N

Microsoft SQL Server 2008
T-SQL
Fundamentals

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2009 by Itzik Ben-Gan

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2008938209

Printed and bound in the United States of America.

123456789 QWT 321098

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly at
fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, MSDN, SQL Server, and Windows are either registered trademarks or trademarks of the
Microsoft group of companies. Other product and company names mentioned herein may be the trademarks of their
respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ken Jones

Developmental Editor: Sally Stickney

Project Editor: Maria Gargiulo

Editorial Production: S4Carlisle Publishing Services

Technical Reviewer: Ron Talmage ; Technical Review services provided by Content Master, a member of CM Group, Ltd.
Cover: Tom Draper Design

Body Part No. X15-12280

To Dato

To live in hearts we leave behind,

Is not to die.

—Thomas Campbell

Contents at a Glance

1 Background to T-SQL Querying and Programming............ 1
2 Single-Table Queries. it 25
3 JOINS Lo e e 101
4 SubquUeries.ottt e e 133
5 Table EXpressionsciuuiiiiininiinenennennn. 161
6 SetOperations.............coiiiiiiiiiiiiniininnnnnn. 193
7 Pivot, Unpivot, and Grouping Sets. 213
8 Data Modification............ i, 237
9 Transactionsand Concurrencyc.oeveunennenn. 279
10 ProgrammableObjects 319
Appendix A: Getting Started., 359
INdeX. oot e e e e e 379

Table of Contents

Acknowledgments. e Xiii
Introduction e XV
1 Background to T-SQL Querying and Programming............ 1
Theoretical Background 1

1L PP 2

SEt ThEOTY . . 3

Predicate LOgiC. 4

The Relational Model 5

The DataLifeCycle ... e 10

SQL Server Architecture 12

SQL Server Instances. 13

Databasest 14

Schemas and Objects ... 17

Creating Tables and Defining Data Integrity............. 18
Creating Tables. 19

Defining Data Integrity. 20
CONCIUSION . .« .o 24

2 Single-Table Queries.ot iiiiinnnn.. 25
Elements of the SELECT Statement. ..., 25

The FROM Clause. e 27

The WHERE Clause.\ e 29

The GROUP BY Clause.t 30

The HAVING Clause. e 34

The SELECT Clause.ot e 35

The ORDERBY Clause e 40

The TOP OptioNn . .. e 42

The OVER Clause e 45

Predicates and Operators.t 51

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

vii

viii Table of Contents

CASE EXPressions . ..ottt 54
NULLS . ot 58
All-At-Once Operations. 62
Working with CharacterData. i 63
Data TYPeS. oo oot 64
Collation ... 65
Operators and Functions i 66

The LIKE Predicate. e 73
Working with Dateand TimeData ..., 75
Date and Time Data Types.o oo 75
Literals 76
Working with Date and Time Separately........................... 80
Filtering Date Rangeso i 81

Date and Time Functions i 82
Querying Metadata. 89
Catalog VIEWS.o 89
Information Schema Views. 90
System Stored Procedures and Functions 90
CoNCIUSION. . .o 92
EXEICISES. .« . 92
SOIULIONS .o 96
3 JOINS o e e e e 101
CrOSS JOINS . . ottt 102
ANSISQL-92 SyntaXx. . ..ottt 102
ANSISQL-89 Syntax.vvv et 103

Self Cross JOINSttt 103
Producing Tables of Numbers................ 104

NN JOINS . o o 106
ANSISQL-92 SyntaXx. . ..ottt 106
ANSISQL-89 SYNtax. vvv et 107
InnerJoin Safety. ... 108
Further Join Examples. 109
ComPpPoSIte JOINS . . .o 109
NON-EqQUIJOINSo 110
Multi-Table Joins 112
OULEr JOINS o 113
Fundamentals of QuterJoins. i, 113

Beyond the Fundamentals of OuterJoins......................... 116

Table of Contents ix

CONCIUSION . .« . e 123
EXEICISES. o o o 123
SOIULIONS . .o 129
4 Subqueries.t e 133
Self-Contained Subqueries. ... 134
Self-Contained Scalar Subquery Examples 134
Self-Contained Multi-Valued Subquery
EXamples 136
Correlated Subqueries. 140
The EXISTS Predicate. s 142
Beyond the Fundamentals of Subqueries 144
Returning Previous or Next Values. 144
Running Aggregateso 145
Misbehaving Subqueries. 146
CONCIUSION. .« . 151
EXEICISES. o oo 152
SOIUtIONS . .o 156
5 Table EXpressionsciiuiiuiiininiinenennennn. 161
Derived Tableso 161
Assigning Column Ali@ses. 163
Using Argumentso o 165
NEStING .« .t 165
Multiple References. 166
Common Table EXpressions 167
Assigning Column Ali@ses. 168
Using Argumentso 168
Defining Multiple CTESot e 169
Multiple References. 169
Recursive CTESo e 170
VWS 172
Views and the ORDER BY Clause. ..., 174
View OPLioNS oo 176
Inline Table-Valued Functions 179
The APPLY Operatorot 181
CONCIUSION. .« .o 184
EXErCISES o oottt 184

SOIULIONS .« o 189

X Table of Contents

6 SetOperations.............c.coiuiiiiiiiiiiiniinnnnnnnn. 193
The UNION Set Operation 194
The UNION ALL SetOperationt 195

The UNION DISTINCT Set Operation.............ooiiiea... 195

The INTERSECT Set Operationooiut e 196
The INTERSECT DISTINCT Set Operation.c.coocvvuienno... 197

The INTERSECT ALL Set Operation.................coiiiieoo... 198

The EXCEPT Set Operation. ... 200
The EXCEPT DISTINCT Set Operation. ..., 201

The EXCEPT ALL Set Operation, 202
Precedence 203
Circumventing Unsupported Logical Phases. 204
CONCIUSION. .« .o 206
EXEICISeS. . o 206
SOIULIONS . . oo 210
7 Pivot, Unpivot, and Grouping Sets. 213
Pivoting Data 213
Pivoting with Standard SQL....... i i i 216
Pivoting with the Native T-SQL PIVOT Operator 217
Unpivoting Data. oo 219
Unpivoting with Standard SQL o i i i i 220
Unpivoting with the Native T-SQL UNPIVOT Operator.............. 223
GroUPING SetS. .ot 224
The GROUPING SETS Subclause 225

The CUBE Subclause 226

The ROLLUP Subclause 227

The GROUPING and GROUPING_ID Functions. 228
CONCIUSION. . . oo 231
EXEICISeS. . o 231
SOIULIONS . . oo 234
8 Data Modification............ i, 237
Inserting Data.o 237
The INSERT VALUES Statementt 238

The INSERT SELECT Statement. 239

The INSERT EXEC Statement, 240

The SELECT INTO Statementt 241

The BULK INSERT Statement 242

The IDENTITY Property. ... 243

Table of Contents xi

Deleting Data 247
The DELETE Statement 247

The TRUNCATE Statement s 248
DELETE BasedonalJoinooiiiiiiiin .. 249
Updating Datao 250
The UPDATE Statement. e 250
UPDATE Based onaJoin.............oiiiiiiinnneiiiiiiannn.. 252
Assignment UPDATE 254
Merging Data 255
Modifying Data Through Table Expressions 259
Modifications with the TOP Option, 262
The OUTPUT ClaUSE. . ..o oottt et e e e e e 263
INSERT with OUTPUT. s 264
DELETE with OUTPUT ... i 266
UPDATE with OUTPUT. e 266
MERGE with OUTPUT s 267
Composable DML 268
CoNCIUSION. . oo 270
EXEICISES. .« ottt 270
SOIULIONS . 274
9 Transactionsand CONCUIreNCyc.coovvenennennnnnn 279
TraNSACIONS. .« . oottt e 279
Locksand Blocking 282
LOCKS ot 282
Troubleshooting Blocking. i i 285
[solation Levelso 292
The READ UNCOMMITTED Isolation Level 293

The READ COMMITTED Isolation Level 294

The REPEATABLE READ Isolation Level............................ 295

The SERIALIZABLE Isolation Level, 297
Snapshot Isolation Levels 299
Summary of Isolation Levels 305
Deadlocks 306
CONCIUSION. . oo 309
EXEICISES. o oo 309
10 Programmable Objects 319
Variables. 319

Batches. 322

xii Table of Contents

ABatchasaUnitof Parsing............... ... 322
Batches and Variables 323
Statements That Cannot Be Combined in the Same Batch........... 324

A Batch asa Unit of Resolution............ 324

The GO N OPtioN 325

Flow Elements.o oo 325
The IF ... ELSEFlow Element 325

The WHILE Flow Element e 327

An Example of Using IFand WHILE 329

CUIS O . ettt et e e e e e e 329
Temporary Tables.o 333
Local Temporary Tables 334
Global Temporary Tables 335
Table Variables 336
Table TYPeS . ..ot 337
Dynamic SQL. . ..o 338
The EXECCommand e 339

The sp_executesql Stored Procedure i, 341
Using PIVOT with Dynamic SQL i, 343
ROULINES 344
User-Defined Functions 345
Stored Procedures 346
TGOS o oottt 349

Error Handlingo 353
CONCIUSION. .« . 357
Appendix A: Getting Started i 359
13T L= 379

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Acknowledgments

Many people have contributed to the book, directly and indirectly, and I'd like to acknowledge
their contributions.

To Ron Talmage, the book’s technical editor: I've asked Microsoft Press to work with you for a
reason. You seek a true understanding of things; you look for subtleties; you appreciate SQL
and logic; and on top of all this you have superb English. You've done an outstanding job!

To Dejan Sarka: I'd like to thank you for your help with the first chapter of the book, and for
your insights regarding set theory, predicate logic, and the relational model. | like the fact
that you always question things, even those that most people take for granted. You're one
of the people whose thoughts and ideas | heed most. Your understanding of the relational
model and your capacity for drinking beer are truly admirable, albeit that the examples you
choose for demonstrating your ideas are not always politically correct. ;-)

Several people from Microsoft Press and S4Carlisle Publishing Services are due thanks.

To Ken Jones, the project planner: it’s a real pleasure working with you. | appreciate your
attentiveness and the way you manage to handle us authors and our tempers. | also
appreciate your friendship. Thanks to Sally Stickney, the development editor, for lifting the
project off the ground, and to Maria Gargiulo, the project editor, for managing the project
on a day-to-day basis. It was great to work with you! Thanks is also due to Christian Holdener
and Tracy Ball, the vendor project managers, and to Becka McKay, the copy editor.

I'd like to thank my company, Solid Quality Mentors, for the best job | could ever hope for,
which mainly involves teaching, and for making me feel like I'm part of family and friends.
Fernando G. Guerrero, Brian Moran, and Douglas McDowell, who manage the company:
you have a lot to be proud of. The company has grown and matured, and has accomplished
great things. To my friends and colleagues from the company, Ron Talmage, Andrew J. Kelly,
Eladio Rincon, Dejan Sarka, Herbert Albert, Fritz Lechnitz, Gianluca Hotz, Erik Veerman,
Daniel A. Seara, Davide Mauri, Andrea Benedetti, Miguel Egea, Adolfo Wiernik, Javier Loria,
Rushabh B. Mehta, and many others: it's an honor and pleasure to be part of the gang;

| always look forward to spending more time with you over beer talking about SQL and other
things! I'd like to thank Jeanne Reeves for making many of my classes possible, and all the
back office team for their support. I'd also like to thank Kathy Blomstrom for managing our
writing projects and for your excellent edits.

To Lubor Kollar, who's with the Microsoft SQL Server Customer Advisory Team (SQL CAT):
I'd like to thank you for being such a great example, and for your friendship. You're always
there to help or to find the right address for help when | have a question about SQL Server,
and this contributed a lot to my T-SQL understanding. | always look forward to spending
time together!

xiii

xiv

Acknowledgments

I'd like to thank several people from the product team. To Michael Wang, Michael Rys, and all
others involved in the development of T-SQL: thanks for making T-SQL such a great language,
notwithstanding the fact that the OVER clause is not yet fully implemented ;-). To Umachandar
Jayachandran (UC); | know very few people who understand the true depths of T-SQL the

way you do, and | can't tell you how glad | was when you joined the programmability team.

| knew that T-SQL was in good hands!

To Sensei Yehuda Pantanowitz: you were my greatest teacher, and a friend; your passing
away is unbearable.

To the team at SQL Server Magazine: Megan Bearly, Sheila Molnar, Mary Waterloo, Karen
Forster, Michele Crockett, Mike Otey, Lavon Peters, and Anne Grubb: we've been working
together for almost 10 years now, and | feel like it's my home. Thanks for giving me the
freedom to write every month about a subject that is burning in my veins, and for all the work
you do to enable the articles to be published.

I'd like to thank my fellow MVPs for your contribution to the SQL community and to my
knowledge. A few deserve special thanks: Steve Kass, when | grow up, | want to be just

like you! To Erland Sommarskog, Alejandro Mesa, Aaron Bertrand, and Tibor Karaszi: your
participation in the newsgroups is truly astounding! Erland, your papers are a great source of
information. To Marcello Poletti (Marc): | believe that we share similar feelings towards SQL
and puzzles; your puzzles are wicked and they have deprived me of sleep more than once.

My true passion is for teaching; I'd like to thank my students for enabling me to fulfill my
passion. Student questions and inquiries make me do a lot of research, and a lot of my
knowledge today is due to those questions.

I'd like to thank my family for their support. To my parents, Gabriel and Emilia Ben-Gan, for
supporting me in pursuing my passion, even if it means that we see each other less. And to
my brother, Michael Ben-Gan and my sister, Ina Aviram, for being there for me.

Finally, Lilach, you give meaning to everything | do; contrary to the common cliché,
| probably could finish the book without you. But then, why would | want to?

Introduction

This book walks you through your first steps in T-SQL (also known as Transact-SQL), which is
the Microsoft SQL Server dialect of the standard ANSI-SQL language. You'll learn the theory
behind T-SQL querying and programming, how to develop T-SQL code to query and modify
data, and get an overview of programmable objects.

Although this book is intended for beginners, it is not merely a step-by-step book. It goes
beyond the syntactical elements of T-SQL and explains the logic behind the language and its
elements.

Occasionally the book covers subjects that may be considered advanced for readers who are
new to T-SQL; therefore, those sections are optional reading. If you already feel comfortable
with the material discussed in the book up to that point, you may want to tackle the more
advanced subjects; otherwise, feel free to skip those sections and return to them after you've
gained more experience. The text will indicate when a section may be considered more
advanced and is provided as optional reading.

Many aspects of SQL are unique to the language, and are very different from other
programming languages. This book helps you adopt the right state of mind and gain a
true understanding of the language elements. You learn how to think in terms of sets and
follow good SQL programming practices.

The book is not version-specific; it does, however, cover language elements that were
introduced in recent versions of SQL Server, including SQL Server 2008. When | discuss
language elements that were introduced recently, | specify the version in which they
were added.

To complement the learning experience, the book provides exercises that enable you to
practice what you've learned. The book occasionally provides optional exercises that are
more advanced. Those exercises are intended for readers who feel very comfortable with
the material and want to challenge themselves with more difficult problems. The optional
exercises for advanced readers are labeled as such.

Who This Book Is For

This book is intended for T-SQL programmers, DBAs, architects, analysts, and SQL Server
power users who just started working with SQL Server and need to write queries and develop
code using Transact-SQL.

Xxvi

Introduction

What This Book Is About

The book starts with both a theoretical background to T-SQL querying and programming in
Chapter 1, laying the foundations for the rest of the book, and also coverage of creating tables
and defining data integrity. The book moves on to various aspects of querying and modifying
data, in Chapters 2 through 8, then to a discussion of concurrency and transactions in Chapter 9,
and finally provides an overview of programmable objects in Chapter 10. The following section
lists the chapter titles along with a short description:

Chapter 1, "Background to T-SQL Querying and Programming,” provides a theoretical
background about SQL, set theory, and predicate logic; examines the relational model and
more; describes SQL Server’s architecture; and explains how to create tables and define data
integrity.

Chapter 2, "Single-Table Queries,” covers various aspects of querying a single table using the
SELECT statement.

Chapter 3, “Joins,” covers querying multiple tables using joins, including cross joins, inner
joins, and outer joins.

Chapter 4, "Subqueries,” covers queries within queries, otherwise known as subqueries.

Chapter 5, “Table Expressions,” covers derived tables, CTEs, views, inline table-valued functions,
and the APPLY operator.

Chapter 6, “Set Operations,” covers the set operations UNION, INTERSECT, and EXCEPT.

Chapter 7, "Pivot, Unpivot, and Grouping Sets,” covers data-rotation techniques and working
with grouping sets.

Chapter 8, "Data Modification,” covers inserting, updating, deleting, and merging data.

Chapter 9, “Transactions and Concurrency,” covers concurrency of user connections that work
with the same data simultaneously; it covers concepts including transactions, locks, blocking,
isolation levels, and deadlocks.

Chapter 10, “Programmable Objects,” provides an overview to the T-SQL programming
capabilities in SQL Server.

The book also provides an appendix, “Getting Started,” to help you set up your environment,
download the book’s source code, install the sample database TSQLFundamentals2008,

start writing code against SQL Server, and learn how to get help by working with SQL Server
Books Online.

Introduction xvii

Companion Content

This book features a companion Web site that makes available to you all the code used
in the book, the errata, additional resources, and more. The companion Web site is
http://www.insidetsqgl.com. Please refer to Appendix A, “Getting Started,” for details about
the source code.

Hardware and Software Requirements

In Appendix A, “Getting Started,” | explain which editions of SQL Server 2008 you can use to
work with the code samples included with this book. Each edition of SQL Server may have
different hardware and software requirements, and those requirements are well-documented
in SQL Server Books Online under "Hardware and Software Requirements for Installing

SQL Server 2008." Appendix A also explains how to work with SQL Server Books Online.

Find Additional Content Online

For more great information from Microsoft Press, visit the new Microsoft Press Online sites—
your one-stop online resource for access to updates, sample chapters, articles, scripts, and
e-books related to our industry-leading Microsoft Press titles. Check out the following sites:
http://www.microsoft.com/learning/books/online/developer and http.//www.microsoft.com/
learning/books/online/serverclient.

Support for This Book

Every effort has been made to ensure the accuracy of this book and the contents of the
companion Web site. As corrections or changes are collected, they will be added to a
Microsoft Knowledge Base article.

Microsoft Press provides support for books at the following Web site:

http://www.microsoft.com/learning/support/books/

xviii Introduction

Questions and Comments

If you have comments, questions, or ideas regarding the book, or questions that are not
answered by visiting the sites above, please send them to me via e-mail at:

itzik@SolidQ.com
Or via postal mail at:

Microsoft Press

Attn: Microsoft SQL Server 2008 T-SQL Fundamentals Editor
One Microsoft Way

Redmond, WA 98052-6399

Please note that Microsoft software product support is not offered through the above
addresses.

Chapter 3
Joins

CrOSS JOINS .ottt ittt it e e e e e e e 102
8T =] o Lo Y1 s T3 106
Further Join Examples i e 109
(O 111 =) o o 1 o T3 113
(0o 3 Vol [UF o Y P 123
T ol T =3P 123
Y] 114 o Y o T3P 129

The FROM clause of a query is the first clause to be logically processed, and within the FROM
clause table operators operate on input tables. Microsoft SQL Server 2008 supports four table
operators—JOIN, APPLY, PIVOT, and UNPIVOT. The JOIN table operator is standard, while APPLY,
PIVOT, and UNPIVOT are T-SQL extensions to the standard. These last three were introduced

in SQL Server 2005. Each table operator acts on tables provided to it as input, applies a set of
logical query processing phases, and returns a table result. This chapter focuses on the JOIN
table operator. The APPLY operator will be covered in Chapter 5, “Table Expressions,” and the
PIVOT and UNPIVOT operators will be covered in Chapter 7, “Pivot, Unpivot, and Grouping Sets.”

A JOIN table operator operates on two input tables. The three fundamental types of joins
are cross, inner, and outer. The three types of joins differ in how they apply their logical
query processing phases; each type applies a different set of phases. A cross join applies only
one phase—Cartesian Product. An inner join applies two phases—Cartesian Product and
Filter. An outer join applies three phases—Cartesian Product, Filter, and Add Outer Rows.
This chapter explains each of the join types and the phases involved in detail.

Logical query processing describes a generic series of logical steps that for any given query
produces the correct result, while physical query processing is the way the query is processed
by the RDBMS engine in practice. Some phases of logical query processing of joins may
sound inefficient, but the physical implementation may be optimized. It's important to stress
the term logical in logical query processing. The steps in the process apply operations to the
input tables based on relational algebra. The database engine does not have to follow logical
query processing phases literally as long as it can guarantee that the result that it produces

is the same as dictated by logical query processing. The SQL Server relational engine often
applies many shortcuts for optimization purposes when it knows that it can still produce the
correct result. Even though this book’s focus is to understand the logical aspects of querying,
| want to stress this point to avoid any misunderstanding and confusion.

101

102

Microsoft SQL Server 2008 T-SQL Fundamentals

Cross Joins

Logically, a cross join is the simplest type of join. A cross join implements only one logical
query processing phase—a Cartesian Product. This phase operates on the two tables provided
as inputs to the join, and produces a Cartesian product of the two. That is, each row from one
input is matched with all rows from the other. So if you have m rows in one table and n rows
in the other, you get m x n rows in the result.

SQL Server supports two standard syntaxes for cross joins—the ANSI SQL-92 and ANSI SQL-89
syntaxes. | recommend that you use the ANSI-SQL 92 syntax for reasons that I'll describe shortly.
Therefore, ANSI-SQL 92 syntax is the main syntax that | use throughout the book. For the sake
of completeness, | describe both syntaxes in this section.

ANSI SQL-92 Syntax

The following query applies a cross join between the Customers and Employees tables (using
the ANSI SQL-92 syntax) in the TSQLFundamentals2008 database, and returns the custid and
empid attributes in the result set:

USE TSQLFundamentals2008;

SELECT C.custid, E.empid

FROM Sales.Customers AS C
CROSS JOIN HR.Employees AS E;

Because there are 91 rows in the Customers table and 9 rows in the Employees table, this
query produces a result set with 819 rows, as shown here in abbreviated form:

NNNNNNNNNRRBERRBRRBERRB R
CENODUAWNRO®ONOOU D WNR

(819 row(s) affected)

Chapter 3 Joins 103

Using the ANSI SQL-92 syntax, you specify the CROSS JOIN keywords between the two tables
involved in the join.

Notice that in the FROM clause of the preceding query, | assigned the aliases C and E to the
Customers and Employees tables, respectively. The result set produced by the cross join is

a virtual table with attributes that originate from both sides of the join. Because | assigned
aliases to the source tables, the names of the columns in the virtual table are prefixed by the
table aliases (for example, C.custid, E.empid). If you do not assign aliases to the tables in the
FROM clause, the names of the columns in the virtual table are prefixed by the full source
table names (for example, Customers.custid, Employees.empid). The purpose of the prefixes
is to enable the identification of columns in an unambiguous manner when the same column
name appears in both tables. The aliases of the tables are assigned for brevity. Note that

you are required to use column prefixes only when referring to ambiguous column names
(column names that appear in more than one table); in unambiguous cases column prefixes
are optional. However, some people find it a good practice to always use column prefixes for
the sake of clarity. Also note that if you assign an alias to a table, it is invalid to use the full
table name as a column prefix; in ambiguous cases you have to use the table alias as a prefix.

ANSI SQL-89 Syntax

SQL Server also supports an older syntax for cross joins that was introduced in ANSI SQL-89.
In this syntax you simply specify a comma between the table names like so:

SELECT C.custid, E.empid
FROM Sales.Customers AS C, HR.Employees AS E;

There is no logical or performance difference between the two syntaxes. Both syntaxes are
integral parts of the latest SQL standard (ANSI SQL:2006 at the time of this writing), and
both are fully supported by the latest version of SQL Server (SQL Server 2008 at the time of
this writing). | am not aware of any plans to deprecate the older syntax, and | don't see any
reason to do so while it's an integral part of the standard. However, | recommend using the
ANSI SQL-92 syntax for reasons that will become clear after inner joins are explained.

Self Cross Joins

You can join multiple instances of the same table. This capability is known as self-join and
is supported with all fundamental join types (cross, inner, and outer). For example, the
following query performs a self cross join between two instances of the Employees table:

SELECT
El.empid, El.firstname, El.lastname,
E2.empid, E2.firstname, E2.lastname
FROM HR.Employees AS E1
CROSS JOIN HR.Employees AS E2;

104 Microsoft SQL Server 2008 T-SQL Fundamentals

This query produces all possible combinations of pairs of employees. Because the Employees
table has 9 rows, this query returns 81 rows, shown here in abbreviated form:

empid firstname Tastname empid firstname Tastname
1 Sara Davis 1 Sara Davis
2 Don Funk 1 Sara Davis
3 Judy Lew 1 Sara Davis
4 Yael Peled 1 Sara Davis
5 Sven Buck 1 Sara Davis
6 Paul Suurs 1 Sara Davis
7 Russell King 1 Sara Davis
8 Maria Cameron 1 Sara Davis
9 Zoya DoTlgopyatova 1 Sara Davis
1 Sara Davis 2 Don Funk
2 Don Funk 2 Don Funk
3 Judy Lew 2 Don Funk
4 Yael Peled 2 Don Funk
5 Sven Buck 2 Don Funk
6 Paul Suurs 2 Don Funk
7 Russell King 2 Don Funk
8 Maria Cameron 2 Don Funk
9 Zoya Dolgopyatova 2 Don Funk

(81 row(s) affected)

In a self-join, aliasing tables is not optional. Without table aliases, all column names in the
result of the join would be ambiguous.

Producing Tables of Numbers

One situation in which cross joins can be very handy is when they are used to produce a
result set with a sequence of integers (1, 2, 3, and so on). Such a sequence of numbers is an
extremely powerful tool that | use for many purposes. Using cross joins you can produce the
sequence of integers in a very efficient manner.

You can start by creating a table called Digits with a column called digit, and populate the
table with 10 rows with the digits 0 through 9. Run the following code to create the Digits
table in the tempdb database (for test purposes) and populate it with the 10 digits:

USE tempdb;
IF OBJECT_ID('dbo.Digits"', 'U') IS NOT NULL DROP TABLE dbo.Digits;
CREATE TABLE dbo.Digits(digit INT NOT NULL PRIMARY KEY);

INSERT INTO dbo.Digits(digit)
VALUES (0),(1),(2),(3),(4),(5),(6),(7),(8),(9);

/%
Note:
Above INSERT syntax is new in Microsoft SQL Server 2008.

Chapter 3 Joins 105

In earlier versions use:

INSERT INTO dbo.Digits(digit) VALUES(O);
INSERT INTO dbo.Digits(digit) VALUES(1);
INSERT INTO dbo.Digits(digit) VALUES(2);
INSERT INTO dbo.Digits(digit) VALUES(3);
INSERT INTO dbo.Digits(digit) VALUES(4);
INSERT INTO dbo.Digits(digit) VALUES(5);
INSERT INTO dbo.Digits(digit) VALUES(6);
INSERT INTO dbo.Digits(digit) VALUES(7);
INSERT INTO dbo.Digits(digit) VALUES(8);
INSERT INTO dbo.Digits(digit) VALUES(9);
+/

SELECT digit FROM dbo.Digits;

This code uses a couple of syntax elements for the first time in this book, so I'll briefly explain
them. Any text residing within a block starting with /* and ending with */ is treated as a block
comment and is ignored by SQL Server. This code also uses an INSERT statement to populate
the Digits table. If you're not familiar with the syntax of the INSERT statement, see Chapter 8,
“Data Modification,” for details. Note, however, that this code uses new syntax that was
introduced in SQL Server 2008 for the INSERT VALUES statement, allowing a single statement
to insert multiple rows. A block comment embedded in the code explains that in earlier
versions you need to use a separate INSERT VALUES statement for each row.

The contents of the Digits table are shown here:

O o0 NV A WNREO

Suppose you need to write a query that produces a sequence of integers in the range 1 through
1,000. You can cross three instances of the Digits table, each representing a different power of
10 (1, 10, 100). By crossing three instances of the same table, each instance with 10 rows, you get
a result set with 1,000 rows. To produce the actual number, multiply the digit from each instance
by the power of 10 it represents, sum the results, and add 1. Here's the complete query:

SELECT D3.digit * 100 + D2.digit * 10 + D1.digit + 1 AS n
FROM dbo.Digits AS D1

CROSS JOIN dbo.Digits AS D2

CROSS JOIN dbo.Digits AS D3
ORDER BY n;

106

Microsoft SQL Server 2008 T-SQL Fundamentals

This query returns the following output, shown here in abbreviated form:

H O oo NO VI WNRE

0
998
999
1000

(1000 row(s) affected)
This was just an example producing a sequence of 1,000 integers. If you need more, you can

add more instances of the Digits table to the query. For example, if you need to produce a
sequence of 1,000,000 rows, you would need to join six instances.

Inner Joins

An inner join applies two logical query processing phases—it applies a Cartesian product between
the two input tables like a cross join, and then it filters rows based on a predicate that you specify.
Like cross joins, inner joins have two standard syntaxes: ANSI SQL-92 and ANSI SQL-89.

ANSI SQL-92 Syntax

Using the ANSI SQL-92 syntax, you specify the INNER JOIN keywords between the table
names. The INNER keyword is optional because an inner join is the default, so you can
specify the JOIN keyword alone. You specify the predicate that is used to filter rows in a
designated clause called ON. This predicate is also known as the join condition.

For example, the following query performs an inner join between the Employees and Orders
tables in the TSQLFundamentals2008 database, matching employees and orders based on
the predicate E.empid = O.empid:

USE TSQLFundamentals2008;

SELECT E.empid, E.firstname, E.lastname, O.orderid
FROM HR.Employees AS E
JOIN Sales.Orders AS O
ON E.empid = O.empid;

Chapter 3 Joins 107

This query produces the following result set, shown here in abbreviated form:

empid firstname Tastname orderid
1 Sara Davis 10258
1 Sara Davis 10270
1 Sara Davis 10275
1 Sara Davis 10285
1 Sara Davis 10292
2 Don Funk 10265
2 Don Funk 10277
2 Don Funk 10280
2 Don Funk 10295
2 Don Funk 10300

(830 row(s) affected)

For most people the easiest way to think of such an inner join is as matching each employee
row to all order rows that have the same employee ID as the employee’s employee ID. This is a
simplified way to think of the join. The more formal way to think of the join based on relational
algebra is that first the join performs a Cartesian product of the two tables (9 employee

rows x 830 order rows = 7,470 rows), and then filters rows based on the predicate E.empid =
O.empid, eventually returning 830 rows. As mentioned earlier, that's just the logical way the
join is processed; in practice, physical processing of the query by the database engine can be
different.

Recall the discussion from previous chapters about the three-valued predicate logic used

by SQL. Like with the WHERE and HAVING clauses, the ON clause also returns only rows for
which the predicate returns TRUE, and does not return rows for which the predicate evaluates
to FALSE or UNKNOWN.

In the TSQLFundamentals2008 database all employees have related orders, so all employees
show up in the output. However, had there been employees with no related orders, they
would have been filtered out by the filter phase.

ANSI SQL-89 Syntax

Similar to cross joins, inner joins can be expressed using the ANSI SQL-89 syntax. You specify
a comma between the table names just like in a cross join, and specify the join condition in
the query’s WHERE clause, like so:

SELECT E.empid, E.firstname, E.lastname, O.orderid
FROM HR.Employees AS E, Sales.Orders AS O
WHERE E.empid = O.empid;

Note that the ANSI SQL-89 syntax has no ON clause.

108

Microsoft SQL Server 2008 T-SQL Fundamentals

Again, both syntaxes are standard, fully supported by SQL Server, and interpreted the
same by the engine, so you shouldn't expect any performance difference between the two.
But one syntax is safer, as explained in the next section.

Inner Join Safety

| strongly recommend that you stick to the ANSI SQL-92 join syntax because it is safer in
several ways. Say you intend to write an inner join query, and by mistake forget to specify
the join condition. With the ANSI SQL-92 syntax the query becomes invalid and the parser
generates an error. For example, try to run the following code:

SELECT E.empid, E.firstname, E.lastname, O.orderid
FROM HR.EmpTloyees AS E
JOIN Sales.Orders AS 0;

You get the following error:

Msg 102, Level 15, State 1, Line 3

v

Incorrect syntax near ';'.

Even though it might not be obvious immediately that the error involves a missing join
condition, you will figure it out eventually and fix the query. However, if you forget to specify
the join condition using the ANSI SQL-89 syntax, you get a valid query that performs a cross
join:

SELECT E.empid, E.firstname, E.lastname, O.orderid

FROM HR.Employees AS E, Sales.Orders AS 0O;

Because the query doesn't fail, the logical error might go unnoticed for a while, and users of
your application might end up relying on incorrect results. It is unlikely that a programmer
would forget to specify the join condition with such short and simple queries; however,
most production queries are much more complicated and have multiple tables, filters, and
other query elements. In those cases the likelihood of forgetting to specify a join condition
increases.

If I've convinced you that it is important to use the ANSI SQL-92 syntax for inner joins, you
might wonder whether the recommendation holds for cross joins. Because no join condition

is involved, you might think that both syntaxes are just as good for cross joins. However, |
recommend staying with the ANSI SQL-92 syntax with cross joins for a couple of reasons—one
being consistency. Also, let's say you do use the ANSI SQL-89 syntax. Even if you intended to
write a cross join, when other developers need to review or maintain your code, how will they
know whether you intended to write a cross join or intended to write an inner join and forgot
to specify the join condition?

Chapter 3 Joins 109

Further Join Examples

This section covers a few join examples that are known by specific names, including composite
joins, non-equi joins, and multi-table joins.

Composite Joins

A composite join is simply a join based on a predicate that involves more than one attribute
from each side. A composite join is commonly required when you need to join two tables
based on a primary key—foreign key relationship, and the relationship is composite: that is,
based on more than one attribute. For example, suppose you have a foreign key defined on
dbo.Table2, columns coll, col2, referencing dbo.Tablel, columns coll, col2, and you need to
write a query that joins the two based on primary key—foreign key relationship. The FROM
clause of the query would look like this:

FROM dbo.Tablel AS T1
JOIN dbo.Table2 AS T2
ON Tl.coll = T2.coll
AND T1.col2 = T2.col2

For a more tangible example, suppose that you need to audit updates to column values
against the OrderDetails table in the TSQLFundamentals2008 database. You create a custom
auditing table called OrderDetailsAudit:

USE TSQLFundamentals2008;
IF OBJECT_ID('Sales.OrderDetailsAudit', 'U') IS NOT NULL
DROP TABLE Sales.OrderDetailsAudit;
CREATE TABLE Sales.OrderDetailsAudit
(
Tsn INT NOT NULL IDENTITY,
orderid INT NOT NULL,
productid INT NOT NULL,
dt DATETIME NOT NULL,
loginname sysname NOT NULL,
columnname sysname NOT NULL,
oldval SQL_VARIANT,
newval SQL_VARIANT,
CONSTRAINT PK_OrderDetailsAudit PRIMARY KEY(1sn),
CONSTRAINT FK_OrderDetailsAudit_OrderDetails
FOREIGN KEY(orderid, productid)
REFERENCES Sales.OrderDetails(orderid, productid)
)

Each audit row stores a log serial number (Isn), the key of the modified row (orderid, productid),
the name of the modified column (columnname), the old value (oldval), new value (newval),
when the change took place (dt), and who made the change (loginname). The table has a
foreign key defined on the attributes orderid, productid, referencing the primary key of the
OrderDetails table, which is defined on the attributes orderid, productid.

110 Microsoft SQL Server 2008 T-SQL Fundamentals

Suppose that you already have in place all the required processes that audit column value
changes taking place in the OrderDetails table in the OrderDetailsAudit table.

You need to write a query that returns all value changes that took place against the column
qgty, but in each result row you need to return the current value from the OrderDetails table,
and the values before and after the change from the OrderDetailsAudit table. You need to
join the two tables based on primary key—foreign key relationship like so:

SELECT OD.orderid, OD.productid, OD.qty,
ODA.dt, ODA.loginname, ODA.oldval, ODA.newval
FROM Sales.OrderDetails AS OD
JOIN Sales.OrderDetailsAudit AS ODA
ON OD.orderid = ODA.orderid
AND OD.productid = ODA.productid
WHERE ODA.columnname = N'qty';

Because the relationship is based on multiple attributes, the join condition is composite.

Non-Equi Joins

When the join condition involves only an equality operator, the join is said to be an

equi join. When the join condition involves any operator besides equality, the join is said
to be a non-equi join. As an example of a non-equi join, the following query joins two
instances of the Employees table to produce unique pairs of employees:

SELECT
El.empid, El.firstname, El.Tlastname,
E2.empid, E2.firstname, E2.lastname
FROM HR.EmpTloyees AS E1
JOIN HR.Employees AS E2
ON El.empid < E2.empid;

Notice the predicate specified in the ON clause. The purpose of the query is to produce
unique pairs of employees. Had you used a cross join, you would have gotten self pairs

(for example, 1 with 1), and also mirrored pairs (for example, 1 with 2 and also 2 with 1).
Using an inner join with a join condition that says that the key in the left side must be smaller
than the key in the right side eliminates the two inapplicable cases. Self pairs are eliminated
because both sides are equal. With mirrored pairs, only one of the two cases qualifies
because out of the two cases, only one will have a left key that is smaller than the right key.
In our case, out of the 81 possible pairs of employees that a cross join would have returned,
our query returns the 36 unique pairs shown here:

empid firstname Tlastname empid firstname Tastname
1 Sara Davis 2 Don Funk
1 Sara Davis 3 Judy Lew

2 Don Funk 3 Judy Lew

coONOUVIA WNRENOUAE WNEFEFOUEAE WNEREFOPAEWNERERMSMWNEREWNR

Sara
Don
Judy
Sara
Don
Judy
Yael
Sara
Don
Judy
Yael
Sven
Sara
Don
Judy
Yael
Sven
Paul
Sara
Don
Judy
Yael
Sven
Paul
Russell
Sara
Don
Judy
Yael
Sven
Paul
Russell
Maria

Davis
Funk
Lew
Davis
Funk
Lew
Peled
Davis
Funk
Lew
Peled
Buck
Davis
Funk
Lew
Peled
Buck
Suurs
Davis
Funk
Lew
Peled
Buck
Suurs
King
Davis
Funk
Lew
Peled
Buck
Suurs
King
Cameron

(36 row(s) affected)

If it is still not clear to you what this query does, try to process it one step at a time with
a smaller set of employees. For example, suppose the Employees table contained only
employees 1, 2, and 3. First, produce the Cartesian product of two instances of the table:

E1l.empid

W W WNNNRRR

E2.empid

W NN R WN R WN B

O VW W W WOWWWWOoOoOoOoOoOowOoONNNNNNOOCTOOOCOOO VT Tl DB BN

Yael
Yael
Yael
Sven
Sven
Sven
Sven
Paul
Paul
Paul
Paul
Paul
Russell
Russell
Russell
Russell
Russell
Russell
Maria
Maria
Maria
Maria
Maria
Maria
Maria
Zoya
Zoya
Zoya
Zoya
Zoya
Zoya
Zoya
Zoya

Peled

Peled

Peled

Buck

Buck

Buck

Buck

Suurs

Suurs

Suurs

Suurs

Suurs

King

King

King

King

King

King

Cameron
Cameron
Cameron
Cameron
Cameron
Cameron
Cameron
DoTlgopyatova
DoTlgopyatova
Dolgopyatova
DoTlgopyatova
DoTlgopyatova
Dolgopyatova
Dolgopyatova
DoTlgopyatova

Chapter 3 Joins

111

112

Microsoft SQL Server 2008 T-SQL Fundamentals

Next, filter the rows based on the predicate El.empid < E2.empid, and you are left with only
three rows:

El.empid E2.empid
1 2
1 3
2 3

Multi-Table Joins

A join table operator operates only on two tables, but a single query can have multiple joins.

In general, when more than one table operator appears in the FROM clause, the table operators
are logically processed from left to right. That is, the result table of the first table operator is
served as the left input to the second table operator; the result of the second table operator is
served as the left input to the third table operator and so on. So if there are multiple joins in the
FROM clause, logically the first join operates on two base tables, but all other joins get the result
of the preceding join as their left input. With cross joins and inner joins, the database engine can
(and often does) internally rearrange join ordering for optimization purposes because it won't
have an impact on the correctness of the result of the query.

As an example, the following query joins the Customers and Orders tables to match customers
with their orders, and joins the result of the first join with the OrderDetails table to match
orders with their order lines:

SELECT
C.custid, C.companyname, O.orderid,
OD.productid, OD.qty
FROM Sales.Customers AS C
JOIN Sales.Orders AS O
ON C.custid = O.custid
JOIN Sales.OrderDetails AS OD
ON O.orderid = OD.orderid;

This query returns the following output, shown here in abbreviated form:

custid companyname orderid productid qty
85 Customer ENQZT 10248 11 12
85 Customer ENQZT 10248 42 10
85 Customer ENQZT 10248 72 5
79 Customer FAPSM 10249 14 9
79 Customer FAPSM 10249 51 40
34 Customer IBVRG 10250 41 10
34 Customer IBVRG 10250 51 35
34 Customer IBVRG 10250 65 15
84 Customer NRCSK 10251 22 6
84 Customer NRCSK 10251 57 15

(2155 row(s) affected)

Chapter 3 Joins 113

Outer Joins

Outer joins are usually harder for people to grasp compared to the other types of joins. First
| will describe the fundamentals of outer joins. If by the end of the section “Fundamentals of
Outer Joins,” you feel very comfortable with the material and are ready for more advanced
content, you can read an optional section describing aspects of outer joins that are beyond
the fundamentals. Otherwise, feel free to skip that part and return to it when you feel com-
fortable with the material.

Fundamentals of Outer Joins

Outer joins were introduced in ANSI SQL-92 and unlike inner and cross joins, they only have
one standard syntax—the one where you specify the JOIN keyword between the table
names, and the join condition in the ON clause. Outer joins apply the two logical processing
phases that inner joins apply (Cartesian product and the ON filter), plus a third phase called
Adding Outer Rows that is unique to this type of join.

In an outer join you mark a table as a “preserved” table by using the keywords LEFT OUTER
JOIN, RIGHT OUTER JOIN, or FULL OUTER JOIN between the table names. The OUTER
keyword is optional. The LEFT keyword means that the rows of the left table are preserved,
the RIGHT keyword means that the rows in the right table are preserved, and the FULL
keyword means that the rows in both the left and right tables are preserved. The third logical
query processing phase of an outer join identifies the rows from the preserved table that

did not find matches in the other table based on the ON predicate. This phase adds those
rows to the result table produced by the first two phases of the join, and uses NULLs as place
holders for the attributes from the nonpreserved side of the join in those outer rows.

A good way to understand outer joins is through an example. The following query joins the
Customers and Orders tables based on a match between the customer’s customer ID and the
order’s customer ID to return customers and their orders. The join type is a left outer join;
therefore, the query also returns customers who did not place any orders in the result:

SELECT C.custid, C.companyname, O.orderid
FROM Sales.Customers AS C
LEFT OUTER JOIN Sales.Orders AS O
ON C.custid = O.custid;

This query returns the following output, shown here in abbreviated form:

custid companyname orderid
1 Customer NRZBB 10643
1 Customer NRZBB 10692
1 Customer NRZBB 10702
1 Customer NRZBB 10835
1 Customer NRZBB 10952

114

Microsoft SQL Server 2008 T-SQL Fundamentals

21 Customer KIDPX 10414
21 Customer KIDPX 10512
21 Customer KIDPX 10581
21 Customer KIDPX 10650
21 Customer KIDPX 10725
22 Customer DTDMN NULL
23 Customer WVFAF 10408
23 Customer WVFAF 10480
23 Customer WVFAF 10634
23 Customer WVFAF 10763
23 Customer WVFAF 10789
56 Customer QNIVZ 10684
56 Customer QNIVZ 10766
56 Customer QNIVZ 10833
56 Customer QNIVZ 10999
56 Customer QNIVZ 11020
57 Customer WVAXS NULL
58 Customer AHXHT 10322
58 Customer AHXHT 10354
58 Customer AHXHT 10474
58 Customer AHXHT 10502
58 Customer AHXHT 10995
91 Customer CCFIZ 10792
91 Customer CCFIZ 10870
91 Customer CCFIZ 10906
91 Customer CCFIZ 10998
91 Customer CCFIZ 11044

(832 row(s) affected)

Two customers in the Customers table did not place any orders. Their IDs are 22 and 57.
Observe that in the output of the query both customers are returned with NULLs in the
attributes from the Orders table. Logically, the rows for these two customers were filtered out
by the second phase of the join (filter based on the ON predicate), but the third phase added
those as outer rows. Had the join been an inner join, these two rows would not have been
returned. These two rows are added to preserve all the rows of the left table.

You can consider two kinds of rows in the result of an outer join in respect to the preserved
side—inner rows and outer rows. Inner rows are rows that have matches in the other side
based on the ON predicate, and outer rows are rows that don't. An inner join returns only
inner rows, while an outer join returns both inner and outer rows.

A common question when using outer joins that is the source of a lot of confusion is whether
to specify a predicate in the ON or WHERE clauses of a query. You can see that with respect
to rows from the preserved side of an outer join, the filter based on the ON predicate is not
final. In other words, the ON predicate does not determine whether the row will show up in
the output, only whether it will be matched with rows from the other side. So when you need
to express a predicate that is not final—meaning a predicate that determines which rows

Chapter 3 Joins 115

to match from the nonpreserved side—specify the predicate in the ON clause. When you
need a filter to be applied after outer rows are produced, and you want the filter to be final,
specify the predicate in the WHERE clause. The WHERE clause is processed after the FROM
clause—namely, after all table operators were processed and (in the case of outer joins), after
all outer rows were produced. Also, the WHERE clause is final with respect to rows that it
filters out, unlike the ON clause.

Suppose that you need to return only customers who did not place any orders, or more
technically speaking, you need to return only outer rows. You can use the previous query as
your basis, and add a WHERE clause that filters only outer rows. Remember that outer rows are
identified by the NULLs in the attributes from the nonpreserved side of the join. So you can
filter only the rows where one of the attributes in the nonpreserved side of the join is NULL,
like so:

SELECT C.custid, C.companyname
FROM Sales.Customers AS C
LEFT OUTER JOIN Sales.Orders AS O
ON C.custid = O.custid
WHERE O.orderid IS NULL;

This query returns only two rows, with the customers 22 and 57:

custid companyname
22 Customer DTDMN
57 Customer WVAXS

(2 row(s) affected)

Notice a couple of important things about this query. Recall the discussions about NULLs
earlier in the book: When looking for a NULL you should use the operator IS NULL and
not an equality operator, because an equality operator comparing something with a NULL
always returns UNKNOWN—even when comparing two NULLs. Also, the choice of which
attribute from the nonpreserved side of the join to filter is important. You should choose
an attribute that can only have a NULL when the row is an outer row and not otherwise
(for example, a NULL originating from the base table). For this purpose, three cases are
safe to consider—a primary key column, a join column, and a column defined as NOT
NULL. A primary key column cannot be NULL; therefore, a NULL in such a column can
only mean that the row is an outer row. If a row has a NULL in the join column, that row
is filtered out by the second phase of the join, so a NULL in such a column can only mean
that it's an outer row. And obviously a NULL in a column that is defined as NOT NULL can
only mean that the row is an outer row.

To practice what you've learned and get a better grasp of outer joins, make sure that you
perform the exercises for this chapter.

116

Microsoft SQL Server 2008 T-SQL Fundamentals

Beyond the Fundamentals of Outer Joins

This section covers more advanced aspects of outer joins and is provided as optional reading
for when you feel very comfortable with the fundamentals of outer joins.

Including Missing Values

You can use outer joins to identify and include missing values when querying data. For example,
suppose that you need to query all orders from the Orders table in the TSQLFundamentals2008
database. You need to ensure that you get at least one row in the output for each date in the
range January 1, 2006 through December 31, 2008. You don't want to do anything special with
dates within the range that have orders. But you do want the output to include the dates with
no orders, with NULLs as placeholders in the attributes of the order.

To solve the problem, you can first write a query that returns a sequence of all dates in
the requested date range. You can then perform a left outer join between that set and the
Orders table. This way the result also includes the missing order dates.

To produce a sequence of dates in a given range, | usually use an auxiliary table of numbers.

| create a table called Nums with a column called n, and populate it with a sequence of
integers (1, 2, 3, and so on). | find that an auxiliary table of numbers is an extremely powerful
general-purpose tool that | end up using to solve many problems. You need to create it only
once in the database and populate it with as many numbers as you might need. Run the code
in Listing 3-1 to create the Nums table in the dbo schema and populate it with 100,000 rows:

LISTING 3-1 Code to Create and Populate the Auxiliary Table Nums

SET NOCOUNT ON;

USE TSQLFundamentals2008;

IF OBJECT_ID('dbo.Nums', 'U') IS NOT NULL DROP TABLE dbo.Nums;
CREATE TABLE dbo.Nums(n INT NOT NULL PRIMARY KEY);

DECLARE @i AS INT = 1;

/5‘:

Note:

The ability to declare and initialize variables in one statement
is new in Microsoft SQL Server 2008.

In earlier versions use separate DECLARE and SET statements:

DECLARE @i AS INT;
SET @i = 1;
o
BEGIN TRAN
WHILE @i <= 100000
BEGIN
INSERT INTO dbo.Nums VALUES(@i);
SET @ = @i + 1;
END
COMMIT TRAN
SET NOCOUNT OFF;

Chapter 3 Joins 117

Note Don't worry if you don't yet understand some parts of the code, such as using variables
and loops—those are explained later in the book. For now, it's enough to understand what this
code is supposed to do; how it does it is not the focus of discussion here. But in case you're
curious and cannot resist, you can find details in Chapter 10, “Programmable Objects.” | should
point out, however, that declaring and initializing variables in the same statement is new in SQL
Server 2008 as the block comment that appears in the code explains. If you're working with an
earlier version, you should use separate DECLARE and SET statements.

As the first step in the solution, you need to produce a sequence of all dates in the requested
range. You can achieve this by querying the Nums table, and filtering as many numbers

as the number of days in the requested date range. You can use the DATEDIFF function to
calculate that number. By adding n - 1 days to the starting point of the date range (January
1, 2006) you get the actual date in the sequence. Here's the solution query:

SELECT DATEADD(day, n-1, '20060101') AS orderdate
FROM dbo.Nums

WHERE n <= DATEDIFF(day, '20060101', '20081231') + 1
ORDER BY orderdate;

This query returns a sequence of all dates in the range January 1, 2006 through December 31,
2008, as shown here in abbreviated form:

orderdate

2006-01-01 00:00:00.000
2006-01-02 00:00:00.000
2006-01-03 00:00:00.000
2006-01-04 00:00:00.000
2006-01-05 00:00:00.000

2008-12-27 00:00:00.000
2008-12-28 00:00:00.000
2008-12-29 00:00:00.000
2008-12-30 00:00:00.000
2008-12-31 00:00:00.000

(1096 row(s) affected)

The next step is to extend the previous query, adding a left outer join between Nums and
the Orders tables. The join condition compares the order date produced from the Nums
table using the expression DATEADD(day, Nums.n - 1, '20060101') and the orderdate from
the Orders table like so:

SELECT DATEADD(day, Nums.n - 1, '20060101') AS orderdate,
0.orderid, O.custid, O.empid
FROM dbo.Nums
LEFT OUTER JOIN Sales.Orders AS O
ON DATEADD(day, Nums.n - 1, '20060101') = O.orderdate
WHERE Nums.n <= DATEDIFF(day, '20060101', '20081231') + 1
ORDER BY orderdate;

118 Microsoft SQL Server 2008 T-SQL Fundamentals

This query produces the following output, shown here in abbreviated form:

orderdate orderid custid empid
2006-01-01 00:00:00.000 NULL NULL NULL
2006-01-02 00:00:00.000 NULL NULL NULL
2006-01-03 00:00:00.000 NULL NULL NULL
2006-01-04 00:00:00.000 NULL NULL NULL
2006-01-05 00:00:00.000 NULL NULL NULL
2006-06-29 00:00:00.000 NULL NULL NULL
2006-06-30 00:00:00.000 NULL NULL NULL
2006-07-01 00:00:00.000 NULL NULL NULL
2006-07-02 00:00:00.000 NULL NULL NULL
2006-07-03 00:00:00.000 NULL NULL NULL
2006-07-04 00:00:00.000 10248 85 5
2006-07-05 00:00:00.000 10249 79 6
2006-07-06 00:00:00.000 NULL NULL NULL
2006-07-07 00:00:00.000 NULL NULL NULL
2006-07-08 00:00:00.000 10250 34 4
2006-07-08 00:00:00.000 10251 84 3
2006-07-09 00:00:00.000 10252 76 4
2006-07-10 00:00:00.000 10253 34 3
2006-07-11 00:00:00.000 10254 14 5
2006-07-12 00:00:00.000 10255 68 9
2006-07-13 00:00:00.000 NULL NULL NULL
2006-07-14 00:00:00.000 NULL NULL NULL
2006-07-15 00:00:00.000 10256 88 3
2006-07-16 00:00:00.000 10257 35 4
2008-12-27 00:00:00.000 NULL NULL NULL
2008-12-28 00:00:00.000 NULL NULL NULL
2008-12-29 00:00:00.000 NULL NULL NULL
2008-12-30 00:00:00.000 NULL NULL NULL
2008-12-31 00:00:00.000 NULL NULL NULL

(1446 row(s) affected)

Order dates that do not appear in the Orders table appear in the output of the query with
NULLs in the order attributes.

Filtering Attributes from the Nonpreserved Side of an Outer Join

When you need to review code involving outer joins to look for logical bugs, one of the
things you should examine is the WHERE clause. If the predicate in the WHERE clause refers
to an attribute from the nonpreserved side of the join using an expression in the form
<attribute> <operator> <value>, it's usually an indication of a bug. This is because attributes
from the nonpreserved side of the join are NULLs in outer rows, and an expression in the
form NULL <operator> <value> yields UNKNOWN (unless it's the IS NULL operator explicitly
looking for NULLs). Recall that a WHERE clause filters UNKNOWN out. Such a predicate in

Chapter 3 Joins 119

the WHERE clause causes all outer rows to be filtered out, effectively nullifying the outer join.
In other words, it's as if the join type logically becomes an inner join. So the programmer
either made a mistake in the choice of the join type, or made a mistake in the predicate. If
this is not clear yet, the following example might help. Consider the following query:

SELECT C.custid, C.companyname, O.orderid, O.orderdate
FROM Sales.Customers AS C
LEFT OUTER JOIN Sales.Orders AS O
ON C.custid = O.custid
WHERE O.orderdate >= '20070101';

The query performs a left outer join between the Customers and Orders tables. Prior to
applying the WHERE filter, the join operator returns inner rows for customers who placed
orders, and outer rows for customers who didn’t place orders, with NULLs in the order
attributes. The predicate O.orderdate >= '20070101" in the WHERE clause evaluates to
UNKNOWN for all outer rows because those have a NULL in the O.orderdate attribute.

All outer rows are eliminated by the WH