Foreword by Andrew Bybee ﬁ

Principal Program Manager, Microsoft Dynamics CRM

Programming

Microsoft

Dynamics CRM 4.0

Jim Steger, Mike Snyder, Brad Bosak,
Corey O'Brien, Philip Richardson

RRRRRRRRR

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2009 by Jim Steger and Mike Snyder

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2008935422

Printed and bound in the United States of America.

123456789 QWT 321098

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly at
fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, Access, ActiveX, IntelliSense, MS, MSDN, MS-DOS, PowerPoint, Silverlight, SQL Server,
Visio, Visual Basic, Visual C#, Visual Studio, Windows, and Windows Vista are either registered trademarks or trademarks
of the Microsoft group of companies. Other product and company names mentioned herein may be the trademarks of their
respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ben Ryan

Developmental Editor: Devon Musgrave

Project Editor: Lynn Finnel

Editorial Production: ICC Macmillan, Inc.

Technical Reviewer: Elliot Lewis; Technical Review services provided by Content Master, a member of CM Group, Ltd.
Cover: Tom Draper Design

Body Part No. X14-95064

Contents at a Glance

Part |

Part I

00 N O U

Part 1l

10
11
12
13
14
15

Overview

Microsoft Dynamics CRM 4.0 SDK Overview 3
Development Overview and Environment 19
Communicating with Microsoft CRMAPIs.................. 49

Extending Microsoft CRM

SECUNEY. . ot 79
Plug-ins. e 109
Programming Workflow 169
Form Scripting. ... i 233
Developing with the Metadata Service.................... 271

Advanced Topics

Deployment.t i i e 313
Developing Offline Solutions 347
Multilingual and Multi-Currency Applications.............. 375
Advanced Workflow Programming....................... 407
Emulating User Interface with ASP.NET Development 449
Developing Custom Microsoft CRM Controls 493
Additional Samples and Utilities.......................... 549

Table of Contents

Foreword e XV
Acknowledgments. i e Xvii
Jim Steger’s Acknowledgments. xviii

Mike Snyder’s Acknowledgments............ i xviii

Brad Bosak’s Acknowledgments xviii

Corey O'Brien’s Acknowledgments. Xviii

Philip Richardson’s Acknowledgments. Xix
Introduction e XXi
Who This Book Is FOr. XXi
What This Book Is About XXil
Companion Content o XXiii
System Requirementso XXIV
Client .. XXiV

Y=Y Y= XXiv

Find Additional Content Online........ ... o .. XXiv
Support for This Book XXV
Questionsand Comments XXV

Part| Overview

1 Microsoft Dynamics CRM 4.0 SDK Overview 3
Software Development Kit Introduction, 4
Hitchhiker's Guide to Common Questions.cooviiiiiaen... 5

Can we alter the CRM database structure to add our

custom tables and columns? 5
How do we write custom code that gets data into and out

of Microsoft Dynamics CRM?. 7
Can we change the current CRM form layouts and controls? 8

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and
learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey

vi

Table of Contents

How do we implement our own custom business logic? 9
How much control do we have over the user interface
and branding? 12
How do we deploy changes from one system to another? 13
Will our customizations upgrade when Microsoft releases
a new version of the software? i 14
Are role-based security permissions supported and configurable?....15
Does Microsoft Dynamics CRM support multiple languages
aNd CUMTENCIES?. . . ettt et 15
Will our programming customizations run offline?............... ... 16
How do you recommend we set up a Microsoft
Dynamics CRM development environment?........................ 16
Microsoft Dynamics CRM as a Business Application Platform.............. 17
SUMMIAIY .« .ttt e e e e e e 18
2 Development Overview and Environment 19
Microsoft Dynamics CRM 4.0 System Overview.......................... 19
Microsoft Dynamics CRM 4.0 Versions., 20
Microsoft Dynamics CRM Components.coviuiienann... 20
LiCeNSINg .« .o 21
Server ROIES. 22
Hardware Requirements.t 23
Microsoft Dynamics CRM 4.0 Web Server Requirements............. 23
Virtualization 24
Development Environment. 24
Server Environment Development Options. 25
Developing Customizations Accessed From Outlook 32
Testing Environment Considerations, 33
Migrating Datat 34
Redeployment 36
Development ToOoIso 40
Integrated Development Environment (IDE)........................ 41
Source CONtrol . ..ot 41
Continuous Integration Tool 42
Installero 42
Additional Development Utilities 45
Additional Development Considerations. 46

SUMMIAIY .« .ttt e e e e e e 47

Table of Contents vii

3 Communicating with Microsoft CRMAPIs 49
Overview of the Microsoft Dynamics CRM 4.0SDK. 49
Accessing the APIs in Visual Studio 2008.............., 50
CrmService Web Service 54

Authentication 56
Common Methods. 58
Execute Method 62
Request and Response Classesoiiineeeeiiiiinn.. 63
DynamicEntity Class. 65
Attributes. . .. 66
MetadataService Web Service 66
CrmDiscoveryService Web Service. i 67
Connecting to Microsoft Dynamics CRM IFD 69
Connecting to Microsoft Dynamics CRM Offline......................... 70
Connecting to Microsoft Dynamics CRM Online 70
SUMIMIATY e e e e 75

Part Il Extending Microsoft CRM

4 SECUNEY. ..ottt i e e e e 79
Role-Based and Object-Based Security 80
Security Principals 81
ACCess Rights. ... 81
IMpPersonation. 82

Impersonation for Web applications 82
Impersonation for Plug-ins i i 83
Using the Microsoft Dynamics CRM SDK to Perform
Security-Related Operations i 85
Programmatically Creating a Security Role and
Adding Privileges. 85
Programmatically Assigning a SecurityRole........................ 87
Retrieving Roles and Privilegeso i i i i 88
Sharing Recordst 90
Assigning Records 93
Using Direct SQL for Accessing Microsoft Dynamics CRM Data 94
Determining the Organization’s Connection String. 95
Filtered Views 96

Additional Programming Considerations with Filtered Views......... 98

viii Table of Contents

Data EnCryption 100
One-Way Encryption. ... 100
Two-Way Encryption 103

SUMMIAIY .« .t e e e 107

5 Plug-ins. ..o e e 109

Writing Your First Plug-in. 110
Creating the Plug-in Project. i, 110
Implementing the Plug-inClass 111
Building the Registration Tool i i i i, 113
Deploying the Plug-in. 113

The Event Execution Pipeline........... .. i 120
Supported Messages and Entities...................... L. 120
Parent and Child Pipelines 121

IPluginExecutionContext 122

IMPEersonNation. e 126
Impersonation During Registration 126
Impersonation During Execution, 127

Exception Handling 127
Exceptions and the Event Processing Pipeline 127
Exception Feedback. 127

Deployment 128
Plug-in Entities 128
Programmatic Plug-in Registration 128
NagES . oo 138
Programmatic Image Registration, 139
Custom Configuration. i 147
Deploying Referenced Assemblies, 147

Debugging Plug-ins. 149
Remote Debugging.o 149
LOggiNg . .o 149

Unit TeSting . ..ot 150
Mock Objects oo 150
Test Frameworks. 151
Sample Test. 151

Sample PlUg-ins . ..o 156
Rolling Up Child Entity Attributes to a Parent Entity................ 156
System View Hider. 161
Customization Change Notifier.................................. 162

SUMMIAIY .« .t e e 168

Table of Contents

6 Programming Workflow 169
OVEIVIBW . . ot e 170
The Workflow Designer.t 170

Testing the Workflow 176
Workflow Definitions. 178
Dynamic Values in Workflow. o i i i i i 181
Windows Workflow Foundation i 185
ACHIVITIES oo 186
Dynamic Value Binding.o 187
Custom Workflow Activities. ... 188
Implementing a Custom Activity. o i i i 188
Deploying the Custom Assembly 193
Testing the Custom Activity.......... ..., 197
Investigating Custom Activity Errors 201
CRM Workflow Attributes. 203
Workflow Context 204
Entity Images in Custom Workflow Activities...................... 206
Workflow Designer Limitations. 213
Example Activities: Math Building Blocks. 214
Example Activity: Retrieve Most Available User 216
Example Activity: Calculate Related Aggregate 221
SUMMAANY .. 231
7 FormScripting. it 233
Form Scripting OVerview oo 234
Understanding Client-Side Scripting with Microsoft
Dynamics CRM 234
Referencing Microsoft Dynamics CRM Elements................... 234
Available Events 238
Calling Web Services from Script. 241
Using the CRM API SOAP Request from Script................coooo... 241
Testing and Deployment. 244
Scripting from ISV.Config Buttons. 248
Advanced TOPICS. . .. vttt 253
Form Type Considerations 253
Cross-Site Scripting (XSS) . ..o 255
Using Script for Validation 257

Loading External JavaScript Files. 259

Table of Contents

Scripting EXamples. . ..o 261
Display Customer Information ina ToolTip........................ 262
Setting the Form’s Titleat Run Time. 265
Enhancing the Form’s Displayco i i i i, 266

SUMMaAIY .« e e e 269

8 Developing with the Metadata Service.................... 271

Connecting to the MetadataService 273
Referencing the MetadataService 273
Locating the Endpoints........ 273
Microsoft Dynamics CRM Security, 277

Retrieving Metadataoo i 278
Names Used in the MetadataService 279
Retrieving Entities 279
Retrieving Attributes and Relationships................... 282
Multilingual Strings 285

Remote Customization ... 288
ENntities . . 288
AttribUtes. . . . 292
Relationships. 298
Publishing Metadata............ ... i 304

Cachingthe Metadata. i 304
Using the Timestamp 304
Example File System Cache 305

Handling Errors. ... 308

SUMMAIY .« o e 309

Part Il Advanced Topics

9 Deployment...... ... e 313
Common Deployment Steps 313

BUIld . 314

Install 315

ConfiguIe. . . 317

Uninstall. . ..o 319

Deploying Microsoft Dynamics CRM Components 320
CUStOMIZAtioONS. . . . 321

Workflow Rules, Templates, and Security Roles.................... 323

Table of Contents xi

User Interface Changes (Forms, ISV.Config, and Sitemap) 324
CustomWeb Pages 325
Plug-in and Workflow Assemblies 326
Online Help. ..o 328
Custom Reportso 329
Configuration Settings 330
Offline Application Deployment. i 330
Offline Web Applications i 330
Plug-in Allow List. 331
Testing Strategies.o 333
Server TOpologiesttt 334
Operating Systems. 334

Web Browsers. 334
Database Servers. ... 335
Authentication 335
Multi-Tenant 335
Multilingual. 336
Accessibility. 336
Additional Deployment Considerations.cooiiiiaa ... 340
Missing Prerequisites. 341
Resetting 1S . ..o 343
Customizations Management 343
Example Deployment Sequence 343
Component Inventory. ... 344

BUild . . 344
Install ..o 344
Configuration 345
Uninstall. 345
SUMIMIAIY ettt e e e e 346
10 Developing Offline Solutions 347
OVEIVIEW . . ottt e e 348
Offline Development Environment. 349
Workstation 349
LA oD - o 350
Virtual PC Lo 350

xii Table of Contents

Communicating with the Microsoft Dynamics CRM SDK API Offline....... 352
CrmService Offline. 352
MetadataService Offline. 353
Microsoft Dynamics Outlook SDK. oo i i, 354

Scripting for Offline. 355

Developing IFrames for Offline i, 356
Programming the IFrame. 356
Deploying the [Frame Page 361
Testing the IFrame Page Offline 365

Developing an Offline Plug-in............. i, 367
Programming the Plug-in....... i i i i 367
Deploying the Plug-in. ... 371
Testing the Plug-in. 371

Offline Development Considerations., 372

SUMIMaAIY .« e e e 373

11 Multilingual and Multi-Currency Applications.............. 375

Programming for Multilingual Applications 375
CrmService Messages for Multilingual Support.................... 376
Using the Metadata Service for Multilingual Applications........... 385
Using Resource Assemblies for Multilingual Strings 395

Programming for Multi-Currency Applications 403

SUMMIAIY .« .ttt e e 405

12 Advanced Workflow Programming....................... 407

Custom Workflow Manager Tool. ..., 407

Workflows as Entities. 409
The workflow Entity 409
Interacting with Workflows Through CrmService................... 411
Workflow Publication 412
The workflowdependency Entity 413
Retrieving Workflow Dependencies. 418

Declarative Workflows. 419
XAML SYNEaX. ..ot 419
XAML in Microsoft Dynamics CRM. ..., 420
Creating Your First Declarative Workflow 421

Declarative Workflow Deployment. 429

Table of Contents

Examining Native Workflow XAML. 442
Exporting Workflows Programmatically 444
SUMMANY . oo e 448
13 Emulating User Interface with ASP.NET Development 449
[Frame Development. 450
Programming the IFrame. i i i i 451
Deploying and Testing the [Frame 460
Dialog Box Developmentooiiiii 464
Programming the Dialog Boxo i i 465
Deploying and Testing the Dialog Box. 476

ISV Page Development 478
Programming the ISV Page i 479
PopulatelLeadTable and PopulateOpportunityTable 489
PopulateActivityTable Method. 490
Deploying and Testingthe ISV Page 490
SUMMAATY .o e 491
14 Developing Custom Microsoft CRM Controls 493
OVEIVIEW . . oot et e e 494
CrmPicklistControl 496
Programming the CrmPicklistControl 496
Testing the CrmPicklistControl. 502
CrmBooleanControl 503
Programming the CrmBooleanControl............................ 503
Testing the CrmBooleanControl............ 506
CrmDateTimeControl. e 507
Programming the CrmDateTimeControl 507
Testing the CrmDateTimeControl 515
CrmEntityPicklistControl 516
Programming the CrméEntityPicklistControl........................ 516
Testing the CrméEntityPicklistControl......... 521
CrmGridViewControl 523
Programming the CrmGridViewControl 523
Testing the CrmGridViewControl. 545

SUMIMATY ot e e 548

xiii

xiv Table of Contents

15 Additional Samples and Utilities.......................... 549
Utility Classeso 549
MetadataUtility Class. 552
Customizations Utility 553
Additional Script Samples. 556
Conditionally Enabling Attributes., 556

Hiding Navigation LinksonaForm 558

Field-Level Security 563
Hiding Tabs and Fieldsona Form.......... 564

Field-Level Security Script 566

Field-Level Security Script Example 572

SUMIMAIY .« e e 580
INdeX. . oo e 581

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and
learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey

Foreword

Welcome to the world of developing business solutions with Microsoft Dynamics CRM!

For a long time, professional developers building business applications have been forced to
choose between two equally unappealing alternatives when designing their solution—either
buy an off-the-shelf package and have their hands tied with closed, proprietary designs; or
build their own solution from scratch using commonly available technology and spend the
majority of the project implementing the “basics” (again!) such as storage, security, and a
user interface framework.

Microsoft Dynamics CRM is committed to providing a third way—a flexible architectural
model that combines the power of the Microsoft platform with the appeal of a familiar
Microsoft Office—style user experience and configurable business process. More important,
although the power and value of Microsoft Dynamics CRM are most easily applied to sales,
service, and marketing scenarios, the product’s capabilities easily provide a platform for
enabling a wide range of business processes and applications.

Put simply, Microsoft Dynamics CRM makes delivering the basics easy and lets you apply
your energy and creativity where it matters the most—solving unique problems and helping
the business succeed with intelligent solutions.

In the end, the most important element of any business application development project is
you—the developer. With this book, the authors make it easy for you to benefit from their
years of practical experience working with customers and other Microsoft partners to deliver
high-value CRM solutions. They explain what you need (and want) to know before you start
in on your Microsoft Dynamics CRM development project and how to get the most out of
the time that you spend. Their ability to provide clear, concise guidance across the entire
range of developer capabilities in CRM is a tremendous asset for anyone building custom
solutions with the product.

If you're just getting started as a developer working with CRM, this book will give you the
strong foundation in the core architecture, processes, and development capabilities to be
a great Dynamics CRM developer.

If you've already had some experience with the product, this book is a handy reference
that provides ideas and samples to stimulate your own creativity and help tackle common
challenges.

| hope you find this guide both as informative and useful to read as | have during my
collaboration with the authors. In the end, this book is just a first step. Whether you enjoy
building business applications for the technical challenge or for the opportunity to help the

Xvi Foreword

world run a little smoother, I'm confident that Microsoft Dynamics CRM can help you reach
your project goals faster and more effectively.

Welcome to the next generation of business application development—happy coding!

Andrew Bybee

Principal Program Manager
Microsoft Dynamics CRM
Microsoft Corporation

Acknowledgments

We want to thank all of the people who assisted us in writing this book. If we accidentally
missed anyone, we apologize in advance. We would like to extend a special thanks to the
following people:

B Elliot Lewis Elliot served as our technical reviewer for the book. Elliot's keen eye
helped refine the book's approach and ensured the accuracy of its contents. We are all
very appreciative of the effort and feedback Elliot provided.

B Andy Bybee Andy provided overall guidance and support for the book within
Microsoft. He also was gracious enough to provide the book's foreword.

In addition, we want to thank these members of the Microsoft Dynamics CRM product team
who helped us at one point or another during the book project:

Kam Baker Steven Kaplan Dominic Pouzin
Andrew Becraft Jeff Kelleran Manisha Powar
Rohit Bhatia Amit Kumar Michael Scott
Matt Cooper Donald La Nirav Shah

Jim Daly Amy Langlois John Song

Rich Dickinson Chris Laver Derik Stenerson
Ajith Gande Patrick Le Quere Craig Unger

Barry Givens Dinesh Murthy Praveen Upadhyay
Humberto Lezama Guadarrama Kevin Nazemi Mahesh Vijayaraghavan
Nishant Gupta Michael Ott Sumit Virmani
Allen Hafezipour Ramanathan Pallassana Brad Wilson

Peter Hecke Irene Pasternack Charlie Wood
Akezyt Janedittakarn Dave Porter Tobin Zerba

Thank you to the following Sonoma Partners colleagues who assisted with reviewing the
content and providing feedback:

Brian Baseggio Bob Lauer Matt Spezzano
Matt “MattDawg" Dearing Andy Meyers Matt Weiler
Jeff Klosinski Blake Scarlavai

Of course, we also want to thank the folks at Microsoft Press who helped support us
throughout the writing and publishing process:

B Ben Ryan Ben again championed the project and was an invaluable resource for the
logistics and planning.

Xvii

xviii

Acknowledgments

B Devon Musgrave Devon provided initial review for the book and provided insight
and direction with the book’s schedule.

B Lynn Finnel Lynn, our project editor, provided the day-to-day guidance and coordi-
nation of the editing process.

We also wanted to extend our thanks to the rest of the production team who provided
editorial feedback.

Jim Steger’s Acknowledgments

| wish to thank my wife, Heidi, for her patience and for continuing to support me during this
arduous process again. | want to thank both of my children, who continue to grow, impress,
and motivate me. | also received input from numerous members of the Microsoft Dynamics
CRM product team, and | want to extend my thanks to them as well. Finally, | wish to express
my gratitude to my associates at Sonoma Partners who really stepped up their efforts and
understanding while | was forced to prioritize my writing over some of my day-to-day duties.

Mike Snyder’'s Acknowledgments

| want to thank my wife, Gretchen, who supported me during this project. Writing this book
required a significant time commitment above and beyond my normal work responsibilities,
but Gretchen remained supportive from start to finish. | want also to thank my children for
not deleting my completed work as they learned to play games on daddy’s computer! | want
to recognize my parents and my wife's parents who assisted my family with various baby-
sitting stints. Finally, thanks to all of my coworkers at Sonoma Partners who allowed me the
time and understanding to work on this book.

Brad Bosak's Acknowledgments

I would like to thank my family and friends for being supportive and understanding during
the writing process. I'd also like to thank my coworkers at Sonoma Partners for their patience
during the busy work days and also for their input and ideas. Finally, I'd like to thank Mike
and Jim for the opportunity to help write this book.

Corey O'Brien’s Acknowledgments

| would like to thank my wife, Pilar, for supporting me during the writing of this book. She
tirelessly took care of our newborn son, Dylan, throughout the late nights and weekends
while | was writing. I'd also like to thank my parents and my wife's parents for happily help-
ing with babysitting duties whenever we asked. I'd also like to thank all of my coworkers at

Acknowledgments Xix

Sonoma Partners for understanding that the growling was due to lack of sleep and not any-
thing they'd done wrong.

Philip Richardson’s Acknowledgments

I'd like to personally thank the CRM customers and partners who are a constant source of
inspiration for the Dynamics CRM team at Microsoft. During my tenure on the CRM team
they helped fuel my passion for the product with constant e-mails, instant messages, and
meetings at various conferences. On a personal note, I'd like to thank my wife, Ellie, who is
ever supportive of my profession regardless of the unusual working hours which it demands.
Finally, I'm ever appreciative of Sonoma Partners for asking me to contribute to this book.

Introduction

If your organization has customers, you need a software system to help you manage your
customer information. Unfortunately, many companies today are stuck using antiquated
customer systems that don't integrate with Microsoft Office Outlook, aren’t available from
the Web, and can't be accessed via mobile devices. Even worse, some companies rely on
Outlook contacts and Microsoft Office Excel files for precious customer data, making team
collaboration on these records very difficult.

You probably already know that Microsoft offers a Customer Relationship Management
(CRM) software solution as part of its Dynamics family. Microsoft Dynamics CRM is an
easy-to-use application that businesses of all sizes and types can utilize. One of Microsoft
Dynamics CRM's most important benefits is its native integration with other Microsoft pro-
ductivity tools: Outlook, Excel, and Microsoft Office Word. Microsoft Dynamics CRM allows
organizations to manage their sales, marketing, and customer service information more
efficiently, leading to higher sales revenue and improved customer satisfaction.

But just as important as Microsoft Dynamics CRM's integration with other Microsoft tools,
Microsoft Dynamics CRM offers developers a powerful customization and programming
platform that you can use to satisfy almost any business requirement. This book provides

a detailed explanation of the key areas in the Software Development Kit (SDK) and the
Web-service—based Application Programming Interfaces (APIs). This book includes plenty of
code samples and examples on topics such as form scripting, plug-ins, workflow assemblies,
customizing the user interface, and more.

Programming Microsoft Dynamics CRM 4.0 was written by the consulting firm Sonoma
Partners. Our firm has written several other successful titles for Microsoft Press, such as
Microsoft Dynamics CRM 4.0 Step by Step (2008) and Working with Microsoft Dynamics

CRM 4.0, Second Edition (2008). We tried to bring our real-world customer experiences to
the writing process and share the most relevant information we think you'll need to program
with the latest version of Microsoft Dynamics CRM 4.0.

Who This Book Is For

We wrote this book for professional developers who want to use the Microsoft Dynamics
CRM SDK and its APIs to extensively customize the software application. We assume that
you're comfortable working with .NET solutions and Web services. In addition, we also
assume that you have a basic understanding of how to navigate the Microsoft Dynamics
CRM interface and you understand its configuration capabilities. If you're looking for a

xxi

xxii

Introduction

detailed explanation of the Web-based configuration tools that Microsoft Dynamics CRM
offers, please refer to Working with Microsoft Dynamics CRM 4.0, Second Edition, which
explains these topics in great detail. If you're brand new to Microsoft Dynamics CRM, and
you want to learn how to navigate through the user interface (from an end-user perspective),
you can refer to Microsoft Dynamics CRM 4.0 Step by Step, which explains various day-to-day
tasks such as creating accounts, logging a phone call, tracking an e-mail, and so on.

What This Book Is About

We divided this book into 15 chapters:

Chapter 1, "Microsoft Dynamics CRM 4.0 SDK Overview," introduces the Microsoft Dynamics
CRM Software Development Kit (SDK) and outlines the most common questions that devel-
opers might ask about developing within Microsoft Dynamics CRM.

Chapter 2, "Development Overview and Environment,” provides information about the
various software editions and looks at the unique Microsoft Dynamics CRM issues related to
setting up a development environment.

Chapter 3, "Communicating with Microsoft CRM APIs,” explains how to programmatically
connect with the Microsoft Dynamics CRM APIs. This chapter also covers how you connect
to the APIs in the various deployment options: on-premise, Internet-facing, and Microsoft
Dynamics CRM Online.

Chapter 4, "Security,” supplies information about how your custom code interacts with the
Microsoft Dynamics CRM security model. This chapter also takes a look at using custom code
to encrypt specific data attributes.

Chapter 5, "Plug-ins,” offers a detailed look at the Microsoft Dynamics CRM plug-in model.
This includes creating the project, registering the plug-in, deploying the plug-in, and then
working with the IPluginExecutionContext.

Chapter 6, “Programming Workflow,” examines the Microsoft Dynamics CRM workflow
module and how it takes advantage of the Windows Workflow Foundation. More important,
this chapter explains how you can create your own custom workflow activities that you can
reference in Microsoft Dynamics CRM workflow rules.

Chapter 7, “Form Scripting,” explains the client-side scripting model. The chapter also
provides examples of how you can create custom client-side code that calls Web services, run
scripts from ISV.Config buttons, and so on.

Introduction xxiii

Chapter 8, "Developing with the Metadata Service,” explains the Microsoft Dynamics CRM
MetadataService, and how you can use this APl to programmatically retrieve and modify data
about the system schema.

Chapter 9, "Deployment,” explains various topics related to deploying your Microsoft
Dynamics CRM solution from one environment to another.

Chapter 10, “Developing Offline Solutions,” outlines the nuances of writing custom code that
works properly using Microsoft Dynamics CRM for Outlook with Offline Access.

Chapter 11, “Multilingual and Multi-Currency Applications,” offers a look at how to use
Microsoft Dynamics CRM's multilingual and multi-currency functionality within your custom
code to support global deployments.

Chapter 12, “Advanced Workflow Programming,” goes deeper into programming the
Microsoft Dynamics CRM workflow functionality, and explains how you can create custom
workflow activities with XAML.

Chapter 13, “Emulating User Interface with ASP.NET Development,” shows how you can
create custom Web pages and user interfaces that blend seamlessly into the out-of-the-box
Microsoft Dynamics CRM user interface, which provides a better end-user experience for
your organization.

Chapter 14, “"Developing Custom Microsoft CRM Controls,” provides examples of creating
custom user controls that reference Microsoft Dynamics CRM data.

Chapter 15, “Additional Samples and Utilities,” discusses some of the utility classes and code
used in the previous chapters as well as providing additional examples using the Microsoft
Dynamics CRM technologies.

Companion Content

This book features a companion Web site that makes available to you all the code used in the
book. This code is organized by chapter, and you can download it from the companion site
at the following URL: http.//www.microsoft.com/mspress/companion/9780735625945.

XXiv Introduction

System Requirements

We recommend that you refer to the Microsoft Dynamics CRM Implementation Guide for
detailed system requirements. From a high level, you'll need the following hardware and
software to run the code samples in this book:

Client

B Microsoft Windows XP with Service Pack 2 (SP2) or the Windows Vista operating
system

B Microsoft Internet Explorer 6 SP1 or Internet Explorer 7
B Microsoft Visual Studio 2005 or Microsoft Visual Studio 2008 (for the code samples)

B Microsoft Office 2003 with SP3 or the 2007 Microsoft Office System with SP1 (if you
want to use Microsoft Dynamics CRM for Microsoft Office Outlook)

Server

® Microsoft Windows Server 2003 or Microsoft Windows Small Business Server 2003
B Microsoft SQL Server 2005

B Microsoft Dynamics CRM 4.0 Server license (Workgroup, Professional, or Enterprise
edition)

B Computer/processor: Dual 1.8-gigahertz (GHz) or higher Pentium (Xeon P4) or
compatible CPU

B Memory: 1 gigabyte (GB) of RAM minimum, 2 GB or more of RAM recommended
B Hard disk: 400 megabytes (MB) free space
B Network card: 10/100 Mbps minimum, dual 10/100/1000 Mbps recommended

Find Additional Content Online

As new or updated material becomes available that complements your book, it will be
posted online on the Microsoft Press Online Developer Tools Web site. The type of material
you might find includes updates to book content, articles, links to companion content, errata,
sample chapters, and more. This Web site is available at www.microsoft.com/learning/books/
online/developer, and is updated periodically.

Introduction XXV

Support for This Book

Every effort has been made to ensure the accuracy of this book and the contents of the
companion Web site. As corrections or changes are collected, they will be added to a
Microsoft Knowledge Base article.

Microsoft Press provides support for books and companion content at the following
Web site:

http://www.microsoft.com/learning/support/books/

Questions and Comments

If you have comments, questions, or ideas regarding the book or the companion Web site,
or questions that are not answered by visiting the sites above, please send them to Microsoft
Press via e-mail to

mspinput@microsoft.com
Or via postal mail to

Microsoft Press

Attn: Programming Microsoft Dynamics CRM 4.0 Editor
One Microsoft Way

Redmond, WA 98052-6399

Please note that Microsoft software product support is not offered through the above
addresses.

Chapter 1

Microsoft Dynamics CRM 4.0 SDK
Overview

You are probably reading this book because your organization recently purchased Microsoft
Dynamics CRM or because your organization is evaluating it. As a developer, you want to
know what this new software application will mean to your day-to-day life. Will it cause you
nightmares and sleepless nights? Or will it be a dream to work with and solve all your current
development headaches? As you might guess, the true answer lies somewhere in between.
However, we strongly believe that if you take the time to learn the Microsoft Dynamics
CRM application, you will find yourself much closer to the latter. If you're new to Microsoft
Dynamics CRM, your initial questions might include the following:

® Will the software limit what | can do?
B How do | customize and extend the software?

B What types of resources are available to help me with the software?

We wrote this book to explain how professional software developers can extend the
Microsoft Dynamics CRM software application to meet their business needs. To create cus-
tomizations and integrations outlined in this book, you must be comfortable developing
Web-based applications using tools such as Microsoft Visual Studio. We assume you have
working knowledge of Visual Studio and Web application configuration with Microsoft
Internet Information Services (IIS). Even if you're not a developer, you might benefit from
reading these chapters to understand the different types of customizations that the
Microsoft Dynamics CRM programming model makes possible.

From a very high level, Microsoft Dynamics CRM is just a large and sophisticated Web appli-
cation. The application serves Web pages through IIS while accessing data from a Microsoft
SQL Server database. Consequently, users access data through a Web browser, in addition to
having the option to install Microsoft Office Outlook integration software. For most devel-
opers, we recommend that they simply think of Microsoft Dynamics CRM as a typical Web
application.

This chapter introduces three topics regarding programming Microsoft Dynamics CRM:

B The Software Development Kit
B A hitchhiker’s guide to common questions

B Microsoft Dynamics CRM as a business-application platform

4 Part | Overview

The subsequent chapters dive into the Microsoft Dynamics CRM software architecture and
provide programming examples.

Software Development Kit Introduction

Like many commercial software applications, Microsoft Dynamics CRM offers a Software
Development Kit (SDK) that documents how you can customize and extend the system. The
SDK consists of many different components related to extending the software:

B A compiled Help file that documents the application’s architecture and program-
ming interfaces, provides a report writer's guide, and offers additional development
information

B Microsoft Dynamics CRM 4.0 user interface style guide

B Code samples (walkthroughs)

B Helper classes and utilities

B Graphic images

B The SDKreadme.htm file, which documents any known issues

Sometimes people refer to just the compiled help file as the SDK, but you can see all of these
documents when you download the SDK and extract the files.

v Important Microsoft updates the SDK on a periodic basis (approximately once every two
or three months), so be sure to obtain the latest version. You can download the Microsoft
Dynamics CRM 4.0 Software Development Kit at http.//www.microsoft.com/downloads/details.
aspx?FamilylD=82E632A7-FAF9-41E0-8ECI-A2662AAEIDFB.

As part of the SDK, Microsoft documents all of the supported interaction points—also known
as application programming interfaces (APIs)—that you can use when writing code that inte-
grates with Microsoft Dynamics CRM. Using the APIs for your customizations provides several
significant benefits:

B Ease of use The APIs include hundreds of pages of documentation complete with
real-world examples, code samples, and helper classes to help you write code that
works with Microsoft Dynamics CRM.

B Supportability If you encounter technical problems or issues using the APIs, you can
contact Microsoft technical support or use the Microsoft Dynamics CRM public news-
group for assistance.

B Upgrade support Microsoft makes every effort to ensure that the code you create
for Microsoft Dynamics CRM using the APIs upgrades smoothly to future versions of

Chapter 1 Microsoft Dynamics CRM 4.0 SDK Overview 5

the product, even if the underlying Microsoft SQL Server database changes radically.
This is also true for any updates and hotfixes that Microsoft might release for Microsoft
Dynamics CRM.

B Certification By following the documented APIs, you can submit your customizations
to a third-party testing vendor to certify that your application works within the con-
fines of the SDK. This certification provides comfort and reassurance for people evalu-
ating your customizations.

Hitchhiker’'s Guide to Common Questions

Throughout the years we've worked with Microsoft Dynamics CRM, we find that a common
set of developer questions pop up again and again. This section lists some of these questions
and points you to the chapters in this book where you can find additional details about what
you're trying to accomplish.

Can we alter the CRM database structure to add our custom
tables and columns?

Yes, you can extend the Microsoft Dynamics CRM database with new entities (tables), attri-
butes (columns), and relationships (keys). You can also add new attributes to the out-of-box
entities. However, you do not make these modifications to SQL Server directly. Instead you

use one of two different tools to modify the database:

m A Web-based customization tool

B The metadata API

For more information about using the Web-based customization tool, please refer to the
book Working with Microsoft Dynamics CRM by Mike Snyder and Jim Steger (Microsoft
Press, 2008). That book includes several chapters on using the Web-based customization
tools to modify the data structure.

The metadata API allows you to programmatically modify the database, including adding
new attributes, entities, and so on. In this book, please refer to Chapter 8, “Developing
with the Metadata Service,” for more information about programmatically modifying the
database.

v Important Even though you can technically modify the database structure directly within SQL
Server, you should not attempt to do so because the modifications might cause unintended con-
sequences in your application, including possible data loss or system corruption. The Microsoft
Dynamics CRM customization tools and the metadata API provide all of the resources you need
to modify the database structure.

Part| Overview

Another related question we frequently hear is “What does the database structure look like?"
Although Microsoft Dynamics CRM does use a SQL Server database, theoretically you should
not need to poke around the database structure or examine it. You can access data about the
entities through the user interface or the metadata API. To further emphasize this idea, we
want to point out that Microsoft released logical database diagrams for Microsoft Dynamics
CRM 4.0. These logical database diagrams do not include the actual table structure; instead,
they list the abstracted logical structure just as you utilize it through the user interface and
API. You can download and view the Microsoft Dynamics CRM 4.0 logical database diagrams
from http.//www.microsoft.com/downloads/details.aspx?Family|D=b73912e8-861e-43ae-
97b4-72b3e809f287&DisplayLang=en. These database diagrams show the logical data rela-
tionships and the linked attributes between entities in Microsoft Office Visio format.

In addition to the logical database diagrams, you can also view information about the en-
tities and entity relationships through the Metadata browser at http://<yourcrmserver>/
<yourorganizationname>/sdk/list.aspx (see Figure 1-1).

¢ “avigator - Windows Internet Explorer
w - |m httpi/fsidutifshshook/sdk/mdbrowser/entity.aspxfentity=account = | ‘f| X | |Live5earth »p "
ﬁ ke g Entity Mavigator] l @ A - @ Ea E}’ Page = @Tmnls et
-
account H
User 1 WES yes
Attributes
=] o -
s |23, lzeslz., |EE & & |EE
g Z8E [ZE28 EE |Eip [EE |2z | 2%
Type g 202 (482382 [R3E |28 |E5 | &8
accountcategorycode picklist es
accountdassificationcode picklist wes wes
accountid primarykey wEs ves
accountnumber nwarchar 20 Wes Wes wes
accountratingcade picklist wEs yEs
address1_addressid primarykey
address1_addresstypecode picklist yEs yEs wEs
address1_city nwarchar 50 wes wes wes
address1_country rrearchar 50 wes wes wes
address]1_county nvarchar 50 wes wes wes
address1_fax rrearchar 50 wes wes wes
address1_freighttermscode picklist wes wes wes B
< i | ¥
G" Local intranet | Protected Mode: On H100% v

FIGURE 1-1 The Microsoft Dynamics CRM Metadata browser

Lastly, you can also use the metadata service APl to programmatically view data about the
database schema, attribute values, relationships, and so on.

Chapter 1 Microsoft Dynamics CRM 4.0 SDK Overview 7

If you're just dying to see the underlying database structure, of course you can simply open
SQL Server and examine it for yourself. You will find that Microsoft Dynamics CRM uses a
normalized underlying database structure with clearly named tables such as account_base
and account_extensionbase.

How do we write custom code that gets data into and out of
Microsoft Dynamics CRM?

When you create custom code that needs to interact with Microsoft Dynamics CRM data, you
should use one of two techniques:

B CrmService Web Service An API that performs authentication and supports common
data requests such as create, read, update, and delete. This API uses a Web service
interface.

B Filtered views Filtered views are SQL Server database views that your custom applica-
tion can query to obtain read-only information about records.

You should avoid creating custom code that accesses the SQL Server database tables
directly—please stick to one of these two techniques. Both of these interfaces abstract

the underlying database from your code so that if necessary Microsoft can modify the

SQL Server database for hotfixes, new versions, and so on. If your custom code accesses a
database table directly and then Microsoft needs to modify it, your custom code will prob-
ably break. However, if your code accesses the CrmService Web service or a filtered view,
Microsoft updates these interfaces with the corresponding database changes so that your
code continues to run as-is.

While the CrmService Web service provides access to data about records, Microsoft Dynamics
CRM includes two additional Web services that you can utilize:

B MetadataService Web Service This Web service provides an API that allows you to
query and manipulate the data structure.

B CrmDiscoveryService Web Service This Web service provides an API that allows you
to query for information about the Microsoft Dynamics CRM installation.

Refer to Chapter 3, “Communicating with Microsoft Dynamics CRM APIs,” for information
about connecting to the APIs. Chapter 8 includes a deeper look at retrieving and modifying
the database schema programmatically.

Part| Overview

Can we change the current CRM form layouts and controls?

Yes, Microsoft Dynamics CRM offers multiple tools to modify the existing forms. The Web-
based customization tools allow you to:

B Add, remove, and modify form fields.
B Add, remove, and move tabs.

B Change field and tab labels.

Figure 1-2 shows the form editor for the contact entity.

Contact - Windows Internet Explrer E
@ E E'Save and Close Preview ~ @ﬂe\pv
Form
= Contact
General | Details | Administration | Notes | z
Ssltaton EETT— T S e — < J>
Sfrstiane” [HomePhone Fomsthore | O
Wi Name EEEETr— T S e e [B L T
L e r— L re— L
=] Add Fields
b T e Pager E—
"0] Add an IFRAME
PretCistoner [] emal T —
Curtency T — B e
% Remove
Address
T T — L e]l B L
Sireet 1 [ffioss i oot | |} ComtryRegon [Adess 1 Cooniryogen |
Sirset 2 T rE— T —
Street 3 e — {1, S e |
_—
Done ?! Lacal intranet | Protected Mode: On 0% - i

FIGURE 1-2 The contact form editor

Many of the attributes on the form include built-in controls such as a calendar for date fields,
drop-down menus for picklist fields, check boxes for bit fields, and so on. Obviously this form
editor provides great convenience for you to add and remove fields, in addition to changing
the form layout. The book Working with Microsoft Dynamics CRM includes several chapters
explaining how to modify form layouts.

However, if you want to use different controls than the ones included by default, Microsoft
Dynamics CRM does not include a tool to swap out the default controls with your controls.
However, you can implement your own custom controls by using a combination of IFrames

Chapter 1 Microsoft Dynamics CRM 4.0 SDK Overview 9

and your own custom Web pages. An IFrame allows you to embed a custom Web page into a
Microsoft Dynamics CRM form so that it appears in the context of other Microsoft Dynamics
CRM fields. For more information on creating custom user controls, please refer to Chapter 14,
“Developing Custom Microsoft Dynamics CRM Controls.”

How do we implement our own custom business logic?

Microsoft Dynamics CRM includes several different options for implementing your custom
business logic:

B Form scripting events Microsoft Dynamics CRM offers onSave, onLoad, and
onChange form events that you can use to trigger form scripting code.

B Server-side events You can register Microsoft .NET assemblies that contain your
custom code, and Microsoft Dynamics CRM will trigger these assemblies based on the
user operations you configure, such as creating a record, deleting a record, assigning a
record, and so on. These .NET assemblies are known as plug-ins in Microsoft Dynamics
CRM, and you can run them either synchronously or asynchronously.

B Microsoft Dynamics CRM Workflow This option uses the Windows Workflow
Foundation framework to create business automation processes triggered by the
actions you configure. Sample workflow rules include e-mail alerts, task creation,
record assignment, and so on.

B Custom Web pages You can embed your own custom Web pages directly within the
Microsoft Dynamics CRM application and user interface. These pages can contain any
type of business logic that you deem necessary.

As you would expect, you configure form scripting events on a record’s form that Microsoft
Dynamics CRM can trigger when a user saves a record, loads a form, or changes a field's data
value. Form scripting events allow you to perform conditional form manipulation such as
updating one field's value based on the value of a different field, or changing the form layout
that a user sees based on the security role of the user viewing the record. You use JavaScript
as your form scripting language. Figure 1-3 shows where you can load script onto a form.
Please refer to Chapter 7, “Form Scripting,” for a detailed look at the client script program-
ming model. Microsoft Dynamics CRM executes form scripting both online and offline (within
Microsoft Dynamics CRM for Outlook with Offline Access).

10

Part| Overview

Form Properties
Madify this Farm

Ewvents Display Mon-Event Dependencies |

Event Lisk

OnLoad Edit
OnSave

o |[oo

http://siduri/SESBook/Toals/FarmEditor/Dialagsfon €M Local intranet | Protected Mode: On

FIGURE 1-3 A dialog box for adding client-side scripts to a form

For server-side logic, Microsoft Dynamics CRM offers a plug-in model where you can create
custom .NET assemblies that Microsoft Dynamics CRM executes based upon the defined
trigger operations. For example, you can create an assembly that runs every time a user
deactivates a lead or closes an opportunity. Because the plug-in model accepts .NET assemblies,
developers can take advantage of the .NET Framework to accommodate almost any type

of customization your organization might require. You can configure plug-ins to run either
synchronously or asynchronously. In addition, you can even create plug-ins that run offline
(disconnected from the server) in the Microsoft Dynamics CRM for Outlook software. Chapter 5,
“Plug-ins,” explains how to write plug-ins in exhaustive detail.

Microsoft Dynamics CRM Workflow offers another option for implementing your own busi-
ness logic. Unlike form scripting events and plug-ins, Microsoft Dynamics CRM Workflow
includes a user interface that nondevelopers can use to set up and create their own auto-
mation processes. As a developer, this frees you from simple and common requests such

as creating e-mail alerts and notifications. Figure 1-4 shows an example of a workflow rule
created in the Web interface. Please refer to Working with Microsoft Dynamics CRM for an
explanation of the Workflow Web interface.

Chapter 1 Microsoft Dynamics CRM 4.0 SDK Overview 11

| I‘g\'\ﬁfﬁr&luw Service Cases - Windows Internet Expinrer E@ |
@ = E“Hﬁave and Close | (0| @Puhhsh "5 Artions = @) Help ~

Workflow: Service Cases
& Information

General ‘ Administration | Notes |

Details:
G‘j Information

»

@ Hide Workflow Properties

»

System Jobs:

G workflows ‘Workflow Mame * |58FViC8 Cases Options for Automatic Workflows
Scope Drganization
Entity [case
Start when: ¥ Record is craated
Rl irlflow I Record status changes

Available to Run I Record is assigned

I Record attributes change

[on demand

[As a child workflow I~ Record is deleted

= addstep ~ | DesInsert +
5

- ‘Type a step description here. |

If Case; Subject equals [Marketing and Sales], then:

2 |Type a step description here. |

Assign: Case ~ ko %Sales e ‘@ | Set Properties |

Done é‘- Local intranet | Protected Mode: On HA00% -

FIGURE 1-4 The Web-based workflow rule designer

Even though the Workflow Web interface is quite powerful, undoubtedly your users will en-
counter scenarios where they can't design their business logic within the existing Web-based
tools. Fortunately, Microsoft Dynamics CRM allows you to create custom workflow assemblies
that your users can reference in the Web workflow designer to utilize in their rules. Just like
plug-ins, workflow assemblies are fully .NET-compliant so that you have almost unlimited
programming options to create complex and sophisticated business logic within workflow.
Chapter 6, “Programming Workflow,"” explains the process for creating workflow assemblies
within Microsoft Dynamics CRM. Chapter 12, “Advanced Workflow Programming,” contains
additional information about more complex programming customizations within workflow.

Caution Many people assume that because Microsoft Dynamics CRM uses SQL Server, they can
use database triggers for their business logic. This is not the case. If you want to create custom
business logic related to database activity, you should plan to use one of the supported mecha-
nisms such as form scripting events, plug-ins, or workflow instead of database triggers.

Another powerful option to implement your custom business logic in Microsoft Dynamics
CRM is to create custom Web pages that you embed in the user interface. You can create
these pages using any technology that you prefer—Microsoft Dynamics CRM simply refer-
ences your pages.

12

Part| Overview

How much control do we have over the user interface and
branding?

As we already mentioned, Microsoft Dynamics CRM offers Web-based customization tools
that allow you to modify the various forms with your custom attributes and relationships.
This form-customization tool is nice because nondevelopers can use it to make modifications
to your system.

However, you can perform more complex modifications to the user interface through the
use of IFrames to implement your own custom user interface. While IFrames allow you to
embed your custom Web pages within a Microsoft Dynamics CRM form, you can also modify
the user interface by creating entirely new Web pages within the application. Users can ac-
cess these custom Web pages through the primary navigation, or from buttons or links that
you can add to existing records. Figure 1-5 shows the dialog to add an IFrame to a Microsoft
Dynamics CRM form.

—
Add an IFRAME -- Webpage Dialo CXT
[4

Add an IIRRAME

Add a new IFRAME to the Form,

General Formatting | Dependencies -

Mame
Specify a unigue name.

Narne * IFRAME_ |Sample |

LRL * |http:,I’J‘yourcustomurlipage.aspx ‘

¥ Pass record object-type code and unique identifier as parameters,

Label
Specify the label for this Field in farms.

Label |Samp|e|

™ Display label on the form

Security
Select whether ba restrick cross-frame scripting.
¥ Restrict cross-Frame siripking

Location
Select the tab and section for this IFRAME to appear under,

Tab General -
Section Hame | =
-]
| Ok ‘ | Cancel |

http:/fsiduri/SBSBoak/Tools/t €M Local intranet | Protected Mode: On

FIGURE 1-5 Adding an IFrame to a form

Please refer to Chapter 13, “Emulating the User Interface with ASP.NET Development,” for in-
formation about creating new Web pages that work within Microsoft Dynamics CRM. Please
refer to the book Working with Microsoft Dynamics CRM for an explanation of using the
SiteMap and ISV.Config to modify the navigation model.

Chapter 1 Microsoft Dynamics CRM 4.0 SDK Overview 13

Warning Even though you can technically modify the .aspx Web pages and the js files in the
Microsoft Dynamics CRM Web application, Microsoft considers these types of modifications
unsupported. Instead you should use the other techniques outlined above to implement your
custom business logic and user interface. Modifying the .aspx or s files will probably cause
unexpected (bad) behavior within your system.

How do we deploy changes from one system to another?

Microsoft Dynamics CRM includes a customization import and export utility in the Web
interface so that you can easily move customizations from one system to another (such as
moving from development to staging to production). Figure 1-6 shows some of the custom-
ization import and export utilities.

@ Microsoft Dynamics CRM - S¥indows Internet Explorer EI |

@O ~ [] hetpussidurissBsBook/loader.aspx - [4| x || Live searcn £ |
e - »

i:? ahe [ﬁl Microsoft Dynamics CRAM] l @ A e @ S E}’Page - @Tmnls -

Mike snyder

4— Microsoft Dynamics CRM

Mew Activity = Mew Record - | GoTo~ Tools - | m Advanced Find @ Help ~
Settings Customization

Lﬁ Administration |~ |
5 Business Management which feature would you like to work with?

58 customization

[Templates Customize Entities Export Customizations
LE;‘ Product Catalog Customize system ertities, attributes, Expart entity, template, workflow and
G,} Warkflows forms, and views, Create custom configuration customizations.
entities, views, and attributes, Create
L? Daka Management relationships and mappings bebween
B# svstem Jobs entities, and publish entities, Set the
defaulk view For entities,
l’,__ﬁ I Workplace

@ Sales

(WSDL) For programming.

Export Labels for Import Labels for

o g @

Import Customizations Download Web Service
Ipott entity, kemplate, workFlow and Description Files
ronfiguration rustomizations. Download Web Service description Files

Translation Translation
Settings Export bext strings used in customized Impart translated text strings for
fields, drop-down lists, and other customized fields, drop-down lists, and
R Cent interface elements ko a file for other inkerface elements from a file, T
esource Center branslation, |z|
73| Gi Local intranet | Protected Maode: On H100% - 4

FIGURE 1-6 Import and export customizations in Microsoft Dynamics CRM

When you export customizations, Microsoft Dynamics CRM creates an XML file that contains
all of the details of your entities. You can then take that customization file and import it into
your target system. If you plan on frequent updates from one system to another, you can
write code using the Microsoft Dynamics CRM Metadata API that will automatically export
customizations from one system, import them into another system, and then publish those

14

Part| Overview

changes on the target system. If your system includes custom Web pages, you are respon-
sible for deploying those files. Microsoft Dynamics CRM will not include your custom Web
pages in the customizations import/export process. Chapter 9, “Deployment,” takes a closer
look at deploying your Microsoft Dynamics CRM customizations.

Will our customizations upgrade when Microsoft releases a
new version of the software?

This question appears more frequently than probably all of the other questions combined,
and understandably so! If you invest hundreds or thousands of hours customizing Microsoft
Dynamics CRM, you want to know that you won't lose that investment when Microsoft re-
leases the next version of the software. The key to answering this question is understanding
what Microsoft means when they talk about “supported customizations.” If Microsoft con-
siders a customization supported, you can pretty safely assume that the customization will
upgrade smoothly. We like to think of the SDK as the authoritative list of supported custom-
izations, so if you follow the guidance outlined in that document you should not experience
a problem.

Caution While most supported customizations upgrade to future versions, Microsoft
cannot guarantee this. For example, upgrading from Microsoft Dynamics CRM 1.2 to Microsoft
Dynamics CRM 3.0 included a few breaking changes related to activities. However, Microsoft
only makes these types of changes when the benefit of the new functionality clearly outweighs
the cost of re-creating a customization.

Having experienced multiple upgrades of Microsoft Dynamics CRM, we feel that Microsoft
demonstrates a good track record of supporting customizations. For example, Microsoft
completely revamped the asynchronous service for Microsoft Dynamics CRM 4.0, replac-
ing 3.0 callouts with plug-ins in 4.0. The new 4.0 plug-in model included a large number of
new benefits for developers and administrators, so plug-ins were a great architecture im-
provement over callouts. However, Microsoft included backward-compatibility support for
Microsoft Dynamics CRM 3.0 callouts so that they can run in Microsoft Dynamics CRM 4.0
without any code changes.

More Info Microsoft stated that they plan to release a new major release of Microsoft Dynamics
CRM once every two years. In the interim, Microsoft will release smaller updates, hotfixes, and
security updates along the way. However, many customers find it comforting that the major
updates follow a periodic update schedule at a reasonable interval.

Chapter 1 Microsoft Dynamics CRM 4.0 SDK Overview 15

Are role-based security permissions supported and
configurable?

Microsoft Dynamics CRM uses a role-based security model to determine the various privi-
leges with the system. Each user can possess one or more security roles, and each security
role defines the various privileges within the system. Administrators can configure and assign
security roles through a Web interface. Figure 1-7 shows how an administrator can configure
a security role in the application.

& Raole: Salespersan - Windos Tnternet Baplorer =B
e B} saveand Clase [oy actions - iig) Help ~
@ xl & Ha @ H
= Role
&7 | salesperson
Details Core Records | Marketing | Sales | Service | Business Managernent | Service Management | Customization | Custom Entities
5
Entity Create Read ‘Write Delete Append Append To Assign Share ™
Account [] * L ® []
Contack & [] [] ® []
Lead & L] L] L] []
Opportunity $ [] ® [] []
Activity & []
Moke & []
E-mail Template [] ()
Announcernent O L] 0] » O]
Subject O & ((@] Q @
Queue O @ Q O ®
Saved View
Repart []
Duplicate
Detection Rule o o O o o o o
Data Impork ("]
-
-
Key
() Mone Selected User Business Unit & Parent: Child Business Units @ Organization
é‘j Local intranet | Protected Mode: On B 100% -

FIGURE 1-7 The security role editor in Microsoft Dynamics CRM

Please refer to Working with Microsoft Dynamics CRM for more information on setting up
user security. For information about security within your programming customizations,
please refer to Chapter 4, "Security,” in this book.

Does Microsoft Dynamics CRM support multiple languages
and currencies?

Yes, Microsoft Dynamics CRM is a truly global product that supports multiple languages and
multiple currencies within a single deployment. Suppose that a sample organization has 500

16

Part| Overview

users using Microsoft Dynamics CRM. That organization could theoretically set up their users
as follows:

B 100 users with US English and US Dollars
B 100 users with Spanish and US Dollars
B 100 users with French and Euros

B 200 users with Spanish and Euros

As a developer, you must understand how your custom code needs to accommodate these
types of multiple language and multiple currency scenarios. Chapter 11, “Multilingual and
Multi-Currency Applications,” takes a look at programming for these situations within
Microsoft Dynamics CRM.

Will our programming customizations run offline?

As we previously mentioned, Microsoft Dynamics CRM includes optional add-in software for
Microsoft Office Outlook. This add-in software comes in two different versions:

B Microsoft Dynamics CRM for Outlook
B Microsoft Dynamics CRM for Outlook with Offline Access

The offline-enabled version of this software allows your users to work while disconnected
from the Microsoft Dynamics CRM server. As a developer, you have the option to create
customizations that also run offline within Microsoft Dynamics CRM for Outlook. The SDK
includes support for offline programming interfaces. Even if your customizations don't need
to run offline, you should take some time to understand how users with the offline version of
Microsoft Dynamics CRM for Outlook might interact with your server-based customizations.
Please refer to Chapter 10, "Developing Offline Solutions,” for more information on this topic.

How do you recommend we set up a Microsoft Dynamics
CRM development environment?

When you're creating your Microsoft Dynamics CRM customizations, of course you don't
want to develop and test your code in a production environment. You want to work in a
sandbox system and then push your completed customizations to a different environment
upon completion. Chapter 2, “Development Overview and Environment,” examines different
options for setting up a development system for your team of developers.

Chapter 1 Microsoft Dynamics CRM 4.0 SDK Overview 17

Microsoft Dynamics CRM as a Business Application
Platform

If you're new to Microsoft Dynamics CRM, you might think of the application as just a sales,
marketing, and service tool. However, we encourage you to think of new and creative ways
to use your programming skills and the Microsoft Dynamics CRM platform to tackle new
business challenges. We believe that Microsoft Dynamics CRM is an excellent development
platform for many reasons, including:

Metadata architecture that allows for easy extensions to the database model

Web-based customization tools that allow nondevelopers to make application
changes

Built-in workflow capability

Documented and easy-to-use software development kit
Service-orientated architecture

Native support for online and offline use

Native support for multiple currencies and multiple languages
Enterprise-class capabilities with SQL Server database

Out-of-the-box integration with the common end-user applications Microsoft
Office Outlook, Microsoft Office Excel, Microsoft Office Word, and Microsoft Office
Communication Server

Common user authentication with Microsoft Active Directory for single sign-on with
Microsoft Office SharePoint Server

Having worked with many different customers implementing Microsoft Dynamics CRM, our
company Sonoma Partners has helped many organizations use Microsoft Dynamics CRM
as a business application platform to tackle nontraditional CRM business issues. Examples
include:

Helping a large national franchise to use Microsoft Dynamics CRM to scout, rank, and
identify potential restaurant locations.

Working with a national real-estate company to track condominium developments and
condominium inventory in Microsoft Dynamics CRM. The company also tracked each
buyer's preferences and upgrades such as appliances, paint color, furnishings, and so on.

Developing a system for a nonprofit organization to qualify applicants of oil and heat
subsidies, including tracking applications, receipts, and vendor payment status.

18 Part | Overview

B Designing a database of hospitals and physicians for a long-term care management
company to help them better understand the patient referral and new patient setup
process.

Most people would not consider any of these examples as traditional CRM, yet all of them
work excellently on the Microsoft Dynamics CRM platform! If your organization is considering
building a custom software application from scratch, or if you have an existing home-grown
custom application, we strongly urge you to consider using Microsoft Dynamics CRM as a
platform to replace custom software applications. We hope that the chapters and examples
in this book will give you the confidence that Microsoft Dynamics CRM is truly easy to
program with, and offers an unbelievable amount of flexibility.

@ Tip Sometimes people use the term xRM to describe using a CRM software application as the
business application platform to solve nontraditional business challenges. We've seen different
definitions for the acronym xRM, but we like to think of the letter X as a variable just like you
might remember from your algebra class. You can plug in almost any value for X, but it always
includes the relationship management.

Summary

Microsoft Dynamics CRM includes many different software development tools that profes-
sional developers can use to create complex system customizations. The Microsoft Dynamics
CRM SDK is the primary development documentation for developers, as the SDK includes
architecture information, helper classes, and definitions of supported customizations. When
developing Microsoft Dynamics CRM customizations, you should not access the SQL Server
database directly. Instead you should connect to system data through the CrmService Web
service or the MetadataService Web service. The CrmService provides basic create, read, up-
date, and delete functionality, and the MetadataService provides a programmatic interface
to the data schema. You can implement your own business logic in Microsoft Dynamics CRM
using a combination of techniques, such as form scripting, server-side assemblies, workflow
assemblies, and custom Web pages. Because of the flexibility of the Microsoft Dynamics CRM
programming platform, the software offers an ideal development platform for tracking non-
traditional CRM data beyond sales, marketing, and customer service.

Chapter 5

Plug-ins

Plug-ins provide one of the most powerful customization points within Microsoft Dynamics
CRM. As users work in the application, their actions cause Microsoft Dynamics CRM to trigger
events that developers can use to execute custom business logic through the use of plug-ins.
For example, you can register plug-ins to run business logic every time a user creates an
account or deletes an activity. You can create plug-ins to run in response to a vast number of
events, including plug-ins for custom entities. You can use plug-ins for a variety of features,
such as synchronizing data to an external database, tracking changes in an audit log, or
simply creating follow-up tasks for a newly created account.

Note At the time this book went to press, Microsoft Dynamics CRM Online (the Microsoft
hosted version of Microsoft Dynamics CRM) does not support custom plug-ins.

Some of the tasks you can accomplish with plug-ins—such as populating fields with default
values or specific field formatting—you can also accomplish with form JavaScript. Plug-ins
have the advantage of running on the server, so you are guaranteed that these types of
tasks will run even if the entity is created or updated from a bulk import or through the Web
service API.

Note If you are familiar with Microsoft Dynamics CRM 3.0, you are probably thinking that
plug-ins sound very similar to callouts. Plug-ins are in fact the replacement for callouts, but they
offer a much more robust programming model. Microsoft Dynamics 4.0 does support version 3.0
callouts if you still need to use them, but they access CRM via the version 3.0 endpoint and do
not support version 4.0 features such as multi-tenancy.

In this chapter, we will explore the following topics in detail:
B Writing your first plug-in
B The event execution pipeline
B Details of the IPluginExecutionContext interface
B [mpersonation

B Exception handling

109

110 Part Il Extending Microsoft CRM
B Deploying plug-ins
B Debugging plug-ins
B Unit testing plug-ins

B Real-world plug-in samples

Writing Your First Plug-in

When working with a new framework or technology, we find it easiest to start with a simple
hands-on example and then dig deeper into real-world examples. We'll start by implementing
a simple plug-in to provide a more concrete foundation for the remainder of the chapter.

This plug-in verifies that an account'’s accountnumber follows a specific format. In this
example, Microsoft Dynamics CRM executes the plug-in when a new account is created or
modified to verify that the account number starts with two letters followed by six numbers.

As mentioned earlier, you could accomplish this same type of account validation through
scripting with the form'’s onsave event. However, enforcing business logic on the form might
not be ideal because modifications to the account number through workflow or through

an external application would bypass the onsave event script and possibly allow an invalid
account number format. By using a plug-in, we can guarantee that Microsoft Dynamics CRM
enforces our business logic regardless of the method used to create the account.

Creating the Plug-in Project

Plug-ins are implemented as classes that implement a specific interface and are contained
within a signed Microsoft .NET assembly. The assembly needs to target the Microsoft .NET
runtime version 2.0, which can be accomplished by creating a class library in Microsoft Visual
Studio 2008 targeting the .NET Framework 2.0, 3.0, or 3.5. However, installing Microsoft
Dynamics CRM 4.0 only guarantees that Microsoft .NET Framework 3.0 is installed on the
server. If you need assemblies included in the Microsoft .NET Framework 3.5, you have to
install that version of the framework yourself. Before we can create our first plug-in, we need
to create a class library project. Follow these steps to set up your first plug-in project.

Creating the plug-in project in Microsoft Visual Studio 2008
1. Open Microsoft Visual Studio 2008.
2. On the File Menu, select New and then click Project.

3. In the New Project dialog box, select the Other Project Types > Visual Studio Solutions
type, and then select the Blank Solution template.

4. Type the name ProgrammingWithDynamicsCrm4 in the Name box. Click OK.

Chapter 5 Plug-ins 111
5. On the File Menu, select Add and then click New Project.

6. In the New Project dialog box, select the Visual C# project type targeting the .NET
Framework 3.0 and then select the Class Library template.

7. Type the name ProgrammingWithDynamicsCrm4.Plugins in the Name box.
Click OK.

8. Delete the default Class.cs file.

9. Right-click the ProgrammingWithDynamicsCrm4.Plugins project in Solution Explorer
and then click Add Reference.

10. On the Browse tab, navigate to the CRM SDK's bin folder and select microsoft.crm.
sdk.dll and microsoft.crm.sdktypeproxy.dll. Click OK.

11. Right-click the ProgrammingWithDynamicsCrm4.Plugins project in Solution Explorer
and then click Add Reference.

12. On the .NET tab, select System.Web.Services. Click OK.

13. Right-click the ProgrammingWithDynamicsCrm4.Plugins project in Solution Explorer
and then click Properties.

14. On the Signing tab, select the Sign The Assembly box and then select <New...> from
the list below it.

15. Type the key file name ProgrammingWithDynamicsCrm4.Plugins, and then clear the
Protect My Key File With A Password check box. Click OK.

16. Close the project properties window.

Implementing the Plug-in Class
After setting up our project, we are ready to implement our first plug-in. Let's start by
adding a class to our newly created project.

Adding the AccountNumberValidator class

1. Right-click the ProgrammingWithDynamicsCrm4.Plugins project in Solution Explorer.
Under Add, click Class.

2. Type AccountNumberValidator.cs in the Name box. Click Add.

Replace the generated code in the AccountNumberValidator class with the code displayed in
Listing 5-1.

112

Part Il Extending Microsoft CRM

LISTING 5-1 The AccountNumberValidator plug-in source code

using System;
using Microsoft.Crm.Sdk;
using System.Text.RegularExpressions;

namespace ProgrammingWithDynamicsCrm4.PTugins

il
public class AccountNumberValidator: IPlugin
d
public void Execute(IPluginExecutionContext context)
{
DynamicEntity target =
(DynamicEntity)context.InputParameters[ParameterName.Target];
if (target.Properties.Contains("accountnumber™))
{
string accountNumber = (string)target["accountnumber"];
Regex validFormat = new Regex("[A-Z]{2}-[0-9]{6}");
if (!validFormat.IsMatch(accountNumber))
d
string message =
"Account number does not follow the required format. " +
" (AA-HEHBED) "
throw new InvalidPluginExecutionException(message);
}
5
}
}
}

AccountNumberValidator, a very simple plug-in, extracts the target account as a
DynamicEntity and validates that the accountnumber property follows a specific pattern
(two capital letters followed by a dash and then six numbers). We know the target input
parameter will be a DynamicEntity representing the account because we will be registering
this plug-in with the Create and Update messages for the account entity.

Notice that the only requirement at the class level for a plug-in is that it must implement
the Microsft.Crm.Sdk.IPlugin interface. IPlugin has only a single method, named Execute,
which takes a single argument of type IPluginExecutionContext. We will be exploring the
IPluginExecutionContext interface in detail—as well as how Microsoft Dynamics CRM 4.0
handles exceptions thrown by plug-ins—Ilater in this chapter. For more information on the
DynamicEntity class and its use, refer to Chapter 3, “Using the Web Service APIs.”

Chapter 5 Plug-ins 113

Building the Registration Tool

Unlike for workflows, form changes, and other customizations to Microsoft Dynamics CRM,
no Web-based interface is included to register plug-ins. However, the Microsoft Dynamics
CRM SDK includes two utilities to help you register plug-ins, and you can also register plug-ins
using the API.

Later in the chapter we will explore using the API to write your own plug-in registration tools, but
for this first example we will use one of the CRM SDK's registration tools, PluginRegistration.
PluginRegistration is a Windows desktop application that has an intuitive graphical user in-
terface for registering plug-ins and configuring which messages cause the plug-in to execute.
You can find the PluginRegistration tool in the Tools folder within the CRM SDK.

The Microsoft Dynamics CRM SDK distributes PluginRegistration as source code only, so

you will need to compile it before you can run it. Follow the guidelines in the readme.doc
included in the tools\PluginRegistration folder to compile the application. PluginRegistration
is distributed as a Visual Studio 2005 project, but Visual Studio 2008 can automatically
upgrade it without problems.

Deploying the Plug-in

After compiling our plug-in registration tool, we are ready to register our first plug-in. During
registration you specify which messages for specific entities will cause the plug-in to execute.
Depending on the message, you can specify additional filtering or request more information
to be provided to your plug-in during execution.

Important To register a plug-in you must be listed as a Deployment Administrator on the CRM
server. To verify that you are a Deployment Administrator, log on to the CRM server and launch
the Deployment Manager tool, which is located in the Microsoft Dynamics CRM group on the
Start menu. If you are not a Deployment Administrator, the tool will show an error indicating so
and then exit. If this is the case, you need to have a Deployment Administrator use this tool and
add you to the list of Deployment Administrators.

When you register a plug-in, Microsoft Dynamics CRM offers you multiple registration
properties:
B Mode A plug-in can execute either synchronously or asynchronously.

B Stage This option specifies whether the plug-in will respond to pre-events or
post-events.

B Deployment A plug-in can execute only on the server, within the Outlook client, or
both.

114

Part Il Extending Microsoft CRM

B Messages This option determines which Microsoft Dynamics CRM events should
trigger your logic, such as Create, Update, and even Retrieve.

B Entity A plug-in can execute against most of the entities, including custom entities.

B Rank This option is an integer that specifies the order in which all plug-in steps
should be executed.

B Assembly Location This option tells Microsoft Dynamics CRM whether the assemblies
are stored in the database or on the Web server’s file system.

B Images You can pass attribute values from the record as either pre-images or
post-images for certain message types.

You configure these plug-in properties when you register the plug-in with Microsoft
Dynamics CRM.

Mode

Microsoft Dynamics CRM allows you to execute plug-ins synchronously or asynchronously.
Asynchronous plug-ins are loaded into the Microsoft CRM Asynchronous Service and
executed at some point after the main event processing is complete. Asynchronous plug-ins
are ideal for handling situations that are not critical to complete immediately, such as audit
logging. Because the plug-in executes asynchronously, it does not negatively affect the
response time for an end user who initiates the core operation.

Real World In practice, most plug-ins perform tasks that users expect to see feedback on as
soon as they save their changes within the CRM application. Because of this, you will probably
find that most plug-ins are registered to execute synchronously. When it is determined that a
plug-in can be registered to execute asynchronously, implementing a custom workflow step
instead is frequently more beneficial because business users can more easily maintain the work-
flow. Scenarios still exist in which an asynchronous plug-in is the right answer, but they are not
very common. Microsoft Dynamics CRM does not support pre-event plug-ins configured for
asynchronous operation.

Stage

When you register a plug-in, you can configure the plug-in to run before or after the core
operation takes place. A plug-in that executes before the core operation is referred to as a
pre-event plug-in, while a plug-in that executes after the core operation is a post-event plug-
in. Pre-event plug-ins are useful when you want to validate or alter data prior to submission.
With post-event plug-ins, you can execute additional logic or integration after the data has
been safely stored in the database.

Chapter 5 Plug-ins 115

Important How do you know which stage to register for? If a plug-in needs to interrupt or
modify values before they are committed to the database, you should register it as a pre-event
plug-in. Otherwise, you end up needing to execute an additional message to apply your change
when you could have accomplished this by just modifying the data before the original message’s
core operation executed. On the other hand, if your plug-in needs to create a child entity when-
ever the parent entity type is created, you need to register it to execute during the post-event
stage to have access to the newly created parent'’s ID.

Deployment

One of the great new features of Microsoft Dynamics CRM 4.0 is the ability to have your
plug-in logic execute offline with the Outlook client, further extending your existing
solution. You can choose to have the plug-in execute only against the server, run offline with
the Outlook client, or both.

Remember that when a client goes offline and then returns online, any plug-in calls are
executed after the data synchronizes with the server. If you choose to have your logic execute
both with the server and offline, be prepared for Microsoft Dynamics CRM to execute your
plug-in code twice.

Caution Microsoft Dynamics CRM does not support an asynchronous implementation of a
plug-in with offline deployment. If you want to have your plug-in work offline, you need to
register it in synchronous mode.

For more information about developing offline solutions and using plug-ins offline, please
refer to Chapter 10, “Developing Offline Solutions.”

Messages

In the documentation, Microsoft Dynamics CRM 4.0 refers to server-based trigger events as
messages. The Microsoft Dynamics CRM 4.0 SDK also supports all the events from Microsoft
Dynamics CRM 3.0, such as Create, Update, Delete, and Merge. In addition, Microsoft
Dynamics CRM 4.0 includes some new messages such as Route, Retrieve, and RetrieveMultiple.

See the “Supported Messages and Entities” section later in this chapter for more informa-
tion about the available messages. You can also use the API to write code to see whether
Microsoft Dynamics CRM supports a particular message.

Entities

Most system and all custom entities are available for plug-in execution. Please refer to the
“Supported Messages and Entities” section for more information on the supported entities.

116

Part Il Extending Microsoft CRM

Rank

Rank merely denotes the order in which a plug-in should fire. Rank is simply an integer,

and Microsoft Dynamics CRM starts with the plug-in with the lowest rank and then cycles
through all available plug-ins. You should definitely consider the order of plug-ins, depending
on the logic they perform.

Assembly Location

You can deploy plug-in assemblies to the database, to a folder on the Microsoft Dynamics
CRM server, or to the Global Assembly Cache (GAC) on the server. Typically the database

is the best option because you do not need to manually copy the file to the server before
registering the plug-in. Unless you have a specific need to do otherwise, we recommend that
you leave the default option and deploy your plug-ins to the database.

Images

Images provide you with the record attribute values. Images exist as pre-values (before the
core platform operation) and post-values. Not all messages allow images.

Now that you understand a little more background about the plug-in registration process,
use the following steps to register the AccountNumberValidator plug-in.

Connecting to the server with the PluginRegistration tool

1. Launch the PluginRegistration tool that you compiled in the previous section. You will
see the New Connection screen first (Figure 5-1).

2. Type any name you want for the Label. It is only used for display purposes in the
PluginRegistration tool.

3. Type the name of your CRM server for the Discovery Server.
4. Optionally, specify the port your CRM server is running on if it is not port 80.

5. Optionally, specify the domain and user name you want to use to connect to the CRM
server. If you specify a domain and user name, you will be prompted for a password
when you connect. If you leave these fields blank, the tool connects as the currently
logged on user.

6. Click Connect. You should now see a list of organizations under your connection.

7. Double-click the organization you want to register the plug-in with.

Chapter 5 Plug-ins 117

File Wiew Help

OCreate MNewr Connection z Reload Organizations 2 Rermowe Connection

Connection Information

Label: CRk Server

Discovery Server: localhost

Port:

Dromain

Uzer Name:

Label iz the only required field. Any other fields should be
filed &z needed. Far instance, vou do not need to enter
User Mame & Pazswoard if the credentials are stored in pour
Stored User Mames & Passwords

{ Cornect] [save | [Concel |

Done

FIGURE 5-1 The New Connection screen

Now that you are connected to the server, next you will register the assembly on the server.

Registering the assembly

1. Select Register New Assembly from the Register toolbar drop-down list to open the
Register New Assembly dialog box (Figure 5-2).

2. Click the ellipsis button to browse and select the plug-in DLL. Note that the assembly
and plug-in classes are selected by default in the selection tree.

3. Leave Database selected as the deployment location.

While you can deploy plug-ins to a folder or to the GAC on the Microsoft Dynamics
CRM server, it is typically better to deploy to the database because you do not need to
manually set up the assembly on the server. This point becomes even more valid if you
are dealing with a web farm environment because you would need to copy the assem-
bly to each server if you don't specify database deployment.

4. Click Register Selected Plugins.

118 Part Il Extending Microsoft CRM

Register New Plugin = =]
Step #1: Specify the Location of the Azzembly to Analyze
C:\ProgrammingwithD ynamicsCrmd ProgrammingtsithDyenamiczCrond. PlugingbinhD ebug' Programming's/ithD pnamiczCrond. Plugine. di E]
Load Azsembly

Step H2: Select the Pluging & Warkflow Activities to Register
V] Select &1l / Deselect Al

=[] [Assembly) Programmingw/ithDynamicsCimd. Plugins
Elﬂ- [Flugin) Programming'/ithDynamicsCrmd. Pluging AccountMumber alidator

Step #3: Specify the Location where the Azzembly should be stared

@ Database
Azzembly i stored and loaded from the database. For debugging purporses, the Symbols [[PDE files) must be in 45 erveribintassembly of the main installation
folder for each server that needs to be debugged.

) Disk
Assembly is stored and loadzd from YServerassemblybin in the main installation directary for each server. For debugaing purposes, the Symbals [[PDE files)
must be located the same place as the aszembly.

Programming'ithDynamiczCim4. Fluging. dil

() GAC
File iz placed in the GAL of each server where it will used.

Fiegistiation Log

| Register Selected Flugins | | Claze

FIGURE 5-2 The Register New Assembly dialog box

After this step you should see a series of messages in the Registration log. If all goes well,
a confirmation dialog box will pop up to tell you that one assembly and one plug-in were
registered.

Last you need to configure when the plug-in should run. You do this by registering steps with
the PluginRegistration tool. Steps contain information such as the entity and message that
will cause a plug-in to execute, as well as the stage it will execute in. Each plug-in can have
multiple steps, allowing it to execute for different entities and messages.

Registering plug-in steps

1. Right-click the AccountNumberValidator plug-in in the Registered Plugins & Custom
Workflow Activities tree, and then select Register New Step to open the Register New
Step dialog box (Figure 5-3).

2. Type Create in the Message box.
3. Type account in the Primary Entity box.

4. Specify accountnumber for the Filtering Attributes by clicking on the ellipsis button
and then clearing all but the Account Number check box in the resulting dialog box.

Chapter 5 Plug-ins 119
5. Select the Pre Stage option.
6. Leave the rest of the settings at their default values.
7. Click Register New Step.
8. Repeat steps 1 through 7, but type Update in the Message box.

Register New Step
Gieneral Canfiguration Infomation Unisecure Canfiguration :
Message: Create =
Primary Entity: account

Secondaiy Entty:

Filtesing Attibutes: accountrumber Fo—

Plugir [Plugin] Programmingt/ithDynamicsCimé Plugins.Ac +

Desoription Creats of account in Parent Pipeiine

Fun in User's Contest. ~ Calling User -

oo . Secure Configuration
Everting Pipsline Stags of Exscution Execution Made

e Stage) Aspnchionous
() Post Stage @ Synchionous
Step Deployment Triggering Pipeline
Server @ Parent Fipeline
[T Offline: () Ckild Pipeline

e

FIGURE 5-3 The Register New Step dialog box

Now that you've registered the plug-in, it will verify that all newly created or modified
account numbers match the specified format. If a user tries to create or update an account
using an invalid account number, the error shown in Figure 5-4 appears. Likewise, if a work-
flow or service call tries to create or modify an account with an invalid account number,
Microsoft Dynamics CRM will not update the account and will bubble up an exception to the
caller.

£ Microsoft Dynamics CRM -- Webpage Dialog

6 Account number does nat Follow the required Format {AA-#2# & 24,

http://siduri.dev.sonomapartners.local/Progk Q. Local intranet | Protected Mode: Off

FIGURE 5-4 An error presented to the user by the AccountNumberValidator plug-in

120 Part Il Extending Microsoft CRM

The Event Execution Pipeline

Now that we implemented a basic plug-in, let's step back and look at the bigger picture.
Plug-ins run within an execution pipeline specific to the message being executed. Also
executing within the pipeline is the core operation, which is implemented by Microsoft
Dynamics CRM 4.0. The core operation typically consists of a database operation—either
retrieving, updating, inserting, or deleting records. For example, when a RetrieveMultiple
request is executed, the core operation is the selection of data from the database. Figure 5-5
illustrates the various stages of the event execution pipeline.

Message
Request

Event Execution
Pipeline

Pre-Event

Core Operation

Post-Event CRM Database

— S

Message
Response

FIGURE 5-5 The event execution pipeline

Supported Messages and Entities

When trying to determine how to register a plug-in or even what is possible to hook into,
you often find yourself wondering which messages exist for any given entity. The CRM SDK
includes a Microsoft Office Excel spreadsheet that lists all the events that can be registered
for and their corresponding entities. The file is named Plug-in Message-Entity Table.xls and is
located in the Tools subfolder of the SDK.

Chapter 5 Plug-ins 121

This spreadsheet includes filterable columns and can be an excellent tool when you are trying
to determine which messages an entity supports—or when you are just trying to brainstorm
creative solutions. From this list you can see that several messages, such as Import, Export,
and Publish, are not even tied to an entity. Figure 5-6 shows the spreadsheet filtered to only
display messages supported by the Account entity.

(O Hw-™] plug-in message-entity tablexls [Compatibility Mode] - Microsoft Excel R
Home Ihser Page Layout Formulas Data Review e Dewveloper @ -8 X
[==] ¥ | il MR = Text W A Y[iEmmnsert = || 2 = ? fﬁ
I;t 53 |B I Q'HAA A'| ||§3' |$":‘= !l st I Delete ~ E' A
aste = @5 ||l] in
(oA ([EEE] (w8 - | EdFomat || & Filtere Select-
Cliphoard = Fant (F] Alighment = Mumber = Cells Editing |
| D4 -2 fe | Sarver
’ 3 ysnty ssage Avmoiy [sty epi :
1 |Message | = | Primary Entity |-r| secondary Entity | » | Message Availability | = |Entity Deployment [« |
T |Assign Account MULL Server Server
46 |Create Account MULL Both Bth
108 |Delete Accourt MULL Bioth Both
178 |Granthccess Account MULL Setver Server
225 \Merge Accourt MULL Setver Server
228 Modifybccess Accourt MULL Setver Server
281 |Retrieve Accourt MULL Biath Both
343 | Retrievehutiple Account MULL Both Bath
404 |RetrievePrincipaldcoess Accourt MULL Both Buoth
433 RetrieveSharedPrincipalsfAndacoess Account MULL Both Buoth
462 |Revokelocess Account MULL Setver Server 2
517 |SetState Accourt MULL Bioth Both 1
549 | SetStateDyvnamicEntity Account MULL Both Buoth
583 |Updste Accourt MULL Biath Buoth
11335
1136
1137
1138
1139
1140
1141
1142
1143
4 4 » ¥ Plugin Message-Entity Table /%3 nen| il d
Ready 14 of 1133 records found E | M| 100% (=) @7 5

FIGURE 5-6 The plug-in message entity spreadsheet

Parent and Child Pipelines

Some events will in turn cause other events to be executed. When this happens, a secondary
pipeline is created for this event and is referred to as a child pipeline. For example, when an
Opportunity is converted to an Account, the Create event is executed in a child pipeline. If
you want to handle the creation of an account in this scenario, you need to specify Child as
the InvocationSource when registering your plug-in step.

Typically, plug-ins only execute outside the main database transaction and cannot cause a

rollback to occur. However, when a plug-in is running inside a child pipeline, it is executing
inside the parent pipeline’s transaction, and if the plug-in throws an exception, the parent'’s
transaction will be rolled back.

122 Part Il Extending Microsoft CRM

@ Caution One additional point to be aware of is that when you run a plug-in inside a child pipe-
line, you cannot use the IPluginExecutionContext interface’s CreateCrmService method. If you do,
an exception is thrown. The use of the CreateCrmService method was intentionally disabled in
child pipelines because it would be too easy to cause an infinite loop or a database deadlock if
it were enabled. If you absolutely need to talk back to the CRM services inside a child pipeline,
you can manually create a CrmService, but be sure to use it with caution. Additionally, any calls
you make with your own CrmService run within their own thread and are outside transactions
in which the plug-in executes. This means that if the transaction is rolled back for any reason,
changes made with your instance of CrmService will not be undone.

IPluginExecutionContext

As stated earlier, every plug-in must implement the /Plugin interface, which includes the
Execute method in its definition. The Execute method takes a single argument of type
IPluginExecutionContext, which provides the plug-in with the state of the current execu-
tion pipeline and a means to communicate with the Microsoft Dynamics CRM Web service
API. IPluginExecutionContext has twenty-two properties and two methods, all of which are
described in the following list.

B BusinessUnitld property BusinessUnitld is a Guid that represents the business unit
that the primary entity belongs to.

B CallerOrigin property CallerOrigin is an instance of one of the following classes:
ApplicationOrigin, AsyncServiceOrigin, OfflineOrigin, or WebServiceApiOrigin. You can
use this property to determine who initiated the pipeline. The following code deter-
mines whether the pipeline was initiated from the CRM Web service.

pubTlic bool IsOriginatingFromwWebServiceApi(IPTuginExecutionContext context)
{

return context.CallerOrigin is WebServiceApiOrigin;

3

B Correlationld, CorrelationUpdatedTime, and Depth properties These three
properties are combined to detect infinite loops in plug-ins. If you only use the
IPluginExecutionContext interface's CreateCrmService method to create CrmService
instances, you don't need to worry about these three properties, as they will be set on
the returned CrmService for you. However, if you need to create your own instance of
a CrmService class, you can use these properties to initialize its CorrelationTokenValue
property, which ensures safety from infinite loops. The code shown here demonstrates
how to use the correlation properties when creating your own CrmService instances.

public CrmService GetSafeCrmService(IPTuginExecutionContext context)

{

CrmService crmService = new CrmService(Q);

Chapter 5 Plug-ins 123

crmService.CorrelationTokenValue = new CorrelationToken(
context.Correlationld,
context.CorrelationUpdatedTime,
context.Depth

)5

// finish initializing crmService here...

return crmService;

More Info One additional use for Correlationid is as a unique value for logging. In a
production environment you will likely have multiple plug-ins executing at the same time,
and the unique ID can be useful in determining which plug-in instance is generating the
log messages.

InitiatingUserld property This property is always the Guid of the user that caused
the event to execute, regardless of whether the plug-in was registered to impersonate
another user. See the Userld property later in this section for more information.

InputParameters property This property is an instance of Microsoft.Crm.Sdk.
PropertyBag. Each value contained in PropertyBag corresponds with a property on the
Request that caused this event to execute. For example, CreateRequest has a property
named Target, so you would find a value in InputParameters with a key of “Target”.

Tip When accessing the values in InputParameters, you should use the ParameterNames
static class, instead of typing keys, to avoid run-time errors caused by typos.

if (context.InputParameters.Contains(ParameterName.Target))
{

DynamicEntity target = (DynamicEntity)

context.InputParameters[ParameterName.Target];

/]
}
InvocationSource property The InvocationSource property is an integer value that
you can use to determine whether the current plug-in is running in a child pipeline.
Table 5-1 lists the valid values as defined by the MessagelnvocationSource class.

TABLE 5-1 MessagelnvocationSource Values
Field Value Description
Child 1 Specifies a child pipeline

Parent 0 Specifies a parent pipeline

IsExecutingInOfflineMode property You can register plug-ins to run offline with
Microsoft CRM for Outlook with Offline Access. If a plug-in is running in such a state,

124

Part Il

Extending Microsoft CRM
this Boolean property is set to true. See Chapter 10 for more information on offline
plug-ins.

MesssageName property MessageName is a string property that allows the
current plug-in to know the name of the message that is being executed (Create,
Update, Assign, and so on).

Mode property Mode is an integer property that you can use to determine whether
the plug-in is executing synchronously or asynchronously. The valid values are from the
MesssageProcessingMode class, as listed in Table 5-2.

TABLE 5-2 MessageProcessingMode Values

Field Value Description
Asynchronous 1 Specifies asynchronous processing
Synchronous 0 Specifies synchronous processing

Organizationld and OrganizationName properties These properties contain
information about the organization that the current entity belongs to and that the
current pipeline is executing within.

Caution The initial release of Microsoft Dynamics CRM 4.0 had a bug that caused the
friendly organization name to be passed into the plug-in execution context instead of the
actual name. When you create an organization, these two values are the same by default,
but if they are different you can run into issues quickly. The main problem is that when you
use the CreateCrmService method, an invalid organization is specified for the ICrmService
proxy and any calls you make with it result in an unauthorized exception. At the time this
book went to press, Microsoft was aware of the defect and was implementing a fix, but
until the fix is released you can just keep the organization name and the friendly name
identical.

OutputParameters property Similar to the InputParameters property, this property is
an instance of a PropertyBag. The values in the OutputParameters property correspond
with the properties on the Response for the message being executed. For example, a
CreateResponse has an Id property, so a post-event plug-in could expect the corre-
sponding value in the OutputParameters property using a key value of “Id".

Tip Using the static ParameterNames class instead of string keys is encouraged so that
you'll discover errors at compile time instead of at run time.

// Getting the entity id in a Post-Event for a Create message
Guid contactId = (Guid)context.OutputParameters[ParameterName.Id];

ParentContext property ParentContext is another instance of
IPluginExecutionContext. If the current plug-in is executing in a child pipeline,

OB

Chapter 5 Plug-ins 125

ParentContext will contain the context of the parent pipeline; otherwise, ParentContext
will be null.

PreEntitylmages and PostEntitylmages properties PreEntitylmages and
PostEntitylmages are both PropertyBag properties. When registering a plug-in, you can
specify for certain messages that you want a snapshot of the entity before or after the
core operation has completed. You also specify the alias you would like to give that
snapshot. Those snapshots, or images, show up in these two collections with the alias
as the key. PreEntitylmages contains the images from before the core operation, and
PostEntitylmages contains the images from after the core operation.

PrimaryEntityName property PrimaryEntityName is a string property that contains
the name of the primary entity for which the pipeline is executing.

SecondaryEntityName property SecondaryEntityName is a string property that con-
tains the name of the secondary entity for which the pipeline is executing, if one exists.
A majority of the messages deal with a single entity, so this property will almost always
be set to “none”. However some messages, like SetRelated, refer to two entities. In this

case, you can use SecondEntityName to find out the type of the second entity.

SharedVariables property SharedVariables is a PropertyBag property that is meant
to be used by plug-in developers to pass information between plug-ins. Using
SharedVariables, a pre-event plug-in can pass along information to a post-event plug-
in. Another potential use is to look up data in a parent pipeline step and then later ac-
cess it in a child pipeline through the child’s ParentContext property’s SharedVariables

property.

Stage property Stage is an integer property that a plug-in can use to determine
whether it is running as a pre-event or a post-event plug-in. The valid values are from
the MessageProcessingStage class, as listed in Table 5-3.

TABLE 5-3 MessageProcessingStage Values

Field Value Description

AfterMainOperationOutsideTransaction 50 Specifies to process after the main
operation, outside the transaction

BeforeMainOperationOutsideTransaction 10 Specifies to process before the main
operation, outside the transaction

More Info There are, in fact, three other values for Stage, but they are for internal
use only by Microsoft Dynamics CRM and you will receive an error if you try to register
your plug-in to run in one of these stages. Just in case you run into one of these values
while trying to debug an issue, they are BeforeMainOperationinsideTransaction (20),
MainOperation (30), and AfterMainOperationInsideTransaction (40).

126

Part Il Extending Microsoft CRM

B Userld property Userld is a Guid property that represents the user that the plug-in
is running as for any CrmService calls. This value is typically the user that initiated the
event, but if a plug-in is registered to impersonate another user, this value contains the
impersonated user’s ID. See the InitiatingUserld property for more information.

B CreateCrmService method This is an overloaded method that you can use to create
an instance of an /CrmService interface that has the same methods as the CrmService
class, which is explained in detail in Chapter 3. The arguments control impersonation
within the plug-in and are explored in more depth in the “Impersonation” section later
in this chapter.

B CreateMetadataService method You use the CreateMetadataService method to
get an instance of the IMetadataService interface that has the same methods as the
MetadataService class, which is explained in detail in Chapter 3. The method accepts a
single Boolean named useCurrentUserld and is used for impersonation within the plug-
in. See the next section, “Impersonation,” for more details.

Impersonation

Impersonation in Microsoft Dynamics CRM occurs when a CrmService or MetadataService call
is made on behalf of another user. Plug-ins have two options for impersonation. First, they
can be registered to impersonate a specific user by default. Second, they can specify a user
ID to impersonate on the fly during execution.

Important Plug-in impersonation does not work offline. Actions offline are always taken by the
logged-on user.

Impersonation During Registration

When you register a plug-in, you can specify an impersonatinguserid value. In this

situation, any calls to the IPluginExecutionContext interface's CreateCrmService or
CreateMetadataService methods with a value of true for the useCurrentUser argument result
in a service that is impersonating the user specified at registration. Passing false for the
useCurrentUser argument results in a service that is executing as the “system” user. In
addition, the IPluginExecutionContext interface’s Userld property contains the user ID specified
during registration.

Chapter 5 Plug-ins 127

Impersonation During Execution

A plug-in's second option for impersonation is to specify a user ID when calling the
IPluginExecutionContext interface's CreateCrmService method. This allows the plug-in to
determine on the fly which user to impersonate, possibly pulling a value from a registry
setting or configuration file.

@ Best Practices You may be wondering which method of impersonation you should use. Unless
you know that you need to impersonate another user, you should simply pass in true to the use-

CurrentUser argument and create service instances that will behave as determined by the plug-in
registration. Most often, plug-ins will be registered without an impersonatinguserid specified and
you will run as the user that initiated the event. If at a later point it is determined that you need a
plug-in to run with impersonation, you can change the plug-in step without needing to recom-
pile the plug-in assembly. Avoid passing in false for useCurrentUser unless you need to because
this value means that calls into the CrmService effectively run as an administrator, possibly el-
evating the privilege of the user who caused the plug-in to execute.

Exception Handling

We frequently receive questions regarding exceptions when writing plug-ins. How are
exceptions handled? Should all inner exceptions be handled by the plug-in? Does Microsoft
Dynamics CRM automatically log exceptions? What does an end user see when an exception
goes unhandled? Fortunately these questions have fairly straightforward answers, as de-
tailed in the following sections.

Exceptions and the Event Processing Pipeline

The impact of an unhandled exception within a plug-in on the event processing pipeline is
fairly intuitive. If you registered your plug-in as a pre-event plug-in and it throws an excep-
tion or lets an exception go unhandled, no further plug-ins will execute and the core opera-
tion will not occur. If you registered your plug-in as a post-event and it throws an exception,
no further plug-ins will execute, and since the core operation already occurred Microsoft
Dynamics CRM will not roll it back. However, if the plug-in is executing in a child pipeline, an
unhandled exception results in the parent pipeline’s core operation being rolled back.

Exception Feedback

Microsoft Dynamics CRM logs all unhandled exceptions in the Event Viewer on the server
where they occurred. In addition, if the exception generating event was initiated by the user
through the Microsoft Dynamics CRM user interface, the user is presented with an error

128

Part Il Extending Microsoft CRM

message. To control the message that the user sees, you should throw an InvalidPluginExecution-
Exception. In this case, the Message property for the exception is displayed. If you let an
exception of another type go unhandled, a generic error message may be used.

Deployment

At the beginning of the chapter we briefly touched on one of the tools used to deploy plug-
ins. In this section we'll take a deeper look at what happens during plug-in registration and
how you can write your own registration tools.

Plug-in Entities
Microsoft Dynamics CRM stores plug-in information in a series of entities as listed in Table 5-4.

TABLE 5-4 Plug-in Entities

Entity Name Description

pluginassembly Represents the registered plug-in assembly. Can have
multiple plugintype entities associated with it.

plugintype Represents the class in the plug-in assembly that implements
IPlugin. Can have multiple steps associated with it.

sdkmessageprocessingstep Represents a step in the event execution pipeline when
a plug-in type should be executed. Can have multiple
sdkmessageprocessingimage entities and multiple
sdkmessageprocessingstepsecureconfig entities associated
with it.

sdkmessageprocessingstepimage Represents the definition of which types of images should
be provided to a plug-in for a particular step. Images are
essentially snapshots of the entity before or after the core
operation has taken place.

sdkmessageprocessingstepsecure- Represents secure configuration information for a particular
config plug-in step. Passed to the plug-in constructor if provided.

Programmatic Plug-in Registration

You can register and deploy plug-ins programmatically through the API, which allows you

to implement your own deployment tools without a lot of code. To demonstrate this, we

will implement a plug-in registration tool that uses custom .NET attributes to specify how to
register our plug-ins. This approach offers the benefit of letting the developer implement the
plug-in to specify its use as he codes it.

Because both the plug-in assembly and our installation tool reference our custom .NET
attributes, we need to put them in their own class library. Follow these steps to add the
project to our existing solution.

Chapter 5 Plug-ins 129

Adding the custom attribute project

1. On the File Menu, select Add and then click New Project.

2. In the New Project dialog box, select the Visual C# project type targeting the .NET
Framework 3.0, and then select the Class Library template.

3. Type the name ProgrammingWithDynamicsCrm4.Plugins.Attributes in the Name
box, and then click OK.

4. Delete the default Class.cs file.

5. Right-click the ProgrammingWithDynamicsCrm4.Plugins.Attributes project in Solution
Explorer and then click Properties.

6. On the Signing tab, select the Sign The Assembly box and select <New...> from the
drop-down list below it.

7. Type the key file name ProgrammingWithDynamicsCrm4.Plugins.Attributes and
then clear the Protect My Key File With A Password check box. Click OK.

8. Close the project properties window.

Adding the PluginStepAttribute class
Next we need to define the custom attribute class.

1. Right-click the ProgrammingWithDynamicsCrm4.Plugins.Attributes project in Solution
Explorer. Under Add, click Class.

2. Type PluginStepAttribute.cs in the Name box and click Add.

Listing 5-2 shows the full source code for the PluginStepAttribute class.

LISTING 5-2 PluginStepAttribute source code

using System;

namespace ProgrammingWithDynamicsCrm4.Plugins.Attributes

4
[AttributeUsage(AttributeTargets.Class, AllowMultiple=true)]
public class PluginStepAttribute: Attribute

{
public PluginStepAttribute(string message, PluginStepStage stage)
{
this.Message = message;
this.Stage = stage;
}

public PluginStepStage Stage { get; private set; }
public string Message { get; private set; }

public string PrimaryEntityName { get; set; }

130

Part Il Extending Microsoft CRM

public string SecondaryEntityName { get; set; }

public PluginStepMode Mode { get; set; }

public int Rank { get; set; }

public string Description { get; set; }

public string FilteringAttributes { get; set; }

public PluginStepInvocationSource InvocationSource { get; set; }
public PluginStepSupportedDeployment SupportedDeployment { get; set; }

Custom attributes like the one we have defined here allow us to embed extra information
into our compiled types and assemblies. We can use this attribute to attach information
about our plug-in registration to the plug-in class itself. The following example demonstrates
how this attribute might be applied to a plug-in class.

[PTuginStep("Update", PluginStepStage.PreEvent, PrimaryEntityName = "account")]
public class MyPluginClass: IPlugin
{

}

Notice that even though the class name is PluginStepAttribute, we can omit the trailing
Attribute—which is just a shortcut supplied by .NET—when applying it to a class. Also worth
noticing is that we've exposed some of the arguments as constructor arguments and others
as public properties. In general, when you work with custom attributes you want to make
anything required a constructor argument and anything optional a public property. You
might argue that PrimaryEntityName should have been in the list of required attributes, but
you can register for a few messages that do not have an entity associated with them.

If you have a sharp eye, you probably noticed that we still need to define the types for a few
properties in PluginStepAttribute. These four types are all defined as enums so that you will
receive IntelliSense in Visual Studio 2008 when you apply this attribute to a plug-in class. The
enums are defined as shown in Listing 5-3.

LISTING 5-3 Enum type definitions

namespace ProgrammingWithDynamicsCrm4.PTugins.Attributes

i
pubTlic enum PluginStepInvocationSource
d
ParentPipeline = 0,
ChildPipeline = 1,
}

public enum PluginStepMode
d

Synchronous = 0,

Chapter 5 Plug-ins 131

Asynchronous = 1,

b

public enum PluginStepStage

{
PreEvent = 10,
PostEvent = 50,

b

public enum PluginStepSupportedDeployment

{
ServerOnly=0,
OutlookClientOnly=1,
Both=2,

}

You can place these definitions in their own files or just after the PluginStepAttribute class in
PluginStepAttribute.cs.

Now we should be able to go back to our original ProgrammingWithDynamicsCrm4.Plugins
project and add a reference to our new attributes project.

Adding a reference to the attributes project

1. Right-click the ProgrammingWithDynamicsCrm4.Plugins project in Solution Explorer
and then click Add Reference.

2. On the Projects tab, select ProgrammingWithDynamicsCrm4.Plugins.Attributes. Click
OK.

Now we can add our attribute to the AccountNumberValidator plug-in. You will need to add
the following using statement at the top of AccountNumberValidator.cs:

using ProgrammingWithDynamicsCrm4.Plugins.Attributes;

Then you can add the following two attributes to the class definition:

[PTuginStep("Create", PluginStepStage.PreEvent, PrimaryEntityName = "account",
FilteringAttributes = "accountnumber")]

[PTuginStep("Update", PluginStepStage.PreEvent, PrimaryEntityName = "account",
FilteringAttributes = "accountnumber")]

public class AccountNumberValidator: IPlugin

{
3

At this point, the only remaining step is creating the actual tool to register the plug-in.

132 Part Il

Extending Microsoft CRM

Creating the ProgrammingWithDynamicsCrm4.PluginDeploy project

1.

On the File Menu, select Add and then click New Project.

In the New Project dialog box, select the Visual C# project type targeting the .NET
Framework 3.0 and then select the Console Application template.

Type the name ProgrammingWithDynamicsCrm4.PluginDeploy in the Name box
and click OK.

Right-click the ProgrammingWithDynamicsCrm4.PluginDeploy project in Solution
Explorer and then click Add Reference.

On the Browse tab, navigate to the CRM SDK's bin folder and select microsoft.crm.sdk.
dll and microsoft.crm.sdktypeproxy.dll. Click OK.

Right-click the ProgrammingWithDynamicsCrm4.PluginDeploy project in Solution
Explorer and then click Add Reference.

On the .NET tab, select System.Web.Services and System.Configuration. Click OK.

Right-click the ProgrammingWithDynamicsCrm4.PluginDeploy project in Solution
Explorer and then click Add Reference.

. On the Projects tab, select ProgrammingWithDynamicsCrm4.Plugins.Attributes and

click OK.

Now we can proceed to the Main method. Replace the generated code in Program.cs with
the code shown in Listing 5-4.

LISTING 5-4 PluginDeploy’s Main method

using System;

using System.Collections.Generic;
using System.Configuration;

using System.IO;

using System.Net;

using System.Reflection;

using System.Text;

using System.Web.Services.Protocols;
using Microsoft.Crm.Sdk;

using Microsoft.Crm.Sdk.Query;

using Microsoft.Crm.SdkTypeProxy;
using ProgrammingWithDynamicsCrm4.Plugins.Attributes;

namespace ProgrammingWithDynamicsCrm4.PluginDeploy

il

static void Main(string[] args)
{

if (args.Length != 3)

{

string exeName = Path.GetFileName(Environment.GetCommandLineArgs()[0]);

Chapter 5 Plug-ins

Console.WriteLine(
"Usage: {0} <pluginAssembly> <crmServerUrl> <organizationName>",
exeName) ;

Environment.Exit(1);

}
try
{
string pluginAssemblyPath = args[0];
string crmServer = args[1];
string organizationName = args[2];
DeployPlugin(pluginAssemblyPath, crmServer, organizationName);
}
catch (SoapException e)
{
Console.WriteLine(e.Detail.InnerText);
}
catch (Exception e)
{
Console.WriteLine(e.Message);
}

The Main method doesn’t do much more than look for simple usage errors and display
unhandled exceptions to the user. All of the real work is left to the DeployPlugin method,
which is shown in Listing 5-5.

LISTING 5-5 The DeployPlugin method

private static void DeployPlugin(
string pluginAssemblyPath,
string crmServer,
string organizationName)

Console.Write("Initializing CrmService... ");

CrmService crmService = CreateCrmService(crmServer, organizationName);
Console.WriteLine("Complete™);

pluginassembly pluginAssembly = LoadPluginAssembly(pluginAssemblyPath);

UnregisterExistingSolution(crmService, pluginAssembly.name);

SdkMessageProcessingStepRegistration[] steps =
LoadPTuginSteps(pluginAssemblyPath) ;

RegisterSolution(crmService, pluginAssembly, steps);

133

134

Part Il

Extending Microsoft CRM

The first thing DeployPlugin does is create an instance of the CrmService. CreateCrmService is
a helper method that creates a CrmService in a fairly straightforward way. Listing 5-6 shows
the implementation of CreateCrmService.

LISTING 5-6 The CreateCrmService method

private static CrmService CreateCrmService(

{

string crmServer, string organizationName)

UriBuilder crmServerUri = new UriBuilder(crmServer);
crmServerUri.Path = "/MSCRMServices/2007/CrmService.asmx";

string userName = ConfigurationManager.AppSettings["crmUserName"];
string password = ConfigurationManager.AppSettings["crmPassword"];
string domain = ConfigurationManager.AppSettings["crmDomain"];

CrmService crmService = new CrmService();
if (String.IsNullOrEmpty(userName))

{
crmService.UseDefaultCredentials = true;
}
else
{
crmService.Credentials = new NetworkCredential(userName, password, domain);
}

crmService.Url = crmServerUri.ToString(Q);
crmService.CrmAuthenticationTokenValue = new CrmAuthenticationToken();
crmService.CrmAuthenticationTokenValue.AuthenticationType =
AuthenticationType.AD;
crmService.CrmAuthenticationTokenValue.OrganizationName = organizationName;

return crmService;

CreateCrmService checks in the application configuration file to see whether any credentials
are specified to use when communicating with Microsoft Dynamics CRM. If it does not find
any, it uses the credentials of the user that started the process.

After DeployPlugin aquires a CrmService, it calls LoadPluginAssembly to load an instance of
the pluginassembly class from the plug-in DLL. The source for LoadPluginAssembly is shown
in Listing 5-7.

LISTING 5-7 The LoadPluginAssembly method

private static pluginassembly LoadPluginAssembly(string pluginAssemblyPath)

il

Assembly assembly = Assembly.LoadFile(pluginAssemblyPath);
pluginassembly pluginAssembly = new pluginassembly();
pluginAssembly.name = assembly.GetName() .Name;
pluginAssembly.sourcetype = new Picklist(AssemblySourceType.Database);
pluginAssembly.culture = assembly.GetName() .CultureInfo.ToString(Q);

Chapter 5 Plug-ins 135

pluginAssembly.version = assembly.GetName() .Version.ToString(Q);

if (String.IsNull0OrEmpty(pluginAssembly.culture))
{

pluginAssembly.culture = "neutral";

byte[] publicKeyToken = assembly.GetName() .GetPublicKeyToken();
StringBuilder tokenBuilder = new StringBuilder();
foreach (byte b in publicKeyToken)
d
tokenBuilder.Append(b.ToString("x").PadLeft(2, '0'));
}
pluginAssembly.pubTickeytoken = tokenBuilder.ToString(Q);

pluginAssembly.content = Convert.ToBase64String(
File.ReadAT1Bytes(pluginAssemblyPath));

return pluginAssembly;

Most of the pluginassembly class's properties are populated using reflection on the assembly
after it is loaded. The publickeytoken property is a little bit more work because we need to
convert the byte array to a hexadecimal string. The content property is a Base64-formatted
string that contains the raw bytes from the assembly DLL. Also note that we have just hard-
coded sourcetype to be a database deployment.

After PluginDeploy receives pluginassembly, it calls UnregisterExistingSolution to make sure
that no pre-existing version of this assembly is registered on the CRM server. The Unregister-
ExistingSolution source code is shown in Listing 5-8.

LISTING 5-8 The UnregisterExistingSolution method

private static void UnregisterExistingSolution(
CrmService crmService,
string assemblyName)

QueryByAttribute query = new QueryByAttribute();

query.EntityName = EntityName.pluginassembly.ToString(Q);
query.ColumnSet = new ColumnSet(new string[] { "pluginassemblyid" });
query.Attributes = new string[] { "name" };

query.Values = new object[] { assemblyName };

RetrieveMultipleRequest request = new RetrieveMultipleRequest();
request.Query = query;

RetrieveMultipleResponse response;

Console.Write("Searching for existing solution... ");

response = (RetrieveMultipleResponse)crmService.Execute(request);
Console.WriteLine("Complete™);

136

Part Il Extending Microsoft CRM

if (response.BusinessEntityCollection.BusinessEntities.Count > 0)
{
pluginassembly pluginAssembly = (pluginassembly)
response.BusinessEntityCollection.BusinessEntities[0];
Console.Write("Unregistering existing solution {0}... ",
pluginAssembly.pluginassemblyid.Value);

UnregisterSolutionRequest unregisterRequest =
new UnregisterSolutionRequest();
unregisterRequest.PluginAssemblyId = pluginAssembly.pluginassemblyid.Value;

crmService.Execute(unregisterRequest) ;
Console.WriteLine("Complete™);

The UnregisterExistingSolution method starts by querying CrmService to see whether any
pluginassembly entities are already registered with the same name. If it finds one, it executes
an UnregisterSolutionRequest, passing in the Guid of the assembly that was determined to be
a match.

DeployPlugin is now ready to use our custom attribute and create an array of
SdkMessageProcessingStepRegistration instances. SdkMessageProcessingStepRegistration
is a part of the Microsoft.Crm.Sdk namespace and is used to simplify the registration of
plug-ins. Listing 5-9 shows the source code for LoadPluginSteps.

LISTING 5-9 The LoadPluginSteps method

private static SdkMessageProcessingStepRegistration[] LoadPluginSteps(string
pluginAssemblyPath)
{
List<SdkMessageProcessingStepRegistration> steps =
new List<SdkMessageProcessingStepRegistration>();

Assembly assembly = Assembly.LoadFile(pluginAssemblyPath);
foreach (Type pluginType in assembly.GetTypes())

{
if (typeof(IPlugin).IsAssignableFrom(pluginType) && !pluginType.IsAbstract)
{
object[] stepAttributes =
pluginType.GetCustomAttributes(typeof(PluginStepAttribute), false);
foreach (PluginStepAttribute stepAttribute in stepAttributes)
{
steps.Add(CreateStepFromAttribute(pluginType, stepAttribute));
}
}
}

return steps.ToArray();

Chapter 5 Plug-ins 137

LoadPluginSteps loads the assembly from the disk and then uses reflection to iterate
through all the types defined in the assembly. If it finds a concrete implementation of
IPlugin, it determines whether our PluginStepAttribute is associated with that type. For each
PluginStepAttribute associated with the plugin type, it calls CreateStepFromAttribute to create
an instance of SdkMessageProcessingStepRegistration. The CreateStepFromAttribute source
code is shown in Listing 5-10.

LISTING 5-10 The CreateStepFromAttribute method

private static SdkMessageProcessingStepRegistration CreateStepFromAttribute(
Type pluginType,
PTuginStepAttribute stepAttribute)

SdkMessageProcessingStepRegistration step =

new SdkMessageProcessingStepRegistration();
step.Description = stepAttribute.Description;
step.FilteringAttributes = stepAttribute.FilteringAttributes;
step.InvocationSource = (int)stepAttribute.InvocationSource;
step.MessageName = stepAttribute.Message;
step.Mode = (int)stepAttribute.Mode;
step.PluginTypeName = pluginType.FullName;
step.PluginTypeFriendlyName = pluginType.FullName;
step.PrimaryEntityName = stepAttribute.PrimaryEntityName;
step.SecondaryEntityName = stepAttribute.SecondaryEntityName;
step.Stage = (int)stepAttribute.Stage;
step.SupportedDeployment = (int)stepAttribute.SupportedDeployment;

if (String.IsNullOrEmpty(step.Description))
{
step.Description = String.Format("{0} {1} {2}",
step.PrimaryEntityName, step.MessageName, stepAttribute.Stage);

return step;

Almost all the SdkMessageProcessingStepRegistration values are assigned directly from
corresponding values on our PluginStepAttribute class. The PluginTypeName property comes
from the actual plug-in type (and we use that for the PluginTypeFriendlyName too). If no
Description is provided, we derive one from the PrimaryEntityName, MessageName, and
Stage properties.

Finally, DeployPlugin is ready to send all this information over to the CRM server.
RegisterSolution is called, passing our previously loaded pluginassembly and our newly ini-
tialized array of SdkMessageProcessingStepRegistrations. The RegisterSolution source code is
shown in Listing 5-11.

Part Il Extending Microsoft CRM

LISTING 5-11 The RegisterSolution method

private static void RegisterSolution(CrmService crmService, pluginassembly
pluginAssembly, SdkMessageProcessingStepRegistration[] steps)
i
RegisterSolutionRequest registerRequest = new RegisterSolutionRequest();
registerRequest.PluginAssembly = pluginAssembly;
registerRequest.Steps = steps;
Console.Write("Registering solution... ");
crmService.Execute(registerRequest);
Console.WriteLine("Complete™);

RegisterSolution is a straightforward method that simply creates a RegisterSolutionRequest
and executes it with the CrmService.

At this point you should be able to compile the solution and use ProgrammingWithDynamics
Crm4.PluginDeploy.exe to deploy ProgrammingWithDynamicsCrm4.Plugins to your CRM
server. The command line used to deploy a plug-in is:

ProgrammingWithDynamicsCrm4.PluginDeploy.exe <pathToAssembly> <crmServerUrl>
<organizationName>

Images

One concept that our previous example did not touch on is the ability to request entity im-
ages during registration. An image is essentially a snapshot of an entity and it can be taken
either before or after the core operation is performed. Images allow a plug-in access to at-
tribute values that would otherwise not be available. For example, an audit log plug-in could
be provided with an image that contains the original attribute values for an entity that has
just been modified. Using this image, the plug-in could record both the new and old attri-
bute values in a log. Another example of using images would be a plug-in that needs to keep
a calculated value on a parent entity up to date. When the child entity is associated with a
new parent, a plug-in can use a pre-image to retrieve the previous parent and ensure that
both the new and the old parent are kept up to date.

We refer to images that are taken before the core operation as pre-images and images taken
after the core operation as post-images. These images are then passed to a plug-in through
the IPluginExecutionContext interface’s PreEntitylmages and PostEntitylmages properties.

When your plug-in requires an image, you need to specify the type of image and the name
of the message property that contains the entity you want an image of. In addition, not all
messages can produce images. Table 5-5 lists all supported messages and their correspond-
ing message property names.

TABLE 5-5 Messages That Support Images

Message Message Property Name
Assign Target

Create Id

Delete Target
Deliverincoming Emailld
DeliverPromote Emailld
Merge Target

Merge Subordinateld
Route Target

Send Emailld
SetState EntityMoniker
SetStateDynamicEntity EntityMoniker
Update Target

Programmatic Image Registration

To add image support to ProgrammingWithDynamicsCrm4.PluginDeploy, we need an

Chapter 5 Plug-ins

Notes

Does not support pre-images

Does not support post-images

additional attribute class. Using the steps outlined earlier, add a new class to the

ProgrammingWithDynamicsCrm4.Plugins.Attributes project named PluginimageAttribute.

The source code for this class is shown in listing 5-12.

LISTING 5-12 PluginimageAttribute source code

using System;

namespace ProgrammingWithDynamicsCrm4.Plugins.Attributes

d

[AttributeUsage(AttributeTargets.Class, AllowMultiple=true)]

public class PluginImageAttribute: Attribute
{
public PluginImageAttribute(
ImageType imageType,
string stepld,
string messagePropertyName,
string entityAlias)

{
this.ImageType = imageType;
this.Stepld = stepld;
this.MessagePropertyName = messagePropertyName;
this.EntityAlias = entityAlias;
}

public ImageType ImageType { get; private set; }

public string StepId { get; private set; }

139

140

Part Il Extending Microsoft CRM

public string MessagePropertyName { get; private set; }
public string EntityAlias { get; private set; }
public string Attributes { get; set; }

}

pubTlic enum ImageType

{
PreImage = 0,
PostImage = 1,
Both = 2,

}

All the properties except Attributes are required for PluginimageAttribute, so they are all
passed in to the constructor. If no attributes are specified for an image, it is populated with
all of the entity’s attributes that have values.

One property that might not have a readily apparent use is Step/d. Because an image is
associated with a particular step and we can have multiple steps per plug-in, we need a way
to tie the two attributes together. To do this, we assign a unique value to the Stepl/d property
on both the PluginStepAttribute and PluginimageAttribute classes. We need to modify the
PluginStepAttribute class to include the following new property:

public string StepId { get; set; }

Notice that Stepld is optional on the PluginStepAttribute class because it is only needed if the
developer wants to specify an image for that step.

Now a developer can register for an image on her plug-in class by using two attributes
together:

[PluginStep("Update", PluginStepStage.PreEvent, PrimaryEntityName = "account",
StepId="AccountPreUpdate")]

[PTuginImage(ImageType.PreImage, "AccountPreUpdate", "Target", "Account")]

public class MyPlugin: IPTugin

{

}

Notice that the Stepld for this example is arbitrarily set to AccountPreUpdate. It doesn't
matter what value you use as long as the values for the step and the image match.

Finally, we need to modify our console application to use the new PluginlmageAttribute type.
We need to insert the code from Listing 5-13 into the CreateStepFromAttribute method just
before the return statement.

Chapter 5 Plug-ins

LISTING 5-13 Modifications to the CreateStepFromAttribute method

if (!String.IsNullOrEmpty(stepAttribute.StepId))

il
List<SdkMessageProcessingStepImageRegistration> images =
new List<SdkMessageProcessingStepImageRegistration>();
object[] imageAttributes = pluginType.GetCustomAttributes(
typeof(PluginImageAttribute), false);
foreach (PluginImageAttribute imageAttribute in imageAttributes)
{
if (imageAttribute.StepId == stepAttribute.StepId)
{
images.Add(CreateImageFromAttribute(imageAttribute));
}
3
if (images.Count > 0)
d
step.Images = images.ToArray();
}
}

141

This change checks whether the current step attribute has a step ID assigned. If it does, the
method looks for image attributes on the plugin type. If it finds any image attributes, it calls

the CreatelmageFromAttribute method, which is shown in Listing 5-14.

LISTING 5-14 The CreatelmageFromAttribute method

private static SdkMessageProcessingStepImageRegistration
CreateImageFromAttribute(PTuginImageAttribute imageAttribute)
i
SdkMessageProcessingStepImageRegistration image =
new SdkMessageProcessingStepImageRegistration();

if (!String.IsNullOrEmpty(imageAttribute.Attributes))
{
image.Attributes = imageAttribute.Attributes.Split(',");

image.EntityAlias = imageAttribute.EntityAlias;
image.ImageType = (int)imageAttribute.ImageType;
image.MessagePropertyName = imageAttribute.MessagePropertyName;

return image;

CreatelmageFromAttribute creates a new instance of the SdkMessageProcessingStepImage-

Registration class and populates it from the image attribute. The appropriate images are

assigned back to the step’s Images property and are automatically registered when the call

to RegisterSolution is made.

142

Part Il

Extending Microsoft CRM

The final code for Program.cs is shown in Listing 5-15.

LISTING 5-15 Source code for ProgrammingWithDynamicsCrm4.PluginDeploy’s Program.cs

using
using
using
using
using
using
using
using
using
using
using
using

System

System.

System

System.
System.
System.

System
System
Micros
Micros
Micros
Progra

Collections.Generic;
.Configuration;

10;

Net;

Reflection;

.Text;
.Web.Services.Protocols;
oft.Crm.Sdk;
oft.Crm.Sdk.Query;
oft.Crm.SdkTypeProxy;
mmingWithDynamicsCrm4.Plugins.Attributes;

namespace ProgrammingWithDynamicsCrm4.PluginDeploy

il

class Program

{

stat
{

priv.

ic void Main(string[] args)

if (args.Length != 3)

{
string exeName = Path.GetFileName(
Environment.GetCommandLineArgs() [0]);
Console.WriteLine(
"Usage: {0} <pluginAssembly> <crmServerUrl> <organizationName>",
exeName) ;
Environment.Exit(1l);
}
try
{
string pluginAssemblyPath = args[0];
string crmServer = args[1];
string organizationName = args[2];
DeployPlugin(pluginAssemblyPath, crmServer, organizationName);
}
catch (SoapException e)
{
Console.WritelLine(e.Detail.InnerText);
}
catch (Exception e)
{
Console.WriteLine(e.Message);
}
ate static void DeployPlugin(

string pluginAssemblyPath,
string crmServer,
string organizationName)

Chapter 5 Plug-ins

Console.Write("Initializing CrmService... ");

CrmService crmService = CreateCrmService(crmServer, organizationName);
Console.WriteLine("Complete");

pluginassembly pluginAssembly = LoadPluginAssembly(pluginAssemblyPath);

UnregisterExistingSolution(crmService, pluginAssembly.name);

SdkMessageProcessingStepRegistration[] steps =
LoadPluginSteps(pluginAssemblyPath);

RegisterSolution(crmService, pluginAssembly, steps);

private static pluginassembly LoadPluginAssembly(string pluginAssemblyPath)

{

Assembly assembly = Assembly.lLoadFile(pluginAssemblyPath);
pluginassembly pluginAssembly = new pluginassembly(Q;
pluginAssembly.name = assembly.GetName() .Name;
pluginAssembly.sourcetype = new Picklist(AssemblySourceType.Database);
pluginAssembly.culture = assembly.GetName() .CultureInfo.ToString(Q);
pluginAssembly.version = assembly.GetName().Version.ToString(Q);

if (String.IsNullOrEmpty(pluginAssembly.culture))
{

pluginAssembly.culture = "neutral";

byte[] publicKeyToken = assembly.GetName() .GetPublicKeyToken();
StringBuilder tokenBuilder = new StringBuilder();
foreach (byte b in publicKeyToken)
{
tokenBuilder.Append(b.ToString("x").PadLeft(2, '0'));

}
pluginAssembly.publickeytoken = tokenBuilder.ToStringQ);

pluginAssembly.content =
Convert.ToBase64String(File.ReadAT1Bytes(pluginAssemblyPath));

return pluginAssembly;

private static void UnregisterExistingSolution(

CrmService crmService,
string assemblyName)

QueryByAttribute query = new QueryByAttribute();

query.EntityName = EntityName.pluginassembly.ToString(Q);
query.ColumnSet = new ColumnSet(new string[] { "pluginassemblyid" });
query.Attributes = new string[] { "name" };

query.Values = new object[] { assemblyName };

143

144 Part Il Extending Microsoft CRM

RetrieveMultipleRequest request = new RetrieveMultipleRequest();
request.Query = query;

RetrieveMultipleResponse response;

Console.Write("Searching for existing solution... ");

response = (RetrieveMultipleResponse)crmService.Execute(request);
Console.WriteLine("Complete™);

if (response.BusinessEntityCollection.BusinessEntities.Count > 0)
{
pluginassembly pluginAssembly = (pluginassembly)
response.BusinessEntityCollection.BusinessEntities[0];

Console.Write("Unregistering existing solution {0}... ",
pluginAssembly.pluginassemblyid.Value);

UnregisterSolutionRequest unregisterRequest =
new UnregisterSolutionRequest();

unregisterRequest.PluginAssemblyId =
pluginAssembly.pluginassemblyid.Value;

crmService.Execute(unregisterRequest);
Console.WriteLine("Complete");

private static SdkMessageProcessingStepRegistration[] LoadPluginSteps(
string pluginAssemblyPath)

{
List<SdkMessageProcessingStepRegistration> steps =
new List<SdkMessageProcessingStepRegistration>();
Assembly assembly = Assembly.lLoadFile(pluginAssemblyPath);
foreach (Type pluginType in assembly.GetTypes())
{
if (typeof(IPlugin).IsAssignableFrom(pluginType)
&& !pluginType.IsAbstract)
{
object[] stepAttributes = pluginType.GetCustomAttributes(
typeof(PluginStepAttribute), false);
foreach (PluginStepAttribute stepAttribute in stepAttributes)
{
steps.Add(CreateStepFromAttribute(pluginType,
stepAttribute));
}
}
}
return steps.ToArray(Q);
}

private static SdkMessageProcessingStepRegistration CreateStepFromAttribute(
Type pluginType,
PTuginStepAttribute stepAttribute)

Chapter 5 Plug-ins 145

SdkMessageProcessingStepRegistration step =

new SdkMessageProcessingStepRegistration();
step.Description = stepAttribute.Description;
step.FilteringAttributes = stepAttribute.FilteringAttributes;
step.InvocationSource = (int)stepAttribute.InvocationSource;
step.MessageName = stepAttribute.Message;
step.Mode = (int)stepAttribute.Mode;
step.PluginTypeName = pluginType.FullName;
step.PluginTypeFriendlyName = pluginType.FullName;
step.PrimaryEntityName = stepAttribute.PrimaryEntityName;
step.SecondaryEntityName = stepAttribute.SecondaryEntityName;
step.Stage = (int)stepAttribute.Stage;

if (String.IsNullOrEmpty(step.Description))
{
step.Description = String.Format("{0} {1} {2}",
step.PrimaryEntityName, step.MessageName, stepAttribute.Stage);

if (IString.IsNullOrEmpty(stepAttribute.Stepld))
{
List<SdkMessageProcessingStepImageRegistration> images =
new List<SdkMessageProcessingStepImageRegistration>(Q);
object[] imageAttributes = pluginType.GetCustomAttributes(
typeof (PTuginImageAttribute), false);
foreach (PluginImageAttribute imageAttribute in imageAttributes)
{
if (imageAttribute.StepIld == stepAttribute.StepId)
{
images.Add(CreateImageFromAttribute(imageAttribute));

if (images.Count > 0)
{

step.Images = images.ToArray();

return step;

private static SdkMessageProcessingStepImageRegistration
CreateImageFromAttribute(PluginImageAttribute imageAttribute)

SdkMessageProcessingStepImageRegistration image =
new SdkMessageProcessingStepImageRegistration();

if (!String.IsNullOrEmpty(imageAttribute.Attributes))
{
image.Attributes = imageAttribute.Attributes.Split(',");

146

Part Il

Extending Microsoft CRM

image.EntityAlias = imageAttribute.EntityAlias;
image.ImageType = (int)imageAttribute.ImageType;
image.MessagePropertyName = imageAttribute.MessagePropertyName;

return image;

private static void RegisterSolution(

CrmService crmService,
pluginassembly pluginAssembly,
SdkMessageProcessingStepRegistration[] steps)

RegisterSolutionRequest registerRequest = new RegisterSolutionRequest();
registerRequest.PluginAssembly = pluginAssembly;

registerRequest.Steps = steps;

Console.Write("Registering solution... ");
crmService.Execute(registerRequest) ;

Console.WriteLine("Complete™);

private static CrmService CreateCrmService(

string crmServer,
string organizationName)

UriBuilder crmServerUri = new UriBuilder(crmServer);
crmServerUri.Path = "/MSCRMServices/2007/CrmService.asmx";

string userName = ConfigurationManager.AppSettings["crmUserName"];
string password = ConfigurationManager.AppSettings["crmPassword"];
string domain = ConfigurationManager.AppSettings["crmDomain"];

CrmService crmService = new CrmService();
if (String.IsNullOrEmpty(userName))

{
crmService.UseDefaultCredentials = true;
}
else
{
crmService.Credentials = new NetworkCredential(
userName, password, domain);
}

crmService.Ur1l = crmServerUri.ToString(Q);

crmService.CrmAuthenticationTokenValue = new CrmAuthenticationToken();

crmService.CrmAuthenticationTokenValue.AuthenticationType =
AuthenticationType.AD;

crmService.CrmAuthenticationTokenValue.OrganizationName =
organizationName;

return crmService;

Chapter 5 Plug-ins 147

Custom Configuration

We have not yet touched on one entity tied to plug-in registration: sdkmessageprocessing-
stepsecureconfig. You use this entity to pass a step-specific configuration value to the plug-in.
The data in these entities is secure because only users with high security roles (for example,
System Administrator or System Customizer) have permission to read these entities; there-
fore, you can safely use them to store sensitive information such as database connection
strings. If you don't need the security, you can also specify a value to the sdkmessageprocess-
ingstep class’s configuration property. In our previous example you would specify the value to
the CustomConfiguration property on the SdkMessageProcessingStepRegistration class.

For a plug-in to get the custom configuration value that you registered it with it must imple-
ment a constructor that takes one or two string arguments. If the version that takes two
arguments exists, it will be called with the nonsecure configuration and the secure configura-
tion as the two values. If the single argument version is implemented, it will be called with
the nonsecure configuration value. Listing 5-16 shows an example of the two argument
version.

LISTING 5-16 A plug-in constructor accepting custom configuration values

public class MyPlugin: IPTugin

{
private string _connectionString;
private Guid _defaultAccount;

public MyPlugin(string unsecureConfig, string secureConfig)

{
if (!String.IsNul1OrEmpty(unsecureConfig))

{

_defaultAccount = new Guid(unsecureConfig);

1
_connectionString = secureConfig;

Deploying Referenced Assemblies

Frequently a plug-in includes dependencies on other assemblies. If those assemblies are not
a part of the .NET Framework or the CRM SDK, you need to consider how to deploy them.
The simplest option is to deploy them into the GAC on the CRM server. Depending on how
frequently those referenced assemblies change, keeping the server's GAC up to date can be
a hassle. The GAC is not easily maintained remotely, and you usually end up using Remote
Desktop or something equivalent to manually copy the files into the GAC.

148

B

Part Il Extending Microsoft CRM

Tip You might recall the reference to our custom attribute class library that we added to our
plug-in assembly. Because the plug-in does not reference any of the classes in the custom
attribute assembly at run time, you don't need to deploy the custom attribute DLL to the
Microsoft Dynamics CRM server at all!

An alternative is to use a tool called ILMerge. You use ILMerge to combine multiple .NET
assemblies into a single one. This allows you to merge your plug-in DLL with any of the
DLLs it references and then deploy the single DLL to the CRM database. We frequently
create a post-build step on our plug-in class library project to merge the output with the
dependencies.

To add a post-build step in Visual Studio, right-click the project in Solution Explorer and
select Properties. Then click the Build Events tab. You can then enter command-line
commands into the post-build event command line.

Here is an example of what the post-build command line might look like:

if not exist PreMerge mkdir PreMerge
del /Q PreMerge*.*

move ProgrammingWithDynamicsCrm4.Plugins.d11 PreMerge
move ProgrammingWithDynamicsCrm4.Plugins.pdb PreMerge
move <referencedD11> PreMerge

$(SolutionDir)Tools\ILMerge.exe /keyfile:$(ProjectDir)
ProgrammingWithDynamicsCrm4.Plugins.snk /1ib:PreMerge /out:
ProgrammingWithDynamicsCrm4.Plugins.d11 ProgrammingWithDynamicsCrm4.Plugins.d11
<referencedD11>

In this example, we want the final DLL to be in the same folder and have the same name

as the original DLL, so we create a subfolder called PreMerge within the output folder. We
then proceed to copy the recently compiled DLL and its dependencies into the PreMerge
folder. Notice that we do not include Microsoft.Crm.Sdk.dll or Microsoft.Crm.SdkTypeProxy.
dll. Because those files will be on the server, we do not need to merge them into our DLL.
The final step is to execute ILMerge.exe specifying the keyfile to use to sign the assembly, the
folder where it can find the DLLs to include, the name of the output file, and the list of DLLs
to include in the merge.

More Info For more information on ILMerge, see http.//research.microsoft.com/~mbarnett/
ILMerge.aspx.

Chapter 5 Plug-ins 149

Debugging Plug-ins

The first thing you will probably do after deploying a plug-in is attempt to execute it to see
whether it works. If you are greeted with a vague error message, you can check the Event
Viewer on the CRM server for more information, but eventually you will find that you need
more information, especially for more advanced plug-ins. Remote debugging and logging
are two common techniques used to chase down errors in plug-ins.

Remote Debugging

By far the most powerful option, remote debugging allows you to set breakpoints in your
plug-in code and step through the process in Visual Studio. The steps for setting up remote
debugging are detailed in Chapter 9 in the companion book to this one: Working With
Microsoft Dynamics CRM 4.0 by Mike Snyder and Jim Steger. The CRM SDK also has informa-
tion to help you set up remote debugging.

The downside to remote debugging is that it blocks other calls to the CRM application while
you are stepping through your code. This can be a problem if you have multiple developers
working with the same environment at the same time, and it will definitely be a problem if
you are trying to debug something in a production environment.

Logging
The next-best option to discovering errors is to include extensive logging code in your plug-
ins. Plug-ins typically execute in a process that is running as the Network Service user and

should have rights to access the file system. You could then write some simple logging logic
to output to a text file. Listing 5-17 demonstrates some simple logging code.

LISTING 5-17 Simple logging code

private static readonly object _logLock = new Object();
protected static void LogMessage(string message)

il
try
{
if (IsLoggingEnabled)
{
Tlock (_TogLock)
{
File.AppendAl1Text(LogFilePath, String.Format("[{0}] {1} {2}",
DateTime.Now, message, Environment.NewLine));
}
}
}
catch
{
}

150 Part Il Extending Microsoft CRM

The IsLoggingEnabled and LogFilePath properties could be initialized once at startup or be
implemented to check the registry at a certain frequency to determine whether logging
should occur and where the log file should be created. With this method implemented, you
can add logging messages to your plug-ins to help chase down those hard-to-interpret
errors:

if (IsLoggingEnabled)
{
StringBuilder message = new StringBuilder();
message.Append("InputParameters: ");
foreach (PropertyBagEntry entry in context.InputParameters.Properties)
{
message.Append(entry.Name) ;
message.Append(" ");
}

LogMessage(message.ToString());

® Warning Be sure that you restrict directory access to only those users who need access to the
log data, especially if the logs might contain sensitive customer data. Plug-ins execute as the
user who the Microsoft Dynamics CRM Web application pool is configured to run as. By default
this is the special Network Service user. This user will, of course, need write access to the log
folder.

Unit Testing

Automated unit testing, used to validate the individual units of functionality in a program,
continues to gain momentum and popularity in the software development community. Unit
testing can improve the quality of an application and reduce the risk of breaking functional-
ity when changes are made to the code.

Taken a step further, you can use unit tests as a design tool. Test-driven design (TDD) is a
methodology that dictates that unit tests should be written before implementing the feature.
The developer then implements the functionality in the simplest way possible to satisfy the
unit test.

Mock Objects

Writing unit tests that depend on an external data source, such as the CRM Web Services, in-
troduces additional challenges. Every time a test runs, the state of the server impacts the test
results, causing tests that previously passed to unexpectedly fail. Because tests should only
start to fail when the code changes, this server dependency needs to be removed.

Chapter 5 Plug-ins 151

Fortunately, nothing in the plug-in definition dictates that it must communicate with a live
server. A plug-in only references a single type in its definition, /PluginExecutionContext.
Because IPluginExecutionContext is an interface, we can provide our own implementation
during testing and remove the dependency on the server. This concept of providing a “fake”
implementation of an abstract type is commonly called mocking in automated unit testing.

Test Frameworks

In our sample test, we will take advantage of two testing frameworks. The Microsoft Unit
Testing Framework, commonly referred to as MSTest, is now included in all editions of Visual
Studio 2008, with the exception of the Express edition. This framework provides custom at-
tributes used to decorate test classes and a library of assertions that you can use within your
tests to validate the actual results against the expected results. In addition, MSTest integrates
with the Visual Studio 2008 user interface and allows you to execute your tests without leav-
ing the development environment.

A framework called Rhino Mocks provides our mock /PluginExecutionContext implemen-
tation. Rhino Mocks works by generating classes on the fly that can implement a specific
interface or extend a base class. As the test authors, we define which methods the tested
functionality will call and what should be returned when those calls are made.

@ More Info You can find more information and download instructions for Rhino Mocks at
http.//www.ayende.com/projects/rhino-mocks.aspx.

Sample Test

Now we will walk through the implementation of an automated unit test that verifies that our
AccountNumberValidator plug-in is implemented correctly. Before we can write our first test,
we need to include a test project in our solution.

Adding the test project

1. On the File Menu, select Add and then click New Project.

2. In the New Project dialog box, within the Visual C# > Test project types, select the Test
Project template targeting the .Net Framework 3.0.

3. Type the name ProgrammingWithDynamicsCrm4.PluginTests into the Name box
and click OK.

4. Delete the default UnitTestl.cs file.

5. Right-click the ProgrammingWithDynamicsCrm4.PluginTests project in Solution
Explorer and then click Add Reference.

152 Part Il Extending Microsoft CRM

6. On the Browse tab, navigate to the CRM SDK'’s bin folder and select microsoft.crm.sdk.
dll and microsoft.crm.sdktypeproxy.dll. Click OK.

7. Right-click the ProgrammingWithDynamicsCrm4.PluginTests project in Solution
Explorer and then click Add Reference.

8. On the Project tab, select the ProgrammingWithDynamicsCrm4.Plugins project and
click OK.

Now we can add our test class. Typically you would add a unit test to your project, which
already contains sample code, but to introduce things one at a time, we will build the class
from scratch. Create a class named AccountNumberValidatorTests and enter the code from
Listing 5-18.

LISTING 5-18 The empty AccountNumberValidatorTests class

using System;

using Microsoft.Crm.Sdk;

using Microsoft.VisualStudio.TestTools.UnitTesting;
using ProgrammingWithDynamicsCrm4.Plugins;

namespace ProgrammingWithDynamicsCrm4.PTuginTests

{
[TestClass]
pubTlic class AccountNumberValidatorTests
{
}
}

Note the inclusion of the TestClass attribute on the AccountNumberValidatorTests class. This
attribute, defined by the MSTest framework, indicates that the AccountNumberValidatorTests
class contains tests and should be included when tests are run.

To define our first test, add the following code to the AccountNumberValidatorTests class:

[TestMethod]
pubTlic void TestInvalidFormat()
{

AccountNumberValidator validator = new AccountNumberValidator();
validator.Execute(null);

3

Similar to the TestClass attribute previously discussed, the TestMethod attribute identifies a
method that represents a test within the test class. When all tests are run, MSTest will iterate
through all the classes marked with a TestClass attribute and execute the methods marked
with a TestMethod attribute individually.

You can run this test by selecting Test > Run > Tests in Current Context from the menu,
but at this point it will always fail with the message “Test method ProgrammingWith-

DynamicsCrm4.PluginTests.AccountNumberValidatorTests.TestInvalidFormat threw excep-

Chapter 5 Plug-ins

153

tion: System.NullReferenceException: Object reference not set to an instance of an object.”

This makes sense because the AccountNumberValidator plug-in expects a valid (non-null)

IPluginExecutionContext to be passed in to the Execute method.

To provide an implementation of the IPluginExecutionContext interface to the
AccountNumberValidator class, we need to add a reference to the Rhino Mocks framework.

Adding the Rhino Mocks Reference

1. Download and extract the latest stable build of the Rhino Mocks framework that tar-

2. Right-click the ProgrammingWithDynamicsCrm4.PluginTests project in Solution

3. On the Browse tab, navigate to the Rhino Mocks framework folder and select Rhino.

gets .NET 2.0 from http.//www.ayende.com/projects/rhino-mocks/downloads.aspx.

Explorer and then click Add Reference.

Mocks.dll. Click OK.

Before we define our mock implementation, we should add a using statement to the top of

the AccountNumberValidatorTests.cs file to make references to the framework easier:

using Rhino.Mocks;

With the Rhino Mocks framework properly referenced, we can modify the TestinvalidFormat
method to match Listing 5-19.

LISTING 5-19 The Test/nvalidFormat method updated with a mock /PluginExecutionContext

[TestMethod]
pubTlic void TestInvalidFormat()

il

MockRepository mocks = new MockRepository();

IPluginExecutionContext context = mocks.CreateMock<IPluginExecutionContext>();

PropertyBag inputParameters = new PropertyBag();
DynamicEntity account = new DynamicEntity();
account["accountnumber"] = "123456";

inputParameters[ParameterName.Target] = account;

using (mocks.Record())

{
Expect.On(context).Call(context.InputParameters).Return(inputParameters);
}
using (mocks.Playback())
{
AccountNumberValidator validator = new AccountNumberValidator();
validator.Execute(context);
}

154

Part Il Extending Microsoft CRM

The first difference we notice is the inclusion of the mocks variable. This instance of the
MockRepository class is responsible for creating instances of our mock classes, as well as
switching between record and playback modes, which we will discuss shortly. Creating an
instance of a mock object is as simple as calling the CreateMock method and passing in the
type you want to mock in the generics argument.

The next steps revolve around defining the expected use of the mock object. The
AccountNumberValidator plug-in only accesses the InputParameters property on the
IPluginExecutionContext. To avoid an error during test execution, we need to let Rhino Mocks
know how it should respond when the InputParameters property is accessed. We begin by
creating an instance of a PropertyBag and setting up the target property in it to contain a
simple instance of a DynamicEntity with a short name.

With the local version of inputParameters set up and ready to go, we tell our MockRepository
to switch to record mode. Record mode allows us to define our expectations on any mock
objects. The next line might look a little odd if you are not used to dealing with mock frame-
works. It reads more like English than typical C# code and tells the MockRepository to expect
a call for the InputParameters property on the mock IPluginExecutionContext. It goes on to
say that when this call is made, return our local inputParameters variable.

Implementing a Simple Mock Object

Looking at the overhead involved with setting up a mock framework you might find
yourself wondering if it would be easier to implement the /PluginExecutionContext
interface in your own test class. Such a class might look like this:

pubTlic class MockPTluginExecutionContext : IPluginExecutionContext

{
private PropertyBag _inputParameters;
public PropertyBag InputParameters
{
get { return _inputParameters; }
set { _inputParameters = value; }
}
// remaining IPTuginExecutionContext members here...
}

This would allow the previous TestShortName method shown in Listing 5-19 to be
simplified to this:

public void TestShortName()

{
MockPTuginExecutionContext context = new MockPTuginExecutionContext();
context.InputParameters = new PropertyBag(Q);

DynamicEntity account = new DynamicEntity();
account["name"] = "ABC";

Chapter 5 Plug-ins 155

context.InputParameters[ParameterName.Target] = account;

AccountNumberValidator validator = new AccountNumberValidator();
validator.Execute(context);

}

For simple tests such as Test/nvalidFormat, this is a perfectly valid and simple choice for
implementing a mock object. The challenges arrive when the plug-ins become more
complex and start to use the CreateCrmService and CreateMetadataService methods
exposed on the IPluginExecutionContext interface. With a mock framework you can
specify that the context should return another mock implementation of /CrmService or
IMetadataService when these methods are called and then further define your expecta-
tions on those mock implementations. Using your own library of mock classes, you will
find it increasingly difficult to specify the expected behavior for the functionality being
tested.

With the expectations defined on our mock object, we switch the MockRepository to
playback mode, in which all the expectations must be met as defined during the record mode.

Finally, we pass our mock /PluginExecutionContext in to the AccountNumberValidator's
Execute method. If we run our test at this point, however, we still get a failure with the mes-
sage: "Test method ProgrammingWithDynamicsCrm4.PluginTests.AccountNumberValidator-
Tests.TestShortName threw exception: Microsoft.Crm.Sdk.InvalidPluginExecutionException:
Account number does not follow the required format (AA-####4#3#)." This, of course, is the
expected behavior for our plug-in and means that it is validating as expected.

Tests that require an exception to be thrown in order for the test to pass have an additional
attribute at their disposal. The ExpectedException attribute is applied at the method level and
notifies MSTest that for this test to pass, the specific exception must be thrown. An example
of the ExpectedException attribute applied to our TestInvalidFormat method can be seen
here:

[TestMethod]
[ExpectedException(typeof(InvalidPluginExecutionException),

"Account number does not follow the required format (AA-######).")]
pubTlic void TestInvalidFormat()
{

3

With this addition our test will run and pass every time, unless the AccountNumberValidator
code is modified to change the behavior. If the test fails, it is up to the developer to modify
the test accordingly—to include the new functionality or determine whether the new code

has inadvertently broken something that was previously working.

156 Part Il Extending Microsoft CRM

For this test class to be complete, it should minimally test account numbers that are in
a valid format as well. It could additionally test for a null /PluginExecutionContext or an
InputParameters property that does not include a value for the “target” key. All these
scenarios would be simple to include using the techniques already demonstrated.

Sample Plug-ins

Now that you have a good understanding of how plug-ins work, let's dig into some
real-world examples. We will cover three different plug-in examples:

B Rolling up child entity attributes to a parent entity
B System view hider
B Customization change notifier

All these examples include source code that you can examine and use in your Microsoft
Dynamics CRM deployment.

Rolling Up Child Entity Attributes to a Parent Entity

Frequently you will encounter a request to include some information in a view, such as the
number of active contacts for a particular account or the next activity due date on a lead.
You can accomplish this by writing a plug-in in a generic way so that it can handle all the
messages involved in modifying a child record. The next example keeps track of the next
scheduled phone call’s scheduledstart value and stores it in a custom attribute on the related
lead.

Start by adding a new class named NextPhoneCallUpdater to the ProgrammingWithDynamics-
Crm4.Plugins project. Then stub out the class to match Listing 5-20.

LISTING 5-20 The start of the NextPhoneCallUpdater plug-in

using System;

using Microsoft.Crm.Sdk;

using Microsoft.Crm.Sdk.Query;

using Microsoft.Crm.SdkTypeProxy;

using ProgrammingWithDynamicsCrm4.Plugins.Attributes;

namespace ProgrammingWithDynamicsCrm4.Plugins

{
public class NextPhoneCallUpdater : IPTugin
{
public void Execute(IPluginExecutionContext context)
i
}
}

Chapter 5 Plug-ins 157

The first thing we need to think about is which messages our plug-in needs to register

for. It needs to listen to Create and Delete messages for a phonecall. It also needs to listen

to Update messages in case the scheduledstart attribute is changed or the regardingobjectid

is changed. Finally, it needs to listen to the SetState and SetStateDynamicEntity mes-

sages to detect when the phonecall is marked as Complete or Cancelled. SetState and
SetStateDynamicEntity are two different messages that accomplish the same thing, but you
need to listen for both if you want to handle updates from the Web service APl and from the
CRM application. Based on this information we can add our PluginStep and Pluginimage at-
tributes to our class definition as shown in Listing 5-21.

LISTING 5-21 The PluginStep and Pluginimage attributes for the NextPhoneCallUpdater plug-in

[PluginStep("Create", PluginStepStage.PostEvent,
PrimaryEntityName = "phonecall", StepId = "PhoneCallPostCreate")]
[PTuginImage(ImageType.PostImage, "PhoneCallPostCreate", "Id", "PhoneCall")]

[PluginStep("Update"”, PluginStepStage.PostEvent,
PrimaryEntityName = "phonecall", StepId = "PhoneCallPostUpdate")]
[PTuginImage(ImageType.Both, "PhoneCallPostUpdate", "Target", "PhoneCall™)]

[PTuginStep("Delete", PluginStepStage.PostEvent,
PrimaryEntityName = "phonecall", StepId = "PhoneCallPostDelete")]
[PTuginImage(ImageType.PreImage, "PhoneCallPostDelete", "Target", "PhoneCall")]

[PTuginStep("SetState", PluginStepStage.PostEvent,
PrimaryEntityName = "phonecall", StepId = "PhoneCallPostSetState™)]
[PTuginImage(ImageType.Both, "PhoneCallPostSetState", "EntityMoniker", "PhoneCall™")]

[PTuginStep("SetStateDynamicEntity", PluginStepStage.PostEvent,

PrimaryEntityName = "phonecall", StepId = "PhoneCallPostSetStateDynamicEntity")]
[PTuginImage(ImageType.Both, "PhoneCallPostSetStateDynamicEntity", "EntityMoniker",
"PhoneCall1")]
public class NextPhoneCallUpdater : IPlugin
i

3

This probably looks like a lot of code to register for the appropriate messages, and it is.
However, when you are keeping track of information on a child entity you need to account
for all of the scenarios that could change your calculated value, and register messages
accordingly. Therefore, you often register for these same messages whenever you need to
populate one of these rolled-up attributes.

Also note the images that we set up for each step. Create gets a post-image, Delete
gets a pre-image, and the rest get both types of images. The values we pass in for
MessagePropertyName on the images come from Table 5-5.

158 Part Il Extending Microsoft CRM

The Execute method needs to determine which lead the phonecall is associated with in the
pre-image and which it is associated with in the post-image. If they are different, both need
to be updated. If they are the same, only that single lead will be updated. The Execute
method source code is shown in Listing 5-22.

LISTING 5-22 NextPhoneCallUpdater’s Execute method

pubTlic void Execute(IPluginExecutionContext context)

il
Guid preLeadId = GetRegardinglLeadId(context.PreEntityImages, "PhoneCall");
Guid postlLeadId = GetRegardingLeadId(context.PostEntityImages, "PhoneCall™);

ICrmService crmService = context.CreateCrmService(true);
UpdateNextCallDueDate(crmService, preLeadId);

if (preLeadId != postlLeadId)
{

UpdateNextCallDueDate(crmService, postlLeadId);
}

The Execute method is fairly easy to understand, but it passes off most of the work to two
additional methods, GetRegardingleadld and UpdateNextCallDueDate. Let's start by taking a
look at GetRegardinglead|d in Listing 5-23.

LISTING 5-23 The GetRegardinglLeadld method

private Guid GetRegardinglLeadId(PropertyBag images, string entityAlias)

i
Guid regardingLeadId = Guid.Empty;
if (images.Contains(entityAlias))
{
DynamicEntity entity = (DynamicEntity)images[entityAlias];
if (entity.Properties.Contains("regardingobjectid"))
{
Lookup regardingObjectId = (Lookup)entity["regardingobjectid"];
if (regardingObjectId.type == "lead")
{
regardinglLeadId = regardingObjectId.Value;
}
}
}
return regardinglLeadId;
}

Because not all messages have a pre-image and a post-image, we wrote this method to be
forgiving if the image is not found. If the phone call image is found and the regardingobjectid

Chapter 5 Plug-ins 159

attribute is associated with a lead, the method returns the Guid from regardingobjectid.
Otherwise, it returns an empty Guid.

Once the lead IDs are identified, we need to update the attribute on the corresponding
leads. UpdateNextCallDueDate is responsible for performing this functionality. Listing 5-24 is
the full source code for the UpdateNextCallDueDate method.

LISTING 5-24 The UpdateNextCallDueDate method

private void UpdateNextCallDueDate(ICrmService crmService, Guid TeadId)

{
if (leadId !'= Guid.Empty)

{
DynamicEntity lead = new DynamicEntity("lead");
Tead["Teadid"] = new Key(leadId);
DynamicEntity phoneCall = GetNextScheduledPhoneCallForLead(crmService,
leadId);
if (phoneCall != null)
{
Tlead["new_nextphonecallscheduledat"] = phoneCall["scheduledstart"];
}
else
4
Tlead["new_nextphonecallscheduledat"] = CrmDateTime.Null;
}
crmService.Update(Tead);
3

UpdateNextCallDueDate is responsible for updating the custom new_nextphonecallesched-
uledat attribute on the lead. It sets it to the earliest scheduledstart value for phone calls as-
sociated with this lead. If no phone calls are associated with the lead (or they do not have

scheduledstart values), it nulls out the new_nextphonecallscheduledat attribute on the lead.

UpdateNextCallDueDate calls one additional method, GetNextScheduledPhoneCallForLead, to
determine which phone call it should use. The source code for GetNextScheduledPhoneCall-
ForlLead is displayed in Listing 5-25.

LISTING 5-25 The GetNextScheduledPhoneCallForLead method

private DynamicEntity GetNextScheduledPhoneCallForLead(
ICrmService crmService, Guid leadId)

{
QueryExpression query = new QueryExpression();
query.EntityName = EntityName.phonecall.ToString(Q);

ColumnSet cols = new ColumnSet(new string[] { "scheduledstart" });

160 Part Il Extending Microsoft CRM

query.ColumnSet = cols;

FilterExpression filter = new FilterExpression();
query.Criteria = filter

ConditionExpression regardingCondition = new ConditionExpression();
regardingCondition.AttributeName = "regardingobjectid";
regardingCondition.Operator = ConditionOperator.Equal;
regardingCondition.Values = new object[] { TeadId };
filter.Conditions.Add(regardingCondition);

ConditionExpression activeCondition = new ConditionExpression();
activeCondition.AttributeName = "statecode";
activeCondition.Operator = ConditionOperator.Equal;
activeCondition.Values = new object[] { "Open" };
filter.Conditions.Add(activeCondition);

ConditionExpression scheduledCondition = new ConditionExpression();
scheduledCondition.AttributeName = "scheduledstart";
scheduledCondition.Operator = ConditionOperator.NotNulT;
filter.Conditions.Add(scheduledCondition);

query.PageInfo = new PagingInfo(Q);
query.PageInfo.Count = 1;

query.PageInfo.PageNumber = 1;
query.AddOrder("scheduledstart”, OrderType.Ascending);

RetrieveMultipleRequest request = new RetrieveMultipleRequest();
request.Query = query;
request.ReturnDynamicEntities = true;

RetrieveMultipleResponse response;
response = (RetrieveMultipleResponse)crmService.Execute(request);

DynamicEntity phoneCall = null;
if (response.BusinessEntityCollection.BusinessEntities.Count == 1)

{
phoneCall = (DynamicEntity)
response.BusinessEntityCollection.BusinessEntities[0];

}

return phoneCall;

GetNextScheduledPhoneCallForLead constructs a QueryExpression that filters for active phonecall
entities that are associated with the specified lead and have a scheduledstart value. The

query is set to return only one record and is sorted by the scheduledstart attribute in ascending
order. If no matching phonecall is found, it returns null.

The end result is that regardless of how a phonecall entity is created, updated, or deleted, the
parent entity’s attribute will always be recalculated.

Chapter 5 Plug-ins 161

System View Hider

Microsoft Dynamics CRM includes default system views for entities such as accounts,
contacts, and others. You might find that your organization does not want to use all these
system views, and therefore you'd like to remove one or more of them. Unfortunately, if you
try to customize the entity with the Web interface to delete a system view, you will receive an
error message stating that you cannot remove a system view.

Fortunately, however, you can use a plug-in to hide specific system views from your users.
For this sample, let's assume we want to hide the No Orders in Last 6 Months system view on
both the account and contact entities. The plug-in can do this because CRM queries for the
list of systemview entities associated with a particular entity when displaying the picklist of
views. This plug-in example is fairly straightforward to implement, so let's start by looking at
the completed code in Listing 5-26.

LISTING 5-26 SystemViewHider plug-in source code

using System;

using Microsoft.Crm.Sdk;

using Microsoft.Crm.Sdk.Query;

using Microsoft.Crm.SdkTypeProxy;

using ProgrammingWithDynamicsCrm4.Plugins.Attributes;

namespace ProgrammingWithDynamicsCrm4.PTugins
{
[PTuginStep("RetrieveMultiple"”, PluginStepStage.PreEvent,
PrimaryEntityName="savedquery")]
public class SystemViewHider : IPlugin

{
public void Execute(IPTuginExecutionContext context)
{
object[] systemViews = new object[]
{
//Contacts: No Orders in Last 6 Months
new Guid("9818766E-7172-4D59-9279-013835C3DECD™),
//Accounts: No Orders in Last 6 Months
new Guid("C1l47F1F7-1D78-4D10-85BF-7E03B79F74FA™),
e

if (context.InputParameters != null & systemViews.Length > 0)
{
if (context.InputParameters.Properties.Contains(
ParameterName.Query))
{
QueryExpression query;
query = (QueryExpression)
context.InputParameters[ParameterName.Query];

162

Part Il Extending Microsoft CRM

if (query.EntityName == EntityName.savedquery.ToString())
{
if (query.Criteria != null)
{
if (query.Criteria.Conditions != null)
{
ConditionExpression condition =
new ConditionExpression();
condition.AttributeName = "savedqueryid";
condition.Operator = ConditionOperator.NotIn;
condition.Values = systemViews;

query.Criteria.Conditions.Add(condition);

context.InputParameters[ParameterName.Query] =
query;

The first thing to notice is this plug-in takes advantage of a message that might not be as
obvious as some that we have dealt with in the past. The RetrieveMultiple message is a valid
message to register for, and as is shown here you can manipulate the QueryExpression being
passed to it before the core operation is executed.

The other factor that allows this plug-in to work is that the system view IDs for native enti-
ties are always the same across CRM installations. If this were not the case, we would need to
specify the view IDs during registration in the customconfiguration attribute for the plug-in
step or perform a query within the plug-in to find the right view ID to exclude.

Customization Change Notifier

Customers often ask how they can keep track of customization changes in a development
environment, or even for auditing in a production environment. If multiple people possess
system administrator privileges, they could be making customization changes to the system
at the same time. This might cause confusion or problems, especially if multiple users work
with the same entity at the same time.

Obviously a good software development process dictates that developers and system ad-
ministrators should communicate and follow a strict process when making changes to any
environment. However, we created a sample plug-in that records customization changes.

The plug-in presented in this sample doesn’t prevent two users from working on the same

Chapter 5 Plug-ins 163

records at the same time, but you can use it in conjunction with your development process
as a safety net.

The CustomizationChangeNotifier plug-in listens for the Publish and PublishAll messages. To
specify which users to notify of customization changes, we have added a custom Boolean
attribute named new._receivecustomizationnotifications on the systemuser entity. By checking
the corresponding check box on the systemuser form, the user is included in the notifica-
tion e-mails. This plug-in differs from previous samples because it subscribes to both the
pre-event and post-event steps and passes information between the two steps. Listing 5-27
shows the start of the CustomizationChangeNotifier code.

LISTING 5-27 CustomizationChangeNotifier

using System;

using System.Collections.Generic;

using System.IO;

using System.Text;

using System.Xml;

using System.Xml.Xs1;

using Microsoft.Crm.Sdk;

using Microsoft.Crm.Sdk.Query;

using Microsoft.Crm.SdkTypeProxy;

using ProgrammingWithDynamicsCrm4.Plugins.Attributes;

namespace ProgrammingWithDynamicsCrm4.PTugins

{
[PTuginStep("PubTlish", PluginStepStage.PreEvent)]
[PTuginStep("Publish", PluginStepStage.PostEvent)]
[PTuginStep("Pub1ishA11", PluginStepStage.PreEvent)]
[PTuginStep("Pub1ishAT1", PluginStepStage.PostEvent)]
public class CustomizationChangeNotifier : IPTugin

{

public void Execute(IPTuginExecutionContext context)
{
}

So far everything looks pretty normal, with the exception of the already mentioned fact that
we registered this plug-in for both the pre-event and post-event steps. Listing 5-28 fills out
the Execute method, and things start to get interesting.

LISTING 5-28 CustomizationChangeNotifier's Execute method

pubTlic void Execute(IPluginExecutionContext context)
i
if (context.Stage ==
MessageProcessingStage.BeforeMainOperationOutsideTransaction)
{
byte[] preXml = GetCustomizationSnapshot(context);

164 Part Il Extending Microsoft CRM

context.SharedVariables["CustomizationChangeNotifier.PreXm1"] = preXml;

}
else
{
SendNotification(context,
(byte[])context.SharedVariables["CustomizationChangeNotifier.PreXxml"]);
}

Because this plug-in executes in two different steps it needs to determine which step it is
executing in right away and call the appropriate method. During the pre-event step,

this plug-in grabs a snapshot of the customizations and stores them in the context's
SharedVariables PropertyBag. Then, during the post-event step, it gets that customization
snapshot out of SharedVariables and passes it on to the SendNotification method.

SharedVariables is shared by all plug-ins within a pipeline. Because of this, you should be sure
the keys you use are likely to be unique. The only reason we use a byte array here is to deal
with the compressed version of the customization data. It is also worth mentioning that we
could have implemented this plug-in as two different plug-ins, each registered for its own
step, but both steps have enough shared functionality that it made sense to use a single
plug-in class. Let's examine the source code for GetCustomizationSnapshot in Listing 5-29.

LISTING 5-29 GetCustomizationSnapshot

private byte[] GetCustomizationSnapshot(IPluginExecutionContext context)

i
ICrmService crmService = context.CreateCrmService(true);
if (context.MessageName == "Publish™)
{

ExportCompressedXmlRequest request = new ExportCompressedXmlRequest();
string parameterXml = (string)context.InputParameters["ParameterXml"];
request.ParameterXml = TransformParameterXmlToExportXml(parameterXml);
request.EmbeddedFileName = "customizations.xml";

ExportCompressedXmlResponse response =
(ExportCompressedXmIResponse)crmService.Execute(request);
return response.ExportCompressedXml;

}
else
{
ExportCompressedAT1XmIRequest request =
new ExportCompressedAl1XmIRequest();
request.EmbeddedFileName = "customizations.xml";
ExportCompressedAl1XmlResponse response =
(ExportCompressedAl1XmlResponse)crmService.Execute(request);
return response.ExportCompressedXml;
}

Chapter 5 Plug-ins 165

If you recall, not only did we register this plug-in for two steps, but we also registered it
for two messages. Depending on whether the message is Publish or PublishAll, the plug-
in will either get a subset of the current customizations or all of them. The two messages,
ExportCompressedXml and ExportCompressedAllIXml, are used to get the customization
changes from CRM. The EmbeddedFileName property is used to specify the name of the
file that is embedded in the zip file that is returned.

Unfortunately, the ParameterXml passed in through the context’s InputParameters
PropertyBag is not quite the same as what is required by the ExportCompressedXml message.
ExportCompressedXml requires all of the root node’s children (entities, nodes, security roles,
workflows, and settings) even if you are not asking for any of those customization types.
The ParameterXml only contains the customizations that are being published. Because of
this slight difference, we need to do a transformation on the XML as shown in Listing 5-30.

LISTING 5-30 The TransformParameterXmiToExportXml method

private string TransformParameterXmlToExportXml(string parameterXml)
4
string xs1 = @"
<xsl:transform version='1.0"
xmins:xs1="http://www.w3.0rg/1999/XSL/Transform'>
<xs1:template match="/"'>
<importexportxml>
<entities>
<xs1:apply-templates select="publish/entities/entity' />
</entities>
<nodes>
<xs1:apply-templates select="publish/nodes/node' />
</nodes>
<securityroles>
<xs1:apply-templates select="publish/securityroles/securityrole' />
</securityroles>
<workfTlows>
<xs1:apply-templates select="publish/workflows/workflow' />
</workflows>
<settings>
<xs1:apply-templates select="publish/settings/setting' />
</settings>
</importexportxml>
</xs1:template>

<xs1:template match='@*|node()'>
<xs1:copy>
<xsT:apply-templates select='@*|node()'/>
</xs1:copy>
</xs1:template>

</xs1:transform>";

XsT1CompiledTransform transform = new Xsl1CompiledTransform();
transform.Load(Xm1Reader.Create(new StringReader(xs1)));

166

Part Il Extending Microsoft CRM

XmlTextReader publishXmlReader =
new XmlTextReader(new StringReader(parameterXml));
publishXmlReader.Namespaces = false;

StringBuilder results = new StringBuilder();
XmlWriter resultsWriter = XmlWriter.Create(results);
transform.Transform(publishXmlReader, null, resultsWriter);

return results.ToString(Q);

Most of this method is just the declaration of the XSLT. While the specific details of the XSLT
are outside the scope of this book, an abundance of information is available about XSLT
both in books and on the Internet. The rest of the code in this method is simply using the
XSLT to transform the ParameterXml passed in to the return value, which is passed to the
ExportCompressedXmlRequest.

As shown back in Listing 5-28, when the Execute method is called for the post-event step, it
passes along the plug-in context and the compressed XML from the pre-event step to the
SendNotification method. The source code for the SendNotification method is displayed in
Listing 5-31.

LISTING 5-31 The SendNotification method

private void SendNotification(IPluginExecutionContext context, byte[] preXml)
il

ICrmService crmService = context.CreateCrmService(true);

activityparty[] recipients = GetNotifcationRecipients(crmService);

if (recipients.Length > 0)

{
byte[] postXml = GetCustomizationSnapshot(context);

email email = new email();
email.from = new activityparty[1];
email.from[0] = new activityparty(Q);
email.from[0].partyid = new Lookup("systemuser", context.UserId);
email.subject = "Customization Notification";
email.description = @"You are receiving this email
because a customization change has been published.";
email.to = recipients;

Guid emailIld = crmService.Create(email);

emailId = CreateEmailAttachment(crmService, emailld, preXml,
"PreCustomizations.zip", "application/zip", 1);

emailld = CreateEmailAttachment(crmService, emailld, postXml,
"PostCustomizations.zip", "application/zip", 2);

SendNotification starts by getting a list of recipients that have indicated they want to be

Chapter 5 Plug-ins

SendEmailRequest sendRequest = new SendEmailRequest();
sendRequest.Emailld = emailld;

sendRequest.IssueSend = true;
sendRequest.TrackingToken = String.Empty;
crmService.Execute(sendRequest);

167

notified of customization changes. As long as at least one user has indicated that he or she
would like to receive change notifications, another snapshot of the customizations is taken
that can be used to compare against the customizations that are captured in the pre-event

step. An e-mail message is then prepared, including both snapshots of the customization

files as attachments, and sent to the list of recipients.

GetNotificationRecipients, as shown in Listing 5-32, queries to find which system users have
the custom attribute new_receivecustomizationnotifications set to true and returns an array of
activityparty instances that reference them.

LISTING 5-32 The GetNotificationRecipients method

private activityparty[] GetNotifcationRecipients(ICrmService crmService)

{

QueryByAttribute query = new QueryByAttribute();
query.EntityName = "systemuser";
query.ColumnSet = new ColumnSet(new string[] { "systemuserid" });

query.Attributes = new string[] { "new_receivecustomizationnotifications" };

query.Values = new object[] { true };

RetrieveMultipleRequest request = new RetrieveMultipleRequest();
request.Query = query;
request.ReturnDynamicEntities = true;

RetrieveMultipleResponse response;

response = (RetrieveMultipleResponse)crmService.Execute(request);

List<BusinessEntity> systemUsers =
response.BusinessEntityCollection.BusinessEntities;

List<activityparty> recipients = new List<activityparty>Q);
foreach (DynamicEntity systemUser in systemUsers)

{
activityparty recipient = new activityparty(Q);
Guid systemUserId = ((Key)systemUser["systemuserid"]).Value;
recipient.partyid = new Lookup("systemuser", systemUserId);
recipients.Add(recipient);

}

return recipients.ToArray();

168

Part Il Extending Microsoft CRM

The last remaining piece of code is the CreateEmailAttachment method, which is displayed in
Listing 5-33. As the name implies, this method creates an attachment for an e-mail message
in CRM.

LISTING 5-33 The CreateEmailAttachment method

private static Guid CreateEmailAttachment(ICrmService crmService, Guid emailld,
byte[] data, string filename, string mimeType, int attachmentNumber)

{
activitymimeattachment emailAttachment = new activitymimeattachment();
emaiTAttachment.activityid = new Lookup("email", emailId);
emailAttachment.attachmentnumber = new CrmNumber(attachmentNumber);
emaiTAttachment.mimetype = mimeType;
emaiTAttachment.body = Convert.ToBase64String(data);
emailAttachment.filename = filename;
crmService.Create(emailAttachment);
return emailld;

}

This sample demonstrates some of the more creative and powerful uses of plug-ins and
SharedVariables as well as illustrating how to send an e-mail message with attachments using
the CRM service.

Summary

Microsoft Dynamics CRM 4.0 offers a powerful means of extensibility through plug-ins,
which you can register directly into the event execution pipeline. You can register and
deploy plug-ins by using existing tools or by implementing your own deployment tools
using an API. Because Microsoft Dynamics CRM implements plug-ins with no dependencies
on specific class implementations, they are a good target for automated unit tests. The
number of messages that can be registered for is significantly larger than any previous
version of Microsoft Dynamics CRM and allows developers to extend CRM much further than
was possible in the past.

Index

A

access rights, 81-82
accessibility, testing, 336-340
AccessRights enumeration, 91-92
Active Directory
authentication support, 39, 56
description, 20
activeworkflowid attribute, 409, 418
activities, workflow
binding, 187
implementing, 188-193
investigating errors, 201-203
overview, 186-187
testing, 197-201
activities attribute, 409
ActivityExecutionContext class, 204
Add-Remove Programs (ARP), 317
Advanced Find technique, 202
AllowlList registry key, 371-372
allow lists, 331-332
APIs (application programming interfaces).
See also specific APIs
accessing in Visual Studio 2008, 50-54
offline access, 70, 347
offline deployment, 330-332
online access, 70-73
Application server role, 22
ApplicationOrigin class, 122
ARP (Add-Remove Programs), 317
ASP.NET
dialog box development, 464-478
IFrame development, 450-464
installing Microsoft ASP.NET Cassini, 348
ISV page development, 478-491
ASPX extension, 13, 372
assemblies
adding references, 495
creating custom, 188-193
declarative workflows, 422-423
deploying, 147-148, 193-196, 326-328

multilingual strings, 395-402
registering, 117-118, 193-195
Assembly Location registration property,
114, 116
assign record (workflow step), 180, 186
AssignActivity class, 186
AssignUserRolesRoleRequest, 88, 323
AsyncServiceOrigin class, 122
AttributeDefinitionDependency class,
433-434
AttributeMetadata class
DisplayMask property, 293-295, 390
functionality, 292
attributes
altering database structure, 5
conditionally enabling, 556-557
CrmService Web service, 66
display masks, 293-295
remote customization, 292-298
retrieving, 282
rolling up, 156-160
Searchable property, 293
workflow, 203
workflow entity, 409-411
workflowdependency entity, 414-415
XAML syntax, 420
authentication
Active Directory support, 39
API services, 56
configuring security tokens, 57
CrmImpersonator class, 325
CrmService Web service, 56-58
deployment considerations, 317
filtered views, 98-99
method calls, 57-58
testing deployment, 335
Windows Live ID, 71
automated installation, 316
automatic workflows, 178-179
availability attribute, 352
AvailableOffline attribute, 351

581

582

binding

B
binding
CrmEntityPicklistControl, 520
dynamic values in workflows, 187
Boolean attribute type, 494
Browsable attribute, 501
Bulk edit form type, 254
business logic, implementing, 9-11

C

caching

deployment considerations, 318

example file system, 305

external files, 259
calendar pop-up, 512-514
Callerld property, 83
CALs (Client Access Licenses)

license types, 22

overview, 21
CanBeManyToManyRequest, 303
CanBeReferencedRequest, 303
CanBeReferencingRequest, 303
CassiniPort registry entry, 353
change notifier, customizations, 162-168
change status (workflow step), 181, 186
check condition (workflow step), 180, 186
child controls, 512
child entities, 156-160, 221-231
child pipelines, 121
child workflows, 179
ChildWorkflowActivity class, 186
Clear operator, 182
click event, 473
Client Access Licenses (CALs)

license types, 22

overview, 21
Client attribute, 350-351
ClientAuthOrganizationName registry

entry, 353

client-side processing

events supported, 238-241

form scripting, 234-238

offline development environment,

349-350

close_click function, 473
columns. See attributes

conditional branch (workflow step), 180, 186

configuration settings, 330
connection strings, 95, 318
Content controls, 472
continuous integration, 40, 42
Convert class, 103
Create form type, 253
create record (workflow step), 180, 186
CreateActivity class, 186
CreateDataSource method, 544
createdby attribute
workflow entity, 409
workflowdependency attribute, 414
createdon attribute
workflow entity, 409
workflowdependency entity, 414
CreateEntityRequest, 288
CreateOneToManyRequest, 299
credentials, authenticating, 56
CRM queries, 203
CRM Web site, 326
CrmAppPool Properties dialog box,
83-84
CrmAttributeTarget attribute, 203
CrmAuthenticationToken, 242
CrmBooleanControl
adding options, 506
AttributeName property, 506
EntityName property, 506
functionality, 503
programming, 503-504
testing, 506
CrmDateTimeControl
adding child controls, 512
AttributeName property, 512
CreateControlHierarchy method, 512
creating calendar pop-up, 512-514
EntityName property, 512
functionality, 507
programming, 507
testing, 515
Value property, 512
CrmDefault attribute, 203

CrmDiscoveryService Web service
additional information, 67
functionality, 7, 67-68

CrmEntityPicklistControl
EntityName property, 520
Filter property, 520
functionality, 516
IncludeNullOption property, 520
programming, 516-517
testing, 521-522

crmForm
attributes supported, 237-238
collection methods, 236
collection properties, 236
FormType property, 253-255
methods supported, 236, 238
properties supported, 235, 238

CrmGridViewControl
adding columns, 535-536

AutoGenerateColumns property, 535

Columns property, 535
creating DataSource, 544
creating template, 537-543
DataSource property, 535
DataSourcelD property, 535
functionality, 523
IsUserQuery property, 535
onRowCancelingEdit method, 544
OnRowEditing method, 544
OnRowUpdating method, 544
programming, 523-544
testing, 545-548
updating records, 544
Viewld property, 535
CrmGridViewTemplate
control mapping, 543
creating, 537-542

EntityPicklistEntityName property, 543

EntityPicklistTextField property, 543

EntityPicklistValueField property, 543

CrmlImpersonator class
deploying custom Web pages, 325
IFD support, 69
MetadataService Web service, 276
Crmlinput attribute, 203

CrmService Web service

CrmLabel class, 285-287, 291, 390
CrmMetadata class, 281, 292
CrmOutlookService class

GoOffline method, 354

GoOnline method, 354
IsCrmClientLoaded property, 354
IsCrmClientOffline property, 354
IsCrmDesktopClient property, 355
OutlookSyncType enumeration, 354
ServerUri property, 355

SetOffline method, 354

State property, 355

Sync method, 354

CrmOutput attribute, 203
CrmPicklistControl

adding options, 501-502
AttributeName property, 500
DataSource property, 501
DataSourcelD property, 501
DataTextField property, 501
DataValueField property, 501
EntityName property, 500
functionality, 496
IncludeNullOption property, 500
Items property, 501
programming, 496-497
testing, 502-503

CrmReferenceTarget attribute, 203, 217
CrmService Web service

accessing, 50

adding directly, 52-53

additional information, 36
attributes, 66

authentication, 56-58
AuthenticationType property, 57
availability attribute, 352

caching considerations, 318
Create method, 58, 429, 432
CreateCrmService method, 85
creating console projects, 59
creating reports, 329

Credentials property, 56-58
CrmAuthenticationTokenValue property, 57
customizations management, 343
Delete method, 58

583

584 CrmServiceUtility class

Execute method, 54, 62
ExecuteAsync method, 384
Fetch method, 58, 544
form scripting, 242
functionality, 7, 54-55
GetCrmService method, 549
interacting with workflows, 411-412
MetadataService Web service and, 279
multilingual support, 376-384
offline functionality, 352-354, 372
publishing customizations, 323
Retrieve method, 58, 384, 475
RetrieveMultiple method, 58, 418, 475
retrieving records, 60—-62
Update method, 58, 460
Url property, 54-55
CrmServiceUtility class
functionality, 549
GetCrmService method, 549
GetMetadataService method, 549
GetServerUrlFromRegistry method, 549
CrmWorkflow class, 423, 438
CrmWorkflowActivity attribute, 203, 207
cross-site scripting (XSS), 255-257
CruiseControl.NET, 42
currencies
programming applications, 403-405
support considerations, 15-16, 375
custom code, writing, 7
custom controls
adding keys to web.config, 496
adding references to assemblies, 495
adding Web site projects, 495
benefits of developing, 493
complex attribute types, 494
creating project, 494-495
CrmBooleanControl, 503-506
CrmDateTimeControl, 507-515
CrmEntityPicklistControl, 516-522
CrmGridViewControl, 523-548
CrmPicklistControl, 496-503
custom reports, deploying, 329-330
custom workflow management tool,
407-408
CustomEntityDefinitionDependency class, 435
customentityname attribute, 414

customizations
change notifier, 162-168

deployment considerations, 321-323, 343

importing, 321-322

MetadataService Web service, 322

offline considerations, 16, 347, 361-364

publishing, 323

supported during upgrades, 14
customizations utility, 553-555

D

data access, 94-99
data binding, 520
data encryption
one-way, 100-103
two-way, 103-107
data manipulation, 7
data migration
custom code, 34-36
Data Migration Manager, 34-35
native import, 34-35
third-party tools, 34-35
Data Migration Manager, 34
database diagrams, 6
database servers, 335
database structures, 5-7
DateTime attribute type, 494
DebugBar tool, 45
debugging
form scripting, 244-247
implementing activity, 207-213
plug-ins, 149-150
declarative workflows
adding assemblies, 422-423
adding rules to workflow definition,
425-427
adding workflow definition, 421-422
creating workflow project, 421
CRM support, 420
defining local parameters, 424
deploying, 428-442
designing, 424-425
examining native workflow, 442-444
exporting programmatically, 444-447
XAML syntax, 419-420

Decrement by operator, 182
default action (workflow step), 180, 186
DeleteEntityRequest, 291, 320
DeleteOptionValue message, 297-298
DeleteRelationshipRequest, 299
dependentattributename attribute, 414
dependententityname attribute, 414
deployment
assemblies, 326-328
build step, 313-315, 344
component inventory, 344
configuration settings, 330
configure step, 313, 317-319, 345
custom assemblies, 193-196
custom reports, 329-330
custom Web pages, 325-326
customization considerations,
321-323, 343
declarative workflows, 428-442
deleting metadata, 320
deleting transactional data, 320
dialog boxes, 476-478
example sequence, 343-345
form scripting considerations,
244-247, 259
IFrame pages, 361-365, 460-464
in offline development environment,
349-350
install step, 313, 315-317, 344
interface changes, 324-325
ISV page, 490-491
missing prerequisites, 341-343
multilingual IFrames, 391-394
offline API, 330-332
online Help files, 328-329
plug-ins, 113-119, 128-148, 326-328,
331-332, 371
referenced assemblies, 147-148
security roles, 323
templates, 323
testing strategies, 333-340
uninstall step, 313, 319-320, 345
workflow rules, 323
Deployment registration property,
113, 115

DynamicEntity class

description attribute, 409
development environment
development considerations, 24-25, 46-47
hybrid environment, 25, 30
isolated development, 25-28
multi-tenant functionality, 25, 32
offline considerations, 349-350
Outlook customizations, 32—-33
redeployment, 36—-40
setting up, 16, 24
sharing common organization,
25, 28-30
support for, 17-18
testing considerations, 33, 247
development tools
additional, 40
continuous integration, 40, 42
IDE, 40-41
import/export utility, 13, 34-35, 40,
42-44
Installer, 40
source control, 40-42
device CALs, 21
DHTML (dynamic HTML), 233-234, 257
dialog boxes
deploying, 476-478
programming, 465-476
testing, 476-478
Disabled form type, 254
DiscoveryService Web service
accessing, 50-51
locating MetadataService URL, 274
div tags, 483
DNE (Do Not Email) list, 343-344
DNE Provisioning Utility, 345
Do Not Email (DNE) list, 343-344
DOM model, 259
DropDownlList class, 500-501
dynamic HTML (DHTML), 233-234, 257
dynamic values in workflows
binding, 187
overview, 181-185
DynamicEntity class
assembly references, 51
Execute method, 65

585

586

DynamicEntityUtility class

Name property, 65

overview, 65-66

Properties property, 65
DynamicEntityUtility class, 549, 551

E

EditorBrowsable attribute, 501
encryption
one-way, 100-103
two-way, 103-107
entities
additional information, 6
altering database structure, 5
creating, 288-290
deleting, 291
event execution pipeline, 120-121
field-level security, 563
importing, 34
plug-in, 128
remote customization, 288-292
retrieving, 279-281
rolling up attributes, 156-160
updating, 291
workflows as, 409-419
entity images. See images
Entity registration property,
114-115
entity relationships
additional information, 6
altering database structure, 5
remote customization, 298-304
entityattributes attribute, 415
Entityld property, 94
EntitylmageDependency class, 438
EntityMetadata class, 291, 353
EqualUserld operator, 569
error handling, 201-203, 308
eval method (JavaScript), 261
event execution pipeline, 120-122
event processing pipeline, 127
exception handling, 127
ExpectedException attribute, 155
ExportCompressedTranslationsXml
message, 376

exporting
with import/export utility, 13, 34-35, 40,
42-44
workflows programmatically, 444-447
ExportTranslationsXml message, 376
Extensible Application Markup Language.
See XAML (Extensible Application Markup
Language)

F

Fiddler tool, 45, 242

field-level security
defined, 563
hiding tabs/fields on forms, 564-565
hiding/showing fields, 565-566
hiding/showing labels, 565-566
reviewing script, 566-571
script examples, 572-579

fields, hiding, 564-566

filtered views
defined, 7, 96
deployment considerations, 318
programming considerations, 98-99
security considerations, 96-97

Form Assistant, 181-185

form controls, 8

form layouts, 8

form scripting
available events, 238-241
calling Web services, 241
client-side processing, 234-238
configuring events, 9
CRM API SOAP request, 241-244
displaying tooltip information, 262
enhancing display, 266-268
examples, 261-268
field-level security, 563-579
for validation, 257-258
form type considerations, 253-255
global methods, 235
global variables, 235
hiding navigation links, 558-562
ISV.Config buttons, 248-253
loading external JavaScript files, 259-261

offline considerations, 355

setting title at run time, 265

testing and deployment, 244-247

triggering code, 9

XSS, 255-257
form-customization tool, 12-13
FxCop tool, 45

G

GAC (Global Assembly Cache)
deploying plug-ins, 116, 326
deploying referenced assemblies, 147
MSI support, 317

GenerateAuthenticationHeader helper

method, 242

GetSecurityObjects function, 570

GetUserRoles function, 569

GetValidManyToManyRequest, 303

GetValidReferencedEntitiesRequest, 303

GetValidReferencingEntitiesRequest, 303

Global Assembly Cache (GAC)
deploying plug-ins, 116, 326
deploying referenced assemblies, 147
MSI support, 317

global methods, 235

global variables, 235

globally unique identifier (GUID), 83

GridView control, 523

GUID (globally unique identifier), 83

H

hardware requirements
additional information, 23
Microsoft Dynamics CRM 4.0 Web Server,
23-24
HTTP_USER_AGENT, 334

ICrmService interface, 204, 224, 335

|d attribute, 237

IDCRL (Identity Client Run-Time Library), 71

IDE (Integrated Development Environment),
40-41

ImportCompressedXml message

Identity Client Run-Time Library (IDRTL), 71
IE Dev Toolbar tool, 46
IFD (Internet-facing deployment) option
connecting to, 69
CrmImpersonator class, 325
MetadataService Web service, 273
testing authentication, 335
IfElseActivity class, 186
IfElseBranchActivity class, 186
IFrame pages
deploying, 361-365, 460-464
developing for offline, 356-366
field-level security, 563
form scripting, 257
functionality, 8, 12
multilingual applications, 385-394
potential uses, 450-468
programming, 356-361, 451-460
query string parameters, 450-451
testing, 361-365
testing offline, 365-366
updating with resource files, 396-401
IIS (Internet Information Services), 343
ILMerge tool, 45
images
defined, 138
in custom workflow activities,
206-213
programmatic registration, 139-142
specifying for plug-ins, 138-139
Images registration property,
114, 116-119
IMetadataService interface, 126, 204,
274-275
impersonation
Credentials property, 83
defined, 82
during execution, 127
during registration, 126
for plug-ins, 83-85
for Web applications, 82-83
Import Organization Wizard, 37, 39
ImportAllXml message, 322
ImportCompressedAllXml message, 322
ImportCompressedXml message, 321

587

588

import/export utility

import/export utility, 13, 34-35, 40, 42-44
importing
custom security entities, 573-574
customizations, 321-322
entities, 34
organization, 37, 39, 323
ImportTranslationsXmIWithProgress message,
376, 384
ImportXml message, 322
Increment by operator, 182
InsertOptionValue message, 297
installer programs, 40, 42-44, 316
Integrated Development Environment (IDE),
40-41
Internet Explorer, 244
Internet Information Services (l1S), 343
InvalidPluginExecutionException, 127
IPlugin interface, 122
IPluginExecutionContext interface
BusinessUnitld property, 122
CallerOrigin property, 122, 370
Correlationld property, 122
CorrelationTokenValue property, 122
CorrelationUpdatedTime property, 122
CreateCrmService method, 122, 126
CreateMetadataService method,
126, 155, 275
Depth property, 122
functionality, 122-126
InitiatingUserld property, 123
InputParameters property, 123, 154
InvocationSource property, 123
IsExecutingOfflineMode property, 123
MessageName property, 124
Mode property, 124
Organizationld property, 124
OrganizationName property, 124
OutputParameters property, 124
ParentContext property, 124
PostEntitylmages property, 125, 138
PreEntitylmages property, 125, 138
PrimaryEntityName property, 125
SecondaryEntityName property, 125
SharedVariables property, 125

Stage property, 125
unit testing, 151
Userld property, 126
iscrmuiworkflow attribute, 410
IsOnline global method, 235, 359
IsOutlookClient global method, 235
IsOutlookLaptopClient global
method, 235
IsOutlookWorkstationClient global
method, 235
ISV pages
deploying, 490-491
development overview, 478
programming, 479-489
testing, 490-491
ISV.Config file
Client attribute, 350-351
form scripting, 248-253
interface changes, 324-325
offline navigation, 350
ITemplate interface, 537
IWorkflowContext interface
Activationld property, 205
AsyncOperationld property, 205
CreateCrmService method, 204
CreateMetadataService method, 204
EntityDependencies property, 205
EvaluateCondition method, 205
EvaluateExpression method, 205
InputParameters property, 205
MessageName property, 205
Organizationld property, 205
OutputParameters property, 205
PluginTypeld property, 205
PopulateEntitiesFrom method, 205
PrimaryEntityld property, 206
PrimaryEntitylmage property, 206
PrimaryEntityName property, 206
PrimaryEntityPostimage property, 206
PrimaryEntityPrelmage property, 206
RetrieveActivityCount method, 205
SharedVariables property, 206
StageName property, 206
Userld property, 206

J

JavaScript
debugger statement, 244-247
loading external files, 259-261
JS extension, 13

K

keys. See entity relationships

L

Label controls, 387, 472

labels, hiding/showing, 565-566

languages
CrmService support, 376-384
deployment prerequisites, 342
LCID support, 287
MetadataService support, 385-394
packs supported, 286
resource assemblies, 395-402
support considerations, 15-16, 375
testing deployment, 336

laptops, 350

LCIDs (Locale IDs)
MetadataService Web service, 322
multilingual strings, 285, 287
online Help files, 328

leadsourcecode attribute, 502

licensing types, 21-22

Locale IDs. See LCIDs (Locale IDs)

LocalParameterDependency class, 437

LocLabel class, 285, 291, 390

logging, 149-150

logical database diagrams, 6

logical names, 279

LogonManager class, 71

Lookup attribute, 494

M

manual installation, 316

manual workflows, 179

ManyToManyRelationships
creating entities, 288

MetadataService Web service

modifying, 302
retrieving entities, 279
ManyToOneRelationships
relationship considerations, 283
retrieving entities, 279
math building blocks, 214-215
MD5 encryption, 103
MD5CryptoServiceProvider class, 103, 105
MessagelnvocationSource class, 123
MessageProcessingMode class, 124
MessageProcessingStage class, 125
Messages registration property, 114-115
metadata API, 5
metadata service API, 6
MetadataService Web service
accessing, 50-51
actions supported, 271
additional information, 67
application settings, 274
caching considerations, 318
creating entities, 288-290, 322
CrmImpersonator class, 276
custom controls, 501
customizations management, 343
customizing attributes, 292-298
customizing relationships, 298-304
deleting entities, 291, 320
deploying customizations, 322
Discovery service option, 274
error handling, 308
form scripting, 242
functionality, 7, 66-67
GetMetadataService method, 549
locating endpoints, 273-277
multilingual applications, 385-394
multilingual strings, 285-287
names used, 279
offline functionality, 352-353, 372
offline messages, 276
Picklist attribute, 296-298
plug-ins, 275
publishing metadata, 304
referencing, 273
retrieving attributes and relationships,
282-285

589

590

MetadataUtility class

retrieving entities, 279-281
security considerations, 277
updating entities, 291
MetadataUtility class, 549, 552
method calls, 57-58
Microsoft Active Directory. See Active
Directory
Microsoft ASP.NET Cassini, 348
Microsoft BizTalk Server, 186
Microsoft Dynamics CRM
additional information, 19
components supported, 20-21
editions supported, 20
Microsoft Dynamics CRM 4.0 Connector for
SQL Server Reporting Services, 20
Microsoft Dynamics CRM 4.0 Enterprise
Server, 20
Microsoft Dynamics CRM 4.0 Language
Pack, 21
Microsoft Dynamics CRM 4.0 Professional
Server, 20
Microsoft Dynamics CRM 4.0 SDK, 49-50,
85-94
Microsoft Dynamics CRM 4.0 Web Server,
23-24, 317
Microsoft Dynamics CRM 4.0 Workgroup
Server, 20
Microsoft Dynamics CRM Data Migration
Manager, 272, 303
Microsoft Dynamics CRM E-mail Router, 21
Microsoft Dynamics CRM for Microsoft
Office Outlook, 21, 347
Microsoft Dynamics CRM for Outlook with
Offline Access
deploying IFrame pages, 365
installing, 348
offline development environment, 349
offline navigation, 350
Microsoft Dynamics CRM Virtual Path
Provider, 482

Microsoft Dynamics CRM Web Server, 20, 364

Microsoft Dynamics CRM Workflow, 9-10
Microsoft Office SharePoint Server, 186
Microsoft Outlook

CRM support, 16

developing customizations from, 32-33

Microsoft SQL Server
accessing data, 94-99
accessing filtered views, 97
deployment considerations, 318
description, 20
Microsoft SQL Server Management
Studio, 97
Microsoft SQL Server Management Studio
Express, 348
Microsoft SQL Server Reporting
Services, 20
Microsoft Unit Testing Framework (MSTest),
151
Microsoft Virtual Server 2005, 24
Microsoft Visual Studio. See Visual Studio
Microsoft.Crm.Outlook.Sdk assembly, 51,
354-355
Microsoft.Crm.Sdk assembly, 50-51, 273
Microsoft.Crm.SdkTypeProxy assembly,
50-51, 273
mock objects, 150-151, 154-156
MockRepository class, 154
Mode registration property, 113-114
modifiedby attribute
workflow entity, 410
workflowdependency entity, 415
modifiedon attribute
workflow entity, 410
workflowdependency entity, 415
MSBuild tool, 42
MSDN Code Gallery, 348
multi-currency support. See currencies
multilingual support. See languages
Multiply by operator, 182
multi-tenants
development environment, 25, 32
testing deployment, 335

N

name attribute

crmForm, 237

workflow entity, 410, 427
named user CALs, 21
naming conventions, 279
NAnt tool, 42

navigation

hiding links, 558-562

offline, 350-351
.NET Reflector tool, 45
notification bar, adding, 267-268
NSIS system, 43-44
NUnit tool, 46

(0

object-based security model, 80
offline solutions
APIs, 330-332
CrmService Web service, 352-353
customizations, 16, 347
deploying Web applications, 330-331
developing IFrames for offline, 356-366
developing offline plug-ins, 367-371
development considerations, 349-350, 372
messages supported, 276
MetadataService Web service, 353
Microsoft.Crm.Outlook.Sdk assembly,
354-355
navigation, 350-351
scripting, 355
OfflineOrigin class, 122
onChange form event
conditionally enabling attributes, 557
functionality, 9, 238
loading external JavaScript files, 259
tooltip information example, 262
ondemand attribute, 410
OneToManyRelationships
modifying, 299-301
relationship considerations, 283
retrieving entities, 279
online Help files, 328-329
onLoad form event
conditionally enabling attributes, 557
functionality, 9, 238
hiding navigation links, 561
loading external JavaScript files, 259, 261
scripting, 451, 574-576
tooltip information example, 262
onreadystatechange event, 260

plug-ins

onSave form event

deploying IFrame pages, 463

functionality, 9, 238
operating systems

deployment prerequisites, 342

testing deployment, 334
OrderOptionValue message, 297-298
ORG_LANGUAGE_CODE global variable, 235
ORG_UNIQUE_NAME global variable, 235
Outlook. See Microsoft Outlook
OutlookSyncType enumeration, 354
ownerid attribute, 93, 410
owningbusinessunit attribute

workflow entity, 410

workflowdependency entity, 415
owninguser attribute, 415

P

parallel wait branch (workflow step), 180, 186
parametername attribute, 415
parametertype attribute, 415
parent entities, 156-160
parent pipelines, 121
parentworkflow attribute, 410
permissions, role-based, 15, 80
Picklist attribute type, 296-298, 494, 496
Platform server role, 22
Plug-in Message-Entity Table.xls, 120
PluginRegistration tool
accessing, 113
connecting to servers, 116
deployment considerations, 345
registering assemblies, 117-118, 194-195
registering plug-in steps, 118-119
plug-ins
building registration tool, 113
creating, 110-111
customization change notifier, 162-168
debugging, 149-150
deploying, 113-119, 128-148, 326-328,
331-332, 371
event execution pipeline, 120-122
exception handling, 127
impersonation, 83-85, 126-127

591

592

plugintypeid attribute

implementing, 111-112

IPluginExecutionContext interface,
122-126

MetadataService Web service, 275

offline considerations, 367-372

programmatic registration, 128-138

registering, 113-119

rolling up child entity attributes, 156-160

sample, 156-168
system view hider, 161-162
testing, 371
unit testing, 151-156
plugintypeid attribute, 410, 413
PolicyActivity class, 187
PopulateActivityTable method, 490
PopulateLeadTable method, 489
PopulateOpportunity method, 489
Preview command, 247
primaryentity attribute, 410, 416
PrimaryEntitylmageDependency class,
438-439
PrimaryEntityPostimageDependency
class, 439
PrimaryEntityPrelmageDependency
class, 439
PrincipalAccess class, 91
privilege depth, 80
privileges
adding, 85-87
retrieving, 88-89
role-based security model, 15, 80
sharing, 90-92
Process.Start method, 343
programming workflow. See workflow
programming
Publish message, 163, 304
PublishAll message, 163, 304
publishing
customizations, 323
metadata, 304
workflows, 412-413
PublishXml message, 323

Q

Quick create form type, 254

R

Rank registration property, 114, 116
Read-only form type, 253
records
assigning, 93-94
sharing privileges, 90-92
redeployment, 36-40
referenced assemblies
adding, 495-497
deploying, 147-148
regardingojbectid attribute, 81-82, 427
registering
assemblies, 117-118, 193-195
plug-ins, 113-119
registry keys
creating CrmService instance, 353
deploying plug-ins, 371-372
ServerUrl value, 549
allow lists, 331-332
relatedattributename attribute, 415
RelatedEntitylmageDependency
class, 441
relatedentityname attribute, 415
relationships. See entity relationships
remote debugging, 149
Request class, 63-64
resource files, 395-402
Response class, 63-64
RetrieveAllEntitiesRequest
functionality, 281
Metadataltems property, 281, 305
offline support, 276
RetrieveAslfPublished property,
281-282
Timestamp property, 304
RetrieveAllEntitiesResponse, 276, 304
RetrieveAttributeRequest, 276, 282
RetrieveAttributeResponse, 276
RetrieveAvailableLanguagesRequest,
287, 336, 376
RetrieveDeprovisionedLanguages
message, 376
RetrieveEntityRequest
Entityltems property, 279-280
functionality, 279-280

LogicalName property, 279-280
offline support, 276
RetrieveAslfPublished property,
279-280, 282
RetrieveEntityResponse, 276
RetrievelnstalledLanguagePacks
message, 376
RetrieveLocLabels message, 376
RetrieveProvisionedLanguages
message, 376
RetrieveRelationshipRequest, 276, 283
RetrieveRelationshipResponse, 276
RetrieveRequest class, 459
RetrieveTimestampRequest, 276, 304
RetrieveTimestampResponse, 276
RetrieveUserPrivilegesRequest class, 89
RhinoMocks tool, 46
role-based security model, 15, 80
RolePrivilege class, 89
Rules attribute, 410

S

schema names, 279
Scope attribute, 410
Scribe third-party tools, 35
SdkAssociationDependency class, 436
sdkmessageid attribute, 415, 429
security
access rights and, 81-82
field-level, 563-579
impersonation, 82-85
MetadataService Web service, 277
XSS considerations, 257
security principals, 81
security roles
assigning programmatically, 87-88
creating programmatically, 85-87
deploying, 323
overview, 15, 80
retrieving, 88-89
security tokens, 57
SecurityPrincipal class, 91, 94
SecurityPrincipalType enumeration, 91, 94
send e-mail (workflow step), 180, 186
SendEmailActivity class, 186

SourceForge.NET

SendEmailFromTemplateActivity class, 186
server controls
adding keys to web.config, 496
adding references to assemblies, 495
adding Web site projects, 495
benefits of developing, 493
complex attribute types, 494
creating project, 494-495
CrmBooleanControl, 503-506
CrmDateTimeControl, 507-515
CrmEntityPicklistControl, 516-522
CrmGridViewControl, 523-548
CrmPicklistControl, 496-503
server environments
hybrid environment, 25, 30
isolated development, 25-28
multi-tenant functionality, 25, 32
sharing common organization,
25, 28-30
testing deployment, 334
server licenses, 21
server roles, 22
server-side events, 9-10
SERVER_URL global variable, 235
Set to operator, 182
SetFieldSecurity function, 567
SetLocLabels message, 376
SetPageSecurity function, 566
SetStateActivity class, 186
SetStateWorkflowRequest, 412
SetTabSecurity function, 567
Share privilege, 90-92
shared hosting, 335
site maps
Client attribute, 350-351
interface changes, 324-325
offline navigation, 350
SOAP headers, 57
SOAP messages
error handling, 308
form scripting, 241-244
tooltip information example, 262
SoapException, 308
software licenses, 21-22
source control, 40-42
SourceForge.NET, 42-43

593

594

SQL queries

SQL queries, 202

stage (workflow step), 180, 186

Stage registration property, 113-114

StageActivity class, 186

start child workflow (workflow step),
181, 186

Statecode attribute, 410

Status attribute type, 494, 496

Statuscode attribute, 410

stop workflow (workflow step), 181, 186

StopWorkflowActivity class, 186

String attribute type, 543

style attribute, 564

Subprocess attribute, 410

Subversion (SVN), 41-42

system view hider, 161-162

T

TableCell class, 489-490

TableRow class, 489-490

tables. See entities

tabs, hiding, 564-566

templates
creating for CrmGridViewControl,

537-543

deploying, 323

TestClass attribute, 152

testing. See also unit testing
accessibility deployment, 336-340
authentication deployment, 335
CrmBooleanControl, 506
CrmDateTimeControl, 515
CrmEntityPicklistControl, 521-522
CrmGridViewControl, 545-548
CrmPicklistControl, 502-503
custom activities, 197-201
database server deployment, 335
dialog boxes, 476-478
form scripting, 244-247
IFrame pages, 361-365
in offline databases, 348
in offline development environment,

349-350

ISV page, 490-491
multilingual deployment, 336

multilingual IFrames, 391-394, 402
multi-tenant deployment, 335
operating system deployment, 334
plug-ins, 371
server topologies, 333
Web browser deployment, 334
workflows, 176-177
testing environment, 33, 247
TestMethod attribute, 152
tooltips, displaying information, 262
TortoiseSVN browser, 41-42
transactioncurrencyid attribute, 403
Type attribute, 411, 415
TypeName attribute, 237

U

uidata attribute, 411, 413
Undefined form type, 253
unit testing

mock objects, 150-151, 154-156

plug-ins, 151-156

sample tests, 151-156

test frameworks, 151
UnregisterSolution message, 320
Update form type, 253
update record (workflow step), 180, 186
UpdateActivity class, 186
UpdateOptionValue message, 297
UpdateRelationshipRequest, 299
upgrades, supported customizations, 14
USER_LANGUAGE_CODE global

variable, 235

UserLocLabel helper property, 286
UTF8Encoding class, 103
utility classes, 549-552

Vv

validation, form scripting, 257-258
Virtual PCs, 350
virtualization, 24
Visual Studio
accessing APIs, 50-54
adding Web site projects, 495
creating projects, 451-452

overview, 41

PluginRegistration tool, 113

Web Deployment Projects add-in, 315
workflow support, 186

w

wait condition (workflow step), 180, 186
WaitLoopActivity class, 186
Web applications
impersonation, 82-83
offline deployment, 330-331
Web browsers
caching external files, 259
testing deployment, 334
Web pages
deploying custom, 325-326
embedding, 9
offline considerations, 356-366
Web.config file, 326
web.config file, 496
WebServiceApiOrigin class, 122
WhoAmIRequest message, 489
Windows High-Contrast mode, 336-340
Windows Live ID, 71, 273
Windows Online Authentication, 56
Windows Workflow Foundation
activities, 186-187
dynamic value binding, 187
functionality, 185-186
workflow assemblies. See assemblies
workflow designer, 170-185, 213-214,
416-417
workflow entity, 409-411

workflow programming. See also declarative

workflows

calculating related aggregate, 221-231

custom workflow management tool,
407-408

deploying custom assemblies, 193-196

entity images, 206-213

implementing custom activities, 188-193

investigating activity errors, 201-203
math building blocks, 214-215
retrieving dependencies, 418-419

workflows

retrieving most available user, 216-221

testing custom activities, 197-201

Windows Workflow Foundation,

185-187

workflow attributes, 203

workflow context, 204-206

workflow designer, 170-185, 416-417

workflow designer limitations, 213-214

workflows as entities, 409-419
workflow steps, 180-181
Workflow Web interface, 10-11
WorkflowConfiguration class

Dependencies property, 429, 433

ImportWorkflow method, 432

Load method, 430

Save method, 446

ToEntity method, 432-433

XmlArrayltem, 430

XmlAttribute, 430
WorkflowDependency class, 446
workflowdependency entity, 414-415
workflowdependencyid attribute, 415
WorkflowDependencyType class

AttributeDefinition field, 414, 417

CustomEntityDefinition field, 414

LocalParameter field, 414

PrimaryEntitylmage field, 414

PrimaryEntityPostimage field, 414

PrimaryEntityPrelmage field, 414

RelatedEntitylmage field, 414

SdkAssociation field, 414, 417

WorkflowConfiguration class and, 433
workflowid attribute

workflow entity, 411

workflowdependency entity, 415, 418
WorkflowLogic class

ExportWorkflow method, 444-446

ImportWorkflow method, 429

RetrieveWorkflowDependencies

method, 418

WorkflowStatusDraft constant, 412

WorkflowStatusPublished constant, 412
workflows. See also declarative workflows

as entities, 409-419

automatic, 178-179

595

596 WorkflowState class

child, 179 X
creating native, 170-175 YAML (E ible Application Mark
CRM attributes, 203 (Extensible Application Markup

CrmService Web service, 411-412 dljr?gualg.e) f ion. 420
custom activities, 188-193 additional information,

default values, 185 CRM support, 413,420 '
dynamic values, 181-185 exporting workflows programmatically,

Dynamic Values box, 184 4.2_44
Look for options, 183-184 native workflow, 442-444

syntax, 419-420
manual, 179 xmiD t el 490
offline considerations, 372 milJocument class,

. XmlHttp class, 241, 261
operator options, 182 xrmiNodeList c| 490
publishing, 412-413 mimodetist cass,

steps in process, 180-181 ig‘:\jirﬁhzeftda% 43‘:)2, ;‘r46
testing, 176-177 lle extension,

WorkflowState class, 412 i;@th class, .‘:90 ioti 255_257
workstations, 349 (cross-site scripting), 255~

About the Authors

Jim Steger

Jim Steger is cofounder and principal of Sonoma Partners, a Chicago-based consulting firm
that specializes in Microsoft Dynamics CRM implementations. Sonoma Partners won the
Global Microsoft CRM Partner of the Year award in both 2003 and 2005 and was a finalist in
2008. He is a Microsoft Certified Professional and has architected multiple award-winning
Microsoft Dynamics CRM deployments, including complex enterprise integration projects.
He has been developing solutions for Microsoft Dynamics CRM since the version 1.0 beta.

Before starting Sonoma Partners, Jim designed and led various global software develop-
ment projects at Motorola and ACCO Office Products. Jim earned his bachelor’s degree in
engineering from Northwestern University. He currently lives in Naperville, lllinois, with his
wife and two children.

Mike Snyder

Mike Snyder is cofounder and principal of Sonoma Partners. Recognized as one of the
industry’s leading Microsoft Dynamics CRM experts, Mike is a member of the Microsoft
Dynamics Partner Advisory Council, and he writes a popular blog about Microsoft
Dynamics CRM.

Before starting Sonoma Partners, Mike led multiple product development teams at Motorola
and Fortune Brands. Mike graduated with honors from Northwestern’s Kellogg Graduate
School of Management with a Master of Business Administration degree, majoring in market-
ing and entrepreneurship. He has a bachelor's degree in engineering from the University of
Notre Dame. Mike lives in Naperville, Illinois, with his wife and three children. He enjoys ice
hockey and playing with his kids in his free time.

Brad Bosak

Brad Bosak is a lead architect at Sonoma Partners, and he has been developing client
solutions on Microsoft Dynamics CRM since version 1.2. Brad works on the most complex
CRM projects at Sonoma Partners, using his deep product experience to meet various types
of customer requirements.

About the Authors 611

Before starting at Sonoma Partners, Brad worked for several years as a .NET application
developer and consultant. Brad earned his bachelor’s degree in computer technology from
Purdue University. He currently lives in Chicago, lllinois. In his free time, he enjoys taekwondo
and playing guitar.

Corey O’Brien

Corey O'Brien is a lead architect at Sonoma Partners and certified in Microsoft Dynamics
CRM. Corey has designed numerous Microsoft Dynamics CRM solutions for clients in a wide
range of industries.

Corey has more than 10 years of experience designing and developing software solu-

tions using Microsoft technologies. Corey holds patents for software concepts in both the
Industrial Automation and Education industries. Corey earned his bachelor’s degree in
computer science from Hope College in Holland, Michigan. He currently lives in Hanover
Park, lllinois with his wife and child. He enjoys volleyball and basking in the warm glow of his
various electronic devices.

Philip Richardson

Philip Richardson has worked at Microsoft since 2000 and currently works as a Senior
Program Manager in the Cloud Services team. Prior to his current role he was a lead on
the Dynamics CRM team for the 4.0 release and for the first milestone of the next release
(codename: CRM5). He is passionate about sales and marketing business systems and the
positive impact they can have on a organization and its end customers

Philip is a native of Sydney, Australia, and currently resides (with his wife, son, and dog)
near Microsoft's global headquarters in Redmond, Washington. In 2007 his blog
(http://www.philiprichardson.org/blog) took the #4 position on InsideCRM'’s Top 20 CRM
bloggers.

About Sonoma Partners

This book's authors, Jim Steger, Mike Snyder, Brad Bosak, and Corey O’Brien, are executives
at the Chicago-based consulting firm Sonoma Partners. Sonoma Partners is a Microsoft Gold
Certified Partner that sells, customizes, and implements Microsoft Dynamics CRM for enter-
prise and midsize companies throughout the United States. Sonoma Partners has worked
exclusively with Microsoft Dynamics CRM since the version 1.0 pre-release beta software.
Founded in 2001, Sonoma Partners possesses extensive experience in several industries,
including financial services, professional services, health care, and real estate.

Sonoma Partners is unique for the following reasons:

B We are focused 100 percent on the Microsoft Dynamics CRM software product. We do
not spread our resources over any other products or services.

B We have successfully implemented more than 150 Microsoft Dynamics CRM
deployments.

B Microsoft awarded Sonoma Partners as the Global Microsoft Dynamics CRM Partner
of the Year in 2005 and 2003. Microsoft recognized Sonoma Partners as one of three
finalists for the 2008 Microsoft Dynamics CRM Partner of the Year award.

B More than half of our staff includes application and database developers so that we
can perform very complex Microsoft Dynamics CRM customizations and integrations.

B We were named one of 101 Best and Brightest Companies to Work for in Chicago in
2007 and 2008.

B We are a member of Microsoft Dynamics Partner Advisory Council.

In addition to the books we've written for Microsoft Press, we share our Microsoft
Dynamics CRM product knowledge through our e-mail newsletter and online blog. If
you're interested in receiving this information, you can find out more on our Web site at
http://www.sonomapartners.com.

Even though our headquarters is in Chicago, lllinois, we work with customers throughout
the United States. If you're interested in discussing your Microsoft Dynamics CRM system
with us, please don't hesitate to contact us! In addition to working with customers who want
to deploy Microsoft Dynamics CRM for themselves, we also act as a technology provider

for independent software vendors (ISVs) looking to develop solutions for the Microsoft
Dynamics CRM platform.

About Sonoma Partners 613

Sometimes people ask us where we got our name. The name Sonoma Partners was inspired
by Sonoma County in the wine-producing region of northern California. The wineries in
Sonoma County are smaller than their more well-known competitors in Napa Valley, but they
have a reputation for producing some of the highest quality wines in the world. We think
that their smaller size allows the Sonoma winemakers to be more intimately involved with
creating the wine. By using this hands-on approach, the Sonoma County wineries can deliver
a superior product to their customers—and that's what we strive to do as well.

	Cover
	Copyright page

	Contents at a Glance
	Table of Contents
	Foreword
	Acknowledgments
	Jim Steger’s Acknowledgments
	Mike Snyder’s Acknowledgments
	Brad Bosak’s Acknowledgments
	Corey O’Brien’s Acknowledgments
	Philip Richardson’s Acknowledgments

	Introduction
	Who This Book Is For
	What This Book Is About
	Companion Content
	System Requirements
	Client
	Server

	Find Additional Content Online
	Support for This Book
	Questions and Comments

	Chapter 1: Microsoft Dynamics CRM 4.0 SDK Overview
	Software Development Kit Introduction
	Hitchhiker’s Guide to Common Questions
	Can we alter the CRM database structure to add our custom tables and columns?
	How do we write custom code that gets data into and out of Microsoft Dynamics CRM?
	Can we change the current CRM form layouts and controls?
	How do we implement our own custom business logic?
	How much control do we have over the user interface and branding?
	How do we deploy changes from one system to another?
	Will our customizations upgrade when Microsoft releases a new version of the software?
	Are role-based security permissions supported and configurable?
	Does Microsoft Dynamics CRM support multiple languages and currencies?
	Will our programming customizations run offline?
	How do you recommend we set up a Microsoft Dynamics CRM development enviroment?

	Microsoft Dynamics CRM as a Business Application Platform
	Summary

	Chapter 5: Plug-ins
	Writing Your First Plug-in
	Creating the Plug-in Project
	Implementing the Plug-in Class
	Building the Registration Tool
	Deploying the Plug-in

	The Event Execution Pipeline
	Supported Messages and Entities
	Parent and Child Pipelines

	IPluginExecutionContext
	Impersonation
	Impersonation During Registration
	Impersonation During Execution

	Exception Handling
	Exceptions and the Event Processing Pipeline
	Exception Feedback

	Deployment
	Plug-in Entities
	Programmatic Plug-in Registration
	Images
	Programmatic Image Registration
	Custom Configuration
	Deploying Referenced Assemblies

	Debugging Plug-ins
	Remote Debugging
	Logging

	Unit Testing
	Mock Objects
	Test Frameworks
	Sample Test

	Sample Plug-ins
	Rolling Up Child Entity Attributes to a Parent Entity
	System View Hider
	Customization Change Notifier

	Summary

	Index
	A
	B, C
	D
	E, F
	G, H, I
	J, K, L, M
	N
	O, P
	Q, R
	S
	T, U, V
	W
	X

	About the Authors
	Jim Steger
	Mike Snyder
	Brad Bosak
	Corey O’Brien
	Philip Richardson

	About Sonoma Partners

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ARA <FFFE270633062A062E062F0645062000470630064706200027064406250639062F0627062F0627062A0620004406250646063406270621062000450633062A0646062F0627062A062000410064006F0062006500200050004400460020004A064506430646062000270644062A06390627064506440620004506390647062706200048062A062A063606450646062000390644062706450627062A0620002A0645064A064A063206200048063106480627062806370620002A063406390628064A06290620004806250634062706310627062A062000450631062C0639064A062906200048063906460627063506310620002A0641062706390644064A0629062000480637062806420627062A062E0020004A06450643064606200041062A062D062000450633062A0646062F0627062A0620005000440046002000270644064506460634062306290620002806270633062A062E062F062706450620004100630072006F0062006100740020004806410064006F00620065002000520065006100640065007200200037002E003000200023064806200023062D062F062B062E0029000D000A00>
 /CHS <FEFF4F7F75288FD94E9B8BBE7F6E6765521B5EFA7684002000410064006F006200650020005000440046002065876863517759078F8552A95DE55177FF0C53735305542B68077B7E30018D8594FE63A530014E667B7E30014EA44E9251437D20548C56FE5C423002521B5EFA76840020005000440046002065874EF653EF4EE54F7F75280020004100630072006F0062006100740020548C002000410064006F00620065002000520065006100640065007200200037002E00300020621666F49AD87248672C676562535F003002>
 /CHT <FEFF4F7F752890194E9B8A2D5B9A5EFA7ACB7684002000410064006F006200650020005000440046002065874EF651775099535452A95DE55177FF0C53735305542B6A197C6430018D8590237D50300166F87C6430014E9252D551437D20548C57165C6430025EFA7ACB76840020005000440046002065874EF653EF4EE54F7F75280020004100630072006F0062006100740020548C002000410064006F00620065002000520065006100640065007200200037002E00300020621666F49AD87248672C958B555F3002>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200073006E00610064006E006F00200070015900ED0073007400750070006E00FD0063006800200064006F006B0075006D0065006E0074016F002000410064006F006200650020005000440046002C0020006B00740065007200E90020006F00620073006100680075006A00ED00200074006100670079002C00200068007900700065007200760061007A00620079002C0020007A00E1006C006F017E006B0079002C00200069006E0074006500720061006B007400690076006E00ED0020007000720076006B0079002000610020007600720073007400760079002E00200056007900740076006F01590065006E00E900200064006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000410064006F00620065002000520065006100640065007200200037002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /DAN <FEFF004200720075006700200064006900730073006500200069006E0064007300740069006C006C0069006E006700650072002000740069006C0020006100740020006F0070007200650074007400650020006C0065007400740069006C006700E6006E00670065006C006900670065002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E007400650072002C002000640065007200200069006E006400650068006F006C0064006500720020006B006F006400650072002C002000680079007000650072006C0069006E006B0073002C00200062006F0067006D00E60072006B00650072002C00200069006E0074006500720061006B007400690076006500200065006C0065006D0065006E0074006500720020006F00670020006C00610067002E0020004400650020006F007000720065007400740065006400650020005000440046002D0064006F006B0075006D0065006E0074006500720020006B0061006E002000E50062006E00650073002000690020004100630072006F00620061007400200065006C006C006500720020004100630072006F006200610074002000520065006100640065007200200037002E00300020006F00670020006E0079006500720065002E>
 /DEU <FEFFFEFF00560065007200770065006E00640065006E0020005300690065002000640069006500730065002000450069006E007300740065006C006C0075006E00670065006E0020007A0075006D002000450072007300740065006C006C0065006E00200076006F006E0020007A0075006700E4006E0067006C0069006300680065006E002000410064006F006200650020005000440046002D0044006F006B0075006D0065006E00740065006E0020006D0069007400200054006100670073002C002000480079007000650072006C0069006E006B0073002C0020004C006500730065007A00650069006300680065006E002C00200069006E0074006500720061006B0074006900760065006E00200045006C0065006D0065006E00740065006E00200075006E00640020004500620065006E0065006E002E002000450072007300740065006C006C007400650020005000440046002D0044006F006B0075006D0065006E007400650020006B00F6006E006E0065006E0020006D006900740020004100630072006F00620061007400200075006E0064002000410064006F00620065002000520065006100640065007200200037002E00300020006F0064006500720020006800F600680065007200200067006500F600660066006E00650074002000770065007200640065006E002E>
 /ENU (Use these settings to create accessible Adobe PDF documents that include tags, hyperlinks, bookmarks, interactive elements, and layers. Created PDF documents can be opened with Acrobat and Adobe Reader 7.0 and later.)
 /ESP <FEFF005500740069006C0069006300650020006500730074006100200063006F006E0066006900670075007200610063006900F3006E0020007000610072006100200063007200650061007200200064006F00630075006D0065006E0074006F0073002000500044004600200061006300630065007300690062006C00650073002000640065002000410064006F00620065002000710075006500200069006E0063006C007500790061006E0020006500740069007100750065007400610073002C002000680069007000650072007600ED006E00630075006C006F0073002C0020006D00610072006300610064006F0072006500730020006400650020007000E100670069006E0061002C00200065006C0065006D0065006E0074006F007300200069006E00740065007200610063007400690076006F007300200079002000630061007000610073002E002000530065002000700075006500640065006E00200061006200720069007200200064006F00630075006D0065006E0074006F00730020005000440046002000630072006500610064006F007300200063006F006E0020004100630072006F006200610074002C002000410064006F00620065002000520065006100640065007200200037002E003000200079002000760065007200730069006F006E0065007300200070006F00730074006500720069006F007200650073002E>
 /FRA <FEFF005500740069006C006900730065007A00200063006500730020006F007000740069006F006E007300200070006F0075007200200063007200E900650072002000640065007300200064006F00630075006D0065006E00740073002000410064006F006200650020005000440046002000610063006300650073007300690062006C0065007300200064006F007400E90073002000640065002000620061006C0069007300650073002C00200064002700680079007000650072006C00690065006E0073002C0020006400650020007300690067006E006500740073002C00200064002700E9006C00E9006D0065006E0074007300200069006E007400650072006100630074006900660073002000650074002000640065002000630061006C0071007500650073002E0020004C0065007300200064006F00630075006D0065006E0074007300200050004400460020006F006200740065006E00750073002000730027006F0075007600720065006E0074002000640061006E00730020004100630072006F006200610074002000650074002000410064006F00620065002000520065006100640065007200200037002E00300020002800650074002000760065007200730069006F006E007300200075006C007400E900720069006500750072006500730029002E>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003C003C103BF03C303C003B503BB03AC03C303B903BC03B1002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003C403B1002003BF03C003BF03AF03B1002003C003B503C103B903BB03B103BC03B203AC03BD03BF03C503BD002003B503C403B903BA03AD03C403B503C2002C002003C503C003B503C103C303C503BD03B403AD03C303B503B903C2002C002003C303B503BB03B903B403BF03B403B503AF03BA03C403B503C2002C002003B103BB03BB03B703BB03B503C003B903B403C103B103C303C403B903BA03AC002003C303C403BF03B903C703B503AF03B1002003BA03B103B9002003B503C003AF03C003B503B403B1002E002003A403B1002003AD03B303B303C103C603B10020005000440046002003C003BF03C5002003B403B703BC03B903BF03C503C103B303BF03CD03BD03C403B103B9002003BC03C003BF03C103BF03CD03BD002003BD03B1002003B103BD03BF03B903C703B803BF03CD03BD002003BC03B5002003C403BF0020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200037002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B7002E>
 /HEB <FEFF05d405e905ea05de05e905d5002005d105e705d105d905e205d505ea002005d005dc05d4002005dc05d905e605d905e805ea002005de05e105de05db05d9002000410064006f006200650020005000440046002005e005d205d905e905d905dd002005d405db05d505dc05dc05d905dd002005ea05d205d905dd002c002005e705d905e905d505e805d9002d05e205dc002c002005e105d905de05e005d905d505ea002c002005e805db05d905d105d905dd002005d005d905e005d805e805d005e705d805d905d105d905d905dd002005d505e905db05d105d505ea002e002005de05e105de05db05d90020005000440046002005e905e005d505e605e805d5002005e005d905ea05df002005dc05e405ea05d505d7002005d1002d0020004100630072006f006200610074002005d505d1002d002000410064006f00620065002000520065006100640065007200200037002e0030002005d505d205e805e105d005d505ea002005de05ea05e705d305de05d505ea002005d905d505ea05e8002e>
 /HUN <FEFF004100200062006500E1006C006C00ED007400E10073006F006B0020006800610073007A006E00E1006C0061007400E100760061006C0020006300ED006D006B00E9006B00650074002C002000680069007600610074006B006F007A00E10073006F006B00610074002C0020006B00F6006E00790076006A0065006C007A0151006B00650074002C00200069006E0074006500720061006B007400ED007600200065006C0065006D0065006B00650074002000E900730020007200E90074006500670065006B00650074002000740061007200740061006C006D0061007A00F300200068006F007A007A00E1006600E900720068006500740151002000410064006F00620065002000500044004600200064006F006B0075006D0065006E00740075006D006F006B0061007400200068006F007A0068006100740020006C00E9007400720065002E002000410020006C00E90074007200650068006F007A006F00740074002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061007A002000410064006F00620065002000520065006100640065007200200037002E003000200061006C006B0061006C006D0061007A00E10073006F006B006B0061006C002C0020007600610067007900200061007A002000610074007400F3006C0020006B00E9007301510062006200690020007600650072007A006900F3006B006B0061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /ITA <FEFF005500740069006C0069007A007A006100720065002000710075006500730074006500200069006D0070006F007300740061007A0069006F006E00690020007000650072002000630072006500610072006500200064006F00630075006D0065006E00740069002000410064006F0062006500200050004400460020006100630063006500730073006900620069006C0069002000630068006500200069006E0063006C00750064006F006E006F0020007400610067002C0020006C0069006E006B00200069007000650072007400650073007400750061006C0069002C0020007300650067006E0061006C0069006200720069002C00200065006C0065006D0065006E0074006900200069006E007400650072006100740074006900760069002000650020006C006900760065006C006C0069002E002000C800200070006F00730073006900620069006C006500200061007000720069007200650020006900200064006F00630075006D0065006E007400690020005000440046002000630072006500610074006900200063006F006E0020004100630072006F00620061007400200065002000410064006F00620065002000520065006100640065007200200037002E003000200065002000760065007200730069006F006E006900200073007500630063006500730073006900760065002E>
 /JPN <FEFF30BF30B0300130CF30A430D130FC30EA30F330AF30013057304A308A300130A430F330BF30E930AF30C630A330D6306A89817D20300130EC30A430E430FC3092542B308030A230AF30BB30B730D630EB306A002000410064006F0062006500200050004400460020658766F830924F5C62103059308B306B306F30013053308C3089306E8A2D5B9A30924F7F75283057307E305930024F5C62103055308C305F00200050004400460020306F0020004100630072006F0062006100740020304A30883073002000410064006F00620065002000520065006100640065007200200037002E003000204EE5964D3067958B304F30533068304C3067304D307E30593002>
 /KOR <FEFFD0DCADF8002C0020D558C774D37CB9C1D06C002C0020CC45AC08D53C002C0020B300D654D6150020C694C18C0020BC0F0020B808C774C5B4AC000020D3ECD568B418C5B40020C788C5B40020C0ACC6A9C790AC000020C27DAC8C0020C561C138C2A4D5600020C2180020C788B294002000410064006F0062006500200050004400460020BB38C11CB97C0020C791C131D558B824BA740020C774B7ECD55C0020C124C815C7440020C0ACC6A9D569B2C8B2E4002E0020C774C6400020AC19C7400020C635C158C7440020C0ACC6A9D558C5EC0020C791C131B41C00200050004400460020BB38C11CB2940020004100630072006F0062006100740020BC0F002000410064006F00620065002000520065006100640065007200200037002E00300020C774C0C1C5D0C11C0020C5F40020C2180020C788C2B5B2C8B2E4002E>
 /NLD (Gebruik deze instellingen om toegankelijke Adobe PDF-documenten met labels, hyperlinks, bladwijzers, interactieve elementen en lagen te maken. U kunt gemaakte PDF-documenten openen met Acrobat en Adobe Reader 7.0 en hoger.)
 /NOR <FEFF004200720075006B00200064006900730073006500200069006E006E007300740069006C006C0069006E00670065006E0065002000740069006C002000E50020006F0070007000720065007400740065002000740069006C0067006A0065006E00670065006C006900670065002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E00740065007200200073006F006D00200069006E006E00650068006F006C0064006500720020006B006F006400650072002C002000680079007000650072006B006F0062006C0069006E006700650072002C00200062006F006B006D00650072006B00650072002C00200069006E0074006500720061006B007400690076006500200065006C0065006D0065006E0074006500720020006F00670020006C00610067002E0020004F0070007000720065007400740065006400650020005000440046002D0064006F006B0075006D0065006E0074006500720020006B0061006E002000E50070006E00650073002000690020004100630072006F0062006100740020006F0067002000410064006F00620065002000520065006100640065007200200037002E00300020006F0067002000730065006E006500720065002E>
 /POL <FEFF005A006100200070006F006D006F00630105002000740079006300680020007500730074006100770069006501440020006D006F017C006E0061002000740077006F0072007A0079010700200142006100740077006F00200064006F0073007401190070006E006500200064006F006B0075006D0065006E00740079002000410064006F006200650020005000440046002C0020007A006100770069006500720061006A0105006300650020007A006E00610063007A006E0069006B0069002C002000680069007000650072014201050063007A0061002C0020007A0061006B014200610064006B0069002C00200065006C0065006D0065006E0074007900200069006E0074006500720061006B007400790077006E00650020006900200077006100720073007400770079002E0020005500740077006F0072007A006F006E006500200077002000740065006E002000730070006F007300F3006200200064006F006B0075006D0065006E0074007900200050004400460020006D006F017C006E00610020006F007400770069006500720061010700200077002000700072006F006700720061006D0061006300680020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200037002E00300020006900200069006300680020006E006F00770073007A00790063006800200077006500720073006A006100630068002E>
 /PTB <FEFF00550073006500200065007300740061007300200063006F006E00660069006700750072006100E700F5006500730020007000610072006100200063007200690061007200200064006F00630075006D0065006E0074006F007300200061006300650073007300ED00760065006900730020005000440046002000410064006F00620065002000710075006500200069006E0063006C00750065006D00200074006100670073002C002000680079007000650072006C0069006E006B0073002C0020006D00610072006300610064006F007200650073002C00200065006C0065006D0065006E0074006F007300200069006E0074006500720061007400690076006F007300200065002000630061006D0061006400610073002E0020004F007300200064006F00630075006D0065006E0074006F00730020005000440046002000630072006900610064006F007300200070006F00640065006D0020007300650072002000610062006500720074006F007300200063006F006D0020004100630072006F00620061007400200065002000410064006F00620065002000520065006100640065007200200037002E00300020006F007500200070006F00730074006500720069006F007200650073002E>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610063006300650073006900620069006c00650020006300610072006500200069006e0063006c007500640020007400610067007500720069002c002000680069007000650072006c0069006e006b007500720069002c002000730065006d006e0065002000640065002000630061007200740065002c00200065006c0065006d0065006e0074006500200069006e0074006500720061006300740069007600650020015f0069002000730074007200610074007500720069002e00200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f0062006100740020015f0069002000410064006f00620065002000520065006100640065007200200037002e0030002c002000700072006500630075006d0020015f00690020006300750020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043D0430044104420440043E0439043A043800200434043B044F00200441043E043704340430043D0438044F00200434043E044104420443043F043D044B0445002000410064006F006200650020005000440046002D0434043E043A0443043C0435043D0442043E0432002C00200441043E0434043504400436043004490438044500200442043504330438002C002004330438043F0435044004410441044B043B043A0438002C002004370430043A043B04300434043A0438002C00200438043D0442043504400430043A044204380432043D044B04350020044D043B0435043C0435043D0442044B0020043800200441043B043E0438002E00200421043E043704340430043D043D044B04350020005000440046002D0434043E043A0443043C0435043D0442044B0020043C043E0436043D043E0020043E0442043A0440044B043204300442044C002004410020043F043E043C043E0449044C044E0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200037002E00300020043800200431043E043B043504350020043F043E04370434043D043804450020043204350440044104380439002E>
 /SUO <FEFF004B00E40079007400E40020006E00E40069007400E4002000610073006500740075006B0073006900610020006C0075006F0064006500730073006100730069002000680065006C00700070006F006B00E400790074007400F600690073006900E4002000410064006F0062006500200050004400460020002D0064006F006B0075006D0065006E007400740065006A0061002C0020006A006F0074006B0061002000730069007300E4006C007400E4007600E400740020006B006F006F00640069006D00650072006B0069006E007400F6006A00E4002C002000680079007000650072006C0069006E006B006B0065006A00E4002C0020006B00690072006A0061006E006D00650072006B006B0065006A00E4002C002000760075006F0072006F007600610069006B0075007400740065006900730069006100200065006C0065006D0065006E007400740065006A00E40020006A00610020007400610073006F006A0061002E002000410073006500740075007300740065006E0020006100760075006C006C00610020006C0075006F0064007500740020005000440046002D0064006F006B0075006D0065006E00740069007400200076006F00690020006100760061007400610020004100630072006F0062006100740020006A0061002000410064006F00620065002000520065006100640065007200200037002E0030003A006C006C0061002000740061006900200075007500640065006D006D0061006C006C0061002000760065007200730069006F006C006C0061002E>
 /SVE <FEFF0041006E007600E4006E00640020006400650020006800E4007200200069006E0073007400E4006C006C006E0069006E006700610072006E00610020006600F60072002000610074007400200073006B0061007000610020006C00E4007400740069006C006C006700E4006E0067006C006900670061002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E007400200073006F006D00200069006E006E0065006800E5006C006C006500720020007400610067006700610072002C002000680079007000650072006C00E4006E006B00610072002C00200062006F006B006D00E40072006B0065006E002C00200069006E0074006500720061006B007400690076006100200065006C0065006D0065006E00740020006F006300680020006C0061006700650072002E00200044006500200064006F006B0075006D0065006E007400200064007500200073006B00610070006100720020006B0061006E002000F600700070006E00610073002000690020004100630072006F0062006100740020006F00630068002000410064006F00620065002000520065006100640065007200200037002E003000200065006C006C00650072002000730065006E006100720065002E>
 /TUR <FEFF0130006D006C00650072002C002000680069007000650072002000620061011F006C00610072002C002000790065007200200069006D006C006500720069002C002000650074006B0069006C0065015F0069006D006C0069002000F6011F0065006C006500720020007600650020006B00610074006D0061006E006C006100720020006900E7006500720065006E0020006500720069015F0069006C006500620069006C00690072002000410064006F006200650020005000440046002000620065006C00670065006C0065007200690020006F006C0075015F007400750072006D0061006B0020006900E70069006E00200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E0020004F006C0075015F0074007500720075006C0061006E0020005000440046002000620065006C00670065006C0065007200690020004100630072006F006200610074002000760065002000410064006F00620065002000520065006100640065007200200037002E003000200076006500200073006F006E00720061006B00690020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f002000410064006f006200650020005000440046002d0434043e043a0443043c0435043d044204560432002c0020044f043a04560020043c045604410442044f0442044c00200442043504330438002c002004330456043f04350440043f043e04410438043b0430043d043d044f002c002004370430043a043b04300434043a0438002c00200456043d0442043504400430043a044204380432043d045600200435043b0435043c0435043d044204380020043900200448043004400438002e0020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004320020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200037002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive true
 /IncludeLayers true
 /IncludeProfiles true
 /MultimediaHandling /EmbedAll
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

