
titlepagetemplate.indd 1 7/30/2008 3:51:29 PM

http://www.facebook.com/share.php?u=http://www.microsoftpressstore.com/title/9780735625662
http://twitter.com/?status=RT: download a free sample chapter http://www.microsoftpressstore.com/title/
https://plusone.google.com/share?url=http://www.microsoftpressstore.com/title/
http://www.facebook.com/share.php?u=http://www.microsoftpressstore.com/title/9780735625662
http://twitter.com/?status=RT: download a free sample chapter http://www.microsoftpressstore.com/title/9780735625662
https://plusone.google.com/share?url=http://www.microsoftpressstore.com/title/9780735625662
http://www.linkedin.com/shareArticle?mini=true&url=http://www.microsoftpressstore.com/title/9780735625662
http://www.stumbleupon.com/submit?url=http://www.microsoftpressstore.com/title/9780735625662/Free-Sample-Chapter

● ● ● ● ● ● ● ● ● ● ●

How to access
your CD files

Microsoft Press

The print edition of this book includes a CD. To access the
CD files, go to http://aka.ms/625662/files, and look for the
Downloads tab.

Note: Use a desktop web browser, as files may not be
accessible from all ereader devices.

Questions? Please contact: mspinput@microsoft.com

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2008 by Matthew Stoecker

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2008929780

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWE 3 2 1 0 9 8

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly at
fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to tkinput@microsoft.com.

Microsoft, Microsoft Press, Internet Explorer, Visual Basic, Visual Studio, Windows, Windows Server, and Windows
Vista are either registered trademarks or trademarks of the Microsoft group of companies. Other product and company
names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will be
held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ken Jones
Developmental Editor: Laura Sackerman
Project Editor: Kathleen Atkins
Editorial Production: S4Carlisle Publishing Services
Technical Reviewer: Kurt Meyer; Technical Review services provided by Content Master, a member of CM Group, Ltd.
Cover: Tom Draper Design

Body Part No. X14-15151

About the Author

Matthew A. Stoecker
Matthew Stoecker started programming in BASIC on a TRS-80 at the age of nine. In
2001, he joined Microsoft Corporation as a programming writer authoring documen-
tation for Microsoft Visual Basic .NET. He has written numerous technical articles
about Visual Basic .NET and Visual C#, and he has written or contributed to multiple
books about these languages, Windows Forms, and now Windows Presentation Foun-
dation (WPF). He holds a Bachelor of Music degree in trombone performance from the
Oberlin Conservatory and a Ph.D in microbiology from the University of Washington
that he hopes he will never have to use again. He spends his spare time biking, playing
the trombone, and playing with his cats. He lives in Bellevue, Washington.

Contents at a Glance
1 WPF Application Fundamentals. 1
2 Events, Commands, and Settings. 57
3 Building the User Interface. 99
4 Adding and Managing Content. 153
5 Configuring Databinding . 207
6 Converting and Validating Data. 259
7 Styles and Animation. 303
8 Customizing the User Interface . 343
9 Resources, Documents, and Localization . 389

10 Deployment . 441

Answers. 473

Glossary . 499

Index . 503
v

Table of Contents
Introduction .xxi

1 WPF Application Fundamentals. 1
Before You Begin .2
Lesson 1: Selecting an Application Type. .3
Application Type Overview. .3

Windows Applications. .4
Navigation Applications .9
XBAPs .11

Security and WPF Applications .13
Choosing an Application Type .14

Lab: Creating WPF Applications. .15
Lesson Summary. .19
Lesson Review .19

Lesson 2: Configuring Page-Based Navigation .21
Using Pages. .21

Hosting Pages in Frames .21
Using Hyperlinks. .22
Using NavigationService .23
Using the Journal .25
Handling Navigation Events .27
Using PageFunction Objects .30
Simple Navigation and Structured Navigation .32
Lab: The Pizza Kitchen .32
Lesson Summary. .38
Lesson Review .39

Microsoft is interested in hearing your feedback so we can continually improve our books and learning

resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!
vii

viii Table of Contents
Lesson 3: Managing Application Responsiveness . 41
Running a Background Process . 42
Providing Parameters to the Process . 43
Returning a Value from a Background Process . 44
Cancelling a Background Process. 45
Reporting the Progress of a Background Process with
BackgroundWorker . 46
Using Dispatcher to Access Controls Safely on Another Thread 47
Freezable Objects . 48
Lab: Practicing with BackgroundWorker . 49
Lesson Summary . 51
Lesson Review . 52

Chapter Review . 53
Chapter Summary. 53
Key Terms . 53
Case Scenario . 54

Case Scenario: Designing a Demonstration Program . 54
Suggested Practices . 55
Take a Practice Test. 55

2 Events, Commands, and Settings . 57
Before You Begin . 57
Lesson 1: Configuring Events and Event Handling . 59

RoutedEventArgs . 61
Attaching an Event Handler . 62
The EventManager Class . 63
Defining a New Routed Event . 64
Creating a Class-Level Event Handler . 66
Application-Level Events . 66
Lab: Practice with Routed Events . 68
Lesson Summary . 69
Lesson Review . 70

Lesson 2: Configuring Commands. 72
A High-Level Procedure for Implementing a Command 73
Invoking Commands . 74

Table of Contents ix
Command Handlers and Command Bindings .75
Creating Custom Commands .78
Lab: Creating a Custom Command .80
Lesson Summary. .83
Lesson Review .84

Lesson 3: Configuring Application Settings. .86
Creating Settings at Design Time .87
Loading Settings at Run Time .88
Saving User Settings at Run Time .88
Lab: Practice with Settings .89
Lesson Summary. .91
Lesson Review .91

Chapter Review. .94
Chapter Summary .94
Key Terms .95
Case Scenarios .95

Case Scenario 1: Validating User Input .95
Case Scenario 2: Humongous Insurance User Interface.96

Suggested Practices .96
Take a Practice Test .97

3 Building the User Interface. 99
Before You Begin .99
Lesson 1: Using Content Controls . 101

WPF Controls Overview. 101
Content Controls . 101
Other Controls . 105
Using Attached Properties . 110
Setting the Tab Order for Controls . 111
Lab: Building a User Interface . 111
Lesson Summary. 113
Lesson Review . 113

Lesson 2: Item Controls . 116
ListBox Control . 116
ComboBox Control . 117

x Table of Contents
TreeView Control . 118
Menus . 119
ToolBar Control . 121
StatusBar Control . 123
Virtualization in Item Controls . 123
Lab: Practice with Item Controls. 124
Lesson Summary . 127
Lesson Review . 127

Lesson 3: Using Layout Controls. 130
Control Layout Properties . 130
Layout Panels. 132
Accessing Child Elements Programmatically . 143
Aligning Content. 144
Lab: Practice with Layout Controls . 146
Lesson Summary . 148
Lesson Review . 149

Chapter Review . 150
Chapter Summary. 150
Key Terms . 150
Case Scenarios. 151

Case Scenario 1: Streaming Stock Quotes. 151
Case Scenario 2: The Stock Watcher . 151

Suggested Practices . 152
Take a Practice Test. 152

4 Adding and Managing Content . 153
Before You Begin . 153
Lesson 1: Creating and Displaying Graphics. 155

Brushes . 155
Shapes. 163
Transformations. 168
Clipping . 171
Hit Testing . 171
Lab: Practice with Graphics . 172

Table of Contents xi
Lesson Summary. 173
Lesson Review . 174

Lesson 2: Adding Multimedia Content . 176
Using SoundPlayer . 176
MediaPlayer and MediaElement . 179
Handling Media-Specific Events . 182
Lab: Creating a Basic Media Player . 183
Lesson Summary. 185
Lesson Review . 185

Lesson 3: Managing Binary Resources . 187
Embedding Resources . 187
Loading Resources . 188
Retrieving Resources Manually . 189
Content Files . 190
Retrieving Loose Files with siteOfOrigin Pack URIs . 190
Lab: Using Embedded Resources . 191
Lesson Summary. 192
Lesson Review . 192

Lesson 4: Managing Images . 194
The Image Element . 194
Stretching and Sizing Images . 194
Transforming Graphics into Images. 196
Accessing Bitmap Metadata . 198
Lab: Practice with Images . 200
Lesson Summary. 201
Lesson Review . 202

Chapter Review. 204
Chapter Summary . 204
Key Terms . 204
Case Scenarios . 205

Case Scenario 1: The Company with Questionable Taste 205
Case Scenario 2: The Image Reception Desk . 205

Suggested Practices . 206
Take a Practice Test . 206

xii Table of Contents
5 Configuring Databinding . 207
Before You Begin . 208
Lesson 1: Configuring Databinding . 209
The Binding Class . 209

Binding to a WPF Element. 211
Binding to an Object . 212
Setting the Binding Mode . 215
Setting the UpdateSourceTrigger Property . 216
Lab: Practice with Bindings . 217
Lesson Summary . 218
Lesson Review . 219

Lesson 2: Binding to Data Sources . 221
Binding to a List . 221

Binding an Item Control to a List . 221
Binding a Single Property to a List. 223
Navigating a Collection or List . 223

Binding to ADO.NET Objects . 226
Setting the DataContext to an ADO.NET DataTable . 226
Setting the DataContext to an ADO.NET DataSet . 227

Binding to Hierarchical Data . 228
Binding to Related ADO.NET Tables. 228

Binding to an Object with ObjectDataProvider . 230
Binding to XML Using the XmlDataProvider . 231

Using XPath with XmlDataProvider . 232
Lab: Accessing a Database. 232
Lesson Summary . 235
Lesson Review . 236

Lesson 3: Manipulating and Displaying Data . 238
Data Templates . 238

Setting the Data Template. 240
Sorting Data . 241

Applying Custom Sorting . 242
Grouping . 243

Creating Custom Grouping . 245

Table of Contents xiii
Filtering Data . 246
Filtering ADO.NET Objects . 247
Lab: Practice with Data Templates and Groups . 248
Lesson Summary. 252
Lesson Review . 252

Chapter Review. 255
Chapter Summary . 255

Key Terms. 256
Case Scenarios . 256

Case Scenario 1: Getting Information from the Field . 256
Case Scenario 2: Viewing Customer Data. 257

Suggested Practices . 257
Take a Practice Test . 258

6 Converting and Validating Data. 259
Before You Begin . 259
Lesson 1: Converting Data . 261
Implementing IValueConverter . 261

Using Converters to Format Strings . 264
Using Converters to Return Objects . 268
Using Converters to Apply Conditional Formatting in Data Templates 269
Localizing Data with Converters . 271

Using Multi-value Converters . 273
Lab: Applying String Formatting and Conditional Formatting 276
Lesson Summary. 279
Lesson Review . 279

Lesson 2: Validating Data and Configuring Change Notification 282
Validating Data . 282

Binding Validation Rules . 282
Setting ExceptionValidationRule . 283
Implementing Custom Validation Rules . 283
Handling Validation Errors . 284

Configuring Data Change Notification . 287
Implementing INotifyPropertyChanged . 287

xiv Table of Contents
Using ObservableCollection . 288
Lab: Configuring Change Notification and Data Validation 289
Lesson Summary . 294
Lesson Review . 295

Chapter Review . 300
Chapter Summary. 300
Key Terms . 300
Case Scenarios. 301

Case Scenario 1: The Currency Trading Review Console 301
Case Scenario 2: Currency Trading Console . 301

Suggested Practices . 302
Take a Practice Test. 302

7 Styles and Animation . 303
Before You Begin . 303
Lesson 1: Styles . 305
Using Styles . 305

Properties of Styles . 305
Setters . 306
Creating a Style . 308
Implementing Style Inheritance . 311

Triggers. 312
Property Triggers . 313
Multi-triggers . 314
Data Triggers and Multi-data-triggers. 315
Event Triggers . 315

Understanding Property Value Precedence . 316
Lab: Creating High-Contrast Styles . 318
Lesson Summary . 320
Lesson Review . 320

Lesson 2: Animations . 323
Using Animations . 323

Important Properties of Animations . 324
Storyboard Objects . 326

Table of Contents xv
Using Animations with Triggers . 327
Managing the Playback Timeline . 330
Animating Non-Double Types . 332
Creating and Starting Animations in Code . 335
Lab: Improving Readability with Animations . 336
Lesson Summary. 337
Lesson Review . 338

Chapter Review. 339
Chapter Summary . 339
Key Terms . 340
Case Scenarios . 340

Case Scenario 1: Cup Fever. 340
Case Scenario 2: A Far-Out User Interface . 341

Suggested Practices . 341
Take a Practice Test . 342

8 Customizing the User Interface . 343
Before You Begin . 343
Lesson 1: Integrating Windows Forms Controls . 345
Using Windows Forms Controls. 345

Using Dialog Boxes in WPF Applications . 345
WindowsFormsHost . 349
Using MaskedTextBox in WPF Applications . 351
Using the PropertyGrid in WPF Applications . 353
Lab: Practice with Windows Forms Elements. 354
Lesson Summary. 356
Lesson Review . 357

Lesson 2: Using Control Templates . 359
Using Control Templates . 359

Creating Control Templates . 359
Inserting a Trigger in a Template . 362
Respecting the Templated Parent’s Properties . 363
Applying Templates with a Style . 365
Viewing the Source Code for an Existing Template . 365

xvi Table of Contents
Using Predefined Part Names in a Template . 366
Lab: Creating a Control Template. 367
Lesson Summary . 369
Lesson Review . 369

Lesson 3: Creating Custom and User Controls . 372
Control Creation in WPF . 372

Choosing Among User Controls, Custom Controls, and Templates 373
Implementing and Registering Dependency Properties 373
Creating User Controls . 376
Creating Custom Controls . 376
Consuming User Controls and Custom Controls . 377
Rendering a Theme-Based Appearance . 378
Lab: Creating a Custom Control . 380
Lesson Summary . 383
Lesson Review . 383

Chapter Review . 385
Chapter Summary. 385
Key Terms . 385
Case Scenarios. 386

Case Scenario 1: Full Support for Styles . 386
Case Scenario 2: The Pizza Progress Bar . 386

Suggested Practices . 387
Take a Practice Test. 387

9 Resources, Documents, and Localization. 389
Before You Begin . 389
Lesson 1: Logical Resources . 391
Using Logical Resources . 391

Logical Resources . 392
Creating a Resource Dictionary . 395
Retrieving Resources in Code . 396
Lab: Practice with Resources . 397
Lesson Summary . 399
Lesson Review . 399

Table of Contents xvii
Lesson 2: Using Documents in WPF . 401
Flow Documents. 401

Creating Flow Documents. 402
XPS Documents . 418

Viewing XPS Documents . 418
Printing . 418

Printing Documents . 419
The PrintDialog Class . 419
Lab: Creating a Simple Flow Document . 421
Lesson Summary. 422
Lesson Review . 423

Lesson 3: Localizing a WPF Application . 426
Localization . 426

Localizing an Application . 427
Using Culture Settings in Validators and Converters . 432
Lab: Localizing an Application . 433
Lesson Summary. 436
Lesson Review . 436

Chapter Review. 438
Chapter Summary . 438
Key Terms . 438
Case Scenario . 439

Case Scenario: Help for the Beta . 439
Suggested Practices . 440
Take a Practice Test . 440

10 Deployment . 441
Before You Begin . 441
Lesson 1: Creating a Setup Project with Windows Installer. 443
Deploying a WPF Application . 443

Choosing Between Windows Installer and ClickOnce 443
Deploying with Windows Installer. 444

Deploying a Stand-alone Application . 445
Creating the Setup Project . 445

xviii Table of Contents
Adding Files to the Setup Project with the File System Editor 445
Other Setup Project Editors. 448
Lab: Creating a Setup Project . 448
Lesson Summary . 450
Lesson Review . 450

Lesson 2: Deploying Your Application with ClickOnce . 451
Deploying with ClickOnce. 451

Deploying an Application Using ClickOnce . 452
Configuring ClickOnce Update Options . 455
Deploying an XBAP with ClickOnce. 458
Configuring the Application Manifest. 461
Associating a Certificate with the Application . 463
Lab: Publishing Your Application with ClickOnce . 464
Lesson Summary . 465
Lesson Review . 465

Chapter Review . 469
Chapter Summary. 469
Key Terms . 469
Case Scenario . 470

Case Scenario: Buggy Beta . 470
Suggested Practices . 470
Take a Practice Test. 471

Answers . 473

Glossary. 499

Index . 503

Microsoft is interested in hearing your feedback so we can continually improve our books and learning

resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

Acknowledgments

Thank you to my friends and family. It isn't easy dealing with a person who is going
crazy trying to write a book. Thanks for understanding when I had to work all night.
Thanks for understanding when I needed to stay home and write on Friday night
instead of going to see a movie. Thanks for putting up with me when all I talked about
was how I needed to work on this book. This especially means thanks to you, Libby.
xix

Introduction
This training kit is designed for developers who plan to take the Microsoft Certified IT
Professional (MCITP) Exam 70-502, as well as for developers who need to know how
to develop Microsoft Windows Presentation Foundation (WPF)–based applications
using Microsoft .NET Framework 3.5. We assume that before using this training kit,
you already have a working knowledge of Windows, Microsoft Visual Basic or C# (or
both), and Extensible Application Markup Language (XAML).

By using this training kit, you will learn how to do the following:

Create a WPF application

Build user interfaces using WPF controls

Add and manage content in a WPF application

Bind WPF controls to data sources

Customize the appearance of your WPF application

Configure a WPF application

Deploy a WPF application to its intended audience

Hardware Requirements
The following hardware is required to complete the practice exercises:

A computer with a 1.6-gigahertz (GHz) or faster processor

A minimum of 384 megabytes (MB) of random access memory (RAM)

A minimum of 2.2 gigabytes (GB) of available hard disk space is required to
install VS 2008. Additionally, 50 megabytes (MB) of available hard disk space is
required to install the labs.

A DVD-ROM drive

A 1024 x 768 or higher resolution display with 256 colors or more

A keyboard and Microsoft mouse or compatible pointing device
xxi

xxii Introduction
Software Requirements
The following software is required to complete the practice exercises:

One of the following operating systems:

Windows Vista (any edition except Windows Vista Starter)

Windows XP with Service Pack 2 or later (any edition except Windows XP
Starter)

Windows Server 2003 with Service Pack 1 or later (any edition)

Windows Server 2003 R2 or later (any edition)

Windows Server 2008

Microsoft Visual Studio 2008

NOTE A 90-day evaluation edition of Visual Studio 2008 Professional Edition is included on a DVD
that comes with this training kit.

Using the CD and DVD
A companion CD and an evaluation software DVD are included with this training kit.
The companion CD contains the following:

Practice Tests You can reinforce your understanding of how to create WPF appli-
cations in Visual Studio 2008 with .NET Framework 3.5 by using electronic
practice tests that you can customize to meet your needs from the pool of Lesson
Review questions in this book. Alternatively, you can practice for the 70-502 cer-
tification exam by using tests created from a pool of 200 realistic exam ques-
tions, which will give you enough different practice tests to ensure you’re
prepared.

Sample Files Most chapters in this training kit include sample files that are asso-
ciated with the lab exercises at the end of every lesson. For some exercises, you
are instructed to open a project prior to starting the exercise. For other exercises,
you create a project on your own and can reference a completed project on the
CD if you have a problem following the exercise procedures. Sample files can be
installed to your hard drive by simply copying them to the appropriate directory.

Introduction xxiii
After copying the sample files from the CD to your hard drive you must clear the
Read Only attribute in order to work with the files on your hard drive.

eBook An electronic version (eBook) of this training kit is included for use at
times when you don’t want to carry the printed book with you. The eBook is in
Portable Document Format (PDF) and you can view it by using Adobe Acrobat
or Adobe Reader. You can use the eBook to cut and paste code as you work
through the exercises.

The evaluation software DVD contains a 90-day evaluation edition of Visual Studio
2008 Professional Edition, in case you want to use it instead of a full version of Visual
Studio 2008 to complete the exercises in this book.

How to Install the Practice Tests
To install the practice test software from the companion CD to your hard disk, per-
form the following steps:

1. Insert the companion CD into your CD drive and accept the license agreement
that appears onscreen. A CD menu appears.

NOTE If the CD menu or the license agreement doesn’t appear, AutoRun might be disabled
on your computer. Refer to the Readme.txt f ile on the CD-ROM for alternative installation
instructions.

2. Click Practice Tests and follow the instructions on the screen.

How to Use the Practice Tests
To start the practice test software, follow these steps:

1. Click Start and select All Programs and Microsoft Press Training Kit Exam Prep.
A window appears that shows all the Microsoft Press training kit exam prep
suites that are installed on your computer.

2. Double-click the lesson review or practice test you want to use.

Digital Content for Digital Book Readers: If you bought a digital-only edition of this book, you can
enjoy select content from the print edition’s companion CD.
Visit http://www.microsoftpressstore.com/title/9780735625662 to get your downloadable content. This content
is always up-to-date and available to all readers.

http://www.microsoftpressstore.com/title/9780735625662

xxiv Introduction
Lesson Review Options
When you start a lesson review, the Custom Mode dialog box appears, allowing you
to configure your test. You can click OK to accept the defaults or you can customize
the number of questions you want, the way the practice test software works, which
exam objectives you want the questions to relate to, and whether you want your les-
son review to be timed. If you are retaking a test, you can select whether you want to
see all the questions again or only those questions you previously skipped or
answered incorrectly.

After you click OK, your lesson review starts. You can take the test as follows:

To take the test, answer the questions and use the Next, Previous, and Go To but-
tons to move from question to question.

After you answer an individual question, if you want to see which answers are
correct, along with an explanation of each correct answer, click Explanation.

If you would rather wait until the end of the test to see how you did, answer all the
questions and then click Score Test. You see a summary of the exam objectives that
you chose and the percentage of questions you got right overall and per objective.
You can print a copy of your test, review your answers, or retake the test.

Practice Test Options
When you start a practice test, you can choose whether to take the test in Certification
Mode, Study Mode, or Custom Mode.

Certification Mode Closely resembles the experience of taking a certification
exam. The test has a set number of questions, it is timed, and you cannot pause
and restart the timer.

Study Mode Creates an untimed test in which you can review the correct
answers and the explanations after you answer each question.

Custom Mode Gives you full control over the test options so that you can cus-
tomize them as you like.

In all modes, the user interface you see when taking the test is basically the same, but
different options are enabled or disabled, depending on the mode. The main options
are discussed in the previous section, “Lesson Review Options.”

When you review your answer to an individual practice test question, a “References” sec-
tion is provided. This section lists where in the training kit you can find the information

Introduction xxv
that relates to that question, and it also provides links to other sources of information.
After you click Test Results to score your entire practice test, you can click the Learning
Plan tab to see a list of references for every objective.

How to Uninstall the Practice Tests
To uninstall the practice test software for a training kit, use the Add Or Remove Pro-
grams option in the Control Panel in Windows.

Microsoft Certified Professional Program
Microsoft certifications provide the best method to prove your command of current
Microsoft products and technologies. The exams and corresponding certifications are
developed to validate your mastery of critical competencies as you design and develop
or implement and support solutions with Microsoft products and technologies. Com-
puter professionals who become Microsoft certified are recognized as experts and are
sought after industry wide. Certification brings a variety of benefits to the individual
and to employers and organizations.

MORE INFO For a full list of Microsoft certif ications, go to http://www.microsoft.com/learning/mcp/
default.mspx.

Technical Support
Every effort has been made to ensure the accuracy of this book and the contents of the
companion CD. If you have comments, questions, or ideas regarding this book or the
companion CD, please send them to Microsoft Press by using either of the following
methods:

E-mail: tkinput@microsoft.com

Postal Mail:

Microsoft Press

Attn: MCITP Self-Paced Training Kit (Exam 70-502) Microsoft .NET Framework 3.5 –
Windows Presentation Foundation Editor

One Microsoft Way

Redmond, WA, 98052-6399

xxvi Introduction
For additional support information regarding this book and the CD-ROM (including
answers to commonly asked questions about installation and use), visit the Microsoft
Press Technical Support Web site at http://www.microsoft.com/learning/support/
books. To connect directly to the Microsoft Knowledge Base and enter a query, visit
http://support.microsoft.com/search. For support information regarding Microsoft
software, please connect to http://support.microsoft.com.

Evaluation Edition Software
The 90-day evaluation edition provided with this training kit is not the full retail prod-
uct and is provided only for the purposes of training and evaluation. Microsoft and
Microsoft Technical Support do not support this evaluation edition.

Information about any issues relating to the use of this evaluation edition with this
training kit is posted in the Support section of the Microsoft Press Web site (http://
www.microsoft.com/learning/support/books/). For information about ordering the full
version of any Microsoft software, please call Microsoft Sales at (800) 426-9400 or
visit http://www.microsoft.com.

Chapter 2

Events, Commands, and Settings
Events and commands form the basis of the architecture for intra-application commu-
nication in Windows Presentation Foundation (WPF) applications. Routed events
can be raised by multiple controls and allow a fine level of control over user input.
Commands are a welcome addition to the Microsoft .NET Framework and provide a
central architecture for enabling and disabling high-level tasks. Application settings
allow you to persist values between application sessions. In this chapter, you will
learn to configure these features.

Exam objectives in this chapter:
Configure event handling.

Configure commands.

Configure application settings.

Lessons in this chapter:
Lesson 1: Configuring Events and Event Handling. 59

Lesson 2: Configuring Commands . 72

Lesson 3: Configuring Application Settings . 86

Before You Begin
To complete the lessons in this chapter, you must have

A computer that meets or exceeds the minimum hardware requirements listed in
the “About This Book” section at the beginning of the book

Microsoft Visual Studio 2005 Professional Edition installed on your computer

An understanding of Microsoft Visual Basic or C# syntax and familiarity with
the .NET Framework
57

58 Chapter 2 Events, Commands, and Settings
Real World
Matthew Stoecker

By using WPF routed events and commands, I find I have a much finer control
over how my user interfaces respond compared to in a Windows Forms appli-
cation. The Routed Event architecture allows me to implement complex event
handling strategies, and the Command architecture provides a way to approach
programming common tasks in my user interfaces.

Lesson 1: Configuring Events and Event Handling 59
Lesson 1: Configuring Events and Event Handling
Events in WPF programming are considerably different from those in traditional
Windows Forms programming. WPF introduces routed events, which can be raised
by multiple controls and handled by multiple handlers. Routed events allow you to add
multiple levels of complexity and sophistication to your user interface and the way it
responds to user input. In this lesson, you will learn about routed events, including
how to handle a routed event, define and register a new routed event, handle an
application lifetime event, and use the EventManager class.

After this lesson, you will be able to:
Explain the difference between a direct event, a bubbling event, and a tunneling
event
Define and register a new routed event
Define static class event handlers
Handle an event in a WPF application
Handle an attached event in a WPF application
Handle application lifetime events
Use the EventManager class

Estimated lesson time: 30 minutes

Events have been a familiar part of Microsoft Windows programming for years. An
event is a message sent by an object, such as a control or other part of the user interface,
that the program responds to (or handles) by executing code. While the traditional
.NET event architecture is still present in WPF programming, WPF builds upon the
event concept by introducing routed events.

A key concept to remember in event routing is the control containment hierarchy. In
WPF user interfaces, controls frequently contain other controls. For example, a typical
user interface might consist of a top-level Window object, which contains a Grid object,
which itself might contain several controls, one of which could be a ToolBar control,
which in turn contains several Button controls. The routed event architecture allows for
an event that originates in one control to be raised by another control in the contain-
ment hierarchy. Thus, if the user clicks one of the Button controls on the toolbar, that
event can be raised by the Button, the ToolBar, the Grid, or the Window.

Why is it useful to route events? Suppose, for example, that you are designing a user
interface for a calculator program. As part of this application, you might have several

60 Chapter 2 Events, Commands, and Settings
Button controls enclosed within a Grid control. Suppose that you wanted all button
clicks in this grid to be handled by a single event handler? WPF raises the click event
from the Button, the Grid, and any other control in the control containment hierarchy.
As the developer, you can decide where and how the event is handled. Thus, you can
provide a single event handler for all Button Click events originating from Button
controls in the grid, simplifying code-writing tasks and ensuring consistency in event
handling.

Types of Routed Events There are three different types of routed events: direct, bubbling,
and tunneling.

Direct Events
Direct events are most similar to standard .NET events. Like a standard .NET event, a
direct event is raised only by the control in which it originates. Because other controls
in the control containment hierarchy do not raise these events, there is no opportu-
nity for any other control to provide handlers for these events. An example of a direct
event is the MouseLeave event.

Bubbling Events
Bubbling events are events that are raised first in the control where they originate and
then are raised by each control in that control’s control containment hierarchy, also
known as a visual tree. The MouseDown event is an example of a bubbling event.
Suppose that you have a Label contained inside a FlowPanel contained inside a
Window. When the mouse button is pressed over the Label, the first control to raise
the MouseDown event would be the Label. Then the FlowPanel would raise the Mouse-
Down event, and then finally the Window itself. You could provide an event handler
at any or all stages of the event process.

Tunneling Events
Tunneling events are the opposite of bubbling events. A tunneling event is raised first by
the topmost container in the visual tree and then down through each successive
container until it is finally raised by the element in which it originated. An example of
a tunneling event is the PreviewMouseDown event. In the previous example, although
the event originates with the Label control, the first control to raise the PreviewMouse-
Down event is the Window, then the FlowPanel, and then finally the Label. Tunneling
events allow you the opportunity to intercept and handle events in the window or
container before the event is raised by the specific control. This allows you to filter
input, such as keystrokes, at varying levels.

Lesson 1: Configuring Events and Event Handling 61
In the .NET Framework, all tunneling events begin with the word “Preview,” such as
PreviewKeyDown, PreviewMouseDown, etc., and are typically defined in pairs with a
complementary bubbling event. For example, the tunneling event PreviewKeyDown is
paired with the bubbling event KeyDown. The tunneling event always is raised before
its corresponding bubbling event, thus allowing an opportunity for higher-level con-
trols in the visual tree to handle the event. Each tunneling event shares its instance of
event arguments with its paired bubbling event. This fact is important to remember
when handling events, and it will be discussed in greater detail later in this chapter.

RoutedEventArgs
All routed events include an instance of RoutedEventArgs (or a class that inherits
RoutedEventArgs) in their signatures. The RoutedEventArgs class contains a wealth of
information about the event and its source control. Table 2-1 describes the properties
of the RoutedEventArgs class.

Table 2-1 RoutedEventArgs Properties

Property Description

Handled Indicates whether or not this event has
been handled. By setting this property
to True, you can halt further event
bubbling or tunneling.

OriginalSource Gets the object that originally raised the
event. For most WPF controls, this will
be the same as the object returned by
the Source property. However, for some
controls, such as composite controls,
this property will return a different
object.

RoutedEvent Returns the RoutedEvent object for the
event that was raised. When handling
more than one event with the same
event handler, you might need to refer
to this property to distinguish which
event has been raised.

Source Returns the object that raised the event.

62 Chapter 2 Events, Commands, and Settings
All EventArgs for routed events inherit the RoutedEventArgs class, but many of them
provide additional information. For example, KeyboardEventArgs is used in keyboard
events and provides information about keystrokes. Likewise, MouseEventArgs, used in
mouse events, provides information about the state of the mouse when the event took
place.

Quick Check
What are the three kinds of routed events in WPF and how do they differ?

Quick Check Answer
Routed events in WPF come in three different types: direct, tunneling, and
bubbling. A direct event can be raised only by the element in which it orig-
inated. A bubbling event is raised first by the element in which it originates
and then is raised by each successive container in the visual tree. A tunnel-
ing event is raised first by the topmost container in the visual tree and then
down through each successive container until it is finally raised by the
element in which it originated. Tunneling and bubbling events allow ele-
ments of the user interface to respond to events raised by their contained
elements.

Attaching an Event Handler
The preferred way to attach an event handler is directly in the Extensible Application
Markup Language (XAML) code. You set the event to the name of a method with the
appropriate signature for that event. The following example demonstrates setting the
event handler for a Button control’s Click event, as shown in bold:

<Button Height="23" Margin="132,80,70,0" Name="button1"

 VerticalAlignment="Top" Click="button1_Click">Button</Button>

Just like setting a property, you must supply a string value that indicates the name of
the method.

Attached Events
It is possible for a control to define a handler for an event that the control cannot itself
raise. These incidents are called attached events. For example, consider Button controls
in a Grid. The Button class defines a Click event, but the Grid class does not. However,

Lesson 1: Configuring Events and Event Handling 63
you still can define a handler for buttons in the grid by attaching the Click event of the
Button control in the XAML code. The following example demonstrates attaching an
event handler for a Button contained in a Grid:

<Grid Button.Click="button_Click">
 <Button Height="23" Margin="132,80,70,0" Name="button1"

 VerticalAlignment="Top" >Button</Button>

</Grid>

Now every time a button contained in the Grid shown here is clicked, the button_Click
event handler will handle that event.

Handling a Tunneling or Bubbling Event
At times, you might want to halt the further handling of tunneling or bubbling events.
For example, you might want to suppress keystroke handling at a particular level in
the control hierarchy. You can handle an event and halt any further tunneling or
bubbling by setting the Handled property of the RoutedEventArgs instance to True, as
shown here:

' VB
Private Sub TextBox1_KeyDown(ByVal sender As System.Object, _

 ByVal e As System.Windows.Input.KeyEventArgs)

 e.Handled = True

End Sub

// C#
private void textBox1_KeyDown(object sender, KeyEventArgs e)

{

 e.Handled = true;

}

Note that tunneling events and their paired bubbling events (such as PreviewKey-
Down and KeyDown) share the same instance of RoutedEventArgs. Thus, if you set the
Handled property to True on a tunneling event, its corresponding bubbling event also
is considered handled and is suppressed.

The EventManager Class
EventManager is a static class that manages the registration of all WPF routed events.
Table 2-2 describes the methods of the EventManager class.

64 Chapter 2 Events, Commands, and Settings
Defining a New Routed Event
You can use the EventManager class to define a new routed event for your WPF
controls. The following procedure describes how to define a new routed event.

� To define a new routed event
1. Create a static, read-only definition for the event, as shown in this example:

' VB
Public Shared ReadOnly SuperClickEvent As RoutedEvent

// C#
public static readonly RoutedEvent SuperClickEvent;

2. Create a wrapper for the routed event that exposes it as a traditional .NET
Framework event, as shown in this example:

' VB
Public Custom Event SuperClick As RoutedEventHandler

 AddHandler(ByVal value As RoutedEventHandler)

 Me.AddHandler(SuperClickEvent, value)

 End AddHandler

 RemoveHandler(ByVal value As RoutedEventHandler)

 Me.RemoveHandler(SuperClickEvent, value)

 End RemoveHandler

Table 2-2 EventManager Methods

Method Description

GetRoutedEvents Returns an array that contains all the
routed events that have been registered
in this application.

GetRoutedEventsForOwner Returns an array of all the routed events
that have been registered for a specified
element in this application.

RegisterClassHandler Registers a class-level event handler, as
discussed in the section “Creating a
Class-Level Event Handler,” later in this
chapter.

RegisterRoutedEvent Registers an instance-level event
handler, as discussed in the next section.

Lesson 1: Configuring Events and Event Handling 65
 RaiseEvent(ByVal sender As Object, _

 ByVal e As System.Windows.RoutedEventArgs)

 Me.RaiseEvent(e)

 End RaiseEvent

End Event

// C#
public event RoutedEventHandler SuperClick

{

 add

 {

 this.AddHandler(SuperClickEvent, value);

 }

 remove

 {

 this.RemoveHandler(SuperClickEvent, value);

 }

}

Note that you need to use a different EventArgs class than RoutedEventArgs. You
need to derive a new class from RoutedEventArgs and create a new delegate that
uses those event arguments.

3. Use EventManager to register the new event in the constructor of the class that
owns this event. You must provide the name of the event, the routing strategy
(direct, tunneling, or bubbling), the type of delegate that handles the event, and
the type of the class that owns it. An example is shown here:

' VB
EventManager.RegisterRoutedEvent("SuperClick", _

 RoutingStrategy.Bubble, GetType(RoutedEventArgs), GetType(Window1))

// C#
EventManager.RegisterRoutedEvent("SuperClick",

 RoutingStrategy.Bubble, typeof(RoutedEventHandler), typeof(Window1));

Raising an Event
Once an event is defined, you can raise it in code by creating a new instance of Routed-
EventArgs and using the RaiseEvent method, as shown here:

' VB
Dim myEventArgs As New RoutedEventArgs(myControl.myNewEvent)

MyBase.RaiseEvent(myEventArgs)

// C#
RoutedEventArgs myEventArgs = new RoutedEventArgs(myControl.myNewEvent);

RaiseEvent(myEventArgs);

66 Chapter 2 Events, Commands, and Settings
Creating a Class-Level Event Handler
You can use the EventManager class to register a class-level event handler. A class-level
event handler handles a particular event for all instances of a class, and is always
invoked before instance handlers. Thus, you can screen and suppress events before
they reach instance handlers. The following procedure describes how to implement a
class-level event handler.

� To create a class-level event handler
1. Create a static method to handle the event. This method must have the same

signature as the event. An example is shown here:

' VB
Private Shared Sub SuperClickHandlerMethod(ByVal sender As Object, _

 ByVal e As RoutedEventArgs)

 ' Handle the event here

End Sub

// C#
private static void SuperClickHandlerMethod(object sender, RoutedEventArgs e)

{

 // Handle the event here

}

2. In the static constructor for the class for which you are creating the class-level
event handler, create a delegate to this method, as shown here:

' VB
Dim SuperClickHandler As New RoutedEventHandler(_

AddressOf SuperClickHandlerMethod)

// C#
RoutedEventHandler SuperClickHandler = new

 RoutedEventHandler(SuperClickHandlerMethod);

3. Also in the static constructor, call EventManager.RegisterClassHandler to register
the class-level event handler, as shown here:

' VB
EventManager.RegisterClassHandler(GetType(Window1), _

 SuperClickEvent, SuperClickHandler)

// C#
EventManager.RegisterClassHandler(typeof(Window1),

 SuperClickEvent,SuperClickHandler);

Application-Level Events
Every WPF application is wrapped by an Application object. The Application object pro-
vides a set of events that relate to the application’s lifetime. You can handle these events

Lesson 1: Configuring Events and Event Handling 67
to execute code in response to application startup or closure. The Application object
also provides a set of events related to navigation in page-based applications. These
events were discussed in Chapter 1, “WPF Application Fundamentals.” Table 2-3
describes the available application-level events, excluding the navigation events.

Application events are standard .NET events (rather than routed events), and you can
create handlers for these events in the standard .NET way. The following procedure
explains how to create an event handler for an application-level event.

� To create an application-level event handler
1. In Visual Studio, in the Solution Explorer, right-click Application.xaml (in Visual

Basic) or App.xaml (in C#) and choose View Code to open the code file for the
Application object.

2. Create a method to handle the event, as shown here:

' VB
Private Sub App_Startup(ByVal sender As Object, _

 ByVal e As StartupEventArgs)

 ' Handle event here

End Sub

Table 2-3 Selected Application-Level Events

Event Description

Activated Occurs when you switch from another
application to your program. It also is raised the
first time you show a window.

Deactivated Occurs when you switch to another program.

DispatcherUnhandledException Raised when an unhandled exception occurs in
your application. You can handle an unhandled
exception in the event handler for this event by
setting the DispatcherUnhandledException-
EventArgs.Handled property to True.

Exit Occurs when the application is shut down for any
reason.

SessionEnding Occurs when the Windows session is ending,
such as when the user shuts down the computer
or logs off.

Startup Occurs as the application is started.

68 Chapter 2 Events, Commands, and Settings
// C#
void App_Startup(object sender, StartupEventArgs e)

{

 // Handle the event here

}

3. In XAML view for the Application object, add the event handler to the Applica-
tion declaration, as shown in bold here:

<Application x:Class="Application"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 StartupUri="Window1.xaml" Startup="App_Startup">

Lab: Practice with Routed Events
In this lab, you practice using routed events. You create event handlers for the TextBox
.TextChanged event in three different controls in the visual tree and observe how the
event is raised and handled by each one.

Exercise: Creating an Event Handler
1. In Visual Studio, create a new WPF application.

2. From the Toolbox, drag a TextBox and three RadioButton controls onto the
design surface. Note that at this point, these controls are contained by a Grid
control that is in itself contained in the top-level Window control. Thus any
bubbling events raised by the TextBox will bubble up first to the Grid and then to
the Window.

3. In XAML view, set the display contents of the RadioButton controls as follows:

4. In the XAML for the TextBox, just before the />, type TextChanged and then
press the Tab key twice. An entry for an event handler is created and a corre-
sponding method is created in the code. The event-handler entry should look
like the following:

TextChanged="TextBox1_TextChanged"

RadioButton Content

RadioButton1 Handle Textbox.TextChanged in TextBox

RadioButton2 Handle Textbox.TextChanged in Grid

RadioButton3 Handle Textbox.TextChanged in Window

Lesson 1: Configuring Events and Event Handling 69
5. In the XAML for the Grid, type TextBoxBase.TextChanged and then press the
Tab key twice to generate an event handler. The added XAML should look like this:

TextBoxBase.TextChanged="Grid_TextChanged"

6. In the XAML for the Window, type TextBoxBase.TextChanged and then press
the Tab key twice to generate an event handler. The added XAML should look
like this:

TextBoxBase.TextChanged="Window_TextChanged"

7. In Code view, add the following code to the Textbox1_TextChanged method:

' VB
MessageBox.Show("Event raised by Textbox")

e.Handled = RadioButton1.IsChecked

// C#
MessageBox.Show("Event raised by Textbox");

e.Handled = (bool)radioButton1.IsChecked;

8. Add the following code to the Grid_TextChanged method:

' VB
MessageBox.Show("Event raised by Grid")

e.Handled = RadioButton2.IsChecked

// C#
MessageBox.Show("Event raised by Grid");

e.Handled = (bool)radioButton2.IsChecked;

9. Add the following code to the Window_TextChanged method:

' VB
MessageBox.Show("Event raised by Window")

e.Handled = RadioButton3.IsChecked

// C#
MessageBox.Show("Event raised by Window");

e.Handled = (bool)radioButton3.IsChecked;

10. Press F5 to build and run your application. Type a letter in the TextBox. Three
message boxes are displayed, each one indicating the control that raised the
event. You can handle the event by choosing one of the radio buttons to halt
event bubbling in the event handlers.

Lesson Summary
WPF applications introduce a new kind of event called routed events. Routed
events are raised by WPF controls.

There are three kinds of routed events: direct, bubbling, and tunneling. Direct
events are raised only by the control in which they originate. Bubbling and

70 Chapter 2 Events, Commands, and Settings
tunneling events are raised by the control in which they originate and all controls
that are higher in the visual tree.

A tunneling event is raised first by the top-level control in the visual tree and
tunnels down through the tree until it is finally raised by the control in which it
originates. A bubbling event is raised first by the control in which the event orig-
inates and then bubbles up through the visual tree until it is finally raised by the
top-level control in the visual tree.

You can attach events that exist in contained controls to controls that are higher
in the visual tree.

The EventManager class exposes methods that allow you to manage events in
your application. You can register a new routed event by using the EventManager
.RegisterRoutedEvent class. You can create a class-level event handler by using
EventManager.RegisterClassHandler.

The Application object raises several events that can be handled to execute code
at various points in the application’s lifetime. You can handle application-level
events in the code for the Application object.

Lesson Review
You can use the following questions to test your knowledge of the information in
Lesson 1, “Configuring Events and Event Handling.” The questions are also available
on the companion CD of this book if you prefer to review them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is correct or incorrect are
located in the “Answers” section at the end of the book.

1. Suppose you have the following XAML code:

<Window x:Class="WpfApplication1.Window1"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Title="Window1" Height="300" Width="300"

 ButtonBase.Click="Window_Click">

 <Grid ButtonBase.Click="Grid_Click">

 <StackPanel Margin="47,54,31,108" Name="stackPanel1"

 ButtonBase.Click="stackPanel1_Click">

 <Button Height="23" Name="button1" Width="75">Button</Button>

 </StackPanel>

 </Grid>

</Window>

Lesson 1: Configuring Events and Event Handling 71
Which method will be executed first when button1 is clicked?

A. Button1_Click

B. stackPanel1_Click

C. Grid_Click

D. Window_Click

2. Suppose you have the following XAML code:

<Window x:Class="WpfApplication1.Window1"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Title="Window1" Height="300" Width="300" MouseDown="Window_MouseDown">

 <Grid PreviewMouseDown="Grid_PreviewMouseDown">

 <StackPanel Margin="47,54,31,108" Name="stackPanel1"

 PreviewMouseDown="stackPanel1_PreviewMouseDown">

 <Button Click="button1_Click" Height="23" Name="button1"

 Width="75">Button</Button>

 </StackPanel>

 </Grid>

</Window>

Which method will be executed first when button1 is clicked?

A. Window_MouseDown

B. Grid_PreviewMouseDown

C. stackPanel1_PreviewMouseDown

D. button1_Click

3. You are writing an application that consists of a single WPF window. You have
code that you want to execute when the window first appears and every time the
window is activated. What application event or events should you handle to
accomplish this goal?

A. Activated

B. Startup

C. Activated and Startup

D. Deactivated and Startup

72 Chapter 2 Events, Commands, and Settings
Lesson 2: Configuring Commands
WPF introduces new objects called commands. Commands represent high-level tasks
that are performed in the application. For example, Paste is an example of a command—
it represents the task of copying an object from the clipboard into a container. WPF
provides a cohesive architecture for creating commands, associating them with appli-
cation tasks, and hooking those commands up to user interface (UI) elements. In this
lesson, you will learn to use the built-in command library, associate these commands
with UI elements, define command handlers, add a gesture to a command, and define
custom commands.

After this lesson, you will be able to:
Explain the different parts of a command
Associate a command with a UI element
Add a gesture to a command
Execute a command
Associate a command with a command handler
Disable a command
Create a custom command

Estimated lesson time: 30 minutes

Commands, such as Cut, Copy, and Paste, represent tasks. In past versions of the
.NET Framework, there was no complete architecture for associating code with tasks.
For example, suppose you wanted to implement a Paste task in your application. You
would create the code to execute the task, and then associate your UI element with
that code via events. For example, you might have a MenuItem element that triggers
the code when selected. You also might have context menu items and perhaps even a
Button control. In past versions of the .NET Framework, you would have had to create
event handlers for each control with which you want to associate the task. In addition,
you would have had to implement code to inactivate each of these controls if the task
was unavailable. While not an impossible task, doing this requires tedious coding
that can be fraught with errors.

Commands allow you to use a centralized architecture for tasks. You can associate any
number of UI controls or input gestures to a command and bind that command to a
handler that is executed when controls are activated or gestures are performed.
Commands also keep track of whether or not they are available. If a command is
disabled, UI elements associated with that command are disabled, too.

Lesson 2: Configuring Commands 73
Command architecture consists of four principal parts. There is the Command object
itself, which represents the task. Then there are command sources. A command source
is a control or gesture that triggers the command when invoked. The command handler
is a method that is executed when the command is invoked, and CommandBinding is
an object that is used by the .NET Framework to track what commands are associated
with which sources and handlers.

The .NET Framework provides several predefined commands that are available for
use by developers. These built-in commands are static objects that are properties of
five static classes, which are the following:

ApplicationCommands

ComponentCommands

EditingCommands

MediaCommands

NavigationCommands

Each of these classes exposes a variety of static command objects that you can use in
your applications. While some of these commands have default input bindings
(for example, the ApplicationCommands.Open command has a default binding to the
key combination Ctrl+O), none of these commands has any inherent functionality—
you must create bindings and handlers for these commands to use them in your
application.

A High-Level Procedure for Implementing a Command
The following section describes a high-level procedure for implementing command
functionality. The steps of this procedure are discussed in greater detail in the
subsequent sections.

� To implement a command
1. Decide on the command to use, whether it is one of the static commands

exposed by the .NET Framework or a custom command.

2. Associate the command with any controls in the user interface and add any
desired input gestures to the command.

3. Create a method to handle the command.

4. Create a CommandBinding that binds the Command object to the command han-
dler and optionally to a method that handles Command.CanExecute.

74 Chapter 2 Events, Commands, and Settings
5. Add the command binding to the Commands collection of the control or Window
where the command is invoked.

Invoking Commands
Once a command has been implemented, you can invoke it by associating it with a
control, using a gesture, or invoking it directly from code.

Associating Commands with Controls
Many WPF controls implement the ICommandSource interface, which allows them to
have a command associated with them that is fired automatically when that control is
invoked. For example, Button and MenuItem controls implement ICommandSource
and thus expose a Command property. When this property is set to a command, that
command is executed automatically when the control is clicked. You can set a
command for a control in XAML, as shown here:

<Button Command="ApplicationCommands.Find" Height="23"
HorizontalAlignment="Right" Margin="0,0,38,80" Name="Button3"

VerticalAlignment="Bottom" Width="75">Button</Button>

Invoking Commands with Gestures
You also can register mouse and keyboard gestures with Command objects that invoke
the command when those gestures occur. The following example code shows how to
add a mouse gesture and a keyboard gesture to the InputGestures collection of the
Application.Find command:

' VB
ApplicationCommands.Find.InputGestures.Add(New _

 MouseGesture(MouseAction.LeftClick, ModifierKeys.Control))

ApplicationCommands.Find.InputGestures.Add(New _

 KeyGesture(Key.Q, ModifierKeys.Control))

// C#
ApplicationCommands.Find.InputGestures.Add(new

 MouseGesture(MouseAction.LeftClick, ModifierKeys.Control));

ApplicationCommands.Find.InputGestures.Add(new

 KeyGesture(Key.Q, ModifierKeys.Control));

Once the code in the previous example is executed, the Find command executes
either when the Ctrl key is held down and the left mouse button is clicked, or when
the Ctrl key and the Q key are held down together (Ctrl+Q).

Lesson 2: Configuring Commands 75
Invoking Commands from Code
You might want to invoke a command directly from code, such as in response to an
event in a control that does not expose a Command property. To invoke a command
directly, simply call the Command.Execute method, as shown here:

' VB
ApplicationCommands.Find.Execute(aParameter, TargetControl)

// C#
ApplicationCommands.Find.Execute(aParameter, TargetControl);

In this example, aParameter represents an object that contains any required parameter
data for the command. If no parameter is needed, you can use null (Nothing in Visual
Basic). TargetControl is a control where the command originates. The run time will
start looking for CommandBindings in this control and then bubble up through the
visual tree until an appropriate CommandBinding is found.

Command Handlers and Command Bindings
As stated before, just invoking a command doesn’t actually do anything. Commands
represent tasks, but they do not contain any of the code for the tasks they represent.
To execute code when a command is invoked, you must create a CommandBinding
that binds the command to a command handler.

Command Handlers
Any method with the correct signature can be a command handler. Command handlers
have the following signature:

' VB
Private Sub myCommandHandler(ByVal sender As Object, _

 ByVal e As ExecutedRoutedEventArgs)

 ' Handle the command here

End Sub

// C#
private void myCommandHandler(object sender, ExecutedRoutedEventArgs e)

{

 // Handle the command here

}

ExecutedRoutedEventArgs is derived from RoutedEventArgs and thus exposes all the
members that RoutedEventArgs does. In addition, it exposes a Command property that
returns the Command object that is being handled.

76 Chapter 2 Events, Commands, and Settings
Command Bindings
The CommandBinding object provides the glue that holds the whole command archi-
tecture together. A CommandBinding associates a command with a command handler.
Adding a CommandBinding to the CommandBindings collection of the Window or a
control registers the CommandBinding and allows the command handler to be called
when the command is invoked. The following code demonstrates how to create and
register a CommandBinding:

' VB
Dim abinding As New CommandBinding()

abinding.Command = ApplicationCommands.Find

AddHandler abinding.Executed, AddressOf myCommandHandler

Me.CommandBindings.Add(abinding)

// C#
CommandBinding abinding = new CommandBinding();

abinding.Command = ApplicationCommands.Find;

abinding.Executed += new ExecutedRoutedEventHandler(myCommandHandler);

this.CommandBindings.Add(abinding);

In the preceding example, you first create a new CommandBinding object. You then
associate that CommandBinding object with a Command object. Next, you specify the
command handler that will be executed when the command is invoked, and finally,
you add the CommandBinding object to the CommandBindings collection of the Win-
dow. Thus, if an object in the window invokes the command, the corresponding com-
mand handler will be executed.

You also can define CommandBindings directly in the XAML. You can create a new
binding and declaratively set the command it is associated with and the associated
handlers. The following example demonstrates a new CommandBinding in the Com-
mandBinding collection of the window that associates the Application.Find command
with a handler:

<Window.CommandBindings>

 <CommandBinding Command="ApplicationCommands.Find"

 Executed="myCommandHandler" />

</Window.CommandBindings>

Command Bubbling
Note that all controls have their own CommandBindings collection in addition to the
window’s CommandBindings collection. This is because commands, like routed events,
bubble up through the visual tree when they are invoked. Commands look for a bind-
ing first in the CommandBindings collection of the control in which they originate, and

Lesson 2: Configuring Commands 77
then in the CommandBindings collections of controls higher on the visual tree. Like a
routedEvent, you can stop further processing of the command by setting the Handled
property of the ExecutedRoutedEventArgs parameter to True, as shown here:

' VB
Private Sub myCommandHandler(ByVal sender As Object, _

 ByVal e As ExecutedRoutedEventArgs)

 ' Stops further Command bubbling

 e.Handled = True

End Sub

// C#
private void myCommandHandler(object sender, ExecutedRoutedEventArgs e)

{

 // Handle the command here

 e.Handled = true;

}

Exam Tip Bubbling and tunneling are concepts that are new to WPF and that play important
roles both in commands and how WPF handles routed events. Be certain that you understand the
concepts of bubbling and tunneling events and bubbling commands for the exam. Remember that
a command or event doesn’t need to be handled by the same element in which it originates.

Disabling Commands
Any command that is not associated with a CommandBinding is automatically dis-
abled. No action is taken when that command is invoked, and any control that has its
Command property set to that command appears as disabled. However, there might
be times that you want to disable a command that is in place and associated with con-
trols and CommandBindings. For example, you might want the Print command to be
disabled until the focus is on a document. The command architecture allows you to
designate a method to handle the Command.CanExecute event. The CanExecute event
is raised at various points in the course of application execution to determine whether
a command is in a state that will allow execution.

Methods that handle the CanExecute event include an instance of CanExecuteRouted
EventArgs as a parameter. This class exposes a property called CanExecute that is a bool-
ean value. If CanExecute is true, the command can be invoked. If it is false, the command
is disabled. You can create a method that handles the CanExecute event, determines
whether or not the application is in an appropriate state to allow command execution,
and sets e.CanExecute to the appropriate value.

78 Chapter 2 Events, Commands, and Settings
� To handle the CanExecute event
1. Create a method to handle the CanExecute event. This method should query the

application to determine whether the application’s state is appropriate to allow
the command to be enabled. An example is shown here:

' VB
Private canExecute As Boolean

Private Sub abinding_CanExecute(ByVal sender As Object, _

 ByVal e As CanExecuteRoutedEventArgs)

 e.CanExecute = canExecute

End Sub

// C#
bool canExecute;

void abinding_CanExecute(object sender, CanExecuteRoutedEventArgs e)

{

 e.CanExecute = canExecute;

}

In this example, the method returns the value represented by a private variable
called canExecute. Presumably, the application sets this to False whenever it
requires the command to be disabled.

2. Set the CanExecute handler on the CommandBinding to point to this method, as
shown here:

' VB
' Assumes that you have already created a CommandBinding called abinding

AddHandler abinding.CanExecute, AddressOf abinding_CanExecute

// C#
// Assumes that you have already created a CommandBinding called abinding

abinding.CanExecute += new CanExecuteRoutedEventHandler(abinding_CanExecute);

Alternatively, create a new binding in XAML and specify the handler there, as
shown here in bold:

<Window.CommandBindings>

 <CommandBinding Command="ApplicationCommands.Find"

 Executed="CommandBinding_Executed"

 CanExecute="abinding_CanExecute" />
</Window.CommandBindings>

Creating Custom Commands
Although a wide variety of pre-existing commands is at your disposal, you might want
to create your own custom commands. The best practice for custom commands is
to follow the example set in the .NET Framework and create static classes (in C#) or

Lesson 2: Configuring Commands 79
modules (in Visual Basic) that expose static instances of the custom command. This
keeps multiple instances of the command from being created. You also can provide any
custom configuration for the command in the static constructor of the class—for exam-
ple, if you want to map any input gestures to the command. The following example
shows how to create a static class that exposes a custom command called Launch:

' VB
Public Module MyCommands

 Private launch_command As RoutedUICommand

 Sub New()

 Dim myInputGestures As New InputGestureCollection

 myInputGestures.Add(New KeyGesture(Key.L, ModifierKeys.Control))

 launch_command = New RoutedUICommand("Launch", "Launch", _

 GetType(MyCommands), myInputGestures)

 End Sub

 Public ReadOnly Property Launch() As RoutedUICommand

 Get

 Return launch_command

 End Get

 End Property

End Module

// C#
public class MyCommands

{

 private static RoutedUICommand launch_command;

 static MyCommands()

 {

 InputGestureCollection myInputGestures = new

 InputGestureCollection();

 myInputGestures.Add(new KeyGesture(Key.L, ModifierKeys.Control));

 launch_command = new RoutedUICommand("Launch", "Launch",

 typeof(MyCommands), myInputGestures);

 }

 public RoutedUICommand Launch

 {

 get

 {

 return launch_command;

 }

 }

}

In this example, a static class or module is created to contain the custom command,
which is exposed through a read-only property. In the static constructor, a new Input-
GesturesCollection is created and a key gesture is added to the collection. This collec-
tion is then used to initialize the instance of RoutedUICommand that is returned
through the read-only property.

80 Chapter 2 Events, Commands, and Settings
Using Custom Commands in XAML
Once you have created a custom command, you are ready to use it in code. If you want
to use it in XAML, however, you also must map the namespace that contains the cus-
tom command to a XAML namespace. The following procedure describes how to use
a custom command in XAML.

� To use a custom command in XAML
1. Create your custom command, as described previously.

2. Add a namespace mapping to your Window XAML. The following example dem-
onstrates how to map a namespace called WpfApplication13.CustomCommands.
Note that in this example, that would mean that your custom commands are
kept in a separate namespace:

<Window x:Class="Window1"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:CustomCommands="clr-namespace:WpfApplication13.CustomCommands"

 Title="Window1" Height="300" Width="300">

 <!—The rest of the XAML is omitted-->

</Window>

3. Use the newly mapped XAML namespace in your XAML code, as shown here:

<Button Command="CustomCommands:MyCommands.Launch" Height="23"
HorizontalAlignment="Left" Margin="60,91,0,0" Name="Button1" VerticalAlignment="Top"

Width="75">Button</Button>

Lab: Creating a Custom Command
In this lab, you create a custom command and then connect your command to UI
elements by using a CommandBinding.

Exercise 1: Creating a Custom Command
1. From the CD, open the partial solution for this exercise.

2. From the Project menu, choose Add Class (in C#) or Add Module (in Visual
Basic). Name the new item CustomCommands and click OK. Set the access
modifier of this class or module to public.

3. If you are working in C#, add the following using statement to your class:

using System.Windows.Input;

Otherwise, go on to Step 4.

Lesson 2: Configuring Commands 81
4. Add a read-only property named Launch and a corresponding member variable
that returns an instance of a RoutedUICommand, as shown here. (Note that these
should be static members in C#.)

' VB
Private launch_command As RoutedUICommand

Public ReadOnly Property Launch() As RoutedUICommand

 Get

 Return launch_command

 End Get

End Property

// C#
private static RoutedUICommand launch_command;

public static RoutedUICommand Launch

{

 get

 {

 return launch_command;

 }

}

5. Add a constructor to your module (in Visual Basic) or a static constructor
to your class (in C#) that creates a new InputGestureCollection, adds an appro-
priate input gesture to be associated with this new command, and then
initializes the member variable that returns the custom command, as shown
here:

' VB
Sub New()

 Dim myInputGestures As New InputGestureCollection

 myInputGestures.Add(New KeyGesture(Key.L, ModifierKeys.Control))

 launch_command = New RoutedUICommand("Launch", "Launch", _

 GetType(CustomCommands), myInputGestures)

End Sub

// C#
static CustomCommands()

{

 InputGestureCollection myInputGestures = new

 InputGestureCollection();

 myInputGestures.Add(new KeyGesture(Key.L, ModifierKeys.Control));

 launch_command = new RoutedUICommand("Launch", "Launch",

 typeof(CustomCommands), myInputGestures);

}

6. From the Build menu, choose Build Solution to build your solution.

82 Chapter 2 Events, Commands, and Settings
Exercise 2: Using Your Custom Command
1. In XAML view, add the following code to your Window markup to create a reference

to the class that contains your custom command:

xmlns:Local="clr-namespace:YourProjectNamespaceGoesHere"

The previous code in bold should be replaced with the namespace name of your
project.

2. In XAML view, add the following attribute to both your Button control and your
Launch MenuItem:

Command="Local:CustomCommands.Launch"

3. In the Window1 code view, add the following method:

' VB
Private Sub Launch_Handler(ByVal sender As Object, _

 ByVal e As ExecutedRoutedEventArgs)

 MessageBox.Show("Launch invoked")

End Sub

// C#
private void Launch_Handler(object sender, ExecutedRoutedEventArgs e)

{

 MessageBox.Show("Launch invoked");

}

4. From the Toolbox, drag a CheckBox control onto the form. Set the content of the
control to “Enable Launch Command”.

5. In the code view for Window1, add the following method:

' VB
Private Sub LaunchEnabled_Handler(ByVal sender As Object, _

 ByVal e As CanExecuteRoutedEventArgs)

 e.CanExecute = CheckBox1.IsChecked

End Sub

// C#
private void LaunchEnabled_Handler(object sender,

 CanExecuteRoutedEventArgs e)

{

 e.CanExecute = (bool)checkBox1.IsChecked;

}

6. Create or replace the constructor for Window1 that creates and registers
a CommandBinding for the Launch command. This CommandBinding should bind
the Launch.Executed event to the Launch_Handler method and bind the
Launch.CanExecute event to the LaunchEnabled_Handler method. An example is
shown here:

Lesson 2: Configuring Commands 83
' VB
Public Sub New()

 InitializeComponent()

 Dim abinding As New CommandBinding()

 abinding.Command = CustomCommands.Launch

 AddHandler abinding.Executed, AddressOf Launch_Handler

 AddHandler abinding.CanExecute, AddressOf LaunchEnabled_Handler

 Me.CommandBindings.Add(abinding)

End Sub

// C#
public Window1()

{

 InitializeComponent();

 CommandBinding abinding = new CommandBinding();

 abinding.Command = CustomCommands.Launch;

 abinding.Executed += new ExecutedRoutedEventHandler(Launch_Handler);

 abinding.CanExecute += new

 CanExecuteRoutedEventHandler(LaunchEnabled_Handler);

 this.CommandBindings.Add(abinding);

}

7. Press F5 to build and run your application. Note that when the application
starts, the Button and Launch menu item are disabled. Select the check box to
enable the command. Now you can invoke the command from the button, from
the menu, or by using the Ctrl+L input gesture.

Lesson Summary
Commands provide a central architecture for managing high-level tasks. The
.NET Framework provides a library of built-in commands that map to common
tasks that can be used in your applications.

Commands can be invoked directly, by an input gesture such as a MouseGesture
or a KeyGesture, or by activating a custom control. A single command can be
associated with any number of gestures or controls.

CommandBindings associate commands with command handlers. You can spec-
ify a method to handle the Executed event of a command and another method to
handle the CanExecute event of a command.

Methods handling the CanExecute event of a command should set the CanExecute
property of the CanExecuteRoutedEventArgs to False when the command should
be disabled.

Commands can be bound by any number of CommandBindings. Commands
exhibit bubbling behavior. When invoked, commands first look for a binding in

84 Chapter 2 Events, Commands, and Settings
the collection of the element that the command was invoked in, and then look
in each higher element in the visual tree.

You can create custom commands. When you have created a custom command,
you must map the namespace in which it exists to a XAML namespace in your
XAML view.

Lesson Review
You can use the following questions to test your knowledge of the information in
Lesson 2, “Configuring Commands.” The questions are also available on the companion
CD if you prefer to review them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is correct or incorrect are
located in the “Answers” section at the end of the book.

1. Which of the following is required to bind a command to a command handler?
(Choose all that apply.)

A. Instantiate a new instance of CommandBinding

B. Set the CommandBinding.Command property to a command

C. Add one or more input gestures to your command

D. Add a handler for the CommandBinding.Executed event

E. Add a handler for the CommandBinding.CanExecute event

F. Add CommandBinding to the CommandBindings collection of the Window or
other control associated with the command

2. You are working with an application that exposes a command named Launch.
This command is registered in the CommandBindings collection of a control
called Window11 and requires a String parameter. Which of the following code
snippets invokes the command from code correctly?

A.

' VB
Launch.CanExecute = True

Launch.Execute("Boom", Window11)

// C#
Launch.CanExecute = true;

Launch.Execute("Boom", Window11);

Lesson 2: Configuring Commands 85
B.

' VB
Launch.Execute("Boom")

// C#
Launch.Execute("Boom");

C.

' VB
Launch.Execute("Boom", Window11)

// C#
Launch.Execute("Boom", Window11);

D.

' VB
Window11.CanExecute(Launch, True)

Launch.Execute("Boom", Window11)

// C#
Window11.CanExecute(Launch, true);

Launch.Execute("Boom", Window11);

86 Chapter 2 Events, Commands, and Settings
Lesson 3: Configuring Application Settings
The .NET Framework allows you to create and access values that persist from applica-
tion session to application session. The values are called settings. Settings can represent
any kind of information that an application might need from session to session, such as
user preferences, the address of a Web server, or any other kind of necessary informa-
tion. In this lesson, you will learn to create and access settings. You will learn the differ-
ence between a user setting and an application setting, and you will learn to load and
save settings at run time.

After this lesson, you will be able to:
Explain the difference between a user setting and an application setting
Create a new setting at design time
Load settings at run time
Save user settings at run time

Estimated lesson time: 15 minutes

Settings can be used to store information that is valuable to the application but might
change from time to time. For example, you can use settings to store user preferences,
such as the color scheme of an application, or the address of a Web server used by the
application.

Settings have four properties:

Name, which indicates the name of the setting. This is used to access the setting
at run time.

Type, which represents the data type of the setting.

Value, which is the value returned by the setting.

Scope, which can be either User or Application.

The Name, Type, and Value properties should be fairly self-explanatory. The Scope
property, however, bears a little closer examination. The Scope property can be set to
either Application or User. A setting with Application scope represents a value that is
used by the entire application regardless of the user, whereas an application with User
scope is more likely to be user-specific and less crucial to the application.

An important distinction between user settings and application settings is that user
settings are read/write. They can be read and written to at run time, and newly written

Lesson 3: Configuring Application Settings 87
values can be saved by the application. In contrast, Application settings are read-only
and the values can be changed only at design time or by editing the Settings file
between application sessions.

Creating Settings at Design Time
Visual Studio provides an editor to create settings for your application at design time.
This editor is shown in Figure 2-1.

Figure 2-1 The Settings Editor

The Settings Editor allows you to create new settings and set each of their four prop-
erties. The Name property, the name that you use to retrieve the setting value, must be
unique in the application. The Type property represents the type of the setting. The
Scope property is either Application, which represents a read-only property, or User,
which represents a read-write setting. Finally, the Value property represents the value
returned by the setting. The Value property must be of the type specified by the Type
property.

� To create a setting at design time
1. If you are working in C#, in Solution Explorer, under Properties, locate and double-

click Settings.settings to open the Settings Editor. If you are working in Visual Basic,
in Solution Explorer, double-click MyProject and select the Settings tab.

2. Set the Name, Type, Scope, and Value for the new setting.

3. If your application has not yet been saved, choose Save All from the File menu to
save your application.

88 Chapter 2 Events, Commands, and Settings
Loading Settings at Run Time
At run time, you can access the values contained by the settings. In Visual Basic,
settings are exposed through the My object, whereas in C#, you access settings
through the Properties.Settings.Default object. At design time, individual settings
appear in IntelliSense as properties of the Settings object and can be treated in code as
such. Settings are strongly typed and are retrieved as the same type as specified when
they were created. The following example code demonstrates how to copy the value
from a setting to a variable:

' VB
Dim aString As String

aString = My.Settings.MyStringSetting

// C#
String aString;

aString = Properties.Settings.Default.MyStringSetting;

Saving User Settings at Run Time
You can save the value of user settings at run time. To change the value of a user
setting, simply assign it a new value, just as you would any property or field. Then you
must call the Save method to save the new value. An example is shown here:

' VB
My.Settings.Headline = "This is tomorrow's headline"

My.Settings.Save

// C#
Properties.Settings.Default.Headline = "This is tomorrow's headline";

Properties.Settings.Default.Save();

Quick Check
What is the difference between a user setting and an application setting?

Quick Check Answer
A user setting is designed to be user-specific, such as a background color.
User settings can be written at run time and can vary from user to user. An
application setting is designed to be constant for all users of an application,
such as a database connection string. Application settings are read-only at
run time.

Lesson 3: Configuring Application Settings 89
Lab: Practice with Settings
In this lab you create an application that uses settings. You define settings while build-
ing the application, read the settings, apply them in your application, and enable the
user to change one of the settings.

Exercise: Using Settings
1. In Visual Studio, create a new WPF application.

2. In Solution Explorer, expand Properties and double-click Settings.settings (in C#)
or double-click My Project and choose the Settings tab (in Visual Basic) to open
the Settings Editor.

3. Add two settings, as described in this table:

Note that you will have to browse to find the System.Windows.Media type, then
expand the node to find the System.Windows.Media.Color type.

4. In XAML view, add the following XAML to the Grid element to add a ListBox with
four items and a Button to your user interface:

<ListBox Margin="15,15,0,0" Name="listBox1" Height="78"

 HorizontalAlignment="Left" VerticalAlignment="Top" Width="107">

 <ListBoxItem>Red</ListBoxItem>

 <ListBoxItem>Blue</ListBoxItem>

 <ListBoxItem>Green</ListBoxItem>

 <ListBoxItem>Tomato</ListBoxItem>

</ListBox>

<Button Margin="15,106,110,130" Name="button1">Change Background

 Color</Button>

5. In the designer, double-click button1 to open the code view to the default
handler for the Click event. Add the following code:

' VB
If Not listBox1.SelectedItem Is Nothing Then

 Dim astring As String = CType(listBox1.SelectedItem, _

 ListBoxItem).Content.ToString

 Select Case astring

 Case "Red"

 My.Settings.BackgroundColor = Colors.Red

Name Type Scope Value

ApplicationName String Application Settings App

BackgroundColor System.Windows.Media.Color User #ff0000ff

90 Chapter 2 Events, Commands, and Settings
 Case "Blue"

 My.Settings.BackgroundColor = Colors.Blue

 Case "Green"

 My.Settings.BackgroundColor = Colors.Green

 Case "Tomato"

 My.Settings.BackgroundColor = Colors.Tomato

 End Select

 Me.Background = New _

 System.Windows.Media.SolidColorBrush(My.Settings.BackgroundColor)

 My.Settings.Save()

End If

// C#
if (!(listBox1.SelectedItem == null))

{

 String astring =

 ((ListBoxItem)listBox1.SelectedItem).Content.ToString();

 switch (astring)

 {

 case "Red":

 Properties.Settings.Default.BackgroundColor = Colors.Red;

 break;

 case "Blue":

 Properties.Settings.Default.BackgroundColor = Colors.Blue;

 break;

 case "Green":

 Properties.Settings.Default.BackgroundColor = Colors.Green;

 break;

 case "Tomato":

 Properties.Settings.Default.BackgroundColor = Colors.Tomato;

 break;

 }

 this.Background = new

 System.Windows.Media.SolidColorBrush(

 Properties.Settings.Default.BackgroundColor);

 Properties.Settings.Default.Save();

}

6. Create or replace the constructor for this class with the following code to read
and apply the settings:

' VB
Public Sub New()

 InitializeComponent()

 Me.Title = My.Settings.ApplicationName

 Me.Background = New _

 System.Windows.Media.SolidColorBrush(My.Settings.BackgroundColor)

End Sub

// C#
public Window1()

{

 InitializeComponent();

Lesson 3: Configuring Application Settings 91
 this.Title = Properties.Settings.Default.ApplicationName;

 this.Background = new

 System.Windows.Media.SolidColorBrush(

 Properties.Settings.Default.BackgroundColor);

}

7. Press F5 to build and run your application. Note that the title of the window is the
value of your ApplicationName setting and the background color of your window
is the value indicated by the BackgroundColor setting. You can change the back-
ground color by selecting an item in the ListBox and clicking the button. After
changing the background color, close the application and restart it. Note that the
background color of the application at startup is the same as it was when the pre-
vious application session ended.

Lesson Summary
Settings allow you to persist values between application sessions. You can add
new settings at design time by using the Settings Editor.

Settings can be one of two different scopes. Settings with Application scope are
read-only at run time and can be changed only by altering the Settings file
between application sessions. Settings with User scope are read-write at run time.

You can access settings in code through My.Settings in Visual Basic, or Proper-
ties.Settings.Default in C#.

Lesson Review
You can use the following questions to test your knowledge of the information in
Lesson 3, “Configuring Application Settings.” The questions are also available on the
companion CD if you prefer to review them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is correct or incorrect are
located in the “Answers” section at the end of the book.

1. Which of the following code snippets correctly sets the value of a setting called
Title and persists it?

A.

' VB
My.Settings("Title") = "New Title"

My.Settings.Save

92 Chapter 2 Events, Commands, and Settings
// C#
Properties.Settings.Default["Title"] = "New Title";

Properties.Settings.Default.Save();

B.

' VB
My.Settings("Title") = "New Title"

// C#
Properties.Settings.Default["Title"] = "New Title";

C.

' VB
My.Settings.Title = "New Title"

My.Settings.Save()

// C#
Properties.Settings.Default.Title = "New Title";

Properties.Settings.Default.Save();

D.

' VB
My.Settings.Title = "New Title"

// C#
Properties.Settings.Default.Title = "New Title";

2. Which of the following code snippets reads a setting of type System.Windows
.Media.Color named MyColor correctly?

A.

' VB
Dim aColor As System.Windows.Media.Color

aColor = CType(My.Settings.MyColor, System.Windows.Media.Color)

// C#
System.Windows.Media.Color aColor;

aColor = (System.Windows.Media.Color)Properties.Settings.Default.MyColor;

B.

' VB
Dim aColor As System.Windows.Media.Color

aColor = My.Settings.MyColor.ToColor()

// C#
System.Windows.Media.Color aColor;

aColor = Properties.Settings.Default.MyColor.ToColor();

Lesson 3: Configuring Application Settings 93
C.

' VB
Dim aColor As Object

aColor = My.Settings.MyColor

// C#
Object aColor;

aColor = Properties.Settings.Default.MyColor;

D.

' VB
Dim aColor As System.Windows.Media.Color

aColor = My.Settings.MyColor

// C#
System.Windows.Media.Color aColor;

aColor = Properties.Settings.Default.MyColor;

94 Chapter 2 Review
Chapter Review
To practice and reinforce the skills you learned in this chapter further, you can do any
or all of the following:

Review the chapter summary.

Review the list of key terms introduced in this chapter.

Complete the case scenarios. These scenarios set up real-world situations involving
the topics of this chapter and ask you to create a solution.

Complete the suggested practices.

Take a practice test.

Chapter Summary
Routed events can be raised by multiple UI elements in the visual tree. Bubbling
events are raised first by the element in which they originate and then bubble up
through the visual tree. Tunneling events are raised first by the topmost element
in the visual tree and tunnel down to the element in which the event originates.
Direct events are raised only by the element in which they originate.

Elements in the visual tree can handle events that they do not themselves define.
These are called attached events. You can define a handler for an attached event in
the XAML that defines the element.

You can use the EventManager class to register a new routed event and to register
a class event handler.

Commands provide an architecture that allows you to define high-level tasks,
connect those tasks to a variety of inputs, define handlers that execute code
when commands are invoked, and determine when a command is unavailable.

You can use the built-in library of commands or create custom commands for
your application. Commands can be triggered by controls, input gestures, or
direct invocation.

The CommandBinding object binds commands to command handlers.

Settings allow you to create applications that persist between application
sessions. Application scope settings are read-only at run time, and user scope
settings are read-write at run time.

Settings are exposed as strongly typed properties on the My.Settings object
(in Visual Basic) and the Properties.Settings.Default object (in C#).

Chapter 2 Review 95
Key Terms
Do you know what these key terms mean? You can check your answers by looking up
the terms in the glossary at the end of the book.

Application Setting

Bubbling Event

Command

Command Handler

Direct Event

Event Handler

Gesture

Routed Event

Setting

Tunneling Event

User Setting

Case Scenarios
In the following case scenarios, you will apply what you’ve learned about how to use
commands, events, and settings to design user interfaces. You can find answers to
these questions in the “Answers” section at the end of this book.

Case Scenario 1: Validating User Input
You’re creating a form that will be used by Humongous Insurance data entry personnel
to input data. The form consists of several TextBox controls that receive input. Data
entry is expected to proceed quickly and without errors, but to help ensure this you will
be designing validation for this form. This validation is somewhat complex—there is a
set of characters that is not allowed in any text box on the form, and each text box has
additional limitations that differ from control to control. You would like to implement
this validation scheme with a minimum of code in order to make troubleshooting and
maintenance simple.

96 Chapter 2 Review
Question
Answer the following question for your manager:

What strategies can we use to implement these requirements?

Case Scenario 2: Humongous Insurance User Interface
The front end for this database is just as complex as the validation requirements. You
are faced with a front end that exposes many menu options. Furthermore, for expert
users, some of the more commonly used menu items can be triggered by holding
down the Ctrl key while performing various gestures with the mouse. Functionality
invoked by the menu items sometimes will be unavailable. Finally, you need to allow
the operator to edit data in this window quickly and easily.

Technical Requirements
All main menu items must have access keys, and some have mouse shortcuts.

Availability of menu items must be communicated to the user in a way that is
easy to understand but does not disrupt program flow.

You must ensure that when a menu item is unavailable, corresponding shortcut
keys and mouse gestures are also inactivated.

Certain TextBox controls on the form must fill in automatically when appropriate
keystrokes are entered.

Question
 How can this functionality be implemented?

Suggested Practices
Create a rudimentary text editor with buttons that implement the Cut, Copy,
and Paste commands.

Create an application that stores a color scheme for each user and automatically
loads the correct color scheme when the user opens the application.

Build an application that consists of a window with a single button that the user
can chase around the window with the mouse but can never actually click.

Chapter 2 Review 97
Take a Practice Test
The practice tests on this book’s companion CD offer many options. For example, you
can test yourself on just the content covered in this chapter, or you can test yourself on
all the 70-502 certification exam content. You can set up the test so that it closely sim-
ulates the experience of taking a certification exam, or you can set it up in study mode
so that you can look at the correct answers and explanations after you answer each
question.

MORE INFO Practice tests

For details about all the practice test options available, see the section “How to Use the Practice
Tests,” in this book’s Introduction.

Chapter 7

Styles and Animation
One of the major advances with the advent of the Windows Presentation Foundation
(WPF) programming model is the uniquely agile use of the system’s visual capabili-
ties. In this chapter, you learn to use two aspects of WPF programming that take full
advantage of these capabilities: styles and animation. Styles allow you to quickly apply
changes to the visual interface and change the look and feel of your application in
response to different conditions. Animations allow you to change property values over
timelines that can be useful for a variety of visual effects. Together, these features allow
you to harness the full power of the WPF presentation layer.

Exam objectives in this chapter:
Create a consistent user interface appearance by using styles.

Change the appearance of a UI element by using triggers.

Add interactivity by using animations.

Lessons in this chapter:
Lesson 1: Styles . 305

Lesson 2: Animations . 323

Before You Begin
To complete the lessons in this chapter, you must have

A computer that meets or exceeds the minimum hardware requirements listed in
the “About This Book” section at the beginning of the book

Microsoft Visual Studio 2008 Professional Edition installed on your computer

An understanding of Microsoft Visual Basic or C# syntax and familiarity with
Microsoft .NET Framework version 3.5

An understanding of Extensible Application Markup Language (XAML)
303

304 Chapter 7 Styles and Animation
Real World
Matthew Stoecker

At every turn, it seems that WPF provides more and more support for the cre-
ation of rich visual interfaces. The support for styles and triggers enables the
rapid creation of interactive visual interfaces that used to take hours of coding
event handlers. Likewise, animations now open up the possibilities for
stunning user interfaces with minimal effort. I’m glad that now I can create
attractive applications with the same amount of effort that the boxy old
Windows Forms apps took!

Lesson 1: Styles 305
Lesson 1: Styles
Styles allow you to create a cohesive look and feel for your application. You can use
styles to define a standard color and sizing scheme for your application and use trig-
gers to provide dynamic interaction with your UI elements. In this lesson, you learn to
create and implement styles. You learn to apply a style to all instances of a single type
and to implement style inheritance. You learn to use setters to set properties and event
handlers, and you learn to use triggers to change property values dynamically. Finally,
you learn about the order of property precedence.

After this lesson, you will be able to:
Create and implement a style
Apply a style to all instances of a type
Implement style inheritance
Use property and event setters
Explain the order of property value precedence
Use and implement triggers, including property triggers, data triggers, event
triggers, and multiple triggers

Estimated lesson time: 30 minutes

Using Styles
Styles can be thought of as analogous to cascading style sheets as used in Hypertext
Markup Language (HTML) pages. Styles basically tell the presentation layer to substi-
tute a new visual appearance for the standard one. They allow you to make changes to
the user interface as a whole easily and to provide a consistent look and feel for your
application in a variety of situations. Styles enable you to set properties and hook up
events on UI elements through the application of those styles. Further, you can create
visual elements that respond dynamically to property changes through the applica-
tion of triggers, which listen for a property change and then apply style changes in
response.

Properties of Styles
The primary class in the application of styles is, unsurprisingly, the Style class. The Style
class contains information about styling a group of properties. A Style can be created to

306 Chapter 7 Styles and Animation
apply to a single instance of an element, to all instances of an element type, or across
multiple types. The important properties of the Style class are shown in Table 7-1.

The basic skeleton of a <Style> element in XAML markup looks like the following:

<Style>

 <!-- A collection of setters is enumerated here -->

 <Style.Triggers>

 <!-- A collection of Trigger and related objects is enumerated here -->

 </Style.Triggers>

 <Style.Resources>

 <!-- A collection of local resources for use in the style -->

 </Style.Resources>

</Style>

Setters
The most common class you will use in the construction of Styles is the Setter. As their
name implies, Setters are responsible for setting some aspect of an element. Setters
come in two flavors: property setters (or just Setters, as they are called in markup),
which set values for properties; and event setters, which set handlers for events.

Table 7-1 Important Properties of the Style Class

Property Description

BasedOn Indicates another style that this style is based on. This
property is useful for creating inherited styles.

Resources Contains a collection of local resources used by the style.
The Resources property is discussed in detail in Chapter 9,
“Resources, Documents, and Localization.”

Setters Contains a collection of Setter or EventSetter objects. These
are used to set properties or events on an element as part
of a style.

TargetType This property identifies the intended element type for
the style.

Triggers Contains a collection of Trigger objects and related objects
that allow you to designate a change in the user interface
in response to changes in properties.

Lesson 1: Styles 307
Property Setters
Property setters, represented by the <Setter> tag in XAML, allow you to set properties
of elements to specific values. A property setter has two important properties: the
Property property, which designates the property that is to be set by the Setter, and the
Value property, which indicates the value to which the property is to be set. The fol-
lowing example demonstrates a Setter that sets the Background property of a Button
element to Red:

<Setter Property="Button.Background" Value="Red" />

The value for the Property property must take the form of the following:

Element.PropertyName

If you want to create a style that sets a property on multiple different types of
elements, you could set the style on a common class that the elements inherit, as
shown here:

<Style>

 <Setter Property="Control.Background" Value="Red" />

</Style>

This style sets the Background property of all elements that inherit from the Control to
which it is applied.

Event Setters
Event setters (represented by the <EventSetter> tag) are similar to property setters, but
they set event handlers rather than property values. The two important properties for
an EventSetter are the Event property, which specifies the event for which the handler
is being set; and the Handler property, which specifies the event handler to attach to
that event. An example is shown here:

<EventSetter Event="Button.MouseEnter" Handler="Button_MouseEnter" />

The value of the Handler property must specify an extant event handler with the
correct signature for the type of event with which it is connected. Similar to property
setters, the format for the Event property is

Element.EventName

where the element type is specified, followed by the event name.

308 Chapter 7 Styles and Animation
Creating a Style
You’ve seen the simplest possible implementation of a style: a single Setter between
two Style tags, but you haven’t yet seen how to apply a style to an element. There are
several ways to apply a style to an element or elements. This section examines the
various ways to apply a style to elements in your user interface.

Setting the Style Property Directly
The most straightforward way to apply a style to an element is to set the Style property
directly in XAML. The following example demonstrates directly setting the Style
property of a Button element:

<Button Height="25" Name="Button1" Width="100">

 <Button.Style>

 <Style>

 <Setter Property="Button.Content" Value="Style set directly" />

 <Setter Property="Button.Background" Value="Red" />

 </Style>

 </Button.Style>

</Button>

While setting the Style directly in an element might be the most straightforward, it is
seldom the best method. When setting the Style directly, you must set it for each
element that you want to be affected by the Style. In most cases, it is simpler to set the
properties of the element directly at design time.

One scenario where you might want to set the Style directly on an element is to pro-
vide a set of Triggers for that element. Because Triggers must be set in a Style (except for
EventTriggers, as you will see in the next section), you conceivably could set the Style
directly to set triggers for an element.

Setting a Style in a Resources Collection
The most common method for setting styles is to create the style as a member of
a Resources collection and then apply the style to elements in your user interface by
referencing the resource. The following example demonstrates creating a style as part
of the Windows.Resources collection:

<Window.Resources>

 <Style x:Key="StyleOne">

 <Setter Property="Button.Content" Value="Style defined in resources" />

 <Setter Property="Button.Background" Value="Red" />

 </Style>

</Window.Resources>

Lesson 1: Styles 309
Under most circumstances, you must supply a key value for a Style that you define in
the Resources collection. Then you can apply that style to an element by referencing
the resource, as shown in bold here:

<Button Name="Button1" Style="{StaticResource StyleOne}" Height="30"
 Width="200" />

The advantage to defining a Style in the Resources section is that you can then apply
that Style to multiple elements by simply referencing the resource. Resources are dis-
cussed in detail in Chapter 9.

Applying Styles to All Controls of a Specific Type
You can use the TargetType property to specify a type of element to be associated with
the style. When you set the TargetType property on a Style, that Style is applied to all
elements of that type automatically. Further, you do not need to specify the qualifying
type name in the Property property of any Setters that you use—you can just refer to the
property name. When you specify the TargetType for a Style that you have defined in a
Resources collection, you do not need to provide a key value for that style. The follow-
ing example demonstrates the use of the TargetType property:

<Window.Resources>

 <Style TargetType="Button">

 <Setter Property=" Content" Value="Style set for all buttons" />

 <Setter Property="Background" Value="Red" />

 </Style>

</Window.Resources>

When you apply the TargetType property, you do not need to add any additional
markup to the elements of that type to apply the style.

If you want an individual element to opt out of the style, you can set the style on that
element explicitly, as seen here:

<Button Style="{x:Null}" Margin="10">No Style</Button>

This example explicitly sets the Style to Null, which causes the Button to revert to its
default look. You also can set the Style to another Style directly, as seen earlier in this
lesson.

Setting a Style Programmatically
You can create and define a style programmatically. While defining styles in XAML is
usually the best choice, creating a style programmatically might be useful when you
want to create and apply a new style dynamically, possibly based on user preferences.

310 Chapter 7 Styles and Animation
The typical method for creating a style programmatically is to create the Style object in
code; then create Setters (and Triggers, if appropriate); add them to the appropriate col-
lection on the Style object; and then when finished, set the Style property on the target
elements. The following example demonstrates creating and applying a simple style
in code:

' VB
Dim aStyle As New Style

Dim aSetter As New Setter

aSetter.Property = Button.BackgroundProperty

aSetter.Value = Brushes.Red

aStyle.Setters.Add(aSetter)

Dim bSetter As New Setter

bSetter.Property = Button.ContentProperty

bSetter.Value = "Style set programmatically"

aStyle.Setters.Add(bSetter)

Button1.Style = aStyle

// C#
Style aStyle = new Style();

Setter aSetter = new Setter();

aSetter.Property = Button.BackgroundProperty;

aSetter.Value = Brushes.Red;

aStyle.Setters.Add(aSetter);

Setter bSetter = new Setter();

bSetter.Property = Button.ContentProperty;

bSetter.Value = "Style set programmatically";

aStyle.Setters.Add(bSetter);

Button1.Style = aStyle;

You can also define a style in a Resources collection and apply that style in code, as
shown here:

<!-- XAML -->
<Window.Resources>

 <Style x:Key="StyleOne">

 <Setter Property="Button.Content" Value="Style applied in code" />

 <Setter Property="Button.Background" Value="Red" />

 </Style>

</Window.Resources>

' VB
Dim aStyle As Style

aStyle = CType(Me.Resources("StyleOne"), Style)

Button1.Style = aStyle

// C#
Style aStyle;

aStyle = (Style)this.Resources["StyleOne"];

Button1.Style = aStyle;

Lesson 1: Styles 311
Implementing Style Inheritance
You can use inheritance to create styles that conform to the basic look and feel of
the original style but provide differences that offset some controls from others. For
example, you might create one Style for all the Button elements in your user interface
and create an inherited style to provide emphasis for one of the buttons. You can use
the BasedOn property to create Style objects that inherit from other Style objects. The
BasedOn property references another style and automatically inherits all the members
of that Style and then allows you to build on that Style by adding additional members.
The following example demonstrates two Style objects—an original Style and a Style
that inherits it:

<Window.Resources>

 <Style x:Key="StyleOne">

 <Setter Property="Button.Content" Value="Style set in original Style" />

 <Setter Property="Button.Background" Value="Red" />

 <Setter Property="Button.FontSize" Value="15" />

 <Setter Property="Button.FontFamily" Value="Arial" />

 </Style>

 <Style x:Key="StyleTwo" BasedOn="{StaticResource StyleOne}">

 <Setter Property="Button.Content" Value="Style set by inherited style" />

 <Setter Property="Button.Background" Value="AliceBlue" />

 <Setter Property="Button.FontStyle" Value="Italic" />

 </Style>

</Window.Resources>

The result of applying these two styles is seen in Figure 7-1.

Figure 7-1 Two buttons—the original and an inherited style

312 Chapter 7 Styles and Animation
When a property is set in both the original style and the inherited style, the property
value set by the inherited style always takes precedence. But when a property is set by
the original style and not set by the inherited style, the original property setting is
retained.

Quick Check
Under what circumstances is a Style automatically applied to an element?
How else can a Style be applied to an element?

Quick Check Answer
A Style is applied to an element automatically when it is declared as a
resource in the page and the TargetType property of the Style is set. If the
TargetType property is not set, you can apply a Style to an element by set-
ting that element’s Style property, either in XAML or in code.

Triggers
Along with Setters, Triggers make up the bulk of objects that you use in creating styles.
Triggers allow you to implement property changes declaratively in response to other
property changes that would have required event-handling code in Windows Forms
programming. There are five kinds of Trigger objects, as listed in Table 7-2.

Table 7-2 Types of Trigger Objects

Type Class Name Description

Property trigger Trigger Monitors a property and activates when
the value of that property matches the
Value property.

Multi-trigger MultiTrigger Monitors multiple properties and activates
only when all the monitored property
values match their corresponding Value
properties.

Data trigger DataTrigger Monitors a bound property and activates
when the value of the bound property
matches the Value property.

Lesson 1: Styles 313
A Trigger is active only when it is part of a Style.Triggers collection—with one exception.
EventTrigger objects can be created within a Control.Triggers collection outside a Style.
The Control.Triggers collection can accommodate only EventTriggers, and any other
Trigger placed in this collection causes an error. EventTriggers are primarily used with
animation and are discussed further in Lesson 2 of this chapter, “Animations.”

Property Triggers
The most commonly used type of Trigger is the property trigger. The property trigger
monitors the value of a property specified by the Property property. When the value of
the specified property equals the Value property, the Trigger is activated. Important
properties of property triggers are shown in Table 7-3.

Multi-data-trigger MultDataTrigger Monitors multiple bound properties and
activates only when all the monitored
bound properties match their
corresponding Value properties.

Event trigger EventTrigger Initiates a series of Actions when a specified
event is raised.

Table 7-2 Types of Trigger Objects

Type Class Name Description

Table 7-3 Important Properties of Property Triggers

Property Description

EnterActions Contains a collection of Action objects that are applied when the
Trigger becomes active. Actions are discussed in greater detail in
Lesson 2 of this chapter.

ExitActions Contains a collection of Action objects that are applied when the
Trigger becomes inactive. Actions are discussed in greater detail in
Lesson 2 of this chapter.

Property Indicates the property that is monitored for changes.

Setters Contains a collection of Setter objects that are applied when the
Trigger becomes active.

Value Indicates the value that is compared to the property referenced by
the Property property.

314 Chapter 7 Styles and Animation
Triggers listen to the property indicated by the Property property and compare that prop-
erty to the Value property. When the referenced property and the Value property are
equal, the Trigger is activated. Any Setter objects in the Setters collection of the Trigger are
applied to the style, and any Actions in the EnterActions collections are initiated. When
the referenced property no longer matches the Value property, the Trigger is inactivated.
All Setter objects in the Setters collection of the Trigger are inactivated, and any Actions in
the ExitActions collection are initiated.

NOTE Actions are used primarily in animations, and they are discussed in greater detail in Lesson 2
of this chapter.

The following example demonstrates a simple Trigger object that changes the FontWeight
of a Button element to Bold when the mouse enters the Button:

<Style.Triggers>

 <Trigger Property="Button.IsMouseOver" Value="True">

 <Setter Property="Button.FontWeight" Value="Bold" />

 </Trigger>

</Style.Triggers>

In this example, the Trigger defines one Setter in its Setters collection. When the Trigger
is activated, that Setter is applied.

Multi-triggers
Multi-triggers are similar to property triggers in that they monitor the value of prop-
erties and activate when those properties meet a specified value. The difference is that
multi-triggers are capable of monitoring several properties at a single time and they
activate only when all monitored properties equal their corresponding Value proper-
ties. The properties that are monitored and their corresponding Value properties are
defined by a collection of Condition objects. The following example demonstrates a
MultiTrigger that sets the Button.FontWeight property to Bold only when the Button is
focused and the mouse has entered the control:

<Style.Triggers>

 <MultiTrigger>

 <MultiTrigger.Conditions>

 <Condition Property="Button.IsMouseOver" Value="True" />

 <Condition Property="Button.IsFocused" Value="True" />

 </MultiTrigger.Conditions>

 <MultiTrigger.Setters>

 <Setter Property="Button.FontWeight" Value="Bold" />

 </MultiTrigger.Setters>

 </MultiTrigger>

</Style.Triggers>

Lesson 1: Styles 315
Data Triggers and Multi-data-triggers
Data triggers are similar to property triggers in that they monitor a property and acti-
vate when the property meets a specified value, but they differ in that the property
they monitor is a bound property. Instead of a Property property, data triggers expose
a Binding property that indicates the bound property to listen to. The following shows
a data trigger that changes the Background property of a Label to Red when the bound
property CustomerName equals “Fabrikam”:

<Style.Triggers>

 <DataTrigger Binding="{Binding Path=CustomerName}" Value="Fabrikam">

 <Setter Property="Label.Background" Value="Red" />

 </DataTrigger>

</Style.Triggers>

Multi-data-triggers are to data triggers as multi-triggers are to property triggers. They
contain a collection of Condition objects, each of which specifies a bound property via
its Binding property and a value to compare to that bound property. When all the con-
ditions are satisfied, the MultiDataTrigger activates. The following example demon-
strates a MultiDataTrigger that sets the Label.Background property to Red when
CustomerName equals “Fabrikam” and OrderSize equals 500:

<Style.Triggers>

 <MultiDataTrigger>

 <MultiDataTrigger.Conditions>

 <Condition Binding="{Binding Path=CustomerName}" Value="Fabrikam" />

 <Condition Binding="{Binding Path=OrderSize}" Value="500" />

 </MultiDataTrigger.Conditions>

 <MultiDataTrigger.Setters>

 <Setter Property="Label.Background" Value="Red" />

 </MultiDataTrigger.Setters>

 </MultiDataTrigger>

</Style.Triggers>

Event Triggers
Event triggers are different from the other Trigger types. While other Trigger types
monitor the value of a property and compare it to an indicated value, event triggers
specify an event and activate when that event is raised. In addition, event triggers do
not have a Setters collection—rather, they have an Actions collection. Although you
have been exposed briefly to the SoundPlayerAction in Chapter 4, “Adding and Man-
aging Content,” most actions deal with animations, which are discussed in detail in
Lesson 2 of this chapter. The following two examples demonstrate the EventTrigger

316 Chapter 7 Styles and Animation
class. The first example uses a SoundPlayerAction to play a sound when a Button is
clicked:

<EventTrigger RoutedEvent="Button.Click">

 <SoundPlayerAction Source="C:\myFile.wav" />

</EventTrigger>

The second example demonstrates a simple animation that causes the Button to grow
in height by 200 units when clicked:

<EventTrigger RoutedEvent="Button.Click">

 <EventTrigger.Actions>

 <BeginStoryboard>

 <Storyboard>

 <DoubleAnimation Duration="0:0:5"

 Storyboard.TargetProperty="Height" To="200" />

 </Storyboard>

 </BeginStoryboard>

 </EventTrigger.Actions>

</EventTrigger>

Understanding Property Value Precedence
By now, you have probably noticed that a property can be set in many different ways.
They can be set in code; they can be set by styles; they can have default values; and so
on. It might seem logical at first to believe that a property will have the value it was last
set to, but this is actually incorrect. There is a defined and strict order of precedence
that determines a property’s value based on how it was set, not when. The precedence
order is summarized here, with highest precedence listed first:

1. Set by coercion by the property system.

2. Set by active animations or held animations.

3. Set locally, either by code, by direct setting in XAML, or through data binding.

4. Set by the TemplatedParent. Within this category, there is a sub-order of prece-
dence, again listed in descending order:

a. Set by Triggers from the templated parent

b. Set by the templated parent through property sets

5. Implicit style—this applies only to the Style property.

6. Set by Style triggers.

7. Set by Template triggers.

Lesson 1: Styles 317
8. Set by Style setters.

9. Set by the default Style. There is a sub-order within this category, again listed in
descending order:

a. Set by Triggers in the default style

b. Set by Setters in the default style

10. Set by inheritance.

11. Set by metadata.

Exam Tip The order of property precedence seems complicated, but actually it is fairly logical.
Be sure that you understand the concept behind the property order in addition to knowing the
order itself.

This may seem like a complicated and arbitrary order of precedence, but upon closer
examination it is actually very logical and based upon the needs of the application
and the user. The highest precedence is property coercion. This takes place in some
elements if an attempt is made to set a property beyond its allowed values. For exam-
ple, if an attempt is made to set the Value property of a Slider control to a value higher
than the Maximum property, the Value is coerced to equal the Maximum property.
Next in precedence come animations. For animations to have any meaningful use,
they must be able to override preset property values. The next highest level of prece-
dence is properties that have been set explicitly through developer or user action.

Properties set by the TemplatedParent are next in the order of precedence. These are
properties set on objects that come into being through a template. Templates are
discussed further in Chapter 8, “Customizing the User Interface.” After this comes
a special precedence item that applies only to the Style property of an element: Pro-
vided that the Style property has not been set by any item with a higher-level prece-
dence, it is set to a Style whose TargetType property matches the type of the element in
question. Then come properties set by Triggers—first those set by a Style, then those set
by a Template. This is logical because for triggers to have any meaningful effect, they
must override properties set by styles.

Properties set by styles come next: first properties set by user-defined styles, and then
properties set by the default style (also called the Theme, which typically is set by the
operating system). Finally come properties that are set through inheritance and the
application of metadata.

318 Chapter 7 Styles and Animation
For developers, there are a few important implications that are not intuitively obvious.
The most important is that if you set a property explicitly—whether in XAML or in
code—the explicitly set property blocks any changes dictated by a Style or Trigger. WPF
assumes that you want that property value to be there for a reason and does not allow
it to be set by a Style or Trigger, although it still can be overridden by an active animation.

A second, less obvious implication is that when using the Visual Studio designer to
drag and drop items onto the design surface from the ToolBox, the designer explicitly
sets several properties, especially layout properties. These property settings have the
same precedence as they would if you had set them yourself. So if you are designing
a style-oriented user interface, you should either enter XAML code directly in XAML
view to create controls and set as few properties explicitly as possible, or you should
review the XAML that Visual Studio generates and delete settings as appropriate.

You can clear a property value that has been set in XAML or code manually by calling
the DependencyObject.ClearValue method. The following code example demonstrates
how to clear the value of the Width property on a button named Button1:

' VB
Button1.ClearValue(WidthProperty)

// C#
Button1.ClearValue(WidthProperty);

Once the value has been cleared, it can be reset automatically by the property system.

Lab: Creating High-Contrast Styles
In this lab, you create a rudimentary high-contrast Style for Button, TextBox, and Label
elements.

Exercise 1: Using Styles to Create High-Contrast Elements
1. Create a new WPF application in Visual Studio.

2. In XAML view, just above the <Grid> declaration, create a Window.Resources section,
as shown here:

<Window.Resources>

</Window.Resources>

Lesson 1: Styles 319
3. In the Window.Resources section, create a high-contrast Style for TextBox controls
that sets the background color to Black and the foreground to White. The TextBox
controls also should be slightly larger by default. An example is shown here:

<Style TargetType="TextBox">

 <Setter Property="Background" Value="Black" />

 <Setter Property="Foreground" Value="White" />

 <Setter Property="BorderBrush" Value="White" />

 <Setter Property="Width" Value="135" />

 <Setter Property="Height" Value="30" />

</Style>

4. Create similar styles for Button and Label, as shown here:

<Style TargetType="Label">

 <Setter Property="Background" Value="Black" />

 <Setter Property="Foreground" Value="White" />

 <Setter Property="Width" Value="135" />

 <Setter Property="Height" Value="33" />

</Style>

<Style TargetType="Button">

 <Setter Property="Background" Value="Black" />

 <Setter Property="Foreground" Value="White" />

 <Setter Property="Width" Value="135" />

 <Setter Property="Height" Value="30" />

</Style>

5. Type the following in XAML view. Note that you should not add controls from
the toolbox because that automatically sets some properties in the designer at a
higher property precedence than styles:

<Label Margin="26,62,126,0" VerticalAlignment="Top">

 High-Contrast Label</Label>

<TextBox Margin="26,117,126,115">High-Contrast TextBox

 </TextBox>

<Button Margin="26,0,126,62" VerticalAlignment="Bottom">

 High-Contrast Button</Button>

6. Press F5 to build and run your application. Note that while the behavior of these
controls is unaltered, their appearance has changed.

Exercise 2: Using Triggers to Enhance Visibility
1. In XAML view for the solution you completed in Exercise 1, add a Style.Triggers

section to the TextBox Style, as shown here:

<Style.Triggers>

</Style.Triggers>

320 Chapter 7 Styles and Animation
2. In the Style.Triggers section, add Triggers that detect when the mouse is over the
control and enlarge the FontSize of the control, as shown here:

<Trigger Property="IsMouseOver" Value="True">

 <Setter Property="FontSize" Value="20" />

</Trigger>

3. Add similar Style.Triggers collections to your other two styles.

4. Press F5 to build and run your application. The FontSize of a control now
increases when you move the mouse over it.

Lesson Summary
Styles allow you to define consistent visual styles for your application. Styles use
a collection of Setters to apply style changes. The most commonly used Setter
type is the property setter, which allows you to set a property. Event setters allow
you to hook up event handlers as part of an applied style.

Styles can be set inline, but more frequently, they are defined in a Resources col-
lection and are set by referring to the resource. You can apply a style to all
instances of a control by setting the TargetType property to the appropriate type.

Styles are most commonly applied declaratively, but they can be applied in code
by creating a new style dynamically or obtaining a reference to a preexisting Style
resource.

You can create styles that inherit from other styles by using the BasedOn property.

Property triggers monitor the value of a dependency property and can apply
Setters from their Setters collection when the monitored property equals a prede-
termined value. Multi-triggers monitor multiple properties and apply their
Setters when all monitored properties match corresponding specified values.
Data triggers and multi-data-triggers are analogous but monitor bound values
instead of dependency properties.

Event triggers perform a set of Actions when a particular event is raised. They are
used most commonly to control Animations.

Property values follow a strict order of precedence depending on how they are set.

Lesson Review
You can use the following questions to test your knowledge of the information in
Lesson 1, “Styles.” The questions are also available on the companion CD if you prefer
to review them in electronic form.

Lesson 1: Styles 321
NOTE Answers

Answers to these questions and explanations of why each answer choice is correct or incorrect are
located in the “Answers” section at the end of the book.

1. Look at the following XAML snippet:

<Window.Resources>

 <Style x:Key="Style1">

 <Setter Property="Label.Background" Value="Blue" />

 <Setter Property="Button.Foreground" Value="Red" />

 <Setter Property="Button.Background" Value="LimeGreen" />

 </Style>

</Window.Resources>

<Grid>

 <Button Height="23" Margin="81,0,122,58" Name="Button1"

 VerticalAlignment="Bottom">Button</Button>

</Grid>

Assuming that the developer hasn’t set any properties any other way, what is the
Background color of Button1?

A. Blue

B. Red

C. LimeGreen

D. System Default

2. Look at the following XAML snippet:

<Window.Resources>

 <Style x:Key="Style1">

 <Style.Triggers>

 <MultiTrigger>

 <MultiTrigger.Conditions>

 <Condition Property="TextBox.IsMouseOver"

 Value="True" />

 <Condition Property="TextBox.IsFocused"

 Value="True" />

 </MultiTrigger.Conditions>

 <Setter Property="TextBox.Background"

 Value="Red" />

 </MultiTrigger>

 </Style.Triggers>

 </Style>

</Window.Resources>

<Grid>

 <TextBox Style="{StaticResource Style1}" Height="21"

 Margin="75,0,83,108" Name="TextBox1"

 VerticalAlignment="Bottom" />

</Grid>

322 Chapter 7 Styles and Animation
When will TextBox1 appear with a red background?

A. When the mouse is over TextBox1

B. When TextBox1 is focused

C. When TextBox1 is focused and the mouse is over TextBox1

D. All of the above

E. Never

3. Look at the following XAML snippet:

<Window.Resources>

 <Style TargetType="Button">

 <Setter Property="Content" Value="Hello" />

 <Style.Triggers>

 <Trigger Property="IsMouseOver" Value="True">

 <Setter Property="Content" Value="World" />

 </Trigger>

 <Trigger Property="IsMouseOver" Value="False">

 <Setter Property="Content" Value="How are you?" />

 </Trigger>

 </Style.Triggers>

 </Style>

</Window.Resources>

<Grid>

 <Button Height="23" Margin="81,0,122,58" Name="Button1"

 VerticalAlignment="Bottom">Button</Button>

</Grid>

What does Button1 display when the mouse is NOT over the Button?

A. Hello

B. World

C. Button

D. How are you?

Lesson 2: Animations 323
Lesson 2: Animations
Animations are another new feature of WPF. Animations allow you to change the
value of a property over the course of a set period of time. Using this technique, you
can create a variety of visual effects, including causing controls to grow or move abut
the user interface, to change color gradually, or to change other properties over time.
In this lesson, you learn how to create animations that animate a variety of property
types and use Storyboard objects to control the playback of those animations.

After this lesson, you will be able to:
Create and use animations
Control animations with the Storyboard class
Control timelines and playback of animations
Implement simultaneous animations
Use Actions to control animation playback
Implement animations that use key frames
Create and start animations in code

Estimated lesson time: 30 minutes

Using Animations
The term animation brings to mind hand-drawn anthropomorphic animals perform-
ing amusing antics in video media, but in WPF, animation has a far simpler meaning.
Generally speaking, an animation in WPF refers to an automated property change
over a set period of time. You can animate an element’s size, location, color, or virtu-
ally any other property or properties associated with an element. You can use the
Animation classes to implement these changes.

The Animation classes are a large group of classes designed to implement these
automated property changes. There are 42 Animation classes in the System
.Windows.Media.Animation namespace, and each one has a specific data type that they
are designed to animate. Animation classes fall into three basic groups: Linear anima-
tions, key frame–based animations, and path-based animations.

Linear animations, which automate a property change in a linear way, are named in
the format <TypeName>Animation, where <TypeName> is the name of the type being
animated. DoubleAnimation is an example of a linear animation class, and that is the
animation class you are likely to use the most.

324 Chapter 7 Styles and Animation
Key frame–based animations perform their animation on the basis of several waypoints,
called key frames. The flow of a key-frame animation starts at the beginning, and then
progresses to each of the key frames before ending. The progression is usually linear.
Key-frame animations are named in the format <TypeName>AnimationUsingKeyFrames,
where <TypeName> is the name of the Type being animated. An example is StringAnima-
tionUsingKeyFrames.

Path-based animations use a Path object to guide the animation. They are used most
often to animate properties that relate to the movement of visual objects along a com-
plex course. Path-based animations are named in the format <TypeName>Animation-
UsingPath, where <TypeName> is the name of the type being animated. There are
currently only three path-based Animation classes—PointAnimationUsingPath, Double-
AnimationUsingPath, and MatrixAnimationUsingPath.

Important Properties of Animations
Although there are many different Animation classes, they all work in the same funda-
mental way—they change the value of a designated property over a period of time. As
such, they share common properties. Many of these properties also are shared with
the Storyboard class, which is used to organize Animation objects, as you will see later
in this lesson. Important common properties of the Animation and Storyboard classes
are shown in Table 7-4.

Table 7-4 Important Properties of the Animation and Storyboard Classes

Property Description

AccelerationRatio Gets or sets a value specifying the percentage of the Duration
property of the Animation that is spent accelerating the passage
of time from zero to its maximum rate.

AutoReverse Gets or sets a value that indicates whether the Animation plays
in reverse after it completes a forward iteration.

BeginTime Gets or sets the time at which the Animation should begin,
relative to the time that the Animation is executed. For
example, an Animation with a BeginTime set to 0:0:5 exhibits a
5-second delay before beginning.

DecelerationRatio Gets or sets a value specifying the percentage of the duration of
the Animation spent decelerating the passage of time from its
maximum rate to zero.

Lesson 2: Animations 325
In addition, the linear animation classes typically implement a few more important
properties, which are described in Table 7-5.

The following example demonstrates a very simple animation. This animation changes
the value of a property that has a Double data type representation from 1 to 200
over the course of 10 seconds:

<DoubleAnimation Duration="0:0:10" From="1" To="200" />

In this example, the Duration property specifies a duration of 10 seconds for the ani-
mation, and the From and To properties indicate a starting value of 1 and an ending
value of 200.

You might notice that something seems to be missing from this example. What prop-
erty is this animation animating? The answer is that it is not animating any property—
the Animation object carries no intrinsic information about the property that is being
animated, but instead it is applied to a property by means of a Storyboard.

Duration Gets or sets the length of time for which the Animation plays.

FillBehavior Gets or sets a value that indicates how the Animation behaves
after it has completed.

RepeatBehavior Gets or sets a value that indicates how the Animation repeats.

SpeedRatio Gets or sets the rate at which the Animation progresses relative
to its parent.

Table 7-5 Important Properties of Linear Animation Classes

Property Description

From Gets or sets the starting value of the Animation. If omitted, the
Animation uses the current property value.

To Gets or sets the ending value of the Animation.

By Gets or sets the amount by which to increase the value of the target
property over the course of the Animation. If both the To and By
properties are set, the value of the By property is ignored.

Table 7-4 Important Properties of the Animation and Storyboard Classes

Property Description

326 Chapter 7 Styles and Animation
Storyboard Objects
The Storyboard is the object that controls and organizes animations in your user inter-
face. The Storyboard class contains a Children collection, which organizes a collection
of Timeline objects, which include Animation objects. When created declaratively in
XAML, all Animation objects must be enclosed within a Storyboard object, as shown
here:

<Storyboard>

 <DoubleAnimation Duration="0:0:10" From="1" To="200" />

</Storyboard>

Using a Storyboard to Control Animations
In XAML, Storyboard objects organize your Animation objects. The most important
feature of the Storyboard object is that it contains properties that allow you to specify
the target element and target property of the child Animation objects, as shown in
bold in this example:

<Storyboard TargetName="Button1" TargetProperty="Height">
 <DoubleAnimation Duration="0:0:10" From="1" To="200" />

</Storyboard>

This example is now usable. It defines a timeline where over the course of 10 seconds,
the Height property of Button1 goes from a value of 1 to a value of 200.

The TargetName and TargetProperty properties are attached properties, so instead of
defining them in the Storyboard itself, you can define them in the child Animation
objects, as shown in bold here:

<Storyboard>

 <DoubleAnimation Duration="0:0:10" From="1" To="200"

 Storyboard.TargetName="Button1"
 Storyboard.TargetProperty="Height" />
</Storyboard>

Because a Storyboard can hold more than one Animation at a time, this configuration
allows you to set separate target elements and properties for each animation. Thus, it
is more common to use the attached properties.

Simultaneous Animations
The Storyboard can contain multiple child Animation objects. When the Storyboard is
activated, all child animations are started at the same time and run simultaneously.

Lesson 2: Animations 327
The following example demonstrates two simultaneous Animations that cause both
the Height and Width of a Button element to grow over 10 seconds:

<Storyboard>

 <DoubleAnimation Duration="0:0:10" From="1" To="200"

 Storyboard.TargetName="Button1"
 Storyboard.TargetProperty="Height" />
 <DoubleAnimation Duration="0:0:10" From="1" To="100"

 Storyboard.TargetName="Button1"
 Storyboard.TargetProperty="Widtht" />
</Storyboard>

Using Animations with Triggers
You now have learned most of the story about using Animation objects. The Animation
object defines a property change over time, and the Storyboard object contains Anima-
tion objects and determines what element and property the Animation objects affect.
But there is still one piece that is missing: How do you start and stop an Animation?

All declaratively created Animation objects must be housed within a Trigger object.
This can be either as a part of a Style, or in the Triggers collection of an Element, which
accepts only EventTrigger objects.

Trigger objects define collections of Action objects, which control when an Animation
is started and stopped. The following example demonstrates an EventTrigger object
with an inline Animation:

<EventTrigger RoutedEvent="Button.Click">

 <EventTrigger.Actions>

 <BeginStoryboard>

 <Storyboard>

 <DoubleAnimation Duration="0:0:5"

 Storyboard.TargetProperty="Height" To="200" />

 </Storyboard>

 </BeginStoryboard>

 </EventTrigger.Actions>

</EventTrigger>

As you can see in the preceding example, the Storyboard object is enclosed in a Begin-
Storyboard tag, which itself is enclosed in the EventTrigger.Actions tag. BeginStoryboard is
an Action—it indicates that the contained Storyboard should be started. The EventTrigger
class defines a collection of Actions that should be initiated when the Trigger is activated,
and in this example, BeginStoryboard is the action that is initiated. Thus, when the
Button indicated in this trigger is clicked, the described Animation runs.

328 Chapter 7 Styles and Animation
Using Actions to Control Playback
There are several Action classes that can be used to manage animation playback. These
classes are summarized in Table 7-6.

PauseStoryboard, ResumeStoryboard, SkipStoryboardToFill, and StopStoryboard are all
fairly self-explanatory. They cause the indicated Storyboard to pause, resume, stop, or
skip to the end, as indicated by the Action name. The one property that all these
Action classes have in common is the BeginStoryboardName property. This property
indicates the name of the BeginStoryboard object that the action is to affect. The fol-
lowing example demonstrates a StopStoryboard action that stops the BeginStoryBoard
object named stb1:

<Style.Triggers>

 <EventTrigger RoutedEvent="Button.MouseEnter">

 <EventTrigger.Actions>

 <BeginStoryboard Name="stb1">

 <Storyboard>

 <DoubleAnimation Duration="0:0:5"

 Storyboard.TargetProperty="Height" To="200" />

 </Storyboard>

 </BeginStoryboard>

 </EventTrigger.Actions>

 </EventTrigger>

 <EventTrigger RoutedEvent="Button.MouseLeave">

Table 7-6 Animation-Related Action Classes

Action Description

BeginStoryboard Begins the child Storyboard object.

PauseStoryboard Pauses the playback of an indicated Storyboard at the
current playback position.

ResumeStoryboard Resumes playback of an indicated Storyboard.

SeekStoryboard Fast-forwards to a specified position in a target
Storyboard.

SetStoryboardSpeedRatio Sets the SpeedRatio of the specified Storyboard.

SkipStoryboardToFill Moves the specified Storyboard to the end of its timeline.

StopStoryboard Stops playback of the specified Storyboard and returns
the animation to the starting position.

Lesson 2: Animations 329
 <EventTrigger.Actions>

 <StopStoryboard BeginStoryboardName="stb1" />

 </EventTrigger.Actions>

 </EventTrigger>

</Style.Triggers>

All Actions that affect a particular Storyboard object must be defined in the same
Triggers collection. The previous example shows both of these triggers being defined
in the Button.Triggers collection. If you were to define these triggers in separate Triggers
collections, storyboard actions would not function.

The SetStoryboardSpeedRatio action sets the speed ratio for the entire Storyboard and
all Animation objects in that Storyboard. In addition to BeginStoryboardName, you must
set the SpeedRatio property of this Action as well. The following example demonstrates
a SetStoryboardSpeedRatio action that speeds the referenced Storyboard by a factor of 2:

<Style.Triggers>

 <EventTrigger RoutedEvent="Button.MouseEnter">

 <EventTrigger.Actions>

 <BeginStoryboard Name="stb1">

 <Storyboard>

 <DoubleAnimation Duration="0:0:5"

 Storyboard.TargetProperty="Height" To="200" />

 </Storyboard>

 </BeginStoryboard>

 </EventTrigger.Actions>

 </EventTrigger>

 <EventTrigger RoutedEvent="Button.MouseLeave">

 <EventTrigger.Actions>

 <SetStoryboardSpeedRatio BeginStoryboardName="stb1" SpeedRatio="2" />

 </EventTrigger.Actions>

 </EventTrigger>

</Style.Triggers>

The SeekStoryboard action requires two additional properties to be set. The Origin
property can be either a value of BeginTime or of Duration and specifies how the Offset
property is applied. An Origin value of BeginTime specifies that the Offset is relative to
the beginning of the Storyboard. An Origin value of Duration specifies that the Offset is
relative to the Duration property of the Storyboard. The Offset property determines the
amount of the offset to jump to in the animation. The following example shows a Seek-
Storyboard action that skips the referenced timeline to 5 seconds ahead from its cur-
rent point in the timeline.

<Style.Triggers>

 <EventTrigger RoutedEvent="Button.MouseEnter">

 <EventTrigger.Actions>

330 Chapter 7 Styles and Animation
 <BeginStoryboard Name="stb1">

 <Storyboard>

 <DoubleAnimation Duration="0:0:10"

 Storyboard.TargetProperty="Height" To="200" />

 </Storyboard>

 </BeginStoryboard>

 </EventTrigger.Actions>

 </EventTrigger>

 <EventTrigger RoutedEvent="Button.MouseLeave">

 <EventTrigger.Actions>

 <SeekStoryboard BeginStoryboardName="stb1" Origin="BeginTime"
 Offset="0:0:5" />
 </EventTrigger.Actions>

 </EventTrigger>

</Style.Triggers>

Using Property Triggers with Animations
In the examples shown in this section, you have seen Actions being hosted primarily in
EventTrigger objects. You can also host Action objects in other kinds of Triggers. Trigger,
MultiTrigger, DataTrigger, and MultiDataTrigger objects host two Action collections:
EnterActions and ExitActions collections.

The EnterActions collection hosts a set of Actions that are executed when the Trigger is
activated. Conversely, the ExitActions collection hosts a set of Actions that are executed
when the Trigger is deactivated. The following demonstrates a Trigger that begins a
Storyboard when activated and stops that Storyboard when deactivated:

<Trigger Property="IsMouseOver" Value="True">

 <Trigger.EnterActions>
 <BeginStoryboard Name="stb1">

 <Storyboard>

 <DoubleAnimation Storyboard.TargetProperty="FontSize"

 To="20" Duration="0:0:.5" />

 </Storyboard>

 </BeginStoryboard>

 </Trigger.EnterActions>

 <Trigger.ExitActions>
 <StopStoryboard BeginStoryboardName="stb1" />

 </Trigger.ExitActions>

</Trigger>

Managing the Playback Timeline
Both the Animation class and the Storyboard class contain several properties that allow
you to manage the playback timeline with a fine level of control. Each of these properties
is discussed in this section. When a property is set on an Animation, the setting affects
only that animation. Setting a property on a Storyboard, however, affects all Animation
objects it contains.

Lesson 2: Animations 331
AccelerationRatio and DecelerationRatio
The AccelerationRatio and DecelerationRatio properties allow you to designate a part of
the timeline for acceleration and deceleration of the animation speed, rather than start-
ing and playing at a constant speed. This is used sometimes to give an animation a more
“natural” appearance. These properties are expressed in fractions of 1 and represent a
percentage value of the total timeline. Thus, an AccelerationRatio with a value of .2 indi-
cates that 20 percent of the timeline should be spent accelerating to the top speed. So
the AccelerationRatio and DecelerationRatio properties should be equal to or less than 1
when added together. This example shows an Animation with an AccelerationRatio of .2:

<DoubleAnimation Duration="0:0:5" AccelerationRatio="0.2"
 Storyboard.TargetProperty="Height" To="200" />

AutoReverse
As the name implies, the AutoReverse property determines whether the animation
automatically plays out in reverse after the end is reached. A value of True indicates
that the Animation will play in reverse after the end is reached. False is the default
value. The following example demonstrates this property:

<DoubleAnimation Duration="0:0:5" AutoReverse="True"
 Storyboard.TargetProperty="Height" To="200" />

FillBehavior
The FillBehavior property determines how the Animation behaves after it has com-
pleted. A value of HoldEnd indicates that the Animation holds the final value after it
has completed, whereas a value of Stop indicates that the Animation stops and returns
to the beginning of the timeline when completed. An example is shown here:

<DoubleAnimation Duration="0:0:5" FillBehavior="Stop"
 Storyboard.TargetProperty="Height" To="200" />

The default value for FillBehavior is HoldEnd.

RepeatBehavior
The RepeatBehavior property determines if and how an animation repeats. The Repeat-
Behavior property can be set in three ways. First, it can be set to Forever, which indicates
that an Animation repeats for the duration of the application. Second, it can be set to a
number followed by the letter x (for example, 2x), which indicates the number of times
to repeat the animation. Third, it can be set to a Duration, which indicates the amount
of time that an Animation plays, irrespective of the number of iterations. The following
three examples demonstrate these settings. The first demonstrates an Animation that

332 Chapter 7 Styles and Animation
repeats forever, the second an Animation that repeats three times, and the third an
Animation that repeats for 1 minute:

<DoubleAnimation Duration="0:0:5" RepeatBehavior="Forever"
 Storyboard.TargetProperty="Height" To="200" />

<DoubleAnimation Duration="0:0:5" RepeatBehavior="3x"
 Storyboard.TargetProperty="Height" To="200" />

<DoubleAnimation Duration="0:0:5" RepeatBehavior="0:1:0"
 Storyboard.TargetProperty="Height" To="200" />

SpeedRatio
The SpeedRatio property allows you to speed up or slow down the base timeline. The
SpeedRatio value represents the coefficient for the speed of the Animation. Thus, an
Animation with a SpeedRatio value of 0.5 takes twice the standard time to complete,
whereas a value of 2 causes the Animation to complete twice as fast. An example is
shown here:

<DoubleAnimation Duration="0:0:5" SpeedRatio="0.5"
 Storyboard.TargetProperty="Height" To="200" />

Animating Non-Double Types
Most of the examples that you have seen in this lesson have dealt with the Double-
Animation class, but in fact a class exists for every animatable data type. For example,
the ColorAnimation class allows you to animate a color change, as shown here:

<Button Height="23" Width="100" Name="Button1">

 <Button.Background>

 <SolidColorBrush x:Name="myBrush" />

 </Button.Background>

 <Button.Triggers>

 <EventTrigger RoutedEvent="Button.Click">

 <BeginStoryboard>

 <Storyboard>

 <ColorAnimation Storyboard.TargetName="myBrush"

 Storyboard.TargetProperty="Color" From="Red" To="LimeGreen"

 Duration="0:0:5" />

 </Storyboard>

 </BeginStoryboard>

 </EventTrigger>

 </Button.Triggers>

</Button>

In this example, when the button is clicked, the background color of the button grad-
ually changes from red to lime green over the course of 5 seconds.

Lesson 2: Animations 333
NOTE In the standard Windows theme, this animation may conflict with other animations in the
button’s default template, so you might need to mouse out of the button and defocus it to see the
full effect.

Animation with Key Frames
Up until now, all the animations you have seen have used linear interpolation—that is,
the animated property changes take place over a linear timeline at a linear rate. You
also can create nonlinear animations by using key frames.

Key frames are waypoints in an animation. Instead of allowing the Animation to
progress linearly from beginning to end, key frames divide the animation up into
short segments. The animation progresses from the beginning to the first key frame,
then the next, and through the KeyFrames collection until the end of the animation is
reached. Each key frame defines its own Value and KeyTime properties, which indicate
the value that the Animation will represent when it reaches the key frame and the time
in the Animation at which that frame will be reached.

Every data type that supports a linear Animation type also supports a key-frame
Animation type, and some types that do not have linear animation types have key-frame
Animation types. The key-frame Animation types are named <TargetType>Animation-
UsingKeyFrames, where <TargetType> represents the name of the Type animated by the
Animation. Key-frame Animation types do not support the From, To, and By properties;
rather, the course of the Animation is defined by the collection of key frames.

There are three different kinds of key frames. The first is linear key frames, which are
named Linear<TargetType>KeyFrame. These key frames provide points in an Animation
that are interpolated between in a linear fashion. The following example demon-
strates the use of linear key frames:

<DoubleAnimationUsingKeyFrames Storyboard.TargetProperty="Height">

 <LinearDoubleKeyFrame Value="10" KeyTime="0:0:1" />

 <LinearDoubleKeyFrame Value="100" KeyTime="0:0:2" />

 <LinearDoubleKeyFrame Value="30" KeyTime="0:0:4"/>

</DoubleAnimationUsingKeyFrames>

In the preceding example, the Height property goes from its starting value to a value of
10 in the first second, then to a value of 100 in the next second, and finally returns to a
value of 30 in the last 2 seconds. The progression between each segment is interpolated
linearly. In this example, it is similar to having several successive linear Animation
objects.

334 Chapter 7 Styles and Animation
Discrete Key Frames
Some animatable data types do not support gradual transitions under any circum-
stances. For example, the String type can only accept discrete changes. You can use
discrete key frame objects to make discrete changes in the value of an animated
property. Discrete key frame classes are named Discrete<TargetType>KeyFrame, where
<TargetType> is the Type being animated. Like linear key frames, discrete key frames
use a Value and a KeyTime property to set the parameters of the key frame. The
following example demonstrates an animation of a String using discrete key frames:

<StringAnimationUsingKeyFrames Storyboard.TargetProperty="Content">

 <DiscreteStringKeyFrame Value="Soup" KeyTime="0:0:0" />

 <DiscreteStringKeyFrame Value="Sous" KeyTime="0:0:1" />

 <DiscreteStringKeyFrame Value="Sots" KeyTime="0:0:2" />

 <DiscreteStringKeyFrame Value="Nots" KeyTime="0:0:3" />

 <DiscreteStringKeyFrame Value="Nuts" KeyTime="0:0:4" />

</StringAnimationUsingKeyFrames>

Spline Key Frames
Spline key frames allow you to define a Bézier curve that expresses the relationship
between animation speed and animation time, thus allowing you to create animations
that accelerate and decelerate in complex ways. While the mathematics of Bézier
curves is beyond the scope of this lesson, a Bézier curve is simply a curve between two
points whose shape is influenced by two control points. Using spline key frames, the
start and end points of the curve are always (0,0) and (1,1) respectively, so you must
define the two control points. The KeySpline property accepts two points to define the
Bézier curve, as seen here:

<SplineDoubleKeyFrame Value="300" KeyTime="0:0:6" KeySpline="0.1,0.8 0.6,0.6" />

Spline key frames are difficult to create with the intended effect without complex
design tools, and are most commonly used when specialized animation design tools
are available.

Using Multiple Types of Key Frames in an Animation
You can use multiple types of key frames in a single animation—you can freely inter-
mix LinearKeyFrame, DiscreteKeyFrame, and SplineKeyFrame objects in the KeyFrames
collection. The only restriction is that all key frames you use must be appropriate
to the Type that is being animated. String animations, for example, can use only
DiscreteStringKeyFrame objects.

Lesson 2: Animations 335
Quick Check
What are the different types of key frame objects? When would you use
each one?

Quick Check Answer
There are LinearKeyFrame, DiscreteKeyFrame, and SplineKeyFrame objects.
LinearKeyFrame objects indicate a linear transition from the preceding prop-
erty value to the value represented in the key frame. DiscreteKeyFrame
objects represent a sudden transition from the preceding property value to
the value represented in the key frame. SplineKeyFrame objects represent a
transition whose rate is defined by the sum of an associated Bézier curve. You
would use each of these types when the kind of transition represented was
the kind of transition that you wanted to incorporate into your user interface.
In addition, some animation types can use only DiscreteKeyFrames.

Creating and Starting Animations in Code
All the Animation objects that you have seen so far in this lesson were created declar-
atively in XAML. However, you can create and execute Animation objects just as easily
in code as well.

The process of creating an Animation should seem familiar to you; as with other .NET
objects, you create a new instance of your Animation and set the relevant properties,
as seen in this example:

' VB
Dim aAnimation As New System.Windows.Media.Animation.DoubleAnimation()

aAnimation.From = 20

aAnimation.To = 300

aAnimation.Duration = New Duration(New TimeSpan(0, 0, 5))

aAnimation.FillBehavior = Animation.FillBehavior.Stop

// C#
System.Windows.Media.Animation.DoubleAnimation aAnimation = new

 System.Windows.Media.Animation.DoubleAnimation();

aAnimation.From = 20;

aAnimation.To = 300;

aAnimation.Duration = new Duration(new TimeSpan(0, 0, 5));

aAnimation.FillBehavior = Animation.FillBehavior.Stop;

After the Animation has been created, however, the obvious question is: How do you
start it? When creating Animation objects declaratively, you must use a Storyboard to

336 Chapter 7 Styles and Animation
organize your Animation and an Action to start it. In code, however, you can use a sim-
ple method call. All WPF controls expose a method called BeginAnimation, which
allows you to specify a dependency property on that control and an Animation object
to act on that dependency property. The following code shows an example:

' VB
Button1.BeginAnimation(Button.HeightProperty, aAnimation)

// C#
button1.BeginAnimation(Button.HeightProperty, aAnimation);

Lab: Improving Readability with Animations
In this lab, you improve upon your solution to the lab in Lesson 1 of this chapter. You
remove the triggers that cause the FontSize to expand and instead use an Animation to
make it look more natural. In addition, you create Animation objects to increase the
size of the control when the mouse is over it.

Exercise: Animating High-Contrast Styles
1. Open the completed solution from the lab from Lesson 1 of this chapter.

2. In each of the Styles, remove the FontSize Setter that is defined in the Trigger and
replace it with a Trigger.EnterActions and Trigger.ExitActions section, as shown
here:

<Trigger.EnterActions>

</Trigger.EnterActions>

<Trigger.ExitActions>

</Trigger.ExitActions>

3. In each Trigger.EnterActions section, add a BeginStoryboard action, as shown here:

<BeginStoryboard Name="Storyboard1">

</BeginStoryboard>

4. Add the following Storyboard and Animation objects to the BeginStoryboard object
in the style for the TextBox. Note that the values for the ThicknessAnimation object
are crafted specifically for the completed version of the Lesson 1 lab on the CD. If
you created your own solution, you need to recalculate these values:

<Storyboard Duration="0:0:1">

 <DoubleAnimation Storyboard.TargetProperty="FontSize"

 To="20" />

 <ThicknessAnimation Storyboard.TargetProperty="Margin"

 To="26,118,45,104" />

Lesson 2: Animations 337
 <DoubleAnimation Storyboard.TargetProperty="Width" To="210"/>

 <DoubleAnimation Storyboard.TargetProperty="Height" To="40"/>

</Storyboard>

5. Add a similar Storyboard to the style for the Label, as shown here:

<Storyboard Duration="0:0:1">

 <DoubleAnimation Storyboard.TargetProperty="FontSize" To="20" />

 <ThicknessAnimation Storyboard.TargetProperty="Margin"

 To="26,62,46,-10" />

 <DoubleAnimation Storyboard.TargetProperty="Width" To="210"/>

 <DoubleAnimation Storyboard.TargetProperty="Height" To="40"/>

</Storyboard>

6. Add a similar Storyboard to the style for the Button, as shown here:

<Storyboard Duration="0:0:1">

 <DoubleAnimation Storyboard.TargetProperty="FontSize" To="20" />

 <ThicknessAnimation Storyboard.TargetProperty="Margin"

 To="26,0,46,52" />

 <DoubleAnimation Storyboard.TargetProperty="Width" To="210"/>

 <DoubleAnimation Storyboard.TargetProperty="Height" To="40"/>

</Storyboard>

7. Add the following line to the Trigger.ExitActions section of each Style:

<StopStoryboard BeginStoryboardName="Storyboard1" />

8. Press F5 to build and run your application. Now the FontSize expansion is ani-
mated and the control expands as well.

Lesson Summary
Animation objects drive automated property changes over time. There are three dif-
ferent types of Animation objects—linear animations, key frame–based animations,
and path-based animations. Every animatable type has at least one Animation type
associated with it, and some types have more than one type of Animation that can
be applied.

Storyboard objects organize one or more Animation objects. Storyboard objects
determine what objects and properties their contained Animation objects are
applied to.

Both Animation and Storyboard objects contain a variety of properties that con-
trol Animation playback behavior.

Storyboard objects that are created declaratively are activated by a BeginStory-
board action in the Actions collection of a Trigger. Triggers also can define actions
that pause, stop, and resume Storyboard objects, as well as performing other
Storyboard-related functions.

338 Chapter 7 Styles and Animation
Key frame animations define a series of waypoints through which the Animation
passes. There are three kinds of key frames: linear key frames, discrete key
frames, and spline key frames. Some animatable types, such as String, support
only discrete key frames.

You can create and apply Animation objects in code. When doing this, you do not
need to define a Storyboard object; rather, you call the BeginAnimation method on
the element with which you want to associate the Animation.

Lesson Review
You can use the following questions to test your knowledge of the information in
Lesson 2, “Animations.” The questions are also available on the companion CD if you
prefer to review them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is correct or incorrect are
located in the “Answers” section at the end of the book.

1. How many times does the Animation shown here repeat (not counting the first
iteration)?

<DoubleAnimation Duration="0:0:15" RepeatBehavior="0:1:0"

 Storyboard.TargetProperty="Height" To="200" />

A. 0

B. 1

C. 2

D. 3

2. Look at this Animation:

<DoubleAnimation Duration="0:0:5" From="30" By="80" To="200"

Storyboard.TargetProperty="Height" />

Assuming that the element whose Height property it animates begins with a
Height of 50, what is the value of the element after the animation has completed?

A. 50

B. 110

C. 130

D. 200

Chapter 7 Review 339
Chapter Review
To practice and reinforce the skills you learned in this chapter further, you can do any
or all of the following:

Review the chapter summary.

Review the list of key terms introduced in this chapter.

Complete the case scenarios. These scenarios set up real-world situations involv-
ing the topics of this chapter and ask you to create a solution.

Complete the suggested practices.

Take a practice test.

Chapter Summary
Styles allow you to define consistent visual styles for your application by using a
collection of Setters. They usually are defined as a Resource and referenced in
XAML, though they can be set inline or dynamically. Styles can be inherited from
other styles and applied to all instances of a particular type.

Triggers respond to changes in the application environment. Property triggers
and multi-triggers listen for changes in property values, and data triggers and
multi-data-triggers listen for changes in bound values. When one of these trig-
gers is activated, its Setters collection is applied. EventTriggers listen for a routed
event and execute Actions in response to that event.

Property values follow a strict order of precedence depending on how they are set.

Animation objects drive automated property changes over time. There are three
different types of Animation objects—linear animations, key frame–based anima-
tions, and path-based animations. Every animatable type has one or more Ani-
mation classes that can be used with it. Animations are organized by Storyboard
objects, which are themselves controlled by Action objects that are activated in
the Action collections of Trigger objects.

Animations that use key frames provide waypoints that the Animation visits as it
progresses. Key frames can be linear, spline-based, or discrete.

You can create and apply Animation objects in code. When doing this, you do not
need to define a Storyboard object, but rather you call the BeginAnimation method
on the element with which you want to associate the Animation.

340 Chapter 7 Review
Key Terms
Action

Animation

Key Frame

Setter

Storyboard

Style

Trigger

Case Scenarios
In the following case scenarios, you apply what you’ve learned about how to use con-
trols to design user interfaces. You can find answers to these questions in the
“Answers” section at the end of this book.

Case Scenario 1: Cup Fever
You’ve had a little free time around the office, and you decided to write a simple but
snazzy application to organize and display results from World Cup soccer matches.
The technical details are all complete: You’ve located a Web service that feeds up-to-
date scores, and you’ve created a database that automatically applies updates from
this service for match results and keeps track of upcoming matches. The database is
exposed through a custom data object built on ObservableCollection<> lists. All that
remains are the finishing touches. Specifically, when users choose an upcoming
match from a drop-down box at the top of the window, you want the window’s color
scheme to match the colors of the teams in the selected matchup.

Technical Requirements
The user interface is divided into two sections, each of which is built on a Grid
container. Each section represents a team in the current or upcoming match.
The user interface for each section must apply the appropriate team colors auto-
matically when a new match is chosen.

Chapter 7 Review 341
Question
Answer the following question for all your office mates, who are eagerly awaiting the
application’s completion.

How can you implement these color changes to the user interface?

Case Scenario 2: A Far-Out User Interface
Our friends with the questionable taste are back. They were so impressed with the
work you did for them back in Chapter 4 that they’ve asked you to design a user inter-
face that further pushes the envelope of good design sensibilities. Rather than having
a static tie-dyed appearance, now they want the background to be a constantly chang-
ing multicolored experience. The idea of using a RadialGradientBrush to paint the
background of the window is still acceptable, but they want the center of the gradient
to change over time and they want the colors of the background to change.

Question
Answer the following question for your manager:

How can we implement this appearance?

Suggested Practices
Create an Animation that moves elements across the user interface. Alternatively,
use linear animations and key frame animations to explore a variety of different
animation styles. Animate other properties of UI elements as well, such as the
color, size, and content.

Use Animations to create a slideshow application that reads all the image files in a
given directory and displays each image for 10 seconds before automatically switch-
ing to the next one. Note that you have to create and apply the Animation in code.

Modify the solution from Lesson 2 of Chapter 6, “Converting and Validating
Data,” to create styles for the application that includes DataTriggers that automat-
ically apply styles based on the CompanyName of the selected record.

Modify the solution from the second lab in this chapter to reverse the Animation
instead of stopping it when the mouse exits the control.

342 Chapter 7 Review
Take a Practice Test
The practice tests on this book’s companion CD offer many options. For example, you
can test yourself on just the content covered in this chapter, or you can test yourself on all
the 70-502 certification exam content. You can set up the test so that it closely simulates
the experience of taking a certification exam, or you can set it up in study mode so that
you can look at the correct answers and explanations after you answer each question.

MORE INFO Practice tests

For details about all the practice test options available, see the section “How to Use the Practice
Tests,” in this book’s Introduction.

Index
Symbols and Numbers
.csv file, 430
.msi files, 445
.NET Framework, 288

application events, 67
commands, 72–73
event architecture, 59
Navigation applications, 9
tunneling events, 61

.NET properties, 373

.wav files, 176–79

.xaml files
Application, 393
Classic.xaml, 379
Generic.xaml, 376, 379

A
AccelerationRatio, 324, 331
access control

file system, 11–12, 14
objects, 48–49
registry, 11, 14
XBAPs, 11, 14

access keys, 104
Action, 315–16, 327–29, 335–36
Activated events, 67
AddBackEntry, 26
AddExtension, 346
AddHandler, 28
ADO.NET, 213, 226–29
Aero.NormalColor.xaml, 379
aligning content, 144–45
AllowsTransparency, 5, 7
alphanumeric characters, 352
Alt key, 102–4, 120
ancestor properties, 214–15
AncestorLevel, 214
AncestorType, 214
Anchor, 350
animation, 303, 316, 323–24

case scenarios, 340–41
coding, 335–36
dependency properties, 373
key frames, 323, 333–35
lab, animation of controls, 336–37
non-double types, 332–34
playback timelines, 330–35

properties, 324–25
Triggers, 327–30

Animation, 323–24, 326, 330–35, 363
Application Folder, 446
Application Manifest, 461–63
Application objects, 66–67
Application property, 87
application tasks. See commands
Application.Find, 74
Application.GetResourceStream, 189
Application.Resources, 393, 396
Application.Startup, 431
Application.xaml, 393
ApplicationCommands, 73
ApplicationCommands.Print, 419
ApplicationDeployment, 456
ApplicationName, 198
applications, 1

binary resources, 187
content files, 190
embedding, 187, 191–92
loading, 188–89
retrieving, 189–91

communication between, 57
deploying, 3, 11, 441, 443–44

Application Manifest, 461–63
case scenario, 470
Certificates, 463–64
ClickOnce, 451–58, 464–65
Setup projects, 443, 448–49
Windows Installer, 444–48
XBAPs, 458–61

downloading, 3
events, 66–68
journal, 24
localizing, 426–28

case scenario, 439
elements, 428–29
extracting content, 429–30
lab, practice with, 433–35
resources, 431
subdirectories, culture codes, 430–31
translating content, 430
UICulture attributes, 428
validators and converters, 432

logical resources, 393
navigating through, 9
Navigation, 3, 9–10, 444
503

504 architecture
Page-based, 411
performance, 394
responsiveness, 41
selection of, 14
settings, 86–91
shopping cart, 32
Windows, 3–4, 444

creating, 4–5
displaying, 8–9
lab, creating, 15–16
properties, 5–7

Windows Forms, 3, 5
XBAPs, 3, 11–13, 444

architecture
command, 73
intra-application communication, 57

Argument, 43
Assembly, 379
AssemblyInfo.cs, 379
AssemblyInfo.vb, 379
asynchronous processing, 41–42, 47–48
attached events, 62–63
attached properties, 110, 134, 143
attributes, serializable, 26
audio

lab, creating a media player, 183–85
MediaElement, 179–82
MediaPlayer, 179–82
SoundPlayer, 176–79

Author, 198
AutoReverse, 324, 331

B
Back buttons, 9
Background, 5, 155, 212, 403, 428–29
background processing, 42–43.

See also BackgroundWorker
cancelling, 45–46
changing threads, 47–48
operation cancellation, 42
operation completion, 42
parameters, 43–44
progress reporting, 46
returning values, 44

background, window color, 157–60
BackgroundWorker, 41–42, 45–46, 49–51
BackgroundWorker.ProgressChanged, 46
Balance, 179
BaseOn, 306, 311
BeginAnimation, 335–36
BeginInvoke, 47–48
BeginStoryboard, 328

BeginStoryboardName, 329
BeginTime, 324
binary resources, 187

content files, 190
embedding, 187, 191–92
loading, 188–89
retrieving, 189–91

Binding class, 207, 209–11, 285, 364–65
ADO.NET object binding, 226–27
Binding.Mode, 215–16
case scenarios, 256–57
data

filtering, 246–48
grouping, 243–46
sorting, 241–43
templates, 238–41

elements, binding to, 211–12
hierarchical data, binding, 228–29
labs

data templates and groups, 248–51
database access, 232–35
practice with, 217–18

lists, binding to, 221–26
ObjectDataProvider, 230–31
objects, binding to, 212–15
UpdateSourceTrigger, 216–17
validation rules, 282–83
XmlDataProvider, 231–32

Binding property, 315
Binding.Mode, 215–16
BindingInError, 285
BindingListCollectionView, 225
BindingListCollectionView.CustomFilter, 247–48
bindings, command, 75–78
BitmapDecoder, 199
BitmapDecoder.Create, 199
BitmapFrame, 199
BitmapImage, 199
BitmapImage.Metadata, 199
BitmapMetadata, 198–99
block elements, 401

BlockUIContainer, 409–10, 415
flow documents, 402–4
List, 406
Paragraph, 405
Section, 409
Table, 407–8

BlockUIContainer, 409–10, 415
BlockUIElement, 412–13
Blue channel, 156
Bnzier curve, 334–35
Boolean?, 104
BorderBrush, 5, 155, 404

Command.CanExecute 505
BorderThickness, 5, 404
Both, 195
Box, 407
Brush, 5, 48–49, 155–56, 196, 403–4
Brush.Freeze, 156
brushes, 155–56
bubbling events, 60, 63, 286
bubbling, commands, 76–77
BufferingProgress, 179
BuildAction, 187
built-in commands, 73
Button, 62–63, 101, 103–5

Back, 9
clipping, 171
databinding, 212
Forward, 9
lab, creating control templates, 367–69
Toolbar, 121
transforming, 170
XAML, 101–2

Button.Click event, 359–60
ButtonBase class, 104

C
CameraManufacturer, 198
CameraModel, 198
CancelAsync, 42, 45–46
CancellationPending, 42, 45–46
CanExecute, 77–78
CanExecuteRoutedEventArgs, 77–78
CanGoBack, 24–25
CanGoForward, 24
CanMinimize, 6
CanResize, 6
CanResizeWithGrip, 6
Canvas controls, 101, 142–43
Canvas.ZIndex, 142–43
cart, shopping, 32
CAS (Code Access Security), 460
case scenario

animation of controls, 340–41
controls, streaming stock quotes, 151
custom controls, 386
data conversion and validation,

301–2
databinding, 256–57
deploying applications, 470
designing user interfaces, 54
international business, 439
multimedia, 205
updating applications, 470
user input, validating, 95

user interface, user input, 96
CenterOwner, 7
CenterScreen, 7
Certificates, 463–64
change notification, 282, 287–94, 373, 394
channels, color, 156
characters, 351
Checkbox control, 104, 117, 121
CheckFileExists, 346
CheckForUpdate, 456
CheckForUpdateCompleted, 457
CheckForUpdateCompletedEventArgs, 457
CheckPathExists, 346
child controls, 4, 9, 143–44
Children, 326
Children.Add, 143–44
Children.Remove, 144
Chinese language, 426
Circle, 407
Classic.xaml, 379
Click, 62, 103–5
ClickOnce, 191, 443–44, 451–58, 464–65
Clip, 171
clipping, graphics, 171
Close, 8–9
Code Access Security (CAS), 460
code execution, 41, 59–61, 75
coding

animations, 335–36
databinding, 211–13
styles, 309–10

collections, databinding, 223–26,
246–48

CollectionViewSource, 241
CollectionViewSource.GetDefaultView, 224–25
color, 348–49, 428–29

control, 108–9
gradients, 157–61
themes, 378–80

Color, 48, 158
Color.FromArgb, 157
ColorAnimation, 332
ColumnDefinitions, 133–37
columned page view, 416
columns, flow documents, 416
columns, grid, 133–38
CombinedGeometry, 166–68
ComboBox, 117–18, 121
ComboBox.Content, 118
ComboBox.Text, 118
Command, 73–74, 120
command handler, 73
Command.CanExecute, 77–78

506 Command.Execute
Command.Execute, 75
CommandBinding, 73, 76
commands, 57

architecture, 73
configuring, 72–73

bubbling, 76–77
custom, 78–80
disabling, 77
handlers and bindings, 73, 75–78
implementing, 73–74
invoking, 74–75

hyperlinks, 411
lab, creating custom, 80–83
menus, 119–21

Comment, 198
Compare, 242–43
compiling, embedded resources, 187
ComponentCommands, 73
compressed files (.wav), 176–79
Condition, 315
configuring

application settings, 86–91
commands, 72–73

custom, 78–80
disabling, 77
handlers and bindings, 73, 75–78
implementing, 73–74
invoking, 74–75

databinding, 207–9
ADO.NET object binding, 226–27
Binding.Mode, 215–16
case scenarios, 256–57
data templates, 238–41
data, filtering, 246–48
data, grouping, 243–46
data, sorting, 241–43
elements, binding to, 211–12
hierarchical data, 228–29
lab, data templates and groups, 248–51
lab, database access, 232–35
lab, practice with, 217–18
lists, binding to, 221–26
ObjectDataProvider, 230–31
objects, binding to, 212–15
UpdateSourceTrigger, 216–17
XmlDataProvider, 231–32

events, 59–61
application level, 66–68
EventManager, 63
handlers, 62–63, 66
routed events, 61–62, 64–65, 68–69

lab, change notification and validation, 289–94
page-based navigation, 21

event handling, 27–30
hosting pages in frames, 21
hyperlinks, 22–23
journal, using, 25–27
NavigationService, 23–25
PageFunction objects, 30–32
simple, 32
structured, 32
using pages, 21
XBAPs, 11

constructor, 27
ConstructorParameters, 230
containers, flow document, 416
ContainerStyle, 244
ContainerStyleSelector, 244
content

adding, 153–54
binary resources, 187

content files, 190
embedding, 187, 191–92
loading resources, 188–89
retrieving, 189–91

graphics, 155
brushes, 155–56
clipping, 171
Ellipse, 164–65
hit testing, 171–72
ImageBrush, 161–62
lab, practice with, 172–73
Line, 165
LinearGradientBrush, 157–60
Polygon, 165–68
Polyline, 165
RadialGradientBrush, 160–61
Rectangle, 164–65
shapes, 163–64
SolidColorBrush, 156–57
Transforms, 168–70
VisualBrush, 163

images, 194
bitmap metadata, 198–99
lab, practice with, 200–1
stretching and sizing, 194–96
transforming graphics, 196–98

managing, 153–54
multimedia

case scenarios, 205
lab, creating a media player, 183–85
MediaElement, 179–82, 190
MediaPlayer, 179–82, 190, 196
media-specific event handling, 182–83
SoundPlayer, 176–79

Content, 101–2, 211–13, 360

creating 507
content controls, 101–5, 111, 372
ContentControl, 4, 101–5, 372
ContentPresenter, 360–61
ContentTemplate, 240
ContentType, 189
ContextMenu, 119, 121, 124
Control class, 372
control containment heirarchy, 59–60
control templates, 359

creating, 367–69, 378–79
part names, predefined, 366
source code, 366
Styles, 365
templated parent properties, 363–65
Triggers, 362–63

Control.ContextMenu, 121
Control.Triggers, 313
controls, 101. See also content controls; individual

control names
animation of controls, 336–37
case scenarios

animation of controls, 340–41
international business, 439
streaming stock quotes, 151

commands, associating with, 74
control templates, 359–62

lab, creating, 367–69
part names, predefined, 366
source code, 366
Styles, 365
templated parent properties, 363–65
Triggers, 362–63

custom, 378
case scenario, 386
choosing, 373
consuming controls, 377
creating, 372, 376–77
dependency properties, 373–75
lab, creating custom controls, 380–83
selecting, 373
theme-based appearance, 378–80
user controls, 376

item controls
binding to lists, 221–23
ComboBox, 117–18, 121
ContextMenu, 119, 121, 124
lab, practice with, 124–26
ListBox, 101, 116–17, 121, 124
menus, 119–21
StatusBar, 123
Toolbar, 119, 121–23
TreeView, 101, 118–19
virtualization, 123–24

layout controls, 4, 101, 130–31
aligning content, 144–45
Canvas, 101, 142–43
child elements, accessing, 143–44
DockPanel, 139–42, 146–48
Grid, 101, 110, 131–37
HorizontalAlignment, 131–33, 135, 138
lab, practice with, 146–48
Margin, 131–33, 135
StackPanel, 101, 123–24, 131–32, 138
UniformGrid, 137–38
VerticalAlignment, 131–33, 136
WrapPanel, 139

menus, 121–22
Navigation applications, 9
Page objects, 9
styles, 309
tab order, 111
user, creating, 372
virtualization, 123–24
Windows Forms

dialog boxes, 345–49
MaskedTextBox, 351–52
PropertyGrid, 353–54
WindowsFormsHost, 349–51

WindowsFormsHost, 349–51
ControlTemplate, 361–63
ControlTemplate.Triggers, 362–63
Convert, 245–46, 261–62, 273–76, 432
ConvertBack, 245–46, 261–62, 265, 273–76, 432
converting data, 261

bound data, formatting, 273
case scenario, 301–2
formatting, conditional, 268–69
IValueConverter, 261–64
lab, string and conditional formatting,

276–79
localizing data, 271, 432
multi-value converters, 273–76
objects, return, 268–69
string formatting, 264–67

Copyright, 198
CreatePrompt, 346
creating

application settings, 87
commands, custom, 78–83
content, 153–54
control templates, 359–62, 367–69
data groups, custom, 245–46
data-based objects, 261

bound data, formatting, 273
case scenario, data conversion, 301–2
formatting, conditional, 268–69

508 Ctrl key
IValueConverter, 261–64
lab, string and conditional formatting, 276–79
localizing data, 271
multi-value converters, 273–76
returning objects, 268–69
string formatting, 264–67

dialog boxes, 8
event handlers, 28, 66–69
graphics, 155

brushes, 155–56, 196
clipping, 171
Ellipse, 164–65
hit testing, 171–72
ImageBrush, 161–62
lab, practice with, 172–73
Line, 165
LinearGradientBrush, 157–60
Polygon, 165–68
Polyline, 165
RadialGradientBrush, 160–61
Rectangle, 164–65
shapes, 163–64
SolidColorBrush, 156–57
Transforms, 168–70
VisualBrush, 163

labs
control templates, 367–69
custom commands, 80–83
custom controls, 380–83
flow documents, 421–22
media player, 183–85
Navigation applications, 16–17
Setup project, 448–49
user interface, 111–12
Windows applications, 15–16
XBAPs, 17–19

Navigation applications, 10, 16–17
resource dictionary, 395–96
Setup projects, Windows Installer, 443,

448–49
styles, 308–10, 318–20
user controls, 372, 376
Windows applications, 4–5, 15–16
XBAPs, 11–12, 17–19

Ctrl key, 74
culture

case scenario, localizing applications, 439
elements, localizable, 428–29
extracting content, 429–30
localizing, 426–28, 433–35
resources, 431
subdirectories, culture codes, 430–31
translating content, 430

UICulture attributes, 428
validators and converters, 432

Culture, 271
CultureInfo, 431–32
currency formats, 265, 352
CurrentDeployment, 456
CurrentItem, 224–26
CurrentPosition, 224
CurrentThread.CurrentUICulture, 431
CurrentUICulture, 426
Cursor, 5
Custom Actions Editor, 448
custom dialog boxes, 8. See also dialog boxes
CustomContentState class, 26
CustomSort, 242–43
Cyrillic language, 426

D
data

Boolean, 104
change notification, 287–89
converting, 261

bound data, formatting, 273
case scenario, 301–2
formatting, conditional, 268–69
IValueConverter, 261–64
lab, string and conditional formatting,

276–79
localizing, 271
multi-value converters, 273–76
objects, return, 268–69
string formatting, 264–67

culture settings, 432
databinding, 207–9

ADO.NET object binding, 226–27
Binding.Mode, 215–16
case scenarios, 256–57
data templates, 238–41
data, grouping, 243–46
data, sorting, 241–43
elements, binding to, 211–12
filtering, 246–48
hierarchical data, 228–29
lab, data templates and groups,

248–51
lab, database access, 232–35
lab, practice binding, 217–18
lists, binding to, 221–26
ObjectDataProvider, 230–31
objects, binding to, 212–15
UpdateSourceTrigger, 216–17
XmlDataProvider, 231–32

documents 509
lab, online pizza ordering, 32–34
settings, 86–87
templates, 248–51
validation, 282

binding rules, 282–83
case scenario, 301–2
custom rules, 283–84
error handling, 284–87
ExceptionValidationRule, 283
lab, configuring, 289–94
ObservableCollection, 288–89

data triggers, 315
databases, 11, 14, 228–29
databinding, 207–9, 364–65

ADO.NET object binding, 226–27
Binding.Mode, 215–16
case scenarios, 256–57
change notification, 287–89
data templates, 238–41
dependency properties, 373
elements, binding to, 211–12
ExceptionValidationRule, 283
filtering data, 246–48
grouping data, 243–46
hierarchical data, 228–29
labs

data templates and groups, 248–51
database access, 232–35
practice with, 217–18

lists, binding to, 221–26
Multibinding, 275–76
ObjectDataProvider, 230–31
objects, binding to, 212–15
sorting data, 241–43
UpdateSourceTrigger, 216–17
validation rules, 282–83
XmlDataProvider, 231–32

DataContext, 213–14, 226–27
DataRelation, 228–29
DataSet, 227
DataTable, 226–27
DataTrigger, 312
DataView, 247–48
date, formats, 267, 352
DateTake, 198
DateTime.ToString, 267
Deactivated events, 67
DecelerationRatio, 324, 331
Decimal, 407
decimal characters, 352, 432
Default Windows XP theme, 379
DefaultLocation, 446
delegates, 48

dependency properties, 373–75, 394
DependencyObject class, 172, 373
deploying applications, 441, 443–44

Application Manifest, 461–63
case scenario, 470
Certificates, 463–64
ClickOnce, 451–58, 464–65
downloading, 3
Setup projects, 443, 448–49
to server, 3
to Web site, 3
Windows Installer, 443–48
XBAPs, 11, 458–61

Designer, Visual Studio, 5
desktop applications, 2, 9, 190–91.

See also applications
dialog boxes, 14

creating custom, 8
file dialog boxes, 345–47
lab, practice with Windows Forms elements,

354–56
MaskedTextBox, 351–52
PropertyGrid, 353–54
WindowsFormsHost, 349–51

dictionaries, resource, 395–98
digital signatures, 463–64
digits, 351
direct events, 60
disabling commands, 77
Disc, 407
DiscreteKeyFrame, 334–35
Dispatcher, 41, 47–51
DispatcherPriority, 48
DispatcherUnhandledException, 67
DispatcherUnhandledExceptionEventArgs.Handled, 67
DisplayMemberPath, 221–22, 226, 241
DLL (Dynamic Link Library), 377, 418, 430
Dock, 139, 350
DockPanel, 139–42, 146–48
DockPanel.Dock, 139
Document, 231
DocumentPaginator, 420
documents, 401

flow documents, 401
block elements, 405–10
containers, 416
creating, 402–3, 421–22
formatting, 403–4
inline elements, 410–15
scaling text, 417
white space, 415

printing, 418–20
XPS documents, 418

510 DocumentViewer
DocumentViewer, 418–19
DoubleAnimationUsingPath, 324
downloading applications, 3, 107
DownloadProgress, 180
DownOnly, 195
DoWork, 41–44
DoWorkEventsArgs, 43–44
drag-and-drop functionality, 14
Drawing, 196–98
DrawingGroup, 196
DrawingImage, 197–98
Duration, 325, 331–32
Dynamic Link Library (DLL), 377, 418, 430
DynamicResource, 378, 393–95, 397

E
e.Action, 286
e.Cancel, 30
e.CanExecute, 77–78
EditingCommands, 73
Element, 213, 217
ElementName, 209–11
elements. See also databinding; objects;

Resources
animation, 323–24
block elements, 401

BlockUIContainer, 409–10
flow documents, 401–4
List, 406
Paragraph, 405
Section, 409
Table, 407–8

control templates, 359–62
custom, 373
databinding, 211–12
file associations, 461–63
flipping, 170
inline elements, 401, 410

Bold, 410–11
Figure, 414–15
Floater, 412–14
flow documents, 401–4
Hyperlink, 411
InlineUIContainer, 415
Italic, 410–11
LineBreak, 411–12
Run, 410
Span, 412
Underline, 410–11

inline flow, 22
localization, 428–29
property setters, 306–7

styles, setting, 308
transforming, 170
Underline, 410–11
user interface (UI), 4, 72
visual, 163, 420

Ellipse, 164–65
EllipseGeometry, 166, 171
embedded files

binary resources, 187
content files, 190
lab, using embedded resources, 191–92
loading, 188–89
retrieving, 189–91

English language, 426
EnterActions, 313
Error objects, 285
ErrorCondition, 283–84
ErrorContent, 285
ErrorException, 183
Esc key, 103
EvenOdd, 166
event handlers, 59–61

application level, 67–68
Application.Startup, 431
attaching, 62–63
commands, 72, 75–78
creating, 28, 66–68
Hyperlink, 411
lab, routed events, 68–69
media-specific, 182–83
setters, 307
Validation.Error, 285–87
Windows Forms controls, 350
XAML, 62

Event property, 307
event triggers, 315–16
EventArgs, 62
EventManager, 63, 66
events, 57

application level, 66–68
attached, 62–63
bubbling, 60, 63, 286
Button.Click, 359–60
Click, 103–5
configuring, 59–61

application-level events, 66–68
EventManager, 63
handlers, 62–63, 66
routed events, 64–65, 68–69
RoutedEventArgs, 61–62

defining, 64–65
direct, 60
DoWork, 41–44

formatting 511
EventManager, 63
lab, routed practice, 68–69
navigation, handling, 27–30
PageFunction, 30–32
raising, 65
registration, 63
ReturnEventArgs, 30–31
routed, 57, 61–62, 64–65, 68–69, 76–77, 183
setters, 307
tunneling, 60–61, 63
ValueChanged, 110

EventSetter, 307
EventTrigger, 313, 327
Exception, 285
ExceptionRoutedEventArgs, 183
exceptions, 48, 67, 183, 283
ExceptionValidationRule, 283
Exclude, 167
ExecutedRoutedEventArgs, 75–77
Exit, 67
ExitActions, 313
Extensible Application Markup Langugage

(XAML), 1
attached properties, 110
binary resources, 190–91
Button controls, 101–2
Canvas, 142
ContextMenu, 121
custom commands, 80
event handlers, 62
ListBox controls, 116–17
menus, 119–21
multimedia formats, 179
resources, accessing, 393
TreeView controls, 118–19

extensions, filename, 346

F
FallbackValue, 209
Figure, 414–15
file

associations, 461–63
file system, 11–12, 14, 444
File System Editor, 445–46
FileName, 346
filename extensions, 346
filename filter, 346
FileNames, 346
files

associations, 444
binary resources, 187

content files, 190

embedding, 187
lab, embedded resources, 191–92
loading, 188–89
loose files, retrieving, 189–91
retrieving manually, 189

overwriting, 347
sharing, 443–44

files downloading, 107
Files Of Type dialog box, 346
Files Type Editor, 448
Fill, 155

Polygon, 165
Shape, 164
Stretch, 162, 164, 195

FillBehavior, 325, 331
FillRule, 165, 167
Filter, 247, 346
filtering, 246–48, 346
FindAncestor, 214
FindResource, 396–97
flipping, elements, 170
FlipX, 163
FlipXY, 163
FlipY, 163
Floater, 412–14
flow documents, 401

block elements, 405–10
containers, 416
creating, 402–3, 421–22
formatting, 403–4
inline elements, 410–15
scaling text, 417
white space, 415

FlowDirection, 130, 138–39, 428–29
FlowDocumentPageViewer, 416–17, 419
FlowDocumentReader, 415–17, 419
FlowDocumentScrollContainer, 415
FlowDocumentScrollViewer, 416–17, 419
FlowPanel, 60
FontFamily, 403
FontSize, 403
FontStretch, 403
FontStyle, 403
FontWeight, 404
FontWidth, 428–29
Foreground, 5, 155, 403, 428–29
Forever, 331–32
FormatProvider, 352
formatting

data, 261
bound data, 273
case scenario, data conversion, 301–2
conditional formatting, 268–69

512 Forward buttons
IValueConverter, 261–64
lab, string and conditional formatting, 276–79
localizing, 271
multi-value converters, 273–76
objects, return, 268–69
strings, 264–67

document text, 401–4
flow documents, 403–4

block elements, 405–10
containers, 416
creating, 421–22
inline elements, 410–15
scaling text, 417
white space, 415

XPS documents (XML Paper Standard), 418
Forward buttons, 9
fragment navigation, 23, 28
FragmentNavigation, 28
Frame control, 21, 199
frames, hosting pages in, 21
FrameworkPropertyMetadata, 375
Freezable class, 41, 48–49, 156, 364–65
French language, 427

G
Generic.xaml, 376, 379
Geometry, 196–97
Geometry objects, 166–68, 171
GeometryCombineMode, 167
GeometryDrawing, 196–97
GeometryGroup, 166–67
gestures, 72, 74
GetContentState, 27
GetNavigationService, 23
GetRoutedEvents, 64
GetRoutedEventsForOwner, 64
GetValue, 375
GlyphRun, 196
GlyphRunDrawings, 196
GradientStop, 158, 160
graphic handles, 108–9
graphics. See also visual effects

brushes, 155–56
clipping, 171
creating, 155
Ellipse, 164–65
freezable objects, 48–49
hit testing, 171–72
ImageBrush, 161–62
lab, practice with, 172–73
Line, 165
LinearGradientBrush, 157–60

managing, 153–54
Polygon, 165–68
Polyline, 165
RadialGradientBrush, 160–61
Rectangle, 164–65
shapes, 163–64
SolidColorBrush, 156–57
transforming to images, 196–98
Transforms, 168–70
VisualBrush, 163

Green channel, 156
Grid, 9, 132–37

attached properties, 110
block elements, 409–10
buttons, 62–63
databinding, 213
margins, 131–32

Grid.Column, 134
Grid.ColumnSpan, 134, 137
Grid.Row, 134
Grid.RowSpan, 135
GridSplitter, 134–37, 146–48
GroupHeader, 244
grouping, data, 243–46
GroupName property, 104
GroupStyle, 244

H
Handled, 61, 63
Handler property, 307
handlers

command, 73, 75–78
event, 59–61

application level, 67–68
Application.Startup, 431
attaching, 62–63
commands, 72, 75–78
creating, 28, 66–68
Hyperlink, 411
media-specific, 182–83
routed events, 68–69
setters, 307
Validation.Error, 285–87
Windows Forms controls, 350
XAML, 62

HasAudio, 180
HasVideo, 180
HeaderTemplate, 244
HeaderTemplateSelector, 244
Height, 5–6, 130

Grid, 133–37
Shape, 164

IsReadOnly 513
hexadecimal notation, 156
hierarchical data, 228–29
history, 3, 9. See also journals
hit testing, 171–72
HitTestResult, 171–72
HitTestResult.VisualHit, 172
HorizontalAlignment, 131–33, 135, 138, 415
HorizontalAnchor, 414–15
HorizontalContentAlignment, 131
HorizontalOffset, 414
HorizontalScrollBar, 107
HTML (Hypertext Markup Language), 11, 22, 407
hyperlinks, 22–23, 411
Hypertext Markup Language (HTML), 11, 22, 407

I
IBindingList, 225
ICollectionView, 246–48
ICollectionView.GroupDescriptions, 243
ICollectionViews, 224–26, 241–43
ICommandSource, 74
IComparer, 242–43
Icon, 6
icons, 447–48
IDE (integrated development environment), 4–5
IDocumentPaginatorSource, 420
IEnumerable, 225
IList, 225
Image, 106, 188–89, 194, 199, 413
Image.Stretch property, 106
ImageBrush, 161–62
ImageDrawing, 196
images

binary resources, 187
content files, 190
embedding, 187, 191–92
loading, 188–89
loose files, retrieving, 189–91

bitmap metadata, 198–99
case scenarios, 205
display of, 106
Image element, 194
ImageBrush, 161–62
lab, practice with, 200–1
retrieving manually, 189
stretching and sizing, 194–96
transforming graphics, 196–98

ImageSource, 6, 161, 194, 199, 428–29
IMultiValueConverter, 273–76
index, 116, 143–44
individual controls, 101
information passing, navigation events, 29

inheritance, styles, 311–12, 317
InitialDirectory, 346
inline elements, 401, 410

Bold, 410–11
Figure, 414–15
Floater, 412–14
flow documents, 402–4
Hyperlink, 411
InlineUIContainer, 415
Italic, 410–11
LineBreak, 411–12
Run, 410
Span, 412
Underline, 410–11

inline flow elements, 22
INotifyPropertyChanged, 287
input gestures, 72, 74
InputGestures, 74
Installation Folder URL, 453
integrated development environment (IDE), 4–5
IntelliSense, 88
international business, 426–28

case scenario, 439
elements, localizable, 428–29
extracting content, 429–30
lab, localizing an application, 433–35
resources, 431
subdirectories, culture codes, 430–31
translating content, 430
UICulture attributes, 428
validators and converters, 432

Internet applications, 443–44
Internet Explorer, 11
Internet security zone, 14
Intersect, 167
Invoke, 47–48
IProvideCustomContentState interface, 26–27
IsAsynchronous, 230
IsBusy, 42
IsCancel, 103
IsChecked, 104
IsCurrentAfterLast, 224
IsCurrentBeforeFirst, 224
IsDefault, 103
IsDropDownOpen, 118
IsEditable, 118
IsEnabled, 6
IsLoadCompleted, 176
IsMainMenu property, 119
isolated storage, XBAPs, 12–13
IsolatedStorageFileStream class, 13
IsolateStorageFile class, 12
IsReadOnly, 107, 118

514 IsSynchronizedWithCurrentItem
IsSynchronizedWithCurrentItem, 222,
225–26, 228

IsToolBarVisible, 417
IsValid, 283–84
item controls, 101

binding to lists, 221–23
ComboBox, 117–18, 121
ContextMenu, 119, 121, 124
lab, practice with, 124–26
ListBox, 101, 116–17, 121, 124
menus, 119–21
StatusBar, 123
Toolbar, 119, 121–23
TreeView, 101, 118–19
virtualization, 123–24

ItemsPresenter, 361
ItemsSource, 222, 226
ItemsTemplate, 240
ItemTemplate, 222, 241
IValueConverter, 245–46, 261, 432

J
JournalEntry, 25
JournalEntryName property, 26
journals, 3, 25

adding items, 26–27
lab, online pizza ordering, 34–38
Navigation applications, 9
NavigationService, 24
removing items, 25, 32

K
Key, 241, 396
key frame-based animations, 323, 333–35
keyboard gestures, 74
keyboard shortcuts, 102–4, 120
KeyboardNavigation.IsTabStop, 111
KeySpline, 334
KeyTime, 333
Keywords, 199

L
Label controls, 60, 101–3, 123

databinding, 211–13, 226
labs

animation of controls, 336–37
BackgroundWorker, 49–51
change notification and validation, configuring,

289–94
commands, creating custom, 80–83
control templates, creating, 367–69

controls, creating custom, 380–83
data templates and groups, 248–51
databases, accessing, 232–35
databinding, practice with, 217–18
embedded resources, using, 191–92
flow documents, creating, 421–22
graphics, practice with, 172–73
images, practice with, 200–1
item controls, practice, 124–26
layout controls, practice, 146–48
localizing an application, 433–35
media player, creating, 183–85
Navigation applications, creating, 16–17
online pizza ordering, 32–38
publishing with ClickOnce, 464–65
resources, practice with, 397–98
routed events, practice, 68–69
settings, practice with, 89–91
string and conditional formatting, 276–79
styles, creating high-contrast, 318–20
user interface, building, 111–12
Windows applications, creating, 15–16
Windows Forms elements, practice with, 354–56
XBAP, creating, 17–19

languages, 426
LastChildFill, 139, 141–42
Launch Conditions Editor, 448
layout controls, 4, 101, 130–31

aligning content, 144–45
Canvas, 101, 142–43
case scenario, streaming stock quotes, 151
child elements, accessing, 143–44
control templates, 360
DockPanel, 139–42, 146–48
Grid, 101, 110, 131–37
HorizontalAlignment, 131–33, 135, 138
lab, practice with, 146–48
Margin, 131–33, 135
Navigation applications, 9
StackPanel, 101, 123–24, 131–32, 138
UniformGrid, 137–38
user interface, 4
VerticalAlignment, 131–33, 136
WindowsFormsHost, 350
WrapPanel, 139

Left, 6, 350
letters, 351
Line, 165
line breaks, 415
linear animations, 323
LinearGradientBrush, 157–60
LinearGradientBrush.EndPoint, 158
LinearGradientBrush.Spread, 160

MouseDown 515
LinearGradientBrush.StartPoint, 158
LinearKeyFrame, 334–35
LineGeometry, 166
LineHeight, 404
LineStackingStrategy, 404
links, page-based navigation, 22–23
List, 412
list-based controls. See item controls
ListBox controls, 101, 116–17, 409–10

ContextMenu, 121
databinding, 221–23, 226, 238–40
virtualizing, 124

ListBox.SelectedIndex, 116
ListBox.SelectedItem, 116
ListBoxItem, 116–17
ListCollectionView, 225, 242–43
ListCollectionView.CustomSort, 242–43
ListItem, 406
lists, databinding to, 221–26
ListView, 124
Load, 176
LoadAsync, 177
LoadComplete, 177
LoadCompleted, 28
LoadedBehavior, 180
LoadTimeout, 177
localizing applications, 426–28

case scenario, 439
elements, 428–29
extracting content, 429–30
lab, practice with, 433–35
resources, 431
subdirectories, culture codes,

430–31
translating content, 430
UICulture attributes, 428
validators and converters, 432

Location, 199
LocBaml, 429–31
logical resources, 212, 389–92

accessing in XAML, 393
application resources, 393
declaring, 392–93
lab, practice with, 397–98
resource dictionary, 395–96
retrieving in code, 396–97
static and dynamic, 393–95

LostFocus, 217
lowercase characters, 352
LowerLatin, 407
LowerRoman, 407
Luna.Metallic.xaml, 379
Luna.NormalColor.xaml, 379

M
managing

application responsiveness, 41
binary resources, 187

content files, 190
embedding, 187, 191–92
loading, 188–89
retrieving, 189–91

content, 153–54
images, 194

bitmap metadata, 198–99
case scenarios, 205
Image element, 194
ImageBrush, 161–62
lab, practice with, 200–1
retrieving, 189
stretching and sizing, 194–96
transforming graphics, 196–98

Margin, 131–33, 135, 164, 404
MarkerStyle, 406
Mask, 351
MaskedTextBox, 351–52, 354–56, 386
MaskedTextProvider, 351
MatrixAnimationUsingPath, 324
MatrixTransform, 169
MaxHeight, 131
MaxWidth, 131
Media Player 11, 179
MediaCommands, 73
MediaElement, 179–83, 190
MediaEnded, 182
MediaFailed, 182–83
MediaOpened, 182–83
MediaPlayer, 179–83, 190, 196
memory, NavigationService, 24
Menu, 101, 124
MenuItem, 119–21
menus, 72, 119–22
metadata, 317
Metadata, 199
MethodName, 230
MethodParameters, 230
Microsoft Windows Installer, 190–91, 443–48
Microsoft Windows Media Player, 179
Microsoft Windows Vista, 7, 179
Microsoft Windows XP, 179
migrating, settings, 458
MinHeight, 131
MinWidth, 131
mnemonic keys, 102–3
Mode, 210
mouse gestures, 74
MouseDown, 60

516 MouseLeave
MouseLeave, 60
MoveCurrentTo, 224
MoveCurrentToFirst, 224
MoveCurrentToLast, 224
MoveCurrentToNext, 224–25
MoveCurrentToPosition, 224
MoveCurrentToPrevious, 224–25
Msbuild.exe, 429
Multibinding, 275–76
MultiDataTrigger, 313, 315
multimedia

case scenarios, 205
lab, creating a media player,

183–85
MediaPlayer, 179–82
media-specific event handling,

182–83
SoundPlayer, 176–79

Multiselect, 346
multithreaded code, 48–49
MultiTrigger, 312
multi-triggers, 314
My, 88
myFilter, 247

N
Name, 86–87, 363
NaturalDuration, 180
NaturalVideoHeight, 180
NaturalVideoWidth, 180
Navigate, 23–25
Navigated, 27
NavigateUri, 22–23
Navigating, 27
navigation, 3, 9

collections and lists, 223–26
flow documents, 416
fragment, 23, 28
journal, using, 25–27
NavigationService, 23–25
page-based, 21

event handling, 27–30
hosting pages in frames, 21
hyperlinks, 22–23
PageFunction objects, 30–32
simple, 32
structured, 32
using pages, 21

XBAPs, 11
Navigation applications, 3, 9

creating, 10
deploying, 444, 451
lab, creating, 16–17

NavigationCommands, 73
NavigationFailed, 28
NavigationProgress, 28
NavigationService, 23–30
NavigationService.AddBackEntry, 27
NavigationService.GoForward, 24
NavigationService.Navigate, 27
NavigationService.Refresh, 24
NavigationService.StopLoading, 24
NavigationStopped, 28
NavigationWindow, 9
NeutralResourcesLanguage, 427
NoBorder, 7
non-double animation, 332–34
nonlinear animation, 333–35
NonZero, 166
NoResize, 6
notification, change, 282, 287–94, 394
NotifyOnSourceUpdated, 210
NotifyOnTargetUpdated, 210
NotifyOnValidationError, 285
null, 75

O
Object array, 273–76
ObjectDataProvider, 230–31
ObjectInstance, 230
objects. See also databinding; elements; Resources

ADO.NET, 247–48
change notification, 282
CommandBinding, 76–78
commands, 72–75
data-based, 261

bound data, formatting, 273
case scenario, data conversion and validation,

301–2
change notification, 287–89
formatting, conditional, 268–69
IValueConverter, 261–64
lab, string and conditional formatting, 276–79
localizing data, 271
multi-value converters, 273–76
returning objects, 268–69
string formattting, 264–67

databinding, 212–15
displaying, 123
freezable, 48–49, 156, 364–65
Geometry, 166–68
Page, 9–11, 30–32
PageFunction, 22, 30–32
read-only, 48–49
read-write, 48–49
static, 73, 212

properties 517
validating, 282
binding rules, 282–83
custom rules, 283–84
error handling, 284–87
ExceptionValidationRule, 283
lab, configuring, 289–94

ObjectType, 230
ObservableCollection, 242–43, 287
Offset, 158
OneTime, 215
OneWay, 215–16
OneWayToSource, 216
online ordering, 32–38
OnReturn, 30–31
opacity, 156
OpacityMask, 156
Open, 181
OpenFile, 347
OpenFileDialog, 345–47
Orientation, 138
OriginalSource, 61
Overflow menu, 121–22
overloads, 29
OverwritePrompt, 346

P
Pack URIs, 188–91
Pad, 160
Padding, 131, 404
Page objects, 9–11, 30–32
page view, 416
page-based navigation, 21

event handling, 27–30
hosting pages in frames, 21
hyperlinks, 22–23, 411
journal, using, 25–27
NavigationService, 23–25
PageFunction objects, 30–32
simple, 32
structured, 32
using pages, 21
XBAPs, 11

PageFunction, 22, 30–38
PageFunction.Returned, 31
pages, 21, 24, 416
Panel, 244
Paragraph, 402, 405–7, 412–14
parent properties, templated, 363–65
Part, 366
part names, 366
Path, 166–68, 364–65

animations, 323–24
databinding, 210–11, 227–28

PathDate, 167
PathGeometry, 166, 168
Pause, 181
PauseStoryboard, 328
Pen, 196
performance

application, 394
freezable objects, 49

permissions, XBAPs, 11
Play, 177, 181
playback timelines, animation, 330–35
PlayLooping, 177
PlaySync, 177
PointAnimationUsingPath, 324
Points, 165
policies, security, 13–14
Polygon, 165–68
Polyline, 165
pop-up menus, 119
Position, 180
positioning, user interface items.

See layout controls
precedence, properties, 316–18
Predicate, 246–47
PreviewKeyDown, 61
PreviewMouseDown, 60–61
PreviousData, 214
Print, 420
PrintDialog, 419–20
PrintDialog.PrintVisual, 420
PrintDocument, 419–20
printing, 401, 418–20
PrintVisual, 419
priority, delegate execution, 48
processing

asynchronous, 41–42, 47–48
background, 42–43. See also BackgroundWorker

cancelling, 45–46
changing threads, 47–48
parameters, 43–44
progress reporting, 46
returning values, 44

progress monitoring, 46, 180, 386
ProgressBar controls, 107–8, 123, 386
ProgressChanged, 42
properties

ancestor, 214–15
attached, 110, 134, 143
databinding, 207–9

ADO.NET object binding, 226–27
Binding.Mode, 215–16
case scenarios, 256–57
data templates, 238–41
elements, binding to, 211–12

518 Properties.Settings.Default
filtering data, 246–48
grouping data, 243–46
hierarchical data, 228–29
lab, data templates and groups, 248–51
lab, database access, 232–35
lab, practice binding, 217–18
lists, binding to, 221–26
ObjectDataProvider, 230–31
objects, binding to, 212–15
sorting data, 241–43
UpdateSourceTrigger, 216–17
XmlDataProvider, 231–32

dependency, 373–75, 394
e.Cancel, 30
JournalEntryName, 26
precedence, 316–18
setters, 306–7
triggers, 312, 330
Visual Studio, 5
Windows applications, 5–7

Properties.Settings.Default, 88
Property, 313
property setters, 306–7
property triggers, 312
property value inheritance, 373
property value providers, 373
PropertyChanged, 217, 287
PropertyChangedEventArgs, 287
PropertyGrid, 353–54
PropertyGroupDescription, 243, 245–46
PropertySort, 354
Publish, 452–55
Publishing Folder Location, 452–54
Publishing Options, 454

R
RadialGradientBrush, 160–61
RadialGradientBrush.GradientOrigin, 160
RadioButton controls, 104–5, 121
RadiusX, 160, 164–65
RadiusY, 160, 164–65
RaiseEvent, 65
Rating, 199
ReachFramework, 418
read-only objects, 48–49
read-write objects, 48–49
Rectangle, 164–65
RectangleGeometry, 167
Red channel, 156
Reflect, 160
refresh, 24
RegisterClassHandler, 64

RegisterRoutedEvent, 64
registration, events, 63
registry, 11, 14, 444
Registry Editor, 448
relational data, 233–35
RelativeSource, 210, 213–15, 217,

364–65
RelativeSource.Mode, 214–15
RemoveAt, 144
RemoveBackEntry, 25
RemoveFromJournal, 32
RenderTransform, 168–70
RenderTransformOrigin, 168–70
Repeat, 160
RepeatBehavior, 325, 331–32
Replay, 26–27
ReportProgress, 42, 46
reports, 46
ResizeBehavior, 135, 137
ResizeDirection, 135
ResizeMode, 6
resizing. See also Stretch

Canvas containers, 142
Grid, 133–37
images, 106
ToolBar controls, 122–23
windows, 6

resource dictionaries, 395–98
ResourceDictionaryLocation.ExternalAssembly, 380
ResourceDictionaryLocation.None, 379
ResourceDictionaryLocation.SourceAssembly, 379
resources, 378

application, 393, 396
binary, 187

content files, 190
embedding, 187, 191–92
loading, 188–89
retrieving, 189–91

ContextMenu, 121
culture, loading, 431
images, 194

bitmap metadata, 198–99
case scenarios, 205
Image element, 194
ImageBrush, 161–62
lab, practice with, 200–1
retrieving, 189
stretching and sizing, 194–96
transforming graphics, 196–98

logical, 212
satellite assemblies, 431
static and dynamic, 397
templates as, 361

Source 519
Resources, 306, 308–9, 378
lab, practice with, 397–98
logical, 389–92

accessing in XAML, 393
application resources, 393
declaring, 392–93
resource dictionary, 395–96
retrieving in code, 396–97
static and dynamic, 393–95

responsiveness, application, 41
Result, 44
ResumeStoryboard, 328
return types, PageFunction, 30–31
return value, PageFunction, 31
Returned, 30–31
ReturnEventArgs, 30–31
returning data, online pizza ordering, 32–34
RotateTransform, 169
routed events, 57, 59–62, 183

command bubbling, 76–77
defining, 64–65
lab, practice with, 68–69
registration, 63

RoutedEvent, 61
RoutedEventArgs, 61–63, 183
RowDefinitions, 133–37
rows, grid, 133–38
RuleInError, 285
RunWorkerAsync, 41–44
RunWorkerCompleted, 42, 44
RunWorkerCompletedEventArgs, 44

S
satellite assemblies, 431
Save As dialog box, 346
Save As File Type dialog box, 346
SaveFileDialog, 345–47, 354–56
SaveFileDialog.OpenFile, 347
ScaleTransform, 169–70
ScaleX, 170
ScaleY, 170
scaling text, 417
Scope, 86–87
scroll bars, 107, 116
scroll view, 416
Section, 409
security, 13–14

Certificates, 463–64
code access, 458
Navigation applications, 9
trust environments, 444, 451, 458–61
XBAPs, 11

SeekStoryboard, 328
SelectedIndex, 117
SelectedItem, 117, 226
SelectedObject, 354
SelectionMode, 117
Self, 214
Separator, 121
Serializable attribute, 26
servers, application deployment, 3, 11
SessionEnding, 67
SetBinding, 211–12
SetStoryboardSpeedRatio, 328–29
Setters, 306–7, 313–14, 363
settings, 57

application, 86–91
Internet security, 14
migrating, 458

Settings Editor, 87
Settings object, 88
Setup projects, 443, 445–46, 448–49
SetValue, 375
Shape class, 163–64
shapes, 163–64

clipping, 171
Ellipse, 164–65
Line, 165
Polygon, 165–68
Polyline, 165
Rectangle, 164–65
Transforms, 168–70

shopping cart, 32
shortcut keys, 102–4, 120, 447–48
Show display method, 8–9
ShowDialog display method, 8–9, 347, 420
ShowInTaskbar, 6
ShowsPreview, 135
Silver Window XP theme, 379
simple navigation, 32
SingleBorderWindow, 7
siteOfOrigin, 189–91
SizeToContent, 6
SkewTransform, 169
SkipStoryboardToFill, 328
slider controls, 108–10, 211–12, 416–17
Snaplines, 144–45
snapshots, journal entries, 26
SolidColorBrush, 48, 156–57
Solution Explorer, Visual Studio, 5
SortDescriptions, 241–42
SoundLocation, 177
SoundLocationChanged, 177
SoundPlayerAction, 178–79, 315–16
Source, 210, 212–15, 217, 231

520 source properties
source properties, 208–9
ADO.NET object binding, 226–27
Binding.Mode, 215–16
case scenarios, databinding, 256–57
data templates, 238–41
data, filtering, 246–48
data, grouping, 243–46
data, sorting, 241–43
elements, binding to, 211–12
hierarchical data, binding, 228–29
lab, data templates and groups, 248–51
lab, database access, 232–35
lab, practice binding, 217–18
lists, binding to, 221–26
ObjectDataProvider, 230–31
objects, binding to, 212–15
UpdateSourceTrigger, 216–17
XmlDataProvider, 231–32

Source property, 21, 61, 106, 180, 194
spaces, 415
Span, 412
SpeedRatio, 180, 325, 329, 332
SplineKeyFrame, 334–35
StackPanel controls, 101, 123–24,

131–32, 138
stand-alone windows, 14. See also dialog boxes
StartingIndex, 407
StartUp, 67
static objects, 73, 212
StaticResource, 378, 393–95, 397
StatusBar, 123
Stop, 177, 181
StopStoryboard, 328
storage, isolated, 12–13
Storyboard, 324–27, 330–36
Stream, 177, 189
StreamChanged, 177
StreamGeometry, 167
StreamReader, 12–13
StreamWriter, 12–13
Stretch, 132, 135–36

ImageBrush, 162
images, 194–96
Shape, 164
VisualBrush, 163

StretchDirection, 194–96
strings, formatting, 264–67, 276–77
Stroke, 156, 164
StrokeThickness, 164
structured navigation, 32
Style, 305–6, 308, 312, 316, 404

animation triggers, 327
case scenario, custom controls, 386

control templates, 365
logical resources, 392

Style.Triggers, 313
styles, 303, 305

case scenarios, 340–41, 386
creating, 308–10
inheritance, 311–12
lab, creating high-contrast styles, 318–20
properties of, 305–6
property value precedence, 316–18
setters, 306–7
triggers, 312–16

Subject, 199
system culture, 426
System.Globalization.CultureInfo, 431–32
System.Globalization.Info, 426
System.IO.Stream, 347
System.Threading.Thread.CurrentThread

.CurrentUICulture, 426
System.Windows.Forms, 348
System.Windows.Forms.Integration, 349
System.Windows.Media.Animation, 323
System.Windows.Media.Color, 348
System.Windows.Media.ImageSource class, 106
System.Windows.Resources.StreamResourceInfo, 189
System.Windows.Xps.Packaging, 418
SystemColors, 378
SystemColors.WindowColor, 212
SystemDeployment, 456
SystemFonts, 378
SystemParameters, 378

T
Tab key, 111
tab order, controls, 111
TabIndex, 111
Table, 412–14
TableCell, 407
TableRowGroup, 407
tabs, 415
target properties, 208–9

ADO.NET object binding, 226–27
Binding.Mode, 215–16
case scenarios, databinding, 256–57
data templates, 238–41
data, filtering, 246–48
data, grouping, 243–46
data, sorting, 241–43
elements, binding to, 211–12
hierarchical data, binding, 228–29
lab, data templates and groups, 248–51
lab, database access, 232–35

Universal Naming Convention (UNC) 521
lab, practice binding, 217–18
lists, binding to, 221–26
ObjectDataProvider, 230–31
objects, binding to, 212–15
UpdateSourceTrigger, 216–17
XmlDataProvider, 231–32

Target property, 103
TargetType, 306, 309, 392
task execution, 41
tasks. See commands
Template, 316, 386
TemplateBinding, 364
TemplatedParent, 214, 316, 364–65
templates, 373

control
creating, 378–79
lab, creating, 367–69
parent properties, 363–65
part names, predefined, 366
source code, 366
Styles, 365–66
Triggers, 362–63

controls, custom, 376
resources as, 361
theme-specific, 379–80

templates, data, 238–41, 248–51, 268–69
text

ComboBox, 118
display of, 107
flow documents, 401

block elements, 405–10
containers, 416
creating, 402–3
formatting, 403–4
inline elements, 410–15
lab, creating, 421–22
scaling text, 417
white space, 415

local culture, 428–29
wrapping, 107, 130, 139, 407
XPS documents (XML Paper

Standard), 418
TextAlignment, 404
TextBlock, 105–6
TextBox, 101, 107, 121, 217, 351–52
TextWrapping, 107
ThemeInfoAttribute, 379–80
themes, 376, 378–80
Thickness, 131–32
thousands separator, 352
threads, 41, 47–51
ThreeDBorderWindow, 7
thumb, 108–9

Tile, 163
TileMode, 162–63
time formats, 352, 432
time separator, 352
time stamps, 29
Timeline, 326
Title, 7, 199
Toolbar control, 119, 121–23
ToolBar.OverflowMode, 121–22
ToolBarTray, 122–23
Toolbox, 5
ToolTip, 404
ToolWindow, 7
Top, 7, 350
Topmost, 7
ToString, 102, 247, 265
Transformations, 168–70
TransformGroup, 169
transforming

elements, 170
graphics, 196–98

Transforms, 168–70
TranslateTransform, 169
TreeView, 101, 118–19
TreeView.SelectedItem, 119
TreeViewItem, 118–19
triggers, 312–16
Triggers, 306, 308, 312–16, 327–30, 362–63
trust environments, 3, 190–91, 444, 451, 458–61
TryFindResource, 396
tunneling events, 60–61, 63
TwoWay, 216
Type, 86–87
Type array, 273–76

U
UI (user interface). See user interface (UI)
UI (user interface) thread, 41
UICulture, 428, 431
Uid, 429
UIElement, 102
UNC (Universal Naming Convention), 191
uncompressed files, .wav, 176–79
underscore (_) symbol, 102–4, 120
Uniform, 162, 164, 195–96
Uniform Resource Identifier (URI), 23–25, 106,

188–91, 194
Uniform Resource Locator (URL), 191
UniformGrid, 137–38
UniformToFill, 162, 164, 195–96
Union, 168
Universal Naming Convention (UNC), 191

522 UnmanagedMemoryStream
UnmanagedMemoryStream, 189
Update, 456
UpdateAsynch, 457
updates, 27, 443–58, 470
UpdateSourceTrigger, 216–17
updateuid, 429
UpOnly, 195
uppercase characters, 352
UpperLatin, 407
UpperRoman, 407
URI (Uniform Resource Identifier), 23–25, 106,

188–91, 194
URL (Uniform Resource Locator), 191
user controls, 378

creating, 372, 376
case scenario, custom controls, 386
choosing, 373
theme-based appearance, 378–80

custom, 373–75, 377
lab, creating custom controls, 380–83

user experience. See also user interface (UI)
Internet, XBAP, 3
navigation, 3
ProgressBar controls, 107–8
settings, saving, 88

user input. See also user interface (UI)
case scenario, user interface, 96
case scenario, validating, 95
commands, 72
gestures, 74
PageFunction, 32
window display methods, 8

user interface (UI), 99. See also databinding;
graphics; multimedia content;
visual effects

attached properties, 110
case scenario

designing, 54
streaming stock quotes, 151
user input, 96

control templates, 359
lab, creating, 367–69
part names, predefined, 366
source code, 366
Styles, 365
templated parent properties, 363–65
Triggers, 362–63

controls, 9, 59, 72, 101–5
controls, customizing, 343, 372

case scenario, custom controls, 386
consuming controls, 377
creating, 376–77
dependency properties, 373–75
lab, creating custom controls, 380–83

selecting controls, 373
theme-based appearance, 378–80
user controls, 372, 376

data display
data templates, 238–41
filtering data, 246–48
grouping data, 243–46
sorting, 241–43

deploying, 444
elements, 72
Image controls, 106
item controls

ComboBox, 117–18, 121
ContextMenu, 119, 121, 124
lab, practice with, 124–26
ListBox control, 101, 116–17, 121, 124
menus, 119–21
StatusBar, 123
Toolbar, 119, 121–23
TreeView, 101, 118–19
virtualization, 123–24

lab, building, 111–12
lab, updating, 49–51
layout controls, 130–31

aligning content, 144–45
Canvas, 101, 142–43
child elements, accessing, 143–44
DockPanel, 139–42, 146–48
Grid, 101, 110, 131–37
HorizontalAlignment, 131–33,

135, 138
lab, practice with, 146–48
Margin property, 131–33, 135
StackPanel, 101, 123–24, 131–32, 138
UniformGrid, 137–38
VerticalAlignment, 131–33, 136
WrapPanel, 139

localizing (culture variations), 426–28
case scenario, 439
elements, 428–29
extracting content, 429–30
lab, practice with, 433–35
resources, 431
UICulture attributes, 428
validators and converters, 432

logical resources, 389–92
accessing in XAML, 393
application resources, 393
declaring, 392–93
lab, practice with, 397–98
resource dictionary, 395–96
retrieving in code, 396–97
static and dynamic, 393–95

Navigation application, 9

visual elements, printing 523
ProgressBar controls, 107–8
responsiveness, 41
Slider control, 108–10
subdirectories, culture codes, 430–31
tab order, controls, 111
TextBlock, 105–6
TextBox, 107
translating content, 430
updating, 47–48
Windows applications, 4
Windows Forms controls, 344–45

file dialog boxes, 345–47
lab, practice with, 354–56
MaskedTextBox, 351–52
PropertyGrid, 353–54

Windows properties, 5–7
WindowsFormsHost, 349–51
XBAPs, 11

User Interface Editor, 448
User property, 87
UserControl, 372
user-defined styles, 317
User's Desktop, 446
User's Program Menu, 446

V
Validate, 283–84, 432
ValidateNames, 346
validation

data, 282
binding rules, 282–83
case scenario, 301–2
change notification, 287–89
custom rules, 283–84
error handling, 284–87
ExceptionValidationRule, 283
lab, configuring, 289–94
ObservableCollection, 288–89

navigation events, 27
Validation.Error, 285–87
ValidationCollection, 282–83
ValidationErrorEventArgs, 285–87
ValidationResult, 283–84
ValidationRules, 282–84, 286, 432
validators, culture settings, 432
Value, 86–87, 313
Value property, 87
ValueChanged event, 110
ValueConversion, 262
values

background processing, 44
returning, 31

vertical scroll bars, 107, 116

VerticalAlignment, 131–33, 136
VerticalAnchor, 414
VerticalContentAlignment, 131
VerticalOffset, 414
VerticalScrollBarVisibility, 107
video, 179–85, 196, 205
VideoDrawing, 196
ViewBox, 162
Viewport, 162
views, document, 416
virtualization, item controls, 123–24
VirtualizingStackPanel, 123–24
Visual Basic, settings, 88
Visual class, 163
visual effects

animation, 303, 323–24
coding, 335–36
key frames, 333–35
lab, animation of controls, 336–37
non-double types, 332–34
playback timelines, 330–35
properties, 324–25
with Triggers, 327–30

case scenarios, 340–41
control templates, 359

part names, predefined, 366
source code, 366
Style, 365
templated parent properties, 363–65
Triggers, 362–63

controls, custom, 372, 376–77
case scenario, 386
consuming controls, 377
dependency properties, 373–75
lab, creating custom controls, 380–83
selecting, 373
theme-based appearance, 378–80
user controls, 376

local culture, 428–29
styles, 303, 305

creating, 308–10
inheritance, 311–12
lab, creating high-contrast styles, 318–20
properties of, 305–6
property value precedence, 316–18
setters, 306–7
triggers, 312–16

Windows Forms controls, 344–45
ColorDialog box, 348–49
lab, practice with, 354–56
MaskedTextBox, 351–52
PropertyGrid, 353–54
WindowsFormsHost, 349–51

visual elements, printing, 420

524 Visual Studio
Visual Studio
creating Windows applications, 4–5
Designer, 5
settings editor, 87
Snaplines, 144–45
window properties, 7

visual tree, 59–60
VisualBrush, 163
VisualTree, 214
VisualTreeHelper.HitTest, 171–72
volume control, 108–9

W
WCF Web services, 14
Web pages

page-based navigation, 22
XBAPs and, 11

Web servers, application deployment, 11
Web services, WCF, 14
Web sites, application deployment, 3
white space, 415
Width, 6–7, 131, 133–37, 164
WidthAndHeight, 6
Window, 60
Window class, 4–7
Window.Resources, 121, 212, 268–69, 392, 396
Window-based applications, 411
windows

background, 157–60
borders, 5
display of, 8–9
resize, 6
stand-alone, 14
style, 7

Windows applications, 3–4, 444
creating, 4–5
deploying, 451
displaying, 8–9
lab, creating, 15–16
properties, 5–7

Windows Classic theme, 379
Windows Forms applications, 1, 3, 5, 345–47
Windows Forms controls, 344–45

ColorDialog dialog box, 348–49
dialog boxes, 345–49
lab, practice with, 354–56
MaskedTextBox, 351–52
PropertyGrid, 353–54
WindowsFormsHost, 349–51

Windows Installer, 190–91, 443–49
Windows Internet Explorer, XBAPs, 3
Windows Media Player, 10, 179
Windows Vista, 179, 378–80

Windows XP, 179
Windows.Resources, 308–9
WindowsFormsHost, 354
WindowsFormsHost.Child, 351, 354
WindowsFormsIntegration, 349
WindowsStyle, 5
WindowStartupLocation, 7
WindowState, 7
WindowStyle, 7
worker threads, 47–48
WorkerReportsProgress, 42
WorkerSupportsCancellation, 42, 45–46
Wrap, 107
WrapDirection, 415
WrapPanel, 139
WrapWithOverflow, 107
writing, isolated storage, 12–13

X
X:Key, 392–93
XAML (Extensible Application Markup Language), 1

attached properties, 110
binary resources, 190–91
Button controls, 101–2
Canvas, 142
ContextMenu, 121
custom commands, 80
event handlers, 62
ListBox controls, 116–17
menus, 119–21
multimedia formats, 179
resources, accessing, 393
TreeView controls, 118–19

XAML Browser Application (XBAP). See XBAPs
XBAPs, 3, 11, 191, 444

creating, 11–12
deploying, 451, 458–61
isolated storage, 12–13
lab, creating, 17–19
web pages and, 11

XML Paper Standard (XPS), 418
XML, databinding, 231–32
XmlDataProvider, 231–32
Xor, 168
XPath, 210, 231–32
XPS documents (XML Paper Standard), 418
XpSDocument, 418

Z
zoom, 401, 416–17
Zoom, 417
Z-order, 142–43

	Cover
	Copyright Page

	About the Author
	Contents at a Glance
	Table of Contents
	Acknowledgments
	Introduction
	Hardware Requirements
	Software Requirements
	Using the CD and DVD
	How to Install the Practice Tests
	How to Use the Practice Tests
	How to Uninstall the Practice Tests

	Microsoft Certified Professional Program
	Technical Support
	Evaluation Edition Software

	Chapter 1: WPF Application Fundamentals
	Before You Begin
	Lesson 1: Selecting an Application Type
	Application Type Overview
	Windows Applications
	Navigation Applications
	XBAPs

	Security and WPF Applications
	Choosing an Application Type
	Lab: Creating WPF Applications
	Lesson Summary
	Lesson Review

	Lesson 2: Configuring Page-Based Navigation
	Using Pages
	Hosting Pages in Frames
	Using Hyperlinks
	Using NavigationService
	Using the Journal
	Handling Navigation Events
	Using PageFunction Objects
	Simple Navigation and Structured Navigation
	Lab: The Pizza Kitchen
	Lesson Summary
	Lesson Review

	Lesson 3: Managing Application Responsiveness
	Running a Background Process
	Providing Parameters to the Process
	Returning a Value from a Background Process
	Cancelling a Background Process
	Reporting the Progress of a Background Process with BackgroundWorker
	Using Dispatcher to Access Controls Safely on Another Thread
	Freezable Objects
	Lab: Practicing with BackgroundWorker
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenario
	Case Scenario: Designing a Demonstration Program

	Suggested Practices
	Take a Practice Test

	Chapter 2: Events, Commands, and Settings
	Before You Begin
	Lesson 1: Configuring Events and Event Handling
	RoutedEventArgs
	Attaching an Event Handler
	The EventManager Class
	Defining a New Routed Event
	Creating a Class-Level Event Handler
	Application-Level Events
	Lab: Practice with Routed Events
	Lesson Summary
	Lesson Review

	Lesson 2: Configuring Commands
	A High-Level Procedure for Implementing a Command
	Invoking Commands
	Command Handlers and Command Bindings
	Creating Custom Commands
	Lab: Creating a Custom Command
	Lesson Summary
	Lesson Review

	Lesson 3: Configuring Application Settings
	Creating Settings at Design Time
	Loading Settings at Run Time
	Saving User Settings at Run Time
	Lab: Practice with Settings
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenarios
	Case Scenario 1: Validating User Input
	Case Scenario 2: Humongous Insurance User Interface

	Suggested Practices
	Take a Practice Test

	Chapter 7: Styles and Animation
	Before You Begin
	Lesson 1: Styles
	Using Styles
	Properties of Styles
	Setters
	Creating a Style
	Implementing Style Inheritance

	Triggers
	Property Triggers
	Multi-triggers
	Data Triggers and Multi-data-triggers
	Event Triggers

	Understanding Property Value Precedence
	Lab: Creating High-Contrast Styles
	Lesson Summary
	Lesson Review

	Lesson 2: Animations
	Using Animations
	Important Properties of Animations
	Storyboard Objects
	Using Animations with Triggers
	Managing the Playback Timeline
	Animating Non-Double Types
	Creating and Starting Animations in Code
	Lab: Improving Readability with Animations
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenarios
	Case Scenario 1: Cup Fever
	Case Scenario 2: A Far-Out User Interface

	Suggested Practices
	Take a Practice Test

	Index

