

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2008 by Roger Sessions

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2008923658

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWE 3 2 1 0 9 8

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor mation about
international editions, contact your local Microsoft Corporation offi ce or contact Microsoft Press International directly at
fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, PowerPoint, and Visual Basic are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries. Other product and company names mentioned herein may be the
trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted
herein are fi ctitious. No association with any real company, organization, product, domain name, e-mail address, logo,
person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ben Ryan
Developmental Editor: Devon Musgrave
Project Editor: Lynn Finnel
Editorial Production: Interactive Composition Corporation
Cover Illustration: John Hersey

Body Part No. X14-71550

‘Tis the gift to be simple, ‘tis the gift to be free,

‘tis the gift to come down where we ought to be…

—Shaker hymn

Everything should be made as simple as possible, but not simpler.

—Albert Einstein

 v

Contents at a Glance

Part I The Question of Complexity

 1 Enterprise Architecture Today. 3

 2 A First Look at Complexity . 35

 3 Mathematics of Complexity . 53

Part II The Quest for Simplifi cation

 4 The ABCs of Enterprise Partitions. 87

 5 SIP Process . 107

 6 A Case Study in Complexity . 129

 7 Guarding the Boundaries: Software Fortresses 147

 8 The Path Forward . 159

 A This Book at a Glance . 169

 vii
www.microsoft.com/learning/booksurvey

Microsoft is interested in hearing your feedback so we can continually improve our books and

learning resources for you. To participate in a brief online survey, please visit:

What do you think of this book? We want to hear from you!

Table of Contents

Acknowledgments .xiii

Introduction . xv

The Organization of This Book . xx

Find Additional Content Online. .xxi

Support for This Book .xxi

Questions and Comments . xxii

Part I The Question of Complexity

 1 Enterprise Architecture Today. 3

Why Bother? . 3

Issue: Unreliable Enterprise Information . 4

Issue: Untimely Enterprise Information . 4

Issue: New Complex Projects Underway . 4

Issue: New Companies Being Acquired . 5

Issue: Enterprise Wants to Spin Off Unit . 5

Issue: Need to Identify Outsourcing Opportunities. 5

Issue: Regulatory Requirements . 5

Issue: Need to Automate Relationships with

External Partners . 6

Issue: Need to Automate Relationships with Customers. 6

Issue: Poor Relationship Between IT and Business Units. 6

Issue: Poor Interoperability of IT Systems . 6

Issue: IT Systems Unmanageable. 7

The Value of Enterprise Architecture . 7

Common Defi nitions . 7

What Is Enterprise Architecture? . 8

Complexity in Enterprise Architectures . 10

viii Table of Contents

The Zachman Framework for Enterprise Architectures . 15

The Open Group Architecture Framework . 20

Federal Enterprise Architecture . 26

Summary . 33

 2 A First Look at Complexity . 35

Partitioning . 35

Executive Lunch . 35

Choir Rehearsal . 36

Emergency Responses. 37

Clothing Store. 38

Chess Games. 38

Children at Starbucks . 39

Rubik’s Cube . 40

Five Laws of Partitions . 42

First Law: Partitions Must Be True Partitions . 42

Second Law: Partition Defi nitions Must Be Appropriate. 43

Third Law: Partition Subset Numbers Must Be Appropriate 44

Fourth Law: Partition Subset Sizes Must Be Roughly Equal 44

Fifth Law: Subset Interactions Must Be Minimal and

Well Defi ned . 45

Simplifi cation . 45

Iteration . 46

Summary . 52

 3 Mathematics of Complexity . 53

Looking at Complexity . 54

Laws of Complexity . 58

Homomorphisms . 60

Controlling Complexity in Dice Systems . 61

Adding Buckets. 62

Partitioning . 65

Equivalence Relations . 67

Equivalence Classes . 71

Inverse Equivalence Relations . 72

Equivalence Relations and Enterprise Architectures . 73

Synergistic in Practice . 76

Removing Faces . 77

 Table of Contents ix

Removing Buckets . 79

Other Measures of Complexity . 80

Complexity in Theory and in Practice. 81

Summary . 83

Part II The Quest for Simplifi cation

 4 The ABCs of Enterprise Partitions. 87

Review of the Mathematics . 87

Partitioning the Enterprise . 88

The ABCs of Enterprise Equivalence Classes . 89

ABC-Type Relationships. 90

Implementations and Deployments . 93

ABC Types . 95

Type Hierarchies . 96

Composition Relationships . 98

Partner Relationships. 99

Relationships and Partition Simplifi cation . 100

Retail Operation, Again. 102

Summary . 106

 5 SIP Process . 107

Overview . 107

Phase 0: Enterprise Architecture Evaluation . 108

Issue: Unreliable Enterprise Information . 109

Issue: Untimely Enterprise Information . 109

Issue: New Complex Projects Underway . 110

Issue: New Companies Being Acquired . 110

Issue: Enterprise Wants to Spin Off Unit . 111

Issue: Need to Identify Outsourcing Opportunities. 111

Issue: Regulatory Requirements . 112

Issue: Need to Automate Relationships with External Partners 112

Issue: Need to Automate Relationships with Customers. 113

Issue: Poor Relationship Between IT and Business Units. 113

Issue: Poor Interoperability of IT Systems . 113

Issue: IT Systems Unmanageable. 114

Contraindications . 114

x Table of Contents

Phase 1: SIP Preparation . 115

Audit of Organizational Readiness . 115

Training . 116

Governance Model . 116

SIP Blend . 117

Enterprise-Specifi c Tools. 117

Phase 2: Partitioning . 118

Phase 3: Partition Simplifi cation . 121

Phase 4: ABC Prioritization . 124

Phase 5: ABC Iteration . 127

Summary . 128

 6 A Case Study in Complexity . 129

Overview of NPfIT . 129

Current Status of NPfIT . 132

The SIP Approach. 135

Summary . 145

 7 Guarding the Boundaries: Software Fortresses 147

Technical Partitions . 147

Rule 1: Autonomy. 152

Rule 2: Explicit Boundaries . 152

Rule 3: Partitioning of Functionality . 153

Rule 4: Dependencies Defi ned by Policy . 153

Rule 5: Asynchronicity . 153

Rule 6: Partitioning of Data . 154

Rule 7: No Cross-Fortress Transactions. 155

Rule 8: Single-Point Security . 156

Rule 9: Inside Trust . 156

Rule 10: Keep It Simple . 156

Summary . 157

 8 The Path Forward . 159

Complexity: The Real Enemy . 160

Simplicity Pays . 161

A Philosophy of Simplicity . 164

A Review of the Book Content. 165

A Parting Message . 166

 Table of Contents xi

 A This Book at a Glance . 169

Mathematical Concepts . 169

Mathematical Defi nition of a Partition. 169

Five Laws of Partitions. 169

Measuring States in a System of Dice-Like Systems. 170

Homomorphism. 170

Equivalence Relations . 170

Inverse Equivalence Relations . 171

Partitions . 171

Partitioning Algorithm for Equivalence Relations 171

Enterprise Architectural Concepts. 172

Preferred Defi nition of Enterprise Architecture . 172

Defi nition of Optimal Architecture . 172

Boyd’s Law of Iteration . 172

Laws of Enterprise Complexity. 172

Synergistic and Autonomous. 173

SIP Concepts . 173

Defi nition of SIP . 173

The SIP Process. 173

ABC. 174

Software Fortress Model . 175

Three Styles of ABC Communications . 176

The SIP Mantra . 176

Index . 177

www.microsoft.com/learning/booksurvey

Microsoft is interested in hearing your feedback so we can continually improve our books and

learning resources for you. To participate in a brief online survey, please visit:

What do you think of this book? We want to hear from you!

 xiii

Acknowledgments

This book has benefi ted from the help of a large number of people, ranging from reviewers

to photographers to production staff.

First and foremost is Beverly Bammel. Beverly is the President of ObjectWatch and has

worked closely with me on developing the ideas of complexity management and on the

production of this book.

Early drafts of this work have greatly benefi ted from reviewer feedback. My primary

reviewers include

Q Paulo Rocha, Manager of Enterprise Architecture for Fronde Systems Group, LTD of

New Zealand

Q Darko Bohinc, Principal Consultant, Strategy Services, Fronde Systems Group LTD of

New Zealand

Q Dan Schwartz of EDS

Q Matt Peloquin, Chief Technology Offi cer at Construx

It has been delightful working with Microsoft Press. I especially thank Ben Ryan (my product

planner), Lynn Finnel and Devon Musgrave (my editors), and Roger LeBlanc (my copy editor).

A number of photographers have graciously allowed me to reproduce their photos. The

photo credits are as follows:

Q The photo of the replica of Thoreau’s cabin in Chapter 1 is by Laura Raney, my adopted

niece, who made a special trip out to Walden’s Pond just to get me this photo.

Q The photos of the Rubik’s Cubes in Chapter 2 are used by permission of Seven Towns

Ltd, www.rubiks.com.

Q The photo of Captain John Boyd in Chapter 2 is used by permission of his daughter,

Mary Ellen Boyd, who also reviewed the material relating to Captain Boyd.

Q The photos of the cockpits in Chapter 2 are used by permission of Richard and Susie

McDonald of MIG Jet Adventures (www.migjet.com).

Q The photos of the orchids in Chapter 4 are courtesy of Orchids of Wickford, N.

Kingston, RI. (www.wickfordorchids.com).

Q The photo of the Jewelweed in Chapter 4 is courtesy of Bruce Marlin, Red Planet, Inc.

xiv Acknowledgments

Finally, there are a number of people who have contributed to this book that do not fi t into

any category

Q Rodrigo Estrada of Neoris, for many discussions on the nature of complexity in IT

systems

Q Kevin Drinkwater, CIO of Mainfreight, for allowing me to recap some of our discussions

on complexity

Q John DeVadoss and Simon Guest of Microsoft for supporting early work relating to

iteration through their sponsorship of several of my white papers

Q Al Summers of Wiltshire England for allowing me to use one of our chess games as an

example of partitioning

Q The baristas of Starbucks in Brenham, Texas for their endless supply of Doppio Espresso

Machiatos, one sugar, extra foam, preheat the cup please.

My thanks to all of you.

Legal Notices

ObjectWatch is a registered trademark of ObjectWatch, Inc. Simple Iterative Paritions is a

trademark of ObjectWatch, Inc. Some of the methodology discussed in this book is protected

by pending patents.

 xv

Introduction

It was the best of times, it was the worst of times, it was the age of wisdom, it was

the age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it

was the season of Light, it was the season of Darkness, it was the spring of hope, it

was the winter of despair, we had everything before us, we had nothing before us…

So begins Charles Dickens’s A Tale of Two Cities. Dickens was writing about London and Paris

in 1775. But Dickens could have been writing about the fi eld of enterprise architecture, the

science of aligning business needs and IT solutions, as it exists today.

It is the best of times. The goal of enterprise architecture is to maximize the business value

delivered by IT investment. For most enterprises, large and small, nonprofi t and for-profi t,

public and private sector, the need to maximize the return on IT investment and help IT work

more effectively with the business has never been greater. No wonder interest in enterprise

architecture is at an all-time high.

It is the worst of times. Enterprise architecture is supposed to ensure that IT systems

deliver business value. Too often, it doesn’t. Executives are losing confi dence that enterprise

architecture can make a real difference to IT. This crisis in confi dence spans enterprise size,

scope, and type. In October 2007, Gartner predicted that 40 percent of all existing enterprise

architecture programs will be shut down by 2010. In their highly infl uential book, Enterprise

Architecture as Strategy (Harvard Business School Press, 2006), authors Ross, Weill, and

Robertson say that fewer than 5 percent of fi rms use enterprise architecture effectively. In

my studies of enterprise architectures and their implementations, I see a common pattern of

costly enterprise architectural efforts followed closely by costly IT failures. No wonder confi -

dence in the ability of enterprise architecture to deliver value is at an all-time low.

Enterprise architecture takes a high-level view of the enterprise, focusing on the relationship

between an organization’s IT architecture and its business architecture. IT architectures

describe IT systems. Business architectures describe business processes. IT systems that do

not meet the needs of the business are wasteful. Business processes without good IT

support are ineffi cient. Enterprise architectures describe how these two architectures com-

plement each other, ensuring that IT systems effectively support the business processes of

the organization.

Clearly, this is a good idea. And yet, enterprise architecture is failing.

What is going wrong? In my experience, there are three basic problems with existing

approaches to enterprise architecture. First, existing approaches are too expensive to

execute. Second, they take too much time to complete. Third, there is no way to validate their

results. So, we have long, expensive processes to create architectures whose effectiveness

can be tested only by building large, expensive implementations. Not only is there no way to

xvi Introduction

evaluate whether a given architecture is good or bad, most enterprise architecture method-

ologies don’t even have a standard criteria for what “good” and “bad” mean.

How do you know whether a typical enterprise architecture is good or bad? Simple. You try

to implement it. You build the IT systems that support your business processes. If you

successfully deliver these IT systems and if they meet the needs of the business, then you

must have had a good enterprise architecture. If not, you didn’t. Better luck next time.

In any other fi eld of science this approach would be considered absurd. Nobody would send

a rocket to the moon without fi rst testing the planned trajectory against mathematical

models for planetary motion; without fi rst testing the planned fuel levels against models for

gravity and thrust. Nobody would think of building a bridge without fi rst testing the archi-

tecture against models for stress, load, and fl uid fl ow.

Why do we implement large, expensive enterprise architectures without fi rst testing them

against mathematically grounded models for effectiveness? The answer is simple: we don’t

know how. We lack a mathematical understanding of “good.” We lack the models for testing

for “good.” We lack even a basic defi nition of what “good” means!

Without such models (and defi nitions), there is no way to validate an enterprise architecture.

There is no way to predict its cost. There is no way to ensure that it will deliver business

value. There is no way to know if it will even be deliverable at all. This is why the fi eld of

enterprise architecture is in so much trouble. This is why it is increasingly common to hear of

massive IT failures; projects that are over budget, late, poorly aligned to business needs, or all

of the above.

I was recently talking about enterprise architecture with two high-level architects in a large,

highly respected, public sector IT organization. I asked them how often their IT projects came

in on time, on budget, and on the mark. One of the architects looked at the other and said,

“On time, on budget, and on the mark. I can’t think of a single project that we have ever

done that met that criteria. Can you?” The second architect only shook his head sadly. I have had

similar conversations with architects, chief information offi cers (CIOs), and chief technology

offi cers (CTOs) in dozens of organizations.

A recent article in IEEE Spectrum included this gloomy assessment:

Looking at the total investment in new software projects—both government and

corporate—over the last fi ve years, I estimate that project failures have likely cost the

U.S. economy at least $25 billion and maybe as much as $75 billion. Of course, that

$75 billion doesn’t refl ect projects that exceed their budgets—which most projects

do. Nor does it refl ect projects delivered late—which the majority are. It also fails to

account for the opportunity costs of having to start over once a project is abandoned or

the costs of bug-ridden systems that have to be repeatedly reworked.1

1“Why Software Fails” in IEEE Spectrum (September 2005) by Robert N. Charette.

 Introduction xvii

What do we do about this state of affairs? Do we give up on enterprise architectures, as Gartner

predicts so many will do? No. We don’t give up on the fi eld. The goals of enterprise architectures

are too important. Instead, we fi gure out how to do enterprise architecture right.

By right, I mean fi ve things. First, we defi ne what we mean by a good enterprise architecture.

Second, we use this defi nition to build up a mathematical understanding of good. Third, we

extend this mathematical understanding into a formal model for what a good enterprise

architecture looks like. Fourth, we create a process for developing a good enterprise archi-

tecture based on that model. Fifth, we validate our resulting architectures against the model

before we implement them.

This all starts with a good defi nition of good. So here is my defi nition. A good enterprise

architecture is a simple enterprise architecture. Of two architectures that generally align busi-

ness needs and IT capabilities, the better of the two is the simpler of the two. The worst of

the two is the one that is more complex.

Now it is important not to confuse the complexity of the problems we are trying to solve

with the complexity of the solutions we are trying to create. The problems on the business

side are certainly complex. Businesses are struggling to adopt new technologies, deal with

increasingly stricter regulatory requirements, and trade in a world that is shrinking rapidly. All

of these are complex problems, and only getting more so. On the IT side, too, complexity is

also the norm. Software systems are becoming more distributed, more heterogeneous, more

connected, more critical to the organizations. All of these are also complex problems, and

they, too, are only getting more so.

As both business and software systems become more complex, the relationships between

them become harder to keep in alignment. Those working on the two sides become more

specialized. They develop their own languages, even their own culture. They have less time to

relate to those who do not share their overwhelming concerns. A growing separation devel-

ops between the business and the IT organizations.

In most organizations, the chasm between the IT and the business organizations is increas-

ing. This will not be news to most readers. Most are painfully aware of the chasm. Few, if any,

understand why this chasm exists. IT blames the business side. The business side blames IT.

Distrust becomes widespread. Finger-pointing becomes the norm. The business people are

making unreasonable demands on IT, preventing them from getting their increasingly stressful

jobs done. The IT people are slowing down the business, impeding sales in an increasingly

competitive environment.

But the problem is neither IT nor business. The problem is a more fundamental issue that is

common to both IT and business. The real problem is complexity. And complexity is every-

body’s problem.

xviii Introduction

So yes, the problems are complex. But complex problems do not ipso facto require complex

solutions. Au contraire! The basic premise of this book is that simple solutions are the only

solutions to complex problems that work. The complex solutions are simply too complex.

The antidote to complexity is simplicity. Replace complexity with simplicity and the battle is

three-quarters over. Of course, replacing complexity with simplicity is not necessarily simple.

But this book will tell you how to do it.

The fi rst thing you need to do to achieve simplicity is focus on simplicity as a core value. We

all discuss the importance of agility, security, performance, and reliability of IT systems as

if they are the most important of all requirements. We need to hold simplicity to as high a

standard as we hold these other features. We need to understand what makes architectures

simple with as much critical reasoning as we use to understand what makes architectures

secure, fast, or reliable. In fact, I argue that simplicity is not merely the equal of these other

characteristics; it is superior to all of them. It is, in many ways, the ultimate enabler.

Take security, for example. Simple systems that lack security can be made secure. Complex

systems that appear to be secure usually aren’t. And complex systems that aren’t secure are

virtually impossible to make either simple or secure.

Consider agility. Simple systems, with their well-defi ned and minimal interactions, can be

put together in new ways that were never considered when these systems were fi rst created.

Complex systems can never be used in an agile way. They are simply too complex. And, of

course, retrospectively making them simple is almost impossible.

Yet despite the importance of simplicity as a core system requirement, simplicity is almost

never considered in architectural planning, development, or reviews. I recently fi nished a

number of speaking engagements. I spoke to more than 100 enterprise architects, CIOs, and

CTOs spanning many organizations and countries. In each presentation, I asked if anybody in

the audience had ever considered simplicity as a critical architectural feature for any project

on which they had participated. Not one person had. Ever.

The quest for simplicity is never over. Even systems that are designed from the beginning

with simplicity in mind (rare systems, indeed!) will fi nd themselves under a never-ending

attack. A quick tweak for performance here, a quick tweak for interoperability there, and

before you know it, a system that was beautifully simple two years ago has deteriorated into

a mass of incomprehensibility. This book is not, therefore, just about how to create simple

systems, but also how to keep those systems simple.

This book is not for everybody. If your organization’s systems are typically on time, on

budget, and successful in meeting the business needs, you don’t need this book. You are

either building systems that are much simpler than those that I am discussing, or you have

already found a way of managing complexity. Either way, I congratulate you. You are in a

lucky minority.

 Introduction xix

I recently met one such person, Kevin Drinkwater. Kevin is the CIO of Mainfreight, the

largest freight company in New Zealand with more than a half billion U.S. dollars per year in

revenue. Kevin is widely recognized for his innovative approach to IT and for the cost

effectiveness and agility of his solutions. He literally made front-page news in New Zealand

by throwing out a $13 million JD Edwards ERP implementation at a company purchased by

Mainfreight and replacing it for $25,000 with a home-grown system almost overnight. He

was a ComputerWorld CIO-of-the-year fi nalist and is a well-known speaker. Kevin is also a

trusted advisor to his business units, a position that very few CIOs enjoy.

In a round-table discussion sponsored by Fronde and covered by ComputerWorld New

Zealand, Kevin and I traded notes on simplicity in enterprise architectures. As I drew my

pictures of an ideal simple architecture and Kevin drew his, we were both struck by their simi-

larities. Kevin does not need me to evangelize simplicity. He and his entire IT organization

eat, drink, and breathe simplicity every day. It is the core architectural requirement of every-

thing they do. It is the primary reason that when Kevin delivers an IT solution, that solution is

typically on time, on budget, and spot on the mark with regard to the business requirements.

If you are like Kevin, you don’t need this book. However, if your organization’s systems are

typically late and over budget, and you sense a growing rift between the technical and

business sides of the organization, your organization does need this book. If you are an IT

executive, IT manager, software architect, or business analyst involved in a project whose

complexity seems to be growing exponentially, you might fi nd this book transformative.

I say this book might be transformative because it just might transform your understanding

of enterprise architectures. It might change why you think we want them, how we can cre-

ate them better, how we can implement them more effectively, and how they can provide

greater business value.

It all comes down to simplicity. Simplicity as a core value. Simplicity as an enabler. Simplicity

as a business asset. As one chief architect of a major airline recently told me, “I have been

talking to many organizations about enterprise architecture. They all tell me the same thing.

None of it sticks. You are the fi rst one to discuss enterprise architecture differently. And you

are the fi rst one to make any sense.” It isn’t me that makes sense. It is simplicity.

How do you make things simple? Simple. Get rid of complexity. Understand it, recognize it,

eliminate it, and banish it. By the time you fi nish this book, you will know how to do this. You

will understand the mathematics of complexity, the models that govern complexity, the

processes that eliminate complexity, and the validation approach that ensures complexity is

no longer haunting your enterprise architectures. Your life and your architectures, then, will

be so much simpler.

So while this book is ostensibly about enterprise architecture, it is really about something

even more basic: simplicity. The approach to controlling complexity presented in this book

xx Introduction

can be applied successfully to either business architectures or IT architectures. But this

approach is most effective when applied at the level that includes both business and IT archi-

tectures. This is the level of enterprise architecture.

The Organization of This Book

This book starts by giving an intuitive understanding of complexity, moves to a more formal

understanding, and then fi nally moves to a more process-focused discussion. The particular

process that I advocate is called SIP, for simple iterative partitions. SIP is the only enterprise

architectural methodology that specifi cally focuses on the problem of complexity.

Part I, “The Question of Complexity,” gives a basic understanding of the issue of complexity

in enterprise architectures.

Chapter 1, “Enterprise Architecture Today,” gives a general introduction to the fi eld of enter-

prise architecture, including an overview of the major methodologies used today and where

they stand on the issue of complexity.

Chapter 2, “A First Look at Complexity,” introduces in a nonmathematical way the main

concepts of partitioning, iteration, and simplifi cation, and the relationship of these three

ideas to complexity control. As you will see in this chapter, you can learn quite a bit about

enterprise architectures by looking at executive lunches, emergency rescues, and even chess

games!

Chapter 3, “Mathematics of Complexity,” gives a formal introduction to the mathematics of

complexity. No mathematical background is assumed, so don’t worry. We are looking at very

simple dice throwing, partitioning, and Boolean math. These concepts, which are all

explained from the ground up, are the basis for our model for complexity. This model helps

us better understand how complexity changes as we manipulate partitions of our enterprise.

Part II, “The Quest for Simplicity,” describes the specifi c methodology that I advocate to

address complexity in enterprise architectures.

Chapter 4, “The ABCs of Enterprise Partitions,” introduces the concept of an autono-

mous business capability (ABC). The ABC is the enterprise equivalent of a partition subset.

Understanding the nature of ABCs and how they relate to each other sets the stage for the

methodology we will use to create enterprise architectures that embrace simplicity as a

core value.

 Introduction xxi

Chapter 5, “SIP Process,” describes the methodology of simple iterative partitions (SIP) in

detail. This is our methodology for controlling complexity. It is grounded in the mathematics of

complexity and is based on identifying, manipulating, repartitioning, and reorganizing ABCs.

Chapter 6, “A Case Study in Complexity,” looks at an actual case study of a highly complex

project, the National Programme for IT, part of Britain’s National Health Care System. If you

think you have seen complexity before, just wait. This system has already cost billions of

dollars, brought several companies to the brink of fi nancial disaster, and, most likely, will end

up with the dubious distinction of being the world’s largest IT failure. This chapter discusses

what went wrong and how the SIP methodology could have helped save this project.

Chapter 7, “Guarding the Boundaries: Software Fortresses,” looks at the software components

of ABCs and discusses some of the special challenges they face in maintaining the integrity of

the boundaries separating autonomous systems. I’ll describes a pattern called software for-

tresses that allows you to apply the simplifi cation algorithms of SIP to software systems.

Chapter 8, “The Path Forward,” reviews the main points of this book and describes how you

can take your new understanding of complexity and use it to drive a corporate culture that

embraces simplicity.

The book then concludes with an appendix, “This Book at a Glance,” which gives a concise

description of the main mathematical rules, the SIP methodology, and the software fortress

model. After this, you will be a bona fi de member of the Anti-Complexity League, ready to

defend the simplicity of your enterprise architecture against every insidious attack.

Find Additional Content Online

As new or updated material becomes available that complements your book, it will be

posted online on the Microsoft Press Online Developer Tools Web site. The type of material

you might fi nd includes updates to book content, articles, links to companion content, errata,

sample chapters, and more. The Web site will be available soon at http://www.microsoft.com/

learning/books/online/developer, and will be updated periodically.

Support for This Book

Microsoft Press provides support for books and companion content at the following Web

site: http://www.microsoft.com/learning/support/books/.

xxii Introduction

Questions and Comments

If you have comments, questions, or ideas regarding the book or the companion content, or

if you have questions that are not answered by visiting the sites previously listed, please send

them to Microsoft Press via e-mail to

mspinput@microsoft.com

Or via postal mail to

Microsoft Press

Attn: Simple Architectures for Complex Enterprises Editor

One Microsoft Way

Redmond, WA 98052-6399

Please note that Microsoft software product support is not offered through the above

addresses.

 3

 Chapter 1

 Enterprise Architecture Today

 This book is about how to do enterprise architecture better. This immediately brings up the

question, better than what? Better than we do things today. I will address issues that I think

are important that are not addressed by today’s methodologies. The most important of these

issues is, of course, complexity.

 But before I can discuss how I think things need to be improved, you need to understand the

current state of the art. What are the methodologies that I think need improvements? How

do these methodologies address complexity, if at all?

 Most enterprise architects have some experience with one of these methodologies, but few

enterprise architects have a broad perspective on the fi eld. In this chapter, I will give some

background about the fi eld of enterprise architecture. I will discuss why the fi eld exists and

what the fi eld looks like today. I will compare the major enterprise architecture methodolo-

gies in use and their relationship to each other.

 Each of these methodologies has important contributions to make to the practicing enter-

prise architect’s tool chest. And although most people treat these methodologies as mutually

exclusive (you can use Zachman, TOGAF, or FEA), in reality they are complementary and you

should have an awareness of what each can contribute to solving the problems at hand.

 But just as you should be aware of what each of these methodologies can contribute, you

should also be aware of what each lacks. None of these methodologies provides a complete

solution to creating an enterprise architecture. Even all of them combined do not offer a

complete solution. This is my reason for writing this book: to fi ll in the missing piece.

 The missing piece is a way to manage complexity. These methodologies can help you under-

stand your business processes and how to better serve those processes with technology. But

they can only do so effectively if you have fi rst brought some order to the enterprise. This

book will show you how to tame your enterprise to the point where these methodologies can

be brought into play effectively.

 So this chapter is really about the current state of the art of enterprise architecture. What

works, what doesn’t work, and what is needed to complete the picture.

 Why Bother?

 Creating an enterprise architecture is a signifi cant undertaking for an organization, requiring

time, resources, and cultural change. Why should an organization bother?

4 Part I The Question of Complexity

 I’ll go through some of what are, in my experience, typical concerns that lead enterprises

to consider creating an enterprise architecture and how a successful enterprise architecture

can deliver value by addressing those concerns. If one or more of these enterprise concerns

seems applicable to your organization, you are a good candidate to consider implementing

an enterprise architecture. If not, consider yourself lucky.

 Issue: Unreliable Enterprise Information

 Enterprises are dependent on reliable information about their operations to make good busi-

ness decisions. An enterprise that either cannot access or trust its information will, at best, be

constantly second-guessing its decisions and, at worst, make decisions based on inaccurate

information. Either is a serious problem.

 Unreliable information is frequently a result of data duplication across multiple information

technology (IT) systems that span multiple uncoordinated business processes.

 An enterprise architecture can help an organization understand what information is unreli-

able, how it affects the organization, and what steps are necessary to solve the problem.

 Issue: Untimely Enterprise Information

 Enterprises are dependent on not only reliable information (as previously mentioned) but

on information being presented in a timely fashion. Enterprises need timely information to

make agile business decisions. Enterprises that do not have access to timely information end

up making business decisions based on stale information, which is like playing chess without

being allowed to know your opponent’s last move. These enterprises will fi nd it diffi cult to

compete against enterprises that are making decisions based on what is happening now.

 Untimely information is frequently a result of highly human-driven operations. Human-

driven operations is a sign that IT is not well aligned with the business needs.

 An enterprise architecture can help an organization understand how to better use technol-

ogy and reduce the dependencies on human operations.

 Issue: New Complex Projects Underway

 Enterprises that are preparing to undertake highly complex IT projects are often concerned

about managing that complexity and, if they are not concerned, they should be. Building a

new, highly complex IT project without fully understanding its relationship to the business

processes is unlikely to be successful.

 Chapter 1 Enterprise Architecture Today 5

 An enterprise architecture can be critical to helping the IT department understand exactly

what the business needs are before it begins a new project, greatly increasing the odds that

the project will be successful.

 Issue: New Companies Being Acquired

 When one company acquires another, it can be very diffi cult to merge the two sets of busi-

ness processes and IT systems.

 An enterprise architecture for both organizations can be a great help in seeing how the

business processes and IT systems complement each other and how they can be merged

together.

 Issue: Enterprise Wants to Spin Off Unit

 Sometimes a company wants to sell off some unit of the business. The value of any business

unit is greatly increased if it is autonomous from the rest of the business and easily integrat-

ed into another organization’s operations. That autonomy also helps ensure that the enter-

prise that remains is minimally affected by the spinoff.

 An enterprise architecture can help an organization understand the impact on the business

processes and IT systems of the spinoff.

 Issue: Need to Identify Outsourcing Opportunities

 Frequently, enterprises decide to focus on their core strengths and outsource support func-

tions. This business strategy requires an understanding of how the core IT systems and busi-

ness processes relate to the support IT systems and business processes.

 An enterprise architecture can help an organization understand where the opportunities for

outsourcing exist, and how it can be accomplished with minimal disruption of operations.

 Issue: Regulatory Requirements

 Governments around the world are taking a hard line on how enterprises manage their infor-

mation. Privacy regulations require companies to prove that only authorized individuals can

access various types of information. Auditing regulations require that organizations can trace

back data changes to specifi c business process events. Many enterprises are faced with trying

to meet these regulations with highly convoluted software systems wherein data is randomly

shared in often unexpected and undocumented patterns.

 An enterprise architecture can help business managers understand the data usage patterns

and how those patterns relate to business functions.

6 Part I The Question of Complexity

 Issue: Need to Automate Relationships with External Partners

 The clear trend in the business world is to automate relationships between partners. The line

between retailers and suppliers is becoming increasingly blurred, with suppliers sometimes

having access to inventory information in ways that would have been unthinkable a decade

ago. Much of this automation makes use of industry-standard Web services for passing mes-

sages between partners.

 Enterprises that seek to participate in these relationships need to have well-defi ned business

processes that are closely aligned with their IT systems.

 An enterprise architecture can help defi ne those business processes and pinpoint opportuni-

ties for automation.

 Issue: Need to Automate Relationships with Customers

 Today’s customers expect online access to search for merchandise, place orders, check the

status of orders, and look for product support information. From the customer perspective,

such capability is convenient. From the business perspective, such capability is highly cost-

effective. This is a win-win situation.

 An enterprise architecture can help determine how customers can access business systems

without compromising necessary protection of data and protected business functions.

 Issue: Poor Relationship Between IT and Business Units

 In many enterprises, we can see the alarming trend of creating a separation between IT

groups and business groups. I discussed this problem in the Preface. The IT group sees the

business groups as unreasonable. The business groups see the IT group as unable to deliver

the desired functionality. The IT group does more and more without consulting the busi-

ness groups. The business groups try more and more to circumvent IT. Distrust between

the groups becomes normal and even expected. Clearly, this is an unhealthy situation for an

organization.

 An enterprise architecture can provide a neutral watering hole at which both the business

and IT groups can meet and discuss how best to work together.

 Issue: Poor Interoperability of IT Systems

 Many enterprises have a large and rapidly evolving collection of IT systems that were devel-

oped and/or acquired independently and built on incompatible platforms. The IT group is

left with the challenge of getting these systems to coordinate their work and share informa-

tion. Frequently, these systems are glued together in a patchwork fashion. Often the juncture

 Chapter 1 Enterprise Architecture Today 7

points are poorly documented, highly fragile, and unreliable. The result is systems that are

tied together in random ways, with failures in one system propagating in unpredictable ways

to other systems. The IT backbone of an enterprise is only as strong as its weakest link. For far

too many organizations, there are far too many of these weak links.

 An enterprise architecture is critical to understanding how to improve the interoperability of

these systems.

 Issue: IT Systems Unmanageable

 As I mentioned in the last section, IT systems are frequently built up piecemeal and patched

together haphazardly. In addition to creating the interoperability problem that I just

discussed, this cobbling together of IT systems also often results in what I call pinned

architectures—that is, architectures in which one system can’t easily be changed because

any changes could affect other systems in unacceptable and sometimes unpredictable ways.

When changes must be made, it becomes very expensive, and very risky, to do so.

 An enterprise architecture is the starting point to understanding how IT systems are related

to each other.

 The Value of Enterprise Architecture

 Do any of these issues seem familiar? If so, your organization can probably benefi t from cre-

ating an enterprise architecture. Are any of these problems your problems? If so, at least part

of your job is the role of an enterprise architect, regardless of the title that might be on your

business card.

 Later, you will see how fi nding the solutions to these problems can be greatly aided by

having a defi ned approach to managing complexity. But let’s start by seeing where most

methodologies are today.

 Common Defi nitions

 Before I get too far into discussing enterprise architecture, I need to defi ne some terms.

These defi nitions are especially important in comparing methodologies, because different

methodologies sometime use similar terms to mean different things.

 For example, we have two popular methodologies that describe themselves as enterprise

architectural frameworks: the Zachman Framework for Enterprise Architectures and The

Open Group Architectural Framework (TOGAF). Yet these two methodologies share little in

common other than the words enterprise, architecture, and framework. Even using the term

methodology to describe these two approaches is questionable. As John Zachman himself has

8 Part I The Question of Complexity

reminded me on more than one occasion, his approach is a classifi cation scheme for organiz-

ing systems, not a method for doing anything.

 So I will start by defi ning the terms as I will use them in this book:

Q Architect One whose responsibility is the design of an architecture and the creation

of an architectural description.

Q Architectural artifact A specifi c document, report, analysis, model, or other tangible

item that contributes to an architectural description.

Q Architectural description A collection of architectural artifacts that collectively

document an architecture.

Q Architectural framework A skeletal structure that defi nes suggested architectural

artifacts, describes how those artifacts are related to each other, and provides generic

defi nitions for what those artifacts might look like.

Q Architectural methodology A generic term that can describe any structured

approach to solving some or all of the problems related to architecture.

Q Architectural process A defi ned series of actions directed to the goal of producing

either an architecture or an architectural description.

Q Architectural taxonomy A methodology for organizing and categorizing

architectural artifacts.

Q Architecture The fundamental organization of a system, including how that system is

related to its environment and what principles guided its design and evolution.

Q Enterprise architecture An architecture in which the system in question is the whole

enterprise, especially the business processes, technologies, and information systems of

the enterprise.

 What Is Enterprise Architecture?

 The defi nition just given of an enterprise architecture is pretty high level. Because enterprise

architecture is the topic of this book, let’s look at the term in a bit more depth.

 According to Carnegie Mellon University (home of some of the thought leaders in this fi eld),

an enterprise architecture is defi ned as follows:

A means for describing business structures and processes that connect business

structures.1

 Although it’s succinct, this defi nition does not capture the business justifi cation for trying to

build an enterprise architecture.

1 Carnegie Mellon University, www.sei.cmu.edu/ architecture/glossary.html.

 Chapter 1 Enterprise Architecture Today 9

 Wikipedia goes further with its defi nition of enterprise architecture:

 The practice of applying a comprehensive and rigorous method for describing a

current or future structure for an organiza tion’s processes, information systems,

personnel and organiza tional sub-units, so that they align with the organization’s

core goals and strategic direction.2

 The Wikipedia defi nition gives a better hint of the exhaustive nature of so many enterprise

architectures, and even contains a hint as to their value, but it still focuses on the how rather

than the why.

 Here is my defi nition of enterprise architecture, one that focuses on the benefi ts of an enter-

prise architecture:

 An enterprise architecture is a description of the goals of an organization, how

these goals are realized by business processes, and how these business processes

can be better served through technology.

 In fact, this defi nition could be simplifi ed even further: enterprise architecture is the art of

maximizing the value of IT investments. As I will discuss, the ability to maximize the value of

IT investments is largely dependent on our ability to manage the most fundamental impedi-

ment to realizing value. But this is getting ahead of the story.

 The goal of an enterprise architecture should not be to document every business process,

every software system, and every database record that exists throughout the organization. It

should be about adding business value.

 If adding business value is not the bottom line of an enterprise architecture, the energy put

into creating that enterprise architecture has been badly misplaced. If one can achieve this

goal without going through a costly, time-consuming process, then I say, so much the better.

It is the ends that are important, not the means.

 Some of the confusion about enterprise architectures begins with the term architecture

itself. The word “architecture” implies blueprints. Blueprints are known for their complete-

ness, specifying everything from how the roof connects to the walls, to how the pipes are

laid, to where the electrical sockets are located, and so on. Although many enterprise archi-

tecture methodologies attempt to capture this level of detail, the effort rarely pays off.

 When looking at how to use technology to add business value, we need answers to these

questions:

Q What are the overall goals of the business?

Q How is the business organized into autonomous business processes?

2 Wikipedia, http://en.wikipedia.org/wiki/Enterprise_architecture.

10 Part I The Question of Complexity

Q How are those business processes related to each other?

Q Which business processes (or relationships between processes) seem particularly

amenable to improvement through technology?

Q What is the plan for making those improvements?

 There is no such thing as a fi nished enterprise architecture. Instead, an enterprise architecture

should be seen as a living set of documents that guides the use of technology. It is actually

much more analogous to a city plan than to a building blueprint.

 Using the analogy of a city plan to describe an enterprise architecture was a compari-

son fi rst made by Armour in 19993 and is particularly relevant for today’s highly complex

organizations.

 A city plan addresses different issues than do building blueprints. City plans address issues

such as the following:

Q What type of buildings will be allowed in which zones (for example, business or

residential)?

Q How do buildings connect to the city infrastructure (for example, in terms of plumbing

and electrical)?

Q What impact will buildings have on others of their ilk (for example, on air quality and

traffi c fl ow)?

Q Are the buildings built to a standard that will not endanger their inhabitants (for ex-

ample, are they fi re and earthquake resistant)?

 Imagine a city that included in its city plan a detailed blueprint for every building that would

ever be built in the city. Such a plan would be extremely expensive to create, and, if it was

ever completed, would be infl exible and stifl ing. Which, come to think of it, is not unlike

some enterprise architectures I have seen.

 Complexity in Enterprise Architectures

 This fi eld of enterprise architecture was inaugurated more than 20 years ago to address two

major problems in the fi eld of information technology that were already becoming appar-

ent. The fi rst problem was managing the increasing complexity of information technology

systems. The second problem was the increasing diffi culty in delivering real business value

with those systems.

3 Arm - A big-picture look at enterprise architectures by Armour, F.J.; Kaisler, S.H.; Liu, S.Y. in IT Professional Volume 1,
Issue 1, Jan/Feb 1999 Page(s):35–42.

 Chapter 1 Enterprise Architecture Today 11

 As you can imagine, these problems are related. The more complex a system, the less likely it

is that it will deliver maximum business value. As you better manage complexity, you improve

your chances of delivering real business value.

 As systems become more complex, they generally require more planning. It is easy to see

this in buildings. When Henry David Thoreau built his little cabin on Walden’s Pond (shown

in Figure 1-1), he embraced simplicity and needed no architects. If you are building New York

City (shown in Figure 1-2), simplicity is out of the question and you will need many architects.

 F IGURE 1-1 Replica of Thoreau’s cabin at Walden Pond.

 F I GURE 1-2 New York City.

12 Part I The Question of Complexity

T h e relationship between complexity and planning for buildings and cities is similar for

information systems. If you are building a simple, single-user, nondistributed system, you

might need no architects at all. If you are building an enterprisewide, mission-critical, highly

distributed system, you might need a database architect, a solutions architect, an infrastructure

architect, a business architect, and an enterprise architect.

T h is book concerns the responsibilities of the enterprise architect. This is the architect who

specializes in the broadest possible view of architecture within the enterprise. This is the

architect’s architect, the architect who is responsible for coordinating the work of all the

other architects. Do you need such an architect? It all depends on what you are building:

Thoreau’s cabin or New York City.

B u ilding a large complex IT system without an enterprise architect is like trying to build a city

without a city planner. Can you build a city without a city planner? Probably. Would you want

to live in such a city? Probably not.

O f course, having a city planner does not guarantee a livable city will be built, it merely

improves the chances of that happening. Similarly, having an enterprise architect does not

guarantee a successful enterprise architecture will be built. There are many examples of failed

enterprise architectures in the world today, and all of them had enterprise architects (prob-

ably dozens!). But there is one thing that these failed enterprise architects didn’t have, and

that is a methodology for controlling complexity.

T h is seems like an odd statement, given that I said that the fi eld of enterprise architecture

was started in part, to address the very issue of complexity. However, as I present the major

enterprise architectural methodologies in use today, you will notice that none defi ne what

complexity looks like, how it should be controlled, or how one can validate that one has

successfully eliminated complexity. In fact, most methodologies have become more focused

on process rather than deliverables.

A n d yet, the problem of complexity has never been greater. Over the last decade, the cost

and complexity of IT systems have exponentially increased while the chances of deriving

real value from those systems have dramatically decreased. The bottom line: more cost,

less value. These problems, fi rst recognized 20 years ago, have today reached a crisis point.

Large organizations can no longer afford to ignore these problems. The warnings about

overcomplexity that 20 years ago seemed quaintly quixotic today seem powerfully prophetic.

E n terprise architectures can be a tremendous asset in fi nding effective ways to better use

technology. You can’t afford to ignore the potential of a well-done enterprise architecture.

These benefi ts include decreased costs, improved processes, more agile business solutions,

and expanded business opportunities.

B u t you also can’t afford to ignore the risks of getting mired in a bad enterprise architecture.

These include astronomical expenses, technological gridlock, and even further diminished

 Chapter 1 Enterprise Architecture Today 13

IT credibility. They can also be a huge counterproductive drain on precious organizational

resources. All too often, it is this fi nal case that is realized.

W h at differentiates successful enterprise architectures from unsuccessful ones? In my

experience, success in enterprise architecture is almost entirely correlated to complexity. The

more complex the enterprise architecture, the less likely the enterprise architecture is to be

successful. In other words, the more you need an enterprise architecture, the less likely it is to

actually be successful.

A s a good example of such failures, we need look no further than the U.S. federal govern-

ment. It is likely that no organization in the world has dedicated more money, time, and

effort to creating and leveraging an effective architecture. How has the U.S. government done?

A p parently, not too well. Hardly a month goes by in which the Government Accountability

Offi ce (GAO), an independent watchdog branch of the U.S. government, does not issue a

scathing report on the information technology practices of at least one agency. It seems that

the more crucial the government agency is, the more likely it is to have major IT failures.

I n November 2005, the GAO noted these IT problems with the IRS:

T h e lack of a sound fi nancial management system that can produce timely,

accurate, and useful information needed for day-to-day decisions continues

to present a serious challenge to IRS management. IRS’s present fi nancial

management systems...inhibit IRS’s ability to address the fi nancial management

and operational issues that affect its ability to fulfi ll its responsibilities as the

nation’s tax collector.4

T h e Department of Defense has come under repeated criticism. For example, in June 2005,

the GAO issued a report saying

D O D’s substantial fi nancial and business management weaknesses adversely affect

not only its ability to produce auditable fi nancial information, but also to provide

accurate, complete, and timely information for management and Congress to use

in making informed decisions. Further, the lack of adequate accountability across

all of DOD’s major business areas results in billions of dollars in annual wasted

resources in a time of increasing fi scal constraint and has a negative impact on

mission performance.5

4 GAO Report to the Secretary of the Treasury November 2004 FINANCIAL AUDIT IRS’s Fiscal Years 2004 and 2003
Financial Statements.

5 Testimony Before the Subcommittee on Government Management, Finance, and Accountability, Committee
on Government Reform, House of Representatives; DOD BUSINESS TRANSFORMATION - Sustained Leadership
Needed to Address Long-standing Financial and Business Management Problems (June, 2005).

14 Part I The Question of Complexity

T h e highly visible Department of Homeland Security has had many problems. In an August

2004 report, GAO had the following to say:

[D HS] is missing, either in part or in total, all of the key elements expected to be

found in a well-defi ned architecture, such as descriptions of business processes,

information fl ows among these processes, and security rules associated with these

information fl ows, to name just a few.... Moreover, the key elements that are at

least partially present in the initial version were not derived in a manner consistent

with best practices for architecture development.... As a result, DHS does not yet

have the necessary architectural blueprint to effectively guide and constrain its

ongoing business transformation efforts and the hundreds of millions of dollars that

it is investing in supporting information technology assets.6

T h e list goes on and on. The FBI has sustained heavy criticism for squandering more

than $500 million in a failed effort to create a virtual case fi ling system. FEMA spent than

$100 million on a system that was proven ineffective by Hurricane Katrina. Other federal

government groups that have been the subject of GAO criticism include the Census Bureau,

Federal Aviation Authority, National Air and Space Administration, Housing and Urban

Development, Health and Human Services, Medicare, and Medicaid.

I f the federal government is the most comprehensive case study that we have on the value of

enterprise architectures, the fi eld is in a pretty sorry state.

A l though private industry failures are not as prone to make headlines, the private sector,

too, is perfectly capable of bungling enterprise architecture. Private sector failures that seem

largely attributed to failures in enterprise architectural methodologies include the following:

Q Mc Donald’s failed effort to build an integrated business management system that

would tie together its entire restaurant business. Cost: $170 million.7

Q Fo rd’s failed attempt to build an integrated purchasing system. Cost: $400 million.8

Q KM art’s failed attempt to build a state-of-the-art supply chain management system.

Cost: $130 million.9

U n fortunately, complexity is not a passing whim. There are three predictions that we can

confi dently make about the future of enterprise architecture:

Q Co mplexity is only going to get worse.

Q I f we don’t fi nd approaches to managing complexity, we are doomed to fail.

Q Th e existing approaches don’t work.

6 GAO Report to the Subcommittee on Technology, Information Policy, Intergovernmental Relations and the
Census, Committee on Government Reform, House of Representatives August 2004 HOMELAND SECURITY Efforts
Under Way to Develop Enterprise Architecture, but Much Work Remains.

7 McDonald’s: McBusted by Larry Barrett and Sean Gallagher in Baseline, July 2, 2003.

8 Oops! Ford and Oracle mega-software project crumbles by Patricia Keefe in ADTMag, November 11, 2004.

9 Code Blue by David F. Carr and Edward Cone in Baseline, November/December 2001.

 Chapter 1 Enterprise Architecture Today 15

A s Richard Murch succinctly put it in a recent article in InformIT:

T o let IT infrastructures and architectures become increasingly complex with

no action is unacceptable and irresponsible. If we simply throw more skilled

programmers and others at this problem, chaos will be the order of the day.... Until

IT vendors and users alike solve the problem of complexity, the same problems will

be repeated and will continue to plague the industry.10

T h e problem, in a nutshell, is that while organizations have become much more complex in

the last 10 years, the methodologies have remained largely stagnant. As The Royal Academy

of Engineering and the British Computer Society noted in a 2004 large-scale study of IT

complexity:

. . .current software development methods and practices will not scale to manage

these increasingly complex, globally distributed systems at reasonable cost or

project risk. Hence there is a major software engineering challenge to deal with the

inexorable rise in capability of computing and communications technologies.11

M y goal in writing this book is to give the practicing enterprise architect some new strategies

that are specifi cally focused on the problem of complexity. But before we discuss these new

strategies, let’s look at where the fi eld is today, and how it got there.

 The Zachman Framework for Enterprise Architectures

 The fi rst and most infl uential enterprise architecture methodology is the Zachman

Framework, which was fi rst introduced in 1987 by John Zachman.

 The fi rst thing we need to understand about the Zachman Framework is that it isn’t a

framework, at least by my defi nition of a framework. According to the American Heritage

Dictionary, a framework is defi ned as

 A structure for supporting or enclosing something else, especially a skeletal support

used as the basis for something being constructed; An external work platform;

a scaffold; A fundamental structure, as for a written work; A set of assumptions,

concepts, values, and practices that constitutes a way of viewing reality.12

 A taxonomy, on the other hand, is defi ned as

 The classifi cation of organisms in an ordered system that indicates natural

relationships; The science, laws, or principles of classifi cation; systematics; Division

into ordered groups or categories.13

10 Managing Complexity in IT, Part 1: The Problem in InformIT, Oct 1, 2004 By Richard Murch.

11 The Challenges of Complex IT Projects: The report of a working group from The Royal Academy of Engineering
and The British Computer Society, April, 2004.

12 “framework.” The American Heritage® Dictionary of the English Language, Fourth Edition. Houghton Miffl in Company.

13 “taxonomy.” The American Heritage® Dictionary of the English Language, Fourth Edition. Houghton Miffl in Company.

16 Part I The Question of Complexity

 The Zachman “Framework” is actually a taxonomy for organizing architectural artifacts (that

is, design documents, specifi cations, models) that takes into account both whom the artifact

targets (for example, business owner, builder) and what particular issue (for example, data,

functionality) is being addressed.

 As John Zachman retrospectively described his work :

 The [Enterprise Architecture] Framework as it applies to Enterprises is simply a

logical structure for classifying and organizing the descriptive representations of an

Enterprise that are signifi cant to the management of the Enterprise as well as to the

development of the Enterprise’s systems.14

 Many proponents of the Zachman Framework see it as cross disciplinary, with infl uence ex-

tending far beyond IT. One popular book on Zachman, for example, says the following:

 …in due course, you will discover that the Framework exists in everything you

do, not only IT projects. When you thoroughly understand the Framework, you

can become more effective in everything you do. This means everything. This

statement is not made lightly.15 [Emphasis in original.]

 John Zachman himself told me the following in an interview that I conducted with him:

 …the Framework schema has been around for thousands of years, and I am

sure it will be around for a few more thousands of years. What changes is

our understanding of it and how to use it for Enterprise engineering and

manufacturing.15

 Zachman originally explained his IT taxonomy using the building industry as an analogy. In

that industry, architectural artifacts are implicitly organized using a two-dimensional grid.

One dimension of the grid is the various “players in the game.” For a physical building, some

of these players are the owner (who is paying for the project), the builder (who is coordinat-

ing the overall construction), and a zoning board (who is ensuring that construction follows

local building regulations).

 A building architect prepares different artifacts for each of these players. Every player de-

mands complete information, but what constitutes completeness differs for the various

players. The owner is interested in a complete description of the functionality and aesthet-

ics of the building. The builder is interested in a complete description of the materials and

construction process. The owner doesn’t care about the placement of studs in the walls. The

builder doesn’t care how the bedroom windows line up with the morning sun.

14 The Framework for Enterprise Architecture: Background, Description and Utility by John A. Zachman, published by
Zachman Institute for Framework Advancement (ZIFA) Document ID 810-231-0531.

15 Enterprise Architecture Using the Zachman Framework by Carol O’Rourke, Neal Fishman, and Warren Selkow.
Published by Thomson Course Technology 2003. ISBN 0-619-06446-3.

 Chapter 1 Enterprise Architecture Today 17

 As Zachman said in his original article :

 …each of the architectural representations differs from the others in essence, not

merely in level of detail.16

 The second dimension for architectural artifact organization is the descriptive focus of the ar-

tifact—the what, how, where, who, when, and why of the project. This dimension is indepen-

dent of the fi rst. Both the builder and the owner need to know what, but the owner’s need to

know what is different than the builder’s need to know what. What what is what depends on

who is asking the question.

 In his fi rst paper and Zachman’s subsequent elaboration in 199217, Zachman proposed that

there are six descriptive foci (data, function, network, people, time, and motivation) and six

player perspectives (planner, owner, designer, builder, subcontractor, and enterprise). These

two dimensions can be arranged in a grid as shown in Figure 1-3.

 Take the column describing data, as an example. From the business owner’s perspective,

“data” means business entities. This can include information about the entities themselves,

such as customers and products, or information about relationships between those entities,

such as demographic groups and inventories. If you are talking to a business owner about

data, this is the language you should use.

 From the perspective of the person implementing the database, “data” does not mean busi-

ness entities, but rows and columns organized into tables and linked together by mathemati-

cal joins and projections. If you are talking to a database designer about data, don’t talk

about customer demographic groups; instead, talk about third-normal relational tables.

 It’s not that one of these perspectives is better than the other or more detailed than the

other or of a higher priority than the other. Both of these perspectives on data are critical to

a holistic understanding of the system’s architecture. As Zachman said :

 We are having diffi culties communicating with one another about information

systems architecture, because a set of architectural representations exists, instead

of a single architecture. One is not right and another wrong. The architectures

are different. They are additive and complementary. There are reasons for

electing to expend the resources for developing each architectural representation.

And there are risks associated with not developing any one of the architectural

representations.18

16 A framework for information systems architecture, by J.A. Zachman in IBM Systems Journal, 26 3, 1987.

17 Extending and formalizing the framework for information systems architecture, by J.F. Sowa and J.A. Zachman in
IBM Systems Journal, 31 3, 1992.

18 A framework for information systems architecture, by J.A. Zachman in IBM Systems Journal, 26 3, 1987.

18 Part I The Question of Complexity

 As I mentioned earlier, the Zachman Framework consists of six functional foci, each consid-

ered from the perspective of a major player. The Zachman framework as it is portrayed today

is shown in Figure 1-3.

 As you can see in Figure 1-3, there are 36 intersecting cells in a Zachman grid, one for each

meeting point between a player’s perspective (for example, business owner) and a descrip-

tive focus (for example, data). As we move horizontally (for example, left to right) in the grid,

we see different descriptions of the system, all from the same player’s perspective. As we

move vertically in the grid (for example, top to bottom), we see a single focus but change the

player from whose perspective we are viewing that focus.

 There are three suggestions of the Zachman grid that can help in the development of an

enterprise architecture.

 The fi rst suggestion of the Zachman taxonomy is that every architectural artifact should live

in one and only one cell. There should be no ambiguity about where a particular artifact

lives. If it is not clear in which cell a particular artifact lives, there is most likely a problem with

the artifact itself.

 As an organization begins accumulating artifacts in the development of an enterprise archi-

tecture, it can use the Zachman grid to clarify the focus of each of these artifacts. For exam-

ple, artifacts relating to a service-oriented architecture live mostly in the third row (designer’s

perspective). They generally will not be of interest to the business owner.

 T he second suggestion of the Zachman taxonomy is that an architecture can be considered a

complete architecture only when every cell in that architecture is complete. A cell is complete

when it contains suffi cient artifacts to fully defi ne the system for one specifi c player looking

at one specifi c descriptive focus.

 W hen every cell is populated with appropriate artifacts, there is a suffi cient amount of de-

tail to fully describe the system from the perspective of every player (what we might today

call a stakeholder) looking at the system from every possible angle (descriptive focus). So an

organization can use the Zachman grid to ensure that appropriate discussions are occurring

between all the important stakeholders of an enterprise architecture.

 T he third suggestion of the Zachman grid is that cells in columns should be related to each

other. Consider, for example, the data column (the fi rst column) of the Zachman grid. From

the business owner’s perspective, data is information about the business. From the database

administrator’s perspective, data is rows and columns in the database.

 Chapter 1 Enterprise Architecture Today 19

Li
st

 o
f

B
u

si
n

e
ss

G
o

a
ls

/S
tr

a
te

g
ie

s

E
n

d
s/

M
e
a
n

s
=

 M
a
jo

r
B

u
si

n
e
ss

G
o

a
l/

St
ra

te
g

y

Li
st

 o
f

E
ve

n
ts

/C
yc

le
s

S
ig

n
if

ic
a
n

t
to

 t
h

e
 B

u
si

n
e
ss

T
im

e
 =

 M
a
jo

r
B

u
si

n
e
ss

E
ve

n
t/

C
yc

le
N

o
d

e
 =

 M
a
jo

r
B

u
si

n
e
ss

 L

o
ca

ti
o

n

Li
st

 o
f

O
rg

a
n

iz
a
ti

o
n

s
Im

p
o

rt
a
n

t
to

 t
h

e
 B

u
si

n
e
ss

Li
st

 o
f

Lo
ca

ti
o

n
s

in
 w

h
ic

h
 t

h
e

B
u

si
n

e
ss

 O
p

e
ra

te
s

P
e
o

p
le

 =
 M

a
jo

r
O

rg
a
n

iz
a
ti

o
n

 U

n
it

Li
st

 o
f

P
ro

ce
ss

e
s

th
e
 B

u
si

n
e
ss

P
e
rf

o
rm

s

P
ro

ce
ss

 =
 C

la
ss

 o
f

B
u

si
n

e
ss

 P
ro

ce
ss

Li
st

 o
f

T
h

in
g

s
Im

p
o

rt
a
n

t
to

 t
h

e
B

u
si

n
e
ss

S
C

O
P

E
(C

O
N

T
E
X

T
U

A
L)

D
A

TA

W
h
a
t

FU
N

C
T
IO

N

H
o
w

N
E
T
W

O
R

K

W
h
er
e

P
E
O

P
LE

W
h
o

T
IM

E

W
h
en

M
O

T
IV

A
T
IO

N

W
h
y

P
la
n
n
er

B
U

S
IN

E
S
S

M
O

D
E
L

(C
O

N
C

E
P

T
U

A
L)

O
w
n
er

S
C

O
P

E
(C

O
N

T
E
X

T
U

A
L)

P
la
n
n
er

B
U

S
IN

E
S
S

M
O

D
E
L

(C
O

N
C

E
P

T
U

A
L)

e
.g

. B
u

si
n

e
ss

 P
la

n

E
n

d
 =

 B
u

si
n

e
ss

 O
b

je
ct

iv
e

M
e
a
n

s
=

 B
u

si
n

e
ss

 S
tr

a
te

g
y

e
.g

. M
a
st

e
r

S
ch

e
d

u
le

T
im

e
 =

 B
u

si
n

e
ss

 E
ve

n
t

C
yc

le
 =

 B
u

si
n

e
ss

 C
yc

le

e
.g

. B
u

si
n

e
ss

 L
o

g
is

ti
cs

S
ys

te
m

N
o

d
e
 =

 B
u

si
n

e
ss

 L
o

ca
ti

o
n

Li
n

k
 =

 B
u

si
n

e
ss

 L
in

k
a
g

e

e
.g

. B
u

si
n

e
ss

 P
ro

ce
ss

 M
o

d
e
l

P
ro

c.
 =

 B
u

si
n

e
ss

 P
ro

ce
ss

I/
O

 =
 B

u
si

n
e
ss

 R
e
so

u
rc

e
s

e
.g

. S
e
m

a
n

ti
c

M
o

d
e
l

E
n

t
=

 B
u

si
n

e
ss

 E
n

ti
ty

R
e
ln

 =
 B

u
si

n
e
ss

 R
e
la

ti
o

n
sh

ip

e
.g

. W
o

rk
 F

lo
w

 M
o

d
e
l

P
e
o

p
le

 =
 O

rg
a
n

iz
a
ti

o
n

 U
n

it
W

o
rk

 =
 W

o
rk

 P
ro

d
u

ct
O
w
n
er

E
N

T
IT

Y
 =

 C
la

ss
 o

f

B

u
si

n
e
ss

 T
h

in
g

e
.g

. R
u

le
 S

p
e
ci

fi
ca

ti
o

n

E
n

d
 =

 S
u

b
-c

o
n

d
it

io
n

M
e
a
n

s
=

 S
te

p

e
.g

. T
im

in
g

 D
e
fi

n
it

io
n

T
im

e
 =

 I
n

te
rr

u
p

t
C

yc
le

 =
 M

a
ch

in
e
 C

yc
le

e
.g

. S
e
cu

ri
ty

 A
rc

h
it

e
ct

u
re

P
e
o

p
le

 =
 I
d

e
n

ti
ty

W
o

rk
 =

 J
o

b

e
.g

. P
ro

g
ra

m

P
ro

c.
 =

 L
a
n

g
u

a
g

e
 S

ta
te

m
e
n

t
I/

O
 =

 C
o

n
tr

o
l
B

lo
ck

e
.g

. N
e
tw

o
rk

 A
rc

h
it

e
ct

u
re

N
o

d
e
 =

 A
d

d
re

ss
Li

n
k
 =

 P
ro

to
co

l

e
.g

. D
a
ta

 D
e
fi

n
it

io
n

D
E
TA

IL
E
D

R
E
P

R
E
S
E
N

-
TA

T
IO

N
S
 (

O
U

T
-

O
F-

C
O

N
T
E
X

T
)

S
u
b
-

C
o
n
tr
a
ct
o
r

FU
N

C
T
IO

N
IN

G
E
N

T
E
R

P
R

IS
E

D
E
TA

IL
E
D

R
E
P

R
E
S
E
N

-
TA

T
IO

N
S
 (

O
U

T
-

O
F-

C
O

N
T
E
X

T
)

S
u
b
-

C
o
n
tr
a
ct
o
r

FU
N

C
T
IO

N
IN

G
E
N

T
E
R

P
R

IS
E

E
n

t
=

 F
ie

ld
R

e
ln

 =
 A

d
d

re
ss

S
Y
S
T
E
M

M
O

D
E
L

(L
O

G
IC

A
L)

D
es
ig
n
er

S
Y
S
T
E
M

M
O

D
E
L

(L
O

G
IC

A
L)

e
.g

. B
u

si
n

e
ss

 R
u

le
 M

o
d

e
l

E
n

d
 =

 S
tr

u
ct

u
ra

l
A

ss
e
rt

io
n

M
e
a
n

s
=

 A
ct

io
n

 A
ss

e
rt

io
n

e
.g

. P
ro

ce
ss

in
g

 S
tr

u
ct

u
re

T
im

e
 =

 S
ys

te
m

 E
ve

n
t

C
yc

le
 =

 P
ro

ce
ss

in
g

 C
yc

le

e
.g

. D
is

tr
ib

u
te

d
 S

ys
te

m
A

rc
h

it
e
ct

u
re

e
.g

. A
p

p
lic

a
ti

o
n

 A
rc

h
it

e
ct

u
re

P
ro

c.
 =

 A
p

p
lic

a
ti

o
n

 F
u

n
ct

io
n

I/
O

 =
 U

se
r

V
ie

w
s

e
.g

. L
o

g
ic

a
l
D

a
ta

 M
o

d
e
l

E
n

t
=

 D
a
ta

 E
n

ti
ty

R
e
ln

 =
 D

a
ta

 R
e
la

ti
o

n
sh

ip

e
.g

. H
u

m
a
n

 I
n

te
rf

a
ce

A
rc

h
it

e
ct

u
re

P
e
o

p
le

 =
 R

o
le

W
o

rk
 =

 D
e
liv

e
ra

b
le

N
o

d
e
 =

 I
/S

 F
u

n
ct

io
n

(P
ro

ce
ss

o
r.

S
to

ra
g

e
. e

tc
)

Li
n

k
 =

 L
in

e
 C

h
a
ra

ct
e
ri

st
ic

s
D
es
ig
n
er

T
E
C

H
N

O
LO

G
Y

M
O

D
E
L

(P
H

Y
S
IC

A
L)

B
u
ild

er

T
E
C

H
N

O
LO

G
Y

M
O

D
E
L

(P
H

Y
S
IC

A
L)

e
.g

. R
u

le
 D

e
si

g
n

E
n

d
 =

 C
o

n
d

it
io

n
M

e
a
n

s
=

 A
ct

io
n

e
.g

. C
o

n
tr

o
l
S
tr

u
ct

u
re

T
im

e
 =

 E
xe

cu
te

C
yc

le
 =

 C
o

m
p

o
n

e
n

t
C

yc
le

e
.g

. T
e
ch

n
o

lo
g

y
A

rc
h

it
e
ct

u
re

N
o

d
e
 =

 H
a
rd

w
a
re

/S
ys

te
m

s
S
o

ft
w

a
re

Li
n

k
 =

 L
in

e
 S

p
e
ci

fi
ca

ti
o

n
s

e
.g

. S
ys

te
m

 D
e
si

g
n

P
ro

c.
 =

 C
o

m
p

u
te

r
Fu

n
ct

io
n

I/
O

 =
 D

a
ta

 E
le

m
e
n

ts
/S

e
ts

e
.g

. P
h

ys
ic

a
l
D

a
ta

 M
o

d
e
l

E
n

t
=

 S
e
g

m
e
n

t/
Ta

b
le

/e
tc

.
R

e
ln

 =
 P

o
in

te
r/

K
e
y/

e
tc

.

e
.g

. P
re

se
n

ta
ti

o
n

 A
rc

h
it

e
ct

u
re

P
e
o

p
le

 =
 U

se
r

W
o

rk
 =

 S
cr

e
e
n

 F
o

rm
a
t

B
u
ild

er

e
.g

. D
A

TA
e
.g

. F
U

N
C

T
IO

N
e
.g

. N
E
T
W

O
R

K
e
.g

. O
R

G
A

N
IZ

A
T
IO

N
e
.g

. S
C

H
E
D

U
LE

e
.g

. S
T
R

A
T
E
G

Y

E
n

te
rp

ri
se

 A
rc

h
it

e
ct

u
re

 -
 A

 F
ra

m
e
w

o
rk

™

 F
 IG

U
R

E
 1

-3

Z

a
ch

m
an

 g
ri

d
.

20 Part I The Question of Complexity

 A lthough the business owner thinks about data quite differently than the database adminis-

trator, there should be some relationship between these perspectives. Somebody should be

able to follow the business requirements and show that the database design is, in fact, being

driven by those requirements. If there are business requirements that are not traceable down

to the database design, we must ask if the business needs will be met by this architecture.

On the other hand, it there are database design elements that do not trace back to business

requirements, we might ask if we have included unnecessary design at the database level.

 I see fi ve ways that the Zachman grid can help in the development of an enterprise architec-

ture. It can help

 Q E nsure that every stakeholder’s perspective has been considered for every descriptive

focal point.

 Q I mprove the architectural artifacts themselves by sharpening each of their focus points

to one particular concern for one particular audience.

 Q E nsure that all the business requirements can be traced to some technical

implementation.

 Q C onvince the business side that the technical team isn’t planning on building a bunch

of useless functionality.

 Q C onvince the technical team that the business folks are including them in their

planning.

 B ut Zachman by itself is not a complete enterprise architectural solution. There are too many

critical issues that Zachman does not address. For example, Zachman does not give us a

step-by-step process for creating a new architecture. Zachman doesn’t give us much help in

deciding if the future architecture we are creating is the best architecture possible. For that

matter, Zachman doesn’t even give us an approach to show a need for a future architecture.

And, most importantly, from our perspective, although the Zachman grid might help orga-

nize the architectural artifacts, it does nothing to address the complexity of the enterprise

that we are trying to understand.

 T he Open Group Architecture Framework

 T he Open Group Architecture Framework is best known by its acronym, TOGAF. TOGAF is

owned by The Open Group19, which is a consortium including many vendors and customers.

TOGAF’s view of an enterprise architecture is shown in Figure 1-4.

19 www.opengroup.org.

 Chapter 1 Enterprise Architecture Today 21

Enterprise Architecture

Business
Architecture

Application
Architecture

Data
Architecture

Technical
Architecture

 FI GURE 1-4 TOGAF’s enterprise architecture.

A s shown in this fi gure, TOGAF divides an enterprise architecture into four categories, as

follows:

Q Bu siness architecture Describes the processes the business uses to meet its goals

Q Ap plication architecture Describes how specifi c applications are designed and how

they interact with each other

Q Da ta architecture Describes how the enterprise data stores are organized and

accessed

Q Te chnical architecture Describes the hardware and software infrastructure that sup-

ports applications and their interactions

T O GAF describes itself as a “framework,” but the most important part of TOGAF is the

Architecture Development Method, better known as ADM. ADM is a recipe for creating

architecture. A recipe can be categorized as a process. Given that ADM is the most visible

part of TOGAF, I categorize TOGAF overall as an architectural process. I thus reject both the

description of TOGAF as either an architectural framework, as The Open Group describes

TOGAF, or a methodology, as The Open Group describes ADM.

 Viewed as an architectural process, TOGAF complements Zachman, which, you will recall, I

categorized as an architectural taxonomy. Zachman tells you how to categorize your artifacts.

TOGAF gives you a process for creating them.

 TOGAF views the world of enterprise architecture as a continuum of architectures, ranging

from highly generic to highly specifi c. It calls this continuum the Enterprise Continuum. It

views the process of creating a specifi c enterprise architecture as moving from the generic to

the specifi c. TOGAF’s ADM provides the process for driving this movement.

 TOGAF calls most generic architectures Foundation Architectures. These are architectural

principles that can, theoretically, be used by any IT organization in the universe.

 TOGAF calls the next level of specifi city Common Systems Architectures. These are principles

that one would expect to see in many—but perhaps not all—types of enterprises.

22 Part I The Question of Complexity

 TOGAF calls the next level of specifi city Industry Architectures. These are principles that are

specifi c across many enterprises that are part of the same domain—such as, say, pharmaceu-

tical enterprises.

 TOGAF calls the most specifi c level the Organizational Architectures. These are the architec-

tures that are specifi c to a given enterprise.

 Figure 1-5 shows the relationship between the Enterprise Continuum and the Architecture

Development Method.

Organizational Architectures

Industry Architectures

Common System Architectures

Foundation Architectures

Enterprise Continuum

ADM ADM

 F IGURE 1-5 The TOGAF Enterprise Continuum.

 T OGAF defi nes various knowledge-bases that live in the Foundation Architecture. Two that

you might run into are the Technical Reference Model (TRM) and the Standards Information

Base (SIB). The TRM is a suggested description of a generic IT architecture. The SIB is a col-

lection of standards and pseudo-standards that The Open Group recommends that you con-

sider when building an IT architecture.

 T OGAF presents both the TRM and the SIB as suggestions; neither is required. In my view,

both are biased toward application portability at the expense of application interoperability

and application autonomy. I personally consider this an outdated view of technical architec-

tures, but obviously not everybody agrees.

 F or an enterprise trying to build an enterprise architecture, TOGAF largely boils down to

the Architecture Development Method (ADM). Individuals will be exposed to the Enterprise

Continuum, the SIB, and the TRM (as well as a few other TOGAF features), which is why I

discussed them. But the day-to-day experience of creating an enterprise architecture will be

driven by the ADM, a high-level view of which is shown in Figure 1-6.

 Chapter 1 Enterprise Architecture Today 23

Phase: Prelim.
Framework and

Principles

Phase: A
Architecture Vision

Phase: H
Architecture Change

Management

Phase: B
Business Architecture

Phase: G
Implementation

Governance

Phase: C
Information Systems

Architectures

Phase: F
Migration Planning

Phase: D
Technology
Architecture

Phase: E
Opportunities and

Solutions

 F I GURE 1-6 The TOGAF Architecture Development Method (ADM).

A s shown in Figure 1-6, the TOGAF ADM consists of eight phases that are cycled through af-

ter an initial “priming of the pump.”

T h e Preliminary Phase typically has three goals:

Q To make sure everybody in the organization is comfortable with the process

Q To modify the TOGAF process as necessary to fi t within the organization’s culture

Q To set up the governance system that will oversee future architectural work at the

organization

I n some organizations, achieving buy-in on the need for an enterprise architecture can be

very diffi cult. This is especially true when the effort is driven from the IT organization, and

even more so when there is a history of discord between the business and the technical sides

of the organization (an all too common situation).

A f ter we have completed the Preliminary Phase, we start Phase A. Phase A begins, at least in

theory, with a Request for Architecture Work from some group within the organization. This

document includes the business reasons for the request, budget and personnel information,

and any constraints that need to be considered.

A s soon as the Request for Architecture Work (or some equivalent) has been received, we

ensure that the project has the necessary support, defi ne the scope of the project, identify

constraints, document the business requirements, and establish high-level defi nitions for

both the baseline (starting) architecture and target (desired) architecture.

T h ese baseline and target defi nitions will include high-level defi nitions of all four of the

enterprise architecture subarchitectures shown back in Figure 1-4—namely, business,

technology, data, and application architectures.

24 Part I The Question of Complexity

T h e culmination of Phase A will be a Statement of Architecture Work, which must be ap-

proved by the various stakeholders before the next phase of the ADM begins. The output of

this phase is to create an architectural vision for the fi rst pass through the ADM cycle. An en-

terprise architect will guide the organization in choosing the project and validating the proj-

ect against the architectural principles established in the Preliminary Phase. The enterprise

architect will also ensure that the appropriate stakeholders have been identifi ed and their

issues have been addressed.

T h e Architectural Vision created in Phase A will be the main input into Phase B. The goal in

Phase B is to create a detailed baseline and target business architecture and perform a full

analysis of the gaps between them.

P h ase B is quite involved—involving business modeling, highly detailed business analysis,

and technical requirements documentation. A successful Phase B requires input from many

stakeholders. The major outputs will be a detailed description of the baseline and target

business objectives, and gap descriptions (that is, descriptions of how to get from the base-

line to the target) of the business architecture.

P h ase C does for the information systems architecture what Phase B does for the business

architecture. In this phase, the enterprise architect works primarily with the technical team.

TOGAF defi nes nine specifi c steps, each with multiple sub-steps:

 1 . Develop baseline data architecture description.

 2 . Review and validate principles, reference models, viewpoints, and tools.

 3 . Create architecture models, including logical data models, data management process

models, and relationship models that map business functions to CRUD (Create, Read,

Update, Delete) data operations.

 4 . Select data-architecture building blocks.

 5 . Conduct formal checkpoint reviews of the architecture model and building blocks with

stakeholders.

 6 . Review qualitative criteria (for example, performance, reliability, security, integrity).

 7 . Complete data architecture.

 8 . Conduct checkpoint/impact analysis.

 9 . Perform gap analysis.

T h e most important deliverable from this phase will be the Target Data and Applications

Architecture.

P h ase D completes the technical architecture—the infrastructure necessary to support the

proposed new architecture.

 Chapter 1 Enterprise Architecture Today 25

P h ase E evaluates the various implementation possibilities, identifi es the major implementa-

tion projects that might be undertaken, and evaluates the business opportunity associated

with each. The TOGAF standard recommends that our fi rst pass at Phase E “focus on projects

that will deliver short-term payoffs and so create an impetus for proceeding with longer-

term projects.”

T h is is good advice in any architectural methodology. Therefore, we should be looking for

projects that can be completed as cheaply as possible while delivering the highest perceived

value. A good starting place to look for such projects is the organizational pain-points that

initially convinced the organization to adopt an enterprise architectural-based strategy in the

fi rst place.

P h ase F is closely related to Phase E. In this phase, we work with the organization’s gover-

nance body to sort the projects identifi ed in Phase E into priority order, which is determined

not only by the cost and benefi ts (identifi ed in Phase E) but also the risk factors.

I n Phase G, we take the prioritized list of projects and create architectural specifi cations for

the implementation projects. These specifi cations will include acceptance criteria and lists of

risks and issues.

T h e fi nal phase is H. In this phase, we modify the architectural change management process

with any new artifacts created in this last iteration and with new information that becomes

available.

W e are now ready to start the cycle again. One of the goals from the fi rst cycle should be in-

formation transfer so that outside consulting services are required less and less as more and

more iterations of the cycle are completed.

F o r the most part, the results of the TOGAF process will be determined as much by the indi-

viduals in charge of the enterprise architecture as they will by the TOGAF specifi cation itself.

TOGAF is meant to be highly adaptable, and details for the various architectural artifacts is

sparse. As one book on TOGAF says:

T O GAF is not wholly specifi c with respect to generated documents; in fact, it

provides very little in the way of prescriptive document templates—merely

guidelines for inputs and outputs.20

T h e TOGAF specifi cation is also fl exible with respect to the phases. As the specifi cation itself says:

O n e of the tasks before applying the ADM is to review its components for

applicability, and then tailor them as appropriate to the circumstances of the

individual enterprise. This activity might well produce an “enterprise-specifi c”

ADM.21

20 Guide to Enterprise IT Architecture by Col Perks and Tony Beveridge, Springer, published 2003, ISBN 0-387-95132-6.

21 TOGAF Version 8.1.1.

26 Part I The Question of Complexity

T O GAF allows phases to be done incompletely, skipped, combined, reordered, or reshaped to

fi t the needs of the situation. So it should be no surprise if two different TOGAF consultants

end up using two very different processes, even when working with the same organization.

T O GAF is even more fl exible about the actual generated architecture. In fact, TOGAF is, to a

surprising degree, “architecture agnostic.” The fi nal architecture might be good, bad, or indif-

ferent. TOGAF merely describes how to generate an enterprise architecture, not necessarily

how to generate a good enterprise architecture. For this, you are dependent on the experi-

ence of your staff, TOGAF consultant, or both. People adopting TOGAF hoping to acquire a

magic bullet will be sorely disappointed.

A n d you might also notice a common trend. As with Zachman, TOGAF has no process that

specifi cally focuses on the control of complexity. Like Zachman, it does not model complex-

ity, attempt to understand what causes complexity, or show how the use of the methodology

reduces complexity.

F e deral Enterprise Architecture

T h e Federal Enterprise Architecture (FEA) is the latest attempt by the federal government to

unite its myriad agencies and functions under a single common and ubiquitous enterprise

architecture (EA). FEA is still in its infancy, as most of the major pieces have been available

only since 2006. However, it has a long tradition behind it, and, if nothing else, has many

failures from which it has hopefully learned some valuable lessons.

F E A is the most complete of all the methodologies discussed in this chapter. It has both a

comprehensive taxonomy, like Zachman, and an architectural process, like TOGAF. FEA can

be viewed as either a methodology for creating an enterprise architecture or the result of

applying that process to a particular enterprise—namely, the U.S. government. I will be look-

ing at FEA from the methodology perspective. My particular interest here is in how can we

apply the FEA methodology to private enterprises.

M o st writers describe FEA as simply consisting of fi ve reference models, one each for busi-

ness, service, components, technical, and data. It is true that FEA has these fi ve references

models, but there is much more to FEA than just the reference models. A full treatment of

FEA needs to include all of the following:

Q A perspective on how enterprise architectures should be viewed (the segment model,

that I will describe shortly)

Q A set of reference models for describing different perspectives of the enterprise

architecture (the fi ve models just mentioned)

Q A process for creating an enterprise architecture

Q A transitional process for migrating from a pre-EA to a post-EA paradigm

 Chapter 1 Enterprise Architecture Today 27

Q A taxonomy for cataloging assets that fall in the purview of the enterprise architecture

Q An approach to measuring the success of using the enterprise architecture to drive

business value

Y o u can see that the FEA is about much more than models. It includes everything necessary

to build an enterprise architecture for probably the most complex organization on earth: the

U.S. government. As the FEA-Program Management Offi ce (FEAPMO) says, FEA, taken in toto,

provides

… a common language and framework to describe and analyze IT investments,

enhance collaboration and ultimately transform the Federal government into a

citizen-centered, results-oriented, and market-based organization as set forth in the

President’s Management Agenda.22

A l though it might be a stretch to imagine that anything short of divine intervention could

“transform the federal government into a citizen-centered, results-oriented, and market-

based organization,” there is, at least, hope that some of the FEA methodology could help

enterprises deal with the much more mundane problem of aligning business and IT. So, let’s

take a look at what FEA has to offer.

T h e FEA perspective on EA is that an enterprise is built of segments, an idea fi rst introduced

by FEAF23. A segment is a major line-of-business functionality, such as human resources.

There are two types of segments: core mission area segments and business services segments.

A core mission area segment is one that is central to the mission or purpose of a particular

political boundary within the enterprise. For example, in the Health and Human Services

(HHS) agency of the federal government, health is a core mission area segment.

A business services segment is one that is foundational to most, if not all, political organiza-

tions. For example, fi nancial management is a business services segment that is required by

all federal agencies.

A n other type of enterprise architecture asset is an enterprise service. An enterprise service is

a well-defi ned function that spans political boundaries. An example of an enterprise service

is security management. Security management is a service that works in a unifi ed manner

across the whole swath of the enterprise.

T h e difference between enterprise services and segments, especially business service

segments, is confusing. Both are shared across the entire enterprise. The difference is that

business service segments have a scope that encompass only a single political organization.

Enterprise services have a scope that encompass the entire enterprise.

22 FEA Consolidated Reference Model Document Version 2.1, December 2006, published by the Federal Enterprise
Architecture Program Management Offi ce, Offi ce of Management of Budget.

23 A Practical Guide to Federal Enterprise Architecture by the CIO Council, Version 1.0, February 2001.

28 Part I The Question of Complexity

I n the federal government, for example, both HHS and the Environmental Protection Agency

(EPA) use the business service segment human resources. However, the people who are man-

aged by human resources are in a different group for HHS than they are for the EPA.

B o th HHS and the EPA also use the enterprise service security management. But the security

credentials that are managed by the security management service are not specifi c to either

of those agencies. Security credentials are managed effectively only when they are managed

at the scope of the enterprise.

R e sist the temptation to equate either segments or services with services as in service-oriented

architectures. There are two reasons such a comparison would be fl awed. First, enterprise

services, business-service segments, and core mission-area segments are all much broader in

focus than services found in service-oriented architectures. Second, segments are an orga-

nizational unit for an enterprise architecture, whereas services are an organizational unit for

technical implementations. As organizational units for an enterprise architecture, their depth

includes not just the technical, but also the business and the data architectures.

 One fi nal note about segments: although segments function at the political (that is, agency)

level, they are defi ned at the enterprise (that is, government) level. Enterprise services, of

course, both function and are defi ned at the enterprise level.

 The fact that segments are defi ned globally facilitates their reuse across political boundar-

ies. One can map out the usage of segments across the political boundaries of the enterprise

and then use that map to seek opportunities for architectural reuse. Figure 1-7, for example,

shows a segment map of the federal government from the FEA Practice Guide24. As you can

see, there are many segments (the vertical columns) that are used in multiple agencies and

any or all of these are good candidates for sharing.

 T he fi ve FEA reference models are all about establishing common languages. The goal here

is to facilitate communication, cooperation, and collaboration across political boundaries.

According to the FEAPMO:

 T he FEA consists of a set of interrelated “reference models” designed to facilitate

cross-agency analysis and the identifi cation of duplicative investments, gaps

and opportunities for collaboration within and across agencies. Collectively, the

reference models comprise a framework for describing important elements of the

FEA in a common and consistent way.25

24 FEA Practice Guidance, December 2006, published by the Federal Enterprise Architecture Program Management
Offi ce, Offi ce of Management of Budget.

25 FEA Consolidated Reference Model Document Version 2.1, December 2006, published by the Federal Enterprise
Architecture Program Management Offi ce, Offi ce of Management of Budget.

 Chapter 1 Enterprise Architecture Today 29

SBA

Mapping/Geospatial/Elevation/GPS

Security Management

Records Management

Business
Services

E
n

te
rp

ri
se

S
e
rv

ic
e
s

Agencies

Core Mission Area

C
o

m
m

u
n

it
y

a
n

d
S
o

ci
a
l
S
e
rv

ic
e
s

E
co

n
o

m
ic

D
e
ve

lo
p

m
e
n

t

N
a
tu

ra
l

R
e
so

u
rc

e
s

H
o

m
e
la

n
d

S
e
cu

ri
ty

Fi
n

a
n

ci
a
l

M
a
n

a
g

e
m

e
n

t

H
u

m
a
n

R
e
so

u
rc

e
s

H
e
a
lt

h

E
d

u
ca

ti
o

n

Treasury

Defense

EPA
Interior

Justice

DHS
Energy

HHS

 F IGURE 1-7 Segment map of the federal government.

 W hy do we need a common language? Consider this exchange:

 J ames: Do you have a torch I can borrow?

 R oger: No, I’m afraid not.

 J ames: Do you know where I can get one?

 R oger: The hardware store in town should have one.

 S o James goes out to the hardware store and buys himself a torch. He returns.

 R oger: Did you get your torch?

 J ames: Yes, here it is.

 R oger: That’s not a torch! That’s a fl ashlight. Why didn’t you say so? I have one you could

have borrowed.

 J ames: Well why didn’t you say so?

30 Part I The Question of Complexity

 T he problem, of course, is that James comes from England where what I call a fl ashlight, they

call a torch. And when I hear torch, I think of a blowtorch. Although we both speak English, we

don’t necessarily speak the same English. The result is that James goes out and unnecessarily

spends money on something that I could have lent him.

 T his is exactly the problem that the FEA Reference Models are trying to solve on a much larger

scale. Suppose the Internal Revenue Service (IRS) decides it needs a demographics system

to track taxpayer data. They ask around to see if anybody has one they can modify for their

purposes. Nobody does.

 L ittle do they know that right next door the Government Printing Offi ce (GPO) has a per-

fectly good demographics system that is almost exactly what the IRS needs. They just happen

to call it a customer analytics system.

 S o, the IRS goes out and builds its system from scratch rather than simply modifying the

one already built (and paid for) by the GPO. And, in doing so, the IRS will waste considerably

more money than James spent on his unnecessary fl ashlight.

 T his, in a nutshell, is the goal of the fi ve FEA reference models: to give standard terms and

defi nitions for the domains of enterprise architecture and thereby facilitate collaboration and

sharing across the federal government. The fi ve reference models are as follows:

 Q T he Business Reference Model (BRM) gives a business view of the various functions of

the federal government. For example, the BRM defi nes a standard business capability

called water resource management that is a sub-function of natural resources that is

considered a line-of-business of the broader business area services for citizens.26

 Q T he Components Reference Model (CRM) gives a more IT-oriented view of systems that

can support business functionality. For example, the CRM defi nes a customer analytics

system, which I mentioned earlier in the hypothetical interchange between the Internal

Revenue Service and the Government Printing Offi ce.27

 Q T he Technical Reference Model (TRM) defi nes the various technologies and standards

that can be used in building IT systems. For example, the TRM defi nes HTTP as a proto-

col that is a subset of a service transport that is a subset of service access and delivery.28

 Q T he Data Reference Model (DRM) defi nes standard ways of describing data. For exam-

ple, the DRM defi nes an entity as something that contains attributes and participates in

relationships.29

26 ibid.

27 ibid.

28 ibid.

29 The Data Reference Model, Version 2.0, November 2005, published by the Federal Enterprise Architecture
Program Management Offi ce, Offi ce of Management of Budget.

 Chapter 1 Enterprise Architecture Today 31

 Q T he Performance Reference Model (PRM) defi nes standard ways of describing the value

delivered by enterprise architectures. For example, the PRM describes quality as a tech-

nology measurement area that is defi ned as “the extent to which technology satisfi es

functionality or capability requirements.”30

 T he FEA process is primarily focused on creating a segment architecture for a subset of the

overall enterprise (in FEA’s case, the enterprise is the federal government and the subset is a

governmental agency) and is described in the FEA Practice Guidance31. I discussed the FEA

vision on enterprise segments earlier. The overall segment-architecture development process

is (at a very high level) as follows:

 Q S tep 1: Architectural Analysis Defi ne a simple and concise vision for the segment,

and relate it back to the organizational plan.

 Q S tep 2: Architectural Defi nition Defi ne the desired architectural state of the segment,

document the performance goals, consider design alternatives, and develop an enter-

prise architecture for the segment, including business, data, services, and technology

architectures.

 Q S tep 3: Investment and Funding Strategy Consider how the project will be funded.

 Q S tep 4: Program Management Plan and Execution of Projects Create a plan for

managing and executing the project, including milestones and performance measures

that will asses project success.

 T he FEA framework for measuring organizational success in using enterprise architecture

is defi ned in the Federal Enterprise Architecture Program EA Assessment Framework 2.132.

Federal agencies are rated as to their overall maturity levels in three main categories:

 Q A rchitectural completion Maturity level of the architecture itself

 Q A rchitectural use How effectively the agency uses its architecture to drive

decision-making

 Q A rchitectural results The benefi ts being realized by the use of the architecture

 T he Offi ce of Management and Budget (OMB) assigns each agency a success rating, based

on its scores in each category and a cumulative score, as follows:

 Q G reen The agency rates quite well in the completion area. (It has a quite mature en-

terprise architecture.) It also rates well in both the use area (that is, it is effectively using

that enterprise architecture to drive ongoing strategy) and the results area (that is, the

usage of that architecture is driving business value).

30 FEA Consolidated Reference Model Document Version 2.1, December 2006, published by the Federal Enterprise
Architecture Program Management Offi ce, Offi ce of Management of Budget.

31 FEA Practice Guidance, December 2006, published by the Federal Enterprise Architecture Program Management
Offi ce, Offi ce of Management of Budget.

32 Federal Enterprise Architecture Program EA Assessment Framework 2.1, Dec 2006.

32 Part I The Question of Complexity

 Q Y ellow The agency rates quite well in the completion area. It also rates well in either

the use area or the results area.

 Q R ed The agency does not have a completed architecture, is not effectively using that

architecture, or both.

 T he framework is interesting beyond the confi nes of the public sector. The category ratings

can be fruitfully adapted by many enterprises to assess the maturity level of their own archi-

tectural efforts. Figure 1-8, for example, shows my own interpretation of the OMB maturity

rankings for architectural completion as I adapt them for the private sector. Similar adapta-

tions can be created for architectural usage and architectural results.

 T his completes the discussion of FEA. As you can see, FEA includes quite a bit of

methodology.

 T he one thing that FEA does not include is a methodology that specifi cally addresses how

one manages complexity. In this one regard, FEA is just like Zachman and TOGAF. And it is

in the failure to control complexity that one can fi nd the root cause of so many enterprise

architecture failures of the U.S. government.

Category: Architectural Completion

Description: This category measures the architectural maturity of an enterprise’s architecture in terms
 of performance, business, data, service, and technology. This includes an assessment of
 the architectural artifacts and both the baseline (existing) and target (goal) architectures.

The enterprise has developed multiple vertically partitioned architectures
that support core mission business functions, all approved by the
appropriate business owners.

Optimized5

The enterprise has developed at least vertically partitioned architecture that
has been approved by the business owner in writing. The relevant
organization(s) within the enterprise are actively migrating toward the
relevant architecture.

Integrated4

The enterprise has developed both a baseline architecture (as described
above) and a target (goal) architecture. The target architecture is aligned
to enterprisewide goals and organizational responsibilities. The target
architecture addresses the priorities and performance objectives identified
in the enterprise business plan.

Target3

The enterprise has developed a baseline (as-is) architecture. The
architecture has enterprisewide scope, and the linkages between levels are
well established and clearly articulated.

Baseline2

The enterprise is using informal and ad-hoc EA processes. Some
architectural artifacts for a given architectural level may exist, but the levels
are not linked or the linkage is incomplete.

Initial1

DescriptionNameLevel

 F I GURE 1-8 OMB Ranking of Architectural Completion, adapted for the private sector by Roger Sessions.

 Chapter 1 Enterprise Architecture Today 33

S u mmary

I have given you an overview of some of the problems that drive organizations to con-

sider enterprise architectures and described the commonly used enterprise architectural

methodologies—the three most popular being Zachman, TOGAF, and FEA.

T h e original goal of enterprise architecture was to address the growing rift between

technological capability and business need in an environment in which both were becoming

increasingly complex. And while all of the existing enterprise architecture methodologies

claim to help address complexity, none of the existing methodologies do so in any meaningful

way.

I t ’s easy to understand why none of these methodologies attempt to address complexity.

The problem of complexity is, well, complex. But that is, indeed, the problem we need to

understand if we are to leverage enterprise architectures in any meaningful way. So the

problem of complexity is where we go next.

 129

 Chapter 6

 A Case Study in Complexity

 Let’s take a look at a real-life case study of a complex system. There are three important

lessons to be learned here. The fi rst is how complexity creeps into a project, even one with

the benefi t of extensive planning. The second is how this unchecked complexity leads to

project failure, even one with seemingly unlimited resources. The third is how Simple Iterative

Partitions (SIP) might have saved this project, even when it was well into failure mode.

 The case study I’ll discuss is one of the largest and most complex systems yet tackled by any

government organization. It is the National Program for Information Technology (NPfIT),

a program run by the British Government’s National Health Service (NHS). Sometimes

NPfIT is referred to simply as the National Program, or, as they say in Britain, the National

Programme. Remember these acronyms—NPfIT and NHS—you will be seeing a lot of them

in this chapter.

 Overview of NPfIT

 NPfIT was launched in June 2002. The basic goal of NPfIT was, and continues to be, to

automate and centralize the massive recordkeeping that is the backbone of its national

health care system run by the NHS. Health care in Britain is mostly nationalized, unlike the

United States where health care is mostly ad hoc. This centralized system creates a unique

opportunity to standardize the recordkeeping of a very large number of patients and health

care providers. NPfIT is promising the following capabilities when completed:

Q Automation of all patient care information.

Q Access to any patient record by any authorized health care professional in the UK

Q Ability for primary health care staff to book appointments for patients with any other

health care worker in any health care facility in the UK

Q Automation of prescription services

 The NHS describes NPfIT systems as follows:

 A key aim of the National Program [NPfIT] is to give healthcare professionals

access to patient information safely, securely and easily, whenever and wherever

it is needed. The National Program is an essential element in delivering The NHS

Plan. It is creating a multi-billion pound infrastructure which will improve patient

130 Part II The Quest for Simplifi cation

care by enabling clinicians and other NHS staff to increase their effi ciency and

effectiveness.1

 In a nutshell, the NPfIT promises an integrated system connecting every patient, physician,

laboratory, pharmacy, and health care facility in the UK. NPfIT functionality can be loosely

divided into three main categories: regional clinical information systems (CIS), infrastructure

systems, and shared applications. The NPfIT architecture is shown in Figure 6-1.

H

H

H

H Region 4
Clinical

Information
System

Contact

ETP
Central
Apps

SpineCRS

C&B

H

H

H

H

H

PACS

H
H H

New National Network

Health Care Facility

H

H

H

H

HH

H

H

H

H

Region 5
Clinical

Information
System

Region 1
Clinical

Information
System

H

H

H

H

Region 2
Clinical

Information
System

Region 3
Clinical

Information
System

Keys

CRS: Care Records Service
ETP: Electronic Transfer of Prescriptions
PACS: Picture Archiving and Communications Service
Contact: EMail and EDirectory Service
C&B: Choose and Book

 FIGURE 6-1 NPfIT architecture.

 Regional clinical information systems connect health care providers (for example, hospitals,

clinics, and physician offi ces) within a geographic area and provide their main point of

contact for NPfIT. These are shown as the “hairy spheres” hanging off the central sphere

shown in Figure 6-1.

1 “The National Program for IT Implementation Guide,” December 2006.

 Chapter 6 A Case Study in Complexity 131

 By my estimates, the regional clinical information systems account for approximately

79 percent of the total initial budget for NPfIT, approximately $9.8 billion. Keep in mind

that NPfIT expenses are given in British pounds, and I have converted these numbers to

U.S. dollars. These costing numbers are based on confl icting source data and a fl uctuating

exchange rate, so take these estimates as educated guesses.

 Infrastructure systems will provide connectivity, security, and directory services to the NPfIT.

These infrastructure systems include the New National Network (N3), which provides the

network facilities, and the spine, which includes shared software facilities such as directory

services. Care Records Service (CRS), the shared patient records, is sometimes shown as part

of the spine and sometimes as separate shared applications.

 After the regional clinical information systems, the infrastructure is the second largest part

of the NPfIT budget, accounting for approximately 18 percent of the initial NPfIT budget, or

$2.3 billion.

 Shared coordinated activity across the entire NPfIT system appears to make up a relatively

small part of the overall NPfIT budget, less than 5 percent, or about $300 million. The most

important of these shared applications include the following:

Q Choose and Book A system that allows an appointment to be booked for any patient

at any facility in the system

Q Electronic Transfer of Prescriptions A system that allows prescriptions to be entered

for any patient in the system and fi lled by any pharmacy in the system

Q Picture Archiving and Communications Service A system that allows the central

storage and retrieval of picture data, especially x-rays

 The amount of data that must be coordinated is immense. According to the NHS2, in a

typical week the NHS processes

Q Six million patient visits to general practitioners

Q Over 64,500 emergency calls by NHS ambulances

Q 360,000 patient x-rays

Q 13.7 million NHS prescriptions

 The NHS estimates that NPfIt will need to coordinate about 3 million critical processes and

30 million transactions per day.

 The NPfIT geography is split into fi ve clusters, or regional groups of patients and health care

providers. The NPfIT budget is almost $2 billion per cluster. The clusters are arranged as follows:

Q North East (which includes Tees Valley, Northumberland, South Yorkshire, West

Yorkshire)

2 “The National Program for IT Implementation Guide,” December 2006.

132 Part II The Quest for Simplifi cation

Q North West and West Midland (which includes Greater Manchester, Cheshire)

Q Eastern (which includes Essex, Trent)

Q London

Q Southern (which includes Avon, Dorset, Thames Valley)

 The initial budget was allocated in 2004 among many different vendors. The highly lucrative

regional cluster contracts each had a primary vendor, a CIS vendor, and other miscellaneous sec-

ondary vendors. The primary and CIS vendors awarded to each region is shown in Figure 6-2.

Eastern London SouthernNorth East
North West and
West Midland

Accenture BT FujitsuAccenturePrimary Vendor CSC

iSoft IDX IDXiSoftCIS Vendor iSoft

Regional Cluster

 FIGURE 6-2 Primary and CIS vendors by regional cluster.

 So NPfIT is a multibillion-dollar project split between at least a dozen vendors spread over a

geographic territory of close to 100,000 square miles; it offers services to 60 million people

and is expected to process over 300 transactions per second. I would call this project highly

complex.

 Now that you have a basic overview of NPfIT, let’s see how well this project did using

traditional architectural approaches. Perhaps you will recognize ghosts of your own projects

in this description.

 Current Status of NPfIT

 NPfIT has been in crisis almost from the fi rst day. By mid-2004 (barely a year into the con-

tract), both Fujitsu and BT, two of the fi ve primary regional vendors, were having trouble with

their IDX (regional CIS vendor) relationships, and this trouble never let up. According to a

confi dential draft audit by the National Audit Offi ce (NAO, a British government audit offi ce),

 By mid-2004 NHS Connecting for Health was concerned about the effectiveness

of supplier management of both BT and Fujitsu, and the performance of IDX…

However, by April 2005, even though NHS Connecting for Health [the British

government bureau responsible for NPfIT] had been applying increasing pressure,

working with the prime contractors, to encourage IDX to match its planned

deliveries, insuffi cient progress had been demonstrated and Fujitsu lost confi dence

in IDX’s ability to deliver the Common Solution project.

 Chapter 6 A Case Study in Complexity 133

 The CSC/iSOFT partnership was faring little better. According to that same confi dential NAO

audit,

 CSC, the Local Service Provider for the North West Cluster, agreed to a remediation

plan with NHS Connecting for Health for the delivery of Phase 1 Release 1 as it

was having problems meeting the original target dates... Further delays led to a

second remediation plan which pushed the deployment dates for two elements

of Phase 1 Release 1 further back into 2006, some 19 to 22 months later than

originally planned.

 But of all the partnerships, the one that probably fared the worst was the Accenture/iSOFT

partnership. By September 2006, Accenture had decided that the pain associated with this

project was not worth it, and abandoned the project altogether. According to a baseline case

study3 in so doing it walked away from almost $4 billion in revenue writing off $500 million

it had already spent, and agreeing to pay $100 million “to settle its legal obligations.”

 iSOFT was involved in three of the four partnerships, and the strain on that company

might bankrupt it or, at the very least, force its sale. According to its fi nancial results released

in December 2006, the company took an almost $800-million loss for the fi scal year end-

ing in April 2006—a huge loss for a company that had total revenues of the year of only

$340 million.4

 As you can see, every major company involved in the regional clusters has taken a severe

fi nancial hit from NPfIT. It seemed that everybody underestimated the complexity of this

project. The costs of this underestimation will likely be measured in the tens of billions of

dollars.

 In the area of user confi dence, NPfIT is in serious trouble. There are three critical constituencies

that have been alienated by NHS’s approach to NPfIT: health care workers, patients, and IT

professionals.

 A good indication of how the health care professionals feel about NPfIT is found in a recent

editorial of the British Journal of General Practice (May 2005). It says,

 The impact on patients and professionals has yet to be seriously addressed. A very

different approach is needed to nurture culture change... The £30 billion question is

not just whether NPfIT will get the technology right but whether it can also win the

hearts and minds of the people on whom the NHS depends every day.

 Patients are also unhappy about NPfIT, even at this early stage of the project. Most of the

patient concerns are directed at the ability of NPfIT to protect records. This distrust is

illustrated by a Web site, http://www.TheBigOptOut.org, which states,

3 “U.K. Dept. of Health: Prescription for Disaster,” November 13, 2006, by Laton McCartney.

4 iSOFT Group Interim results for the six months ended October 31, 2006.

134 Part II The Quest for Simplifi cation

 This system is designed to be a huge national database of patient medical records

and personal information (sometimes referred to as the NHS ‘spine’) with no

opt-out mechanism for patients at all. It is being rolled out during 2007, and is

objectionable for many of the same reasons as the government’s proposed ID

database... You will no longer be able to attend any Sexual Health or GUM (Genito-

Urinary Medicine) Clinic anonymously as all these details will also be held on this

national database, alongside your medical records. For the fi rst time everyone’s

most up-to-date and confi dential details are to be held on one massive database.

 But of all the constituent groups that have expressed unhappiness with NPfIT, the most vocal

by far has been the IT community. In January 2005, The British Computer Society (BCS) sent a

position paper to the NAO describing a number of concerns with the NPfIT approach, includ-

ing the following:

Q Failure to communicate with health care users

Q Monolithic approach

Q Stifl ing of innovation among the health informatics market

Q Lack of record confi dentiality

Q Quality of the shared data

 In April 2006, 23 highly respected academicians sent an open letter to the Health Select

Committee. In this letter, they made some harsh statements:

 Concrete, objective information about NPfIT’s progress is not available to external

observers. Reliable sources within NPfIT have raised concerns about the technology

itself. The National Audit Offi ce report about NPfIT is delayed until this summer, at

earliest; the report is not expected to address major technical issues. As computer

scientists, engineers and informaticians, we question the wisdom of continuing

NPfIT without an independent assessment of its basic technical viability.

 In October 2006, this same group sent another open letter to the same committee:

 Since then [April] a steady stream of reports have increased our alarm about NPfIT.

We support Connecting for Health in their commitment to ensure that the NHS

has cost-effective, modern IT systems, and we strongly believe that an independent

and constructive technical review in the form that we proposed is an essential step

in helping the project to succeed... we believe that there is a compelling case for

your committee to conduct an immediate Inquiry: to establish the scale of the risks

facing NPfIT; to initiate the technical review; and to identify appropriate shorter-

term measures to protect the program’s objectives.

 Chapter 6 A Case Study in Complexity 135

 The BCS offered to help the NHS with a review of the NPfIT architecture. What did NHS think

of this generous offer? Not much. Lord Warner, head of the NHS responded forcefully:

 “I do not support the call by 23 academics to the House of Commons Health Select

Committee to commission a review of the NPfIT’s technical architecture. I want the

Program’s management and suppliers to concentrate on implementation, and not

be diverted by attending to another review.”5

 Soon after, Lord Warner apparently had had enough. Like Accenture, he was bailing out. In

December 2006, he announced his retirement from the NHS. He was followed in July 2007

by Richard Granger, Director General of IT for NHS, the man who was widely blamed for

most, if not all, of NPfIT’s problems.

 At this point, nobody knows what the eventual cost for NPfIT will be. Estimates range from

$48 billion to $100 billion. It seems likely that the project will go down in history as the

world’s most expensive IT failure.

 The SIP Approach

 Clearly, NPfIT is a very expensive project in very deep trouble. But could SIP have helped?

Let’s look at how the SIP process would have likely played out with NPfIT.

 Let’s start in Phase 1. The fi rst deliverable of Phase 1 is an audit of organizational readiness.

Such an audit would have revealed deep distrust between the NHS IT organization and the

business units (health care providers). This would have been an immediate sign of concern.

 Also in Phase 1 we would have delivered extensive training in the nature of complexity. We

would have spent considerable time discussing how important it was that complexity, espe-

cially on such a massive undertaking as NPfIT, be managed as the absolute highest priority.

 In Phase 2, we would have been working on the partitioning. In the case of NPfIT, consider-

able effort had already been done on partitioning; Figure 6-1 could be viewed as an ABC

diagram of NPfIT. The question is, does that diagram represent good partitioning? Is it even a

partitioning (in the mathematical sense) at all?

 Figure 6-1 does not give us enough information to answer this question. We need to under-

stand not only how the organization is being decomposed into sets of functionality, but what

the type relationships are between those sets.

 So let’s tackle this. Figure 6-3 shows an ABC diagram of the clinical information part of NPfIT

(the part that owns 80 percent of the NPfIT budget), focusing on types, implementations,

and deployments. Compare this fi gure to Figure 6-1.

5 BJHC.CO.UK, November, 2006.

136 Part II The Quest for Simplifi cation

Clinical
Information

System

Accenture/
iSoft

CSC/iSoft CSC/iSoft BT/IDX Fujitsu/IDX

North East
CIS

North West
West Midland

CIS

Eastern
CIS

London
CIS

Southern
CIS

= type

= implementation

= deployment

Key

 FIGURE 6-3 ABC diagram of NPfIT regional CIS.

 In Figure 6-3, the central problem of NPfIT jumps out like a sore thumb (a $10 billion sore

thumb). They implemented the various regional clinical information systems as siblings (in SIP

talk) rather than as clones. In other words, they created fi ve different implementations of the

same system. The same very complex system.

 Interestingly, NHS did this on purpose. Now why, you might ask, would anybody take a highly

complex system that they would be lucky to implement properly once and tempt the fates

with fi ve completely different implementations created by fi ve completely different vendors?

 The reason NHS gave for the multiple implementations was that it didn’t want to be depen-

dent on any one vendor. This example illustrates a common reason that so many projects

become so complex so quickly: poor communication between the business and IT units.

 Somebody in the business group decides on some business requirement—say, X. In this case,

X can be stated as, “There must be no dependency on any one vendor for the regional CIS

portion of NPfIT.” X gets passed around. It sounds reasonable. Who wants to be dependent

on one vendor? X is accepted as a business requirement. It drives a series of technical

requirements. In this case, the technical requirement is that there must fi ve independent

implementations of the regional CIS.

 Everything seems reasonable. A reasonable business requirement driving the necessary

technical requirements. So what would have been done differently using SIP?

 A SIP process would have encouraged this business requirement to have been measured

against the complexity it would introduce. Complexity, in the SIP world, trumps almost

everything. The diagram in Figure 6-3 would have been a warning sign that we have a huge

amount of unnecessary complexity. Because both the business and technical folks would

have already been through the SIP training, they would understand the frightening implica-

tions of complexity. On a project of this scope, the project motto should be, “Our Top Three

Concerns: Complexity, Complexity, Complexity.”

 Chapter 6 A Case Study in Complexity 137

 Given a common conditioned response to complexity, it would have been easy to discuss the

importance of this particular business requirement relative to its cost. We would have asked

some pointed questions. Is it really necessary to be vendor independent? Is the multibil-

lion dollar cost worth vendor independence? Is meeting this requirement going to put the

project at more risk than if we dropped this requirement? Is it even possible to be vendor

independent? Are multiple implementations the only way to achieve vendor independence?

Would parallel implementations, with one chosen in a fi nal shootout, be a better approach to

achieving vendor independence?

 I don’t know which solution would have been chosen in a SIP approach. But I know one solu-

tion that would not have been chosen: fi ve independent implementations of the same type.

This is an extreme case of an unpartitioned architecture. And an unpartitioned architecture,

in a SIP analysis, is unacceptable. It is not unacceptable because one person or another

doesn’t like the diagrams it produces. It is unacceptable because it fails to satisfy the math-

ematical models that predict whether or not the architecture can be successful.

 So by the end of Phase 2, we would have dropped four of the fi ve proposed implementations

for regional clinical information systems. Expected complexity reduction: 80 percent.

 But we aren’t done yet. Next we enter Phase 3, the phase in which we simplify our partition.

I’ll continue my focus on the regional CIS portion of NPfIT.

 Of course, we have already done quite a bit to simplify the regional CIS portion. We have

eliminated 80 percent of the work, but we are still left with a highly complex system. What is

the best way to simplify a highly complex system? If you have been following the SIP discus-

sion, the answer should be obvious: partitioning. The most effective way to tame the regional

CIS monster is to partition it into four or fi ve subsets, each with synergistic functionality, and

each with functionality that is autonomous with respect to the functionality in the other

subsets.

 One possible partition of subsets might include, for example, patient registration, appoint-

ment booking, prescriptions, patient records, and lab and radiology tests.

 To explain this in SIP terminology, we have taken an autonomous business capability (ABC)

that includes the regional CIS and decomposed it into fi ve lower level ABCs. Figure 6-4 shows

the regional CIS ABC before and after this process.

Patient
Registration

Appointment
Booking

Post SIP Phase 3

Regional CIS

Regional CIS

Pre SIP Phase 3

Lab Tests

Patient
Records

Prescriptions

 FIGURE 6-4 Decomposition of regional CIS.

138 Part II The Quest for Simplifi cation

 At this point, we check our post-SIP analysis against the fi ve Laws of Partitions. The First Law

says that all the original functionality of the regional CIS must end up in one and only one of

the subsets. The Second Law says that the subsets must make sense from an organizational

perspective. The Third Law says that there should be a reasonable number of subsets in the

partition. The Fourth Law says that subsets must be roughly equal in size and stature. The

Fifth Law says that subset interactions must be minimal and well regulated. The fi rst four laws

can be checked relatively easily. The fi fth law needs to be revisited after we have more details

about the technical architecture.

 The partitioning of the regional CIS ABC will likely result in a huge further reduction in com-

plexity. How much? The mathematical models predict possible reductions of more than 99.99

percent. These are based on theoretical numbers, not real-world numbers, but as I discussed

in Chapter 3, “Mathematics of Complexity,” 90-percent reductions in the real world are likely.

And remember, we have already removed 80 percent of the complexity, so now we are re-

moving 90 percent of the 20 percent that is left. This means that realistically we are now

down to perhaps 2 percent of the complexity with which we started.

 And there is yet more we can do to reduce complexity. We can look at reducing both the

functionality footprint (the amount of functionality in the fi nal system) and the implementa-

tion footprint (the impact on the IT staff).

 Reducing the functionality footprint means re-examining all the business and techni-

cal requirements and confi rming that, fi rst of all, every business requirement is absolutely

necessary, and second of all, that every technical requirement can be traced back to a

business requirement. Remember that we have already found one business requirement

(vendor dependence) that is either unnecessary or highly suspect.

 Reducing the implementation footprint means looking for opportunities to consolidate or

outsource subsets. The type information we have generated on the ABCs will be a great help

in our efforts to reduce the implementation footprint.

 The next phase is Phase 4, in which we prioritize the subsets making up the partition. Again,

I will focus on the regional CIS portion of NPfIT.

 In Phase 3, we identifi ed fi ve subsets of the regional CIS that together form a partition:

Q Patient Registration

Q Appointment Booking

Q Prescriptions

Q Patient Records

Q Lab Tests

 In the actual NHS plan, this functionality was delivered en masse. In the SIP approach, we

want to deliver this functionality iteratively. In Phase 4, we decide on the order of iteration.

 Chapter 6 A Case Study in Complexity 139

 Iteration order should be based on risk, cost, and benefi t. The basic rule of thumb is to go

for the low-hanging fruit fi rst. In the SIP world, low-hanging fruit is defi ned as ABCs that are

highly visible, low cost, and low risk. These requirements are sometimes at odds with each

other (although, in my experience, less often than people think). The best way to sort this out

is with the Value Graph Analysis that I described in Chapter 5, “SIP Process.” If we were using

Value Graph Analysis in this project, we would have standardized the analysis back in Phase 1

of the project.

 What usually makes an ABC “high visibility” is its association with organizational pain points.

Let’s say, for example, that NHS was notorious for the length of time it took to book appoint-

ments. This factor would tend to move Appointment Booking ahead in the priority list. Lab

Tests, on the other hand, might be something that is already handled reasonably well. Lab

Tests might still be worth doing, say, because it can reduce the cost of processing lab tests,

but without high visibility, it doesn’t rate as a high priority.

 Let’s say that at the end of Phase 4 we have decided on the following order of iterations:

 1. Appointment Booking

 2. Patient Registration

 3. Prescriptions

 4. Patient Records

 5. Lab Tests

 Next is Phase 5, the iterative phase. As I have said, Phase 5 is the one in which we have the

fewest opinions, other than that the candidate ABCs be implemented in an iterative fashion

and that the order follow the priority laid out in Phase 4. The implementation of an ABC is

effectively a solution architecture and implementation issue, and I’m assuming that an

organization already has processes in place to create and implement a solution architecture.

You might, for example, use The Open Group Architectural Framework (TOGAF), with its

emphasis on process and current and future architectures. You might use some of the

Federal Enterprise Architecture (FEA) characterizations of functionality given in its Reference

Models. You might use Zachman’s taxonomy to ensure that you are considering each impor-

tant perspective on each important capability of the system. You might use IBM’s Unifi ed

Process or the Microsoft Solution Framework to guide the implementation process. These are

outside of the scope of SIP.

 But the iterative approach is not outside the scope of SIP. I believe that the fi rst ABC should

be rolled out, tested, approved, deployed, and embraced before the next one is started.

Such an approach allows you to learn your lessons as cheaply as possible and apply them

as broadly as possible. It also helps you build enthusiasm for the overall project. Nothing

succeeds, as they say, like success. Success attracts success. Let’s see how such an approach

might have benefi ted NPfIT. We could look at any number of issues plaguing NPfIT. Let’s

consider one that I haven’t discussed yet: risk management.

140 Part II The Quest for Simplifi cation

 LORENZO was an existing product developed by iSOFT, and NHS was impressed with

LORENZO’s user-friendly screens and broad CIS functionality. For this reason, NHS encour-

aged its use as a core component for all of its regional CIS systems.

 Accenture seemed similarly impressed with LORENZO. In June 2004, Accenture/iSOFT

released a joint press release saying,

 A set of information processing tools promoting governance, quality, effi ciency,

and consent in healthcare, LORENZO facilitates the free fl ow of information among

the entire healthcare community, including general practitioners, hospitals and

patients. As Accenture deploys LORENZO across the two regions, the software’s

unifi ed architecture will form the basis of solutions tailored to meet local

requirements and information needs of healthcare professionals.6

 But there was a hidden time bomb in LORENZO. This time bomb can be summed up in two

words: client/server.

 According to a performance audit of LORENZO conducted in April 2006 by Health Industry

Insights and commissioned by iSOFT, the LORENZO architecture as it existed in 2004 was

“based on a fat client/server model.”7 Accenture was either blissfully unaware of the fact that

LORENZO was a client/server system or was ignorant of the issues one faces with client/server

architectures.

 What is the problem with client/server models? The client/server architecture is based on a

two-machine confi guration. One machine (the “client”) contains the user-interface code and

the business logic. The other machine (the “server”) contains the code that manages data in

the database.

 The two machines are “connected” by database connections. A database connection is cre-

ated when a client machine requests access rights to the database owned by the server. The

database looks at the credentials of the requesting machine, and, if it is satisfi ed, creates a

database connection. A database connection is technically a block of data that the client

presents to the server machine when making data access requests. When the client machine

is ready to shut down for the day, it releases its database connection by letting the server

machine know that it will no longer require the services of the database.

 There are several reasons that client/server architectures are so popular. For one, they

are very fast. They are fast because the client machine requests the database connection

(a highly expensive request) only once, in the beginning of the day, when the client machine

is fi rst started.

6 “iSOFT Delivers LORENZO for Deployment,” Accenture, June 16, 2004.

7 “Coming of Age: A Report on a Performance Benchmark Test of iSOFT’s LORENZO Clinical Information System,” by
Marc Holland and Luisa Bordoni, April 2006.

 Chapter 6 A Case Study in Complexity 141

 Client/server systems are also easy to implement because the code that presents the data

(the “user interface logic”) is located in the same process as the code that manipulates the

data (the “business logic”). This makes it easy to mingle the presentation logic and the

business logic, with the result of lightning-fast data presentation and manipulation.

 So back to my original question. What is wrong with a client/server architecture? Actually,

there is only one problem with client/server systems. They do not scale. Although they work

great for small numbers of users (measured, say, in the dozens), they do not work at all well

for large numbers of users (measured, say, in the thousands). And the user requirements of

NPfIT were measured in the tens of thousands.

 The reason client/server architectures do not scale well is that each client machine requires

a dedicated database connection. Databases are limited in the number of database con-

nections they can support. When each client requires a dedicated database connection, the

number of client machines is limited by the number of database connections supported by

the database. And because client machines are in a one-to-one relationship to users, this

limits the number of users who can use the system at any one time.

 So a client/server architecture, with its extreme limitation on numbers of clients, is a problem

for NPfIT. A big problem.

 To address the scalability limitations of client/server architectures, a new style of technical

architecture was developed, initially, in the 1970s, and was quite mature by the mid-1980s.

This new style of technical architecture is known as three-tier.

 In a three-tier architecture, one machine runs the database, as it had in the client/server

architecture. But now the user-interface logic and the business logic are separated. The user-

interface logic lives on the machine before which the human being sits. But the business

logic lives on another machine. This machine is often referred to as the “middle tier” because

it conceptually lives in between the user interface machine and the database machine.

 It is the middle tier machine that owns the database connections. This arrangement allows a

pooling of those very expensive database connections so that when a database connection is

not being used by one client, it can be used by another.

 So the obvious issue that iSOFT faced with its LORENZO product, back in 2004, was how to

take a product based on a fundamentally nonscalable architecture and turn it into a scal-

able system. There is really only one answer to this problem. The company had to rearchitect

LORENZO from a client/server architecture to some variation of a three-tier architecture.

 This, according to that previously quoted audit, is exactly what iSOFT did. In fact, the com-

pany decided that it would go one better. It would bypass the three-tier architecture and

move directly to an even more advanced architecture known as service-oriented architecture

(SOA). An SOA is essentially an architecture in which the middle tier has been split further

apart, with business functionality distributed over a number of middle-tier-like machines,

each using industry-standard service-oriented messages as a communications protocol.

142 Part II The Quest for Simplifi cation

 As the audit stated,

 this new [LORENZO] architecture... utilizes a service oriented architecture (SOA) ...

making iSOFT the fi rst major CIS vendor worldwide to base its overall architecture

principally on SOA. This architecture will serve as the foundation for the entire line

of LORENZO solutions, allowing different subsets or combinations of existing and

planned functional capabilities to be delivered on a common technical platform. For

both iSOFT and its clients, this strategy will facilitate the ability to cost-effectively

confi gure and scale CIS applications to meet a wide range of organizational models

and functional demands...because the client machine is almost entirely focused on

working with the human client.

 Although this transformation from client/server to SOA was absolutely necessary from a

scalability perspective, it was also something else: highly risky.

 Many organizations have “ported” three-tier architectures to SOAs. This process is usually

straightforward because the two architectures are so similar. However, LORENZO, remember,

was not a three-tier architecture. It was a client/server architecture.

 The transformation from client/server to either three-tier or SOA is rarely straightforward. Either

process requires massive changes to the underlying programs. All of that nicely intermingled

user-interface and business logic needs to be painstakingly located and laboriously separated.

More often than not, it is less expensive to re-implement the system from scratch rather than

try to make (and debug) the necessary changes. So while LORENZO might have been a won-

derful product, it was a product that would have to be rewritten from the ground up to meet

the needs of NPfIT. And further, it would need to be rewritten by a group that had no previous

experience in either three-tier architectures or SOAs, both of which are highly specialized areas.

 There is no way to know if Accenture knew about this high-risk factor back in 2004. It should

have. Any reasonably competent architect could have looked at the LORENZO code and

recognized the unmistakable fi ngerprint of a client/server architecture. But there was no

indication in its joint press release that this issue was understood or that the risk factor had

been addressed.

 The indications are that by the time the limitations of LORENZO’s architecture were under-

stood, three of the fi ve regional clusters of NPfIT were in serious trouble and Accenture was

so deeply over its head that it was ready to jump from the sinking ship.

 An iterative approach to delivering the regions would not have made the iSOFT architectural

limitations any less real. But it would have made them obvious much earlier in the project.

While it might have been too late to save all three regions that had bet on LORENZO, at least

two of the regions could have learned from the painful lessons of the fi rst. Billions of dollars

would likely have been saved overall.

 Iterative delivery is a key strategy in managing high-risk factors. Unfortunately, it is a strategy

that was not used by NPfIT.

 Chapter 6 A Case Study in Complexity 143

 There is yet another problem facing NPfIT besides risky architectures, and this is low user

confi dence. Let’s see how this played out in NPfIT and how iteration could have helped.

 Regardless of how good or bad NPfIT ends up, its ultimate success or failure is in the hands

of its users. The support of the hundreds of thousands of health care workers and patients

will determine the fi nal judgment of this project. As with most large IT projects, user percep-

tion is reality. If users think the project is a success, it is a success. If users think the project is

a failure, it is a failure, regardless of how much the project owners believe otherwise.

 Iterative delivery can be a great help here. If the early deliveries are a failure, their failures

are limited in scope and in visibility. If they are a success, the enthusiasm of the initial users

becomes contagious. Everybody wants to be the next owner of the new toy!

 As I pointed out earlier in this chapter, NPfIT suffers a major credibility gap with health care

workers, patients, and the IT community. It seems that nobody other than NHS management

believes that this multibillion dollar investment is going to pay off.

 Could it have been different? Suppose NHS had chosen the highest visibility ABC from the

list of candidates, the Appointment Booking ABC. Imagine that NHS had endured years of

criticism for diffi culties in its current booking procedures and then rolled out this new auto-

mated booking system. Suppose it fi rst showed prototypes to the health care professionals.

Say they loved the interface but had a few suggestions. NHS then incorporated those

suggestions and rolled out the Appointment Booking to one region.

 Very quickly booking in that region went from six-month waiting lists to four-day waiting

lists. Appointments that used to require hours of standing in line now take a few minutes on

a Web browser or on a phone. Other regions would be clamoring to be the next one in line

for deployment.

 As Appointment Booking was deployed across the UK, the entire health care system would

have appeared to have been transformed. Even though only one small part of the overall

health care process, appointments, had been affected, that impact would have been felt in a

positive way by every constituent group.

 As NHS started work on its next ABC, Patient Registration, it would be basking in the success

of its previous work. It would be facing a world that supported its efforts, believed its promises,

and eagerly awaited its next delivery.

 This is the way it could have been had NHS used an iterative delivery model based on SIP.

But it didn’t. And instead, it faces a world that ridicules its efforts, laughs at its promises,

and dreads its next delivery. The world believes that NPfIT will be a failure. In the eyes of the

world, failure is all NHS has delivered. Why should the future be any different?

 Ironically, even if NPfIT does manage to deliver any successes, it will be hard pressed to prove

it. Why? Because at the start of this multibillion dollar project, nobody bothered to document

what success would look like in any measurable fashion. Let me show you what I mean.

144 Part II The Quest for Simplifi cation

 The NPfIT business plan of 20058 gave these success indicators for patients:

Q Patients will have a greater opportunity to infl uence the way they are treated by

the NHS.

Q Patients will be able to discuss their treatment options and experience a more person-

alised health service.

Q Patients will experience greater convenience and certainty, which will reduce the stress

of referral.

Q Patients will have a choice of time and place, which will enable them to fi t their treat-

ment in with their life, not the other way round.

 For health care providers, the business plan promised these benefi ts:

Q General practitioners and their practice staff will have much greater access to their

patients’ care management plans, ensuring that the correct appointments are made.

Q General practitioners and practice staff will see a reduction in the amount of time spent

on the paper chase and bureaucracy associated with existing referral processes.

Q Consultants and booking staff will see a reduction in the administrative burden of

chasing hospital appointments on behalf of patients.

Q The volume of Did Not Attends (DNAs) will reduce, because patients will agree on their

date, and consultants will have a more secure referral audit trail.

 What do all of these deliverables have in common? None have any yardstick that can be used

to measure success or failure. None are attached to any dollar amount that can help justify

the project. In fact, one could argue that all of these “success factors” could have been met

by simply replacing the manual pencil sharpeners by electric ones!

 I made the assertion in Chapter 5 that while many organizations claim to use an ROI (return

on investment) yardstick to justify new projects, few really do. NPfIT is an excellent example

of this. There is not a single ROI measurable included in the so-called success factors.

 SIP is dogmatic about the need for measurable success factors tied to dollar amounts. It is a

critical part of the prioritization activity of Phase 4 and is made concrete in the Value Graph

Analysis. What would SIP-mandated measurable success factors have looked like? Here are

some possible examples:

Q A reduction by 50 percent in the personnel hours spent managing patient booking.

This will save 140 million person hours per year at a savings of approximately $1.56 billion

annually.

Q A reduction by 50 percent of the DNAs (Did Not Attends), for a savings of $780 million

annually.

8 NHS Business Plan 2005/2006.

 Chapter 6 A Case Study in Complexity 145

Q A reduction by 75 percent of the cost of managing patient records, for a savings of

$3.50 billion annually.

 Do these specifi c measurables make sense? They are at least consistent with the NHS

released data. I have no way to know if they are accurate or not, but these are the kind of

measurements that would have served two purposes. First, they would have allowed the NHS

to determine if it had, in fact, met its goals once (or if) NPfIT is ever completed. Second, they

could have been used to convince a skeptical public that the project was worth undertaking

in the fi rst place.

 NHS is in the process of learning a very expensive, very painful lesson. Complexity is your

enemy. Control it, or it will control you.

 Summary

 In this chapter, I looked at a system called NPfIT (National Program for Information

Technology). This system shares three characteristics with many other IT systems:

 1. It is highly complex.

 2. It is very expensive.

 3. It is headed down a path of failure.

 The lessons we can learn by examining NPfIT can help us avoid similar problems in other

large projects. We saw how the features of SIP could have helped control the complexity

of this massive project and, by extension, can be used to avoid similar problems in other

projects.

 SIP’s obsession with complexity control would have helped bring sanity to a discussion of the

business requirements of NPfIT. SIP’s partitioning could have pinpointed areas of extreme

complexity very early in the project. SIP’s simplifi cation could have removed as much as 98

percent of the project’s complexity, and possibly more. SIP’s iteration could have highlighted

risks early in the project, where they could have been corrected easily and helped transform

a world of skeptics to a world of supporters.

 If SIP could do all of this for a project of the complexity of NPfIT, what can it do for your

project?

 177

Index

A
ABC (autonomous business capability)

acquisitional redundancy, 94
clone architecture, 94
communication styles, 176
complexity control, 100–101
composition relationships, 98–99
cousins, 97
defi ned, 174
deliberate duplication, 94
deployments, 93–95
diagram, NPfIP (National Program for Information

Technology) example, 136
equivalence classes, 89–90
implementation, 93–95
overview, 88–89
parallel evolution, 94
partner relationships, 99–100
retail example, 102–106
sibling architecture, 93, 97
SIP, interation, 127–128
SIP, partition simplifi cation, 121–124
SIP, partitioning phase, 118–121
SIP, prioritization, 124–127
technical partitions, 147–151
terminal, 99
type hierarchies, 96–97
types, 90–92, 95–96

acquisition, company, 5, 110–111
acquisitional redundancy, ABC (autonomous business

capability), 94
ADM (Architecture Development Method),

22–26
algorithms

partitioning, equivalence relations, 171
simplifi cation, 45–46

architect, defi ned, 8
architectural

artifact, defi ned, 8
description, defi ned, 8
framework, defi ned, 8
methodology, defi ned, 8
process, defi ned, 8
taxonomy, defi ned, 8

architecture
defi ned, 8
enterprise. See enterprise architecture
optimal, 172

Architecture Development Method (ADM),
22–26

artifact, architectural, defi ned, 8

asynchronicity, software fortresses, 153–154
audit of organizational readiness, SIP,

115–116
automating

customer relationships, 6, 113
external partner relationships, 6, 112

autonomous
business capability (ABC). See ABC (autonomous

business capability)
defi ned, 173
equivalence relations, 74–75
software fortresses, 152

B
big bang business model, 46–52
blend, SIP, 117
boundaries, software fortresses, 152–153
Boyd, John, 47–50
Boyd’s Law of Iteration, 47–50, 172
business process

complexity, laws, 172–173
homomorphism, 60–61
IT alignment, 160–161
laws of complexity, 59–60
penny toss example, 55–57

business units
poor relationships with IT, 6, 113
spinoff, 5, 111

C
Carnegie Mellon University, enterprise architecture

defi nition, 8
chess game, partitioning example, 38–39
children at Starbuck’s partitioning example,

39–40
choir rehearsal partitioning example, 36
CIOs, priorities, 159
clone architecture, 94
clothing store partitioning example, 38
company acquisition, 5, 110–111
compensatory transactions, 155
complex projects, 4–5, 110
complexity

control, ABC (autonomous business
capability), 100–101

dice systems, controlling, 61–65
dice systems, reducing, 77–80
enterprise architecture, 10–15
IT/business alignment, 160–161

iteration, 46–52
laws of, 58–60, 172–173
mathematics. See mathematics
partitioning examples, 35–42
reducing, theory and practice, 81–83
relational databases, 53
simplifi cation algorithms, 45–46

composition relationships, ABC (autonomous business
capability), 98–99

contraindications, SIP, 114–115
cousins, ABC, 97
cross-fortress transactions, 155
customer relationships, automating, 6, 113

D
data, partitioning, 154
databases, relational, 53
defi nitions of partitions law, 43
deliberate duplication, ABC (autonomous business

capability), 94
deployments, ABC (autonomous business

capability), 93–95
description, architectural, defi ned, 8
dice systems

complexity, controlling, 61–65
homomorphism, 60–61
laws of complexity, 60
measuring states, 170
partitioning, 65–67
reducing complexity, 77–80

Drinkwater, Kevin, 40
duplication, deliberate, ABC (autonomous business

capability), 94

E
emergency response partitioning example, 37
enterprise architecture

concepts, 172–173
defi ned, 8, 172
need for, 3–7
overview, 3, 8–10
SIP. See SIP (Simple Iterative Partitions)

enterprise-specifi c tools, SIP, 117
envoys, software fortresses, 151
equivalence

classes, 71, 89–90
relations, 67–71, 170–171
relations, enterprise architecture, 72–75
relations, inverse, 71–73, 171
relations, partitioning algorithm, 171

evaluation phase, SIP, 108–114
executive lunch partitioning example, 35–36
external partner relationships, automating, 6, 112

F
fi fth law of partitions, 45, 170
fi rst law of partitions, 42–43, 169
fortresses, software. See software fortresses
fourth law of partitions, 44–45, 170
framework, architectural, defi ned, 8
functionality partitions, software fortresses, 153

G
governance model, SIP, 116–117
guards, software fortresses, 150

H
hierarchies, ABC types, 96–97
homomorphism, 60–61, 170

I
identifying outsourcing opportunities, 5, 111
implementation, ABC (autonomous business

capability), 93–95
interactions of subsets of partitions law, 45
interlibrary loan system example,

161–164
interoperabilily

IT, 6–7, 113
software fortresses, 147–151

inverse equivalence relations, 72–73, 171
IT

business alignment, 160–161
poor interoperability, 6–7, 113
poor relationship with business units, 6, 113
unmanageable, 7, 114

iteration, 46–52. See also also SIP (Simple Iterative
Partitions)

ABC (autonomous business capability), SIP
process, 127–128

Boyd’s Law of Iteration, 47–50, 172

J
Johnson, John Cavnar, 47

L
laws

Boyd’s Law of Iteration, 47–50, 172
complexity, 172–173
complexity, mathematics, 58–60
partitions, 42–45, 121–122, 169–170
simplifi cation, 122

178 composition relationships, ABC (autonomous business capability)

M
mathematics

complexity, laws of, 58–60
complexity, overview, 54–57
dice systems, controlling complexity, 61–65
dice systems, measuring states, 170
dice systems, partitioning, 65–67
dice systems, reducing complexity, 77–80
equivalence classes, 71
equivalence relations, 67–71, 170–171
equivalence relations, enterprise architecture, 73–75
homomorphism, 60–61, 170
inverse equivalence relations, 72–73, 171
partitions, 171
partitions, defi nition, 169
partitions, equivalence relations, 171
partitions, laws, 169–170
relational databases, 53
review, 87–88
Rubik’s Cube partitioning example, 40–42

measuring states, dice systems, 170
methodology, architectural, defi ned, 8

N
NPfIP (National Program for Information Technology)

example
current status, 132–135
overview, 129–132
SIP process, 135–145

numbers of subsets of partitions law, 44

O
OODA, 49
OOPA, 49
optimal architecture, 172
organizational readiness, SIP audit, 115–116
outsourcing opportunities, identifying, 5, 111

P
parallel evolution, ABC (autonomous business

capability), 94
partitions

ABC, technical, 147–151
autonomy, 74–75
data, software fortresses, 154
defi ned, 169
dice systems, 65–67
equivalence relations algorithm, 171
examples, 35–42
functionality, software fortresses, 153
iteration, 46–52
laws, 42–45, 121–122, 169–170

mathmatics, 171
reducing complexity, theory and practice, 81–83
simplifi cation algorithms, 45–46
SIP. See SIP (Simple Iterative Partitions)
synergy, 74–75

partner relationships
ABC (autonomous business capability), 99–100
external, 6, 112

penny toss example
business process, 55–57
software systems, 54–56

philosophy of simplicity, 164–165
policy, software fortresses, 153
portals, software fortresses, 151
practice, complexity reduction, 81–83
preparation phase, SIP, 115–117
process, architectural, defi ned, 8

R
redundancy, acquisitional, ABC (autonomous business

capability), 94
regulatory requirements, 5, 112
relational databases, 53
Rettig, Cynthia, 82
ROI analysis, 125
Rubik’s Cube partitioning example, 40–42

S
second law of partitions, 43, 169
security, software fortresses, 156
set theory, 65
SIB (Standard Information Base), 22
sibling architecture, 93, 97
simplifi cation

algorithms, 45–46
benefi ts, 161–164
laws, 122
philosophy of, 164–165
SIP, partitions, 121–124
software fortresses, 156–157

single-point security, software fortresses, 156
SIP (Simple Iterative Partitions)

ABC (autonomous business capability), complexity
control, 100–101

ABC (autonomous business capability), composition
relationships, 98–99

ABC (autonomous business capability),
deployments, 93–95

ABC (autonomous business capability), equivalence
classes, 89–90

ABC (autonomous business capability),
implementation, 93–95

ABC (autonomous business capability),
interation, 127–128

 SIP (Simple Iterative Partitions) 179

ABC (autonomous business capability),
overview, 88–89

ABC (autonomous business capability), partition
simplifi cation, 121–124

ABC (autonomous business capability), partitioning
phase, 118–121

ABC (autonomous business capability), partner
relationships, 99–100

ABC (autonomous business capability), retail
example, 102–106

ABC (autonomous business capability), type
hierarchies, 96–97

ABC (autonomous business capability),
types, 90–92, 95–96

audit of organizational readiness,
115–116

blend, 117
contraindications, 114–115
defi ned, 173
enterprise-specifi c tools, 117
governance model, 116–117
mantra, 176
overview, 88–89
process, ABC prioritization phase,

124–127
process, enterprise architecture evaluation

phase, 108–114
process, NPfIP (National Program for Information

Technology) example, 135–145
process, overview, 107–108, 173–174
process, partition simplifi cation, 121–124
process, partitioning phase, 118–121
process, preparation phase, 115–117
training, 116
value graph analysis, 125–127

size of subsets of partitions law, 44–45
SOAs (service-oriented architectures,

149–150
software fortresses

asynchronicity, 153–154
autonomy, 152
boundaries, 152–153
cross-fortress transactions, 155
data partitions, 154
envoys, 151
functionality partitions, 153
guards, 150
model, 175
policy, 153
portals, 151
process, trust, 156
simplicity, 156–157
single-point security, 156
technical partitions, 147–151
walls, 151

software systems
complexity, laws, 172–173
homomorphism, 60–61
laws of, 58–59
laws of complexity, 58–59
penny toss example, 54–56

spinoff business units, 5, 111
Standard Information Base (SIB), 22
Starbuck’s

business model, 50–52
children, partitioning example, 39–40

subset
interactions of partitions law, 45
numbers of partitions law, 44
sizes of partitions law, 44–45

synchronous requests, software fortresses, 155
synergistic

defi ned, 173
equivalence relations, 74–77

T
taxonomy, architectural, defi ned, 8
Technical Reference Model (TRM), 22
terminal ABCs, 99
terms, 7–8
The Open Group Architectural Framework (TOGAF)

Architecture Development Method (ADM),
22–26

continuum, 22
overview, 20–26
Standard Information Base (SIB), 22
Technical Reference Model (TRM), 22
terms, 7–8

The Trouble with Enterprise Software, 82
theoretical complexity reduction, 81–83
third law of partitions, 44, 170
TOGAF (The Open Group Architectural Framework)

Architecture Development Method (ADM),
22–26

continuum, 22
overview, 20–26
Standard Information Base (SIB), 22
Technical Reference Model (TRM), 22
terms, 7–8

training, SIP, 116
transactions, cross-fortress, 155
TRM (Technical Reference Model), 22
true partitions law, 42–43

U
unmanageable IT, 7, 114
unreliable information, 4, 109
untimely information, 4, 109–110

180 size of subsets of partitions law

V
value graph analysis, 125–127

W
walls, software fortresses, 151
Wikipedia, enterprise architecture defi nition, 9

Z
Zachman Framework for Enterprise Architectures

grid, 19
overview, 15–20
terms, 7–8

 Zachman Framework for Enterprise Architectures 181

Author Biography

Roger Sessions is the CTO of ObjectWatch. He has written seven books, including Software

Fortresses: Modeling Enterprise Architectures, and more than 100 articles. He is on the

Board of Directors of the International Association of Software Architects, is Editor-in-Chief

of Perspectives of the International Association of Software Architects, and is a Microsoft

recognized MVP in enterprise architecture. He has given talks in more than 30 countries

and 70 cities, and at 100 conferences on the topic of enterprise architecture. He consults

with major corporations and public-sector organizations throughout the world on the

need to understand, model, and control complexity at the enterprise architectural level.

ComputerWorld (New Zealand) describes him as “The Simplicity Guru.” He holds multiple

patents in software engineering and enterprise architecture.

More than 10,000 developers, architects, and executives follow Roger’s writing regularly in

his ObjectWatch Newsletter, now in its fi fteenth year. For a free subscription or for informa-

tion on contacting Roger, see the ObjectWatch web site at www.objectwatch.com.

ObjectWatch offers the SIP methodology for controlling enterprise architectural complexity

primarily through partner relationships. For information about a SIP partner in your area, or

to inquire about becoming a SIP partner, contact information@objectwatch.com.

	Cover
	Copyright Page

	Contents at a Glance
	Table of Contents
	Acknowledgments
	Legal Notices

	Introduction
	The Organization of This Book
	Find Additional Content Online
	Support for This Book
	Questions and Comments

	Chapter 1: Enterprise Architecture Today
	Why Bother?
	Issue: Unreliable Enterprise Information
	Issue: Untimely Enterprise Information
	Issue: New Complex Projects Underway
	Issue: New Companies Being Acquired
	Issue: Enterprise Wants to Spin Off Unit
	Issue: Need to Identify Outsourcing Opportunities
	Issue: Regulatory Requirements
	Issue: Need to Automate Relationships with External Partners
	Issue: Need to Automate Relationships with Customers
	Issue: Poor Relationship Between IT and Business Units
	Issue: Poor Interoperability of IT Systems
	Issue: IT Systems Unmanageable
	The Value of Enterprise Architecture

	Common Definitions
	What Is Enterprise Architecture?
	Complexity in Enterprise Architectures
	The Zachman Framework for Enterprise Architectures
	The Open Group Architecture Framework
	Federal Enterprise Architecture
	Summary

	Chapter 6: A Case Study in Complexity
	Overview of NPfIT
	Current Status of NPfIT
	The SIP Approach
	Summary

	Index
	Author Biography

