

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2009 by Andrea Saltarello and Dino Esposito

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2008935425

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 3 2 1 0 9 8

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor mation about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly at
fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, Access, ActiveX, IntelliSense, MS, MSDN, MS-DOS, PowerPoint, Silverlight, SQL Server,
Visio, Visual Basic, Visual C#, Visual Studio, Windows, and Windows Vista are either registered trademarks or trademarks
of the Microsoft group of companies. Other product and company names mentioned herein may be the trademarks of their
respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ben Ryan
Project Editor: Lynn Finnel
Editorial Production: S4Carlisle Publishing Services
Technical Reviewer: Kenn Scribner ; Technical Review services provided by Content Master, a member of CM Group, Ltd.
Cover: Tom Draper Design

Body Part No. X15-12272

To Silvia, Francesco, and Michela who wait for me and keep me busy.

But I’m happy only when I’m busy.

—Dino

To Mum and Depeche Mode.

—Andrea

“Any suffi ciently advanced technology is indistinguishable from magic.”

—Arthur C. Clarke

 v

Contents at a Glance

Part I Principles

 1 Architects and Architecture Today . 3

 2 UML Essentials. 31

 3 Design Principles and Patterns . 63

Part II Design of the System

 4 The Business Layer . 129

 5 The Service Layer . 193

 6 The Data Access Layer . 251

 7 The Presentation Layer. 343

 Final Thoughts. 401

 Appendix: The Northwind Starter Kit . 405

 Index . 413

 vii

Table of Contents

Acknowledgments .xiii

Introduction . xvii

Part I Principles

 1 Architects and Architecture Today . 3

What’s a Software Architecture, Anyway? . 4

Applying Architectural Principles to Software . 4

What’s Architecture and What’s Not . 8

Architecture Is About Decisions . 10

Requirements and Quality of Software . 12

Who’s the Architect, Anyway? . 17

An Architect’s Responsibilities . 17

How Many Types of Architects Do You Know? . 20

Common Misconceptions About Architects . 21

Overview of the Software Development Process . 24

The Software Life Cycle . 24

Models for Software Development. 26

Summary . 30

Murphy’s Laws of the Chapter . 30

 2 UML Essentials. 31

UML at a Glance . 32

Motivation for and History of Modeling Languages 33

UML Modes and Usage. 36

UML Diagrams . 41

Use-Case Diagrams . 43

Class Diagrams . 47

Sequence Diagrams. 53

Microsoft is interested in hearing your feedback so we can continually improve our books and learning

resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

viii Table of Contents

Summary . 61

Murphy’s Laws of the Chapter . 61

 3 Design Principles and Patterns . 63

Basic Design Principles . 63

For What the Alarm Bell Should Ring. 65

Structured Design . 66

Separation of Concerns. 70

Object-Oriented Design . 73

Basic OOD Principles . 73

Advanced Principles . 80

From Principles to Patterns. 85

What’s a Pattern, Anyway? . 86

Patterns vs. Idioms. 92

Dependency Injection. 95

Applying Requirements by Design . 97

Testability . 97

Security . 108

From Objects to Aspects. 116

Aspect-Oriented Programming. 116

AOP in Action . 120

Summary . 124

Murphy’s Laws of the Chapter . 125

Part II Design of the System

 4 The Business Layer . 129

What’s the Business Logic Layer, Anyway?. 130

Dissecting the Business Layer . 130

Where Would You Fit the BLL? . 134

Business and Other Layers . 138

Patterns for Creating the Business Layer . 141

The Transaction Script Pattern . 145

Generalities of the TS Pattern . 145

The Pattern in Action . 149

The Table Module Pattern . 154

Generalities of the TM Pattern. 155

The TM Pattern in Action . 159

 Table of Contents ix

The Active Record Pattern . 165

Generalities of the AR Pattern . 166

The AR Pattern in Action . 168

The Domain Model Pattern . 176

Generalities of the DM Pattern . 177

The DM Pattern in Action. 181

Summary . 191

Murphy’s Laws of the Chapter . 192

 5 The Service Layer . 193

What’s the Service Layer, Anyway? . 194

Responsibilities of the Service Layer . 195

What’s a Service, Anyway? . 198

Services in the Service Layer . 201

The Service Layer Pattern in Action . 205

Generalities of the Service Layer Pattern. 205

The Service Layer Pattern in Action . 208

Related Patterns . 213

The Remote Façade Pattern . 213

The Data Transfer Object Pattern . 216

The Adapter Pattern . 218

DTO vs. Assembly. 221

Service-Oriented Architecture . 229

Tenets of SOA . 230

What SOA Is Not . 232

SOA and the Service Layer . 234

The Very Special Case of Rich Web Front Ends . 237

Refactoring the Service Layer . 238

Designing an AJAX Service Layer . 242

Securing the AJAX Service Layer. 246

Summary . 250

Murphy’s Laws of the Chapter . 250

 6 The Data Access Layer . 251

What’s the Data Access Layer, Anyway?. 251

Functional Requirements of the Data Access Layer 252

Responsibilities of the Data Access Layer . 254

The Data Access Layer and Other Layers. 260

x Table of Contents

Designing Your Own Data Access Layer . 263

The Contract of the DAL . 263

The Plugin Pattern . 267

The Inversion of Control Pattern . 273

Laying the Groundwork for a Data Context . 277

Crafting Your Own Data Access Layer . 280

Implementing the Persistence Layer . 281

Implementing Query Services . 289

Implementing Transactional Semantics . 298

Implementing Uniquing and Identity Maps . 305

Implementing Concurrency . 311

Implementing Lazy Loading . 315

Power to the DAL with an O/RM Tool. 321

Object/Relational Mappers . 322

Using an O/RM Tool to Build a DAL . 325

To SP or Not to SP . 333

About Myths and Stored Procedures . 333

What About Dynamic SQL? . 339

Summary . 340

Murphy’s Laws of the Chapter . 341

 7 The Presentation Layer. 343

User Interface and Presentation Logic .344

Responsibilities of the Presentation Layer . 345

Responsibilities of the User Interface . 348

Common Pitfalls of a Presentation Layer. 350

Evolution of the Presentation Patterns. 352

The Model-View-Controller Pattern . 353

The Model-View-Presenter Pattern . 364

The Presentation Model Pattern . 370

Choosing a Pattern for the User Interface . 372

Design of the Presentation . 375

What Data Is Displayed in the View? . 375

Processing User Actions . 381

Idiomatic Presentation Design. 390

MVP in Web Presentations . 390

MVP in Windows Presentations . 395

Summary . 398

Murphy’s Laws of the Chapter . 399

 Table of Contents xi

Final Thoughts . 401

Appendix: The Northwind Starter Kit . 405

Index . 413

Microsoft is interested in hearing your feedback so we can continually improve our books and learning

resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

 xiii

Acknowledgments

For at least two years, Andrea didn’t miss any opportunity to remind Dino about the
 importance of a .NET-focused architecture book covering the horizontal slice of a multitier
enterprise system. And for two years Dino strung Andrea along with generic promises, but
absolutely no commitment. Then, suddenly, he saw the light. During a routine chat over
Messenger, we found out that we repeatedly made similar statements about architecture—
too many to mark it down as a simple coincidence. So we started thinking, and this time
 seriously, about this book project. But we needed a team of people to do it right, and they
were very good people, indeed.

Ben Ryan was sneakily convinced to support the project on a colorful Las Vegas night, during
an ethnic dinner at which we watched waiters coming up from and going down to the wine-
cellar in transparent elevators.

Lynn Finnel just didn’t want to let Dino walk alone in this key project after brilliantly
 coordinating at least fi ve book projects in the past.

Kenn Scribner is now Dino’s offi cial book alter ego. Kenn started working with Dino on
books back in 1998 in the age of COM and the Active Template Library. How is it possible
that a book with Dino’s name on the cover isn’t reviewed and inspired (and fi xed) by Kenn’s
unique and broad perspective on the world of software? The extent to which Kenn can be
helpful is just beyond human imagination.

Roger LeBlanc joined the team to make sure that all these geeks sitting together at the
same virtual desktop could still communicate using true English syntax and semantics.

We owe you all the (non-rhetorically) monumental “Thank you” for being so kind, patient,
and accurate.

Only two authors and a small team for such a great book? Well, not exactly. Along the project
lifetime, we had the pleasure to welcome aboard a good ensemble of people who helped
out in some way. And we want to spend a word or two about each of them here.

Raffaele Rialdi suggested and reviewed our section in Chapter 3 about design for security.
Roy Osherove was nice enough to share his enormous experience with testing and testing
tools. Marco Abis of ThoughtWorks had only nice words for the project and encouraged us
to make it happen. Alex Homer of Microsoft helped with Unity and Enterprise Library. And
the whole team at Managed Design (our Italian company) contributed tips and ideas—special
thanks go to Roberto Messora.

It’s really been a pleasure!

—Andrea and Dino

xiv Acknowledgments

Dino’s Credits

This is the fi rst book I have co-authored in 8 or
9 years. I think the last was a multi-author book on
data access involving COM and OLE DB. In the past,
co-authoring a book for me meant accepting to
write a few chapters on specifi c topics, while having
only a faint idea of what was coming before and
 after my chapters.

This book is different.

This book has really been written by a virtual
author: a human with the hands of Dino and the
 experience of Andrea. I actually did most of the
writing, but Andrea literally put concepts and
ideas into my keyboard. If it were a song, it would be described as lyrics by Dino and music
by Andrea.

This book wouldn’t exist, or it wouldn’t be nearly as valuable, without Andrea. Andrea has
been my personal Google for a few months—the engine to search when I need to understand
certain principles and design issues. The nicest part of the story is that I almost always asked
about things I (thought I) knew enough about. My “enough” was probably really enough to
be a very good architect in real life. But Andrea gave me a new and broader perspective on
virtually everything we covered in the book—ISO standards, UML, design principles, patterns,
the user interface, business logic, services, and persistence. I’ve been the fi rst hungry reader
of this book. And I’ve been the fi rst to learn a lot.

It was so fun that I spent the whole summer on it. And in Italy, the summer is a serious matter.
I smile when I get some proposals for consulting or training in mid-August. There’s no way
I can even vaguely hint to my wife about accepting them.

So, on many days, I reached 7 p.m. so cloudy minded that running, running, and running—
which was more soothing than my favorite pastime of trying to catch up to and hit a bouncing
tennis ball—was the only way to recover a decent state of mind. On other days, my friends
at Tennis Club Monterotondo helped a lot by just throwing at me tons of forehands and
 passing shots. One of them, Fabrizio—a guy who played Boris Becker and Stefan Edberg
and who now wastes his time with my hopeless backhand slice—has been my instructor for
a while. He also tried to learn some basic concepts of Web programming during what often
became long conversations while changing ends of the court. But just as I keep on twirling
the wrist during the execution of a backhand slice, he still keeps on missing the whole point of
HTTP cookies.

My friend Antonio deserves a very special mention for organizing a wonderful and regenerative
vacation in the deep blue sea of Sardinia, and for being kind enough to lose all the matches we

 Acknowledgments xv

played. It was just the right medicine to rejuvenate a fatigued spirit after a tough book project.
He tried to initiate me into the sport of diving, too, but all I could do was snorkel while the kids
got their Scuba Diver certifi cation.

My kids, Francesco and Michela, grow taller with every book I write, and not because
they just hop on the entire pile of dad’s books. They’re now 10 and 7, and Michela was just
a newborn baby when I started working on my fi rst .NET book for Microsoft Press. I really
feel a strong emotion when attendees of conferences worldwide come by and ask about my
kids—loyal readers of my books have been seeing their pictures for years now.

For me, this book is not like most of the others that I have written—and I do write about
one book per year. This book marks a watershed, both personal and professional. I never
 expressed its importance in this way with Silvia, but she understood it anyway and
 supported me silently and effectively. And lovingly. And with great food, indeed!

Life is good.

—Dino

Andrea’s Credits

This is my fi rst book. More precisely, this is my fi rst serious publication. The seeds for this
book were sowed in November 2004 when a rockstar like Dino approached me and proposed
that we work together.

We started a successful business partnership, and we delivered a number of classes and some
articles—including one for MSDN Magazine—and took a number of industry projects home
to ensure our customers were happy.

In all these years, Dino impressed me especially with his unique ability of going straight to the
point, and being a terrifi cally quick learner of the fundamentals of any topics we touched on.
More, he also showed an unparalleled ability to express any concept precisely and concisely.
Countless times during this book project, I found my own wording hard to read, nebulous,
and even cryptic. A few days later, instead, massaged by Dino, the same text looked to me
magically fl uent and perfectly understandable—just like any technical text should always be.

(OK, I admit. Sometimes I thought “I hate this man,” but it was an unusual and unconfessed
way to look up to Dino with admiration.)

More than everything else, what initially was a simple although successful professional
 collaboration turned into friendship. This book, therefore, is not a fi nish line. It is, instead, the
starting point of a common path. I really don’t know either where we’re going or how long it
will take, but I’m going to be happy to take the walk.

xvi Acknowledgments

Being a full-time consultant, it was very hard for me to set aside the time needed for writing
this book. So I had to start living a double life, resorting to writing in what you would defi ne
as “spare time”: evenings and weekends, and suddenly the summer also became standard
working time. Every now and then, it has been a little frustrating, but I found new strength
and inspiration due to the love and support I was blessed with by my guardian angels: my
mom and Laura. I’d like to say to them that words cannot express how precious your caring
is. I love you.

Now, this is fun.

—Andrea

 xvii

Introduction

Good judgment comes from experience, and experience comes from bad judgment.

—Fred Brooks

Every time we are engaged on a software project, we create a solution. We call the process
architecting, and the resulting concrete artifact is the architecture. Architecture can be implicit
or explicit.

An implicit architecture is the design of the solution we create mentally and persist on a bunch
of Microsoft Offi ce Word documents, when not on handwritten notes. An implicit architecture
is the fruit of hands-on experience, the reuse of tricks learned while working on similar projects,
and an inherent ability to form abstract concepts and factor them into the project at hand. If
you’re an expert artisan, you don’t need complex drawings and measurements to build a fence
or a bed for your dog; you can implicitly architect it in a few moments. You just proceed and
easily make the correct decision at each crossroad. When you come to an end, it’s fi ne. All’s well
that ends well.

An explicit architecture is necessary when the stakeholder concerns are too complex and
 sophisticated to be handled based only on experience and mental processes. In this case,
you need vision, you need guidance, and you need to apply patterns and practices that, by
 design, take you where you need to be.

What Is Architecture?

The word architecture has widespread use in a variety of contexts. You can get a defi nition for
it from the Oxford English Dictionary or, as far as software is concerned, from the American
National Standards Institute/Institute of Electrical and Electronics Engineers (ANSI/IEEE)
 library of standards. In both cases, the defi nition of architecture revolves around planning,
designing, and constructing something—be it a building or a software program. Software
architecture is the concrete artifact that solves specifi c stakeholder concerns—read, specifi c
user requirements.

An architecture doesn’t exist outside of a context. To design a software system, you need to
understand how the fi nal system relates to, and is embedded into, the hosting environment.
As a software architect, you can’t ignore technologies and development techniques for the
environment of choice—for this book, the .NET platform.

Again, what is architecture?

We like to summarize it as the art of making hard-to-change decisions correctly. The
 architecture is the skeleton of a system, the set of pillars that sustain the whole construction.

xviii Introduction

The architect is responsible for the architecture. The architect’s job is multifaceted. She has
to acknowledge requirements, design the system, ensure the implementation matches the
expectation, and overall ensure that users get what they really need—which is not necessarily
what they initially accept and pay for.

Software architecture has some preconditions—that is, design principles—and one post
condition—an implemented system that produces expected results. Subsequently, this book
is divided into two parts: principles and the design of the system.

The fi rst part focuses on the role of the architect: what he does, who he interacts with and
who he reports to. The architect is primarily responsible for acknowledging the requirements,
 designing the system, and communicating that design to the development team. The
 communication often is based on Unifi ed Modeling Language (UML) sketches; less often,
it’s based on UML blueprints. The architect applies general software engineering principles
fi rst, and object-oriented design principles later, to break down the system into smaller
and smaller pieces in an attempt to separate what is architecture (points that are hard to
change) and what is not. One of the purposes of object-oriented design is to make your
code easy to maintain and evolve—and easy to read and understand. The architect knows
that maintainability, security, and testability need to be built into the system right from the
 beginning, and so he does that.

The second part of the book focuses on the layers that form a typical enterprise system—the
presentation layer, business layer, and data access layer. The book discusses design patterns
for the various layers—including Domain Model, Model-View-Presenter, and Service Layer—
and arguments about the evolution of technologies and summaries of the new wave of tools
that have become a common presence in software projects—O/R mappers and dependency
injection containers.

So, in the end, what’s this book about?

It’s about the things you need to do and know to serve your customers in the best possible
way as far as the .NET platform is concerned. Patterns, principles, and techniques described
in the book are valid in general and are not specifi c to particularly complex line-of-business
applications. A good software architecture helps in controlling the complexity of the project.
And controlling the complexity and favoring maintainability are the sharpest tools we have
to fi ght the canonical Murphy’s Law of technology: “Nothing ever gets built on schedule or
within budget.”

The expert is the one who knows how to handle complexity, not the one who simply predicts
the job will take the longest and cost the most—just to paraphrase yet another popular
Murphy’s Law.

 Introduction xix

Who This Book Is For

In the previous section, we repeatedly mentioned architects. So are software architects the
ideal target audience for this book? Architects and lead developers in particular are the
 target audience, but any developers of any type of .NET applications likely will fi nd this book
 benefi cial. Everyone who wants to be an architect may fi nd this book helpful and worth
the cost.

What about prerequisites?

Strong object-oriented programming skills are a requirement, as well as having a good
foundation of knowledge of the .NET platform and data access techniques. We point out
a lot of design patterns, but we explain all of them in detail in nonacademic language with
no weird formalisms. Finally, we put in a lot of effort into making this book read well. It’s
not a book about abstract design concepts; it is not a classic architecture book either, full of
 cross-references and fancy strings in square brackets that hyperlink to some old paper listed
in the bibliography available at the end of the book.

This is (hopefully) a book you’ll want to read from cover to cover, and maybe more than
once—not a book to keep stored on a shelf for future reference. We don’t expect readers to
pick up this book at crunch time to fi nd out how to use a given pattern. Instead, our ultimate
goal is transferring some valuable knowledge that enables you to know what to do at any
point. In a certain way, we would happy if, thanks to this book, you could do more implicit
architecture design on your own.

Companion Content

In the book, we present several code snippets and discuss sample applications, but with the
primary purpose of illustrating principles and techniques for readers to apply in their own
projects. In a certain way, we tried to teach fi shing, but we don’t provide some sample fi sh to
take home. However, there’s a CodePlex project that we want to point out to you. You fi nd it
at http://www.codeplex.com/nsk.

This book also features a companion Web site where you can also fi nd the CodePlex project.
You can download it from the companion site at this address: http://www.microsoft.com/
mspress/companion/9780735626096.

The Northwind Starter Kit (NSK) is a set of Microsoft Visual Studio 2008 projects that form a
multitier .NET-based system. Produced by Managed Design (http://www.manageddesign.it),
NSK is a reference application that illustrates most of the principles and patterns we discuss
in the book. Many of the code snippets in the book come directly from some of the projects
in the NSK solution. If you’re engaged in the design and implementation of a .NET layered
application, NSK can serve as a sort of blueprint for the architecture.

xx Introduction

Refer to the Managed Design Web site for the latest builds and full source code. For an
 overview of the reference application, have a look at the Appendix, “The Northwind Starter
Kit,” in this book.

Hardware and Software Requirements

You’ll need the following hardware and software to work with the companion content
 included with this book:

■ Microsoft Windows Vista Home Premium Edition, Windows Vista Business Edition, or
Windows Vista Ultimate Edition

■ Microsoft Visual Studio 2008 Standard Edition, Visual Studio 2008 Enterprise Edition,
or Microsoft Visual C# 2008 Express Edition and Microsoft Visual Web Developer 2008
Express Edition

■ Microsoft SQL Server 2005 Express Edition, Service Pack 2

■ The Northwind database of Microsoft SQL Server 2000 is used by the Northwind
Starter Kit to demonstrate data-access techniques. You can obtain the Northwind
 database from the Microsoft Download Center (http://www.microsoft.com/downloads/
details.aspx?FamilyID=06616212-0356-46A0-8DA2-EEBC53A68034&displaylang=en).

■ 1.6 GHz Pentium III+ processor, or faster

■ 1 GB of available, physical RAM.

■ Video (800 by 600 or higher resolution) monitor with at least 256 colors.

■ CD-ROM or DVD-ROM drive.

■ Microsoft mouse or compatible pointing device

Find Additional Content Online

As new or updated material becomes available that complements this book, it will be posted
online on the Microsoft Press Online Developer Tools Web site. The type of material you
might fi nd includes updates to book content, articles, links to companion content, errata,
sample chapters, and more. This Web site is available at www.microsoft.com/learning/books/
online/developer and is updated periodically.

Support for This Book

Every effort has been made to ensure the accuracy of this book and the contents of the
companion CD. As corrections or changes are collected, they will be added to a Microsoft
Knowledge Base article.

 Introduction xxi

Microsoft Press provides support for books and companion CDs at the following Web site:

http://www.microsoft.com/learning/support/books

Questions and Comments

If you have comments, questions, or ideas regarding the book or the companion content, or
questions that are not answered by visiting the sites above, please send them to Microsoft
Press via e-mail to

mspinput@microsoft.com

Or via postal mail to

Microsoft Press
Attn: Microsoft .NET: Architecting Applications for the Enterprise Editor
One Microsoft Way
Redmond, WA 98052-6399

Please note that Microsoft software product support is not offered through the above
addresses.

 1

 Part I

 Principles

You know you’ve achieved perfection in design, not when you have nothing more to
add, but when you have nothing more to take away.

— Antoine de Saint-Exupery, “Wind, Sand and Stars”

In this part:

Chapter 1: Architects and Architecture Today . 3

Chapter 2: UML Essentials . 31

Chapter 3: Design Principles and Patterns . 63

 3

 Chapter 1

 Architects and Architecture Today

 The purpose of software engineering is to control complexity, not to create it.

 —Dr. Pamela Zave

 At the beginning of the computing age, in the early 1960s, the costs of hardware were
 largely predominant over the costs of software. Some 40 years later, we fi nd the situation
to be radically different.

 Hardware costs have fallen dramatically because of the progress made by the industry.
Software development costs, on the other hand, have risen considerably, mostly because of the
increasing complexity of custom enterprise software development. Cheaper computers made
it worthwhile for companies to add more and more features to their information systems.
What in the beginning was a collection of standalone applications with no connection to one
another that barely shared a database has grown over years into a complex system made of
interconnected functions and modules, each with a particular set of responsibilities.

 This situation has created the need for a set of precepts to guide engineers in the design
of such systems. The modern software system—or the software-intensive system, as it is
referred to in international standards papers—can be compared quite naturally to any
 construction resulting from a set of detailed blueprints.

 Appropriated from the construction industry, the term architecture has become the appropriate
way to describe the art of planning, designing, and implementing software-intensive systems.
In software, though, architecture needs less artistry than in building. Well-designed buildings
are pleasing to the eye and functional. Software architecture is less subjective. It either functions
as required or it does not. There is less room for artistry and interpretation, unless you want to
consider the artistry of a well-crafted algorithm or a piece of user interface.

 One of this book’s authors had, in the past, frequent interaction with an architecture studio.
One day, a question popped up for discussion: What’s architecture? Is it an art? Or is it just
building for a client?

 In software, the term architecture precisely refers to building a system for a client.

 In this fi rst chapter, we’ll look at some papers from the International Organization for
Standardization (ISO), the International Electrotechnical Commission (IEC), and the Institute
of Electrical and Electronics Engineers (IEEE) that provide an architectural description of
 software-intensive systems. From there, we’ll give our own interpretation of software
 architecture and voice our opinions about the role and responsibilities of software architects.

4 Part I Principles

Note While some defi nitions you fi nd in this book come from ISO standards, others refl ect our
 personal opinions, experiences, and feelings. Although the reader might not agree with all of
our personal refl ections, we all should agree that software systems that lack strong architectural
 design and support are nearly guaranteed to fail. So having good architects on the team is a
 necessity. What’s a “good” architect? It is one who is experienced, educated, and qualifi ed.

 Modern systems need more engineering and understanding, and less artistry and subjective
guesswork. This is the direction we need to move toward as good software architects.

 What’s a Software Architecture, Anyway?

 Herman Melville, the unforgettable author of Moby Dick, once said that men think that by
mouthing hard words they can understand hard things. In software, the “hard” word architecture
was originally introduced into the fi eld to simplify the transmission and understanding of a key
and “hard” guideline. The guideline was this: Care (much) more about the design of software
systems than you have in the past; care about it to the point of guiding the development of a
software system similar to guiding the development of a building.

 It’s a hard thing to do and probably beyond many developers’ capabilities. But let’s give it a
try. Let’s try to clarify what a “software architecture” is or, at least, what we intend it to be.

 Applying Architectural Principles to Software

 The word “architecture” is indissolubly bound to the world of construction. It was fi rst used
in the software industry to express the need to plan and design before building computer
 programs. However, a fundamental difference exists between designing and building
 habitable structures and designing and building usable software systems.

 Intuitively, we care if the building falls on people. But software? There is always plenty of
money to rewrite things, right? In construction, the design must be completed entirely up
front and based on extremely detailed calculations and blueprints. In software, you tend
to be more agile. A few decades ago, the up-front design methodology was common and
 popular in software, too. But, over the years, that approach increased development costs.
And because software can be effi ciently (and safely) tested before deployment, agility got
the upper hand over up-front design.

 Today the architectural parallelism between construction and software is not as close as it was a
few years ago. However, many dictionaries currently list a software-related defi nition of the term
“architecture.” And a software architecture is described as “the composition, integration, and
interaction of components within a computer system.” It is certainly a defi nition that everybody
would agree on. But, in our opinion, it is rather abstract.

 Chapter 1 Architects and Architecture Today 5

 We think that software professionals should agree on a more detailed explanation that
breaks down that defi nition into smaller pieces and puts them into context.

 Defi ning the Architecture from a Standard Viewpoint

 Many seem to forget that a standard defi nition for software architecture exists. More
 precisely, it is in ANSI/IEEE standard 1471, “Recommended Practice for Architectural
Description of Software-intensive Systems.” The document was originally developed by
IEEE and approved as a recommended practice in September 2000.

 The document focuses on practices to describe the architecture of software-intensive
 systems. Using the defi nition in the standard, a software-intensive system is any system in
which software is essential to implementation and deployment.

 Stakeholders are defi ned as all parties interested or concerned about the building of the
 system. The list includes the builders of the system (architects, developers, testers) as well as
the acquirer, end users, analysts, auditors, and chief information offi cers (CIOs).

 In 2007, the ANSI/IEEE document was also recognized as a standard through ISO/IEC document
42010. Those interested in reading the full standard can navigate their browser to the following
URL: http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=45991.

 Examining Key Architecture-Related Points in ANSI/IEEE 1471

 The key takeaway from the ANSI/IEEE standard for software architecture is that a software
system exists to meet the expectations of its stakeholders. Expectations are expressed as
functional and nonfunctional requirements. Processed by the architect, requirements are
then communicated to the development team and fi nally implemented. All the steps occur
and exist to ensure the quality of the software. Skipping any step introduces the possibility
for less software quality and the potential to not meet the stakeholders’ expectations.

 To design a software system that achieves its goals, you need to devise it using an
 architectural metaphor. Accepting an architectural metaphor means that you recognize the
principle that some important decisions regarding the system might be made quite early
in the development process; just like key decisions are made very early in the development
of civil architecture projects. For example, you wouldn’t build a skyscraper when a bridge
was required. Similarly, requirements might steer you to a Web-oriented architecture
 rather than a desktop application. Decisions this major must be made very early.

 A software architecture, therefore, is concerned with the organization of a system and lays
out the foundations of the system. The system, then, has to be designed—which entails
 making some hard decisions up front—and described—which entails providing multiple
views of the system, with each view covering a given set of system responsibilities.

6 Part I Principles

 Defi ning the System from a Standard Viewpoint

 As mentioned, a software system is universally understood to be a collection of components
composed and integrated to accomplish a specifi c set of functions.

 A system lives in a context; and this context infl uences the design of the system by driving some
developmental and operational decisions. A system exists to solve a problem and achieve its
mission in full respect of the stakeholders’ concerns. Stakeholders’ concerns include functional
and nonfunctional requisites as well as system aspects such as security, testability, performance,
reliability, and extensibility.

 Although it envisions the system as a composition of interconnected components, an
 architecture also establishes some fi rm points that are hard to modify later. In a way,
 expressing software development in terms of an architecture boils down to making some key
decisions that affect the development life cycle and, ultimately, the quality of the resulting
system.

 Figure 1-1 illustrates the relationships between the system, architecture, and stakeholders as
identifi ed by ANSI/IEEE standard 1471. The content of Figure 1-1 is actually an adaptation
of one of the fi gures in the document.

Mission

System ArchitectureEnvironment

Architectural
Description

has aninfluences
inhabits

has 1..*

has 1..*

described by 1

fulfills 1..*

identifies 1..*

is important to 1..*

identifies 1..*

Stakeholder

Concern

 FIGURE 1-1 A model for creating an architectural description

 The fi gure uses the notation of the Unifi ed Modeling Language (UML) to express its
 concepts. We’ll offer a refresher of UML in the next chapter. Even if you’re new to UML, you
should be able to read the fi gure quite comfortably. Each connector indicates an action

 Chapter 1 Architects and Architecture Today 7

(with a specifi ed name) that is executed by the element where the connector starts and that
affects the target. So, for example, the System fulfi lls one or more Missions; the Environment
(context) infl uences the System; a Concern is important to one or more Stakeholders; the
System has an Architecture.

 Describing the Architecture

 As you can see in Figure 1-1, the Architecture is described by one Architectural Description.
How would you describe the architecture to stakeholders?

 The key messages about an architecture are its components and classes, their mapping onto
binaries, their relationships and dependencies, usage scenarios, and detailed work fl ows for
key operations. How would you render all these things?

 A very popular choice is UML diagrams.

 UML is also a recognized international standard—precisely, ISO/IEC 19501 released in
2005. You create UML class diagrams to show relationships between classes; you employ
 use-case diagrams to present usage scenarios; you create component diagrams to capture
the relationships between reusable parts of a system (components) and see more easily how
to map them onto binaries. In some cases, you can also add some sequence diagrams to
 illustrate in more detail the workfl ow for some key scenarios. These terms are defi ned and
discussed in more detail in Chapter 2, “UML Essentials.”

 At the end of the day, you serve different and concurrent views of the same architecture and
capture its key facts.

 Note The same principle of offering multiple views from distinct viewpoints lies behind another
vendor-specifi c model for architectural description—IBM/Rational’s 4+1 views model. The model
defi nes four main views—nearly equivalent to UML diagrams. These views are as follows:

 The logical view, which describe components

 The process view, which describes mapping and dependencies

 The development view, which describes classes

 The physical view, which (if necessary) describes mapping onto hardware

 The fi fth, partially redundant, view is the scenario view, which is specifi c to use cases.

 Validating the Architecture

 How would you validate the design to ensure that stakeholders’ concerns are properly
addressed?

 There’s no magic wand and no magic formulas that take a more or less formal defi nition
of an architecture as input and tells you whether it is appropriate for the expressed

8 Part I Principles

 requirements. To validate the design of a system, you can only test it—in various ways and
at various levels.

 So you will perform unit tests to validate single functionalities, and you will perform
 integration tests to see how the system coexists with other systems and applications. Finally,
you’ll run acceptance tests to verify how users actually feel about the application and
 whether the application provides the services it was created for. (Testing is one of the key
topics of Chapter 3, “Design Principles and Patterns.”)

 What’s Architecture and What’s Not

 When you think about creating or defi ning the architecture of a software system, you fi rst try
to identify a possible collection of interacting components that, all together, accomplish the
requested mission. In international standards, there’s no mention for any methodology you
should use to decompose the system into more detailed pieces. Let’s say that in the fi rst step
you a get a conceptual architecture and some different views of it. In a second step, you need
to get closer to a functional and physical architecture. How you get there is a subjective choice,
although a top-down approach seems to be a very reasonable strategy. You decompose
 components into smaller and smaller pieces, and from there you start building.

 No System Is a Monolith

 We’ve been told that, once upon a time, any piece of software was a monolith with an entry
point and fi nish point. The introduction of structured programming, and the concept of a
subroutine, in the early 1970s started shouldering such monoliths out of the way.

 Since then, many software systems have been designed as a graph of components
 communicating in various ways and having various levels of dependency. In practical terms,
designing a system consists of expanding the System element that was shown in Figure 1-1
into a graph of subsystems and defi ning communication policies and rules for each of them.

 The process of breaking down these details should ideally continue until you have described
in detail the structure and relationships for the smallest part of the system. Although fully
completing the breakdown process up front is key for constructing habitable buildings, it is
not that necessary for building software.

 The actual implementation of the breakdown process depends on the methodology selected
for the project—the more you are agile, the more the breakdown process is iterative and
articulated in smaller and more frequent steps. (We’ll return to the topic of methodologies
later in the chapter.)

 The output of the breakdown process is a set of specifi cations for the development team.
Also, the content and format of the specifi cations depend on the methodology. The more you

 Chapter 1 Architects and Architecture Today 9

are agile, the more freedom and independence you leave to developers when implementing
the architecture.

 Defi ning the Borderline Between Architecture and Implementation

 The constituent components you identifi ed while breaking down the system represent logical
functions to be implemented in some way. The design of components, their interface, their
responsibilities, and their behavior are defi nitely part of the architecture. There’s a border,
though, that physically separates architecture from implementation.

 This border is important to identify because, to a large extent, it helps to defi ne roles on a
development team. In particular, it marks the boundary between architects and developers.
Over the years, we learned that architects and developers are not different types of fruit, like
apples and oranges. They are the same type of fruit. However, if they are apples, they are like
red apples and green apples. Distinct fl avors, but not a different type of fruit. And neither
fl avor is necessarily tastier.

 You have arrived at the border between architecture and implementation when you reach a
black box of behavior. A black box of behavior is just a piece of functionality that can be easily
replaced or refactored without signifi cant regression and with zero or low impact on the
rest of the architecture. What’s above a black box of behavior is likely to have architectural
 relevance and might require making a hard-to-change decision.

 What’s our defi nition of a good architecture? It is an architecture in which all hard-to-change
decisions turn out to be right.

 Dealing with Hard-to-Change Decisions

 There are aspects and features of a software system that are hard (just hard, not impossible)
to change once you have entered the course of development. And there are aspects and
features that can be changed at any time without a huge effort and without having a wide
impact on the system.

 In his book Patterns of Enterprise Application Architecture (Addison-Wesley, 2002), Martin
Fowler puts it quite simply:

 If you fi nd that something is easier to change than you once thought, then it’s
no longer architectural. In the end architecture boils down to the important
stuff—whatever that is.

 To sum it up, we think that under the umbrella of the term architecture falls everything you
must take seriously at quite an early stage of the project. Architecture is ultimately about
 determining the key decisions to make and then making them correctly.

10 Part I Principles

 Architecture Is About Decisions

 When we talk about hard architectural decisions, we are not necessarily referring to irreversible
decisions about design points that can be diffi cult and expensive to change later. Hard-to-change
decisions are everywhere and range from the defi nition of a conceptual layers to the attributes of
a class.

 To illustrate our point, let’s go through a few different examples of architectural points that
can run into budget limits and deadlines if you have to touch them in the course of the
project.

 Changing the Organization of the Business Logic

 In Chapter 4, “The Business Layer,” we’ll examine various approaches to organizing the
 business logic in the context of a layered system. Possible approaches for the design of the
business logic include transaction script, table module, active record, and domain model.
The selection of a pattern for the business logic is an excellent example of a design choice
to be made very, very carefully. Once you have opted for, say, table module (which means,
essentially, that you’ll be using typed DataSets to store an application’s data in the business
logic layer), moving to an object model (for example, using the LINQ-to-SQL or Entity
Framework object model) is defi nitely hard and requires nontrivial changes in the data access
layer and in the application (service) layer, and probably also in the presentation layer. If you
need to change this decision later in the project, you enter into a signifi cant refactoring of
the whole system.

 Switching to a Different Library

 Suppose you developed some functionality around a given library. One day, the client pops
up and lets you know that a new company policy prevents the IT department from buying
products from a given vendor. Now you have a new, unexpected nonfunctional requirement
to deal with.

 A change in the specifi cations might require a change in the architecture, but at what cost?
In such a case, you have to comply with the new list of requirements, so there’s not much you
can do.

 In the best case, you can get a similar tool from an authorized vendor or, perhaps, you can
build a similar tool yourself. Alternatively, you can consider introducing a radical change into
the architecture that makes that library unnecessary.

 We faced an analogous situation recently, and the type of library was an Object/Relational
mapping tool. With, say, a UI control library, it would have been much simpler to deal with.
Replacing an Object/Relational mapping tool is not easy; it is a task that can be accomplished
only by getting another tool from another vendor. Unfortunately, this wasn’t possible. In other

 Chapter 1 Architects and Architecture Today 11

words, we were left to choose between either of two unpleasant and painful options: writing
our own Object/Relational mapping tool, or rearchitecting the middle tier to use a different
(and much simpler) object model.

 With over 500 presenters in the Model View Presenter–based user interface directly consuming the
object model, having to make this decision was our worst nightmare. We knew it would require a
huge amount of work on the middle tier, consuming both fi nancial resources and time. We lobbied
for more time and successfully stretched the deadline. Then we built our own tailor-made data
 access layer for a domain model. (After you’ve read Chapter 6, “The Data Access Layer,” you’ll have
a clear picture of what this all means.)

 Changing the Constructor’s Signature

 Don’t think that architecture is only about high-level decisions like those involving the design
and implementation of parts of the middle tier. A requested change in the signature of a
class constructor might get you in a fi ne mess, too.

 Imagine a scenario where you handle an Order class in your application’s object model.
You don’t see any reason to justify the introduction of a factory for the Order class. It is a
plain class and should be instantiated freely. So you scatter tons of new Order() instructions
throughout your code. You don’t see, though, that Order has some logical dependency on,
say, Customer.

 At some point, a request for change hits you—in the next release, an order will be created
only in association with a customer. What can you do?

 If you only add a new constructor to the Order class that accepts a Customer object, you
 simply don’t meet the requirement, because the old constructor is still there and only new
code will follow the new pattern. If you drop or replace the old constructor, you have tons of
new statements to fi x that are scattered throughout the entire code base.

 If only you had defi ned a factory for the Order class, you would have met the new requirement
without the same pain. (By the way, domain-driven design methodology in fact suggests that
you always use a factory for complex objects, such as aggregates.)

 Changing a Member’s Modifi ers

 When you design a class, you have to decide whether the class is public or internal and
whether it is sealed or further inheritable. And then you decide whether methods are virtual
or nonvirtual. Misusing the virtual and sealed modifi ers might take you along an ugly route.

 In general, when you use the sealed and virtual modifi ers you take on a not-so-small
 responsibility. In C#, by default each class is unsealed and each method on a class is nonvirtual.
In Java, for example, things go differently for methods, which are all virtual by default.

12 Part I Principles

 Now what should you do with your .NET classes? Make them sealed, or go with the default
option?

 The answer is multifaceted—maintenance, extensibility, performance, and testability all
might factor into your decision. We’re mostly interested in maintenance and extensibility
here, but we’ll return to this point in Chapter 3 when we touch on design for testability and
make some performance considerations.

 From a design perspective, sealed classes are preferable. In fact, when a class is sealed from
the beginning you know it—and you create your code accordingly. If something happens
 later to justify inheritance of that class, you can change it to unsealed without breaking
changes and without compromising compatibility. Nearly the same can be said for virtual
methods, and the visibility of classes and class members, which are always private by default.

 The opposite doesn’t work as smoothly. You often can’t seal a class or mark a virtual method
as nonvirtual without potentially breaking some existing code. If you start with most-restrictive
modifi ers, you can always increase the visibility and other attributes later. But you can never
tighten restrictions without facing the possibility of breaking existing dependencies. And these
broken dependencies might be scattered everywhere in your code.

 To contrast these statements, some considerations arise on the theme of testability. A nonsealed
class and virtual methods make testing much easier. But the degree of ease mostly depends
on the tool you use for testing. For example, TypeMock is a tool that doesn’t suffer from these
 particular limitations.

 It’s hard to make a choice as far as the sealed and virtual keywords are concerned. And
whatever choice you make in your context, it doesn’t have to be a defi nitive choice that you
blindly repeat throughout your code for each class and member. Make sure you know the
testability and performance implications, make sure you know the goals and scope of your
class, and then make a decision. And, to the extent that it’s possible, make the right decision!

 Requirements and Quality of Software

 The mission of the system is expressed through a set of requirements. These requirements
ultimately drive the system’s architecture.

 In rather abstract terms, a requirement is a characteristic of the system that can either be
functional or nonfunctional. A functional requirement refers to a behavior that the system
must supply to fulfi ll a given scenario. A nonfunctional requirement refers to an attribute of
the system explicitly requested by stakeholders.

 Are the defi nitions of functional and nonfunctional requirements something standard and
broadly accepted? Actually, an international standard to formalize quality characteristics of
software systems has existed since 1991.

 Chapter 1 Architects and Architecture Today 13

Examining the ISO/IEC 9126 Standard

 As a matter of fact, failure to acknowledge and adopt quality requirements is one of the
most common causes that lead straight to the failure of software projects. ISO/IEC 9126
 defi nes a general set of quality characteristics required in software products.

The standard identifi es six different families of quality characteristics articulated in 21
subcharacteristics. The main families are functionality, reliability, usability, effi ciency,
maintainability, and portability. Table 1-1 explains them in more detail and lists the main
 subcharacteristics associated with each.

TABLE 1-1 Families of Quality Characteristics According to ISO/IEC 9126

 Family Description

 Functionality Indicates what the software does to meet expectations. It is based on
 requirements such as suitability, accuracy, security, interoperability, and
 compliance with standards and regulations.

 Reliability Indicates the capability of the software to maintain a given level
of performance when used under special conditions. It is based on
 requirements such as maturity, fault tolerance, and recoverability. Maturity
is when the software doesn’t experience interruptions in the case of internal
software failures. Fault tolerance indicates the ability to control the failure
and maintain a given level of behavior. Recoverability indicates the ability to
recover after a failure.

 Usability Indicates the software’s ability to be understood by, used by, and attractive
to users. It dictates that the software be compliant with standards and
 regulations for usability.

 Effi ciency Indicates the ability to provide a given level of performance both in terms of
appropriate and timely response and resource utilization.

 Maintainability Indicates the software’s ability to support modifi cations such as corrections,
improvements, or adaptations. It is based on requirements such as testability,
stability, ability to be analyzed, and ability to be changed.

 Portability Indicates the software’s ability to be ported from one platform to another
and its capability to coexist with other software in a common environment
and sharing common resources.

 Subcharacteristics are of two types: external and internal. An external characteristic is user
oriented and refers to an external view of the system. An internal characteristic is system
 oriented and refers to an internal view of the system. External characteristics identify
 functional requirements; internal characteristics identify nonfunctional requirements.

 As you can see, features such as security and testability are listed as requirements in the ISO
standard. This means that an offi cial paper states that testability and security are an inherent
part of the system and a measure of its quality. More importantly, testability and security should
be planned for up front and appropriate supporting functions developed.

Family Description

14 Part I Principles

Important If you look at the ISO/IEC 9126 standard, you should defi nitely bury the practice
of fi rst building the system and then handing it to a team of network and security experts to
make it run faster and more securely. You can’t test quality in either. Like security, quality has to
be designed in. You can’t hope to test for and fi nd all bugs, but you can plan for known failure
 conditions and use clean coding practices to prevent (or at least minimize) bugs in the fi eld.

 It’s surprising that such a practice has been recommended, well, since 1991. To give you an idea
of how old this standard is, consider that at the time it was written both Windows 3.0 and Linux
had just been introduced, and MS-DOS 5.0 was the rage, running on blisteringly fast Intel i486
processors. It was another age.

 In the context of a particular system, the whole set of general quality requirements set by the
ISO/IEC 9126 standard can be pragmatically split into two types of requirements: functional
and nonfunctional.

 Functional Requirements

 Functional requirements indicate what the system is expected to do and provide an appropriate
set of functions for such specifi ed tasks and user objectives. Generally, a function consists of input,
behavior, and output. A team of analysts is responsible for collecting functional requirements and
communicating them to the architect. Another common source of functional requirements are
meetings organized with users, domain experts, and other relevant stakeholders. This process is
referred to as elicitation.

 Requirements play a key role in the generation of the architecture because they are the raw
input for architects to produce specifi cations for the development team. Needless to say,
it is recommended by ISO/IEC that software requirements be “clear, correct, unambiguous,
 specifi c, and verifi able.”

 However, this is only how things go in a perfect world.

 Nonfunctional Requirements

 Nonfunctional requirements specify overall requirements of the fi nal system that do not
 pertain specifi cally to functions. Canonical examples of nonfunctional requirements are using
(or not using) a particular version of a framework and having the fi nal product be interoperable
with a given legacy system.

 Other common nonfunctional requirements regard support for accessibility (especially in
Web applications developed for the public sector) or perhaps the provision of a given level of
security, extensibility, or reliability.

 In general, a nonfunctional requirement indicates a constraint on the system and affects the
quality of the system. Nonfunctional requirements are set by some of the system stakeholders
and represent a part of the contract.

 Chapter 1 Architects and Architecture Today 15

 Gathering Requirements

 The analyst is usually a person who is very familiar with the problem’s domain. He gathers
requirements and writes them down to guarantee the quality and suitability of the system.
The analyst usually composes requirements in a document—even a Microsoft Offi ce Word
document—in a format that varies with the environment, project, and people involved.

 Typically, the analyst writes requirements using casual language and adds any wording that is
specifi c to the domain. For example, it is acceptable to have in a requirement words such as
Fund, Stock, Bond, and Insurance Policy because they are technical terms. It is less acceptable
for a requirement to use terms such as table or column because these technical terms are
likely to be foreign terms in the problem’s domain.

 Again, requirements need to be clear and verifi able. Most importantly, they must be
 understandable, without ambiguity, to all stakeholders—users, buyers, analysts, architects,
testers, documentation developers, and the like.

 Note It is not uncommon that analysts write functional requirements using relatively abstract
use cases. As we’ll see in a moment, a use case is a document that describes a form of interaction
between the system and its clients. Use cases created by the analysis team are not usually really
detailed and focus on what the system does rather than how the system does it. In any case, it
must come out in a form that stakeholders can understand. In this regard, a use case describes
all the possible ways for an actor to obtain a value, or achieve a goal, and all possible exceptions
that might result from that.

 Specifi cations

 Based on functional and nonfunctional requirements, specifi cations offer a development
view of the architecture and are essentially any documentation the architect uses to
 communicate details about the architecture to the development team. The main purpose
of specifi cations is to reach an understanding within the development team as to how the
 program is going to perform its tasks.

Note Typically, an architect won’t start working on specifi cations until some requirements
are known. In the real world, it is unlikely that requirements will be entirely known before
 specifi cations are made. The actual mass of requirements that triggers the generation of
 specifi cations depends mostly on the methodology selected for the process. In an agile
 context, you start working on specifi cations quite soon, even with a largely incomplete set of
 requirements.

 Specifi cations for functional requirements are commonly expressed through user stories or
use cases.

16 Part I Principles

 A user story is an informal and very short document that describes, in a few sentences, what
should be done. Each story represents a single feature and ideally describes a feature that
stands on its own. User stories work especially well in the context of an agile methodology,
such as Extreme Programming (XP), and are not designed to be exhaustive. A typical user
 story might be as simple as, “The user places an order; the system verifi es the order and accepts
it if all is fi ne.” When, and if, that user story gets implemented, developers translate it into
tasks. Next, through teamwork, they clarify obscure points and fi gure out missing details.

 A use case is a document that describes a possible scenario in which the system is being used
by a user. Instead of user, here, we should say actor, actually. An actor is a system’s user and
interacts with the system. An actor can be a human as well as a computer or another piece
of software. When not human, an actor is not a component of the system; it is an external
 component. When human, actors are a subset of the stakeholders.

 When used to express a functional requirement, a use case fully describes the interaction
 between actors and the system. It shows an actor that calls a system function and then
 illustrates the system’s reaction. The collection of all use cases defi nes all possible ways of using
the system. In this context, a use case is often saved as a UML diagram. (See Chapter 2 for
 detailed UML coverage.) The scenario mentioned a bit earlier in this section, described through
a use case, might sound like this: “The user creates an order and specifi es a date, a shipment
date, customer information, and order items. The system validates the information, generates
the order ID, and saves the order to the database.” As you can see, it is a much more detailed
description.

 The level of detail of a specifi cation depends on a number of factors, including company
standards currently in use and, particularly, the methodology selected to manage the project.
Simplifying, we can say that you typically use user stories within the context of an agile
methodology; you use the use cases otherwise.

Note Note that use cases you might optionally receive from analysts are not the same as use
cases that you, as an architect, create to communicate with the development team. More often
than not, use cases received by analysts are plain Microsoft Offi ce Word documents. Those that
get handed on to the development team are typically (but not necessarily) UML diagrams. And,
more importantly, they are much more detailed and oriented to implementation.

 Methodology and the Use of Requirements

 Collected and communicated by analysts, requirements are then passed down the chain to the
design team to be transformed into something that could lead to working code. The architect
is the member on the design team who typically receives requirements and massages them
into a form that developers fi nd easy to manage.

 Chapter 1 Architects and Architecture Today 17

 The architect is the point of contact between developers and stakeholders, and she works
side by side with the project manager. It is not unusual that the two roles coincide and the
same person serves simultaneously as an architect and a project manager.

 The project manager is responsible for choosing a methodology for developing the
 project. To simplify, we could say that the project manager decides whether or not an agile
 methodology is appropriate for the project.

 The choice of methodology has a deep impact on how requirements are used in defi ning the
architecture.

 In the case of using an agile methodology, user stories are the typical output generated from
requirements. For example, consider that a typical XP iteration lasts about two weeks. (An XP
 iteration is a smaller and faster version of a classic software development cycle.) In two weeks, you
can hardly manage complex specifi cations; you would spend all the time on the specifi cations,
thus making no progress toward the implementation of those specifi cations. In this context, user
stories are just fi ne.

 In the case of using a traditional, non-agile methodology with much longer iterations, the
architect usually processes a large share of the requirements (if not all of them) and produces
exhaustive specifi cations, including classes, sequences, and work fl ows.

 Who’s the Architect, Anyway?

 As we’ve seen, architecture is mostly about expensive and hard-to-change decisions. And
someone has to make these decisions.

 The design of the architecture is based on an analysis of the requirements. Analysis
 determines what the system is expected to do; architecture determines how to do that.
And someone has to examine the whats to determine the hows.

 The architect is the professional tying together requirements and specifi cations. But what are
the responsibilities of an architect? And skills?

 An Architect’s Responsibilities

 According to the ISO/IEC 42010 standard, an architect is the person, team, or organization
responsible for the system’s architecture. The architect interacts with analysts and the project
manager, evaluates and suggests options for the system, and coordinates a team of developers.

 The architect participates in all phases of the development process, including the analysis
of requirements and the architecture’s design, implementation, testing, integration, and
deployment.

18 Part I Principles

 Let’s expand on the primary responsibilities of an architect: acknowledging the requirements,
breaking the system down into smaller subsystems, identifying and evaluating technologies,
and formulating specifi cations.

 Acknowledging the Requirements

 In a software project, a few things happen before the architect gets involved. Swarms of
 analysts, IT managers, and executives meet, discuss, evaluate, and negotiate. Once the need
for a new or updated system is assessed and the budget is found, analysts start eliciting
requirements typically based on their own knowledge of the business, company processes,
context, and feedback from end users.

 When the list of requirements is ready, the project manager meets with the architect and
 delivers the bundle, saying more or less, “This is what we (think we) want; now you build it.”

 The architect acknowledges the requirements and makes an effort to have them adopted
and fulfi lled in the design.

 Breaking Down the System

 Based on the requirements, the architect expresses the overall system as a composition of
smaller subsystems and components operating within processes. In doing so, the architect
envisions logical layers and/or services. Then, based on the context, the architect decides
about the interface of layers, their relationships to other layers, and the level of service
 orientation the system requires.

Note At this stage, the architect evaluates various architectural patterns. Layering is a common
choice and the one we are mostly pursuing in this book. Layering entails a vertical distribution of
functionality. Partitioning is another approach, where all parts are at the same logical level and
scattered around some shared entities—such as an object model or a database. Service-oriented
architecture (SOA) and hexagonal architecture (HA) are patterns that tend to have components
(services in SOA, adapters in HA) operating and interacting at the same logical level.

 The overall design will be consistent with the enterprise goals and requirements. In particular,
the overall design will be driven by requirements; it will not lead requirements.

 The resulting architecture is ideally inspired by general guidelines, such as minimizing the
coupling between modules, providing the highest possible level of cohesion within modules,
and giving each module a clear set of responsibilities.

 The resulting architecture is also driven by nonfunctional requirements, such as security,
 scalability, and technologies allowed or denied. All these aspects pose further constraints
and, to some extent, delimit the space where the architect can look for solutions.

 Chapter 1 Architects and Architecture Today 19

 Finally, the architect also strategizes about tasking individual developers, or teams of developers,
with each of the components resulting from the breakdown of the system.

Note There are no absolute truths in software architecture. And no mathematical rules
(or building codes like in structural engineering) to help in making choices. Company X might
fi nd architecture A successful at the same time company Y is moving away from it to embrace
architecture B. The nice fact is that both might be totally right. The context is king, and so is gut
feeling.

 Identifying and Evaluating Technologies

 After acknowledging requirements and designing the layers of the system, the next step for
the architect entails mapping logical components onto concrete technologies and products.

 The architect typically knows the costs and benefi ts of products and technologies that might
be related to the content of the project. The architect proposes the use of any technologies
and products that he regards as benefi cial and cost-effective for the project.

 The architect doesn’t choose the technology; based on his skills, the architect just makes
proposals.

 The architect might suggest using, say, Microsoft Windows 2008 Server for the Web
server and a service-oriented architecture with services implemented through Windows
Communication Foundation (WCF). The architect might suggest NHibernate over Entity
Framework and Microsoft SQL Server 2008 over Oracle. And he might suggest a particular
rich control suite for the Web presentation layer instead of, perhaps, an entirely in-house
 developed Silverlight client.

 Who does make the fi nal decision about which technologies and products are to be used?

 Typically, it is the project manager or whoever manages the budget. The architect’s
 suggestions might be accepted or rejected. If a suggestion is rejected, using or not using a
given product or technology just becomes a new nonfunctional requirement to fulfi ll, and
that might infl uence, even signifi cantly, the architecture.

 Formulating Specifi cations

 The architect is ultimately responsible for the development of the system and coordinates the
work of a team of developers. Technical specifi cations are the means by which the architect
communicates architectural decisions to the developers.

 Specifi cations can be rendered in various forms: UML sketches, Word documents, Microsoft
Visio diagrams or, even, working prototypes.

20 Part I Principles

 Communication is key for an architect. Communication happens between the architect and
developers, and it also happens between architects and project managers and analysts, if not
users. A great skill for an architect is the clarity of language.

 The interaction between architects and developers will vary depending on the methodology
chosen. And also the involvement of project managers, analysts, and users varies based,
 essentially, on the level of agility you accept.

 We’ll return to the topic of methodologies in a moment.

 How Many Types of Architects Do You Know?

 There are many possible defi nitions of “architect.” Defi nitions vary depending on how they
 factor in different roles and different responsibilities. In this book, we work with the
ISO/IEC defi nition of an architect, which is the “person, team, or organization responsible
for the system’s architecture.”

 According to ISO/IEC, there are not various types of architects. An architect is an architect.
Period.

 Microsoft, however, recognizes four types of architects: enterprise architect (EA), infrastructure
architect (IA), technology-specifi c architect (TSA), and solution architect (SA). The list is taken
from the job roles recognized by the Microsoft Certifi ed Architect Program. You can read
more about the program and job roles at http://www.microsoft.com/learning/mcp/architect/
specialties/default.mspx.

 In our opinion, the distinctions offered by Microsoft are misleading because they attempt
to break into parts what is ultimately an atomic, yet complex, role. It creates unnecessary
 categorization and lays the groundwork for confusing, who-does-what scenarios.

 For example, who’s responsible for security? Is it the SA or the IA? Ultimately, security is an
 ISO-recognized quality attribute of a software architecture and, as such, it should be planned
from the beginning. Security should grow with the system’s design and implementation. It cannot
be added at a later time, by a separate team. Not if you really want security in the system.

 Who’s ultimately responsible for picking out a technology? Is it the SA? Is it the EA? Do
both accept suggestions from a swarm of different TSAs? At the end of the day, it’s not the
 architect who makes this decision. Instead, it’s the customer, who holds the purse strings, that
decides.

 It is fi ne to have multiple architects on the same project team. Likewise, it is fi ne, if not
 desirable, that different architects have slightly different skills. But they remain just architects,
working on the same team on the design of the same system. And architects also have a
 signifi cant exposure to code. They work out the design of the system but then work closely
with developers to ensure proper implementation.

 Chapter 1 Architects and Architecture Today 21

 As we see things, an architect is, among other things, a better and more experienced developer.
We don’t believe there’s value in having architects who just speak in UML and Visio and leave
any implementation details to developers. At least, we’ve never found it easy to work with these
people when we’ve crossed paths with them.

Note This said, we recognize that titles like enterprise architect, solution architect, and perhaps
security architect look much better than a plain software architect when printed out on a business
card. But the terms are only a way to more quickly communicate your skills and expertise. When
it comes to the actual role, either you’re an architect or you’re not.

 Common Misconceptions About Architects

 Although international ISO standards exist to defi ne requirements, architecture, and
 architects, they seem not to be taken into great account by most people. Everybody seems
to prefer crafting her own (subtly similar) defi nition for something, rather than sticking to
(or reading) the ISO defi nition for the same something.

 Try asking around for the defi nition of terms such as architect, architecture, or project manager.
You can likely get distinct, and also unrelated and contrasting, answers.

 Quite obviously, a set of misconceptions have grown out of the mass of personalized defi nitions
and interpretations. Let’s go through a few of them and, we hope, clear up a few of them.

 The Architect Is an Analyst

 This is a false statement. An architect is simply not an analyst.

 At times, an architect might assist analysts during elicitations to help clarify obscure requirements
or smooth improbable requirements. At times, an architect might participate in meetings with
stakeholders. But that’s it.

 In general, an analyst is a person who is an expert on the domain. An architect is not (necessarily)
such an expert. An analyst shares with an architect his own fi ndings about how the system should
work and what the system should do.

 This common misconception probably originates from the incorrect meaning attributed to
the word analyst. If the word simply indicates someone who does some analysis on a system,
it is quite hard to deny the similarities between architects and analysts. Some 30 years
ago, the term system analyst was used to indicate a professional capable of making design
 considerations about a system. But, at the time, the software wasn’t as relevant as it is today,
and it was merely a (small) part of an essentially hardware-based system.

22 Part I Principles

 Today, the roles of an analyst and an architect are commonly recognized as being different.
And hardly ever does an architect play the role of an analyst.

Note Given that roles are neatly separated, anyway, in small companies, it can happen that
the same person serves as an analyst and architect. It simply means that there’s a person in
the company who knows the business and processes well enough to come up with functional
 requirements and translate them into specifi cations for developers. The roles and responsibilities
are still distinct, but the distinct skills for each can be found in the same individual.

 The Architect Is a Project Manager

 Is this another false statement? It depends.

 The architect is responsible for the system’s architecture and coordinates and guides the
 development of the system. The project manager represents stakeholders and manages the
project by choosing, in the fi rst place, a methodology. The project manager is then responsible
for ensuring that the project adheres to the architecture while proceeding within the limits of
the timeline and budget.

 If we look at the role of the architect and the role of the project manager, we fi nd out that
they are distinct. Period.

 However, it is not unusual that one actor ends up playing two roles. Like in the theater, this
hardly happens in large companies, but it happens quite frequently in small companies.

 In summary, if you want to be a software architect when you grow up, you don’t necessarily
have to develop project management skills. If you have skills for both roles, though, you can
try to get double pay.

 The Architect Never Writes Any Code

 This is defi nitely an ongoing debate: Should architects write code? There are essentially two
schools of thought.

 One school thinks that architects live on the upper fl oor, maybe in an attic. Architects then step
down to the developers’ fl oor just for the time it takes them to illustrate, using UML diagrams,
what they have thought about the system. After this, they take the elevator up, collect their
things, and go out to play golf. When on the course, they switch off their cell phones and focus
on the game. When done, if they missed a call or two, they call back and explain to dummy
developers what was so clear in the diagram that nobody on the developers’ fl oor could
 understand. According to this school of thought, architects never, ever dirty their hands with
even the simplest C# statement. C#? Oh no, the latest language they’ve been exposed to is
probably Pascal while in college and Borland Turbo Pascal at home.

 Chapter 1 Architects and Architecture Today 23

 Another school of thought thinks, instead, that every architect is a born developer. To take
the metaphor one step further, we could say that the class Architect inherits from the
class Developer and adds some new methods (skills) while overriding (specializing) a few
 others. Becoming an architect is the natural evolution in the career of some developers.
The basic differences between an architect and a developer are experience and education.
You gain experience by spending time on the job; you earn your education from studying
good books and taking the right classes. In addition, an architect has the ability to focus
her vision of the system from a higher level than an average developer. Furthermore, an
 architect has good customer-handling skills.

 An architect might not write much production code. But she writes a lot of code; she
 practices with code every day; she knows about programming languages, coding techniques,
libraries, products, tools, Community Technology Previews (CTPs); and she uses the latest
version of Visual Studio or Team Foundation Server. In certain areas of programming, an
architect knows even more than many developers. An architect might be able to write tools
and utilities to help developers be more productive. And, more often than you might think
at fi rst, the architect is just a member of the development team. For example, an architect
writing production code is an absolutely normal occurrence in an agile context. It is also a
normal occurrence in small companies regardless of the methodology. At the same time,
an architect who writes production code might be an absolutely weird occurrence in some
large-company scenarios, especially if a traditional and non-agile methodology is used.

 What about the two of us? To which school do we belong?

 Well, Andrea is more of an architect than Dino because he lives on the fi fth fl oor. Dino,
on the other hand, is closer to development because he has quite a few highly technical
ASP .NET books on his record and, more importantly, lives on the second fl oor. We don’t
play golf, though. Dino plays tennis regularly, whereas Andrea likes squash better. We just
have been denied access to the fi rst school of thought.

Note In no other area of engineering is the distinction between those-who-design and
 those-who-build as poorly accepted as it is in software. The distinction exists mostly through
 postulation rather than fl owing from a public recognition of skills.

 The canonical comparison is with civil architecture. Bricklayers have their own unique skills that
 engineers lack. No bricklayer, though, will ever dream of questioning designs or calculations, simply
because the bricklayer lacks the skill to make the decisions himself. Bricklayers do their own work
the best they can, taking full advantage of having the building work delegated to them.

 In software, the situation is different because architects and developers have common roots. The
more skilled a developer is, the more he feels encouraged to discuss design choices—and often
with reason. The more the architect loses contact with everyday programming, the more he loses
the respect of other developers. This generates a sort of vicious circle, which magically becomes
better as you switch to an agile methodology.

24 Part I Principles

 Overview of the Software Development Process

 For quite a few years, we’ve been highly exposed to the idea that writing software is easy,
pleasant, and fun. You click this, you drag that, and the tool will write the code for you. You
“declare” what you want, and the award-winning tool will do it for you. Admittedly, in this
scenario everybody could gain the rank of architect, and the burden of writing code can be
entirely delegated to the tool—aptly named the wizard.

 Not all software is the same.

 Writing a fi ling system to track the movies you’ve rented from Blockbuster is different from
writing a line-of-business application to run a company. You probably don’t need to work on
an architecture to build a syndication reader; you probably need more than just architecture
if you’re working on the control system for, say, a chemical plant.

 In some sectors of the industry (for example, in the defense sector), the need for a
 systematic approach to the various aspects of software—development, testing, operation,
 maintenance—was recognized long ago, as early as the 1960s. In fact, the term software
engineering was fi rst coined by Professor Friedrich L. Bauer during the NATO Software
Engineering Conference in 1968.

 Today, software engineering is a broad term that encompasses numerous aspects of software
development and organizes them into a structured process ruled by a methodology.

 The Software Life Cycle

 Software development is a process created and formalized to handle complexity and with
the primary goal of ensuring (expected) results. As in the quote at the top of the chapter, the
ultimate goal is controlling complexity, not creating it.

 To achieve this goal, a methodology is required that spans the various phases of a software
project. Over the years, an international standard has been developed to formalize the
 software life cycle in terms of processes, activities, and tasks that go from initial planning up
to the retirement of the product.

 This standard is ISO/IEC 12207, and it was originally released in 1995. The most recent
 revision, however, was in March 2008.

 Processes

 According to the ISO/IEC 12207 standard, the software life cycle is articulated in 23 processes.
Each process has a set of activities and outcomes associated with it. Finally, each activity has a
number of tasks to complete.

 Chapter 1 Architects and Architecture Today 25

 Processes are classifi ed in three types: primary, supporting, and organizational. The production
of the code pertains to the primary process. Supporting processes and organizational processes
refer to auxiliary processes, such as confi guration, auditing, quality assurance, verifi cation,
 documentation, management, and setup and maintenance of the infrastructure (hardware,
software, tools). Figure 1-2 offers a graphical view of the software life cycle, showing specifi c
processes.

Supporting OrganizationalPrimary

· Acquisition
· Supply
· Development
· Operation
· Maintenance

· Management
· Infrastructure
· Improvement
· Training

Life cycle

· Documentation
· Configuration management
· Quality Assurance
· Validation
· Verification
· Joint review
· Audit
· Problem resolution

 FIGURE 1-2 The overall software life cycle according to ISO/IEC 12207

 Activities

 The primary processes are those more directly concerned with the design and implementation
of software. Let’s briefl y have a look at some of the activities for the primary processes.

 The Acquisition process includes elicitation of requirements and evaluation of options, negotiations,
and contracts. The Supply process is concerned with the development of a project management
plan. Usually, architects are not involved in these steps unless they are also serving to some extent
as project managers.

 The Development process deals with the analysis of requirements, design of the system as
well as its implementation, testing, and deployment. This is really all within the realm of the
architect.

 The Operation process essentially involves making the software operative within the
 company, integrating it with the existing systems, running pilot tests, and assisting users as
they familiarize themselves with the software. Finally, the Maintenance process aims to keep

26 Part I Principles

the system in shape by fi xing bugs and improving features. This includes a set of activities
that might require the architect to be involved to some extent.

 Models for Software Development

 Before starting on a software project, a methodology should be selected that is appropriate for
the project and compatible with the skills and attitude of the people involved. A methodology
is a set of recommended practices that are applied to the process of software development.
The methodology inspires the realization and management of the project.

 There are two main developmental models: traditional methodologies and agile methodologies.
We’ll also touch on a third model—the Microsoft Solutions Framework.

 Traditional Methodologies

 The best-known and oldest methodology is the waterfall model. It is a model in which
 software development proceeds from one phase to the next in a purely sequential manner.
Essentially, you move to step N+1 only when step N is 100% complete and all is perfect with
it. Figure 1-3 shows a sample of the waterfall model.

Requirements

Design

Implementation

Verification

Maintenance

 FIGURE 1-3 The waterfall model

 After the team has completed the analysis of requirements, it proceeds with the design of the
architecture. Next, coding begins. Next, testing is started, and it continues until the system is
shipped.

 The waterfall model goes hand in hand with the idea of software development paired to civil
architecture. The primary characteristic of a waterfall model is BDUF—Big Design Up Front—
which means essentially that the design must be set in stone before you start coding.

 Waterfall is a simple and well-disciplined model, but it is unrealistic for nontrivial
 projects. Why? Because you almost never have all requirements established up front.

 Chapter 1 Architects and Architecture Today 27

So you inevitably must proceed to the next step at some point while leaving something
behind you that is incomplete.

 For this reason, variations of the waterfall method have been considered over the years,
where the design and implementation phases overlap to some extent. This leads us to a key
consideration.

 Ultimately, we fi nd that all methodologies share a few common attributes: a number of
 phases to go through, a number of iterations to produce the software, and a typical duration
for a single iteration. All phases execute sequentially, and there’s always at least one iteration
that ends with the delivery of the software.

 The difference between methodologies is all in the order in which phases are entered, the
number of iterations required, and the duration of each iteration.

 After buying into this consideration, the step to adopting the agile methods is much smaller
than you might think at fi rst.

Note We could even say that when you move to an agile methodology, you have a much
 smaller waterfall, one that is less abundant and doesn’t last as long. But it’s more frequent and
occurs nearly on demand. Not a waterfall. . .maybe a shower?

 Agile Methodologies

 Iterative development is a cyclic process that was developed in response to the waterfall
method, and it emphasizes the incremental building of the software. After the initial startup,
the project goes through a series of iterations that include design, coding, and testing. Each
iteration produces a deliverable but incomplete version of the system. At each iteration, the
team enters design changes and adds new functions until the full set of specifi cations are
met. Figure 1-4 provides a graphical view of the iterative process.

Iterate?
No

Yes

Analysis

CodingRequirements

Testing

Initial planning Deployment

 FIGURE 1-4 The iterative model

28 Part I Principles

 Iterative development forms the foundation of agile methodologies. The term agile was
 deliberately selected to symbolize a clear opposition to heavyweight methods such as the
waterfall model. The principles behind agile methods are listed in the “Agile Manifesto,”
which you can fi nd at http://agilemanifesto.org. The agile manifesto was fi rst published
in 2001.

 Agile methodologies put individuals at the center of the universe. As stated on the home
page of the manifesto, agile methods focus on people working together and communicating
rather than on software building and processes. Change and refactoring are key in an agile
methodology. User feedback is valued over planning, and feedback is driven by regular tests
and frequent releases of the software. In fact, one of the agile principles states, “Working
software is the primary measure of progress.“

 So in the end, how is an agile methodology different? And how does it work? Let’s look at an
example.

 The project starts and only a few requirements are known. You know for a fact that many
more will show up between now and the end. With an agile mindset, this is not an issue.
You take a subset of the existing requirements that you can implement in a single iteration.
And you go with the fi rst iteration. During the iteration, you focus on a single requirement at
a time and implement it. At the end of the iteration, you deliver a working piece of software.
It might be incomplete, but it works.

 Next, you go with another iteration that focuses on another set of requirements. If something
changed in the meantime or proved to be wrong, refactoring is in order. And the process
continues until there’s nothing more to add.

 Customers and developers work together daily; feedback is solicited and delivered on a timely
basis; results are immediately visible; the architect is just one of the developers; and the team
is highly skilled and motivated. The length of an iteration is measured in weeks—often, two
weeks. In a word, an agile process is agile to react to changes. And changes in the business
are the rule, not the exception.

 Agile methodologies is a blanket term. When you refer to an agile methodology, you aren’t
talking very precisely. Which methodology do you mean, actually?

 The most popular agile methodology for software development is Extreme Programming (XP).
In XP, phases are carried out in extremely short iterations that take two weeks to terminate.
Coding and design proceed side by side. For more information on XP, visit the site
http://www.extremeprogramming.org.

 Scrum is another popular agile methodology, but it is aimed at managing projects rather than
developing code. Scrum is not prescriptive for any software development model, but it works
very well with XP as the method to develop code. For more information on Scrum, have a
look at Agile Project Management with Scrum by Ken Schwaber (Microsoft Press, 2004).

 Chapter 1 Architects and Architecture Today 29

 Microsoft Solutions Framework

 Microsoft Solutions Framework (MSF) is another methodology for software development, like
XP or waterfall. Like XP, MSF has its own principles, roles, and vocabulary. In particular, the
roles in MSF are Program Manager, Architect, Developer, Tester, Release Manager, DBA, and
Business Analyst. Typical terms are iteration, release, phase, and work item (to indicate an
 activity within the project).

 MSF is a methodology that Microsoft developed and has used internally for the past ten
years. Since 2006, it has also been supported by Team Foundation Server (TFS).

 TFS is essentially a collection of Web services within an Internet Information Server (IIS) Web
server that provide business logic specifi c to project management. Either through the TFS
console (if you have proper administrative rights) or through a Visual Studio plug-in, you
can create a TFS project and use TFS services to manage your project. Great, but what is the
methodology being used?

 TFS provides only one methodology out of the box: MSF. However TFS plug-ins exist to add
other methodologies to TFS. In particular, plug-ins exist for the Rational Unifi ed Process
(RUP), Feature Driven Development (FDD), and Scrum.

 When the project manager creates a TFS project, he is fi rst asked to pick up an available
methodology (say, MSF). When MSF is picked up, the project manager is also asked to choose
which fl avor of MSF he likes. There are two fl avors: MSF for Agile, and MSF for CMMI.

Note CMMI is an acronym for Capability Maturity Model Integration. CMMI is a general
 methodology for improving processes within a company. CMMI focuses on processes and fi ghts
common misconceptions such as “good people are enough” and “processes hinder agility.” CMMI
proposes a set of best practices and a framework for organizing and prioritizing activities, with
the purpose of improving processes related to the building of a product.

 In essence, you opt for a model that is more agile or more rigorous. In the context of MSF,
the word agile has exactly the meaning it has in an English dictionary. It is not necessarily
 related to agile methodologies.

 For example, in MSF for Agile you don’t give work items an explicit duration in terms of
hours; instead, you use an integer to indicate the level of effort (order of magnitude)
 required. You have to use hours in MSF for CMMI, instead. In MSF for Agile, a Developer
can assign a task to another Developer; in MSF for CMMI, only the project manager has a
similar right. In an agile process, therefore, it is assumed that such an action is accomplished
with due forethought. In MSF for Agile, a work item can be moved from one project area to
 another without problems. This might not be true for another methodology.

 In general, MSF for Agile is designed for small teams working iteratively on a project. MSF for
CMMI is more appropriate for large and heterogeneous teams, working on long iterations
and particularly concerned with control of quality.

30 Part I Principles

 Summary

 Architecture is a widely used term that has quite a few defi nitions. If you read between the
lines, though, you mostly fi nd variations of the same concept: architecture refers to identifying
the software components that, when interacting, make the program work.

 In the process of identifying these components, you encounter points of decision making. When
you design an architecture, not all decisions you make have the same impact. The approach to
the design of the business logic, for example, is something you can hardly change at a later time
in an inexpensive way. So architecture is about components and hard-to-change decisions.

 The design of an architecture is qualifi ed by a number of quality parameters that are part of an
international standard. The design of the architecture comes out of functional and nonfunctional
requirements, gathered by business analysts and acknowledged by architects.

 Who’s the architect and what are his responsibilities? The role of the architect is different
from that of an analyst or a project manager, but sometimes the same individual can play
both roles in the context of a specifi c project. Does an architect write code? Oh, yes. In our
vision, an architect is a born developer, and even if the architect doesn’t write much, or any,
production code, he defi nitely practices with deep code.

 The role of the architect, and the way in which the architect and the development team work
with requirements, largely depends on the methodology in use—whether it is agile or traditional.

 In this chapter, we mentioned in some places the Unifi ed Modeling Language (UML) as the
primary notation to describe architectural aspects of a system. In the next chapter, we’ll take
a closer look at the UML language.

 Murphy’s Laws of the Chapter

 Murphy’s laws are the portrait of the real world. If anything happens repeatedly in the real
world, it is then captured in a law. Software projects are a part of the real world and it is not
surprising that laws exist to describe software-related phenomena. In all chapters, therefore,
we’ll be listing a few Murphy’s laws.

■ Adding manpower to a late software project makes it later.

■ Program complexity grows until it exceeds the capability of the programmers who
must maintain it.

■ If builders built buildings the way programmers wrote programs, the fi rst woodpecker
that came along would destroy civilization.

See http://www.murphys-laws.com for an extensive listing of other computer-related (and
non-computer-related) laws and corollaries.

 63

 Chapter 3

 Design Principles and Patterns

 Experienced designers evidently know something inexperienced others don’t.
What is it?

 —Erich Gamma

 In Chapter 1, “Architects and Architecture Today,” we focused on the true meaning of architecture
and the steps through which architects get a set of specifi cations for the development team.
We focused more on the process than the principles and patterns of actual design. In Chapter 2,
“UML Essentials,” we fi lled a gap by serving up a refresher (or a primer, depending on the reader’s
skills) of Unifi ed Modeling Language (UML). UML is the most popular modeling language through
which design is expressed and communicated within development teams.

 When examining the bundle of requirements, the architect at fi rst gets a relatively blurred
picture of the system. As the team progresses through iterations, the contours of the picture
sharpen. In the end, the interior of the system unveils a web of interrelated classes applying
design patterns and fulfi lling design principles.

 Designing a software system is challenging because it requires you to focus on today’s
 requested features while ensuring that the resulting system be fl exible enough to support
changes and addition of new features in the future.

 Especially in the past two decades, a lot has been done in the Information Technology (IT)
industry to make a systematic approach to software development possible. Methodologies,
design principles, and fi nally patterns have been developed to help guide architects to
 envision and build systems of any complexity in a disciplined way.

 This chapter aims to provide you with a quick tutorial about software engineering. It fi rst outlines
some basic principles that should always inspire the design of a modern software system.
The chapter then moves on to discuss principles of object-oriented design. Along the way,
we introduce patterns, idioms, and aspect-orientation, as well as pearls of wisdom regarding
 requirement-driven design that affect key areas such as testability, security, and performance.

 Basic Design Principles

 It is one thing to write code that just works. It is quite another to write good code that works.
Adopting the attitude of “writing good code that works” springs from the ability to view
the system from a broad perspective. In the end, a top-notch system is not just a product
of writing instructions and hacks that make it all work. There’s much more, actually. And it
 relates, directly or indirectly, to design.

64 Part I Principles

 The attitude of “writing good code that works” leads you, for example, to value the maintainability
of the code base over any other quality characteristics, such as those defi ned by International
Organization for Standardization (ISO) and International Electrotechnical Commission (IEC)
 standard 9126. (See Chapter 1.) You adopt this preference not so much because other aspects
(such as extensibility or perhaps scalability) are less important than maintainability—it’s just that
maintenance is expensive and can be highly frustrating for the developers involved.

 A code base that can be easily searched for bugs, and in which fi xing bugs is not problematic for
anyone, is open to any sort of improvements at any time, including extensibility and scalability.
Thus, maintainability is the quality characteristic you should give the highest priority when you
design a system.

 Why is software maintenance so expensive?

 Maintenance becomes expensive if essentially you have produced unsatisfactory (should we
say, sloppy?) software, you haven’t tested the software enough, or both. Which attributes
make software easier to maintain and evolve? Structured design in the fi rst place, which is
best applied through proper coding techniques. Code readability is another fundamental
 asset, which is best achieved if the code is combined with a bunch of internal documentation
and a change-tracking system—but this might occur only in a perfect world.

 Before we proceed any further with the basic principles of structured design, let’s arrange
a brief cheat-sheet to help us catch clear and unambiguous symptoms of bad code design.

 Note Unsatisfactory software mostly springs from a poor design. But what causes a poor design?
A poor design typically has two causes that are not mutually exclusive: the architect’s insuffi cient
skills, and imprecise or contradictory requirements. So what about the requirements problem,
then? Contradictory requirements usually result from bad communication. Communication is
king, and it is one of the most important skills for an architect to cultivate and improve.

 Not surprisingly, fi xing this communication problem drives us again straight to agile
 methodologies. What many people still miss about the agile movement is that the primary
 benefi t you get is not so much the iterative method itself. Instead, the major benefi t comes from
the continuous communication that the methodology promotes within the team and between
the team and the customers. Whatever you get wrong in the fi rst iteration will be fi xed quite
soon in the next (or close to the next) iteration because the communication that is necessary to
move forward will clarify misunderstood requirements and fi x bad ones. And it will do so quite
early in the process and on a timely basis. This iterative approach simply reduces the entry point
for the major cause of costly software maintenance: poor communication. And this is the primary
reason why, one day, a group of (perfectly sane) developers and architects decided to found the
agile movement. It was pragmatism that motivated them, not caprice.

 This said, you should also keep in mind that that agile methodologies also tend to increase
 development costs and run the risk of scope/requirements creep. You also must make sure
everyone in the process is on board with it. If the stakeholders don’t understand their role or
are not responsive, or can’t review the work between iterations, the agile approach fails. So the
bottom line is that the agile approach isn’t a magic wand that works for everyone. But when it
works, it usually works well.

 Chapter 3 Design Principles and Patterns 65

 For What the Alarm Bell Should Ring

 Even with the best intentions of everyone involved and regardless of their efforts, the design
of a system at some point can head down a slippery slope. The deterioration of a good
 design is generally a slow process that occurs over a relatively long period of time. It happens
by continually studding your classes with hacks and workarounds, making a large share of
the code harder and harder to maintain and evolve. At a certain point, you fi nd yourself in
serious trouble.

 Managers might be tempted to call for a complete redesign, but redesigning an evolving
system is like trying to catch a runaway chicken. You need to be in a very good shape to do
it. But is the team really in shape at that point?

 Note Have you ever seen the movie Rocky? Do you remember the scene where Rocky, the
boxer, fi nally catches the chicken, thus providing evidence that he’s ready for the match? By the
way, the scene is on http://www.youtube.com/watch?v=o8ZkY7tnpRs. During the movie, Rocky
attempts several times to get the chicken, but he gets the chicken only when he has trained well
enough.

 Let’s identify a few general signs that would make the alarm bell ring to warn of a problematic
design.

 Rigid, Therefore Fragile

 Can you bend a piece of wood? What do you risk if you insist on doing it? A piece of wood
is typically a stiff and rigid object characterized by some resistance to deformation. When
enough force is applied, the deformation becomes permanent and the wood breaks.

 What about rigid software?

 Rigid software is characterized by some resistance to changes. Resistance is measured in
terms of regression. You make a change in one module, but the effects of your change
 cascade down the list of dependent modules. As a result, it’s really hard to predict how long
making a change—any change, even the simplest—will actually take.

 If you pummel glass or any other fragile material, you manage only to break it into several
pieces. Likewise, when you enter a change in software and break it in various places, it
 becomes quite apparent that software is defi nitely fragile.

 As in other areas of life, in the software world fragility and rigidity go hand in hand.
When a change in a software module breaks (many) other modules because of (hidden)
 dependencies, you have a clear symptom of a bad design that needs to be remedied as soon
as possible.

66 Part I Principles

 Easier to Use Than to Reuse

 Imagine you have a piece of software that works in one project; you would like to reuse it in
another project. However, copying the class or linking the assembly in the new project just
doesn’t work.

 Why is it so?

 If the same code doesn’t work when moved to another project, it’s because of dependencies.
The real problem isn’t just dependencies, but the number and depth of dependencies.
The risk is that to reuse a piece of functionality in another project, you have to import a
much larger set of functions. Ultimately, no reuse is ever attempted and code is rewritten
from scratch.

 This is not a good sign for your design. This negative aspect of a design is often referred to as
immobility.

 Easier to Work Around Than to Fix

 When applying a change to a software module, it is not unusual that you fi gure out two or
more ways to do it. Most of the time, one way of doing things is nifty, elegant, coherent with
the design, but terribly laborious to implement. The other way is, conversely, much smoother,
quick to code, but sort of a hack.

 What should you do?

 Actually, you can solve it either way, depending on the given deadlines and your manager’s
direction about it.

 In summary, it is not an ideal situation when a workaround is much easier and faster to apply
than the right solution. And it doesn’t make a great statement about your overall design,
 either. It is a sign that too many unnecessary dependencies exist between classes and that
your classes do not form a particularly cohesive mass of code.

 This aspect of a design—that it invites or accommodates workarounds more or less than
fi xes—is often referred to as viscosity. High viscosity is bad, meaning that the software resists
modifi cation just as highly viscous fl uids resist fl ow.

 Structured Design

 When the two of us started programming, which was far before we started making a living
from it, the old BASIC language was still around with its set of GOTO statements. Like
many others, we wrote toy programs jumping from one instruction to the next within the
same monolithic block of code. They worked just fi ne, but they were only toy programs in
the end.

 Chapter 3 Design Principles and Patterns 67

 Note Every time we looked at the resulting messy BASIC code we wrote, continually referring
to other instructions that appeared a bunch of lines up or down in the code, we didn’t really
like it and we weren’t really proud of it. But, at the time, we just thought we were picking up a
cool challenge that only a few preordained souls could take on. Programming is a darned hard
thing—we thought—but we are going to like it.

 It was about the late 1960s when the complexity of the average program crossed the
 signifi cant threshold that marked the need for a more systematic approach to software
 development. That signaled the offi cial beginning of software engineering.

 From Spaghetti Code to Lasagna Code

 Made of a messy tangle of jumps and returns, GOTO-based code was soon belittled and
 infamously labeled as spaghetti code. And we all learned the fi rst of a long list of revolutionary
concepts: structured programming. In particular, we learned to use subroutines to break our
code into cohesive and more reusable pieces. In food terms, we evolved from spaghetti to
lasagna. If you look at Figure 3-1, you will spot the difference quite soon. Lasagna forms a
 layered block of noodles and toppings that can be easily cut into pieces and just exudes the
concept of structure. Lasagna is also easier to serve, which is the food analogy for reusability.

 FIGURE 3-1 From a messy tangle to a layered and ordered block

 Note A small note (and some credits) about the fi gure is in order. First, as Italians we would
have used the term lasagne, which is how we spell it, but we went for the international spelling
of lasagna. However, we eat it regardless of the spelling. Second, Dino personally ate all the food
in the fi gure in a sort of manual testing procedure for the book’s graphics. Dino, however, didn’t
cook anything. Dino’s mother-in-law cooked the spaghetti; Dino’s mom cooked the lasagna.
Great stuff—if you’re in Italy, and want to give it a try, send Dino an e-mail.

68 Part I Principles

 What software engineering really has been trying to convey since its inception is the need for
some design to take place before coding begins and, subsequently, the need for some basic
design principles. Still, today, when someone says “structured programming,” immediately
many people think of subroutines. This assumption is correct, but it’s oversimplifying the
point and missing the principal point of the structured approach.

 Behind structured programming, there is structured design with two core principles. And these
principles are as valid today as they were 30 and more years ago. Subroutines and Pascal-like
programming are gone; the principles of cohesion and coupling, instead, still maintain their
 effectiveness in an object-oriented world.

 These principles of structured programming, coupling and cohesion, were fi rst introduced by
Larry Constantine and Edward Yourdon in their book Structured Design: Fundamentals of a
Discipline of Computer Program and Systems Design (Yourdon Press, 1976).

 Cohesion

 Cohesion indicates that a given software module—be it a subroutine, class, or library—features a
set of responsibilities that are strongly related. Put another way, cohesion measures the distance
between the logic expressed by the various methods on a class, the various functions in a library,
and the various actions accomplished by a method.

 If you look for a moment at the defi nition of cohesion in another fi eld—chemistry—you should
be able to see a clearer picture of software cohesion. In chemistry, cohesion is a physical property
of a substance that indicates the attraction existing between like molecules within a body.

 Cohesion measurement ranges from low to high and is preferably in the highest range possible.

 Highly cohesive modules favor maintenance and reusability because they tend to have no
dependencies. Low cohesion, on the other hand, makes it much harder to understand the
purpose of a class and creates a natural habitat for rigidity and fragility in the software.
Low cohesive modules also propagate dependencies through modules, thus contributing to
the immobility and high viscosity of the design.

 Decreasing cohesion leads to creating modules (for example, classes) where responsibilities
(for example, methods) have very little in common and refer to distinct and unrelated activities.
Translated in a practical guideline, the principle of cohesion recommends creating extremely
specialized classes with few methods, which refer to logically related operations. If the logical
distance between methods grows, you just create a new class.

 Ward Cunningham—a pioneer of Extreme Programming—offers a concise and pragmatic
defi nition of cohesion in his wiki at http://c2.com/cgi/wiki?CouplingAndCohesion. He basically
says that two modules, A and B, are cohesive when a change to A has no repercussion for B
so that both modules can add new value to the system.

 There’s another quote we’d like to use from Ward Cunningham’s wiki to reinforce a concept
we expressed a moment ago about cohesion. Cunningham suggests that we defi ne cohesion

 Chapter 3 Design Principles and Patterns 69

as inversely proportional to the number of responsibilities a module (for example, a class)
has. We defi nitely like this defi nition.

 Important Strongly related to cohesion is the Single Responsibility Principle (SRP). In the
 formulation provided by Robert Martin (which you can see at http://www.objectmentor.com/
resources/articles/srp.pdf), SRP indicates that each class should always have just one reason to
change. In other words, each class should be given a single responsibility, where a responsibility
is defi ned as “a reason to change.” A class with multiple responsibilities has more reasons to
change and, subsequently, a less cohesive interface. A correct application of SRP entails breaking
the methods of a class into logical subsets that confi gure distinct responsibilities. In the real
world, however, this is much harder to do than the opposite—that is, aggregating distinct
 responsibilities in the same class.

 Coupling

 Coupling measures the level of dependency existing between two software modules, such
as classes, functions, or libraries. An excellent description of coupling comes, again, from
Cunningham’s wiki at http://c2.com/cgi/wiki?CouplingAndCohesion. Two modules, A and B,
are said to be coupled when it turns out that you have to make changes to B every time you
make any change to A.

 In other words, B is not directly and logically involved in the change being made to module A.
However, because of the underlying dependency, B is forced to change; otherwise, the code
won’t compile any longer.

 Coupling measurement ranges from low to high and the lowest possible range is preferable.

 Low coupling doesn’t mean that your modules are to be completely isolated from one
 another. They are defi nitely allowed to communicate, but they should do that through a set
of well-defi ned and stable interfaces. Each module should be able to work without intimate
knowledge of another module’s internal implementation.

 Conversely, high coupling hinders testing and reusing code and makes understanding it
 nontrivial. It is also one of the primary causes of a rigid and fragile design.

 Low coupling and high cohesion are strongly correlated. A system designed to achieve
low coupling and high cohesion generally meets the requirements of high readability,
 maintainability, easy testing, and good reuse.

 Note Introduced to support a structured design, cohesion and coupling are basic design
 principles not specifi cally related to object orientation. However, it’s the general scope that also
makes them valid and effective in an object-oriented scenario. A good object-oriented design, in
fact, is characterized by low coupling and high cohesion, which means that self-contained objects
(high cohesion) are interacting with other objects through a stable interface (low coupling).

70 Part I Principles

 Separation of Concerns

 So you know you need to cook up two key ingredients in your system’s recipe. But is there a
supermarket where you can get both? How do you achieve high cohesion and low coupling
in the design of a software system?

 A principle that is helpful to achieving high cohesion and low coupling is separation of concerns
(SoC), introduced in 1974 by Edsger W. Dijkstra in his paper “On the Role of Scientifi c Thought.”
If you’re interested, you can download the full paper from http://www.cs.utexas.edu/users/EWD/
ewd04xx/EWD447.PDF.

 Identifying the Concerns

 SoC is all about breaking the system into distinct and possibly nonoverlapping features. Each
feature you want in the system represents a concern and an aspect of the system. Terms such
as feature, concern, and aspect are generally considered synonyms. Concerns are mapped to
 software modules and, to the extent that it is possible, there’s no duplication of functionalities.

 SoC suggests that you focus on one particular concern at a time. It doesn’t mean, of course,
that you ignore all other concerns of the system. More simply, after you’ve assigned a concern
to a software module, you focus on building that module. From the perspective of that
 module, any other concerns are irrelevant.

 Note If you read Dijkstra’s original text, you’ll see that he uses the expression “separation of
 concerns” to indicate the general principle, but switches to the word “aspect” to indicate individual
concerns that relate to a software system. For quite a few years, the word “aspect” didn’t mean
anything special to software engineers. Things changed in the late 1990s when aspect-oriented
programming (AOP) entered the industry. We’ll return to AOP later in this chapter, but we make
the forward reference here to show Dijkstra’s great farsightedness.

 Modularity

 SoC is concretely achieved through using modular code and making heavy use of information
hiding.

 Modular programming encourages the use of separate modules for each signifi cant feature.
Modules are given their own public interface to communicate with other modules and can
contain internal chunks of information for private use.

 Only members in the public interface are visible to other modules. Internal data is either not
exposed or it is encapsulated and exposed in a fi ltered manner. The implementation of the
interface contains the behavior of the module, whose details are not known or accessible to
other modules.

 Chapter 3 Design Principles and Patterns 71

 Information Hiding

 Information hiding (IH) is a general design principle that refers to hiding behind a stable
 interface some implementation details of a software module that are subject to change. In
this way, connected modules continue to see the same fi xed interface and are unaffected by
changes.

 A typical application of the information-hiding principle is the implementation of properties
in C# or Microsoft Visual Basic .NET classes. (See the following code sample.) The property
name represents the stable interface through which callers refer to an internal value. The class
can obtain the value in various ways (for example, from a private fi eld, a control property, a
cache, the view state in ASP.NET) and can even change this implementation detail without
breaking external code.

 // Software module where information hiding is applied
public class Customer
{
 // Implementation detail being hidden
 private string _name;

 // Public and stable interface
 public string CustomerName
 {
 // Implementation detail being hidden
 get {return _name;}
 }
}

 Information hiding is often referred to as encapsulation. We like to distinguish between
the principle and its practical applications. In the realm of object-oriented programming,
 encapsulation is defi nitely an application of IH.

 Generally, though, the principle of SoC manifests itself in different ways in different
 programming paradigms, and so it is for modularity and information hiding.

 SoC and Programming Paradigms

 The fi rst programming paradigm that historically supported SoC was Procedural
Programming (PP), which we fi nd expressed in languages such as Pascal and C. In PP, you
separate concerns using functions and procedures.

 Next—with the advent of object-oriented programming (OOP) in languages such as Java,
C++, and more recently C# and Visual Basic .NET—you separate concerns using classes.

 However, the concept isn’t limited to programming languages. It also transcends the realm
of pure programming and is central in many approaches to software architecture. In a
 service-oriented architecture (SOA), for example, you use services to represent concerns.
Layered architectures are based on SoC, and within a middle tier you can use an Object/
Relational Mapping tool (O/RM) to separate persistence from the domain model.

72 Part I Principles

 Note In the preceding section, we basically went back over 40 years of computer science, and
the entire sector of software engineering. We’ve seen how PP, OOP, and SOA are all direct or
indirect emanations of the SoC principle. (Later in this chapter, we’ll see how AOP also fi ts this
principle. In Chapter 7, “The Presentation Layer,” we’ll see how fundamental design patterns for
the presentation layer, such as Model-View-Controller and Model-View-Presenter, also adhere to
the SoC principle.)

 You really understand the meaning of the word principle if you look at how SoC infl uenced, and
still infl uences, the development of software. And we owe this principle to a great man who
passed away in 2002: Edsger W. Dijkstra. We mention this out of respect for this man.

 For more information about Dijkstra’s contributions to the fi eld, pay a visit to http://www.cs.utexas
.edu/users/ewd.

 Naming Conventions and Code Readability

 When the implementation of a line-of-business application is expected to take several
months to complete and the fi nal application is expected to remain up and running for
a few years, it is quite reasonable to expect that many different people will work on the
project over time.

 With such signifi cant personnel turnover in sight, you must pay a lot of attention to
 system characteristics such as readability and maintainability. To ensure that the code base
is manageable as well as easily shared and understood, a set of common programming
rules and conventions should be used. Applied all the way through, common naming
 conventions, for example, make the whole code base look like it has been written by a
single programmer rather than a very large group of people.

 The most popular naming convention is Hungarian Notation (HN). You can read more
about it at http://en.wikipedia.org/wiki/Hungarian_Notation. Not specifi cally bound to a
programming language, HN became quite popular in the mid-1990s, as it was largely
used in many Microsoft Windows applications, especially those written directly against
the Windows Software Development Kit (SDK).

 HN puts the accent on the type of the variable, and it prefi xes the variable name with a
mnemonic of the type. For example, szUserName would be used for a zero-terminated
string that contains a user name, and iPageCount would be used for an integer that
indicates the number of pages. Created to make each variable self-explanatory, HN lost
most of its appeal with the advent of object-oriented languages.

 In object-oriented languages, everything is an object, and putting the accent on the
value, rather than the type, makes much more sense. So you choose variable names
 regardless of the type and look only at the value they are expected to contain. The
choice of the variable name happens in a purely evocative way. Therefore, valid names
are, for example, customer, customerID, and lowestPrice.

 Chapter 3 Design Principles and Patterns 73

 Finally, an argument against using HN is that a variable name should be changed every
time the type of the variable changes during development. In practice, this is often
 diffi cult or overlooked, leading developers to make incorrect assumptions about the
values contained within the variables. This often leads directly to bugs.

 You can fi nd detailed design guidelines for the .NET Framework classes and applications
at http://msdn.microsoft.com/en-us/library/ms229042.aspx.

 Object-Oriented Design

 Before object orientation (OO), any program resulted from the interaction of modules and
routines. Programming was procedural, meaning that there was a main stream of code
 determining the various steps to be accomplished.

 OO is a milestone in software design.

 OO lets you envision a program as the result of interacting objects, each of which holds its
own data and behavior. How would you design a graph of objects to represent your system?
Which principles should inspire this design?

 We can recognize a set of core principles for object-oriented design (OOD) and a set of
more advanced and specifi c principles that descend from, and further specialize, the core
principles.

 Basic OOD Principles

 To fi nd a broadly accepted defi nition of OOD, we need to look at the Gang of Four (Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides) and their landmark book
Design Patterns: Elements of Reusable Object-Oriented Software, (Addison-Wesley, 1994).
(We’ll make further references to this book as GoF, which is the universal acronym for
“Gang of Four.”)

 The entire gist of OOD is contained in this sentence:

 You must fi nd pertinent objects, factor them into classes at the right granularity,
defi ne class interfaces and inheritance hierarchies, and establish key relationships
among them.

 In GoF, we also fi nd another excerpt that is particularly signifi cant:

 Your design should be specifi c to the problem at hand but also general enough to
address future problems and requirements.

74 Part I Principles

 Wouldn’t you agree that this last sentence is similar to some of the guidelines resulting
from the ISO/IEC 9126 standard that we covered in Chapter 1? Its obvious similarity to that
 standard cannot be denied, and it is not surprising at all.

 The basics of OOD can be summarized in three points: fi nd pertinent objects, favor low
 coupling, and favor code reuse.

 Find Pertinent Objects First

 The fi rst key step in OOD is creating a crisp and fl exible abstraction of the problem’s domain.
To successfully do so, you should think about things instead of processes. You should focus
on the whats instead of the hows. You should stop thinking about algorithms to focus mostly
on interacting entities. Interacting entities are your pertinent objects.

 Where do you fi nd them?

 Requirements offer the raw material that must be worked out and shaped into a hierarchy
of pertinent objects. The descriptions of the use cases you receive from the team of analysts
provide the foundation for the design of classes. Here’s a sample use case you might get
from an analyst:

 To view all orders placed by a customer, the user indicates the customer ID. The
program displays an error message if the customer does not exist. If the customer
exists, the program displays name, address, date of birth, and all outstanding
orders. For each order, the program gets ID, date, and all order items.

 A common practice for fi nding pertinent objects is tagging all nouns and verbs in the
 various use cases. Nouns originate classes or properties, whereas verbs indicate methods
on classes. Our sample use case suggests the defi nition of classes such as User, Customer,
Order, and OrderItem. The class Customer will have properties such as Name, Address, and
DateOfBirth. Methods on the class Customer might be LoadOrderItems, GetCustomerByID,
and LoadOrders.

 Note that fi nding pertinent objects is only the fi rst step. As recommended in the statement
that many consider to be the emblem of OOD, you then have to factor pertinent objects into
classes and determine the right level of granularity and assign responsibilities.

 In doing so, two principles of OOD apply, and they are listed in the introduction of GoF.

 Favor Low Coupling

 In an OO design, objects need to interact and communicate. For this reason, each object
exposes its own public interface for others to call. So suppose you have a logger object
with a method Log that tracks any code activity to, say, a database. And suppose also that

 Chapter 3 Design Principles and Patterns 75

another object at some point needs to log something. Simply enough, the caller creates an
instance of the logger and proceeds. Overall, it’s easy and effective. Here’s some code to
illustrate the point:

 class MyComponent
{
 void DoSomeWork()
 {
 // Get an instance of the logger
 Logger logger = new Logger();

 // Get data to log
 string data = GetData();

 // Log
 logger.Log(data);
 }
}

 The class MyComponent is tightly coupled to the class Logger and its implementation. The class
MyComponent is broken if Logger is broken and, more importantly, you can’t use another type
of logger.

 You get a real design benefi t if you can separate the interface from the implementation.

 What kind of functionality do you really need from such a logger component? You
 essentially need the ability to log; where and how is an implementation detail. So you
might want to define an ILogger interface, as shown next, and extract it from the
Logger class:

 interface ILogger
{
 void Log(string data);
}

class Logger : ILogger
{

}

 At this point, you use an intermediate factory object to return the logger to be used within
the component:

 class MyComponent
{
 void DoSomeWork()
 {
 // Get an instance of the logger
 ILogger logger = Helpers.GetLogger();

. . .

76 Part I Principles

 // Get data to log
 string data = GetData();

 // Log
 logger.Log(data);
 }
}

class Helpers
{
 public static ILogger GetLogger()
 {
 // Here, use any sophisticated logic you like
 // to determine the right logger to instantiate.

 ILogger logger = null;
 if (UseDatabaseLogger)
 {
 logger = new DatabaseLogger();
 }
 else
 {
 logger = new FileLogger();
 }
 return logger;
 }
}
 class FileLogger : ILogger
{

}

class DatabaseLogger : ILogger
{

}

 The factory code gets you an instance of the logger for the component to use. The factory
returns an object that implements the ILogger interface, and the component consumes any
object that implements the contracted interface.

 The dependency between the component and the logger is now based on an interface
 rather than an implementation.

 If you base class dependencies on interfaces, you minimize coupling between classes to
the smallest possible set of functions—those defi ned in the interface. In doing so, you just
 applied the fi rst principle of OOD as outlined in GoF:

 Program to an interface, not an implementation.

 This approach to design is highly recommended for using with the parts of your code that
are most likely to undergo changes in their implementation.

. . .
. . .

 Chapter 3 Design Principles and Patterns 77

 Note Should you use an interface? Or should you perhaps opt for an abstract base class? In
object-oriented languages that do not support multiple inheritance—such as Java, C#, and
Visual Basic .NET—an interface is always preferable because it leaves room for another base
class of your choice. When you have multiple inheritance, it is mostly a matter of preference.
You should consider using a base class in .NET languages in all cases where you need more than
just an interface. If you need some hard-coded behavior along with an interface, a base class is
the only option you have. ASP.NET providers, for example, are based on base classes and not on
 interfaces.

 An interesting possibility beyond base classes and interfaces are mixins, but they are an OOP
 feature not supported by .NET languages. A mixin is a class that provides a certain functionality
that other classes can inherit, but it is not meant to be a standalone class. Put another way, a mixin
is like an interface where some of the members might contain a predefi ned implementation.
Mixins are supported in some dynamic languages, including Python and Ruby. No .NET languages
currently support mixins, but mixins can be simulated using ad hoc frameworks such as Castle.
DynamicProxy. With this framework, you fi rst defi ne a class that contains all the methods you
want to inject in an existing class—the mixin. Next, you use the framework to create a proxy
for a given class that contains the injected methods. Castle.DynamicProxy uses Refl ection.Emit
 internally to do the trick.

 Real-World Example: IButtonControl in ASP.NET

 In ASP.NET 1.x, there was no support for cross-page postbacks. Every time the user
clicked a button, he could only post to the same page. Starting with ASP.NET 2.0, buttons
(and only buttons) were given the ability to trigger the post of the current form to an
external page.

 To support this feature, the Page class needs to know whether the control that caused
the postback is a button or not. How many types of buttons do you know? There’s the
Button class, but also LinkButton and fi nally ImageButton. Up until ASP.NET 2.0, these
classes had very little in common—just a few properties, but nothing that could be
 offi cially perceived as a contract or a formal link.

 Having the Page class check against the three types before posting would have limited
the extensibility of the framework: only those three types of control would have ever
been able to make a cross-page post.

 The ASP.NET team extracted the core behavior of a button to the IButtonControl
 interface and implemented that interface in all button classes. Next, they instructed the
Page class to check the interface to verify the suitability of a posting control to make a
cross-page post.

 In this way, you can write custom controls that implement the interface and still add the
ability to make your own cross-page posts.

78 Part I Principles

 Favor Code Reuse

 Reusability is a fundamental aspect of the object-oriented paradigm and one of the keys to
its success and wide adoption. You create a class one day, and you’re happy with that. Next,
on another day, you inherit a new class, make some changes here and there, and come up
with a slightly different version of the original class.

 Is this what code reuse is all about? Well, there’s more to consider.

 With class inheritance, the derived class doesn’t simply inherit the code of the parent class.
It really inherits the context and, subsequently, it gains some visibility of the parent’s state.
Is this a problem?

 For one thing, a derived class that uses the context it inherits from the parent can be broken
by future changes to the parent class.

 In addition, when you inherit from a class, you enter into a polymorphic context, meaning
that your derived class can be used in any scenarios where the parent is accepted. It’s not
guaranteed, however, that the two classes can really be used interchangeably. What if the
 derived class includes changes that alter the parent’s context to the point of breaking the
contract between the caller and its expected (base) class? (Providing the guarantee that
 parent and derived classes can be used interchangeably is the goal of Liskov’s principle,
which we’ll discuss later.)

 In GoF, the authors recognize two routes to reusability—white-box and black-box reusability.
The former is based on class inheritance and lends itself to the objections we just mentioned.
The latter is based on object composition.

 Object composition entails creating a new type that holds an instance of the base type and
typically references it through a private member:

 public CompositeClass
{
 private MyClass theObject;

 public CompositeClass()
 {
 // You can use any lazy-loading policy you want for instantiation.
 // No lazy loading is being used here ...
 theObject = new MyClass();
 }

 public object DoWork()
 {
 object data = theObject.DoSomeWork();

 // Do some other work
 return Process(data);
 }

 Chapter 3 Design Principles and Patterns 79

 private object Process(object data)
 {

 }
}

 In this case, you have a wrapper class that uses a type as a black box and does so through
a well-defi ned contract. The wrapper class has no access to internal members and cannot
change the behavior in any way—it uses the object as it is rather than changing it to do its
will. External calls reach the wrapper class, and the wrapper class delegates the call internally
to the held instance of the class it enhances. (See Figure 3-2.)

Composite object

Original object

 FIGURE 3-2 Object composition and delegation

 When you create such a wrapper object, you basically apply the second principle of OOD:

 Favor object composition over class inheritance.

 Does all this mean that classic class inheritance is entirely wrong and should be avoided like
the plague? Using class inheritance is generally fi ne when all you do is add new functions to
the base class or when you entirely unplug and replace an existing functionality. However,
you should never lose track of the Liskov principle. (We’ll get to the details of the Liskov
 principle in a moment.)

 In many cases, and especially in real-world scenarios, object composition is a safer
practice that also simplifi es maintenance and testing. With composition, changes to
the composite object don’t affect the internal object. Likewise, changes to the internal
 object don’t affect the outermost container as long as there are no changes to the public
interface.

 By combining the two principles of OOD, you can refer to the original object through
an interface, thus further limiting the dependency between composite and internal
 objects. Composition doesn’t provide polymorphism even if it will provide functionality.
If polymorphism is key for you, you should opt for a white-box form of reusability.
However, keep the Liskov principle clearly in mind.

. . .

80 Part I Principles

 Note In addition to composition, another approach is frequently used to contrast class
 inheritance—aggregation. Both aggregation and composition refer to a has-a relationship
 between two classes, whereas inheritance implies an is-a relationship. The difference between
composition and aggregation is that with composition you have a static link between the
 container and contained classes. If you dispose of the container, the contained classes are also
disposed of. With aggregation, the link is weaker and the container is simply associated with an
external class. As a result, when the container is disposed of, the child class blissfully survives.

 Advanced Principles

 You cannot go to a potential customer and sing the praises of your software by mentioning that it
is modular, well designed, and easy to read and maintain. These are internal characteristics of the
software that do not affect the user in any way. More likely, you’ll say that your software is correct,
bug free, fast, easy to use, and perhaps extensible. However, you can hardly write correct, bug-free,
easy-to-use, and extensible software without paying a lot of attention to the internal design.

 Basic principles such as low coupling, high cohesion (along with the single responsibility
 principle), separation of concerns, plus the fi rst two principles of OOD give us enough
 guidance about how to design a software application. As you might have noticed, all these
principles are rather old (but certainly not outdated), as they were devised and formulated
at least 15 years ago.

 In more recent years, some of these principles have been further refi ned and enhanced to address
more specifi c aspects of the design. We like to list three more advanced design principles that, if
properly applied, will certainly make your code easier to read, test, extend, and maintain.

 The Open/Closed Principle

 We owe the Open/Closed Principle (OCP) to Bertrand Meyer. The principle addresses the
need of creating software entities (whether classes, modules, or functions) that can happily
survive changes. In the current version of the fi ctional product “This World,” the continuous
changes to software requirements are a well-known bug. Unfortunately, although the team
is working to eliminate the bug in the next release, we still have to face reality and deal with
frequent changes of requirements the best we can.

 Essentially, we need to have a mechanism that allows us to enter changes where required without
breaking existing code that works. The OCP addresses exactly this issue by saying the following:

 A module should be open for extension but closed for modifi cation.

 Applied to OOD, the principle recommends that we never edit the source code of a class that
works in order to implement a change. In other words, each class should be conceived to be
stable and immutable and never face change—the class is closed for modifi cation.

 How can we enter changes, then?

 Chapter 3 Design Principles and Patterns 81

 Every time a change is required, you enhance the behavior of the class by adding new code
and never touching the old code that works. In practical terms, this means either using
 composition or perhaps safe-and-clean class inheritance. Note that OCP just reinforces the
point that we made earlier about the second principle of OOD: if you use class inheritance,
you add only new code and do not modify any part of the inherited context.

 Today, the most common way to comply with the OCP is by implementing a fi xed interface in
any classes that we fi gure are subject to changes. Callers will then work against the interface
as in the fi rst principle of OOD. The interface is then closed for modifi cation. But you can make
callers interact with any class that, at a minimum, implements that interface. So the overall
model is open for extension, but it still provides a fi xed interface to dependent objects.

 Liskov’s Substitution Principle

 When a new class is derived from an existing one, the derived class can be used in any place
where the parent class is accepted. This is polymorphism, isn’t it? Well, the Liskov Substitution
Principle (LSP) restates that this is the way you should design your code. The principle says
the following:

 Subclasses should be substitutable for their base classes.

 Apparently, you get this free of charge from just using an object-oriented language. If you
think so, have a look at the next example:

 public class ProgrammerToy
{
 private int _state = 0;

 public virtual void SetState(int state)
 {
 _state = state;
 }

 public int GetState()
 {
 return _state;
 }
}

 The class ProgrammerToy just acts as a wrapper for an integer value that callers can read and
write through a pair of public methods. Here’s a typical code snippet that shows how to use it:

 static void DoSomeWork(ProgrammerToy toy)

{

 int magicNumber = 5;

 toy.SetState(magicNumber);

 Console.WriteLine(toy.GetState());

 Console.ReadLine();

}

82 Part I Principles

 The caller receives an instance of the ProgrammerToy class, does some work with it, and then
displays any results. So far, so good. Let’s now consider a derived class:

 public class CustomProgrammerToy : ProgrammerToy
{
 public override void SetState(int state)
 {
 // It inherits the context of the parent but lacks the tools
 // to fully access it. In particular, it has no way to access
 // the private member _state.
 // As a result, this class MAY NOT be able to
 // honor the contract of its parent class. Whether or not, mostly
 // depends on your intentions and expected goals for the overridden
 // SetState method. In any case, you CAN'T access directly the private member
 // _state from within this override of SetState.

 // (In .NET, you can use reflection to access a private member,
 // but that's a sort of a trick.)

 }
}

 From a syntax point of view, ProgrammerToy and CustomProgrammerToy are just the same
and method DoSomeWork will accept both and successfully compile.

 From a behavior point of view, though, they are quite different. In fact, when
CustomProgrammerToy is used, the output is 0 instead of 5. This is because of the override
made on the SetState method.

 This is purely an example, but it calls your attention to Liskov’s Principle. It doesn’t go without
saying that derived classes (subclasses) can safely replace their base classes. You have to
 ensure that. How?

 You should handle keywords such as sealed and virtual with extreme care. Virtual
 (overridable) methods, for example, should never gain access to private members. Access
to private members can’t be replicated by overrides, which makes base and derived classes
not semantically equivalent from the perspective of a caller. You should plan ahead of
time which members are private and which are protected. Members consumed by virtual
 methods must be protected, not private.

 Generally, virtual methods of a derived class should work out of the same preconditions
of corresponding parent methods. They also must guarantee at least the same
postconditions.

 Classes that fail to comply with LSP don’t just break polymorphism but also induce violations
of OCP on callers.

. . .

 Chapter 3 Design Principles and Patterns 83

 Note OCP and LSP are closely related. Any function using a class that violates Liskov’s Principle
violates the Open/Close Principle. Let’s reference the preceding example again. The method
DoSomeWork uses a hierarchy of classes (ProgrammerToy and CustomProgrammerToy) that
 violate LSP. This means that to work properly DoSomeWork must be aware of which type
it really receives. Subsequently, it has to be modifi ed each time a new class is derived from
ProgrammerToy. In other words, the method DoSomeWork is not closed for modifi cation.

 The Dependency Inversion Principle

 When you create the code for a class, you represent a behavior through a set of methods.
Each method is expected to perform a number of actions. As you specify these actions, you
proceed in a top-down way, going from high-level abstractions down the stack to more and
more precise and specifi c functions.

 As an illustration, imagine a class, perhaps encapsulated in a service, that is expected to
 return stock quotes as a chunk of HTML markup:

 public class FinanceInfoService
{
 public string GetQuotesAsHtml(string symbols)
 {
 // Get the Finder component
 IFinder finder = ResolveFinder();
 if (finder == null)
 throw new NullReferenceException("Invalid finder.");

 // Grab raw data
 StockInfo[] stocks = finder.FindQuoteInfo(symbols);

 // Get the Renderer component
 IRenderer renderer = ResolveRenderer();
 if (renderer == null)
 throw new NullReferenceException("Invalid renderer.");

 // Render raw data out to HTML
 return renderer.RenderQuoteInfo(stocks);
 }

}

 The method GetQuotesAsHtml is expected to fi rst grab raw data and then massage it into an
HTML string. You recognize two functionalities in the method: the fi nder and the renderer. In
a top-down approach, you are interested in recognizing these functionalities, but you don’t
need to specify details for these components in the fi rst place. All that you need to do is hide
details behind a stable interface.

. . .

84 Part I Principles

 The method GetQuotesAsHtml works regardless of the implementation of the fi nder and
 renderer components and is not dependent on them. (See Figure 3-3.) On the other hand,
your purpose is to reuse the high-level module, not low-level components.

GenerateAsHtml

IFinder

IRenderer

SomeStockFinder

HtmlTableRenderer

 FIGURE 3-3 Lower layers are represented by an interface

 When you get to this, you’re in full compliance with the Dependency Inversion Principle
(DIP), which states the following:

 High-level modules should not depend upon low-level modules. Both should
depend upon abstractions. Abstractions should not depend upon details. Details
should depend upon abstractions.

 The inversion in the name of the principle refers to the fact that you proceed in a top-down
manner during the implementation and focus on the work fl ow in high-level modules rather
than focusing on the implementation of lower level modules. At this point, lower level modules
can be injected directly into the high-level module. Here’s an alternative implementation for a
DIP-based module:

 public class FinanceInfoService
{
 // Inject dependencies through the constructor. References to such external components
 // are resolved outside this module, for example by using an inversion-of-control
 // framework (more later).
 IFinder _finder = null;
 IRenderer _renderer = null;

 public FinanceInfoService(IFinder finder, IRenderer renderer)
 {
 _finder = finder;
 _renderer = renderer;
 }

 public string GetQuotesAsHtml(string symbols)
 {
 // Get the Finder component
 if (_finder == null)
 throw new NullReferenceException("Invalid finder.");

 Chapter 3 Design Principles and Patterns 85

 // Grab raw data
 StockInfo[] stocks = _finder.FindQuoteInfo(symbols);

 // Get the Renderer component
 if (_renderer == null)
 throw new NullReferenceException("Invalid renderer.");

 // Render raw data out to HTML
 return _renderer.RenderQuoteInfo(stocks);
 }

}

 In this case, the lower level modules are injected through the constructor of the DIP-based
class.

 The DIP has been formalized by Robert Martin. You can read more about it at
http://www.objectmentor.com/resources/articles/dip.pdf.

 Important In literature, the DIP is often referred to as inversion of control (IoC). In this book,
we use the DIP formulation by Robert Martin to indicate the principle of dependency inversion
and consider IoC as a pattern. In this regard, IoC and dependency injection are, for us, synonyms.
The terminology, however, is much less important than the recognition that there’s a principle
about inversion of control and a practical pattern. We’ll return on this in a moment with a more
detailed explanation of our perspective.

 From Principles to Patterns

 It is guaranteed that by fulfi lling all the OOD principles just discussed, you can craft a good
 design that matches requirements and is maintainable and extensible. A seasoned development
team, though, will not be limited to applying effective design principles over and over again;
members of the team, in fact, will certainly draw from the well of their experience any solutions
for similar problems that worked in the past.

 Such building blocks are nothing more than hints and the skeleton of a solution.
However, these very same building blocks can become more refi ned day after day and
are generalized after each usage to become applicable to a wider range of problems and
 scenarios. Such building blocks might not provide a direct solution, but they usually help
you to fi nd your (right) way. And using them is usually more effective and faster than
starting from scratch.

 By the way, these building blocks are known as patterns.

. . .

86 Part I Principles

 What’s a Pattern, Anyway?

 The word pattern is one of those overloaded terms that morphed from its common usage to
assume a very specifi c meaning in computer science. According to the dictionary, a pattern is
a template or model that can be used to generate things—any things. In computer science,
we use patterns in design solutions at two levels: implementation and architecture.

 At the highest level, two main families of software patterns are recognized: design patterns
and architectural patterns. You look at design patterns when you dive into the implementation
and design of the code. You look at architectural patterns when you fl y high looking for the
overall design of the system.

 Let’s start with design patterns.

 Note A third family of software patterns is also worth a mention—refactoring patterns. You look
at these patterns only when you’re engaged in a refactoring process. Refactoring is the process
of changing your source code to make it simpler, more effi cient, and more readable while
 preserving the original functionality. Examples of refactoring patterns are “Extract Interface” and
“Encapsulate Field.” Some of these refactoring patterns have been integrated into Visual Studio
2008 on the Refactor menu. You fi nd even more patterns in ad hoc tools such as Resharper.
(For more information, see http://www.jetbrains.com/resharper.)

 A good book to read to learn about refactoring patterns is Refactoring to Patterns by Joshua
Kerievsky (Addison-Wesley, 2004).

 Design Patterns

 We software professionals owe design patterns to an architect—a real architect, not a
 software architect. In the late 1970s, Christopher Alexander developed a pattern language
with the purpose of letting individuals express their innate sense of design through a sort of
informal grammar. From his work, here’s the defi nition of a pattern:

 Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core solution to that problem, in such a way
that you can use the solution a million times over, without ever doing it the same
way twice.

 Nicely enough, although the defi nition was not written with software development in mind,
it applies perfectly to that. So what’s a design pattern?

 A design pattern is a known and well-established core solution applicable to a family of
concrete problems that might show up during implementation. A design pattern is a core
solution and, as such, it might need adaptation to a specifi c context. This feature becomes a
major strength when you consider that, in this way, the same pattern can be applied many
times in many slightly different scenarios.

 Chapter 3 Design Principles and Patterns 87

 Design patterns are not created in a lab; quite the reverse. They originate from the real
world and from the direct experience of developers and architects. You can think of a design
 pattern as a package that includes the description of a problem, a list of actors participating
in the problem, and a practical solution.

 The primary reference for design patterns is GoF. Another excellent reference we want to
 recommend is Pattern-Oriented Software Architecture by Frank Buschmann, et al. (Wiley, 1996).

 How to Work with Design Patterns

 Here is a list of what design patterns are not:

■ Design patterns are not the verb and should never be interpreted dogmatically.

■ Design patterns are not Superman and will never magically pop up to save a project in
trouble.

■ Design patterns are neither the dark nor the light side of the Force. They might be with
you, but they won’t provide you with any special extra power.

 Design patterns are just helpful, and that should be enough.

 You don’t choose a design pattern; the most appropriate design pattern normally emerges
out of your refactoring steps. We could say that the pattern is buried under your classes, but
digging it out is entirely up to you.

 The wrong way to deal with design patterns is by going through a list of patterns and
 matching them to the problem. Instead, it works the other way around. You have a problem
and you have to match the problem to the pattern. How can you do that? It’s quite simple to
explain, but it’s not so easy to apply.

 You have to understand the problem and generalize it.

 If you can take the problem back to its roots, and get the gist of it, you’ll probably fi nd a
tailor-made pattern just waiting for you. Why is this so? Well, if you really reached the root
of the problem, chances are that someone else did the same in the past 15 years (the period
during which design patterns became more widely used). So the solution is probably just
there for you to read and apply.

 This observation prompts us to mention the way in which all members of our teams use
books on design patterns. (By the way, there are always plenty of such books scattered
throughout the offi ce.) Design patterns books are an essential tool. But we never read such
books. We use them, instead, like cookbooks.

 What we normally do is stop reading after the fi rst few pages precisely where most books
list the patterns they cover in detail inside. Next, we put the book aside and possibly within
reach. Whenever we encounter a problem, we try to generalize it, and then we fl ip through

88 Part I Principles

the pages of the book to fi nd a pattern that possibly matches it. We fi nd one much more
 often than not. And if we don’t, we repeat the process in an attempt to come to a better
generalization of the problem.

 When we’ve found the pattern, we start working on its adaptation to our context. This often
requires refactoring of the code which, in turn, might lead to a more appropriate pattern.
And the loop goes on.

 Note If you’re looking for an online quick reference about design patterns, you should look
at http://www.dofactory.com. Among other things, the site offers .NET-specifi c views of most
 popular design patterns.

 Where’s the Value in Patterns, Exactly?

 Many people would agree in principle that there’s plenty of value in design patterns. Fewer
people, though, would be able to indicate what the value is and where it can be found.

 Using design patterns, per se, doesn’t make your solution more valuable. What really matters,
at the end of the day, is whether or not your solution works and meets requirements.

 Armed with requirements and design principles, you are up to the task of solving a problem.
On your way to the solution, though, a systematic application of design principles to the
problem sooner or later takes you into the immediate neighborhood of a known design
 pattern. That’s a certainty because, ultimately, patterns are solutions that others have already
found and catalogued.

 At that point, you have a solution with some structural likeness to a known design pattern.
It is up to you, then, to determine whether an explicit refactoring to that pattern will bring
some added value to the solution. Basically, you have to decide whether or not the known
pattern you’ve found represents a further, and desirable, refi nement of your current solution.
Don’t worry if your solution doesn’t match a pattern. It means that you have a solution that
works and you’re happy with that. You’re just fi ne. You never want to change a winning
solution!

 In summary, patterns might be an end when you refactor according to them, and they might
be a means when you face a problem that is clearly resolved by a particular pattern. Patterns
are not an added value for your solution, but they are valuable for you as an architect or a
developer looking for a solution.

 Applied Design Patterns

 We said a lot about design patterns, but we haven’t shown a single line of code or a
 concrete example. Patterns are everywhere, even if you don’t realize it. As we’ll see in

 Chapter 3 Design Principles and Patterns 89

a moment, sometimes patterns are buried in the language syntax—in which case, we’ll call
them idioms.

 Have you ever needed to use a global object (or a few global objects) to serve all requests to
a given class? If you have, you used the Singleton pattern. The Singleton pattern is described
as a way to ensure that a class has only one instance for which a global point of access is
 required. Here’s an example:

 public class Helpers
{
 public static Helpers DefaultInstance = new Helpers();

 protected Helpers() {}

 public void DoWork()
 {

 }

 public void DoMoreWork()
 {

 }
}

 In a consumer class, you take advantage of Helpers through the following syntax:

 Helpers.DefaultInstance.DoWork();

 Swarms of Visual Basic 6 developers have used the Singleton pattern for years probably
 without ever realizing it. The Singleton pattern is behind the default instance of Visual Basic 6
forms, as shown here:

 Form1.Show()

 The preceding code in Visual Basic 6 invokes the Show method on the default instance of the
type Form1. In the source, there’s no explicit mention of the default instance only because of
the tricks played by the Visual Basic runtime.

 Tip Admittedly, the Singleton pattern on a class is similar to defi ning the same class with only
static methods. Is there any difference?

 With a Singleton pattern, you can actually control the number of instances because you’re not
actually limited to just one instance. In addition, you can derive a new (meaningful) class because
the Singleton pattern has some instance-level behavior and is not a mere collection of static
functions. Finally, you have more freedom to control the creation of the actual instance. For
 example, you can add a static method, say, GetInstance, instead of the static fi eld and add there
any logic for the factory.

. . .
. . .

90 Part I Principles

 Another interesting pattern to briefl y mention is the Strategy pattern. The pattern identifi es a
particular functionality that a class needs and can be hot-plugged into the class. The functionality
is abstracted to an interface or a base class, and the Strategy-enabled class uses it through the
abstraction, as shown here:

 public class MyService
{
 // This is the replaceable strategy
 ILogger _logger;

 public MyService(ILogger logger)
 {
 this._logger = logger;
 }

 public void DoWork()
 {
 this._logger.Log("Begin method ...");

 this._logger.Log("End method ...");
 }
}

 The Strategy pattern is the canonical example used to illustrate the power of composition.
The class MyService in the example benefi ts from the services of a logger component, but it
depends only on an abstraction of it. The external logger component can be changed with
ease and without risking breaking changes. Moreover, you can even change the component
(for example, the strategy) on the fl y. Try getting the same fl exibility in a scenario where the
implementation of the strategy object is hard-coded in the MyService class and you have
to inherit a new class to change strategy. It’s just impossible to change strategy in that case
without recompilation and redeployment.

 Architectural Patterns

 Architectural patterns capture key elements of software architecture and offer support for
making hard-to-change decisions about the structure of the system. As we saw in Chapter 1,
software architecture is mostly about decisions regarding design points that, unlike code
 design, are not subject to refactoring.

 Architectural patterns are selected and applied very early in the course of design, and
they infl uence various quality characteristics of the system, such as performance, security,
 maintenance, and extensibility.

 Examples of architectural patterns are Layers and SOA for modeling the application structure,
Model-View-Controller for the presentation, Domain Model and Service Layer for the business
logic, and Peer-to-Peer for the network topology.

. . .

 Chapter 3 Design Principles and Patterns 91

 Antipatterns

 In physics, we have matter and antimatter. Just as matter is made of particles, antimatter is
made of antiparticles. An antiparticle is identical to a particle except for the charge—positive
in the particles of normal matter, and negative in an element of antimatter.

 Likewise, in software we have patterns made of solutions, and antipatterns made of
antisolutions. What’s the difference? It is all in the “charge” of the solution. Patterns
drive us to good solutions, whereas antipatterns drive us to bad solutions. The clearest
defi nition for antipatterns we could fi nd comes (again) from Ward Cunningham’s wiki,
at http://c2.com/cgi/wiki?AntiPattern:

 An anti-pattern is a pattern that tells how to go from a problem to a bad solution.

 Put this way, one could reasonably wonder why antipatterns are worth the effort
of defi ning them. For matter and antimatter, it’s all about the thirst for knowledge.
But developers and architects are usually more pragmatic and they tend to prefer
 knowledge with a practical application to their everyday work. What’s the link that
 relates antipatterns to the real-world of software development?

 The keystone of antipatterns is that they might, at fi rst, look like good ideas that can
add new power and effectiveness to your classes. An antipattern, though, is devious
and insidious and adds more trouble than it removes. From Cunningham’s wiki again:

 In the old days, we used to just call these bad ideas. The new name is much more
diplomatic.

 Designers and antipatterns, in some way, attract each other, but the experienced
 designer recognizes and avoids antipatterns. (This is defi nitely a characteristic that
marks the difference between expert and nonexpert designers.) Because of the fatal
attraction designers generally have toward antipatterns, a catalog of antipatterns is as
valuable as a catalog of good design patterns.

 A long list of antipatterns can be found at http://c2.com/cgi/wiki?AntiPatternsCatalog
and also at http://en.wikipedia.org/wiki/anti-pattern. We like to briefl y address a couple
of them—one relates to architecture and the other relates to development.

 The Architecture-As-Requirements antipattern refers to situations where a prominent
and infl uential member of the design team has a pet technology or product and
 absolutely wants to use it in the project—even when there is no clear evidence of its
usefulness and applicability in the customer’s context.

 The Test-By-Release antipattern refers to releasing a software product without paying
much attention to all those boring and time-consuming chores related to unit and
 integration testing. Are users the fi nal recipients of the product? Great, let’s give them
the last word on whether the software works or not.

92 Part I Principles

 Patterns vs. Idioms

 Software patterns indicate well-established solutions to recurring design problems. This means
that developers end up coding their way to a given solution over and over again. And they
might be repeatedly writing the same boilerplate code in a given programming language.

 Sometimes specifi c features of a given programming language can help signifi cantly in
quickly and elegantly solving a recurring problem. That specifi c set of features is referred to
as an idiom.

 What’s an Idiom, Anyway?

 An idiom is a pattern hard-coded in a programming language or implemented out of the
box in a framework or technology.

 Like a design pattern, an idiom represents a solution to a recurring problem. However, in
the case of idioms, the solution to the problem doesn’t come through design techniques
but merely by using the features of the programming language. Whereas a design pattern
 focuses on the object-oriented paradigm, an idiom focuses on the technology of the
 programming language.

 An idiom is a way to take advantage of the language capabilities and obtain a desired behavior
from the code. In general, an idiom refers to a very specifi c, common, and eye-catching piece
of code that accomplishes a given operation—as simple as adding to a counter or as complex
as the implementation of a design pattern.

 In C#, for example, the ++ operator can be considered a programming idiom for the recurring
task of adding to a counter variable. The same can be said for the as keyword when it comes to
casting to a type and defaulting to null in case of failure.

 Let’s see some more examples of programming idioms in C#.

 Sample Idioms

 Events are the canonical example of a programming idiom. Behind events, you fi nd the
Observer pattern. The pattern refers to a class that has the ability to notify registered
 observers of some internal states. Whenever a particular state is reached, the class loops
through the list of registered observers and notifi es each observer of the event. It does that
using a contracted observer interface.

 In languages such as C# or Visual Basic .NET that support event-driven programming, you fi nd
this pattern natively implemented and exposed through keywords. Consider the following code:

 Button1.Click += new EventHandler(Button1_Click);

 When it runs, a new “observer for the Click event” is added to the list maintained by object
Button1. The observer in this case is a delegate—a special class wrapping a class method.

 Chapter 3 Design Principles and Patterns 93

The interface through which observer and object communicate is the signature of the
method wrapped by the delegate.

 Similarly, the foreach keyword in C# (and For . . . Each in Visual Basic .NET) is a hard-coded
 version of the Iterator pattern. An iterator object accomplishes two main tasks: it retrieves
a particular element within a collection and jumps to the next element. This is exactly what
happens under the hood of the following code:

 foreach(Customer customer in dataContext.Customers)
{
 // The variable customer references the current element in the collection.
 // Moving to the next element is implicit.
}

 Finally, the most recent versions of C# and Visual Basic .NET—those shipping with the .NET
Framework 3.5—also support a set of contextual keywords for Language Integrated Query (LINQ):
from, select, in, orderby. When you apply the set of LINQ keywords to a database-oriented object
model, you have LINQ-to-SQL. With LINQ-to-SQL, you ultimately use language keywords to query
the content of a database. In other words, you programmatically defi ne an object that represents
a query and run it. This behavior is described by the Query Object pattern. And LINQ-to-SQL is a
programming idiom for the pattern.

 Idiomatic Design

 We spent a lot of time pondering OOD principles and showing their benefi ts and applicability.
We did it by reasoning in a general context and looking at the OO paradigm rather than by
 examining the concrete technology and platform. General principles are always valid and
should always be given due consideration.

 However, when you step inside the design, at some point you meet the technology. When this
happens, you might need to review the way you apply principles in the context of the specifi c
technology or platform you’re using. This is called idiomatic design.

 As far as the .NET Framework is concerned, a set of idiomatic design rules exists under the
name of Framework Design Guidelines. You can access them online from the following URL:
http://msdn.microsoft.com/en-us/library/ms229042.aspx.

 Note Framework Design Guidelines is also the title of a book written by Krzysztof Cwalina
and Brad Abrams from Microsoft (Addison-Wesley, 2008). Cwalina’s blog is also an excellent
source for tidbits and more details on guidelines. We defi nitely recommend it. The blog is
http://blogs.msdn.com/kcwalina.

 As an example, let’s go through a couple of these guidelines.

94 Part I Principles

 Idiomatic Design: Structures or Classes?

 When defi ning a type in a C# .NET application, should you use struct or class? To start out,
a struct is not inheritable. So if you need to derive new classes from the type, you must opt
for a class rather than a structure. This said, a class is a reference type and is allocated on
the heap. Memorywise, a reference type is managed by the garbage collector. Conversely,
a struct is a value type; it is allocated on the stack and deallocated when it goes out of
scope. Value types are generally less expensive than reference types to work with, but not
when boxing is required. In the .NET Framework, boxing is the task of storing a value type
in an object reference so that it can be used wherever an object is accepted. As an example,
 consider the ArrayList class. When you add, say, an Int32 (or a struct) to an ArrayList, the
value is automatically boxed to an object. Done all the time, this extra work might change
the balance between class and struct. Hence, the need of an offi cial guideline on the theme
shows up.

 The guideline suggests that you always use a class unless the footprint of the type is below
16 bytes and the type is immutable. A type is immutable if the state of its instances never
changes after they’ve been created. (The System.String type in the .NET Framework is
 immutable because a new string is created after each modifi cation.) However, if the struct
is going to be boxed frequently you might want to consider using a class anyway. (If you’re
looking for the list of differences between structs and classes go here: http://msdn.microsoft.
com/en-us/library/saxz13w4.aspx.)

 Idiomatic Design: Do Not Use List<T> in Public Signatures

 Another guideline we want to point out has to do with the List<T> type. Their use in
the signature of public members is not recommended, as you can see in this blog post:
http://blogs.gotdotnet.com/kcwalina/archive/2005/09/26/474010.aspx.

 Why is this so?

 One of the reasons behind the guideline is that List<T> is a rather bloated type with many
members that are not relevant in many scenarios. This means that List<T> has low cohesion
and to some extent violates the Single Responsibility Principle.

 Another reason for not using List<T> in public signatures is that the class is unsealed, yes,
but not specifi cally designed to be extended. This doesn’t mean, though, that the class
is not LSP-safe. If you look at the source of the class, you can see that using List<T> is
 absolutely safe in any polymorphic context. The issue is that the class has no protected and
virtual methods for inheritors to do something signifi cant that alters the behavior of the
class while preserving the core interface. The class is just not designed to be extended.

 It is therefore recommended that you use IList<T>, or derived interfaces, in public signatures.
Alternatively, use custom classes that directly implement IList<T>.

 Chapter 3 Design Principles and Patterns 95

 Dependency Injection

 As a design principle, DIP states that higher level modules should depend on abstractions
rather than on the concrete implementation of functionalities. Inversion of control (IoC) is an
application of DIP that refers to situations where generic code controls the execution of more
specifi c and external components.

 In an IoC solution, you typically have a method whose code is fi lled with one or more
stubs. The functionality of each stub is provided (statically or dynamically) by external
 components invoked through an abstract interface. Replacing any external components
doesn’t affect the high-level method, as long as LSP and OCP are fulfi lled. External
 components and the high-level method can be developed independently.

 A real-world example of IoC is Windows shell extensions. Whenever the user right-clicks
and selects Properties, Windows Explorer prepares a standard dialog box and then does a
bit of IoC. It looks up the registry and fi nds out whether custom property page extensions
have been registered. If any are registered, it talks to these extensions through a contracted
 interface and adds pages to the user dialog box.

 Another real-world example of IoC is event-driven programming as originally offered by Visual
Basic and now supported by Windows Forms and Web Forms. By writing a Button1_Click
 method and attaching it to the Click event of, say, the Button1 control, you essentially instruct
the (reusable and generic) code of the Button class to call back your Button1_Click method any
time the user clicks.

 What is dependency injection (DI), then?

 From DIP to Inversion of Control

 For the purpose of this discussion, IoC and DI are synonyms. They are not always considered
synonyms in literature, as sometimes you fi nd IoC to be the principle and DI the application
of the principle—namely, the pattern. In reality, IoC is historically a pattern based on
DIP. The term dependency injection was coined by Martin Fowler later, as a way to further
 specialize the concept of inversion of control.

 IoC/DI remains essentially a pattern that works by letting you pass high-level method
 references to helper components. This injection can happen in three ways. One way is via the
constructor of the class to which the method belongs. We did just this in the implementation
of the FinanceInfoService class. Another way consists of defi ning a method or a setter
 property on the class to which the method belongs. Finally, the class can implement an
 interface whose methods offer concrete implementations of the helper components to use.

 Today, IoC/DI is often associated with special frameworks that offer a number of rather
 advanced features.

96 Part I Principles

 IoC Frameworks

 Table 3-1 lists some of the most popular IoC frameworks available.

 TABLE 3-1 Main IoC Frameworks

 Framework More Information

 Castle Windsor http://www.castleproject.org/container/index.html

Ninject http://www.ninject.org

 Spring.NET http://www.springframework.net

 StructureMap http://structuremap.sourceforge.net/Default.htm

 Unity http://codeplex.com/unity

 Note that Ninject is also available for Silverlight and the Compact Framework. In particular,
Microsoft’s Unity Application Block (Unity for short) is a lightweight IoC container with
 support for constructor, property, and method call injection. It comes as part of the Enterprise
Library 4.0. Let’s use that for our demos.

 All IoC frameworks are built around a container object that, bound to some confi guration
information, resolves dependencies. The caller code instantiates the container and passes
the desired interface as an argument. In response, the IoC/DI framework returns a concrete
 object that implements that interface.

 IoC Containers in Action

 Suppose you have a class that depends on a logger service, such as the class shown here:

 public class Task
{
 ILogger _logger;
 public Task(ILogger logger)
 {
 this._logger = logger;
 }
 public void Execute()
 {
 this._logger.Log("Begin method ...");

 this._logger.Log("End method ...");
 }
}

 The Task class receives the logger component via the constructor, but how does it locate and
instantiate the logger service? A simple and static new statement certainly works, and so does
a factory. An IoC container is a much richer framework that supports a confi guration section:

 <configuration>
 <configSections>
 <section name="unity"
 type="Microsoft.Practices.Unity.Configuration.UnityConfigurationSection,
 Microsoft.Practices.Unity.Configuration" />
 </configSections>

Framework More Information

. . .
. . .

 Chapter 3 Design Principles and Patterns 97

 <unity>
 <containers>
 <container>
 <types>
 <type type="ILogger, mdUtils"
 mapTo="ManagedDesign.Tools.DbLogger, mdTools" />
 </types>
 </container>
 </containers>
 </unity>
</configuration>

 The confi guration fi le (app.confi g or web.confi g) contains mapping between interfaces and
concrete types to be injected. Whenever the container gets a call for ILogger, it’ll return an
instance of DbLogger:

 IUnityContainer container = new UnityContainer();
UnityConfigurationSection section = (UnityConfigurationSection)
 ConfigurationManager.GetSection("unity");
section.Containers.Default.Configure(container);
ILogger logger = container.Resolve<ILogger>();
Task t = new Task(logger);

 IoC/DI is extremely useful for testing purposes and for switching between implementations
of internal components. Frameworks just make it simple and terrifi c. In Chapter 6, “The Data
Access Layer,” we’ll return to IoC/DI to show how to inject a data access layer (DAL) in the
middle tier of a layered system.

 To fi nish, here are a couple of brief remarks about IoC/DI containers. Through the confi guration
script, you can instruct the container to treat injected objects as singletons. This means, for
example, that the container won’t create a new instance of DbLogger every time, but will reuse
the same one. If the DbLogger class is thread safe, this is really a performance boost.

 In addition, imagine that the constructor of DbLogger needs a reference to another type registered
with the IoC/DI framework. The container will be able to resolve that dependency, too.

 Applying Requirements by Design

 In Chapter 1, we saw that international standard ISO/IEC 9126 lists testability and security as
key quality characteristics for any software architecture. This means that we should consider
testability and security as nonfunctional requirements in any software architecture and start
planning for them very early in the design phase.

 Testability

 A broadly accepted defi nition for testability in the context of software architecture describes
it as the ease of performing testing. And testing is the process of checking software to ensure
that it behaves as expected, contains no errors, and satisfi es its requirements.

. . .

98 Part I Principles

 A popular slogan to address the importance of software testing comes from Bruce Eckel and
reads like this:

 If it ain’t tested, it’s broken.

 The key thing to keep in mind is that you can state that your code works only if you can provide
evidence for that it does. A piece of software can switch to the status of working not when
someone states it works (whether stated by end users, the project manager, the customer, or
the chief architect), but only when its correctness is proven beyond any reasonable doubt.

 Software Testing

 Testing happens at various levels. You have unit tests to determine whether individual
 components of the software meet functional requirements. You have integration tests to
determine whether the software fi ts in the environment and infrastructure and whether
two or more components work well together. Finally, you have acceptance tests to
 determine whether the completed system meets customer requirements.

 Unit tests and integration tests pertain to the development team and serve the purpose of
making the team confi dent about the quality of the software. Test results tell the team if the
team is doing well and is on the right track. Typically, these tests don’t cover the entire code
base. In general, there’s no clear correlation between the percentage of code coverage and
quality of code. Likewise, there’s also no agreement on what would be a valid percentage of
code coverage to address. Some fi gure that 80 percent is a good number. Some do not even
instruct the testing tool to calculate it.

 The customer is typically not interested in the results of unit and integration tests. Acceptance
tests, on the other hand, are all the customer cares about. Acceptance tests address the
 completed system and are part of the contract between the customer and the development
team. Acceptance tests can be written by the customer itself or by the team in strict collaboration
with the customer. In an acceptance test, you can fi nd a checklist such as the following one:

 1) Insert a customer with the following data ...;

 2) Modify the customer using an existing ID;

 3) Observe the reaction of the system and verify specific expected results;

 Another example is the following:

 1) During a batch, shut down one nodes on the application server;

 2) Observe the reaction of the system and the results of the transaction;

 Run prior to delivery, acceptance tests, if successful, signal the termination of the project and
the approval of the product. (As a consultant, you can issue your fi nal invoice at this point.)

 Tests are a serious matter.

 Chapter 3 Design Principles and Patterns 99

 Testing the system by having end users poke around the software for a few days is not a
 reliable (and exhaustive) test practice. As we saw earlier in the chapter, it is even considered
to be an antipattern.

 Note Admittedly, in the early 1990s Dino delivered a photographic Windows application using
the test-by-poking-around approach. We were a very small company with fi ve developers, plus
the boss. Our (patented?) approach to testing is described in the following paragraph.

 The boss brings a copy of the program home. The boss spends the night playing with the
 program. Around 8 a.m. the next day, the team gets a call from the boss, who is going to
get a few hours of very well-deserved sleep. The boss recites a long list of serious bugs to be
fi xed instantly and makes obscure references to alleged features of the program, which are
unknown to the entire team. Early in the afternoon, the boss shows up at work and discusses
 improvements in a much more relaxed state of mind. The list of serious bugs to be fi xed instantly
morphs into a short list of new features to add.

 In this way, however, we delivered the application and we could say we delivered a reliable and
fully functioning piece of software. It was the 1994, though. The old days.

 Software Contracts

 A software test verifi es that a component returns the correct output in response to given
 input and a given internal state. Having control over the input and the state and being able
to observe the output is therefore essential.

 Your testing efforts greatly benefi t from detailed knowledge of the software contract supported
by a method. When you design a class, you should always be sure you can answer the following
three questions about the class and its methods in particular:

■ Under which conditions can the method be invoked?

■ Which conditions are verifi ed after the method terminates?

■ Which conditions do not change before and after the method execution?

 These three questions are also known, respectively, as preconditions, postconditions, and
invariants.

 Preconditions mainly refer to the input data you pass; specifi cally, data that is of given types
and values falling within a given range. Preconditions also refer to the state of the object
 required for execution—for example, the method that might need to throw an exception
if an internal member is null or if certain conditions are not met.

 When you design a method with testability in mind, you pay attention to and validate input
carefully and throw exceptions if any preconditions are not met. This gets you clean code,
and more importantly, code that is easier to test.

100 Part I Principles

 Postconditions refer to the output generated by the method and the changes produced to
the state of the object. Postconditions are not directly related to the exceptions that might
be thrown along the way. This is not relevant from a testing perspective. When you do
 testing, in fact, you execute the method if preconditions are met (and if no exceptions are
raised because of failed preconditions). The method might produce the wrong results, but
it should not fail unless really exceptional situations are encountered. If your code needs to
read a fi le, that the fi le exists is a precondition and you should throw a FileNotFoundException
before attempting to read. A FileIOException, say, is acceptable only if during the test you
lose connection to the fi le.

 There might be a case where the method delegates some work to an internal component,
which might also throw exceptions. However, for the purpose of testing, that component
will be replaced with a fake one that is guaranteed to return valid data by contract. (You are
 testing the outermost method now; you have tested the internal component already or you’ll
test it later.) So, in the end, when you design for testability the exceptions you should care
about most are those in the preconditions.

 Invariants refer to property values, or expressions involving members of the object’s state,
that do not change during the method execution. In a design for testability scenario, you
know these invariants clearly and you assert them in tests. As an example of an invariant,
consider the property Status of DbConnection: it has to be Open before you invoke
BeginTransaction, and it must remain Open afterward.

 Software contracts play a key role in the design of classes for testability. Having a contract
clearly defi ned for each class you write makes your code inherently more testable.

 Unit Testing

 Unit testing verifi es that individual units of code are working properly according to their
software contract. A unit is the smallest part of an application that is testable—typically,
a method.

 Unit testing consists of writing and running a small program (referred to as a test harness)
that instantiates classes and invokes methods in an automatic way. In the end, running a
 battery of tests is much like compiling. You click a button, you run the test harness and,
at the end of it, you know what went wrong, if anything.

 In its simplest form, a test harness is a manually written program that reads test-case
 input values and the corresponding expected results from some external fi les. Then the
test harness calls methods using input values and compares results with expected values.
Needless to say, writing such a test harness entirely from scratch is, at the very minimum,
time consuming and error prone. But, more importantly, it is restrictive in terms of the testing
capabilities you can take advantage of.

 Chapter 3 Design Principles and Patterns 101

At the end of the day, the most effective way to conduct unit testing passes through the
use of an automated test framework. An automated test framework is a developer tool that
 normally includes a runtime engine and a framework of classes for simplifying the creation
of test programs. Table 3-2 lists some of the most popular ones.

TABLE 3-2 Popular Testing Tools

Product Description

MSTest The testing tool incorporated into Visual Studio 2008 Professional, Team Tester,
and Team Developer. It is also included in Visual Studio 2005 Team Tester and Team
Developer.

MBUnit An open-source product with a fuller bag of features than MSTest. However, the tight
 integration that MSTest has with Visual Studio and Team Foundation Server largely
makes up for the smaller feature set. For more information on MBUnit, pay a visit to
http://www.mbunit.com.

NUnit One of the most widely used testing tools for the .NET Framework. It is an open-source
product. Read more at http://www.nunit.org.

 xUnit.NET Currently under development as a CodePlex project, this tool builds on the experience
of James Newkirk—the original author of NUnit. It is defi nitely an interesting tool to
look at, with some interesting and innovative features. For more information, pay a visit
to http://www.codeplex.com/xunit.

A nice comparison of testing tools, in terms of their respective feature matrix, is available at
http://www.codeplex.com/xunit/Wiki/View.aspx?title=Comparisons.

Unit Testing in Action

Let’s have a look at some tests written using the MSTest tool that comes with Visual Studio
2008. You start by grouping related tests in a text fi xture. Text fi xtures are just test-specifi c
classes where methods typically represent tests to run. In a text fi xture, you might also have
code that executes at the start and end of the test run. Here’s the skeleton of a text fi xture
with MSTest:

using Microsoft.VisualStudio.TestTools.UnitTesting;

[TestClass]
public class CustomerTestCase
{
 private Customer customer;

 [TestInitialize]
 public void SetUp()
 {
 customer = new Customer();
 }

 [TestCleanup]

Product Description

. . .

102 Part I Principles

 public void TearDown()
 {
 customer = null;
 }

 // Your tests go here
 [TestMethod]
 public void Assign_ID()
 {

 }

}

 It is recommended that you create a separate assembly for your tests and, more importantly,
that you have tests for each class library. A good practice is to have an XxxTestCase class for
each Xxx class in a given assembly.

 As you can see, you transform a plain .NET class into a test fi xture by simply adding the
TestClass attribute. You turn a method of this class into a test method by using the TestMethod
attribute instead. Attributes such as TestInitialize and TestCleanup have a special meaning and
indicate code to execute at the start and end of the test run. Let’s examine an initial test:

 [TestMethod]
public void Assign_ID()
{
 // Define the input data for the test
 string id = "MANDS";

 // Execute the action to test (assign a given value)
 customer.ID = id;

 // Test the postconditions:
 // Ensure that the new value of property ID matches the assigned value.
 Assert.AreEqual(id, customer.ID);
}

 The test simply verifi es that a value is correctly assigned to the ID property of the Customer class.
You use methods of the Assert object to assert conditions that must be true when checked.

 The body of a test method contains plain code that works on properties and methods of
a class. Here’s another example that invokes a method on the Customer class:

 [TestMethod]
public void TestEmptyCustomersHaveNoOrders()
{
 Customer c = new Customer();
 Assert.AreEqual<decimal>(0, c.GetTotalAmountOfOrders());
}

 In this case, the purpose of the test is to ensure that a newly created Customer instance has
no associated orders and the total amount of orders add up to zero.

. . .
. . .

 Chapter 3 Design Principles and Patterns 103

 Dealing with Dependencies

 When you test a method, you want to focus only on the code within that method. All that
you want to know is whether that code provides the expected results in the tested scenarios.
To get this, you need to get rid of all dependencies the method might have. If the method,
say, invokes another class, you assume that the invoked class will always return correct
 results. In this way, you eliminate at the root the risk that the method fails under test because
a failure occurred down the call stack. If you test method A and it fails, the reason has to
be found exclusively in the source code of method A—given preconditions, invariants, and
behavior—and not in any of its dependencies.

 Generally, the class being tested must be isolated from its dependencies.

 In an object-oriented scenario, class A depends on class B when any of the following conditions
are verifi ed:

■ Class A derives from class B.

■ Class A includes a member of class B.

■ One of the methods of class A invokes a method of class B.

■ One of the methods of class A receives or returns a parameter of class B.

■ Class A depends on a class that, in turn, depends on class B.

 How can you neutralize dependencies when testing a method? This is exactly where manually
written test harnesses no longer live up to your expectations, and you see the full power of
automated testing frameworks.

 Dependency injection really comes in handy here and is a pattern that has a huge impact
on testability. A class that depends on interfaces (the fi rst principle of OOD), and uses
 dependency injection to receive from the outside world any objects it needs to do its own
work, is inherently more testable. Let’s consider the following code snippet:

 public class Task
{
 // Class Task depends upon type ILogger
 ILogger _logger;

 public Task(ILogger logger)
 {
 this._logger = logger;
 }

 public int Sum(int x, int y)
 {
 return x+y;
 }

104 Part I Principles

 public void Execute()
 {
 // Invoke an external "service"; not relevant when unit-testing this method
 this._logger.Log("Begin method ...");

 // Method specific code; RELEVANT when unit-testing this method

 // Invoke an external "service"; not relevant when unit-testing this method
 this._logger.Log("End method ...");
 }
}

 We want to test the code in method Execute, but we don’t care about the logger. Because the
class Task is designed with DI in mind, testing the method Execute in total isolation is much easier.

 Again, how can you neutralize dependencies when testing a method?

 The simplest option is using fake objects. A fake object is a relatively simple clone of an object
that offers the same interface as the original object but returns hard-coded or programmatically
determined values. Here’s a sample fake object for the ILogger type:

 public class FakeLogger : ILogger
{
 public void Log(string message)
 {
 return;
 }
}

 As you can see, the behavior of a fake object is hard-coded; the fake object has no state and
no signifi cant behavior. From the fake object’s perspective, it makes no difference how many
times you invoke a fake method and when in the fl ow the call occurs. Let’s see how to inject
a fake logger in the Task class:

 [TestMethod]
public void TestIfExecuteWorks()
{
 // Inject a fake logger to isolate the method from dependencies
 FakeLogger fake = new FakeLogger();
 Task task = new Task(fake);

 // Set preconditions
 int x = 3;
 int y = 4;
 int expected = 7;

 // Run the method
 int actual = task.Sum(x, y);

 // Report about the code's behavior using Assert statements
 Assert.AreEqual<int>(expected, actual);

}

. . .
. . .

 Chapter 3 Design Principles and Patterns 105

 In a test, you set the preconditions for the method, run the method, and then observe the
resulting postconditions. The concept of assertion is central to the unit test. An assertion is
a condition that might or might not be verifi ed. If verifi ed, the assertion passes. In MSTest,
the Assert class provides many static methods for making assertions, such as AreEqual,
IsInstanceOfType, and IsNull.

 In the preceding example, after executing the method Sum you are expected to place one or
more assertions aimed at verifying the changes made to the state of the object or comparing
the results produced against expected values.

 Note In some papers, terms such as stub and shunt are used to indicate slight variations of what
we reference here as a fake. A broadly accepted differentiation is based on the fact that a stub
(or a shunt) merely provides the implementation of an interface. Methods can just throw or, at
most, return canned values.

 A fake, on the other hand, is a slightly more sophisticated object that, in addition to implementing
an interface, also usually contains more logic in the methods. Methods on a fake object can
return canned values but also programmatically set values. Both fakes and stubs can provide a
 meaningful implementation for some methods and just throw exceptions for other methods that
are not considered relevant for the purpose of the test.

 A bigger and juicier differentiation, however, is the one that exists between fakes (or stubs) and
mock objects, which is discussed next.

 From Fakes to Mocks

 A mock object is a more evolved and recent version of a fake. A mock does all that a fake or a stub
does, plus something more. In a way, a mock is an object with its own personality that mimics the
behavior and interface of another object. What more does a mock provide to testers?

 Essentially, a mock allows for verifi cation of the context of the method call. With a mock, you
can verify that a method call happens with the right preconditions and in the correct order
with respect to other methods in the class.

 Writing a fake manually is not usually a big issue—all the logic you need is for the most part
simple and doesn’t need to change frequently. When you use fakes, you’re mostly interested
in verifying that some expected output derives from a given input. You are interested in the
state that a fake object might represent; you are not interested in interacting with it.

 You use a mock instead of a fake only when you need to interact with dependent objects
 during tests. For example, you might want to know whether the mock has been invoked or not,
and you might decide within the text what the mock object has to return for a given method.

 Writing mocks manually is certainly a possibility, but is rarely an option you really want to
consider. For the level of fl exibility you expect from a mock, you should be updating its
source code every now and then or you should have (and maintain) a different mock for each

106 Part I Principles

test case in which the object is being involved. Alternatively, you might come up with a very
generic mock class that works in the guise of any object you specify. This very generic mock
class also exposes a general-purpose interface through which you set your expectations
for the mocked object. This is exactly what mocking frameworks do for you. In the end,
you never write mock objects manually; you generate them on the fl y using some mocking
framework.

 Table 3-3 lists and briefl y describes the commonly used mocking frameworks.

TABLE 3-3 Some Popular Mocking Frameworks

 Product Description

 NMock2 An open-source library providing a dynamic mocking framework for .NET interfaces.
The mock object uses strings to get input and refl ection to set expectations.

Read more at http://sourceforge.net/projects/nmock2.

 TypeMock A commercial product with unique capabilities that basically don’t require you
to (re)design your code for testability. TypeMock enables testing code that was
 previously considered untestable, such as static methods, nonvirtual methods, and
sealed classes.

Read more at http://www.typemock.com.

 Rhino Mocks An open-source product. Through a wizard, it generates a static mock class for
 type-safe testing. You set mock expectations by accessing directly the mocked
 object, rather than going through one more level of indirection.

Read more at http://www.ayende.com/projects/rhino-mocks.aspx.

 Let’s go through a mocking example that uses NMock2 in MSTest.

 Imagine you have an AccountService class that depends on the ICurrencyService type. The
AccountService class represents a bank account with its own currency. When you transfer
funds between accounts, you might need to deal with conversion rates, and you use the
ICurrencyService type for that:

 public interface ICurrencyService
{
 // Returns the current conversion rate: how many "fromCurrency" to
 // be changed into toCurrency
 decimal GetConversionRate(string fromCurrency, string toCurrency);
}

 Let’s see what testing the TransferFunds method looks like:

 [TestClass]
public class CurrencyServiceTestCase
{
 private Mockery mocks;
 private ICurrencyService mockCurrencyService;
 private IAccountService accountService;

Product Description

 Chapter 3 Design Principles and Patterns 107

 [TestInitialize]
 public void SetUp()
 {
 // Initialize the mocking framework
 mocks = new Mockery();

 // Generate a mock for the ICurrencyService type
 mockCurrencyService = mocks.NewMock<ICurrencyService>();

 // Create the object to test and inject the mocked service
 accountService = new AccountService(mockCurrencyService);
 }

 [TestMethod]
 public void TestCrossCurrencyFundsTransfer()
 {
 // Create two test accounts
 Account eurAccount = new Account("12345", "EUR");
 Account usdAccount = new Account("54321", "USD");
 usdAccount.Deposit(1000);

 // Set expectations for the mocked object:
 // When method GetConversionRate is invoked with (USD,EUR) input
 // the mock returns 0.64
 Expect.Once.On(mockCurrencyService)
 .Method("GetConversionRate")
 .With("USD", "EUR")
 .Will(Return.Value(0.64));

 // Invoke the method to test (and transfer $500 to an EUR account)
 accountService.TransferFunds(usdAccount, eurAccount, 500);

 // Verify postconditions through assertions
 Assert.AreEqual<int>(500, usdAccount.Balance);
 Assert.AreEqual<int>(320, eurAccount.Balance);
 mocks.VerifyAllExpectationsHaveBeenMet();
 }
}

 You fi rst create a mock object for each dependent type. Next, you programmatically set
 expectations on the mock using the static class Expect from the NMock2 framework.
In particular, in this case you establish that when the method GetConversionRate on the
mocked type is invoked with a pair of arguments such as “USD” and “EUR”, it has to return
0.64. This is just the value that the method TransferFunds receives when it attempts to invoke
the currency services internally.

 There’s no code around that belongs to a mock object, and there’s no need for developers
to look into the implementation of mocks. Reading a test, therefore, couldn’t be easier. The
expectations are clearly declared and correctly passed on the methods under test.

 Note A mock is generated on the fl y using .NET refl ection to inspect the type to mimic and the
CodeDOM API to generate and compile code dynamically.

108 Part I Principles

 Security

 Located at Carnegie Mellon University in Pittsburgh, Pennsylvania, the CERT Coordination
Center (CERT/CC) analyzes the current state of Internet security. It regularly receives reports
of vulnerabilities and researches the inner causes of security vulnerabilities. The center’s
 purpose is to help with the development of secure coding practices.

 Figure 3-4 shows a statistic about the number of identifi ed vulnerabilities in the past ten years.
As you can see, the trend is impressive. Also, you should consider that the data includes only
the fi rst two quarters of 2008. (See http://www.cert.org/stats/vulnerability_remediation.html.)

9,000

8,000

7,000

6,000

5,000

4,000

3,000

2,000

1,000

0
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Q1-Q2

 FIGURE 3-4 Identifi ed security vulnerabilities in past ten years

 It is broadly accepted that these numbers have a common root—they refer to software created
through methodologies not specifi cally oriented to security. On the other hand, the problem of
security is tightly related to the explosion in the popularity of the Internet. Only ten years ago,
the big bubble was just a tiny balloon.

 In sharp contrast with the ISO/IEC 9126 standard, all current methodologies for software
 development (agile, waterfall, MSF, and the like) hardly mention the word security. Additionally,
the use of these methodologies has not resulted (yet?) in a measurable reduction of security
bugs. To accomplish this, you need more than these methodologies offer.

 Security as a (Strict) Requirement

 We can’t really say whether this is a real story or an urban legend, but it’s being said that a
few years ago, in the early days of the .NET Framework, a consultant went to some CIA offi ce
for a training gig. When introducing Code Access Security—the .NET Framework mechanism
to limit access to code—the consultant asked students the following question: “Are you really
serious about security here?”

 Can you guess the answer? It was sort of like this: “Not only yes, but HELL YES. And you’ll
 experience that yourself when you attempt to get out of the building.”

 Chapter 3 Design Principles and Patterns 109

 Being serious about (software) security, though, is a subtle concept that goes far beyond
even your best intentions. As Microsoft’s senior security program manager Michael Howard
points out:

 If your engineers know nothing about the basic security tenets, common security
defect types, basic secure design, or security testing, there really is no reasonable
chance they could produce secure software. I say this because, on the average,
software engineers don’t pay enough attention to security. They may know quite
a lot about security features, but they need to have a better understanding of what
it takes to build and deliver secure features.

 Security must be taken care of from the beginning. A secure design starts with the architecture;
it can’t be something you bolt on at a later time. Security is by design. To address security
 properly, you need a methodology developed with security in mind that leads you to design
your system with security in mind. This is just what the Security Development Lifecycle (SDL)
is all about.

 Security Development Lifecycle

 SDL is a software development process that Microsoft uses internally to improve software
security by reducing security bugs. SDL is not just an internal methodology. Based on the
impressive results obtained internally, Microsoft is now pushing SDL out to any development
team that wants to be really serious about security.

 SDL is essentially an iterative process that focuses on security aspects of developing software.
SDL doesn’t mandate a particular software development process and doesn’t preclude any. It is
agnostic to the methodology in use in the project—be it waterfall, agile, spiral, or whatever else.

 SDL is the incarnation of the SD3+C principle, which is a shortcut for “Secure by Design,
Secure by Default, Secure in Deployment, plus Communication.” Secure by Design refers to
identifying potential security risks starting with the design phase. Secure by Default refers
to reducing the attack surface of each component and making it run with the least possible
number of privileges. Secure in Deployment refers to making security requirements clear
 during deployment. Communication refers to sharing information about fi ndings to apply
a fi x in a timely manner.

 Foundations of SDL: Layering

 The foundations of SDL are essentially three: layering, componentization, and roles.

 Decomposing the architecture to layers is important because of the resulting separation of
concerns. Having functionality organized in distinct layers makes it easier to map functions
to physical tiers as appropriate. This is benefi cial at various levels.

 For example, it is benefi cial for the data server.

110 Part I Principles

 You can isolate the data server at will, and even access it through a separate network. In this
case, the data server is much less sensitive to denial of service (DoS) attacks because of the
fi rewalls scattered along the way that can recognize and neutralize DoS packets.

 You move all security checks to the business layer running on the application server and end
up with a single user for the database—the data layer. Among other things, this results in a
bit less work for the database and a pinch of additional scalability for the system.

 Layers are benefi cial for the application server, too.

 You use Code Access Security (CAS) on the business components to stop untrusted code
from executing privileged actions. You use CAS imperatively through xxxPermission classes
to decide what to do based on actual permissions. You use CAS declaratively on classes
or assemblies through xxxPermission attributes to prevent unauthorized use of sensitive
 components. If you have services, the contract helps to delimit what gets in and what gets
out of the service.

 Finally, if layering is coupled with thin clients, you have fewer upgrades (which are always
a risk for the stability of the application) and less logic running on the client. Securitywise,
this means that a possible dump of the client process would reveal much less information,
so being able to use the client application in partial trust mode is more likely.

 Foundations of SDL: Componentization

 Each layer is decomposed to components. Components are organized by functions and
 required security privileges. It should be noted that performance considerations might lead
you to grouping or further factorizing components in successive iterations.

 Componentization here means identifying the components to secure and not merely breaking
down the logical architecture into a group of assemblies.

 For each component, you defi ne the public contract and get to know exactly what data is
expected to come in and out of the component. The decomposition can be hierarchical.
From a security point of view, at this stage you are interested only in components within a
layer that provide a service. You are not interested, for example, in the object model (that is,
the domain model, typed DataSets, custom DTOs) because it is shared by multiple layers and
represents only data and behavior on the data.

 For each component, you identify the least possible set of privileges that make it run. From a
security perspective, this means that in case of a successful attack, attackers gain the minimum
possible set of privileges.

 Components going to different processes run in total isolation and each has its own
 access control list (ACL) and Windows privileges set. Other components, conversely, might
 require their own AppDomain within the same .NET process. An AppDomain is like a virtual

 Chapter 3 Design Principles and Patterns 111

 process within a .NET application that the Common Language Runtime (CLR) uses to isolate
code within a secure boundary. (Note, however, that an AppDomain doesn’t represent
a security barrier for applications running in full-trust mode.) An AppDomain can be
 sandboxed to have a limited set of permissions that, for example, limit disk access, socket
access, and the like.

 Foundation of SDL: Roles

 Every application has its own assets. In general, an asset is any data that attackers might
aim at, including a component with high privileges. Users access assets through the routes
 specifi ed by use cases. From a security perspective, you should associate use cases with
 categories of users authorized to manage related assets.

 A role is just a logical attribute assigned to a user. A role refers to the logical role the user
plays in the context of the application. In terms of confi guration, each user can be assigned
one or more roles. This information is attached to the .NET identity object, and the application
code can check it before the execution of critical operations. For example, an application
might defi ne two roles—Admin and Guest, each representative of a set of application- specifi c
 permissions. Users belonging to the Admin role can perform tasks that other users are
 prohibited from performing.

 Assigning roles to a user account doesn’t add any security restrictions by itself. It is the
 responsibility of the application—typically, the business layer—to ensure that users perform
only operations compatible with their role.

 With roles, you employ a unique model for authorization, thus unifying heterogeneous security
models such as LDAP, NTFS, database, and fi le system. Also, testing is easier. By impersonating
a role, you can test access on any layer.

 In a role-based security model, total risks related to the use of impersonation and
 delegation are mitigated. Impersonation allows a process to run using the security
 credentials of the impersonated user but, unlike delegation, it doesn’t allow access to
 remote resources on behalf of the impersonated user. In both cases, the original caller’s
 security context can be used to go through computer boundaries from the user interface
to the middle tier and then all the way down to the database. This is a risk in a security
model in which permissions are restricted by object. However, in a role-based security
model, the ability to execute a method that accesses specifi c resources is determined by
role membership, not credentials. User’s credentials might not be suffi cient to operate on
the application and data server.

 Authorization Manager (AzMan) is a separate Windows download that enables you to group
individual operations together to form tasks. You can then authorize roles to perform specifi c
tasks, individual operations, or both. AzMan offers a centralized console (an MMC snap-in)
to defi ne manager roles, operations, and users.

112 Part I Principles

 Note AzMan is a COM-based component that has very little to share with the .NET Framework.
The .NET-based successor to AzMan is still in the works somewhere in Redmond. The community
of developers expects something especially now that Microsoft has unveiled a new claims-based
identity model that essentially factors authentication out of applications so that each request
brings its own set of claims, including user name, e-mail address, user role, and even more
 specifi c information.

 Threat Model

 Layering, componentization, and roles presuppose that, as an architect, you know the assets
(such as sensitive data, highly privileged components) you want to protect from attackers.
It also presupposes that you understand the threats related to the system you’re building
and which vulnerabilities it might be exposed to after it is implemented. Design for security
means that you develop a threat model, understand vulnerabilities, and do something to
mitigate risks.

 Ideally, you should not stop at designing this into your software, but look ahead to threats
and vulnerabilities in the deployment environment and to those resulting from interaction
with other products or systems. To this end, understanding the threats and developing a
threat model is a must. For threats found at the design level, applying countermeasures is
easy. Once the application has been developed, applying countermeasures is much harder.
If an application is deployed, it’s nearly impossible to apply internal countermeasures—you
have to rely on external security practices and devices. Therefore, it’s better to architect
 systems with built-in security features.

 You can fi nd an interesting primer on threat models at the following URL: http://blogs.msdn.
com/ptorr/archive/2005/02/22/GuerillaThreatModelling.aspx.

 Threat modeling essentially consists of examining components for different types of threats.
STRIDE is a threat modeling practice that lists the following six types of threats:

■ Spoofi ng of user identity Refers to using false identities to get into the system. This
threat is mitigated by fi ltering out invalid IP addresses.

■ Tampering Refers to intercepting/modifying data during a module’s conversation.
This threat is mitigated by protecting the communication channel (for example, SSL
or IPSec).

■ Repudiation Refers to the execution of operations that can’t be traced back to the
author. This threat is mitigated by strong auditing policies.

■ Information disclosure Refers to unveiling private and sensitive information to
 unauthorized users. This threat is mitigated by enhanced authorization rules.

 Chapter 3 Design Principles and Patterns 113

■ Denial of service Refers to overloading a system up to the point of blocking it. This
threat is mitigated by fi ltering out requests and frequently and carefully checking the
use of the bandwidth.

■ Elevation of privilege Refers to executing operations that require a higher privilege
than the privilege currently assigned. This threat is mitigated by assigning the least
 possible privilege to any components.

 If you’re looking for more information on STRIDE, you can check out the following URL:
http://msdn.microsoft.com/en-us/magazine/cc163519.aspx.

 After you have the complete list of threats that might apply to your application, you prioritize
them based on the risks you see associated with each threat. It is not realistic, in fact, that
you address all threats you fi nd. Security doesn’t come for free, and you should balance costs
with effectiveness. As a result, threats that you regard as unlikely or not particularly harmful
can be given a lower priority or not covered at all.

 How do you associate a risk with a threat? You use the DREAD model. It rates the risk as the
probability of the attack multiplied by the impact it might have on the system. You should
focus on the following aspects:

■ Discoverability Refers to how high the likelihood is that an attacker discovers the
 vulnerability. It is a probability attribute.

■ Reproducibility Refers to how easy it could be to replicate the attack. It is a probability
attribute.

■ Exploitability Refers to how easy it could be to perpetrate the attack. It is a probability
attribute.

■ Affected users Refers to the number of users affected by the attack. It is an impact
attribute.

■ Damage potential Refers to the quantity of damage the attack might produce. It is
an impact attribute.

 You typically use a simple High, Medium, or Low scale to determine the priority of the threats
and decide which to address and when. If you’re looking for more information on DREAD,
you can check out the following URL: http://msdn.microsoft.com/en-us/library/aa302419.aspx.

 Note STRIDE and DREAD is the classic analysis model pushed by the Security Development
Lifecycle (SDL) team and is based on the attacker’s viewpoint. It works great in an enterprise
scenario, but it requires a security specialist because the resulting threat model is large and
 complex. Another, simplifi ed, model is emerging—the CIA/PI model, which stands for
Confi dentiality Integrity Availability/Probability Impact. This model is simplifi ed and focuses
on the defender’s point of view. An interesting post is this one: http://blogs.msdn.com/
threatmodeling/archive/2007/10/30/a-discussion-on-threat-modeling.aspx.

114 Part I Principles

 Security and the Architect

 An inherently secure design, a good threat model, and a precise analysis of the risk
might mean very little if you then pair them with a weak and insecure implementation.
As an architect, you should intervene at three levels: development, code review, and
testing.

 As far as development is concerned, the use of strong typing should be enforced because,
by itself, it cuts off a good share of possible bugs. Likewise, knowledge of common security
patterns (for example, the “all input is evil” pattern), application of a good idiomatic design,
and static code analysis (for example, using FxCop) are all practices to apply regularly and
rigorously.

 Sessions of code review should be dedicated to a careful examination of the actual
 confi guration and implementation of security through CAS, and to spot the portions
of code prone to amplifi ed attacks, such as cross-site scripting, SQL injection, overfl ows,
and similar attack mechanisms.

 Unit testing for security is also important if your system receives fi les and sequences
of bytes. You might want to consider a technique known as fuzzing. Fuzzing is a software
testing technique through which you pass random data to a component as input.
The code might throw an appropriate exception or degrade gracefully. However, it might
also crash or fail some expected assertions. This technique can reveal some otherwise
hidden bugs.

 Final Security Push

 Although security should be planned for from the outset, you can hardly make some
 serious security tests until the feature set is complete and the product is close to its beta
stage. It goes without saying that any anomalies found during security tests lead the team
to reconsidering the design and implementation of the application, and even the threat
model.

 The fi nal security push before shipping to the customer is a delicate examination and should
 preferably be delegated to someone outside the team, preferably some other independent
fi gure.

 Releasing to production doesn’t mean the end of the security life cycle. As long as a system is
up and running, it is exposed to possible attacks. You should always fi nd time for penetration
testing, which might lead to fi nding new vulnerabilities. So the team then starts the cycle
again with the analysis of the design, implementation, and threat model. Over and over
again, in an endless loop.

 Chapter 3 Design Principles and Patterns 115

 Performance Considerations

 You might wonder why we’re including a sidebar on performance rather than a
full “Design for Performance” section. Performance is something that results from
the actual behavior of the system, not something you can put in. If you’re creating
a standalone, small disconnected program, you can optimize it almost at will. It is
 radically different when we move up in scope to consider an enterprise-class system.

 Performance is not something absolute.

 What is performance? Is it the response time the end user perceives? Is it resource
utilization that might or might not penalize the middle tier? Is it network latency or
 database I/O latency? Is it related to caching or smarter algorithms? Is it a matter of
bad design? Is it merely horsepower?

 Too often, a design decision involves a tradeoff between performance and scalability.
You release some performance-oriented improvement to achieve better scalability—that is,
a better (read, faster) response when the workload grows. Performance is never something
absolute.

 In an enterprise-class system, effi ciency and performance are certainly requirements
to take into account, but they are not fundamental requirements.

 In our opinion, a bad design infl uences performance, but there’s no special suggestion
we can share to help you to come up with a high-performance design. The design is
either good or bad; if it’s good, it sets the groundwork for good performance.

 As we’ve seen in this chapter, a good design is based on interfaces, has low coupling, and
allows for injection of external functionalities. Done in this way, the design leaves a lot of
room for replacing components with others that might provide a better performance.

 As Donald Knuth used to say, “Premature optimization is the root of all evil.” So optimizing
is fi ne and necessary, but you should care about it only when you have evidence of poor
performance. And only when you know what is doing poorly and that it can be improved.
Optimization is timely—it is never premature, never late.

 Performance is hardly something that works (or doesn’t work) in theory. You can hardly
say from a design or, worse yet, from a specifi cation whether the resulting system will
perform poorly or not. You build the system in the best and simplest way you can. You
adhere to OOD principles and code your way to the fullest. Then you test the system.

 If it works, but it doesn’t work as fast as it should, you profi le the system and fi gure out
what can be improved—be it a stored procedure, an intermediate cache, or a dynamic
proxy injection. If the design is fl exible enough and leaves room for changes, you
shouldn’t have a hard time applying the necessary optimization.

116 Part I Principles

 From Objects to Aspects

 No doubt that OOP is currently a mainstream programming paradigm. When you design
a system, you decompose it into components and map the components to classes. Classes
hold data and deliver a behavior. Classes can be reused and used in a polymorphic manner,
although you must do so with the care we discussed earlier in the chapter.

 Even with all of its undisputed positive qualities, though, OOP is not the perfect programming
paradigm.

 The OO paradigm excels when it comes to breaking a system down into components and
describing processes through components. The OO paradigm also excels when you deal with
the concerns of a component. However, the OO paradigm is not as effective when it comes
to dealing with cross-cutting concerns.

 A cross-cutting concern is a concern that affects multiple components in a system, such
as logging, security, and exception handling. Not being a specifi c responsibility of a given
 component or family of components, a cross-cutting concern looks like an aspect of the
system that must be dealt with at a different logical level, a level beyond application classes.
Enter a new programming paradigm: aspect-oriented programming (AOP).

 Aspect-Oriented Programming

 The inherent limitations of the OO paradigm were identifi ed quite a few years ago, not many
years after the introduction of OOP. However, today AOP still is not widely implemented even
though everybody agrees on the benefi ts it produces. The main reason for such a limited
adoption is essentially the lack of proper tools. We are pretty sure the day that AOP is (even
only partially) supported by the .NET platform will represent a watershed in the history of AOP.

 The concept of AOP was developed at Xerox PARC laboratories in the 1990s. The team also
developed the fi rst (and still most popular) AOP language: AspectJ. Let’s discover more about
AOP by exploring its key concepts.

 Note We owe to the Xerox PARC laboratories many software-related facilities we use every day.
In addition to AOP (which we don’t exactly use every day), Xerox PARC is “responsible” for laser
printers, Ethernet, and mouse-driven graphical user interfaces. They always churned out great
ideas, but failed sometimes to push their widespread adoption—look at AOP. The lesson that
everybody should learn from this is that technical excellence is not necessarily the key to success,
not even in software. Some good commercial and marketing skills are always (strictly) required.

 Cross-Cutting Concerns

 AOP is about separating the implementation of cross-cutting concerns from the implementation
of core concerns. For example, AOP is about separating a logger class from a task class so that
multiple task classes can use the same logger and in different ways.

 Chapter 3 Design Principles and Patterns 117

 We have seen that dependency injection techniques allow you to inject—and quite easily,
indeed—external dependencies in a class. A cross-cutting concern (for example, logging)
can certainly be seen as an external dependency. So where’s the problem?

 Dependency injection requires up-front design or refactoring, which is not always entirely
possible in a large project or during the update of a legacy system.

 In AOP, you wrap up a cross-cutting concern in a new component called an aspect. An aspect
is a reusable component that encapsulates the behavior that multiple classes in your project
require.

 Processing Aspects

 In a classic OOP scenario, your project is made of a number of source fi les, each
 implementing one or more classes, including those representing a cross-cutting concern
such as logging. As shown in Figure 3-5, these classes are then processed by a compiler
to produce executable code.

Compiler

Source
(classes)

Source
(classes

for cross-
cutting

concerns)

 FIGURE 3-5 The classic OOP model of processing source code

 In an AOP scenario, on the other hand, aspects are not directly processed by the compiler.
Aspects are in some way merged into the regular source code up to the point of producing
code that can be processed by the compiler. If you are inclined to employ AspectJ, you
use the Java programming language to write your classes and the AspectJ language to
write aspects. AspectJ supports a custom syntax through which you indicate the expected
 behavior for the aspect. For example, a logging aspect might specify that it will log before
and after a certain method is invoked and will validate input data, throwing an exception
in case of invalid data.

 In other words, an aspect describes a piece of standard and reusable code that you
might want to inject in existing classes without touching the source code of these classes.
(See Figure 3-6.)

118 Part I Principles

Weaver

Aspects

Compiler

Source
(classes)

 FIGURE 3-6 The AOP model of processing source code

 In the AspectJ jargon, the weaver is a sort of preprocessor that takes aspects and weaves
their content with classes. It produces output that the compiler can render to an executable.

 In other AOP-like frameworks, you might not fi nd an explicit weaver tool. However, in any
case, the content of an aspect is always processed by the framework and results in some form
of code injection. This is radically different from dependency injection. We mean that the
code declared in an aspect will be invoked at some specifi c points in the body of classes that
require that aspect.

 Before we discuss an example in .NET, we need to introduce a few specifi c terms and clarify
their intended meaning. These concepts and terms come from the original defi nition of AOP.
We suggest that you do not try to map them literally to a specifi c AOP framework. We suggest,
instead, that you try to understand the concepts—the pillars of AOP—and then use this
 knowledge to better and more quickly understand the details of a particular framework.

 Inside AOP Aspects

 As mentioned, an aspect is the implementation of a cross-cutting concern. In the defi nition
of an aspect, you need to specify advice to apply at specifi c join points.

 A join point represents a point in the class that requires the aspect. It can be the invocation
of a method, the body of a method or the getter/setter of a property, or an exception handler.
In general, a join point indicates the point where you want to inject the aspect’s code.

 A pointcut represents a collection of join points. In AspectJ, pointcuts are defi ned by criteria
using method names and wildcards. A sample pointcut might indicate that you group all calls
to methods whose name begins with Get.

 Chapter 3 Design Principles and Patterns 119

 An advice refers to the code to inject in the target class. The code can be injected before,
 after, and around the join point. An advice is associated with a pointcut.

 Here’s a quick example of an aspect defi ned using AspectJ:

 public aspect MyAspect
{
 // Define a pointcut matched by all methods in the application whose name begins with
 // Get and accepting no arguments. (There are many other ways to define criteria.)
 public pointcut allGetMethods ():
 call (* Get*());

 // Define an advice to run before any join points that matches the specified pointcut.
 before(): allGetMethods()
 {
 // Do your cross-cutting concern stuff here
 // for example, log about the method being executed

 }
}

 The weaver processes the aspect along with the source code (regular class-based source
code) and generates raw material for the compiler. The code actually compiled ensures that
an advice is invoked automatically by the AOP runtime whenever the execution fl ow reaches
a join point in the matching pointcut.

 AOP in .NET

 When we turn to AOP, we essentially want our existing code to do extra things. And we want
to achieve that without modifying the source code. We need to specify such extra things
(advice) and where we want to execute them (join points). Let’s briefl y go through these
points from the perspective of the .NET Framework.

 How can you express the semantic of aspects?

 The ideal option is to create a custom language a là AspectJ. In this way, you can create an
ad hoc aspect tailor-made to express advice at its confi gured pointcuts. If you have a custom
language, though, you also need a tool to parse it—like a weaver.

 A very cost-effective alternative is using an external fi le (for example, an XML fi le) where you
write all the things you want to do and how to do it. An XML fi le is not ideal for defi ning
source code; in such a fi le, you likely store mapping between types so that when a given type
is assigned an aspect, another type is loaded that contains advice and instructions about
how to join it to the execution fl ow. This is the approach taken by Microsoft’s Policy Injection
Application Block (PIAB) that we’ll look at in a moment.

 How can you inject an aspect’s advice into executable code?

. . .

120 Part I Principles

 There are two ways to weave a .NET executable. You can do that at compile time or at
run time. Compile-time weaving is preferable, but in our opinion, it requires a strong
 commitment from a vendor. It can be accomplished by writing a weaver tool that reads
the content of the aspect, parses the source code of the language (C#, Visual Basic .NET,
and all of the other languages based on the .NET common type system), and produces
 modifi ed source code, but source code that can still be compiled. If you want to be language
 independent, write a weaver tool that works on MSIL and apply that past the compilation
step. Alternatively, you can write a brand new compiler that understands an extended syntax
with ad hoc AOP keywords.

 If you want to weave a .NET executable at run time, you have to review all known techniques
to inject code dynamically. One is emitting JIT classes through Refl ection.Emit; another one
is based on the CLR’s Profi ling API. The simplest of all is perhaps managing to have a proxy
 sitting in between the class’s aspects and its caller. In this case, the caller transparently
 invokes a proxy for the class’s aspects. The proxy, in turn, interweaves advice with regular
code. This is the same mechanism used in .NET Remoting and Windows Communication
Foundation (WCF) services.

 Using a transparent proxy has the drawback of requiring that to apply AOP to the class, the
class must derive from ContextBoundObject or MarshalByRefObject. This solution is employed
by PIAB.

 AOP in Action

 To fi nish off our AOP overview, let’s proceed with a full example that demonstrates how to
achieve AOP benefi ts in .NET applications. We’ll use Microsoft’s Policy Injection Application
Block in Enterprise Library 3.0 and higher to add aspects to our demo. For more information
on PIAB, see http://msdn.microsoft.com/en-us/library/cc511729.aspx.

 Enabling Policies

 The following code demonstrates a simple console application that uses the Unity IoC
 container to obtain a reference to a class that exposes a given interface—ICustomerServices:

 public interface ICustomerServices
{
 void Delete(string customerID);
}

static void Main(string[] args)
{
 // Set up the IoC container
 UnityConfigurationSection section;
 section = ConfigurationManager.GetSection("unity") as UnityConfigurationSection;
 IUnityContainer container = new UnityContainer();
 section.Containers.Default.Configure(container);

 Chapter 3 Design Principles and Patterns 121

 // Resolve a reference to ICustomerServices. The actual class returned depends
 // on the content of the configuration section.
 ICustomerServices obj = container.Resolve<ICustomerServices>();

 // Enable policies on the object (for example, enable aspects)
 ICustomerServices svc = PolicyInjection.Wrap<ICustomerServices>(obj);

 // Invoke the object
 svc.Delete("ALFKI");

 // Wait until the user presses any key
 Console.ReadLine();
}

 After you have resolved the dependency on the ICustomerServices interface, you pass the
object to the PIAB layer so that it can wrap the object in a policy-enabled proxy. What PIAB
refers to here as a policy is really like what many others call, instead, an aspect.

 In the end, the Wrap static method wraps a given object in a proxy that is driven by the content
of a new section in the confi guration fi le. The section policyInjection defi nes the semantics of
the aspect. Let’s have a look at the confi guration fi le.

 Defi ning Policies

 PIAB is driven by the content of an ad hoc confi guration section. There you fi nd listed the
policies that drive the behavior of generated proxies and that ultimately defi ne aspects to
be applied to the object within the proxy.

 <policyInjection>
 <policies>
 <add name="Policy">
 <matchingRules>
 <add type="EnterpriseLibrary.PolicyInjection.MatchingRules.TypeMatchingRule ..."
 name="Type Matching Rule">
 <matches>
 <add match="ArchNet.Services.ICustomerServices" ignoreCase="false" />
 </matches>
 </add>
 </matchingRules>
 <handlers>
 <add order="0"
 type="ManagedDesign.Tools.DbLogger, mdTools"
 name="Logging Aspect" />
 </handlers>
 </add>
 </policies>
</policyInjection>

 The matchingRules section expresses type-based criteria for a pointcut. It states that whenever
the proxy wraps an object of type ICustomerServices it has to load and execute all listed handlers.
The attribute order indicates the order in which the particular handler has to be invoked.

122 Part I Principles

 From this XML snippet, the result of this is that ICustomerServices is now a log-enabled type.

 Defi ning Handlers

 All that remains to be done—and it is the key step, indeed—is to take a look at the code for
a sample handler. In this case, it is the DbLogger class:

 public interface ILogger
{
 void LogMessage(string message);
 void LogMessage(string category, string message);
}

public class DbLogger : ILogger, ICallHandler
{
 // ILogger implementation
 public void LogMessage(string message)
 {
 Console.WriteLine(message);
 }
 public void LogMessage(string category, string message)
 {
 Console.WriteLine(string.Format("{0} - {1}", category, message));
 }

 // ICallHandler implementation
 public IMethodReturn Invoke(IMethodInvocation input, GetNextHandlerDelegate getNext)
 {
 // Advice that runs BEFORE
 this.LogMessage("Begin ...");

 // Original method invoked on ICustomerServices
 IMethodReturn msg = getNext()(input, getNext);

 // Advice that runs AFTER
 this.LogMessage("End ...");

 return msg;
 }
 public int Order{ get; set; }
}

 The class DbLogger implements two interfaces. One is its business-specifi c interface ILogger;
the other (ICallHandler) is a PIAB-specifi c interface through which advice code is injected
into the class’s aspect list. The implementation of ICallHandler is fairly standard. In the Invoke
method, you basically redefi ne the fl ow you want for any aspect-ed methods.

 In summary, whenever a method is invoked on a type that implements ICustomerServices,
the execution is delegated to a PIAB proxy. The PIAB proxy recognizes a few handlers and
invokes them in a pipeline. Each handler does the things it needs to do before the method
executes. When done, it yields to the next handler delegate in the pipeline. The last handler
in the chain yields to the object that executes its method. After that, the pipeline is retraced

 Chapter 3 Design Principles and Patterns 123

and each registered handler has its own chance to execute its postexecution code. Figure 3-7
shows the overall pipeline supported by PIAB.

Client

Create or Wrap

Proxy Object

Factory

Handlers Pipeline

Call method or
get/set property

Pre

Post

Pre

Post

Pre

Post

 FIGURE 3-7 The PIAB handler pipeline

 Note For completeness, we should mention that there are other AOP alternatives available for
you to use, the most notable of which is COM+, although WCF exhibits AOP behavior as well.
With COM+, you modify your aspects using Component Services. This assumes, of course, that
you’ve taken the necessary steps to register the components by using System.EnterpriseServices
or are using “services without components.” (See http://msdn.microsoft.com/en-us/library/
ms686921(VS.85).aspx.) Both COM+ and WCF AOP discussions are beyond the scope of this
chapter, but by all means investigate the possibilities. (For a bit more information on WCF, see
http://msdn.microsoft.com/en-us/magazine/cc136759.aspx.)

 Practical Advice for the Software Practitioner

 To design good software, general principles are enough. You don’t strictly need
 patterns; but patterns, if recognized in a problem, are an effective and proven shortcut
to get to the solution. Today, reinventing the wheel is a great sin, for yourself and your
team.

 Patterns are not essential to the solution of a problem. Using patterns won’t make your
code necessarily better or faster. You can’t go to a customer and say “Hey, my product
uses the composite pattern, a domain model, inversion of control, and strategy à gogo.
So it’s really great.” Patterns, if correctly applied, ensure that a problem will be solved.
Take an easy approach to patterns, and don’t try to match a given pattern to a problem
regardless of the costs of doing so.

 Having mixed basic and OOD principles for years, we think we have now arranged our
own few pearls of software design wisdom. These guide us every day, and we commu-
nicate them to all people we work with:

■ Group logically related responsibilities and factor them out to classes. In the
factoring process, pay attention to forming extremely specialized classes.

124 Part I Principles

■ Create concise and fl exible abstractions of functionalities in classes. In this
context, two other adjectives are commonly used in literature to describe
 abstractions: crisp and resilient.

■ When it comes to implementing classes, keep in mind separation of
 concerns—essentially, who does what—and make sure that each role is
played by just one actor and each actor does the minimum possible; this
is not done out of laziness, but just for simplicity and effectiveness.

 The emphasis on simplicity is never enough. Andrea has the following motto on a
poster in the offi ce, and Dino writes it as a dedication in each book he signs: Keep it
as simple as possible, but no simpler. It’s a popular quotation from Albert Einstein that
 every software professional should always keep in mind.

 Often referred to as KISS (short for Keep It Simple, Stupid), the idea of “simplicity above
all” emerges in various forms from a number of heuristic principles that populate
 software design articles and conversations. The most popular principles are these:

■ Don’t Repeat Yourself (DRY) Refers to reducing duplication of any information
needed by the application, and suggests you store the same information only in one
place.

■ Once and Only Once (OAOO) Refers to reducing the number of times you write
the code that accomplishes a given operation within an application.

■ You Aren’t Gonna Need It (YAGNI) Refers to adding any functionality to an
 application only when it proves absolutely necessary and unavoidable.

 We often like to summarize the “simplicity above all” concept by paraphrasing people’s
rights in court: everything you write can and will be used against you in a debugging
session. And, worse yet, it will be used in every meeting with the customer.

 Summary

 Just as an architect wouldn’t design a house while ignoring the law of gravity, a software
architect shouldn’t design a piece of software ignoring basic principles such as low coupling
and high cohesion. Just as an architect wouldn’t design a house ignoring building codes that
apply to the context, a software architect working in an object-oriented context shouldn’t
design a piece of software ignoring OOD principles such as the Open/Closed Principle (OCP),
the Liskov Substitution Principle (LSP), and the Dependency Inversion Principle (DIP).

 But other quality characteristics (defi ned in an ISO/IEC standard) exist—in particular,
 testability and security. These aspects must be taken care of at the beginning of the design
process—even though magical testing tools and aspect orientation might partially alleviate
the pain that comes from not introducing testability and security from the very beginning.

 Chapter 3 Design Principles and Patterns 125

 The fundamentals never go out of style, we can safely say, and they are always useful and
essential at whatever level of detail.

 Murphy’s Laws of the Chapter

 This chapter is about design and proving that your design is effective and meets
 requirements. If you think of acceptance tests, in fact, how can you help but recall the
 original Murphy’s Law: “If anything can go wrong, it will.” We selected a few related laws
for the chapter.

■ The chances of a program doing what it’s supposed to do are inversely proportional to
the number of lines of code used to write it.

■ The probability of bugs appearing is directly proportional to the number and importance
of people watching.

■ An expert is someone brought in at the last minute to share the blame.

See http://www.murphys-laws.com for an extensive listing of other computer-related (and
non-computer-related) laws and corollaries.

 413

Index

Symbols and Numbers
.asmx extension, 244
.aspx extension, 394
.NET framework

mocking frameworks, 106
.NET Framework

aspect-oriented programming, 119–20
base classes, 77
BLL hosting, 137
class diagrams, 47–49
Code Access Security (CAS), 108, 110, 203, 239
COM+ services, 203
cross-database API, 253
data-centric approach, 176
DataSet, 161
design patterns, 88
GetHashCode and Equals methods, 309
idiomatic design rules, 93–94
idioms, 92–93
JavaScript clients, 240–41
LINQ-to-SQL, 173–75
mixins, 77
multiple inheritance, 185
MVC# framework, 396–97
naming conventions, 72–73
record sets, 155–56
Refl ection.Emit and CodeDOM, 320
sequence diagrams, 55–56
Service Layer pattern, 208–9
static and instance methods, 153
table adapters, 163
Table Module pattern, 158–59
value objects, 187

.NET Framework 3.5, 240–41, 244, 406

.NET Remoting, 120

.NET remoting bridge, 227

.NET-to-.Net scenarios, 226–28
4+1 views model, 7

A
About method, 393
Abrams, Brad, 93
abstract base class, 77
abstraction, 31, 124

Active Record pattern, 168, 172
DAL capabilities, 267
domain model, 180
presentation layer, 349
Repository pattern, 188
service layer, 195–96, 203, 207–8

Strategy pattern, 90
testability, 347–48

acceptance testing, 8, 98–99
access control list (ACL), 110–11
ACL (access control list), 110–11
Acquisition process, 25
Action class, 195–96
activation bar, sequence diagrams, 54
Active Record (AR) pattern, 142, 165–76, 191

DAL interaction, 254, 261
frameworks, 167
service layer actions within BLL, 194
transactions, 299
workfl ows, 190–91

Active view. See Supervising Controller
(SVC) view

ActiveX Data Objects (ADO), 158
activities, software life cycle, 24–26
actor, 16, 43–45
ad hoc AOP keywords, 120
ad hoc behavior, 244
ad hoc classes, 216, 219, 224, 231
ad hoc code, 186
ad hoc containers, 212
ad hoc data mapper, 259–60
ad hoc data types, 198, 210, 218, 225, 244, 256
ad hoc entity types, 190
ad hoc framework, 77
ad hoc language, 60, 119
ad hoc objects, 331
ad hoc policies, 311
ad hoc proxy classes, 319
ad hoc query interpretation, 161
ad hoc query language, 316, 325
ad hoc query objects, 292
ad hoc SQL, 256, 295
ad hoc structures, 225
ad hoc syntax, 289
ad hoc tools, 41, 60, 86, 155, 322. See also Object/

Relational (O/R) tools
Adapter pattern, 218–20

service layer, 218–20
Adapter property, 158
Add data context member, 278
AddCustomer, 378, 380–81, 384
AddObject, 327–28
Address type, 172
AddressInfo type, 286
AddToCustomer, 327–28
ADO (ActiveX Data Objects), 158
ADO.NET

Active Record pattern, 168

414 ADO.NET

ADO.NET (continued)
batch update, 299
cross-database API, 253
data adapter, 218–20
DataSet, 161
DataSets vs. data readers, 296
Entity Framework. See Entity Framework
lazy loading, 320
parameterized queries, 336
Repository pattern, 188–89
table adapters, 162–64
Table Data Gateway (TDG) pattern, 164–65
Table Module pattern, 158

advice, 118–19
.NET Framework, 119–20

affected users, DREAD model, 113
aggregation, 80

associations, 52
factory, 11

Agile Manifesto, 28
agile methodologies, 64
agile methodology, 4, 27–28

production code authoring, 23
requirements, 16–17
user stories, 16

Agile Project Management with Scrum (Schwaber), 28
agility, 8
AJAX, 238

Client Library, 245
NSK capabilities, 411

AJAX Service Layer, 238–40
design, 242–46
security, 246–49

Alexander, Christopher, 86
alias interfaces, 227
analysts. See software analysts
ANSI/IEEE standard 1471, 5–7
antipatterns, 90–91, 235–36
AOP (aspect-oriented programming), 70, 116–19,

332–33
API (application programming interface). See application

programming interface (API)
app.confi g, 97, 268
AppDomian, 110–11
application controllers. See controllers
application layer, 250
application logic, 204, 207, 212–13, 250, 409

remote, 208
Application Model. See Presentation Model pattern
application programming interface

cross-database, 253
application programming interface (API), 205–6

CRUD operations, 325
DataTable, 161
lazy loading, 320–21
metadata mapping, 325
Remote Façade pattern, 214

application server, layering, 110

application services, 204–5
application tier, 134–36
application-level caches, 310
ApplicationNavigationWorkfl ow class, 388–89
AR (Active Record) pattern. See Active Record (AR)

pattern
architects. See software architects
architectural pattern, 129
architectural patterns, 86, 90
architecture, 3–4. See also software architecture

vs. implementation, 9
Architecture-as-Requirements antipattern, 91
Aristophanes, 251
ArrayList class, 94
arrays, 168, 170
AsEqual, 105
ASMX Web services, 227
ASP.NET

AJAX. See AJAX
authentication, 240
base classes, 77
handler, 243
IButtonControl, 77
list loading, 384
login pages, 247–48
MVC Framework, 353, 358, 362, 392–95
MVC FX, 406
Page class, 371
presentation layer, 227
presentation pattern selection, 372–73
service layer, 208
view class, 379
WatiN, 369
Web programming, 390
Web services compatibility, 249

ASP.NET XML Web Services, 208–9, 215
DTOs, 218
JavaScript clients, 240–41
script enabling, 242–44

AspectJ, 117–19
aspect-oriented programming (AOP), 70, 116–19,

332–33
aspects, 70, 116–24

.NET Framework, 119–20
processing, 117–18

Assert class, 105
Assert object, 102
assertion, 105
assets, 111–12
associations, class diagrams, 51–52
asynchronous messages, sequence diagrams,

56–57
attributes

class diagrams, 47–50
declarative security, 211

auditing, 112
authentication, 239, 241, 248

ASP.NET, 240

 class diagrams 415

authorization, 112
AJAX Service Layer, 248–49
service layer, 211

Authorization Manager (AzMan), 111–12
automated test frameworks, 101
automated testing, 348
autonomous services, 230–31
autonomous view, 351, 354
AzMan (Authorization Manager), 111–12

B
back-offi ce applications, 205, 252
bandwidth, monitoring, 113
base class, 77
base classes, 149

data context, 279–80
Liskovs principle, 81–83

BaseDataContext class, 281–83
BASIC code, 66–67
Bauer, Friedrich L., 24
BDD (behavior-driven development),

374–75
BDUF (Big Design Up Front), 26
BeginTransaction, 100, 303–5, 329
BeginTransaction data context member, 278
BeginViewUpdate, 384
behavior diagrams, 41–43
behavior-driven development (BDD),

374–75
Big Design Up Front (BDUF), 26
binaries, reuse, 347, 381
binding, 376–78, 397–98
black box of behavior, 9
black-box reusability, 78–80
BLL (business logic layer). See business logic

layer (BLL)
blueprint mode, UML, 38–40
Booch method, 33
Booch, Grady, 33
Boolean logic, 58
boundaries

explicit, 230
presentation layer, 351–52

Box, George E. P., 31
boxing, 94
breakdown process, 8–9
bridging, data mapper, 285–87
bucatini code, 147–48
BuildEntityFromRawData, 295
Buschmann, Frank, 87
business components, 149–52

internals, 159
structure, 160–61

Business folder
Northwind Starter Kit (NSK), 408–9

business logic, 10
presentation logic separation, 352–53

business logic layer (BLL), 110, 129–45
as gatekeeper, 211
CRUD operations, 139–40
DAL interaction, 261
data formatting, 138–39
distribution, 138
hosting, 137
MVC model, 359
NSK Business folder, 408–9
patterns, 141–45. See also specifi c patterns
service layer interaction, 196–98
service layer interactions, 194–95
stored procedures, 140–41

business objects, 131–32
business rules, 130, 132
business transactions. See transactions
Button class, 77, 95
Button1_Click, 95, 193, 201

C
C#, 71

code development, 22
idioms, 92–93
sealed modifi ers, 11
structures vs. classes, 94

C++, 71
sequence diagrams, 55

cache
application level, 310
identity map as, 309–10

caching
queries, 310–11
vs. uniquing, 308–9

Capability Maturity Model Integration (CMMI), 29
CAR (Castle ActiveRecord), 175–76, 254
cardinality, 389–90
CAS (Code Access Security), 108, 110, 203, 239
cases, pertinent objects, 74
Castle ActiveRecord (CAR), 175–76, 254
Castle MonoRail, 353
Castle Project, 175, 406
Castle.DYnamicProxy, 77
CastleWindsor IoC framework, 96
CERT Coordination Center, 108
chatty communication model, 204
chatty interfaces, 237
CheckIdentity function, 249
chunky interfaces, 237
churn, 144
CIA/PI (Confi dentiality Integrity Availability/Probability

Impact) model, 113
circular references, 217, 221, 227
class constructor signature, 11
class diagrams, 7, 47

associations, 51–52
attributes, 49–50
dependency, 53

416 class diagrams

class diagrams (continued)
domain object model, 130
generalization, 52
notation, 47–48
operations, 50–51

classes, 116. See also specifi c classes
abstract base, 77
Active Record pattern, 168–70
ad hoc, 216, 219, 224, 231
base, 279–80. See base classes
business components, 149–52
contained, 80
data context, 278–80. See also data context
dependency injection. See dependency injection
dependency, breaking, 195–96
derived. See derived classes
entities, 186–87. See also entities
inheritance, 78–80
isolating, testing, 103–5
legacy, 332
logger, 116
member modifi ers, changing, 11–12
parent. See parent classes
persistent-ignorant, 185–86
processing, 117–18
proxy, 245, 316–19
root domain, 181–82
sealed vs. virtual, 11–12
service layer, 209–11
super, 260
task, 116
unit of work, 257–58
view, 379
vs. contracts, 231
vs. services, 199–201
vs. structures, 94
workfl ow navigation, 388
wrapper, 79

Click event, 95, 350
ClickOnce, 137
CLR (Common Language Runtime), 110–11, 186, 226
CMMI (Capability Maturity Model Integration), 29.

See Capability Maturity Model Integration (CMMI)
coarse-grained services, 204–5
code, 63–64. See also Structured Query Language (SQL)

application layer. See application layer
aspects, 117–19
bad design, 64
BASIC, 66–67
bucatini, 147–48
CRUD services, 255
data access, 188
data context, DAL, 267
dependency, physical layer, 337
development, architects, 22–23
duplication, TS pattern, 147–48
exceptions, 313. See also exceptions
GOTO, 66–67
idioms, 92–94

injection, 118–19
IoC. See inversion of control (IoC)
lasagna, 67–68
layers of, 220
mock objects, 107
MVC pattern, 355–56
Open/Closed Principle, 80–81
passive view, 380
patterns. See patterns
persistence-related, 186
production, architects and, 23
readability, 72–73
reuse, 66, 78–80, 347
security. See security
service layer, 193–94. See also service layer
source, 119
spaghetti, 67–68
Table Module pattern. See Table Module pattern
testing, 348. See also testing
XML fi le, 119

Code Access Security (CAS), 108, 110, 203, 239
code-behind, 201–4, 354, 356

AJAX Service Layer, 239
CodeDOM, 320
CodePlex, 406
CodePlex project, 101
cohesion, 68–69, 148
collections, 168, 170
COM, 233
COM+, 123

service layer, 203
ComboBox, 376, 378, 380, 384
command objects, 150–52
Command pattern, 150–53
commands, 152–53. See also specifi c commands
Commit, 278, 304–5, 329
Common Language Runtime (CLR),

110–11, 186, 226
communication, 61
Community Technology Preview (CTP), 38
CompanyName, 385, 398
compatibility, 231–32
compilers, 117–19

.NET Framework, 119–20
compile-time weaving, 120
complexity, 143–44, 375

application, service layer, 207
domain model, 180–81
domain object model, 166
Law of Conservation of Software Complexity (LCSC),

367–68
measure of, 144–45
Transaction Script pattern, 146

componentization, 110–11
components, business, 149–52
composition associations, 52
concerns

cross-cutting, 116–17
identifying, 70

 data access layer (DAL) 417

concurrency, 259–60
implementation, 311–15

conditions, sequence diagrams, 58–60
Confi dentiality Integrity Availability/Probability Impact

(CIA/P) model, 113
confi guration fi les, 97

cross-database API, 253
data context, 326
Plugin pattern, 268, 270
policy defi nition, 121
Unity section, 275

confi guration fi lkes
Create ActiveRecord, 176

Confi gure method, 326
Constantine, Lary, 68
ConstraintValidator, 182
constructors, 275–76

presenter class, 383–84
signature changing, 11

contained classes, 80
containers

ad hoc, 212
IoC, 96–97

content-type header, 242–43
Context, data context object, 310
ContextBoundObject, 120, 186
contract

DAL, 263–67
software, 99–100
view, 376, 379–81
vs. class, 231

controller
application controller approach, 389
cardinality, 389–90
MVC pattern, 355–56, 359–62
MVP pattern, 364–65

controllers, 360
cookies, 240–41, 248
CORBA, 233
costs

Adapter pattern, 218–20
development, 64
hardware and software, 3
software development, 4

coupling, 68–69
DTOs, 228
high, 69
low, 69, 74–77, 201
service layer, 195–96

Create method, 210, 289
CreateSqlQuery, 331
Criteria collection, 297
Criterion class, 292, 297
cross-cutting components, workfl ows, 133–34
cross-cutting concerns, 116–17
cross-page postbacks, 77
cross-table operations, 288–89
CRUD methods

data access layer (DAL), 252

repository pattern, 188
service layer, 210–11, 213

CRUD operations, 138–40
DAL O/RM construction, 325–26

CRUD services, 282
data access layer (DAL), 255–56
stored procedures, 338

CRUDy interfaces, 236–37
CTP (Community Technology Preview), 38
Cunningham, Ward, 68–69
Current property, 211
Customer, 287

on-demand loading, 315–17
persistence and data mapper, 284–85
property addition, 313–15
query methods, 293–95

CustomerAPI, 154
CustomerDataMapper, 281
CustomerDataRow, 162
CustomerDataTable, 162
CustomerDto class, 379
CustomerProxy, 317
CustomerServices class, 275–76, 348
CustomerView, 397
Cwalina, Krzysztof, 93

D
DAL (data access layer). See data access layer (DAL)
DalFactory class, 269
damage potential, DREAD model, 113
data

ad hoc, 198, 210, 218, 225, 244, 256
binding, 376–78, 397–98
conversion, Active Record pattern, 172
display, 349
display, sample, 375–81
entry, 349
formatting, 138–39
integrity, 259
lazy loading, 315–21
on-demand loading, 315–17
persistence, 253–54
transaction scripts, passing to, 153–54
validation, 133

data access APIs, 320–21
Data Access Application Block, 295
data access code, 188
data access layer (DAL), 11, 129, 192, 251–52, 340–41

contract, 263–67
creating, 280–321
CRUD operations, 139–40
Dependency Injection, 273–74
designing, 263–80
dynamic SQL, 339–40
factory, 267, 269–70
functional requirements, 252–54
layer interaction, 260–63
Murphy’s laws, 341

418 data access layer (DAL)

data access layer (DAL) (continued)
NSK Data folder, 408
O/RM tools, 321–33
Repository pattern, 188
responsibilities, 254–60
service layer interaction, 196–98
stored procedures, 333–39
Table Module pattern, 156
transaction management, 303–5

data context, 260, 277–80
members, 278
O/RM as, 326–27
object, O/RM tools, 325

data context class
UoW extension, 300–1

data contracts, 221, 231. See also contracts
Data folder

Northwind Starter Kit (NSK), 408
data layer, 110
Data Mapper layer, 168, 189
Data Mapper pattern, 256
data mappers, 197, 281–82, 284–85

ad hoc, 259–60
bridging, 285–87
CRUD services, 255–56
factory, 282–84
lazy loading, 319
query methods, 292–95
specialization, 312–13

data model, presentation layer independence, 348
data readers, 319

vs. DataSets, 296
data server, layering, 99–110
data source design pattern, 166
Data Transfer Object (DTO) pattern, 216–17

service layer, 217–18
data transfer objects (DTOs), 131, 153–54

Adapter pattern and, 218–20
adapters layer, 217
handwritten, 228
order loading, 222–24
order update, 224–26
service layer, 198
Table Module pattern, 154
vs. assembly, 221–29
vs. domain objects, 226–28

DataAccessProviderFactory class, 408–9
database, 337–38

concurrency, 259–60, 311–15
connections. See data access layer (DAL)
gateway, 281–82
Northwind, 287
Northwind Starter Kit (NSK), 407
object-oriented databases (ODMBS), 322–24
relational databases (RDMBS), 322–24
transactions management, 257–58

database administrators (DBAs), 179, 340
database independence, 252–53

database tables
Table Module pattern, 154–58

data-centric approach, 176–77
DataContext, 398

data context object, 310
DataContext class, 175, 299
DataContract attribute, 215, 217
DataGrid control, 345
DataMember attribute, 217–18
DataRow, 162

Active Record pattern, 168
DataSet, 155–56

batch update, 258
DataSets

typed, 161–62
vs. data readers, 296

DataTable, 155–56, 161–62
Active Record pattern, 168

DataTables, 296
DBAs (database administrators), 179, 340
DbConnection, 100
DbLogger class, 122
DCOM (Distributed Com), 233
DDD (domain-driven design), 11, 177
decision making, 10–17

hard-to-change decisions, 9
declarative programming, 352
declarative security, 211
deferred loading, 317
DeferredLoadingEnabled, 320–21
defi ning handlers, 122–23
defi ning policies, 121–22
delegates, 92–93
Delete data context member, 278
Delete method, 169–70, 327
DeleteCustomer, 327–28
DeleteObject, 327–28
denial of service (DoS) attacks, 110, 113
dependencies, 348

breaking, 195–96
coupling, 69
interfaces, 74–77
inversion principle, 83–85
presentation layer, 345–48
reuse problems, 66
testing, 103–5

dependency injection, 95–97
DAL reference, 273–74
mechanisms, 275–76
testing, 103–4
vs. IoC, 95

Dependency Inversion Principle,
83–85, 273

dependency relationships, class diagrams, 53
derived classes, 78

Liskov’s principle, 81–83
design patterns, 85–88, 129

applied, 88–90

 events 419

Design Patterns (GoF), 73, 265
design principles, 63–66, 124. See also system design

aspects, 116–24
dependency injection, 95–97
Murphy’s Law, 125
object-oriented design, 73–85
patterns, 85–94
performance, 115
requirements, 97–115
separation of concerns (SoC), 70–73
structured design, 66–69

developers. See software developers
development. See software development
development view, 4+1 views model, 7
dictionaries, identity maps, 306–7
Dijkstra, Edsger W., 70, 72
discoverability, DREAD model, 113
Distributed Com (DCOM), 233
distributed objects, 137
distributed systems, 233
DM (Domain Model) pattern.

See Domain Model (DM) pattern
Document/View (DV) model, 362
domain

entities, 130–32
object model, 130–31, 166

domain logic, 212–13
domain model, 131, 177–79

persistence ignorance, 331–33
Domain Model (DM) pattern, 90, 142, 176–91

DAL interaction, 261
data access layer (DAL), 251–52, 254
DTOS, 216–17
service layer, 210
service layer actions within BLL, 194
service layer interaction, 196–97
workfl ows, 190–91

domain objects
logic, 184

domain-driven design (DDD), 11, 177
Domain-Driven Design (Evans), 177, 212
DomainObject class, 348
domain-specifi c language (DSL), 35, 60–61
Don’t Repeat Yourself (DRY) principle, 124
DoS (denial of service) attacks, 110, 113
drag-and-drop features, 349
DREAD model, 113
drop-down lists, 376–78, 380
DropDownList, 376, 380
DRY (Don’t Repeat Yourself) principle, 124
DSL (domain-specifi c language), 35, 60–61
DTO (data transfer objects). See data transfer objects

(DTOs)
DTO pattern. See Data Transfer Object (DTO)pattern
DV (Document/View) model, 362
dynamic fetch plan, 319–20
dynamic proxies, 186, 332–33
dynamic SQL, 288–89, 339–40

E
EA (enterprise architect), 20–21
Eckel, Bruce, 98
EDI (Electronic Data Interchange), 233
EDM (Entity Data Model), 332
effi ciency, 13
Einstein, Albert, 124
Electronic Data Interchange (EDI), 233
elevation, privilege, 113
elicitation, 14
Employee class, 317–19
EmployeeProxy, 317–19
enabling policies, 120–21
encapsulation, 70–71
endpoints, 240–41
EndViewUpdate, 384
Enetrprise Library 4.0, 96
Enterprise Application Architecture (Fowler), 143
enterprise architect (EA), 20–21
Enterprise Architect (Sparx Systems), 36
Enterprise Library 4.0, 274, 391, 406, 408
Enterprise Resource Planning (ERP), 365
enterprise-class applications

interfaces, 205
MVP pattern, 369

entities
ad hoc, 190
domain logic, 213
domain model, 181
proxy, 259, 313–15
vs. value objects, 186–87, 189

Entity Data Model (EDM), 332
Entity Framework, 181, 189, 326

data context, 327
data context object, 310, 325
DTO creation, 218
lazy loading, 321
O/RM tool, 325
object services, 327–28
persistence ignorance, 185
Queries, 331
transactions, 329–30

EntityCommand, 331
EntityConnection, 331
EntityRef<T>, 174
EntityRef<T> types, 217
EntitySet<T>, 174
EntitySpaces O/RM tool, 325
Equals method, 309, 317
ERP (Enterprise Resource Planning), 365
errors. See also exceptions
errors, user interface and DTOs,

224–26
eval function, 246
Evans, Eric, 177, 212
event-driven programming, 95
events, 92–93

420 exceptions

exceptions, 313, 398
Special Case pattern, 189–90

exceptions, conditions, 99–100
ExecuteNonQuery, 313
ExecuteScheduledAction, 302
Expect class, 107
explicit boundaries, 230
exploitability, DREAD model, 113
EXPRESS modeling language, 31
EXPRESS-G modeling language, 31
extend relationships, use case diagrams,

45–46
external characteristics, 13
Extreme Programming (XP), 17, 28

F
Façade pattern, 137
factory, 267, 269–70

data mapper, 282–84
factory design, 11
Factory Method pattern, 269–70
fake objects, 176

mocks, 177–79
FDD (Feature Driven Development), 29
Feature Driven Development (FDD), 29
feedback, 28
fetch plans

dynamic, 319–20
hard-coded, 317–19

fi elds, class diagrams, 49
FileIOException, 100
FileNotFound exception, 100
Fill method, 158, 296
FindAll method, 210
FindByID method, 210
fi nders, 272, 305
Flush method, 327
font styles, class diagrams, 48
ForEach keyword, 93
foreign keys, 170–71

LINQ-to-SQL, 173–74
Foreign-Key Mapping pattern, 170–71
Form class, 371
forward engineering, 37, 39
Fowler, Martin, 9, 32, 43, 61, 95, 129, 136, 143, 195, 273,

352, 364, 370
Framework Design Guidelines (Cwalina and

Abrams), 93
from keyword, 93
front controller, Model2, 362–64
front end Web applications, 237–49
front end, Web, code-behind class, 201–4
front ends, multiple, 205–7
functional requirements, software, 12, 14
functionality, 13

gray areas, 138–41
refactoring for, 240–41

FxCop, 153

G
Gamma, Erich, 63, 73, 265
Gang of Four (GoF), 73, 78, 87, 265
generalization relationship

class diagrams, 52
use case diagrams, 46

generic relationships, use case diagrams, 45
Genome, 189

O/RM tool, 325
GetAll data context member, 278
GetByCriteria data context member, 278
GetByCriteria method, 298
GetByID data context member, 278
GetByID method, 262, 305–6
GetByPropertyValue method, 292
GetConversionRate method, 107
GetCount data context member, 278
GetData method, 156
GetDataMapper method, 282–84
GetHashCode method, 309, 317–28
getIset modifi er, 378
GetOrdersByCountry query, 256
GetQuotesAsHtml method, 83–84
global objects, 89
global.asax, 388, 393
GoF (Gang of Four), 73, 78, 87, 265
GOTO code, 66–67
graphical elements, independence from, 345
graphical user interface (GUI), 345

design pattern, 201
multiple, presentation pattern selection, 374
testing, 369

GROUP BY statements, 298

H
HA (hexagonal architecture), 18–19
handlers

AJAX, 242–43
defi ning, 122–23
HTTP, 392–93

hard-coded
behavior, 77
fake objects, 104
fetch plans, 317–19
idioms, 92, 289
Iterator pattern, 93
queries, 256–57
SQL, 298, 334
stored procedures, 298, 334
strategy, 90
strings, 334

hardware costs, 3
hash tables, 307
Helm, Richard, 73, 265
helper method, 383–84
helper methods, 285, 295
hexagonal architecture (HA), 18–19

 interface 421

Hibernate Query Language (HQL),
330–31

high cohesion, 68–69, 201–59
high coupling, 69
HN (Hungarian Notation), 72–73
Hoare, C. A. R., 405
HomeController class, 393
Howard, Michael, 109
HQL (Hibernate Query Language),

330–31
HTTP

Basic Authentication, 240
binding, 244
endpoints, 240–41
handlers, 392–93
module, 362, 364
security refactoring, 241

HTTP GET call, 243–44
HttpContext.Current object
HTTPS, 241
Hungarian Notation (HN), 72–73

I
IBM, 36
IBM/Rational 4+1 views model, 7
IButtonControl, 77
ICallHandler, 122
ICustomerServices interface, 120–23
IDataContext, 267, 279–80, 408

plugin creation, 270–71
IDataContext interface, 277–79

transactional semantics, 300
IDataMapper class, 281–82, 292
IDataMapper<T>, 281–82
IDEF (Integrated DEFinition) modeling language, 31
identity checking, 248–49
Identity Map pattern, 305–11
identity maps, 305–11
independence. See also dependencies
IDEs (integrated development environments), 146
IDesign, 200
idiomatic design, 93–94
idiomatic presentation, 390
idioms, 92–94, 289
IDisposable, 279–80
IEC (International Electrotechnical Commission), 64
IEEE (Institute of Electrical and Electronics

Engineers), 5–7
IEnumerable, 377
IF statements, 284
if-then-else statements, 193
IIS (Internet Information Services), 227
IList<T> type, 94
ILogger interface, 122
ImageButton class, 77
immobility, 66
immutable types, 94
impersonation, user, 111

implementation
vs. architecture, 9
vs. interface, 75–76, 265–66

implementations
vs. interface, 74–77

in keyword, 93
INavigationWorkfl ow interface, 388
include relationships, use case diagrams, 45
independence

data model and presentation layer, 348
database, 252–53
graphics, presentation layer, 345
user interface and presentation layer, 346–47

Index method, 393
induced complexity, 144–45
information disclosure, 112
information hiding, 70–71
infrastructure architect (IA), 20–21
inherent complexity, 144–45
inheritance, class, 78–80
Initialize method, 383–84
injection, dependency. See dependency injection
in-memory model, 285–86
Insert method, 169–70
instance methods, 153, 254

Active Record pattern, 167
table module class, 159

InstanceOfType, 105
Institute of Electrical and Electronics Engineers

(IEEE), 5–7
Integrated DEFinition (IDEF) modeling language, 31
integrated development environments (IDEs), 146
integration testing, 8, 98–99
interaction frames, sequence diagrams, 58–60
interactivity, 399
interface, 18. See also application programming

interface (API); graphical user interface (GUI);
user interface

aliases, 227
chatty, 237
chunky, 237
coarse- vs. fi ne-grained, 137, 204, 207, 214
common, 152–53, 196
CRUD services, 255
CRUDy, 236–37
DAL design, 263–66
enterprise-class applications, 205
layers, 196
loose-coupled, 196
low-coupling, 69, 76
multiple, 205
object-oriented, 167
public, 70, 74–75, 159, 200
remote, 204, 207
repository, 188
service layer, 194, 209–11, 250
stable, 71, 83
vs. abstract base class, 77
vs. implementation, 74–77, 265–66

422 internal characteristics

internal characteristics, 13
International Electrotechnical Commission (IEC), 64.

See also ISO/IEC standards
International Standards Organization (ISO), 4–5, 64.

See also ISO/IEC standards
international standards, software architecture, 6–7, 30
Internet Information Services (IIS), 227
Internet presentation. See Web presentation
interoperability, 229, 231
invariants, 99–100
inversion of control (IoC), 85, 95–97

frameworks, 96
inversion of control (IoC) pattern, 273–77

vs. Plugin pattern, 276–77
Invoke method, 122
IoC (inversion of control) pattern. See inversion of

control (IoC) pattern
IP addresses, invalid, 112
IPoint attribute, 397
IsDirty data context member, 278
ISession interface, 279, 327, 329
IsInTransaction, 278, 303
IsNull, 105
ISO (International Standards Organization),

4–5, 64
ISO/IEC document 42010, 5
ISO/IEC standards

standard 12207, 24–26
standard 19501, 7, 20
standard 9126, 64, 74, 97

ISupportsValidation, 182, 190
IsValid property, 190
Items collection, 378
iterations, 17
iterative development, 27–28, 64. See also agile

methodology
Iterator pattern, 93

J
Jackson, Michael A., 375
Jacobson, Ivar, 33
Java, 71

class diagrams, 49
sequence diagrams, 55
Table Module pattern, 158
virtual modifi ers, 11

Java Server Pages (JSP), 362
JavaScript

eval function, 246
proxies, 244–45

JavaScript clients, 239–41
AJAX, 242

JavaScript Object Notation (JSON), 238, 240–41, 243–44
vs. XML, 245–46

JIT classes, 120
Johnson, John B., 127
Johnson, Ralph, 73, 265

join points, 118–19
.NET Framework, 119–20

JOIN statements, 298
JSON (JavaScript Object Notation). See JavaScript

Object Notation (JSON)
JSP (Java Server Pages), 362

K
Kerievsky, Joshua, 86
KISS principle, 124
Knuth, Donald, 115

L
Language Integrated Query (LIQ), 93
lasagna code, 67–68
last-win policy, 311
Law of Conservation of Energy, 367
Law of Conservation of Software Complexity (LCSC),

367–68
layering, 18–19, 109–10, 129
layers, 135. See also specifi c layers

DAL interaction, 260–63
distribution, 138
logical, 135
vs. tiers, 134–35
Web-based clients, 238

Layers architectural pattern, 90
Lazy Load pattern, 315
lazy loading, 226, 315–21
LCSC (Law of Conservation of Software Complexity),

367–68
legacy classes, 332
legitimate users, 246–47
libraries, switching, 10–11
lifeline, sequence diagrams, 54
LinkButton class, 77
LINQ-to-Entities, 331, 340
LINQ-to-SQL, 93, 173–75, 217

data context object, 310
DataContext class, 299
data mappers, 285
lazy loading, 320–21
LoadOptions class, 226
model creation, MVC pattern, 356
O/RM tool, 325
POCO objects, 331–32
UoW implementation, 258

LIQ (Language Integrated Query), 93
Liskov’s principle, 78–79, 81–83
List<T>, 170
List<T> type, 94
ListControl, 378
LLBLGen Pro, 326

data context object, 310
O/RM tool, 335

Load method, 330

 multitiered applications 423

LoadAllCustomers, 384–86
loading, lazy, 226
LoadOptions class, 226
LoadWith method, 320–21
location transparency, 137
logger classes, 116
logic. See application logic; business logic;

presentation logic
logical layers, 135
logical tier, 134–36
logical view, 4+1 views model, 7
login pages, 247–48
LookupCustomer, 385–86
loose coupling, 228
low cohesion, 68–69
low coupling, 69, 74–77, 201
Lowy, Juval, 200

M
macro services, 204–5, 207
maintainability, 13
maintenance, 64
Maintenance process, 25–26
Managed Design, 405
mappers. See data mappers
mapping. See also data mappers
mapping, objects to tables,

188–89
MapRoute method, 393
MarshalByRefObject, 120, 186
Martin, Robert, 69, 85
MBUnit tool, 101
MDA (model-driven architecture), 35, 40
Melville, Herman, 4
members

modifi ers, changing, 11–12
private and protected, 82

Members collection, 297
message-based semantics, 230–31
messages, sequence diagrams, 56–57
methodology, software development, 26–29.

See also agile methodology
methods. See also instance methods; static methods

helper, 285, 295, 383–84
query, 291–92
read, 254

Meyer, Bertrand, 80
MFC (Microsoft Foundation Classes), 362
micro services, 204–5, 207
Microsoft

architect types, 20
Microsoft AJAX Client Library, 245
Microsoft Application Validation block, 408
Microsoft Certifi ed Architect Program, 20
Microsoft Data Access Application Block, 295
Microsoft Foundation Classes (MFC), 362
Microsoft Offi ce PowerPoint, 37

Microsoft Solutions Framework (MSF), 29
for Agile, 29
for CMMI, 29
roles, 29

Microsoft Transaction Server (MTS), 200
Microsoft Visio Professional.

See Visio Professional
Microsoft Visual Studio. See Visual Studio
middle tier, 134–36
MissingCustomer class, 190
mixins, 77, 185
mobile platforms, 205
mobility, 66
Moby Dick (Melville), 4–13
mock objects, 177–79
mocking frameworks, 106
model

MVC pattern, 355–57
MVP pattern, 364–65, 367, 386
Presentation Model pattern, 371

Model2, 362–64. See also ASP.NET, MVC Framework
model-driven architecture (MDA), 35, 40
modeling, 31, 61

languages, 31–32
models, 31

active vs. passive, 361
Model-View-Controller (MVC) pattern, 90,

353–62
Model2, 362–64
vs. MVP pattern, 366–67

Model-View-Presenter (MVP) pattern, 353, 364–70
sample design, 375–90
vs. MVC pattern, 366–67
vs. Presentation Model, 370–71
Web presentations, 390–95
Windows presentations, 395

Model-View-Presenter pattern (MVP), 201–2
Model-View-ViewModel (MVVM) pattern, 353,

373, 398
modifi ers

member, changing, 11–12
UML, list of, 48

modularity, 70
Dependency Inversion Principle, 84

monolithic systems, 8–9
MonoRail, 395
MSDN Channel 9, 200
MSF (Microsoft Solutions Framework). See Microsoft

Solutions Framework (MSF)
MSTest tool, 101–2
MTS (Microsoft Transaction Server), 200
multiple front ends, 205–7
multiple inheritance, 77, 185
multiple interfaces, 205–6
multitier applications

user interface pattern selection, 372–75
multitiered applications

MVC pattern, 357

424 Murphy’s laws

Murphy’s laws
communication and modeling, 61
data access layer (DAL), 341
design principles, 125
presentation layer, 399
service layer, 250
software architecture, 30
system design, 192

MVC (Model-View-Controller) pattern.
See Model-View-Controller (MVC) pattern

MVC Framework. See ASP.NET, MVC Framework
MVC# Framework, 396–97
MVMM (Model-View-ViewModel) pattern,

353, 373, 398
MVP (Model-View-Presenter) pattern.

See Model-View-Presenter (MVP) pattern

N
namespace

class diagrams, 47–49
naming conventions, 72–73
NATO Software Engineering Conference, 24
NavigateTo method, 388
navigation, 360, 386–89
NavigationController class, 388
.NET Framework

mixins, 185
Newkirk, James, 101
NHibernate, 176, 181, 189

data context, 279, 326
data context object, 310, 325
dynamic proxies, 333
HQL, 340
lazy loading, 320
O/RM tool, 325
object services, 327
POCO objects, 331–32
queries, 330–31
transactions, 329

NHibernate 2.0, 406
Ninject IoC framework, 96
NMock2, 406
NMock2 framework, 106–7
nonfunctional requirements, software,

12, 14
NonSerializedAttribute, 221
North, Ken, 374
Northwind database, 287
Northwind Starter Kit (NSK), 405–6

Business folder, 408–9
contents, 407–8
Data folder, 408
database, 407
downloading, 406
future evolution, 411
Presentation folder, 409–11
requirements, 406

notation
class diagrams, 47–48
messages, sequence diagram, 57
sequence diagrams, 54–55
use-case diagrams, 43–45

NotNullValidator, 183
nouns, 74
NULL values, 189–90
NUnit 2.4, 406
NUnit tool, 101

O
O/R (object/relational) impedance mismatch,

155, 181, 253
O/RM (Object/Relational Mapping) tools.

See Object/Relational Mapping (O/RM) tools
OAOO (Once and Only Once) principle, 124
OASIS (Organization for the Advancement of Structured

Information Standards)
object composition, 78–80
object lifecycle, sequence diagrams, 55–56
object model, 10, 130–31, 177

persisting, 253–54
signature changing, 11
Table Module pattern, 155–56

Object Modeling Group (OMG), 32–33
Object Modeling Technique (OMT), 33
object orientation (OO), 73
object services

O/RM tool, 327–28
object/relational (O/R) impedance mismatch,

155, 181, 253
Object/Relational (O/R) layers, 218
Object/Relational Mapping (O/RM) tools, 10–11,

71, 197, 321–33
DAL creation, 263, 325–33
data context, 279
database independence, 253
dynamic SQL, 339–40
listing, 324–25
mappers, 322–25
O/R mapping layer, 324
persistence ignorance, 331–33

object-based patterns, 142–44
ObjectContext, 325, 329

data context object, 310
object-oriented databases (ODMBS), 322
object-oriented design (OOD), 73–85,

123–24
advanced principles, 80–85
basic principles, 73–80
coupling and cohesion, 69
defi ned, 73–74
services, 230

object-oriented model
Table Module pattern, 155–56

object-oriented paradigm, 31, 33

 Plugin pattern 425

object-oriented programming, 71
objects

ad hoc, 331
business, 131–32
command, 150–52
complex, 11
data transfer, 131–32
distributed, 137
fake, 176–79
global, 89
mapping to tables, 188–89
mock, 177–79
persistent, 255
pertinent, 74
POCO, 176, 185, 331–32
query, 159, 256–57, 331
reference, 216
repository, 188, 289–92
stub and shunt, 105
transient, 255
value, 186–87, 189, 216

Observer pattern, 92–93
Observer relationship
OCP (Open/Closed Principle), 80–81, 83
ODMBS (object-oriented databases), 322
OLE DB, 253
OLTP (online transaction processing), 140
OMG (Object Modeling Group), 32–33
OMT (Object Modeling Technique), 33
Once and Only Once (OAOO) principle, 124
on-demand data loading, 315–17
online transaction processing (OLTP), 140
OO (object orientation), 73
OOD (object-oriented design). See object-oriented

design (OOD)
OOL (Optimistic Offl ine Lock), 259–60, 311–12
Open/Closed Principle (OCP), 80–81, 83
Operation process, 25–26
OperationContext object, 211
operations, class diagrams, 47–48, 50–51
operators, interaction frame, 59
optimistic concurrency, 259–60
Optimistic Offl ine Lock (OOL), 259–60, 311–12
optimization, 115
Order class, 11, 168–70, 210
order loading, DTOs, 222–24
Order objects, 160
order update, DTOs, 224–26
OrderAPI, 154
orderby keyword, 93
OrderClauses, 297
OrderDataMapper, 281
OrderDetail class, 187
OrderDto class, 216
OrderItem DTO, 160–225
Organization for the Advancement of Structured

Information Standards (OASIS)
organizational processes, 25

outsiders, 246–47
detecting, 247

P
Page class, 77, 371
Page Flow Application Block (PFAB), 391–92
paradigms

programming, 71–72
vs. patterns, 354–55

parameterized
queries, 336
types, 48

parameters, class diagrams, 50–51
parent classes, 78
partitioning, 18–19
Pascal, 71
passive view, 378–79
Passive View (PV) model, 353, 364, 368
Pattern-Oriented Software Architecture

(Buschmann et al.), 87
patterns, 85–94, 123, 213, 405. See also specifi c patterns

antipatterns, 90–91
object-based, 142–44
procedural, 141–42, 144
selection, 143–44
selection, user interface, 372–75
vs. idioms, 92–94
vs. paradigms, 354–55

Patterns of Enterprise Application Architecture (Fowler),
9, 195

Peer-to-Peer architectural pattern, 90
performance, 115

service layer benefi ts, 204
Permission classes, 110
permissions

AJAX Service Layer, 248–49
componentization, 110–11

persistence, 251–54
persistence ignorance (PI), 185–86, 331–33
persistence layer, 147, 192, 281–89

service layer interaction, 196–98
persistent objects, 255
persistent-ignorant classes, 185–86
pertinent objects, 74
pessimistic concurrency, 259
PFAB (Page Flow Application Block), 391–92
physical layer, 135
physical model, code independence, 337
physical tier, 135–36
physical view, 4+1 views model, 7
PI (persistence ignorance), 185–86, 331–33
PIAB (Policy Injection Application Block), 119–23
pipeline, handlers, 122–23
plain-old CLR object (POCO), 176, 185, 331–32
plugin factory, 270
Plugin pattern, 267–72

vs. IoC, 276–77

426 plugins

plugins, 253, 270
DAL, creation, 270–71
vs. service locator, 271–72

PM (Presentation Model) pattern, 353, 370–72
POCO (plain-old CLR object), 176, 185, 331–32
point-and-click metaphor, 350–51
pointcut, 118–19
policies

ad hoc, 311
defi ning, 121–22
enabling, 120–21

Policy Injection Application Block (PIAB), 119–23
polymorphism, 79–81, 253

List<T> type, 94
portability, 13
postbacks, cross-page, 77
postconditions, 99–100
PowerPoint, 37
POX messaging, 244
preconditions, 99–100
Presentation folder

Northwind Starter Kit (NSK), 409–11
presentation layer, 129, 343, 398–99

Active Record pattern, 165–66
application logic, 193–94
application services, 205
boundaries, 351–52
Command pattern, 152
DAL interaction, 262–63
data formatting, 138–39
design, 375–90
design, sample, MVP pattern, 375–90
DTOs vs. domain objects, 226–28
idiomatic presentation design, 390–98
Murphy’s laws, 399
NSK Presentation folder, 409–11
patterns, 352–75
pitfalls, 350–52
service layer interaction, 196–98, 205–6
table adapters, 163–64
Table Module pattern, 156
testing, 347–48
user interface and presentation logic, 344–50

presentation logic
business logic separation, 352–53
reuse, 381

Presentation Model (PM) pattern,
353, 370–72

presentation, MVP pattern, 366
PresentationModel class, 371–72
presenter, 202–4, 366

building, 383–84
cardinality, 389–90
MVP pattern, 369
Presentation Model pattern, 372
service layer and, 385–86
view, connecting, 381–82

Presenter-First model, 367
primary processes, 25

Principles of Program Design (Jackson), 375
private members, 82
privileges

componentization, 110–11
elevation, 113

procedural patterns, 141–42, 144
Procedural Programming (PP), 71
process view, 4+1 views model, 7
ProcessAction, 302
processes, software life cycle, 24–25
production code

architects and, 23
profi les, UML, 35
programming

declarative, 352
language. See also specifi c languages
language, UML as, 40
paradigms, 71–72

project managers, 16–17, 19
vs. architects, 22

properties
class diagrams, 49
information hiding, 71

protected members, 82
proxies

dynamic, 332–33
entity, 259, 313–15
JavaScript, 244–45

proxy classes, 316–19
ad hoc, 319

proxy entities, 313–15
public signatures, 94
PV (Passive View) model, 353, 364, 368
Python, 77

Q
queries

caching, 310–11
O/RM tool, 330–31
parameterized, 336

query by criteria, 296–98
Query class, 292

query by criteria, 296–98
query language. See also Structured Query

Language (SQL)
ad hoc, 316, 325

query object, 159, 256–57, 331
Query Object pattern, 93, 159, 257
query objects

ad hoc, 292
query services, 256–57

implementation, 289–98
QueryByExample, 216

R
RAD (rapid application development), 146, 343, 398–99
RADness, 350–51

 Scrum 427

rapid application development (RAD), 146, 343,
398–99

Rational Rose XDE, 36
Rational Software, 33
Rational Unifi ed Process (RUP), 29
RDG (Row Data Gateway) pattern,

172–73
RDMBS (relational databases), 322
read methods, 254
readability, code, 72–73
record set (RS), 155, 164–65
RecordSet type, 164
refactoring

business components, 150
for functionality, 240–41
for security, 241
patterns, 86
service layer, 216, 238–41

Refactoring to Patterns (Kerievsky), 86
reference objects, 216
Refl ection.Emit, 77, 120, 320, 333
refresh

Model2, 364
MVP pattern, 365

Register method, 388
registries, 272
regression testing, 148
relational data models, 251–52. See also Table Module

pattern; Transaction Script pattern
relational databases (RDMBS), 322
relationships, use case diagram, 43–45

extend, 45–46
generalization, 46
generic, 45
include, 45

reliability, 13
Remote Façade pattern, 213–16

service layer, 214–16
remote layers, 203

Remote Façade pattern, 214–16
remote procedure call (RPC), 230
remote software, 137
rendering, 358
Repeater control, 345
Repository class, 292
repository objects, 188, 289–92
Repository pattern, 188, 291

DAL query service, 257
Repository<T> class, 292
reproducibility, DREAD model, 113
repudiation, 112
requirements, design, 97–115
requirements, software system, 12–17

architects role, 18
RequirementsMode property, 249
Resharper tool, 86
REST, 240–41
REST handler, 243
REST services, 209

reusability
binaries, 347, 381
domain model, 179–80
presentation layer, 347, 381
SOA principles, 235

reuse
code, 66, 78–80, 347

reverse engineering, 37, 39–41
RhinoMocks, 106
RIA (Rich Internet Application), 208, 238
Rich Internet Application (RIA), 208, 238
rich Web front ends, 237–49

AJAX service design, 242–46
AJAX service security, 246–49
service layer refactoring, 238–41

rich Web-based clients, 238–40
rigid software, 65
role-based security, 130
roles

security, 111–12
service layer, 211

Rollback, 329
Rollback data context member, 278
root domain class, 181–82
round-trip engineering, 36–37
roundtrips, 39–40, 209, 216, 257, 288, 321
Row Data Gateway (RDG) pattern,

172–73
RPC (remote procedure call), 230
RS (record set), 155, 164–65
Ruby, 77
rules engine, 132
Rumbaugh, James, 33
Run method, 152
run-time environment, service vs. class,

199–201
run-time weaving, 120
RUP (Rational Unifi ed Process), 29

S
SA (solution architect), 20–21
SaaS (Software as a Service), 365
Save data context member, 278
Save method, 327
SaveChanges, 328–30
scalability, 136
scenario view, 4+1 views model, 7
scheduled actions, 301–3
ScheduledAction class, 301–3
schedulers, 301
Schwaber, Ken, 28
script-enabling

ASP.NET Web services, 242–44
WCF services, 244–45

ScriptMethod attribute, 243
scripts, transaction. See transaction scripts
ScriptService attribute, 243–44
Scrum, 28

428 SCSF (Smart Client Software Factory)

SCSF (Smart Client Software Factory), 396
SD3+C principle, 109
SDL (Security Development Lifecycle), 109
sealed classes, 11–12
sealed keyword, 82
Secure by Design, Secure by Default, Secure in

Deployment, plus Communication (SD3+C), 109
Secure Sockets Layer (SSL), 241
security, 13–14, 114, 124

AJAX Service Layer, 246–49
architects, 114
as requirement, 108–9
BLL, 130
componentization, 110–11
declarative, 211
layering, 109–10
multiple tiers, 136
refactoring for, 241
rich Web-based clients, 238–40
role-based, 130
roles, 111–12
Security Development Lifecycle (SDL), 109
service layer, 211
SQL vs. stored procedures, 335–36
threat model, 112–13
vulnerabilities, 108

Security Development Lifecycle (SDL), 109
select keyword, 93
SelectedIndexCHanged event, 384
semantic compatibility, 232
Separated Interface pattern, 264–66
separation of concerns (SoC) principle, 70–73, 352, 354,

367, 390
sequence diagrams, 7, 53–54

asynchronous messages, 56–57
interaction frames, 58–60
notation, 54–55
object life cycle, 55–56

serialization, 245
Velocity, 310

serializers, 217, 227
service contracts, 231. See also contracts
service layer, 193–95, 250

Active Record pattern, 167
Adapter pattern, 218–20
BLL interactions, 194–95
DAL interaction, 261–62
Data Transfer Object pattern,

216–18
DTO vs. assembly, 221–29
DTOs, 198
example, real-world, 206–7
location, 208
Murphy’s laws, 250
patterns, 213
presenter, 385–86
refactoring, 238–41
Remote Façade pattern, 213–16

responsibilities, 195–98
rich Web front ends, 237–49
Service Layer pattern, 205–13
service-oriented architecture, 229–37
services, 198–205
SOA and, 234–37
Transaction Script, 193–94

Service Layer architectural pattern, 90
service layer class, 209–11
Service Layer pattern, 195, 205–13
Service Locator pattern, 271–72
service locator, vs. plugins, 271–72
service orientation, 198, 229
service-oriented architecture (SOA), 18–19, 71, 198,

229–37
antipatterns, 235–36
DTOs and, 228–29
Web services and, 232–33

services, 130, 198–205, 230
autonomy, 230–31
macro and micro, 204–5, 207
vs. classes, 199–201
within service layer, 201–4

ServiceSecurityContext, 211
Session, 325

data context object, 310
Session class, 279
set modifi er, 378
set-based languages, 338
shell extensions, 95
Show method, 89
ShowCustomerDetails, 385–86
shunt objects, 105
signature

constructor, changing, 11
public, 94

Silverlight, 205
code reuse, 347
MVP pattern, 395
NSK compatibility, 411
Presentation Model, 370–71,

397–98
presentation pattern selection, 373
reusability, presentation logic, 96
SVC model, 381
view class, 379

Silverlight 2, 238, 242, 245
proxies, 245

simplicity, 124. See also complexity
Active Record pattern, 167
Transaction Script pattern, 146–47

Single Responsibility Principle (SRP), 69
Singleton pattern, 89
SiteNavigationWorkfl ow class, 360
sketch mode, UML, 36–38
smart client applications, 396

BLL hosting, 137
Smart Client Software Factory (SCSF), 396

 structures 429

SOA (service-oriented architecture).
See service-oriented architecture (SOA)

architectural pattern, 90
SOAP, 243–44

based communication, 204
Silverlight 2, 238

SoC (separation of concerns) principle, 70–73, 352, 354,
367, 390

software
costs, 3
maintenance, 64
remote, 137
rigid, 65
testing, 98–99. See also testing

Software + Services, 208
software analysts, 15

use cases, 16
vs. architects, 21–22

software applications, 338
software architects, 30

collaboration, 178
misconceptions about, 21–23
requirements methodology, 16–18
responsibilities, 17–20
security, 114
system breakdown, 18–19
technologies selection, 19
types of, 20–21
vs. developers, 9

software architecture, 3–4, 30
architects, 17–23
architectural principles, 4
breakdown process, 8–9
decision making, 9–12, 30
description, 7
ISO/IEC 9126 Standard, 13–17
requirements, 12–17
specifi cations, 15–16
standards, 6–7, 30
validating, 7–8
vs. implementation, 9

Software as a Service (SaaS), 365
software contracts, 99–100
software developers

vs. architects, 9, 23
software development, 24–26, 63, 67. See also design

principles
costs, 64
methodology, 26–29
models, 26–29
process, 25

software engineering, 24, 67–68
software life cycle, 24–26
software-intensive systems, 3–5
solution architect (SA), 20–21
source code, XML fi le, 119
spaghetti code, 67–68
Sparx Systems, 36

Special Case pattern, 189–90, 408–9
specifi cations, 15–16

formulating, 19–20
spoofi ng, 112
Spring.Net IoC framework, 96
SQL (Structured Query Language). See Structured Query

Language (SQL)
SQL Server 2008, 288. See also Structured Query

Language (SQL)
SqlCommand, 285
SqlConnection, 285
SqlDbType.Structured, 288
SqlHelper, 288–89
SqlHelper class, 285, 295
SqlServerDataContext, 270–71
SRP (Single Responsibility Principle), 69
SSL (Secure Sockets Layer), 241
stakeholders, 5–7

defi ned, 5
standards, software architecture, 6–7, 30.

See also ISO/IEC standards
static methods, 153, 254

Active Record pattern, 167
table module class, 159

static SQL, 339
Status property, 100
stored procedures, 140–41, 333–39

data mappers, 285
myths, 333–37
purpose, 337–38
query repository, 291
use of, 338–39

Strategy class, 195–96
Strategy pattern, 90, 282
STRIDE threat modeling, 112–13
StringLengthValidator, 183
structural compatibility, 232
structural diagrams, 41–43
structured design, 66–69
Structured Design (Constantine and Yourdon), 66–68
structured programming, 8, 68
Structured Query Language (SQL), 60, 334

ad hoc, 256, 295
code brittleness, 337
data mapper specialization, 312–13
dynamic, 288–89, 339–40
hard-coded, 298, 334
injection, stored procedures, 336
query by criteria, 298
query objects, 256–57
query repository, 289–92
scheduled actions, 302–3
security, vs. stored procedures, 335–36
T-SQL, 188–89, 285
vs. stored procedures, 334–35

StructureMap IoC framework, 96
structures

vs. classes, 94

430 Struts

Struts, 395
stubs objects, 105
SubmitChanges method, 258
subroutines, 8, 68, 333
subviews, 386
super classes, 260
Supervising Controller (SVC) view, 353, 364, 368–69
Supply process, 25
supporting processes, 25
SVC (Supervising Controller) view, 353, 364, 368–69
switch statement, 360, 388
synchronous messages, sequence diagrams, 57
system analysts, 21. See also software analysts
system design, 127–29, 191–92

Active Record pattern, 165–76
business layer, 129–45
Domain Model pattern, 176–91
Murphy’s laws, 192
Table Module pattern, 154–65
Transaction Script pattern, 145–54

system, use case diagram, 43–45
System.EnterpriseServices, 123
System.Object class, 168
System.String type, 94

T
table adapters, 162–64
Table Data Gateway (TDG) pattern, 164–65
table model, 10
Table Module (TM) pattern, 142, 154–65, 191

DAL interaction, 261
service layer, 210
service layer actions within BLL, 194
transactions, 299
vs. Transaction Script pattern, 158–59
workfl ows, 190–91

table module class, 155
static and instant methods, 159

Table Value Parameters (TVP), 288
tables

bridging, 285–87
cross-table operations, 288–89
hash, 307
mapping objects to, 188–89

tabs, 349
Taligent, 365–66
tampering, 112
tap-and-tab metaphor, 350–51
task classes, 116
tasks, software life cycle, 24–25
TDG (Table Data Gateway) pattern, 164–65
Team Foundation Server (TFS), 29
technologies selection, architecture design, 19
technology-specifi c architect, 20–21
Template Method pattern, 282
test harness, 100
testability, 13–14, 97–102, 124, 354, 399

Test-by-Release antipattern, 91
TestCase class, 102
TestClass, 102
TestCleanup, 102
testing, 7–8

acceptance, 8, 98–99
dependencies, 103–5
graphical user interface, 369
integration, 98–99
presentation layer support, 347–48
regression, 148
sealed and virtual classes, 12
security, 114
software, 98–99
tools, 101
unit, 8, 98–102
user interface, 377

TestInitialize, 102
TestMethod, 102
text fi xtures, 101–2
Text property, 398
TextBox, 398
TFS (Team Foundation Server), 29
thin clients, 110
threat model, 112–13
tiers, 134–36

vs. layers, 134–35
timestamp column, 315
TM (Table Module) pattern. See Table Module (TM)

pattern
traditional methodologies, 26–27
Transaction Script (TS) pattern,

145–54, 191
DAL interaction, 261
service layer, 193–94
Service Layer pattern, 211–12
transactions, 298–99
workfl ows, 190–91

transaction scripts, 149–50
entity grouping, 154
passing data to, 153–54

transactions, 141–42
management, 257–58, 303–5
O/RM tool, 329–30
semantics, 298–305

TransactionScope class, 203, 329–30
TransactionScript, 141–42
Transfer Object pattern. See Data Transfer Object

pattern
TransferFunds method, 107
transient objects, 255
TranslateQuery method, 297
Transport Security Layer (TSL), 241
TS (Transaction Script) pattern. See Transaction Script

(TS) pattern
TSF (Team Foundation Server). See Team Foundation

Server (TFS)
TSL (Transport Security Layer), 241

 view class 431

T-SQL
data mappers, 285
Repository pattern, 188–89

two-way data binding, 397–98
typed DataSets, 162
TypeMock, 12
TypeMock framework, 106
types

bridging, 285–87
IList<T>, 94
immutable, 94
List<T>, 94
System.String, 94
value, 94

U
UML (Unifi ed Modeling Language). See Unifi ed

Modeling Language (UML)
UML Distilled (Fowler), 32, 43, 61
Unifi ed Modeling Language (UML),

6–7, 30–32, 61
as a blueprint, 38–40
as a programming language, 40
as a sketch, 36–38
diagrams, 7, 41–60. See also specifi c diagram types
diagrams, hierarchy of, 42
diagrams, list of, 42
domain object model, 130
domain-specifi c languages, 60
history, 32–33
modes, 36–41
profi les, 35
strengths and weaknesses, 34–35
usage, 35–41
use cases, 16
versions and standards, 33–34

uniquing, 305–11
vs. caching, 308–9

unit of work (UoW), 299
defi ning, 300–1
multiple-database transactions, 305

Unit of Work (UoW) pattern, 258
unit of work class, 257–58
unit testing, 8, 98–102
Unity Application Block

IoC dependency injection, 274–75
IoC framework, 96

Unity IoC, 96, 120
Update method, 169–70, 327
UPDATE statement, 312–13
up-front software design, 4
URL

navigation, 360
requests, Model2, 362–64

URLS
MVC Framework, 392–95

usability, 13

use cases, 15–16, 43–45
domain object model, 130
service layer, 209–10

use-case diagrams, 7, 43
extension, 45–46
generalization, 46
generic relationships, 45
inclusion, 45
notation, 43–45

user accounts, roles, 111–12
user actions

executing, 384–85
processing, 381–89

user credentials, 111
user feedback, 28
user impersonation, 111
user interface, 205, 399. See also graphical user

interface (GUI)
behavior-driven development (BDD), 374–75
boundaries, 351–52
changes, service layer and, 216
data display, 349
data entry, 349
errors, 224–26
pattern selection, 372–75
presentation layer independence, 346–47
presentation logic, 344
responsibilities, 348–50
testing, 377

user stories, 15–16
users, legitimate, 246–47

V
Validate method, 182
validation, 7–8, 133

Special Case pattern, 190
Validator object, 182
Value Object pattern. See Data Transfer Object

pattern
value objects, 186–87, 216

vs. entities, 189
value types, 94
variables, naming conventions, 72–73
Velocity, 310
verbs, 74, 87
view

cardinality, 389–90
contract, 376, 379–81
logic, 376–78
MVC pattern, 355–56, 358
MVC pattern, controller and, 359–62
MVP pattern, 364–65, 367–69
navigation, 386–89
Presentation Model pattern, 371–72
presenter, connecting, 381–82
update, 385

view class, 379

432 View method

View method, 394
ViewController class, 358
ViewData collection, 394–95
viewModel entity, 364
virtual classes, 11–12
virtual keyword, 82
Virtual Reality Modeling Language (VRML), 31
viscosity, 66
Visio Professional, 36–38, 41
Visual Basic

event-driven programming, 95
Singleton pattern, 89

Visual Basic .NET, 71
Visual Studio, 38, 40–41

data-centric approach, 176
DSL tools, 60
table adapters, 164
Table Module pattern, 158–59
TSF plug-in, 29

Visual Studio 2008
data context, 327
DataSets, 156–58
MSTest tool
Northwind Starter Kit (NSK). See Northwind Starter

Kit (NSK)
RADness, 350–51
refactoring, 86
separation of concerns, 354
SQL Server connection, 173
templates, 391

Vlissides, John, 73, 265
VRML (Virtual Reality Modeling Language), 31

W
waterfall model, 26–27
WatiN, 369
WCF (Windows Communication Foundation) services.

See Windows Communication Foundation (WCF)
services

WCSF (Web Client Software Factory),
389, 391–92

weavers, 118–19
.NET Framework, 119–20

Web applications, front end, 237–49
Web browsers, 237–38
Web Client Software Factory (WCSF),

389, 391–92
Web Forms, 95
Web front end, code-behind class, 201–4
Web presentation

MVC pattern, 357
MVC pattern vs. Model2, 364
MVP pattern, 365, 390–95
navigation, 360
presentation pattern selection, 372–73
SVC view, 368–69

Web servers, 237–38

Web services, 205
service layer, 195, 204
Service Layer pattern, 208–9
SOA and, 232–33

web.confi g fi le, 97, 244, 268, 270
webHttpbinding, 244
WebMethod attribute, 215
webScriptBehavior, 244
WHERE clause, 259, 292, 297, 312–13, 315
white-box reusability, 78–80
Window class, 371
Windows Communication Foundation (WCF), 120, 123,

195, 204
AJAX security, 249
ASP.NET compatibility, 249
JavaScript clients, 240–41
Remote Façade pattern, 215
script-enabling, 244–45
service layer, 208
Service Layer patterns, 208–9

Windows Forms, 95, 346
Forms class, 371
list loading, 384
presentation pattern selection, 373
services, 201
view class, 379

Windows Presentation Foundation (WPF), 205
code reuse, 347
Presentation Model, 370–71, 397–98
presentation pattern selection, 373
services, 201
view class, 379
Window class, 371

Windows presentations
MVP pattern, 395

Windows shell extensions, 95
Windows Workfl ow Foundation, 389, 391
wizards, design, 343, 350–52,

354, 390–91
workarounds, 66
workfl ow navigation class, 388
workfl ows, 130, 133–34, 190–91, 213
WPF (Windows Presentation Foundation).

See Windows Presentation Foundation (WPF)
Wrap method, 121
wrapper classes, 79
WS-Policy specifi cation, 232
WYSIWYG (what-you-see-is-what-you-get), 352

X
XAML markup language, 398
Xerox PARC, 116
XML

Silverlight 2, 238
source code, 119
strings, 231
vs. JavaScript Object Notation (JSON), 245–46

 Zhukov, Oleg 433

XML Web Services, 208–9, 215
DTOs, 218
JavaScript clients, 240–41
script enabling, 242–44

XMLHttpRequest, 245
XmlIgnore, 218
XP (Extreme Programming), 17, 28
xUnit.NET tool, 101
xxxPermission classes, 110
XxxTestCase class, 102

Y
YAGIN (You Aren’t Going to Need It) principle, 124, 375
You Aren’t Going to Need It (YAGNI) principle, 124, 375
Yourdon, Edward, 68

Z
Zave, Pamela, 3
Zhukov, Oleg, 397

About the Authors

Dino Esposito

Dino Esposito is an IDesign (http://www.idesign.net) architect and
a trainer based in Rome, Italy. Dino specializes in Microsoft Web
 technologies, including ASP.NET AJAX and Silverlight, and spends
most of his time teaching and consulting across Europe, Australia,
and the United States.

Over the years, Dino developed hands-on experience and skills in
 architecting and building distributed systems for banking and insurance
companies and, in general, in industry contexts where the demand for security, optimization,
 performance, scalability, and interoperability is dramatically high. In Italy, Dino and Andrea, together,
run Managed Design (http://www.manageddesign.it), a premier consulting and training fi rm.

Every month, at least fi ve different magazines and Web sites throughout the world publish Dino’s
articles covering topics ranging from Web development to data access and from software best
practices to Web services. A prolifi c author, Dino writes the monthly “Cutting Edge” column for
MSDN Magazine and the “ASP.NET-2-The-Max” newsletter for the Dr. Dobb’s Journal. As a widely
acknowledged expert in Web applications built with .NET technologies, Dino contributes to the
Microsoft content platform for developers and IT consultants. Check out his articles on a variety
of MSDN Developer Centers such as ASP.NET, security, and data access.

Dino has written an array of books, most of which are considered state-of-the-art in their
respective areas. His more recent books are Programming Microsoft ASP.NET 3.5 from
Microsoft Press (2008) and Programming Microsoft ASP.NET 2.0 Applications—Advanced
Topics from Microsoft Press (2006).

Dino regularly speaks at industry conferences all over the world (Microsoft TechEd, Microsoft
DevDays, DevConnections, DevWeek, Basta) and local technical conferences and meetings in
Europe and the United States.

Dino lives near Rome and keeps in shape playing tennis at least twice a week.

Andrea Saltarello

Andrea Saltarello is a solution architect and consultant at
Managed Designs (http://www.manageddesigns.it), focusing
on architecture and virtualization topics.

He has spoken at events and conferences in Italy and has
also taught “Operating Systems” during the “Master in
Editoria Multimediale” class organized by the university
“Politecnico of Milan.”

In 2001, Andrea co-founded UGIdotNET
(http://www.ugidotnet.org), the fi rst Italian .NET User Group, of whom he is the president.

Andrea is passionate about sports and music, and grew up playing volleyball and
listening devotedly to Depeche Mode, a group he fell in love with after listening to
“Everything Counts” for the fi rst time.

These days he tries to keep in shape by catching up to balls on squash or tennis
courts, and he enjoys going to as many live music gigs as he can.

Andrea has a blog at http://blogs.ugidotnet.org/mrbrightside.

	Cover
	Copyright page

	Dedication
	Contents at a Glance
	Table of Contents
	Acknowledgments
	Dino’s Credits
	Andrea’s Credits

	Introduction
	What Is Architecture?
	Who This Book Is For
	Companion Content
	Hardware and Software Requirements
	Find Additional Content Online
	Support for This Book

	Chapter 1: Architects and Architecture Today
	What’s a Software Architecture, Anyway?
	Applying Architectural Principles to Software
	What’s Architecture and What’s Not
	Architecture Is About Decisions
	Requirements and Quality of Software

	Who’s the Architect, Anyway?
	An Architect’s Responsibilities
	How Many Types of Architects Do You Know?
	Common Misconceptions About Architects

	Overview of the Software Development Process
	The Software Life Cycle
	Models for Software Development

	Summary
	Murphy’s Laws of the Chapter

	Chapter 3: Design Principles and Patterns
	Basic Design Principles
	For What the Alarm Bell Should Ring
	Structured Design
	Separation of Concerns

	Object-Oriented Design
	Basic OOD Principles
	Advanced Principles

	From Principles to Patterns
	What’s a Pattern, Anyway?
	Patterns vs. Idioms
	Dependency Injection

	Applying Requirements by Design
	Testability
	Security

	From Objects to Aspects
	Aspect-Oriented Programming
	AOP in Action

	Summary
	Murphy’s Laws of the Chapter

	Index
	Symbols and Numbers
	A
	B, C
	D
	E
	F, G, H
	I
	J, K, L
	M
	N, O
	P
	Q, R
	S
	T
	U, V
	W, X
	Y, Z

