[Calendar].[Month].[April 2002]

)

 } ON ROWS

FROM [Step-by-Step]

 3. Execute the query and review the results.

 In the preceding query, you use the PeriodsToDate function to retrieve all months in the

year 2002 prior to and including the month of April. By specifying the Calendar Year level

of the Calendar hierarchy, Analysis Services moves from the member April 2002 to its

Calculate year-to-date reseller sales

 Chapter 9 Working with Time 215

ancestor along this level, CY 2002. It then selects the CY 2002 member’s fi rst descendant

within the Month level—the level occupied by the specifi ed member April 2002. This fi rst

descendant, January 2002, and the specifi ed member, April 2002, then are used to form

a range, [Date].[Calendar].[Month].[January 2002]:[Date].[Calendar].[Month].[April 2002],

which resolves to the set presented along the ROWS axis.

 This query demonstrates the basic functionality of the PeriodsToDate function, but your

goal is to calculate a year-to-date total for reseller sales. Instead of using PeriodsToDate

to defi ne a set along an axis, you can use the function to defi ne the set over which you

aggregate values in a calculated member. As a starting point towards this goal, re-factor

the query to return all months along the ROWS axis.

 4. Modify the query to retrieve reseller sales for each month:

SELECT

 {([Measures].[Reseller Sales Amount])} ON COLUMNS,

 {[Date].[Calendar].[Month].Members} ON ROWS

FROM [Step-by-Step]

 5. Execute the query and review the results.

 6. Modify the query to calculate the year-to-date cumulative reseller sales for each

 member along the ROWS axis:

WITH

MEMBER [Measures].[Year to Date Reseller Sales] AS

 Aggregate(

 PeriodsToDate(

 [Date].[Calendar].[Calendar Year],

 [Date].[Calendar].CurrentMember

),

 ([Measures].[Reseller Sales Amount])

)

SELECT

 {

 ([Measures].[Reseller Sales Amount]),

 ([Measures].[Year to Date Reseller Sales])

 } ON COLUMNS,

 {[Date].[Calendar].[Month].Members} ON ROWS

FROM [Step-by-Step]

216 Part II MDX Functions

 7. Execute the query and review the results.

 For each member along the ROWS axis, the PeriodsToDate function returns the set of

members from the start of its calendar year up to and including this member. Over this

set, the current measure, Reseller Sales Amount, is aggregated to calculate year-to-date

sales. Comparing the year-to-date totals to the monthly sales values for previous

months, you can verify this logic.

 Note The preceding calculation employs the Aggregate function to calculate a running

total. For more information on this and the other MDX aggregation functions, see Chapter 7,

“Performing Aggregation.”

 As you review these results, notice between December 2001 and January 2002 the

 value of the accumulating total “resets.” This is because these two members have

 differing ancestor members within the Calendar Year level. This pattern of accumulation

and reset is observed whenever transitions between ancestors occur, as demonstrated

in the following calculations of quarter-to-date totals.

 8. Add a quarter-to-date total for reseller sales to the query:

WITH

MEMBER [Measures].[Year to Date Reseller Sales] AS

 Aggregate(

 PeriodsToDate(

 [Date].[Calendar].[Calendar Year],

 [Date].[Calendar].CurrentMember

),

 ([Measures].[Reseller Sales Amount])

)

MEMBER [Measures].[Quarter to Date Reseller Sales] AS

 Aggregate(

 PeriodsToDate(

 [Date].[Calendar].[Calendar Quarter],

 [Date].[Calendar].CurrentMember

),

 ([Measures].[Reseller Sales Amount])

)

 Chapter 9 Working with Time 217

SELECT

 {

 ([Measures].[Reseller Sales Amount]),

 ([Measures].[Year to Date Reseller Sales]),

 ([Measures].[Quarter to Date Reseller Sales])

 } ON COLUMNS,

 {[Date].[Calendar].[Month].Members} ON ROWS

FROM [Step-by-Step]

 9. Execute the query and review the new Quarter To Date Reseller Sales values.

Reviewing the results, you can see the same pattern of accumulation and reset with

the Quarter To Date Reseller Sales calculated measure as you do with the Year To Date

Reseller Sales calculated measure. The only difference is that the pattern is based on a

quarterly cycle as opposed to an annual one.

Simplifying Periods-to-Date Calculations

Many of the attributes in a time dimension are assigned Type property values at design

time, identifying the attributes as representing years, quarters, months, or weeks.

Analysis Services can return period-to-date sets based on these type assignments

without the identifi cation of a level by name. This functionality is provided through the

specialized Ytd, Qtd, Mtd, and Wtd functions returning year-to-date, quarter-to-date,

month-to-date, and week-to-date sets, respectively:

Ytd([Member])

Qtd([Member])

Mtd([Member])

Wtd([Member])

These functions, collectively referred to as the xTD functions, are logically equivalent

to the PeriodsToDate function with hard-coded level arguments. Their reliance on the

proper assignment of Type property values at design time makes them more succinct

but also makes them dependent on settings into which you may have little insight.

If you use the xTD functions, it is important for you to verify the set returned.

Ytd([Member])

Qtd([Member])

Mtd([Member])

Wtd([Member])

218 Part II MDX Functions

 To demonstrate the use of the xTD functions, the last query of the previous exercise is

 rewritten using Ytd and Qtd to derive the year-to-date and quarter-to-date sets, respectively:

WITH

MEMBER [Measures].[Year to Date Reseller Sales] AS

 Aggregate(

 Ytd([Date].[Calendar].CurrentMember),

 ([Measures].[Reseller Sales Amount])

)

MEMBER [Measures].[Quarter to Date Reseller Sales] AS

 Aggregate(

 Qtd([Date].[Calendar].CurrentMember),

 ([Measures].[Reseller Sales Amount])

)

SELECT

 {

 ([Measures].[Reseller Sales Amount]),

 ([Measures].[Year to Date Reseller Sales]),

 ([Measures].[Quarter to Date Reseller Sales])

 } ON COLUMNS,

 {[Date].[Calendar].[Month].Members} ON ROWS

FROM [Step-by-Step]

Calculating Inception-to-Date

 The period-to-date calculations return a value based on a range that is restricted to a

particular period, such as a quarter or year. Occasionally, you may wish to calculate an

accumulating value across all periods for which data is recorded. This is referred to as

an inception-to-date value.

 You can retrieve the inception-to-date range using the PeriodsToDate function with the

calendar’s (All) member’s level as the period identifi er, as demonstrated in the following

expression:

PeriodsToDate(

 [Date].[Calendar].[(All)],

 [Date].[Calendar].CurrentMember

)

 Chapter 9 Working with Time 219

 Although this expression is perfectly valid, many MDX developers typically calculate

inception-to-date sets employing a range-based shortcut:

Null: [Date].[Calendar].CurrentMember

 The Null member reference forces Analysis Services to evaluate the range from a

 position just prior to the fi rst member of the level on which the current time member

resides. The result is the same set returned by the previous expression that employed

the PeriodsToDate function.

 Whichever technique you employ, measures are aggregated over the set just as with

other period-to-date calculations, as demonstrated in the following example:

WITH

MEMBER [Measures].[Inception to Date Reseller Sales - PTD] AS

 Aggregate(

 PeriodsToDate(

 [Date].[Calendar].[(All)],

 [Date].[Calendar].CurrentMember

),

 ([Measures].[Reseller Sales Amount])

)

MEMBER [Measures].[Inception to Date Reseller Sales - Range] AS

 Aggregate(

 NULL:[Date].[Calendar].CurrentMember,

 ([Measures].[Reseller Sales Amount])

)

SELECT

 {

 ([Measures].[Reseller Sales Amount]),

 ([Measures].[Inception to Date Reseller Sales - PTD]),

 ([Measures].[Inception to Date Reseller Sales - Range])

 } ON COLUMNS,

 {[Date].[Calendar].[Month].Members} ON ROWS

FROM [Step-by-Step]

220 Part II MDX Functions

Calculating Rolling Averages

 Analysts often look for changes in values over time. Natural variability in most data can

make it diffi cult to identify meaningful changes. Rolling averages are frequently employed

to smooth out some of this variation, allowing more signifi cant or longer-term changes to be

more readily identifi ed.

 A rolling average is calculated as the average of values for some number of periods before

or after (and including) the period of interest. For example, the three-month rolling average

of sales for the month of February might be determined as the average of sales for February,

January, and December. A three-month rolling average calculated in this manner is common

in business analysis.

 The heart of the rolling average calculation is the determination of the set of periods

over which values will be averaged. To support the retrieval of this set, the MDX function

LastPeriods is provided:

LastPeriods(n [, Member])

 The LastPeriods function returns a set of n members before or after (and including) a

 specifi ed member of a time hierarchy. If a positive n value is provided, the set returned

 includes the members preceding the member of interest. If a negative n value is provided,

the set returned includes the members following the member of interest.

The function’s second argument is optional. If the second argument is not supplied, Analysis

Services assumes the current member of a hierarchy in a time dimension. For most applications

of the LastPeriods function, you are encouraged to employ the Member argument to ensure

clarity.

Calculate the three-month rolling average for reseller sales

 1. Open the MDX Query Editor to the MDX Step-by-Step database.

 2. In the code pane, enter the following query to retrieve reseller sales for the three

 periods preceding and including January 2002:

SELECT

 {([Measures].[Reseller Sales Amount])} ON COLUMNS,

 {

 LastPeriods(

 3,

 [Date].[Calendar].[Month].[January 2002]

)

 } ON ROWS

FROM [Step-by-Step]

LastPeriods(n [, Member])

Calculate the three-month rolling average for reseller sales

 Chapter 9 Working with Time 221

 3. Execute the query and review the results.

 In this query, you use the LastPeriods function to retrieve the three-month period

 preceding and including January 2002. Analysis Services starts with the specifi ed member,

January 2002, and treats this as period 1. This leaves n-1 or 2 members to return in the set.

Because n is a positive number, Analysis Services retrieves the January 2002 member’s two

 preceding siblings to complete the set. (Notice that the November and December 2001

 siblings were selected without regard for the change in the Calendar Year ancestor

 between them and the January 2002 member.)

 This query demonstrates the basic functionality of the LastPeriods function, but your

goal is to calculate a rolling average for reseller sales. Instead of using LastPeriods

to defi ne a set along an axis, you can use the function to defi ne the set over which

you will average values in a calculated member. As a starting point towards this goal,

 re-factor the query to return all months along the ROWS axis.

 4. Alter the query to retrieve reseller sales for various months:

SELECT

 {([Measures].[Reseller Sales Amount])} ON COLUMNS,

 {[Date].[Calendar].[Month].Members} ON ROWS

FROM [Step-by-Step]

 5. Execute the query and review the results.

 Reseller sales vary considerably between various months. For example, take a look at

the six-month period between October 2001 and March 2002. The wild swings between

monthly sales make it diffi cult to determine any general upward or downward trends during

this period. The same is true of the months between June 2002 and December 2002.

222 Part II MDX Functions

 6. Alter the query to calculate a three-month rolling average for reseller sales:

WITH

MEMBER [Measures].[Three Month Avg Reseller Sales Amount] AS

 Avg(

 LastPeriods(

 3,

 [Date].[Calendar].CurrentMember

),

 ([Measures].[Reseller Sales Amount])

)

SELECT

 {

 ([Measures].[Reseller Sales Amount]),

 ([Measures].[Three Month Avg Reseller Sales Amount])

 } ON COLUMNS,

 {[Date].[Calendar].[Month].Members} ON ROWS

FROM [Step-by-Step]

 7. Execute the query and compare the monthly reseller sales values to the three-month

rolling average values.

 The three-month rolling average smoothes out some of the variability in the data,

 making general trends more easily observed. The period from October 2001 to

March 2002 that refl ected so much variability based on monthly sales totals now

 appears to be trending only slightly upward. The period from June 2002 and December

2002 that also displayed considerable variability appears to be trending more

 signifi cantly upward. Without the smoothing effect of the rolling average, these trends

would be harder to observe and differentiate.

Performing Period-over-Period Analysis

 Historical values are frequently used in data analysis to provide perspective on current

 values. When comparing historical to current values, it is important you select values from

time periods relatively similar to one another. Although no two time periods are exactly

alike, analysts often compare values from what are referred to as parallel periods to minimize

 differences resulting from cyclical, time-dependent variations in the data.

 Chapter 9 Working with Time 223

To understand parallel periods, consider the month of April 2003. This month is the fourth

month of the calendar year 2003. In a business heavily infl uenced by annual cycles, you

might compare values for this month to those for the month of April in a prior year. In doing

so, you might accurately (or inaccurately) assume that differences in current and historical

values are due to factors other than the annual cyclical infl uence.

Should you compare values for April 2003 to those of January 2003 or October 2002? Your

fi rst response may be to say no. However, if your business is heavily infl uenced by quarterly

cycles, this might be completely appropriate. April 2003 is the fi rst month of a calendar

 quarter. January 2003 is the fi rst month of the prior quarter and is therefore a parallel

 member based on quarter. October 2002 is also a parallel member except that it is from two

quarters prior. What constitutes an appropriate parallel period for your analysis is highly

 dependent upon the time-based cycles infl uencing your business.

To assist you with the retrieval of parallel period members, Analysis Services provides the

ParallelPeriod function:

ParallelPeriod([Level [,n [, Member]]])

The function’s fi rst argument identifi es the level of the time hierarchy across which you wish

to identify the parallel period member. If no level is identifi ed, the parent level of the current

time member is assumed.

The function’s second argument identifi es how far back along the identifi ed level you wish to

go to retrieve the parallel member. If no value is provided, a value of 1 is assumed, indicating

the prior period.

The function’s fi nal argument identifi es the member for which the parallel period is to

be determined. The position of this member relative to its ancestor in the specifi ed level

 determines the member retrieved from the historical period. If no member is identifi ed, the

current time member is assumed.

Calculate growth over prior period

 1. Open the MDX Query Editor to the MDX Step-by-Step database.

 2. In the code pane, enter the following query to retrieve reseller sales for the months of

calendar year 2003:

SELECT

 {([Measures].[Reseller Sales Amount])} ON COLUMNS,

 {

 Descendants(

 [Date].[Calendar].[Calendar Year].[CY 2003],

 [Date].[Calendar].[Month],

 SELF

)

 } ON ROWS

FROM [Step-by-Step]

ParallelPeriod([Level [,n [, Member]]])

Calculate growth over prior period

224 Part II MDX Functions

 3. Execute the query and review the results.

 The query returns reseller sales for the months of calendar year 2003. To assess the strength

of these numbers in a business infl uenced by annual sales cycles, you might compare them

to sales in the prior year. To do this, start by identifying the prior period for each month.

 4. Alter the query to identify the parallel period in the prior year for each month:

WITH

MEMBER [Measures].[x] AS

 ParallelPeriod(

 [Date].[Calendar].[Calendar Year],

 1,

 [Date].[Calendar].CurrentMember

).Name

SELECT

 {

 ([Measures].[Reseller Sales Amount]),

 ([Measures].[x])

 } ON COLUMNS,

 {

 Descendants(

 [Date].[Calendar].[Calendar Year].[CY 2003],

 [Date].[Calendar].[Month],

 SELF

)

 } ON ROWS

FROM [Step-by-Step]

 5. Execute the query and review the results.

 Chapter 9 Working with Time 225

 In the preceding query, the ParallelPeriod function is used to identify the parallel

 period in the prior year for each month in calendar year 2003 along the ROWS

axis. The ParallelPeriod function returns a member and the name of that member is

 returned with a new calculated member to verify that the appropriate member is being

 identifi ed. Now that you are comfortable the correct member is being located, you can

use the returned member to determine prior period sales.

 6. Alter the query to calculate prior period sales:

WITH

MEMBER [Measures].[Prior Period Reseller Sales Amount] AS

 (

 ParallelPeriod(

 [Date].[Calendar].[Calendar Year],

 1,

 [Date].[Calendar].CurrentMember

),

 [Measures].[Reseller Sales Amount]

)

 ,FORMAT="Currency"

SELECT

 {

 ([Measures].[Reseller Sales Amount]),

 ([Measures].[Prior Period Reseller Sales Amount])

 } ON COLUMNS,

 {

 Descendants(

 [Date].[Calendar].[Calendar Year].[CY 2003],

 [Date].[Calendar].[Month],

 SELF

)

 } ON ROWS

FROM [Step-by-Step]

 7. Execute the query and review the results.

 Using the member returned by the ParallelPeriod function to assemble a tuple allows

you to retrieve reseller sales for the prior period. This newly calculated measure is

 returned along the COLUMNS axis for comparison against sales in the months displayed

across the rows. To facilitate comparison, you might wish to present the percent change

in sales from the prior period.

226 Part II MDX Functions

 8. Alter the query to calculate the percent change in sales (growth) between the current

and prior periods:

WITH

MEMBER [Measures].[Prior Period Reseller Sales Amount] AS

 (

 ParallelPeriod(

 [Date].[Calendar].[Calendar Year],

 1,

 [Date].[Calendar].CurrentMember

),

 [Measures].[Reseller Sales Amount]

)

 ,FORMAT="Currency"

MEMBER [Measures].[Prior Period Growth] AS

 (

 ([Measures].[Reseller Sales Amount])-

 ([Measures].[Prior Period Reseller Sales Amount])

) /

 ([Measures].[Prior Period Reseller Sales Amount])

 ,FORMAT="Percent"

SELECT

 {

 ([Measures].[Reseller Sales Amount]),

 ([Measures].[Prior Period Reseller Sales Amount]),

 ([Measures].[Prior Period Growth])

 } ON COLUMNS,

 {

 Descendants(

 [Date].[Calendar].[Calendar Year].[CY 2003],

 [Date].[Calendar].[Month],

 SELF

)

 } ON ROWS

FROM [Step-by-Step]

 9. Execute the query and review the results.

 The results show each month of calendar year 2003 experienced considerable growth

in reseller sales from those of the month in the prior year.

 Chapter 9 Working with Time 227

A Word of Caution

 As explained at the start of this chapter, the time-based MDX functions are not

 time-aware and simply employ basic navigation for their functionality. This is illustrated

by rewriting the query in Step 4 of the previous exercise with the navigation functions

Cousin, Ancestor, and Lag:

WITH

MEMBER [Measures].[x] AS

 Cousin(

 [Date].[Calendar].CurrentMember,

 Ancestor(

 [Date].[Calendar].CurrentMember,

 [Date].[Calendar].[Calendar Year]

).Lag(1)

).Name

SELECT

 {

 ([Measures].[Reseller Sales Amount]),

 ([Measures].[x])

 } ON COLUMNS,

 {

 Descendants(

 [Date].[Calendar].[Calendar Year].[CY 2003],

 [Date].[Calendar].[Month],

 SELF

)

 } ON ROWS

FROM [Step-by-Step]

 As previously mentioned, the use of basic navigation to provide time-based functionality

imposes some constraints on your time dimension. One of these is that all members

of a time period should be provided in the cube. Again, the query in Step 4 from the

 previous exercise provides a very clear demonstration of why this is important. Here is

that query adjusted to present the months of calendar year 2002 along the ROWS axis:

WITH

MEMBER [Measures].[x] AS

 ParallelPeriod(

 [Date].[Calendar].[Calendar Year],

228 Part II MDX Functions

 1,

 [Date].[Calendar].CurrentMember

).Name

SELECT

 {

 ([Measures].[Reseller Sales Amount]),

 ([Measures].[x])

 } ON COLUMNS,

 {

 Descendants(

 [Date].[Calendar].[Calendar Year].[CY 2002],

 [Date].[Calendar].[Month],

 SELF

)

 } ON ROWS

FROM [Step-by-Step]

 Notice in the results of this query that the month of January 2002 has a parallel period

of July 2001. January 2002 is the fi rst month-level descendant of calendar year 2002. Its

parallel period in the prior year is the fi rst month-level descendant of calendar year 2001.

Because the fi rst month recorded in 2001 is July, July 2001 becomes the parallel period

of January 2002 based on simple navigation. Apply this logic to July 2002, the seventh

month-level descendant of calendar year 2002, and you see why it has no parallel period

in 2001, a year in which only six months were recorded.

 If all twelve months for calendar year 2001 had been recorded, this problem could have

been avoided. However, this problem would now be deferred to the fi scal calendar

whose years start prior to 2001. In other words, there is no way in this dimension to

provide complete sets of members under each period.

 So what’s the solution to this problem? The short answer is there really isn’t one. You as

the query developer must be aware of boundary issues such as this when developing

queries employing time-based functions. You might have data at the head and tail of

the time dimension extended to cover periods for which no data is recorded to avoid

misalignment as illustrated previously, but you still need to be aware that no data is

recorded for those periods so that some forms of analysis, such as period-over-period

growth, might not be appropriate.

 Chapter 9 Working with Time 229

Combining Time-Based Metrics

Throughout this chapter, you have explored the various time-based functions and how

they can be used to enhance business analysis and solve business problems. Although each

of these functions is valuable on its own, they are often used in combination to provide

even greater insight and clarity into the analysis of business data. These may seem like very

 challenging metrics to assemble, but in reality they are no more complex than most other

metrics calculated throughout this book. The trick is to remember tuple and expression basics.

Calculate year-to-date and prior period year-to-date sales

 1. Open the MDX Query Editor to the MDX Step-by-Step database.

 2. Enter the following query to retrieve reseller sales for the months of calendar year 2003:

SELECT

 {

 ([Measures].[Reseller Sales Amount])

 } ON COLUMNS,

 {

 Descendants(

 [Date].[Calendar].[CY 2003],

 [Date].[Calendar].[Month],

 SELF

)

 } ON ROWS

FROM [Step-by-Step]

 3. Execute the query and review the results.

The query returns reseller sales by month for calendar year 2003. Using the

PeriodsToDate function, you can calculate year-to-date sales just like before.

Calculate year-to-date and prior period year-to-date sales

230 Part II MDX Functions

 4. Alter the query to calculate a year-to-date sales:

WITH

MEMBER [Measures].[Year to Date Reseller Sales] AS

 Aggregate(

 PeriodsToDate(

 [Date].[Calendar].[Calendar Year],

 [Date].[Calendar].CurrentMember

),

 ([Measures].[Reseller Sales Amount])

)

 ,FORMAT="Currency"

SELECT

 {

 ([Measures].[Reseller Sales Amount]),

 ([Measures].[Year to Date Reseller Sales])

 } ON COLUMNS,

 {

 Descendants(

 [Date].[Calendar].[CY 2003],

 [Date].[Calendar].[Month],

 SELF

)

 } ON ROWS

FROM [Step-by-Step]

 5. Execute the query and review the results.

 Using the Year To Date Reseller Sales calculated member in a tuple, you can easily

 calculate year-to-date sales for the prior period.

 6. Alter the query to calculate the prior period year-to-date sales:

WITH

MEMBER [Measures].[Prior Period Year to Date Reseller Sales] AS

 (

 ParallelPeriod(

 [Date].[Calendar].[Calendar Year],

 1,

 [Date].[Calendar].CurrentMember

),

 [Measures].[Year to Date Reseller Sales]

)

 ,FORMAT="Currency"

 Chapter 9 Working with Time 231

MEMBER [Measures].[Year to Date Reseller Sales] AS

 Aggregate(

 PeriodsToDate(

 [Date].[Calendar].[Calendar Year],

 [Date].[Calendar].CurrentMember

),

 ([Measures].[Reseller Sales Amount])

)

 ,FORMAT="Currency"

SELECT

 {

 ([Measures].[Reseller Sales Amount]),

 ([Measures].[Year to Date Reseller Sales]),

 ([Measures].[Prior Period Year to Date Reseller Sales])

 } ON COLUMNS,

 {

 Descendants(

 [Date].[Calendar].[CY 2003],

 [Date].[Calendar].[Month],

 SELF

)

 } ON ROWS

FROM [Step-by-Step]

 7. Execute the query and review the results.

 This exercise demonstrates a very simple approach to combining calculated members

that use time-based functions. When formulating complex metrics, you can easily lose

sight of the basic techniques allowing logic in one calculated member to be leveraged

for another. As easily as you combined a period-to-date calculation with a prior period

calculation, you could extend this query to include the difference, variance, or percent

growth of the current year year-to-date values compared to the prior year year-to-date

values or any fl avors thereof.

The OpeningPeriod and ClosingPeriod Functions

 We would be remiss if we did not mention the OpeningPeriod and ClosingPeriod functions.

The introduction of expanded support for semi-additive measures in the 2005 release of

232 Part II MDX Functions

Analysis Services has diminished the role of these functions, which return the fi rst and last

members of a period:

OpeningPeriod([Level [, Member]])

ClosingPeriod([Level [, Member]])

 The OpeningPeriod and ClosingPeriod functions return the fi rst or last member,

 respectively, of the descendants from a given level and a specifi ed member. If no level is

specifi ed, Analysis Services assumes the topmost level of the time hierarchy. If no member

is specifi ed, Analysis Services assumes the current time member. As with the other

 time-based functions, you are encouraged to supply both arguments to ensure clarity.

As previously mentioned, both the OpeningPeriod and ClosingPeriod functions have seen

their use diminished with recent releases of Analysis Services. Historically, these functions

have been used to calculate values now returned by the FirstChild, FirstNonEmpty, LastChild,

and LastNonEmpty aggregate functions. These aggregate functions are frequently

 employed with fi nance facts, exchange rates, and other snapshot facts to identify period

starting and ending values.

For example, the end-of-day exchange rate employs the LastNonEmpty aggregate

function to provide access to the last available value within a given period. But what if

you needed to determine the end-of-day exchange rate at the start of a period? The

following query illustrates the use of the OpeningPeriod function to calculate this value:

WITH

MEMBER [Measures].[First Child Rate] AS

 (

 OpeningPeriod(

 [Date].[Calendar].[Date],

 [Date].[Calendar].CurrentMember

),

 [Measures].[End of Day Rate]

)

 ,FORMAT="Standard"

SELECT

 {

 ([Measures].[First Child Rate]),

 ([Measures].[End of Day Rate])

 } ON COLUMNS,

 {[Date].[Calendar].Members} ON ROWS

FROM [Step-by-Step]

WHERE ([Destination Currency].[Destination Currency].[Euro])

OpeningPeriod([Level [, Member]])

ClosingPeriod([Level [, Member]])

 Chapter 9 Working with Time 233

This query provides both the fi rst and last available end-of-day exchange rates for the

specifi ed period. The former is provided through the MDX OpeningPeriod function;

the latter is provided through a cube aggregate function. You could further extend the

query to identify the difference or variance in exchange rates across the opening and

closing of the period.

Chapter 9 Quick Reference

To Do this

Retrieve the periods-to-date

for any specifi ed period

Use the PeriodsToDate function to return a set of sibling members

from the same level as a given member, starting with the fi rst

 sibling and ending with the given member, as constrained by a

specifi ed level of a calendar hierarchy. For example, the following

query retrieves the periods-to-date over the calendar year for

each of the Month members along the ROWS axis to calculate a

 year-to-date total for reseller sales:

WITH

MEMBER [Measures].[Year to Date Reseller Sales] AS

 Aggregate(

 PeriodsToDate(

 [Date].[Calendar].[Calendar Year],

 [Date].[Calendar].CurrentMember

),

 ([Measures].[Reseller Sales Amount])

)

SELECT

 {

 ([Measures].[Reseller Sales Amount]),

 ([Measures].[Year to Date Reseller Sales])

 } ON COLUMNS,

 {[Date].[Calendar].[Month].Members} ON ROWS

FROM [Step-by-Step]

To Do this

234 Part II MDX Functions

To Do this

Retrieve the periods-to-date

for a year

Use the Ytd function to return a set of sibling members from

the same level as a given member, starting with the fi rst sibling

and ending with the given member, as constrained by the

Year level of a calendar hierarchy. For example, the following

query retrieves the year-to-date periods for each of the Month

 members along the ROWS axis to calculate a year-to-date total for

reseller sales:

WITH

MEMBER [Measures].[Year to Date Reseller Sales] AS

 Aggregate(

 Ytd([Date].[Calendar].CurrentMember),

 ([Measures].[Reseller Sales Amount])

)

SELECT

 {

 ([Measures].[Reseller Sales Amount]),

 ([Measures].[Year to Date Reseller Sales])

 } ON COLUMNS,

 {[Date].[Calendar].[Month].Members} ON ROWS

FROM [Step-by-Step]

For quarter-to-date, month-to-date, and week-to-date calculations,

use the Qtd, Mtd, and Wtd functions, respectively, in a similar

 manner.

 Retrieve a number of prior

periods

Use the LastPeriods function to retrieve a set of members up to and

including a specifi ed member. For example, the following query

retrieves the last three months for each of the Month members

along the ROWS axis to calculate a rolling three-month average for

reseller sales:

WITH

MEMBER [Measures].[Three Month Avg Reseller Sales Amount] AS

 Avg(

 LastPeriods(

 3,

 [Date].[Calendar].CurrentMember

),

 ([Measures].[Reseller Sales Amount])

)

SELECT

 {

 ([Measures].[Reseller Sales Amount]),

 ([Measures].[Three Month Avg Reseller Sales Amount])

 } ON COLUMNS,

 {[Date].[Calendar].[Month].Members} ON ROWS

FROM [Step-by-Step]

To Do this

 Chapter 9 Working with Time 235

To Do this

Retrieve a parallel member Use the ParallelPeriod function to identify a member from a prior

period in the same relative position as a specifi ed member. For

 example, the following query retrieves prior period reseller sales for

each of the Month members along the ROWS axis:

WITH

MEMBER [Measures].[Prior Period Reseller Sales Amount] AS

 (

 ParallelPeriod(

 [Date].[Calendar].[Calendar Year],

 1,

 [Date].[Calendar].CurrentMember

),

 [Measures].[Reseller Sales Amount]

)

 ,FORMAT="Currency"

SELECT

 {

 ([Measures].[Reseller Sales Amount]),

 ([Measures].[Prior Period Reseller Sales Amount])

 } ON COLUMNS,

 {

 Descendants(

 [Date].[Calendar].[Calendar Year].[CY 2003],

 [Date].[Calendar].[Month],

 SELF

)

 } ON ROWS

FROM [Step-by-Step]

 Retrieve the opening period or

closing period

Use the OpeningPeriod or ClosingPeriod functions, respectively. For

example, the following query employs the OpeningPeriod function

to retrieve the exchange rate for the fi rst day in each period:

WITH

MEMBER [Measures].[First Child Rate] AS

 (

 OpeningPeriod(

 [Date].[Calendar].[Date],

 [Date].[Calendar].CurrentMember

),

 [Measures].[End of Day Rate]

)

 ,FORMAT="Standard"

SELECT

 {

 ([Measures].[First Child Rate]),

 ([Measures].[End of Day Rate])

 } ON COLUMNS,

 {[Date].[Calendar].Members} ON ROWS

FROM [Step-by-Step]

WHERE ([Destination Currency].[Destination Currency].[Euro])

To Do this

 353

Index

Symbols and
Numbers
-- (double dash), inline

comments, 93
- (except) operator, 91
- (exception) operator, 143
- (negative) operator, 91
- (subtract) operator, 91
! (exclamation point) character, 93
& (ampersand) character, 41
* (crossjoin) operator, 77, 92
* (multiply) operator, 92
/ (divide) operator, 92
/**/ (paired forward slashes and

asterisks), multiline
comments, 93

// (double forward slash),
inline comments, 93

^ (power) operator, 92
+ (add) operator, 92
+ (positive) operator, 92
+ (string concatenation)

operator, 92
+ (union) operator, 92, 143
< (less than) operator, 92
<= (less than or equal to)

operator, 92
<> (not equal to)

operator, 92
= (equal to) operator, 92
> (greater than) operator, 92
>= (greater than or equal to)

operator, 92

A
ABS function, 126
access rights, 273–74.

See also security, dynamic
account name, user, 274
accumulating total, 213–19
ACTION_TYPE property, 46
add (+) operator, 92
additive aggregations, 8
additive measures, 248–49
administrative rights, 274
Adventure Works Cycles, 4
AFTER fl ag, 191, 200–1
Aggregate function, 158, 178

calculated members, 158–61

cube-scoped calculated members,
249–50

reports, 345–46, 352
Sum function vs., 161
year-to-date sales calculation,

214–17
aggregation, 157, 178–80

accumulating total, 213–14
averages calculation, 161–69
minimum and maximum value

identifi cation, 170–72
multidimensional data

warehouse, 8
relational data warehouse, 8
Reporting Services vs. Analysis

Services, 345–46
reports, 352
summation, 157–61
tuples, counting in sets, 172–77

alias
axis, 72
named sets, 266

ALL fl ag, 143
Except function, 155
Generate function, 147
Intersect function, 156

All folder, 33
All member, 9

Members function, 74–75
omitted references, 47
partial tuples, 49–50
user-hierarchy translation, 51

All members
dataset parameters, 338
report aggregation, 346

All Products member
calculated, 112–15
division-by-zero error, 185–86,

195–96
ranking, 189
security restrictions, 296

AllMembers function, 96–97, 118
Query Designer, 328

allowed sets, 285–86
designing, 287–90
implementation, 290–95, 300–1

ampersand (&) character, 41
an axes, 38–39
Analysis Services

administrative rights, 274
aggregation, 157, 352. See also

aggregation

aggregation, reports, 345–46
auto-exists, 79–83
browsing objects within an

instance, 18–19
connecting to, 15–17, 35, 316–20
cubes, 3. See also cubes
data storage and retrieval, 11
dynamic named sets, 271
expressions, 11, 91–94.

See also expressions
functions, 115, 339
functions, non-native, 92–93
MDX script, 239–46
multidimensional data

warehouse, 8–9
Null value, 93–94
OpeningPeriod and ClosingPeriod

functions, 231–33
operators supported, 91–92
overlapping references, 58
partial tuples. See partial tuples
Query Designer. See Query

Designer
reports. See reports
security, 273. See also security,

dynamic
sets, 61–62. See also sets
special member functions, 115
string conversion functions, 339
time dimension, 211–12.

See also time dimension
user-hierarchies, 9.

See also user-hierarchies
Ancestor function, 190, 209

ParallelPeriod function, 227–28
percent contribution calculation,

192–96
ancestors, 189–92

percent contribution to,
calculating, 192–96

Ancestors function, 190
AND operator, 92

Filter function, 137
ASC fl ag, 124, 128, 153
Ascendants expression, 305
Ascendants function, 190, 209

product percent contribution
calculation, 196–98

ascending sorts, 188
assemblies, functions, 93
ASSOCIATED_MEASURE_GROUP

property, 256–57, 272

354 attribute-hierarchies

attribute-hierarchies, 9–10,
27–29, 101

axis translation, 39
calculated member creation,

94–96
calendar, 28
calendar year. See calendar year

attribute-hierarchy
category. See category

attribute-hierarchy
color, 29, 82–86
country, 29, 62–67
defi ned, 14
employee, 87–88
fact table restrictions, 286
fi scal year, 41–42, 49–50, 55–58
foreign key restrictions, 286
measure, 76
measures, 39, 42, 48, 76
month, 86–88
navigation. See navigation
product, 29, 289–90, 294–97
product categories, 28, 183–89
security restrictions, 285–302, 309
set limiting, auto-exists, 79–83
set limiting, Exists function,

83–88
set sorting, 126–30
size, 29
standard, restricting, 286–97
subcategory. See subcategory

attribute-hierarchy
user, 287–95
user-hierarchy translation, 51–55

attributes, 5–7
defi ned, 14
multidimensional data warehouse,

8–10
relational data warehouses, 8
security restrictions, 273–74
time-based, 212–13.

See also time dimension
authentication, 274
authority, user, 274

removing, 284
auto-exists

EXISTING keyword, 115–17
hierarchy restrictions, 285
set limiting, 79–83

averages, calculating, 161–69
Avg function, 162–65, 179
monthly, 166–68
order-level, 167–68
quarterly, 162–65
rolling, 220–22
transaction-level, 166–68,

264–65
with expressions, 165–69

Avg function, 162–65, 179

axes. See also COLUMNS axis;
ROWS axis

cube spaces, 37–39
MDX queries, 320–21
SELECT statement, 72
sets, 68

B
BACK_COLOR property, 46
BackgroundColor property, 351
BASC fl ag, 124, 128, 153
BDESC fl ag, 124, 128, 153
BEFORE fl ag, 191
BEFORE_AND_AFTER fl ag, 191,

201–2
Begins With operator, 339
best performers, extracting, 132–34
Boolean operations, 94
Boolean values, 91–92
BottomCount function, 131–34, 154
braces, 61, 88, 285
brackets, square, 40
break-hierarchy sorts, 126–30
Business Intelligence Development

Studio (BIDS), 239–40
cube-scoped complex calculated

member implementation,
259–62

cube-scoped named set creation,
268–70

MDX script of Step-by-Step
database, 240–46

NON_EMPTY_BEHAVIOR
property, 264–65

report creation, 312–16, 351
Business Intelligence landscape, 3–4

C
CALCULATE statement, 239–40
calculated members, 94–98, 117–19

BIDS creation, 244–46
contextual confl icts, 103–9
creating, 94–97
cube-scoped. See cube-scoped

calculated members
dataset addition, 351
declaring, 98
dynamic, construction of, 98–102
expressions, 94–98
formatting, 108–9
infi nite recursion, 103–5
query addition, 324–26
query-scoped, 98, 247–48, 257–59
session-scoped, 98, 266
solve order, 105–8
summation, 158–61

Calculations tab, 242–43
calendar attribute-hierarchy, 28
Calendar folder, 27–28
calendar hierarchies, 211–12
calendar user-hierarchy, 62–67
calendar year

reseller sales average, 162–65
year-to-date reseller sales

calculation, 214–17
calendar year attribute-hierarchy,

41–42
calculated member creation,

94–96
overlapping references, 55–58
partial tuples, 49–50

calendar year user-hierarchy,
52–55

calendar-to-fi scal year
user-hierarchy, 42, 52–55

overlapping references, 55–58
Cameron, Scott, 3, 273
CAPTION member property, 110
category attribute-hierarchy, 29,

41–42, 62–67
calculated member creation,

94–96
Members function, 74–76
set limiting, auto-exists, 81–83
set limiting, exists function, 83–86
set sorting, 127–30

category members, set sorting,
127–30

CELL PROPERTIES keyword, 45
Query Designer, 328

CELL_ORDINAL property, 44, 46
accessing, 44–46

cells, 37, 43–46
accessing partial tuples, 47–50
accessing with overlapping-

reference tuples, 55–58
accessing with user-hierarchy

tuples, 51–55
contextual confl icts, 103–9
empty, eliminating, 86–89
permissions, 302–3
properties, 44–46, 60
security restrictions, 273–74,

302–8, 310
security restrictions,

implementing, 305–7
security restrictions, logical

expression design, 303–5
security restrictions, testing,

307–8
Children function, 182, 200, 208
children member relationship,

181–82
CHILDREN_CARDINALITY member

property, 110

 dynamic security 355

ClosingPeriods function,
231–33, 235

code pane
highlighted text, 34
Query Editor, 22

Codeplex Web site, 4
color attribute-hierarchy, 29

set limiting, auto exists, 82–83
set limiting, Exists function, 83–86

COLUMNS axis
calculated member creation,

94–96
empty sets, 284–85
MDX queries, 320–21
SELECT staement, 42–72
set limiting, auto-exists, 79–83

combinations, sets, 142–46
Command Prompt window,

UserName function evaluation,
281–84

commas, 61, 88
comments, expressions, 93
comparison operators, 91–92
Computer Management Console,

local user account creation,
274–77

ComputerName, 281
conforming dimensions, 6–7
connection string, 319–20
CONSTRAINED fl ag, 339
Contains operator, 339
context

confl icts, expressions, 103–9
named sets and, 271

coordinates, 37–39
Count Aggregate function, 158
Count function, 116, 172–76, 180
country attribute-hierarchy, 29

sets, 62–67
Cousin function, 190, 192

ParallelPeriod function, 227–28
cousin member relationship, 189–92
CREATE keyword, 271
CREATE MEMBER statement, 239–40

cube-based calculated members,
250–53

cube-scoped calculated members,
247–48

CREATE SET statement, 239–40,
266–70

cross-fact analysis, 6–7
crossjoin (*) operator, 77, 92
Crossjoin function, 77–79, 89
crossjoins

auto-exists set limiting, 79–83
count aggregation, 176
Exists function, 83–86
Other-Form Exists function, 86–88

Cube Designer, 240, 242

CUBE_NAME member property, 110
cubes, 8–10, 239, 272

access to, 273–74.
See also security, dynamic

calculated member construction,
247–65. See also calculated
members

defi ned, 14
dimensions, 9.

See also dimensions
MDX script, 239–46
named set assembly, 266–71
space, 15, 39–41
space, SELECT statement

defi nition, 68–69
Step-By-Step, 25–29
summation, 157–58
tuples, 39–41

cube-scoped calculated members,
98, 247, 272

basic, constructing, 247–55
complex, construction, 256–65
deploying, 253–54
formatting, 272
hiding, 272
implementing, 250–53, 259–62
key performance indicators,

255–56
properties, 256–57
properties, setting, 256–65
verifying, 255, 262–64

cube-scoped named sets, 268–72
currency number format, 109
current measures, 175
current members, 108–15
current value determination, 212–13
CurrentMember function,

108–15, 119

D
data access rights, 273–74.

See also security, dynamic
data analysis, 3–4
data fl attening, 320–21
data presentation, 340–51.

See also reports
Data Source parameter, 319–20
data sources, 316. See also

embedded data sources
connection string, 319–20

Data Warehouse layer, 3–5
relational data warehouse, 8

data warehouses
latency, 213
multidimensional, 8–10
relational, 8

database roles, 273–74
creation, 277–81

DataMember function, 115
dataset design, 320–29, 351–52

calculated member addition,
324–26

hidden datasets, 336
parameter addition, 329–39
query assembly, 321–24
query modifi cation, 326–29

Date dimension, 27–28, 41–42
partial tuples, 49–50
sets, 62–67

date formats, 109
Date function, 213
date values, 91–92
DateAdd function, 213
DateDiff function, 213
DatePart function, 213
DefaultMember function, 115
denied sets, 285–86
DESC fl ag, 124, 128, 153
descendants, 189–92

set assembly, 199–202
Descendants function, 190, 210

fl ags, 190–91
set assembly, 199–202

dicing, 5, 9
defi ned, 14

DIMENSION PROPERTIES
keyword, 328

dimension tables, 8
DIMENSION_UNIQUE_NAME

member property, 111
dimensional model, 5–7

defi ned, 14
implementation, 7–10

dimensionality, shared, 6–7,
61–67

dimensions, 5–7
conforming, 6–7
defi ned, 14
relational data warehouse, 8

DISPLAY_FOLDER property,
256–57, 267

Distinct Count Aggregate
function, 158

Distinct function
set building, 89
sets, 67

DistinctCount function, 176–77
divide (/) operator, 92
division-by-zero errors, 185–86,

195–96, 207–8
double coordinate, 37–38
drill-down operation, 9
dynamic expressions, 98–102
DYNAMIC keyword, 271–72
dynamic named sets, 271
dynamic security. See security,

dynamic

356 embedded data sources

E
embedded data sources, 316

connection string, 319–20
creation, 316–19, 351

employee attribute-hierarchy, 87–88
empty cells, 86–89
empty sets, 284–85
enterprise reporting. See reports
Equal operator, 338–39
equal to (=) operator, 92
errors

contextual, expressions, 103–9
division-by-zero, 185–86, 195–96,

207–8
EXCLUDEEMPTY fl ag, 175
highlighted text, code pane, 34
infi nite recursion, 103–5, 118
NON_EMPTY_BEHAVIOR

property, 257
overlapping references, 58
shared dimensionality, 65–67
solve order, 105–8, 118
time dimension, 227–28

ETL (Extraction, transformation,
and loading) layer, 4

except (-) operator, 91
Except function, 142–43, 155

set construction, 143–46
exception (-) operator, 143
exclamation point character, 93
EXCLUDEEMPTY fl ag, 172,

174–75, 180
DistinctCount function, 176–77

Execute button, 22, 35
EXISTING keyword, 116–17, 119

averages calculation, 167
Generate function, 149
Item function, 137
named sets, 271

Exists function, 89, 200
attribute-hierarchy

restrictions, 286
Other-Form, 86–88
set limiting, 83–88

Expression element
CREATE MEMBER statement,

247–48
CREATE SET statement, 266–67
cube-based calculated members,

250–53
expressions, 11, 91–94

allowed and denied sets,
285–86

averages calculation, 165–69
building, 109–17
calculated members, 94–98
comments, 93
connection string as, 319–20

contextual confl ict resolution,
103–9

dynamic, 98–102
KPI objects, 255–56
query-scoped complex calculated

member, 257–59
Reporting Services, 316
security, 273
set sorting by, 124–26
sets, 115–17

extended relatives, accessing,
189–203

Extract function, 156
set assembly, 151–53

Extraction, transformation, and
loading (ETL) layer, 4

F
fact measures, 5

defi ned, 14
fact tables, 8

attribute-hierarchy
restrictions, 286

averages calculation, 165
facts, 5–7

attributes. See attributes
cross-fact analysis, 6
defi ned, 14
dicing, 5
slicing, 5

Filer function, 137
Filter expression, 305
Filter function, 133, 154

Extract function, 152
set membership limitation,

138–40
fi ltering

dataset parameters, 329–31
operators, 339

sets, 137–42, 154
FirstChild function, 232–33
FirstNonEmpty function, 232–33
Fiscal folder, 27–28
fi scal year attribute-hierarchy,

41–42
overlapping references, 55–58
partial tuples, 49–50

fi scal year user-hierarchy, 52–55
fi xed number format, 109
fl ags. See also specifi c fl ags

Descendants function, 190–91
string conversion functions, 339

FONT_FLAGS property, 46
FONT_NAME property, 46
FONT_SIZE property, 46
For Each loop, 147
FORE_COLOR property, 46

foreign keys
attribute-hierarchy

restrictions, 286
fact tables, 8

Format function, 348–50
FORMAT property, 46
FORMAT_STRING property, 45–46,

256–57, 272
calculated members, 108–9

FORMATTED_VALUE property, 44,
46, 352

accessing, 44–46
calculated members, 108–9
table formatting, 347–48

formatting, table, 346–50
FREEZE statement, 246
FROM clause, 13

dataset fi ltering, 331
SELECT statement, 69–72

FROM keyword, 32
functions. See also specifi c

functions
adding to queries, 32–33
aggregation, within measures vs.

MDX, 157
assemblies, 93
building sets, 72–79
navigation, 182, 190, 204,

227–28
non-native, 92–93
string conversion, 339
VBA. See VBA functions
XTD, 217–18

G
general date format, 109
general number format, 109
Generate function, 156

aggregation, 177
set assembly, 147–50

Geography dimension, 29
sets, 62–67

goal, KPI object, 255
greater than (>) operator, 92
greater than or equal to (>=)

operator, 92
growth over prior period

calculation, 223–26

H
Head function, 134
hidden. See also VISIBLE property

cube-scoped calculated
members, 272

datasets, 336
measures, 286

 Measures folder 357

HIDDEN keyword, 267
Hierarachize function, 129–30
hierarchical sorts, 124

breaking constraints, 126–30
hierarchies. See also attribute-

hierarchies; user-hierarchies
calculated member

declaration, 98
calendar, 211–12
current member, 108–15
extended relatives, 189–92
navigating, 181–210.

See also navigation
parent-child, restricting,

297–302
ranking members of, 187–89
security restrictions, 285–302
shared, 61
shared hierarchality, 65–67
Step-by-Step cube, 28–29
time-based, 192

Hierarchize function, 153, 197
HIERARCHY_UNIQUE_NAME

member property, 111
horizontal navigation, 203–4
Hyperion Essbase, 11

I
IIF function, 109–10, 113

dataset fi ltering, 333
immediate relatives, accessing,

181–89
In operator, 339
inception-to-date calculation,

218–19
INCLUDEEMPTY fl ag, 172, 180

Distinct Count function,
176–77

infi nite recursion, 103–5, 118
Initial Catalog parameter, 319–20
inline comments, 93
inline-IF function, 110
instances, browsing objects within,

18–19
Internet Orders measure

group, 27
Internet Sales measure group, 27
Intersect function, 142–43, 156

set construction, 143–46
IS operator, 91–92, 94
IS_DATAMEMBER member

property, 111
IsAncestor function, 202–3
ISEmpty function, 94
IsLeaf function, 202–3
IsSibling function, 202–3
Item function, 135–37

K
KEY member property, 111
key performance indicators (KPIs),

255–56
key-based references, 41
keys, member, 50–51
key-value, 41
KEYx member property, 111
KPIs (key performance indicators),

255–56

L
Lag function, 203–5, 210

ParallelPeriod function, 227–28
LANGUAGE property, 46
language, MDX, 11–13
LastChild function, 232–33
LastNonEmpty function, 232–33
LastPeriods function, 220, 234

rolling average calculation,
220–22

latency, 213
Lead function, 203–4
LEAF fl ag, 190–91
leaf level, 9

Members function, 74–75
set limiting, 81–83

leaf-level members, 202–3
user-hierarchy translation, 54

LEAVES fl ag, 191
less than (<) operator, 92
less than or equal to (<+)

operator, 92
Level argument, 214
LEVEL_NUMBER member

property, 111
LEVEL_UNIQUE_NAME member

property, 111
levels, navigation within, 203–8
local user account creation, 274–77
LOCALHOST keyword, 16
logical comparison (IS) operator, 92
logical conjunction (AND)

operator, 92
logical disjunction (OR) operator, 92
logical exclusion (XOR) operator, 92
logical expression design, 303–5
logical inverse (NOT) operator, 92
logical operators, 91–92
long date format, 109

M
main toolbar

Management Studio, 17
Query Editor, 21

Management Studio. See SQL Server
Management Studio

Max function, 170, 180
maximum, subcategory, sales

difference determination,
170–72

MDX (multidimensional
expressions), 14

aggregation functions, 157.
See also aggregation

basics, 3–14
language, 11–13
MdxUser. See MdxUser account
navigation functions, 181–82, 190,

204. See also navigation
operators, 339
queries, 320–21. See also queries;

queries, reports
Query Editor. See Query Editor
reports. See reports
script, 239–46
scripting statements, 246
SELECT statement. See SELECT

statement
statements, 11–13. See also

statements
time-based functions. See time

dimension
MdxReport, project creation,

312–16
MdxUser account

attribute-hierarchy restrictions,
287–97

cell-level restrictions, 302–8
creation, 274–77
database role creation, 277–81
parent-child hierarchy restrictions,

297–302
removing, 308
UserName function, 281–84

measure attribute-hierarchy, 76
measure groups, 8

attribute-hierarchy restriction,
286–87

defi ned, 14
measures, 8

adding to queries, 31
additive, 248–49
axis translation, 39
calculated, 272
current, 175
defi ned, 14
functions, 157
hiding, 286
summation, top fi ve, 158–61

measures attribute-hierarchy,
39, 42

default member, 48
Measures folder, 26–27

358 MeasuresGroupMeasures function

MeasuresGroupMeasures function
set building, 76

Member argument, 214
LastPeriods function, 220

Member property, 9
defi ned, 14

MEMBER substatement, 117
member.Children function, 182
member.FirstChild function, 182
member.FirstSibling function, 182
member.LastChild function, 182
member.LastSibling function, 182
member.Parent function, 182
member.Siblings function, 182
Member_Caption function, 110
MEMBER_CAPTION member

property, 111
MEMBER_NAME member

property, 111
MEMBER_UNIQUE_NAME member

property, 111
MEMBER_VALUE member

property, 111
MemberName element, 247–48

cube-based calculated members,
250–53

members, 9, 28
adding to queries, 29–31
calculated. See calculated

members
current, 108–15
defi ned, 14
extended relatives, 189–92
hierarchies.

See attribute-hierarchies;
hierarchies; user-hierarchies

immediate relationships, 181–82
investigating, 202–3
keys, 30, 50–51
leaf-level, 54, 202–3
level identifi ers, 75–76
limiting, 79–88
names, 30, 40–41, 50–51
percent contribution to ancestors

calculation, 192–96

percent-of-parent calculation,
183–86

properties, 109–11
query-scoped. See query-scoped

calculated members
references, 40–41, 50–51, 60
references, confl icts, 55–58
references, omitted, 47

references, shortcuts, 59
sibling comparison, 186
special, 115

Members folder, 28
Members function

allowed set creation, 290
allowed set implementation,

294–95
set building, 73–76, 89

MemberValue function, 110
menu bar, Management Studio, 17
metadata

measures, 262–63
properties, 257
Reporting Services, 320–21
reporting, query assembly, 321–24

metadata pane, 22
adding functions to queries,

32–33
adding measures to queries, 31
adding members to queries,

29–31
Step-by-Step cube exploration,

25–29
Microsoft SQL Server.

See SQL Server
Microsoft SQL Server 2008

Analysis Services Step by Step
(Cameron), 3, 273

Microsoft SQL Server 2008
Reporting Services Step by Step
(Misner), 311, 320, 351

Min function, 170, 180
Misner, Stacia, 311, 320, 351
month attribute-hierarchy, 86–88
monthly averages calculation,

166–68
monthly sales calculation, 204–8
month-to-date sales calculations,

217–18
Mtd function, 217–18
multidimensional data warehouse,

8–10
multidimensional expressions

(MDX). See MDX
(multidimensional expressions)

multiline comments, 93
multiplication operations, 94
multiply (*) operator, 92

N
Name function, 110, 137
NAME member property, 111
name, user, 284

parent-child restrictions, 298–300
name-based references, 41
named sets, 266–67, 272

assembly, 266–71
context and, 271
cube-scoped, 268–71
query-scoped, 267–68
static vs. dynamic, 271

navigation, 181, 208–10
extended relative access, 189–203
functions, 182, 190, 204, 227–28.

See also specifi c functions
horizontal, 203–4
immediate relative access, 181–89
position-based, 212
within levels, 203–8

n-dimensional space, 11, 37–39
n-dimensionality, 68
negative (-) operator, 91
NextMember function, 203–4
NON EMPTY keyword, 86–89

Query Designer, 327
set fi ltering, 141–42

NON_EMPTY_BEHAVIOR property,
256–57, 264–65, 272

non-additive aggregations, 8
NonEmpty function, 133,

141–42, 155
non-native functions, 92–93
Not Equal operator, 338
not equal to (<>) operator, 92
Not In operator, 339
NOT operator, 92
Null values

division-by-zero errors, 185–86,
207–8

expressions, 93–94
inception-to-date calculation, 219
multiplication operations, 94
NON_EMPTY_BEHAVIOR

property, 264–65
Number of Products, 115–17
numeric formats, 108–9
numeric operators, 91–92
numeric values, 91–92

O
object comparison (IS) operator, 91
Object Explorer, 15, 17

hiding, 20
object identifi ers, 40–41

member reference shortcuts, 59
objects

browsing within and instance,
18–19

KPI, 255–56
octuple coordinate, 39
ON keyword, 72, 92,

130–31
OpeningPeriod function, 231–33,

235
operations

order of, 92, 105–8, 118
operators. See also specifi c

operators

 Query Editor 359

comparison, 91–92
crossjoin, 77
fi lter, 338–39
logical, 91–92, 137
numeric, 91–92
set, 91–92
string, 91–92
supported, Analysis Services,

91–92
OR operator, 92

Filter function, 137
Order function, 123–24, 153

Head and Tail functions, 134
set sorting by expression, 124–26
set sorting while breaking

hierarchical constraints, 126–30
order of operations, 92, 105–8, 118
ordered sets, 123–31

range operator, 130–31
order-level averages, 167–68
Other-Form, Exists function, 86–88
overlapping references, 55–58

P
parallel periods, 222–23
ParallelPeriod function, 223, 235

growth over prior period
calculation, 223–26

navigation functions, 227–28
parameters

connection string, 319–20
dataset design, 329–39, 351
modifying, 333–38
multi-valued, 338

parameter-value pairs, 319–20
Parent function, 112, 182, 208

percent-of-parent calculation,
183–86

Parent Member calculated
member, 185

Parent Member Name calculated
member, 112–15

parent member relationship, 181–82
PARENT_COUNT member

property, 111
PARENT_LEVEL member

property, 111
PARENT_UNIQUE_NAME member

property, 111
parent-child hierarchies, security

restrictions, 297–302, 309
parentheses, 52
Parse command, 22, 35
parsing, 274

statements, 35
partial tuples, 47–51

calculated member creation, 96

calculated members, 98–102
infi nite recursion, 103–5

percent change in sales calculation,
204–8

percent contribution across lineage
calculation, 196–98

percent contribution to ancestors
calculation, 192–96

Percent of Parent calculated
member, 113–15

percent-of-category calculation,
192–96

percent-of-parent calculation,
183–86

period-over-period analysis, 222–28
periods, growth over calculation,

223–26
periods, parallel, 222–23
periods-to-date calculations

reseller sales, 216–17
simplifying, 217–18

PeriodsToDate function, 213–14, 233

inception-to-date calculation,
218–19

year-to-date and prior period
year-to-date sales calculation,
229–31

year-to-date reseller sales
calculation, 214–17

permissions, cell-level, 302–3
points, 68

accessing in cube space, 42–43
positive (+) operator, 92
POST fl ag, 130, 153
power (̂) operator, 92
Presentation layer, 4
PrevMember function, 203–4, 210

change in sales calculation, 204–8
prior period year-to-date sales

calculation, 229–31
product attribute-hierarchy, 29

allowed set creation, 289–90
allowed set implementation,

294–95

testing restrictions, 295–97
product categories

attribute-hierarchy, 28
percent-of-parent calculation,

183–86
Rank function, 187–89

Product Categories calculated
member, 112–15

product categories user-hierarchy

parameter conversion, 336
sets, 64–67

Product dimension, 28–29, 41–42

calculated member creation, 96
Members function, 74–76

set limiting, auto-exists, 80–83
sets, 62–67

product percent contribution across
lineage calculation, 196–98

products, top fi ve, calculations,
268–71

properties, 9. See also specifi c
properties

calculated member, 256–57
cell, 44–46, 60
member, 109–11

Properties function
intrinsic member properties,

110–11

Q
Qtd function, 217–18
quadruple coordinate, 38–39
quarterly average, 162–65
quarter-to-date calculations,

217–18
quarter-to-date reseller sales

calculation, 216–17
queries

adding functions to, 32–33
adding measures to, 31
adding members to, 29–31
building, 23–25
complex, 29–35
executing, 33–34
nested, 142
restoring, 34–35
saving, 34–35

queries, reports, 320–21
assembling, 321–24
calculated member addition,

324–26
modifi cation, 326–29
parameter addition, 329–33

Query Designer, 321
calculated member addition,

324–26, 351
fi lter operators, 338–39
parameter addition, 352
parameter modifi cation, 336–38
query assembly, 321–24
query modifi cation, 326–29

Query Editor, 15
complex query building, 29–35
Functions tab, 22
layout, 21–22
message pane, 22
metadata pane, 22
Metadata tab, 22
opening, 19–22, 35
query building, 23–25
results pane, 22

360 query-scoped calculated members

SQL Server Management Studio,
15–19

Step-by-Step cube, 25–29
target database, changing, 35

query-scoped calculated members,
98, 247–48

assembling, 257–59
query-scoped named sets, 267–68
quintuple coordinate, 39

R
Range (Exclusive) operator, 339
Range (Inclusive) operator, 339
Rank function, 186–89
ranking

All Products member, 189
by sales, 187–89
siblings, 188–89

Read Contingent permission, 302–3
Read permission, 302–3
Read/Write permission, 302–3
references

confl icts, 55–58
key-based, 41

member, 40–41, 50–51, 60
member, confl icts, 55–58
member, omitted, 47
member, shortcuts, 59
name-based
overlapping, 55–58

relational data warehouse, 8
relatives, accessing

extended, 189–203
immediate, 181–89

Report Designer, 333–38
Report Server, project creation,

312–16
Reporting Services, 311, 351–52

aggregation, 345–46
Analysis Services connection,

316–20
connection string, 319–20
data presentation, 340–51
dataset design, 320–29
expressions, 316
fi nishing touches, 350–51
parameter addition, 329–39
parameter modifi cation, 333–38
report totals, adding, 344–46
Select All option, 338
table assembly, 340–43
table formatting, 346–50

reports, 311–16, 351–52
Analysis Services connection,

316–20
data presentation, 340–51
dataset design, 320–29
fi nishing touches, 350–51

parameter addition, 329–39
project creation, Report Server,

312–16
table formatting, 352

Reseller Order Count
Aggregate function, 158–61
report, 311. See also reports
report, aggregation, 345–46
report, calculated member

addition, 324–26
report, query assembly, 324
report, table assembly, 340–43
report, table formatting,

346–50
Reseller Orders measure

group, 26
Reseller Sales Amount

accumulating total calculation,
213–14

Aggregate function, 158–61
average calculation, 162–65
calendar year average, 162–65
Count function, 172–76
cube-scoped calculated members,

248–49
cube-scoped complex calculated

membes, 259–62
expression calculation, 165–69
growth over prior period

calculation, 223–26
maximum and difference

calculation, 170–72
NON_EMPTY_BEHAVIOR

property, 264–65
partial tuples, 47–50
percent change in between

months calculation, 204–8
product percent contribution

across lineage calculation,
196–98

products meeting or exceeding,
determining, 172–76

quarter-to-date, 216–17
query-scoped calculated member

assembly, 258–59
ranking by sales, 187–89
ranking siblings, 188–89
report, 311. See also reports
report, aggregation, 345–46
report, calculated member

addition, 324
report, query assembly, 324
report, table assembly, 340–43
report, table formatting, 346–50
rolling averages calculation,

220–22
standard deviation

calculation, 261
variance, 262

year-to-date and prior period
year-to-date sales calculation,
229–31

year-to-date sales calculation,
214–17

Reseller Sales measure group, 26
Reseller Transaction Count,

Aggregate function, 158–61
roles, database, 273–74

creation, 277–81
rolling averages calculation, 220–22
ROWS axis

calculated member creation,
94–96

Crossjoin function, 77–79
empty sets, 284–85
MDX queries, 320–21
Other-Form Exists function,

86–88
parameter modifi cation, 337–38
SELECT statement, 68–72
set limiting, auto-exists, 79–83
set limiting, Exists function, 83–86

RunAs command, 282

S
sales. See also Reseller Sales Amount

averages. See averages,
calculating

growth over prior period, 223–26
monthly, 204–8
month-to-date, 217–18
percent change in, 204–8
period-to-date, 216–18
prior period year-to-date, 229–31
quarter-to-date, 216–18
ranking by, 216–17
year-to-date, 214–17, 229–31

Sales Target measure group, 88
SAP Netweaver BI, 11
SAS OLAP Server, 11
SCOPE statement, 246
Script Organizer, 244
security, dynamic, 273–74, 308–10

attribute-hierarchy restrictions,
285–302

cell-level restrictions, 302–8
database role creation, 277–81
empty sets, 284–85
local user account creation,

testing, 274–77
UserName function evaluation,

281–84
Select All option, parameters, 338
SELECT clause, 13
SELECT keyword, 31
SELECT statement, 11–13, 43

axes, 72

 summation 361

calculated member
declarartion, 98

dataset fi ltering, 331
MDX, 12–13
MEMBER substatement, 117
sets, 68–72
SQL, 12–13
sub-, 331

SELF fl ag, 190–91, 200
SELF_AND_AFTER fl ag, 191, 201, 210
SELF_AND_BEFORE fl ag, 191
SELF_BEFORE_AFTER fl ag, 191
semi-additive aggregations

relational data warehouse, 8
septuple coordinate, 39
session-scoped calculated members,

98, 266
set operators, 91–92
SetName element, 266–67
sets, 61–67

advanced construction, 147–53
allowed. See also allowed sets
allowed vs. denied, 285–86
assembly, 62–67
assembly, Generate function,

147–50
building, 72–79, 88–89, 123
building, Members function,

73–76
combining, 142–46
construction, Union, Intersect,

and Except function, 143–46
context and, 271
descendant assembly, 199–202
duplicate removal, 67
duplicate tuple removal, 176–77
empty, 284–85
expressions, 115–17. See also

expressions
Extract function assembly,

151–53
fi ltering, 137–42, 154
Generate function assembly,

147–50
Generate function

exploration, 177
limiting, 62–88, 131–34
limiting, Exists function, 83–88
limiting, Filter function, 138–40
merging, 155. See also Union

function
named. See named sets
ordered, 123–31
ordered, range operator, 130–31
SELECT statement, 68–72.

See also SELECT statement
single- and multi-member,

WHERE clause, 333
sorting, 153–56

sorting by expression, 124–26
sorting while breaking

hierarchical constraints, 126–30
sorting with Hierarchize function,

129–30
tuple retrieval, 131–37

sextuple coordinate, 39
shared data sources, 316
shared dimensionality, 6–7, 61

set assembly, 62–67
shared hierarchality, 61

set assembly, 65–67
shortcuts

Command Prompt, 281
member references, 59

sibling member relationship,
181–82

Siblings function, 182, 209
ranking siblings, 188–89

siblings, ranking, 187–89
size attribute-hierarchy, 29
slicer axis, 69
slicing, 5, 9

defi ned, 14
snowfl ake schema, 8
Solution Explorer, 242
solve order, 105–8, 118

KPI objects, 256
MDX scripts, 240

SOLVE_ORDER property, 105–8, 118
sort order

by expression, sets, 124–26
set tuples, 123–24
sibling ranking, 188–89

Source layer, 4
special member functions, 115
SQL Server

Adventure Works Cycles, 4
Analysis Service. See Analysis

Service
Database Engine Services, 8, 11
SELECT statement. See SELECT

statement
SQL Server Books Online, 211,

303, 349
SQL Server Management Studio,

15–19
allowed set implementation,

290–95, 300–1
cell-level restrictions, 305–7
database role creation, 277–81
document workspace, 17
launching, 282
layout, 17
Object explorer. See Object

Explorer
Query Editor. See Query Editor
saving and restoring queries,

34–35

testing cell-level restrictions,
307–8

testing restrictions, 301–2
testing set restrictions,

295–97
square brackets, 40
standard attribute-hierarchies,

restricting, 286–97
standard deviation calculation,

168–69, 257–58
NON_EMPTY_BEHAVIOR

property, 264–65
star schema, 8
stars, 6
statements, 11–13. See also specifi c

statements
executing, 35
parsing, 35
scripting, 246
subcube, 142

static named sets, 271
status, KPI object, 255
Stdev function, 168–69
SELECT FROM, 49–50
Step-by-Step cube, 25–29

attribute hierarchies, 101
Chapter 3 cube, 41–42
hierarchies, 28–29
MDX script, 240–46
metadata pane exploration,

25–29
query building within, 23–25
set limiting, 88. See also set

limiting
sets, 62–67

string concatenation (+)
operator, 92

string conversion functions, 339
string operations, 94
string operators, 91–92
string values, 91–92
StrToMember function, 339
StrToSet function, 288, 339
StrToTuple function, 339
subcategory attribute-hierarchy, 29,

41–42
set limiting, auto-exists, 80–83
set-limiting, Exists function,

83–86
subcategory members, set sorting,

127–30
subcategory sales difference

determination, 170–72
sub-SELECT statement, 331
subtract (–) operator, 91
Sum function, 157–58, 178

Aggregate function vs., 161
summation, 157–61, 178

calculated members, 158–61

362 table

T
table

assembly, reports, 340–43
formatting, reports, 346–50, 352

Tail function, 134
testing

cell-level restrictions, 307–8
set restrictions, 295–97, 301–2
user account creation for, 274–77

text wrapping, 347
THIS statement, 246
time dimension, 211–12, 233–35

accumulating total, 213–19
cautions, 227–28
combining time-based metrics,

229–33
current value determination,

212–13
growth over prior period

calculation, 223–26
inception-to-date calculation,

218–19
OpeningPeriod and ClosingPeriod

functions, 231–33
period-over-period analysis,

222–28
quarter-to-date reseller sales

calculation, 216–17
rolling averages calculation,

220–22
year-to-date and prior period

year-to-date sales calculation,
229–31

year-to-date reseller sales
calculation, 214–17

Time function, 213
time-based metrics, 229–33
tooltips, 33
TopCount function, 131–34, 154

named sets, 271
transaction-level averages

calculating, 166–68
NON_EMPTY_BEHAVIOR

property, 264–65
transaction-level minimums and

maximums, 170
transaction-level standard deviation

calculation, 169, 257–58
translation, user-hierarchy, 51–55
trend, KPI object, 256
triple coordinate, 38
tuples, 11, 37

as values, 98
cells, 43–46

counting, 172–77, 180
cube space, 39–41
data access, 41–43
DistinctCount function, 176–77
duplicate removal, 176–77
empty, excluding, 155
member reference shortcuts, 59
n-dimensional space, 37–39
partial, 47–51, 96, 98–105
point access in cube space, 42–43
Rank function, 186
retrieving, sets, 131–37
sets. See sets
sort order, 123–24
user-hierarchies, 51–59

Type property value, 217–18
TYPED fl ag, 110

U
union (+) operator, 92, 143
Union function, 142–43, 155

set construction, 143–46
UniqueName function, 110
UnknownMember function, 115
UPDATETABLE property, 46
user account creation, local, 274–77
user attribute-hierarchy

allowed set implementation,
290–95

allowed sets creation, 287–90
user authentication, 274
User dimension, 286–87, 309

allowed set implementation,
290–95

allowed sets creation, 287–90
User Product Relationship measure

group, 290
User property, 309

parent-child restrictions, 299–300
user rights, 273–74.

See also security, dynamic
user-hierarchies, 9–10

calendar, 62–67, 211–12
calendar year, 52–55
calendar-to-fi scal year, 42, 55–58
fi scal year, 52–55
navigation. See navigation
product categories, 64–67, 336
Step-By-Step cube, 27–29
tuples, 51–59

user-hierarchy
defi ned, 14
translation, 51–55

UserName function, 274, 309
cell-level restrictions, 303
evaluation, 281–84
parent-child restrictions,

299–300

V
VALUE property, 44, 46

accessing, 44–46
table formatting, 347–48

values
aggregating. See aggregation
available, parameter, 335–36
averaging, 179
Boolean, 91–92
date, 91–92
historical, 222–23
KPI object, 255
minimum and maximum,

identifying, 163–72, 180
Null. See Null values
numeric, 91–92
rolling averages calculation,

220–22
string, 91–92
tuples as, 98
types of, 61–92

VBA functions, 93, 126
date math, 213
parsing, 274
time, 213

Venn diagrams, 142–43
verifi cation

cube-based calculated
members, 255

cube-scoped calculated members,
262–64

vertical navigation, 203
VISIBLE property, 256–57

cube-scoped calculated
members, 272

measure groups, 286
Visual Studio, BIDS hosting, 241

W
week-to-date calculations,

217–18
WHERE clause, 13

dataset fi ltering, 331
Nonempty function, 142
SELECT statement, 69–72
set limiting, 82–83

 z-axis 363

set limiting, Exists function,
83–86

single- and multi-member
sets, 333

WHERE keyword, 30
Windows authentication, 274
WITH clause

calculated member
declaration, 98

MEMBER substatement, 117
worst performers, extracting,

132–34
Wtd function, 217–18

X
x-axis, 37–39
x-coordinate, 37–39
XML for Analysis (XMLA), 11
XOR operator, 92

Filter function, 137
XTD functions, 217–18

Y
y-axis, 37–39
y-coordinate, 37–39

year-to-date sales calculation,
214–17, 229–31

year-to-date sales calculations,
217–18

Ytd function, 217–18, 234

Z
z-axis, 38–39

Bryan C. Smith

Bryan is a manager of specialized services with Hitachi Consulting’s

Microsoft Database Technologies team. As a member of this team,

he designs and implements business intelligence solutions for clients in

a variety of industries using the products in the Microsoft SQL Server

suite. Bryan has degrees from Texas A&M and Duke Universities, holds

a number of Microsoft certifi cations, and has more than 10 years

of experience developing solutions supporting data analysis. Bryan

lives in the Dallas area with his (amazing) wife, Haruka, and their two

 (equally amazing) children, Aki and Umi.

C. Ryan Clay

C. Ryan Clay is a senior architect with Hitachi Consulting, specializing

in business intelligence, data management, portal and collaboration,

and SAP integration/interoperability solutions employing Microsoft

 technologies. Ryan has i mplemented Microsoft Business Intelligence

solutions using Analysis Services and MDX for a variety of Fortune

500 clients in the retail, construction, fi nance, and consumer goods

 industries. Ryan holds degrees in computer science as well as a number

of Microsoft certifi cations and is active in the Microsoft community

through speaking engagements and presentations at regional and

 national events. He lives in the Dallas area with his wife and daughter.

Hitachi Consulting

As the global consulting company of Hitachi Ltd. (NYSE: HIT), Hitachi Consulting is a recognized

leader in delivering proven business and IT solutions to Global 2000 companies across many

industries. We leverage decades of business process, vertical industry, and leading-edge

 technology experience to understand each company’s unique business needs. From business

strategy development through application deployment, our consultants are committed to

 helping clients quickly realize measurable business value and achieve sustainable return on

 investment. For more information, visit www.hitachiconsulting.com. Hitachi Consulting – Inspiring

your next success®.

	Cover
	Copyright Page

	Dedication
	Contents at a Glance
	Table of Contents
	Acknowledgements
	Introduction
	Who This Book Is For
	What This Book Is About
	Conventions and Features in This Book
	Conventions
	Other Features

	System Requirements
	Samples
	Installing the Samples
	Uninstalling the Samples
	Find Additional Content Online

	Support for This Book
	Questions and Comments

	Chapter 3: Understanding Tuples
	N-dimensional Space
	Cube Space
	Accessing Data with Tuples
	Understanding Cells
	Working with Partial Tuples
	Building Tuples with User-Hierarchies
	Understanding User-Hierarchy Translation
	Avoiding Reference Conflicts
	Member Reference Shortcuts

	Chapter 3 Quick Reference

	Chapter 9: Working with Time
	Understanding the Time Dimension
	Calculating an Accumulating Total
	Calculating Rolling Averages

	Performing Period-over-Period Analysis
	Combining Time-Based Metrics
	Chapter 9 Quick Reference

	Index

